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Abstract. Quantitative prediction of non-functional properties, such as
performance, reliability, and costs, of software architectures supports sys-
tematic software engineering. Even though there usually is a rough idea
on bounds for quality of service, the exact required values may be un-
clear and subject to trade-offs. Designing architectures that exhibit such
good trade-off between multiple quality attributes is hard. Even with
a given functional design, many degrees of freedom in the software ar-
chitecture (e.g. component deployment or server configuration) span a
large design space. Automated approaches search the design space with
multi-objective metaheuristics such as evolutionary algorithms. However,
as quality prediction for a single architecture is computationally expen-
sive, these approaches are time consuming. In this work, we enhance
an automated improvement approach to take into account bounds for
quality of service in order to focus the search on interesting regions of
the objective space, while still allowing trade-offs after the search. We
compare two different constraint handling techniques to consider the
bounds. To validate our approach, we applied both techniques to an ar-
chitecture model of a component-based business information system. We
compared both techniques to an unbounded search in 4 scenarios. Ev-
ery scenario was examined with 10 optimization runs, each investigating
around 1600 architectural candidates. The results indicate that the inte-
gration of quality of service bounds during the optimization process can
improve the quality of the solutions found, however, the effect depends
on the scenario, i.e. the problem and the quality requirements. The best
results were achieved for costs requirements: The approach was able to
decrease the time needed to find good solutions in the interesting regions
of the objective space by 25% on average.

Keywords: Optimization, Performance, Quality Attribute Prediction,
Reliability, Software Architecture

1 Introduction

The design of software architecture is crucial to exhibit good quality of service
(cf. [3]), e.g. performance and reliability. Model-driven, quantitative architecture
evaluation approaches help the software architect to reason about the architec-
ture and predict its quality attributes and costs. However, even though there
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usually is a rough idea of requirements for the non-functional properties, the
exact required values may be unclear and subject to trade-offs. For example,
the decision of how much response time of the system is acceptable may depend
on the costs to achieve this response time and is subject to negotiation between
stakeholders. Still, they may agree on bounds specifying the worst acceptable val-
ues of the quality attributes, e.g. the mean response time of the system should
not exceed 15 seconds. A system that violates any bounds is declared infeasible,
i.e. useless for the stakeholders.

Designing architectures that provide optimal trade-offs between multiple
quality attributes is difficult. Even with a given functional design, many de-
grees of freedom in the software architecture (e.g. component deployment or
server configuration) still span a large design space. Automated approaches sup-
port the software architect to improve their architectural designs and find good
trade-offs between quality attributes. They search the design space with multi-
objective metaheuristics such as evolutionary algorithms to find many Pareto-
optimal candidates. However, as quality prediction for a single architecture is
computationally expensive, these approaches are time consuming since many
possible candidates need to be evaluated.

In this work, we present an approach to include bound estimations on qual-
ity of service requirements into an automated improvement approach to make
the search for optimal trade-offs focus on interesting regions of the objective
space. We extend the PEROPTERyx approach [15] by two aspects: First, we
translate requirements specified with the Quality of service Modeling Language
(QML) [12] into constraints in an optimization problem. Second, we use two
constraint handling strategies [10, 11] to focus the search on the feasible space.

The contribution of this paper is a novel approach that, to the best of our
knowledge, is the first to combine multi-criteria architecture optimization and
quality of service bounds so that the search can focus on feasible regions of the
search space. With this extension, the time needed to find valuable solutions
for the software architects can be reduced. We have implemented the approach
in the PEROPTERyx tool. Using this tool, we demonstrate the benefits of our
approach in a case study.

This paper extends a previous publication [19] by providing (1) the integra-
tion of a second constraint handling technique [11] and (2) more sound evaluation
including the second technique, using more optimization runs and four different
quality requirement scenarios. The evaluation leads to results with higher sta-
tistical significance and a more differentiated interpretation of the approaches’
effects. We found that the constraint handling is beneficial in scenarios with
strict quality bounds (i.e., where many candidates are infeasible). In these sce-
narios, our extension was able to find solutions in the interesting regions of the
objective space in average 25.6% faster than the old, unconstrained approach.

