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Kurzfassung

Viele Bauteile weisen die Eigenschaften eines Wellenleiters auf. Die bei der Wellenaus-
breitung entstehenden elastischen Deformationen können für die Auswertung der
Struktureigenschaften verwendet werden, unter anderem für die zerstörungsfreie
Werkstoffprüfung und für die Zustandsüberwachung. In der vorliegenden Arbeit wer-
den die Methoden für eine rechenzeiteffiziente Berechnung der Wellenausbreitung in
plattenförmigen, mehrschichtigen Verbundwerkstoffen vorgestellt. Dazu wird auf die
partiellen Differentialgleichungen der Elastizitätstheorie mit zugehörigen Anfangs-
und Randbedingungen des Wellenausbreitungsproblems die Fourier-Transformation
angewandt. Die im Wellenzahl-Frequenz-Bereich ermittelte Lösung wird in Form
einer Superposition der Greenschen Matrix und des Vektors der äußeren Anregung
dargestellt. Für die Berechnung der Greenschen Matrix des Problems wird ein sta-
biler und zeiteffizienter numerischer Algorithmus verwendet. Die in den Komponen-
ten der Greenschen Matrix auftretenden Polstellen werden für die Berechnung der
Wellenzahlen der Lamb-Wellen in der gesamten Platte verwendet. Für die Ermittlung
der dispersiven Eigenschaften der Wellen wird ein stabiles Verfahren vorgestellt, das
die Berechnung von Phasen- und Gruppengeschwindigkeiten in Abhängigkeit von der
Ausbreitungs- und Beobachtungsrichtung sowie auch der Frequenz erlaubt. Die damit
berechneten numerischen Ergebnisse werden durch den Vergleich mit in der Literatur
bekannten Daten validiert. Anhand der numerischen Ergebnisse werden auch die
Grenzen der Anwendbarkeit der klassischen Plattentheorien von Kirchhoff und von
Mindlin für das vorliegende Problem untersucht.

Im Weiteren wird ein Algorithmus für die Berechnung der Rücktransformation ent-
wickelt, wobei die Lösung des Problems in Form einer Residuenreihe in den bere-
its ermittelten Polstellen dargestellt wird. Durch den Vergleich von damit berech-
neten Ergebnissen mit den Ergebnissen aus einer direkten Evaluation von Wellen-
zahlintegralen wird nachgewiesen, dass die Residuenreihendarstellung schon für die
Entfernungen von ca. drei Wellenlängen von der Anregungsquelle gute qualitative
und quantitative Ergebnisse liefert. Dabei ist die in dieser Arbeit entwickelte Meth-
ode wesentlich schneller und lässt die Ausbreitung der Wellenmoden getrennt be-
trachten. Außerdem wird eine asymptotische Entwicklung für die Residuenreihen-
darstellung hergeleitet. Daraufhin wird diese asymptotische Darstellung mit Hilfe
der Airy-Funktion für den Fall der Existenz von Kaustiken erweitert. Anhand von
umfangreichen numerischen Simulationen wird gezeigt, dass in den Fällen, bei de-
nen eine starke Fokussierung der Wellen in einigen Richtungen zu beobachten ist,
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die asymptotische Entwicklung nur für große (von über dreißig Wellenlängen) Entfer-
nungen von der Anregungsquelle angewandt werden kann. In den meisten anderen
Fällen stimmen die Berechnungsergebnisse aller dieser Methoden schon für die Entfer-
nungen von ca. fünf Wellenlängen von der Belastungsquelle gut überein. Darüber hin-
aus ist eine gute Übereinstimmung der mittels Residuenreihendarstellung berechneten
Ergebnisse im Vergleich zu Ergebnissen der FEM-Simulationen sowie mit den exper-
imentellen Daten zu konstatieren. Im Weiteren werden anhand zahlreicher Beispiele
die in der vorliegenden Arbeit hergeleiteten Methoden verwendet, um Wellenausbre-
itungsphänomene und Energieprozesse zu untersuchen.



Abstract

Many typical construction parts have the properties of waveguides. The elastic defor-
mations due to the elastic wave propagation are of great interest for nondestructive
testing and structural health monitoring. In this thesis the methods of time-efficient
simulation of surface-excited wave propagation in plate-like multilayered composites
are presented. For obtaining the solution of wave propagation problem the Fourier
transform is applied to the equations and boundary conditions of the corresponding
mathematical model. In wavenumber-frequency domain the solution is derived as
a product of the Green’s matrix of the problem and a surface load vector. For the
computation of Green’s matrix representation in transformed domain a stable time-
efficient algorithm is used. The poles of the components of Green’s matrix are used
for the computation of wavenumbers of Lamb waves in the whole composite plate in
dependence on excitation frequency and observation direction. Then, the algorithm
of computation of dispersive properties is validated by comparison of the group and
phase velocities of Lamb waves excited and observed in the plate obtained numeri-
cally with data found in references. Furthermore, the limits of application of classical
laminated plate and Mindlin laminated plate theories for wave propagation problems
are studied using the obtained numerical results.

The next step is the development of the algorithm for the computation of the inverse
Fourier transform. Here the solution of the problem is represented by the sum of
residues corresponding to the poles calculated at the previous step. The displace-
ments obtained applying this approach are compared with displacements obtained by
the evaluation of two-dimensional wavenumber integral applying adaptive quadra-
tures. The results let to conclude that the residue theorem-based approach gives good
qualitative and quantitative coincidence of results already at distances of about three
wavelengths from the excitation source. However, the residue-theorem based repre-
sentation is essentially faster and allows to analyze the propagation of different wave
modes separately. Moreover, the asymptotic expansion for the solution of the problem
in far-field is developed. Then, this asymptotic expansion is expanded to the case of
directions near caustics.

Based on numerical simulations it is shown that in cases of strong focussing of Lamb
waves in some propagation directions the asymptotic expansion can be applied only
for large (more than thirty wavelengths) distances from the excitation source. In most
of other cases the results obtained applying all of these approaches are well coinciding
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already for distances about five wavelengths from the excitation source. Furthermore,
a good coincidence of results obtained numerically applying the residue-theorem ap-
proach with results of FEM simulations and experimental data is observed. In addi-
tion the methods of computation of solution of wave propagation problem developed
in this thesis are applied for studying the wave and energy propagation phenomena
in composites.
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1 Introduction

1.1 Background and motivation

In recent years composites become to be widely used in civil, mechanical, and aerospace
engineering due to their high strength and lightness in comparison with metals. The
use of composite materials allows to reduce the weight upto 30%. Moreover, compos-
ites have higher corrosion stability. Among others, composites are increasily used in
aviation to reduce the mass of the airplanes and space ships. For example, the com-
posite materials comprise more than 20% of the airframe of modern Airbus A380 [86].
On the other side, composites are complicated and more expensive in manufacturing.
Another disadvantage consists of the sensitivity of composites to impact actions, i.e.
small damages in the form of cracks or delaminations are practically unavoidable in
manufacturing or in operation of the constructions made of composites. These small
damages could potentially result in destruction of the construction.

Since small damages are not obvious and often cannot be detected immediately af-
ter the manufacturing of the component of the structure, the construction needs to be
monitored in-situ or in relatively short intervals during its operation, when the con-
struction is in the maintenance service. In the field of non-destructive testing (NDT)
[18, 21, 22] and structural health monitoring (SHM) [14, 33, 132], there has been a
growing interest in the recent decade in developing computer-aided systems for the
detection of mechanical defects and the forecasting of destruction [133]. It is hoped
that SHM systems will be able to regularly scan high-duty structural components and
issue warnings concerning the formation of defects as well as provide an estimate of
the remaining useful life. SHM systems can inform the user of the status of structure
in real time and provide an estimate of the remaining useful life of the structure [122].
Moreover, the use of SHM systems can increase safety and can allow to change the
maintenance procedure for aircraft from schedule driven to condition based, can re-
duce the fuel costs and the costs of maintenance significantly, and decrease the time
required for the structure to be off-line [122].

In NDT following methods are widely used: eletrical, magnetic and electromagnetic
(eddy current); sonic (ultrasonic); mechanical methods (vibration), optical (hologra-
phy) and imaging methods (x-ray computer tomography), which all are well reviewed
in [83]. However, not all of these methods can be performed while the structure is in
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1 Introduction

service. The monitoring of the structure over time needs a network of sensors that are
permanently attached onto the construction parts.

Since in many cases machine parts and structural components can be considered as
waveguides, one of the promising approaches for SHM consists of applying the elastic
waves propagating in the structures since the waves excited or reflected by damage
provide significant information on the nature and properties of the defect. An im-
proved inspection potential of guided waves over other ultrasonic methods is due to
their sensitivity to different type of flaws, propagation over long distances and capa-
bility to follow curvature and reach hidden and/or buried part. The potential use of
guided waves for monitoring metallic aircraft structures was investigated by Alleyne
[4]. The level of understanding which has been reached in an application of elastic
waves for NDT and SHM is documented in review works [21] and [110, 133], respec-
tively. The references to numerous publications are provided.

The first NDT and SHM approach based on the use of elastic waves consists of the
sensing and analysing the waves, excited by cracks during the initiation of the crack
growth. This approach is passive and is named acoustic emission or strain/loads moni-

toring. The energy needs are low, however due to the low amplitudes of measuring
responses a high density network of sensors is required [33]. The second approach
uses an active scheme, where the nondestructive elastic waves are excited by external
sources in a repeatable manner and the measured responses are used for the (quanti-
tative) identification of the damages.

If the measurements are done at the same space point (if possible) where the waves
were originally excited, such an approach is named pulse-echo technique. However, in
this case the complicated process of wave reflection at structure boundaries needs to be
known. Moreover, in large structures the amplitude of the waves reflected from bound-
aries is due to damping too low. Another way is to use pitch-catch technique, where
the displacements are measured by another wafer than that used for wave excitation.
However, clear understanding of quantitative connections between the waves and their
sources is essential for the development of algorithms to detect defects. Moreover, the
information about the structure in its undamaged state is required since by relating
the measured response with one in the same but undamaged structure allows to con-
siderably improve the precision of quantitative damage detection. This is shown, for
example in case of the application of an approach based on damage influence maps in
[70]. A clear understanding of quantitative connections between the waves and their
sources would considerably ease the defect-feature recognition and would therefore
enhance the outcome of the experiments and help to develop the necessary skill and
experience in pattern recognition [124].
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1.1 Background and motivation

The first study of elastic wave propagation was done by Christoffel for the bulk
waves in unbounded medium [24], followed by the study of surface waves in a half-
space performed by Rayleigh [112]. However, many structures (e.g. aircraft panels)
have the dimensions in one or two directions significantly larger than in other direc-
tions. Such structures can be considered as infinite layers (beams) or plates. Due to
the finite dimensions of structural components the waves reflect from the structural
boundaries, i.e. the waves guide through the structure. The first numerical results
which relate to the characteristics of normal waves in a layer can be found in Lamb’s
works [71]. He was the first to obtain a dispersion equation linking frequencies and
wave numbers. Hence, the waves in layer-like and plate-like structures are usually
called (guided) Lamb waves.

The development of computer technology intensified the investigation of the prop-
erties of the propagation of elastic waves. Wave propagation in multilayered media
with an arbitrary number of flat layers was derived for a plain strain (2D) problem
by Thomson [137] and corrected by Haskell [46]. They connected the displacements
and the stresses at the bottom of the layer with those at the top of the layer through a
transfer matrix. An alternative formulation was used by Knopoff [65], where he con-
nected the displacements and stresses at all layer interfaces including top and bottom
boundaries by a global matrix. The first, who experimentally produced and measured
Lamb waves was Worlton [152]. The first numerical calculations of real as well as com-
plex branches of dispersion curves of Lamb modes in a traction-free plate were firstly
published in Mindlin’s [90] and Onoe’s [101] works. Subsequent publications were
dedicated to the study of the phenomenology of elastic waves and their propagation.

Not only the physical acoustics of Rayleigh and Lamb waves, but also their applica-
tion for NDT was firstly studied by Viktorov [143]; however, only for isotropic elastic
media. Theoretical principles of wave propagation in isotropic, anisotropic and lay-
ered materials, as well as of wave excitation with standard ultrasonic transducers for
nondestructive evaluation, are described in works of Achenbach [2], Graff [45], Mik-
lowitz [89], Auld [8], Rokhlin [115], Babeshko and Glushkov [10, 35], and Rose [116].
However, in these works the waveguides are modelled in two dimensions (plane strain
problem), i.e. it requires that waves are excited by sources whose distribution is in-
finitely expanded in the direction perpendicular to the cross-section. To accurately
model a finite-source induced wave propagation in anisotropic composite plates, a 3D

formulation is required [141]. Nayfeh [94, 95] extended the Thomson-Haskell formu-
lation to the case of 3D-model of anisotropic material and composites of anisotropic
layers, where the layers can have up to as low as monoclinic symmetry. The numer-
ical instability of Thomson-Haskell method was resolved in works [63, 114, 148] by
introducing the layer stiffness matrix and by using an efficient recursive algorithm to
calculate the global stiffness matrix for an arbitrary anisotropic layered structure. In
some works the Mindlin laminated plate theory [76, 136] or higher-order plate theo-

3



1 Introduction

ries [150] are applied for modelling of free elastic waves in composites. Up to date,
there are many methods developed for the computation of dispersion properties of
laminated composites [79, 82, 149]. Analysis of dispersion properties of Lamb waves
in anisotropic composites shows that additionally to the frequency dispersion the an-
gular dispersion of waves should be taken into account. Moreover, some directions are
privileged for the transport of energy of the guided waves, i.e. the waves are focussed
[20, 40, 117].

Taking into account the dispersion properties of waves the problem of simulation
of wave propagation excited by surface sources needs to be considered. Traditionally
as wave actuation sources ultrasonic transducers are used for NDE purposes. How-
ever, due to their large geometrical dimensions, high weight and considerable power
needed for actuation, for in-situ monitoring of structures low cost surface-coupled
[33] or embedded piezoelectric actuators [70] are preferred. Due to the piezoelectric
effect the wafers can be used not only as actuators but also as sensors. One of the
most fundamental issues required for the effective use of piezoelectric actuators is the
quantitative evaluation of the resulting elastic wave propagation by considering the
coupled piezo-elastodynamic behavior between the actuator and the host medium as
it is noted in [54]. However, under certain conditions the simplified models for surface
sources can be applied [33]. More detailed information to the modelling of actuators
is provided in a review work [54] or below in this thesis (section 2.4.3). Note that
the problem of forced wave propagation is resolved applying the semi-analytical inte-
gral approach only for 2D-model for isotropic and anisotropic laminates [35, 37, 78]
or 3D-model for isotropic laminates only [33, 108]. Inversion of expressions obtained
in a 3D formulation in the transformed domain requires the computation of a double
integral over wave numbers and a one-dimensional integral over frequencies, where
the most computational effort is caused by double integral over wave numbers. The
methods of the computation of this integral for the surface-excited wave propagation
in anisotropic laminates are still time-inefficient [58, 84] or use an asymptotic represen-
tation of the wave field, which can be applied only at large distances to the excitation
source [40, 43, 107, 141]. A more detailed review of these approaches is given in chap-
ter 5 of this thesis.

Apart from the integral approach, the wave propagation problem can be resolved
by applying direct numerical methods: conventional FEM [97, 98, 121], spectral FEM
[30, 44, 70, 104], strip element method (SEM) [79, 125] and finite difference technique
(FD) [126, 131]. Alleyne and Cawley [5] and Alleyne, et al [6] studied the propaga-
tion and scattering of Lamb waves in plates for nondestructive evaluation. In [103] is
suggested the use of absorbing boundaries while employing the FEM and finite dif-
ference methods. A good review of all these direct numerical approaches is given in
[72]. The application of direct numerical methods for the modelling of constructions
from composites, is the most universal approach, as these allow to obtain an approx-
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imate solution for objects of any form. However, they are also the most expensive
with regard to computational resources. The increase of the number of elements is un-
avoidable in regions of rapid changes of the solutions or characteristics of the medium
(angular points, interfaces between contrast layers etc.) and especially in the case of
high frequencies.

In some papers the FEM is used only for that part of a construction which has a
complex form and comparable sizes in all directions. For the part of the construction
which is a typical waveguide, i.e. for which the sizes in some directions considerably
exceed those in other directions, the solution is constructed as a sum of propagating
waves using the mode expansion technique (NME) [8]. Cho and Rose [23] combined
the boundary element method and the normal-mode expansion method to study the
edge reflection of Lamb waves and mode conversion with thickness variation. In [92]
a combined FEM-NME approach is used for modelling the piezo-excited (plane strain
problem) wave propagation in a composite plate. To use the NME technique for mod-
elling the interaction of elastic waves with the piezoelectric actuator, Galan and Abascal
[31] evaluated the Lamb wave propagation characteristics in sandwich plates in terms
of absorbing boundary conditions derived from a truncated normal mode expansion
technique. A hybrid method for layered structures named semianalytical finite ele-
ment method (SAFE) is also suggested in [50] and used in [49, 50] for the analysis of
wave processes in rails.

1.2 Research goal, scopes and objectives

The goal of this research is to understand, model, and predict the Lamb wave fields
in laminated composite plates excited by surface stresses.

The scope of this research is to develop time-efficient predictive models of surface-
excited guided Lamb wave propagation in anisotropic plate-like structures, to validate
these models on various numerical examples, to study the properties of Lamb waves
under harmonic and transient excitations, and to investigate the use of different piezo-
electric actuators for wave actuation.

In detail, the objectives of this research are defined as follows:

• To present the accurate modelling of guided Lamb waves propagating in aniso-
tropic multilayered plate-like structures by integral approach.

• To derive Green’s matrix of the problem in wavenumber-frequency domain and
study the dispersion properties of the structures in case of modelling of com-
posite plates applying the elasticity theory and laminate plate theories of zero
(Classical Laminated Plate Theory) and first (Mindlin Laminated Plate Theory)
orders.
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• To develop time-efficient methods for the evaluation of two-dimensional wave-
number integral, which allow the computation of displacements and strains in
both near- and far-fields to the excitation source with high accuracy.

• To estimate the computational error and study the limitations on the application
of these methods.

• To demonstrate the application of the methods developed in this thesis for the
prediction of harmonic and transient wave responses in composite plates un-
der the excitation by piezoelectric wafers, where for wafers the simple pin-force
model is used. To validate these methods by comparing the results of their ap-
plication with the results of FEM simulations and with experimental data.

• To investigate the anisotropy-induced focussing of guided waves by computing
the peak-to-peak amplitude curves and the power flow corresponding to each
Lamb wave mode.

• To analyse the influence of the type of piezoelectric actuator on the resulting wave
fields as well as to suggest some parameters for tuning (optimal wave excitation)
of Lamb waves in composite plates under consideration.

1.3 Outline of thesis

This thesis studies the surface-excited guided Lamb waves in laminated composites.
The study is carried out in a systematic approach consisting of several steps, each of
them describes different aspects of the problem. These steps are organized in chapters
in the following way.

Chapter 2 reviews the general properties of laminated composites, the mechanical
models based on the elasticity theory and laminated plate theories, some known prop-
erties of Lamb waves propagating in multi- and singlelayered structures as well as the
mechanical models describing the excitation and sensing of elastic waves.

In chapter 3 the boundary value problem of forced wave propagation in plate-like
structures is transformed into the frequency-wavenumber domain. Then, the typical
wavenumber domain representations of surface loads corresponding to pin-force mod-
els of different piezoelectric wafers are given. Finally, Green’s matrix of the problem in
frequency-wavenumber domain is constructed by applying a numerically stable algo-
rithm, which does not contain any growing exponents. Owing to the real singularities,
presented in Green’s matrix components if no damping is considered, the unique so-
lution of the problem in a time-space domain is obtained by choosing the integration
contour in wavenumber domain according to the principle of limiting absorption.
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1.3 Outline of thesis

Chapter 4 presents the stable algorithm of computing the dispersion curves of Lamb
waves in composite plates, derived by using Green’s matrix representation of the prob-
lem in frequency-wavenumber domain. Subsequently, this algorithm is applied for the
investigation of dispersion properties of guided waves in laminated plates - phase and
group velocity curves of incident waves as well as phase and group velocities of wave-
fronts (of observed waves), which are different due to the angular dispersion of waves.
The dispersion curves are compared with numerical and experimental results in liter-
ature and a good agreement between all these curves is shown.

Chapter 5 is addressed to the development of effective methods of the evaluation
of two-dimensional wavenumber integrals. After reviewing the techniques currently
used for such integrals three approaches for the calculation of displacement fields in
composite plates at different distances to the source are developed: the direct integra-
tion using adaptive quadratures for the near-field, “far-field residue integration“ for
the middle- and far-fields to the source, and asymptotic expansion for the significantly
large distances to the source. The application of the “far-field residue integration“ to
the isotropic laminate under axis-symmetric loading is provided. It allows to make
conclusion about the high accuracy of this approach. Moreover, it is observed that
the asymptotic expansion obtained in this chapter is well coinciding with the formulas
obtained previously by other authors. Then, this asymptotic expansion is extended to
the case of directions near to caustics of Lamb waves. Finally, all approaches derived
in this chapter are extensively tested on different numerical examples by varying the
frequency, the actuator parameters and the composite stacking sequences.

In chapter 6 the algorithm of the computation of transient responses in composite
plates under the excitation by surface sources is presented. A good coincidence of
computational results with results of FEM simulations applying commercial FE soft-
ware ABAQUS is observed. Moreover, the computational results are found to be in
good agreement with experimental data published in literature. Using the approaches
developed in previous chapter, the anisotropy-induced Lamb wave focussing is anal-
ysed by studying the amplitudes and power flows corresponding to the different wave
modes. Finally, anti-resonance frequencies are studied. They appear in the case of
out-of-phase excitation of wave modes by opposite boundaries of the actuator and are
well-known for isotropic laminates [33]. However, due to the anisotropy of the plates,
they occur not in all directions simultaneously. It results in the wave fields, where the
central frequencies of waves observed in different directions are not equal.

