
Towards A Generic Quality Optimisation Framework
for Component-Based System Models

Anne Koziolek and Ralf Reussner
Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, Germany

{koziolek,reussner}@kit.edu

ABSTRACT
Designing component-based systems (CBS) that exhibit a
good trade-off between multiple quality criteria is hard. Even
after functional design, many remaining degrees of freedom
of different types (e.g. component deployment, component
selection, server configuration) in the CBS span a large, dis-
continuous design space. Automated approaches have been
proposed to optimise CBS models, but they only consider
a limited set of degrees of freedom, e.g. they only optimise
the selection of components without considering the deploy-
ment, or vice versa. We propose a flexible and extensible for-
mulation of the design space for optimising any CBS model
for a number of quality properties and an arbitrary number
of degrees of freedom. With this design space formulation,
a generic quality optimisation framework that is indepen-
dent of the used CBS metamodel can apply multi-objective
metaheuristic optimisation such as evolutionary algorithms.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Architecture

General Terms
Design, Performance, Reliability

1. INTRODUCTION
One benefit of modelling component-based systems (CBS)

is the ability to quantitatively analyse quality properties,
such as performance or reliability, based on the CBS model
during early design stages. This approach avoids cost for late
life-cycle performance/reliability fixes and architectural re-
designs. Several methods (e.g. UML, SOFA [3], Palladio [2])
allow to model a CBS including static structure, dynamic
behaviour, and deployment to resources. Such models are
annotated with estimated or measured quality annotations
(e.g. using UML MARTE for performance) and analysed for
the different quality properties (e.g. using transformations
to queueing networks).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

The models capture the design decisions relevant for the
quality properties. For example, the component deploy-
ment, the selection of components, and the server and mid-
dleware configuration (such as server speed, communication
settings and load balancing) are degrees of freedom that all
affect performance and reliability properties. None of these
degrees can be considered separately, all together have to be
considered to accurately predict the quality properties.

Researchers have proposed rule-based and metaheuristic-
based solutions for automatically improving the CBS model
for quality properties [1, 8]. However, they all are limited
to a certain set of considered degrees of freedom (e.g. only
component selection or only component deployment) and
some even consider only a limited set of quality properties or
a single quality property. Thus, they cannot provide the best
solution for the full design problem, which consists of more
degrees of freedom whose influence on the quality properties
cannot be separated.

The contribution of this short paper is a generic, flexible,
and extendible formulation of the design space for optimis-
ing CBS models for a number of quality properties. We
propose a novel metamodel for describing degrees of free-
dom (DoF) for any CBS metamodel (e.g. SOFA or Palladio)
that uses the OMG EMOF [6] as metametamodelling lan-
guage 1. Then, given an input CBS model, the degrees of
freedom instances of the input model can be automatically
derived. The degrees of freedom instances span a design
space, in which an optimisation problem is automatically
formulated. Then, a generic tool that is independent of the
CBS metamodel can apply existing multi-objective optimi-
sation approaches such as evolutionary optimisation. While
we have already used the concept of degrees of freedom in
our PerOpteryx approach [4], the generic concepts and their
applicability to any CBS metamodel have not been discussed
in detail in previous publications.

The benefit of this work is an increased understanding of
the quality optimisation problem for CBS. As a result, re-
searches only have to model the DoF of their CBS meta-
model to get a powerful optimisation approach. Then,
this optimisation helps software architects to design high-
quality CBS models by automatically determining the opti-
mal trade-off models the architects can choose from.

The remainder of this paper is structured as follows. Sec. 2
presents related work. Sec. 3 presents our DoF metamodel
and Sec. 4 presents the resulting flexible problem formu-

1We chose EMOF here because it is a widespread metameta-
modelling language (as MOF it is the metametamodel of
UML) and has extensive tool support.

lation that supports any quality property. Sec. 5 briefly
presents initial feasibility validation and further validation
plans. Sec. 6 concludes.

