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Abstract— We introduce an incremental total least-squares
vehicle mass estimation algorithm, based on a vehicle longitu-
dinal dynamics model. Available control area network signals
are used as model inputs and output. In contrast to common
vehicle mass estimation schemes, where noise is only considered
at the model output, our algorithm uses an errors-in-variables
formulation and considers noise at the model inputs as well. A
robust outliner treatment is realized as batch total least-squares
routine and hence, the proposed algorithm works in a superior
way on a broad range of vehicle acceleration. The results of
six test runs on various vehicle masses show highly accurate
mass estimation results on high and low dynamics of vehicular
operation.

I. INTRODUCTION

The vehicle mass is a vital parameter to determine and
forecast the driving resistance. Hence, a robust, fast and
accurate vehicle mass estimation method is required for sev-
eral driver assistance, driving strategy and range management
systems.

Over the last decade, numerous model-based vehicle mass
estimation methods were presented. The major approach is
to describe the vehicle’s longitudinal dynamics through a
linear state-space or input-output model. Available control
area network (CAN) signals are used as model inputs and
output. Additional methods use suspension dynamics, lateral
dynamics or drive-train dynamics. A detailed overview is
given in [1] and [2].

In [1], a recursive least-squares (RLS) vehicle mass esti-
mator is used in conjunction with a fuzzy supervisor to de-
termine driving states where the vehicle’s motion is predom-
inantly longitudinal. A band-pass filter extracts low-frequent
road grade and rolling resistance forces from higher-frequent
acceleration forces. The proposed supervisor thresholds seem
to be too restrictive for energy-efficient driving strategies. For
instance, the vehicle acceleration should exceed one meter
per square second. A simultaneous mass and road grade
RLS estimation scheme is presented in [3]. For an accurate
estimation, sufficiently rich vehicle dynamics were ensured
during the test runs. However, this assumption may be invalid
for energy-efficient driving strategies. To prevent the am-
bitious simultaneous estimation of time-varying road grade
and constant vehicle mass, Mclntyre et al. [4] developed a
two-stage estimation strategy. The vehicle mass is estimated
by an adaptive least-squares (LS) scheme, followed by a
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nonlinear road grade estimator. Bae, Ryu, and Gerdes [5]
introduce an aerodynamic drag and vehicle mass estimator
using road grade measurements from a global positioning
system (GPS). The parameter estimation was conducted
during repeated vehicle acceleration and deceleration through
coasting. Therefore, the presented velocity profile shows a
sawtooth analog shape. As indicated above, the restriction
to rich dynamics can cause this approach to fail in energy-
efficient driving states on low dynamics.

Common model-based RLS vehicle mass estimation ap-
proaches generate low computational effort, but use a sim-
plified LS problem formulation. The model output is treated
as the sum of true data and unknown measurement noise. In
contrast, all inputs are assumed to be noise-free and accurate.
Moonen [6] pointed out that the simplified LS approximation
results in biased estimates when this assumption is not met
and noise affects the input as well.

The total least-squares (TLS) regression (Section II) con-
siders unknown noise at the model output and at the model
input as well. The proposed incremental total least-squares
algorithm (Section III) is applied in a vehicle mass estimation
scheme (Section 1V) and is based on a vehicle longitudinal
dynamics model (Section IV-A). Outliners are treated in a
batch total least-squares approach (Section IV-D), thus a very
weak data preselection (Section IV-C) can be used. Accurate
mass estimates (Section V) were obtained in six test runs on
high and low vehicle acceleration, which equates to sportive
drive and comfort or energy-efficient drive, respectively.

II. TOTAL LEAST-SQUARES

Markovsky and Van Huffel [7] illustrate the basic TLS
algorithm as a maximum-likelihood estimator for the param-
eters X in the overdetermined linear system of equations (1).