Lastly, concluding remarks and an outlook on future studies are presented in the
final chapter.
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2 Modelling of free and forced wave

motion in plate-like laminated

composites

The objective of this chapter is to present the fundamentals of the modelling of excita-
tion of Lamb waves in anisotropic laminated composites and their propagation within
the composites. This basic information is needed hereafter to understand the methods
and results provided in this work.

2.1 Summary of common properties of laminated

composites

a b c

Figure 2.1: (a) Schematical representation of unidirectional layers characterized by
fiber orientation. The composite layup of [0/ − 45/45/902]s (b) and of
[02/90]s (c)

Laminated composite materials consist of layers of at least two different materials
that are bounded together. Lamination is used to combine the best aspects of the con-
stituent layers and bonding material in order to achieve a more useful material [56]
(strength, stiffness, low weight, corrosion resistance, wear resistance, attractiveness,
thermal insulation, acoustical insulation, etc.). Each layer in the laminated compos-
ite is a lamina, which is usually represented by an arrangement of unidirectional or
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2 Modelling of free and forced wave motion in plate-like laminated composites

woven fibers in an epoxy matrix. Typical materials used for fibers include carbon,
glass and silicon carbide. The fibers are oriented in different directions to give dif-
ferent strengths and stiffnesses of the laminate in various directions (Figure 2.1a), i.e.
to achieve specific design requirements on the structural element. If layers of dif-
ferent materials are used, such composites are called “hybrid“. The most frequently
used laminated composites are multilayered carbon-fiber-reinforced polymers (CFRP),
glass fiber-reinforced plastics (GFRP) and ceramic matrix composites (CMCs). Other
laminated composites widely used in industry are sandwich composites, i.e. hybrid
laminates fabricated by attaching two thin but stiff layers (skins) to a lightweight but
thick honeycomb or foam core. As skin materials not only CFRP and GFRP but also
sheet metals are used.

2.1.1 Stacking sequence notation

The layers (or laminae) of the laminated composite can have different thicknesses,
structure and mechanical properties [15]. For description of the properties of lami-
nates composed of unidirectional plies of different mechanical properties and thick-
nesses the special stacking-sequence notations are used. For example, notation [0/ −
45/ + 45/902]s means that the laminate is symmetric with respect to mid-plane and
the fibers in plies above the mid-plane are oriented in directions 0, −45, 45 and 90 with
respect to one of the axes (usually x-axis of global coordinates) (see Figure 2.1b). The
last layer above the mid-plane [90]2 consists of two plies, each of them has the same
thickness as the other three layers 0, −45 and 45. The stacking-sequence notation for
this laminate can be also rewritten in an extended form as [0/ − 45/ + 45/90/90]s =
[0/ − 45/45/90/90/90/90/45/ − 45/0]. If the sequences of layers are repeated, they
are grouped and indicated by a subscript, corresponding to the number of sequence
repetitions [56], e.g. [45/ − 45]3 = [45/ − 45/45/ − 45/45/ − 45]. In case of hybrid
laminates the alphabetic characters are used in front of the fiber orientation angle to
designate the material used for ply fabrication, e.g. [C90/G0]s means a symmetric
composite laminate, where the outside layers are made of material “C“ (carbon-epoxy)
and the inside layers are made of material “G“ (graphite-epoxy).

2.1.2 Typical composite layups

Laminated composites are inhomogeneous and anisotropic structures. The laminates
are characterized by the elastic stiffnesses of the layers and by the geometry of the
layup. With respect to both geometry and material properties, the laminates are
devided in three groups: symmetric, antisymmetric and unsymmetric (also called non-

symmetric) composites. Laminated composites without symmetry or antisymmetry of
properties with respect to mid-plane are unsymmetric and are the most general class
of laminates. However, symmetric composites due to the lack of the coupling between
the extensional and bending motion are frequently used in various applications [56].
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Examples of simple symmetric laminate with symmetric properties with respect to the
middle plane are given by [0/90/0] = [0/0/90/90/0/0] = [02/90]s (Figure 2.1c) or
by the single-layered composites. In cases, when the bending-extension coupling is
of great importance for the practical application (e.g. airplane wings twisting under
bending), antisymmetric composites are used. Antisymmetry of the laminate means
that the sequence of layers below the middle surface of laminate is represented by
a mirror image of the stacking sequence above the middle surface with signs of ply
angles reversed. Antisymmetric laminates have an even number of layers with equal
thicknesses, e.g. [45/ − 45/45/ − 45]. Below are briefly addressed some typical com-
posite layups used in manufacturing of symmetric and antisymmetric laminated com-
posites [56]:

• unidirectional composites consist of several layers with identical properties and
under conditions of a continuity of stresses and displacements on the layer inter-
faces and hence they can be considered as single-layered composites;

• (regular) cross-ply composites are made of laminae of the same thickness and
material properties, but have their major principal directions alternating at 0◦

and 90◦ to the laminate axes, for example 0/90/0 (Figure 2.1c) (regular because
of the same thicknesses and cross-ply because of the 90◦ angle between the fibers
in adjacent layers);

• (regular) angle-ply composites consist of layers of alternating fiber orientations α

and −α to axial direction of the laminate, e.g. [α/− α/α] or [30/− 30/30/− 30]s;

• quasi-isotropic composites have isotropic extensional stiffnesses (the same in all
directions in the plane of the laminate). This means that the laminate, in some
sense, appears isotropic, but is not actually isotropic in all senses, because un-
der transverse and interlaminar shear loading its behaviour differs from that of
an isotropic layer [15]. Some simple examples of quasi-isotropic laminates are
[−60/0/60] and [0/ − 45/45/90].

Also note that hybrid laminates are not unidirectional, angle-ply or quasi-isotropic,
because the laminae are of different materials.

2.1.3 Generalized Hooke’s law

The individual layers in the laminate can be generally considered as having common
anisotropic (or triclinic) properties. The stresses σij in generally anisotropic material in
case of negligible damping are related to strains εij by a generalized Hooke’s law12:

σij = Cijklεkl, i, j, k, l = 1, 2, 3. (2.1)

1In this work all vectors are denoted using bold font and their modulus or components are expressed
in normal font.

2If not otherwise stated, the Einstein summation convention of summing on repeated indices is used
throughout the work.
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2 Modelling of free and forced wave motion in plate-like laminated composites

Taking into account the symmetries Cijkl = Cklij = Cjikl = Cijlk, σij = σji and εij = ε ji

of tensors in (2.1), matrix form (also called contracted (Voigt) notation) of generalized
Hooke’s law can be obtained. It describes the six independent components of stress or
strain, which use a pair of indices ranging from 1 to 3, by a single index which ranges
from 1 to 6. The indices are corresponded as follows: 11 ↔ 1, 22 ↔ 2, 33 ↔ 3, 23 ↔ 4,
31 ↔ 5, 12 ↔ 6 [74]:

σi = Cijε j, i = 1, . . . , 6. (2.2)

Explicit form of the stiffness matrix and of the stress and strain vectors in (2.2) is stated
in Appendix A.1. Note that the stiffness matrix C of size 6 × 6 in (2.2) should not be
confused with the stiffness tensor C of size 3 × 3 × 3 × 3 in (2.1). The stiffness matrix
C is symmetric and has at most 21 independent stiffness components. Material sym-
metry allows to reduce the number of independent components. For example, in lami-
nated composites the individual layers generally are orthotropic (with two orthogonal
planes of material property symmetry, i.e. 9 independent stiffnesses) or transversely
isotropic (properties are equal in one of the planes in all directions, i.e. 5 indepen-
dent stiffnesses). For description of such materials as well as for isotropic structures
instead of stiffness matrix alternatively the engineering constants are used. Details on
the computation of the stiffness matrix using engineering constants are provided in
Appendix A.4.

Both Equations (2.1), (2.2) are written in terms of some local coordinates x1, x2 and x3

associated with the material principal axes. However, if the global coordinate system
x′1, x′2 and x′3 does not coincide with principal coordinates of the stiffness tensor C, the
coordinates of the tensor in x′1, x′2, x′3 are obtained according to [74]

C ′
ijkm = apiaqjarkamsCpqrs, (2.3)

where Cpqrs are the coordinates of the stiffness tensor with respect to local coordinate
system, and C ′

ijkm are the coordinates of the stiffness tensor with respect to the global
coordinate axes. This formula and corresponding transformation rule in terms of stiff-
ness matrix is given in Appendix A.2. Usually the formula is needed to obtain the
stiffness constants of the layer in some global coordinate system using its stiffnesses
given in its local coordinate system. Thus, for example considering a unidirectional
composite layer with fibres located at an angle β with respect to 1-axis of global coor-
dinate system, corresponding global stiffness constants are obtained using the rotation
matrix

a =




cos β − sin β 0
sin β cos β 0

0 0 1


 . (2.4)

Such a coordinate transformation is needed usually to obtain the stress-strain relations
of the laminated composite in global coordinate directions, geometrically convenient
to the solution of the problem.
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2.2 Equations of motion

In this section the equations of motion in a laminated composite are given in terms of
displacements using the 3D elasticity theory and approximate plate theories. The mul-
tilayered laminated structure considered in this section is represented schematically in
Figure 2.2.1.

2.2.1 Elastodynamic equations of 3D elasticity theory

Figure 2.2: N-layered plate under an excitation by a ring-shaped source (inner radius
Ai, outer radius Ao

In the case of absence of body forces the motions in the n-th layer, n = 1, . . . , N are
expressed in terms of stress and displacement components with respect to a rectangu-
lar Cartesian coordinate system x, y and z1:

∂σ
(n)
x

∂x
+

∂τ
(n)
xy

∂y
+

∂τ
(n)
xz

∂z
= ̺(n) ∂2u

(n)
x

∂t2 ,

∂τ
(n)
xy

∂x
+

∂σ
(n)
y

∂y
+

∂τ
(n)
yz

∂z
= ̺(n) ∂2u

(n)
y

∂t2 , (2.5)

∂τ
(n)
xz

∂x
+

∂τ
(n)
yz

∂y
+

∂σ
(n)
z

∂z
= ̺(n) ∂2u

(n)
z

∂t2 ,

where u(n) = (u
(n)
x , u

(n)
y , u

(n)
z )T is the displacement vector of n-th layer, t is the time

variable and ̺(n) is the mass density of the n-th layer. These governing equations

1In the following two notations for the global coordinate system are assumed to be equivalent x1 = x,
x2 = y and x3 = z. Also the use of indices x and 1, y and 2, z and 3 for denoting the components of
vectors is equivalent.

13



2 Modelling of free and forced wave motion in plate-like laminated composites

of linear elasticity in the case of absence of body forces are also known as Cauchy’s
first equations of motion or elastodynamic equations. However, to obtain a displacement
formulation of Equations (2.5), stresses are substituted by strains using Hooke’s law
(2.2). In turn, the strains εij are given through displacements by

εij =
1
2

(
uj,i + ui,j

)
. (2.6)

This yields the displacement equations of motion for each layer1 in matrix form

(A(01) ∂2

∂x2 + A(02) ∂2

∂y2 + A(03) ∂2

∂x∂y
+ A(04))u (2.7)

+(A(11) ∂

∂x
+ A(12) ∂

∂y
)u′ + A(2)u′′ = 0,

where u′ = ∂u/∂z and u′′ = ∂2u/∂z2 denote the first and second partial derivatives of
the displacement vector u = (ux, uy, uz)T with respect to z. All matrices in (2.7) are of
size 3 × 3 and are dependent on stiffness components Cij of the layer, density ̺ of the

layer. Further the matrix A(04) includes an operator corresponding to the second order
partial derivative with respect to t. More detailed form of these matrices is given in
Appendix A.5.

2.2.2 Boundary and initial conditions for the elastodynamic

problem

The elastodynamic problem formulation is completed by the boundary conditions. The
structural elements needed in SHM have in-plane dimensions much larger than their
thickness and therefore can be considered as plate-like structures of infinite horizontal
dimensions. Thus, the laminated composite occupies the volume −∞ ≤ x, y ≤ ∞,
zN+1 ≤ z ≤ 0, where z1, zN+1 and zn (n = 2, . . . , N) - are the z-coordinates of the
upper, bottom and interface surfaces of the laminate respectively. The thickness of the
laminated plate is denoted as h within the whole thesis. Conventionally, the origin
of the global coordinate system is assumed to be at the upper surface of the laminate
[10, 109, 127], i.e. z1 = 0 and zN+1 = −h. Nevertheless, in some cases it is more con-
venient to place the origin at the middle surface of the laminate [15, 76], i.e. z1 = h/2
and zN+1 = −h/2. In the following both coordinate systems are used, if needed, the
choice of the coordinate system in a concrete case will be discussed.

If the laminate does not contain any delaminations or cracks, the stresses σj3 and
displacements uj are continuous on the layer interfaces

σ
(n)
j3 = σ

(n+1)
j3 , u

(n)
j = u

(n+1)
j , z = zn+1, n = 1, . . . , N − 1. (2.8)

1Index of the layer number n is hereinafter omitted for simplicity.
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This condition is assumed within the whole work. In the following the problem of free
elastic wave motion in the laminate is considered for the plate with traction-free (or
stress-free) upper and lower boundaries (i.e. the surrounding medium of the plate is
the vacuum)

(
σ

(1)
13 , σ

(1)
23 , σ

(1)
33

)∣∣∣
z=z1

= 0, (2.9)

(
σ

(N)
13 , σ

(N)
23 , σ

(N)
33

)∣∣∣
z=zN+1

= 0. (2.10)

However, in some problems the lower boundary is clamped1 and corresponding bound-
ary conditions are

(
u

(N)
1 , u

(N)
2 , u

(N)
3

)∣∣∣
z=zN+1

= 0. (2.11)

The main objective of this work is to investigate the propagation of surface excited
waves in a laminated plate with traction-free lower boundary (2.10). The excitation
force is assumed to be applied in the domain Ω at the upper surface (z = z1), replaces2

(2.9) and is described as given surface tractions qj(x, y) and time-dependent excitation
pulse V(t):

σ
(1)
j3 =

{
V(t)qj(x, y), j = 1, 2, 3, (x, y) ∈ Ω,
0, j = 1, 2, 3, (x, y) /∈ Ω.

(2.12)

Note that due to the linearity of the elastodynamic problem (2.5), (2.8), (2.10), (2.12)
the action of several surface sources results in displacement field represented by the
sum of corresponding displacement fields for each source.

Due to the infinite horizontal dimensions of the plate, it is assumed that the dis-
placement vector u(x, t) tends to zero at infinity, i.e.

u(x, t) → 0, if x, y → ∞. (2.13)

Also zero displacements and velocities at time t = 0 are assumed:

u(x, t)|t≤0 = 0,
∂u(x, t)

∂t

∣∣∣∣
t≤0

= 0. (2.14)

1Note that in case of the fixed lower boundary the waves are not exactly Lamb waves studied in this
work but waves of similar type [10].

2Also an excitation source acting at the bottom surface of composite can be taken into account in a
similar way.
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2.2.3 Mindlin Laminated Plate Theory

In order to simplificate a problem, instead of elastodynamic equations (2.5) and bound-
ary conditions (2.10), (2.12) other simplified models for composite materials can be
used, as it is stated in work [19]. In this section the approximate solutions of the
Mindlin first-order shear deformation plate theory (also known as Mindlin Laminated
Plate Theory (MLPT)) are used. The Mindlin plate theory assumes that under de-
formation the normal to the mid-surface of plate remains straight but not necessarily
perpendicular to the mid-surface. The in-plane displacements in the plate vary linearly
through the thickness and the out-of-plane displacement does not change through the
thickness [15]:

u(x, y, z, t) = u0(x, y, t) + zψx(x, y, t),

v(x, y, z, t) = v0(x, y, t) + zψy(x, y, t), (2.15)

w(x, y, z, t) = w0(x, y, t),

where u0, v0 and w0 represent the displacements of every point of the mid-plane, ψx

and ψy correspond to the rotations of sections x = const and y = const respectively. In
(2.15) the center of global coordinate system of the problem as opposed to elastody-
namic problem (2.5) is chosen to be located at the mid-surface of the composite plate.
By substituting relations (2.15) into strain-displacement relations given in (A.1),

εx = u0,x + zψx,x, εy = v0,y + zψy,y, εz = 0, (2.16)

γxy = u0,y + v0,x + z
(
ψx,y + ψy,x

)
, γxz = ψx + w0,x, γyz = ψy + w0,y

is obtained1. According to these strain-displacement relations, the shear strain is con-
stant across the thickness of the plate. But the shear stress is known to be parabolic
and to correct the discrepancies between the actual displacement field (elastodynamic
equations) and that of the plate theory, shear strains are corrected by introducing shear
correction factors κ1, κ2. The corresponding shear strains therefore are replaced by

γxz = κ1 (ψx + w0,x) , γyz = κ2
(
ψy + w0,y

)
. (2.17)

The shear correction factors κ1, κ2 are to be determined. They can be chosen from en-
ergy considerations or alternatively, they can be set by matching the cut-off frequency
of the thickness-shear motion in the low frequency range. For an isotropic homoge-
neous plate they are obtained as κ1 = κ2 =

√
2/3 or by matching cut-off frequency

κ2
1 = κ2

2 = π2/12 [16]. In case of an orthotropic plate, shear correction factors are
found to be κ1 = κ2 =

√
5/6. In case of a multilayered composite plate, they can be

found, generally speaking, only numerically using formulas provided in [15].

Additionally, the Mindlin plate theory assumes the normal stresses negligible within
the volume of plate, i.e. a plane stress problem (σz = 0) is considered. Instead of the

1Hereinafter, the subindex , x denotes a partial derivative with respect to x variable.
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2.2 Equations of motion

Figure 2.3: In-plane stress resultants applied to a laminate element [16]

Figure 2.4: Moment resultants applied to a laminate element [16]

stresses in the elasticity problem (2.5) in the plate theory, stress and moment resultants
are used. Stress resultants Nx, Ny and Nxy are given as

(
Nij

)
=

h/2∫

−h/2

σij dz, i, j = 1, 2 = x, y, (2.18)

the moment resultants Mx, My and Mxy as

(
Mij

)
=

h/2∫

−h/2

zσij dz, i, j = 1, 2 = x, y, (2.19)
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2 Modelling of free and forced wave motion in plate-like laminated composites

Figure 2.5: Shear resultants applied to a laminate element [16]

and the shear resultants Qx and Qy as

(Qi) = κi

h/2∫

−h/2

σi3 dz, i = 1, 2 = x, y. (2.20)

The constitutive equations for a linear elastic multilayered plate are derived from the
3D elasticity theory taking into account corrections made in (2.17) and to be obtained
in the following matrix form:

(
N

M

)
=

(
A B

B A

)(
εεε(0)

εεε(1)

)
, Q = Hγγγ(0), (2.21)

where the stress N, moment M and shear Q vectors are defined as

N =
(

Nx, Ny, Nxy

)T , M =
(

Mx, My, Mxy

)T , Q =
(
Qx, Qy

)T , (2.22)

and the vectors εεε(0), εεε(1) and γγγ(0) as

εεε(0) =
(
u0,x, v0,y, u0,y + v0,x

)T , εεε(1) =
(
ψx,x, ψy,y, ψx,y + ψy,x

)T , (2.23)

γγγ(0) =
(
ψx + w0,x, ψy + w0,y

)T ,

and the submatrices A, B, D and H as

A =




A11 A12 A16

A12 A22 A26

A16 A26 A66


 , B =




B11 B12 B16

B12 B22 B26

B16 B26 B66


 , (2.24)

D =




D11 D12 D16

D12 D22 D26

D16 D26 D66


 , H =

(
κ2

1 A55 κ1κ2A45

κ1κ2A45 κ2
2 A44

)
.
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2.2 Equations of motion

The elements of submatrices A, B and D are evaluated for i, j = 1, . . . , 6 as follows

Aij =

h/2∫

−h/2

Pij(z) dz, Bij =

h/2∫

−h/2

Pij(z) z dz, Dij =

h/2∫

−h/2

Pij(z) z2 dz, (2.25)

where the Pij are given by the reduced stiffness matrices Pk of each layer as

Pij(z) = Pk
ij, if zk ≤ z ≤ zk+1, (2.26)

Pk
ij = Ck

ij − Ck
i3Ck

j3/Ck
33, i, j = 1, 2, 6.

The integration of the elastodynamic equations (2.5) through the thickness and the
substitution of stress (2.18) and shear resultants (2.20) into obtained equations leads
to the fundamental equations for in-plane and transverse shear resultants. The funda-
mental equations for the moments are obtained by multiplying the first two equations
in (2.5) by z, integrating over the thickness and substituting the moment resultants
(2.19) [15]. Thus, the following system is obtained1:

∂Nx

∂x
+

∂Nxy

∂y
= I0ü0 + I1ψ̈x + q1(x, y)V(t),

∂Nxy

∂x
+

∂Ny

∂y
= I0v̈0 + I1ψ̈y + q2(x, y)V(t),

∂Qx

∂x
+

∂Qy

∂y
= I0ẅ0 + q3(x, y)V(t), (2.27)

∂Mx

∂x
+

∂Mxy

∂y
− Qx = I1ü0 + I2ψ̈x +

h

2
q1(x, y)V(t),

∂Mxy

∂x
+

∂My

∂y
− Qy = I1v̈0 + I2ψ̈y +

h

2
q2(x, y)V(t),

where

Ij =

h/2∫

−h/2

̺(z)zj dz =
1

j + 1

N

∑
k=1

̺k(z
j+1
k−1 − z

j+1
k ), j = 0, 1, 2, (2.28)

and overdots denote partial derivatives with respect to time t. The term I0 is the weight
per unit area of the laminate. The last two equations in (2.27) introduce the coefficients
I1 and I2, which are called the rotational inertia terms.

