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ABSTRACT
Antipatterns are conceptually similar to patterns in that
they document recurring solutions to common design prob-
lems. Performance Antipatterns document, from a perfor-
mance perspective, common mistakes made during software
development as well as their solutions. The definition of
performance antipatterns concerns software properties that
can include static, dynamic, and deployment aspects. Cur-
rently, such knowledge is only used by domain experts; the
problem of automatically detecting and solving antipatterns
within an architectural model had not yet been empirically
addressed. In this paper we present an approach to automat-
ically detect and solve software performance antipatterns
within the Palladio architectural models: the detection of
an antipattern provides a software performance feedback to
designers, since it suggests the architectural alternatives to
overcome specific performance problems. We implemented
the approach and a case study is presented to demonstrate
its validity. The system performance under study has been
improved by 50% by applying antipatterns’ solutions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance Attributes; D.2.8 [Software Engineering]: Met-
rics—performance measures; D.2.11 [Software Engineer-
ing]: Software Architectures.

General Terms
Performance, Antipatterns, Design.

Keywords
Software Performance Feedback, Performance Antipatterns,
Palladio Component Model.
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1. INTRODUCTION
Software performance is a pervasive quality difficult to

model, because it is affected by every aspect of the design
and execution environment. The future trend in this do-
main is an automatic performance optimization of architec-
ture, design and run-time configuration [26]: the model and
measurement information will be fed back into the software
design, so that performance issues are tackled early in the
design process.

Figure 1 schematically represents the typical steps to run a
complete software performance modelling and analysis pro-
cess in the software life-cycle. Rounded boxes in the figure
represent operational steps whereas square boxes represent
input/output data. Dashed lines divide the process in three
different phases: in the modelling phase, performance ana-
lysts build an (annotated1) software model; in the analysis
phase, a performance model is obtained through model-to-
model transformation, and such model is solved to obtain
the performance indices of interest; in the refactoring phase,
the performance indices are interpreted and, if necessary,
feedback is generated as refactoring actions on the original
software model.

The modelling and analysis phases are well-covered by
several approaches [4] that introduce automation in all steps
(e.g. [27, 6]). There is, however, a clear lack of automation
in the refactoring phase, which shall improve the software
architecture based on the analysis results. The goal of the
refactoring phase, whose core step is the result interpreta-
tion and feedback generation step (see Figure 1), is to look
for performance flaws in the software model and to provide
architectural alternatives2. Such activities are today exclu-
sively based on the analysts’ experience, and therefore their
effectiveness often suffers the lack of automation.

A few approaches [11, 20, 28] address to automate the
refactoring step. They, however, either do not implemented
the proposed automation [11], or focus on technology-specific
performance problems only [20], or address performance prob-
lems at the performance model level only [28], so that feed-
back to the design is not directly available.

Performance antipatterns [21] are descriptions of perfor-
mance problems commonly encountered by performance en-

1In order to conduct quantitative performance analysis, a
software model can be extended with performance annota-
tions such as the workload of the system, service demands
of operational steps, hardware characteristics, etc.
2It is obvious that if all performance requirements are sat-
isfied then the feedback simply suggests no change on the
software model.
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Figure 1: Software performance modelling and anal-
ysis process.

gineers in practice and represent a promising instrument to
introduce automation in the refactoring phase. The benefit
of using antipatterns is two-fold: on the one hand, a perfor-
mance antipattern identifies a bad practice in the software
model that affects the performance indices negatively, thus
to support the results interpretation activity; on the other
hand, a performance antipattern definition includes a so-
lution description that lets the designer devise refactoring
actions, thus to support the feedback generation activity.

The main source of performance antipatterns [23] defined
a number of 14 notation- and domain-independent antipat-
terns. Few other papers present technology-specific perfor-
mance antipatterns.

In our work, step 3 in the refactoring phase takes the defi-
nition of performance antipatterns (label D) as an additional
input. Performance antipatterns are detected in the (anno-
tated) software model thus to address the results interpreta-
tion, and a refactored software model is built by solving the
antipatterns, as suggested in their definition, thus to address
the feedback generation.

The performance antipatterns we consider are not spe-
cific to any modelling language. In our previous work, [10]
we have introduced a technique based on first-order logic to
specify system-independent rules that formalize known per-
formance antipatterns. These rules express a set of system
properties under which an antipattern occurs with a certain
degree of notation-independence. However, for the detection
(and consequently the solution) to be applied in practice, we
need a software modelling notation that can capture the de-
fined system properties.

In [9] we showed how performance antipatterns can be de-
fined and detected in UML [3] models using OCL [1] queries,
but we have not yet automated their solution.

In this paper we present the first automated approach to
automatically detect and solve performance antipattern in
a design-level software modelling language. We examined
performance antipatterns within the Palladio Component
Model (PCM) [5], which is a domain specific modelling lan-
guage to describe component-based software architectures.
Starting from the natural language description of antipat-
terns [23], we define a set of rules and actions expressed
in terms of the PCM meta-model elements, in order to au-
tomate both the detection and the solution of performance
antipatterns in PCM models.

Note that other software modelling languages can be con-
sidered, too, if the concepts for representing antipatterns are
available; for example, architectural description languages
such as AADL [2] can be also suited to apply the approach.
As future work, we plan to investigate the representation
of antipatterns in different modelling languages in order to
gain experience for a more general framework, independent
of any modelling notation.

In this paper the software process of Figure 1 is instan-
tiated in Table 13: the software system is modelled with
PCM; the transformation from the software model to the
performance model generates the simulation code for the
PCM simulation tool SimuCom [5]; the performance model
is then simulated to obtain the performance indices of inter-
est: response time, utilisation, throughput, etc.

The contribution of this paper is represented by the two
bottom most entries of Table 1. A set of rules and actions
are defined to overcome the performance flaws: each rule
characterizes the properties to detect performance antipat-
terns in the PCM model under analysis, and each action
describes the changes to solve antipatterns in such model.

Using our approach, performance analysts can detect and
solve performance problems more quickly. Instead of man-
ually analysing the result indices of performance analyses
and coming up with possible alternatives, they only have to
assess the refactoring actions created by the application of
our antipattern detection and solution approach.

