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Abstract

In this thesis critical issues concerning the application of mechanistic models for the
development and optimization of chromatography processes are addressed and improved.
A central topic of the thesis is the evaluation of chances and challenges for simulation
and optimization when data from standard high-throughput experimentation (HTE) is
included into model calibration. To summarize, this approach showed to be successful
and exceptionally efficient when supported by selected mathematical applications such
as Design of Experiments (DoE), Monte Carlo sampling and partial least squares (PLS)
regression. The thesis can be divided into two parts:

1. Examination, comparison and improvement of methods for model calibration, es-
pecially focussing on modeling protein sorption to adsorbent surfaces (Langmuir
model, steric mass action (SMA) model)

2. Application of mechanistic models to in silico optimization of chromatography pro-
cesses; comparison of this mechanistic approach to established empiric methods
for process optimization; further improvement of the model-based methodology for
process development applications

For the examination and improvement of model calibration based on static HTE data,
typical high-throughput batch binding studies with lysozyme and the strong cation ex-
changer SP Sepharose FF were implemented in 96 well format on a robotic platform.
SP Sepharose FF is commonly used in biopharmaceutic industry for applications on all
scales. Based on experimental data and the Langmuir model for protein sorption, a
mechanistic in silico model for the binding studies was implemented. By Monte Carlo
examinations on this in silico model the impact of uncertainties in single process steps
on the results of binding studies was evaluated. In addition, various case scenarios were
analysed considering a broad range of uncertainties in single process steps. This approach
allowed for a visualization and quantification of uncertainty propagation. To sum up, the
manual production of adsorbent plaques with a scheduled volume of 20.8 µl proved to be
the main source of uncertainty in high-throughput batch binding studies. Furthermore,
Langmuir model calibration based on HTE batch binding studies showed to be extremely
sensitive to the investigated uncertainties. Especially higher salt concentrations in the
binding buffer cause very flat isotherms, hindering a precise parameter determination.
Thus, further sorption models and calibration approaches had to be investigated.

In contrast to the Langmuir model, the SMA model considers salt concentrations of
buffers in the calculation of sorption equilibria; a very important quality considering the
simulation of salt gradients in ion exchange chromatography. Consequently, various ap-
proaches for SMA parameter determination were evaluated on three standard proteins,
ribonuclease A, cytochrome c and lysozyme at pH 5 and pH 7. These proteins have the
advantage of being accessible in high purities; in addition, on- and offline monitoring
of mixtures is facilitated due to the option to monitor cytochrome c by complementary
absorption measurements at 528 nm. Two very promising methods for SMA parameter
determination were applied and compared in detail - an experimental method according
to instructions in Shukla et al. (1998) and an approach based on an inverse method and
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a mechanistic lumped-rate model for chromatography. Both methods were based on the
same experimental data, five gradient elutions with gradient volumes of 5 cv (column
volumes), 10 cv, 30 cv, 60 cv and 120 cv and an additional breakthrough experiment for
each of the protein components at pH 5 respectively pH 7. All required experiments for
SMA parameter determination were performed on prepacked 1 ml columns on a stan-
dard Äkta chromatography system. The results for SMA parameter determination and
model predictivity with respect to an accurate prediction of retention times were com-
pared for both methods and their performance and challenges in application discussed.
It was shown that both methods lead to reasonable parameter sets for sorption modeling
and allow for a highly precise prediction of retention times. While the model equations
according to Shukla et al. (1998) neglect time-dependent processes and are therefore of
lower complexity, the calibrated lumped-rate model has the advantage of being fit for the
prediction of complete chromatograms, peak shapes and further process steps.

This led to the decision, to further use lumped-rate models for chromatography model-
ing and to intensify and optimize the use of inverse methods for model calibration. Thus,
all relevant experiments for model calibration were repeated in miniaturized and paral-
lelized mode on a robotic platform with prepacked RoboColumns R© (0.2 ml bed volume)
in order to examine, how HTE data might support mechanistic modeling from the outset
of process development. The reduced data quality (lower density of measurement points
and higher background noise) posed an important challenge in this issue. Nevertheless,
by introducing elaborate methods for datapoint density enhancement and PLS-based
high-throughput protein quantification on the robotic system, it was possible to calibrate
the mechanistic model mainly with fractionation data from HTE chromatography. Addi-
tionally, gradient elution experiments were planned by Monte Carlo sampling in order to
let them contain maximal information for the estimation of SMA parameters by inverse
methods. Thus, a reduced number of four miniaturized elution experiments proved to
be sufficient to determine a complete set of SMA parameters for a specific combination
of protein, pH condition and adsorbent. This approach was verified with lysozme, cy-
tochrome c and ribonuclease A on four cation exchange adsorbents (SP Sepharose FF,
Capto S, Toyopearl CM 650M and Toyopearl GigaCap S 650M) at three pH-conditions
(pH 5, pH 6 and pH 7).

In the second part of the thesis, calibrated chromatography models were employed for
the numeric optimization of a multicomponent separation step of ribonuclease A, cy-
tochrome c and lysozyme on SP Sepharose FF on various scales. This separation prob-
lem is challenging and interesting due to very close isoelectric points of cytochrome c and
lysozyme leading to peak overlaps in non-optimized separation steps. Furthermore, this
system serves as a model to many separation problems, where the component of interest
has to be separated from a previously and an afterwards eluting contaminant.

The established lumped-rate model showed to be highly predictive and even allowed
for upscale predictions with an excellent quality. It was further demonstrated that no
recalibration was necessary when optimizing separations considering changing objectives,
as for example:

• objective A: minimal overall peak overlap

• objective B: mean retention time for lysozyme is 800 seconds
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Figure 1: Concept scheme for model-integrated process development

• objective C: optimal separation between cytochrome c and lysozyme

The performance of the mechanistic modeling approach was further compared to the
widely established approach of response surface modeling (RSM). The nonlinear elution
gradient that was to be optimized was characterized by three factors describing the initial
proportion of elution buffer in the running buffer, the slope of the elution gradient and
the gradient length. The comparison of mechanistic and empiric approach revealed clear
advantages of mechanistic modeling for process optimization. While both approaches
allowed for the calculation of process robustness, the RSM method, however, failed to
predict optimal separation performance within and outside the design space; only rough
tendencies were predicted successfully. On the contrary, the predictions based on the es-
tablished lumped-rate model were in every case precise; the optimal nonlinear gradients
for the separation were determined and experimentally verified.

These findings led to the establishment of a novel concept for model-integrated process
development (illustrated in figure 1). In this concept, the mechanistic model accompanies
process development from the outset with initial model calibration based on HTE data.
The upscale is then supported by model-based DoE allowing for experiments containing
optimal information for model recalibration and refinement. This concept demonstrates
a very efficient cooperation of HTE in process development and mechanistic modeling
and was successfully applied to the optimization of an multicomponent separations.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit wesentlichen Aspekten der Verwendung mecha-
nistischer Modelle zum Zweck der Entwicklung und Optimierung chromatographischer
Prozesse. Ein zentraler Bestandteil dieser Arbeit ist dabei die Bewertung der Chancen
und Herausforderungen, die sich für die Kalibrierung solcher Modelle und den Optimie-
rungsvorgang durch die Berücksichtigung von Daten aus Hochdurchsatz-Experimenten
(HTE) ergeben. Diese Herangehensweise erwies sich vor allem dann als erfolgreich und
überaus effizient, wenn sie durch mathematische Methoden wie Design of Experiments
(DoE), Monte Carlo sampling und Partial Least Squares (PLS)-Regression gestützt wur-
de. Die Arbeit besteht aus zwei aufeinander aufbauenden Abschnitten:

1. Untersuchungen, Vergleichsstudien und Methodenentwicklung im Bereich der Mo-
dellkalibrierung mit einem besonderen Augenmerk auf die Modellierung der Sorpti-
onsvorgänge an der Adsorberoberfläche (Langmuir Modell und Steric Mass Action
(SMA) Modell)

2. Anwendung mechanistischer Modelle für die In-silico-Optimierung von Chromato-
graphieprozessen, Vergleich dieser mechanistischen Herangehensweise mit gängigen
empirischen Methoden für Prozessoptimierung, Unterstützung der modell-basierten
Methoden mit HTE-Daten in Hinsicht auf den Einsatz von Modellen in der Prozes-
sentwicklung

Für die Untersuchung und Optimierung einer Modellkalibrierung, die auf statischen
HTE-Daten basieren sollte, wurden typische Hochdurchsatz-Bindungsstudien mit Lyso-
zym und dem starken Kationentauscher SP Sepharose FF im 96-Well-Format auf einer
Roboterplattform implementiert (Bindepuffer: Natriumphosphatpuffer bei pH 7). SP Se-
pharose FF ist ein gebräuchlicher Adsorber, der in der biopharmazeutischen Industrie in
allen Prozessmaßstäben verwendet wird. Unter Berücksichtigung des Langmuir-Modells
für Proteinsorption konnte ein mechanistisches ’In-silico’-Modell für die Bindungsstudien
etabliert werden. Mit Hilfe von Monte Carlo sampling konnte daraufhin die Fortpflanzung
von Fehlern in einzelnen Prozessschritten auf das Resultat von Bindungsstudien, die Iso-
therme, eingehend untersucht werden. Unter einzelnen Prozesschritten sind beispielswei-
se sämtliche manuelle oder robotergestütze Pipettierschritte zu verstehen aber auch die
parallelisierte Herstellung von Adsorberplaques und Stammlösungen. Durch Monte Carlo
sampling etlicher Fallbeispiele mit ausgewählten Fehlerverteilungen wurde eine Visuali-
sierung und Quantifizierung der Fehlerfortpflanzung ermöglicht. So konnte die Fertigung
der Adsorberplaques als hauptsächliche Fehlerquelle in Hochdurchsatz-Bindungsstudien
identifiziert werden. Die HTE-basierte Kalibrierung des Langmuir-Modells erwies sich
als äußerst sensitiv gegenüber den untersuchten Messpunktfehlern in den Isothermen.
Vor allem Bindungsstudien mit höheren Salzkonzentrationen im Puffer ergeben sehr fla-
che Isothermen, bei denen eine Bestimmung der Langmuir-Parameter nur eingeschränkt
möglich ist. Deshalb mussten weitere Sorptionsmodelle sowie Kalibrieransätze verfolgt
werden.

Im Gegensatz zum Langmuir-Modell berücksichtigt das SMA-Modell die Rolle der Salzio-
nen bei der Berechnung von Gleichgewichtskonzentrationen auf der Adsorberoberfläche.
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Dies ist eine bedeutsame Eigenschaft des Modells vor allem im Hinblick auf die Simula-
tion von Elutionen mit Salzgradienten in der Ionenaustauschchromatographie. Deshalb
wurden verschiedene Ansätze zur Bestimmung von SMA-Parametern für die drei Modell-
proteine Ribonuklease A, Cytochrom c und Lysozym bei pH 5 und pH 7 verfolgt. Diese
Proteine haben den Vorteil, in größeren Mengen und hochrein zur Verfügung zu stehen;
zudem ist die Konzentrationsbestimmung der einzelnen Proteine in Mischungen dadurch
erleichtert, dass Cytochrom c neben dem für Proteine typischen Absorptionsmaximum
bei 280 nm ein weiteres bei 528 nm aufweist. Zwei besonders vielversprechende Ansätze
zur Bestimmung von SMA-Parametern wurden sehr detailliert untersucht und verglichen
- eine Methode, die auf eine Publikation von Shukla et al. (1998) zurückgeht, sowie ein
inverser Ansatz in Kombination mit einem mechanistischen Lumped-Rate-Modell. Beide
Ansätze basierten hauptsächlich auf Chromatogrammen zu fünf Gradientenelutionen mit
Gradientenvolumina von 5 cv (column volumes), 10 cv, 30 cv, 60 cv und 120 cv sowie
einem zusätzlichen Durchbruchsexperiment für jedes Protein jeweils bei pH 5 und pH 7.
Die benötigten Experimente zur Bestimmung der SMA-Parameter wurden mit industri-
ell gepackten 1 ml-Säulen an einem standardisierten Äkta-LC-System durchgeführt. Die
Ergebnisse der Parameterbestimmung und der Untersuchungen zur Voraussagekraft der
beiden Ansätze in Hinsicht auf die präzise Voraussage von Retentionszeiten wurden ver-
glichen und auch im Hinblick auf ihre anwenderfreundlichkeit ausgiebig diskutiert. Es
konnte gezeigt werden, dass beide Ansätze eine sinnvolle Parameterbestimmung zulie-
ßen und sehr präzise Voraussagen betreffs der Retentionszeit getroffen werden konnten.
Während die Methode nach Shukla et al. (1998) etwas anwenderfreundlicher war, da durch
Vernachlässigung zeitabhängiger Prozesse nur einfache Gleichungssysteme gelöst werden
mussten, hatte das kalibrierte Lumped-Rate-Modell, ein System partieller Differential-
gleichungen unter anderem den Vorteil, dass komplette Chromatogramme, also neben
Retentionszeiten auch Peakformen und Überschneidungen für jegliche Gradientenlänge
und -steigung vorausgesagt werden konnten.

Daher wurde eine eingehendere Beschäftigung mit Lumped-Rate-Modellen für Chro-
matographiemodellierung unternommen, um die Anwendung inverser Methoden zur Mo-
dellkalibrierung zu untersuchen und zu optimieren. Alle relevanten Experimente zur Mo-
dellkalibrierung wurden miniaturisiert und parallelisiert auf einer Roboterplattform mit
vorgepackten RoboColumns R© (0.2 ml Bettvolumen) wiederholt, um herauszufinden, in
welchem Maße HTE-Daten die mechanistische Modellierung von Beginn der Prozessent-
wicklung an unterstützen können. Eine wesentliche Herausforderung stellte hierbei die re-
duzierte Qualität der Daten dar, die durch eine geringere Datenpunktdichte und höheres
Hintergrundrauschen als an der Äkta gegeben war. Durch die Einführung raffinierter Ex-
perimente zur Erhöhung der Datenpunktdichte und PLS-basierte hochdurchsatzfähige
Proteinquantifizierungsmethoden, war es trotzdem möglich, das mechanistische Modell
auf Graundlage von HTE-Chromatogrammen zu kalibrieren. Zudem wurden mittels stati-
stischer Versuchsplanung und Monte Carlo sampling Gradientenelutionsexperimente be-
stimmt, die besonders viel Information bezüglich der Schätzung von SMA-Parametern
enthielten. So war es möglich, mit der reduzierten Anzahl von vier minaturisierten Gra-
dientenelutionen einen kompletten Satz an SMA-Parametern für eine Protein-Adsorber-
pH-Kombination zu bestimmen. Dieser Ansatz konnte für die drei Modellproteine Ribo-
nuklease A, Cytochrom c und Lysozym mit vier Adsorbern (SP Sepharose FF, Capto S,
Toyopearl CM 650M und Toyopearl GigaCap S 650M) bei drei pH-Bedingungen (pH 5,
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pH 6 und pH 7) verifiziert werden.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit der Anwendung bereits kali-
brierter Chromatographiemodelle für die numerische Optimierung von Dreikomponenten-
Trennprozessen mit Ribonuklease A, Cytochrom c und Lysozym auf SP Sepharose FF in
verschiedenen Prozessmaßstäben. Diese Trennung ist besonders herausfordernd und in-
teressant, da die Ähnlichkeit der isoelektrischen Punkte von Cytochrom c und Lysozym
bei nicht-optimalen Bedingungen zur Überlappung der Peaks führt. Zudem dient dieses
System als Modellsystem für verschiedene Trennprobleme, bei denen die Zielkomponen-
te von jeweils einer davor und einer danach eluierenden Kontaminante sauber getrennt
werden soll.

Es zeigte sich, dass Lumped-Rate-Modelle eine hohe Voraussagekraft besaßen und so-
gar Voraussagen für den Upscale mit einer exzellenten Qualität erlaubten. Zudem konnte
gezeigt werden, dass sie erfolgreich und ohne erneute Kalibrierung für die Optimierung
von Trennprozessen unter verschiedenen Zielsetzungen eingesetzt werden können, wie
zum Beispiel:

• Zielsetzung A: minimale Peaküberschneidung

• Zielsetzung B: die Retentionszeit für Lysozym soll im Mittel 800 Sekunden betragen

• Zielsetzung C: optimale Trennung zwischen Cytochrom c und Lysozym

Die Leistung mechanistischer Modelle konnte zudem durch einen Vergleich mit einer
gängigen empirischen Methode, dem Response Surface Modeling (RSM) anhand der Op-
timierung des Trennprozesses über einen nichtlinearen Gradienten, der durch drei Fak-
toren gegeben war, überprüft werden. Die drei zu optimierenden Faktoren waren: der
Anteil an Elutionspuffer im Laufpuffer zu Beginn des Gradienten, die Steigung und die
Länge des Elutionsgradienten. Der Vergleich des mechanistischen mit dem empirischen
Modell zeigte klare Vorteile des mechanistischen Ansatzes auf. Obwohl beide Ansätze ge-
eignet waren, um die Robustheit des Systems im Faktorraum zu berechnen, versagte die
empirische Methode völlig bei der Berechnung des optimalen Gradienten, sowohl für Fak-
toren innerhalb als auch außerhalb des Raumes; nur grobe Tendenzen der Trennleistung
konnten vorausgesagt werden. Voraussagen hingegen, die auf einem Lumped-Rate-Modell
beruhten, waren in jedem Fall präzise und der optimale Gradient konnte berechnet und
experimentell verifiziert werden.

Diese Ergebnisse führten zur Etablierung eines gänzlich neuen Konzeptes für die modell-
integrierte Prozessentwicklung, das in Abbildung 1 dargestellt ist. In diesem Konzept
begleitet ein geeignetes mechanistisches Modell für Chromatographie die Prozessentwick-
lung von Beginn an und wird bereits mit den ersten Datensätzen der HTE-Chromatographie
kalibriert. Diese Kalibrierung wird durch statistische Versuchsplanung (DoE) unterstützt,
indem experimentelle Setups berechnet werden, die besonders viel Information im Hin-
blick auf die Modellkalibrierung und -verbesserung enthalten. Das vorgestellte Konzept
zeigt, wie HTE-Daten besonders effektiv in die modellbasierte Prozessentwicklung einge-
bunden werden können und konnte in dieser Arbeit erfolgreich an der Optimierung von
Multikomponenten-Trennprozessen vorgeführt werden.
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1 INTRODUCTION

1 Introduction

Chromatography (gr.: χρω̃µα [chroma]: colour and γρὰϕειν [graphein]: to write) has
now been applied for separation purposes for over 100 years. In 1903, M.S. Tswett, a
russian botanist, discovered and screened adsorption-based methods for the separation
of chlorophylls and carotenoids. In the publication on his findings (published in Russian
and translated into English in 1989 (Berezkin, 1989)), the fascination for ’chromatog-
raphy’, like he called the application, is still present and reminds me of my own very
first experiences and experiments with chromatography, tracking the red colour from cy-
tochrome c with anticipation on its course through the chromatography column. Full of
presentiment, Tswett’s paper closes with the sentence : ’The empirical determination of
the adsorption properties of different substances found in living organisms [...] would lead
to the elaboration of certain adsorption-analytical approaches for various problems.’ In
fact, chromatography has been extensively developed and upgraded to important appli-
cations in high-resolution analytics as well as in preparative industrial production since
Tswett’s publication. However, the main qualities of the technique that Tswett examined
and observed in 1903 remained unaffected in this course of development: The separation
process is based on mass transfer between two phases and interactions between the com-
ponents of interest and the phases. These interactions are dependent on the physical
properties from both, the components and the phases, and decide on the quality of the
separation.

First research on the application of chromatography for separating protein mixtures be-
gan with the development of size-exclusion and ion-exchange techniques in the 1950’s,
marked by the invention of absorbent phases that are based on cellulose matrices in 1954
(Sober and Peterson, 1954). Soon, further matrices were developed, the most impor-
tant being the cross-linked dextrans (Sephadex) (Porath and Flodin, 1959) and matrices
based on agarose (Hjertén, 1964). The first application of protein chromatography in a
large scale was insuline production in the 1970’s. Since then, protein chromatography
has emerged step by step to a workhorse in food and biopharmaceutical industry, like
it is for example illustrated in a publication from Curling on the history of chromatog-
raphy(Curling, 2007). The contemporary full-scale biopharmaceutical industry based on
blood plasma fractionation releases a current annual production in the 100-tons scale
with a sales volume of millions of US $ per annum (exemplary price for immunoglobulins:
60-70 $/g, (Buchacher and Iberer, 2006, Kelley, 2007)). In the European Union, 88 re-
combinant biomolecules and mabs (monoclonal antibodies) have been approved by 2002,
representing 36 % of all new approvals since 1995 under the centralized European drug
approval system (Walsh, 2003).

While most biological products can be applied or consumed as crude extracts, bio-
pharmaceuticals typically require exceptional purity. Thus, chromatographic purification
is of singular importance, being mostly the only separation process delivering products
of satisfactory purity. However, the separation process can cover up to 70 % of the
total production cost. This is the main reason for intense attempts to simplify and op-
timize chromatography processes, mainly industrial preparative processes, aiming at the
same time for higher yields, purities and productivity of the component of interest. Suc-
cessful approaches to the optimization of chromatographic separations always include a
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1.1 Physicochemical properties of proteins

detailed consideration of the physicochemical properties of involved components as well
as thorough examinations of the separation process itself and all interactions between
the proteins and the adsorbent phase. Thus, necessary details on protein properties and
sorption processes will be given in the next two sections. Based on these details, the
application of mathematical optimization tools, particularly modeling tools, will be in-
tensely discussed in the following two sections, focussing on the model equations and
efficient model calibration. After a brief section on data quality, that is highly dependent
on the employed chromatographic system, a concept for effective and reasonable appli-
cation of modeling methods, considering their advantages and disadvantages as well as a
general concept for ’in silico optimization’ will be introduced in the last section of this
introduction.

1.1 Physicochemical properties of proteins

Proteins are biomolecules composed of long chains of amino acids. Dependent on the
specific sequence of amino acids, the primary structure of a protein, a secondary structure
(α-helix or β-sheet) is determined by hydrogen bonds and sulfur linkings between some
amino acids, like it is depicted in figure 2.

The tertiary structure of a protein is given by the steric configuration of sequences of
α-helices and β-sheets; optional conglomerations of protein subunits provide quarternary
structures. The high variability in the amino acid sequence in combination with protein
folding and posttranslational modifications, results in multitudinous variations of protein
conformations and properties. Therefore, proteins are fit to fulfill a broad spectrum of
important tasks and operations in living nature - like for example building elastic fibres
in muscels, serving as transmembrane transport vehicles, catalyzing chemical reactions
(enzymes) or providing main functionalities in the immune system. Based on protein
variability, the specific properties and operation possibilities, the production of proteins
and their application in food industry, agriculture, materials science and medicine is
potent and increasing.

Of course, the physicochemical properties of proteins show a wide spread due to
their structural variability. These properties mainly decide on the interactions with the
adsorbent and hence on the chromatography modus optimally applied for separation of a
specific protein from a mixture. Table 1 sums up most of the established chromatography
modi and the protein properties they are based on.

A common characteristic of all proteins is absorbance of ultraviolet light at 280 nm
due to the strong absorbance of the amino acid tryptophan at this wavelength. This
characteristic is most relevant for protein chromatography as it allows for a quantitative
determination of protein in batch and flowthrough mode by absorption measurements.
In addition, some proteins, like for example the heme protein cytochrome c or GFP
(green fluorescent protein), absorb at wavelengths in visible range. This chracteristic
is an advantage in the determination of protein concentrations in multicomponent sys-
tems/mixtures, hence, these proteins are favoured model and test proteins.

The size of folded proteins lies in ranges between 3 to 10 nm in diameter. Regarding
to the weight, most proteins lie in the range of 15 to 200 kDa (1 Da = 1/12 m(12C))
with one of the smallest proteins being insuline (5.8 kDa) up to multimeric glycoproteins
(20,000 kDa). Thus, proteins are rather large biomolecues and can clearly be separated
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Figure 2: The reasons for wide ranges in physical properties of proteins can be traced back on dif-
ferent levels of structural complexity - here introduced as primary structure (sequence of amino acids),
secondary structure (determined by hydrogen bonds and sulfur linkings between amino acids leading to
α-helix and β-sheet conformation), tertiary structure (steric configuration of sequences of α-helices and
β-sheets) and quarternary structure (arrangement of protein subunits)

from viruses and smaller molecules like sugars or amino acids by their size.

Another important physicochemical property for protein chromatography is given by
the amphoteric nature of proteins. The net charge of a protein depends on the number
of ionizable amino acid residues and their pKa-values as well as on (buffer) substances in
the environment. At a particular pH, known as the isoelectric point (pI), positively and
negatively charged residues are balanced and protein net charge becomes zero. Knowledge
on the isoelectric points of the protein of interest and of the contaminants for example
mainly decides on the optimal pH conditions for ion exchange chromatography. Despite of
the fact that protein net charge in neutral surroundings can be approximately calculated
by adding the pKa-values of the residues, the pH- and salt-dependent changes in protein
charge are still difficult to determine, especially for the fact of possible conformation
changes in the protein structure. Only recently some promising approaches have been
developed based on molecular dynamic simulations, for example in (Dismer and Hubbuch,
2010).

Other properties of proteins, also critical in downstream processing, are hydropho-
bicity and solubility. Hydrophobicity is determined by the residues of the non-polar
amino acids. The density and distribution of these residues at the surface constitute the
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chromatography modus main utilized property

size-exclusion chromatography (SEC) protein size

affinity chromatography (AC) conformation specificity

ion exchange chromatography (IEC) charge

hydrophobic interaction chromatography (HIC) hydrophobicity

reversed-phase chromatography (RPC) polarity

countercurrent chromatography (CCC) solubility and distribution coefficients

Table 1: Chromatography modi and the corresponding protein properties they are based on

basis for hydrophobic interaction chromatography (HIC). Thus, HIC can for example be
applied for the separation of native proteins from misfolded isoforms.

The solubility of proteins can vary dramatically with pH, ionic strength and salt type.
In general, it is lowest at the isoelectric point; salts at low concentrations increase the
solubility (salting-in-effect) and, conversely, at high concentrations salts reduce solubility
(salting-out-effect). Solubility considerations are important for separation techniques
based on two liquid phases (CCC) or in crystallization, but they also limit design spaces
in process design for other chromatography modi.

1.2 Sorption processes

Due to the various physicochemical properties of proteins the accumulation of protein
molecules in the adsorbent phase is strongly dependent of the conditions in the mobile
phase (like pH condition, ionic strength and salt type). An additional requirement for
chromatography in biopharmaceutical production is mostly given by the need for complete
reversibility of the sorption processes, so there always have to exist conditions leading to
complete protein removal from adsorbent surface.

Considering protein sorption to the adsorbent phase, a natural analogy to other up-
take kinetics is obvious. In fact, the most simple equations for sorption processes were
published by I. Langmuir (Langmuir, 1916) only three years after L. Michaelis and M.L.
Menten communicated their famous kinetic uptake equations for the enzyme invertin
(Michaelis and Menten, 1913). Both publications describe equilibrium processes being
only dependent on uptake/adsorption, release/desorption rates and overall capacity.

Provided constant pH conditions, a fixed salt concentration in the mobile phase and
monolayer building on the adsorbent surface, the Langmuirian kinetic equation for the
time-dependent sorption of a single protein component q is given by:

∂q

∂t
= kads (qmax − q) c− kdesq (1)

with q denoting the protein concentration on the adsorbent and c the concentration in
the mobile phase. kads and kdes are the ad- and desorption coefficients and qmax denotes
the maximal capacity of the adsorbent phase. Under the assumption of rapid equilibrium
(∂q
∂t
≈ 0), equation (1) can be reduced to the Langmuir isotherm equation:
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Figure 3: The basic idea of the steric mass action model by (Brooks and Cramer, 1992) is illustrated in
this figure: the tridimensionality of the protein and its rivalry to the salt ions (here Na+) in the mobile
and stationary phase defines the equations of the SMA-model. In addition to ad- and desorption rates
steric shielding is considered as well as the characteristic charge of the protein component.

q = qmax
keqc

1 + keqc
(2)

with the equilibrium coefficient keq being the ratio of the ad- and desorption coefficient.
Analytical chromatography processes with low protein concentrations can be located
in the linear part of the curve described by equation (2) but for preparative processes
the nonlinearity in the upper part of this curve has to be considered when calculating
equilibria.

However, again comparable to the field of enzyme kinetics, experimentally derived
isotherms show often more complex shapes that can not accurately be modeled by equa-
tion (2) (Giles et al., 1974). Therefore, since Langmuir’s publication in 1916, a consid-
erable number of alternative sorption equations have been suggested in order to account
for the extremely varied sorption behavior of adsorbents and proteins. A collection of
alternative equations can be for example be found in (Guiochon et al., 2006).

A very important example for alternative sorption kinetics equations in ion exchange
chromatography is given by the steric mass action model (SMA model), derived by Brooks
and Cramer in 1992 (Brooks and Cramer, 1992).

