
Experience Building Non-Functional Requirement Models
of a Complex Industrial Architecture

Daniel Dominguez Gouvêa, Cyro de A. Assis D. Muniz, Gilson A. Pinto
Chemtech a Siemens Company, Rua da Quitanda 50, RJ 20011-030, Brazil

Alberto Avritzer
Siemens Corporate Research

755 College Road East, Princeton, NJ 08540

Rosa Maria Meri Leão, Edmundo de Souza e Silva
Federal University of Rio de Janeiro, COPPE, RJ 21941-972, Brazil

Morganna Carmem Diniz
Federal University of the State of Rio de Janeiro, RJ, Brazil

Luca Berardinelli
University of L’ Aquila, Italy

Julius C. B. Leite
Universidade Federal Fluminense, Niterói, Brazil

Daniel Mossé
University of Pittsburgh, Pittsburgh, PA

Yuanfang Cai, Mike Dalton
Drexel University, Philadelphia, PA

Lucia Kapova, Anne Koziolek
Karlsruhe Institute of Technology, Karlsruhe, GE

ABSTRACT
In this paper, we report on our experience with the application of
validated models to assess performance, reliability, and adaptabil-
ity of a complex mission critical system that is being developed to
dynamically monitor and control the position of an oil-drilling plat-
form. We present real-time modeling results that show that all tasks
are schedulable. We performed stochastic analysis of the distribu-
tion of tasks execution time as a function of the number of system
interfaces. We report on the variability of task execution times for
the expected system configurations. In addition, we have executed
a system library for an important task inside the performance model
simulator. We report on the measured algorithm convergence as a
function of the number of vessel thrusters. We have also studied the
system architecture adaptability by comparing the documented sys-
tem architecture and the implemented source code. We report on
the adaptability findings and the recommendations we were able to
provide to the system’s architect. Finally, we have developed mod-
els of hardware and software reliability. We report on hardware
reliability results based on the evaluation of the system architec-
ture. As a topic for future work, we report on an approach that we
recommend be applied to evaluate the system under study software
reliability.

1. INTRODUCTION
In this paper, we present our experience with the application of

performance, reliability, and architecture modeling approaches to
the assessment of a Dynamic Positioning System (DPS) architec-
ture. The Dynamic Positioning System (DPS) under study is a soft-
ware prototype that has been in development at Siemens-Chemtech
for several years and is targeted to be deployed to control large
mission-critical vessels. Specifically, it is being designed to be de-
ployed for monitoring and controlling deep-water oil-drilling ves-
sels. These systems have very stringent performance and reliability
requirements that need to be demonstrated prior to obtaining the re-
quired quality certifications. Therefore, modeling of performance
and reliability is a very important project objective.

The main contribution of this paper is the presentation of a de-
tailed experience report of the application of several complemen-
tary performance, reliability and adaptability models to the archi-
tecture assessment of a complex mission-critical system.

In a companion paper [11], we have presented a new architec-
ture review process that used a globally distributed review team
to perform architecture risk assessment of this Dynamic Position-
ing System (DPS). The DPS uses the vessel’s thrusters to control
the vessel position and heading. We employed a team of experts
to identify and categorize the architecture risks related to the per-

formance, reliability and adaptability non-functional requirements.
The results presented in [11] were based on teleconference discus-
sions and face-to-face interviews of the architects and domain ex-
perts.

In contrast, in this paper we present experimental results that
were obtained by modeling performance, reliability and adaptabil-
ity using data derived from the implementation of the DPS system
architecture. Specifically, the performance modeling results pre-
sented in this paper were based on actual measurements performed
on the implemented software prototype. The measurement results
were analyzed and used to calibrate the models. In one instance,
the actual implemented software library was executed inside the
simulation model. The reliability modeling results presented for
the hardware reliability were based on the analysis of the system
architecture using hardware failure rates obtained from the hard-
ware vendors. In contrast, for the software reliability modeling
approach, no data was yet available to instrument the model and
therefore, we only present the approach to be used on future ex-
periments. The adaptability modeling approach was performed by
generating Design Structure Matrixes (DSMs) from the Enterprise
Architect (EA) documentation tool and from the actual DPS proto-
type source code.

In summary, we have built several models to assess different as-
pects of the DPS architecture. These models were instrumented
by measuring the performance of parts of the implemented soft-
ware. The execution of the models provided both positive and neg-
ative feedback to the project. As a result of this effort, the project
learned that the tasks as implemented could be proven to be schedu-
lable and that the sensitivity analysis showed that the system would
perform well even for vessels with a larger number of thrusters.
The evaluation of convergence characteristics of the thruster alloca-
tion under six different scenarios was beneficial as it showed good
convergence for the six real scenarios that were designed by the
domain experts. The difference in convergence behavior for differ-
ent number of thrusters, indicates a need to test additional scenar-
ios before a production version of the DPS system is certified for
production deployment. The framework developed for the thruster
allocation evaluation is very efficient and could be used to test hun-
dreds of scenarios. The adaptability assessment evaluation uncov-
ered several discrepancies between documentation and implemen-
tation. We were able to provide good feedback to the project about
the need to continuously maintain the architecture documentation
up to date. The software reliability modeling approach was devel-
oped and is presented as a topic for future work, as for accurate
software reliability assessment extensive failure data collection is
required.