General process This paper context

(Annotated)
Software Model PCM
Model2Model
Transformation PCM2SimuCom
Performance Extended Queueing Network
Model (G/G/n queues + routing)
Model
Solution SimuCom simulation
Performance Response time, Utilisation,
Indices Throughput, . . .
Performance
Antipatterns Rules and Actions
Results Interpretation & Detection and Solution
Feedback Generation of Antipatterns

Table 1: A customized overview of the process.

The rest of the paper is organized as follows: Section 2
compares the related works to our approach. An overview
of which performance antipatterns are detectable or solv-
able within the PCM context is given in Section 3. Section

3Note that for input/output data we refer to modelling nota-
tions, numerical values, and queries, whereas for operational
steps we refer to methodologies.



4 describes in detail some examples of the antipatterns that
can be detected and solved within the PCM modelling nota-
tion: such antipatterns are represented as a set of rules for
the identification of the problem, as well as a set of actions
for the application of the solution. Section 5 reports the
case study that motivates the beneficial effects of detecting
and solving performance antipatterns. Assumptions, limita-
tions, and open issues are discussed in Section 6, and finally
Section 7 concludes the paper by giving a summary of the
work and directions for future research.

2. RELATED WORK
The term antipattern appeared for the first time in [8]

in contrast to the trend of focus on positive and construc-
tive solutions. Differently from patterns [14], antipatterns
look at the negative features of a software system and de-
scribe commonly occurring solutions to problems that gen-
erate negative consequences. In general, antipatterns can be
applied in different domains: for example, in [25] data-flow
antipatterns help to discover errors in workflows; as another
example, in [7] antipatterns help to discover multi-threading
problems of java applications.

While architectural and design antipatterns (and patterns)
are generally concerned with software quality attributes such
as reusability and maintainability [19], performance antipat-
terns are solely focused on performance concerns. We are
particularly interested in technology independent performan-
ce antipatterns [23], because our goal is to tackle the prob-
lem at the modelling level, by looking at the architectural
design of software systems and localizing the most critical
parts, from a performance perspective. Technology specific
antipatterns have been specified in [13, 24] but they are out
of our interest, because they focus on source code (e.g. an
over use of session beans) and performance issues emerge
only after the actual implementation of the system.

A first proposal of automated generation of feedback due
to the software performance analysis driven by antipatterns
can be found in [11], where the detection of performance
flaws is demanded to the analysis of Layered Queued Net-
work (LQN) models and uses informal interpretation ma-
trices reasoning only on performance indices and violated
requirements. This paper aims at systematically evaluat-
ing performance prediction results by joining the analysis of
performance indices (e.g. the utilization of a hardware re-
source) with the architectural features of software systems
(e.g. the interaction among software resources) and, differ-
ently from [11], it provides support to automatically solve
the detected antipatterns.

The issue of detecting performance antipatterns has been
addressed in [20], where a rule-based performance diagnosis
tool, named Performance Antipattern Detection (PAD), is
presented. However PAD only deals with Component Based
Enterprise Systems, targeting EJB applications. It is based
on monitoring data from running systems, and it extracts
the run-time system design and detects EJB antipatterns
by applying rules to it. Therefore its scope is restricted to
such domain, whereas in our approach the starting point is
an architectural model of the software system, in the early
stages of development.

Another interesting work on the software performance di-
agnosis and improvements has been proposed in [28]: rules
to identify patterns of interaction between resources are de-
fined. Performance flaws are identified before the imple-
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Figure 2: An example of a PCM model.

mentation of the software system, however only the antipat-
terns bottlenecks (e.g. the“One-Lane Bridge”antipattern in
Smith’s classification) and long paths are considered. Addi-
tionally, performance issues are identified at the level of the
LQN performance model, so that the translation of these
model properties into design changes could (i) hide some
possible refactoring solutions as well as (ii) be impossible
due to design constraints. Our approach refers both to per-
formance and design features of the software system in the
feedback generation process in order to maintain the infor-
mation we need to choose the best design alternatives.

In [18], meta-heuristic search techniques are used for im-
proving performance, reliability, and costs of component-
based software systems: evolutionary algorithms search the
architectural design space for optimal trade-offs. The ap-
proach is quite time-consuming, because it uses random chan-
ges of the architecture instead of making use of performance
knowledge. In this paper, we demonstrate the benefit of
using antipatterns, since they allow to converge quickly to-
wards performance improvements by suggesting suitable ar-
chitectural alternatives.

3. OVERVIEW OF PERFORMANCE
ANTIPATTERNS IN PCM

In this section we provide an overview of the performance
antipatterns that can be specified in the Palladio Compo-
nent Model (PCM). Section 3.1 first provides basic informa-
tion on the PCM, then Section 3.2 gives an overview on the
detection and solution of antipatterns in the PCM.

3.1 Palladio Component Model Basics
To quickly convey the concepts of the PCM, the simple ex-

ample in Figure 2 contains the PCM model elements that are
important for antipattern detection and solution in a sim-
plified UML-like syntax. In the following explanation, the
model elements are marked with typewriter font. Note
that only features relevant to this paper are shown here,
other PCM features can be found in [5].

A software system in the PCM is modelled as a set of com-



ponent (here: Basic Components C1, C2). Components of-
fer Interfaces. In the example, Basic Component C1 offers
Interface I1, while Basic Component C2 offers Interface

I2. Additionally, components can require interfaces. In the
example, C1 requires the Interface I2. Components are
assembled to a System by connecting provided and required
Interfaces. For example, the Interface I2 provided by
component C2 satisfies C1’s requirement of that Interface.