This model explicitly accounts for the fact that in IEC the equilibrium state is deter-
mined based on a competition between protein components and salt ions as well as steric
effects caused by tertiary and quarternary protein structures. The concept of the SMA
model is illustrated in figure 3. Summing up the competition depicted in this figure, every
component interacting with the particle surface owns four characterizing parameters:

• ν (characteristic charge): mean number of binding sites of the component

• σ (steric factor): mean number of shielded/covered binding sites on adsorbent sur-
face (due to the tertiary and quarternary structure of the protein)
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1.3 Mechanistic models in chromatography

• kads and kdes (ad- and desorption coefficient): ad- and desorption rates

Thus, the proportionality in stoichometric exchange of protein component i and ex-
changeable salt counterions can be represented by:

ci + νiq̄1 ∝ qi + νic1 (3)

with ci being the concentration of the unbound and qi the concentration of the bound
protein for i 6= 1. q̄1 denotes the exchangeable salt counterions and c1 the unbound
counterions. Based on this, the kinetic equations of the SMA-model for n components (n
= salt + number of protein components) are given by:

∂qi
∂t

= kads,iciq̄
νi
1 − kdes,icνi1 qi i > 1 (4)

Λ = q1 +
n∑

i=2

νiqi (5)

q̄1 = q1 −
n∑

i=2

σiqi (6)

Equation (4) expresses the time dependent change of the concentration of surface
bound component i (∂qi

∂t
). kads,i denotes the adsorption rate and kdes,i the desorption rate.

The parameter Λ (ionic capacity of the adsorbent) limits the available binding places and
displays the rivalry between salt concentration q1 and the other bound components qi,
2 ≤ i ≤ n with their specific characteristic charges νi. q̄1, the concentration of bound salt
ions available for exchange with the protein, is given by the total salt ion concentration q1
less the shielded ions determined by the protein specific steric factors (σi) in equation (6).
If the assumption of rapid equilibrium is valid (∂qi

∂t
≈ 0), equations (4), (5) and (6) can

be linked to the SMA isotherm:

ci =

(
qi
keq,i

)(
c1

Λ−∑n
i=2 (νi + σi)qi

)νi
i > 1 (7)

with the parameters keq,i denoting the ratio of ad- and desorption coefficients.

The SMA model has been successfully applied for mechanistic modeling of protein elution
behaviour, as was demonstrated in (Gallant et al., 1995) for step gradients, for linear gra-
dients in (Gallant et al., 1996) and for displacement systems in (Natarajan et al., 2000).
However, further model upgrade and the development of new concepts are urgently re-
quired, as for example pH-dependencies are relevant in IEC, but up to now, no convincing
equations exist for modeling of these effects.

1.3 Mechanistic models in chromatography

The SMA model for sorption processes is in general considered as a mechanistic model, as
physical processes are described by time-dependent equations with parameters of physical
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Figure 4: The basic idea of mechanistic modeling in chromatography is illustrated. Transport and mass
transfer equations are derived based on physical processes on column level (left-hand side of the figure)
and particle level (right-hand side of the figure) [reproduced from Schmidt-Traub (2006)]

relevance, at least to a certain degree (cmp. figure 3). However, a chromatographic sep-
aration relies not only on intra-particle sorption processes but also on physical processes
on column level. The construction of a model for chromatography, appropriate for the
simulation of physical processes on column and particle level and therefore predictive for
the whole process, is a natural consequence of the previous considerations.

Rate equations on column level can be set up, considering the chromatography column
to be a plug flow reactor, homogenuously filled with porous particles. For reasons of
simplification, in most models constant temperature and pressure as well as a constant
flow velocity in the column are assumed .

Consequently, the following rate equations on column level can be set up for a com-
ponent i with respect to a column slice with the width dx and flowthrough area A (cmp.
to the left hand side of figure 4):

εc · A
(
uintci −Dax,i

∂ci
∂x

)

x

− εc · A
(
uintci −Dax,i

∂ci
∂x

)

x+dx

= A · dx
(
εc
∂ci
∂t

+ (1− εc)
3

rp
kf,i (ci − cp,i)|r=rp

)
(8)

INPUT - OUTPUT = ACCUMULATION

with ci being the concentration of component i in the mobile phase and cp,i the concentra-
tion in particle pores. εc displays the column porosity, uint the convective interstitial flow
velocity of the mobile phase and Dax,i the axial dispersion of component i, a coefficient
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1.3 Mechanistic models in chromatography

lumping wall effects, eddy-diffusions and other dispersive processses in the column. Mass
transfer to the adsorbent particle with radius rp is modeled by a linear passage through
a film on the accumulation side of equation (8) with the film coefficient kf,i (compare
figure 4). Dividing equation (8) by εc · A · dx and letting dx approach 0, the differential
equation for time-dependent concentration change of component i on column level (ci) is
given by:

∂ci
∂t

=− uint
∂ci
∂x

+Dax,i
∂2ci
∂x2
− 1− εc

εc
· 3

rp
kf,i (ci − cp,i)|r=rp (9)

Assuming the following boundary condition at particle border

Dpor,i
∂cp,i(r)

∂t
= kf,i (ci − cp,i)|r=rp

with Dpor,i being intra-particle pore diffusion (analoguously to Dax,i in equation (8)),
the differential rate equation for the adsorbent phase is then analogously to equation (9)
given by (cmp. also to the right hand side of figure 4):

∂cp,i(r)

∂t
= Dpor,i

(
∂2cp,i
∂r2

+
2

r
· ∂cp,i
∂r

)
− 1− εp

εp

∂qi(r)

∂t
(10)

with ∂qi(r)
∂t

displaying the interaction of protein and particle surface - normally a
sorption equation (see previous section). This system of partial differential (and algebraic,
if isothermal behaviour of protein sorption is assumed) equations (PD[A]E-system) is a
typical ’General Rate Model’ (GRM) for chromatography modeling.

As intraparticle mass transfer is difficult to measure (details are for example given
in Susanto et al. (2007) and Gallant (2004)) and often neglectable with respect to mass
transfer resistances in the column-to-particle-transition, simplified ’lumped rate models’
have been developed (for example by Bak et al. (Bak et al., 2007) and Staby et al.
(Staby et al., 2007)) and successfully applied to simulation of protein chromatography
with sufficient accuracy.

In the chromatography models, this thesis is based on, intra-particle pore diffusion
and mass resistances are lumped to the parameter of effective film-diffusion keff ,i

. Thus,

the model consists of the following equation

∂ci
∂t

=− uint
∂ci
∂x

+Dax
∂2ci
∂x2
− 1− εc

εc
· 3

rp
keff ,i

[ci − cp,i] (11)

on column level and

∂cp,i
∂t

=
3

εprp
keff ,i

[ci − cp,i]−
1− εp
εp

∂qi
∂t

(12)

on particle level. The parameter determination for lumped rate models (model cali-
bration) can be handled with conventional methods like batch uptake and column exper-
iments and will be described in the next section.
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system & method bed & particle mass transfer & sorption
system dead volume bed length film transfer coefficient

mobile phase flow particle diameter pore diffusion

number of components axial dispersion sorption parameters
(SMA, Langmuir,..)initial concentrations bed porosity

bind and elution mode particle porosity

Table 2: Table of parameter subgroups in mechanistic models for chromatography

1.4 Model calibration - experimental and inverse approaches

A lot of parameters determining the physical processes in chromatography have to be
considered in the mechanistic modeling equations that have been derived in the previous
section. They can be divided into three subgroups of parameters that are listed up in
table 2.

The determination of these parameters will be discussed in this section. Typical
experimental approaches and an alternative approach based on inverse modeling will
be introduced, the latter being exceptionally qualified for the determination of model
parameters on particle level. Further advantages and disadvantages of experimental and
inverse approaches with respect to the determination of sorption parameters are intensely
discussed in (Osberghaus et al., 2012b).

1.4.1 Parameter determination based on conventional methods

The determination of system and method parameters (cmp. table 2) is mostly very simple
and self-explanatory. Dead volumes of the chromatography system can be calculated
by comparison of pulse experiments with and without connection to the chromatographic
column. The velocity of mobile phase flow is normally controlled and defined by the
experimenter. More appealing is the determination of the number of components and
their initial concentrations.

This is obviously simple in well defined (academic) separation problems, but in in-
dustrial processes, mixtures are composed of the component of interest and an additional
unknown number of components, summarized for example under the concept of host cell
protein. Then it is convenient to sum components with similar biochemical properties
up to pseudocomponents, like for example demonstrated in (Chan et al., 2008). Still the
analytics and determination of initial concentrations are most challenging.

The bind and elution mode parameters include the volumes/duration of typical
process steps like injection, washes and elution as well as the elution mode itself (typ-
ical elution modes are illustrated in figure 5 on the right-hand side). Normally, these
parameters are fixed for a specific process by the applied chromatography method but in
screenings, for example with respect to optimal gradient settings, the parameters change
from run to run. It is crucial for excellent simulation results that the complete chromato-
graphic method is always considered and calculated in correct timelines.
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1.4 Model calibration - experimental and inverse approaches

Figure 5: Common experiments for the characterization of chromatographic processes and parameter
determination for mechanistic modeling of chromatography: breakthrough experiments (left-hand side)
and various modi of elution experiments (right-hand side)

While bed length and particle diameter are often given by the manufacturer of a
chromatography column, the other bed and particle characterizing parameters (cmp.
2nd column in table 2), axial dispersion and porosities, can be determined by break-
through and pulse experiments with non-binding tracer substances. Typical tracer sub-
stances in ion exchange chromatography are acetone (pore-penetrating) and blue dextran
(non-penetrating). Detailed instructions can be found in (Altenhoener et al., 1997) and
(Schmidt-Traub, 2006). The determination of film transfer coefficients and pore dif-
fusion is very laborious, but can be performed for example by correlation equations
(Schmidt-Traub, 2006), or directly based on confocal laser microscopy (Susanto et al.,
2007) or a recently developed method of ’peak parking’ (Gritti and Guiochon, 2011).

The direct determination of sorption model parameters (3rd column in table 2) based
on confocal laser scanning microscopy is rather seldom (an example can be found in (Teske
et al., 2009); for feasibility reasons, sorption parameters are mostly determined indirectly
with breakthrough and pulse experiments. There are various instructions for the deter-
mination of stationary Langmuir- and SMA-parameters in batch mode (Schmidt-Traub,
2006, Langmuir), (Barz et al., 2009, SMA) or based on column experiments (Andrzejew-
ska et al., 2009, Langmuir), (Gadam et al., 1993, Shukla et al., 1998, SMA). For both
modes, the experimental determination of sorption parameters is generally laborious and
expensive due to a high protein consumption and large elution volumes, that are time- and
material-consuming. Miniaturized and parallelized experimentation on robotic platforms
reduces some of these disadvantages. An alternative method for the direct experimental
determination of these parameters state inverse methods, that are introduced in the next
section. The efficiency of this method and its performance is discussed in detail in the
second manuscript enclosed in this thesis (Osberghaus et al., 2012b).
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1.4.2 Parameter estimation based on an inverse method

The parameter estimation based on an inverse method follows the concept of finding mod-
eling parameters providing the best fit between model and experimental chomatography
data. Let c(tj) be the chromatogram monitored at column outlet at the points in time
tj = t0 · · · tend, preprocessed to a concentration time series. Let ĉ(tj) be the solution of
a mechanistic model for chromatography at the same location and points in time; ĉ(tj)
can then be compared to the chromatograms. Let now θfix be the set of all model input
parameters that are fixed on a constant value and θest the set of model input parameters
that can be manipulated by the algorithm solving the inverse problem (e.g. for estimating
the SMA parameters θest = {ν, keq, σ}). Then the inverse problem can be stated as an
minimization of a least squares residual given by:

res(θest) =
end∑

j=0

(ĉ(tj, θfix; θest)− c(tj))2 (13)

The minimization of equation (13) can for example be performed with the Matlab R©

procedure lsqnonlin.

1.5 Data quality in chromatography

The determination of model parameters in both approaches, the conventional and the
inverse method, is decisively dependent on data quality, which is in turn dependent on
the available analytics and monitors. For example, flowthrough data from established
LC-systems with bed volumes larger than 0.5 ml are commonly measured online and
continuously. On the contrary, chromatograms from miniaturized and parallelized chro-
matography on robotic systems are given by offline measured discrete data from collected
fractions. These conditions influence data density and information content.

A possibly most exact determination of process parameters is crucial for model quality
and is the first step to a highly predictive model that can be employed for optimization
and experimental planning purposes. However, the impact of data quality on model
parameter determination or estimation showed to be high. Thus, special data densifying
methods or methods for high throughput protein quantification had to be developed for
peak retention time determination and resolution calculation in data sets from robotic
platforms. Data qualities and their impact on parameter determination will be discussed
mainly in the fourth enclosed manuscript (Osberghaus et al., 2012a).

Figure 6 illustrates three possible data qualities that are discussed in this thesis with
respect to their impact on model calibration and in silico optimization of separations. The
left subfigure shows continuous data from a classical LC-system [Äkta]. A threecompo-
nent mixture including cytochrome c is separated in IEC by a specific elution gradient.
The absorption at 280 nm (overall protein concentration) and 528 nm (concentration
of cytochrome c) is measured online and continuously. The center subfigure shows
corresponding fractionated data from a miniaturized and parallelized mode on robotic
platforms. As online monitoring is not possible in this mode, absorption at 280 nm
and 528 nm is here measured offline and in discrete fractions. The same fractionated
data evaluated with a recently developed spectral method for high-throughput protein
quantification by (Hansen et al., 2011) is shown in the right-hand side subfigure.
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Figure 6: Comparison of chromatograms from a standard experiment monitored with different data
analytics and evaluation methods. The left subfigure shows continuous data from a classical LC-system
[Äkta], where absorption at 280 nm (overall protein concentration) and 528 nm (concentration of cy-
tochrome c) is measured online and continuously. The centered subfigure shows a corresponding
chromatogram from a miniaturized and parallelized elution on a robotic platform. Here, absorption at
280 nm and 528 nm is measured offline and in discrete fractions. Compared to these measurements,
protein quantification in high-throughput mode by a recently developed spectral method is shown in the
right-hand side subfigure.

1.6 Optimization of chromatographic separations

1.6.1 Search algorithms and empiric modeling

In most chromatographic processes, the main focus lies on an optimal resolution between
the eluting peaks (analytic purposes) or the separation of a target component from a
protein mixture (preparative purposes). However, the retention times and peak widths,
i.e. the quality of a separation, is dependent on many process factors, among others the
employed buffers and pH conditions and the time dependent change of salt concentration
in the elution step. Moreover, the objective of a separation step is mostly not only defined
by a high resolution, but also by yield and product purity and additional constraints,
concerning process robustness, financial or ecologic issues. Thus, the optimization of a
separation step is a multiparametric and multiobjective problem.

The approaches to tackle such problems are various and can be roughly divided into
search algorithms and modeling methods. Successful application of search algorithms for
the optimization of chromatographic processes started about 30 years ago, for example,
by (Fast et al., 1982), who employed a simplex algorithm for separation optimization in
reversed-phase chromatography. Still search algorithms enjoy great popularity, what is
demonstrated exemplarily in (Susanto et al., 2009) where a genetic algorithm is applied
for the optimization of bilinear elution gradients in chromatography on robotic platforms.
While the low mathematical effort of search methods and their sufficient performance even
in noisy systems was demonstrated in many research publications, a critical drawback of
these methods is given by the enormous experimental effort and the low knowledge gain
about the examined system, particularly about sensitivity and robustness aspects.

However, the importance of process understanding, as well as robustness and sensitiv-
ity analyses was only recently emphasized in the Process Analytical Technology (PAT)
guidelines, published by the US Food and Drug Administration (F.D.A.U.S. Department
of Health and Human Services, 2004). Consequently, the application of multivariate opti-
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mization approaches based on design of experiments (DoE) and response surface modeling
(RSM) increased in bioseparation process development, because these methods allow for
the characterization of design factor spaces and for the calculation of optimal system
settings as well as robustness analyses. Similar to the application of search algorithms,
first publications on the DoE-RSM approach in the field of chromatography have been
released in the eighties, for example (Pullan, 1988) who optimized a separation step in
reversed-phase chromatography based on a full-factorial design. Since then, DoE-RSM
techniques were applied in chromatography studies with a rising level of complexity in
design and modeling, for example in (Bachman and Stewart, 1989) (full factorial design),
(Bergqvist and Kaufmann, 1993) (block design and partial least squares-regression) and
(Nguyen et al., 2010) (partial factorial design, application of modeling software). Compar-
ison studies of regression algorithms (Bylund et al., 1997), reviews on DoE-RSM methods,
like in (Ferreira et al., 2007) or the formulation of very specific regression functions like in
(Lebrun et al., 2008) demonstrate that this method is well established in chromatography
separation optimization.

1.6.2 Model-based optimization in silico

As the calculation power of computers is increasing, the application of mechanistic model-
ing for the optimization of chromatography processes as an alternative to RSM is recently
on the rise (cmp. argumentation line in (Beckley et al., 2009) and (Lieres and Ander-
sson, 2010)). This method has important advantages compared to RSM that lead to
a broad field of applications. A mechanistic model for chromatography is comprehen-
sive and displays the physical background of complex chromatography processes (cmp.
to section 1.3). Thus, it surpasses the options of an empiric model by far and owns a
mechanistically founded predictivity. Once the model is calibrated for a specific system
of adsorbent and components, it can be employed for the prediction of chromatograms
for all kinds of bind and elution steps. Furthermore it allows for the optimization of a
specific chromatography step in silico.

Let for example the objective be to optimize a specific gradient shape with regard to a
minimal peak-overlap in a threecomponent separation. Then, for the in silico optimization
of the separation process, the unknown parameters θoptgrad describing the gradient of least
overlap, are the solution of following minimization problem:

res12(θgrad) + res23(θgrad) + res13(θgrad) −→ min ! (14)

with

resk,l =
end∑

j=0

(min (ĉk(tj, θfix, θgrad), ĉl(tj, θfix, θgrad))) (15)

ĉi(tj, θ) being the concentration profile/chromatogram for component i calculated by the
mechanistic model, θfix are the model parameters that are fixed in the optimization
(SMA parameters inclusive), θgrad denotes the optimizable parameters and consists for
example of the three factors Start, Length and Slope defining the elution gradient. A
more detailed discussion and comparison of the DoE-RSM-approach and the approach
of optimization in silico with mechanistic modeling is enclosed in the third paper of this
thesis (Osberghaus et al., 2012c).
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1.6.3 Model-based Design of Exeriments

Alternative to commonly used design of experiments like full-factorial designs or partial-
factorial designs, which deliver regular screening patterns over a factor space and provide
the information for multilinear response models, experiments with a high information
content can also be planned based on the mechanistic model.

Let all controllable and uncontrollable factors that influence an experimental result
be called design factors. For example, the three factors Start, Length and Slope defin-
ing the elution gradient (see above) are design factors in a chromatographic separation.
Experimental planning allows for the determination of design factor sets, experimental
designs, that lead to experiments containing a maximum of information with respect
to a specific objective. Let this objective be, for example, the D-optimal determina-
tion of SMA-parameters based on an inverse method with a small estimation variance,
D-optimality defined by the following definition:

Definition 1 Let FI(ζ) be the Fisher Information matrix based on the design factors
ζ1 . . . ζn. A defined experimental design ζ? = ζ?1 . . . ζ

?
n is called D-optimal if and only if

detFI(ζ?) ∈ max
ζ∈V +

detFI(ζ) (16)

with V + being the space of all possible experimental designs (Bandemer and Bellmann,
1994).

As the inverse of the Fisher Information matrix is equal to the covariance matrix
under specific assumptions (cmp. Mardia et al. (1979), Fahrmeir and Hamerle (1995)),
experimental designs minimizing the determinant of the covariance matrix are also called
D-optimal experimental designs. A popular way for the calculation of covariance ma-
trices without a demand for linearization assumptions are bootstrap methods based on
Monte-Carlo sampling. Based on the mechanistic model, a huge number of in silico exper-
iments are performed corresponding to a specific experimental design and afflicted with
noise, that is characteristical for the examind chromatography process. Then, for exam-
ple, the SMA-parameters are estimated based on these in silico chromatograms (cmp.
equation (13)). The deviations and the covariance matrix of these estimations can be
calculated and the information contents of the specific experimental designs can be com-
pared according to equation (16). Further details on this approach are given in Efron
and Tibshirani (1993) and Joshi et al. (2006).

1.6.4 Model-integrated process development

Based on the intensive discussion of strategies for model calibration and in silico opti-
mization, as well as specific and target-orientated design of experiments, a new concept
for model integrated process development was developed in this thesis. The concept is
established by a tight cooperation between experimentation, modeling and model-based
experimental design and allows for the optimization of chromatographic processes, robust-
ness analyses and upscale predictions. It has already been successfully applied to different
qualities of chromatographic data (cmp. section 1.5) in systems with model proteins and
to an industrial application (separation of a monomer from aggregates and HCP). The
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Figure 7

three step scheme for the concept of model integration in process development is shown
in figure 7. In the first step of process development, pulse and frontal experiments are
performed for a characterization of the column and the packed bed (porosity, dispersion,
capacity). The results can be simultaneously used for the calibration of the mechanistic
model on column level. In the second step of process development, frontal and gradient
elution experiments support the decision on optimal elution conditions with respect to pH,
adsorbent, salt type etc. These gradient elution experiments will be designed beforehand
based on mechanistic modeling in order to contain increased information with respect to
model calibration on particle level/determination of SMA parameters. The completely
calibrated model allows for the in silico prediction of optimal separation gradients in the
third step. Convenient objectives, like for example the resolution between the peaks or
a certain retention behaviour, can be chosen as performance variables for optimization.
The planned experiments are performed and model predictivity has to be be verified on
the experimental results by comparing peak shapes, resolutions and retention times. The
verified model is then fit for upscale predictions.

The efficiency of this concept was demonstrated in (Osberghaus et al., 2012a) based on
data from miniaturized and parallelized chromatography. The chromatograms, planned
by model-based designe of experiments, contributed valuable information for process
development, the model was easily calibrated and predictions showed a high precision.
Thus, it was shown, that mechanistic modeling allows for in silico optimization based on
high-throughput data, i.e. from miniaturized scale on.
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2 Research Proposal

Due to its high selectivity, chromatography is a main technique in protein separation
sciences. Most production processes for biopharmaceutical proteins contain at least one
chromatography step, but often more. Like in most other separation techniques, a thor-
ough selection of conditions (pH, buffers, chromatography mode) is necessary to get
efficient processes. Optimal choices for these conditions can often be derived based on
the properties of the component of interest (size, charge, hydrophobicity), but still the
optimization of a chromatographic process poses a multivariate and multiobjective chal-
lenge. Time-pressure in industrial applications does often not allow for a careful multilevel
full-factorial examination of the design space and the establishment of optimal processes.
Three techniques have been developed, to improve this situation:

• high throughput screenings (HTS) in miniaturized and parallelized scale

• Design of Experiments and response surface modeling for the characterization of
the design space

• mechanistic modeling in chromatography

Mostly, one of these techniques is exclusively applied to the examination and/or opti-
mization of a specific separation problem. While high-throughput screenings and re-
sponse surface modeling are quite established in chromatography process optimization
as applied in industrial research groups, mechanistic modeling has still the reputation
of being a complicated, expensive and laborious tool. Reasons for this reputation can
probably be seen in the imperative to handle and calibrate a system of partial differen-
tial equations and furthermore in the large pool of mathematical/statistical instruments
that has to be applied for model validation and optimization. In addition, the perfor-
mance of mechanistic modeling is critically dependent of efficient algorithms, software
and calculation power. The idea of mechanistic modeling got recently new impetus with
two developments outside from chromatography science: rising calculation power in com-
bination with algorithm efficiency and increased pressure of administrative institutions
that are responsible for the approval of biopharmaceutical ingredients. These institutions
recently initiated the establishment of statistical approaches considering process robust-
ness, characterizations of design spaces and process control; modeling seems to be the
best answer to these reqirements. The application of empiric response surface modeling
in this area soon revealed shortcomings and a limited predictivity, especially with respect
to complex chromatography processes. These facts increased the interest for mechanistic
modeling for the characterization and optimization of chromatography processes.

This thesis was set up to consider several issues connected with the practical appli-
cation of mechanistic modeling in industrial processes with a focus on qualified model
calibration and the handling of data from high-throughput screenings. The aim was to de-
velop strategies for an efficient combination of the three previously mentioned techniques
for the optimization of chromatography steps: high-throughput screening, Design of Ex-
periments and modeling. This aim included analyses on appropriate model complexity
for different chromatography scales (miniaturized scale, 1 ml lab scale and 15 ml process
development scale) as well as the highly predictive up- and downscaling by employment
of the mechanistic model.
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2 RESEARCH PROPOSAL

Figure 8: Concept circle illustrating the research proposal for this thesis

Experimental results from high-throughput screenings showed to be useful on the
one hand for model calibration (isothermal and kinetic measurements) and on the other
hand, miniaturized column chromatography provided necessary data in sufficient qual-
ity for model-based in silico optimization in this very early process development step.
Another issue was the application of model-based Design of Experiments in order to let
all experiments contain a maximum of information with respect to the specific objective
(model calibration, etc). This led to the employment of modern statistical concepts like
Monte-Carlo sampling methods and a model-based development of D-optimal experi-
mental setups. A system of model proteins (ribonuclease A, cytochrome c and lysoyzme)
together with a set of most common cation exchange adsorbents served for the exam-
ination and evaluation of the developed concepts. For optimization examinations, the
cation exchanger SP Sepharose FF was especially qualified, as this adsorbent material is
often used in industrial purposes for low costs, however, the derivation of optimal sepa-
ration conditions is quite difficult. Succeeding, the developed applications were applied
to a specific industrial problem from the project partner, leading to further knowledge
on systems and refining the model as well as the applications themselves.

The research proposal is illustrated in figure 8. The combination of fundamental
understanding of the underlying physical processes together with experimental planning
and model calibration based on designed training data leads obviously to a cycle of
model optimization and refinement. Most important in the concept of the proposal
is the continuous verification of the predictive power of the chromatography model on
experimental results. Closing this cycle contributes new insights into the chances and
challenges of the application of mechanistic modeling in chromatography.
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three component separation on a cation exchanger, a new concept for model-based
process development is introduced and demonstrated.
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abstract

Diverse bioprocess applications are established on robotic platforms in screening protocols and
high-throughput experimentation. These miniaturized and parallelized applications pose new chal-
lenges in detecting and quantifying uncertainties in standard bioprocesses and in calculating un-
certainty propagation influencing the process results. Since the efficiency and speed of computing
has increased significantly in the last decades, ’in-silico’-approaches, for example quasi-experimental
analyses based on mechanistic simulations combined with Monte Carlo methods, are on the rise
for uncertainty analyses and estimation of uncertainty propagation. The power and convenience of
these approaches for high-throughput processes will be demonstrated with a case study including
miniaturized screenings on robotic platforms: a binding study for lysozyme on the adsorbent SP
Sepharose FF in 96 well format. In this case study, all relevant uncertainties during the experimen-
tal preparations and the automated high-throughput experimentation were identified, quantified
and then embedded in a simulation algorithm for the calculation of uncertainty propagation based
on Monte Carlo sampling. A proof of concept for this approach is given, followed by the simulation-
based analysis of various case scenarios. The high flexibility and simple handling of the Monte
Carlo-based approach is convincing and can easily be transferred to uncertainty analyses in other
high-throughput processes, potentially revealing bottlenecks in high-throughput analytics and lay-
ing solid foundations for process optimization.

Keywords: simulation, technology assessment, chromatography, Monte Carlo method, uncer-
tainty propagation

1. Introduction

In experimentation for food and drug processes as well as in clinical testing, high reproducibilities

and precision are particulary required. In addition, regulation agencies, for example the Food

and Drug Administration in the US, expect the detection and quantification of uncertainty and

analyses on robustness prior to the approval of production processes [1]. Consequently,robustness
1
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and uncertainty analyses are not only essential for currently implemented processes, but furthermore

a certain quality has to be guaranteed throughout process lifetime. In this context, knowledge of

the contributions of single process steps to the overall uncertainty of the result leads to a better

understanding of weaknesses in the routine and action points for uncertainty minimization.

However, new challenges arise with the revolutionary progress of high-throughput process devel-

opment on robotic platforms. High-throughput screenings and experimentation are very efficient

due to automation, parallelization and miniaturization techniques (cmp. [2], [3], [4] and [5]). The

employed robotic platforms/workstations mostly offer an integrated concept of liquid handling in-

cluding pipetting steps, transport and high-throughput analytics in 96 well format. For a compre-

hensive uncertainty analysis it is thus of high importance to determine uncertainty contributions

from all relevant steps in the robotic workflow. Every step in the miniaturized process, such as liq-

uid handling/pipetting, shaking, heating or centrifuging of samples, is subject to external influences

(e.g. temperature or pressure variation), that afflict the scheduled volumes and concentrations with

stochastic variations (errors). In addition to the robotic workflow, beforehand manual preparations

of the samples and additives are often necessary and have also to be examined in the uncertainty

propagation calculation as they might lead to additional uncertainty on the process results. In

summary, all single steps, robotic and manual handling of the samples, have to be analysed with

respect to magnitude and origin of uncertainties on the scheduled volumes or concentrations.