The outline of the paper is as follows. In Section 2 we present
an overview of the Dynamic Positioning System architecture and
the information flow from the sensors to the thrusters. We describe
the most important task types, their responsibilities, and how these
tasks are activated. In Section 3 we present the three different ap-
proaches that were used to analyze system performance: worst case
analysis Real-Time modeling, Stochastic Modeling, and Tangram-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE 2011 March 14-16, 2011, Karlsruhe, Germany
Copyright 2011 ACM 978-1-59593-873-2/08/06 ...$5.00.

II actual implementation simulation modeling. The objectives of
the three different performance modeling approaches are:

1. In the Real-Time modeling performance sub-section, we re-
port on the results that were obtained from the DPS proto-
type system. Data was collected on 1,000,000 execution in-
stances, for three different vessel configurations. The worst-
case execution times were computed and we were able to
show that the system is schedulable under the Rate Mono-
tonic Scheduling discipline (RM),

2. In Stochastic Modeling performance sub-section, we report
on experiments that were conducted using a Palladio Compo-
nent Model (PCM) based high-level simulation model. This
model was instrumented using data that was obtained from
measurements of the system tasks execution time. The ob-
jective of running experiments using the Palladio Component
Model (PCM) was to understand the full-distribution of tasks
execution time and to assess the impact of number of sensors
and thrusters on the tasks execution time.

3. In Tangram-II implementation based modeling approach the
actual library implemented for the thruster allocation was ex-
ecuted inside the Tangram-II model to evaluate some of the
thruster allocation important characteristics such as the num-
ber of iterations required for convergence, and the force dis-
tribution among the different thrusters as a function of the
number of thruster actually used by the vessel. The frame-
work created for running the library is very useful as it allows
for a controlled and efficient execution of the thruster alloca-
tion model.

In Section 4 we present results of our experiments using an archi-
tecture adaptability modeling approach. We compared source code
based and design based Design Structure Matrixes (DSNs), and we
report on our experience with adaptability assessment of the system
architecture. In Section 5 we present experimental results based on
a Tangram-II model of hardware reliability. The reliability model
was created using the system architecture and it was instrumented
with hardware failure data. In the software reliability part of Sec-
tion 5 we present a proposal for an approach to evaluate the DPS
software reliability. Section 6 contains our conclusions and lessons
learned.

2. DYNAMIC POSITIONING SYSTEM
The non-functional requirement models presented in this paper

were applied to the Dynamic Positioning System (DPS) project.
An overview of the DPS project architecture was presented in [11].
The system consists of sensors, controllers (aka IPU), human-
machine interfaces (HMI) and thrusters. This paper focus is in the
system’s main flow, where the IPU plays the major role.

The IPU houses the system core, being responsible for consol-
idating the data from all sensors, computing the force needed to
keep the vessel in the desired position, commanding the thrusters,
and making important process data available. The IPU uses the
QNX Neutrino Real-Time Operating System [17]. There are four
kinds of tasks running in the IPU:

1. The DataRetrieval task (DR) is responsible for getting data
from a specific sensor. There are three kinds of sensors in
the system, each one of them with triple redundancy, which
gives a total of 9 DataRetrieval tasks,

2. The DataLayer task (DL) stores the real-time values col-
lected from sensors, from control tasks, and from the op-

erator. The DataLayer task makes the collected data avail-
able for every other tasks that needs to access this data. It
is essentially a memory-resident database that can be used to
synchronize the tasks (passing information from one task to
another),

3. The DynamicPositioning task (DP) is the main system task.
It is responsible for running the mathematical algorithms
[14] that compose the dynamic positioning system (in partic-
ular the thruster allocation algorithm), and also for sending
commands to the thruster system,

4. The IPUManager task (IPUM) is responsible for coordinat-
ing the IPU redundancy. The IPUManager is responsible for
selecting one and only one IPU to be the master, leaving the
other two as backup stations. Since this selection is done pe-
riodically it is also used to keep all three IPUs synchronized.
However, we do not consider the IPUM task in the timing
analysis since it has a very low execution time.

The IPU information flow is illustrated in Figure 1. A DataRe-
trieval task is instantiated for each sensor that is connected to the
system. The measurements collected by the DataRetrieval tasks
are transferred to the DataLayer task and are routed to the Dynam-
icPositioning task.

Figure 1: IPU Information Flow

The control loop is the flow that begins in the Sensors, passes
through DataRetrieval and DynamicPositioning tasks and ends in
the Thrusters. The diagram in Figure 2 shows the relationships
between the tasks.

3. PERFORMANCE
In this section we present the three performance modeling ap-

proaches that were developed to assess real-time performance, task
execution time as a function of the number of system interfaces,
and the thruster allocation convergence characteristics.

The real-time task model level of abstraction assesses the impact
of worst case control loop execution time on the system ability to
satisfy the real-time requirement, as the the control loop must be
executed in one second. The stochastic analysis model studies the

impact of the number of sensors and thrusters on the control loop
execution time distribution. The actual implementation approach
executes the thruster allocation module inside a performance model
to assess the impact of the number of thrusters on the convergence
characteristics of the thruster allocation library, because the most
critical task in the control loop is the thruster allocation algorithm.
The thruster allocation algorithm is based on an iterative solution of
an optimization problem. It is a small part of the control loop, but
the investigation of the convergence characteristics of the thruster
allocation algorithm is a very important modeling objective as bad
convergence characteristics could have a significant impact on the
ability of the DP system to control the vessel’s position.

3.1 Real-time Performance
Real-time is a property that allows reasoning about time and tem-

poral characteristics of the system. In particular, for this DP sys-
tem, the approach adopted in the DP architecture to implement real-
time was to use a periodic task set that repeats execution at specific
moments in time. The fixed-priority scheduling discipline used is
known as Rate Monotonic Scheduling [5].