A PCM model also contains the mapping of software com-
ponents to hardware, called Allocation. Hardware plat-
forms are modelled as Resource Containers, which can con-
tain Active Resources, such as CPU and hard disk (HDD),
or Passive Resources, such as semaphores or thread pools.
In this example, a semaphore Passive Resource with ca-
pacity 1 is modelled in Resource Container RC1. Active

Resources have additional properties not shown here, such
as a processing rate (how many demand units per second
they process) and scheduling policies (such as FCFS or pro-
cessor sharing). The mapping of components to Resource

Containers is visualised by placing the components inside
the container in this example. Resource Containers are
connected by Linking Resources, whose timing behaviour
is determined by the size of sent data.
Service Effect Specifications (SEFFs) describe the be-

haviour of the services offered by the Basic Component. A
SEFF contains a sequence of actions. External Call Ac-

tions model calls to required interfaces. For example, ser-
viceX of component C1 calls the serviceY of interface I2. As
C1 is connected to C2 with this interface, the call is directed
to C2’s serviceY. Optionally, the size of the passed data can
be specified with a BYTESIZE Characterisation, which is
used to determine the linking resource load. Internal Ac-

tions specify a resource demand to an Active Resource,
such as a CPU or a hard disk (HDD). In the example, ser-
viceX of component C1 has a CPU demand of 0.01 each time
it is called. Acquire Actions and Release Actions model
the use of Passive Resources in the PCM. Control flow
structures are modelled with LoopActions, BranchActions,
and ForkActions (not shown in the example).

3.2 Performance Antipatterns in the PCM
In general, in a modelling language, there are antipat-

terns that can be automatically detected and solved, others
that can be automatically detected, but not automatically
solved, and finally some others that are neither detectable
and solvable.

Table 2 lists the performance antipatterns we examine.
From the original list of 14 antipatterns defined by Smith
and Williams in [23], two antipatterns are not considered
for the following reason: the Falling Dominoes antipattern
refers not only to performance problems, it includes also
reliability and fault tolerance issues, and it is out of our
interest; the Unnecessary Processing antipattern deals with
the semantics of the processing by judging the importance
of the application code that it is an abstraction level not
included in software models.

The list of the antipatterns we consider (see Table 2) have
been enriched with an additional attribute: the Single-value
antipatterns are detectable by mean, max or min values of
performance indices, whereas the Multiple-values antipat-
terns are detectable by the trend or evolution of the per-
formance indices along the time (see more details in [10]).
Table 2 is organized as follows: each row represents a spe-

cific antipattern and it is characterized by three fields (one
per column), that are: antipattern name, if it is automat-
ically detectable and solvable in PCM models. The entries
of Table 2 can be of three different types with the following
meaning:

√
(i.e. yes), × (i.e. no), and − denotes that the

corresponding operation does not make sense, i.e. if an an-
tipattern cannot be detected it is obvious that it cannot be
solved.

Antipattern Detectable Solvable

Blob
√

×

Concurrent
Processing
Systems

√ √

Single-

Unba-
lanced
Pro-
cessing

Pipe and
Filter
Architec-
tures

√
×

value
Extensive
Processing

√ √

Circuitous Treasure
Hunt

√
×

Empty Semi Trucks
√

×

Tower of Babel × −

One-Lane Bridge
√ √

Excessive Dynamic
Allocation × −

Multiple-
Traffic Jam

√
×

values The Ramp × −

More is Less × −

Table 2: Performance Antipatterns automatically
detectable and solvable in PCM modelling language.

Table 2 points out that the most interesting antipatterns
in the PCM context are: Concurrent Processing Systems,
Extensive Processing, and One-Lane Bridge. Such antipat-
terns can be referred as solvable antipatterns, since they can
be automatically detected and solved. More details on the
detection and the solution of antipatterns are provided in
Section 4.

Table 2 reveals that there are currently five performance
antipatterns (i.e. Blob, Pipe and Filter Architectures, Cir-
cuitous Treasure Hunt, Empty Semi Trucks, and Traffic
Jam) that can be automatically detected, but not automat-
ically solved. Such antipatterns can be referred as semi-
solvable antipatterns, since it is only possible to devise some
actions to be manually performed (see Section 4.2).

Table 2 indicates that there are currently four perfor-
mance antipatterns (i.e. Tower of Babel, Excessive Dynamic
Allocation, The Ramp, and More is Less) neither detectable
nor solvable in the PCM context.

Tower of Babel is an antipattern whose bad practice is
on the translation of information into too many exchange
formats, i.e. data is parsed and translated into an internal
format, but the translation and parsing is excessive [23]. In
the PCM, data flow is more abstract and does not include
information on data formats. However, it might be possi-



ble to replace the current modelling language to specify the
behavioural description of services, i.e. the PCM service
effect specification (SEFF), by another behavioural descrip-
tion language that includes such detail.

Excessive Dynamic Allocation is an antipattern whose bad
practice is on unnecessarily creating and destroying objects
during the execution of an application [21]. In the PCM,
no object-oriented detail is currently available, because it
is not included in the current abstraction level. However,
it might be possible to detect such bad practice in PCM
models that are re-engineered from byte code [17], because
constructor invocations are then stored as special type of
resource demands at the modelling layer.

The Ramp is an antipattern whose bad practice is on
the increasing value of the response time and a decreasing
throughput over time [23]. It might be detected by intro-
ducing the concept of state as suggested in [16], and it might
be possible to inform the designer that a resource demand
increasingly grows due to state changes.

More is Less is an antipattern whose bad practice is on
the overhead spent by the system in thrashing in compar-
ison of accomplishing the real work, because there are too
many processes in comparison to the available resources [22].
Currently thrashing cannot be modelled in the PCM, but it
might be added by introducing layered execution environ-
ment models, as suggested in [15].

4. ANTIPATTERNS-BASED PROCESS
In this section, we describe an antipatterns-based process

to improve the performance of software architectural mod-
els. Figure 3 details the software performance modelling and
analysis process of Figure 1: the refactoring phase is explic-
itly represented in two main operational steps: (i) detecting
antipatterns provides the localization of the critical parts of
software architectures thus to address the results interpreta-
tion problem; (ii) solving antipatterns suggests the changes
to be applied to the software model under analysis, thus to
address the feedback generation problem.

Figure 3 shows that several iterations can be conducted
to find the software model that best fits the users require-
ments. Because several antipatterns may be detected in a
software model, and additionally, several solution actions
may be available for solving an antipattern, a set of candi-
dates (e.g. Candidate1, . . . , Candidateh in the first itera-
tion) are generated as a result of the refactoring step. Then,
the detection and solution approach can be iteratively ap-
plied to all newly generated candidates, to further improve
the system.