Even though most single process steps can be considered separately with respect to uncertainty on

the step’s results and their distribution, the calculation of the contribution to the total uncertainty

on the final result can be still highly demanding. Classical methods of uncertainty propagation

have been applied to the examination of experimental results in life sciences for a long time. Re-

views on these methods and their application can for example be found in [6] and [7]. However,

established equations for uncertainty propagation analysis are often not feasible, as demonstrated

in [8], describing how classical equations and approaches have to be adapted and expanded with

rising complexity of problems. For some problems, including for example discretely distributed

uncertainties or non-analytical differential equations, the classical equations are awkward or even

unusable [9].

Monte Carlo sampling, a concept of numerical in-silico experimentation based on the law of large

numbers, came up in the 1970s parallely to rising computational power and is frequently applied

to problems of uncertainty propagation, e.g. in physics and chemistry (cmp. [10]). Applications of

Monte Carlo sampling based uncertainty propagation in the field of bioseparation technologies can

for example be found in [11], applied to Simulated Moving Bed separation or in [12], [13] and [14]

or separations with High-Performance Liquid Chromatography. However, binding and separation

studies or similar processes on a robotic station have to the authors knowledge never been subject

to a thorough uncertainty analysis. Though interesting attempts of including deviations of process
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steps to a parameter estimation based on a binding study have been published by [15], their approach

was neither based on high-throughput experimentation nor on practical uncertainty analysis of the

single process steps; they considered uncertainties in the estimation procedure by adding several

’uncertainty parameters’.

In addition, there is only little research on Monte Carlo based case scenarios or sensitivity analyses

in the field of high-throughput processes, although for example even small deviations in the pipetted

volumes of the robotic platform can have significant effects on the quality of the results when a

sample has undergone multiple pipetting steps. Thus, a quantitative determination of such effects

is of high interest. This paper illustrates the previously mentioned Monte Carlo based uncertainty

analyses and broadens the application field by contributing new aspects of uncertainty analysis for

complete processes, where a robotic platform is integrated and the workflow deviations account for

the total uncertainty. The methods will be explained and demonstrated with a case study from

the field of bioseparation - a binding study with lysozyme on the strong cation exchange adsorbent

SP Sepharose FF. Though the proof of principle and uncertainty calculations for an system with a

rather flat isotherm, might have been more beneficial from an academical point of view and perhaps

less complicated in the analysis, the chosen system is a typical example for a system of industrial

relevance and routine. The resulting curve, characterizng the binding behaviour of lysozyme on SP

Sepharose FF, has a very steep beginning, indicating a high affinity of the protein to the adsorbent.

The so-called ’isotherm’ is a curve that characterizes capacity and selectivity of the examined

adsorbent with respect to the applied components/proteins and is thus of high relevance in the

development and optimization of chromatography separation processes.

An example for an isothermal curve is given in figure 1. In the sorption equilibrium, the concen-

tration of protein bound to the adsorbent (q) is displayed as a function of protein concentration in

the supernatant (c). In this case study, all relevant uncertainties during the experimental process,

consisting of manual preparations and the high-throughput process on the robotic platform, were

identified, quantified and then applied for the Monte Carlo based calculation of uncertainty propa-

gation in a simulation algorithm. Thus, the effects of deviations of single process steps on the total

result could be examined and the simulation algorithm varified. In addition, Monte Carlo sampling

was employed for the examination of three case scenarios. In these scenarios, the influences of

pipetting uncertainties as well as deviations in the adsorbent plaque volume and concentration of

the stock solution were quantified and their effect on the total result analysed and identified.

2. Theory

2.1. Binding studies.

2.1.1. Equations and parameters for the characterization of protein binding to adsorbent phase.

Binding processes between a protein and the adsorbent surface can be examined by exposing various
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Figure 1. An isotherm describes the equilibrium concentrations of protein bound
to the chromatographic adsorbent (q) relative to protein concentration in the super-
natant (c). The curve characterizes the adsorbent selectivity (slope) and capacity
(saturation point of the curve). The continuous line indicates a fit of the Langmuir
isotherm equation to the measurement points.

protein quantities to a well defined volume of adsorbent followed by measurements of the equilibrium

concentrations on isothermal conditions. The total mass balance for an isotherm is then given by

c0 · Vsup = c · Vsup + q · Vads (1)

Vsup is the supernatant volume in the experiment and Vads refers here to the volume of the adsor-

bent particle inclusive the liquid inside the adsorbent particle, the ’adsorbent phase’. Consequently,

c and q are the equilibrium protein concentrations in supernatant, respectively adsorbent phase,

dependent from the adsorbent properties. For simplicity, q will be refered to as ’concentration of the

bound protein’ further on. Mostly, the correlation of protein concentrations at equilibrium follows a

saturation curve (cmp. figure 1) which can be described or modeled for example with the Langmuir

isotherm equation:

q = qmax
Keq · c

1 +Keq · c
(2)

with qmax describing the saturation concentration of protein on the specific adsorbent and Keq

displaying an equilibrium coefficient similar to the Michaelis-constant in the Michaelis-Menten-

model for enzyme catalysis [16] (cmp. to figure 1) .

Thus, relevant parameters in a binding study are:

• concentrations and volumes

– c0, the initial concentration of protein solution

3 PUBLICATIONS & MANUSCRIPTS

34



5

– Vsup, the supernatant volume in the experimental setup

– Vads, the adsorbent volume in the experimental setup

• isothermal parameters

– qmax, saturation coefficient

– Keq, equilibrium coefficient

On the one hand, the two parameters qmax and Keq can be determined by an inverse fit of

equation (2) to experimental data. On the other hand, if the parameters qmax and Keq are given, the

equilibrium concentrations can be easily calculated by the solution of an equation system consisting

of the mass balance equation (equation (1)) and the Langmuir isotherm equation (equation (2)).

The insertion of equation (2) in equation (1) gives:

(Vsup ·Keq) · c2 + (Vsup +KeqqmaxVads −Keqc0Vsup) · c− c0Vsup = 0 (3)

leading to the unique positive solution:

c =
−Vsup −Keq (qmaxVads + c0Vsup)

2VsupKeq

+

√
(Vsup +Keq (qmaxVads − c0Vsup))2 + 4V 2

supKeqc0

2VsupKeq

(4)

q can then be calculated with the insertion of c in equation (1) or (2).

2.1.2. Robotic workflow. A typical workflow of binding studies performed in high-throughput mode

on robotic platforms can be divided into three main steps, the first step being manual preparations

which are followed by pipetting and measurement steps on the robotic platform:

(1) Preparations [manual]

• preparation of adsorbent plaques with a specific volume Vads stored in a certain volume

of buffer Vstor

• preparation of protein stock solution with the concentration cprot

(2) Pipetting & shaking

• pipetting of specific dilutions of the protein stock solution to the adsorbent plaques

with buffer volume Vbuff and protein stock solution volume Vprot

• shaking the experiment until equilibrium is reached

• centrifuging for settling of the adsorbent in the well

• pipetting of the supernatant to measurement plates

(3) UV absorbance measurements at 280 nm for protein quantification in th supernatant
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Figure 2. The connections between critical volumes and concentrations in the case
study and the deviation-afflicted steps influencing the results of binding studies. The
deviations of volumes and concentrations from scheduled values were identified and
embedded into a simulation algorithm for the quantification of the contribution of
single steps to total uncertainty.

Every substep should be considered with respect to its potential contribution to the total uncer-

tainty. In this case study the contribution of shaking, centrifuging and the measurements at the end

of the process are neglected, as in these substeps the deviations can be assumed to be neglegibly

small compared to the remaining substeps. Also the buffer solution is assumed to be standardized

and of constant quality.

As the isothermal parameters qmax and Keq characterize the specific binding behaviour between

protein and adsorbent phase, the critical volumes and concentrations in this process, which are

influenced by experimental deviation, are c0, Vads and Vsup.

Vsup and c0 are in turn given by

Vsup = Vstor + Vbuff + Vprot (5)

and

c0 =
cprotVprot
Vsup

(6)

Thus we can identify four basic volumes and concentrations affecting results of a binding study:

• Vads, deviations in the production of adsorbent plaques

• Vstor, deviations in the manual pipetting of storage buffer to the adsorbent plaques

• cprot, deviations in the production of protein stock solution

• Vbuff , Vprot, deviations in the pipetting on the robotic station
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The influences of the different steps in the workflow on the result of a binding study are also

illustrated in figure 2 for a better overview.

2.2. Uncertainty propagation analyses based on Monte Carlo sampling. Monte Carlo

(MC) sampling allows for in silico experimentation based on mechanistic equations describing the

process. Thus, a high number of experiments can be simulated for the determination of the uncer-

tainty contribution of single process steps on the overall result The performance and mathematical

reasoning for MC sampling are explained for example in [9], [17] and [18]. Roughly said, the

MC-approach is based on the law of large numbers, high computational power and information on

uncertainty distributions. In this case-study only independent stochastic deviations were considered,

because systematic errors can seldom be identified in a process.

Stochastic deviations are mainly a consequence of instrument measurement limits and various

stochastical influences on the experiment. Statistical location and dispersion parameters to de-

scribe these kind of influences on experimental results are the mean and the standard deviation.

Let x1, x2, . . . , xN be identically and independently distributed (iid) results from a stochastically

influenced experiment, then the mean of this results is given by

x̄ =
1

N

N∑

i=1

xi (7)

and the standard deviation by

sd(x) =
1

N − 1

N∑

i=1

(xi − x̄) (8)

In addition, the standard deviation in correspondence to the mean ( sd(x)
x̄

) is called the relative

standard deviation. As this parameter is dimensionless, it can easily be applied in uncertainty

propagation analysis.

Provided that the mean and the standard deviation of every single process steps is known,

deviation-afflicted isothermal results can be simulated based on equations (3), (4), (5) and (6).

This would then be the result of a single in-silico experiment performed by the simulation algo-

rithm. The repetition of this simulation leads to a distribution of isothermal results and by changing

the deviation of a specific process step, the influence of this step and its deviation on the total result

can easily be analyzed and quantified. While in this case-study normally distributed deviations were

considered, because the normality could be proven by distribution tests, MC- sampling does not

require normality; other specific discrete or continuous distributions of deviations may be as well

considered in the simulation.
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3. Materials and methods

3.1. Materials. Lysozyme (chicken egg white) was purchased from Sigma (St. Louis, MO, USA).

Sodium monobasic phosphate, sodium dibasic phosphate and sodium hydroxide for titration were

purchased from Merck KGaA (Darmstadt, Germany). The adsorbent SP Sepharose FF, a strong

cation-exchanger with sulfopropyl ligands, was purchased from GE Healthcare (Buckinghamshire,

United Kingdom).

3.2. Apparatus & Software. For a triple binding study on the robotic platform 96 adsorbent

plaques with a volume of 20.8 µl each were produced parallely according to the instructions in [19]

with a ResiQuot R© plaques device from Atoll (Weingarten, Germany). Figure 3 A shows the size

and appearance of typical adsorbent plaques. As the 36 plaques at the border of the ResiQuot R©

device show slightly higher variances in shape and weight (cmp. [19]), they were completely left out

in experimentation, thus only the 60 inner plaques in the DWP were used for the binding studies.

The plaques were stored in a sealed DWP in 100 µl of 20 mM sodium phosphate buffer until usage

(7 days max.).

For drying purposes a cleanroom drying oven (Memmert GmbH + Co.KG, Schwabach, Germany)

was used. For all weighing analytics a microbalance with automated readout (Mettler Toledo,

Greifensee, Switzerland) was employed. The robotic platform in use was a Tecan Freedom Evo 200

workstation (Tecan, Maennedorf, Switzerland). The station is equipped with one liquid handling

arm (LiHA) connected to 1 ml dilutors, a gripper, an integrated Hettich Rotanta 46RSC centrifuge

(Andreas Hettich, Tuttlingen, Germany), a Variomag Teleshake horizontal lab shaker with four

shaking positions (H+P Labortechnik, Oberschleissheim, Germany) and an infinite M200 Reader

(Tecan, Maennedorf, Switzerland).

For the control of the robotic platform the software Evoware R© 2.3 (Tecan, Maennedorf, Switzer-

land) was used. All succeeding calculations, data manipulation, simulation and visualization were

accomplished in Excel R© (Microsoft, Redmont, WA, US) and in Matlab R© (The Mathworks, Natick,

ME, USA).

3.3. high-throughput binding studies on a robotic platform. In all experiments the em-

ployed buffer was a 20 mM sodium phosphate solution at pH 7 and the scheduled concentratiom of

lysozyme stock solution was 7 mg/ml. The manual preparations for a binding study on the robotic

platform have to provide:

• a DWP with 60 adsorbent plaques, each plaque in 100 µl of storage buffer

• 14 ml of protein stock solution per isotherm

• 80 ml of buffer solution

Then, the robotic station pipettes solution series with 20 measurement points into the DWP with

the adsorbent plaques according to the scheme given in table 1. Thus, it is possible to place three
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buffer [µl] protein [µl] c0 [mg/ml]

684 16 0.140
676 24 0.210
668 32 0.280
660 40 0.350
652 48 0.420
644 56 0.490
636 64 0.560
628 72 0.630
620 80 0.700
604 96 0.840
588 112 0.980
572 128 1.120
556 144 1.260
540 160 1.400
520 180 1.575
500 200 1.750
460 240 2.100
420 280 2.450
380 320 2.800
340 360 3.150

Table 1. Pipetting scheme for binding studies on robotic platforms with 20 measure-
ment points. The binding studies are performed with various initial concentrations
c0 and a constant adsorbent plaque volume of 20.8 µl.

binding studies on a single DWP. The arrangement of three binding studies on a DWP is shown on

the right hand side of figure 3. The pipetting scheme in table 1 leads, inclusively the storage buffer

volume of 100 µl, to a supernatant volume Vsup of 800 µl per well (cmp. equation (5)). The DWP

is shaken with 1500 rpm for 120 minutes to ensure equilibrium state, then it is centrifuged and the

protein concentration in the supernatant is determined by absorbance measurements at 280 nm.

3.4. Detection of deviations for relevant process steps. In each of the experiments for the

detection of deviations for relevant process steps, the experimental results were examined visually

(histogram) and statistically (ANOVA) for normal distribution.

3.4.1. Determination of the deviation in adsorbent plaques volume. In [19] the deviation in plaque

volumes was determined indirectly by the results of binding studies on robotic platforms, assuming

the volume uncertainty of adsorbent plaques to be the only, or at least main source for deviations.

However, the aim of this case study was an independent examination of uncertainty contributions

of all relevant steps in binding studies on a robotic platform, assuming that many process steps
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Figure 3. In subfigure A typical adsorbent plaques with a volume of 20.8 µl are
shown to give an impression of size and form. In subfigure B a DWP-scheme for the
parallel execution of three binding studies on a robotic platform is illustrated - each
study is based on 20 measurement points.

contribute to the total uncertainty on binding study results. Consequently, the detection of de-

viations in the adsorbent plaque volumes had to be performed by a more direct method. After

plaque production (cmp. section 3.2), the 60 inner plaques were released and then desiccated in

an oven for 3 days at 40 ◦C. Under the assumption of equal densities of the plaques ρ, the relative

standard deviation of the oven-dry mass, determined with an analytical balance, is equal to the

relative standard deviation of the wet volume:

σ(mass)

x̄(mass)
=
σ(mass) · ρ
x̄(mass) · ρ =

σ(vol)

x̄(vol)
(9)

The dried plaques were weighed separately and the distribution of weights as well as the standard

deviation were determined. This procedure was repeated twenty times to get a larger amount of

data and information on the plaque volume distribution.

3.4.2. Determination of deviations on the manual storage buffer pipetting. A twelve channel pipette

was used to pipette a scheduled volume of 100 µl of the storage buffer to the ready plaques in the

DWP. The standard deviation of manually pipetted volumes was measured by multiple pipetting

into preweighed 1 ml Eppendorf cups and weighing them again. With analogous reasoning like in

the previous section, the distribution and relative standard deviation of the pipetted volumes could

be determined by measuring the distribution and the relative standard deviation of the pipetted

masses.

3.4.3. Determination of the deviations in the concentration of manual prepared protein stock solu-

tions. The standard procedure for manual stock solution preparation contains a weighing step -

the protein sample is weighed in on a microbalance - and a pipetting step - the vial is filled with

the adequate volume of buffer. The production of stock solutions with five volumes in the range

from 0.357 ml to 50 ml and a concentration of 7 mg/ml protein was executed 20 times for each
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scheduled volume, thus different protein masses were weighed in. Neglecting measurement noise

from the spectrophotometer as mentioned before, it can be assumed, that the relative standard

deviation of absorbance measurements of the stock solutions at 280 nm is equal to the relative

standard deviation in solution concentrations.

3.4.4. Determination of deviations in the pipetting of the robotic LiHA. As pipetting deviations are

the main uncertainty contribution of the robotic system to isothermal results, a volume-dependent

relative standard deviation of pipetting steps had to be determined. The robotic tips were previously

shown to be comparable and independent. Then, volumes of 10, 20, 40, 100, 200 and 800 µl

buffer, respectively protein stock solution, were pipetted with the LiHA under consideration of

precalibrated Liquid Classes. The pipetted range of volumes covers the pipetting scheme for binding

studies (cmp. to table 1). The microbalance with automated read-out was installed on the robotic

platform and the pipetting deviation was determined by pipetting 10 or more times the same volume

with each robotic tip.

3.5. Structure of the simulation algorithm. The simulation algorithm is programmed for the

mechanistic simulation of binding studies on robotic platforms. It includes Matlab R© command lines

describing the initial state, the pipetting and the calculation of the experimental results based on

the assumption of a specific equilibrium behaviour described by two previously chosen Langmuir-

parameters. These parts of the simulation algorithm will be explained in detail now and are also

illustrated in figure 4 (cmp. also to section 2.1.1): The initial parameters for the simulation algo-

rithm are:

• constants

– scheduled concentration of the protein stock solution cprot

– scheduled volume of storage buffer Vstor

– scheduled adsorbent volume Vads

– pipetting scheme for buffer and protein solution [cmp. table 1]

– Langmuir parameters Keq and qmax

• deviation descriptors

– relative standard deviation of protein stock solution concentration σrel,cprot

– relative standard deviation of manual pipetting of storage buffer σrel,stor

– relative standard deviation of volume of adsorbent plaques σrel,ads

– a functional relation between the LiHA-pipetted volume and its relative standard de-

viation σrel,pipp = f(Vpipp), which was found to be applicable for the pipetting of either

buffer or protein stock solution
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Figure 4. This flow scheme shows the structure for the simulation of a binding
study including the application of specific relative standard deviations to the plaque
volumes, to the robotic pipetting and to the concentration of the stock solution. On
the left-hand side of the flow scheme, the input information and their locus apparendi
is shown. On the right-hand side the application of deviations is illustrated.
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In the next part of the simulation algorithm, all deviations are applied to the given constants.

As the results of the experimental determination of standard deviations of the single process steps

showed to be independently and normally distributed, the deviation application is given by:

Ṽads = Vads + εads (10)

Ṽstor = Vstor + εstor (11)

c̃prot = cprot + εcprot (12)

with εx independent normally distributed random errors with mean 0 and relative standard

deviation σrel,x. To the pipetting scheme for buffer and protein solution, the deviations are added

according to a functional relationship between the scheduled LiHA-pipetted volume and its relative

standard deviation:

Ṽpipp = Vpipp + εpipp (13)

(14)

Vpipp being here Vbuff respectively Vprot. εpipp are independent and normally distributed errors

with mean 0 and a relative standard deviation dependent from the scheduled pipetting volume and

calculated by a functional relationship of this volume f(Vpipp), as will be shown in the results in

section 4.2.4. The deviation in robotic pipetting with the LiHA is calculated for every measurement

point separately. The simulation results for the binding study are subsequently calculated for each

measurement point in the DWP based on the deviation-afflicted values Ṽads, Ṽstor, c̃prot which are

together with the deviation-afflicted volume

Ṽtot = Ṽstor + Ṽbuff + Ṽprot (15)

inserted into equations (1), (2) and (4). Analogously c̃0 is calculated (see equation (6)) and inserted.

Based on this simulation algorithm, the Monte Carlo sampling routine for analysis of deviation

propagation consists of a loop, repeating the deviation-afflicted binding study simulations 10000

times and evaluating the mean and standard deviations of the results.

3.6. Proof of concept and case scenarios. For a proof of concept, the standard deviations of

the equilibrium concentrations of twelve experimental binding studies were directly compared to the

deviations calculated based on Monte Carlo-simulations. For a better comparison, ratios between

the deviations were calculated for every relevant measurement point:

Q =
σrel,sim
σrel,meas

(16)
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For the case scenarios some of the deviations applied to the constants in the simulation algorithm

were manipulated (increased or decreased) and the effect on the resulting simulations analysed.

Three case scenarios will be introduced and analyzed in this paper:

• What if the deviations in protein stock solution concentration are higher or lower than

normal?

• What if the deviations in adsorbent plaque volume are higher or lower than normal?

• What if the deviations in robotic pipetting are higher or lower than normal?

For the first two case scenarios a grid was conctructed and Monte Carlo sampling was performed

for eleven levels of plaque volume deviations in the range from 0% to 3.7% and eleven levels of

deviations on the protein stock solution in a range from 0% to 2.1%. For the third case scenario

constant relative standard deviations on the robotic pipetting were assumed to determine the effects

of different deviation intensities on the total uncertainty on binding studies. The applied relative

standard deviations in robotic pipetting covered the range of 0% to 5%. The ranges for the case

scenarios were selected to include at least the experimentally derived mean and two times the

standard deviations of the uncertainties from the single process steps.

4. Results

4.1. Binding studies on the robotic platform. A binding study on the robotic platform

(lysozyme on SP Sepharose FF) was performed twelve times according to the instructions in sec-

tion 3.3. Means and standard deviations were calculated for each measurement point. The results

are illustrated in figure 5 with error bars that indicate twice the relative standard deviation for the

calculated equilibrium protein concentrations in the supernatant (c) and bound protein (q). Please

pay attention to the different reference volumes (supernatant/adsorbent) for the concentration cal-

culation. While the means for the concentrations of the unbound protein c1 to c17 were very close

to zero, because for low protein concentration all protein will bind to the adsorbent, the means and

relative standard deviations on the concentration of unbound protein were rising for measurement

points in the saturation part of the isotherm [sd(c18): 12.4 %, sd(c19): 18.38 %, sd(c20): 24.5 %].

On the contrary, the relative standard deviations for the measurement of bound protein q lie mainly

between 1.6 % and 2.1 % and show no trends. The Langmuir-parameters for these twelve isotherms

were determined by inverse least squares fits with the Matlab R©-routine lsqnonlin and are specified

in table 2. The estimation results for Langmuir parameters show, that the estimation for qmax has

a significantly smaller relative standard deviation [4.6 %] than the estimation for parameter Keq

[50.8 %]. That implies, that the standard deviations in the saturation region of the isotherm (last

three measurement points in figure 5) have a very low effect on the determination of characterizing

parameter qmax. The high deviations on Keq are mainly caused by the sensitivity of Keq for small

changes in the first part of the isotherm, what was observed previously by [20]. The mean of the
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Figure 5. This figure shows results from twelve experimental determinations of a
lysozyme isotherm on SP Sepharose FF (pH 7, 20 mM sodium phosphate buffer).
c [mg/ml supernatant] denotes the concentration of overall unbound protein whereas
q [mg/ml adsorbent] denotes the concentration of bound protein. The error bars
indicate twice the standard deviation of the data.

experiment qmax[mg/ml] Keq[ml/mg]

1 114.5 355.8
2 121.6 480.9
3 116.9 343.8
4 114.3 207.1
5 113.7 432.9
6 103.7 355.9
7 113.7 472.6
8 119.7 644.5
9 111.4 1091.3
10 108.6 252.6
11 121.0 475.9
12 119.7 824.8

x̄ 114.9 494.9

Table 2. Langmuir parameters estimated for twelve results from binding studies
with lysozyme on SP Sepharose FF performed on the robotic platform. The estima-
tions are based on an inverse fit of the Langmuir equation (cmp. (2)) to the data
shown in figure 5.

parameter estimations was Keq = 494.9 ml/mg and qmax = 114.9 mg/ml. These means were attrib-

uted to be the Langmuir parameters for simulation; consequently, Monte Carlo sampling is based

on these parameters.
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untrained user trained user

x̄(ads) [g] 0.00209 x̄(Ads) [g] 0.00217
σ(ads) [g] 0.00011 σ(Ads) [g] 0.00004
σrel,ads [%] 5.487 σrel,ads [%] 1.832

Table 3. Means and (relative) standard deviations on adsorbent plaques with a
scheduled volume of 20.8 µl. The values for the ’untrained user’ apply for the first
uses of the ResiQuot R© device, the values for the ’trained user’ apply to expert exper-
imenters with quite constant deviations in adsorbent plaque production.

Figure 6. Example histograms for deviations on the volume of adsorbent plaques
(subfigure A, scheduled volume: 20.8 µl), deviations in the lysozyme stock solution
concentration (subfigure B, scheduled concentration: 7mg/ml) and deviations in the
pipetted volume of storage buffer (subfigure C, scheduled volume: 0.1 ml)

4.2. Standard deviations of the process steps.

4.2.1. Deviations in adsorbent plaque volume. A decrease in the relative standard deviation from

adsorbent plaques volume was observed dependent of the training of the experimenter on the plaque

device. Whereas the standard deviations from the very first set of plaques were high (in table 3

refered to as ’untrained user’), the plaque quality was quite constant from a specific time of plaque

device use on (in table 3 refered to as ’trained user’). Obviously, by training on the device, the

relative standard deviation was reduced for more than 50 %. As the binding study was performed

by a ’trained user’, a relative standard deviation of around 2 % could be assumed in the simulation

algorithm for the deviation of adsorbent plaques volume produced with the ResiQuot R© device.

However, this observation attaches importance to the case scenarios on the effect of deviations

on adsorbent plaque volume on the overall results. The distribution of adsorbent plaque volumes
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x̄ [g] 0.099709
σ [g] 0.00056
σrel,stor [%] 0.562

Table 4. Mean and (relative) standard deviations for the manual pipetting of 100 µl
of the storage buffer with a twelve-channel pipette.

weighed in protein [g] x̄(UV280) σ(UV280) σrel,cprot [%]

2.5 0.8567 0.181 21.13
5 0.7373 0.0646 8.76
10 0.8726 0.0305 3.50
100 0.8401 0.0082 0.98
350 0.864 0.0036 0.42

Table 5. Mean and (relative) standard deviations for the production of various
volumes of protein stock solution.

based on 240 plaques is shown in histogram A in figure 6. By visual analysis of the histogram and

statistical analysis of the data (ANOVA) the distribution can be assumed to be normal.

4.2.2. Deviations in manual pipetting of storage buffer. The measured deviations in manual pipet-

ting of storage buffer are shown in table 4. The mean (0.0997 g) converted by the buffers density

of 0.998 g/ml to a volume of 0.0999 ml is very close to the scheduled volume of 100 µl and the rel-

ative standard deviation in pipetted volumes was around 0.6 %, a rather small deviation compared

for example to the deviations in adsorbent plaque volume. The distribution of manual pipetting of

storage buffer based on 196 pipetted volumes is shown in histogram B in figure 6. By visual analysis

of the histogram and statistical analysis of the data (ANOVA) the distribution can be assumed to

be normal.

4.2.3. Deviations in the production of protein stock solution. The deviations in the production of

stock solutions with respect to different scheduled final volumes is given in table 5 with respect to

the necessary protein input for the final concentration of 7 mg/ml.

Obviously, the lower the aspired final volume is, the less protein had to be weighed in and the

higher is the relative error on the final protein concentration. With a nominal protein input of

2.5 mg in the stock solution (volume of stock solution: 0.357 ml), the relative standard deviation

with 21.1 % is more than twenty times higher than the relative standard deviation in stock solution

production with 100 mg protein (volume of stock solution: 14.286 ml). This observation attaches

importance to the case scenarios on the effect of deviations in stock solution concentration on the

overall results as the amount of weighed in protein could possibly be increased for higher precision in
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Figure 7. The relative standard deviation in the manual production of protein stock
solutions correlates to the weighed in protein mass. The data was fitted to the power
function shown in the figure.

the experimental results. The example distribution of concentrations in the production of protein

stock solution with 10 mg of lysozyme based on 50 stock solutions is shown in histogram C in

figure 6. By visual analysis of the histogram and statistical analysis of the data (ANOVA) the

distribution could be assumed to be normal.

A power function was fitted to mathematically describe the effect of initial protein input on the

relative standard deviation of the final protein concentration. The functional relation is given by

σrel,cprot = 0.3 ·mass−0.75 (17)

with a coefficient of determination of 96.43 %. This functional relationship, shown in figure 7, could

for example be employed to calculate the standard deviation in stock solution concentration in the

simulation algorithm for different experimenters performing the same binding study with individual

operating procedures for stock solution production. In the binding studies an overall protein stock

solution volume of 50 ml was used (protein input of 350 mg), thus, a relative standard deviation of

0.42 % on the concentration of the stock solution was assumed in the simulation algorithm.

4.2.4. Deviations in robotic pipetting. Volumes of 10, 20, 40, 100, 200 and 800 µl were pipetted with

the LiHA under consideration of specificly prepared Liquid Classes for buffer respectively protein

solution. The results for the robotic pipetting were again proved to be normally distributed; char-

acteristics of the distributions are given in table 6 [buffer solution] and in table 7 [protein solution].