Equations (2.27) associated to the boundary conditions of the structure have five
unknown functions u0(x, y, t), v0(x, y, t), w0(x, y, t), ψx(x, y, t) and ψy(x, y, t), which
are the solution of the elasticity problem for Mindlin laminated plate. Corresponding

1Note that the boundary conditions (2.12), (2.10) are taken into account while integrating along the
thickness.
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2 Modelling of free and forced wave motion in plate-like laminated composites

Equations (2.27) can be formulated in an explicit matrix form with respect to unknown

vector-function uM =
(
u0, v0, w0, ψx, ψy

)T as it is done in [76]

TMuM = fM, (2.29)

where the matrix TM contains partial derivatives with respect to x, y and t and material
properties, given by components of the matrices A, B, D, H and components of the
vector I (2.24),(2.28). The explicit form of the matrix TM is stated in Appendix 2.2.3.
The load vector in (2.29) is given in terms of the surface load vector (2.12) as

fM = V (t)

(
q1(x, y), q2(x, y), q3(x, y),

h

2
q1(x, y),

h

2
q2(x, y)

)T

. (2.30)

Note that the reduced stiffness matrix B represents the coupling of symmetric and
antisymmetric Lamb wave modes. In case of a laminated composite plate symmetric
with respect to mid-plane, the matrix B = 0, rotational inertia term I1 = 0, and Equa-
tion (2.29) is simplified and the in-plane and flexural motions of the laminated plate
are uncoupled.

The first-order shear deformation plate theory formulated in this section gives an
approximation of the equations of motion of 3D elasticity theory (2.5) and allows quick
analysis of the Lamb wave propagation problem. However, as it is known already for
isotropic solids, the MLPT is valid only at low frequency range. In order to get better
results for higher frequencies, the MLPT can be extended to a higher-order plate theory
as it is done in [113, 150].

2.2.4 Classical Laminate Plate Theory

At very low frequencies the shear deformations are negligible and instead of the
Mindlin plate theory (2.29), the Classical Laminated Plate Theory (CLPT) can be used.
The CLPT assumes that the deformation of the normal to the mid-plane is then a
straight line normal to the deformed mid-plane [15] and neglects the effect of the
transverse shear:

γxz = 0, γyz = 0. (2.31)

It implies from (2.16) that

ψx(x, y) = −∂w0

∂x
, ψy(x, y) = −∂w0

∂y
. (2.32)

The displacement field is then rewritten as

u(x, y, z, t) = u0(x, y, t) − z
∂w0

∂x
(x, y, t),

v(x, y, z, t) = v0(x, y, t) − z
∂w0

∂y
(x, y, t), (2.33)

w(x, y, z, t) = w0(x, y, t).
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2.2 Equations of motion

Strain components taking into account (2.31) are found to be

εx = u0,x − zw0,xx, εy = v0,y − zw0,yy, εz = 0, (2.34)

γxy = u0,y + v0,x − 2zw0,xy, γxz = 0, γyz = 0.

Substitution of relation (2.32) into equations of motion of Mindlin plate yields that
shear stresses are absent: Q = 0. Moreover, the number of independent unknown
functions reduces to three and the system of equations (2.27) takes the form [15]

∂Nx

∂x
+

∂Nxy

∂y
= I0ü0 − I1ẅ0,x + q1(x, y)V(t),

∂Nxy

∂x
+

∂Ny

∂y
= I0v̈0 − I1ẅ0,y + q2(x, y)V(t), (2.35)

∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2My

∂y2 = I0ẅ0 + I1
(
ü0,x + v̈0,y

)

− I2
(
ẅ0,xx + ẅ0,yy

)
+ q3(x, y)V(t).

Generally the rotational inertia terms can be neglected: I1 = I2 = 0. Rewriting the
equations of motion in a matrix form similar to (2.29) gives

TCuC = q. (2.36)

The matrix TC is given in an explicit form in Appendix A.7. The vector of unknown
displacements is uC = (u0, v0, w0).

Note that for a symmetric plate B = 0, the equations of motion (2.36) can be con-
siderably simplified. Moreover, the in-plane behaviour (u0, v0) is decoupled from the
flexural behaviour (w0) and the corresponding equation of out-of-plane motion can be
solved independently [15]. For example, in the case of an orthotropic plate of thick-
ness h (unidirectional composite) with x-axis taken parallel to the fiber direction, the
following equation for out-of-plane motion is obtained

D11
∂4w0

∂x4 + 2(D12 + 2D66)
∂4w0

∂x2∂y2 + D22
∂4w0

∂y4 + I0
∂2w0

∂t2 = q3(x, y)V(t), (2.37)

where the coefficients are expressed through the stiffnesses of the plate (2.24)

D11 =
h3

12
C11C33 − C2

13

C33
, D22 =

h3

12
C22C33 − C2

23

C33
, (2.38)

D12 + 2D66 =
h3

12
C33(C12 + 2C66) − C13C23

C33
, I0 = ̺h.

The coefficients D11, D22, D12 and D66 are frequently called anisotropic flexural rigidi-
ties of the plate. In the case of an isotropic plate, D11 = D22 = D12 + 2D66 = D =
h3E/(12(1− ν2)) is the flexural rigidity of the plate, E is the Young’s modulus and ν is
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2 Modelling of free and forced wave motion in plate-like laminated composites

the Poisson’s ratio. Thus, Equation (2.37) becomes the well-known dynamic equation
of Kirchhoff-Love plate

D

(
∂4w0

∂x4 + 2
∂4w0

∂x2∂y2 +
∂4w0

∂y4

)
= D∇2∇2w0 = q3(x, y) − ̺h

∂2w0

∂t2 . (2.39)

The classical laminated plate theory presented in this section is a simplification of
the 3D elasticity problem and it allows to describe the wave motion in a composite
plate only at the low frequency range, where the wavelengths are larger than the plate
thickness [91]. However, due to its simplicity it is frequently used for modelling of
Lamb wave propagation in composite structures [106]. Additionally, analysis of the
solution of the CLPT-constitutive equations allows to explain many of the phenomena
observed for Lamb waves in anisotropic laminated plates.

2.3 Lamb waves in plate-like structures

2.3.1 Wave solution of equation of motion, Bulk waves

The elastodynamic equations of motion in each layer given previously by (2.5) are also
known as wave equations for elastic media, i.e. their solution can be represented using
the harmonic wave ansatz

u(n)(x, y, z, t) = û(n) ei(kxx+kyy+kzz−ωt), (2.40)

where û(n) is a polarization (or amplitude) of wave, k = (kx, ky, kz) is a wave vector (ki

in rad/m). Formula (2.40) represents the solution of the equations of motion as a sum
of fundamental, propagating time-harmonic plane waves. Inserting (2.40) into Equa-
tions (2.5) yields a 3 × 3 system, where the eigenvalues give a relation between the
wavenumbers kx, ky, kz, an angular frequency ω = 2π f ( f is a frequency in Hertz) and
material properties [7]. This relation is known as Christoffel’s equation [24]. Wavenum-
bers found for the layer n correspond to bulk waves in unbounded media of material
with properties as in n-th layer of composite plate. In general, all three bulk waves
are propagating in the same direction, with different velocities, and with mutually or-
thogonal polarizations ui. The wave with the polarization ui closest to the propagation
direction ni is called quasi-longitudinal (L-wave), the others are called quasi-transverse
(TV-wave), vertical shear and horizontal shear waves [117].

2.3.2 Dispersion equation for multilayered plate

The wave motion within a plate is a guided wave motion, representing the superpo-
sition of incident and reflected partial bulk waves (TV or L respectively). Reflections
occur at the surfaces of the plate. The reflection of incident L (TV) wave from the plate
surface generates the TV (L) wave mode [117], the combination of partial reflected
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2.3 Lamb waves in plate-like structures

Figure 2.6: Reflection of longitudinal (L) and transverse (TV) bulk waves at plate sur-
faces. Each reflection of L (TV) generates also the TV (L) wave mode con-
stituent (mode conversion) [117]

waves travelling to infinity results in guided modes propagating along the phase front
direction (Figure 2.6) [96]. These guided waves are called Lamb waves [71]. The equa-
tions of guided wave motion are obtained by adjusting the displacements and stresses
of bulk waves in particular layers on the boundary conditions (2.9)-(2.10) and interface
conditions (2.8). Two approaches are mostly used for obtaining the matrix solution
of the problem - transfer [137] and global [65] matrix methods. A detailed review of
both methods is given in [82]. Generally, both methods assume that the wavenumbers

k
(n)
z (kx, ky) correspond to standing waves across the waveguide. They are found from

Christoffel’s equation in each layer in dependence on material parameters, frequency
ω and wavenumbers kx, ky. A similar way to get a dispersion equation is presented
in this work using an integral approach and Green’s matrix (for more information see
chapter 3). The equality of determinant of the matrix resulting from boundary and in-
terface conditions to zero relates the wavenumbers kx, ky of plane waves to thicknesses
of individual layers, to their material properties and to frequency ω. This relation,
called dispersion equation, can be obtained for multilayered structures only in an im-
plicit form [95]

∆(ω, kx, ky) = 0 or ∆(ω, k, γ) = 0, (2.41)

if the wavevector is represented in polar coordinates kx = k cos γ, ky = k sin γ. The
dispersion of the waves in (2.41) means the variation of wavenumbers with respect to
frequency ω: kx(ω) and ky(ω). Note that Equation (2.41) or some similar dispersion
equations can be obtained using other approaches like strip element method (SEM) [79,
125] or semi-analytical finite element method (SAFE) [47, 48]. Traditionally, dispersion
equations are solved for wavenumbers k in dependence on circular frequency ω and
propagation direction γ. Already in the simplest case of a single-layered isotropic
plate the solutions of dispersion equation can be found only numerically (for more
information see section 2.3.6.2). Finally, the solution of the problem (2.5), (2.8), (2.10),
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2 Modelling of free and forced wave motion in plate-like laminated composites

(2.12) is represented by the sum of Lamb waves as

u(n)(x, y, z, t) = û(n) ei(kxx+kyy−ωt). (2.42)

The representation can be modified by changing variables as

x = r cos ϕ, y = r sin ϕ, (2.43)

kx = k cos γ, ky = k sin γ,

where r ≥ 0, Re k ≥ 0, ϕ ∈ [0, 2π) and γ ∈ [0, 2π) into the form of cylindrical waves

u(n)(r, ϕ, z, t) = û(n) ei(kr cos(γ−ϕ)−ωt). (2.44)

Note that for generating analytical dispersion curves and mode shapes for various
configurations of composite materials, several computationally efficient numerical rou-
tines have been implemented in the commercial software Disperse [102].

2.3.3 Dimensionless form

Solving the elastodynamic problems, it should be taken into account that in most
systems of units the elastic constants are large numbers, typically of the order of 1011

in Pa. This may cause numerical difficulties, which can be avoided by dividing all
the elastic constants by a typical value of the elastic constants. To get the problem
in a dimensionless form suitable for numerical computations, also the density and
the thickness of the composite are normalized. In this work, unless otherwise stated,
the stiffness in computations are normalized by E0 - some typical value of stiffness,
the density is normalized by some typical value ̺0 and the thickness by the whole
thickness of laminate h. It yields the dimensionless constants of the model

Cij = Cij/E0, ̺ = ̺/̺0, h = 1. (2.45)

Moreover, the choice of three normalizing parameteres gives a dimensionless form of
time t, frequency f , velocity c and wavenumber variables

t = tc0/h, f = f h/c0, c = c/c0, k = kh, (2.46)

where c0 =
√

E0/̺0. Note that whereas many authors use for values of E0 and ̺0

the in-plane shear modulus Gxy and density ̺ of the constitutive material of laminate
(or one of the constitutive materials in case of hybrid laminates), in this thesis the
following values are taken:

E0 = 1011 Pa, ̺0 = 103 kg/m3. (2.47)

Besides the dimensionless frequency f , the value of frequency-thickness product f · h =
f c0 (or simply frequency-thickness) is considered in this thesis.
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2.3 Lamb waves in plate-like structures

2.3.4 Lamb wave modes

Lamb proved theoretically that under certain conditions, a finite number of wave
modes can propagate independently in a plate [71]. This means that the total re-
sponse of a system is splitted into superposed individual wave solutions. Moreover, in
case of plate symmetry with respect to mid-plane and orthotropic or higher symmet-
ric properties of all laminae1, the motion in the plate can be devided into two types:
symmetric and antisymmetric. Considering for simplicity the coordinate system with
reference plane z = 0 equal to mid-plane of the plate that the symmetric motion
satisfies conditions ux(z) = ux(−z), uy(z) = uy(−z) and uz(z) = −uz(−z), whereas
the antisymmetric motion satisfies conditions ux(z) = −ux(−z), uy(z) = −uy(−z) and
uz(z) = uz(−z). From the symmetric wave motion and stress-free boundary conditions
(2.9), (2.10) it follows [149] that the in-plane stresses and the out-of-plane displacement
are zero at the mid-plane z = 0:

(
σxz, σyz, uz

)∣∣
z=0 = (0, 0, 0). (2.48)

Similarly, an antisymmetric motion does not produce vertical stress and in-plane dis-
placements at the mid-plane:

(
ux, uy, σz

)∣∣
z=0 = (0, 0, 0). (2.49)

Due to the symmetry of the plate, only the upper (or lower) half of the plate with
respect to a mid-plane may be considered, which allows to reduce the compuational
time for solving the dispersion equation (2.41). Applying for the half-plate the cor-
responding boundary conditions (2.48) for symmetric motion and (2.49) for antisym-
metric motion at the mid-plane of the plate z = 0 yields two independent dispersion
equations

∆S(ω, k, γ) = 0 (2.50)

and

∆A(ω, k, γ) = 0. (2.51)

The solutions of dispersion equations are continuos functions of their variables. More-
over, if no principal directions for the composite exist2, the surfaces of real wavenum-
bers ks(ω, γ) satisfying the dispersion equation for symmetric motion (2.50) do not
intersect each other. The same applies to the real solutions ka(ω, γ) of dispersion
equation for antisymmetric motion (2.51). The corresponding waves with wavenum-
bers ks(ω, γ) and ka(ω, γ) are called symmetric and antisymmetric Lamb wave modes.
However, the wavenumber surfaces of different families of waves can cross each other
[117] and solving the two dispersion equations (2.50), (2.51) instead of one dispersion
equation allows to avoid the numerical instabilities due to the intersection points and
to distinguish the propagation modes uniquely.

1Already in case of monoclinic properties, the decoupling of two types of motion is not possible [95].
2Principal directions occur in case of single-layered material (e.g. unidirectional composite) with or-

thotropic or higher symmetry [142].
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2 Modelling of free and forced wave motion in plate-like laminated composites

a

b

Figure 2.7: Mode shapes of symmetric (a) and antisymmetric (b) fundamental Lamb
wave modes. Longitudinal displacements of symmetric (antisymmetric)
wave modes are equal (opposite) on either side of the median plane, trans-
verse (vertical) displacements are opposite (equal) [117]

Studying of wavenumber surfaces has shown that at low frequencies two symmetric
and one antisymmetric propagating wave modes exist and their normalized wavenum-
bers kh → 0 as ω → 0. These three wave modes are usually called fundamental wave
modes and have different main polarization directions for wave excitation in the x-
direction. One of the two symmetric modes named qS0 is polarized mainly in longi-
tudinal (x) direction (quasi-longitudinal mode), the other one named qSH0 (quasi-shear

horizontal mode) is polarized mainly in the in-plane direction y perpendicular to propa-
gation direction (x) [111]. The fundamental antisymmetric wave (sometimes termed as
shear vertical (SV) mode) named A0 is polarized at low frequencies mainly in vertical
(z) direction to the plate surface and is also called transverse, flexural or bending mode.
Note that the prefix “quasi“ is omitted in the following for wave modes symmetric
with respect to mid-plane laminates, i.e. the following notation is used: S0 = qS0 and
SH0 = qSH0. However, for non-symmetric laminates the notation with prefix “quasi“
will further be used.

The mode shapes of fundamental S0 and A0 modes are presented schematically in
xz-plane in Figure 2.7a and Figure 2.7b respectively. Note that the fundamental wave
modes propagate at all frequencies. However, their polarization properties are true
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2.3 Lamb waves in plate-like structures

only at low frequency range, and at higher frequencies the direction of particle motion
of each wave is more complex and as a rule does not coincide with coordinate axes
[117].

Due to the propagation at the whole frequency range, the fundamental Lamb modes
present a big potential for structural health monitoring. Besides the fundamental wave
modes, other waves with normal dispersion1, called high frequency or nonfundamental

wave modes have real wavenumbers only for frequencies above the so called cut-off fre-

quencies [75]. Below the cut-off frequency of the mode, the wavenumbers are complex
or pure imaginary, and the mode decays exponentionally in the waveguide direction,
i.e. the mode is non-propagating. In the following the nonfundamental wave mode is un-
derstood to be a wave mode with real wavenumbers only above its cut-off frequency.
The nonfundamental wave modes are denoted similar to fundamental modes accord-
ing to their polarization at low values of normalized wavenumbers kh ≪ 1, which
occur at frequencies slightly above the cut-off frequency. The notation Sm is used for
symmetric longitudinal waves, Am stands for antisymmetric transverse waves, and
SHm for shear horizontal waves. Note that the shear horizontal waves with even in-
dices are symmetric and with odd indices are antisymmetric. As in the case of funda-
mental modes, nonfundamental modes exhibit no perfect polarization at frequencies
sufficiently above the cut-off frequency.

Remark 2.1 Notations introduced in this section for Lamb waves in composite structures are

valid only in case of symmetric properties of the composite with respect to mid-plane and sym-

metry class of single layer not lower than orthotropic. This classification is based on the decou-

pling of symmetric and antisymmetric motions. However, in case of non-symmetric composite

plates or lower symmetries of layers, the symmetric and antisymmetric modes are coupled and

two independent dispersion equations for both types of wave motion cannot be obtained. In this

case Lamb wave modes are called quasi-antisymmetric qAm and quasi-longitudinal qSm.

2.3.5 Dispersion properties of elastic waves

Besides wavenumbers of Lamb waves, also other physical values traditionally used
in acoustics can be calculated for Lamb waves. The wavelengths of Lamb waves are
calculated as

λ(ω, γ) =
2π

k(ω, γ)
. (2.52)

Another quantity, the slowness, i.e. the quotinent of wavenumbers to frequency, is
frequently analysed with respect to Lamb waves:

s(ω, γ) =
k(ω, γ)

ω
. (2.53)

1The definitions of normal and abnormal dispersions is given in sections 3.1.3, 4.3.1
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2 Modelling of free and forced wave motion in plate-like laminated composites

In practical applications the values of the phase velocity cp and group velocity cg of
waves are more convenient:

cp(ω, γ) =
ω

k(ω, γ)
, cg(ω, γ) =

dω

dk(ω, γ)
. (2.54)

According to the notations used in [79], the surfaces corresponding to phase cp(ω, γ)
and group cg(ω, γ) velocities are named phase velocity surface (PVS) and group ve-
locity surface (GVS). The PVS and GVS represent the admissible phase and energy
velocities of plane wave modes in the propagation direction. Comparing the phase
and group velocities of Lamb waves with those of bulk waves it is concluded that both
velocities vary with frequency and phase front direction as well [96].

Figure 2.8: Definition of vector of group velocity of observed waves [96]

However, PVS and GVS describe only the velocities of incident waves in a plate. The
directions in which these waves can be observed in a plate are given by the normal to
the slowness surface [79] (Figure 2.8). Generally due to the anisotropy of the structure
this direction does not coincide1 with the direction of incident waves in a plate. The
surfaces of phase and group velocities in dependence on an observation direction ϕ

(2.43) are also called wave surfaces [79] or wave curves [149] and can be obtained as
all points traced by the tip of the corresponding velocity vectors drawn from a fixed
origin as the propagation direction is varied [79]. The phase wave surface (PWS)
and the group wave surface (GWS) define the corresponding characteristics of wave
fronts observed in a composite plate in case of wave excitation by a point source. The
simplest way to calculate GWS is given in [149], the wave surfaces are calculated for a
fixed frequency ω = ω0 in Cartesian coordinates in an implicit form as

(
cgx

cgy

)
= cg(ω0, γ)

(
cos γ − sin γ

sin γ cos γ

)(
1

−k′γ(ω0, γ)/k(ω0, γ)

)
(2.55)

1Except of isotropic properties of all layers (see section 2.3.6.2).
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where k′γ(ω0, γ) = dk(ω0, γ)/dγ. Corresponding phase wave surfaces for all propa-
gating wave modes can be obtained by replacing the group velocity cg(γ, ω0) by the
phase velocity cp(ω0, γ). The values of phase and group velocities are appropriate
for identification of propagation modes in an experimental setup by comparison of
measured and theoretical values [149].

Using an implicit formulation (2.55) the observation direction ϕ for Lamb waves
excited in direction γ is found to be

ϕ = arctan
cgy

cgx
= arctan

cpy

cpx
(2.56)

= arctan

(
sin γ − cos γ · k′γ(ω0, γ)/k(ω0, γ)

cos γ + sin γ · k′γ(ω0, γ)/k(ω0, γ)

)
.