AX=B, A=A+A, B=B+B. (1)

The input data A € R™" and output data B € R™ ¢ are
given. From now on, we focus on multi-input single-output
(MISO) systems, where d = 1. The matrices A and B are
sums of noise-free data A and B and measurement noise A
and B, respectively. The noise is assumed to be uncorrelated
and normally distributed with zero mean. Extensions of the
basic TLS can deal with column-wise or row-wise correlated
noise. A hierarchical overview is given in [7]. The model
(1) is known as errors-in-variables (EIV) model. Apart from
TLS, there are various EIV identification methods studied
in [8], such as instrumental variables (IV). In contrast,
simplified LS corrects the system of equations optimally
when A is zero (noise-free input).
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The solution of the basic TLS requires the singular
value decomposition (SVD) in (2) of the data matrix Z =
[A B], where Z € R™""4 The matrices U € R™™ and
V e R +d are orthogonal and their columns are called
the left and right singular vectors, respectively. The positive
diagonal matrix S € R™ "+ contains the singular values of
Z in decreasing order.

Z=UsV', U'zv=S, S§=diag(cy,...,001q). ()

The TLS parameter estimate solution becomes with
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If one thinks of online applications, the major drawback of
this batch algorithm is the computational effort. The size of
Z,U and S increases with each sample update. Hence, the
SVD computation becomes slower with time. Previous data
have to be stored (buffer size limit) and re-calculated in each
iteration. For this reason, the batch computation of the SVD
is only useful if the data size does not increase or a size limit
is ensured by a downdate scheme.

III. INCREMENTAL TOTAL LEAST-SQUARES

Online system identification requires fast algorithms with
limited computations per update. This may be the main rea-
son why RLS is the most applied algorithm in vehicle mass
estimation. Additionally, RLS offers weightings, parameter
bounds and forgetting factors. The latter allow to estimate
slow time-varying parameters as well. Recently, Kubus,
Kroger, and Wahl [9] showed an encouraging example that
demonstrates the superior accuracy of recursive total least-
squares (RTLS) algorithms. They compared the RTLS, RLS
and recursive instrumental variables (RIV) estimation of
ten parameters in a robotics application. The results attest
the predominant accuracy of RTLS. The proposed RTLS
algorithm is based on the work of Brand [10], who derived
a fast and accurate SVD update algorithm with truncation.
In [11] this algorithm is extended to an update, downdate,
revise and recenter functionality.

The proposed incremental TLS algorithm herein is an
extended version of that presented by Gu and Eisenstat [12].
The basic idea is to take advantage of the previous SVD
when new data arrives and the data matrix Z is updated. As
only V is needed in (4) to compute the parameter estimate,
a full SVD update of USV " is not required. Presuming a
known data matrix Z;, the new data matrix Z;,; consists of

Z;
Ziy = ( T >7 &)

where Zi,; € R+ and 7T is one new data row. We
focus here on appending a single data row, but the algorithm

works as well when a batch of new samples arrives. We
compute
a=V'z, (6)

where V; is known from the previous SVD and gain D €
R"-2x7+d 39 submatrix from the known S; € R4 Now,
we implement the truncation approach of [10] to size the
following SVD to an efficient rank. The QR decomposition
yields

JK =qr(z—Via) and @)

v =1/det(KTK), (8)

where v is required to decide whether a truncation is per-
formed. Brand [10] defines v as volume of z' which is
orthogonal to V;. Note that J is not needed further on. Now

let
PNQ' = svd< fT ) )

be a common batch SVD, then

Ziy1 = Ui ( ](\)] ) (vi 0 )T =Un1Sin1Vier | (10)
is the desired SVD update. Note that P and Uj;; are not
required to gain parameter estimates, hence the update of
U1 is not derived in this paper. The interested reader is
referred to [12] for a full SVD update procedure.

If v < v, where v is near the machine precision, we
downsize Sj;; to Sjy € R*H4*mtd - This means, that the
number of singular values in Sj;; remains at n+d and the
computational effort is notably reduced. Hence, the algorithm
is suitable for online applications. Finally, the parameter
estimate )?M is obtained from (4).