The activities of detecting and solving antipatterns are
performed by reasoning on the natural language definition
of the problem and solution specifications [23], as reported
in Table 3. We selected some performance antipatterns from
Table 2 and distinguish between semi-solvable and solvable
in the leftmost column (see Section 3).

Table 3 lists the performance antipatterns we examine in
this section. Hence, the performance antipattern specifica-
tion is given in terms of rules representing the problem (see
Section 4.1) and actions representing the solution (see Sec-
tion 4.2). Both rules and actions are expressed in terms of
PCM meta-model elements presented in Section 3.1.

Note that the rules and the actions we propose reflect
our interpretation of the natural language; other researchers
might interpret and formalize the antipatterns differently.

Figure 3: An antipatterns-based process for Soft-
ware Performance Feedback.

This unavoidable gap is an open issue in this domain, and
certainly requires a wider investigation to consolidate the
formal definition of antipatterns.

Process afterthoughts are discussed in Section 4.3 where
we propose a more compact graphical notation to summarize
the process and we devise termination criteria.

4.1 Detecting antipatterns in PCM
From the informal representation of the problem (see Ta-

ble 3) a set of rules is built, where each rule addresses part
of the antipattern problem specification. An antipattern is
detected if all its rules are fulfilled by a PCM model.

Note that the rules we propose are aimed at capturing bad
practices hence it is necessary to introduce a set of thresh-
olds representing system features (e.g. the upper bound for
the hardware resource utilization). Such thresholds must be
instantiated into concrete numerical values, e.g. hardware
resources whose utilization is higher than 0.8 can be con-
sidered critical ones. The binding of thresholds is a critical
point of the whole approach. Some sources can be used to
perform this task such as: (i) the system requirements; (ii)
the domain expert’s knowledge; (iii) the evaluation of the
system under analysis4.

Blob is an antipattern whose problem is on the excessive
message traffic generated by a single class or component [21].
The detection of the antipattern can be performed with the
following rules.

4For example the upper bound for the hardware resource
utilization can be estimated as the average utilization value
overall the resources in the software system, plus the corre-
sponding variance.
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Blob Occurs when a single
class or component ei-
ther 1) performs all
of the work of an ap-
plication or 2) holds
all of the application’s
data. Either manifes-
tation results in ex-
cessive message traffic
that can degrade per-
formance.

Refactor the design
to distribute intelli-
gence uniformly over
the application’s top-
level classes, and to
keep related data and
behaviour together.

Circuitous
Treasure
Hunt

Occurs when an ob-
ject must look in sev-
eral places to find
the information that
it needs. If a large
amount of processing
is required for each
look, performance will
suffer.

Refactor the design
to provide alternative
access paths that do
not require a Cir-
cuitous Treasure Hunt
(or to reduce the cost
of each look).

Empty
Semi
Trucks

Occurs when an ex-
cessive number of re-
quests is required to
perform a task. It
may be due to in-
efficient use of avail-
able bandwidth, an
inefficient interface, or
both.

The Batching perfor-
mance pattern com-
bines items into mes-
sages to make better
use of available band-
width. The Coupling,
Session Facade, and
Aggregate Entity de-
sign patterns provide
more efficient inter-
faces.

S
o
lv

a
b
le

Concurrent
Processing
Systems

Occurs when process-
ing cannot make use
of available proces-
sors.

Restructure software
or change scheduling
algorithms to enable
concurrent execution.

Extensive
Processing

Occurs when exten-
sive processing in gen-
eral impedes overall
response time.

Move extensive pro-
cessing so that it does
not impede high traf-
fic or more important
work.

One-Lane
Bridge

Occurs at a point in
execution where only
one, or a few, pro-
cesses may continue to
execute concurrently
(e.g., when accessing
a database). Other
processes are delayed
while they wait for
their turn.

To alleviate the
congestion, use the
Shared Resources
Principle to minimize
conflicts.

Table 3: Examples of performance antipatterns [23].

Usage Rule - a complex Basic Component, e.g. bcx, de-
pends on many other basic components, i.e. it requires many
Interfaces. It might means that bcx needs to retrieve a lot
of information in order to handle incoming requests.

Interaction Rule - in the behavioural description of a ser-
vice, i.e. in the SEFF, the Basic Component bcx generates
excessive message traffic, i.e. its External Call Actions
have a high frequency of being executed. It might mean
that resources managing such communication could suffer
from a performance perspective.

Utilisation Rule - if the bcx basic component and the sur-
rounding ones (i.e. the basic components with which bcx
communicates) are deployed on the same Resource Con-

tainer, e.g. rcx, then the performance issues due to the

excessive load may come out by evaluating the utilisation of
the ActiveResources of rcx; otherwise, if basic components
are distributed on different Resource Containers, then the
performance issues due to the excessive message traffic may
come out by evaluating the network communication links,
i.e. the PCM Linking Resource utilisation. This goal is
performed by extracting the utilisation performance index
from the simulation results.

The output of the detection rules is the set of Basic Com-

ponents satisfying the defined rules (e.g. bcx).

Circuitous Treasure Hunt is an antipattern whose prob-
lem is on a inadequate organization of data that lead the
system to look in several places to find the information it
needs [23]. The detection of the antipattern can be per-
formed with the following rules.

DBinteraction Rule - there are at least two PCM Basic

Components, e.g. bcx and bcy, such that: a) bcx often calls
bcy, i.e. there is one or several External Call Actions in
bcx’s SEFFs that call Interfaces provided by bcy and that
together have a high frequency of being executed; and b)
bcy is a database, which is modelled by annotating bcx with
a custom mark model.

Utilisation Rule - similarly to the Blob antipattern (look
at the rule with the same name) it is important to check the
utilisation of the Active Resources of the Resource Con-

tainer on which the database basic component bcy is de-
ployed. Such a Resource Container, e.g. rcy, is consider
critical if the utilisation of any of its Active Resources ex-
ceeds a certain threshold.

