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Introduction

A precise control of light propagation is one of the main driving forces of research

in the field of optics. The performance of optical elements for the alteration of

light propagation is determined by the optical properties of the materials avail-

able. However, all natural existing optical materials are limited to only control

the electric-field component of the light. The development of metamaterials in

recent years made a new material class available that allows the control of the

electric- as well as the magnetic-field component of the light independently. This

new degree of freedom allows in principle the design of novel and unprecedented

optical devices.

Metamaterials are artificial composite materials constructed from fundamen-

tal buildings blocks. These blocks are arranged in a lattice with a period smaller

than the corresponding wavelength of light that they were synthesized for. The

optical properties of the material are given by the geometrical shape of the blocks

and the materials used, often a combination of metals and dielectrics. Its optical

behavior can well be described by effective material parameters such as an electric

permittivity ε and a magnetic permeability µ.

The theoretical framework for this material class was founded by Veselago in

1968 [1] who studied the qualities of a, at that time purely fictitious, material

which exhibits a negative magnetic- and electric response ε, µ < 0. He discovered

dramatically different propagation characteristics of light within this material

such as a negative index of refraction. These novel optical phenomena sparked

further research. In 2000, the concept of a perfect lens was proposed by Pendry

[2] as a possible application for a negative refractive index material.
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1. INTRODUCTION

On the way to a practical realization of such a material, a design of the

fundamental building block providing a magnetic response had to be found. In

1999, Pendry et al. [3] came up with the split-ring resonator (SRR). The basic

design consists of a metal ring with a small gap. Light impinging on this structure

induces an oscillating ring current which generates an oscillating magnetic dipole

moment. A negative index of refraction for a periodic arrangement of single

SRRs was demonstrated in 2001 by Shelby et al. [4] in the microwave region.

In later years, this concept was then brought to the optical domain through a

miniaturization of the SRRs down to dimensions on the nanometer scale using

advanced nano-fabrication techniques [5, 6].

Metamaterials are also the foundation for transformation optics [7]. By spa-

tially varying the effective material parameters ε, µ within the material, the flow

of light can be controlled. It can even be bent around objects to render them

invisible. The idea of the electromagnetic cloak goes back to work of Pendry et al.

[8] and Leonhard [9]. Through a vast improvement of 3D fabrication techniques,

this concept could be experimentally demonstrated at optical wavelengths only

recently [10].

Current research in the field of metamaterials is characterized by the search

for applications [11]. For example, perfect absorbers, neither transmitting of re-

flecting light in a certain wavelength range, have been demonstrated [12]. This

concept was then adapted for sensing and detection applications [13, 14]. Ther-

mal emitters, which provide a tailored emission spectrum [15, 16] also build up

on this idea. An investigation of the nonlinear optical properties of metamate-

rial structures is of scientific as well as technological interest. The research in

this area is motivated by the idea of developing efficient frequency converters or

optical switches using metamaterials, which outperform todays state-of-the-art

technologies. To reach this ambitious goal, a deeper understanding of the under-

lying physics is needed which can only be achieved through a sufficient amount

of experimental data, providing a test-ground for theory.

The experiments presented in this thesis aim to provide a contribution to

the progress in the field of linear and nonlinear optics of metamaterials and their

applications. The nonlinear optical experiments are focussed on second-harmonic

generation of gold split-ring resonator arrays as a paradigmatic building block of
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metamaterials . Second-harmonic optical spectroscopy on these arrays, using a

sophisticated optical setup with a tunable light source, provides a deeper insight

on the role of the different resonances of the SRR as well as the spacing between

individual SRR on the generation of frequency doubled light.

In addition, this thesis presents a thermal detector based on a modified split-

ring resonator structure. This metamaterial metal-based bolometer is fabricated

and fully experimentally characterized. The proof of concept adds up to the list

of possible applications using metamaterials.

Outline of this Thesis

The first part of this thesis deals with experiments on second-harmonic generation

from split-ring resonator arrays. In the second part, the experimental demonstra-

tion of a metamaterial metal-based bolometer is presented.

In chapter 2, the thesis starts with a presentation of the basics of linear and

nonlinear optics. These are provided to the reader for a deeper understanding of

the experimental results in the later chapters. In addition, the working-horse of

this thesis, the split-ring resonator is elucidated.

Chapter 3 discusses the methods used for the fabrication and the linear optical

characterization of all samples in this thesis.

The experimental details and results for the nonlinear optical experiments on

SRR arrays are presented in chapter 4. In the first part, we study the interac-

tion of an SRR array with a substrate possessing a strong optical second-order

nonlinearity and compare the results with a theoretical modeling. In the second

part, second-harmonic-generation spectroscopy on gold SRR arrays fabricated on

glass substrates is presented. A tunable light-source in combination with litho-

graphic tuning of the individual SRR within the arrays was used to provide a

deeper insight onto the role of the individual resonances on the second-harmonic

generation. The third part finally studies the role of the spacing between indi-

vidual SRRs within an array on the second-harmonic generation intensity. The

experimental result is compared to numerical calculations.

In chapter 5, the basic working principles of thermal detectors are illus-

trated to provide the basis for the later presentation of the metamaterial metal-

bolometer concept in chapter 6. A full experimental characterization of the fabri-

cated bolometer is presented and compared to numerical calculations. This work
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1. INTRODUCTION

is intended to provide a proof of concept of a thermal detector with build-in

spectral and polarization filters.

The thesis is finally concluded in chapter 7.
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2

Basics of Optics

In this chapter, the basics of linear and nonlinear optics are treated. We start by

introducing the Maxwell equations for a basic description of light-matter inter-

action. Then, the models for the linear optical response of metals and dielectrics

are presented. In a next step, an introduction to nonlinear optics and the nonlin-

ear optical response of metals and dielectrics is presented. Finally, the split-ring

resonator and its optical properties are introduced.

2.1 From Maxwell’s Equations ...

To start our journey into the interaction of light with matter, we begin with the

set of macroscopic maxwell equations describing electromagnetic phenomena in

general. They read

∇ ·D = ρext, (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B

∂t
, (2.3)

∇×H = jext +
∂D

∂t
, (2.4)

with the macroscopic fields D (the dielectric displacement), E (the electric field),

H (the magnetic field) and B (the magnetic induction), the external charge den-

sity ρext and the current density jext.

When the electric and magnetic fields E, H act on materials, they can induce

or reorient electric and magnetic dipoles. The polarization P describes the electric

5



2. BASICS OF OPTICS

dipole moment per unit volume inside the material, while the magnetization M

depicts the magnetic moment per unit volume. The constitutive relations account

for the presence of materials and have the form

D = ε0E + P, (2.5)

H =
1

µ0

B−M, (2.6)

with the electric permittivity ε0 and magnetic permeability µ0 of the vacuum.

In the following, we consider a linear response of the materials, and the fields

P, M are connected with the corresponding response functions through

P(r, t) =

∫
ε0χ̄e(r− r′, t− t′)E(r′, t′)dt′d3r′, (2.7)

M(r, t) =

∫
µ0χ̄m(r− r′, t− t′)H(r′, t′)dt′d3r′. (2.8)

Here, r denotes the spatial coordinate, and the electric and magnetic susceptibil-

ity, χ̄e and χ̄e respectively, represent second-rank tensors.

The above general form of the susceptibilities can be simplified if special

material properties are fulfilled. In isotropic media, the tensors reduce to scalar

quantities because the dipoles are oriented parallel or antiparallel to the applied

fields. Homogenous media with a spatially local response remove the tensors

dependence on the space coordinate. No explicit time dependence and causality

results in a simplified representation

P(r, t) = ε0

∫ t

−∞
χe(t− t′)E(r, t′)dt′, (2.9)

M(r, t) = µ0

∫ t

−∞
χm(t− t′)M(r, t′)dt′. (2.10)

We now do a Fourier transformation of the above equations to go from the time

domain to the frequency domain. Finally, the expressions

P(ω) = ε0χe(ω)E(ω), (2.11)

M(ω) = µ0χm(ω)H(ω), (2.12)

are obtained and the material equations 2.8 can be rewritten as

D = ε0(1 + χe(ω))E = ε0ε(ω)E, (2.13)

B = µ0(1 + χm(ω))H = µ0µ(ω)H, (2.14)
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2.2 ... to Light Propagation

with the relative electric permittivity εr = ε(ω) and the relative permeability

µr = µ(ω), which describe the response of the material.

In usual textbooks, a magnetization of materials through electromagnetic

fields at optical frequencies is often neglected, as natural existing materials show

no magnetic response for wavelengths in the visible. The excitement about optical

metamaterials is the idea of engineering values for εr, µr to change the materials

response to light waves, leading to unusual optical phenomena.

2.2 ... to Light Propagation

So far we have only processed the foundation of the interaction of magnetic and

electric fields with matter. But light as an electromagnetic wave is still hidden in

Maxwell’s equations. To reveal the traveling wave as a solution to the Maxwell

equations, we can rewrite them in the form(
∇2 − µ0ε0

d2

dt2
µrεr

)
E = 0, (2.15)(

∇2 − µ0ε0
d2

dt2
µrεr

)
B = 0. (2.16)

By using the ansatz for a plane wave for the electric and the magnetic field

E(r, t) = E0e
i(kr−ωt) + c.c., (2.17)

B(r, t) = B0e
i(kr−ωt) + c.c., (2.18)

with c.c. denoting the complex conjugate, we get the dispersion relation

k · k = µ(ω)ε(ω)ω2µ0ε0 = ñ(ω)2ω
2

c2
0

= ñ2(ω)k2
0, (2.19)

which connects the frequency ω of the wave with the wave vector k through the

vacuum speed of light c0 = 1/
√
µ0ε0 and the complex refractive index

ñ(ω) =
√
ε(ω)µ(ω). (2.20)

In most naturally occuring materials, the magnetic response at optical fre-

quencies can be neglected and setting µr = 1 is justified. The behavior of

the refractive index is therefoe solely determined by the complex permeability

ε(ω) = εRe(ω) + iεIm(ω) through

ñ(ω) =
√
ε(ω)Re + iε(ω)Im (2.21)
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2. BASICS OF OPTICS

with

εRe = n2 − κ2 (2.22)

εIm = 2nκ (2.23)

n2 =
εRe

2
+

1

2

√
ε2Re + ε2Im, (2.24)

κ =
εIm
2n

(2.25)

The propagation of light is obviously strongly affected by the refractive index,

as it directly influences the wavevector k. The wave vector for a plane wave

propagating in z-direction has the form

kz = ω
c0
ñêz =

ω

c0

(n+ iκ)êz (2.26)

where êz denotes the unit vector in z-direction. For the electrical field of a plane

wave 2.18 we then get

E(z, t) = E0 ·

propagation︷ ︸︸ ︷
eiω(n(ω)z/c0−t) · e−(ωκ(ω)z/c0)︸ ︷︷ ︸

attenuation

. (2.27)

Here we see that the real part n(ω) of the refractive index determines the wave

propagation, while the imaginary part κ(ω) accounts for a attenuation of the wave

and is therefore called the extinction coefficient. It is linked to the absorption

coefficient α of Beer’s law,

I(z) = I0e
−αz. (2.28)

It describes the exponential decay of the intensity I(z) of a beam propagation

through an absorbing medium along the z-direction. This can be easily seen by

using I(z, t) ∝ |E(z, t)|2 on 2.27 and comparing the result with 2.28. We obtain

α(ω) =
2ωκ(ω)

c0

. (2.29)

One can define a characteristic length scale on which the intensity of the wave

dropped to a value of 1/e of its initial intensity. This so called skin depth is given

by δz = 1/α(ω).

8



2.3 Metal Optics

2.3 Metal Optics

To describe the optical response of metals, we introduce the Drude free-electron

model. We will see that the dielectric function of this model is strongly linked to

the electrical conductivity of the metal.

2.3.1 The Drude Free-Electron Model

The model of free electrons is a classical model described in principle by Drude

in 1900. Within this model he was able not only to explain the conduction of

both, electricity and heat, but also the optical properties of metals. It is based

on the following assumptions. First of all, the metal consist of electrons that

can move freely. The movement of these conduction electrons is disturbed by

instantaneous and uncorelated collision processes with ions and impurities within

the metal. The probability of such a collision during a time interval dt is given

by dt/τ , where τ describes the relaxation time. An electron-electron interaction

process is neglected at all in this model.

The equation of motion for one electron with the mass me is given by

me
d2

dt2
r +

me

τ

d

dt
r = −eE(t), (2.30)

where the electric field acts as a driving force. Now we apply a harmonic time

dependent field E(t) = E0e
−iωt which leads to the solution for the displacement

of the electron

r(t) =
e

m(ω2 + iγω)
E(t), (2.31)

with γ = 1/τ denoting the collision frequency and r(t) = x0e
−iωt.

The macroscopic polarization P is then given as a product of n electrons in

the unit volume:

P = −ner = − ne2

m(ω2 + iγω)
E. (2.32)

The constitutive relation reads

D = ε0

(
1−

ω2
pl

ω2 + iγω

)
E, (2.33)

9



2. BASICS OF OPTICS

with the plasma frequency ω2
pl = ne2

ε0m
. By comparing this with equation 2.13, we

have the dielectric function of the Drude free-electron gas given by

ε(ω) = 1−
ω2

pl

ω2 + iγω
. (2.34)

We now take a closer look on the current density. The electrical current I is

defined as

I = dQ
dt

(2.35)

where Q denotes the amount of charge. The charge density is defined as j = I/A

and we get

j = −nevd, (2.36)

with vd denoting the drift velocity of electrons. Writing the equation of motion

2.30 using the impulse p = mẋ, we have

ṗ+
p

τ
= −eE0e

−iωt. (2.37)

Using the ansatz p = p0 · e−iωt, we obtain the solution

vd = ẋ = −eτ
m

1
1−iωτE0. (2.38)

Now we insert this result in equation 2.36 to obtain

j = ne2τ
m

1
1−iωτE0 (2.39)

= σ0
1−iωτE0 (2.40)

= σ(ω)E0 (2.41)

which is Ohm’s law with the AC conductivity σ(ω) and DC conductivity σ(0) =

σ0. If we insert this into 2.34, we get

ε(ω) = 1 + i
σ(ω)

ε0ω
, (2.42)

where we see, that the metals dielectric function is linked to its frequency depen-

dent conductivity.
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2.4 Optics of Dielectrica

2.4 Optics of Dielectrica

In dielectrica, the electrons are bound to the atomic cores and cannot move freely

like in metals. An applied static electric field leads to a deviation of the electrons

position from the rest position. The response is therefor different compared to

metals, where a static electric field leads to a drift velocity of the electrons. The

model of a damped harmonic oscillator (Lorentz oscillator), driven by an external

harmonic electric field, is

me
d2

dt2
r +meΓ

d

dt
r +meω

2
0r = −eE0e

−iωt, (2.43)

where Γ = 1/γ describes the damping of the electron’s movement. The damping

factor accounts for an energy loss of the electron due to radiation and electron-

phonon interaction. With the same reasoning as for the free-electron model in

metals, we get the electric dipole moment per unit volume through multiplying

all n electrons

P = −ner(t) =
ne2

me

1

ω2
0 − ω2 − iΓω

E0e
−iωt. (2.44)

We get the same result with the plasma frequency ωpl

D = ε0

(
1 +

ωpl

ω2
0 − ω2 − iωΓ

)
E. (2.45)

Now that we have analytical expressions for the response of the material, we

will take a closer look on the influence on the propagation of light. We have seen,

that the absorption coefficient of the material depends on the imaginary part of

the dielectric function.

In figure 2.1 (a) the real and imaginary parts of the dielectric function for

metals, as obtained by the free electron model, are plotted. For frequencies below

the plasma frequency, ω << ωpl, the imaginary part of the dielectric function

leads to an absorption of the electromagnetic wave. In this regions, the light wave

is attenuated on the length-scale of the skin depth. The absorption coefficient

2.29 is

α(ω) =

√
2ω2

plτω

c0

. (2.46)
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2. BASICS OF OPTICS

Figure 2.1: Dielectric functions in the Drude and Lorentz model - Both

plots show the real (blue line) and imaginary (red line) part of the dielectric func-

tion. In (a), permittivity for metals, as obtained from the free electron model, is

depicted. In (b), a dielectrica described with the damped oscillator model is pre-

sented. For both figures, a plasma frequency of ωpl = 1 and a damping constant of

γ = 0.1 is chosen. The resonance frequency in (b) is ω0 = 0.5.