This paper is structured as follows: Section 2 presents related work to our
approach. Section 3 gives background on the architecture evaluation approach
Palladio that we use in this work. Section 4 then presents our architecture op-
timization process, which makes use of the specified bounds to focus the search
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on the feasible architecture candidates. A case study in Section 5 shows the
feasibility of our work by applying the process to an example architecture and
comparing the effect of the requirements consideration. Finally, Section 6 con-
cludes.

2 Related Work

Our approach is based on performance prediction [2], reliability prediction [13],
multi-objective metaheuristic optimization [8], and constraint handling in evolu-
tionary algorithms [9, 5]. A survey of constraint handling techniques is omitted
here for brevity, but can be found in [18].

In summary, several other approaches to automatically improve software ar-
chitectures for one or several quality properties have been proposed. Most ap-
proaches improve architectures by either applying predefined improvement rules,
or by applying metaheuristic search techniques. All approaches except one do not
support trade-off between quality attributes after the search. In addition, none
of the approaches allows specifying quality requirements for quality attributes
that should be optimized, thus, they do not allow to focus on interesting regions
of the objective space.

Xu et al. [20] present a semi-automated approach to improve performance.
Based on a layered queueing network (LQN) model, performance problems (e.g.,
bottlenecks, long paths) are identified in a first step. Then, mitigation rules
are applied. The search stops as soon as specified response time or throughput
requirements are met. The approach is limited to performance only.

The ArchE framework (McGregor et al. [16]) assists the software architect
during the design to create architectures that meet quality requirements. It pro-
vides the evaluation tools for modifiability or performance analysis, and stepwise
suggests modifiability improvements depending on the yet unsatisfied require-
ments. The search stops as soon as specified requirements are met.

Canfora et al. [7] optimize service composition costs using evolutionary algo-
rithms while satisfying service level agreement (SLA) constraints. They imple-
ment constraint handling with dynamic penalty functions.

Menascé et al. [17] generate service-oriented architectures that satisfy quality
requirements, using service selection and architectural patterns. They model
the degree of requirement satisfaction as utility functions. Then, a weighted
overall system utility is optimized in a single-objective problem using random-
restart hill-climbing. Thus, preferences for quality attributes and importance of
requirements have to be specified in advance.

Aleti et al.[1] present a generic framework to optimize architectural models
with evolutionary algorithms for multiple arbitrary quality properties, thus en-
abling trade-off after the search. In addition, the framework allows to specify
constraints for the search problem, for example available memory consumption.
However, the constraint handling is relatively simple: Infeasible candidates are
just discarded. Quality requirements are mentioned, but not included in the
optimization.
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3 Palladio Component Model

Generally, our concepts can be used for different software architecture models. To
a certain extent, service-oriented architectures can be regarded as a specialization
of component-based software architectures. As a consequence, we focus the scope
of our work on component-based software architectures.

We apply our approach to the Palladio Component Model (PCM) [4], a
modelling language for component-based software architectures with an UML-
like syntax. The PCM enables the explicit definition of the i) components , ii)
architecture, iii) allocation, and iv) usage of a system in respective artefacts,
which comprise a PCM instance (cf. Figure 1):

1. Component specifications contain an abstract, parametric description of com-
ponents. Furthermore, the behaviour of the components is specified using a
syntax similar to UML activity diagrams.

2. An assembly model defines the software architecture.

3. The resource environment and the allocation of components to resources are
specified in an allocation model.

4. The usage model specifies usage scenarios. For each user, one of the scenar-
ios applies defining the frequency and the sequence of interactions with the
system, i.e. which system functionalities are used with an entry level system
call.

Using model transformations, the PCM instance can be analysed or simulated to
predict performance (response time and throughput) [4], reliability (probability
of failure on demand (POFOD)) [6], and costs [15] of a system.
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Fig. 1. Artefacts of a PCM instance.