A simple linear two-input one-output channel model was
simulated to compare the proposed incremental TLS algo-
rithm and the classic batch TLS procedure. Basic linear
functions were used as input signals. White Gaussian noise
is added on both input channels and the output. Fig. 1 shows
the relative parameter estimation error over samples, where
each sample corresponds to one new data row. The estimates
of parameters X; and X, are approximately similar. The
reduction in computing time through the incremental TLS
method is exceptional. Fig. 2 shows the parameter estimates
for the same model. In contrast to Fig. 1, RLS give slightly
biased estimates even for this basic model.

IV. VEHICLE MASS ESTIMATION SCHEME
A. Vehicle longitudinal dynamics model
Vehicle longitudinal dynamics can be expressed through

a basic force equilibrium of tractive force and total driving
resistance.

F :m~g~fr~cosa+m-g-sin(x+(m+mmt)ax+cXBA-v2,

(11)
where F is the tractive force, m is the vehicle mass, f; is
the coefficient of rolling resistance, ¢ is the road-grade, ax
is the longitudinal acceleration, ¢ is the drag coefficient, p
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Fig. 1: Relative parameter estimate errors of the proposed in-
cremental TLS update algorithm with b = 10~!3 in compar-
ison with the default batch TLS. The incremental procedure
took 1.75 seconds, while the batch TLS required 77 seconds
on an Intel P8600 CPU.
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Fig. 2: RLS parameter estimates using the rarx command
of MATLAB®. The computing time was 7.9 seconds on the
same machine as in Fig. 1.

is the air density and v is the velocity. The vehicle cross-
sectional area A and the gravity acceleration g are known
absolute terms. The inertia loss myax through rotating parts
is obtained from

12)

with the known reduced mass moment of inertia J..4, the
gear i, and the dynamic rolling radius rgyy.

In order to separate unknown parameters, one can rewrite
(11) in a MISO system form.

T

Xi A
X> Az
B = (13)
~—~ : .
output : :
X, A
parameters inputs

Our model is based on an extended form of (11) and consid-

ers rolling resistance, climbing resistance, acceleration resis-
tance and aerodynamic drag. The longitudinal acceleration ayx
is taken from a vehicle acceleration sensor. This CAN signal
comprises the required acceleration caused by longitudinal
movement and the acceleration caused by gravity. Hence,
the correction

ax = dax CAN — & - Sino (14)

is considered according to [13]. Furthermore, F is gained
from the CAN clutch torque signal and a vehicle-specific
drive-train and internal loss model. The road-grade o is
obtained from highly resolved map data (0.01 meters height
increments) and available in real time during the test runs,
using a GPS map matching method. The aerodynamic drag
is assumed to increase linearly with the square of velocity v.
The air density p is obtained from
14

p= Rq aryT with Rs,dry =2.871- 1O2J/kg K,
s, dry

15)

where T is the measured air temperature and p is the ambient
pressure, assumed with 1.013-10° pascal.

B. Low-pass filter

The CAN signals are available with 100 hertz frequency.
To extract high-frequent noise that does not represent lower-
frequent vehicle longitudinal dynamics, all CAN signals pass
through a third-order Butterworth filter with 1 hertz pass
frequency and 10 hertz stop frequency.

C. Basic driving state observer

A Boolean logic ensures that only samples are considered
in the subsequent mass estimation scheme that fulfill the
following driving states:

1) The vehicle is in operation, so the absolute value of
velocity exceeds a threshold viin;

2) The absolute value of longitudinal acceleration exceeds
a threshold ax min;

3) Wheel slip ratios do not exceed a threshold spax;

4) No braking state;

5) No coast-down with open clutch.

The thresholds above are chosen very low and can be
interpreted as basic constraints. As subject for future inves-
tigation, the third condition can be replaced by a slip tire
force function in the longitudinal model (13). After this data
preselection, a downsample from 100 hertz to 10 hertz is
performed to save storage.

In addition to this, cornering resistance, variable wind and
high-frequent tractive force changes caused by shifting are
not included in (13). One could extend the Boolean logic
above and enhance the quantities to exclude these influences
as well. However, extensive testing would be required to
adjust each threshold in any imaginable driving state and
boundary condition for each novel vehicle. Hence, we seek
in an automatic approach to exclude driving states that are
not treated within the vehicle longitudinal model. From now
on, we call these states outliners.