For frequencies above the plasma frequency ω >> ωpl, the real part of the dielec-

tric function dominates. Here, a wave propagation through the metal is possible

and they become transparent.

With the same reasoning, dielectrics in figure 2.1 (b) show the same behavior

for frequencies above and below the resonance frequency ω >> ω0 and ω >> ω0.

In this region, they are transparent to light waves. But near the resonance ω ≈ ω0,

the dominant imaginary part of the dielectric function leads to a strong absorption

of waves.

2.5 Optics of Small Metal Particles

In the previous chapters, we have modeled the reaction of electrons in bulk matter

to an external electric field. When bulk metals are drastically reduced in size and

reach dimensions smaller than the wavelength of light, their optical response can

no longer be described by the Drude free-electron model. In this case the elec-

tromagnetic wave has a constant spatial phase along the particle and the electric

field can be assumed as static (quasi-static approximation). The electromagnetic

12



2.5 Optics of Small Metal Particles

wave shifts the electrons inside the particle relative to the fixed positive ions of

the lattice. This leads to a charge separation resulting in a restoring force acting

on the deviated electrons. The equation of motion for the electrons is now given

by a driven harmonic oscillator, as described before with the Lorentz oscillator

model. An external field in resonance with the eigenfrequency of the particle then

leads to a collective electron oscillation, called particle plasmon.

Figure 2.2: Particle plasmon - Illustration of a particle plasmon excited by an

sinusoidal oscillating external electric field with the period T .

Within the quasi static approximation, analytical expressions for spherical

and elliptical particles can be found. For a metal sphere, the polarizability α(ω)

describing the electric dipole moment of the particle p = ε0εmαE, is given by [17]

α(ω) = 4πa3 ε(ω)− εs
ε(ω) + 2εs

, (2.47)

where a denotes the radius of the sphere. ε(ω) is the metals dielectric function and

εs describes the dielectric constant of the surrounding material. The resonance

condition is fulfilled when the denominator |ε+2εs| is minimized. For a vanishing

imaginary part of the dielectric constant =[ε], this corresponds to the Frölich

condition:

<[ε(ω)] = −2εs. (2.48)

When we now use the dielectric function as obtained from the Drude model, we

can deduce the resonance condition for a metal sphere as

ω0 =
ωpl√

−(2εs + 1)
. (2.49)

13



2. BASICS OF OPTICS

Here we see that the resonance position strongly depends on the plasma frequency

ωpl of the metal and the dielectric constant εs of the surrounding material but is

does not depend from the size of the nano-sphere. This makes metal nanoparticles

an ideal tool for sensing applications, as any change of the surrounding dielectric

leads to an altered resonance frequency of the particle that can be monitored

optically [18].

For elliptical particles, the polarizability becomes a tensor accounting for the

different geometry of the particle. The expressions for the polarizability along

the particle’s principal axes i ∈ 1, 2, 3 is given by [17, 19]

αi = V
ε(ω)− εm

εm + Fi(ε(ω)− εm)
, (2.50)

with V representing the volume of the ellipsoid. Here the Frölich condition does

give a size dependent resonance frequency of the particle due to the geometry

factor Fi.

If the particle size no longer satisfies the quasi static approximation, an ana-

lytical solution can still be found in the special case of spherical particles. The

so-called Mie theory is a more general expression for the optical properties of

metal nanoparticles [19, 20], but will not be discussed in greater detail here. For

arbitrarily shaped particles, numerical modeling of the optical properties has be

used.

Another inherent feature connected with the plasmonic resonances of metal

nanoparticles is the enhancement of the near field around the particle. The

intensity of the local field Iloc = |Eloc| compared to the incoming field I0 = |E0|
differs by the frequency dependent enhancement factor L(ω) [17]

Iloc = L(ω) · I0 = L(ω)SPLLRI0. (2.51)

Two physical effects a responsible for the field enhancement. The so called light-

ning rod effect is responsible for the frequency independent contribution LLR and

is strongly depending on the geometrical shape of the particle. The electric field

on the surface of a perfect conductor points perpendicular to the surfaces nor-

mal, therefor leading to a concentration of the electromagnetic field to areas of

sharp edges or tips. The frequency dependent part L(ω)SP is due to the resonant
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2.6 Nonlinear Optics

excitation of localized surface plasmons in the structure and essentially resembles

the polarizability α. For a spherical particle in vacuum this reads

L(ω)SP ∝
ε(ω)− 1

ε(ω) + 2
.. (2.52)

The frequency dependent enhancement can also be expressed by the quality factor

of the damped linear oscillator with the resonance frequency ω0

Q =
ω0

γ
, (2.53)

where γ describes the damping of the oscillator. The quality factor is also known

as the resonant amplification factor of the oscillator and describes the enhance-

ment of the oscillation amplitude of a driven oscillator system with respect to the

driving amplitude. This corresponds to the local-field enhancement in the case

of a particle plasmon.

2.6 Nonlinear Optics

The wave theory of light is based on the superposition principle. Light beams

which travel in a linear medium can pass through one another without disturbing

each other. However, in nonlinear media things are a bit different rendering

Huygen’s principle of superposition invalid.

The description of the material’s response to electromagnetic fields in the

former chapters is only valid in the case of low field intensities. In the presence of

very strong optical fields, the dielectric polarization now responds nonlinearly to

the electric field of light. This leads to an interaction of optical fields mediated

by the material. In contrast to linear optics, the fields are now no longer linearly

superimposable. With the invention of the laser, making strong electrical fields

experimentally accessible, theses effects became observable in the lab [21].

To describe this behavior theoretically, we can expand the dielectric polariza-

tion density as a Taylor series in the electric field

P(ω) = ε0χ
(1)(ω, ω1) E(ω1) (2.54)

+ε0χ
(2)(ω, ω1, ω2) E(ω1)E(ω2) (2.55)

+ε0χ
(3)(ω, ω1, ω2, ω3)) E(ω1)E(ω2)E(ω3) (2.56)

+ . . . , (2.57)
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where the χ(i), i > 1 denote the nonlinear optical susceptibilities of i-th order and

represent tensors of rank i+ 1.

Splitting of the polarization in its linear and nonlinear parts

P(ω) = Plinear(ω) + Pnonlinear(ω) (2.58)

then leads to a wave equation representation in the frequency domain [22]

∇2E(ω) +
ω2ε(ω)

c2
E(ω) =

ω2

c2
Pnonlinear(ω). (2.59)

The nonlinear polarization on the right hand side of this inhomogenous wave

equation acts as a driving force.

2.6.1 Symmetry Properties

We will take a closer look on the symmetry properties of the χ(2) tensor, but

similar arguments can be found for the tensors of higher orders. In the most

general case for the nonlinear polarization of second order,

P
(2)
i (ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm), (2.60)

the nonlinear susceptibility consists of 324 different complex numbers, that need

to be defined. Fortunately, by using symmetry arguments, this number can be

greatly reduced.

The fact that the polarization as well as the electric fields represent physical

measurable quantities and therefore must be real, results in

P
(2)
i (−ωn − ωm) = Pi(ωn + ωm)∗, (2.61)

Ej(−ωn) = Ej(ωn)∗, (2.62)

Ek(−ωm) = Ek(ωm)∗, (2.63)

that leads to equal tensor components

χ
(2)
ijk(−ωn − ωm,−ωn,−ωm) = χ

(2)
ijk(ωn + ωm, ωn, ωm)∗. (2.64)

In addition, the order of the fields on the right hand side of 2.60 is arbitrary. This

intrinsic permutation symmetry gives

χ
(2)
ijk(ωn + ωm, ωn, ωm) = χ

(2)
ikj(ωn + ωm, ωm, ωn). (2.65)
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2.6 Nonlinear Optics

When the material can be considered lossless, two more symmetries can be ap-

plied. We then can require the nonlinear susceptibility to be real which expresses

as

χ
(2)
ijk(ωn + ωm, ωn, ωm) = χ

(2)
ijk(ωn + ωm, ωn, ωm), (2.66)

and the full permutation symmetry leads then to a free interchange of the fre-

quency arguments as long as the corresponding spatial coordinates are inter-

changed as well:

χ
(2)
jik(ωn + ωm, ωn, ωm) = χ

(2)
kij(ωm, ωn + ωm,−ωn). (2.67)

In case of a neglectable frequency dispersion of χ(2) we can even permute the spa-

tial indices and frequency arguments independently, which is called the Kleinman

symmetry.

Figure 2.3: Euler Angles - Illustration

of the Euler angles to get from an initial

coordinate system xyz (black arrows) to a

rotated system XYZ (red arrows).

The occurrence of nonlinear optical

effects strongly depends on the sym-

metry class of the material, because

the crystal symmetry also influences

the symmetry of its physical proper-

ties. This fact is known as the Neu-

mann’s principle. It states, that a ten-

sor, which represents a physical prop-

erty, is invariant under symmetry oper-

ations which leave the crystal itself in-

variant [23]. Spatial symmetry there-

fore can further reduce the number of

independent tensor elements.

The transformation behavior for

the components mlmn of a tensors of

rank three is

m′ijk =
∑
l

∑
m

∑
n

AilAjmAknmlmn, (2.68)

where A denotes the transformation matrix. We now apply this rule to the χ(2)

tensor of an inversion symmetric medium. In this case, the symmetry operation is
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2. BASICS OF OPTICS

given by the transformation matrix with the only nonzero elements A11 = A22 =

A33 = −1. This results in vanishing tensor components, (χ
(2)
ijk)
′ = −χ(2)

ijk = 0.

Therefore, nonlinear optical effects of second order, or more general of even order,

are not found in inversion symmetric media.

When the crystal is rotated in the laboratory frame of reference, the transfor-

mation matrix can be obtained using the Euler angles which describe the crystals

rotation. The matrix is given by

A(α, β, γ) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (2.69)

·

 1 0 0
0 cos β − sin β
0 sin β cos β

 (2.70)

·

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (2.71)

using the set of angles α, β, γ according to figure 2.3. This principle will be used

to interpret the experimental results in chapter 4.1.

2.6.2 Nonlinear Optics of Dielectrics - The Anharmonic-

Oscillator Model

We have already seen that the Lorentz model is adequate in describing the optical

properties of dielectric materials. Therefor it is obvious to extend this model to

describe the nonlinear response to find an expression for the nonlinear optical

susceptibility.

The equation of motion for the electron is described using a nonlinear restoring

force Fnonlinear caused by an anharmonic potential. The equation of motion can

then be written in a generic form

ẍ+ 2γẋ− Frestoring = −eE(t)/m. (2.72)

To describe the potential mathematically, we use a taylor series expansion of the

restoring force with respect to the displacement x of the electron [22].

U(x) = −
∫
Frestoringdx =

1

2
mω2

0x
2 +

1

3
max3 − 1

4
mbx4 (2.73)
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2.6 Nonlinear Optics

With this representation, we have restricted ourselves to displacements that are

small enough to not include higher terms in the series for a adequate description

of the potential and a > b.

The first term represents the harmonic potential and reproduces the restoring

force Frestoring = −mω2
0x

2 used in equation 2.43. The latter terms account for the

deviation of the potential from the perfect parabolic shape and are responsible

for the nonlinear restoring force.

To find the solutions to 2.72 we first have to consider the exact form of the

potential which depends on the symmetry of the medium. In case of centrosym-

metric media, it is required that U(x) = U(−x), therefore leading to a = 0 and

b 6= 0. The lowest nonlinear optical susceptibility in this case is of third order and

nonlinear susceptibilities of even order vanish. In contrast, non-centrosymmetric

media, described by U(x) = −U(−x), possess even and odd orders for the non-

linear optical susceptibility.

The equation of motion for non-centrosymmetric media is then

ẍ+ γẋ+ ω2
0x+ ax2 = −eE(t)/m (2.74)

and the electric field, acting on the electron is assumed to be two plane waves of

different frequencies, described by

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (2.75)

where c.c. denotes the complex conjugate. To solve the equation of motion 2.74

we use perturbation theory, known from quantum mechanics, where we replace

E(t) with λE(t), with 0 ≤ λ ≤ 1 as an expansion parameter. We now have

ẍ+ γẋ+ ω2
0x+ ax2 = −λeE(t)/m (2.76)

and we will try to find solutions using the power series ansatz

x = λx(1) + λ2x(2) + λ3x(3) + . . . . (2.77)

Insertion and sorting by powers of the expansion parameter results in the equa-

tions

ẍ(1) + γẋ(1) + ω2
0x

(1) = −eE(t)/m (2.78)

ẍ(2) + γẋ(2) + ω2
0x

(2) + a(x(1))2 = 0 (2.79)

ẍ(3) + γẋ(3) + ω2
0x

(2) + 2ax(1)x(2) = 0 (2.80)
.... (2.81)
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The first equation reproduces the familiar solution from the Lorentz oscillator

x(1)(t) = x(1)(ω1)e−iω1t + x(1)(ω2)e−iω2t + c.c. (2.82)

with amplitudes

x(1)(ωj) = − e

m

Ej
D(ωj)

(2.83)

and the complex denominator function D(ωj) = ω2
0−ω2

j−iωjγ. Using the relation

P (1)(ωj) = ε0χ
(1)(ωj)E(ωj) = −Nex(1)(ωj), (2.84)

we reproduce the linear susceptibility

χ(1)(ωj) =
N(e2/m)

ε0D(ωj)
. (2.85)

To now solve the equation for the second order correction term x(2)(t), we have to

insert the equation for x(1)(t) into 2.79. This leads to an inhomogenous differential

equation, where the source term on the right hand side describes second-harmonic

generation (2ω1 and 2ω2), sum- (ω1 + ω2) and difference- (ω1 − ω2) frequency

generation as well as optical rectification for zero frequency.

For example, second-harmonic generation is described by the equation

ẍ(2) + γẋ(2) + ω2
0x

(2) =
−a(eE1/m)2e−2iω1t

D2(ω1)
(2.86)

that can be solved by using the ansatz x(2)(t) = x(2)(2ω1)e−2iω1t. With this ansatz,

we obtain

x(2)(2ω1) =
−a(e/m)2E2

1

D(2ω1)D2(ω1)
(2.87)

which gives us an expression for the nonlinear susceptibility describing second-

harmonic generation by using

P (2)(2ω1) = ε0χ
(2)(2ω1, ω1, ω1)E(ω1)2 = −Nex(2)(2ω1). (2.88)

We finally obtain

χ(2)(2ω1, ω1, ω1) =
N(e3/m2)a

ε0D(2ω1)D2(ω1)
. (2.89)

So far, we have only considered the nonlinear effects of second order. From the

above equation, we again see that for an observation of these effects, a nonvanish-

ing a and therefore a non-centrosymmetric medium is required. Effects of third

order can be obtained in an analogous way by solving the equation for x(3) but

will not be presented here. The interested reader might consult reference [22].
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2.6 Nonlinear Optics

2.6.3 Nonlinear Optics of Metals

Optical second-harmonic generation from a metal surface was first discovered in

1965 [24] and extensively studied experimentally in the years after. Early work on

the theoretical side was based on the free-electron model formulated by Jha [25].

Within this model, the nonlinear polarization varying at twice the fundamental

frequency ω has the form

P
(2)
NL = α(E1 ×H1)︸ ︷︷ ︸

bulk term

+ βE1∇ · E1︸ ︷︷ ︸
surface term

(2.90)

where E1 and H1 represent the electric and magnetic fields at the fundamental

frequency and the coefficients α and β have been determined as [26]

α = ie3n
4m2

eecω
3 , (2.91)

β = e
8πmeωplω2 , (2.92)

where me and e are the mass and the charge of an electron, and n is the electron

density. The plasma frequency is ωpl =
√

4πne2/me. The first term is the

magnetic dipole term and represents a contribution from within the volume of

the metal originating from the Lorentz force. In contrast, the second term is the

magnetic quadrupole term and is nonzero only near the surface of the metal.

While this model could provide some estimates of the contributing mech-

anisms, its mathematical flaws and limitations have been discussed by several

authors [27, 28, 29, 30]. For example, the permittivity ε(ω) within this model is

given by [26]

ε(ω) = 1− e2n

mω2
. (2.93)

This real and negative permittivity is not a valid description for real metals.

Because the permittivity depends on the electron density n, it shows a transition

from a negative value within the metal volume to a positive value ε(ω) = 1 in the

vacuum where the electron density is zero. In the transition region at the surface

the permittivity vanishes at the boundary. Here, the normal component of the

electric field tends to infinity due to the continuity relations. This is a clearly

unphysical behavior. Rudnick and Stern [29] also pointed out the need for a more

careful analysis of the metal-vacuum interface.
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In the 1980s, a hydrodynamic model relevant for nonlinear optical effect in

metals was formulated by Sipe et al. [31]. Later, it was was slightly modified

by Schaich and Corvi [32]. The main idea of describing the electrons through

an electron density ne(r, t) and a velocity field ve(r, t) is also the basis for more

recent theories and numerical calculation schemes for the nonlinear response of

metals,metal particles, and metamaterial structures [33, 34, 35].