Obviously the relative standard deviation decreases significantly with increasing scheduled pipet-

ting volume in both cases. Pipetting a volume of 10 µl, the relative standard deviation was 6.5 %

(buffer) respectively 9.8 %(protein); pipetting higher volumes of around 200 µl, the relative standard

deviation was only 1.5 % (buffer) respectively 1.3 % (protein). The increase of relative standard
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scheduled pipetted volume [µl] x̄(mass) σ(mass) σrel,pipp [%]

10 8.91 0.57 6.5
20 19.45 0.65 3.4
40 41.44 1.48 3.6
100 99.99 1.84 1.8
200 197.41 2.89 1.5
800 799.30 4.06 0.5

Table 6. Mean and (relative) standard deviations for the pipetting of buffer solution
with the LiHA

scheduled pipetted volume [µl] x̄(mass) σ(mass) σrel,pipp [%]

10 8.07 0.79 9.8
20 18.80 0.94 5.0
40 40.20 1.12 2.8
100 99.35 1.88 1.9
200 198.01 2.49 1.3
800 799.44 2.78 0.4

Table 7. Mean and (relative) standard deviations for the pipetting of protein stock
solution with the LiHA

deviations for buffer and protein pipetting and the pipetted means are very similar; therefore, the

pipetting data was summarized and analogously to the previous section a functional relationship

between the data and their relative standard deviation could be stated to:

σrel,pipp = 0.3 · V ol−0.6
pipp (18)

with a coefficient of determination of 95.83 %. The fit of relative standard deviations from both

liquids, buffer and protein pipetting, to this functional relation curve is demonstrated in figure 8.

4.3. Results based on Monte Carlo sampling.

4.3.1. Proof of concept. For the proof of concept all previously determined relative standard devi-

ations were applied in the simulation algorithm in order to compare simulated uncertainties to the

experimental uncertainties of the binding studies. Figure 9 shows the relevant quotients Q for the

comparison of relative standard deviations (cmp. equation (16)). The supernatant concentrations

c1 to c17 are left out, because their means were neglegibly small in both approaches. Most of the

quotients are very close to 1 or slightly larger, what indicates a consistence between σrel,meas and

σrel,sim. The simulation algorithm is rather overestimating the standard deviations than underes-
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Figure 8. This figure shows the relative standard deviation of pipetted volumes on
a Tecan Evo robotic station with dilutors holding 1 ml for the pipetting of protein
solution (diamonds) respectively buffer (squares). The relative standard deviation
rises with pipetting smaller volumes. This correlation was described with he power
function, that is shown in the top right-hand corner of the figure.

Figure 9. Quotients Q are shown, comparing the relative standard deviations for
measurement points of experimental isotherms to the deviations calculated by the
simulation algorithm including the experimentally derived uncertainties of single pro-
cess steps (cmp. equation (16)). A quotient Q of 1 would indicate an exact agreement
of experimental and simulated deviation. The figure shows, that the simulation algo-
rithm is rather overestmating the standard deviations than underestimating them.

timating them. Only q20 is very close to 0, what indicates, that for the last measurement point of

the isotherm, the relative standard deviations from the simulations are significantly smaller than

the deviation calculated based on experimental results.
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Figure 10. The relative standard deviations for twenty simulated measurement
points for unbound protein csim are illustrated for seven selected combinations of
uncertainty in adsorbent volume and uncertainty in the concentration of lysozyme
stock solution. The original standard deviations account for the values that were de-
termined experimentally: 1.8 % relative standard deviation in the adsobent volume
and 0.42 % relative standard deviation in the concentration of the lysozyme stock
solution.

4.3.2. Case scenarios. Having shown a good agreement of experimental and simulated isotherms,

case scenarios were set up based on the simulation algorithm. For the case scenarios considering

the effect of uncertainty in adsorbent plaque volume and stock solution concentration a grid was

conctructed and 10000 simulations were performed in each case for eleven kinds of plaque volume

uncertainties in the range from 0% to 3.7% and eleven uncertainty values on the protein stock

solution in a range from 0% to 2.1%. The uncertainties for the pipetting of storage buffer and

the LiHA-pipetting were in all simulations fixed to the experimentally derived values (see above).

Selected results from the 121 possible combinations of uncertainties are illustrated in figure 10

for the twenty measurement points of csim, respectively in figure 11 for the simulations of the

measurements of the bound protein qsim The curves for 0 % standard deviation for both process

steps, adsorbent plaque production and production of stock solution show the effect of only pipetting

uncertainties. A comparison between the curves, where on the one hand only the deviation on

adsorbent plaque volume (orig. rel. st. dev./0 %), on the other hand only the stock solution

concentration deviation (0 %/orig. rel. st. dev) were set to the original experimentally derived

values, shows, that uncertainties on the plaque volume together with the pipetting error are mainly

responsible for the overall error on the results from binding studies. Only a very high uncertainty

of 2.1 % on the concentration of the stock solution would have a similar effect compared to the

’normal’ uncertainty on adsorbent plaque volume. The worst case, represented by the curve with

3.7 % relative standard deviation on the adsorbent plaque volume and of 2.1 % on the concentration
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Figure 11. The relative standard deviations for twenty simulated measurement
points for bound protein qsim are illustrated for seven selected combinations of uncer-
tainty in adsorbent volume and uncertainty in the concentration of lysozyme stock
solution. The original standard deviations account for the values that were deter-
mined experimentally: 1.8 % relative standard deviation in the adsobent volume and
0.42 % relative standard deviation in the concentration of the lysozyme stock solution.

of the stock volume shows a relative standard deviation on csim,19 of around 75 % and on qsim,19

of 3.5 %. In general the uncertainties on the simulated measurements for the bound protein qsim

lie in the range of 0 % to 7 % and are slightly decreasing in direction of the saturation part of the

isotherm while the uncertainties on the simulated measurements for the unbound protein csim lie in

the range of 0 % to 80 % and are increasing in direction of the saturation part of the isotherm. This

is not correct for the last point of the isotherm csim,20, that generally shows very small simulated

uncertainties.

For the case scenarios considering the effect of LiHA pipetting uncertainty 10000 Monte Carlo

samples were simulated for absolute pipetting deviations in a range of 0 % to 5 % in 0.1 %-

steps. Figures 12 and 13 visualize the effect of LiHA pipetting for the standard deviations on the

concentrations of unbound, respectively bound protein. Again the uncertainty in pipetting has a

large effect on the measurement points of the unbound protein (range of standard deviations: 0 % to

90 %) and a more than ten times smaller effect on the measurements of bound concentration (range

of standard deviations: 0 % to 6 %). In general, the uncertainty in pipetting has a rather constant

effect on the deviations in the concentration measurements of bound protein q, that increases with

increasing uncertainty. Conversely, the effect on the concentration of the unbound protein increases

in direction of the saturation level of the isotherm. This is again not correct for the last point of

the isotherm csim,20, that generally shows very small simulated uncertainties.
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Figure 12. A contour plot showing the relative standard deviations on simulated
measurements of unbound protein csim in simulated binding studies for the assump-
tion of constant uncertainties on the robotic pipetting in a range of 0 % to 5 %.

Figure 13. A contour plot showing the relative standard deviations on simulated
measurements of bound protein qsim in simulated binding studies for the assumption
of constant uncertainties on the robotic pipetting in a range of 0 % to 5 %.

5. Discussion

The presented results show, that based on a reasonable segmentation of the whole process of

interest in ’single process steps’ and carefully selected experiments for the determination of step-

specific deviations, it is possible to establish simulation algorithms, that reproduce the process in

silico and can be used for uncertainty propagation analyses and the simulation of case scenarios. It

was illustrated, that the relative standard deviations calculated based on the simulation algorithm

are close to the deviations on the experimental results (cmp. figure 9). The slight overestimation

of total uncertainty by the simulation algorithm is most likely caused by the rather ’pessimistic’

application of deviations to the simulated results, as outliers have not been sorted out in the

determination of single step deviations. Secondly, correlations between uncertainties in the single

steps have been neglected in this approach. Such correlations would consequently be examined in

the next step of uncertainty propagation analysis if desired. The reason for the underestimation

of uncertainty in the last measurement point of the isotherm, c20 and q20, both, in the ’proof of
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concept’ and in the following case scenarios, is probably caused by the necessity to fix Langmuir

parameters in the simulation algorithm. They were fixed to constant values (cmp. table 2), the

means of Langmuir parameters estimated based on the twelve experimental isotherms. Though this

parameter fixing showed to be convenient, the parameters are not ’true’ and as the last measurement

point of the isotherms is located in the saturation part and is therefore strongly correlating with the

Langmuir parameter qmax, a fixed parameter naturally induces small deviances. Of high importance

would now be a following study which concentrates on the influences of uncertainties in the process

on the estimation of Langmuir parameters. However, the general quantity of uncertainty for all

other measurements could be experimentally observed and simulated in the simulation algorithm

including the tendencies, for example the uncertainty on c increasing in direction of the isotherm

saturation level (cmp. figure 5).

The simulation algorithm was set up modularly enabling further experimenters to include or

change individually the modules for robotic action, specific process steps and the adequate uncer-

tainties. Often, the measurement of uncertainties allows for a deeper insight in corresponding single

process steps and for a discovery of previously unidentified dependencies. In this case study, for

example, a ’training-dependency’ of the relative standard deviation on the adsorbent plaque volume

was observed in adsorbent plaque production (cmp. table 3). This ’training-dependency’ is signifi-

cant and can be explained by the handling of the device, which bears some difficulties especially in

the tight assembly of component parts and when the plaques have to be outdone from the device

into the 96 well plate. However, the values assigned to be the deviations in adsorbent plaque volume

by a ’trained experimenter are close to the deviations published by[19]. This result and the results

from Monte Carlo sampling on the effect of deviation on adsorbent plaque volume (cmp. figures 10

and 11), confirm quantitatively the assumption from [19], that the quality of the results in binding

studies on robotic platforms is mainly dependent from the quality of the adsorbent plaques. The

quality of the adsorbent plaques is also responsible for the increase of uncertainty in direction of

the saturation part of the isotherm (cmp. again figure 5), as irregularities in the adsorbent plaque

volume have here a direct effect on the equilibrium. In the first part of the isotherm, when all

protein is adsorbed in the plaque, the protein concentrations in the supernatant are close to zero;

therefore, irregularities in adsorbent plaque volume are of negligible consequence in this part of the

isotherm.

Compared to these findings, the deviation in manual pipetting of storage buffer was very small

(cmp. table 4) and appeared to have the least influence on the overall results. The identification

of neglegible deviations of process steps is very important, because it allows for simplification in

further studies. On the contrary, the dependence of the uncertainty on the results of the binding

study from deviations in stock solution concentration (cmp. table 5) was not neglegible (see again

figures 10 and 11) and could be quantified in the case scenarios. For the standard deviation of stock
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solution concentration a dependency from the weighed in protein mass could be derived. It is due

to a decrease in weighing accuracy for smaller masses of protein, as small masses of lysozyme can

easily attach to the spoon or the outer part of the vial by adhesive or electrostatic forces. This

dependency was included into the simulation algorithm by a power function (cmp. figure 7).

The influence of deviation in pipetting with the robotic LiHA (cmp. tables 6 and 7) could also

be described by a functional relationship between the relative pipetting deviation and the pipetted

volume (cmp. figure 8) and applied in the simulation algorithm based on a power function. This re-

lationship is dependent from the used Liquid Class on the robotic system, but a general dependency

of pipetted volume to standard deviations on the pipetting could be observed for many examined

Liquid Classes and pipetting methods (data not shown). Pipetting smaller volumes is generally

more deviation-prone, as drops can stick to the pipetting tip or adhesive forces hinder pouring out

the complete volume in the tip. The power functions, which were applied for the determination of

deviation relationships in the case study suggest uncertainty propagation underlying the examined

steps. These dependencies could have been disassembled further, but this was not necessary for the

simulation. This example shows the importance of a reasonable segmentation of the whole process

of interest in ’single process steps’.

With the case scenario simulating different levels of uncertainty for LiHA pipetting, the influences

of higher pipetting uncertainties on the total uncertainty of the binding study were demonstrated

and quantified (cmp. figures 12 and 13). This study is for example relevant with respect to wear

effects in the examined system. A complete process of wearout of instruments could in this way be

simulated.

6. Conclusion & Outlook

In general, it could be demonstrated on a simple example, that a simulation algorithm in com-

bination with Monte Carlo sampling is applicable for uncertainty propagation calculation in a

high-throughput process as long as the main uncertainty sources can be identified and the dis-

tribution and deviations be observed and quantified. Functional relationships between scheduled

volumes and concentrations and their relative standard deviation have been successfully integrated

into the simulation algorithm. Based on the findings of the case scenarios, the process can now be

improved, especially the production of adsorbent plaques should be substituted by a more defined

and standardized method, that is less user-dependent. In addition, the pipetting uncertainty of

the LiHA should be regularly controlled. Of general interest would be also an assessment of the

influence of uncertainties in process steps on the estimation of (Langmuir) parameters based on the

process results.

The simulation algorithm can now be expanded to more complicated processes on robotic systems,

for example experiments with miniaturized chromatography columns or aqueous two phase systems.
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The identification and quantification of analytic weaknesses influencing overall results will lead to the

improvement of existing processes and the development of more suitable high-throughput analytics

and robust processes. Thus, based on this simple example, a general strategy for uncertainty analysis

in more complex high-throughput experimentation and screening protocolls should be developed and

be applied as a standard, including deviations and error distributions from relevant process steps

as well as qualified decisions on suitable mechanistic equations modeling the process.
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Abstract

The application of mechanistic modeling for the optimization of chromatographic steps increased
recently due to time efficiency of algorithms and rising calculation power. In the modeling of ion
exchange chromatography steps, the sorption processes occuring on adsorbent particle surfaces can
be simulated with the steric mass action (SMA) model introduced by (C. Brooks and S. Cramer,
1992). In this paper, two approaches for the determination of SMA parameters will be carried out
and discussed concerning their specific experimental effort, quality of results, method differences,
reasons for uncertainties and consequences for SMA parameter determination:
Approach I: estimation of SMA parameters based on gradient and frontal experiments according
to instructions in (C. Brooks and S. Cramer, 1992) and (A. Shukla, S. Bae and J. Moore, 1998)
Approach II: application of an inverse method for parameter estimation, resulting in SMA para-
meters that induce a best fit of chromatographic data to a mechanistic model for column chromatog-
raphy.
These approaches for SMA parameter determination were carried out for three proteins (ribonucle-
ase A, cytochrome c and lysozyme) at pH 5 and pH 7. The results were comparable and the order of
parameter values and their relations to the chromatographic data similar. Nevertheless, differences
in the complexity and effort of methods as well as the parameter values themselves were observed.
The comparison of methods demonstrated that discrepancies depend mainly on model sensitivities
and additional parameters influencing the calculations. However, the discrepancies do not affect
predictivity; predictivity is high in both approaches. The approach based on an inverse method and
the mechanistic model has the advantage that not only retention times but complete elution profiles
can be predicted. Thus, the inverse method based on a mechanistic model for column chromatogra-
phy is the most comfortable way to establish highly predictive SMA parameters lending themselves
for the optimization of chromatography steps and process control.

Keywords: steric mass action, inverse method, lumped rate model, parameter estimation, chro-
matography modeling
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1. Introduction

Ion Exchange Chromatography (IEC) is one of the key procedures in bioseparation processes. As

chromatography steps cover up to 70% of the overall financial effort in biopharmaceutical produc-

tion, the development of optimal and efficient chromatography processes is a central issue. This

issue is even more urgent with respect to the concept of Quality by Design, launched by the US

Food and Drug Administration, which requires additional attention to process robustness and re-

producibility matters [1]. The search for a favorable and robust operating point of a separation

process represents a complex multi-factor optimization problem. One way to tackle this problem is

given by screenings for optimal factors in the design space based on design of experiments (DoE).

This procedure is often complemented by empiric response surface modeling (RSM). The DoE-

RSM-approach is quite established for chromatography optimization; a review on this approach is,

for example, given in [2].

However, the application of mechanistic modeling for the optimization of chromatographic steps

is on the rise due to increased time efficiency of algorithms and progresses in calculation power (cf.

argumentation lines in [3], [4] and [5]). Based on mechanistic modeling, highly precise predictions of

chromatograms can be achieved, as was demonstrated in [6] for step gradients, for linear gradients

in [7] and for displacement systems in [8]. In addition, mechanistic modeling lends itself for efficient

robustness and sensitivity analyses, which was demonstrated in [9] and [10]. Thus, a simulation of

chromatographic processes based on mechanistic modeling can, similar to the DoE-RSM approach,

support and cheapen the search for optimal conditions and provides additionally troubleshooting

and error diagnostic tools for process development.

Despite of some obvious advantages of mechanistic modeling, a main drawback, particularly

in comparison with the DoE-RSM-approach, is given by the high effort for preliminary model

calibration. A calibrated mechanistic model simulates the flow of the mobile phase through the

column and imitates interactions between the mobile phase and the adsorbent surface; a most

important but hardly monitorable piece of the whole IEC process. These simulations base on

parameters that determine the chromatographic system on column and particle level. Numerous

publications with proposals for most effective model calibration have been released, like for example

[11], discussing mainly the determination of parameters characterizing the packed bed, [12], dealing

with parameters of mass transfer kinetics and [13], where a specific set of experiments is proposed

for the determination of all model parameters. These publications reveal that system parameters

(dead volume, etc.) and bed characterizing parameters (axial dispersion, porosities, etc.) can

be determined with a few basic pulse experiments. However, the determination of parameters

for the steric mass action (SMA) model that describes the interaction between the proteins and

the adsorbent surface in IEC [14] is based on time-comsuming isocratic or gradiental experiments

and material-consuming frontal experiments (cf. for example the instructions for SMA parameter
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determination in [14], [15], [16] and [17]). In this context, approaches for the determination of

SMA parameters based on batch experiments, like in [18] and [19] are interesting but not yet fully

established and validated.

A quite established alternative to the experimental determination of SMA parameters is given

by model-based inverse methods. In these methods the parameters are calculated by the best fit

between data and chromatography model response. Recently, this method was applied more often

for sorption parameter determination, for example in [20], [21] and [4], but so far no direct compar-

ison between the results of the suggested methods in [14], [15], [16] and the results of approaches

based on an inverse method has been given. It is expected that within the context of high through-

put process development which has had an immense impact in the last couple of years within the

field of industrial process development, new methods which might be less precise but quicker and

more intuitive in their realization will pave the way of model based process development. Inverse

modeling might for example be performed with historic data, data already existing from process

development, process data etc. Thus it offers a by far more potent application tool than the other

approaches. However, a precise determination of sorption parameters allowing a high predictivity

is essential for model based process development, as ad- and desorption and adsorbent capacities

remarkably decide on retention time and separation quality. Thus, only a direct comparison be-

tween different approaches can act as a background for discussion on the optimal determination

of modeling parameters and influence of noise in chromatographic data on parameter estimation.

Such a comparison should on the one hand discuss experimental effort and parameter qualities, on

the other hand it should pay attention to prediction performance, chances, advantages and disad-

vantages of both approaches. It would thus be of interest, how both approaches differ and what

consequences this has for the determination of sorption parameters and which approach is to be

favored in future SMA parameter determinations. The latter might lead to a clear distiction if one

is interested in the physical meaning of the underlying isothermal concept or simply aims towards

a tool for modern process development schemes.

In this paper two approaches in SMA parameter determination will be experimentally executed

and discussed concerning specific experimental effort, quality of results, method differences, reasons

for uncertainties and consequences for the determination of sorption parameters:

Approach I: estimation of SMA parameters based on gradient and frontal experiments according

to instructions in [14] and [16]

Approach II: application of an inverse method for parameter estimation resulting in SMA pa-

rameters that induce a best fit of chromatographic data to a mechanistic model for column chro-

matography

Although the considered methods can as well be applied to protein mixtures with industrial im-

portance, the determination of SMA parameters will be performed based on a case study for three
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proteins (lysozyme, ribonuclease A and cytochrome c) at pH 5 and pH 7 on a prepacked 1 mL

column with the strong cation exchange adsorbent SP Sepharose FF. This case study guarantees

a complete comparability of datasets and a comparison of methods based on a well known system

of proteins, that highlights advantages and disadvantages of the methods. The discussion will be

supported by a comparative literature review and a Monte-Carlo study on the influence of noise in

data on the quality of the determined SMA parameters.

2. Theory

2.1. SMA model for sorption processes in IEC. For IEC processes, a highly regarded char-

acterization of sorption is given by the steric mass action (SMA) model introduced by Brooks and

Cramer [14], which accounts for the influence of charged modifiers and their rivalry with proteins

for binding sites on the absorber surface. In the understanding of [14], in the SMA model every

component interacting with the particle surface owns four characterizing parameters (three in case

of a rapid equilibrium assumption):

• ν (characteristic charge): average number of binding sites of the component (under the

assumption of a single charged counterion)

• σ (steric factor): average number of shielded/covered binding sites on adsorbent surface due

to the 3D-structure of the protein components

• kads and kdes (ad- and desorption coefficient): the ratio of the ad- and desorption coefficients

is lumped to a single parameter keq when a rapid equilibrium is assumed (compare with the

following equations).

Based on these initial considerations, the time dependent change of the concentration of compo-

nent i on the adsorbent surface (∂qi

∂t
) in the SMA model is given by:

∂qi

∂t
= kads,iciq̄1

νi − kdes,ic
νi
1 qi i > 1 (1)

Λ = q1 +
n∑

i=2

νiqi (2)

q̄1 = q1 −
n∑

i=2

σiqi (3)

with respect to n components (n = 1[salt] + number of protein components). Λ, the parameter

describing the ionic capacity of the adsorbent, limits the available binding places and displays the

rivalry between salt ion concentration q1 and the other bound components qi with their characteristic

charges νi (cf. equation (2)). q̄i, the concentration of bound salt ions available for exchange with

the protein, is given by the total salt ion concentration q1 less the shielded ions determined by the
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protein specific steric factors (σi) in equation (3). If the assumption of a rapid equilibrium is valid

(∂qi

∂t
= 0), the equation for the SMA-isotherm can be derived from the above equations to be:

ki,eq =

(
qi

ci

)(
c1

Λ −∑n
i=2 (νi + σi)qi

)νi

i > 1 (4)

The results of SMA parameter determination following instructions in [14] and [16] (approach I)

will be compared to the estimation of SMA parameters by fitting a mechanistic model for IEC chro-

matography processes to the monitored and time resoluted concentrations of a protein component

at column outlet.

2.2. Approach I: Determination of parameters for the SMA model according to instruc-

tions in [14] and [16]. The determination of the parameters ν and keq for the SMA model based

on gradiental chromatographic experiments was performed based on an equation of Parente and

Wetlaufer [22] modified by [16]:

VR =

((
cν+1
a,s +

VdkeqεcΛ
ν(ν + 1)(ce,s − ca,s)

VG

) 1
ν+1

− ca,s

)
VG

ce,s − ca,s

(5)

The determination of the parameter σ based on the previously determined parameters ν and keq

and additional frontal chromatographic experiments was carried out based on equation (6) given

by [14]:

σ =
β

cprotϑ

(
Λ − csalt

(
ϑ

βkeq

) 1
ν

)
− ν (6)

with

ϑ =

(
VB

V0

− 1

)

Equation (5) provides a correlation between gradient volume and elution volume, where ν and

keq appear implicitly. Equation (6), derived based on [14], poses an explicit expression for the

steric factor σ based on the previously estimated parameters ν and keq. β describes the column

phase ratio 1−εt

εt
. The necessary information for the solution of these equations can be divided in

’experiment-enclosed information’ - information from the gradient and breakthrough experiments -

and supplementary parameters from other sources -’external information’:

experiment-enclosed information

• VR, VG - retention time VR with respect to a specific elution gradient volume VG
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• ca,s, ce,s - salt concentration at gradient begin, respectively end

• cprot - protein concentration in the stock solution (breakthrough)

• csalt - salt concentration in the buffer (breakthrough)

• VB - breakthrough volume at 10% of the complete breakthrough

external information

• Λ - ionic capacity of the adsorbent

• Vd - column dead volume

• εc - column porosity

• εt - total porosity

• V0 - breakthrough volume at 10% of a nonretarded tracer

2.3. Approach II: Determination of parameters for the SMA model by an inverse

method.

2.3.1. Introduction to the employed mechanistic model for chromatography. A mechanistic model for

chromatography consists of equations describing convective and dispersive transport, mass transfer

resistances and equations describing sorption kinetics, for example the SMA model in IEC. Here,

a short overview with respect to the employed model equations, a transport-dispersive model, is

given, details on the equations and the implementation of their solution can for example be found

in [23], [24] and [5].

On column level, the time- and position-dependent change of concentration for the i-th compo-

nent, ∂ci/∂t, is described by:

∂ci

∂t
= − uint

∂ci

∂x
+ Dax

∂2ci

∂x2
− 1 − εc

εc

· 3

rp

keff ,i
[ci − cp,i] (7)

where the first term on the right hand side describes the convective transport through the column,

the second term the dispersive transport and the third term the mass transfer to the particle surface,

keff ,i
representing the lumped film diffusion coefficient and rp the particle radius. uint denotes the

interstitial velocity, εc the column porosity, Dax displays the axial dispersion, more precisely, a

combined effect of dispersion and diffusive processes, dispersion being eddies and all effects implied

by three dimensionality.

Analogously, the time-dependent change of concentration on particle level for the i-th component,

∂cp,i/∂t, is described by:

∂cp,i

∂t
=

3

εprp

keff ,i
[ci − cp,i] −

1 − εp

εp

∂qi

∂t
(8)

with qi denoting the concentration of particle-bound component i and εp the particle porosity.

The second term of equation (8) describes ad- and desorption processes on particle level, i.e. the
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interaction between mobile and bound phase. Thus, the expression ∂qi/∂t is defined in equation (1)

respectively, when a rapid equilibrium is assumed, in equation (4).

For the solution of the whole differential-algebraic equation system, Danckwert’s boundary con-

ditions were employed [25]. This model was solved in MatLab on a Dual Core Processor with

2.81 GHz in approximately 10 seconds with a density of 200 knots over the whole column length.

That is a reasonable time span since the model has to be solved hundreds of times for the inverse

method (approach II).

2.3.2. A model-based inverse method for the determination of SMA parameters. Let c(tj) be the

chromatogram monitored at column outlet at the points in time j = t0 · · · tend, preprocessed to a

concentration time series. Let ĉ(tj) be the solution of a mechanistic model for chromatography at

the same location and points in time; ĉ(tj) can then be compared to the chromatograms. Let now

θfix be the set of all model input parameters that are fixed on a constant value and θest the set of

model input parameters that can be manipulated by the algorithm solving the inverse problem (for

estimating the SMA parameters θest = {ν, keq, σ}). Then the inverse problem can be stated as an

minimization of a least squares residual given by:

res(θest) =

tend∑

t=t0

(ĉ(tj, θfix; θest) − c(tj))
2 (9)

The minimization of equation (9) was in all cases performed with the Matlab procedure lsqnonlin.

Analogously to the determination of SMA parameters described in section 2.2, the solution of

the inverse method demands for ’experiment-enclosed information’ provided by column chromato-

graphic data and ’external information’ - additional parameters from other sources:

experiment-enclosed information

• the chromatogram

• ca,s, ce,s - salt concentration at gradient begin, respectively end

• cprot - protein concentration in the stock solution (breakthrough)

• csalt - salt concentration in the buffer (breakthrough)

external information

• information characterizing the packed bed

– Λ - ionic capacity of the adsorbent

– Dax - axial dispersion

– uint - interstitial velocity

– εc - column porosity

– εp - particle porosity

– εt - total porosity
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– keff - lumped film diffusion coefficient

• parameters characterizing column geometry

– LC - column length

– rp - particle radius

The determination of external information as refered to here and at the end of section 2.2, will

be briefly described in the next section. Detailed instructions can be found for example in [11].

3. Materials and methods

3.1. Materials. Blue dextran 2,000,000, cytochrome c (horse heart), lysozyme (chicken egg white)

and ribonuclease A (bovine pancreas) were purchased from Sigma (St. Louis, MO, USA). The

buffer substances, acetic acid, sodium monobasic phosphate, sodium dibasic phosphate and sodium

hydroxide as well as phenolphthalein for titration were purchased from Merck KGaA (Darmstadt,

Germany). Acetone and ethanol (99.8 %) were purchased from Carl Roth GmbH + Co.KG (Karls-

ruhe, Germany) and sodium chloride from AppliChem (Darmstadt, Germany).

3.2. Apparatus & Software. Prepacked HiTrap SP Sepharose FF 1 mL columns [0.025 m length,

0.7E-2 m ID] from GE Healthcare (Buckinghamshire, United Kingdom) were applied for all column

experiments. The experiments were performed on an Ettan LC system from GE Healthcare with

a system flow rate of 2.17 · 10−4 m/s [0.5 mL/min]. Tubing connections and all other LC system

parameters were standardized and kept constant. The absorption at 280 nm and 528 nm was

measured online in all experiments. Primary analyses and documentation of the chromatograms

were performed with the control software Unicorn. All further data analysis as well as the solution

of model equations and all applications connected to the model was performed with MatLab (The

Mathworks, Natick, ME, USA).