DiskMoreUtilised Rule - a database access utilizes more
hard disks resources than CPU ones. In general, a Re-

source Container rcy contains several Active Resources
prxt which have a type t, with t ∈ {CPU,HardDisk}. This
rule matches if the maximum utilisation among all the hard
disk(s) in rcy is greater than the maximum one among all
the CPU(s) in rcy.

The output of the detection rules is a set of Basic Com-

ponent pairs satisfying the defined rules (e.g. bcx and bcy).

Empty Semi Trucks is an antipattern whose problem is
on an excessive number of requests to perform a task [23].
The detection of the antipattern can be performed with the
following rules.

Interaction Rule - similarly to the Blob antipattern (look
at the rule with the same name), there is at least one SEFF

in which a Basic Component, e.g. bcx, generates excessive
message traffic, i.e. its External Call Actions have a high
frequency of being executed. It might means that resources
managing such communication could suffer from a perfor-
mance perspective.

MessageSize Rule - the Basic Component bcx sends a high
number of messages without optimizing the available band-
width, i.e. many messages of small size (a small value in
the BYTESIZE Characterisation) are exchanged. It might
means that the amount of processing overhead is required
many more times than necessary.

RemoteCommunication Rule - the Basic Component bcx
communicates with a high number of remote Basic Compo-

nents as captured from the Allocation, and the communi-
cating components are all deployed on the same Resource

Container, without optimizing the interface.
The output of the detection rules is the set of Basic Com-

ponents satisfying the defined rules (e.g. bcx).



Concurrent Processing Systems is an antipattern whose
problem is on an unbalanced distribution of workload among
the available processors [23]. The detection of the antipat-
tern can be performed with the following rules.

QueueLength Rule - the system cannot make effective use
of available processors: there is at least one Active Re-

source rcxt in a Resource Container rcx that has a high
average queue length. This rule is evaluated by extracting
the queue length performance index of rcxt from the simu-
lation results, and checking if it is greater than a threshold
value named Thql(t) (e.g. Thql(CPU) =50 requests and
Thql(HardDisk) =70 requests) for that resource type t.

Utilisation Rule - the Active Resource rcxt is over utilised,
i.e. it has a high utilisation. Note that this rule is evaluated
by extracting the utilisation performance index of rcxt from
the simulation results. The Resource Container rcx is se-
lected if the utilisation of its Active Resource rcxt exceeds
a maximum threshold boundary for its type t named, for
example, ThmaxUtil(t) (e.g. ThmaxUtil(CPU) = 80% and
ThmaxUtil(HardDisk) =70%).

UnbalancedLoad Rule - processors are not used in a well-
balanced way, there is at least another Resource Container

instance, e.g. rcy whose Active Ressources of type t are
less utilized in comparison to the ones of rcx. The compar-
ison of processing resources among the PCM containers rcx
and rcy is performed by checking the utilisation according
to their type t (i.e. CPU, HardDisk). Note that this goal is
performed by extracting the utilisation performance index
of the Active Resources rcyt from the simulation results.
The Resource Container rcy is selected if the utilisation
of rcyt does not exceed a minimum threshold boundary for
that type t named ThminUtil(t) (e.g. ThminUtil(CPU) =
30% and ThminUtil(HardDisk) = 20%).

The output of the detection rules is a set of tupels with
three elements: two Resource Containers satisfying the de-
fined rules (e.g. rcx and rcy) and the critical resource type
t (e.g. CPU, HardDisk).

Extensive Processing is an antipattern whose problem
is on a not efficient management of requests: “lighter” re-
quests are delayed, since they wait for “heavier” ones [22].
The detection of the antipattern can be performed with the
following rules.

Structural Rule - there are two SEFFs, i.e. seffa and
seffb, that cannot be executed at the same time, due to
two different reasons: (i) there is a Branch Action ba in a
third SEFF, i.e. seffc, which models that from seffc, either
seffa of seffb is called, (ii) ba is protected by a Passive

Resource p of capacity equal to one, i.e. ba is preceded by
an AcquireAction for p and succeeded by a ReleaseAction

for p; or (ii) there is a FIFO scheduling policy for the PCM
Resource Container hosting seffa and seffb that disables
their concurrency.

ResourceDemand Rule - SEFF seffa has a high resource
demand, i.e. its contained Internal Actions have a high re-
source demand. For example, many CPU units are needed to
accomplish a certain task or many bytes are read or written
to a hard disk, etc. Such values are compared to threshold
values and considered critical whenever they exceed such
boundaries.

Probability Rule - Branch Action ba in seffc specifies
that the probability of calling seffa is lower than one, i.e.
the SEFF seffa must not be always executed.

UnbalancedResDemand Rule - the resource demands for
seffa and seffb are unbalanced, the former is the heavy
one, the latter is the light one, i.e. their resource demands
differ of a substantial value.

Utilisation Rule - the Resource Container on which the
Basic Component providing seffa is deployed, has an heavy
computation, i.e. the utilisation of one of its Active Re-

sources is higher than a threshold value.
The output of the detection rules is the set of SEFF pairs

satisfying the defined rules (e.g. seffa and seffb).

One-Lane Bridge is an antipattern whose problem con-
sists on processes that are not allowed to be processed con-
currently [21]. The detection of the antipattern can be per-
formed with the following rules.

QueueLength Rule - there is at least a Passive Resource,
e.g. prx, that has a large queue length, i.e. the queue length
is greater than a threshold value.

WaitingTime Rule - the requests incoming to the Passive

Resource prx are delayed, i.e. the time they hold prx is much
smaller than the time they have to wait for prx. Note that
this rule is evaluated by extracting the holding time and the
waiting time performance indices of prx from the simulation
results.

The output of the detection rules is the set of passive
resources satisfying the defined rules (e.g. prx).

4.2 Solving antipatterns in PCM
From the informal representation of the solution (see Ta-

ble 3) a set of actions is built, where each action addresses
part of the antipattern solution specification.

Blob, Circuitous Treasure Hunt, and Empty Semi Trucks
are antipatterns whose solution is not automated because
components are considered black-box elements in the PCM,
and the component’s internal behaviour cannot be restruc-
tured. However some actions can be suggested to and re-
viewed by the designer. Alternatively, the designer can man-
ually specify the alternative component(s) able to substitute
the detected one(s).