2.6.3.1 The Nonlinear Drude Model

The nonlinear Drude model, as described by Liu et al. [34], can be viewed as

a generalization of the linear Drude model to the nonlinear case. The electrons

within the metal are treated as a fluid, described by the electron density ne =

ne(r, t) and velocity ve(r, t)e. These quantities together with the fields E and B

are connected via the cold-plasma equations

∂ne
∂t

+∇ · (neve) = 0, (2.94)

∂ve
∂t

+ (ve · ∇)ve =
qe
me

(E + ve ×B), (2.95)

and the Maxwell equations

∇ ·B = 0 (2.96)

ε0∇ · E = ρ (2.97)

∂B

∂t
= −∇× E (2.98)

ε0
∂E

∂t
= 1

µ0
∇×B− j (2.99)

with the electron mass me, the electron charge qe, the permittivity ε0 and per-

meability µ0 of the vacuum. The charge density ρ and the current density j are

defined as

ρ = q(ne − n0), (2.100)

j = qeneve, (2.101)

with the positive ion density n0.

We can now rewrite the cold-plasma equations using the charge density 2.100

and current density 2.101. Equation 2.94 then reads

∂ρ

∂t
= −∇ · j. (2.102)
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The term on the left-hand side in equation 2.95 is the convective derivative

known from fluid mechanics. It is a derivative taken with respect to a moving

coordinate system and has the general form

D

Dt
=

∂

∂t
+ v · ∇, (2.103)

where v represents the velocity of the fluid. Applied to the current density j this

results in an identical represention of equation 2.95

∂j

∂t
+
∑
k

∂

∂xk

jjk
qene

=
qe
me

(qeneE + j×B)− 1

τ
j, (2.104)

where a phenomenological time constant τ was introduced to describe the current

decay due to Coulomb scattering.

The final set of equations, that has to be solved using a numerical scheme, is

then given by [33]

∂B

∂t
= −∇× E (2.105)

∂E

∂t
= 1

ε0µ0
∇×B− 1

ε0
j (2.106)

and

∂j

∂t
= −1

τ
+ ε0ω

2
plE +

qe
me

(ρE + j×B)−
∑
k

∂

∂xk

(
jjk

ρ+ ε0meω2
pl/qe

)
(2.107)

where ωpl(r) =
√
q2
en0(r)/(ε0me) denotes the space-dependent plasma frequency.

Equation 2.102 can be obtained by applying the divergence to the Maxwell equa-

tion 2.105. The charge density ρ can be viewed as a function of the electric field

since each occurrence of ρ can be replaced by

ρ = ε0∇ · E. (2.108)

We can see that the last two terms in equation 2.107 introduce the nonlinearity

to the system. The first two terms describe the linear Drude model as can be

seen by writing equation 2.37 in terms of the current density. This results in

∂j

∂t
= −1

τ
j + ε0ω

2
plE. (2.109)
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2.7 Optical Metamaterials

We have seen, that the response of a material to light waves can be described

by using effective material parameters εr and µr which neglect microscopic inho-

mogenities . The effective medium description is valid, as long as the wavelength

of light is much larger than the microscopic structure of the material. But this

also makes it possible to synthesize materials with a tailored optical response by

engineering subwavelength building blocks and arrange them in a lattice with a

subwavelength period. The optical properties are therefore not solely determined

by the materials used for the blocks, but also by the shape of each block. This

material class is called photonic or optical metamaterials and is able to show

optical properties not found in natural existing materials.

On of the most prominent optical phenomena that can be implemented with

the photonic metamaterial concept is a negative index of refraction and was

already theoretical investigated by Vaselago in 1968 [1]. For a negative real part

of the index of refraction, the real parts of ε and µ both have to be negative as well

in the same spectral region. While the former is given for metals at their plasma

frequency the latter is not found in natural materials for optical frequencies.

Therefor, clever designs for a metamaterial fundamental building block have to

be invented to achieve a magnetic response at optical wavelengths. The invention

of the split ring resonator by Pendry [3] and the experimental proof of principle

by Smith et al. [36] served as a prototype for a magnetic building block.

2.7.1 The Split-Ring Resonator

We will now take a closer look on the design of a metamaterial building block

to achieve a magnetic dipole moment at optical frequencies, namely the split-

ring resonator (SRR). In essence, it is a simple U-shaped metal structure where

external electric and magnetic fields can induce an oscillating ring current within

the structure. This ring current then causes a magnetic dipole moment.

In that way, the SRR resembles the working principle of a LC-circuit, where

the wire represents on winding of a coil with the inductance L and the gap

between the wires forms a capacitor with the capacitance C (see figure 2.4 (b)).

The eigenfrequency of the circuit is given by

ωLC =
1√
LC

. (2.110)
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Figure 2.4: SRR and LC-circuit analogy - The U-shaped metal structure

with its geometrical dimensions is depicted in (a) while (b) emphasizes the analogy

of the structure with a LC-circuit. A magnetic dipole moment m is connected with

the oscillating current j within the SRR (c).

To bring this frequency into the optical spectral region, the capacitance and

inductance therefore need to be very small. The eigenfrequency can be expressed

in terms of the dimensions of the SRR in figure 2.4 (a) by using the formula for

the capacitance of a plate capacitor

C = ε0εr
plate area

plate distance
= ε0ε

(ly − h)t

d
, (2.111)

and the inductance of a coil having one winding

L = µ0
coil area

coil length
= µ0

lxly
t
. (2.112)

This gives the eigenfrequency

ωLC =
c0√
εrlxly

√
d

ly − h
∝ 1

area
, (2.113)

with c0 = 1/
√
ε0µ0 as the vacuum speed of light.

For the special case of an quadratic SRR with lx = ly = l and h = w = d we

can estimate the dimensions using equation 2.113. For a resonance frequency of

2π×200×1012 1/s which corresponds to a wavelength of λ0 = 2πc0/ω0 = 1.5 µm

we then obtain for εr = 1 the dimensions l = 150 nm and w =50 nm [37].

This result is interesting because we can see that the dimensions of the mag-

netic building blocks are clearly smaller than the wavelength of light that they

were designed for (λ0 = 1.5 µm). Therefor they can be arranged in a periodic
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lattice with subwavelength lattice constants. That way, a medium with effective

optical parameters can be implemented, the basic idea of metamaterials. It is

also obvious that for a fabrication of such small metal structures sophisticated

nano-fabrication techniques are needed.

2.7.1.1 Excitation Configurations

In the last chapter, we have alluded that a magnetic resonance within a SRR

can be excited through external electric and magnetic fields. What exact field

component of the incoming light couples to the resonance of the SRR depends

on the excitation configuration, that is the orientation of the SRR relative to

the external fields. The incoming linear-polarized light wave is characterized

by its propagation direction and the polarization direction. With respect to the

propagation direction, which is determined through the wave vector k, three basic

configurations of the SRR relative to the wave vector can be distinguished. For

each of the three configurations, two additional arrangements of the polarization

direction can be differentiated.

Figure 2.5: Excitation configurations of a SRR - The three different excita-

tion configurations of the SRR relative to the wave vector k are shown. For each

configuration, only one polarization direction (as emphasized by the grey box) of

the incoming light can excite the magnetic resonance.

In figure 2.5 (a) the electric component of the incoming light couples to the

capacitor of the LC-circuit to excite the ring current while in configurations (b)

and (c) the magnetic component couples to the coil. For most experimental

studies of the magnetic resonance of SRR arrays, configuration (a) is choosen [6,

38] because the fabrication can be done rather easy using 2D pattern techniques
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like electron-beam lithography or focussed ion beam milling [39]. Configuration

(b) has only recently been implemented for resonance frequencies in the THz

range [40]. Earlier studies used modified SRR designs such as cut-wire and plate

pairs [41]. This thesis will also focus on the most common excitation configuration

2.5 (a) of planar split-ring resonators arrays.

2.7.1.2 Higher-Order Resonances

We have seen that the LC-circuit model provides a simple description of the

magnetic resonance of a SRR . However, experimental and theoretical studies [6]

revealed the existence of additional resonances with higher frequencies than the

fundamental magnetic resonance rendering the LC-circuit model invalid for an

adequate description of those higher order excitations.

Figure 2.6: Eigenmodes of a straight antenna compared to an SRR -

The fundamental mode (a.1), first-order mode (a.2) and second-order mode (a.3)

of a straight antenna are depicted. For a direct comparison, the corresponding

eigenmodes (b.1), (b.2), (b.3) of a split-ring resonator are depicted. The red and

blue arrows indicate the polarization direction of the exciting plane wave and black

arrows represent the direction of the electric current.

To explain these resonances, we can model the SRR as a folded wire antenna.

Unfolding this U-shaped wire leaves us with a simple half wave antenna where
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we know that a resonant excitation displays standing waves. The wavelength of

these standing waves it determined by the length l of the antenna:

λn = n · 2 · l. (2.114)

Here the integer n denotes the order of harmonics with n = 1 describing the

fundamental mode.

Within this fashion, figure 2.6 shows the antenna modes and their equivalent

plasmonic excitation in the SRR. The fundamental mode for n = 1 then corre-

sponds to the magnetic mode of the SRR. The higher order modes for n = 2, 3 are

then describing the vertical-electric and the horizontal-electric mode of the SRR,

respectively. From this model, we can also infer on the current distribution of

the SRR visualized by the black arrows. In the third column, the corresponding

configuration for an excitation of the SRR resonance is depicted.

Although this model can explain the existence of higher order resonances, it

predicts the wrong spectral position of the resonance wavelengths for SRR in the

optical region. If we recall the arm-length of our SRR (150 nm) as we estimated

the magnetic resonance wavelength at 1.5 µm within the LC-circuit model, and

now use 2.114 to estimate the fundamental order wavelength gives us a results of

λ = 2 ·3 ·150 nm = 900 nm. In addition, the spectral position of the higher order

resonances is also not exactly located at integer multiples of the fundamental

resonance frequency as the simple theory predicts as can be seen in experimental

results of reference [6]. The same behavior can be found for other nano antenna

systems in the visible [42, 43] where the scaling behavior from classical antenna

theory is not valid anymore. The reason is the finite electrical conductivity of

the metal at optical frequencies. The strong dispersion of the metal changes its

electrical length drastically over the range of resonance wavelengths.
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Materials and Methods

All samples used in this thesis are variations of metallic nanostructures, particular

variation of split-ring resonators. In this chapter, we will have a closer look on

the steps which are necessary to obtain such structures, and on their subsequent

characterization.

3.1 Sample Fabrication

Substrates

The fabrication process starts with the choice of the right substrate. In general,

the substrate has to provide mechanical support for the nanostructures. It also

must be inert to the chemicals, i.e. developers and removers, which are used in the

following fabrication steps. Depending on the application, suitable optical prop-

erties must also be demanded. In case of the SRR arrays, which were fabricated

for the SHG experiments, the substrate should be spectrally flat, i.e. no reso-

nances, in the wavelength ranges of the SRR resonances. Commercial available

polished quartz plates 1 provide high transmission in a broad wavelength range

(200 nm to 2000 nm wavelength). Because electron-beam lithography plays a

major role in the fabrication process, suitable substrates should be electrically

conductive to avoid charging effects of the sample. Unfortunately, suprasil plates

are electrical isolators, so a thin conductive layer of indium tin oxide (ITO) is

applied to the surface by an electron-beam evaporation process. This layer with

1Planparallelplatten aus Suprasil, Bernhard Halle Nachfl. GmbH, Berlin, 10 mm × 10 ×
1mm
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3. MATERIALS AND METHODS

a thickness of 5 nm provides an electron drain during the electron-beam writing

process, while at the same time the substrate’s transparency is maintained. For

the split-ring resonators on a gallium arsenide substrate, no conducting layer was

needed. A more detailed description of the substrates used in this case can be

found in chapter 4.1.

In case of the metamaterial-bolometer application, a high thermal isolation

of the detector area is required. The choice of substrate came down to silicon-

nitride (SiNi) membranes, which are commercial available 1 as membranes for

transmission-electron microscopy. These membranes with a thickness of 30nm

and an area of 100 µm × 100 µm provide good mechanical support while on the

same time offering good thermal isolation. They are also suitable for electron-

beam lithography without further preparation, because the membranes’ support

is made of silicon, which is a good electron drain.

For further processing, the substrates need to be clean. In case of the suprasil

plates, wiping off the surface with a soft tissue and aceton is adequate. The

Silicon Nitride substrates are already very clean out of the box and can be fur-

ther processed right away. Mechanical cleaning, anyhow, would not be possible,

because the membrane windows are easily destroyed by mechanical stress.

Electron-Beam Lithography

The technique of electron-beam writing allows for high resolution patterning of

a polymer film on a substrate. It is often used to fabricate masks for subsequent

material deposition, but can also be used to make etching masks or to directly

pattern waveguides. The choice of polymer film, the so called resist, of course

depends on the application. For material deposition, polymethyl methacrylate

(PMMA) is often used.

During the writing process, a focused electron beam is scanned over the sam-

ple’s surface. When the electron beam hits the polymer layer, it locally changes

the resists chemical properties. In case of PMMA, the exposed areas become

soluble to a developer and can be removed that way.

A mixture of methylisobutylketon (MIBK) and isopropyl alcohol (IPA) with a

ratio of 1:3 serves as a well experienced developer [44] and was used in this thesis.

It should be noted that there are other chemical mixtures available though. The

1Silison Ltd., Northhampton (Uk)
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3.1 Sample Fabrication

Figure 3.1: Sample fabrication steps - (a) PMMA layer on sample after spin

coating, (b) electron beam writing, (c) developing, (d) thin film evaporation of

gold, (e) final sample after lift off

thin resist layer is applied on the sample via spin coating. Thereby, a droplet of

liquid resist is placed on the clean substrate, which is then spun at high rotation

speeds in a spin coater. Due to the centrifugal forces, the polymer droplet dis-

penses over the substrate’s surface, which results in a thin, even polymer film. A

following heating process of the sample removes the remaining solvent, leaving a

solid polymer layer.

For applications in this thesis, the PMMA resist 1 was spun at 5000 rpm

for one minute, resulting in a thickness of the layer of about 200 nm. After

the spinning process, the sample was baked at 165◦C for 45 minutes to remove

the solvent and solidify the resist. It is then ready for the actual electron-beam

writing process.

The samples for the metamaterial metal-bolometer were fabricated using a

two-resist system. First, a more sensitive layer of PMMA 2 was spun onto the

substrate using the same procedure as already described. Then after a baking

1PMMA 950K A4, MicroChem Corp., Newton (USA)
2PMMA 600K A4, MicroChem Corp., Newton (USA)
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3. MATERIALS AND METHODS

procedure of 45 minutes at 165◦C, the less sensitive PMMA 1 layer was applied

with the same subsequent baking process on top. This double-layer resist system

eases the lift-off process by providing a better undercut of the first PMMA layer.

The electron beam writing of the Split-Ring resonator variants was done using

an electron beam lithography system from RAITH 2 which consists of a modified

scanning-electron microscope (SEM) with an added external pattern generator.

This generator allows for precise control of the beam’s position relative to the

sample. The desired patterns can be designed via a software tool readily available

as part of the system. This system provides acceleration voltages for the electron

beam of up to 30 kV while providing superior resolution of the beam.

Electron-Beam Evaporation

After the template has been developed, the metal layer can be applied on the

mask. This is done with a electron evaporation system. The system allows a

variety of materials to be evaporated. Heating of the target is done with shining

an electron beam onto. Absorption of the electrons kinetic energy leads to a lo-

calized heating of the target. In this thesis, thin films of materials like magnesium

fluoride (MgF2) and gold were deposited with this technique.

Bolometer Fabrication

Because of the electrical connections which are necessary to connect the bolometer

to the outside world, additional fabrication steps are needed for the bolometer

samples. For easy exchange of the samples in the vacuum chamber, the sample

is glued on an IC-carrier 3. The carriers provide mechanical stability and robust

electrical connectivity. They were modified in the workshop where a hole was

drilled in the bottom. This allows for a transmission spectroscopy setup. The

gold pads on the sample are connected to the IC carrier via wire-bonding of

aluminum wires.