Figure 2 illustrates an example PCM instance of the so-called business report-
ing system (BRS) using annotated UML. The BRS provides statistical reports
about business processes and is loosely based on a real system. The system con-
sists of 9 components and is allocated to 4 servers. The behaviour description
(incl. CPU demands) of one component is illustrated here by an activity dia-
gram. Having only one usage scenario, a user interacts with the system every 5s
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requesting a sequence of reports and views. User requests take different paths
through the system based on passed parameters, expressed here as probabilities.

graphicalReport,
- onlineReport S1 £] 33
T T = 10— Webserver Business

graphicalView R . E

sser ) onlineView eporting Database

arrival | login/logout (JD System
every 5s

" o= N

7 1

~ O<-—-------- 2 |

N I

! I lsa

—(—~ |

Graphical g1 _C_ 1 =0 Core g] ' |

Scheduler '©/ Reporting g Graphic Engine /‘ I

_—
__\/
& &
O Cache
g ] K Online ] _C_ 1o Core ]
User Reporting | Online Engine O

Management N Lnaintain E

7 =

| <<implements>> ~

]

Loop 2 times
Call Cache

O .getCachedData
Demand =
37.5 Klnstr

Fig. 2. PCM instance of the BRS (more detail in [15]).
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4 Finding Satisfactory Architectures

The goal of our work is to optimize component-based software architectures. To
achieve this, we use metaheuristic techniques, particularly the multi-objective
evolutionary algorithm (MOEA) NSGA-II developed by Deb et al. [10]. A dis-
advantage of a MOEA is that it may spend too much time exploring uninteresting
regions of the objective space. Integrating quality requirements into the search
aims at improving this algorithm due to the following advantages identified by
Branke [5]:

1. Focus — MOEAs are approximate and non-deterministic. Quality requirements
can be used to focus the search and identify particularly interesting alterna-
tives.

2. Speed — Focusing the search avoids wasting computational effort on irrelevant
regions of the search space.
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3. Gradient — With increasing number of objectives, MOEAs are unable to de-
termine the most promising search direction (gradient). Quality requirements
provide additional information ensuring optimization progress.

4.1 Constraint Handling

To integrate requirements into this process, we extended the Opt4J frame-
work [14], which implements basic NSGA-II without constraint handling, by
the constrained tournament method (a.k.a. constrained NSGA-II) [10] and the
goal attainment method [11], both described briefly below.

Requirements are transformed into constraints. If a solution violates any con-
straint, it is infeasible, i.e. useless for the user. Otherwise, it is feasible, thus a
possible candidate to solve the problem. In their constrained tournament method
(C), Deb et al. [10] handle constraints by modifying the dominance relation dur-
ing the mating and the environmental selection of NSGA-II. Infeasible solutions
are ranked according to their degree of infeasibility and declared inferior to fea-
sible solutions.

In their goal attainment method (G), Fonseca et al. [11] define a goal value
for each objective and aim at satisfying all goals by prioritizing objectives not
fulfilling goals. Figuratively speaking, the Pareto-based comparison of two solu-
tions is modified, such that before applying Pareto-dominance, the solutions are
mapped on the goal value in the objectives that already fulfil the goal. Conse-
quently, the objectives not fulfilling the goal have the impact on which solution
dominates the other. Objectives for which no requirements exists are assigned a
goal value of +00 when minimizing or —oo when maximizing.

We chose these two methods for constraint handling because of the following
advantages: First, they explicitly distinguish between feasible and infeasible solu-
tions and declare all feasible solutions superior to infeasible solutions as opposed
to e.g. methods based on penalty functions. Second, no additional parameters
are required (an advantage because many other methods are sensitive to param-
eter changes). Finally, they neither require a specific number of constraints nor
assume a relation between objectives and/or constraints.

The difference of both methods is how solutions that violate the same con-
straints are treated: The constrained tournament technique uses a distance mea-
sure and favours solutions that are closer to the required values. In contrast, the
goal attainment method uses standard Pareto-dominance if two solutions satisfy
the same objectives.

4.2 Process
Figure 3 illustrates the optimization process as a whole with four main steps:

1. The system to be optimized is modelled with the PCM. Additionally, the
degrees of freedom, i.e. the possibilities to influence the non-functional prop-
erties of a system without changing its functional properties, are specified.
In a component-based context, the degrees of freedom of a system can be
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e.g. component selection, component deployment, and hardware configuration
(cf. [15]), but this list is extendable to more and custom degrees of freedom.