Blob is an antipattern whose solution can be performed by
delegating the business logics from the Blob basic compo-
nent to the ones with which it communicates, e.g. by de-
creasing the number of required interfaces and/or the num-
ber of calls.

Circuitous Treasure Hunt is an antipattern whose solu-
tion can be performed with two actions. The first action
is aimed at decreasing database communications by restruc-
turing the component communicating with the database and
avoiding excessive communication. The second action aims
at refactoring the database component in its internal struc-
ture by organizing it in such a way that database requests
can be performed without accessing too many tables.

Empty Semi Trucks is an antipattern whose solution can
be performed with three actions. The first action is aimed
at avoiding excessive remote communication by redeploying
the component responsible for it, thus to not overload net-
work resources. The second action is aimed at optimizing
the usage of the bandwidth by reducing the number of sent
messages; such action can be performed by batching the
messages, i.e. joining all small messages in few messages of
a bigger size. The third action is aimed at optimizing the us-
age of the interface by reducing the remote communication;



such action can be performed by demanding the requests of
a component to another one that is remotely deployed with
the other communicating components.

Concurrent Processing Systems, Extensive Processing, and
One-Lane Bridge are antipatterns whose solution is auto-
mated in the PCM by devising a set of refactoring actions
explained in the following.

Concurrent Processing Systems is an antipattern whose
solution looks at restructuring software or changing schedul-
ing algorithms [23]. The solution of the antipattern can be
performed with the following actions.

BalanceLoad Action - if the Resource Containers rcx and
rcy

5 offer the same Interfaces, change the scheduling algo-
rithms and distribute in a balanced way (from rcx to rcy)
the requests for such services by modifying the probability
to be called.

Mirror Action - mirror the Basic Components of the Re-

source Container rcx into rcy and balance the workload,
so that the requests incoming to the system are distributed
to both Resource Containers. Consider the available Ac-

tive resources (i.e. cpu(s), hard disk(s)) of the Resource

Containers.
MostCritical Action - identify the Basic Component of the

Resource Container rcx that has the highest resource de-
mand of the critical type t, and redeploy it in the Resource

Container rcy. Such action is rather simplistic, and we do
not expect many performance improvements by applying it.

Redeploy Action - redeploy some Basic Components from
the Resource Container rcx to rcy. Such action can be
performed by taking into account a set of system properties
or their combination, as argued in the following.

The first option is aimed at redeploying components on
the basis of their resource demand types. The redeployment
of components can be performed by evaluating the resource
container rcy and deciding whenever it is better to rede-
ploy CPU-critical (high computation demand) components
and/or HardDisk-critical (high storage demand) ones.

The second option is aimed at redeploying components on
the basis of the utilisation of processing resources belonging
to the resource containers under analysis. The resource con-
tainers can be considered more or less critical if: a) there is
at least one Active Resource of type t∗ (i.e. CPU, Hard-
Disk) providing a violation, i.e. utilisation(prxt∗) exceeds
a threshold (e.g. Thpr = 85%), and ignore the others that
do not provide any violation; b) all the Active Resources
of type t∗ provide a violation.

The third option is aimed at redeploying components on
the basis of their communication and trying to deploy com-
ponents communicating each other possibly on the same Re-
source Container. Network links can considered more or
less critical if: a) two components communicate through a
Linking Resource providing a violation, i.e. utilisation(nlx)
exceeds a threshold (e.g. Thnet = 75%), but such compo-
nents also use other network links that do not provide any
violation; b) all the network links provide a violation.

Extensive Processing is an antipattern whose solution
looks at scheduling requests according to their processing
load and/or importance [22]. The solution of the antipattern
can be performed with the following actions.

5Note that rcx and rcy represent the instances coming from
the antipattern detection (see Section 4.1).

Note that the detection of the Extensive Processing an-
tipattern involves two different reasons in its structural rule
(see Section 4.1) that we recall in the following:

IncreaseCapacity Action - increase the capacity of Pas-

sive Resource locking the Branch Action (if case (i) of the
structural detection rule was matched)

UnblockExecution Action - change the scheduling algo-
rithm of the resource and/or redeploy one of the Basic Com-

ponents containing seffa or seffb thus they do not queue
for the same Active Resource anymore (if case (ii) of the
structural detection rule matched)

One-Lane Bridge is an antipattern whose solution looks at
sharing resources thus to avoid congestion of requests [21].
The solution of the antipattern can be performed with the
following action.

IncreaseCapacity Action - increase the capacity of the
Passive Resources. A smarter methodology can be devised
in order to optimize the capacity by evaluating the minimal
multiplicity able to solve performance issues.

4.3 Process afterthoughts
The aim of this section is to discuss some afterthoughts

about the antipatterns-based process. Figure 4 depicts the
process we presented in Figure 3 in a graph-like way: each
node joins the (annotated) software model and its perfor-
mance indices; each arc represents a refactoring action ap-
plied to solve a detected antipattern.

Each node additionally stores the requirements under anal-
ysis and their prediction values, since such requirements rep-
resent what end-users expect from the system for the target
performance properties to be fulfilled. Such graphical no-
tation gives an immediate overview on the software model
that might best fit the end-users requirements.

Figure 4: Process summary.

Note that we decided to separately consider each antipat-
tern action (i.e. a single action gives rise to a software model
candidate) since the automation of the refactoring is difficult
for several reasons (see Section 6).

The number of software model candidates not necessarily
increases between subsequent iterations, because each node
is newly analysed and the number of detected antipatterns
(and consequently their refactoring actions) can be fewer in
comparison to the parent node.

Different termination criteria can be defined in the pro-
cess: (i) fulfilment criterion, i.e. all requirements are sat-
isfied and a software model able to cope with user needs



is found; (ii) no-actions criterion, i.e. no antipatterns are
detected in the software models therefore no refactoring ac-
tions can be experimented; (iii) #iterations criterion, i.e.
the process can be terminated if a certain number of itera-
tions have been completed.