2. RELATED WORK
Several approaches have been presented to automati-

cally improve software architecture models. Rule-based ap-
proaches (e.g. [8] try to identify problems in the model (e.g.
bottlenecks) based on predefined rules and apply predefined
solutions for these problems. Existing rule-based approaches
only focus on one quality property. Thus, these approaches
do not support trade-off decisions.

Metaheuristic-based approaches use metaheuristic search
techniques (e.g. evolutionary algorithms) to find better de-
sign models. Many approaches have been suggested to works
have been suggested to optimise specific aspects of CBS,
e.g. component deployment or component selection. Three
general frameworks to apply metaheuristics on CBS mod-
els have been proposed. The ArcheOpteryx framework [1]
has a generic part that can be applied to any CBS opti-
misation problem. The example case study optimises de-
ployment and thus considers the mapping of components to
servers. Maswar et al. [5] suggest a similar framework, and
provide more detail on the model transformation to gener-
ate new architectures. However, both approaches do not
discuss the resulting design space, so they leave the optimi-
sation problem formulation to software architects. Recently,
a more general, model-driven framework for design space ex-
ploration has been suggested in [7]. A similar notion of a
design space is presented. However, the quality property
evaluation seem to be restricted to simple arithmetic func-
tions, so that complex properties such as performance could
not be considered.

Our optimisation technique PerOpteryx [4] optimises Pal-
ladio models for performance, reliability, and costs. The
degree of freedom concept described in this paper is par-
tially already implemented in PerOpteryx, but it has not
been discussed in detail in previous publications.

3. DOF OF CBS MODELS
Our DoF metamodel can be applied to any CBS meta-

model (e.g. SOFA or Palladio): Generic degrees of freedom
(GDoF) are defined specifically for this CBS metamodel us-
ing our proposed metamodel. The GDoF formalise how com-
ponent deployment is changed or how servers can be config-
ured in this CBS metamodel. Then, given the GDoF and an
input model of a CBS system, a generic, metamodel-agnostic
software tool (described in Sec. 4) can automatically detect
instances of the degrees, which define the design space, and
instantiate the optimisation problem.

Sec. 3.1 defines the generic DoF metamodel (shown in
Fig. 1). Sec. 3.2 and Sec. 3.3 give examples for generic de-
grees of freedom and degree of freedom instances.

3.1 Degree of Freedom Metamodel
A Generic Degree of Freedom (GDoF) g of a CBS meta-

model CMM is a production rule to instantiate degrees
of freedom of a certain type (e.g. component deployment,
server configuration, component selection). The GDoF de-
fines a set of changeable metamodel elements and how these
can be changed. For each changeable metamodel element, a
ChangeableElementDescription (CED) defines which Prop-

GenericDegreeOfFreedom

name : String

ChangeableElementDescription

EMOF::OperationGDoFRepository

EMOF::Class

SelectionRuleValueRule

Key:
General GDoF class: GDoF OCL class: EMOF class: DoFI class:

.

EMOF::Property

EMOF::Element

....

DegreeOfFreedomInstance

*
*

- addedElements
1

*

- changeableElementDescriptions

1

1 - valueRule

*

*

- interactionConstraints

1
0..1 - selectionRule

1

*
- gdofs

*
1

- primaryChangeable

*

1

- changeable

0..1 + class

*

*1

+ gdof *

1..*

- /designOptions

*

1
- primaryChanged

Figure 1: DoF Metamodel for EMOF-based CBS
Metamodels

erty of the CBS metamodel is changed (CED.changeable).
One of the ChangeableElementDescriptions is marked as
the primary changeable element g.primaryChangeable.