Figure 2: DP tasks relationships

All the described tasks are periodic, with a 1s period, and this
period was chosen also as the cycle execution. Experiments were
conducted with a prototype system that executes each of the tasks
individually and independently, and measures the execution time
(ET) of a task for each instance executed. We measured the ETs of
each task from 1,000,000 executions instances, for 3 different ves-
sel configurations. These configurations are based on the number
of thrusters in the vessel, and we used typical values of 4, 6, and
8 thrusters. In all cases, only the DP task has different worst-case
execution time (WCET), DL and DR keeping the same execution
times. The DP WCETs obtained were, approximately, 106.0ms,
107.8ms, and 168.9ms, for 4, 6, and 8 thrusters, respectively. In
Table 1, we show the worst-case, the average case and other statis-
tical measures of the ETs of the tasks, for an 8 thrusters configura-
tion, i.e., the most demanding one.

As indicated in the Table, in 99% of the cases the execution
times are well below the WCETs, and this indicates the existence of
an additional spare capacity for running background (non-critical)
tasks. We note that even if there is a major reduction in execution
times of the DR and DL tasks, the DP task is the dominant in terms
of WCET and therefore dwarves the other tasks.

The OS used in the DP system is QNX, which allows for speci-
fication of real-time tasks, that is, critical tasks that have fixed high
priorities and can pre-empt lower priority tasks. It should be noted
that the tasks are independent. Since the system is periodic and all

Table 1: Execution times (ET) (µs)
Measure DL DR DP

Worst-case ET 2039.6 1038.8 168875.0
Minimum ET 21.8 71.1 97596.0
Average ET 155.0 152.6 109268.7
Standard deviation 55.2 102.3 4841.7
Median 145.1 110.8 108877.0
Percentile (0.99) 286.27 394.7 122783.0

tasks have the same period, we can simply add their WCETs and
compare the sum with the period/cycle length (task switching over-
head is negligible in this system). In this case, the total execution
time is less then 181ms for the 12 tasks (9 DR, 1 DL, 1 DP, and 1
IPUM tasks), corresponding to a total CPU utilization of less than
19%.

More precisely, it can be shown that for a set of independent pe-
riodic tasks, under the RM scheduling discipline, if the utilization
restriction below is attained [5]:

nX

i=1

WCETi

Ti
≤ n(21/n − 1) (1)

where Ti is the task period and n the number of tasks, then the
system is guaranteed to be schedulable (the restriction expressed
in Equation 1 is a sufficient condition). For large values of n, the
right-hand side of the Equation converges to 69.3%, that is greater
than the computed DP utilization of 18.03%. Therefore, the DP
system is schedulable and all deadlines will be met.

3.2 Stochastic Performance Analysis
In addition to reasoning on the worst-case execution time as pre-

sented in the previous section, we study the execution time dis-
tribution for the tasks on the IPU node. Studying the execution
time distribution gives additional insight into the timing behaviour
of the system, and enables us to estimate how quickly the control
loop executes in most cases (e.g. in 95% of all cases). For sys-
tems where rare misses of the deadline are acceptable, stochastic
analysis can give less conservative estimates for performance and
thus avoid oversizing of resources. In the DPS system, rare misses
would be acceptable because the system can continue to function
with the results of the previous control loop iteration.

For the current system design the results from the previous sec-
tion show that the control loop deadline is satisfied in the worst
case. The analysis in this subsection provides additional results
concerning the sensitivity of the control loop execution time to
changes in the vessel configuration.

The implementation of our approach is based on an architectural
modeling language called Palladio Component Model (PCM) [4,
15]. The PCM is a modelling language specifically designed for
performance prediction of component-based systems, with an au-
tomatic transformation into a discrete-event simulation of gener-
alised queuing networks. Its available tool support (PCM Bench)
allows performance engineers to predict various performance met-
rics, including response time, throughput and resource utilization.

In a PCM model, time consumptions of single tasks can be
modelled as generalised distribution functions, approximated using
stepwise functions as shown in Figure 3. Thus, accurate distribu-
tions of the overall performance metrics can be derived by simula-
tion.

We modeled the DataRetrieval, DataLayer, and DynamicPosi-
tioning components using measurements of the IPU tasks on a

Execution time in microseconds

F
re

qu
en

cy

100000 120000 140000 160000

0
50

00
0

10
00

00
15

00
00

(a) Dynamic Positioning (Thruster Allocation)

Execution time in microseconds

F
re

qu
en

cy

200 400 600 800 1000

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00

(b) Data Retrieval Gyro

Execution time in microseconds

F
re

qu
en

cy

0 500 1000 1500 2000

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

(c) Data Layer

Figure 3: Measured Execution Times of Tasks for Stochastic
Performance Analysis

DataRetrieval

Sensor

IPUM anager

Thruster HM I

<<flow>>

IPU

<<flow>> <<flow>><<flow>>

<<flow>>

Dynam icPositioning DataLayer

<<flow>> <<flow>>

readSensorData:

Data
Layer.
store

thrusterAllocation:

Data
Layer.
store

PCM behaviour
m odel

PCM behaviour
m odel

Figure 4: Visualization of an PCM model excerpt: Measured
execution times from Fig. 3 are annotated to the PCM be-
haviour model

PCM model. The input data were execution time measurements for
the DataRetrieval tasks of three different types of sensors (Gyro,
GPS, Anemometer), for the DataLayer setDataPoint operation, and
for the DynamicPositioning task, which contains the thruster al-
location. We approximated the measured execution time distribu-
tions by step functions (some are shown in Fig. 3) and fed them
into the PCM model. Figure 4 visualises an excerpt of the resulting
PCM model: each component’s behaviour is modelled and anno-
tated with the measured execution time distributions.