2. Quality attributes (e.g. mean response time mrt) and quality requirements
of the system (e.g. mrt< 5sec) are modelled using QML as described in [19].
Requirements are attached to a PCM usage scenario using a QML profile.

3. With our tool PEROPTERyx, the models are used to optimize the system.
The optimization starts with one or more initial candidates, i.e. predefined
system configurations, which can also be created randomly. Optimizing quality
attributes and minimizing costs is pursued using NSGA-II with consideration
of the requirements, using either constrained tournament or goal-attainment.

4. As solving multi-objective optimization problems results in a set of solutions
rather than one single solution [9], the set of feasible Pareto-optimal® archi-
tecture configurations with respect to the quality requirements is presented.
Finally, the software architect makes the trade-off decision and chooses one of
the solutions.

Component-based @
software architecture PCM @ @
Model b Feasible, |
Optimization | -2reto-optima Present
QML Profile MOEA
. . @ ( ) architecture Results
Quality requirements QML configurations
Initial
Model candidate(s) Degrees of freedom

Fig. 3. Process Overview.

5 Case Study

This section describes a case study demonstrating the benefit of the consideration
of requirements during the optimization process. The goal of this case study is to
evaluate the benefits of the two constraint handling methods in different quality
requirement scenarios.

5.1 Setup

The system under study is the business reporting system (BRS) described in
Section 3. The software architect has to choose a candidate that minimizes mean
response time, probability of failure on demand (POFOD), and costs.

As degrees of freedom, the components can be allocated to up to nine dif-
ferent servers. Three different webserver implementations with different costs,
performance and reliability can be chosen. Additionally, each of the nine servers
has a continuously variable CPU rate between 0.75 GHz and 3 GHz. The costs
of the servers depend on the processing rate and the costs model is derived from
Intel’s CPU price list. A power function is fitted to the data resulting in a costs

L A solution x is Pareto-optimal if no other solution y is better than z w.r.t. all
considered attributes (cf. [9]).
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model of costs = Y, costs(i) = Y, 0.7665 p-253? [monetary units (MU)] with
the processing rate of each server p; [GHz]. The coefficient of determination
is R? = 0.965. Compared to [19], we used more realistic reliability values: the
servers have a mean time to failure (MTTF) of 43800 hours and a mean time to
repair (MTTR) of 3 hours. We get 19 (9+1+49) degree of freedom instances that
can be independently varied.

To study the effects of different quality requirement values on the results, we
ran the optimization for four different levels of requirements (weak, i.e., only few
candidates are excluded from the Pareto front, to strict, i.e., many candidates
are excluded). Table 1 shows the four different scenarios. The requirements are
modelled with our metamodel of QML [19]. For each scenario s € {1,2,3,4}, we
optimized the system once for each constraint handling technique ¢ € {C, G},
resulting in 8 optimization settings S¢, 1 < s < 4. As a baseline, we optimized
the system without constraint handling (setting Sp).

Scenario ‘ costs ‘ POFOD ‘ mean response time
(S1) Weak requirements 3000 | 0.00175 | 5.0 sec

(S2) Medium requirements | 2000 | 0.0015 | 3.0 sec

(S3) Strict requirements 1500 | 0.0015 | 2.5 sec

(S4) Only costs requirements| 1000 | co 00

Table 1. Quality Bound Scenarios

For each of the 9 settings, the system is optimized using PEROPTERyX.
For statistical validity, we ran the optimization 10 times for every setting (runs
r, 0 < r <9), so that in total, 90 runs "S¢ have been performed. To exclude
disturbing effects from differently generated random start populations, we ran-
domly generated 10 start populations with 20 candidates each, and used these
10 start populations to run every setting (so that the rth run of any setting A
starts with the same start population as the rth run of any setting B). Each
optimization was stopped after 200 iterations.

5.2 Evaluation Measures

To compare the performance of the different settings, quality indicators have
been suggested in the literature. Due to the trade-off nature of multi-objective
optimization, there is no single quality indicator that objectively assesses an
optimization run’s performance [21]. The coverage metric C(A4, B) [22] is a useful
measure to compare two optimization runs A and B’s results independent of the
scaling of the objectives. However, the metric may be misleading if the Pareto
fronts overlap each other with varying distances to the true optimal Pareto
front. Additionally, both directions C(A, B) and C(B, A) have to be considered
to assess the difference of the fronts. To overcome both problems, we (1) measure
size of the dominated space S(A) [22] to assess the quality of each Pareto front
A separately and (2) modify the coverage metric C(4, B) to make it symmetric.