To determine how the metamodel elements can be
changed, a CED defines OCL queries that describe the el-
ements that are changed together (g.selectionRules) and
OCL queries that describe all possible values that these ele-
ments can take (g.valueRules). The selection rules can be
static or based on another selected instance of the CED. In the
latter case, the selection rule are defined in the OCL context
of the selected instance. The value rule of a CED c describes
the set of all potential new values the CBS metamodel Prop-
erty c.changeable can take. The value rules are evaluated
in the order of the list g.changeableElementDescription,
so the rules may refer to new values of preceding CEDs. The
results of the OCL queries may be both instances of CBS
metamodel classes (e.g. a component) or primitive data type
values (e.g. 2.5 for the description of a processor speed in
GHz). Details of the OCL query definition (e.g. how the
OCL context is defined and how helper definitions can be
added) have been omitted in Fig. 1.

Additionally, a GDoF refers to metamodel con-
straints that may be violated by produced candidates as
g.interactionConstraints and names which type of model
elements it may add or remove (g.addedElements).

Some GDoF have been identified for CBS in general [4],
but their formal definition as an instance of the described
DoF metamodel that allows automated optimisation is al-
ways metamodel-specific due to the OCL queries. Addi-
tionally, system-specific GDoF can be specified in a similar
format. Thus, the optimisation can search all degrees of
freedom the software architect is interested in and that can
be expressed in the models.

A Degree of Freedom Instance (DoFI) d of a CBS
model M with respect to GDoF gdof is the instantiation
of a GDoF for a specific model element d.primaryChanged

in M. d.primaryChanged is an instance of its G’s primary
changeable element g.primaryChangeable. A DoFI also de-
scribes the set of possible values that these elements can
take d.designOptions, which are determined by the GDoF’s
value rules for these elements. The elements in the design
option set can be model elements, primitive values (encapsu-
lated in an EMOF Element) or sets thereof. The values for
the other changeable elements g.changeable can be derived
with g’s value rules.

Repository ResourceEnvironment

Mapping

System

Model

-resourceType : ResourceType

-noOfCores : int

Server

-requiredResourceType : ResourceType

-singleThreaded : bool

Component

1
11

*

*

*
* *

1 *

model resourceEnvironment

availableServers
toServer

mapped

Component

system

-CPU

-HDD

«enumeration»

ResourceType

«invariant» {self.component.singleThreaded = true implies self.toServer.numberOfCores = 1}

Figure 2: Example Metamodel

Then, the design space O for a set of DoFI D and an
initial architecture model M is the Cartesian product of the
design option sets of the DoFI:

OM,D := d1.designOptions× ...× d|D|.designOptions

A candidate vector is a vector v ∈ O and represents a can-
didate CBS model. Because the design space may be huge,
it usually cannot be explicitly enumerated and analysed by
exhaustive search. Instead, the candidate vectors can be
used as genomes in evolutionary optimisation.

3.2 Example GDoF model
As an example, consider the simplified metamodel for de-

scribing component deployment in Fig. 2. The metamodel
only describes deployment as a mapping from components
(from a repository) to servers (from a resource environment).
For the sake of illustration, let us additionally assume that
there are components that can only be executed on servers
with a single core. These components have the property
Component.singleThreaded set to true (see OCL constraint
in the figure). A possible generic degree of freedom gdepl is
the deployment of components. A second GDoF gcores is to
vary the number of cores of a server.

The primary changeable elements are
gdepl.primaryChanged.changeable = {Mapping.toServer},
gcores.primaryChanged.changeable = {Server.noOfCores}.
No more elements are changed, so no further CED are needed.

No selection rules are required for gdepl and gcores; any in-
stances of Mapping.toServer and Server.numberOfCores can
be changed: Thus, all selectionRule = ∅. Selection rules
are for example required in metamodels that model com-
ponents and connectors explicitly: Then, if a component is
replaced, both the reference to the component implementa-
tion and the connectors in the system need to be updated.