Execution time in seconds

P
ro

ba
bi

lit
y

0.100 0.105 0.110 0.115 0.120 0.125 0.130

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

p(execTime < 0.125 sec) > 98%

Figure 5: Execution time distribution of the control loop with 3
sensors and 8 thrusters

Simulation results with the predicted execution time distribution
are shown in Figure 5. The execution time varies between 110 ms
and 130 ms. The distribution has two modes and positive skew (i.e.
a longer tail on the right side). The quantiles of the distribution
tell us how likely it is for the execution time to be below a given
threshold. For example, the execution time is lower than 125ms in
more than 98% of all cases (marked in the figure).

3.3 Sensitivity Analysis

In this section, we analyse the impact that added components
have on the tasks execution times, when, (1) new types of sensors
are added for further calculations, which leads to an increase of
input data and messages, (2) the number of thrusters of the vessel
varies.

For both extension scenarios, we perform a sensitivity analysis
by first re-evaluating the real-time performance and then determin-
ing the execution time distributions by running the PCM simula-
tion.

If new types of sensors are added to the system (first extension
scenario), more DataRetrieval tasks (one per added sensor) have to
be executed on the IPU node. As every sensor is triple redundant,
adding one more functional sensor would require the addition of
three new physical sensors. Domain experts estimate that up to six
different functional sensors could be required on a vessel, leading
to up to 18 physical sensors. We assume that new types of sensors
will have similar computational demands as the existing ones. In
the PCM model, we vary the number of functional sensors from the
currently existing three sensors to a maximum of nine sensors and
study system performance. The number of thrusters is set to eight.

From a hard real-time point of view, where just WCETs are taken
into account, a configuration with 8 thrusters and 9 different kinds
of sensors (and thus 27 DataRetrieval tasks) would imply in a max-
imum processor utilization of 19.9%, and this would satisfy the
condition indicated by Equation 1.

The results of the stochastic analysis are shown in Figure 6: the
number of sensors has small impact on the overall execution time
of the three IPU tasks. Again we observe that, even if 9 functional
sensors are used, the execution time stays well below the one sec-
ond deadline. Extrapolating our predictions linearly, we estimate
that the critical amount of deployed sensors for the required 1 sec-
ond deadline lies higher than 1000 functional sensors.

3 6 9

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

Number of Sensors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Figure 6: The execution time distribution of the IPU tasks is
shown for three different amount of functional sensors. In-
creasing the number of functional sensors to 6 (middle box) or
9 (right box) leads to an increased execution time, which is well
below the deadline of 1 sec.

For the case that the numbers of thrusters varies (second exten-
sion scenario), the time required for the call to the thruster alloca-

0.10 0.11 0.12 0.13

0
20

40
60

80
10

0

Execution time in seconds

D
en

si
ty

Figure 7: Approximated Density Functions of Sensor Number
Change for 3 sensors (red solid line), 6 sensors (green dashed
line), and 9 sensors (blue dotted line).

tion algorithm changes. Domain experts estimate that vessels have
typically from 4 to 8 thrusters.

We measured the execution time of the calls to the prototypi-
cal thruster allocation algorithm for 4, 6, and 8 thrusters and fed
the different measured execution time distributions into the PCM
model. The execution time distribution as a function of the number
of thrusters was estimated from the simulation model. The number
of sensors is set to six.

The results of the stochastic analysis are shown in Figure 8: the
number of thrusters has a higher impact on the execution time of
the IPU node tasks. Thus, vessels with less thrusters than the initial
configuration with eight thrusters require significantly less execu-
tion time; increasing the number of thrusters to more than eight
would significantly increase execution time.

3.4 Thruster Allocation Algorithm Analysis
Sections 3.1, 3.2 and 3.3 analyze the worst-case execution time

and the execution time probability distribution for the control loop
of the DP system. The control loop analysis is based on measure-
ments taken from experiments conducted with a prototype system.
One of the conclusions of that analysis was that the control loop
execution time is impacted by the number of vessel thrusters.

In contrast, in this sub-section we simulate several realistic ves-
sel scenarios, and analyze the number of steps required for the
vessel thruster to converge to the desired position. The analysis
contained in this sub-section takes into account the interactions be-
tween the force that needs to be applied to turn the vessel and the
number of thrusters the vessel can use to produce the required force.
Therefore, the goals of this sub-section are to study the thruster al-
gorithm convergence characteristics under different scenarios and
to analyze the distribution of the force among the thrusters when
the number of working thrusters varies with time.

The Dynamic Positioning (DP) task is the main task of the sys-
tem and is responsible for running the thruster allocation algorithm,
which is based on an iterative solution of a stochastic algorithm.
Since the DPS task is the main task of the system, it is important to
study the thruster algorithm performance considering several sce-
narios. This is one of the goals of this section. Our analysis is based

4 6 8

0.
08

0.
10

0.
12

0.
14

0.
16

Number of Thrusters

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Figure 8: Impact of Thruster Number Change in a Boxplot:
The execution time distribution of the IPU tasks is shown for
three different amount of thrusters. The current system has
eight thrusters (rightmost box). Decreasing the number of
thrusters to 6 (middle box) or 4 (left box), as expected for some
vessel types, lead to an decreased execution time.

on a simulation model which uses the algorithm implementation.
The main goal of the algorithm is to compute the force and the

angle that each thruster must have to meet the resultant force de-
manded. The desired resultant force is represented by three com-
ponents: (i) Surge: the vessel movement in forward or backward
directions, (ii) Sway: the vessel movement in left or right direc-
tions, and (iii) Yaw: the vessel rotational movement in clockwise
or counterclockwise directions on the plane formed by surge and
sway. These parameters are the inputs of the algorithm.