Additionally, we include the quality bounds in the coverage metric, resulting
in the following definition: Let A and B be feasible, non-dominated sets® and

% In a non-dominated set, the elements are pairwise non-dominated (cf. [9]).
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@ C AU B be the feasible, non-dominated set of AU B. The coverage metric C*
is defined as C*(A, B) := \A‘Qﬁl (e [0,1]). If C*(A, B) > 0.5 then A is considered
better than B because A has a higher contribution to @ than B.

The size of the dominated space S(A) measures the volume (in the three
dimensional case) of the objective space weakly dominated by a Pareto front A.
For minimisation problems, this measure requires a reference point to define the
upper bounds of this volume. Here, we use the quality of service bounds and
thus measure the size of the feasible space covered by A: S*(A). For setting (4),
which does not define upper bounds for response time and POFOD, we use the
maximum values in all evaluated candidates of all runs as the upper bounds.
Because the scale of the objectives are very different (POFOD ranges from 0, ...,
1, costs from 500 to 3500), and different upper bounds are used in the different
settings, we normalize the objective values before determining the volume and,
as a result, we cannot compare the absolute volumes across different settings.

We analyse the coverage C* of optimization runs with constraint handling
over the basic optimization Sy and compare the size of the dominated space
S*. We study the effect of the constraint handling separately for each scenario
1 < s < 4. To study the development of the optimization runs, we plot the
coverage measure over the course of the optimization, i.e. determine it for each
iteration 0 < ¢ < 200, written as C*(A(¢)) for a run A. Similarly, we compare
the size of the dominated feasible space over the course of the optimization runs.
The size of the feasible space dominated by the basic approach is determined
anew for each scenario 1 < s < 4 with respect to the quality bounds of this
scenario. Then, for each scenario s and each method ¢ € {C, G}, we aggregate
the measures C*("S¢,” So(i)), S*("S5(4)), and S*("Sp(¢)) over all 10 runs r to
account for the indeterministic nature of the optimization.

5.3 Results

Figure 4 illustrates the result of the optimization run °S§ with medium con-
straints using the constrained tournament method C'. 7 Pareto-optimal candi-
dates that satisfy all three bounds were found and are marked with triangles.

We present the results in the following by scenario. Figures 5 and 6 show the
coverage measure and the size measure for scenario 1. The coverage measure is
around 0.5 in average over most of the iterations for both constraint handling
methods C' and G. With both measures, thus, no improvement towards the basic
approach is visible. The size of the dominated feasible space grows similarly for
all approaches, too.

Figures 7 and 8 show the coverage measure and the size measure for scenario
2. For both the coverage measure and the size measure, the runs with constraint
handling start well (coverage > 0.5 and size larger than size of basic approach).
However, the basic approach catches up: At iteration 200, all approaches perform
equally well (G has a slightly better coverage, C' a slightly larger dominated
space, so none performs better than the other).

Figures 9 and 10 show the coverage measure and the size measure for scenario
3 with strict quality requirements. Here, we see an improvement of the search:
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Fig. 4. Result of an optimization run °S$ with medium requirements s = 3 and the
constrained tournament method ¢ = C.

The coverage measure of method C' is higher that 0.5 during all iterations, and
the size measure is significantly larger than for the basic approach, too. Method
G does not perform as well, even has a coverage < 0.5 at the beginning while
still having a better size measure than the basic approach.

Finally, figures 11 and 12 show the results for the common case of a budget-
only limitation. While both constraint handling method do not perform well
in the first 75 iterations, they catch up and provide better results in the last
iterations, both regarding coverage and size measure.