It is worth to notice that the solution of one or more an-
tipatterns does not guarantee performance improvements in
advance: the entire process is based on heuristics evalua-
tions. The actions we propose build new PCM models, i.e.
candidates (see Figure 3), that replace the one under analy-
sis, and the process can be newly iterated.

We have implemented the approach as an extension to the
PCM Bench tool6. The current implementation can detect
and solve three antipatterns in PCM models, namely Con-
current Processing Systems, Extensive processing and One-
lane Bridge. The tool completely automates the described
iterative search, supporting the stop criteria (ii) and (iii).
We present results from experimentation with the extended
tool in the next section.

5. CASE STUDY
In this Section we discuss a case study to demonstrate the

validity of the antipatterns-based process, and it is organised
as follows. First, Section 5.1 describes the PCM model of
the system under analysis, the so-called business reporting
system. Then, the stepwise application of the antipatterns-
based process is performed, i.e. the detection of antipatterns
(see Section 5.2) and their solution (see Section 5.3) across
multiple iterations. Finally, Section 5.4 presents the experi-
mental results we obtained.

5.1 Business Reporting System
The system under study is the so-called Business Report-

ing System (BRS), which lets users retrieve reports and sta-
tistical data about running business processes. To evalu-
ate our approach, we intentionally introduced seven antipat-
terns in the system as described in Section 5.2.

Figure 5 shows an overview of the PCM software model
for the BRS system. It is a 4-tier system consisting of sev-
eral basic components, as described in the following. The
Webserver handles user requests for generating reports or
viewing the plain data logged by the system. It delegates the
requests to a Scheduler, which in turn forwards the requests.
User management functionalities (e.g. login, logout) are di-
rected to the UserManagement, whereas report and view
requests are forwarded to the OnlineReporting or Graphical-
Reporting, depending on the type of request. Both compo-
nents make use of a CoreReportingEngine for the common
report generation functionality. The latter one frequently
accesses the Database, but for some request types uses an
intermediate Cache. The allocation of software components
on resource containers is shown in Figure 5, e.g. Proc2 deals
with the scheduling of requests by hosting Scheduler, User-
Management, OnlineReporting and GraphicalReporting ba-
sic components.

The system supports seven use cases: users can login,
logout and request both reports or views, each of which can
be both graphical or online; administrators can invoke the
maintenance service.

6Both PCM Bench and extension can be downloaded
at sdqweb.ipd.kit.edu/wiki/PerOpteryx, together with the
case study model.

Not all services are inserted in the Figure for sake of read-
ability, however two examples are shown: SEFF onlineRe-
port of component OnlineReporting implements the inter-
face IOnlineReporting, and SEFF graphicalReport of compo-
nent GraphicalReporting implements the interface IGraphi-
calReporting. Both services require an InternalAction, i.e.
performed respectively by OnlineReporting and Graphical-
Reporting components, to setup the report and then an Ex-
ternalCallAction demands to get the report from the Cor-
eReportingEngine component. For the graphicalReport ser-
vice is necessary to additionally calculate the report for each
requested entry. Each internal action is annotated with a re-
source demand indicating the time spent for processing such
operation, e.g. the setup of the onlineReport requires 0.001
CPU units.

The PCM software model contains the static structure,
the behaviour specification of each component and it is an-
notated with resource demands and resource environment
specifications. For performance analysis, the software model
is automatically transformed to simulation code, which is
executed by the SimuCom simulation [5]. Additionally, the
PCM usage model specifies how users use the system: users
login, 25 times the onlineView service is invoked, 5 times
the graphicalView and onlineReport services are invoked,
and finally the graphicalReport and maintain services are
performed before the logout.

The experimentation is conducted as follows. Starting
from the BRS system modelled in PCM, our tool generates
the simulation code and simulates the system with Simu-
Com. The simulation results are interpreted by our tool
and may reveal performance issues in the system if the pre-
diction value of one or more performance indices does not
fulfil the requirements.

Then, the antipatterns-based process is applied: if some
performance antipatterns are detected in the model, their
solution suggests the architectural alternatives that lead to
obtain new software model candidates. Such models are
iteratively analysed with the same process until a candidate
able to satisfy the performance requirements under study is
found, or until no antipatterns are detected any more.

For sake of simplification, our experimentation is focused
on the analysis of the response time of the system, i.e. the
average time a user spends in the system according to the
defined usage model. The performance analysis of the BRS
software model reveals that the response time of the system
is 18.71 seconds (under a closed workload of 20 requests with
thinking time of 5 seconds), so it does not meet the required
10 seconds. Since the requirement is not satisfied, we apply
our approach to detect and solve performance antipatterns.

5.2 Detecting Antipatterns
Figure 5 shows some labels that indicate the detected an-

tipatterns. All seven instances are found (PA1, . . . , PA7),
e.g. the Concurrent Processing Systems for Proc1 and Proc2,
the Blob is recognized in the Scheduler component, the Empty
Semi Trucks is associated to the OnlineReporting compo-
nent, and so on. Shaded labels represent the solvable an-
tipatterns, i.e. the ones that we consider for the solution.

Table 4 reports one example of the detected antipatterns
for the BRS software model in the first iteration. The first
column contains the antipattern type according to the Smith
and Williams classification; the second column instantiates
the problem by reasoning on the PCM model elements.



Figure 5: PCM Software Model for the BRS system.

Antipattern Problem

Concurrent
Processing
Systems

QueueLength Rule - the PCM Active Resource
CPU of Proc2, not shown in Figure 5 for sake
of readability, has a queueLength of 2.2 re-
quests (i.e. greater than the threshold value,
Thql(CPU) =1.5 requests); Utilisation Rule -
the PCM Active Resource CPU of Proc2 has an
utilisation of 62% (i.e. greater than the threshold
value, ThmaxUtil(CPU) =50%); Unbalanced-
Load Rule - the PCM Active Resource CPU of
Proc1 has an utilisation of 6.9% (i.e. lower than
the threshold value, ThminUtil(CPU) =10%).

Table 4: BRS- one example of detected antipatterns.