We used the Tangram-II modeling environment [10, 13] in our
evaluation. The tool provides the ability to construct from simple
to complex models, and solve these by several analytical or simu-
lation methods and to support experimentation via active measure-
ments in computer networks. A large set of methods to calculate the
measures of interest is also available. In addition, there are features
that help the user to visualize the evolution of the model variables
with time, useful both for developing an analytical or simulation
model. A rich set of analytical solution techniques, both for steady
state and transient analysis, are available, as well as, event driven
and fluid simulators.

The simulation engine of Tangram-II has a feature called the
modeling tool kit (MTK), which is a framework where users can
develop customized algorithms as self contained plugins and use
those in the simulation engine. Just like a class in the object ori-
ented paradigm, each plugin is composed of attributes and methods,
which all models created from that plugin share, and which can be
accessed or executed by the user. Users can create and delete the
MTK plugins (called MTK objects), set and get their attribute val-
ues, and execute their methods. In this way, users can develop com-
plex algorithms in C++ and execute them. The simulation engine
sees any MTK plugin as a black box, which corresponds to a new
Tangram variable type (the MTK object).

We built a MTK plugin for the thruster allocation algorithm. The
MTK plugin contains the C++ code of the algorithm implemented
in the prototype system.

Table 2 shows the scenarios evaluated. The scenarios were de-
signed to test the behavior of the algorithm in critical situations.
The first six scenarios represent a sequence of vessel movements.
The objective of these scenarios is to analyze the convergence time
of the algorithm. In scenarios one to four, after each one of the
movements, there is always a stop command. The goal is to study
the algorithm behavior if the vessel stops after each movement.
Scenario 6 evaluates the case when the vessel does not stop be-
tween two consecutive movements. In the seventh scenario we
evaluate the behavior of the algorithm when the vessel rotates and
some thrusters are turned off. Our goal is to analyze the case where
some thrusters stop working.

The second column of Table 2 shows the vessel movement and
the force in that direction. These are the input parameters of the
algorithm. In the first scenario, for example, the resultant force
demanded is represented only by the sway parameter, and in the
fourth scenario, the demand is represented by the sway and surge
parameters.

For each scenario and required movement, the algorithm is ex-
ecuted a certain number of times (It is an iterative algorithm.).
The stop condition is the difference between the resultant force de-
manded and the resultant of the allocated force computed by the
algorithm. When this difference is less or equal to 10−1, the algo-
rithm is stopped. The algorithm output is the force and the angle to
be applied by each one of the thrusters and the sum of these vectors,
i.e. the resultant vector.

For example, for the first movement of scenario 1 (right(40)), the
input parameters were surge=0, sway=40, and yaw=0, the required
number of iterations was equal to 3, and the output was surge=0.01,
sway=40, and yaw=0.

Figure 9 shows the thrusters position (Cartesian coordinates) in
the vessel and the thruster ID. Each thruster can produce a force
which varies from 1 to 10, in unitary steps, and rotate 360, in 30
steps.

Figure 9: Vessel’s thrusters position.

We simulate each scenario 100 times and compute a 95% confi-
dence interval. We choose not to show the confidence intervals in
the figures to make the plots more readable.

Figure 10 displays the mean number of algorithm iterations for
the scenarios one to six varying the number of working thrusters
from 4 to 8. We consider that when the number of working thrusters

is equal to n, the working thrusters are 1, 2, ..., n (see the thruster
ID in Figure 9). For all the results in Figure 10, the length of the
confidence interval is less than 6%.

Note that for the majority of scenarios, the number of iterations
when only 4 thrusters are working is greater than when all thrusters
are operational. The increase in the number of iterations goes from
10% (scenario 3) to 70% (scenario 1). Scenario 5, where the ves-
sel needs only to maintain its position, is the only one where the
number of iterations does not vary with the number of working
thrusters. These results shows that there is a trade off between the
number of working thrusters and the number of algorithm itera-
tions. On the one hand, all thrusters must be operational to get a
faster algorithm response, on the other hand, there will be more
power consumption.

 0

 10

 20

 30

 40

 50

 60

 4 5 6 7 8

N
um

be
r

of
 It

er
at

io
ns

Number of Thrusters

scenario 6

scenario 1scenario 2

scenario 4

scenario 3

scenario 5

Figure 10: Number of iterations for each scenario.

Figure 11 displays the mean force that each thruster must pro-
duce considering scenario 7, i.e., when the vessel rotates coun-
terclockwise and each one of the thrusters is turned off and after
turned on. For all the results in Figure 11, the length of the confi-
dence interval is less than 13%.

The main goal of this analysis is to evaluate the distribution of
the force among the thrusters when the number of working thrusters
varies with time. Note that when only thrusters 1 and 2 are work-
ing, the force they must produce is almost the same and near the
maximum value, on the other side, when all thrusters are work-
ing, each thruster have to produce a force near the minimum value.
The results show that the algorithm tries to uniformly distribute the
force among the working thrusters.

3.5 Lessons Learned
The three different approaches for performance analysis pro-

vided a comprehensive performance assessment of the DPS archi-
tecture.