Letting k′γ(ω0, γ)/k(ω0, γ) = tan(θ(γ)) it follows that

ϕ = arctan
(

tan γ − tan(θ(γ))

1 + tan γ tan(θ(γ))

)
= γ − θ(γ). (2.57)

The deviation angle of the observed waves in direction ϕ from the propagation direc-
tion γ (direction of the wave vector) is known as the skew angle or (beam) steering

angle [120]

θ = γ − ϕ. (2.58)

Besides of such an influence of the anisotropy as the deviation of waves from the
incident direction, the wave surfaces corresponding to a single wave mode can be also
multifolded, i.e. in a single direction more than one wave of the same type can be ob-
served. This occurs if the Lamb wave mode presents inflexion points on its slowness
surface, which implies characteristic cusps on its associated wave surface [96]. In di-
rections near to the cusps, so called caustics, two (or more) waves corresponding to the
wave mode are observed with nearly the same velocities. The energy carried out by
this wave mode concentrates near to caustics. This phenomenon of energy focussing
is well-known for bulk waves in anisotropic media [117]. In more detail the focussing
of Lamb waves will be investigated within the next chapters.

Note also that the typical relation between slowness s = (sx, sy) and group velocity
cg = (cgx, cgy) vectors valid for bulk waves (s, cg) = 1 or cp = cg cos θ (where θ is the
steering angle) [7] does not hold for Lamb waves because of the dispersive nature of
Lamb waves. It can be obtained as [96]

(s(ω, γ), cg(ω, γ)) = 1 +
ω∂ω∆(ω, s, γ)

s∂s∆(ω, s, γ)− ω∂ω∆(ω, s, γ)
, (2.59)

where

∂ω∆(ω, s, γ) =
∂∆(ω, s, γ)

∂ω
, ∂s∆(ω, s, γ) =

(
∂∆(ω, s, γ)

∂sx
,

∂∆(ω, s, γ)

∂sy

)
. (2.60)
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2 Modelling of free and forced wave motion in plate-like laminated composites

It follows that the group velocity of the guided wave modes can be greater or lower
than its associated phase velocity.

2.3.6 Lamb waves in single-layered structures

The free propagation of Lamb waves in anisotropic structures is studied in many
works. However, most of the results are obtained for isotropic or orthotropic single-
layered plates. Single-layered plates are obviously symmetric with respect to mid-
plane and therefore the properties of wave modes present the partial case of Lamb
waves in multilayered structures. Some of the most important facts about the propa-
gation of waves for such partial cases are summarized in this section.

2.3.6.1 Lamb waves in triclinic and orthotropic plates

The dispersion equation of Lamb waves in a triclinic (fully anisotropic) plate can be
obtained in an analytical but very complicated form [95]. Moreover, the wave motion
in a triclinic plate is coupled and all wave modes are only quasi-symmetric or quasi-
antisymmetric. Hence, in industrial applications the single-layered plates are usually
orthotropic or transversally-isotropic (unidirectional composites). It is sufficient to
analyse the properties of waves in orthotropic plates, because waves in the plates with
higher symmetries present only a partial case of an orthotropic plate [142].

Lamb waves in an orthotropic plate at low frequencies can be decoupled into sym-
metric and antisymmetric wave modes. Moreover, due to the existence of principal
axes in such a structure, the symmetric Lamb modes Sm and SHm are decoupled in
principal directions [96]. This decoupling in such a propagation direction is due to
the decoupling of equations of motion into two equations of motion in the saggital
plane xz and one equation of motion for pure horizontal shear motion. This decou-
pling into partial motions allows the intersection of dispersion surfaces corresponding
to symmetric modes, which is not admitted if no principal directions occur. For wave
propagation in direction not coinciding with any of the principal axes directions, the
corresponding equations take a form similar to the monoclinic symmetry case and both
symmetric wave modes are coupled [95]. Moreover, another interesting phenomenon
can occur in an orthotropic plate. For example, in some situations the modes S0 and
SH0 polarized for the principal direction of 0◦ mostly in longitudinal and transverse
in-plane directions respectively can swap their main polarization while rotating the
propagation direction until another principal direction of 90◦ [129]. The wave modes
in such a case are labeled concerning their polarization in γ = 0◦ principal direction.

Due to the orthotropy of the plate, the wavenumbers of Lamb wave modes are de-
pendent on the angle γ and the value k′γ(ω0, γ) is commonly nonzero. This yields that
the steering of waves θ(γ) differs from zero. Nevertheless, in principal directions all
wave modes have no steering [96]. The velocities of waves depend also on propagation
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2.3 Lamb waves in plate-like structures

direction, and velocities of S0 and A0 reach their maximum values in directions which
correspond to the stiffer values of Cijkl. Their minimum values are reached in the di-
rection of another principal axis at an angle of 90◦. For more information on Lamb
waves in single-layered plates the readers are referred to the work [96].

2.3.6.2 Lamb waves in an isotropic plate

The isotropic symmetry of the plate represents the simplest case of Lamb wave motion
in plate-like structures. Each of the directions can be considered as a principal axis
direction. It follows that compared with the orthotropic case, the symmetric shear
horizontal wave motion is completely decoupled from the longitudinal motion in all
propagation directions. The corresponding dispersion equations for waves of three
possible polarizations can be derived in a simple analytical implicit form, given firstly
by Viktorov in [143]:

tan(σsh/2)

tan(σlh/2)
= −

(
4k2

1σsσl

(σ2
s − k2)2

)±1

(2.61)

where the plus “+“ and minus “−“ signs correspond to Lamb wave equation for
longitudinal (Sm) waves and flexural (Am) waves, σ2

l = ω2/c2
l − k2. σ2

s = ω2/c2
s −

k2 and cl =
√

C11/̺, cs =
√

C44/̺ are the velocities of longitudinal and transverse

waves in unbounded isotropic medium respectively, k =
√

k2
x + k2

y. The properties

of the structure as well as the wavenumbers of Lamb modes are independent of the
propagation direction γ. Also the dispersion equation of the isotropic plate (2.61) is
frequently called Rayleigh-Lamb frequency equation.

a b

Figure 2.9: Dispersion curves in a steel plate. The wavenumbers (a) and group veloc-
ities (b) of wave modes propagating at frequency-thickness product values
lower than f · h = 2500 MHz · mm
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2 Modelling of free and forced wave motion in plate-like laminated composites

Lamb waves in an isotropic plate have some characteristic properties. Due to the
full decoupling of particle motions in a plate, the symmetric wave modes compared to
the case of lower material symmetries are called pure longitudinal Sm and pure shear
horizontal SHm. Since in (2.61) k′γ(ω0, γ) = 0 the corresponding steering angle (2.57)
of Lamb waves is zero. This means that the direction of the wave front ϕ coincides
with the direction of the wave vector γ.

Lamb waves in isotropic plates are independent of the propagation direction but
are still dispersive. The dispersion curves for a steel plate (Poisson’s ratio ν = 1/3)
are plotted in Figure 2.9. As illustrated in Figure 2.9, at low frequencies, the phase
velocity of S0 tends to the velocity of the longitudinal wave cl. As ωh → ∞ (ω → ∞

or h → ∞), the plate becomes a half-space. The wave velocities of fundamental wave
modes S0 and A0 tend to the velocity of the Rayleigh surface wave, the velocities of
all non-fundamental Lamb modes tend to the shear wave velocity [117]. The cut-
off frequency of the first higher-order wave mode A1 is f · h = 500 KHz · mm. The
backward wave mode S2b (i.e. wave mode with abnormal dispersion) appears in the
range f · h ∈ [920, 1000] (in KHz · mm).

2.3.6.3 Bending waves in orthotropic and isotropic plates

The harmonic plane wave ansatz (2.40) used for elastodynamic equation obey also the
equations of plate theories (Appendix A.6 and A.7). The corresponding wavenumbers
k are found in dependence on wave propagation direction γ and frequency ω from the
corresponding plate theory dispersion equation. If the composite plate is symmetric
with respect to mid-plane, the matrix B = 0 and the symmetric and antisymmetric
motions are decoupled. In this section some of the properties of antisymmetric waves
are discussed for the example of a plate modelled using CLPT. The corresponding
dispersion equation for antisymmetric motion takes the form

k4
(

D11 cos4 γ + 2(D12 + 2D66) cos2 γ sin2 γ + D22 sin4 γ
)
− I0ω2 = 0. (2.62)

There is one positive real number solution of this equation, which is called a pure
bending wave mode. It is found to be

k(γ, ω) =
√

ω 4

√
I0

cos4 γD11 + 2(D12 + 2D66) cos2 γ sin2 γ + D22 sin4 γ
(2.63)

=
√

ωk0(γ).

The negative real roots correspond to the same wave propagating in an opposite di-
rection. The pure imaginary roots of Equation (2.62) correspond to non-propagating
waves and do not transport energy.
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2.3 Lamb waves in plate-like structures

The values of phase velocity, slowness and group velocity for the bending wave
mode are obtained as

cp(γ, ω) =
ω

k
=

ω√
ωk0(γ)

=

√
ω

k0(γ)
,

s(γ, ω) =
k

ω
=

k0(γ)√
ω

, (2.64)

cg(γ, ω) =
dω

dk
=

(
dk

dω

)−1

= 2

√
ω

k0(γ)
.

Note that CLPT is valid only for describing the dispersive solutions of guided wave
modes at frequencies at which the wavelengths are larger than the plate thickness [87].

Nevertheless, the bending wave mode in anisotropic plates represent some interest-
ing results about the influence of the anisotropy on fundamental wave modes. For
example, analyzing

dk

dγ
= sin γ cos γ

sin2 γ(D12 + 2D66 − D22) + cos2 γ(D11 − D12 − 2D66)

cos4 γD11 + 2(D12 + 2D66) cos2 γ sin2 γ + D22 sin4 γ
, (2.65)

it can be concluded that the steering angle (2.57) for bending mode does not depend on
the frequency. The steering angles for some propagation directions can be calculated
in an analytical form: θ = 0◦ for γ = 0◦ and γ = 90◦,
θ = π/4 + arctan(D22 − D11)/(D11 + D22 + 2D12 + 4D66) for γ = π/4. It follows that
as in case of analytical modelling for elastodynamic equations, the steering angles are
equal to zero in principal directions.

The example of the wavenumber curves for the bending mode in a unidirectional
plate manufactured of IM7-Cycom-977 (material properties are given in Table A.1 in
Appendix A.9) is shown in Figure 2.10. Figure 2.10a shows the frequency dependence
of dispersion curves for directions γ = 0◦ (straight line) and γ = 45◦ (dotted line).
Figure 2.10b shows implicitly the dependence on ϕ of group velocity of bending wave
observed in the plate (GWS) for a fixed frequency-thickness f · h = 11 KHz · mm.

In the isotropic case Equation (2.62) can be simplified due to the relation D11 =
D22 = D12 + 2D66 = D. The wavenumber of bending mode for a Kirchhoff-Love plate
similar to the wavenumbers of Lamb waves in isotropic plate does not depend on the
propagation angle γ

k(γ, ω) = k(ω) =
√

ω
4

√
I0

D
, (2.66)

i.e. k0(γ) ≡ k0 =
√

I0/D. It follows that the steering angle is equal to zero and waves
are observed in the same directions as they are excited.
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2 Modelling of free and forced wave motion in plate-like laminated composites

a b

Figure 2.10: Dispersion curves in the IM7-Cycom-977 unidirectional plate. (a) Wave-
numbers of bending mode computed using CLPT in directions γ = 0◦

(“−“) and γ = 45◦ (“−−“). (b) GWS (2.55) of bending mode at fixed
frequency-thickness 11 KHz · mm

2.4 Modelling of surface-bonded wave excitation

sources

2.4.1 Piezoelectric wafers for wave excitation and wave sensing

Waves in elastic structures can be excited on different ways. While for NDT excitation
devices can be used, which are not coupled (or weakly) with the structure, for SHM
the wave actuators need to be integrated into the structure or mounted on its surface.
For example, the perspex wedgecoupled angle-adjustable ultrasonic probes (ultrasonic
transducers) frequently used in NDT are normally non-negligible due to their weight
and sizes because the properties of the structure can be affected by the transducers
considerably. Hence, they are not suitable for using in SHM techniques [132].

An alternative excitation method is presented by piezoelectric lead zirconate titanate
(PZT) wafer/elements, which excite Lamb waves directly through the electromechan-
ical coupling effect in a piezoelement: “The piezoelectric effect creates a mechanical
stress in a piezoelement, when an electric field (a voltage) is applied across it, or con-
versely, it creates a voltage when a mechanical stress is applied“ [75]. If such a voltage
is oscillating, it produces propagating oscillatory waves due to the in-plane strain cou-
pling between PZT wafer and the structure. Note that in contrast to PZT elements, also
called Piezoelectric Wafer Active Sensors (PWAS), the ultrasonic transducers are char-
acterized by the displacement coupling [33]. Due to the electromechanical coupling in
PZT elements, the wafers can also be used as sensors for measuring of propagating
waves. Hence, the PWAS are most suitable for using as built-in or surface-mounted
wave actuators and sensors because of their sizes, light weight and low cost [132].
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2.4 Modelling of surface-bonded wave excitation sources

For an activation of diagnosing Lamb waves for damage identification by piezoelec-
trical wafers, the appropriate wave mode, wave form, wave magnitude and wavelength
should be chosen. These parameters can be controlled in excitation using PWAS by
selecting the appropriate actuator shape and dimensions and by choosing the driving
electric voltage signal. Another important factor which influences the wave propaga-
tion [25, 32] is the adhesive layer (layer of glue) used for the mounting of the piezoelec-
tric patch on the surface of a host structure. In the following the modelling techniques
for the interaction between piezoelectric wafers, bonding layer and laminated compos-
ite plate as well as the properties of the most commonly used wafers for SHM are
briefly described.

2.4.2 Excitation signals

The analysis of waves in plate-like structures becomes complicated due to their dis-
persive nature. In order to level a wave dispersion and enhance the sensitivity of
waves to damages and simplify subsequent signal processing and interpretation, it is
appropriate for practical applications to use excitation signals, the frequency spectrum
of which is concentrated near one frequency. Some of transient input signals widely
used in practical applications are presented in this section.

a b

Figure 2.11: Three-cycles-sine excitation signal (a) with central frequency fc = 100 KHz
and its frequency spectrum (b)

As a first type of finite excitation pulses the n-cycles sine tone bursts are considered
[39]

vn(t) =

{
sin ωct, 0 ≤ t ≤ nT

0, t < 0 or t ≥ nT
, (2.67)

where the period of the oscillations T = 2π/ωc is defined using a central frequency of
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2 Modelling of free and forced wave motion in plate-like laminated composites

an excitation signal ωc = 2π fc. The frequency spectrum of this pulse is found to be

Vn(ω) =

nT∫

0

vn(t) eiωt dt = − ωc

ω2 − ω2
c

(
1 − eiωnT

)
(2.68)

As observed from (2.68), for an increasing number of cycles n the spectrum becomes
more and more concentrated near a frequency fc. Such an excitation signal with 3 sine
cycles with a central frequency fc = 100 KHz is presented in Figure 2.11a. Its frequency
spectrum is plotted in Figure 2.11b. A concentration of the signal spectrum near to its
central frequency fc = 100 KHz is clearly observed here, so the wave dispersion can be
considerably reduced [132]. The main disavantage in using such driving signals lies
in a possible significant contribution of waves actuated at high frequencies, so that in
spite of using relatively low central frequency also high frequency effects should be
taken into account.

a b

Figure 2.12: Two-cycles-sine-windowed excitation signal (a) with central frequency
fc = 100 KHz and its frequency spectrum (b)

As another frequently used driving pulse a two-cycle sine-windowed sine excitation
signal is considered [41]

V(t) =

{
sin ωct sin

ωc

4
t, 0 ≤ t ≤ 2T

0, t < 0 or t ≥ 2T
. (2.69)

As for an n-cycles sine toneburst, the corresponding frequency spectrum is also con-
centrated near an excitation frequency ωc:

V(ω) =

2T∫

0

v(t) eiωt dt = − 128iωω2
c

256ω4 − 544ω2ω2
c + 225ω4

c

(
1 + eiω2T

)
. (2.70)
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2.4 Modelling of surface-bonded wave excitation sources

An example of such an actuation signal with central frequency of 100 KHz and cor-
responding frequency spectrum are plotted in Figure 2.12. Comparing this spectrum
with the previous one for n-cycles sine tone burst (Figure 2.11) it can be concluded
that amplitudes of high- and low- frequency waves are much smaller than for a main
frequency band. As a result only this main frequency band is needed to be analysed.

a b

Figure 2.13: 3.5-cycles Hann-modulated excitation signal (a) with central frequency
fc = 100 KHz and its frequency spectrum (b)

A concentration of waves can be achieved also in the case of a 3.5 Hann-modulated
toneburst [121]

v(t) =





(
1 − cos

(
2
7

ωct

))
cos ωct, 0 ≤ t ≤ 3.5T

0, t < 0 or t ≥ 3.5T
. (2.71)

The corresponding frequency spectrum is obtained in the form

V(ω) =

3.5T∫

0

v(t) eiωt dt (2.72)

=
4iωω2

c

(
49ω2 + 143ω2

c

)

2401ω6 − 7595ω4ω2
c + 7219ω2ω4

c − 2025ω6
c

(
1 + eiω3.5T

)
.

This excitation pulse with central frequency 100 KHz and corresponding frequency
spectrum are plotted in Figure 2.13. It seems to be a more appropriate for practical
applications because of the concentrations of the signal near a central frequency, and
the contribution of low- and high- frequency bands is negligible.

Similarly as shown in [77], a transient five-peak input voltage signal applied on the
PZT actuator is given according to the formula

v(t) =





(
1 − cos

(
1
5

ωct

))
sin ωct, 0 ≤ t ≤ 5T

0, t < 0 or t ≥ 5T
. (2.73)
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a b

Figure 2.14: The five-peak Hann-modulated excitation signal (a) with central frequency
fc = 100 KHz and its frequency spectrum (b)

The frequency spectrum is then obtained as

V(ω) =

5T∫

0

v(t) eiωt dt =
3ω3

c

(
25ω2 + 8ω2

c

)

625ω6 − 1925ω4ω2
c + 1876ω2ω4

c − 576ω6
c

(
1 − eiω5T

)
. (2.74)

With increasing number of cycles the signal becomes more and more concentrated near
the central frequency allowing the consideration of the excitation as nearly steady-
state harmonic. The corresponding signal and its frequency spectrum for a central
frequency of 100 KHz are presented in Figure 2.14. However, this signal has a long du-
ration of the wave package, which complicates the signal processing and the following
usage of the measured data for damage identification due to overlapping of different
wave components [132].

Summarizing this section, the electric driving voltages can be controlled by selecting
appropriate excitation frequency, bandwidth, cycle number depending on the proper-
ties of waves needed to be excited.

2.4.3 Approaches for modelling piezo-structure interaction

The PZT wafers under the action of the electric voltage produce an interfacial stress be-
tween the actuator and the structure. The corresponding stresses are usually unknown
and depend on the electric field applied on the surface, the shape of the actuator, the
excitation frequency (for the case of harmonic excitation), on the properties of the plate
under excitation and on the way the wafer is mounted on the surface. Usually the ac-
tuators and sensors are bonded onto the host structure using a thin adhesive layer
(glue).
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2.4 Modelling of surface-bonded wave excitation sources

Figure 2.15: Transmission of mechanical stresses from the PZT wafer to the host struc-
ture through the adhesive layer [33]

The interaction between the piezoelectric element and host structure is a complex
process that takes into account the dynamics of the piezoactuators and sensors, the
dynamics of adhesive layers and the dynamics of the plate itself, i.e. this is the cou-

pled problem. A good review of numerical techniques used for the modelling of the
contact dynamics of piezoelectric actuators and elastic host structures is given in [54].
The dynamic coupled contact problem of Lamb wave excitation by PZT wafers was
considered in [37, 127] for actuators bonded on one side of the host structure and in
[42] on its both sides. However, the effect of the bonding layer was not considered,
i.e. ideal bonding was assumed. The problem was reduced to a system of differential-
integral equations obtained using the equations of motion of the piezoelectric element,
the elastodynamic equations of motion of the host structure, the conditions of ideal
bonding between the plate and the piezoelectric element, and boundary conditions.
Such a formulation as a system of differential-integral equations was used for the in-
vestigation of many contact problems in works [10, 100, 128] and is referred in detail
in [146]. However, the dynamic coupled contact problem of Lamb wave excitation
by PZT wafers was solved in [37, 127] only for a plane strain case, i.e. assuming the
independence of the load and host structure properties on one of the in-plane coordi-
nates, e.g. y, which leads to zero strains: εxy = εyy = εyz = 0, and considering only
single-layered isotropic host material. In [27, 92] Moulin proposed a hybrid approach
to model integrated Lamb wave generation with piezo-acuators, obtaining the interfa-
cial stresses due to the piezoelectric element numerically as prescribed excitation and
describing the resulting wave propagation in the host structure by the mode expansion
method. In [99] the guided wave generation, propagation and reception in an isotropic
plate with bonded PZT (lead-zirconate-titanate) wafers is simulated by FE modelling.
However, the FE model cannot be applied for large structures, since it operates within
spatially restricted discretization [54]. The problem in three-dimensional formulation,
taking into account the anisotropy of the properties of the composite under excitation
was not investigated in aforementioned works. Other approaches considering also the
coupled problem as the finite difference (FD) technique and the finite element method
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2 Modelling of free and forced wave motion in plate-like laminated composites

(FEM) are very time-consuming and not applicable for practical needs. Thus, the prob-
lem statement in coupled form is not suitable for a real industrial application at the
moment due to its complexity.