D. Outliner treatment

Now, we introduce an unsophisticated approach to detect
and exclude outliners. First, a certain number of samples is
buffered to create an initial data matrix

Z=[A B] where
[ Ay A ... An
A= 1| (16)
| Am1 Am2 Amn
B
B=|
_Bm

Initial parameter estimates are computed with the basic TLS
batch algorithm (2) and (4). These parameter estimates X are

used to compute the model error
E=B—-B=B-XA. A7)

Further on, the percentage of output explained by the esti-
mated model is computed with

W= 100(1— IEN )
|B—B]

k
Y Bj, and this is the mean of B, [14, p. 8-15].
=1

(18)

=1

here B = % L

From now on, we call w the model fit.
The function

g=FE <max(E)d AND E >min(E)d (19)

determines samples that are within an allowed error range,
where {d € R|0 <d < 1} is a constant. Only samples remain
in the buffer where g = TRUE, thus the buffer size decreases.

While w < to, where tv is a chosen threshold, a loop yields
back to generate a new reduced data matrix (16) out of the
buffer. Again, the parameter estimates (2), (4), error (17), and
fit (18) are calculated. As (19) deletes samples with high
error, the fit w increases continuously with each iteration.
This approach assumes that the model (13) represents most
driving states that occur. Through extensive testing, it is
ensured that this while loop does not lead to a local optimum
with unlikely parameter estimates.

Now, the data matrix Z can be seen as “clean” and the
second entry of

H = diag[(ATA)™] (20)

is observed.

If Hy < $;, where ), is a chosen threshold, Z forms the
update rows z' in (5) and the proposed incremental TLS
algorithm is performed. H is regarded to be coherent with
the estimated parameter variance, hence H, ~ O'Z(ﬁ). Finally,
a certain amount of old data leaves the buffer to perform a
sliding window.

Otherwise, if H, > ), accordingly more data is buffered
and the algorithm goes back to the outliner treatment (16)—
(19).

TABLE I: Overview of the performed test runs.

# day vehicle mass dynamic mode
1 low automatic
2 a 2038kg high manual

3 low automatic
4 low automatic
5 b 2340kg high manual

6 low automatic

E. Mass estimation scheme as pseudo-code

The full vehicle mass estimation scheme is shown once
again clearly with the following compact pseudo-code sec-
tion:

1) Pass CAN signals through low-pass filter;

2) Buffer data that fulfill the quantities of the basic driving
state observer;

3) Outliner treatment:

While H, > $, {;

Add data out of the buffer to Z (16);

While w < 1 {;

Estimate parameters with (2), (4);

Compute the model error (17) and the fit w (18);
Delete data with high error (19) };

Compute H };

4) Compute the vehicle mass estimate with the incremen-
tal TLS (5)—(10);

5) Delete a certain amount of old data in the buffer and
go back to 1).

The costliest part is step three, which includes two nested
loops and is done in comparatively slow batch mode. A
subject for further investigation is a faster outliner treatment,
using methods from the field of robust fit.

V. RESULTS WITH EXPERIMENTAL DATA

A. Test runs

Six test runs on a grand touring sports car were conducted
with two sets of vehicle mass. The vehicle is equipped with
an automatic longitudinal controller, thus the driver only op-
erates manually the steering when the adaptive cruise control
(ACC) mode is activated. Four test runs were performed
with automatic cruise control on low dynamics and two runs
were manually driven on higher dynamics. The track is a
22.9 kilometer long public road with rich variation in the
road grade. Table I provides an overview of all test runs.
Fig. 3 shows different dynamic levels on track kilometers
12-16 of measurement #1 and #2. It can be seen that
the acceleration on low dynamic mode in measurement #1
rarely exceeds one meter per square second. The manually
driven test run of measurement #2 shows a rich longitudinal
dynamics.