The real-time analysis has shown that all tasks are schedulable.
The sensitivity analysis of tasks schedulability was performed by
increasing the number of thrusters and sensors. Even for these
larger configurations we have shown that all the tasks are schedu-
lable and all deadlines will be met, as shown in Section 3.3.

The control loop execution time is impacted when control
loop components are extended with additional functionality. The
stochastic performance analysis can be used to assess the impact of
component changes on the control loop execution time.

We have shown in this paper that embedded real-time systems
can be modelled with the PCM component-based approach, when

Table 2: Scenarios
Scenario Description Required Movement(Force)

1 Left to right right(40), left(40), right(40), left(40), right(40)
2 Forward and backward forward(40), backwards(40), forward(40), backwards(40), forward(40)
3 Rotation counterclockwise(10), clockwise(10), counterclockwise(10), clockwise(10)
4 Left-backwards and forward (26.7) and right(26.7), backwards(26.7) and left(26.7), forward (26.7) and right(26.7),

right-forward backwards(26.7) and left(26.7), forward (26.7) and right(26.7)
5 Keep position stop(0)
6 All movements left(40), right(40), forward(40),backwards(40), left(40), right(40), forward(40), backwards(40)
7 Rotation turning counterclockwise(5) during all the scenario; all th on, turn off th 8, turn off th 7

in and off thrusters turn off th 6, turn off th 5, turn off th 4, turn off th 3, turn on th 3, turn on th 4,
turn on th 5, turn on th 6, turn on th 7, turn on th 8

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

T
hr

us
te

r
F

or
ce

Thruster ID

2 thrusters

3 thrusters

4 thrusters
5 thrusters

6 thrusters

7 thrusters

8 thrusters

Figure 11: Thruster force.

task precedence can be simplified into to a task sequence. In addi-
tion, stochastic performance analysis can complement worst-case
predictions. However, tasks with more complex scheduling be-
haviour could not be predicted with the PCM approach without
taking into account task priorities.

We used the Tangram-II tool to simulate several realistic vessel
scenarios, and analyse the number of steps required for the vessel
thruster to converge to the desired position. One distinct feature of
the approach is to allow the use of the real implementation code as
a black box and embedded in the simulator tool. Thus, we can use
the full power of the simulation engine to test the code.

4. ADAPTABILITY ASSESSMENT
It is highly possible that the requirements of the system will

change. For example, the program may need to be deployed in
different types of vessels or a new type of sensor needs to be in-
stalled. We need to assess if the architecture is adaptive enough
so that these new features can be accommodated quickly. There
can be business metrics to assess the time needed to deliver these
new features, for example, by specifying the maximum number of
months that can be spent on implementing, testing, and deploying
new features. In order to make such estimations, we first need to
calculate which and how many components will be added, deleted,
or modified, given a specified change. Neither design-level compo-
nent diagrams nor the source code support such calculation directly.
We thus leverage the design structure matrix (DSM) [3] model to
achieve this purpose.

Figure 12: Design Level DSM

Figure 13: Source Level DSM

A design structure matrix is a square matrix where the columns
and rows are labeled with the same set, in the same order, of de-
sign dimensions where decisions are needed. If a cell is marked,
it means that the decision on the row depends on the decision on
the column. Modules are represented as blocks along the diago-
nal. A group of variables in a DSM can be clustered into a module,
which in turn can be represented as a row/column in the DSM.
Figure 12 and 13 are two DSMs representing the design and im-
plementation of the dynamic positioning system. In both DSMs,
elements 5 (Chemtech.DP.DataPoints) to 11 (Chemtech.DP.HMI)
represent modules clustered according to the namespaces. For ex-
ample, Chemtech.DP.HMI contains all the components within the
Chemtech.DP.HMI namespace.

To address the problem that manually constructing a DSM can
be time-consuming and error-prone, Cai and Sullivan developed
the Augmented Constraint Network (ACN) model to represent the
dependency relations among design dimensions using logical ex-

Figure 14: Design DSM Expanded

pressions [6, 7, 19]. From an ACN, the semantics of pair-wise
dependency can be formally defined and a DSM can be automati-
cally derived. In order for designers trained with UML modeling
to leverage these techniques, Cai and her students have formalized
and implemented the transformation of prevailing design models
and software artifacts, such as UML class diagram, UML compo-
nent diagram and source code into ACN models, then the structures
of these artifacts can be automatically represented as DSMs. The
DSMs shown in Figure 12, 13 and 14 are all derived from ACN
models. The design ACN model is transformed from the compo-
nent diagrams modeled using a commercial tool called Enterprise
Architect (EA), and the source DSM is transformed from the im-
plemented source code.

To further analyze the modularity and adaptability of the system,
we also clustered the DSMs into a special hierarchy [19], as shown
in Figure 14. The top level of the hierarchy (element 1-10) are
the top level design elements that only influence other parts of the
system but are not influenced by them. As we can see, the first level
contains the communication structure and the abstract interfaces
for sensors and devices. The light blue blocks are the independent
modules within the layer. There are no dependency between the
modules within a layer. The second layer contains the framework
that supports the Model View View Model architecture in the HMI
subsystem. The third, and final, layer of the hierarchy contains
modules that only depend on the first two layers but not depend on
each other.

From the DSM in Figure 14 that shows the designed architec-
ture, we can see that the elements that have significant, crosscut-
ting influences are all at the first two layers, which are mainly com-

munication infrastructure or the high-level architecture framework.
About 72% of the components are in the third layer, which means
that these modules can be implemented and changed independently
from each other.