Another approach for modelling of interaction between the PZT wafer and an isotropic
plate was proposed firstly in [25] for a plane strain problem. It is based on the quasi-
static modelling, taking also into account the effect of adhesive layer, known as shear lag

effect, and relying on the independence of contact stresses on the excitation frequency,
i.e. the model is uncoupled. The piezo-structure interaction through the bonding layer
is schematically represented in Figure 2.15. Applying the electric field to a vertically
polarized PZT by a voltage given by V(t) and assuming that only axial stresses are
produced (due to the piezo-patch flexibility), the in-plane induced strain in the PZT
wafer is calculated as follows

εISA = d31
V(t)

ha
, (2.75)

where d31 is the piezoelectric strain coefficient (in m/V) describing the coupling between
the vertically polarized electric field and in-plane induced strains and ha is the thick-
ness of the piezo [33]. Assuming stress-free boundary conditions at the edges x = ±a

of the piezopatch, the interface stress in a bonding layer under static and low-frequency
actuation of Lamb waves can be found in the form [33]

τxz(x) =
ha

a

ψ

ψ + α
EaεISA

(
Γa

sinh Γx

cosh Γa

)
(2.76)

for |x| < a, where

Γ2 =
Gb

Ea

1
hahb

α + ψ

ψ
(2.77)

with the shear-lag parameter

ψ =
Eh

Eaha
. (2.78)

Gb is the shear modulus of the bonding (adhesive) layer, hb the thickness of the ad-
hesive layer, h the thickness of the structure under excitation, E is Young’s modulus
of the structure, ha the thickness of PZT wafer and Ea its Young’s modulus. Outside
the interval |x| < a, the surface stress is zero. The parameter α in (2.77) (also known
as modal repartition number) depends on the stress, strain, and displacement distribu-
tions across the plate thickness [25]. The constant distribution of displacements across
the plate thickness for the fundamental symmetric mode S0 at low frequencies gives
a value α = 1, the linear distribution of displacements across the plate thickness for
the fundamental antisymmetric mode A0 at low frequencies gives a value α = 3. Since
both wave modes are excited simultaneously during the piezo-structure interaction,
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the value of this factor is α = 4. Note that in work [156] this classic shear lag solu-

tion was extended to the case of the frequency-dependent amplitude of Lamb waves
(nonlinear dependence) and non-fundamental wave modes, which gives an integro-
differential equation, which is solved by numerical methods in [122]. For example, the
value of α at a value of frequency-thickness product f h = 780 KHz (below the first cut-
off frequency) for an aluminium plate was found in the referenced work to be α ≈ 5.
However, the contribution of non-propagating evanescent Lamb waves was not con-
sidered and the method applied differs from the more common approach used in [127].

The classic shear lag solution (2.76) described previously can be simplificated in case of
a very thin bonding layer. Assuming hb ≪ 1, one obtains Γ ≫ 1, i.e. the shear transfer
process becomes very rapid and concentrates over some infinitesimal distances at the
ends of the PZT wafer. In the limit, as hb → 0, i.e. in case of ideal bonding, the force
is transfered over an infinitesimal region at the edges of the patch1, and the induced
strain is assumed to be given by two concentrated forces applied at its ends (also
known as pin-force model) [33]

τxz(x) = aτ0 [δ(x − a) − δ(x + a)] , (2.79)

where τ0 = (GbεISA/hbΓ2a2) or τ0 = (GbεISAa/hbΓa cosh Γa). The pin-force model rep-
resents the first-order approximation of the piezo-structure interaction and allows to
get simple solutions of the wave propagation problem and hence represents a useful
tool for SHM.

The pin-force model developed for a two-dimensional problem [25] can also be used
for fully 3D problems if the host structure has quasi-isotropic or isotropic properties
[132]. Then the interface stress is concentrated on the boundary of the piezoactuator.
This model is succesfully used in a various number of works [33, 39, 41, 108] for
modelling the interaction between piezopatches and isotropic structures as well as for
the case of absence of quasi-isotropy of the structure under excitation [107, 110]. The
concrete examples of piezoelectric actuators used in industrial applications and known
from the literature with corresponding pin-force models are given below in section
2.4.5. On the contrary, the work [53] takes into account also the effect of the actuator
bending and concludes that the waves produced by axis-symmetric piezo-patches in
isotropic structures are directional and not axis-symmetric, differently as expected, a
result inconsistent with the pin-force model. This is because the decoupled models
do not allow to understand the processes occuring in piezo-structure interaction [38].
Moreover, the pin-force model has the following limitations [54]:

• The model is a good approximation only if Young’s modulus and thickness of
the actuator are small compared to those of the host structure or the bonding
layer is very thin and stiff,

1In reality, the piezopatch transmits the stress to the plate on average at 10% of its length near to its
edges [122].
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• the model can only provide qualitative estimation about the actuation mecha-
nism for low-frequency cases, which needs to be calibrated by either numerical
simulation or experimental testing, and

• piezoelectric resonance effects cannot be captured in the model.

However, the results obtained in works [33, 39, 41, 108, 155] have shown a good coinci-
dence with experimental data, which promise the adequacy of the pin-force model for
describing the piezoelecric actuation in many cases. Therefore, in this thesis the pin-
force model is used for describing the piezoelectric actuation of elastic Lamb waves in
composite materials.

2.4.4 Use of piezo-actuators as sensors

The PZT wafers can develop an output voltage under mechanical deformations due
to their elecromechanical properties, so they can also be employed as sensors. Hence,
they are also called Piezoelectric Wafer Active Sensors (PWAS) [33]. Again, PWASs are
the most promising tool for measuring elastic waves for SHM.

In a common case the modelling of the sensing process should take into account the
interaction between the piezo patch with propagating Lamb waves, i.e. the problem
is coupled [39]. Nevertheless, due to the light weight of piezos and their thinness,
under the condition of low-frequency motion of the host structure in absence of an
external electric field and assuming the ideal bonding of sensors to the structure, the
piezos will undergo only in-plane deformations εxx and εyy. Thus, the output voltage
Vc captured by PWAS can be computed using the formula1 [41, 77]

Vc =
Ac

Sc

∫∫

Ωc

(
εxx + εyy

)
dxdy (2.80)

where Ωc corresponds to the sensor contact area, Sc is the area of the domain Ωc

and Ac depends on electrical and mechanical properties of the sensor: Ac = d31Eaha

[155]. Taking into account the small dimensions of the PZT wafer compared with the
structure dimensions, the strains in (2.80) can be assumed to be well approximated by
the strain at the center of the wafer εcen ≈ εxx ≈ εyy. Then, the output signal captured
by a PWAS can be defined as

Vc = 2Acεcen. (2.81)

So, the output voltage captured by a PZT wafer used as a sensor is proportional to
the central strain of the wafer. However, the use of the more general formula (2.80)
makes possible an analysis of the influence of the sensor shape on the Lamb wave

1Note that in [87] more precise formulas taking into account the anisotropic properties of the piezoac-
tuator are given.
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2.4 Modelling of surface-bonded wave excitation sources

propagation while formula (2.81) allows to get simple but not precise results. Note
also that Equations (2.80)-(2.81) are derived for ideal-bonded PWAS. Including the
adhesive layer in the analysis it can be concluded that the sensor would develop less
voltage across its boundaries and hence would underestimate the measured strain
[17]. This is because of the aforementioned shear lag effect, which can be quantified
by computing the effective length leff of the sensor

leff = 2a

(
1 − tanh(2Γa)

2Γa

)
. (2.82)

Nevertheless, in most of the computations good results are obtained neglecting this
shear lag effect for a PZT sensor [33, 155]. Completing this subsection it is noted that
the use of PWASs for measuring Lamb waves is a good choice not only because of
their lightness and mobility, but also because the in-plane strains measured by them in
general are more sensitive to the fundamental symmetric fundamental wave mode S0

as out-of-plane displacements sensed by a laser vibrometer (because of higher in-plane
magnitude of the symmetric wave mode compared with its out-of-plane magnitude).

2.4.5 Various types and shapes of piezo-actuators

a b

Figure 2.16: MFC transducer (a) [151] and CLoVER transducer (b) [119]

The use of piezoelecric wafers for activating and receiving Lamb waves show a
number of problems which should be solved to achieve a high performance of their
use for SHM. For example, it is more effective for SHM to activate only one Lamb wave
mode in order to prevent a complicated structure of wave fields and to simplify the
analysis of measured results. Note that under single PZT actuation both symmetric
and antisymmetric Lamb modes are excited simultaneously. Another problem is to
achieve directional waves having the highest amplitudes in desired directions. These
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2 Modelling of free and forced wave motion in plate-like laminated composites

problems can be solved by properly choosing the excitation frequency, signal band-
width, the shape of the actuators, their number and location. The frequently used
shapes of PZT wafers are briefly presented in this section.

a b

c d

e

Figure 2.17: Most frequently used shapes of piezoelectric actuators: circular (a), ring-
shaped (b), CLoVER sector (c), rectangular (d) and MFC (e)
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2.4 Modelling of surface-bonded wave excitation sources

The mostly used PWASs for SHM have a circular shape (Figure 2.17a) due to its
axis-symmetric properties allowing to simplify the analysis of Lamb waves especially
in isotropic plates because the waves generated by PZT wafers of circular shape in
isotropic plates are omnidirectional. Such piezoactuators in terms of pin-force model
can be well described by the following interface stresses

τxz = τ0δ(r − Ao) cos ϕ, τyz = τ0δ(r − Ao) sin ϕ, σz = 0, for z = 0, (2.83)

where Ao is the radius of the wafer and δ is the delta-function. The model (2.83)
assumes the concentration of the radial shear stresses on the outer boundary of the
PZT wafer, which are directed outwards to the actuator. Similarly, instead of circular
actuators ring-shaped PZT wafers are used (Figure 2.17b). These actuators are also axis-
symmetric, according to the pin-force model the energy radiated by them is transfered
across the inner boundary of the ring in direction of the ring center point and across
the outer boundary outwards, that gives

τxz = τ0(δ(r − Ao) − δ(r − Ai)) cos ϕ,

τyz = τ0(δ(r − Ao) − δ(r − Ai)) sin ϕ, (2.84)

σz = 0,

for z = 0, where Ao and Ai are the outer and the inner radii of the ring-shaped wafer
respectively. The ring-shaped actuators can also be combined with circular actuator
placed inside of the ring to the dual PZT, where both components are excited inde-
pendently or simultaneously in order to produce the different wave patterns as it was
done for Lamb wave mode decomposition in [155].

Another type of actuators has a rectangular shape. Such actuators are not axis-
symmetric and hence produce non-homogeneous wave fields. The classical rectan-
gular piezos can be described by the shear stresses concentrated on their boundaries
(Figure 2.17d) as

τxz = τ0(δ(x − a1) − δ(x + a1))(H(y + a2) − H(y − a2)),

τyz = τ0(H(x + a1) − H(x − a1))(δ(y − a2) − δ(y + a2)), (2.85)

σz = 0,

for z = 0, where H is the Heaviside step function, 2a1 and 2a2 are the dimensions of
the piezo along x- and y- axes respectively. The wave fields excited by these actuators
are much more complicated than wave fields produced by circular and ring-shaped
actuators, however in their far-field they are practically identical [33].

The NASA’s Langley Research Center developed another type of piezoelecric de-
vices, the Macro-Fiber Composites (MFCs) (Figure 2.16a). MFCs are actuators with
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2 Modelling of free and forced wave motion in plate-like laminated composites

unidirectionally aligned fibers, what results in the shear stress only along macro-fibers
(Figure 2.17e), so the corresponding pin-force model is given by

τxz = τ0(δ(x − a1)− δ(x + a1))(H(y + a2)− H(y − a2)), τyz = 0, σz = 0, (2.86)

for z = 0 with the fibers of MFC parallel to x-axis. The Lamb waves caused by an MFC
actuator are directed mainly along fiber direction of the MFC patch. Hence, MFC ac-
tuators can be used for producing guided waves with strong amplitudes in desired di-
rections. Note that conventional rectangular shaped PWAS with high length-to-width
ratio can also generate unidirectional waves [33], producing a weaker signal compared
with the MFC and requiring much more energy than an MFC. Another advantage of
the MFC is its light weight and flexibility.

An alternative concept for excitation of guided waves in SHM systems is a composite
long-range variable-direction emitting radar (CLoVER) transducer [119]. It consists of
a number of wedge-shaped actuators arranged in a circular array (Figure 2.16b). Geo-
metrically this array has a ring shape, each CLoVER transducer represents one sector
of the ring (Figure 2.17c, Figure 2.16b). Each sector in the transducer can indepen-
dently act as actuator and sensor. The parameters of CLoVER transducers are given
by inner Ai and outer Ao radii of the actuators in the array and by the number nc of
partition sectors in the array. The latter parameter allows to define the azimuthal span
(in degrees) of CLoVER transducers: θ = 360◦/nc. The pin-force model for one active
sector of the CLoVER transducer takes the form [119]

τxz = τ0(δ(r − Ai) − δ(r − Ao))(H(ϕ − ϕL) − H(ϕ − ϕR)) cos ϕ,

τyz = τ0(δ(r − Ai) − δ(r − Ao))(H(ϕ − ϕL) − H(ϕ − ϕR)) sin ϕ, (2.87)

σz = 0,

for z = 0, where the shear stresses are non-zero only along the wafer’s radial edges (see
Figure 2.17c) and the active sector is located between the angles ϕL and ϕR: ϕL − ϕR =
θ. The main advantage of the CLoVER transducer is the strong directionality of the
wave pattern which is controlled by selecting the desired sector. The pin-force models
for PZT wafers of many other shapes are studied in detail in work [130].

Remark 2.2 The load functions presented in this section for the pin-force model of piezoelectric

actuators are given using the definition of delta function for the boundaries of the PZT wafer. If

the load function is given only in a single point, it describes a concentrated point load, namely

point force - the simplest and very important case of surface loading as it will be clear from the

next sections.
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3 Wavenumber-frequency domain

solution of the wave propagation

problem

3.1 Application of integral approach to the

elastodynamic problem

3.1.1 Basics of integral approach

The mathematical boundary value problems considered in the previous chapter for
modelling of wave propagation in laminated composites can be solved by such ap-
proaches as Ray Tracing Algorithm (used in Lamb wave tomography) [55], FEM [154],
SEM [79], Spectral Finite Element Method (SFEM) [44], Semi-Analytical Finite Element
Method (SAFEM) [47, 48] and Finite Difference (FD) method [72, 73, 126]. However, all
these techniques are time-consuming and do not take into account the wave structure
of the problem.

Another method, proven to be an appropriate one is an integral approach for semi-
infinite structures like a layer or a plate. In many mathematical problems the Fourier,
Hankel, Laplace, Mellin and Radon [147] transforms found an application. In this the-
sis the application of the Fourier transform to the elastodynamic problem (2.5), (2.10),
(2.12) and approximate models using MLPT (2.29) and CLPT (2.36) is considered. The
Fourier transform Ft of the displacement vector u(x, t) with respect to time variable t

assuming the zero displacement u(x, t) and velocity u̇(x, t) for t ≤ 0 (2.14) is defined
as

u(x, ω) = Ft[u(x, t)] =

∞∫

0

u(x, t) eiωt dt. (3.1)

The inverse Fourier transform F−1
ω of vector of the harmonic steady-state displace-

ments u(x, ω), gives the original transient displacement vector (with only real values)
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3 Wavenumber-frequency domain solution of the wave propagation problem

in the form

u(x, t) = F−1
ω [u(x, ω)] =

1
2π

∞∫

−∞

u(x, ω) e−iωt dω (3.2)

=
1
π

Re

∞∫

0

u(x, ω) e−iωt dω.

Remark 3.1 With respect to the time variable t, the Laplace transform can be applied analo-

gously (e.g., see [10]).

Similarly to the Fourier transform with respect to time variable, it is possible to
apply the Fourier transform with respect to space variables x and y because both space
variables x and y take values from −∞ to +∞, the boundaries of the host structure
are parallel to the corresponding xy-plane, the equations of motion are linear and all
coefficients in the equations are constant. In the following the Fourier transform with
respect to space variables x and y is denoted with capital letters, e.g. U(α1, α2, z, ω):

U(α1, α2, z, ω) = Fx,y[u(x, y, z, ω)] =

∞∫

−∞

∞∫

−∞

u(x, y, z, ω) ei(α1x+α2y) dxdy. (3.3)

Note that the application of the Fourier transform to the function of displacements
requires that the displacements tend to zero if x, y → ∞, see Equation (2.13).

The parameters of the Fourier domain α1 and α2 are called wavenumber variables1.
The corresponding inverse Fourier transform is given by the double integral

u(x, y, z, ω) = F−1
α1,α2

[U(α1, α2, z, ω)] =

∞∫

−∞

∞∫

−∞

U(α1, α2, z, ω) e−i(α1x+α2y) dα1dα2. (3.4)

Remark 3.2 The use of Fourier integral transform requires the integrability of displacements:

∞∫

−∞

∞∫

−∞

|u(x, y, z, ω)| dxdy < ∞. (3.5)

If the derivatives of the given function u(x, y, z, t) with respect to space x and y

or time t variables are integrable functions, i.e. they satisfy (3.5) and their Fourier
transform into wavenumber-frequency domain is obtained as follows:

Fx,y,t[∂
k+m+pu(x, y, z, ω)/∂xk∂ym∂tp] = (−iα1)

k(−iα2)
m(−iω)pU(α1, α2, z, ω). (3.6)

1Some authors use for wavenumber variables the notations kx and ky, however hereinafter the notations
α1 and α2 introduced in [10] are used.

48



3.1 Application of integral approach to the elastodynamic problem

The application of an integral approach consists in an application of the chosen integral
transform to the equations of the problem, corresponding boundary conditions, find-
ing the solution of the problem in the transformed domain and performing the inverse
transform to the found solution of the problem. These steps for a problem of wave
propagation in a laminated composite plate under a surface loading are discussed in
detail in this work.

3.1.2 Use of integral approach for obtaining the solution of a

elastodynamic problem in a transformed domain

For a homogeneous elastic plate it is known [10] that the displacements caused by a
surface load q(x, y)v(t) with a transient signal of duration [0, t0] acting in domain Ω

can be found using the triple convolution integral [10, 34] as

u(x, t) =
∫ t0

0
v(τ)

∫∫

Ω

kt(x − ξξξ, t − τ)q(ξξξ) dξξξ dτ, (3.7)

where kt(x, t) is the 3 × 3 Green’s matrix of the problem, where column j (j = 1, 2, 3)
of the matrix describes the response of the elastic plate on the action of a point source
of the form qj = δ(x)δ(y) with a unit impulse v(t) = δ(t) as an excitation signal.
Application of the Fourier transform with respect to t to both sides of Equation (3.7)
and use of the properties of the convolution integral [144] result in

u(x, ω) = V(ω)
∫∫

Ω

k(x − ξξξ, ω)q(ξξξ) dξξξ, (3.8)

where V(ω) is a frequency spectrum of the excitation signal and k(x − ξξξ, ω) is the
3× 3 Green’s matrix of the corresponding harmonic steady-state problem. The Fourier
transform of both sides of Equation (3.8) with respect to space variables x and y yields

U(α1, α2, z, ω) = V(ω)K(α1, α2, z, ω)Q(α1, α2) = V(ω)Uh(α1, α2, z, ω), (3.9)

where Q(α1, α2) describes the wavenumber’s domain represention of the surface load
vector q(x), K(α1, α2, z, ω) is the 3×3 Green’s matrix of the problem in the wavenumber-
frequency domain and U(α1, α2, z, ω) represents the solution of the transient prob-
lem in the wavenumber-frequency domain. The vector Uh(α1, α2, z, ω) is also called
the steady-state harmonic solution of the problem, i.e. when the semi-infinite lami-
nated plate oscillates harmonically with circular frequency ω. In this case the value
uh(x, ω) e−iωt corresponds to the wave field obtained under harmonic excitation, where
uh(x, ω) = F−1

α1,α2
[Uh(α1, α2, z, ω)]. For convenience the subscript h is omitted and the

solution of the harmonic problem is denoted as

U(α1, α2, z, ω) ≡ Uh(α1, α2, z, ω).
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3 Wavenumber-frequency domain solution of the wave propagation problem

Finally, in the original time-space domain the solution can be obtained as an inverse
transform [10]

u(x, y, z, t) =
1

4π3 Re

∞∫

0

V(ω) (3.10)

×
∫∫

Γ1Γ2

K(α1, α2, z, ω)Q(α1, α2) e−i(ωt+α1x+α2y) dα1dα2 dω,

where Γ1 and Γ2 are some contours, mostly coinciding with the real axes with respect
to α1 and α2, and deviating into the corresponding complex planes while bypassing
the real singularities of the components of Green’s matrix K(α1, α2, z, ω). However, it
is more convenient to consider the integral (3.10) in polar coordinates (2.43), i.e.

u(r, ϕ, z, t) =
1

4π3 Re

∞∫

0

V(ω) (3.11)

×
2π∫

0

∫

Γ+(γ)

K(α, γ, z, ω)Q(α, γ) e−i(ωt+αr cos(γ−ϕ))α dαdγ dω.

As it is known for elasticity problems with isotropic properties [10], in case of the
pure elastic problem without taking into account the damping (or viscosity) of the
host structure, its Green’s matrix components have some singularities, poles1,2 on the
real axes α1 and α2, and the integration directly over the real axes is not possible.
The evaluation of integrals (3.11) is performed along some contour Γ+(γ) mostly co-
inciding with a positive real semi-axis while bypassing the real poles from below or
from above. Taking different integration contours in (3.11) many different solutions of
the problem are possible. In order to obtain a unique solution of the problem using
an integral approach, some additional conditions on the solution of the problem are
required.