3.3. Gradient elution experiments. The running buffer for all experiments at pH 5 was a 0.02 M

acetate buffer. The running buffer for all experiments at pH 7 was a 0.02 M sodium phosphate

buffer; the same buffers with additional 0.5 M NaCl served for elution purposes. The proteins were

each dissolved in the running buffer to a concentration of 0.2 mM. All gradient elution experiments

were performed similar to the instructions in [16]. At first the column was equilibrated with the

running buffer for four column volumes (cv), then 20 µl of the protein solution were injected. This

step was followed by another wash step with four cv running buffer. Afterwards, a linear gradient

from 0% to 100% high salt buffer was set to elute the protein. This experimental setup was executed

for five different gradient lengths: 5 cv, 10 cv, 30 cv, 60 cv and 120 cv.

3.4. Breakthrough experiments. Breakthrough experiments are necessary for the determination

of the protein-specific steric factor σi (compare equation (6)). Thus, breakthrough experiments for

ribonuclease A, cytochrome c and lysozyme at pH 5 and pH 7 were performed with the respective
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running buffers and stock solutions. After equilibrating the column for 10 cv with running buffer,

it was isocraticly loaded with a system flow rate of 2.17 · 10−4 m/s until the breakthrough was

complete.

3.5. Determination of parameters for ’external information’. For the determination of ex-

ternal information in approach I and approach II (εc, εp, εt,the column, particle and total porosity,

Λ, the ionic capacity of the column, Dax, the axial dispersion coefficient and V0, the breakthrough

volume of a non-retarded species), pulse and displacement experiments were performed according

to instructions in [11] and [26]. All experiments were at least three times repeated for a check

of reproducibility and variances. The lumped film diffusion coefficient keff was estimated to be

1.5 · 10−6 m/s by the inverse fit of the mechanistic model to the tracer peaks from the pulse exper-

iments described in the next section.

3.5.1. Pulse experiments. Dextran blue was provided as nonbinding and nonpenetrating tracer;

acetone (1% in deionized water) was used as nonbinding but penetrating tracer. The absorption

at 280 nm was measured online and retention times were corrected with respect to system dead

volume. Porosities were calculated with the method of central moments based on several repetitions

for all employed columns. Based on the total column volume of 0.96 · 10−6m3, the total porosity εc

was calculated to be 0.92 ± 0.025 , the column porosity to be 0.36 ± 0.0009 and the particle porosity

εp to be 0.85 ± 0.038. The axial dispersion coefficient was calculated according to equation (10):

Dax =
σ2

mom

µ2
mom

LCuint

2
(10)

with uint being the interstitial velocity, LC the column length and µmom and σmom the first

respectively second central moment of the nonbinding and nonpenetrating tracer peaks. The result

for axial dispersion was 1.574 · 10−10 m2s-1 with a relative standard deviation of about 1.75 %.

3.5.2. Displacement experiments. The determination of total ionic capacity Λ was performed ac-

cording to instructions in [26]. The packed column was equilibrated with deionized water and then

isocraticly loaded with acetic acid. The system was washed for another ten column volumes with

deionized water and then the acetic acid was eluted with 1 M KNO3-solution. 10 µL of phenolph-

thalein solution (10 mg/mL in ethanole) were added to the eluate and the mixture was titrated

with 0.01 M NaOH. The ionic capacity of the column was calculated by

Λ =
cNaOHVNaOH

VC(1 − εt)
(11)
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with the column volume VC and the concentration and volume of NaOH used for titration (cNaOH ,

VNaOH). Three determinations of the ionic capacity of the column were averaged resulting in

Λ = 800 mM with a relative standard deviation of about 5 %.

3.6. Monte-Carlo method for the noise sensitivity of model-based SMA parameter de-

termination. The inverse method described in section 2.3 can as well be employed for sensitivity

analyses of parameter determination. By Monte-Carlo simulations it is possible to quantify the ef-

fect of noise in chromatograms or of retention time shifts on the parameter estimation (more details

on this method can be found in [27] and [28]). In short, 10000 chromatograms were simulated based

on the model equations given in section 2.3.1 and then certain effects were attached to every single

chromatogram, here, a normally distributed absolute noise or a normally distributed shift in time:

The influence of noise on chromatographic data was applicated with an absolute standard devi-

ation on the data [in mM] in seven levels [a = 0, 2, 4, 8, 16, 32, 50] using the following equation:

data = data + a · 10−7 · randn (12)

with randn a Matlab function providing normally distributed numbers with mean 0 and standard

deviation 1. The influence of shift-noise in time was applicated as a normally distributed time-shift

in the simulation in seven levels [ b = 0, 2, 4, 8, 16, 32, 50, standard deviation of time shift in

seconds] using the following equation:

time = time + b · randn (13)

Both noise applications were performed for three gradient lengths; 5 cv, 20 cv and 60 cv. Then,

SMA parameters were re-estimated based on the deviation-afflicted chromatograms and the vari-

ances, correlations and distribution of the 10000 estimation results analyzed.

4. Results

4.1. Gradient elution and breakthrough experiments. In both approaches for SMA param-

eter determination, chromatograms from gradient elution experiments and breakthrough data are

the main source of information (cf. sections 3.3 and 3.4). These experiments were performed for the

proteins ribonuclease A, cytochrome c and lysozyme at pH 5 and pH 7. Example results for gradient

elutions with five gradient lengths (5 cv, 10 cv, 30 cv, 60 cv and 120 cv) and breakthrough data at

pH 7 are given in figure 1; for better comparability, the experimental results from the single com-

ponent experiments are superimposed. The first eluting component is ribonuclease A (light grey),

followed by cytochrome c (dark grey) and lysozyme (black). The elution peaks of cytochrome c

and lysozyme overlap. Obviously, an increase in elution gradient length increases the gap between
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Figure 1. Superimposed results of single gradient and frontal experiments at pH 7
(SP Sepharose FF, flow rate: 2.17 · 10−4 m/s, elution volumes: 5 cv, 10 cv, 30 cv,
60 cv and 120 cv). The gradient elution experiments are displayed with normalized
concentration for better comparability [light grey continuous line: ribonuclease A,
dark grey: cytochrome c, black: lysozyme].

the retention time of ribonuclease A and the other components. The frontal experiments show that

the capacity of SP Sepharose FF for ribonuclease A is lower than for cytochrome c and lysozyme

(highest capacity). Repetitions of gradient and frontal experiments showed a high reproducibility;

absolute deviances in retention times determined by gradient experiments were always smaller than

57.725 s (0.5 mL), respectively smaller than 115.45 s (1 mL) for breakthrough volumes.

4.2. Determination of SMA parameters according to approach I. In figure 2 the correlation

between retention time and gradient volume, given by equation (5), is exemplarily illustrated for

cytochrome c. The measurement points for cytochrome c at pH 5 are displayed by ∇-symbols, for

pH 7 by ∆-symbols. The least squares fit of equation (5) to the data is displayed by the dotted line

(pH 5), respectively the continuous line (pH 7), each fit having a coefficient of determination R2 of

0.99. The correlation is positive proportional and slightly convex for both pH conditions. Retention

times at pH 5 are generally larger and this effect even increases with increasing elution volume.

Based on equation (5) and equation (6), on the five chromatograms at 5 cv, 10 cv, 30 cv, 60 cv and

120 cv and the breakthrough curve for every single protein, SMA parameters were determined for

pH 5 and pH 7. The results for SMA parameters for ribonuclease A, cytochrome c and lysozyme
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Figure 2. The correlation between elution gradient volume VG and retention time
VR of a protein is described by equation (5). This figure illustrates the correlation
for cytochrome c at pH 5 (∇ - measurement points, dotted line - fit) and pH 7 (∆ -
measurement points, continuous line - fit)

.

parameter ribonuclease A

pH 5 7
ν 5.11 2.39
keq 0.148 0.233
σ 28.88 29.34
parameter cytochrome c

pH 5 7
ν 5.0 3.31
keq 0.307 0.356
σ 28.7 40.8
parameter lysozyme

pH 5 7
ν 4.72 4.07
keq 0.441 0.17
σ 36.8 29.74

Table 1. SMA parameters determined according to instructions in [14] and [16] [approach I].

at pH 5 and pH 7 are given in table 1. The characteristic charges for the proteins at pH 5 are

quite close together in the limits from 4.72 to 5.11. The values are decreasing corresponding to the

elution order of the proteins. For pH 7 the characteristic charges are more distinct (ribonuclease A:

2.39, cytochrome c: 3.31 and lysozyme: 4.07) and they are increasing corresponding to the elution
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Cytochrome C pH 5

Figure 3. Example of inverse method fits based on mechanistic modeling. The
experimental data of cytochrome c at pH 5 is displayed by a continuous line and the
dotted line shows the inverse model-based fit.

order. The equilibrium coefficients are located between 0.148 (ribonuclease A at pH 5) and 0.441

(lysozyme at pH 5). At pH 5 they show an increasing trend corresponding to the elution order

of the proteins. The steric factor of the proteins lies in the ranges between 28.7 (cytochrome c at

pH 5) and 40.8 (cytochrome c at pH 7).

4.3. Determination of SMA parameters according to approach II. Example of simultane-

ous least-squares fits of the mechanistic model to the five chromatograms at 5 cv, 10 cv, 30 cv, 60 cv

and 120 cv (cf. section 2.3.2) for every single protein at pH 5 and pH 7 are shown for cytochrome c

at pH 5 respectively at pH 7 in figures 3 and 4. The continuous line displays the experimental

data, whereas the dotted line shows the model response for simulations with SMA parameter esti-

mations from table 2. The fit of the model response to the gradiental elution data is for most of

the datasets at both pH-conditions highly precise and was not corrupted by noise in the data, for

example the small side-peak in the subfigure for 10 cv elution in figure 3. Only for short gradients

with a length of 5 cv the model response slightly deviates from the data. The SMA parameters that

were estimated by the inverse method are given in table 2. Structured multiple start guesses at the

beginning of the optimization process (cf. equation (9)) provided the deviances in the optimization

results that are given next to the estimated parameters in table 2. These deviances show, that the

estimation deviance is dependent on the considered parameter. Thus, the parameters ν and keq

are more determined, when estimated based on gradient elution data and a breakthrough, than the

steric factor a fact, that was qualitatively shown earlier, for example in [17].
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experimental data

simulated data based
on mechanistic mode-
ling

Cytochrome C pH 7

Figure 4. Example of inverse method fits based on mechanistic modeling. The
experimental data of cytochrome c at pH 7 is displayed by a continuous line and the
dotted line shows the inverse model-based fit.

parameter ribonuclease A

pH 5 7
ν 5.42 ± 0.09 3.25 ± 0.008
keq 0.037 ± 0.004 0.013 ± 0.0002
σ 28.5 ± 2.2 57.6 ± 0.24
Parameter cytochrome c

pH 5 7
ν 5.3 ± 0.03 4.09 ± 0.009
keq 0.094 ± 0.006 0.041 ± 0.0002
σ 29.8 ± 0.15 53.8 ± 0.28
Parameter lysozyme

pH 5 7
ν 5.07 ± 0.004 4.72 ± 0.01
keq 0.118 ± 0.0005 0.0372 ± 0.005
σ 31.2 ± 0.19 38.75 ± 0.74

Table 2. SMA parameters determined based on mechanistic modeling (inverse
method) [approach II]. The specific deviations on the estimations were determined
by multiple start guesses.

The characteristic charges for the proteins at pH 5 are again close together, now in the limits

from 5.07 to 5.42. They are also decreasing corresponding to the elution order of the proteins.

For pH 7 the characteristic charges are again more distinct (ribonuclease A: 3.25, cytochrome c:
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4.09, lysozyme: 4.72) and they are increasing corresponding to the elution order. The equilibrium

coefficients lie between 0.013 (ribonuclease A at pH 7) and 0.118 (lysozyme at pH 5). At pH 5

and pH 7 they show an increasing trend corresponding to the elution order of the proteins. The

steric factor of the proteins lies in the ranges between 28.5 (ribonuclease A at pH 5) and 57.6

(cytochrome c at pH 7). Apart from some outliers, the estimations for the steric factor and for

the equilibrium coefficients show significantly higher mean relative deviations (about 0.5 %) than

the estimations for the characteristic charge (about 0.25 %), but in general, the deviations on the

estimated SMA parameters are very small.

4.4. Predictivity examinations on both approaches. For both approaches, retention times

for gradient lengths of 25, 80 and 106 cv were predicted and the adequate experiments performed

for every protein at pH 5 and pH 7. The predictions for approach I are based on interpolation

[IP], the predictions in approach II are based on the solution of a system of differential equations

[ODE]. No predictions outside the calibration range were examined, as the considered range with

gradient lengths from 5 to 120 cv is very broad. Gradients outside this range might be of little use

in practical applications. In table 3, the predictions and a posteriori experimentally determined

retention volumes [in mL] for these gradient lengths are listed as well as the experimentally deter-

mined retention volumes [E]. The predictions for both approaches are very close to the experimental

results; most of the deviances between prediction and validation are smaller than 1 mL, even for

long elution gradients with 106 cv. Examples for the prediction of chromatograms based on the

SMA parameters estimated by an inverse method are shown in figure 5. For cytochrome c at pH 5

the three subfigures on the top of the figure show predictions for gradiental elutions with gradient

volumes of 25 cv, 80 cv and 106 cv (dotted line) and the experimental validation results (continuous

lines); results for cytochrome c at pH 7 are shown in the three subfigures beneath. Obviously, data

quality decreased slightly with increasing elution volumes, mainly due to baseline drift and peak

broadening. The prediction quality is very high for both, small and large elution volumes, thus,

independent of the noise.

4.5. Sensitivities for SMA parameters in approach I. In approach I the parameters ν and keq

are determined simultaneously based on a correlation equation for gradient and retention volume

(cf. equation (5)). Though the results are unique, the parameters estimation of keq is significantly

influenced, when ν is fixed to a defined value while the change in the coefficient of determination

is neglegible. Figure 6 shows the results for a single determination of parameter keq, when different

values for ν in equation (5) are set to be fixed. All remaining parameters in equation (5) were valid

for lysozyme at pH 7. The coefficient of determination R2 was close to 0.99 in every estimation and

the residual in every estimation comparably small with differences in the third decimal place. A

negative correlation between the parameter estimations could be observed. Small positive changes
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ribonuclease A

pH 5 7
IP ODE E IP ODE E

25 cv 16.55 16.59 16.45 7.68 8.27 7.32
80 cv 43.23 44.31 43.05 16.52 18.65 16.03
106 cv 54.51 55.22 55.45 19.8 22.18 19.27

cytochrome c

pH 5 7
IP ODE E IP ODE E

25 cv 18.47 18.41 19 12.95 12.90 12.34
80 cv 48.12 50.83 50.23 31.32 32.73 30.15
106 cv 60.65 63.44 64 38.74 40.06 37.87

lysozyme

pH 5 7
IP ODE E IP ODE E

25 cv 18.85 18.64 18.75 13.75 13.87 14
80 cv 48.63 50.25 49.32 34.33 35.39 34.8
106 cv 61.14 62.6 62.7 42.8 42.94 43.41

Table 3. Predictions and validation results of retention volumes [ml] for salt elution
gradients with the lengths of 25 cv, 80 cv and 106 cv. The predictions entitled
with [IP] are based on the correlation given by equation (5). Predictions from the
mechanistic model are entitled with [ODE] and results from experimental validation
with [E].

in the value of the characteristic charge ν induce significant negative changes in the estimation value

of the equlibrium coefficient keq. For example, the characteristic charge determined by approach I

(4.07) implies an equlibrium coefficient of 0.17 whereas a characteristic charge of 4.72, like it was

determined by approach II, would result in an equilibrium coefficient estimation of about 0.06

(compare with the dotted lines in figure 6).

4.6. Sensitivities of SMA parameter estimation with respect to noisy data (approach

II). The sensitivities fof SMA parameter determination due to absolute noise on chromatograms,

respectively, noise shifts in time, were examined by Monte-Carlo simulations. In figure 7 different

levels of absolute noise on chromatogram concentration data are correlated with the relative devi-

ation in the estimation of the steric parameter ν. The correlation is linear. It could be shown that

even a strong absolute noise on chromatograms (± 0.05 M, original initial concentration: 0.0002 M)

leads only to deviances in the second position after decimal point in the estimation of the char-

acteristic charge ν. Similar correlations were observed for all of the SMA parameters. Thus, the

application of absolute noise to the chromatograms had nearly no influence on the SMA parameter
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Figure 5. Prediction and experimental results of gradient elution data. The model-
based prediction for the elution of cytochrome c at pH 5 is shown in the three sub-
figures on the top (dotted line) and the experimental results superimposed the pre-
dictions with a continuous line. Results for cytochrome c at pH 7 are shown in the
subfigures at the bottom.

estimations by the inverse method. System-dependent noise (for example changes in tubing con-

figurations) that leads to shifts in the retention time is more influential on the estimation of SMA

parameters. The effects of this kind of noise on the estimation of SMA parameters ν, σ and keq are

illustrated in figure 8. It becomes obvious that all SMA parameters are significantly more sensitive

on retention time noise than on absolute noise on data measurements. ν (rel. std. deviation of

0.075 for peak shifts of about 50 s (0.43 mL)) is the least sensitive parameter to time-dependent

shifts and σ (rel. std. deviation of almost 1.5 for peak shifts of about 50 s (0.43 mL)) the most

sensitive parameter. These obervations were valid for all three examined elution gradient lengths

of 5 cv, 20 cv and 60 cv.
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Figure 6. Results for the determination of SMA parameter keq in equation (5) in
case of a fixed SMA parameter ν (based on data for lysozyme pH 7). The correlation
curve shows the high sensitivity of equation (5) towards changes in ν.
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Figure 7. Illustration of the effects of absolute noise on concentration mea-
surement in chromatographic data on the estimation of the SMA parameter of
characteristic charge. This effect was determined for various noise levels (x-axis)
by Monte-Carlo simulations.

4.7. Literature review. This literature review is based on [17], [29], [30], [31], [32] and other

publications cited in this paper. Table 4 shows specific publications including SMA parameters for

the proteins ribonuclease A, cytochrome c and lysozyme.

The literature review on the determination of SMA parameters shows that absolute values for

SMA parameters are not only dependent on the examined protein and the pH value, but in the same

way on the adsorbent and column properties like bed geometry or porosity. This is also obvious
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Figure 8. Illustration of the effects of absolute shift noise on retention time in
chromatograms on the estimation of SMA parameters. This effect was determined for
various noise levels (x-axis) for the three SMA parameters ν, σ and keq by Monte-Carlo
simulations.

regarding the ’external information’ that is necessary for all approaches of determination and can

nicely be demonstrated by a comparison of two SMA parameter sets for α-chymotrypsinogen A, both

determined at pH 6 on 40-µm-Waters adsorbent (published by [33] [ν = 5.20±0.07, keq = 0.003 and

σ = 45± 3] and [32] [ν = 4.8± 0.17, keq = 0.0066 and σ = 52]). These sets, although determined at

the same pH-condition and the same adsorbent, deviate from each other for about 4 % (values for ν)

up to about 14 % (values for σ). SMA parameters determined by different experimental approaches,

deviate even more: For example in [7] and [16] the characteristic charges ν for lysozyme at pH 6 are

5.95 [isocratic elution experiments] respectively 4.97 ± 0.37 [gradiental elution experiments] and

the values for keq 0.124 respectively 0.91 ± 0.16.

This shows that even though in [14] the meaning of the SMA parameters is described with

respect to protein characteristics like binding sites and shielding. their real virtue comes forth in

comparative analysis, what has been indirectly shown before by affinity rankings in [34]. These

rankings illustrate a method for the prediction of elution order based on the comparison of SMA

parameter relations that seem to be valid for specific pH and similar adsorbent-systems. The intern

order in SMA-values of proteins, for example νcytc > νribA > ναchyA at pH 6, coincided in almost

every publication given in table 4 and the published SMA parameters for lysozyme, cytochrome c

and ribonuclease A on cation exchange adsorbents, show mostly the same order relations to the

parameters determined in this paper.

5. Discussion

The intention behind the work presented in this study was to simply apply the SMA isotherm

relationship as an equation describing ad- and desorption within a mechanistic chromatographic

model; the latter finding its way into current high throughput process development strategies. Thus

the paper does not aim to mechanistically explain ad- and desorption processes, but to develop a

strategy for calibration of a mechanistic model for model based process development in the light of
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publication pH column proteins

Gadam, S. et al. (1993).
Characterization of non-linear
adsorption properties of
dextran-based polyelectrolyte
displacers in ion-exchange
systems, J.Chrom, (630) 37-52

6

strong cation
exchanger with
sulfopropyl
groups

cytochrome c
ν = 6
keq = 0.0106
σ = 53.6

lysozyme
ν = 5.3
keq = 0.0148
σ = 34

Gallant, S. et al. (1995).
Optimization of step gradient
separations: Consideration of
nonlinear adsorption.
Biotechnology and
bioengineering, 47(3), 355-72

6

strong cation
exchanger with
sulfopropyl
groups

cytochrome c
ν = 6.15
keq = 0.00637
σ = 53.4

lysozyme
ν = 5.95
keq = 0.124
σ = 9.5

Gallant, S. et al (1997).
Productivity and operating
regimes in protein
chromatography using
low-molecular-mass displacers.
J.Chrom. A, 771, 9-22

6 Source 15S

cytochrome c
ν = 6
keq = 0.12
σ = 28

lysozyme
ν = 5.5
keq = 1.1
σ = 14

Ghose, S. et al. (2001).
Characterization and modeling
of monolithic stationary phases:
application to preparative
chromatography. J.Chrom. A,
928(1), 13-23

6
UNO S6, strong
cation exchanger

ribonuclease A
ν = 5.69
keq = 0.00335
σ = 118

cytochrome c
ν = 6.08
keq = 0.01239
σ = 125

Ladiwala, A. et al. (2005).
A priori prediction of adsorption
isotherm parameters and
chromatographic behavior in
ion-exchange systems.
Proceedings of the National
Academy of Sciences of the
United States of America,
102(33)

5 SP Sepharose FF

ribonuclease A
ν = 5.4
keq = 0.0296
σ = 17.2

cytochrome c
ν = 5.9
keq = 0.0295
σ = 15.8

lysozyme
ν = 5.6
keq = 0.0763
σ = 17

Table 4. Literature overview - SMA parameters for the proteins ribonuclease A,
cytochrome c and lysozyme in publications

industrial needs, habits and data available. The first step on this path is of course a comparison of

established and newer methods for parameter estimation.

The gradiental and frontal experiments for ribonuclease A, cytochrome c and lysozyme at pH 5

and pH 7 show the typical behaviour and elution order of these proteins on SP Sepharose FF, already
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examined for example in [35] (cf. figure 1). The experiments are qualified for the determination of

SMA parameters with both approaches. In approach I, the parameters for the SMA-isotherm were

determined along the instructions of [14] and [16]. A significant correlation between elution volume

and retention volume can be observed (R2 = 0.99, cf. figure 2) and the determined parameters

(cf. table 1) have reasonable results compared to literature values published in the papers, listed in

table 4. In approach II, the SMA parameters were determined by a model-based inverse method (cf.

table 2). The fit of the model response to the gradiental and breakthrough data is very precise (cf.

figures 3 and 4). The observed small deviations of the model fit to the data of elution gradients with

5 cv can be attributed to kinetic effects that were neglected in order to empossible the comparison

of both approaches (only isothermal SMA parameters can be determined with approach I). The fit

is significantly improved by fitting the data of gradients shorter than 30 cv to equation (1) (data

not shown).

By the multistart method, deviances in parameter estimations based on the inverse method

could be determined. The comparison of these deviances for different SMA parameters shows that

the information for the estimation of the steric factor is not as precisely given in gradiental and

frontal experiments as for the estimation of the characteristic charge. This observation very likely

explains difficulties to determine the steric factor, respectively higher deviances of this parameter,

for example reported in [17] and [33]. Two datasets (ribonuclease A at pH 5 and lysozyme at

pH 7) show overall larger uncertainties for the parameter estimations. The reason for this are most

probably higher deviances in the retention times in gradiental experiments, caused by time-lags

and lot-changes between the experiments. By Monte-Carlo-based sensitivity analysis it could be

shown that a significant reason for uncertainty in parameter estimations are time-dependent shifts in

chromatograms (cf. figures 7 and 8). These shifts may for example appear, when experimental runs

are performed with interruptions or other irregularities. However, absolute noise in chromatographic

data has only negligible influence on the parameter estimation quality.

The sensitivity analysis and the comparison of SMA parameters from both methods (tables 1 and

2) shows that the influences of external information and the slightly different model structures lead

to different parameter values. While the steric factor σ has very similar values in both approaches,

the characteristic charge ν determined by the inverse method is always higher than the value

determined by approach I. Conversely, the equilibrium coefficients determined by the model-based

inverse method are about ten times smaller than the values based on approach I. These deviations

are plausably explained by the findings in the sensitivity analysis of equation (5), displayed in

figure 6. The high sensitivity of the equilibrium coefficient considering a fixed characteristic charge

is most probably due to the parameter’s position in the exponent. This position of the parameter

might be omitted by using isocratic elutions and a log-log-plot, like it is described in [14]. Still

a transformation of the original equation is necessary and sensitivity seems to be influenced by
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this transformation: [22] describe, that small errors were amplified by the log-log nature of the

ion-exchange isocratic retention model they employed. Thus, a thorough sensitivity assessment for

both approaches would be desirable but was out of the focus of this manuscript, which was laid on

parameter predictivity.

Despite of the differences in parameter values, the order relations between the parameters are

conserved in both approaches, what can be observed by comparison of the results in tables 1 and 2.

These differences can not be algorithm-specific as the same algorithm (lsqnonlin from MatLab) was

used for the solution of implicite equations (equations (5) and (9)). This suggests that parameter

values are dependent on the column characteristics and the employed model-specific equations, but

the order relations of SMA parameters rely significantly on adsorbent type and pH-conditions.

This assumption is confirmed by the literature review. Furthermore, comparing the two approaches,

the quality of fit was very satisfying (cf. figures 2 and 4). Even more important is the fact that

for both approaches it could be demonstrated that they provide parameters of comparable high

predictivity (cf. table 3). The model-based approach has the important advantage of predicting

complete chromatograms (cf. figure 5).

6. Conclusion and Outlook

It could be shown that SMA parameters with comparable internal relations and equal predictiv-

ity could be determined based on both methods, the experimental method according to [16] and

an model-based inverse method. Considering the physical significance of SMA parameters, the in-

tention for SMA parameter determination is the crucial argument. The authors do not deny the

physical significance of the parameters and the good reasoning behind approach I and similar ap-

proaches based on [14]. Still, from the view of high qualitative predictions and model calibrations,

the physical significance slightly shifts into background leaving place to the very important pre-

dictive power of the determined parameters, that was very high for both approaches. In addition,

the inverse method has the obvious advantage of predicting complete chromatograms and best fit

between model response and data. This leads to the possibility of further usage of the mechanistic

model as troubleshooting and error diagnostic tool for the process. Thus, based on the findings in

this paper, the inverse method for SMA parameter determination is recommended for fast process

development. However, a certain amount and quality of data has to be provided for the inverse

method for a precise determination of parameters and reliable predictions. This issue has to be

further examined and the design of experiments optimized. With optimal experimental design and

an a priori analysis of already existent data of the system of interest, it should be possible, to find

an efficient way to estimate SMA parameters of equal predictivity directly from process data with

no or only few additional experiments. Monte-Carlo simulations might support the analyses, as was

shown in this study.
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abstract

The search for a favorable and robust operating point of a separation process represents a complex
multi-factor optimization problem. This problem is typically tackled by design of experiments (DoE)
in the factor space and empiric response surface modeling (RSM); however, separation optimiza-
tions based on mechanistic modeling are on the rise. In this paper, a DoE-RSM-approach and a
mechanistic modeling approach are compared with respect to their performance and predictive power
by means of a case study - the optimization of a multicomponent separation of proteins in an ion ex-
change chromatography step with a nonlinear gradient (ribonuclease A, cytochrome c and lysozyme
on SP Sepharose FF). The results revealed that at least for complex problems with low robustness,
the performance of the DoE-approach is significantly inferior to the performance of the mechanistic
model. While some influential factors of the system could be detected with the DoE-RSM-approach,
predictions concerning the peak resolutions were mostly inaccurate and the optimization failed. The
predictions of the mechanistic model for separation results were very accurate. Influences of the
experimental factors could be quantified and the separation was optimized with respect to several
objectives. However, the discussion of advantages and disadvantages of empiric and mechanistic
modeling generates synergies of both methods and leads to a new optimization concept, which is
promising with respect to an efficient employment of high throughput screening data.

Keywords: ion exchange chromatography, design of experiments, response surface modeling,
mechanistic modeling, steric mass action (SMA), separation optimization

1. Introduction

Ion exchange chromatography (IEC) is a widely used application in biomolecular downstream
processing. In IEC, the main focus is the separation of a target component from a protein mixture -
preferably in a step elution, but complex separation problems may require linear or even nonlinear
gradient elutions. In addition to the shape of the elution gradient, the quality of a separation
depends on several process factors, among others the employed buffers and salts. Furthermore, the
objectives of a separation step are not only defined by high yields and product purity, but also

1
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by additional demands, such as process robustness, financial and ecological constraints. Thus, the
optimization of a separation step is a multiparametric and multiobjective problem.