To assess how well the design can accommodate changes like
adding or changing a sensor or adding an error masking mecha-
nism to the vessel control system, we just need to see which and
how many other components will be affected. From the design
DSM, we can see that changes to sensors only affect at most two
other components, and adding error masking mechanism only af-
fects the main function. As another example, if a YoungSerial de-
vice is added or changed, then only the YoungDataRetrieval com-
ponent will be affected. From these analyses, we conclude that the
system is designed to be well modularized and adaptive.

Next we assess whether the implementation of the system is con-
sistent with the design and maintains the same level of adaptability.
Figure 13 shows the source code DSM clustered in the same way
as the design DSM. In this DSM, the cells with dark background
indicate the discrepancies between design and implementation. If
a dark cell is empty, it means the dependency exists in design, but
not in implementation. If a dark cell is not empty, it means that de-
pendency in the source code doesn’t exist in design. Figure 13 only
shows the discrepancies among clusters for the sake of space. The
numbers in the cell are the total number of dependencies between
modules clustered according the namespace.

4.1 Lessons Learned
The analysis shows that the main discrepancies are that in the

implementation the data points and sensors are accessed by more

components than designed. These discrepancies are caused by the
following reasons: more dependencies are found to be necessary
during implementation than recorded in the component diagram,
the system have evolved in code but the design is not updated, or
a part of the design has not been implemented yet. However, the
majority of the source code realized the design faithfully. When
comparing the source code DSM to the design DSM, we found
that the source code also has a layered structure, and each type
of sensor only had at most one more dependency than designed.
After we clustered the source code DSM using the hierarchy as
shown above, about 71% of the components in source are in the
third layer, indicating similar level of modularity and adaptability
between design and implementation.

5. RELIABILITY/AVAILABILITY

5.1 Hardware
In this section we analyze the reliability of the overall DP system

hardware architecture (Rh(t)). Our goal is to obtain the repair rates
that satisfy the condition: system reliability is greater than 0.9999
for a mission time equal to 3 months. In other words, we compute
the probability of the DP system being operational at t = 3 months
for some values of repair rates. We select the repair rates where
Rh(3) ≥ 0.9999.

Figure 15 shows the Tangram-II model used in our analysis. The
model has five different components: gyro sensor, GPS, anemome-
ter, IPU and local network. All components, except the local net-
work (which is dual redundant), are triple redundant.

name=network

name=GYRO_sensor

name=GPS_sensor

name=anemometer

name=IPU

Figure 15: System reliability model.

Figure 16 shows the reliability of the system in the interval from
1 hour to 3 months. We note that for the repair rates equal to 1 day
and 15 days, the probability of the DP system being operational at
t = 3 months is 0.999999 and 0.9999, respectively. For the repair
rates equal to one and three months, Rh(3) ≤ 0.9999. We con-
clude that the system reliability goal is met for a repair rate less or
equal to 15 days.

5.2 Software
In this sub-section we present our suggestion for an approach to

be used to estimate the DPS system software reliability [9]. How-
ever, the measurements required to estimate the DPS software re-
liability are not yet available as the software prototype reliability
evaluation is a topic for future work. Therefore, in this section
we present the preliminary models and the associated parameters

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0 500 1000 1500 2000 2500

3 months

1 month

2 weeks

1 day

re
lia

bi
lit

y

time(hours)

Figure 16: System reliability.

required by the reliability analysis methodology described in [9].
Figure 18 shows the component diagram of the DP Process layer
[11] where each component i has to be annotated with the following
parameters:

• the internal failure probability [12] (intf(i),DaComponent::
failure) is the probability that the component generates a
failure caused by some internal fault,

• the error propagation probability [1] (ep(i), DaComponent::
errorProb) is the probability that the component propa-
gates to its output interface an erroneous input it has received,

• the propagation path probabilities (p(i,j)), one for each con-
nected component j, are the transition probabilities from the
output interface of component i (GaStep::prob on the
implementing operation) to the input of component j.

Figure 17: Reliability attributes of the software architecture.

These attributes (intf(i), ep(i), p(i,j)) are included as parameters
[16] ($-prefixed terms in Figure 18). In particular:

• the internal failure probabilities can be roughly estimated
from the KLOC (thousands of lines of code) of the corre-
sponding source code artifacts. This and other estimation
techniques are described in [12],

• the error propagation probabilities are set to 0 for the com-
ponents that are lacking error masking mechanisms so that a
component always propagates to its output interface an erro-
neous input it has received, or are set to 1 when the best error
masking mechanism is implemented for the corresponding
component so that no errors propagate to to the output inter-
face;

• the propagation path probabilities can be derived at early
design stages from the system models that are available at
that time, or from software artifacts (e.g. UML interaction

diagrams), possibly annotated with probabilistic data about
the possible execution and interaction patterns [8].

Figure 18: The software architecture of the process layer.

Given the reliability profile for each component, we denote (Rel)
as the software reliability of an application, where err(Input) is the
probability that the application completes its execution producing
an erroneous output, i.e., the application reaches the Output com-
ponent given that the execution started at component Input:

Rel = 1 − err(Input) (2)

Therefore (2) is the probability that the application completes its
execution and produces a correct output.

5.3 Lessons Learned
The development of a more accurate software reliability mod-

eling and analysis is left as a topic for future work because the
required reliability parameters, i.e. the actual internal failure prob-
ability and the error propagation probability of each components,
have not been derived yet. We have presented a methodology that
is applicable to the DP system to measure each component impact
on the overall software reliability and to help prioritize software
testing.