1PMMA 950K A4, MicroChem Corp., Newton (USA)
2e LINE from Raith GmbH, Dortmund
3PartNo.:SB01611, Universal Enterprise, www.ue.com.hk
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3.2 Sample Characterization

Figure 3.2: Two IC carriers - The fabricated bolometer sample is glued on

the carrier and electrically connected to the pins via wire bonding. The carrier in

the front is flipped around to see the modification on the bottom. A small hole

(diameter 1mm) was drilled in the support to allow for transmission spectroscopy

of the sample.

3.2 Sample Characterization

3.2.1 Linear Optical Characterization

The linear optical resonance properties of our fabricated metal nanostructures

can easily be characterized by using a Fourier-transform-infrared spectrometer

(FTIR). The system used in this thesis is commercial available from Bruker Optik
1 and comes with an optical microscope attached. That way its pretty easy to

visual localize the areas on the sample to be characterized. Two cassegrain lenses

are used to focus the light from a halogen lamp on the sample and collect the

light to forward it on the detector. With a combination of linear polarizers,

measurements of polarization dependent spectra can be obtained. This set-up

allows to measure transmission and reflection spectra in a broad wavelength range

from 0.4 µm up to 5 µm through the use of two different detectors, depending

on the desired spectral range. For the visible spectral range (0.4 µm - 1.2 µm

1Bruker Equinox 55 and Bruker Hyperion 1000, Bruker Optik GmbH, www.bruker.com
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3. MATERIALS AND METHODS

wavelength), a silicon based detector is available, while for the infrared region

(0.9 µm - 5 µm) a liquid-nitrogen cooled indium-antimonide detector is used.

Numerical Transmission/Reflection Spectra Calculation

For calculation of transmission and reflection spectra of the metallic nanostruc-

tures, a 3D electro-magnetic simulation tool for high frequency components was

used. The commercial-available software-tool CST Microwave Studio 1 provides

a convenient tool for 3D modeling of metal-dielectric structures and subsequent

analysis of electromagnetic high frequency behavior. It is based on a finite-

integration time-domain method. For a calculation of reflection and transmis-

sion spectra, a waveguide geometry is used. The time-domain solver gives back

the S-parameter values for both ports. From these values, the transmission and

reflection spectra can be obtained. In the simulation domain, also near field mon-

itors can be added to get the distributions of the magnetic and electric fields in

the vicinity of the nanostructure.

1MWS, CST Computer Simulation Technology AG, www.cst.com
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Nonlinear Optical Experiments

Within this chapter a series of experimental studies on the second-harmonic gen-

eration (SHG) from split-ring resonators is presented. In the first section we

treat the experimental and theoretical investigation of second-harmonic genera-

tion from arrays of split-ring resonators on crystalline gallium arsenide (GaAs)

substrate.

In the second section, the experimental results of nonlinear optical-spectroscopy

on second-harmonic generation from split-ring-resonator arrays is presented. These

experiments were motivated by previous nonlinear optical experiments on SRR

arrays [45, 46, 47] and related structures [48, 49] that were all performed at fixed

fundamental frequency. To gain more insight in the nonlinear mechanism that

drives SHG from metal structures we have extended the experiments to nonlin-

ear optical spectroscopy using a tunable light source for the excitation of the

structures. The first set of samples reveals pronounced SHG resonances and we

continued the study with a second set of samples in which the fundamental SRR

resonance frequencies are lithographically tuned while leaving the higher-order

resonances fixed. The obtained spectroscopic data immediately clarify the role of

higher-order resonances as the nonlinear source while the higher-order resonances

merely reabsorb the SHG light. This data set can also provide a test ground for

future microscopic theories regarding the underlying nonlinear mechanism.

The last section of this chapter presents the results of optical experiments on

second-harmonic generation from split-ring-resonator square arrays were the lat-

tice constant of each array was varied. As a result, a non-monotonic dependence

of the conversion efficiency on the lattice constant was found. This finding is
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4. NONLINEAR OPTICAL EXPERIMENTS

interpreted in terms of a competition between dilution effects and linewidth or

near-field changes due to interactions among the individual elements in the array.

4.1 SHG from Split-Ring Resonators on GaAs

Substrate

In the original publication on the concept of the SRR by Pendry et al. [3] it

was already suggested to obtain an enhanced nonlinear optical response through

insertion of a nonlinear material in the gap of the SRR. The electric field is concen-

trated in this area under resonant excitation of the SRR. This makes a nonlinear

response of the inserted material more efficient. However, a precise placement

of a nonlinear optical material in the gap region of a nanoscopic resonator is a

technical challenge.

Recent experimental studies of plasmonic nanostructures in combination with

nonlinear optical materials used a slightly different concept. They brought the

entire structures in direct contact with the nonlinear optical material [50, 51].

Here, we used the same concept and placed the SRR arrays directly on a nonlinear

substrate to overcome the technical difficulties. At the same time we were aiming

to achieve a more efficient frequency compared to SRR on a simple glass substrate

[45].

The wafers were ordered with both faces of the wafer optically polished. This

allowed us to see through the substrate using an infrared camera. This is a

necessity for the localization of the right SRR arrays when the sample is placed

in the optical setup. Using a diamond cutter, the wafers were cut into small pieces

which then served as substrates for the subsequent electron beam writing process

(as described in chapter 3). After that, a 25 nm thin gold layer was deposited

serving as the metal for the SRR.
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4.1 SHG from Split-Ring Resonators on GaAs Substrate

Figure 4.1: Linear optical characterization - Measurement (a) and simula-

tion (b) of the normal incidence reflection spectra of a selected SRR array on GaAs

substrate as taken from the air side. The incident light is linearly polarized along

the horizontal direction. The narrow gray area illustrates the exciting laser spec-

trum centered at 1.5 µm. The scanning electron micrograph on the right-hand side

of (a) shows the SRR from the sample, in (b) the corresponding dimensions used

for the theoretical calculations is shown. (figure from [52])

In our first experiments, we encountered that the SHG signal from the gold

SRRs on the GaAs substrate steadily decreased with time during the intense

laser irradiation. We ascribe this effect to a heat induced inter-diffusion of gold

and the GaAs substrate. The inter-diffusion effect is well known in the context

of Schottky barrier formation [53]. In our context, this might have lead to a

substantially change of the material properties of the substrate and the SRR. To

get rid of this effect we deposited a 10 nm thin film of magnesium fluoride (MgF2)

right underneath the gold SRR serving as a diffusion barrier. With this measure,

the SHG signal stayed stable during the whole measurement time, which typically

spanned several days. The footprint of our fabricated SRR arrays were 60 µm ×
60 µm.

Before the nonlinear optical experiments were conducted, a linear optical char-
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4. NONLINEAR OPTICAL EXPERIMENTS

acterization of the fabricated samples was necessary to select the arrays having

a magnetic resonance centered around 1.5 µm. This wavelength corresponds to

our laser excitation wavelength of the following SHG experiments. Compared

to earlier experiments of SRR on glass substrates [45, 46], the SRR had to be

about 30 % smaller to achieve a magnetic resonance at the fundamental laser

wavelength. This is due to the higher refractive index of the GaAs compared to

the glass substrate.

4.1.1 Nonlinear Optical Characterization

For the measurement of the second-harmonic generation we have used a setup

as sketched in figure 4.2. A commercial available 1 optical-parametric oscillator

(OPO) was employed as a light source delivering pulses at a repetition rate of 86

MHz with a pulse duration of 170 fs. The OPA was tuned to 1.5 µm wavelength

and its output power was typically 90 mW.

The OPA needs to be pumped by a titanium sapphire (Ti:Sa) laser to make the

optical parametric oscillation work. We used the Tsunami 2 that emits pulses with

a length of 120 fs at 810 nm, at a repetition rate of 86 MHz. The Tsunami itself

is again pumped by a green (532 nm) diode-pumped solid-state laser 3, operating

in continuos wave mode. The green light is obtained by a frequency conversion of

the neodym vanadate laser medium, originally emitting at a wavelength of 1064

nm. The light from the OPA is then fed into the optical setup via two mirrors

that allow a precise and reproducible tuning of the beam’s position and angle via

the beam walking technique. The beam passes a combination of a half-wave plate

and a polarizer that is adjusted to pass horizontal polarized light. Because the

beam from the OPO is also horizontally linearly polarized, rotating the half-wave

plate changes the direction of polarization and consequently modifies the power

that is available after the polarizer. For the experiments, we adjusted the power

to approximately 45 mW.

After the polarizer, a lens focusses the light onto the sample that is attached

to the sample holder . This results in a size of the gaussian spot of 60 µm on the

sample’s surface as measured by a knife-edge technique. The SHG signal from

1OPAL, SpectraPhysics Inc.
2Tsunami, SpectraPhysics Inc.
3Verdi V18, Coherent
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4.1 SHG from Split-Ring Resonators on GaAs Substrate

Figure 4.2: Sketch of the optical setup - The sketch represents the optical

setup used for the nonlinear optical study of the SRR arrays on GaAs substrates.

A detailed description can be found in the text.
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4. NONLINEAR OPTICAL EXPERIMENTS

the SRR array is emitted at 750 nm where the GaAs substrate is absorbing the

light. We therefore mounted the samples with the SRR side facing towards the

detector. The exciting light is then impinging from the substrate side and the

SHG is emitted into the air side. In turn, the excitation wavelength is in a spectral

range where the GaAs is transparent. After the sample holder, a removable mirror

is placed. When this mirror is present in the set-up and the lamp is turned on,

an image of the sample is projected onto a CCD infrared camera. This makes is

very easy to navigate the SRR arrays relative to the laser beam by adjusting the

sample holder. During the measurements, the lamp is of course turned off and

the mirror is removed from the beam path.

Figure 4.3: GaAs crystal structure - On the left-hand side, the crystal struc-

ture of GaAs which crystallizes in the zinc-blende structure is depicted. The blue

balls illustrate the gallium atoms while the red balls show the position of the ar-

sen atoms in the unit cell. On the right-hand side, the crystal is schematically

represented by a ”checker-board cube”. (figure from [52])

The emitted SHG is then collimated via another lens and directed towards a

combination of a half-wave plate and a polarizer. In this combination, a rotation

of the half-wave plate allows an easy analyzation of the polarization direction of

the emitted second-harmonic light. This transmitted light is then picked up and

focussed by another lens in front of the detector. As the detector unit, a grating
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4.1 SHG from Split-Ring Resonators on GaAs Substrate

spectrometer 1 in combination with a charge-coupled device (CCD) camera 2

attached to the spectrometer was used. The spectrometer spectrally disperses

the SHG signal and images its output on the CCD chip. The spectral shape and

intensity of the signal can then be monitored by a read out of the chip’s data

using a computer system.

4.1.2 Experimental Results and Discussion

In the experiments, we have used wafers with two different crystal grow directions

as a substrate for the SRR arrays. That means, that for one configuration the

surface normal of the substrate is pointing along the (100) direction of the crystals

principle axis. In the other configuration it is pointing along the (110) direction.

In figure 4.3 the unit cell of the crystal is presented together with a schematic

representation, a so called checker-board cube, to illustrate the symmetry of the

cell.

In figure 4.4 three different configurations and their corresponding measure-

ment results are presented. In the left column, the orientation of the crystal

relative to the SRR is shown as illustrated by the checkerboard cube that allows

a direct comparison with figure 4.3. The fundamental beam is propagating along

the +z direction, as the measured SHG light does. The polarization direction of

the incident beam is along the x axis which corresponds to a horizontal excitation

of the SRR as illustrated by the red arrow.

For each configuration we compared the SHG signal from the arrays with the

corresponding measurement off field, i.e. the bare substrate. In configuration

figure 4.4 (a), the signal from the array is about 40 times stronger than the bare

substrate. The polarization direction is determined by the symmetry of the SRR

and in agreement with previous experiments [45, 46, 47].

In strong contrast to this result, the emerging SHG in configuration figure 4.4

(b) is nearly horizontal polarized (along the x direction) and also stronger about

one order of magnitude than for configuration figure 4.4 (a). The off-field signal

in this configuration is about 50 times weaker. From this findings we conclude

that the measured horizontal component of the SHG signal for figure 4.4 (b)

stems specifically from the interplay of the crystalline GaAs substrate and the

1Chromex 250i, Chromex Inc.
2LN CCD-1340/44-EHR, Princeton Instruments
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4. NONLINEAR OPTICAL EXPERIMENTS

Figure 4.4: Measurement of the SHG - Polarization analysis from the three

different samples: (a) shows the (100) GaAs configuration and (b),(c) the (110)

configuration. The orientation of the crystal relative to the SRR is illustrated

in the left column. The right column shows the measured polar diagrams (blue

curves). The experiments in (b) can be directly compared with the results from

the theoretical calculations (shown as red curve in the diagram). (figure from [52])
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4.1 SHG from Split-Ring Resonators on GaAs Substrate

SRR. The slight rotation of the figure eight could be explained by an additional

vertically polarized contribution from the bare SRR [45, 46, 47]. In addition,

the SHG signals from the SRR on the GaAs substrate in this configuration are

a factor of 25 larger than those on a glass substrate that have been previously

measured [45, 46, 47].

In configuration figure 4.4 (c), the signal levels are much higher compared to

figure 4.4 (a) and (b). Here, the SHG signal is dominated by a SHG signal that

originates from the GaAs substrate because the measurement off field revealed a

very strong SHG emission polarized along the y direction.

Although in both substrate configurations the same material is present, one

cannot expect the same results regarding the SHG from the substrate under nor-

mal incidence of the fundamental light. The difference between both substrate

configuration is a rotated crystal, which of course changes the form of the non-

linear tensor χ(2).

From symmetry inspections, the only nonvanishing χ(2) tensor elements in our

laboratory frame of reference are [22] (corresponding to the (100) wafer configu-

ration)

χ(2)
xyz = χ(2)

yzx = χ(2)
zxy = χ(2)

xzy = χ(2)
yxz = χ(2)

zyx. (4.1)

We need to take only those elements in account that produce a nonlinear polar-

ization that is polarized either in the x or y direction or both and can additionally

be excited by our fundamental beam, that is polarized along the x direction. It

is immediately clear that for this configuration no emission of SHG from the

substrate is expected. Our experimental results in figure 4.4 (a) confirm this.

For an inspection of the relevant tensor elements for the (110) wafer configura-

tion we need to transform the bulk χ(2) tensor components using a transformation

matrix as already described in the basics section. To get from configuration figure

4.4 (a) to (b) we rotate the crystal by 45◦ along the x axis of the laboratory frame.

This is described by the set of Euler angles with α = 0, β = π/4, γ = 0. The

non-vanishing tensor components that are responsible for a nonlinear polarization

along the (x-y) direction then read

P (2)
x = ε0χ

(2)
xzzEzEz − ε0χ(2)

xyyEyEy, (4.2)

P (2)
y = ε0χ

(2)
yxyExEy − ε0χ(2)

yyxEyEx, (4.3)
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with χ
(2)
xzz = χ

(2)
xyy = χ

(2)
yxy = χ

(2)
yyx.

From this result we can immediately explain the result of measurement figure

4.4 (c). This configuration corresponds to the situation where we would have

excited the substrate with vertical polarized light and the strong field compo-

nent Ey of the incoming light would cause a nonlinear polarization along the x

direction.

But the most interesting case is found in 4.4 (b), where the near fields of the

SRR must be responsible for a nonlinear polarization along the y direction. To

test this assumption, we did a numerical simulation of the near-fields. The result

is shown in figure 4.5 . The near-fields were obtained using a home-built finite-

difference time-domain (FDTD) computer program to solve the linear Maxwell

equations for our experimental geometry as shown in figure 4.1, where also the

corresponding reflectance spectrum is presented.

The gold of the SRR was described by the linear free-electron Drude model

using a plasma frequency of ωpl = 2π × 2.2 × 1015 1/s and collision frequency

ωcoll = 2π × 1.72 × 1013 1/s to account for phenomenological damping effects.

The refractive index of the GaAs substrate was taken as nGaAs = 3.37 and for the

10 nm thin MgF2 layer, nMgF2 = 1.34 was used.