In our example, a component can be mapped to all
modelled servers from the resource environment, with
the restriction that the server has to have a resource-
Type with the same value as the component’s require-
dResoureType. This description of possible values can
be expressed with the following OCL query to se-
lect the allowed value for a Mapping.toServer property:
gdepl.primaryChangeable.valueRule =

context Mapping
s e l f . system . model . resourceEnvironment

. a v a i l a b l e S e r v e r s−>s e l e c t (resourceType =
s e l f . mappedComponent . requiredResourceType)

For gcores, Server.numberOfCores is a property whose type
is an EMOF::DataType. For the generic degree of freedom on
the metamodel level, any number of cores could be possible,
so all integers are possible. This can be restricted later for
a concrete system at hand (cf. Sec. 4.1), because no servers
with e.g. a million cores exists nowadays.

Server S1

BookingSystem

[Cost = 200 Units]

Server S2

Payment

System

[Cost = 200 Units]

Server S3

Plan

Journey

Resource Demand = 2E+9 CPU Instr., Failure Probability = 0.0001

Call

IBooking.book

Call IEmployee Payment.reimburse

Processing Rate = 1.75E+9 Instr./Sec

MTTF = 300 000 hours

MTTR = 6 hours

Cost = 170.4 Units

Processing Rate = 2E+9 Instr./Sec

MTTF = 250 000 hours

MTTR = 3 hours

Cost = 230.5 Units

Processing Rate = 1.5E+9 Instr./Sec

MTTF = 275 000 hours

MTTR = 4 hours

Cost = 154.7 Units

requestType == book

request Type == reimburse

Business

TripMgmt

[Cost = 150 Units]

User Population

= 25

Think time = 5.0s

P(isBook) = 0.8

P(isBankPayment)

= 0.4

Failure Probability

= 0.0002

Latency = 0.001sec

IBooking

IEmployee

Payment

IExternal

Payment

IBusiness

Trip

<<RDSEFF>>

IBusinessTrip.plan

<<LinkingResource>>

Resource Type

= CPU

Resource Type

= CPU

Resource Type

= CPU

<
<

im
p

le
m

e
n

ts
>

>

Figure 3: Initial Model of the Example System

gdepl and gcores interact, because certain combination of
values of their design option sets are invalid. A single-
threaded component must not be deployed to a server with
multiple cores. Thus, the invariant shown in Fig. 2 is refer-
enced here. In both GDoF, addedElements = ∅.

3.3 Example DoFIs in Palladio
Fig. 3 shows an example CBS model modelled in Palla-

dio. Let us assume that we have an alternative component
QuickBooking that can replace BookingSystem and that we
have 13 different processor configurations P1, ..., P13 with
different processor speed and costs. In Palladio, Assem-
blyContexts are component instances referencing a compo-
nent type from the repository. ResourceContainers repre-
sent servers. AllocationContexts map AssemblyContexts to
servers (see [2] for details). Table 1 shows the DoFI for the
example model. The initial model, for example, has the can-
didate vector (S1, S2, S3, P4, P5, P3, BookingSystem) (in
the order of table 1).

Another candidate that deploys the BusinessTripMgmt

AssemblyContext to server S2 and uses QuickBooking in-
stead of BookingSystem has the vector of choices (S2, S2,
S3, P4, P5, P3, QuickBooking). Note that the choice for
server S1 with value P4 has no effect in this candidate, be-
cause no component is deployed to server S1. The operators
of evolutionary optimisation approaches can be adjusted so
that they do not vary such non-coding choices (i.e. genes),
thus saving evaluation effort. Similarly, other composite de-
grees of freedom can be handled.

4. AUTOMATED OPTIMISATION
In this section, we describe how the design space is for-

malised generically in EMOF as a combination of degrees of
freedom so that a software tool can automatically instanti-
ate the optimisation problem and search it to improve the
quality attributes of interest.

Sec. 4.1 explains how degree of freedom instances are au-
tomatically determined for a given input model based on
given generic degrees of freedom. Sec. 4.2 defines the result-
ing optimisation problem.