3.1.3 Principle of limiting absorption

The additional conditions on the solution of the problem of pure elasticity are also
known as radiation conditions or radiation principles. There are some principles known
including Sommerfeld principle, principle of limiting amplitude, Mandelstamm’s prin-
ciple and principle of limiting absorption as it is given in [10]. In this work the latter
principle, namely the principle of limiting absorption is used. This principle ensures
physical meaning and uniqueness of the given solution. According to this principle,

1In following the poles of Green’s matrix components will also be called poles of Green’s matrix.
2Note that in case of the layered half-space, i.e. zN+1 = −∞, additionally the branch points are

presented.
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3.1 Application of integral approach to the elastodynamic problem

Figure 3.1: Choice of the integration contour Γ+(γ) according to the principle of limit-
ing absorption

an infinitesimal damping ε > 0 proportional to the particle velocity as ε∂u/∂t is intro-
duced into the model and the solution of the related problem is found to be uε. By
taking ε → 0 the displacement vector uε(x) converges uniformly [144] to the corre-
sponding solution of pure elastic problem

uε(x) ⇒ u(x). (3.12)

Due to the introduction of infinitesimal damping the positive real poles of Green’s
functions attain a positive imaginary part, so the integration contours bypass them
from below. Such poles are called regular. If a positive real pole attains a negative
imaginary part, it is bypassed from above. Such poles have anomalous dispersion and
are usually called irregular poles. The same choice of the integration contour remains
also in case of pure elastic solid. The contour Γ+(γ) bypassing the real poles in a
complex plane according to this principle is shown in Figure 3.1.

Remark 3.3 The introduction of infinitesimal damping is equivivalent to the introduction of

the complex angular frequency in the form ω2
ε = ω2 + iωε/̺ with a positive imaginary part.

However, there are some frequencies at which two real poles are equal, i.e. a pole of
second order is occuring, and the uniform limit (Equation (3.12)) of the displacement
uε(x) does not exist. In this case according to the principle of limiting absorption
[10, 144] the integration contour Γ+(γ) goes through this pole and the wavenumber
integral in (3.11) has to be understood as Cauchy principal value (PV) [144], i.e.

u(r, ϕ, z, ω) = PV
1

4π2

2π∫

0

∫

Γ+(γ)

K(α, γ, z, ω)Q(α, γ) e−iαr cos(γ−ϕ)α dαdγ. (3.13)

The frequencies, at which the real poles of second order occur, are called natural or
resonance1 frequencies. Then, the following theorem holds for the displacement fields
at the resonance frequencies [10]:

1Since the pure elastic structure is considered.
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3 Wavenumber-frequency domain solution of the wave propagation problem

Theorem 3.4 Suppose k0(γ) is a real pole of Green’s matrix of second order. If the vector of

surface load Q(α, γ) satisfies

2π∫

0

|Q(k0(γ), γ)| dγ 6= 0, (3.14)

then the displacements at this frequency are growing as t1/2 if t → ∞.

Since the resonance frequencies for the regular poles occur only at cut-off frequencies
of higher-order wave modes, i.e. k0(γ) ≡ 0, for boundedness of the displacements at
the resonance frequency it is necessary and sufficient [10] that

Q(0, 0) = 0. (3.15)

The value Q(0, 0) is also called the main vector of surface stresses. Note that in practice
the structures exhibit non-zero damping and the displacements are bounded even at
the resonance frequencies. Moreover, in an implementation on PC due to numerical
errors the excitation with a resonance frequency is practically impossible.

The solution obtained applying the integral approach in form (3.11) requires al-
gorithms of a quick computation of improper iterated integrals and algorithms of a
quick evaluation of surface load vector Q(α, γ) and Green’s matrix K(α, γ, z, ω) in the
Fourier domain. These procedures are discussed in detail in this work. The driv-
ing signal spectrum V(ω) can be obtained in most cases in an analytical form (see
section 2.4.2).

3.1.4 Fourier transform of the surface load vector-functions

The use of an integral approach for the solution of wave propagation problem needs
the representation of the surface load q(x) in the wavenumber domain. In some cases
load functions can be evaluated in the Fourier domain using analytical formulas. The
Fourier domain representations of load functions given in section 2.4.5 are described
below. These wavenumber transforms can be used to analyse the excitation character-
istics of surface sources [130]. Additionally, the way how to compute the wavenumber
representation for the surface sources of complicated geometries is presented.

3.1.4.1 Point source

A point force acting along xk-axis at point x0 = (x0, y0, 0) = (r0 cos ϕ0, r0 sin ϕ0, 0) is
given mathematically by the δ-function. Application of the double Fourier transform
results in

Qk(α1, α2) =

∞∫

−∞

∞∫

−∞

δ(x − x0)δ(y − y0) ei(α1x+α2y) dxdy (3.16)

= ei(α1x0+α2y0) = eiαr0 cos(γ−ϕ0).
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3.1 Application of integral approach to the elastodynamic problem

3.1.4.2 Circular and ring-shaped PZT wafer

The action of a circular piezo-actuator of radius Ao according to (2.83) in the wavenum-
ber domain can be represented (letting Q3 = 0) in the form

Q1(α, γ) = 2πiτ0Ao J1(Aoα) cos γ, (3.17)

Q2(α, γ) = 2πiτ0Ao J1(Aoα) sin γ,

where J1(Aoα) is the Bessel function of the first kind.

The action of the ring-shaped PZT wafer (2.84) can be assumed to be composed of
two circular actuators of different radii and with a different directivity: with a larger
radius Ao outwards and with a smaller Ai radius inwards:

Q1(α, γ) = 2πiτ0[Ao J1(Aoα) − Ai J1(Aiα)] cos γ, (3.18)

Q2(α, γ) = 2πiτ0[Ao J1(Aoα) − Ai J1(Aiα)] sin γ.

3.1.4.3 Rectangular PZT wafers and MFC transducers

A rectangular piezo-actuator of dimensions 2A1 and 2A2 along the x- and y-axes,
respectively modelled as shear stresses concentrated on its boundaries (2.85), is given
in the wavenumber domain by Q1 = τ0Q/ sin γ, Q2 = τ0Q/ cos γ and Q3 = 0 where

Q(α, γ) = 4i sin(A1α cos γ) sin(A2α sin γ)/α. (3.19)

A similar representation is obtained for an MFC piezo-actuator according to (2.86)
aligned along the x-axis:

Q1 = 4iτ0 sin(A1α cos γ) sin(A2α sin γ)/(α sin γ), Q2 = 0, Q3 = 0. (3.20)

3.1.4.4 CLoVER transducer

In contrast to the previous examples, the transform of the load function (2.87) of the
CLoVER transducer into the wavenumber domain cannot be performed analytically.
However, using Jacobi-Anger expansion (Equation (B.12) in Appendix B.3), the double
Fourier transform of (2.87) takes the form

Q1(α, γ) = τ0

∞

∑
n=−∞

inχn(α)

ϕL∫

ϕR

(H(ϕ − ϕR) − H(ϕ − ϕL)) ein(ϕ−γ) cos ϕ dϕ,

Q2(α, γ) = τ0

∞

∑
n=−∞

inχn(α)

ϕL∫

ϕR

(H(ϕ − ϕR) − H(ϕ − ϕL)) ein(ϕ−γ) sin ϕ dϕ, (3.21)

Q3(α, γ) = 0,
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3 Wavenumber-frequency domain solution of the wave propagation problem

where χn(α) = (Ao Jn(αAo) − Ai Jn(αAi)), and the active sector with inner radius Ai

and outer radius Ao is located between the angles ϕL and ϕR (see Figure 2.17c). The
Fourier transform of the load functions results in

Qj =
∞

∑
n=−∞

inc
(j)
n e−inγχn(α), (3.22)

where the coefficients c
(j)
n are expressed as follows:

c
(1)
−1 =

1
2

(
ϕL − ϕR + i

e−2iϕL − e−2iϕR

2

)
, c

(1)
1 =

1
2

(
ϕL − ϕR − i

e2iϕL − e2iϕR

2

)
,

c
(1)
n =

1
2i(n2 − 1)

×
[
(n − 1)

(
ei(n+1)ϕL (3.23)

− ei(n+1)ϕR

)
+ (n + 1)

(
ei(n−1)ϕL − ei(n−1)ϕR

)]
, |n| 6= 1

c
(2)
−1 =

−i
2

(
ϕL − ϕR − i

e−2iϕL − e−2iϕR

2

)
,

c
(2)
1 =

−i
2

(
−ϕL + ϕR − i

e2iϕL − e2iϕR

2

)
,

c
(2)
n = − 1

2(n2 − 1)
×
[
(n − 1)

(
ei(n+1)ϕL

− ei(n+1)ϕR

)
− (n + 1)

(
ei(n−1)ϕL − ei(n−1)ϕR

)]
, |n| 6= 1.

Note that the summation of infinite number of terms in series (3.22) is not possible
for numerical computation and the series are truncated by a certain number Nc. The
choice of this number Nc depends on the speed of convergence of the series and the
accuracy of the Bessel function evaluation, because for large values of Aoα and n the
numerical algorithm for the calculation of the Bessel function becomes to be unsta-
ble, and the corresponding values should be computed using asymptotic expressions
(B.14), given in Apppendix B.3.

Therefore, the series representation (3.22) for a CLoVER sector allows to describe
the partial case of the CLoVER transducer - a ring-shaped piezo-actuator, where ϕL =
ϕR + 2π. In this case the coefficients in (3.23) are obtained as follows:

c
(1)
n = c

(2)
n = 0, |n| 6= 1, c

(1)
−1 = c

(1)
1 = π, c

(2)
−1 = π, c

(2)
1 = −π,

Q1(α, γ) = τ0i−1π eiγχ−1(α) + τ0iπ e−iγχ1(α) = τ0iπχ1(α)
[

eiγ + e−iγ
]

= 2πiτ0 (Ao J1(αAo) − Ai J1(αAi)) cos γ, (3.24)

Q2(α, γ) = τ0i−1π eiγχ−1(α) + τ0i(−π) e−iγχ1(α) = −iπτ0χ1(α)i
[

eiγ − e−iγ
]

= 2πiτ0 (Ao J1(αAo) − Ai J1(αAi)) sin γ.

It is evident that the latter representation is equivalent to that obtained previously for
a ring-shaped source in (3.18).
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3.1 Application of integral approach to the elastodynamic problem

3.1.4.5 Wavenumber domain representation for a surface source of general type

Representations obtained in the last subsections for some partial cases of surface
sources take into account symmetry of their structure and are very useful for quick
computation of the displacement field. If the load function q(x) does not have a sym-
metry, it can be approximated by a superposition of the pointwise δ-sources [36, 41]

q(x, y) = δ2
s

Nq

∑
j=1

qjδ(x − xj)δ(y − yj), (3.25)

where δs is a cubature spacing of domain Ω. A representation for the displacement
field in terms of Green’s matrix of the problem (3.7) is obtained as a superposition of
waves, excited by point sources

u(x, y, z) ≈ δ2
s

Nq

∑
j=1

k(x − xj)qj. (3.26)

This formula ensures a great importance for practical applications of models studying
point sources as wave excitation sources. For example, instead of the circular actuator
(2.83) its approximation by Nq pointwise δ sources allocated along its boundary r = Ao

on the same distance is considered: σrz = δ(r − Ao)
Nq

∑
j=1

δ(ϕ − ϕj) and ϕj = 2π j/Nq.

Due to an axisymmetric distribution of surface stresses along radiation directions they
are set qj = 2π/Nq for all j.

a b

Figure 3.2: Comparison between the analytical (“−“) and pointwise (“o“) series rep-
resentations in wavenumber domain (dimensionless form, τ0 = 1) for two
PZT disks with radius Ao = 1 (a) and with radius Ao = 5 (b)

The representation of this approximation in the wavenumber domain takes the form

Qr(α, γ) =
2π

Nq

Nq

∑
j=1

eiαAo cos(γ−ϕj). (3.27)
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3 Wavenumber-frequency domain solution of the wave propagation problem

The pointwise representation of the surface source (3.27) can be understood as a
quadrature rule for a wavenumber representation of surface source [41]. Figure 3.2
illustrates the comparison between the analytical and the pointwise series (Nq = 64)
representations of a circular piezoactuator in the wavenumber domain for two different
radii of actuator Ao = 1 and Ao = 5. The results are in a well coincidence. However,
the accuracy of the series representation should be controlled each time before its use.

a b

Figure 3.3: Comparison between the series (“−“ for Nc = 128 and “−−“ for Nc = 32)
and pointwise ((“o“ for Nq = 128 and “−.−“ for Nq = 32) series rep-
resentations of the Q1(α, γ) (dimensionless form, τ0 = 1) for a CLoVER
transducer of inner radius Ai = 4 and outer radius Ao = 5 with azimuthal
span θ = 45◦ and a middle direction aligned along the direction ϕ = 45◦

calculated in two directions γ = 0◦ (a) and γ = 45◦ (b)

Another example is a CLoVER sector with radial dimensions of Ai = 4 and Ao = 5,
for which the comparison of given expansion with series representation (3.22) and
pointwise series representation by setting qj = 2π/Nq is shown in Figure 3.3. Thereby
expansions (3.22), (3.26) are validated. Note that the use of 32 terms in both series
representations is not enough for an acceptable accuracy (especially for γ = 0◦) and
the use of series representation (3.22) is more sensitive to the choice of insufficient
number of terms in corresponding series.

3.2 Green’s matrix for a multilayered laminated

composite

3.2.1 An algorithm of evaluation of Green’s matrix

The formula (3.11) can be used to compute the solution of the wave propagation prob-
lem. However, assuming that the frequency spectrum V(ω) of the excitation signal and
the wavenumber representation of the surface load vector q(x) are known, Green’s ma-
trix K(α1, α2, z, ω) in the wavenumber-frequency domain is required to be computed
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3.2 Green’s matrix for a multilayered laminated composite

before the inverse Fourier transform (3.11) can be applied. The algorithm of evalu-
ation of Green’s matrix in the Fourier domain for a laminated composite plate with
an arbitrary anisotropy of the layers is originally published in Ultrasonics Journal [61].
The modification of this algorithm numerically stable for all values of α1, α2 and ω

containing no growing exponents at any calculation stage is published in Advances

in Theoretical and Applied Mathematics Journal [58]. This algorithm expands the algo-
rithm suggested originally in [10] for multilayered plates with isotropic layers to the
case of triclinic properties of single layers and modifies the algorithm given in [9, 11]
for a multilayered anisotropic half-space. Below, the algorithm of evaluation of the
frequency-wavenumber domain representation of Green’s matrix for an elastodynamic
problem (2.5), (2.10), (2.12) is discussed in detail.

At first, the Fourier transforms with respect to time Ft and space Fxy are applied to
the equations of motion of each layer (2.5) and to the boundary (2.10), (2.12) and the
interface conditions (2.8). Using the properties of the Fourier transform of derivatives
(3.6), the differentiation operators in the Equations (2.5) are replaced by the multipliers

∂2

∂x2 → (−iα1)
2,

∂2

∂x∂y
→ (−iα1)(−iα2),

∂2

∂y2 → (−iα2)
2, (3.28)

∂

∂x
→ −iα1,

∂

∂y
→ −iα2.

The partial derivative operator ∂2/∂t2 contained in matrix A(04) (see Appendix A.5,
Equation (A.17)) is replaced by the multiplier (iω)2. In the following it is assumed
that the problem is harmonic steady-state, so that for displacement vector in Fourier
domain U the value Uh from (3.9) is understood. So, if needed, the solution of the
transient problem in the frequency-wavenumber domain is obtained simply by mul-
tiplying the harmonic displacement vector U(α1, α2, z, ω) (i.e. Uh(α1, α2, z, ω)) by the
frequency spectrum of the excitation signal V(ω), see Equation (3.9).

Assuming that the matrix A(2) (see Appendix A.5, Equation (A.20)) is invertible,
Equation (2.5) can be rewritten as

U′′ − i[A(2)]
(−1)

(
A(11)α1 + A(12)α2

)
U′ (3.29)

−[A(2)]
(−1)

(
A(01)α2

1 + A(02)α2
2 + A(03)α1α2 + A(04)

)
U = 0.

Inroducing the layer number n in the Equation (3.29) and defining the vector

U
(n)

(α1, α2, z, ω) in form

U
(n)

=
{

U
(n)
1 , U

(n)
2 , U

(n)
3 , U

′(n)
1 , U

′(n)
2 , U

′(n)
3

}T
, (3.30)

where U
′(n)
j , j = 1, 2, 3, is the ordinary derivative of the j-th displacement component
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3 Wavenumber-frequency domain solution of the wave propagation problem

with respect to z, a system of ordinary differential equations is obtained

dU
(n)

dz
= B(n)U

(n)
, n = 1 . . . N (3.31)

with boundary and interface conditions

S(1)U
(1)
∣∣∣
z=z1

= Q, (3.32)

[
R(n)U

(n) − R(n+1)U
(n+1)

]∣∣∣
z=zn+1

= 0, n = 1 . . . N − 1 (3.33)

S(N)U
(N)
∣∣∣
z=zN+1

= 0. (3.34)

The matrices B(n), R(n), S(n) in Equations (3.31) to (3.34) depend only on the material
properties of each layer, the frequency ω and the Fourier variables α1, α2. The matrices
B(n) are given by

B(n) =

(
0 I

A(n,2)−1
Ã

(n)
1 iA(n,2)−1

Ã
(n)
2

)
, (3.35)

where

Ã
(n)
1 = A(n,01)α2

1 + A(n,02)α2
2 + A(n,03)α1α2 − A(n,04),

Ã
(n)
2 = [A(n,11)α1 + A(n,12)α2].

(3.36)

The matrices 0, I are the 3 × 3 null and the identity matrix, respectively. The matrices
R(n) characterizing the layer interfaces are given by

R(n) =

(
I 0

−iR(n)
0 A(n,2)

)
(3.37)

where

R
(n)
0 =




α1C
(n)
51 + α2C

(n)
56 α2C

(n)
52 + α1C

(n)
56 α2C

(n)
54 + α1C

(n)
55

α1C
(n)
41 + α2C

(n)
46 α2C

(n)
42 + α1C

(n)
46 α2C

(n)
44 + α1C

(n)
45

α1C
(n)
31 + α2C

(n)
36 α2C

(n)
32 + α1C

(n)
36 α2C

(n)
34 + α1C

(n)
35


 . (3.38)

The boundary conditions above and below for the composite with a stress-free bottom
boundary1 (3.34) are represented by the matrices S(n), n = 1, n = N

S(n) =
(
−iR(n)

0 A(n,2)
)

. (3.39)

1By means of this algorithm it is also possible to consider a multilayered plate with a fixed bottom
boundary or a multilayered half-space.
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3.2 Green’s matrix for a multilayered laminated composite

Thus, the problem considered results in a set of N systems of ODEs with constant
coefficients (for fixed Fourier parameters α1, α2 and ω) given by the 6× 6 matrices B(n)

(3.31) for each layer and the 6 × N system of boundary (3.32), (3.34) and transition
conditions (3.33).

Since the problem is linear, it is possible to decompose the Fourier transform of the
vector of displacement components with respect to the components of the applied load
vector Q(α1, α2) = {Q1, Q2, Q3} as follows:

U
(n)

(α1, α2, z, ω) = U
(n)
1 Q1 + U

(n)
2 Q2 + U

(n)
3 Q3. (3.40)

In order to find each U
(n)
j in the decomposition (3.40) it is necessary to replace the

ternary vector Q in condition (3.32) with the vector ep, in which 1 is on the j-th position
and all other components are equal to zero:

S(1)U
(1)
j

∣∣∣
z=z1

= ej. (3.41)

This decomposition (3.40) provides an opportunity to study the characteristics of the
laminated composite separately from the influence of the load. The solution of Equa-
tion (3.31) leads to the eigenvalue problem

(B(n) − λ(n)I)m(n) = 0. (3.42)

In order to investigate the properties of the eigenvalues of B(n), the matrix B̃ with real
components for real α1 and α2 is introduced as1

B̃ =

(
0 I

−A(2)−1
Ã1 A(2)−1

Ã2

)
. (3.43)

Then, (3.42) is rewritten in the form

(B − λI)m =

((
I 0

0 i · I

)
B̃

(
i · I 0

0 I

)
− λI

)
m

=

(
I 0

0 i · I

)(
B̃ − (−i) λI

)( i · I 0

0 I

)
m (3.44)

=

(
I 0

0 i · I

)(
B̃ − λ̃I

)
m̃ =

(
B̃ − λ̃I

)
m̃ = 0,

where

λ = iλ̃, m =

( −i · I 0

0 I

)
m̃. (3.45)

1The upper index n denoting the number of the layer is omitted for convenience
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3 Wavenumber-frequency domain solution of the wave propagation problem

It yields the modified equation of the eigenvalue problem with a real-valued matrix B̃

in the form
(

B̃ − λ̃I
)

m̃ = 0. (3.46)

The corresponding characteristic polynomial with real coefficients is obtained as

det
(

B̃ − λ̃I
)

= det
(

Ã1 − λ̃Ã2 + λ̃2A(2)
)

/ det
(

A(2)
)

=
6

∑
j=0

ajλ̃
j. (3.47)

The polynomial (3.47) of degree 6 with real coefficients can have even number of real
and complex conjugated roots only. According to (3.45) it yields the imaginary roots
and roots with the same imaginary part and with real parts of opposite sign. This
means, there are three roots satisfying the conditions

Re λk > 0, or Im λk < 0 if Re λk = 0, k = 1, 2, 3. (3.48)

The remaining three roots obviously satisfy

Re λk < 0, or Im λk > 0 if Re λk = 0, k = 4, 5, 6. (3.49)

The last two conditions are also called Sommerfeld conditions [135].

Remark 3.5 For orthotropic layers the coefficients of odd degrees in the polynomial (3.47) are

equal to zero: a1 = a3 = a5 = 0. It results in the following relation between the roots

λk = −λk+3, k = 1, 2, 3. (3.50)

Remark 3.6 For isotropic layers two of the roots λk are of second degree [10], i.e.

λ1 = −λ4, λ2 = λ3 = −λ5 = −λ6. (3.51)

Remark 3.7 Sommerfeld conditions (3.48), (3.49) lead to the presence of the branch points in

case, when instead of the plate a layered half-space is considered [10, 135].