Figure 4.5: Snapshot of the local electric field - The field components shown

are located underneath the SRR inside the GaAs for a excitation at 1.5 µm wave-

length using a 170 fs Gaussian pulse. All components are equally normalized to

the incident electric-field amplitude in the GaAs. (figure from [52])

44



4.1 SHG from Split-Ring Resonators on GaAs Substrate

With these field data at hand, we calculated the effective transverse SHG

polarization 〈P (2)
x 〉 and 〈P (2)

y 〉 as a spatial average over one unit cell using 4.3. By

visual inspection of figure 4.5 it becomes clear that 〈P (2)
y 〉 ∝ 〈ExEy〉 = 0, whereas

in contrast 〈P (2)
x 〉 ∝ 〈EzEz−EyEy)〉 6= 0. The emerging SHG is therefor expected

to be horizontally polarized, i.e. along the x direction (see the red curve in figure

4.4 (b)). It is also apparent from the near field plots (4.5), that the emerging

SHG signal is driven mainly by the dominating axial component Ez. Without any

SRRs on the substrate present, the incident Ex component alone cannot generate

a SHG signal at all. Because we have neglected nonlinearities from the SRRs

metal, we also get strict zero SHG signal for the bare SRR. The calculated SHG

signal arises solely from the combined system of SRR and the GaAs substrate.

4.1.3 Conclusions

With these experiments, we have studied the SHG generation from SRR arrays on

a crystalline GaAs substrate. The special crystal structure of the GaAs allows for

different orientations of the SRR relative to the crystal’s unit cell where basically

three configurations can be distinguished. In the first configuration, the SHG

response of the combined system is determined by the SRR alone and the GaAs

serves merely as a high-refractive index substrate. The second configuration is

dominated by the response of the GaAs substrate and the presence of the SRR

array on top leads to a reduced intensity of the SHG. The third configuration

reveals an interplay of the optical near-fields of the SRR and the GaAs substrate.
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4.2 SHG Spectroscopy on Split-Ring-Resonator

Arrays

In our nonlinear optical spectroscopy experiments we have studied the SHG from

split-ring-resonator arrays on glass substrates. The resulting spectroscopic data

helps in clarifying the role of higher-order resonances. It can provide a much

more sensitive future testing ground for microscopic theories of the underlying

mechanism compared to fixed wavelength experiments that ware conducted before

[45, 46, 47].

4.2.1 Sample Fabrication and Linear Optical Characteri-

zation

The fabrication of the gold SRR samples is already described in detail in 3.1. The

footprint size of the SRR arrays on the glass substrate is 200 µm × 200 µm. The

thickness of the gold film was about 30 nm for all fabricated samples. For the

configuration of the single SRRs within the array we used a lithographic tuning

method as illustrated in 4.6 to produce different samples.

Figure 4.6: Lithographic tuning - In the top row, the size of the SRR is

reduced while keeping the arm-width w constant. In the bottom row the size

and arm-width is kept constant but the gap depth d is reduced . The magnetic

resonance wavelength is decreased for both scaling methods from left to right.
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4.2 SHG Spectroscopy on Split-Ring-Resonator Arrays

In case of size scaling of the SRR, the arm width and the thickness of the

gold film was kept constant. The lengths l1, l2, l3 were scaled down proportionally

to reduce the overall size of the SRR. This leads to a decrease of the spectral

positions of the fundamental magnetic and higher-order electric resonances.

Another tuning method used was the scaling of the gap depth d. Here, the

arm-width w and the size of the SRR as well as the thickness of the gold film

were kept constant and only the depth of the gap d was modified. This affects the

spectral position of the fundamental magnetic resonance leaving the higher-order

electric resonances spectrally fixed.

Both tuning methods were employed on our samples and their linear extinction

spectra were measured with an FTIR to select those arrays with the appropriate

resonance positions. In figure 4.8 three configurations where size scaling was

employed were selected and their scanning electron micrographs are depicted.

The corresponding linear extinction spectra show an increase of the magnetic

resonance wavelength from the top to the bottom configuration. It can also be

seen that the higher order resonances also move in their spectral position. In

figure 4.9, the four selected SRR configurations for the gap scaling are presented.

Here, the magnetic resonance wavelength decreases from the top to the bottom

configuration while the higher order resonances are nearly fixed in their spectral

position.

4.2.2 Nonlinear Optical Characterization

The setup for the nonlinear optical spectroscopy of the SRR arrays is sketched in

figure 4.7. An optical parametric amplifier (OPA) 1 was employed as a tunable

light source delivering pulses with a duration of about 150 fs at a repetition rate

of 1 kHz. The emission wavelength can be tuned in the range of 1.2 µm up to

1.56 µm via a manual adjustment. The OPA itself is pumped by a regeneratively

amplified Ti:Sa femtosecond laser 2 with a repetition rate of 1 kHz.

The output from the OPA is first filtered using a double-side-polished silicon

wafer piece to remove any residual light below a wavelength of 1.1 µm that may

leave the device. Then the vertical polarized beam hits a periscope to lower the

1OPA 800 CF, SpectraPhysics Inc.
2Hurricane, SpectraPhysics Inc.
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Figure 4.7: Optical setup for nonlinear optical spectroscopy - The sketch

represents the optical setup used for the nonlinear optical spectroscopy experi-

ments. A detailed description can be found in the text.
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beam to the height of the mirrors and lenses on the table. This measure also

changes the polarization of the beam to a horizontal polarization direction.

A beam splitter reflects a small portion of the emitted light onto a photodiode

with a pinhole in front. The output of the diode is monitored on an digital

oscilloscope. Maximizing the signal from the diode via adjusting the OPA and

the mirrors of the periscope provides a way to reproducibly couple the beam into

the optical setup.

The beam from the OPA is then sent through a polarizer to provide an excel-

lent horizontal polarized beam that afterwards hits another beam splitter. The

much lower intensity reflection from the splitter is focused on the sample using a

lens, resulting in a Gaussian spot with a diameter of 60 µm (measured with a knife

edge technique). The sample itself is mounted on the sample holder that allows

for a fine adjustment of the position of the sample in all three space dimensions

relative to the incoming beam. At the laser powers used (below 500 µW average

power, equivalent to 0.5 µJ pulse energy, or 3.3 MW peak power equivalent to

about 100 GW cm−2 peak intensity on the sample). We find no deterioration of

the SHG signal from the gold SRR samples during our measurements that usu-

ally ran over several days. Another lens is then used to defocus and collimate the

fundamental and SHG light again and sent it on its way to the detector. A lens

finally focusses the beams again into the detector system, consisting of grating

spectrometer that is connected to a sensitive liquid-nitrogen cooled silicon CCD

camera.

When the OPA is tuned through its wavelength range, its average power, its

pulse duration, its beam divergence, as well as its spot diameter can change.

This in return leads to a substantially change in the focus conditions on the SRR

sample, strongly altering the SHG signal intensity. To handle this behavior we

normalize the SHG signal from the SRR array to the SHG that is obtained from

the surface of a quartz crystal plate.

This crystal plate is located in a second arm of our experimental setup and

is excited by the much more intense portion of the fundamental light that is

transmitted through the beam splitter. The lens, that is focussing the light on

the quartz crystal, is identical to the one used for focussing the light on the sample.

This measure provides the same focus conditions on the sample and the crystal.

The quartz crystal is mounted under an angle of approximately 45◦ relative to
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the incident beam. We have chosen a quartz crystal as a reference material due

to its optical nonlinearity and resistance against high power excitation. It will

also show no significant spectral dependence because its band gap lies in the UV

region at around 8.4 eV [54] which corresponds to 148 nm wavelength. The quartz

has a thickness of 5 mm, a footprint dimension of 2 cm × 2 cm and is optically

polished on both faces 1.

The reflected SHG from the surface of the crystal is selected by a pinhole and

then defocussed and collimated by a lens. This lens is again equal to the one used

to defocus the SHG emitted from the sample itself. The SHG from the reference

arm finally focused into the spectrometer and CCD camera combination. By

accurately adjusting the relative position of the two beams at the spectrometer

entrance slit, both SHG signals can be measured and monitored at the same time

by the 400 × 1340 pixels of the CCD. Each beam is detected on a area of the CCD

chip with a height of 200 pixels. The software 2 allows to read out both regions of

interest to get the SHG emission spectra of the sample and the reference at the

same time. The SHG intensity for each channel is then obtained by integrating

over the spectral peak.

With this setup, we have obtained reproducible experimental results that are

presented in figure 4.8 and 4.9. The normalization is the same for all samples

and experimental conditions and given by

ISHG, normalized =
ISHG, sample

ISHG, reference

(4.4)

This allows for a direct comparison of the signal strengths in figures 4.8 and 4.9.

4.2.3 Experimental Results and Discussion

In figure 4.8 (a) - (c), the measured second-harmonic-generation spectra from

three different SRR configurations, where size scaling was employed, are shown.

As already stated, the incident fundamental laser beam is linearly polarized along

the horizontal direction. This corresponds to the red double arrow depicted in

the scanning-electron micrographs shown as insets in the figures. Due to the sym-

metry of the SRR, the SHG emerges with vertical linear polarization as defined

by the blue double arrows, shown in the same micrographs.

1z-cut quartz; Boston Piezo-Optics Inc.
2WinSpec, Princeton Instruments
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Figure 4.8: Linear and nonlinear measurements on the size scaled sam-

ples - Second-harmonic-generation spectra (dots connected by green straight curves

as guides to the eye) obtained for the set of three different size scaled samples. The

linear extinction spectra (solid blue and red lines) are color coded to their corre-

sponding polarization direction as indicated by the blue and red arrows. (figure

from [55])
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Figure 4.9: Linear and nonlinear measurements on the gap scaled sam-

ples - The color coding of the plots is equal to figure 4.8 for an easy comparison.

(figure from [55])
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Each SHG data point is intentionally plotted twice in the same spectrum.

First, the SHG signal is plotted as a function of the fundamental laser wavelength

and second, it is plotted as a function of half of that wavelength. This allows

a direct comparison of the SHG spectrum with the linear extinction spectra in

these spectral regions. The normal-incidence linear-extinction (negative decadic

logarithm of the measured transmittance) spectra are plotted in red and blue

curves for horizontal and vertical incident linear polarization, respectively. The

grey areas hide the wavelength ranges, that are of no interest with regards to the

second harmonic generation, either because these are located outside the tuning

range of the OPA (1.2 µm - 1.56 µm) or outside the SHG emission range. Figure

4.9 (a)-(d) shows four experimental results for the set of gap-scaled SRR arrays

using the same design of plots.

As already discussed 2.7.1, split-ring resonators show several distinct reso-

nances of which the fundamental magnetic mode has the longest wavelength. The

next-higher-order resonances are roughly at twice the frequency of the fundamen-

tal magnetic resonance frequency leaving room for speculations about double-

resonance conditions. The previous fixed-wavelength experiments [45, 46, 47]

could also not clarify the role of the higher-order resonances. For a further anal-

ysis of this aspect, we have thus plotted all of our SHG signal data to appear

twice in the plots.

One can see in figure 4.8, that the SHG signal reveals a maximum that shifts

to longer wavelengths when the size of the SRR is increased, hence shifting the

SRR linear resonance positions. From this data, it is not clear whether the SHG

maximum correlates with the SRR fundamental magnetic resonance frequency,

with the higher-order electric resonances, or with both.

To further investigate this aspect, a second set of samples was fabricated. By

systematically changing the shape of the SRR through scaling of the gap-depth

d (see figure 4.6), a lithographic tuning of the magnetic resonance relative to

the higher-order resonance could be achieved. As can be seen from figure 4.9,

the higher-order electric resonances stay approximately fixed while the spectral

position of the magnetic resonance is blue shifted from the top to the bottom

configuration. These samples also exhibit SHG resonances, however, the com-

parison with their corresponding linear extinction spectra shows that the SHG

maximum is generally not at the same position as the higher-order resonances.
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This can be seen in figure 4.9 (b), where the linear extinction for vertical polar-

ization (blue) peaks about 770 nm wavelength. At this wavelength, the vertically

polarized SHG signal (green) exhibits a minimum. The same holds true in 4.9

(c) and (d) with very little spectral shift. In contrast, the linear extinction maxi-

mum for vertical polarization (red) in figure 4.9 gradually shifts accordingly. We

interpret this behavior as an indication that the fundamental SRR resonance acts

as the nonlinear source and that the higher-order SRR resonances reabsorb the

generated vertically polarized SHG.

4.2.4 Conclusions

We have performed nonlinear optical spectroscopy on arrays of lithographically

tuned gold SRR. From the resulting spectra, a resonance of the second-harmonic

generation can be clearly identified. This maximum correlates well with the

fundamental resonance but not with the higher-order resonances. The experiment

and its results extends and complements very well the previous fixed wavelength

experiments [45, 46, 47].
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4.3 Collective Effects in Second-Harmonic Gen-

eration from Split-Ring-Resonator Arrays

In the last section, we have studied the influence of the spectral position of the

resonances on the efficiency of second-harmonic generation conversion. In this sec-

tion, we investigate the role of the spacing between individual SRR of the array on

the conversion efficiency. A design strategy for the most efficient second-harmonic

conversion could be to pack the individual SRR as densely as possible. With our

experimental results and theoretical investigations we show that collective effects

of the individual SRR substantially alter this picture. An optimal behavior is

rather found at some intermediate packing density of the individual SRR.

Figure 4.10: SEM images of the selected arrays - The top-view scanning-

electron micrographs of the selected gold split-ring resonator arrays are presented

that were used for the experiments. The thickness for the gold film is 30 nm and the

lattice constant a is inidicated for each case. The footprint for each square array is

100 µm × 100 µm. Scale bars representing a length of 200 nm are placed as inserts

in each micrograph. The yellow SRR illustrates the geometrical dimensions that

were used for the theoretical calculations for all a. (figure from [56]).

4.3.1 Sample Fabrication and Linear Optical Characteri-

zation

For the experiments we have fabricated samples that exhibit a magnetic resonance

at around 1.4 µm. The individual SRR are arranged on a square lattice with a
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lattice constant a. To study the effect of packing, or equivalently to study the

second-harmonic generation (SHG) efficiency versus a, a large set of samples was

fabricated in which the electron-beam exposure dose was varied for each of the

different lattice constants (a = 280, 300, 325, 350, 400, 450nm). From this set we

pick those arrays that exhibit a nearly constant resonance wavelength of about

1.4 µm for their magnetic resonance.

In figure 4.10 one can see that the resulting size variations for the different

arrays are extremely small. This aspect is important because resulting changes

in the individual SRR properties (e.g., damping) would be an artifact (see also

[57]). All arrays have a footprint of 100 µm × 100 µm and a gold film thickness

of 30 nm.

The measured linear-optical extinction spectra for normal incidence of light

are plotted in figure 4.11 on a false color scale. The peak extinction of the

fundamental resonance at 1.4 µm wavelength decreases monotonic with increasing

lattice constant. This behavior is expected from the dilution and consistent with

previous results [57] and can also be found for the higher-order resonance centered

around 750 nm wavelength. Small wiggles in the resonance positions are due to

small size variations of the SRR among the different arrays.

4.3.2 Experimental Results and Discussion

Panel (c) of figure 4.11 reveals the measured SHG signal versus center wavelength

of the incident laser pulses and versus lattice constant, again depicted on a false-

color scale. The experimental setup as well as the normalization method was the

same used for the earlier experiment 4.2. In a sharp contrast to the linear optical

data, the SHG signals show a non-monotonic behavior versus lattice constant.

The SHG signal in figure 4.11 (c) at 1395 nm excitation wavelength first rises

from normalized levels of 1.3 at 280 nm lattice constant to SHG levels of 3 at

400 nm lattice constant. For yet larger lattice constants, the SHG decreases and

reaches a level of 0.8 at 500 nm lattice constant. To rule out any effects from the

slightly varying SRR resonance wavelength, we have taken complete SHG spectra

for each lattice constant.

At each lattice constant, we find the same general non-monotonic behavior.

The decay of the SHG signal at very large lattice constants is determined by the

decreasing number of oscillators per are or per volume. After all, zero SRR density
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Figure 4.11: Experimental results - (a) Normal-incidence, linear-optical ex-

tinction versus wavelength and versus lattice constant a of the SRR square arrays,

plotted on a false-color scale. Two selected cuts through these data are shown by

the white curves. The white dashed horizontal lines are the respective zero levels.

(b) Damping versus lattice constant as obtained from Lorentzian fits to the data

in (a). (c) Second-harmonic generation (SHG) signal from the same SRR arrays

versus incident fundamental wavelength of the optical-parametric amplifier (OPA)

and versus a. The SHG signal is normalized to a quartz reference and plotted on

a false-color scale. A selected cut through these data versus lattice constant a is

shown by the black curve. The white dashed vertical line is the zero level. note the

non-monotonic behavior of the SHG , whereas the linear properties in (a) show a

monotonic decay with increasing a. (figure and caption from [56])
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will surely lead to zero SHG from the SRR arrays. By inspecting equation 2.89,

this dilution corresponds to a scaling of the second-order nonlinear polarization

∝ 1/a2; hence, the SHG signal intensity scales ∝ 1/a4. In the opposite limit of

very small a, the SRR eventually touch. This is expected to happen at a = 195

nm as can be seen from figure 4.10). For this configuration, the SRR resonance

disappears, and both, the extinction and the SHG signal are expected to decrease.