Generic
degree of
freedom

Degree of freedom instance
Primary Changed Element of
the DoFI

Design option
set of the DoFI

Allocation
AllocationContext.resource-
Container of BusinessTripMgmt

{S1, S2, S3}

AllocationContext.resource-
Container of BookingSystem

{S1, S2, S3}

AllocationContext.resource-
Container of PaymentSystem

{S1, S2, S3}

Resource
Selection

ResourceContainer.active-
ResourceSpecifications of
Server1 for CPU

{P1, ..., P13}

ResourceContainer.active-
ResourceSpecifications of
Server2 for CPU

{P1, ..., P13}

ResourceContainer.active-
ResourceSpecifications of
Server3 for CPU

{P1, ..., P13}

Component
Selection

AssemblyContext encapsulated-
Component for IBooking

{Booking-
System, Quick-
Booking}

Table 1: DoFI definitions for the example model

4.1 DoF Instantiation
The degree of freedom instances can be automatically in-

stantiated for a given architecture model at hand with the
production rules of the GDoF. Then, the software architect
can review and potentially adjust the determined DoFI.

The input is an architecture model, i.e. set of model ele-
ments M , and a set of GDoF G. The selection rules of the
GDoF determine the primary changed elements of a DoFI
and value rules determine the design option sets. Not all
DoFI are instantiated in the initial model M : If a DoFI d
adds elements, additional DoFI(s) d1, ..., dn may be instan-
tiated in intermediate models. We say that d opens up new
DoFIs. We can ignore here that other DoFI(s) d′1, ..., d

′
n may

become irrelevant for an intermediate model if a model el-
ement is removed by a DoFI d′. In both cases, the DoFIs
d1, ..., dn and d′1, ..., d

′
n depend on d and d′, respectively, be-

cause they have only effect if d and d′, respectively, have a
certain value.

The DoFI are instantiated for a architecture model at
hand with the algorithm shown in a Java-like pseudo code
below. The function query evaluates a OCL query for the
passed model element(s). The statement M(p ← v) for a
model M, an instance of a property p and a value v de-
notes the model transformation that property instance p is
assigned the new value v.

For the sake of readability of the algorithm, we assume
that G is ordered so that a GDoF g1 that opens up new
degrees of GDoF g2 precedes g2 in G.

1// input: CBS model M, set of GDoF G.

2Set determinedDoFIs = new Set(); // result set

3Set addedModelElements = new Set();

4for (g in G) {
5Set ppe; //potential primary changed elements

6// select instances of primary changeable element

7if (g.primaryChangeable.selectionRule != null) {
8ppe = query(g.primaryChangeable.selectionRule, M);

9ppe.add(query(g.primaryChangeable.selectionRule,

10addedModelElements));

11} else { // select all instances in model

12ppe = M.getAllInstancesOf(g.primaryChangeable

13.changeable.class);

14ppe.add(addedModelInstances

15.getAllInstancesOf(g.primaryChangeable

16.changeable.class));

17} // end else

18while (ppe.size() != 0){
19Set newElements = new Set();

20for (pe in ppe){ // pe: primary changed element

21Set values = query(g.primaryChangeable.valueRule,pe);

22if (values. size () > 1) {
23DoFI d = new DoFI();

24d.primaryChanged = pe;

25d.designOptions = values;

26determinedDoFIs.add(d);

27// if g opens up new DoFI because of additions,

28// apply d to check for new model elements

29if (g.addedElements.size > 0){
30for (v in d.designOptions){
31Model newM = M(d.primaryChanged <− v);

32newElements.add(additionalElements(newM,M));

33} }}} // end for, if , if , for

34ppe.clear ();

35// check if g opened up new instances of itself

36// and if yes, instantiate them.

37if (newElements.size()>0){ // apply g itself again.

38if (g.primaryChangeable.selectionRule != null) {
39ppe.add(query(g.primaryChangeable.selectionRule,

40newElements));

41} else {
42ppe.add(newElements.getAllInstancesOf(

43g.primaryChangeable));

44}} // end if if

45addedModelElements.add(newElements);

46}} // end while, for g in G

47return determinedDoFIs;

For each GDoF g, we traverse the architecture model M
and collect all instances of primary changeable element: If
there is a selection rule for the primary changeable element,
it is executed on M and on model elements opened up by
previous GDoF (stored in the list addedModelElements). If
there is no selection rule for the primary changeable element,
all instances of the primary changeable element are selected
(lines 7–16).