6. CONCLUSIONS
We have presented several performance, reliability and adapt-

ability models that were used to comprehensively assess the Dy-
namic Positioning System architecture. The three performance
models presented were instrumented using data collected from the
Siemens-Chemtech software prototype. These modeling activities
were conducted after an extensive system architecture review un-
covered several architecture risks. These risks were reported in a
companion paper [11]. The results obtained from the experiments
using the non-functional requirement models presented in this pa-
per were of great value to the project in several ways. As a re-
sult of the extensive performance modeling experiments reported
in this paper, the project has now an increased understanding of
the system’s ability to meet its real-time deadlines, of the impact
of different system configurations on the control loop execution
time distribution, and the system configurations impact on the con-
vergence characteristics of the thruster allocation algorithm. The
real-time analysis has shown that all tasks are schedulable and that
the system will meet its deadlines. The Tangram-II implementa-
tion based simulation approach was able to execute several tests
using the thruster allocation module and confirmed that the thruster

algorithm is stable and generates a well-balanced mean force allo-
cation. The Tangram-II based framework could be used to execute
several additional test scenarios to further test the Dynamic Posi-
tioning System. In addition, as a result of the system architecture
adaptability assessment, the project has received feedback on the
importance of maintaining the system architecture documentation
up to date. The adaptability assessment model has shown that the
system is very modularized, has a layered structure, and that the
system implementation complies with the guidelines provided by
the system architecture document. This assessment certifies that
the system architecture is adaptable and extensible. As a topic for
future research, we would like to be able to estimate the Dynamic
Positioning System software reliability using actual system testing
results.

7. ACKNOWLEDGMENTS
We thank FINEP for partial financial support of the project.

8. REFERENCES
[1] W. Abdelmoez, D. E. M. Nassar, M. Shereshevsky,

N. Gradetsky, R. Gunnalan, H. H. Ammar, B. Yu, and
A. Mili. Error propagation in software architectures. In IEEE
METRICS, pages 384–393. IEEE Computer Society, 2004.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Sec. Comput,
1(1):11–33, 2004.

[3] C. Y. Baldwin and K. B. Clark. Design Rules, Volume 1: The
Power of Modularity. MIT Press, Cambridge, MA, USA,
2000.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance prediction.
Journal of Systems and Software, 82:3–22, 2009.

[5] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages: Ada, Real-Time Java and
C/Real-Time POSIX. Addison-Wesley Educational
Publishers Inc, USA, 4th edition, 2009.

[6] Y. Cai. Modularity in Design: Formal Modeling and
Automated Analysis. PhD thesis, University of Virginia,
August 2006.

[7] Y. Cai and K. J. Sullivan. Simon: modeling and analysis of
design space structures. In D. F. Redmiles, T. Ellman, and
A. Zisman, editors, ASE, pages 329–332. ACM, 2005.

[8] V. Cortellessa and H. Singh and B. Cukic. Early reliability
assessment of UML based software models. Workshop on
Software and Performance, pages 302–309. ACM, 2002.

[9] V. Cortellessa and V. Grassi. A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems. In H. W. Schmidt, I. Crnkovic,
G. T. Heineman, and J. A. Stafford, editors, CBSE, volume
4608 of Lecture Notes in Computer Science, pages 140–156.
Springer, 2007.

[10] E. de Souza e Silva, D. R. Figueiredo, and R. M. Leão. The
TANGRAMII integrated modeling environment for
computer systems and networks. SIGMETRICS Perform.
Eval. Rev., 36(4):64–69, 2009.

[11] F. Duarte, C. Pires, C. A. de Souza, J. P. Ros, R. M. M. Leão,
E. de Souza e Silva, J. Leite, V. Cortellessa, D. Mosse, and
Y. Cai. Experience with a new architecture review process
using a globally distributed architecture review team. In The
5th IEEE International Conference on Global Software

Engineering (ICGSE 2010), pages 109–118, Los Alamitos,
CA, USA, 2010. IEEE Computer Society.

[12] J. B. Dugan and K. S. Trivedi. Coverage modeling for
dependability analysis of fault-tolerant systems. IEEE Trans.
Computers, 38(6):775–787, 1989.

[13] Federal University of Rio de Janeiro. Tangram-II website.
http://www.land.ufrj.br/tools/tangram2/tangram2.html, 2010.

[14] Gilson A. Pinto et al. Advanced control and optimization
techniques applied to dynamic positioning systems. In Rio
Oil & Gas Expo and Conference, Sept. 2010. in press.

[15] L. Kapova and R. Reussner. Application of advanced
model-driven techniques in performance engineering. In
A. Aldini, M. Bernardo, L. Bononi, and V. Cortellessa,
editors, Computer Performance Engineering, volume 6342 of
Lecture Notes in Computer Science, pages 17–36. Springer
Berlin / Heidelberg, 2010. 10.1007/978-3-642-15784-4 2.

[16] Object Management Group (OMG). UML Profile for
MARTE: Modeling and Analysis of Real-Time Embedded
Systems (formal/2009-11-02). http://www.omgmarte.org/,
2009.

[17] QNX Software Systems. QNX Neutrino RTOS.
http://www.qnx.com/products/neutrino-rtos/
neutrino-rtos.html, 2010.

[18] Università degli Studi dell’Aquila. SEALAB Website.
http://sealabtools.di.univaq.it/, 2010.

[19] S. Wong and Y. Cai. Improving the efficiency of dependency
analysis in logical decision models. IEEE Computer Society,
2009.