Note that several instances of the same antipattern type
can be detected. For example, we found two instances of
the Concurrent Processing Systems (not shown in Table 4
for sake of space) in the BRS system. Such antipatterns
instances are not independent since they both contain the
CPU of Proc2 as the over utilised one. It is for this rea-
son that we consider refactoring actions separately, to avoid
infeasible architectural alternatives.

5.3 Solving Antipatterns
Table 5 lists some of the solved antipatterns for the BRS

software model. In particular, two columns are defined:
the first one indicates the antipattern type according to the
Smith and Williams classification; the second one instanti-
ates the solution by reasoning on the PCM model elements.

Applying a refactoring action from Table 5 results in a
new software model candidate whose performance analysis
reveals if the action is actually beneficial for the system un-

Antipattern Solution

Extensive
Processing

UnblockExecution Action - the scheduling algo-
rithm of Proc2 is changed from FCFS to PRO-
CESSOR SHARING.

Concurrent
Processing
Systems

MostCritical Action - the component Graphical-
Reporting is redeployed from Proc2 to Proc1.

Concurrent
Processing
Systems

MostCritical Action - the component Graphical-
Reporting is redeployed from Proc2 to Proc4.

One-Lane
Bridge

IncreaseCapacity Action - the capacity of the
passive resource of Proc3 is increased by 5.

. . . . . .

Table 5: BRS- examples of solved antipatterns.

der study. The solution of an antipattern, however, cannot
guarantee performance improvements in advance because
the whole process is based on heuristic rules.

5.4 Experimental Results
Figures 6 reports our experimentation across multiple it-

erations of the process: the target performance index is the
response time of the system and it is plotted on the y-axis,
while the iterations of the antipatterns-based process are
listed on the x-axis. Single points represent the response
times observed after the separate solution of each perfor-
mance antipattern.

Figure 6 summarizes the whole experimentation across the
different iterations: 40 software model candidates are found,
and the response time of the system spans from 18.71 sec-



onds (i.e. the initial value) to 9.26 sec (i.e. the value that
fits with the requirement). Note that at each iteration a per-
formance improvement is achieved up to the forth iteration,
and the final improvement is roughly of 50%.

Figure 7 summarizes the process in the graph-like nota-
tion, as presented in Section 4.3: each node reports the per-
formance index of our interest, i.e. RT(system), and its
prediction value (e.g. 18.71 seconds in the root of the graph
represents the prediction value for the initial system); each
arc represents a refactoring action (e.g. the redeployment
of the GraphicalReporting component from Proc2 to Proc1)
applied to solve a detected antipattern (e.g. Concurrent Pro-
cessing Systems). In our experimentation we applied the ful-
filment criterion (see Section 4.3) to terminate the process,
since the requirement is satisfied at the forth iteration and
a software model candidate (i.e. the shaded node of Figure
7) able to cope with user needs is found.

Figure 7: Process summary for the BRS system.

As shown in Figure 7, we can conclude that the software
model candidate that best fits with user needs is obtained by
applying the following refactoring actions: (i) the Graphi-
calReporting component is redeployed from Proc2 to Proc1;
(ii) the Database component is redeployed from Proc3 to
Proc4; (iii) the capacity of the passive resource DBconnec-
tion is increased from 1 to 6; (iv) the GraphicalReporting
component is redeployed from Proc1 to Proc3.

6. DISCUSSION
The results we obtain by applying our approach of detect-

ing and solving antipatterns are promising, although several
open issues remain to be addressed within the PCM context
as well as in a more general vision.

With regard to PCM, a key question is whether the au-
tomation of the yet unsupported antipatterns is useful in
the PCM context. The introduction of more detailed mod-
elling constructs to capture the antipattern properties, such
as controller infrastructures, might lead to too high mod-

elling efforts compared to the expected benefits. An accu-
rate analysis must be conducted in order to evaluate the pros
and cons of supporting the antipatterns that are currently
not automated.

The activity of solving antipatterns (i.e. the application of
model refactoring actions on software models) implies some
problems to be tackled. Once a number of performance an-
tipatterns are detected, a certain strategy has to be intro-
duced to decide which ones have to be solved in order to
quickly converge towards an acceptable improvement of sys-
tem performance. Such strategy has been partially discussed
in [12], but several interesting issues have still to be faced,
such as the simultaneous solution of multiple antipatterns.
Note that the application of modifications is not commuta-
tive, because changing the order of solutions might change
the performance results.

More experience could lead to refine the antipattern pri-
orities on the basis of the application domain. For example
the “Excessive Dynamic Allocation” antipattern might be of
particular interest in object-oriented systems: although an
automated solution of this antipattern is challenging, some
tactics such as insertion or removal of caches might be ex-
perimented with.

Further issues in the solving antipatterns step might emerge
for different factors: (i) architectural features (e.g. legacy
constraints that do not allow to solve a certain antipat-
tern, or incompatibility between solutions of different an-
tipatterns); (ii) non-functional features (e.g. an antipattern
solution is too expensive or it can badly affect the software
dependability).

7. CONCLUSION
In this paper we presented an approach, based on an-

tipatterns, that aims at identifying performance flaws in
PCM models and removing them. The antipattern detec-
tion and solution activities are based on rules and actions,
respectively, that formalize the informal existing definitions
of performance antipatterns. We implemented the approach
as an extension of the PCM Bench tool. In a case study,
the approach was able to improve the system’s performance
under study by 50% by solving antipattern occurrences.

Using our approach, performance analysts can detect and
solve performance problems more quickly. Instead of man-
ually analysing the result indices of performance analyses
without coming up with possible design alternatives, they
only have to assess the refactoring actions suggested by our
antipattern detection and solution approach.

As future work, we plan to combine antipattern detec-
tion and solution with multi-criteria evolutionary quality
optimisation approaches such as [18]. Multi-criteria evolu-
tionary quality optimisation tries to improve several quality
attributes (such as performance and reliability) at once by
iteratively evolving the software model, applying random
mutation and crossover operators. Knowledge on perfor-
mance antipatterns can be used to evolve candidates more
effectively towards better performance.
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Figure 6: Response time of the system across the iterations of the antipattern-based process.
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