The approaches to tackle problems of this kind are various and can be roughly divided into
search algorithms and modeling methods. Various successful applications of search algorithms for
separation optimization have been published during the last 30 years. The application of simplex
algorithms, for example, has been proved successful for example in [1], [2] and [3]. Recently, more
robust search algorithms like neural network approaches (see in [4], [5] and [6]), simulated annealing
(for example in [7]) and evolutionary algorithms (see [8] and [9]) have been successfully applied to
optimization in chromatography. While the low mathematical effort of search methods and their
high performance in noisy systems was demonstrated in these research publications, a critical draw-
back of search methods is given by the tremendous experimental effort and the low knowledge gain
about the examined system, particularly about sensitivity and robustness aspects.

However, the importance of process understanding, as well as robustness and sensitivity analyses
was only recently emphasized in guidelines, published by the US Food and Drug Administration
[10]. Consequently, multivariate optimization approaches based on design of experiments (DoE) and
empiric response surface modeling (RSM) are increasingly applied in bioseparation process develop-
ment, because they allow for the characterization of design factor spaces and for the calculation of
optimal system settings and their robustness. Similar to the application of search algorithms, first
publications on the application of DoE-RSM in the field of ion exchange chromatography have been
published in the eighties, for example by [11] who optimized a separation step in reversed-phase
chromatography based on a full-factorial design. DoE-RSM techniques were successfully applied
and further developed in chromatography studies, for example in [12] (full factorial design), [13]
(block design and partial least squares-regression) and [14] (fractional factorial design, application
of modeling software). Reviews on DoE-RSM methods, like in [15], comparison studies of regression
algorithms [16] or the formulation of very specific regression functions like in [17] demonstrate that
DoE-RSM is well established in the optimization of IEC steps.

Alternatively to this empiric modeling approach, the application of mechanistic modeling for the
optimization of IEC steps is on the rise due to time efficiency of algorithms and increased calcula-
tion power (see argumentation lines in [18], [19]). Mechanistic modeling means to employ functional
relationships between physical parameters in chromatography and retention times or even complete
chromatograms. Important reviews on mechanistic modeling are for example [20], [21], [18] or [22].
Successful optimizations based on mechanistic modeling of IEC processes have been demonstrated
for step gradients [23], linear gradients [24] and displacement systems [25]. Additionally, a validated
model proves to be an accurate prediction tool and lends itself to application in process control,
which was demonstrated for example in [26] and [27]. A drawback of separation optimization based
on a mechanistic model seemed to be the very time consuming procedure of repeatedly solving
the underlying partial differential equation system. However, recently a very efficient and time-
optimized solver was introduced by [28] that allows for model-based optimization in a few minutes.

As a result, the optimization based on mechanistic modeling is now competitive to the DoE-RSM
approach with respect to time efficiency. This will be the dooropener concerning research on the
advantages and benefits of mechanistic modeling, especially compared to the established approaches
in chromatography process optimization. As to the authors’ knowledge there are no studies, where
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both approaches are compared based on the same set of data. Too little information is available on
the predictivity quality of mechanistic modeling in comparison to the DoE-RSM approach, inside
and beyond the design space. Furthermore, to the best of the authors’ knowledge, there is only
little research on the performance of DoE in separation problems with low robustness. However, low
robustness is very common in separation problems, as slight changes in the level of salt buffers in
step or gradient elutions have significant influence on retention times and peak shapes. Considering
this, the optimization performance of a model based on mechanistic understanding should exceed
the performance of an empiric model. An important aim of the manuscript is to show, if the
difference in performance is significant.

Another drawback of the previously cited optimization studies is the fact that they have mostly
been limited to a fixed objective for the separation process. However, as shown before, separation is-
sues are normally multiobjective or objectives are changed in the development of a chromatography
process. Thus, approaches for optimization should be flexible with respect to changing objectives
and should not demand for re-calibration.

In this paper, the DoE-RSM approach and the mechanistic modeling approach are compared
with respect to the mentioned issues. After a theoretical comparison of both approaches, they are
applied to a case study - the optimization of a multicomponent-separation in an IEC step. As two
of the proteins have close isoelectric points (cytochrome c: 10.0 - 10.5, lysozyme: 11.35), a bilinear
gradient that is a series of two linear salt elution gradients, was chosen for the separation step in
analogy to Refs. [26] and [8]. Due to the bilinear gradient, this model system is rather complex
and demands for robustness analyses. According to a D-optimal onion design, experimental data
for optimization was planned and the chromatography runs randomly executed. Based on this
randomly derived DoE-planned data, the RSM-approach as well as the approach of mechanistic
modeling in IEC were used for determination of the factor effects on the chromatographic result
and for optimization. Further, the additional effort for separation optimization with respect to
changing objectives was analysed, as well as model predictiveness regarding factor sets beyond the
original design space. The application of both modeling approaches to this case study allowed for
an improved comparison of performance and effort with respect to multivariate separation issues.

2. Theory

2.1. Response surface modeling and Design of Experiments. Response surface modeling
(RSM) is a statistical technique for the a posteriori analysis of experimental data; a regression
function stof whatever nature - the response surface model - is fitted to the experimental results.
Common applied response surface models in IEC have linear or quadratic complexity and are empiric
(not mechanistic). Popular regression models are, for example, multivariate quadratic functions.

Let x1, x2, . . . , xn be the n selected factors for process description and yi the response/objective
value to a specific factor setting x1i, x2i, . . . , xni. The regression fit of an n-variate quadratic function
to the set of m responses y1, . . . , ym, is described by:

yi = a1 + b1x1i + b2x2i + · · · + bnxni

+ c1x
2
1i + c2x

2
2i

+ · · · + cnx2
ni

+ d1,2x1ix2i + d1,3x1ix3i + · · · + dn−1,nxn−1,ixni (1)

3 PUBLICATIONS & MANUSCRIPTS

84



4

for all 1 ≤ i ≤ m. The parameter a1 is a constant added to the function (see intercept terms in
linear regression); furthermore, the values of the parameters bk for 1 ≤ k ≤ n display the magni-
tude of linear influence of the factors xk. The values of the parameters ck with 1 ≤ k ≤ n quantify
quadratic influences of the factors xk and the mixed effects/interaction terms of two-components
are quantified by the parameters d12 to dn−1,n. A higher than quadratic complexity in the examined
system leads to high prediction errors. However, high prediction errors give no hints as to the
reasons in detail and no direction how to correct the model.

RSM is often behold as a DoE-technique, which is not correct. On the contrary, if a quadratic
surface has to be fitted to the results, a well-selected DoE provides an adequate planning of the
experiments. Thus, the idea of ’DoE’ summarizes a diversified collection of statistical approaches
for the maximization of specific information in experimental planning. The advantage of the DoE-
RSM-approach, compared to simple screenings, is the provision of experimental designs with high
information contents, quick information on reasonable factor ranges and first evidence of factor
effects and system robustness.

Common and frequently used experimental plans are full-factorial designs or fractional-factorial
designs. They deliver regular screening patterns over a factor space and provide the information
for multilinear quadratic response models. Other designs meet special experimental constraints
or a-priori-information on the system. For example, space filling designs are best when there is
little or no information about the underlying effects of factors on responses while D-optimal designs
guarantee high information in the single experiment by minimizing the covariance of the parameter
estimates.

2.2. Theory on mechanistic modeling. A mechanistic model imitates the physical processes
that occur in the observed system and describes them based on a set of mathematical equations.
Thus, typical rate models for chromatographic processes contain convective and diffusive flows
through a compressed pile of particles on the column level and the imitation of mass transfer re-
sistances and surface interactions on particle level. In IEC modeling the transition of components
from column to particle level is commonly modeled assuming a film; the sorption of protein on
the particle surface can be imitated by the steric-mass-action-(SMA) model, developed by [29] and
commonly used for the modeling of salt gradient elutions in IEC, for example in [30], [31] and
[32]. For the solution of the whole differential-algebraic equation system, Danckwerts’ boundary
conditions were applied [33]. For more details on rate models see [18].

In this case study, the decision concerning the most reasonable model complexity was taken in
favor of the lumped transport-dispersive approach. This model, including convective, dispersive pro-
cesses, mass transfer resistances and the SMA model for sorption kinetics, was solved in MatLab R⃝

on a Dual Core Processor with 2.81 GHz in approximately 10 seconds with a density of 200 knots
over the whole column length. That is a time span of reasonable brevity, since the model has to be
solved hundreds of times in model-based optimization.

The time- and position-dependent change of concentration on column level for the i-th component,
∂ci/∂t, is described by Eq. (2). The first term on the right hand side of Eq. (2) describes the
convective transport through the column, the second term the dispersive transport and the third
term the transport through a film to the particle surface.
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∂ci

∂t
= − uint

∂ci

∂x
+ Dax

∂2ci

∂x2
− 1 − εc

εc

· 3

rp

keff ,i
[ci − cp,i] (2)

uint denotes the interstitial velocity, εc the column porosity, rp the particle radius and keff ,i

the lumped film diffusion coefficient. Dax displays the axial dispersion, more precisely, a combined
effect of dispersion and diffusive processes, dispersion being eddies and all effects implied by three-
dimensionality.

The time and position-dependent change of concentration on particle level for the i-th component,
∂cp,i/∂t, is analogously described by Eq. (3):

∂cp,i

∂t
=

3

εprp

keff ,i
[ci − cp,i] −

1 − εp

εp

∂qi

∂t
(3)

with qi denoting the concentration of particle-bound component i and εp the particle porosity,
The first term on the right hand side of Eq. (3) displays the mass transfer to particle surface and the
second term describes ad- and desorption processes on particle level, i.e. the interaction between
mobile and bound phase.

For the description of ad- and desorption processes, the SMA approach was embedded into the
mechanistic model. The model equations for n components (n = 1[salt] + number of protein
components) are given by

∂qi

∂t
= kads,iciq̄1

νi − kdes,ic
νi
1 qi i > 1 (4)

Λ = q1 +
n∑

i=2

νiqi (5)

q̄1 = q1 −
n∑

i=2

σiqi (6)

Eq. (4) expresses the time dependent change of the concentration of surface bound component i.
kads,i denotes the adsorption rate and kdes,i the desorption rate. The parameter Λ (ionic capacity of
the adsorbent) limits the available binding places and displays the rivalry between salt concentration
q1 and the other bound components qi, 2 ≤ i ≤ n with their specific characteristic charges νi. q̄1,
the concentration of bound salt ions available for exchange with the protein, is given by the total
salt ion concentration q1 less the shielded ions determined by the protein specific steric factors (σi)
in Eq. (6). If the assumption of rapid equilibrium is valid (∂qi

∂t
= 0), Eqs. (4), (5) and (6) can be

linked to the SMA isotherm:

ci =

(
qi

keq,i

)(
c1

Λ − ∑n
i=2 (νi + σi)qi

)νi

i > 1 (7)

where the parameter keq,i is the ratio of ad- and desorption coefficient.
SMA parameters for the mechanistic model can be determined based on data from gradient and

breakthrough experiments (compare [34]). The inverse method states a second, equally predictive
approach and is directly based on process data and the mechanistic model (see [35]).
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3. Materials and methods

3.1. Apparatus, column and software. The case study aims at an optimal separation of a three
component mixture on the adsorbent SP Sepharose FF by bilinear gradients. The running buffer in
all experiments was 20 mM sodium phosphate buffer at pH 7. The buffer for elution purposes con-
tained additional 0.5 M NaCl. The three component mixture consisted of lysozyme (from chicken
egg white, L651), ribonuclease A (bovine pankreas, R4875) and cytochrome c (equine heart, C2506)
from Sigma (St. Louis, MO, USA) dissolved in the low salt working buffer to a concentration of
0.2 · 10−3 M. Salts and 1 M NaOH for pH adjustment were purchased from Merck (Darmstadt,
Germany). The chromatographic setup consisted of a prepacked HiTrap SP Sepharose FF 1 mL
column and an Ettan LC system, both purchased from GE Healthcare (Buckinghamshire, United
Kingdom). The software MODDE (Umetrics, Ume̊a, Sweden) was used for DoE and RSM han-
dling. The software Matlab (The Mathworks, Natick, ME, USA) was used for the handling of the
mechanistic model.

3.2. Gradient elution experiments. In all experimental setups the column was at first equili-
brated with running buffer for 10 column volumes (cv). This step was followed by an automated
sample load of 20 µL protein mixture. Then the column was washed for another two cv, before a
bilinear elution gradient was initiated. Every elution gradient was applied for exactly 30 cv and quit
with 100 % high salt elution buffer, followed by a 5 cv high salt wash step. Conductivity and UV-
absorbances at 280 nm and 528 nm were measured online at column outlet. Cytochrome c absorbs
not only radiation at 280 nm but additionally at 528 nm; this extra information was taken into
account when calculating the resolutions between the peaks and for the SMA parameter estimation
by the inverse method (see sections 3.3 and 3.4). The flow rate was set constantly to 0.5 mL/min
[ca. 0.22 · 10−3 m/s] in every process step.

The specific shape of a bilinear elution gradient was given by three characteristic factors:

• initial proportion of elution buffer in the running buffer: Start [%]
• proportion increment of elution buffer in the running buffer at the end of the first part of

the bilinear elution gradient: Slope [%])
• length of the first gradient of the bilinear elution gradient: Length [cv]

while the overall gradient length was set constant to 30 cv and the final salt concentration of the
gradient to 0.5 M NaCl. Figure 1 shows how the shape of a bilinear gradient is defined by the
three characteristic factors Start, Length and Slope. A manipulation of these factors influences
the axis intercept, length and slope of the first gradient. For the second part of the gradient these
characteristics are implicit, due to the fixed end point of the bilinear gradient at 30 cv and 100 %
elution buffer (0.5 M NaCl). Figure 2 shows a typical chromatogram resulting from an experiment
with a bilinear gradient. The preset shape of the gradient is depicted in the dotted line. In all
following chromatograms, always the preset gradient shape will be shown and not the measured
conductivity, as these measurements did not go into modeling. However, the comparison of the ac-
tual conductivity to the results from mechanistical modeling showed excellent consistency. The grey
line depicts the absorption signal at 528 nm, which measures the concentration of cytchrome c. The
black line depicts the absorption signal at 280 nm. The first peak corresponds to the concentration
of ribonuclease A and the second peak is the sum signal for the concentrations of cytochrome c and
lysozyme.
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Figure 1. Three characteristic factors define the shape of the first gradient. The
second gradient is determined by the total elution volume (30 cv) and the final salt
concentration of 0.5 M NaCl.

3.3. The response surface modeling approach. The experiments were planned based on two
D-optimal onion designs. Onion designs are space-filling designs recommended for situations where
the factor correlations are not well known. The factor space is devided into layers around a center
point, the number of layers and the layer setup is determined by optimality criteria. Onion designs
provide information for nonlinear RSM and have the additional advantage of not having to perform
experiments at the edges of the factor space (see [36] and [37] for more details). Although a signifi-
cant smaller number of experiments would have been possible for a general DoE-RSM approach, a
design with 32 measurement points was chosen in this case study. This choice was made in order
to prevent a failure of the DoE-RSM-approach due to lack of information. The first design in the
presented case study (onion design 1) proposed 29 factor sets in the ranges given in table 1 and a
threefold repetition of a central point for check of reproducibility. The number and distribution of
experiments in a layer fulfilled the criteria of G-optimality, minimizing the maximum variance of
the predicted values. The distribution of measurements can be seen in figure 3. The ranges for the
second design that was used in the case study are given in table 2. A single factor set, consisting
of three specific values for Start, Length and Slope, described the unique shape of a bilinear
gradient. All experiments, including the three center points, were performed in random order. The
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Figure 2. Typical chromatogram for the separation of ribonuclease A, cytochrome c
and lysozme with a bilinear gradient. The dotted line shows the settings for the elution
gradient. Absorption at 528 nm (cytochrome c, grey) and 280 nm (all three proteins,
black) is measured online and continuously.

factor unit range

Start % 20 - 40
Length cv 10 - 20
Slope % 5 - 55

Table 1. Factor ranges for onion design 1

center point of onion design 1 was placed in a region, where good separation results were predicted
by previous high-throughput screening studies on a robotic platform [8].

The DoE-RSM-approach establishes a functional relationship between the factors Start, Length,
Slope on the one hand and the overall peak resolution on the other hand (see section 2.1). Conse-
quently, the sum of the adjacent peak resolutions was selected to be the objective value that was
to be maximized.
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SLOPE

LENGTH
START

Figure 3. 3 D scatter plot of onion design 1

factor unit range

Start % 5 - 25
Length cv 15 - 30
Slope % 0 - 15

Table 2. Factor ranges for onion design 2
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The resolutions were calculated along Eq. (8) (compare to [38]):

resP1,P2 =
2(µP1 − µP2)

4σP1 − 4σP2

(8)

µP1, µP2 and σP1, σP2 are the characteristic first and second central moments, which describe the
location and width of a peak. The peaks were deconvoluted based on the additional chromatogram
for cytochrome c displaying the absorbance at 528 nm. In Eq. (8) two objectives (small peak width
and large distance of retention times) are connected to an objective function. This is a common
way to handle multi-objective problems: the objectives are combined and weighted in objective
functions that have to be maximized or minimized. Choosing resolution as objective function, both
models will optimize the resolution exclusively. In practice, the decision on the objective function
is crucial and strongly situation-dependent.

Let fRSM be the empiric model function, a multivariate quadratic function/response surface
fitted to the resolution values. All coefficients of fRSM have to be estimated by the inverse method,
detecting estimators that induce the best fit of the response surface function to the resolution data.
Then, the factor values at the maximum of this function are the characterization of a bilinear
gradient that separates the three model proteins best, according to the selected objective, the
maximal sum of resolutions.

3.4. The mechanistic model approach. Similar to the coefficients in RSM, the mechanistic
model has parameters that have to be determined before model employment. The parameters of
mechanistic models for chromatography are characteristic values describing the geometry of the
column, the porosities of the packed bed, etc. (compare to section 2.2). In this study only the
sorption parameters for the binding of protein to the adsorbent surface had to be established; all
other model parameters had been determined beforehand in [35]. The sorption parameters were
determined by the inverse method, shortly explained in the next paragraph.

3.4.1. Determination of SMA parameters. Let c280(tj) be the time series of protein concentrations
monitored by absorption at 280 nm at column outlet at the points in time j = t0 · · · tend. Let
c528(tj) analogously be the concentration of cytochrome c monitored at 528 nm at column outlet.
Let ĉ280(tj, θ) be the solution of the described mechanistic model for chromatography for the sum of
all three components concentrations at the same points in time. This solution is dependent from the
modeling parameters θ. Let furthermore ĉ528(tj, θ) be the solution of the same mechanistic model for
the component representing cytochrome c. Let θfix be the previously determined set of model input
parameters and θest the set of model input parameters that are estimated based on all available
data sets. Here, θest are the SMA parameters that have to be estimated for all three components,
ribonuclease A, cytochrome c and lysozyme, based on 62 chromatograms (two 29 point onion designs
with triple center points) corresponding to the factor settings θgrad,k = {Start, Slope, Length}, 1 ≤
k ≤ 62. Aiming at a best fit between model response and chromatographic data, the problem of
the inverse method can be stated as an optimization of a sum of least squares:

res(θest) =
62∑

k=1

end∑

j=0

[
(ĉ280(tj, θfix, θgrad,k; θest) − c280(tj))

2 + (ĉ528(tj, θfix, θgrad,k; θest) − c528(tj))
2]

(9)
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minimizing res(θest). The minimization of Eq. (9) was in all cases performed with the Matlab R⃝-
procedure lsqnonlin.

3.4.2. Separation optimization. The case study aimed for an optimization of the separation re-
garding high resolution between adjacent protein peaks. The resolution between the peaks can be
maximized by minimizing the peak overlaps. Let θgrad denote the optimizable parameters, the three
factors Start, Length and Slope. For the numerical optimization of the separation process, the
unknown parameters θoptgrad inducing the gradient of least overlap, are the solution of following
minimization problem:

res12(θgrad) + res23(θgrad) + res13(θgrad) −→ min ! (10)

with

resk,l =

tend∑

j=t0

(min (ĉk(tj, θfix, θgrad), ĉl(tj, θfix, θgrad))) (11)

ĉi(tj, θ) being the concentration profile/chromatogram for component i calculated by the mecha-
nistic model, θfix are the mechanistic model parameters that are fixed in the optimization (SMA
parameters inclusive).

3.5. Comparison of approaches. The comparison between the described modeling approaches
has to be qualitatively as slightly different objective functions have been chosen (compare Eqs. (8)
and (10)). This choice has been made in order to keep close to real applications by choosing objective
functions corresponding to the typical model response. While the sum of resolutions calculated by
Eq. (8) is directly inserted into the DoE-RSM approach for model calibration the mechanistic model
is calibrated based on the complete chromatograms that were previously transformed to a time series
of concentrations. Thus, the response of the DoE-RSM approach will be a sum of resolutions while
the response of the mechanistic model will be a complete noiseless chromatogram with a perfect
baseline. To really perform a quantitative comparison with the same objective function on these
different model responses, significant data transformations and studies on noise in chromatographic
data would have been necessary. This was out of the scope of the manuscript. Although a direct
quantitative comparison between the approaches is impossible, the authors are positive, that the
shown results allow for a meaningful qualitative comparison and a qualified discussion on advantages
and disadvantages.

4. Results

The separation of the three component mixture (ribonuclease A, cytochrome c and lysozyme on
SP Sepharose FF) was to be optimized. Two approaches, a response surface modeling approach
on the one hand and a mechanistic modeling approach on the other hand, were employed for the
separation optimization. Both approaches were based on DoE-planned experiments and were to be
compared as to their optimizing and predictivity performance.
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Figure 4. Surface contour plots based on 31 experiments from onion design 1. The
factors Start and Length span the space, the factor Slope is illustrated in three
levels: 5 (left-hand subplot), 25 (center), 55 (right-hand). The contour lines show the
predicted values for the overall sum of resolutions in the design space.

4.1. Results of the response surface modeling approach. The plot in figure 4 is based on the
experiments from onion design 1 (see table 1) and shows the response surface regression of the three
explanatory factors (Start, Length and Slope) to the resulting sum of peak resolutions, denoted
on the level curves. The three subplots illustrate three levels of the factor Slope. The optimal
region of factors in the design space leading to an overall sum of resolution close to 5, is located
in the bottom right-hand corner of the left-hand side subplot. Thus, an initial concentration of
about 20% salt in elution buffer, a gradient length of the first gradient of 20 cv and a flat slope
are predicted to lead to optimal separation results. The supply of predictions over a region that as
far as possible surrounds the optimal process conditions is necessary for information on robustness.
To keep the approach simple and follow typical procedures, the previously used DoE settings were
applied for a second time with sligthly shifted and enlarged ranges. Subsequently, the whole set of
62 results was analysed. The experimental reproducibility rep was 0.97, calculated by the variation
at the center points compared to the total variation of the responses:

rep = 1 −
1
2

∑3
i=1 (cpi − cp)2

1
62−1

∑6
i=1 2(xi − x̄)2

(12)

where cpi denote the objective values of the threefold repeated center points, xi the responses of 62
data points (including the center points) and the bar over a variable implies its mean value. To these
data the RSM-method was applied. A quadratic model as initial modeling guess is the most com-
mon approach in RSM. In a data-based model discrimination, the model with highest coefficient of
determination and with no non-significant paramters (p-value ≤ 0.05) was chosen. The best-fitting
response surface was a quadratic model function with interaction terms. The regression fit itself
had an adjusted coefficient of determination R2 of about 0.78, what already indicates a limited pre-
dictivity. The coefficient plot in figure 5 shows the scaled and centered coefficients for the factors
having most effect on the separation result and the factor interactions. The analysis shows that a
long first part of the elution gradient induces positive effects on the resolution between the three
protein components. This effect increases considerably with rising gradient length, as the coefficient
for ’Length*Length’ is positive. The factor Slope has a slightly positive effect on the resolution
of the peaks. Conversely, an increasing salt concentration at gradient begin (factor Start), has a
negative effect on the overall sum of peak resolutions. These results suggest that gradients with a
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Figure 5. Coefficient plot for the response surface regression of the three gradient
defining factors Start, Length and Slope to the sum of resolutions between the
peaks.

S
ta

rt

S
ta

rt

S
ta

rt

Length Length Length

Figure 6. Surface contour plots based on all 62 experiments. The factors Start and
Length span the space, the factor Slope is illustrated in three levels: 0 (left-hand
subplot), 27.5 (center), 55 (right-hand). The contour lines show the predicted values
for the overall sum of resolutions in the design space.

gentle slope and a low salt concentration at gradient beginning were most successful with respect to
the separation problem. In addition, a positive interaction between Start and Slope with regard
to high resolutions is predicted by the model. This interaction effect can be explained by the fact
that the combination of both parameters mainly decides on the slope of the first gradient.
The contour plots in figure 6 are based on all results from onion design 1 and onion design 2. The

three subplots illustrate three levels of the factor Slope. The optimal set of factors with respect
to a high resolution is located at the right-hand side of the left-hand side subplot. Thus, an initial
concentration of about 20% salt in elution buffer and a gradient length of 30 cv together with a
very even slope showed the best results. Though placed at the border of the design space, the opti-
mal gradient length of 30 cv could not be further optimized, since the maximum possible gradient
length was fixed to 30 cv. The optimal region is very small and the gradient within the contour
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factor maximal resolution medium resolution minimal resolution

Start 10 19.26 40
Length 30 10 26
Slope 0 2.08 55
predicted resolution 9.46 4.8 -3.3
exp. determined resolution 0.1 4.2 2.8

Table 3. Predictions for factor sets inducing maximal, medium and minimal overall
resolution in the three component system. These predictions are based on the DoE-
RSM-approach.

A B C

Figure 7. Experimental results for the RSM-based predictions for a maximal (sub-
figure A), a medium (subfigure B) and a minimal (subfigure C) resolution in the
multicomponent separation of ribonuclease A, cytochrome c and lysozyme on SP
Sepharose FF (see table 3). The salt gradient is displayed as ratio of elution buffer.
In the chromatograms the black continuous line displays the total protein concentra-
tion and the grey line the concentration of cytochrome c.

plot is steep. This indicates a low robustness of the examined system. Small changes in the elution
gradient will have significant effects on the separation quality.

Three quantitative RSM-based predictions for the optimal set of factors with respect to a max-
imal, a medium and a minimal overall sum of resolutions are given in table 3. RSM predicted a
maximal overall resolution for a gradient of 30 cv with constant 10 % high salt elution buffer, a
medium resolution for the factors listed in the second column and a minimal resolution between
the peaks for the factor values in the third column. As these predictions are partly based on a
response surface extrapolation, the negative resolution value in the third column of table 3 is to be
regarded as a tendency to a poor resolution. The experiments with factor settings from table 3
were performed based on the instructions given in section 3.2. Figure 7A shows the experimental
results for the factor set in the first column of table 3. Based on the DoE-RSM approach the optimal
salt gradient was predicted to be a 30 cv long step at 0.05 M NaCl. The RSM-based prediction
failed, as obviously Ribonuclease A, cytochrome c and lysozyme elute simultaneously in the high
salt wash step, what results in a resolution of 0.1 and not 9.46 (see table 3) The experimental result
for the factors corresponding to the prediction for medium resolution shows in fact a resolution of
4.2, a value, that is close to the predicted resolution of 4.8 (figure 7B). The experimental results for
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ν kads kdes keq σ(fixed)

ribonuclease A 1.6 6.2 22.16 0.27 30
cytochrome c 2.8 4.6 17.16 0.27 30
lysozyme 3.4 1.6 11.78 0.14 30

Table 4. Table of SMA parameters determined with the inverse method

factor maximal resolution minimal resolution

Start 25.19 100
Length 28.37 30
Slope 2.58 0

Table 5. Predictions for factor sets inducing maximal and minimal overall resolution
in the three component system. These predictions are based on mechanistic mod-
eling.

the factor set that was predicted to result in a minimal resolution (third column in table 3) show a
sum of resolutions of 2.8 (figure 7C). This result has a correct trend, as it is small but obviously it
is not minimal.

4.2. Results of the mechanistic modeling approach. The monitored absorbance curves of
the experiments planned with two onion designs (see tables 1 and 2) were employed to determine
the SMA parameters by an inverse method. As the steric factor σ had neglegible influence on
the fitting result in the ranges of 20 to 40, it was fixed during the optimization of Eq. (9) to a
reasonable value of 30. The estimated SMA parameters for all three components are given in table 4.
These parameters provided the best fit between model response and chromatograms monitored at
the Ettan LC system. The first column shows the estimated characteristic charges for the three
proteins, ribonuclease A (1.6), cytochrome c (2.8) and lysozyme (3.4). The ascending order of these
values correlates with the elution sequence. In addition, adsorption and desorption coefficients were
estimated - their ratio can be summed up to the equilibrium coefficient (4th column of table 4).
The parameters in table 4 are in the limits of experimentally determined SMA parameters and are
therefore reasonable (compare for example with parameters in [24], [39] and [35]).