To summarise, we observe that the quality bounds have almost no effect in
lowly constrained scenarios 1 and 2. In scenario 3, the constrained tournament
method C performs well in both coverage and even more so regarding the size
of the dominated feasible space. The goal attainment method is less successful.
In scenario 4, both constraint handling methods perform well. We conclude that
using quality bounds to focus the search is only effective if a large portion of the
search space are excluded by the quality bounds, such as given in scenarios 3 and
4. In the two first scenarios, fewer solutions on the Pareto-front are infeasible,
so that the constraint handling is seldom used and thus cannot steer the search
well. Because it is not necessarily known in advance whether given requirements
are strict or lax, the constraint handling methods should always be used, as they
do not worsen the performance of the search.

Furthermore, we examined after how many iterations type runs with con-
straint handling find solutions equivalent to the final result of basic approach
runs based on both quality indicators C* and §*. For both indicators, we first find
the smallest j for C*("S5(4),” S0(200)) = 0.5 or S*("S<(4)) > S*("S6(200)), then
we find the smallest i for C*(Sy(4), So(200)) = 0.5 or S*("Sp (7)) > S*("S(200)).
In other words, we compare the runs with constraint handling with the earliest
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iteration of basic approach runs where there is no change in solutions w.r.t. the
final iteration. We measure the relative time saving t = ﬁél) As an exam-
ple, we compare 2S¢ and 25, regarding the coverage C*. 2S¢ has an equivalent
solution set than 25¢(200) after 171 iterations. 25y has the last changes in the
solution set in iteration 192. Thus, the run with constraint handling found equiv-
alent results 12271 = 10.9% faster.

Figure 13 shows the relative time savings for scenarios 1, 2, and 4. In scenario
3, too few solutions were feasible and Pareto-optimal at the end, so that a sensible
assessment of the time saving is not possible. We observe that for all scenarios,
the constraint handling methods can find an equivalent front faster than the basic
approach. The average time saving is 11.1% with respect to C* and 11.8% with
respect to §*, and with the most time saving in scenario 4 with the constrained
tournament method (30.3% for C* and 21.0% for S*, average 25.6%).

In further experiments [18], we have also studied to add lower bounds indi-
cating that a quality values is good enough so that further improvement does not
bring additional benefit, i.e. that other quality properties should not be traded
off for more improvement of this value. However, we found that including such
lower bounds does not significantly improve the optimization performance, nei-
ther in isolation nor in combination with upper bounds as presented in this work.
Note that while we assume minimisation problems in this work, maximization
problems can be inverted and handled as well, so that minimal allowed values
are translated to upper bounds in our approach.

6 Conclusion

This paper presents a novel extension of multi-criteria architecture optimization
to consider bounds for quality requirements so that the search can focus on
feasible regions of the search space.

We translate the quality requirements modelled in QML to constraints in an
optimization problem. Then, we use existing constraint handling strategies to
make the search focus on the feasible space. We compared the performance of
two constraint handling strategies, namely constrained tournament methods and
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the goal attainment method, in several scenarios in a case study. We found that
constraint handling, especially the constrained tournament method, improves
the efficiency of the search if strict requirements are used, i.e. if a significant
portion of the objective space is defined to be infeasible. Additionally, we found
that the constrained tournament method was superior to the goal attainment
method in our setting.

With this extension, software architects can reduce the time needed to find
valuable solutions. Our extension found solutions in the interesting regions of
the objective space in average between 15% and 30% faster than the old, uncon-
strained approach for scenario 4 with strict requirements.

The application of this approach can be interesting in different phases of the
software architecture design process. First, the approach can be applied after
a first phase of creating an architecture with focus on functional requirements
(definition of components and interfaces). This architecture can be used as an
input for the optimization to improve the non-functional properties. Second, the
optimization could already be used to support decisions during the architectural
design: When making a more high level decision, the optimization can be used
to assess the potential of the different alternatives. Finally, by modelling more
high level decisions as transformations, these decisions could be included in the
optimization process as degrees of freedom, thus letting the optimization explore
different combinations of decisions.

As future work, we could investigate the effect of constraint handling if other
metaheuristic optimization approaches than NSGA-II are used. Additionally, we
plan to integrate quality attribute tactics into the search, to allow the search to
improve a given candidate using domain knowledge, e.g. by balancing the load on
the used servers to improve response time. In combination with bounds, tactics
could be used to more directedly steer the search towards feasible regions, which
could be especially beneficial in highly constrained problems.
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