Then, for each determined potential primary changeable
element, the value rule is executed to determine all possible
values. If the set of possible values is larger than one, a new
DoFI is instantiated (lines 21–26).

If the GDoF g opens up new degree of freedom instances
because of added model elements, the added model elements
are stored so that later GDoF can check them for instantiat-
ing DoFI, too (lines 29–32). Additionally, the selection rule
of the current GDoF is repeated to find additional instan-
tiations (lines 37–44). The filled set of DoFI is returned at
the end.

After determining all DoFI, the software architect can re-
view them. He may want to define more specific subsets of
allowed values for primitive types, or to exclude values that
are not wanted from the design option set. Additionally, he
can consider to specify and add system-specific degrees of
freedom by defining them in the DoF metamodel.

Note that the values of the other, non-primary changeable
elements are not relevant for determining the design space,
because they can be determined from the primary changed
element and the GDoF’s rules.

We can assume that there is a finite number of DoFI for a
given model. Even if new DoFI is opened up, it is not real-
istic that these are infinitely many: We can assume that the
number of components on the application level is finite, i.e.
there are only a limited number of components that provide
business logic in the system. New “technical” components
such as caches or load balancers may be added by GDoFs,
though, because they do not affect functionality. Here, we
can assume that at most one“technical” component instance

is added per components with business logic and “technical
component” GDoF type, so the number of DoFI remains
finite. Then, all candidates in the design space can be ex-
pressed by a vector of fixed length |D|.

4.2 Optimisation Problem Formulation
An optimisation problem is defined for a specific CBS

model M and a set of DoFI D derived for M , which to-
gether span the design space O.

The evaluation of a candidate vector v for a quality cri-
terion q is realised by first applying the candidate vector
to the initial model in a model transformation using the
rules of the GDoF and the DoF, resulting in the candidate
model Mv. This model can be fed into the standard quality
prediction approaches, such as the SimuCom simulator for
Palladio [2] and mean response time. Thus, we can define a
quality evaluation function for q from the design space O to
the possible values of q, i.e. the domain of q, denoted Vq as
Φq : O → Vq.

Then, Φq(v) denotes the evaluated value of a quality cri-
terion q for candidate CBS model Mv, v ∈ O. For example,
when evaluating the mean response (mrt) time of a candi-
date, Vmrt = R+. For a specific candidate Mv, the mean
response time in seconds might evaluate to Φmrt(v) = 5
sec. When evaluating the probability of failure on de-
mand (POFOD) of a candidate, Vpofod = [0, 1]. For ex-
ample, for a specific candidate Mv, Φpofod could evaluate to
Φpofod(v) = 0.005.

Note that we assume that information for all quality pre-
diction techniques is available in the model M , so M has
to be expressive enough to be analysed directly or be auto-
matically further transformed to specialised analysis models
like queueing networks. Additionally, note that a candidate
may also represent an invalid CBS model. For example, the
models conforming to the metamodel described in Sec. 3.2
are invalid if a single-threaded component is deployed to a
server with more than one core. For these, let Φq return an
undefined value undef, which is the worst possible value.

To define an optimisation problem, we require an order on
the quality criteria’s domains. Let ≤q denote a total order
on the quality criterion domain Vq for which

a ≤q b⇔ a is better than or equal to b in terms of q

with a, b ∈ Vq. For example, a response time of 2 seconds
is better than a response time of 5 seconds. For availability,
0.9 is better than 0.8.

In multi-objective optimisation, the goal is to find the set
of Pareto-optimal candidates (also called Pareto front), i.e.
the optimal trade-off candidates. A candidate is Pareto-
optimal if there is no other candidate that has better values
in all considered quality criteria.