In case of arbitrary anisotropy of the layer six eigenvalues λ
(n)
k and six eigenvectors

m
(n)
k in (3.42) can be found only using numerical algorithms, in case of transversal-

isotropy using relatively complicated analytical formulas [109] and in the isotropic
case analytically using simple expressions given in [10]. Note that the computational
time needed for the numerical evaluation of the eigenvalues and eigenvectors gives a
sufficient contribution to the whole time needed for the computation of the solution in
the wavenumber domain.
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3.2 Green’s matrix for a multilayered laminated composite

Using eigenvalues λ
(n)
k and eigenvectors m

(n)
k , the general solution of the ODE (3.31)

with boundary conditions at the upper surface of the multilayered plate in form (3.41)
given by a unit vector ej can be written as

U
(n)
j (α1, α2, z) = M(n)(α1, α2)Ẽ

(n)
(α1, α2, z)̃t

(n)
j , (3.52)

where

M(n) = (m
(n)
1 . . . m

(n)
6 ) (3.53)

is a matrix composed from eigenvectors m
(n)
k of the matrix B(n), the matrix Ẽ

(n)
with

Ẽ
(n)
kk (z) = exp

(
λ

(n)
k z

)
, k = 1 . . . 6, (3.54)

which is a diagonal matrix and t̃
(n)
j is a vector of unknown coefficients of the n-th layer.

For z < 0 and α → ∞ the eigenvalues are growing

λ
(n)
k ∼ C

(n)
k |α|, α → ∞, (3.55)

where the C
(n)
k are some complex constants, and according to the property

exp
(

λ
(n)
k z

)
→ ∞, k > 3 if α → ∞. In order to avoid growing exponents in (3.54) the

relations (3.48), (3.49) are used and instead of the matrix Ẽ
(n)

the matrix E(n)(z) for
each z: zn+1 ≤ z ≤ zn is defined as follows

E
(n)
kk (z) = exp

(
λ

(n)
k (z − zn)

)
, k = 1, 2, 3, (3.56)

E
(n)
kk (z) = exp

(
λ

(n)
k (z − zn+1)

)
, k = 4, 5, 6.

It leads to other unknown coefficients t
(n)
j instead of t̃

(n)
j , i.e. the displacement vector -

instead of (3.52) is evaluated as

U
(n)
j (α1, α2, z) = M(n)(α1, α2)E(n)(α1, α2, z)t

(n)
j . (3.57)

Remark 3.8 If instead of the layered plate a layered half-space is considered, under some certain

conditions on λk, k = 1, . . . , 6, the terms k = 4, 5, 6 in (3.56) can be neglected since they are

non-physical. However, the Sommerfeld conditions (3.48), (3.49) are not valid for layers with

low symmetries of stiffness properties (as it is stated in [135]) and the principle of limiting

absorption is needed to be applied to distinguish the pure imaginary eigenvalues λk between

two groups of eigenvalues similarly to (3.48) and (3.49).
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3 Wavenumber-frequency domain solution of the wave propagation problem

Taking into consideration the required type of solution (3.57), on the basis of the
boundary conditions (3.33), (3.34), (3.41) a system for defining the unknown coeffi-
cients is obtained

Wtj = ej, j = 1, 2, 3, (3.58)

where tj is a 6N vector consisting of unknown coefficients for all layers, i.e. consisting

of all vectors t
(n)
j : tj = (t

(1)
j

T
, t

(2)
j

T
. . . t

(N)
j

T
)T and in turn t

(n)
j = (t

(n)
j,1 . . . t

(n)
j,6 )T, n =

1 . . . N. The matrix W (3.58) does not depend on j and has the form

W =




L
(1)
1 0 0 . . . 0 0

G
(1)
2 −G

(2)
2 0 . . . 0 0

0 G
(2)
3 −G

(3)
3 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 G
(N−1)
N −G

(N)
N

0 0 0 0 0 L
(N)
N+1




, (3.59)

where

L
(n)
k = S(n)M(n)E(n)(zk), (3.60)

G
(n)
k = R(n)M(n)E(n)(zk)

for n = 1 . . . N, k = 1 . . . N + 1, while the matrices R(n) and S(n) are given by (3.37)
and (3.39). The number of unknown constants as well as the number of equations in
the system (3.58) is 6N. The solution of this system of the linear equations can be
found for each j in a recurrent form as

t
(N)
j =

(
L

(1)
1 G̃

L
(N)
N+1

)−1 (
ej

0

)
, j = 1, 2, 3,

G̃ =
(

G
(1)
2

)−1
G

(2)
2

(
G

(2)
3

)−1
G

(3)
3 . . .

(
G

(N−1)
N

)−1
G

(N)
N ,

t
(n−1)
j =

(
G

(n−1)
n

)−1
G

(n)
n t

(n)
j , n = N, N − 1, . . . 3, 2.

(3.61)

The use of the recurrent form of the solution makes this low-cost algorithm similar to
the transfer matrix method [52, 137]. Note that the transfer matrix method and this
recurrent algorithm become unstable for large values of ω and α since E(n)(z) → 0

(z 6= 0) as α → ∞ and consequently the matrices G
(j)
k tend to be singular [82]. If

the system (3.58) will be solved directly without using the sparsity of the matrix W,
this algorithm will be similar to a global matrix method [65, 94], which is more time-
expensive, however, is stable for large values of ω and α.
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3.2 Green’s matrix for a multilayered laminated composite

Having solved the system (3.58) for each j = 1, 2, 3, the functions U
(n)
j (α1, α2, z, ω)

can be found. They allow to rewrite the solution of the problem U(n) for each layer n

in the form

U(n)(α1, α2, z, ω) =




U
(n)
11 U

(n)
21 U

(n)
31 ,

U
(n)
12 U

(n)
22 U

(n)
32 ,

U
(n)
13 U

(n)
23 U

(n)
33 ,


Q(α1, α2) (3.62)

= K(n)(α1, α2, z, ω)Q(α1, α2),

where in U
(n)
jk the first index j corresponds to the choice of the boundary condition

in (3.41) and the second index k describes the number of component of the vector

U
(n)
j . The matrix K(n)(α1, α2, z, ω) is usually called Green’s matrix (in the wavenumber

domain) of the n-th layer of the multilayered composite plate under the excitation at the
top surface. It can be used to compute Green’s matrix of the whole plate K(α1, α2, z, ω)
in the wavenumber domain in a form given by the formula (3.11) as

K(α1, α2, z, ω) =
{

K(n)(α1, α2, z, ω), zn+1 ≤ z ≤ zn, n = 1, . . . , N
}

. (3.63)

The columns of the matrix K(α1, α2, z, ω) in (3.63) are the vectors of displacements
excited by concentrated surface loads δ(x)δ(y) · ej, j = 1, 2, 3 along the coordinate axes
(ej are the corresponding unit vectors).

Remark 3.9 Besides the displacement vector obtained using an approach described here, ac-

cording to (3.30) its derivative with respect to the variable z is computed as follows:

dU(n)(α1, α2, z, ω)

dz
=




U
(n)
14 U

(n)
24 U

(n)
34

U
(n)
15 U

(n)
25 U

(n)
35

U
(n)
16 U

(n)
26 U

(n)
36


Q(α1, α2). (3.64)

Note that the derivatives of the displacement vector with respect to x, y and t variables can be

obtained in the Fourier domain using (3.6).

3.2.2 Green’s matrix for a single-layered isotropic plate

The algorithm of Green’s matrix computation (section 3.2.1) provides a numerical so-
lution only. A reasonable analytical solution can be obtained only in the case of a
single isotropic layer (already in case of two layers it would be not suitable for the im-
plementation on PC). Within the notations adopted by Babeshko [10], Green’s matrix
for an isotropic layer can be expressed as

K (α1, α2, z, ω) =




−i
(
α2

1M + α2
2N
)
/α2 −iα1α2 (M − N)/α2 −iα1P

−iα1α2 (M − N)/α2 −i
(
α2

2M + α2
1N
)
/α2 −iα2P

α1S/α2 α2S/α2 R


 . (3.65)

The explicit expressions describing the evaluation of the analytical functions M(α, z, ω),
N(α, z, ω), P(α, z, ω), S(α, z, ω) and R(α, z, ω) may be found in Appendix A.8.

63



3 Wavenumber-frequency domain solution of the wave propagation problem

3.2.3 Main properties of Green’s matrix

Before starting with the algorithms for evaluation of the improper iterated integrals
of the inverse Fourier transform (3.11), which are given in chapter 5, the properties of
Green’s matrix need to be investigated.

• The first and most important property of Green’s matrix components is the pres-
ence of the singularities on the real axes, which require the choice of the integra-
tion contour with respect to the principle of limiting absorption or other radiation
principles. As it follows from the system of linear equations (3.58) by applying
Cramer’s rule, each component of Green’s matrix contains as denominator the
determinant of W(α1, α2, ω):

Kij(α1, α2, z, ω) = K̃ij(α1, α2, z, ω)/ det W(α1, α2, ω), i, j = 1, 2, 3. (3.66)

Herewith the functions K̃ij(α1, α2, z, ω) do not have any singularities at finite
points. In turn, the function det W(α1, α2, ω) contains all finite singularities of
Green’s matrix as its roots, i.e.

det W(α1, α2, ω) = 0. (3.67)

This equation is also known as dispersion equation (see section 2.3.2), and allows
to describe the properties of the multilayered plate, taking into account the mate-
rial properties of each layer, the orientations and the thicknesses of the individual
layers as well as their stacking sequence as it is studied in detail in section 4.

• The components K11, K12, K21, K22 and K33 considered as functions of α are sym-
metric for each γ, all other components K13, K23, K31 and K32 are antisymmetric,
i.e.

K(−α) =




+K11(α) +K12(α) −K13(α)
+K21(α) +K22(α) −K23(α)
−K31(α) −K32(α) +K33(α)


 . (3.68)

Note that similar properties with respect to γ can be obtained if γ is replaced by
γ + π since

α1 = α cos(γ + π) = −α cos γ, α2 = α sin(γ + π) = −α sin γ. (3.69)

• The expression of the solution in form (3.57) can be used to analyse the asymp-
totic properties of Green’s matrix components, which are found to be decaying
functions of α

Kij(α, γ, z = 0, ω) =
Tij(γ, ω)

α
+ o

(
α−1

)
∼

Tij(γ, ω)

α
, i, j = 1, 2, 3. (3.70)
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3.3 Green’s matrices for MLPT and CLPT in transformed domain

• It is worth mentioning that Green’s matrix has another important property, which
however, is valid only for isotropic laminates: Green’s matrix can be decoupled
as




−i
(
α2

1M + α2
2N
)
/α2 −iα1α2 (M − N)/α2 −iα1P

−iα1α2 (M − N)/α2 −i
(
α2

2M + α2
1N
)
/α2 −iα2P

α1S/α2 α2S/α2 R


 (3.71)

=




cos γ sin γ 0
− sin γ cos γ 0

0 0 1




−1

KISO(α, z, ω)




cos γ sin γ 0
− sin γ cos γ 0

0 0 1


 ,

where

KISO(α, z, ω) =




−iM 0 −iαP

0 −iN 0
iS
α

0 R


 . (3.72)

3.3 Green’s matrices for MLPT and CLPT in

transformed domain

The algorithm previously described in section 3.2.1 can be used to evaluate Green’s
matrix in the wavenumber-frequency domain for the elastodynamic wave propagation
problem in a laminated composite plate, Equations (2.5), (2.10), (2.12). Similarly, the
problems of wave propagation described by Classical and Mindlin Laminated Plate
Theories can be solved using an integral approach. The integral transform Fx,y,t of the
equation of motion (2.29) of MLPT with respect to variables x, y and t yields

TMUM = FM, (3.73)

where the partial derivatives with respect to x, y and t in matrices TM (Appendix 2.2.3)
are replaced by the multipliers according to formula (3.6). Note that the matrix TM is
not-symmetric, but positive definite Hermitian. The transformed displacement vector
UM and load vector FM are

UM(α1, α2, ω) =
(
U0, V0, W0, Ψx, Ψy

)T ,

FM(α1, α2, ω) = V(ω)

×
(

Q1(α1, α2), Q2(α1, α2), Q3(α1, α2),
h

2
Q1(α1, α2),

h

2
Q2(α1, α2)

)T

.

The vector of displacements at mid-plane in the wavenumber-frequency domain UM

is obtained by simple inversion of the matrix TM:

UM = T−1
M FM. (3.74)
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3 Wavenumber-frequency domain solution of the wave propagation problem

However, the representations are not of the same form as the solution of the elasto-
dynamic problem (3.9). Applying the Fourier transform to the expressions (2.15), the
displacements are obtained as

U1(α1, α2, z, ω) =U0(α1, α2, ω) + zΨx(α1, α2, ω),

U2(α1, α2, z, ω) =V0(α1, α2, ω) + zΨy(α1, α2, ω),

U3(α1, α2, z, ω) =W0(α1, α2, ω),

i.e. Green’s matrix of the Mindlin Laminated Plate takes the form

UMLPT(α1, α2, z, ω) =




U0,1 + zΨx,1 U0,2 + zΨx,2 U0,3 + zΨx,3,
V0,1 + zΨy,1 V0,2 + zΨy,2 V0,3 + zΨy,3,

W0,1 W0,2 W0,3


Q(α1, α2)

= KMLPT(α1, α2, z, ω)Q(α1, α2), (3.75)

where the index j in U0,j, V0,j, W0,j, Ψx,j and Ψy,j describes the displacement response
of the structure at the mid-plane due to the action of the concentrated shear traction
along the x-axis, i.e. Qj = 1, Qk = 0 for k 6= j. The components K11 and K33 of
Green’s matrix KMLPT are compared with those of Green’s matrix of the elastodynamic
problem in Figure 3.4 for the [0/90]s laminated composite plate on the basis of CFRP-
T700GC/M21 (material properties are given in Table A.1 in Appendix A.9) for the
frequency-thickness f · h = 300 KHz · mm and for γ = 45◦ in dependence on α. Here
the real singularities of both matrices are located close to each other for the component
K11 and some similarities for both matrices can be noticed, however for K33 the MLPT
Green’s matrix has a fewer number of real singularities. Note that with increasing
frequency-thickness the difference between the values of Green’s matrix components
for MLPT and elasticity theory grows.

a b

Figure 3.4: Comparison between Green’s matrix components K11 (a) and K33 (b) for
the elastodynamic problem (“−“) and MLPT (“−−“) in dependence on
α for [0/90]s laminated composite plate at frequency-thickness f · h =
300 KHz · mm for γ = 45◦
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3.3 Green’s matrices for MLPT and CLPT in transformed domain

Application of the integral approach to the equation of the CLPT (2.36) yields

TCUC = V(ω)Q (3.76)

with UC(α1, α2, ω) = (U0, V0, W0)
T and with non-symmetric but positive defninite Her-

mitian matrix TC. Green’s matrix of the Classical Laminated Plate is then computed
as follows:

UCLPT(α1, α2, z, ω) =




U0,1 − zW0,1 U0,2 − zW0,2 U0,3 − zW0,3,
V0,1 − zW0,1 V0,2 − zW0,2 V0,3 − zW0,3,

W0,1 W0,2 W0,3


Q(α1, α2)

= KCLPT(α1, α2, z, ω)Q(α1, α2). (3.77)

The expressions obtained for models based on plate theory are much simpler and al-
low a much quicker evaluation of Green’s matrix of the wave propagation problem
in comparison to the algorithm described in section 3.2.1. However, as mentioned in
section 2.2.3 and as will be shown by numerical examples, the application of plate
theories is limited in practice to the case of low excitation frequencies.

The properties of Green’s matrices for MLPT and CLPT are generally similar to the
properties of Green’s matrix of the elastodynamic problem (section 3.2.1). For exam-
ple, the values of Green’s matrix components are real or pure imaginary for Re α = α

and the matrices KMLPT and KCLPT have the same symmetric properties (3.68) as the
matrix K in (3.63). Moreover, if the symmetric plate is considered, both models give
the equation with the in-plane and out-of-plane motions independently of each other,
i.e. the motions are decoupled.

However, some differences are presented. The asymptotic properties of Green’s
matrices for MLPT and CLPT are obtained for α → ∞ as follows:

KCLPT ∼ 1
α2




1 1 α−1

1 1 α−1

α−1 α−1 α−2


 , KMLPT ∼ 1

α2




1 1 α−1

1 1 α−1

α−1 α−1 1


 . (3.78)

The influence of the properties of Green’s matrices described here on the algorith of
computation of the corresponding wave fields is discussed in the following chapters.
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4 Dispersion properties of laminated

composite plates

4.1 Dispersion equation

This part represents the algorithm of computation of the poles of Green’s matrix in the
wavenumber-frequency domain. This algorithm is used for studying the dispersion
properties of various laminated composites.

4.1.1 Dispersion equation for elastodynamic problem

As it is stated in section 3.2.3 due to the property (3.66) all poles of Green’s matrix are
defined by the characteristic (or dispersion) equation

det W(α, γ, ω) = 0. (4.1)

This equation has to be solved for the values α in dependence on γ and ω as k(γ, ω).
For each pair of the parameters γ and ω, there exist a finite number of real roots and
a countable number of complex roots. Note that if k(γ, ω) satisfies Equation (4.1), its
value taken with the opposite sign −k(γ, ω) will also satisfy (4.1). This results in a
periodicity of the poles with respect to π due to (3.69). In addition, for a complex
root k of the dispersion equation, the values −k, k∗ and −k∗, where "‘∗"’ denotes the
complex conjugate, are also satisfying the dispersion equation, i.e. while root-finding
it is enough to find the roots with non-negative both real and imaginary parts, i.e. k:
Re k ≥ 0, Im k ≥ 0. The roots of the characteristic equation (4.1) can be represented
in dependence on parameters γ and ω by the continuous surfaces (or curves), called
dispersion curves.

The problem of finding the dispersion surfaces was investigated by many authors
using transfer and global matrix techniques (see section 2.3.2). The dispersion curves
found from (4.1) should coincide with the curves found using transfer and global ma-
trix techniques. Before starting with a description of the root-finding (or pole-finding)
algorithm, some properties of (4.1) need to be discussed.

In particularly, some roots of the dispersion equation found for fixed γ and ω are
eliminable poles of Green’s matrix, i.e. at the same time they are zeros of the same
degree of all components K̃ij(α1, α2, z, ω) in (3.66) and do not define any discontinuities
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4 Dispersion properties of laminated composite plates

of Green’s matrix components and should be excluded from the analysis. All other
roots of (4.1) are the poles of Green’s matrix, i.e. if k(γ, ω) is the pole of the order m of
Green’s matrix1, it follows that

lim
α→k(γ,ω)

Kij(α, γ, z, ω) (α − k(γ, ω))m 6= 0 (4.2)

for at least one component of Green’s matrix. Equation (4.2) can be used to determine
if the root of the dispersion equation found is eliminable, however it is more convenient
to use Cauchy’s argument principle [3]

∫

C

f ′(α)

f (α)
dα = 2πi(N − P), (4.3)

where C is some closed contour, N and P denote respectively the number of zeros
and poles of meromorphic function f (α) inside the contour C. The zeros (poles) are
counted as many times as their multiplicity (order). As an integration contour C a
circle of small radius with the center in a point of the complex plane can be chosen,
which is necessary for checking up, whether it is a pole of Green’s matrix or not.

Another problem consists in the numerical calculation of eigenvectors mj in (3.52)
for each ply in a plate. Due to the fact that the vector −mj is also an eigenvector of
the problem and replacing the vector mj by −mj in (3.52), the sign of determinant
will be changed to the opposite one, i.e. the left side of Equation (4.1) becomes to be
−det W(α, γ, ω). This concludes that only the absolute value of function det W(α, γ, ω)
can be computed numerically stable as a continuous function of the parameters γ and
ω. It follows that the usual bisection method [134], Newton’s [134] and Mullers [93]
methods are not suitable for root-finding. Instead of them, the non-gradient opti-
mization algorithms not requiring a continuous first derivative of the goal function
can be applied. However, they are usually slower than aforementioned root-finding
algorithms. Due to this fact and due to the presence of eliminable roots it is more
convenient to consider the equation

1
det K(α, γ, z = 0, ω)

= 0 (4.4)

instead of the dispersion equation (4.1), where K(α, γ, z = 0, ω) is Green’s matrix
computed at the surface of the structure z = 0. Evidently, the poles of Green’s matrix
satisfy (4.4). This equation can be replaced by another equation

1
K11(α, γ, z = 0, ω) + K22(α, γ, z = 0, ω) + K33(α, γ, z = 0, ω)

= 0 (4.5)

1Note that if a layered half-space is considered instead of the plate, also the discontinuities of order
1/2 are presented, i.e. branch points [9, 10].
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4.1 Dispersion equation

with the same roots. Both dispersion equations (4.4) and (4.5) follow from the property
of Green’s matrix components given by (3.66).

Note that some of the discontinuities are presented not for all components of Green’s
matrix and it is not sufficient to consider only one component of Green’s matrix
K−1

ij (α, γ, ω) = 0 for the determination of all poles. The main disavantage of both
Equations (4.4), (4.5) consists in a presence of discontinuties in the functions, the zeros
of which should be found. It brings additional difficulties into the numerical imple-
mentation of the pole-finding algorithm.