A full set of CAN signals was recorded during the test
runs and used in the vehicle mass estimation scheme after-
wards. The online implementation of the proposed algorithm
is subject for future work.
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Fig. 4: Absolute error of initial mass estimates right after the outliner treatment. The measured vehicle mass is 2038 kilograms.
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Fig. 3: Longitudinal acceleration of measurement #1 and #2.
Measurement #1 is driven with automatic ACC mode on
low dynamics. Measurement #2 is manually driven on higher
dynamics. Large negative acceleration in measurement #2
due to braking is not shown.

B. Accuracy of initial mass estimates

The effectiveness of the proposed outliner treatment is
studied in Fig. 4. For now, the algorithm is performed
without incremental TLS, where the start time is varied
at 0,5,10,...,375 seconds in a loop. Thus, each error bar
consists of 76 initial estimates and represents the mass
estimation error and required time on the track. The threshold
$), is decreasing from left to right. The black dots are the
mean values of the mass estimation error and the required
time on track, respectively.

Fig. 4(a) shows measurement #1 on low dynamics, driven
in the automatic ACC mode with 2038 kilograms measured
vehicle mass. The mass estimation error spread decreases
with decreasing $;. Apart from $,; =2.5- 1073, where the
mean value of the mass estimation shows a large negative

bias, the batch TLS estimator computes estimates with
slightly negative bias. However, §); and the required time on
track are inversely proportionally correlated. Hence, larger
values of §), reduce the needed time and yield to faster
estimates.

Fig. 4(b) shows measurement #2 on high dynamics, man-
ually driven with the same vehicle mass. Here, the mass
estimation error spread decreases with decreasing ), as well.
The estimator computes estimates with slightly positive bias.
Once again, the inversely proportional correlation between
the threshold $), and required time on track is visible. On the
other hand, the time range is on a notably smaller level than
in Fig. 4(a). This can be explained by the richer dynamics
in measurement #2. More suitable samples can be used in
the estimator on the same track distance as in Fig. 4(a).

C. Results with incremental TLS

The full proposed incremental TLS algorithm is per-
formed every five seconds from the start of each test run.
The mass estimation error over the number of SVD updates
is shown in Fig. 5. The threshold $);, which is used in the
outliner treatment is set to 4-10~%, while the truncation
threshold v is fixed to 1-1078. The mass estimates of mea-
surement #1-3 in Fig. 5(a) are in a range of +20 kilograms
after 40 SVD updates. This is equivalent to approximately
41 % accuracy. Due to a larger vehicle mass in Fig. 5(b),
even a better accuracy of roughly +10 — 20 kilograms or
40.43 —0.85 % is achieved from 40 SVD updates on.

The remaining parameters of (13) are not shown, since the
incremental TLS algorithm herein performs updates only.
From there, this scheme provides time-averaged estimates.
The vehicle mass can be treated as time-constant parameter,
but the coefficients of rolling resistance vary slowly in time.
A downdate or forgetting factor scheme is required to extend
the incremental TLS algorithm to time-varying parameters.
Furthermore, a synchronous measurement of the true rolling
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Fig. 5: Mass estimation error of the proposed incremental TLS algorithm. The vehicle mass is 2038 kilograms in Fig. 5(a)

and 2340 kilograms in Fig. 5(b).

resistance is required to evaluate the respective parameters.
In order to obtain highly accurate drag coefficient estimates,
the velocity range needs to be enlarged. All test runs were
performed up to at most 80 kilometers per hour.

VI. CONCLUSIONS

The presented algorithm gains vehicle mass estimates
within an accuracy of +1 % in realistic driving conditions
on low and high longitudinal vehicle dynamics. Outliners are
reliably eliminated by an automatic scheme that is tunable in
speed and accuracy through thresholds, but causes currently
the most computational effort. By reason of this, a faster
outliner treatment is required in the future. An alternative is
to particularize the vehicle longitudinal model for cornering
resistance and to include a gear change model. Thus, less
data has to be eliminated in the outliner treatment. The
incremental TLS algorithm works with superior speed via
an SVD update. An analogical SVD downdate method is
essential to gain estimates of parameters that vary slowly in
time. In general, the proposed method is suitable for online
applications, which needs to be confirmed through an applied
implementation in the test vehicle.
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