However, as becomes clear from the extinction spectra in figure 4.11 (a), a

well-defined SRR resonance is observed for all lattice constants investigated. Even

at the smallest lattice constant of a=280 nm, no drop of the extinction with

decreasing a is found. The initial rise of the SHG signal versus lattice constant

for small a must, thus, have a different origin.

Intuitively, one might be tempted to suspect some sort of diffractive effect,

e.g. brought about by the Wood (or Rayleigh) anomaly [58]. Fortunately, closely

similar samples have recently been characterized in detail in linear-optical ex-

periments [57] (also see [59]). For normal incidence of light at the fundamental

resonance wavelength, the Wood anomaly occurs at lattice constants larger than

about 900 nm. Therefor, diffraction of the incident light into the SRR plane can

be ruled out under the present conditions. Diffraction of the SHG signal would

also lead to a decrease rather than to the observed initial increase in the (zeroth-

order) forward direction but may well contribute to the expected decay of the

SHG signal at larger lattice constants.

The optical experiments in [57] also revealed a pronounced decrease of the

linewidth of the SRR resonance with increasing lattice constant. For the present

samples, the damping γ as obtained from Lorentzian fits to the data shown in

figure 4.11 (a) decreases from γ= 16 THz at a = 280 nm nearly linearly to γ =

10 THz at a =500 nm (see figure 4.11 (b) ). This dependence can be interpreted

as being due to a retarded long-range interaction among the SRR in the arrays

[57].

By again recalling equation 2.89, we see that the linewidth of the resonance

also enters sensitively into the second-order nonlinear-optical susceptibility χ(2).

In addition, the amplitude of local-field-enhancement increases with decreasing

damping as this strongly influences the quality factor of the resonance, leading

to an increase of the overall SHG intensity. Moreover, the spatial distribution

of the local SRR fields also enters sensitively into the SHG conversion efficiency.
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Figure 4.12: Illustration of the competing effects - With increasing lattice

constant, the number of SRR per unit area decreases. This dilution effect leads to

a decreasing SHG signal strength as illustrated by the green gradient in the top

bar. On the other hand, an increase in lattice constant reduces the damping of the

fundamental resonance that leads to an increase of the SHG signal (green gradient

in the bottom bar).

Combined with the trivial dilution effect discussed above, these aspects can qual-

itatively explain the measured non-monotonic behavior of the SHG signal versus

lattice constant.

To test this qualitative reasoning quantitatively and to rule out any ex-

perimental artifacts, we have performed numerical calculations using the dis-

continuous Galerkin time-domain method [60, 61] for the experimentally in-

vestigated gold split-ring-resonator square arrays. We describe the optical re-

sponse of the metal by the state-of-the-art hydrodynamic Maxwell-Vlsasov theory

[33, 62]. Its linear limit corresponds to the Drude free-electron model, for which

we have chosen a plasma frequency ωpl = 1.33× 1016rad/s, a collision frequency

ωcol = 8 × 1013rad/s, and a background dielectric constant of ε∞ = 9.84. The

refractive index of the glass substrate is taken as n = 1.46. The geometric SRR

parameters (which are the same for all lattice constants a) are according to the

yellow SRR in figure 4.10.

The current density j was used in the form (see also supplementary material

[56])

∂j

∂t
=
n0e

2

me

E− γj− e

me

[(∇ · E) (E) + j× µ0H] +
1

ene
(j · ∇)j +

e

me

∇p, (4.5)

where the first two terms represent the linear Drude model with the plasma

frequency ωpl =
√
nee2/(ε0me) and the damping constant γ. The number density

of the ionic cores is represented by n0 and e is the elementary charge and me
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Figure 4.13: Results of the theoretical calculations - The calculations cor-

respond the experiment in figure 4.11. The representation is the same, allowing for

direct comparison. The geometrical parameters used for split-ring resonators are

shown at the top of figure 4.10. Panel (c) uses the hydrodynamic Maxwell-Vlasov

theory to describe the nonlinear response of the gold split-ring resonators. (figure

from [56])
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Figure 4.14: Comparison of the different nonlinear models - SHG signal

versus incident fundamental wavelength and versus lattice constant a for different

nonlinear approaches. (a) complete hydrodynamic Maxwell-Vlasov theory, (b) uses

only the Fermi pressure term ∇p within the Maxwell-Vlasov theory. In (c) and (d)

a simple generic model with a single nonlinear susceptibility tensor component χ
(2)
yyy

and χ
(2)
yxx, respectively. (supplementary material from [56])
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the mass of the electron. ε0 and µ0 represent the dielectric constant and the

vacuum permeability, respectively. The nonlinearity is induced by the electric

and magnetic Lorentz force terms, a convective acceleration term (j · ∇)j, and

the semi-classical electron-gas Fermi pressure p, that is a function of the electron

number density ne:

p =
1

5
(3π2)

2
3
~
me

n
5
3
e . (4.6)

Figure 4.13 (a) shows a calculated linear-optical extinction spectra. These

calculations reproduce the experimentally observed monotonic decrease of the

extinction peak and of the damping (see figure 4.13 (b)) with increasing lattice

constant a. The nonlinear SHG calculations are depicted in 4.13 (c). We find

a pronounced maximum of the SHG signal versus lattice constant at about a =

400 nm throughout the entire spectral resonance. This non-monotonic behavior

versus lattice constant nicely reproduces the experimental findings shown in figure

4.11 (c). Thus, the numerical results strongly support the above qualitative

reasoning in that the SHG signal is strongly influenced by collective effects via

the SRR damping as well as via the SRR near-field distributions.

Since the detailed microscopic mechanism of the metal nonlinearity is still

subject to debates we have also performed calculations using other models for

the nonlinearity. In particular, this includes a simple generic treatment with an

effective instantaneous second-order nonlinear susceptibility for the gold SRR

P
(2)
i = ε0χ

(2)
ijkEjEk. (4.7)

This nonlinear polarization is non-zero for the gold SRR and zero elsewhere within

the simulation domain. For the simulations, two different cases with non-zero

components of the nonlinear susceptibility tensor χ
(2)
yyy and χ

(2)
yxx. All other ele-

ments of the tensor are set to zero.

In figure 4.14 a comparison of the SHG signal strength versus wavelength

of the fundamental light and versus lattice constant for the different nonlinear

models is presented. All of the simulation results exhibit a similar qualitative

behavior, in particular they all show the non-monotonic behavior of the SHG

signal versus lattice constant. The resulting signal maximum occurs around a

lattice constant of about 400 nm in all cases.
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Figure 4.15: Calculated near-field distributions - The distributions for three

different lattice constants a as obtained from numerical calculations with parame-

ters as in figure 4.13. The square modulus of the electric-field vector, | ~E|2, at the

fundamental SRR resonance frequency is shown on a logarithmic false-color scale.

The normalization is the same for all three panels. For clarity, half of the golden

SRR in one unit cell is rendered transparent. For the lattice constants shown, an

increase of the SRR lattice constant a leads to an increase of the strength of the

near and internal fields and to a larger SHG far-field signal. At yet larger lattice

constants, this trend is reversed by the trivial dilution effect. (from [56])
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These results confirm the fundamental nature of the reported non-monotonic

behavior. However, none of these calculations is able to precisely reproduce the

asymmetry of the spectral SRR resonance shown in figure 4.11 (c).

In figure 4.15, the origin of the collective effects as already qualitatively dis-

cussed above is illustrated. Indeed, the SRR near fields within one unit cell at the

fundamental resonance frequency depends on the lattice constant. Stronger near

fields lead to stronger internal currents and hence to larger SHG signals. Once

the SRR are separated by more than the extent of their near-fields, these fields

no longer increase with increasing a and the SHG signal eventually decreases due

to the trivial dilution effect.

4.3.3 Conclusions

In our experiment, we have observed a non-monotonic behavior behavior of the

resonant second-order nonlinear conversion efficiency in SRR arrays versus pack-

ing density. The theoretical modeling indicates, that this finding is a rather

general phenomenon based on collective effects among the metamaterial building

blocks and that should occur in many nonlinear metamaterials. Thus, future

experiments aiming at achieving large effective optical nonlinearities should keep

these collective effects in mind.
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Thermal Detectors

In this chapter, an introduction to the basics of thermal detectors is given. This

provides the foundation for the metamaterial bolometer experiment in the next

chapter. Basically, two main types of detectors can be distinguished for the

detection of electromagnetic radiation in the infrared spectral region. The first

type is represented by the group of quantum detectors, where light is directly

converted into free electrons in the conduction band of a semiconductor material.

Dependent on the semiconductor used and the detector setup, these devices work

either as a photoresistor (indium antimonide InSb), a photovoltaic cell (indium

arsenide InAs) or a photodiode (germanium Ge). These type of detectors offer

a high detection performance combined with a fast response speed, but their

photosensitivity is wavelength dependent [63] and they often have to be cooled

for accurate measurements.

The second type of infrared detectors is represented by the thermal detectors

[64]. Here, the detection process is initiated by an absorption of radiation power

and a subsequent conversion into thermal energy. This leads to a heating and a

temperature increase of the detector that is then measured. In essence, this kind

of detector is a radiation heated thermometer. These detectors can be tailored to

respond to a broad range of wavelengths and offer a good performance at room

temperature operation. Conceptually, thermal detectors can be used to detect

any kind of radiation energy as long as a thermalization through absorption is

possible within the detector material.

We will now take a closer look on the basic working principle of a thermal

detector. The detector schemes differ by the way the temperature increase is
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read out [65]. Table 5.1 gives an overview of the physical detection mechanisms

and their implementations. In case of the thermocouple, the connection of two

physical effect detector type

seebeck effect thermocouple or thermopile

pyroelectricity pyroelectric sensor

pressure change golay cell

resistance change bolometer

Table 5.1: The four physical mechanisms for thermal detector implementations

different metal or metal alloy wires leads to a potential difference at the open

ends of the circuit. The potential difference depends on the temperature differ-

ence between the connection point and the open ends (Seebeck effect) and can

therefore be used to infer on the temperature change of the detector. A connec-

tion of additional thermocouples in series is called a thermopile and increases the

potential difference between the open ends.

The pressure and volume of a gas depends strongly on the temperature as

described by the ideal gas law. This effect is used within a pneumatic detector

or golay cell [66]. Here, the detector chamber is filled with a gas and sealed

with a deformable membrane. Radiation striking the detector then heats the gas

inside the chamber. The gas warms up and the membrane is deformed due to

the increased internal pressure. By measuring the deformation of the membrane,

one can therefore infer on the absorbed radiation.

Another physical mechanisms that can be used within a thermal detector is the

temperature dependent electric polarization that can be found in some crystals

(e.g., deuterade triglycine sulfate (dTGS), lithium tantalate (LiTaO3), lead zinc

titanate (PZT)). Within this pyroelectric effect, the change of polarization with

temperature alteration is accompanied with an electrical current that is measured

to infer on the temperature change.

One of the first implementations of a thermal detector goes way back to the

end of the 19th century. In 1880 Samuel P. Langley used the property of metals

to change their electrical resistance as a function of temperature as a measure

to detect the absorption of infrared radiation [67]. This working principle is the

basis for all modern bolometer implementations. As detector materials, metals
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and semiconductors which exhibit a strong dependence of their electrical resis-

tance on temperature are used. By using thin films of the materials, the thermal

mass can be kept low enhancing the response time of the detector [68, 69, 70].

Bolometers can work under room temperature conditions and normal air pressure,

but top performance is obtained under low temperature conditions and vacuum.

Compared to quantum detectors, their response time is rather low [71].

5.1 Thermal Model

To understand the detection mechanism in more detail, the temperature increase

due to absorption of radiation can be modeled using the heat diffusion equation. A

thermal detector consists of an absorber with heat capacity Cth that is connected

to the heat sink at Temperature T0 via a thermal conductance Gth. Radiation

striking the absorber then leads to heating of the absorber element which results

in an elevated temperature T1.

Figure 5.1: Sketch of a thermal detector - The absorptive element is thermally

connected to a heat sink described by a thermal conductivity Gth. The absorption

of radiation leads to a temperature increase ∆T = T1−T0 of the detector which is

measured.

This thermal system can by modeled by solving the corresponding heat bal-

ance equation

Cth
d∆T

dt
+Gth∆T = εΩ (5.1)
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where Cth defines the detectors thermal capacity and Gth depicts the total thermal

conductivity of the detector to its surroundings.

When thermal radiation of power Ω modulated with the angular frequency ω

Ω = Ω0e
iωt (5.2)

strikes the detector, the temperature increase ∆T is given as a solution [72] to

equation 5.1

∆T =
εΩ0e

iωt

Gth + iωCth

=
εΩ0

Gth

√
1 + ω2τ 2

th

. (5.3)

The time constant τth is given by

τthermal =
Gth

Cth

(5.4)

and describes the temperature increase of the detector after a signal applied for

time t

∆T =
Ω0

Gth

e−t/τth . (5.5)

Obviously the detector temperature increases linearly with the amount of ab-

sorbed energy εΩ0.

5.1.1 Heat Exchange Mechanisms

Materials reach their thermal equilibrium through three basic heat exchange

mechanisms, namely conduction, convection and radiation [73]. All these mech-

anisms add up to the overall thermal conductance Gth of the bolometer.

Gth = Gconduction +Gconvection +Gradiation (5.6)

As we have seen, the thermal conduction strongly affects the performance of the

bolometer. To achieve the highest temperature increase of the detector for a

given amount of absorbed energy the thermal conductivity has to be as low as

possible. In the next section, we will give an overview over the various physical

mechanisms affecting the overall thermal conductivity.
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Thermal Conduction

When two bodies at different temperature are in thermal contact, heat flows

from the body at higher temperature to the one a the lower temperature. In

solid materials, the heat flow is due to vibrations of the molecules in the lattice

or by lattice vibrations itself, the phonons. Free electrons can also carry heat

and contribute to the heat transfer. The collision and diffusion of molecules are

responsible for the heat conduction in gases and liquid materials.

The mathematical law of heat conduction is known as Fourier’s law. In its

differential form, the local heat flux density q [W · m−2] is proportional to the

magnitude of the temperature gradient

q = −κ∇T, (5.7)

where the minus sign illustrates the fact, that heat flows from the higher temper-

ature area to the lower temperature. The thermal conductivity κ [W ·K−1 ·m−1]

characterizes the materials ability to conduct heat and is often treated as a con-

stant. Generally, the thermal conductivity is temperature dependent, but can

be approximated as constant over a broad range of temperatures for the most

common materials.

To get a representation of the thermal conductance, we consider the heat Q

flowing through a cross-section area A [m2] of a rod of length d. Fourier’s law can

be reduced to a one-dimensional representation

qz = −κdT
dz

(5.8)

which eases the calculation. The integral form of the above equation then has

the form

∂Q

∂t
=

∫
A

qzdA = −κ
∫
A

dT

dz
dA. (5.9)

Integrating of the above equation leads to

∆Q

∆t
= κ

A

∆z
∆T, (5.10)

where ∆T is the temperature difference and ∆z is the distance d between both

ends. The thermal conductance Gth [W/K] is then

Gth =
κA

d
. (5.11)
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The electrical analog of the Fourier law is Ohm’s law. This can immediately be

seen from equations 5.10 and 5.11 when directly comparing them with Ohm’s law

Q̇ = G ·∆T ↔ I =
1

R
∆U. (5.12)

From this we can draw analogies between thermal and electrical quantities as

presented in table 5.2. Due to this analogies it is possible to use circuit theory for

solving static and even dynamic heat conduction problems [74]. In the context of

bolometers this is expolited to model the thermal behavior of the detector using

simulation tools for standard electronic circuits [75, 76].