The completely calibrated mechanistic model was then employed to predict optimal gradient
factors leading to a maximal or minimal sum of resolutions (see section 3.4.2). The predicted
factors for maximal and minimal resolution are presented in table 5. Particularly the prediction
for a minimal overall resolution differs from the RSM-based prediction (see the third column of
table 3).

The optimal gradient, according to the mechanistic model, begins with a concentration of 25.19 %
of the elution buffer. The slope of the gradient is very smooth. It requires the addition of 0.01 %
of high salt buffer per cv to the elution buffer. The gradient ends after 28.37 cv with 27.77 % of
the elution buffer. The mechanistic model proposes, similar to the DoE-RSM-prediction, a step-like
gradient for the best resolution between proteins. The corresponding experimental results to the
factors given in table 5 are shown in figure 8A. The peak predictions for ribonuclease A and lysozyme
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A B C

Figure 8. Results for the mechanistic model-based prediction for a maximal (sub-
figure A) and minimal resolution (subfigure B) for the separation of ribonuclease A,
cytochrome c and lysozyme on SP Sepharose FF with a bilinear gradient. The con-
tinuous lines display the overall protein concentration (black) and the concentration
of cytochrome c (grey). The dotted lines display the model-based prediction. Subfig-
ure C shows the chromatogram for the RSM-predicted medium resolution superim-
posed with the highly accurate model prediction.

(first and third peak) are very accurate compared to the experimental data (continuous lines). The
prediction for cytochrome c (peak in the center) is slightly shifted to reality. Nevertheless, the
resolution between all protein peaks is high. The predicted factors for minimal resolution (2nd
column of table 5) induce the chromatogram displayed in figure 8B. The resolution is obviously
minimal, as salt concentration rises in a step from 0 to 100% and all proteins elute at once. In
figure 8C again the experimental results for the RSM-predicted medium resolution are shown. In
addition, the model response for this gradient is displayed with dotted lines. This figure gives a
good example for the high predictivity of the mechanistic model.

Based on these encouraging results, a model-based prediction for a changed objective was em-
ployed: the optimization of the specific resolution between only cytochrome c and lysozyme. The
optimal separation gradient with respect to the changed objective was predicted with the calibrated
mechanistic model and then experimentally validated. Figure 9 shows the optimized gradient with
the predicted chromatogram in dotted lines, whereas experimental data is given in continuous lines.
Even though the prediction for cytochrome c was again slightly shifted, the favoured resolution
between the cytochrome c and lysozyme peaks was high, due to this extraordinary gradient with a
negative slope at its beginning. Very interesting is the fact that cytochrome c elutes in two parts -
the major part of it elutes previously to the sharp bend in the gradient and the minor part after-
wards. This can be explained by the fact that due to the low salt concentration at the end of the
falling gradient, a certain proportion of protein molecules binds again to the column and is only
eluted with the following rising salt concentration after the sharp bend in the elution gradient.

5. Discussion

An empiric response surface modeling approach and a mechanistic modeling approach were com-
pared and examined with respect to performance, predictivity and potential synergies considering
the optimization of chromatographic separation processes. On the one hand, this comparison and
evaluation was performed theoretically (see section 2), on the other hand a direct comparison of
performance was achieved by applying both approaches to a case study: the optimization of bilinear
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Figure 9. Result for a model-based optimization of the bilinear gradient consider-
ing a maximal resolution between cytochrome c and lysozyme. The predicted chro-
matogram (total protein conc.: black dotted line, cyt. c conc.: grey dotted line) and
the experimental data (continuous lines) are superimposed.

elution gradients for the separation of a three-component mixture. Two of the components had a
very similar pI, what increased the problem’s complexity.

62 experiments were planned, based on two D-optimal onion designs (see tables 1 and 2). The
high number of experiments was necessary, because the results of the first design (cmp. figure 4)
showed the optimal settings to lie at the border of the design space. This situation should be
possibly omitted with regard to higher predictiveness of the RSM-model. This demonstrates the
difficult task of design space choice in the DoE-RSM-approach in many cases leading to multiple
attemps. A quadratic model function with interaction terms was fitted to the results of both onion
designs. This regression established a functional relationship between the objective function (sum
of resolutions) and the gradient shape regulating factors Start, Length and Slope. The coefficient
plot (see figure 5) revealed the most important factors and their influence on the objective function.

Based on this empiric model function and the modeling surfaces (see figure 6), the factor setups
for different qualities of separation (maximal, medium and minimal resolution) were predicted (see
table 3), the validation experiments were performed and results compared with the predictions (see
figure 7). The analysis of the response surfaces showed that the examined system is significantly not
robust, particularly close to the response surface’s maximum. A small change in the shape of the
bilinear gradient induces considerable effects on the separation. An example for this are the factors
of the optimal gradient predictions of both approaches that are quite close to each other (compare
the first columns of tables 3 and 5); however, the separation results differ significantly (figure 7A
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and 8A). The predictivity analysis of the DoE-RSM-approach showed that the predictions had
correct trends but were inaccurate, especially for extremal points. The Doe-RSM-based prediction
for the maximal resolution of peaks failed. The same was true for the prediction with respect to a
minimal resolution. An important reason for the failure of RSM in the prediction of the separation
results, is the fact that the optimal factor set was located at the edge of the design space, where
interpolation is more probable to fail due to the lesser number of reference points. The prediction
for the minimal resolution probably failed, because extrapolations outside the ranges of the original
design space are problematic for empiric RSM, as it only can predict continuous trends. In addition,
a very important reason for the low predictivity is indicated by the low coefficient of determination
R2 = 0.78. Quadratic RSM can only handle up to quadratic complexity. The lack of fit shows that
this system is definitely more complex. As the predictions were based on a model explaining only
about 78 % of the variety in the experimental data, the probability to fail was increased.

The sorption parameters of the mechanistic model could be determined by the inverse method in
this case study based on the DoE-planned datasets (see table 4). The calibrated chromatography
model was employed for the numerical optimization of the separation problem. The elution gradient
was optimized with respect to maximal and minimal overall resolution between the component
peaks (see table 5). The validation experiments identified the mechanistic model to be successful
and highly predictive (see figure 8). The optimal gradients were predicted correctly. While it seems
to be obvious for experienced experimenters that an immediate step elution at 0.5 M gives no
separation, this fact is not obvious for a model. The correct prediction in this case emphasizes the
superiority of the introduced mechanistic modeling approach. The extrapolation of data beyond
the borders of the underlying experimental design was possible, because the model is based on
mechanistic processes in chromatography.

The prediction of cytochrome c data was slightly less accurate than the prediction of retention
time and peak shape for the other components. This can be caused by protein-protein-interactions
or other effects that were not considered in the modeling, like, for example pH-effects induced
by the salt gradient. Without re-calibration, an optimal gradient for a high resolution between
cytochrome c and lysozyme was calculated and the result showed again a high predictivity for
extrapolated issues (see figure 9). This result could not have been so rapidly achieved with the
DoE-RSM approach, as after the recalculation of the specific objective, the multivariate regression
function would have needed re-calibration. Moreover, the optimal gradient was again located outside
of the original design space, where the RSM-approach has a very low predictivity.

A separation optimization considering different pH conditions was no issue in this manuscript.
Definitely a better resolution can be obtained at a different pH condition. Though there are a lot
of promising approaches to this modeling issue in mechanistic chromatography models (see [40] and
[41]), no approach is fully established. Thus, a comparison of modeling approaches including the
optimization of pH conditions has not yet been made.

5.1. Conclusion and outlook. Two approaches for optimization in chromatography processes, a
DoE-RSM approach and an approach based on mechanistic modeling, were to be compared based
on their theoretical background and on their performance in a multicomponent separation process.

This comparison revealed advantages and disadvantages of both approaches. An advantage of
the DoE-RSM-approach is the comfortable and quick calibration leading to reliable predictions
with respect to simple correlations inside the design space. For example, correlations between
salt concentration in the buffer at gradient start and the retention time of the first peak could be
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predicted very accurately (data not shown). Another advantage of the DoE-RSM-approach is the
easy identification of factor importance and influences on the objective as well as of the system’s
robustness.

Nevertheless, the DoE-RSM approach is significantly limited when dealing with complex chro-
matographic processes. The empiric multilinear model revealed a lack of fit and predictions with
respect to an optimal elution gradient for separation failed due to this lack of fit and low robustness
of nonlinear gradient elution processes. Results from extrapolation beyond the design space were not
reliable as they showed large deviances to the correct results. This fact demands for re-calibration
of the DoE-RSM-approach, whenever a new objective is chosen for optimization.

A disadvantage of mechanistic modeling, compared to simple screening methods and the DoE-
RSM-approach, is the higher preliminary experimental effort with respect to model calibration and
the need for efficient solution algorithms for the partial differential equation system. Nevertheless,
it could be shown that the model could easily be calibrated based on the DoE-planned experiments.
The predictions inside and beyond the design space were highly accurate and the optimization of the
elution gradient was successful for various objectives. Re-calibration was not necessary. The knowl-
edge gain with respect to the process was high, because all parameters are of mechanistic nature.
Thus, the completely calibrated model could now be employed for simila separation problems.

The comparison of the two approaches for the optimization of chromatographic separation pro-
cesses reveals synergies that could lead to new concepts of optimization. Based on these two
approaches, an optimization could start with the DoE-RSM-based modeling, revealing factor im-
portances and complexity of the problem. Additionally, this strategy allows for information on
robustness issues, for first predictions concerning optimal factor settings and provides sufficient ex-
periments for the calibration of the mechanistic model. The mechanistic model could be calibrated
in the next step and be employed for accurate predictions on the process and for the handling of
changing objectives as well as for quantitative robustness analysis and process monitoring. This
concept will be applied and refined in ongoing research on various (industrial) processes.
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Abstract

A new concept for chromatography process development based on high-throughput data and mech-
anistic modeling will be presented in this paper. The concept is established in close cooperation
between experimentation, modeling and model-based experimental design and allows for robustness
analyses and upscale predictions. It will be demonstrated based on a case study: The optimization of
a multicomponent separation (lysozyme, ribonuclease A and cytochrome c on SP Sepharose FF

TM
),

subject to pH conditions and optimal settings for the shape of the elution gradient. Peak resolution
and a precise prediction of retention times were chosen as performance variables in the case study to
demonstrate the flexibility of the concept. It was shown that the concept of model-integrated process
development is simple to perform from miniaturized scale on. The data, derived from model-based
optimally designed experiments, provided sufficient information for process development, the model
was calibrated and predictions for optimal separation setups as well as for the upscale showed a
high precision. Consequently, the accumulation of data from high-throughput screenings can be used
profitably for model-based process optimization and upscale predictions.

Keywords: scale-up, optimization, simulation, mathematical modelling, chromatography, down-
stream processing

1. Introduction

Chromatography is one of the main workhorses in bioseparation engineering and downstream
processing of biomolecules. The development of optimal and robust chromatography processes is a
central issue, because the costs for separations account for 50 - 80% of production costs [1]. In addi-
tion, the concept of Quality by Design (QbD), launched by the US Food and Drug Administration
in 2004, pays increased attention to process robustness and reproducibility issues [2]. Optimization
and robustness analyses in chromatography pose multivariate problems which are dependent on
many factors directly influencing the retention times of proteins (e.g. pH conditions, resin, buffer).
Thus, there has been a growing interest in approaches based on high-throughput experimentation,
for example demonstrated by Wiehndahl et al. [3], and intelligent search algorithms like the genetic

1
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algorithm employed by Susanto et al. [4], because these methods speed up the optimization and
have the additional advantage of gain in knowledge on the examined system.

A highly knowledge-based approach is the simulation of chromatographic processes with mech-
anistic models. The application of mechanistic modelling in chromatography is on the rise due to
extended computational power and increased memory capacities [5]. Optimal solutions for separa-
tion problems can be derived from mechanistic modeling, taking into account the physical processes
on column and adsorbent particle level and leading to specific time-dependent concentration pro-
files for all calculated components at the column outlet. Thus, parameters of a separation problem
can be changed and the effects on the chromatogram can be calculated in silico. Modeling has
been successfully employed for the simulation and optimization of chromatography processes, for
example in [6] and [7], as well as for robustness analyses and sensitivity analyses demonstrated by
[8],[9].

The issue of efficient model calibration has been thoroughly addressed by [10], [11] and [12].
Concepts for model calibration including high-throughput batch binding experiments have been
published in [13]. The establishment of these experiments on robotic platforms (see [14], [15])
allowed for an even quicker determination of static capacities and uptake kinetics. Considerable
research has been devoted to the use of these data for chromatograpy modeling and scale-up pre-
dictions, for example in [16], [17] and [18]. Thus, along with an important study on model-based
scale-up published recently by Gerontas et al. [19] a lot of strategies for an integration of modeling
into process development have been established.

However, modeling based on data from high-throughput chromatography with RoboColumns
TM

might be a promising way to integrate chromatography models even more efficiently into the first
stages of process development. Based on RoboColumns

TM
, reliable data for the scale-up can be

obtained as was shown in [3]. So far, only a single study from Susanto et al. [20] uses data from

RoboColumns
TM

for modeling purposes. This is probably due to challenges in data from robotic
systems, such as lower information densities in fractionation data and higher background noise;
both effects leading to a more difficult identification and monitoring of proteins. Nevertheless, for
successful process development it is of high priority to learn, how the accumulated data from high-
throughput screenings can be used profitably for modeling and QbD concerns. New concepts for
model calibration based on chromatography data from miniaturized scale are necessary. An effi-
cient and seamless cooperation of different powerful process development tools, such as experimental
design, modeling and the recently established methodology for selective protein quntification [21]
might be a promising way to tackle optimization challenges.

In this paper a new concept for chromatography process development based on high-throughput
data from RoboColumns

TM
and mechanistic modeling will be presented. The concept is established

through close cooperation between modeling and experimentation and allows for the optimization of
chromatography steps and upscale predictions. The scheme for the concept, consisting of three basic
steps, is shown in figure 1. In the first step of process development, pulse and frontal experiments are
performed in order to characterize the column and the packed bed (porosity, dispersion, capacity).
The results can be simultaneously used for the calibration of the mechanistic model equation that
describes the flow through the column. In the second step of process development, frontal and
gradient elution experiments support the decision on optimal pH conditions. These gradient elution
experiments will be planned previously by mechanistic modeling, in order to contain increased
information with respect to the calibration of the mechanistic model equation describing sorption
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step 1

step 2

step 3

Figure 1. Concept for model integrated process development in three steps. Com-
mon experimentation in process development and the calibration of a mechanistic
model for chromatography are tightly connected by model-based experimental de-
sign. This concept will be demonstrated along a case study - the optimization of
a three component separation (ribonuclease A, cytochrome c and lysozyme on SP

Sepharose FF
TM

)

processes in the particle. Based on the completely calibrated model, optimal separation gradients
will be predicted in silico in the third step. Specific objectives, for example the resolution between
the peaks or a certain retention behaviour, are chosen as performance variables for optimization.
The planned experiments will be performed and model predictivity will be verified based on the
experimental results by comparing peak shapes, resolutions and retention times. The verified model
is then fit for upscale predictions.

This model-based integrated approach for process development has been developed stepwise as
part of a general project on the chances and challenges of chromatography modeling based on high-
throughput data. A survey on optimal parameter determination for model calibration on particle
level provided an important basis [22]. This basis was complemented by a comparison of typical
optimization approaches in chromatography separation [23]. The model-based integrated approach
will be demonstrated based on a case study for development and optimization of a three component
separation. A system of lysozyme, ribonuclease A and cytochrome c has to be separated on the
adsorbent SP Sepharose FF

TM
subject to pH conditions and optimal settings for the shape of the

elution gradient.

2. Materials and methods
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2.1. Materials. Blue dextran 2,000,000, cytochrome c (horse heart), lysozyme (chicken egg white)
and ribonuclease A (bovine pancreas) were purchased from Sigma (St. Louis, MO, USA). Acetic
acid, 2-morpholinoethan sulfonic acid monohydrate (MES), sodium monobasic phosphate, sodium
dibasic phosphate and sodium hydroxide for titration were purchased from Merck KGaA (Darm-
stadt, Germany). Acetone and ethanol (70 %, den.) were purchased from Carl Roth GmbH +
Co.KG (Karlsruhe, Germany), MES Sodium Salt, ULTROL R⃝ grade from Calbiochem (Gibbstown,
NJ, USA) and sodium chloride from AppliChem (Darmstadt, Germany). Three buffers were pre-
pared, each with a concentration of 20 mM: pH 5 - acetate buffer, pH 6 MES buffer and pH 7
sodium phosphate buffer. To obtain high salt buffers for elution purposes, 0.5 M sodium chloride
was added to the respective buffer.

2.2. Apparatus, columns & software. RoboColumns
TM

for miniaturized chromatography on
robotic platforms were purchased from Atoll (Weingarten, Germany) [0.01 m bed height, 0.005 m

I.D.]. They were packed with SP Sepharose FF
TM

(strong cation exchanger, mean particle diameter:
90 µm). The ionic capacity of the adsorbent (1200 mM) was determined with a syringe in triplicate
by displacement measurements with acetic acid following furthermore the instructions in [24].

The miniaturized chromatography experiments were performed on a Freedom Evo 200 robotic
platform purchased from Tecan (Crailsheim, Germany). The platform is equipped with a liquid
handling arm for eightfold parallel pipetting, a plate gripper for device transport, a plate stacker
module and a Te-Chrom device for RoboColumn

TM
handling. The system dead volume considering

column chromatography is neglegible as the pipetting tips are placed directly on the filter above the
adsorbent bed. The flow rate was 5 µL/s (90 cm/h) in all experiments (except frontal experiments
which were performed at 2.5 µL/s). The elution fractions with a volume of 67 µL each were
collected into 96 well half-area plates from Greiner Bio-One (Kremsmuenster, Austria) and analyzed
in the infinite M200 Reader from Tecan with two alternative protein quantification methods that
are explained in section 2.3.4. The fraction volumes were monitored by 990-900 nm difference
measurements. Freedom EVOware R⃝ 2.3 SP3 from Tecan (Crailsheim, Germany) was used for
robotic control and Microsoft Office Excel 2007 (Redmond, WA, USA) was applied for data readout.
All succeeding calculations, data manipulation, modeling and visualization were accomplished in
Matlab

TM
(The Mathworks, Natick, ME, USA).

2.3. Experimental methods.

2.3.1. Pulse injections and a shifting method for higher datapoint densities. For the determination of
parameters characterizing the packed bed, pulse experiments with acetone (1 % in sodium phosphate
buffer) and blue dextran 2,000,000 (5 mg/mL in sodium phosphate buffer) were performed on the
robotic station. For a higher accuracy in retention time determination, the fractionation volume
was the least possible what resulted in a high data point density. The fraction size of 67 µL is
equivalent to a number of 2-4 drops from the column outlet. Nevertheless, data point density was
not high enough to determine the retention time of very narrow peaks. Thus, two pulse experiments
were performed successively and in the second experiment the fractionation times were shifted by
33.5 µL. All results were determined by measurements done in triplicate.

2.3.2. Frontal experiments. For the determination of dynamic bed capacities, frontal experiments
were performed with lyzozyme, cytochrome c and ribonuclease A at pH 5, pH 6 and pH 7 in the
miniaturized system. After equilibrating the column for at least 5 column volumes (cv) with the
respective buffer, protein solution (0.4 ·10−3 M) was injected with a volumetric flow rate of 2.5 µL/s
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Figure 2. Comparison between protein quantification based on 280 nm absorp-
tion measurements and a new regression-based approach for high-throughput protein
quantification [21]. Here, identical elution data are shown in comparison analysed by
the two methods (elution of a threecomponent protein mixture consisting of lysozyme
(triangles), ribonuclease A (stars) and cytochrome c (dots)).

until the breakthrough was complete (see instructions in [3]). The flowthrough was collected in
fractions of 150 µL.

2.3.3. Gradient elution experiments. All gradient elution experiments started with an equlibration
phase lasting 5 cv, followed by an injection of 20 µL of the three-component protein mixture
consisting of 0.2 ·10−3 M lysozyme, cytochrome c and ribonuclease A. The specific elution gradients
were prepared beforehand by mixing equilibration and high salt buffer in parallelized mode in a way
that every new concentration step corresponded to a new fraction. Due to the very small volumes
of this premixed concentration steps (67 µL) the salt concentration gradients could be assumed to
be linear in the mechanistic modeling. The gradients were defined by three design factors:

• salt concentration at gradient initiation
• salt concentration at gradient termination
• gradient volume [0 to 35 column volumes]

A 3 cv high salt wash step followed the procedure and the experiment was optionally terminated
by preparing the columns for storage in a 20%-ethanol-solution.

2.3.4. Protein quantification. Protein concentrations in the collected fractions were analysed using
two different methods:

• measurement of absorption at 280 nm and 528 nm (pulse and frontal experiments)
• equidistant measurement of absorption at 15 wavelengths between 240 and 300 nm (gradient

elution experiments)

While the first method of absorption measurement is well established for overall protein quantifi-
cation in a probe, the second approach was only recently developed [21]. It is based on the rapid
quantification of single protein concentrations in a mixture by interpretation of spectral data with
a precalibrated regression model and is suitable for high-throughput experimentation as protein
quantification in a 96-well plate lasts merely 6 minutes. The precalibration of the regression model
was performed by scanning spectra from training set data. The training set consisted of 32 solutions
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with specific ratios of protein concentrations, designed by a four layer onion DoE (more details in
[25]). 12 blank probes, containing only buffer, were added to calibrate the baseline location. Then,

a multivariate regression model was fitted to the training set measurements with the Matlab
TM

routine plsregress considering four latent variables; the resulting regression coefficient matrix was
used henceforth to determine protein concentrations in mixtures of unknown proportions. Figure 2
allows for a method comparison showing identical multicomponent elution data, evaluated using the
two approaches. On the left-hand side the overall protein content in the fractions was determined
by 280 nm absorption measurements, for the determination of cytochrome c by 528 nm absorption
measurements. On the right-hand side single protein concentrations [lysozyme (triangles), ribonu-
clease A (stars) and cytochrome c (dots)] could be determined based on the regression model. With
this method, the two peaks at elution beginning can clearly be discriminated and it is no longer
necessary to perform the absorption data conversion using extinction coefficents.

2.4. Mathematical methods.

2.4.1. Introduction of the model equations. A mechanistic model imitates the physical processes that
occur in the observed system and describes them based on a set of mathematical equations. Thus,
typical rate models for chromatographic processes contain convective and diffusive flows through a
compressed pile of particles on the column level and the imitation of mass transfer resistances and
surface interactions on particle level. In IEC modeling the transition of components from column to
particle level is commonly modeled assuming a film; the sorption of protein on the particle surface
can be imitated by the steric-mass-action-(SMA) model, developed by [26] and commonly used for
the modeling of salt gradient elutions in IEC, for example in [27], [28] and [29]. For the solution
of the whole differential-algebraic equation system, Danckwerts’ boundary conditions were applied
[30]. For more details on rate models see [6].

In this case study, the decision concerning the most reasonable model complexity was taken in
favor of the lumped transport-dispersive approach. Although axial dispersion and mass transfer to
the particles can sometimes be neglected in protein chromatography, the size of RoboColumns

TM

attaches importance to wall effects and mass transfer. Thus, the applied model includes convective,
dispersive processes, mass transfer resistances and the SMA model for sorption kinetics.

The time- and position-dependent change of concentration on column level for the i-th component,
∂ci/∂t, is described by Eq. (1). The first term on the right-hand side of Eq. (1) describes the
convective transport through the column, the second term the dispersive transport and the third
term the transport through a film to the particle surface.

∂ci

∂t
= −uint

∂ci

∂x
+ Dax

∂2ci

∂x2
− 1 − εc

εc

· 3

rp

keff ,i
[ci − cp,i] (1)

uint denotes the interstitial velocity, εc the column porosity, rp the particle radius and keff ,i

the lumped film diffusion coefficient. Dax displays the axial dispersion, more precisely, a combined
effect of dispersion and diffusive processes, dispersion being eddies and all effects implied by three-
dimensionality.

The time and position-dependent change of concentration on particle level for the i-th component,
∂cp,i/∂t, is analogously described by Eq. (2):
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∂cp,i

∂t
=

3

εprp

keff ,i
[ci − cp,i] − 1 − εp

εp

∂qi

∂t
(2)

with qi denoting the concentration of particle-bound component i and εp the particle porosity,
The first term on the right-hand side of Eq. (2) displays the mass transfer to particle surface and the
second term describes ad- and desorption processes on particle level, i.e. the interaction between
mobile and bound phase.

For the description of ad- and desorption processes, the SMA approach was embedded into the
mechanistic model. In comparison to the Langmuir kinetic the SMA kinetic has the advantage of
including the salt concentration into the sorption calculations. This advantage is crucial for the
simulation of salt gradient elution experiments. The model equations for n components (n = 1[salt]
+ number of protein components) are given by

∂qi

∂t
= kads,iciq̄1

νi − kdes,ic
νi
1 qi i > 1 (3)

Λ = q1 +
n∑

i=2

νiqi (4)

q̄1 = q1 −
n∑

i=2

σiqi (5)

Eq. (3) expresses the time dependent change of the concentration of surface bound component
i (∂qi

∂t
). kads,i denotes the adsorption rate and kdes,i the desorption rate. The parameter Λ (ionic

capacity of the adsorbent) limits the available binding places and displays the rivalry between salt
concentration q1 and the other bound components qi, 2 ≤ i ≤ n with their specific characteristic
charges νi. q̄1, the concentration of bound salt ions available for exchange with the protein, is given
by the total salt ion concentration q1 less the shielded ions determined by the protein specific steric
factors (σi) in Eq. (5). If the assumption of rapid equilibrium is valid (∂qi

∂t
= 0), Eqs. (3), (4) and

(5) can be linked to the SMA isotherm:

ci =

(
qi

keq,i

)(
c1

Λ − ∑n
i=2 (νi + σi)qi

)νi

i > 1 (6)

where the parameter keq,i is the ratio of ad- and desorption coefficient.
SMA parameters for the mechanistic model can be determined based on data from gradient

and breakthrough experiments (compare to [31]). The inverse method states a second, equally
predictive approach and is directly based on process data and the mechanistic model (see [22]). A
quick solution of the model equations is crucial, since the model has to be solved hundreds of times
in model-based experimental design. The applied model, including convective, dispersive processes,
mass transfer resistances and the SMA model for sorption kinetics, was solved in MATLAB on a
Dual Core Processor with 2.81 GHz in approximately 10 seconds. The system of partial differential-
algebraic equations was discretized in space using finite differences with 200 axial nodes.

The discretized right-hand side of the spatially discretized equation system was implemented as
Matlab

TM
function. This function was integrated using the Matlab

TM
routine ode15s. An explicitly

derived system Jacobian, i.e. the derivative of the right-hand side with respect to the state variables,
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was implemented as a separate function for speeding up ode15s. More details on discretization and
solution of the model equations are given in [32].

2.4.2. The inverse method for SMA parameter estimation. Let ci(tj) be the chromatogram of com-
ponent i monitored at the points in time j = t0, · · · , tend and preprocessed to a concentration time
series based on the partial least squares regression explained in section 2.3.4. Let ĉi(tj; θ) be the
solution of a mechanistic model for chromatography for component i at the same points in time, de-
pendent on the parameter setting θ = {θfix, θgrad,k, θSMA} with θfix the previously determined set of
model parameters, θgrad,k the specific gradient volume for the k’th elution gradient, 1 ≤ k ≤ NG from
a total number of NG gradients, and θSMA the set of protein specific SMA parameters. These pa-
rameters were to be estimated for all three components, ribonuclease A, cytochrome c and lysozyme
at the three different pH conditions, pH 5, pH 6 and pH 7. Aiming at a best fit between model
response and chromatographic data, the SMA parameter estimation for three proteins at a specific
pH condition based on an inverse method can be stated as an optimization of a sum of least squares:

res(θSMA) =

NG∑

k=1

3∑

i=1

end∑

j=0

(ĉi(tj; θfix, θgrad,k, θSMA) − ci(tj))
2 (7)

and the resulting SMA parameter estimation minimizes res(θSMA). The minimization of Eq. (7) was

in all cases performed with the Matlab
TM

procedure lsqnonlin. A local optimizer was sufficient
because reasonable initial values for the optimization were available from previous studies [22].
A multi-start strategy supported and assured the optimum, i.e. the estimated parameters. The
estimation was employed simultaneously based on four double-determined chromatograms (NG = 8)
with optimal elution gradient volumes, that were planned based on a D-optimal experimental design
in order to obtain most information with respect to the estimation of SMA parameters.

2.4.3. D-optimal experimental design. Let all controllable and uncontrollable factors influencing an
experimental result be called design factors. For example, the length, the start and end concentra-
tion of a salt gradient are design factors in a chromatographic separation. Experimental planning
allows for the determination of design factor sets that lead to experiments containing a maximum
of information with respect to a specific objective, for example, for the estimation of most accurate
SMA-parameters by an inverse method.

Definition 1. Let now FI(ζ) be the Fisher Information matrix based on the design factors ζ1 . . . ζn.
A defined experimental design ζ⋆ = ζ⋆

1 . . . ζ⋆
n is called D-optimal if and only if

det FI(ζ⋆) ∈ max
ζ∈V +

det FI(ζ) (8)

with V + being the space of all possible experimental designs [33].