To define the multi-objective optimisation problem, we
combine the set Q of all considered quality criteria in a
single, multi-valued objective function Φ : O → Πq∈QVq.
Let minQ denote Pareto optimisation with respect to all
≤q, q ∈ Q. Then, the multi-objective optimisation problem
can be defined as

OptQ : min
v∈O

ΦQ(v)

Evolutionary algorithms are a scalable method to solve
such problems, because they only evaluate a fraction of the
design space. However, they can only approximate the true
Pareto front. Based on the resulting Pareto front, the archi-
tect makes a trade-off decision and chooses the most suitable

candidate, e.g. by weighting the quality criteria or by ap-
plying more sophisticated decision making techniques.

5. VALIDATION
We have studied the feasibility of our approach by im-

plementing a CBS-metamodel-agnostic transformation that
reads in a GDoF model for component selection in Palladio,
a candidate vector, and an initial Palladio model, and ap-
plies the chosen values to produce a changed CBS model.
This transformation is independent of the used CBS meta-
model (in our case Palladio), as the transformation handles
the model only using EMF (the Eclipse version of EMOF)
reflection capabilities. The feasibility and advantages of soft-
ware architecture optimisation have been validated in our
previous work [4]. We plan to integrate the generic trans-
formation into our (yet Palladio-specific) optimisation ap-
proach PerOpteryx to enable the optimisation of CBS mod-
els defined in other CBS metamodels, e.g. SOFA.

6. CONCLUSIONS
This paper suggests a generic problem formulation for op-

timising CBS models for several quality properties. Generic
degrees of freedom can be specified for a given CBS meta-
model (e.g. SOFA or Palladio) with the DoF metamodel
presented in this work. Then, the optimisation problem can
be automatically derived and solved by a CBS-metamodel-
agnostic optimisation framework. Thus, if models are avail-
able, a holistic optimisation of all factors influencing the
quality properties of interest of a CBS is possible.

Our problem formulation can cope with model changes
that open up new degrees of freedom, by considering this
at problem instantiation time and using a design space with
fixed number of dimensions with non-coding regions in can-
didate vectors. The candidate vector is automatically trans-
formed to a candidate model based on the information of the
GDoF, so that quality prediction approaches can evaluate it.

As future work, we plan to extend our current approach
PerOpteryx to fully support the described DoF metamodel
and thus become independent of Palladio. Additionally, we
will model the DoF of other CBS metamodels such as SOFA.

7. REFERENCES
[1] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya.

Archeopterix: An extendable tool for architecture optimization
of AADL models. In Proc. of MOMPES, pages 61–71. IEEE CS,
2009.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance prediction. J. of
Systems and Software, 82:3–22, 2009.

[3] T. Bures, M. Decky, P. Hnetynka, J. Kofron, P. Parizek,
F. Plasil, T. Poch, O. Sery, and P. Tuma. CoCoME in SOFA. In
The Common Component Modelling Example, volume 5153 of
LNCS. Springer, 2008.

[4] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner.
Automatically improve software models for performance,
reliability and cost using genetic algorithms. In Proc. of
WOSP/SIPEW ’10, pages 105–116. ACM, 2010.

[5] F. Maswar, M. R. V. Chaudron, I. Radovanovic, and
E. Bondarev. Improving architectural quality properties through
model transformations. In Software Engineering Research and
Practice, pages 687–693, 2007.

[6] Object Management Group (OMG). Meta Object Facility
(MOF) Core Specification – Version 2.0, January 2006.

[7] T. Saxena and G. Karsai. MDE-based approach for generalizing
design space exploration. In MODELS 2010, volume 6394 of
LNCS, pages 46–60. Springer, 2010.

[8] J. Xu. Rule-based automatic software performance diagnosis and
improvement. In Proc. of WOSP’08, pages 1–12, New York,
NY, USA, 2008. ACM.