Figure 5.2: Thermal resistance - Thermal resistance Rth = d/(κ ·A) of a block

with thickness d and cross sectional area A = x · y. The thermal power P = Q̇

leads to a temperature difference ∆T = T1 − T0

Convection

The heat transfer through convection can only be found in viscous materials like

fluids or gases. In contrast to heat conduction, the molecules collectively move to

transport the heat accompanied by a transfer of mass. In the context of thermal

detectors, convection effects are often eliminated by operating the detectors in

a vacuum environment on the same time also reducing the thermal conduction

through the gas. More details on the mechanisms of convection can be found in

[73]

70



5.1 Thermal Model

Radiation

A third way to exchange energy with the surroundings is through the emission

of thermally emitted photons. The intensity of such an energy flux depends on

the temperature of the emitting body. The spectral energy densitiy for a perfect

absorber is given through Planck’s law

ρ(λ, T ) =
8πhc

λ5(ehc/λkBT − 1)
, (5.13)

with the Planck constant h, the speed of light c, the thermal energy kBT , and

the wavelength λ of light. In case of a deviation from a perfect absorber, Planck’s

law will be modified by the factor ε(λ), describing the emissivity as a function

of the emitting wavelength. According to Kirchhoff’s law of thermal radiation,

emissivity and absorption are equal and will strongly depend on the material .

Albeit this effect is the ultimate performance limit of a thermal detector design, in

practical applications the heat transfer by conduction is the dominating process,

especially in the context of bolometers [77, 78].

5.1.2 Thermal Capacity

The thermal capacity or heat capacity is the thermal quantity affecting the dy-

namic behavior of the detector. To maintain a short response time, the thermal

capacity of the detector design should be as low as possible. The thermal capac-

ity Cth is directly proportional to the relevant detector volume V [cm3], to the

density of the material ρ [g/cm3] and to a proportionality factor of the specific

heat c [Ws/g ·K]:

Cth = c · ρ · V = m · c. (5.14)

The thermal capacity of a body of mass m = ρ · V corresponds to the quantity

of heat needed to heat the body by 1◦C. By again using the analogy of electrical

and thermal quantities we can compare the thermal capacity with the electrical

capacity:

∆T · Cth = P · t = Q↔ ∆U · Cel = I · t = Q. (5.15)

For a fast detector response it is therefore necessary to reduce the mass of the

detector by using a small detector volume and/or low density materials.
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Table 5.2: The analogies between electric and thermal quantities

Current I = Q̇ Heat flow Q̇

Voltage difference ∆U Temperature difference ∆T

Electrical conductance Gel Thermal conductance Gth

Electrical resistance R = 1/Gel Thermal resistance Rth = 1/Gth

Capacitance Cel Thermal capacity Cth
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6

Metamaterial Metal Bolometer

Metamaterial resonances are the basis for their extraordinary material properties.

These resonances are usually based on plasmonic excitations of the metal-based

structures. Unfortunately, causality connects these resonances with large imagi-

nary parts of the corresponding dielectric function leading to losses [79, 80], often

unwanted in technical applications of metamaterials [81].

But the metamaterial community has searched for ways to profit from the

inherent absorption and came up with the idea of the perfect absorber, neither

transmitting or reflecting light in a delimited range of frequencies. This concept

was investigated both theoretically and experimentally [12, 15, 16, 82, 83] and

has lead to applications in the context of plasmonic sensors [13]. The absorption

of metamaterials was also used to tailor the thermal-emission behavior of the

material. It makes use of Kirchhoff’s law of thermal radiation that connects

the wavelength-specific absorption and emission properties of a material [15].

Recently, a metamaterial structure was used to build an Schottky photodiode

with tailorable built-in spectral filters [84]. The accessible wavelength range is

limited by the height of the involved Schottky barrier for the the semiconductor-

metal interface. Several other experimental work has focussed on the absorption

of metamaterials and their use in sensing [14, 85, 86].

Based on the idea of the metamaterial metal-based bolometer, a flexible device

for the detection of infrared radiation can be implemented. We used a slightly

modified split-ring resonator structure which allowed us to not only tailor the

spectral absorption behavior of the structure, but also use the metal of the struc-

ture as a thermistor. That way, a wavelength and polarization-sensitive device
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6. METAMATERIAL METAL BOLOMETER

for the detection of radiant energy in the infrared spectral region was build and

characterized.

The following chapter first discusses the basics of metal bolometers in general.

Then, the thermal characterization of the bolometer device is addressed. Finally,

the full experimental characterization of the fabricated device is presented.

6.1 Basics of Metal Bolometers

In the case of a resistive bolometer, the temperature dependent change of a metal’s

resistance is used to measure the temperature increase of the detector. Metals

like gold or platinum have a sufficient high temperature coefficient of resistance

(TCR). The temperature dependent resistance of the metal is described with

R(T ) = R0(1 + α(T − T0)), (6.1)

where R0 is the electrical resistance at the reference temperature T0. The tem-

perature coefficient of resistance (TCR) α [K−1] has positive values for metals.

In the case of negative temperature coefficient (NTC) materials, heating of the

material decreases its resistance, a behavior found insemiconductor bolometers.

The most simple setup of bolometer operation is illustrated in figure 6.1. Here

the bolometer is connected in series with a load resistor RL with a much higher

resistance than the bolometer resistance RB(T ). This allows an operation of the

bolometer under a constant bias current condition. By measuring the bolometers

resistance change, one then can infer on the absorbed optical power. We will now

take a closer look on how to model the behavior of the detector.

When the bolometer is biased with a constant current Ib, electrical power

Pe is dissipated within the device. This leads to a temperature increase of the

bolometer through the process of Joule’s heating. The average temperature T of

the bolometer is determined by the thermal insulation Gth. The corresponding

heat balance equation without optical input power present is given by [87]

Gth(T − Ta) = Pe = I2
bRb = IbUb (6.2)

where Ta and Ub denote the ambient temperature and the voltage accross the

bolometer, respectively. The sensor’s resistance at the average temperature is

given by

Rb = Rb0[1 + α0(T − T0)]. (6.3)
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6.1 Basics of Metal Bolometers

Figure 6.1: Simple electric circuitry - The bolometers electrical resistance

RB(T ) is in series with the load resistance RL. The load resistance is chosen to

fulfill RL >> RB(T ) to maintain a constant bias current through the bolometer.

To study the effect of the optical input power modulated with the angular

frequency ω

Ω(t) = Ω0e
iωt (6.4)

striking the detector, the lumped bolometer equation [87] has to be solved:

Cth
dT

dt
+Gth(T − Ta) = I2

bRb + εΩ(t). (6.5)

As a reminder, Cth denotes the heat capacity of the detector and ε is the spectral

absorbance. Using equation 6.3 and the resistance at the ambient temperature

Ta

Ra = Rb0[1 + α(Ta − T0)] (6.6)

we can rewrite equation 6.5

H
dT

dt
+ (Gth − I2

bRb0α0)(T − Ta) = I2
bRa + εΩ(t). (6.7)

As we are interested in the temperature perturbation ∆T caused by the optical

signal we write T = T + ∆T and substitute this into the last equation. We also

deduct the static terms and finally arrive at [87]

H
d∆T

dt
+ (G− I2

bRb0α0)∆T = εΩ(t). (6.8)

The spectral thermal responsivity is obtained as a solution to the above equation

as

RTh =
ε

Gth − I2
bRb0α0

1√
1 + ω2τ 2

, (6.9)
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where the effective time constant is

τ =
Cth

Gth − I2
bRb0α0

. (6.10)

When characterizing the performance of a bolometer, often the electrical respon-

sivity < is used:

< = dUb

dΩ(t)
= dUb

dR
· dR
dT
· dT
dΩ(t)

(6.11)

= Ib ·Rb0α0 ·RTh. (6.12)

Inserting equation 6.9 finally results in

< =
εIbRb0α0

Gth − I2
bRb0α0

· 1√
1 + ω2τ 2

. (6.13)

Due to the effect of the electro-thermal feedback mechanism, the effective ther-

mal conductivity Geff = Gth− I2
bRb0α0 differs from the thermal conductivity Gth.

The effect of Joule’s heating also limits the magnitude of the bias current. For a

metal bolometer with α0 > 0, a current of Ib =
√
Gth/(Rb0α0) leads to a diver-

gence of the responsivity, called the thermal runaway. The magnitude of the bias

current is therefore limited for practical applications to Ib,max ≈ 0.5
√
Gth/(Rb0α0)

[88].

6.2 Thermal Characterization of the Bolometer

The thermal conductance Gth is the most important parameter for the evaluation

of the performance of a bolometer. The measurement of the thermal conductance

can be achieved by generating heat in the detector and simultaneously measuring

the increase in temperature. As as heat source, the absorption of thermal radi-

ation could be used. But this bolometric method is rather complicated, because

the accurate measurement of the absorbed optical power is difficult. Another

way to experimentally determine the thermal conductance can be done by the

DC method. Here the device is biased with a constant current and the effect

of the dissipation of electrical power within the bolometer is exploited as a heat

source. Using the relation

Gth∆T = I2
bRb (6.14)
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combined with the temperature dependence of the resistance, one obtains

Rb ·Rb0

Rb −Rb0

= −α
G
I2.. (6.15)

Using this relation, a measurement of the resistance of the bolometer as a function

of the bias current squared, reveals the factor α/Gth.

To deduce the thermal conductance from the above measurement, the TCR

α must be known to deduce the thermal conductance Gth which can be easily

obtained from a separate measurement [89]. The device is externally heated,

starting from the temperature T0 ,and the change in resistance ∆R = R(T )−R0

together with the temperature T > T0 is logged. Plotting the function 6.1

∆R = α(T − T0) (6.16)

reveals the TCR α by linear curve fitting.

The DC method has some major drawback. When evaluating Gth from equa-

tion 6.15, its accuracy is very sensitive to changes in the reference temperature T0.

Due to small denominator Rb −Rb0, tiny changes in the environmental tempera-

ture lead to a variation within Rb and in turn to a large error in determining Gth.

For an accurate measurements the reference temperature in the vicinity of the

detector should therefore be monitored carefully using an additional temperature

sensor.

To overcome these drawbacks, we have used the so-called 3ω method for the

characterization of our bolometer. In addition, this method also allows the char-

acterization of the dynamical behavior of the bolometer, i.e. the time constant

τ .

The 3ω Method

The concept of the 3ω method is based on using an AC current to feed a thin metal

strip that acts both as a heater and temperature sensor [90, 91]. The current is

sinusoidally oscillating at the fundamental frequency ω. Due to the dissipation

of electrical energy within the metal strip, the temperature is oscillating at twice

the fundamental frequency 2ω. The linear dependence of the strips resistance on

the temperature 6.1 leads to an oscillation of the resistance with the frequency

2ω. This in turn leads to a voltage oscillation across the strip having a component
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at 3ω. Measuring this voltage oscillation allows one to characterize the thermal

environment of the heater, namely the thermal insulation or thermal conductance

[92, 93]. In addition, this method also allows the determination of the thermal

capacity of the heated material when also the frequency dependence of the voltage

oscillation is measured [94].

As shown in reference [95], this principle can be applied to the characteriza-

tion of a metal bolometer. They have used a combination of a constant current

together with an oscillating current. Here we use their derivation but use only

an AC current Ib = I · cos(ωt) to bias the bolometer. The heat balance equation

then reads

Cth
dT

dt
+ [Gth − I2 cos2(ωt) · α0Rb0] · (T − T0) =

I2Rb0

2
cos(2ωt). (6.17)

The temperature oscillation ∆T = T − T0 can be solved analytically from the

above equation as [95]

∆T = e−k(t)

∫
ek(t) · I2 Rb0

2Cth
cos(2ωt)dt+ c0e

−k(t) (6.18)

where k(t) is given by

k(t) =
1

Cth
(Gth −

1

2
· I2α0Rb0)t− I2α0

Rb0

4Cthω
sin(2ωt). (6.19)

The integration constant c0 depends on the initial condition and quickly vanishes

in several thermal time constants. It is therefor valid to assume a steady-state con-

dition where c0 = 0. Fur the further discussion we set Geff = Gth− 1/2 · I2α0Rb0

and neglect the last term in 6.19 to obtain the time dependent temperature os-

cillation

∆T =
I2Rb0

2Geff

√
1 + (2ωτ)

cos(2ωt+ φ) (6.20)

with the time constant τ = Cth/Geff .

The voltage across the bolometer then is given by

Ub(t) = Ib(t) ·Rb(t) (6.21)

= I cos(ωt) ·Rb0(1 + α0∆T ) (6.22)
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and together with 6.20 we have finally

Ub(t) = Rb0I cos(ωt) +
I3R2

b0α0

4Geff

√
1+(2ωτ)2

cos(ωt+ φ) (6.23)

+
I3R2

b0α0

4Geff

√
1 + (2ωτ)2︸ ︷︷ ︸

Ub,3ω

cos(3ωt+ φ). (6.24)

The frequency component of the voltage Ub,3ω that oscillates with three times the

fundamental frequency is of special interest. Its magnitude directly relates to the

effective thermal conductance Geff and from its frequency dependent behavior

we can also determine the effective time constant τ .

6.3 Experimental Setup

The characterization of the metamaterial bolometer was done with the experi-

mental setup sketched in figure 6.2. For the optical characterization we have used

an optical parametric oscillator (OPO) 1 as a tunable narrow band light source.

The tuning range of the OPO is from 1.2 µm up to 1.8 µm. The beam passes

a half-wave plate and a polarizer. By turning the half-wave plate and keeping

the polarizer position fixed, the power of the OPO impinging on the sample can

be adjusted. In addition, by turning the polarizer, the polarization angle can be

arbitrarily adjusted. This allows a polarization dependent spectroscopy of the

sample without the need to turn the sample itself.

To monitor and set the appropriate power on the sample, a movable power

meter can be placed right after the polarizer which is removed right before the

measurement. The beam from the OPO is then focussed on the sample to a

spot size of approximately 30 µm, using a lens L. The sample is placed inside

a vacuum chamber with windows at both sides to allow the transmission of the

laser beam. The chamber is mounted on a translation stage that allows for a

manual adjustment of the position of the sample relative to the laser beam. A

feed-through wiring allows the electrical connection of the sample to the outside

world. In addition, a rotary-vane vacuum pump is connected to the chamber for

an evacuation of the chamber. A camera allows an imaging of the sample and

1Inspire, Spectra-Physics
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Figure 6.2: Sketch of the experimental setup -

provides an easy way to control the position of the sample relative to the laser

beam.

The electrical measurement of the bolometer and the logging of the corespond-

ing data is implemented using a lock-in amplifier 1. We used the amplifier’s own

build in oscillator to feed a current through the bolometer. A load resistor RL,

much larger then the bolometers resistance, was used to provide an AC current

source for the four-terminal sensing of the bolometers resistance. By using an

AC current, we circumvent effects of electromigration. The very thin bolometer

wires are expected to be very sensitive to effects of electromigration associated

with a DC current [96, 97]. The voltage drop over the bolometer is then measured

using the amplifier input. In combination with a computer that is connected via

RS-232 and is running Matlab 2, an easy and automated measurement routine

for the characterization of the bolometer could be implemented.

Resistance Measurement

Measuring the resistance of a simple resistor is normally done using a multimeter

with two leads. The multimeter forces a test current through the leads and the

1SR 830, Stanford Research Systems
2Matlab, The MathWorks, Inc.
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resistor and then reads the voltage drop across the wires and calculates the resis-

tance according to Ohm’s law. The measured resistance is therefore the sum of

the lead resistance, the resistance of the resistor itself, and the contact resistance

of the leads. For larger resistors, the result is dominated by the resistance of the

resistor. But if the resistance to be measured is low (in the range of 100Ω or lower

[98]), there is a problem due to inaccurate readings because the resistance of the

leads can not be neglected anymore. The drawbacks of this so called two-wire

method can be overcome with the four-wire or four-terminal sensing method.

Here, two wires are used to feed the test current through the resistor under test.

A second pair of leads, the sense leads, is used to measure the voltage drop across

the device under test. This method is also suitable for measuring sheet resistance

of very thin films. In our experiments, the resistance of the bolometer structure

is measured using a pad geometry that is suitable for measurements with the

four-wire method.

Four-Terminal Sensing Setup

To see why the four-wire setup drops the resistance of leads and contacts, the ge-

ometry of the contact pads and the equivalent circuit are presented. The bolome-

ter resistance RB is connected in series with the lead and contact resistances,

that are represented by RL1 and RL2. The lead and contact resistance and in-

nenwiderstand RU of the voltage measuring instrument are connected parallel to

the resistance of the bolometer. According to kirchhoffs laws we can write for the

current at the green connection

UB = IB ·RB = (I − IU) ·RB (6.25)

and the voltages in the loop

UB = U + UU1 + UU2 = IU · (RU1 +RU2 +RU) (6.26)

. Setting both equation equal yields

(I − IU) ·RProbe = IU · (RU1 +RU2 +RU) (6.27)

IU = I·RB

RU1+RU2+RU+RB
(6.28)

The measured voltage is

U = IU ·RU (6.29)
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and therefor

U =
I ·RB ·RU

RU1 +RU2 +RU +RB

. (6.30)

To see that this is equal to U = I ·RB we write

U = I ·RB · (1− α) (6.31)

and find

α = 1− RU

RU1+RU2+RU+RB
(6.32)

= RU1+RU2+RB

RU1+RU2+RU+RB
. (6.33)

For a sufficient high innenwiderstand RU we find that α << 1 and therfore

U = I ·RB (6.34)

RB = U
I

(6.35)

is valid.