As the inverse of the Fisher Information matrix is equal to the covariance matrix under specific
assumptions (see [34] and [35]), experimental designs minimizing the determinant of the covariance
matrix are also called D-optimal experimental designs. A popular way to calculate covariance ma-
trices without a demand for linearization assumptions are bootstrap methods based on Monte Carlo
simulations. Based on the mechanistic model, a huge number of in silico-experiments are performed
corresponding to a specific experimental design and afflicted with noise, that is characteristical for
noise on chromatograms from miniaturized chromatography. Then the SMA-parameters are esti-
mated based on these in silico-chromatograms (see Eq. (7)). The deviations and the covariance
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matrix of these estimations can be calculated and the information contents of the specific experi-
mental designs can be compared according to Eq. (8). Further details on this approach are given
in [36] and [37].

In this Monte Carlo simulation study, chromatography experiments were simulated, then con-
verted to fractionaton data and a specific independent and normally distributed noise was added
to the data points by the Matlab

TM
routine nrand to produce typical noise on chromatograms from

miniaturized chromatography on robotic platforms. The applied noise had a standard deviation of
0.0005 mM. This deviation was derived beforehand by a characterization of noise in chromatograms
that were determined according to the settings in section 2.3.

For the examinaton of information content dependent on elution gradient volume, at first the
SMA parameter estimation based on a single gradient was examined (NG = 1), i.e. the determinant
of the covariance matrix was analyzed for all design factors fixed except for the single gradient
elution volume, that varied in the simulations between 0 cv and 60 cv. For the examination of
the optimal distribution of gradient volumes for an SMA parameter estimation, further simulations
of two gradients in the range from 0 cv to 60 cv with different gradient volumes were analyzed
with respect to their joint information content (NG = 2), while SMA parameters were estimated
simultaneously based on both chromatograms.

2.4.4. Optimization of the gradient elution shape based on mathematical modeling. A calibrated
mechanistic model can be employed for optimizations or predictions with respect to specific objec-
tives. To demonstrate the flexibility and predictivity of the applied chromatography model, three
optimization objectives for the three component separation were defined beforehand:

(1) objective A: minimal peak overlap (salt wash excluded)
(2) objective B: minimal peak overlap (salt wash included)
(3) objective C: lysozyme elutes 800 seconds after gradient start

The first objective is typical for separation problems, where high resolutions (= small peak
overlap) between the peaks are required during elution time. The second objective includes the salt
wash step in the optimization assuming that this might lead to better resolution results; the third
objective was defined for a verification of the prediction of retention times. The specific optimal
gradients with respect to the objectives were calculated numerically based on the Matlab

TM
routine

fminsearch and optimization equations analogously to equations shown in [23].

3. Results

3.1. Determination of parameters on column level. In the first step of the concept, (model)
parameters on column scale are to be determined based on manufacturer information as well as pulse
and frontal experiments performed in parallel and miniaturized on the robotic platform. Figure 3
shows example chromatograms of acetone and dextrane pulse injections derived from the shifting
method for higher datapoint densities (see section 2.3.1). The shift in fraction data is discriminated
by the color of the dots. Based on these results, the retention time of the single pulse tracer
injections is determinable from the data with a precision of ≤ 16 µL; the blue dextran peak has
a retention time of about 67 ± 16µL and the acetone peak of about 180 ± 16µL. Based on these
retention times, the total, interstitial and particle porosities were calculated. A summary of the
model parameters that were determined in this first step is given in table 1.

The column length (0.01 m) and the mean particle radius (0.45 · 10−6 m) are preset by the
manufacturer. The lumped film diffusion coefficient was estimated to be 1.5 · 10−6 m/s based on
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Figure 3. Example detection of acetone and blue dextran peaks from pulse injec-
tions in miniaturized chromatography (SP Sepharose FF

TM
, 1% acetone respectively

0.5 mg/mL blue dextran, velocity: 5 µL/s). The different colors of dots display the
shifting method that was applied for higher datapoint density.

parameter determination

column length 0.01 m manufacturer information
particle radius 45 · 10−6 m manufacturer information
total porosity 0.85 pulse experiment
interstitial porosity 0.335 pulse experiment
particle porosity 0.9 pulse experiment
ionic capacity of adsorbent 1200 mM displacement experiment

lumped film diffusion coefficient 1.5 · 10−6 m/s estim. based on Äkta-data

axial dispersion 1.57 · 10−11 m2/s estim. based on Äkta-data

Table 1. Parameter values that were determined in the first step of model-integrated
process development

previous experimental work in [22]. The calculated porosities εt=0.85, εp=0.9 and εi=0.335 are
reasonable and lie in ranges given in literature, for example in [38]. The ionic capacity of the
adsorbent (1200 mM) was measured beforehand with a displacement experiment and is also rea-
sonable (see [39]). The axial dispersion could not be calculated based on the pulse experiments due
to the still small number of data points defining the peaks. Thus, the value for axial dispersion
(1.57 · 10−11 m2/s) was estimated based on previous determinations of this parameter on an Äkta
system. In figure 4 example results for miniaturized frontal experiments are shown. Figure 4A
shows two superimposed breakthrough curves for ribonuclease A (squares) and lysozyme (crosses)
at pH 7. The breakthrough curve for ribonuclease A is clearly steeper and saturation is reached
earlier. Figure 4B shows the superimposed breakthrough curves for lysozyme at pH 5 (squares) and
pH 7 (crosses). The earlier start and saturation of the breakthrough curve at pH 5 is evident from
the data. Repetitions of these experiments showed similar variances in the breakthrough curves as
were observed in [3] (data not shown). Based on breakthrough data, dynamic capacities could be
determined at 10 % (Q10) and 50 % (Q50) of the breakthrough for ribonuclease A, cytochrome c
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Figure 4. Figure 4A shows Breakthrough curves for ribonuclease A (squares) and
lysozyme (crosses) at pH 7. Figure 4B shows breakthrough curves for lysozyme at
pH 5 (squares) and pH 7 (crosses). The frontal experiments were performed paral-
lelized and miniaturized on a robotic platform (init. conc.: 0.4 · 10−3 M, pipetting
velocity: 2.5 µL/s).

capacity [mg/mlres] ribonuclease A cytochrome c lysozyme

pH 5
Q10 116.45 100.8 114.46
Q50 152.07 136.22 165.96

pH 6
Q10 133.58 130.03 108.73
Q50 158.92 147.37 168.82

pH 7
Q10 104.12 128.8 110.15
Q50 113.71 143.65 135.9

Table 2. Adsorbent capacities of SP Sepharose FF for ribonuclease A, cytochrome c
and lysozyme at pH 5, 6 and 7 determined by breakthrough experiments on the
robotic platform

and lysozyme at pH 5, 6 and 7. The capacities for all three proteins on SP Sepharose FF
TM

are
given in table 2. A comparison between the capacities for ribonuclease A and lysozyme at pH 7 and
for lysosyne at pH 5 and pH 7 respectively, determines quantitatively the capacity increase that
was qualitatively noticed before in figure 4. Furthermore, a significant decrease of Q50-capacities
from pH 6 to pH 7 could be determined based on the miniaturized data as well as the fact that
the capacity for ribonuclease A on SP Sepharose FF

TM
is always smaller than the capacity for cy-

tochrome c and lysozyme.

3.2. Estimation of parameters on particle level. In the second step of model-integrated pro-
cess development, gradient elution experiments were performed. Based on this data and the frontal
data from the first step, the aim was to achieve the decision for an optimal pH-range for the sepera-
tion. In addition, the data was to be used for model calibration with respect to sorption-parameters
(particle level). The Monte Carlo based approach described in section 2.4.3 was employed for the
previous determination of an optimal experimental design. At first, the information content in
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A B

Figure 5. Figure 5A shows the effect of elution gradient volume on the normalized
information content in fractionation data. Figure 5B shows a positive correlation
between the normalized information content in two gradient elution experiments and
the distance of elution volumes. In both figures, information content was calculated
based on Monte Carlo simulations under the objective of precise SMA parameter
estimation.

single gradient elution experiments of different gradient volume with respect to the estimation of
parameters for the steric mass action (SMA) sorption model was calculated for elution volumes
between 5 cv and 60 cv. Based on 1000 simulations in each case, the determinant of the inverse
covariance matrix, i.e. the information content with respect to SMA parameter estimation, was
derived. The information content was calculated according to the theory in section 2.4.3. How-
ever, the calculated information value is most meaningful in comparison to the information from
other experimental designs. Thus, as the lowest possible information content of an experimental
design can be assumed to be 0, the highest calculated value from the simulations was set to be 1 to
simplify the comparison of designs. Figure 5A illustrates the effect of elution gradient volume on
the normalized information content in fractionation data. The results show that the information
content correlates linearly with increasing gradient volume, up to a gradient volume of 45 cv. For
gradient volumes longer than 45 cv, the information content appears to stay at a constant level.

Secondly, as parameters for the SMA model were to be calculated based on at least two data sets,
the influence of elution volume distribution had to be examined. Hence, one experiment with an
elution volume of 10 cv and a second experiment in the range from 10 cv to 50 cv elution volume
was simulated. Analogously to the previous Monte Carlo approach, the results were analyzed with
respect to their joint information content (NG = 2 in Eq. (7)).

Figure 5B shows a positive correlation between joint information content in two gradient elution
experiments and the distance between the elution volumes in the simulations (from 0 to 40 cv).
Similar results were derived when fixing the first gradient at 20 or 30 cv. This result implies that
joint information content in gradient elution experiments increases with increased distance between
the analysed elution gradient volumes. This increase appears to reach a saturation at a a distance
larger than 40 cv.

As the longest gradient that could be performed on the robotic platform had a volume of 35 cv and
the overall number of gradients for a single pH-screening was set to four (for practical performance
of double determinations with parallel pipetting of eight columns), gradient elution volumes of 5 cv,
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Figure 6. The results for a linear gradient elution of a three-component mixture
with 35 cv elution gradient volume are shown for three pH conditions (SP Sepharose

FF
TM

, pH-values of 5, 6 and 7 in ascending order from left-hand side to right-hand
side). Ribonuclease A elutes firstly (stars), then cytochrome c (dots) and lysozyme
(triangles) elute [init. conc.: 0.2 · 10−2 M, volumetric flow rate: 5 µL/s].

ν keq

pH 5
rib 5.35 0.08
cyt 5.4 0.24
lys 5.54 0.23

pH 6
rib 3.47 0.27
cyt 3.9 0.25
lys 3.82 0.53

pH 7
rib 2.51 0.17
cyt 3.1 0.49
lys 3.73 0.27

Table 3. Estimated values of the SMA sorption parameters based on an inverse
method with data from optimally designed, miniaturized gradient elutions.

15 cv, 25 cv and 35 cv were chosen for the screening experiments, taking into account both effects
derived from the optimal esperimental design by choosing the longest possible elution gradient and
the largest possible distances between elution volumes. In figure 6 three example chromatograms
for the optimally designed gradient elution experiments with an elution gradient volume of 35 cv
at pH 5, 6 and 7 are shown. The elution gradient started after 200 seconds and lasted for 1400
seconds, at which point 100% high salt buffer with a salt concentration of 0.5 M NaCl was reached.

At all examined pH conditions ribonuclease A elutes first (stars) followed by cytochrome c (dots)
and lysozyme (triangles). At pH 5 cytochrome c and lysozyme elute almost simultaneously, at
higher pH-values cytochrome c elutes slightly earlier than lysozyme. The overall resolution between
the peaks at pH 5 is very low, but it increases with ascending pH-value while retention volumes
decrease. These screening results together with the capacity measurements (see table 2) bring
about the decision to tackle this separation problem at pH 7. Obviously, the complete separation of
lysozyme and cytochrome c poses the major challenge in this separation problem and demands an
optimization of the elution gradient shape. According to the concept of model-integrated process
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development, SMA parameters were estimated using the inverse method based on the gradient
elution experiments (see Eq. (7)). The results for this estimation are given in table 3. The parameter
of steric shielding (σ) is not enlisted, as the estimation showed a broad statistical spread between
20 and 50. Numerical difficulties and broad statistical spread in the determination of σ have
been reported before in [40] and [31]. In subsequent simulations the parameter of steric shielding
was set to a value of 30, as obviously this parameter has a rather small influence on the specific
separation problem in the examined design space. The estimated values for characteristic charge
(ν) and equilibrium coefficient (keq) lie within reasonable limits compared with literature (e.g.
[41], [42]). The characteristic charges decrease significantly with increasing pH-conditions and the
characteristic charge from ribonuclease A is generally smaller that the characteristic charge of the
two other proteins.

3.3. Predictions based on the mechanistic model. The third step of model-integrated process
development tackles the model-based optimization of the separation gradient and the issue of model
verification. The calibrated mechanistic model was employed for predictions of optimal gradient
elution experiments with respect to the three objectives A, B and C of resolution maximization
and predicitivity control: minimal peak overlap (salt wash excluded/included) and the constraint
on lysozyme to elute 800 seconds after gradient begin respectively. The results of the model-based
optimization of the three-component separation on SP Sepharose FF

TM
with respect to the three

objectives A, B and C are given in figure 7 on the left-hand side. The determined optimal gradients
are given as a dark green line for each objective, the simulated corresponding chromatograms are
depicted as continuous lines (1st peak: ribonuclease A, 2nd peak: cytochrome c and 3rd peak:
lysozyme) and the calculated overlap is marked by the darker areas between the peaks. A com-
parison of the results for objective A and objective B (subfigures 7A and 7B on the left-hand side
of figure 7) reveals that the resolution between the three peaks can be significantly improved by
including the high salt wash step to the elution time. Then, lysozyme is eluting only in the high
salt wash step. In addition, subfigure 7B shows that there exists no gradient in the design space
for complete separation of cytochrome c and lysozyme. The numerically optimized gradient with
respect to objective C is given in subfigure 7C on the left-hand side of figure 7. A gradient with the
initial salt concentration of 0.1 M NaCl reaching the terminal salt concentration of 0.21 M NaCl
in 740 seconds (ca. 18.5 cv) is predicted to set average retention time of lysozyme on 800 seconds
after gradient initiation. Corresponding experimental results are shown on the right-hand side of
figure 7 (ribonuclease A: stars, cytochrome c: dots and lysozyme: triangles). The experimental
data matches the predictions with a high precision. Even details, for example the small peak from
cytochrome c in the salt wash step (subfigure 7B), were predicted correctly. The prediction of
retention time with respect to objective C had a precision of up to 2.2 seconds. The derivation
of upscale predictions based on the calibrated and verified mechanistic model is a consequent and
important step in the concept of model-integrated process development. For upscale predictions,
the bed characterizing parameters of a 1 m Lprepacked HiTrap

TM
column with SP Sepharose FF

TM

[0.025 m bed height, 0.007 m I.D.](GE Healthcare, Little Chalfont, Buckinghamshire, UK) were
inserted into the mechanistic model (see [22]). In figure 8A the model-based upscale prediction of
an optimal gradient considering objective B is shown. The prediction is already transformed to the
usual measurement conditions on an Äkta system: continuous absorbance measurements at 280 and
528 nm. In figure 8B experimentally derived chromatograms for model verification corresponding
to the prediction are given. Again, lysozyme and ribonuclease A are predicted very precisely; the
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Figure 7. Model-based optimized gradients with respect to the objectives A, B
and C (left-hand side) are compared to experimental data for model verification
(right-hand side, 1st peak: ribonuclease A, 2nd peak: cytochrome c and 3rd peak:
lysozyme). The predicted overlap is marked by the darker areas [init. conc. of
proteins: 0.2 · 10−2 M, volumetric flow rate: 5 µL/s].

prediction for cytochrome c deviates slightly in retention time (3 min deviation in 60 min overall
elution time). To quantitatively verify the performance of upscale predictions based on the model
calibrated with miniaturized data, the SMA parameters for the model were estimated once again
based directly on chromatograms from the 1 mL column on an Äkta system (see [23], ribonuclease A:
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A B

Figure 8. Model-based prediction for an optimal gradient (objective B, dotted line)
in 1 mL scale based on model calibration with chromatograms from miniaturized
chromatography (figure 8A, dark continuous peak: overall protein concentration, light
continous peak: cytochrome c concentration) is compared to experimental data (fig-

ure 8B, 1 mL column with SP sepharose FF
TM

, three-component separation performed
on an Äkta system).

optimal value RoboColumn optimal value 1 mL column

gradient volume 18 cv 25 cv
start conc. NaCl 0.14 M 0.15 M
end conc. NaCl 0.16 M 0.16 M

Table 4. Comparison between the prediction for optimal separation gradients for
the three-component separation (objective B) on 1 mL scale. The prediction on
the left-hand side is based on a SMA parameter estimation with chromatograms
from miniaturized chromatography; the prediction on the right-hand side on an SMA
parameter estimation based on chromatograms from 1 mL scale on an Äkta system.

ν = 1.6, keq = 0.28, cytochrome c: ν = 2.8, keq = 0.27, lysozyme: ν = 3.4, keq = 0.14). Conse-
quently, an optimal gradient with respect to objective B could now be predicted with the newly
calibrated model. On the left-hand side of table 4 the prediction for the optimal gradient based on
SMA parameter estimations from miniaturized experiments is given in numbers (see figure 8). On
the right-hand side the prediction based on SMA parameters derived from chromatograms from the
1 mL column on the Äkta system is shown. In both cases, the optimal gradient volumes as well as
optimal initial and terminal salt concentrations were calculated. The comparison shows that the
determined optimal initial and terminal salt concentrations are very similar. The predictions for
the optimal elution gradient volume deviate slightly, but as the gradient is very flat, this deviation
in gradient volume has a rather small influence on the peak resolutions.

4. Discussion

The approach of model-integrated process development in three steps proved to be successful and
flexible, leading to optimized separations and precise upscale predictions. In the first step of model-
integrated process development reasonable porosities (see table 1) and reliable dynamic capacities
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(see table 2) were calculated based on pulse and breakthrough experiments. A new method for
higher data density in miniaturized column experiments was successfully introduced (see figure 3)
and porosity determinations were comparable to the values derived by Susanto et al. [20], whose
results are based on pulse experiments with a selfmade adapter on an Äkta system. Small differences
in the values can be traced back to the use of different measurement approaches and discrepancies
between prepacked column lots. Three column parameters (axial dispersion, lumped film diffusion
coefficient and ionic capacity of the column) had to be determined by additional experiments,
because the density of data points that could be achieved in minaturized processes was still too low
for reasonable calculations. The data quality of the breakthrough curves is slightly better compared
to the curves determined in earlier work by [3]. Still, similar robotic-induced effects in the data,
like concentration decreases due to fraction collection plate changes and significant data scattering
for high protein concentrations were observed (figure 4).

In the second step of model-integrated process development, gradient elution experiments were
performed. These experiments were planned by model-based optimal experimental design with
respect to the estimation of sorption parameters. The experimental plan revealed an linear infor-
mation increase for higher gradient volumes up to a elution gradient volume of 45 cv (figure 5A)
and an increase in information content of two gradient volumes with increasing distance between
their elution volumes. The linear correlation can be explained by a higher number of non-zero
data-points in fractionation data, due to peak broadening for large elution volumes. However, for
elution volumes larger than 45 cv, this broadening causes very shallow and noisy peaks; this might
be the explanation for the stagnating information content beyond this limit. This fact probably
also explains the observed saturation for elution volumes, with a larger distance than 40 cv (fig-
ure 5B). Still, it could be observed that larger distances between elution gradient volumes contain
more information. This is probably due to the increase in variation in chromatographic data with
increasing variation of the elution gradient.

The results from the gradient elution experiments met both targets of the second step of model-
integrated process development: they allowed for a reliable decision on the optimal pH-range for the
separation problem and for the estimation of SMA parameters by an inverse method (table 3), i.e.
the calibration of the mechanistic model on particle level. The elution behavior of the three proteins
was significantly dependent on the pH condition (figure 6). The same behaviour of ribonuclease A,
cytochrome c and lysozyme was shown before in miniaturized and lab scale experiments, for example
in [4] and [23].

As SMA parameters are highly system-dependent (adsorbent, porosities, pH, etc.), they cannot
be compared directly with values from literature. Nevertheless, the parameter estimations in table 3
are reasonable estimations compared to publications from [42] and [41]. According to the theory of
pH-induced binding site variations it is very likely that characteristic charges ν change with different
pH-values (see [43] and [44]). Moreover, it was observed in [22] that for the three model proteins

on SP Sepharose FF
TM

the order relation of characteristic charges correlates with elution order.
Therefore, the closeness of agreement in the characteristic charges for lysozyme and cytochrome c
already indicates the challenge of this separation problem, qualitatively observed in figure 6.

The third step of model-integrated process development tackles the optimization of the separation
gradient based on the completely calibrated model and model verification. The mechanistic model
was employed for predictions of optimal gradient elution experiments concerning three objectives of
resolution maximization and retention time control. The flexibility of mechanistic modeling allowed
for predictions for various objectives without the need of model recalibration, a high gain in comfort
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compared to approaches based on empiric response-surface modeling [23]. Figure 7 revealed the
high predictivity of mechanistic modeling even for small details and the important information that
no gradient exists in this design space for complete separation of cytochrome c and lysozyme. Only
by superimposing predictions and lab results, slight discrepancies between the predicted and actual
cytochrome c peaks were detectable, which can probably be explained by an interim change of the
cytochrome c lot - perhaps a recalibration would have been necessary, if higher precision was desired.
The model-based upscale on a 1 mL column was successful (figure 8). The comparison of optimal
gradient predictions for the 1 mL scale, on the one hand performed based on miniaturized data and
on the other hand performed based on 1 mL data (see table 4) showed very close results and a high
sensitivity of the separation problem with respect to initial and terminal salt concentration of the
gradient.

Although this manuscript deals with a model system of three well known proteins, the establish-
ment of the model-integrated process development for more complex industrial systems is possible
with little additional effort. The presented method of high-throughput protein quantification is gen-
erally applicable to protein mixtures. Furthermore, high-throughput analytics of the fractions like
it is described in [5] and [45] allow for the application of the inverse method for the determination
of SMA parameters.

5. Conclusion

In this paper a new concept for chromatography process development based on high-throughput
data and mechanistic modeling was presented. With the help of a case study, the three steps of
this concept (see figure 1) were demonstrated and discussed. Data from high-throughput screening
on a robotic platform could successfully be employed for model calibration and verification. All
but three parameters (axial dispersion, lumped film diffusion coefficient and ionic capacity) have
been determined or estimated based on minaturized and parallelized pulse and gradient elution
experiments. Model integrated process development proved to be flexible with regard to various
objectives for the optimization process and led to optimal settings with regard to adsorbent choice,
pH condition and elution gradient shape in every case. The efficient and seamless cooperation of
high-throughput screening, modeling and model-based experimental design proved to be successful
leading to optimized separations and resonable upscale predictions. With regard to previously
mentioned model-based robustness analyses and sensitivity studies, this concept opens a promising
way to tackle these issues from the first stages of process development on. The concept of integrated
modeling in combination with the introduced method of high-throughput protein quantification
should now be challenged by industrial separation problems for improvement and validation.
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4 CONCLUSION & OUTLOOK

4 Conclusion & Outlook

In this thesis it was shown that mechanistic modeling in chromatography is a powerful
tool for the optimization and characterization of separation processes. The superiority
of this approach compared to screening approaches, search algorithms and empiric mod-
eling, especially with regard to complex separations of multicomponent mixtures, could
be demonstrated. The application of model-based Design of Experiments resulted into a
more efficient concept of model calibration by inverse methods; the results revealed, that
for the calibration of the model-embedded sorption equations (SMA model), the results
from a few designed gradiental experiments are equally predictive than the established
approach based on laborious experimental methods. All designed experiments were easily
included into process development routines and only a few additional experiments had
to be undertaken for the determination of model parameters like ionic capacity or axial
dispersion. It could be demonstrated that the model can be calibrated based on minia-
turized and parallelized high-throughput screening experiments from a robotic platform.
Thus, despite of the lower data quality, even experiments from this very early step of
process development are fit for model-integrated process optimization.

Already calibrated chromatography models were successfully employed for the opti-
mization of multicomponent separation with various shapes of elution gradients. Fur-
thermore it was shown that the model can be employed for robustness analyses and owns
a high and precise predictivity not only in the primarily examined design space but also
for upscale predictions.

During the work on this thesis, related issues arose, that could not be considered
due to a restrictive time frame and the intention to focus on the main topic; the three
most interesting of these issues will be mentioned in this outlook. Although there is
a lot of research on sorption processes in chromatography, the mechanistic modeling of
these processes should still be looked on in more detail. It would be of interest to know,
how explicitly the SMA parameters really explain ad- and desorption in a mechanistical
way, like it is assumed in the community, and how the effects of the experimental pH
conditions could be integrated into this sorption model. Perhaps even new approaches
have to be developed in order to do this, because molecular dynamic simulations definitely
show changes in protein confirmation and binding positions for different pH conditions.
The connection between mechanistic modeling and molecular dynamic simulations could
therefore lead to an even more predictive and mechanistic model for sorption processes.

With regard to the findings in this thesis, experimental design should more intensely
be applied in the field of chromatography. The issue of designing experiments, that con-
tain maximal information with respect to specific objectives, let it be model calibration
or the optimization of a separation step, should be adressed thoroughly in various rele-
vant applications to reveal the convincing advantages. Furthermore, a consequent use of
Experimental design would lead to interesting strategies for process control, for example
for the optimal choice of fractionation time steps.

A third issue of interest poses the expansion of mechanistic models for chromatography
to other chromatography modi. As explained in the introduction, in pharmaceutical
industry mostly two or three orthogonal chromatography steps are used for purification. A
model allowing for the simulation and predictions for a complete series of chromatography
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steps of different modi would be a valuable tool in designing industrial multistep processes.
This model should also allow for uncertainty propagation analyses. Then, based on inverse
methods, failed experiments could be examined concerning the reason of the failure,
what would lead to a real improvement in (biopharmaceutical) process development and
control.
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5 ABBREVIATIONS AND SYMBOLS

5 Abbreviations and Symbols

abbreviation unit definition
cv column volume
DoE design of experiments
DWP deep well plate
HTS high-throughput screening
IEC ion exchange chromatography
LiHA liquid handling of the robotic station
PDAE partial differential and algebraic equations
RSM response surface modeling
SMA steric mass action

ca,s M salt concentration at gradient begin
ce,s M salt concentration at gradient end
ci mg ml-1 concentration of component i in the mobile phase
ci,0 mg ml-1 concentration of component i at column inlet
ci,p M concentration of component i in the pores (particle level)
ci,sim mg ml-1 simulated concentration of component i
cprot mg ml-1 concentration of protein stock solution
csalt M salt concentration
cp objective value/response at a DoE-center point
Dax m2s-1 axial dispersion
fRSM response surface model function
Keq ml mg-1 equilibrium coefficient (Langmuir model)
ki,eff ms-1 effective film transfer coefficient for component i

ki,ads s mM-ν adsorption coefficient of component i (SMA model)
ki,des s mM-ν desorption coefficient of component i (SMA model)
ki,eq equilibrium coefficient of component i (SMA model)
LC m column length
Q quotient for the comparison of relative standard deviations

from simulated and experimental results
qi M concentration of component i on adsorbent particle surface
qi,sim mg ml-1 simulated concentration of component i on adsorbent par-

ticle surface
qmax mg ml-1 saturation coefficient (Langmuir model)
R2 coefficient of determination
rp m particle radius
rep reproducibility
resP1,P2 resolution between peaks belonging to the proteins P1 and

P2
uint ms-1 interstitial flow velocity
V0 ml breakthrough volume at 10% of a nonretarded tracer
Vads ml adsorbent volume
VB ml breakthrough volume at 10% of a protein component
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Vbuff ml volume of buffer solution
VC m3s-1 column volume
Vd ml dead volume
VG ml gradient volume
Vprot ml protein solution volume
VR ml retention volume
Vstor ml storage buffer volume
Vsup ml supernatant volume

β phase ratio
εads ml independent and normally distributed error on the adsor-

bent plaque volumes
εc column porosity
εcprot ml independent and normally distributed error on the concen-

tration of the protein stock solution
εp particle porosity
εpipp ml independent and normally distributed error on the LiHA

pipetting
εstor ml independent and normally distributed error on the pipet-

ting of storage buffer
εt total column porosity
Λ M ionic capacity
µP ml first central moment of the peak belonging to protein P
νi characteristic charge of component i (SMA model)
σi steric factor of component i (SMA model)
σP squareroot of the second central moment of the peak be-

longing to protein P
σrel,ads relative standard deviation of the adsorbent plaque volume
σrel,cprot relative standard deviation of the protein stock solution

concentration
σrel,meas relative standard deviations from the results of the exper-

imental binding studies
σrel,pipp relative standard deviation of the LiHA pipetting
σrel,sim relative standard deviations of the results of the simulated

binding studies
σrel,stor relative standard deviation of the storage buffer pipetting
θest parameters that will be estimated in the least squares op-

timization solving the inverse problem
θfix parameters that are fixed during the least squares opti-

mization solving the inverse problem
θgrad parameters/factors that describe the unique shape of a elu-

tion gradient
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