Figure 6.3: Four-terminal sensing - In a): sketch of the pad geometry used to

contact the bolometer structure; b) equivalent circuit of the geometry
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Figure 6.4: Metamaterial metal-based bolometer - Scanning electron micro-

graphs of one of the fabricated devices in different magnifications as indicated by

the black scale bars. The active area including the connected resonant polarization-

sensitive gold absorber elements is located on a 30 nm thin SiN membrane (black).

The arrows on the right-hand side indicate the orientation of the linear eigen-

polarizations used in the optical experiments in figure 6.5. (figure and caption

from [99])

6.4 Experimental Results

In figure 6.4 the corresponding bolometer design is shown. The scanning electron

micrographs show the 40nm thin gold nanostructures that are placed on a 30nm

thin, commercial available silicon-nitride (SiN) membrane 1. Fabrication of the

structure was done using the electron-beam lithography process with a two-resist

system. This measure enhances the undercutting effect on the thin membrane and

improves the lift-off process. The membrane has a footprint of 100 µm × 100 µm

and serves for mechanical support. It also provides a good thermal isolation of the

bolometer structure as it strongly reduces the conduction of heat. Thin films of

silicon-nitride or silicon-dioxide are often used in the context of microbolometers,

thermal detectors or microcaloriometers, as these materials provide good thermal

insulation and good mechanical stability [64, 100, 101, 102, 103, 104]. The sensor

part, consisting of a grid array of modified split-ring resonators, is placed in

the middle of the membrane and has a footprint of 35 µm. This array is then

electrically connected to four large bond pads in the outer region of the substrate

which is supported by the underlying silicon substrate. The substrate is finally

glued in on an IC-carrier and processed as already described in the materials and

methods section in chapter 3.

1Silson Ltd. UK
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Figure 6.5: Optical and electrical characterization of the metamaterial

bolometer - (a), Measured (solid curves) and calculated (dashed curves) extinction

spectra for the two linear polarizations indicated by the blue and red arrows in fig-

ure 6.4. (b), Measured (dots) and calculated (dashed) bolometer responsivity for an

rms current of 50 µA. The calculated responsivity is obtained from the calculated

absorbance spectra and the measured thermal conductance G. (c), The thermal

conductance and the bolometer time constant are obtained from the depicted mea-

sured voltage at the third harmonic of the modulation frequency measured versus

modulation frequency. The bolometer time constant of 134 µs = 1/(2 · 2π · 596 Hz)

results from the -3 dB decay (see left vertical logarithmic scale and dashed lines).

(d), Corresponding measured phase.(figure and caption from [99])
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The first step towards the full characterization of the bolometer is the mea-

surement of the extinction which is the negative decadic logarithm of the intensity

transmittance spectra. Using the standard Fourier-transform spectrometer, the

spectra are obtained for light impinging from the SiN membrane side normal to

the membrane. Interestingly, the measurements have revealed two linear eigen-

polarizations that are diagonally oriented with respect to the SRR arms. In figure

6.5 (a) the measured spectra for the two eigen-polarizations is plotted. The color

coding of the curves corresponds to the arrows in figure 6.4.

These measurements are the basis for the further optical characterization. The

extinction spectra clearly show a spectral and polarization dependent resonance.

To reveal the connected absorption, a direct measurement of the spectral and

polarization dependent responsivity of the bolometer is needed. The sample is

therefor placed inside the vacuum chamber of the setup providing pre-vacuum

conditions with a pressure of about 1 mbar. This prevents the heat transport via

air and enhanced the responsivity of the bolometer.

In figure 6.5 (b), the measured responsivity (dots) versus wavelength, for a

bias current of I = 50 µA that oscillates at 1 kHz, is presented. The laser power

of the OPA, impinging on the sample, is adjusted to 50 µW for all wavelengths

and polarization directions. One can clearly see the pronounced resonance for one

linear polarization (blue dots), whereas there is very little signal found for the

orthogonal linear polarization (red dots). These results show that the bolometer

signal is governed by light absorption in the metal nanostructure and a subsequent

heating of the metal. The corresponding bolometer voltage change is induced by

the resistance change of the metal.

To fully characterize the bolometer according to the responsivity 6.13, the

TCR α0, the effective thermal conductance Geff and the detector’s time constant

need to be determined. The measurement of the TCR was done by heating the

bolometer using a hot plate and simultaneously measure the temperature of the

plate and the resistance of the bolometer 6.6. From this fit we deduce a TCR of

α0 = 0.0024 1/K. This value matches the values reported in literature for thin

gold films of similar thickness [105].

By measuring the third harmonic component Ub,3ω 6.24 of the bolometer volt-

age versus the modulation frequency, the effective thermal conductance Geff =

4.85 · 10−6 W/K can be deduced. For the determination of the time constant we
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Figure 6.6: Measurement of the TCR - Plot of the measured resistance change

∆R = R − R0 versus temperature change ∆T = T − T0 of the bolometer. The fit

to the measured data reveals the TCR α0 = 0.0024 1/K.

used the analogy of an thermal low pass filter. From equation 6.24 we can see,

that the third harmonic voltage resembles the voltage of an RC-circuit that acts

as an low-pass filter

Ub,3ω(ω) = Ub,3ω ·
1√

1 + ω2τ 2/4
(6.36)

where Ub,3ω = I3R2
b0α0/(4Geff). When plotting the gain in dB as

Gain = 20 · log

(
Ub,3ω(ω)

Ub,3ω

)
(6.37)

we can get the time constant from the -3dB point within the bode plot. This

cutoff frequency corresponds to fc = 1/(2π2τ). The bolometer time constant

is determined as 134 µs. We have also plotted the phase of the voltage signal.

The phase shift of -45 degrees corresponds very well to the cut-off frequency, in

accordance with the theory of a low-pass filter. These results are shown in figure

6.5(c),(d).

The bolometer performance is not only characterized by its responsivity but

also by the noise of the bolometer and its read-out electronics. Our experimen-

tal setup was not optimized for a low noise measurement and an experimental

characterization of the noise characteristics was not done. In the context of thin-

metal-film bolometer it is known that ultimate performance is limited by the

Johnson-noise of the metals resistance [77]. When we assume a Johnson-noise-

limited performance, the resistance of our bolometer of R = 300 Ω under room-
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temperature operation results in a noise-equivalent power of 6.7 · 10−10W/
√

Hz

allowing the detection of faint signals in the range of nW.

The measured data is the basis for our further theoretical studies. Using the

software package CST Microwave Studio, numerical calculations were conducted

to evaluate the spectral tuning capabilities of the metamaterial bolometer con-

cept. For the simulations of the metal behavior the free-electron Durde model

with a plasma frequency ωpl = 1.37 · 1016 rad/s was used. The damping was

accounted using a collision frequency of ωcol = 2.2 · 1014 rad/s. From the electron

micrographs in figure 6.4, the geometrical parameters could be extracted. The

gold thickness for the simulations was chosen as 40 nm in accordance with the

experiment. The refractive index of the 30 nm thin SiN membrane was set to

n = 1.96. In figure 6.5 (a), the calculated extinction spectra are shown as dashed

curves. From these data, we calculate the spectral absorbance ε = 1 − T − R

using the corresponding transmission T and reflection spectra R from Microwave

Studio. This finally allows the calculation of the spectral responsivity of the

bolometer using equation 6.13 together with the previously experimentally deter-

mined values. In figure 6.5 (b) the results are plotted as dashed lines. Obviously,

the spectral resonant behavior as well as the polarization dependence are quali-

tatively well reproduced.

The good qualitative agreement is the starting point for the evaluation of the

tunability of the resonant bolometer response. A broad spectral tuning range

is key for the implementation of broadband spectrometers. For the theoretical

investigation, we scale the lateral features of the structure while keeping the

metal thickness constant. This measure fixes the bolometers thermal mass per

unit area. In figure 6.7 the corresponding calculations of the absorbance ε are

presented where the linear polarization is oriented relative to the structure as

indicated by the blue arrow in figure 6.4. The right configuration corresponds to

the feature size that was used to calculate the responsivity of our experimentally

fabricated bolometer. Starting from this configuration we increased the lateral

features in steps of factors of two. As can be seen, a tuning between roughly 1

µm up to 10 µm wavelength is possible.
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Figure 6.7: Calculations on bolometer tunability - For reference, the highest

frequency resonance corresponds to the parameters of figure 6.5. For the other

three structures, all lateral dimensions are increased in steps of factors of two

(see insets), while fixing the metal thickness, hence fixing the bolometer thermal

mass. Importantly, the fundamental absorber resonances can be shifted towards

significantly longer wavelengths, while maintaining the peak absorbance. (figure

and caption from [99])

Figure 6.8: Envisioned bolometer array architecture - This concept allows

for integrated broadband spectroscopy and polarimetry without the need for any

external dispersive element or any polarizer. (figure and caption from [99])
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6.4 Experimental Results

6.4.1 Conclusions

The proof-of-concept of a metamaterial metal-based bolometer takes advantage

of the resonant absorption accompanied by the excitation of plasmonic resonances

within gold nanostructures. That way, a spectral and/or polarization filter can

be built into the bolometer without the need of external dispersive elements. On

this basis, an integrated broadband metamaterial metal-based bolometer spec-

trometer array can be envisioned, as illustrated in figure 6.8. The presence of the

rotated elements would simultaneously allow for analyzing the polarization state

of light.
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7

Conclusions and Outlook

The first part of the experimental work presented in this thesis focussed on the

second-harmonic generation from gold split-ring resonator arrays. Earlier work on

this topic has revealed a strong nonlinear optical response from this metamaterial

building block [45, 46, 47]. With these results as a starting point, we explored the

idea of Pendry [3], who pointed out the possible extraordinary nonlinear optical

response of a SRR having a nonlinear optical material placed into the gap region of

the SRR. The concentration of the electric field within the gap region might lead

to an enhanced nonlinear response. We slightly modified this idea, and placed

the gold SRR on a substrate possessing itself a strong nonlinear optical response

of second order, namely gallium arsenide (GaAs). The orientation of the SRR

relative to the GaAs crystallographic axes and the incident light polarization

was varied systematically. As a result, we did find a configuration where the

overall signal strength of the SHG was approximately a factor of 25 times larger

than those from SRR arrays on glass substrates, when referenced to the same

incident laser intensity. In addition, an analyzation of the polarization of the

emitted SHG light revealed a nonlinear contribution that originates specifically

from the interplay of the local fields of the split-ring resonators with the bulk

GaAs second-order nonlinear-susceptibility tensor. These results were also in

good agreement with a theoretical modeling of this system. A simple near-field

simulation of the resonantly excited SRR was used as the source for a calculation

of the nonlinear polarization of second order within the GaAs crystal. Through

a spatial averaging of this polarization over the whole unit cell, we were able to

identify the main component of the nonlinear polarization contributing to the
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measured SHG signal.

For the next experiment, a new setup suitable for nonlinear optical spec-

troscopy was build. The setup used an optical parametric oscillator as a tunable

light source and consisted of a sample and a reference arm. While previous

second-harmonic-generation experiments on gold split-ring-resonator arrays were

all limited to a fixed excitation wavelength [45, 46, 47], using this new setup,

a full second-harmonic spectroscopy study on SRR arrays could be conducted.

For the set of samples, the technique of a lithographic tuning of the spectral

resonance position of the SRR arrays was employed. This technique was already

introduced by Klein et al. [45] to overcome the limitation of the fixed excitation

wavelength used in their experiment. Here, this tuning was used to study the

role of the relative spectral positions of the fundamental magnetic resonance and

the higher order resonances of gold SRR arrays on glass substrates on the process

of second-harmonic generation. The measured nonlinear spectroscopic data on a

first set of samples, where the size of the SRR was scaled, revealed pronounced

resonances. The SHG maximum shifts when the resonance positions of the SRR

is changed through the lithographic tuning. To clarify the role of the higher-order

resonances on the SHG signal, a second set of samples was produced. Here, the

shape of the SRR was varied in such a way, that the higher-order resonances

of the SRR stay spectrally fixed and only the fundamental magnetic resonance

position of the SRR is shifted. The corresponding second-harmonic generation

spectra again reveals resonances. However, the SHG maximum correlates with

the position of the fundamental SRR resonance and not with the position of the

higher-order resonances. This is interpreted as an indication for the fundamental

SRR resonance to act as the nonlinear source while higher-order SRR resonances

merely reabsorb the generated vertically polarized SHG. The measured spectro-

scopic data helped in clarifying the role of the higher-order resonances and also

provide a sensitive future testing ground for microscopic theories of the underlying

physical mechanisms.

In the third experiment on second-harmonic generation from SRR arrays, we

have studied the dependence of the conversion efficiency on the lattice constant.

The experiment was motivated by the search for the most efficient configura-

tion for frequency conversion with regard to the spacing between individual SRR

within the array. Intuitively, one might think that the best conversion efficiency

92



is achieved by packing the individual building blocks as dense as possible as this

maximizes the number of nonlinear emitters per unit area. To test this intu-

itive reasoning, a set of samples was fabricated, where the spectral position of

the resonances of each SRR array was kept constant but the distance between

the SRR within each array was systematically modified to change the packing

density. This sample was then characterized using the same second-harmonic

spectroscopy setup as in the earlier experiment. The experimental result revealed

a non-monotonic behavior of the resonant second-order nonlinear conversion ef-

ficiency versus the packing density, rendering the intuitive approach for efficient

frequency conversion invalid. The maximum conversion efficiency was found for

an intermediate lattice constant. A closer inspection of the experimental data re-

vealed two counteracting effects influencing the overall SHG conversion efficiency.

By bringing the SRRs closer to each other, the SHG intensity rises because of

more nonlinear emitters per unit area. On the other hand, bringing the SRRs

closer also increases the damping of the linear fundamental resonance as can be

seen from the change in linewidth of the corresponding measured linear extinction

spectra. The linewidth enters sensitively into the second-order nonlinear-optical

susceptibility χ(2), a larger damping leads to a smaller resonant χ(2), thus re-

ducing the conversion efficiency when the SRR are brought closer to each other.

Both effects level out a some intermediate lattice constant to provide the maxi-

mum SHG conversion efficiency. Numerical calculations using the discontinuous

Galerkin time-domain method could reproduce the experimental findings well and

allowed to support the qualitative reasoning. These calculations allowed also for

an inspection of the SRR electric near-field at the fundamental excitation wave-

length. We found that an increase of the lattice constant leads to an increase of

the strength of the near and internal fields of the SRR. This leads to a stronger

nonlinear response of the SRR and can explain the initial increase of SHG in-

tensity with increasing lattice constant. Then, for yet larger lattice constants,

this increase is compensated and dominated by the dilution effect, leading to the

observed decrease in SHG signal intensity.

The final experiment aimed on providing a possible application of metamate-

rials. For many metamaterial applications, the loss that is inherently connected

to its plasmonic resonances is an often unwanted by-product. The new concept of

a metamaterial-metal based bolometer uses theses losses to its advantage. While
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the principle of a metal bolometer is known for more than one century, with the

new concept, an old idea is enhanced by a new technology. A modified gold split-

ring resonator structure was used to not only provide a lithographically tunable

resonant absorption over a broad spectral range, but also to measure the temper-

ature increase due to the absorption of light. Furthermore, the structure is also

polarization sensitive, allowing for an integrated polarization analysis without the

need of external polarizers. The device was fabricated and fully characterized,

optically as well as electrically to proof the spectral and polarization dependent

responsivity.

In summary, the experimental results of this thesis provide a deeper insight

into the mechanisms of nonlinear optics of metamaterials and can be a guide

for future nonlinear optical experiments aiming at achieving large effective op-

tical nonlinearities using metamaterials. In addition, a possible application for

the absorption within metamaterials was demonstrated with the metamaterial

bolometer. Integration of suitable read-out electronics on a chip in combination

with the metamaterial bolometer could be the next step towards implementation

of a microbolometer arrays using metamaterial absorbers.
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