Another difficulty observed is the intersection of the dispersion curves correspond-
ing to different wave modes, which can distort the following of the curve while chang-
ing angle γ or frequency ω. However, in case of a laminated plate symmetric with
respect to mid-plane with all plies of the elastic symmetry not lower than orthotropic,
the symmetric and antisymmetric wave modes can be decoupled and the root-finding
is simplified. It can be done by considering only its upper half consisting of N/2 layers
instead of the whole laminate and applying to the lower boundary of laminate’s half
the boundary conditions given by (2.48), (2.49). The matrix SN/2 for lower boundary
condition in the wavenumber-frequency domain is then obtained for symmetric and
antisymmetric wave modes as follows1:

SN/2
S =




0 0 0 C55 C54 0
0 0 0 C45 C44 0
0 0 1 0 0 0


 ,

SN/2
A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 −i(α2C34 + α1C35) 0 0 C33


 . (4.6)

Considering the half of the laminate with lower boundary conditions given by matri-
ces SN/2

S or SN/2
A , the characteristic equations of symmetric and antisymmetric wave

modes are obtained as

det WS(α, γ, ω) = 0 or det WA(α, γ, ω) = 0. (4.7)

Similar equations can be obtained if the transfer and global matrix algorithms are ap-
plied (see section 2.3.2). The use of Equations (4.7) allows to reduce the computational
time due to the lower number of layers in each composite and to study the disper-
sion properties of symmetric and antisymmetric wave modes separately avoiding the
situation of the curves intersection, while the curves of one type (either symmetric or
antisymmetric) do not cross each other.

1Some components are zero due to an assumption of at least orthotropic properties of layers and due
to the boundary conditions (2.48), (2.49).
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4 Dispersion properties of laminated composite plates

4.1.2 Dispersion equation for CLPT and MLPT

In case of modelling of a structure using plate theories, the dispersion equation is
given by setting equal to zero the determinants of the matrices TC and TM for CLPT
and MLPT, respectively,

det TM(α, γ, ω) = 0, (4.8)

det TC(α, γ, ω) = 0, (4.9)

as it follows from (3.73) and (3.76). As the dimension of the matrices TC and TM is
lower than for elastodynamic problem and due to the calculation of their components
in the frequency-wavenumber domain as analytical functions, the roots of the disper-
sion equations (4.8), (4.9) are computed essentially faster than for the model based on
elastodynamic equations.

As well as in case of modelling by means of the elasticity theory, the problem of root-
finding for the characteristic equation becomes simpler in case of symmetry of a com-
posite plate with respect to its mid-plane. For CLPT due to zero coupling components
B = 0 and I1 = 0 in matrix TC, the equations for the determination of wavenumbers
of symmetric wave modes become to be

TC,11(α, γ, ω)TC,22(α, γ, ω) − T2
C,12(α, γ, ω) = 0. (4.10)

The corresponding equation for determination of wavenumbers of antisymmetric wave
mode is given by

TC,33(α, γ, ω) = 0, (4.11)

or in an explicit form by (2.62). The Equations (4.10), (4.11) unlike (4.7) given previ-
ously have only a final number of roots at any frequency ω and angle γ. Moreover,
the expression on the left-side of (4.10) is a biquadratic polynomial with respect to α.
It has only two pairs of real roots ±k1(γ, ω) and ±k2(γ, ω). The roots k1(γ, ω) and
k2(γ, ω) correspond to the fundamental symmetric modes S0 and SH0. Furthermore,
the wavenumbers of these modes are depending linearly on the frequency ω and the
corresponding phase and group velocities are independent of the frequency. The wave
modes resulting from the equation of antisymmetric motion (4.11) are discussed pre-
viously in section 2.3.6.3.

Considering the symmetric motion using MLPT, it is obtained that the characteristic
equation is the same as for CLPT due to TM,ij = TC,ij for i, j = 1, 2:

TM,11(α, γ, ω)TM,22(α, γ, ω) − T2
M,12(α, γ, ω) = (4.12)

TC,11(α, γ, ω)TC,22(α, γ, ω) − T2
C,12(α, γ, ω) = 0.

72



4.2 Algorithm for calculation of wavenumbers

The dispersion equation for the antisymmetric motion obtained using MLPT differs
from (4.11) obtained previously as follows:

∣∣∣∣∣∣

TM,33(α, γ, ω) TM,34(α, γ, ω) TM,35(α, γ, ω)
−TM,34(α, γ, ω) TM,44(α, γ, ω) TM,45(α, γ, ω)
−TM,35(α, γ, ω) TM,45(α, γ, ω) TM,55(α, γ, ω)

∣∣∣∣∣∣
= 0. (4.13)

The determinant on the left side can be represented as a polynomial of degree 6 with
respect to α, which has three pairs of roots corresponding to antisymmetric modes A0,
A1 and SH1. The wavenumbers of the mode A0 are always real, in contrast to the
wavenumbers of modes A1 and SH1, which are pure imaginary at low frequencies and
become to be real for frequencies higher than the cut-off frequency. The movement
of the values of wavenumbers of A1 and SH1 in a complex plane with increasing the
frequency is shown in Figure 4.1a.

The numerical computation of the roots of dispersion equations for a modelling
based on laminated plate theories in comparison with models using elastodynamic
equations is much faster. The functions in the equations are given analytically, do
not have any singularities and all roots of the characteristic equations are not elim-
inable discontinuities of Green’s matrix components1. Furthermore, for the symmetric
composite plate standard root-finding algorithms like bisection method or Muller’s
method can be used.

4.2 Algorithm for calculation of wavenumbers

The properties of roots of the characteristic equations described in section 4.1.1 require
a development of a special stable algorithm based on standard root-finding algorithms
and taking into account properties of the equations under study. Such an algorithm
developed by the author of this thesis and implemented for the investigation of dis-
persion of composites in the works [60, 61] is presented in this section. This algorithm
is based on Muller’s method [93] and employs the computation of wavenumbers for
some initial values of parameters γ and ω and then realizes the curve following which
starts from the previously found solution. Muller’s method is chosen because it does
not need the direct calculation of derivative and because of its high speed of conver-
gence for functions of complex variables. Note that the algorithms for obtaining the
wavenumbers of isotropic [82] and anisotropic [43, 69] layered structures are similar
to the algorithm presented here, however the algorithm presented here involves some
important improvements.

1Note that due to decoupling of the problem the symmetric wave modes do not influence the vertical
displacement.
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4 Dispersion properties of laminated composite plates

Below the steps of the algorithm of calculating the poles of Green’s matrix for angles
γ ∈ [0, 2π] and frequencies ω ∈ [ωmin, ωmax] are presented1. The poles are searched
with accuracy ε, the parameters γ and ω are incremented by the values ∆γ and ∆ω

correspondingly.

1. First, the algorithm checks if the laminated plate is symmetric. If it is true, the
wave motion can be decoupled, the following steps will be done for antisymmet-
ric and symmetric modes separately. Otherwise, one of the characteristic equa-
tions (4.4), (4.5) or (4.7) is used. The values of starting frequency ωmax and the
angle γ = 0 are chosen. The counters nγ and nω, which describe the number of
completed steps of the algorithm with respect to variables γ and ω respectively,
are both set to zero.

2. If nω = 0, all poles with respect to α in domain Υ : 0 ≤ Re α ≤ αRe, 0 ≤ Im α ≤
αIm are searched for the frequency ωmax and γ = 0 using Muller’s method with
accuracy given by ε and initial approximations given as points in the domain
Υ as αjm = (j − 1)αRe/NRe + i(m − 1)αIm/NIm, where j = 1, . . . , NRe + 1 and
m = 1, . . . , NIm + 1. Note that the values αRe and αIm describe the pre-defined
limitations on the searching area, NRe and NIm correspond to the given number
of discrete points taken along the real and imaginary axis to get the initial ap-
proximations in the domain of search with a total number of (NRe + 1) · (NIm + 1)
initial approximations. Optimal values are estimated on various numerical ex-
amples at frequency-thickness products2 f · h < 1.5 MHz · mm to be NRe = 50,
NIm = 20, αRe = 10 and αIm = 3. If nω > 0, the values of poles found for γ = 0
and frequency ω + ∆ω (nω − 1) are used as initial approximations instead of αjm.
Only unique3 values of roots found are considered as roots of equation.

Hereinafter the values are checked to be the poles of Green’s matrix by numerical
evaluation of the contour integral (4.3), i.e. for the value k = k(γ, ω) the contour
integral over the circle Ck with the center at k of radius 5ε is computed using the
following formula based on the midpoint approximation of definite integral and
central difference for derivative

P ≈ − 1
2πi

N−1

∑
j=1

f (k + 5ε eiβ, γ, ω)
∣∣
β=2π j/N

− f (k + 5ε eiβ, γ, ω)
∣∣
β=2π(j−1)/N

f (k + 5ε eiβ, γ, ω)
∣∣
β=2π(j−1/2)/N

, (4.14)

where the determinant of Green’s matrix f = det K(α, γ, z, ω) or its components
Kij(α, γ, z, ω) can be used as the function f (α, γ, ω). The value P corresponds to
the order of the pole k. Note that the formula assumes that no zeros or other

1This algorithm requires that all values are given in dimensionless form, i.e. instead of ω the value ω
is used.

2At higher frequencies the limits along the real-axis should be higher since the real part of wavenum-
bers increases as frequency increases.

3The roots of opposite sign are considered as a single root.
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4.2 Algorithm for calculation of wavenumbers

poles are located inside of the region bounded by circle Ck. Usually the number
of N = 8 . . . 32 is sufficient to get the true value of P after rounding.

3. The angle γ is changed to γ + ∆γ, the value of nγ is increased by 1. If the value
of γ ≤ 2π, the next step is 4, else the algorithm proceeds with step 5.

4. For the new value of γ the initial approximations of the poles can be found by
extrapolating the values of wavenumbers found at previous steps with respect to
γ on current step. Depending on the number of the steps with respect to γ nγ

previously completed for the current frequency ω, the initial approximations for
Muller’s method can be extrapolated from previous steps as1

k(γ + ∆γ) = k(γ), for nγ = 1,

k(γ + ∆γ) = 2k(γ)− k(γ − ∆γ), for 1 < nγ < 6, (4.15)

k(γ + ∆γ) = 3k(γ − ∆γ)− 3k(γ − 3∆γ) + k(γ − 5∆γ), for nγ ≥ 6.

The use of the extrapolation formulas (4.15) not only gives a better convergence to
the roots of the dispersion equation, but also minimizes the risk of following the
wrong curve if two dispersion curves cross, because in a quadratic extrapolation
applied if nγ ≥ 6 the alternate points instead of the consecutive points are used,
that delays the influence of any erroneous points by one step [82].

Then all roots of dispersion equation are searched. To prevent the situation that
two different initial approximations give the same root, the root k already found
can be eliminated by considering the function f (α)(α − k) instead of function
f (α). Hence, sometimes the algorithm springs to another dispersion curve k j

which was not followed before. If this situation occurs, the algorithm tries to
find the missed root considering another dispersion equation as chosen initially.
Usually this allows to find the root correctly. If it does not help, the root k j is
eliminated2 and again the previous initial approximation is used. After finding
all poles for the angle γ, step 3 is evaluated.

5. If ω − ∆ω > ωmin, the new frequency is set to be ω = ω − ∆ω, the value nω is
increased by 1, nγ is set to 0 and step 2 is evaluated, else the algorithm terminates.

Note that step 2 takes long computational time, because the good initial approxima-
tions for roots are unknown and many initial approximations are used to ensure that
no poles located in the domain Υ are missed. All other steps are taking less com-
putational time due to the use of good initial approximations. The increments ∆γ

and ∆ω recommended for numerical computations are ∆γ ∼ 0.0005π . . . π/180 and
∆ω ∼ 0.00001 . . . 0.02. The computational time of the algorithm depends mostly on the
number of layers in a composite plate, the number of roots followed by the algorithm
and the values of increments ∆γ and ∆ω.

1Dependence of the roots on ω is omitted here for simplicity.
2This root is not followed after this iteration.
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4 Dispersion properties of laminated composite plates

Remark 4.1 For low frequencies the wavenumbers of three fundamental wave modes are all

approaching zero, the differences between their values are small and sometimes the algorithm

misses one of the roots. However, the values of phase velocities cp = ω/k of the fundamental

modes are different, and instead of wavenumbers the values of cp for each mode are searched.

Remark 4.2 The algorithm can be modified by using the extrapolation formulas similar to

(4.15) for calculating the initial approximations on the next iteration with respect to ω.

Remark 4.3 The same algorithm with some minor modifications can also be used for finding

the roots of the dispersion equation of plate theories (4.8), (4.9).

4.3 Investigation of dispersion properties of laminated

composites

The methods of calculation of dispersion curves for laminated composites described
previously in this chapter are applied in this section for studying the dispersion prop-
erties of various composite plates. The dispersion curves of wave modes with real-
valued wavenumbers are of most interest since they correspond to propagating (non-
attenuating) Lamb waves. Below the properties of Lamb waves observed in the com-
posite specimens under study are discussed.

4.3.1 Common behaviour of dispersion curves increasing the

frequency

As mentioned in section 2.3.4, in a plate with a stress-free lower boundary at least
three non-attenuating waves are observed, so called fundamental wave modes A0, S0

and SH0. These modes correspond to Green’s matrix poles of first order (except of the
frequency ω = 0, i.e. for the static case). Unlike the fundamental modes, most of the
other so called higher-order wave modes become to have real-valued wavenumbers only
for frequencies higher than their cut-off frequencies. At cut-off frequency the corre-
sponding wavenumber curve passes through the origin of the complex plane α (point
3 in Figure 4.1a). The cut-off frequency is reached by the wave mode simultaneously
in all directions γ. For frequencies lower than a cut-off frequency (points 1 and 2 in
Figure 4.1a) the wavenumbers of the corresponding mode are pure imaginary, for fre-
quencies higher (points 4 and 5 in Figure 4.1a) than a cut-off frequency the wavenum-
bers are real-valued. At the cut-off frequency, the wave mode corresponds to Green’s
matrix pole of second order, at all other frequencies the corresponding poles are of first
order. However, some laminated plates similarly to isotropic plates have wave modes
with complex-valued wavenumbers, for which the imaginary parts become to be small
while increasing the frequency (points 1 and 2 in Figure 4.1b) and at some frequency,
the wavenumbers become to be real (points 4 and 5 in Figure 4.1b). In the sequel the
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a b

Figure 4.1: (a) Pure imaginary poles approaching the real axis while the frequency
increases. (b) Complex poles approaching the real axis while the frequency
increases and producing the backward propagating mode S2b

frequency at which the propagating wave mode firstly observed is called a frequency of

first appearance of the wave mode. Since the complex conjugate values of wavenumbers
also satisfy the dispersion equation (see points denoted as 1 and 2 in Figure 4.1b), the
order of Green’s matrix pole corresponding to this frequency is 2. Note that in differ-
ent directions γ, this frequency is reached by the wave modes not simultaneously, i.e.
the mode is still non-propagating for some angles of γ while for other angles it has
already real-valued wavenumbers. For frequencies higher than the frequency of first
appearance of the mode, there are two propagating wave modes observed. One of the
two modes, e.g. S1 in Figure 4.1b, has normal dispersion (positive group velocity) and
behaves like other higher-order wave modes at higher frequencies. The wavenumbers
of the second mode decrease with increasing of frequency, e.g. S2b in Figure 4.1b. The
group velocity corresponding to this mode is negative and the corresponding poles of
Green’s matrix are irregular. At some frequency, its wavenumber curve passes through
the origin and takes pure imaginary values. The corresponding frequency is a cut-off
frequency and is reached by the wave mode for all angles γ simultaneously. Further
following of this curve shows that for higher frequencies this mode behaves as all other
higher-order wave modes with pure imaginary wavenumbers, and can become to be
propagating at some cut-off frequency.
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4 Dispersion properties of laminated composite plates

a b

Figure 4.2: Wavenumber curves of the poles in unidirectional plate of graphite-epoxy I
when γ = 60◦ depending on frequency-thickness product f · h (a) and de-
pending on γ when f · h = 1.472 MHz · mm (b)

An example of the wavenumber curves calculated in dependence on frequency for
fixed angle γ = 60◦ is presented in Figure 4.2a for a unidirectional plate made of
graphite-epoxy I (Table A.1 in Appendix A.9). For frequency-thicknesses lower than
the first cut-off frequency-thickness f · h ≈ 750 KHz · mm, only three waves are prop-
agating. For 750 < f · h < 1380 (in KHz · mm) in addition to the fundamental
wave modes two higher-order wave modes - A1 and SH1 - are observed. For the
frequency-thickness f · h ≈ 1380 KHz · mm two additional waves become to have real
wavenumbers. The wavenumbers of one of these two higher-order wave modes grow
with increasing frequency, in constrast, the wavenumbers of the second of these two
wave modes decline with increasing frequency, i.e. dk(ω)/dω = 1/cg < 0 and this
mode is a backward mode corresponding to an irregular pole of Green’s matrix. At
f · h ≈ 1500 KHz · mm, the curve of its mode crosses the origin and for frequen-
cies higher than this cut-off frequency, this mode has pure imaginary wavenumbers1.
Analysing the wavenumber curves, the intersections between the curves are observed,
e.g. at f · h ≈ 830 KHz · mm and f · h ≈ 1390 KHz · mm. However, the intersecting
curves correspond to two different types of wave modes - antisymmetric and symmet-
ric ones. In Figure 4.2b the wavenumbers of antisymmetric (red lines) and symmetric
(dashed blue lines) are plotted in dependence on angle γ if the frequency-thickness
product is given by f · h = 1473 KHz ·mm. This figure illustrates well the complicated
dependence of the wavenumbers on direction γ due to the high influence of anisotropy
of the plate.

The behaviours displayed in Figure 4.1 are also valid for multilayered composite
plates. The corresponding numerical results are illustrated in the next subsection.

1However, usually this mode has a second cut-off frequency, at which it becomes to be propagating
with wavenumbers corresponding to regular poles of Green’s matrix.
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4.3.2 Numerical results

a c

b d

Figure 4.3: Graphs of phase velocities (marked with asterisks) of Lamb waves in com-
parison to results (grid lines) published in [149] for a [456/ − 456]s laminate
in direction of γ = 30◦ (a) and for a [45/ − 45/0/90]s laminate in direction
of γ = 45◦ (c), for a [456/ − 456]s composite plate (b) at dimensionless fre-
quency ωh/cT = 4 ( f · h = 1238 KHz · mm) and for a [45/ − 45/0/90]s
composite plate (d) at dimensionless frequency ωh/cT = 1.78 ( f · h =
551 KHz · mm)

In order to validate the method presented previously, the dispersion curves obtained
by its application are compared with the dispersion curves obtained by the transfer ma-
trix method used by the authors in [149]. The results are compared for the cross-ply
laminated composite plate consisting of 24 layers with stacking sequence1 [456/− 456]s

1Due to the continuity of the stresses and displacements at layer interfaces, this stacking sequence can
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4 Dispersion properties of laminated composite plates

and for the quasi-isotropic laminated composite plate consisting of 8 layers with stack-
ing sequence [45/ − 45/0/90]s. All layers in both laminated plates are made of the
orthotropic material AS4/3502, the properties of which are given in Table A.1 in Ap-
pendix A.9.

Figures 4.3a, b, c and d show the dispersion curves1 (marked with asterisks) ob-
tained by the authors and superimposed on the corresponding graphs from article
[149]. These curves are the dimensionless velocities cp/cT of propagation of symmet-
ric and antisymmetric modes for the dimensionless frequency ω = ωh/cT. The value
of the reference velocity cT for normalization of values is defined as cT =

√
G12/̺ =

1945 m/s, where G12 = 5.97 · 109 Pa is the shear modulus in the xy plane and ̺ is
the density of AS4/3502 material. Figure 4.3a corresponds to the phase velocities cp

(defined in (2.54)) in the wavenumber domain of fundamental and higher-order wave
modes in [456/ − 456]s composite at an angle γ = 30◦. In Figure 4.3c the phase veloci-
ties cp of Lamb wave modes are plotted for the [45/ − 45/0/90]s composite plate and
an angle γ = 45◦. Figures 4.3b and d present the graphs of phase velocities depend-
ing on the incident angle γ for the dimensionless frequency ωh/cT = 4 (frequency-
thickness product f · h = 1238 KHz · mm) (b) for [456/ − 456]s and ωh/cT = 1.78
(frequency-thickness product f · h = 551 KHz · mm) for [45/ − 45/0/90]s composite
plates, respectively. As may be seen from the given figures, the curves obtained using
the methods given in this work showed the qualitative agreement of the results with
the results published in [149]; the inaccuracies are caused by the imperfect superim-
position of plots. Thus, the algorithm of calculation of the wavenumbers, presented
in this thesis, is valid for the study of dispersion properties of laminated composite
plates.

Next, the results obtained using a model based on the elasticity theory and the lam-
inated plate theories are compared. As already mentioned previously, the plate the-
ories give results coinciding with the results obtained using an elasticity theory only
in range of low frequencies. It is well demonstrated in Figure 4.4, which represents
the wavenumber curves obtained for f · h ≤ 200 KHz · mm applying the algorithm of
calculation of the roots of the dispersion equations for elasticity theory (ET) and both
plate theories - CLPT and MLPT. The results are compared in directions γ = 0◦ (Fig-
ure 4.4a and c) and γ = 45◦ (Figure 4.4b and d) for a laminated plate of graphite-epoxy
II (Table A.1 in Appendix A.9) with stacking sequence [0/90/45/ − 45]s. There are no
differences observed between the dispersion curves of S0 and SH0 obtained for differ-
ent models at low frequencies, however the difference in the modelling of laminated

be simplified to [45/ − 45]s.
1Note that the colours in these figures are confusing due to the use of one colour for representing

curves of different wave modes, e.g. red-coloured curve in figure 4.3a corresponds to SH1 whereas
in figure 4.3b it corresponds to A1. However, these colours are taken from [149].
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a c

b d

Figure 4.4: Wavenumbers k of fundamental Lamb wave modes A0 (a and b) and S0,
SH0 (c and d) at frequency-thickness products f · h ≤ 200 KHz · mm in a
laminated plate of graphite-epoxy II with stacking sequence [0/90/45/ −
45]s in fixed directions of γ = 0◦ (a,c) and γ = 45◦ (b,d)

plate becomes to be clearly visible if the curves of A0 are analysed. Furthermore,
this difference grows with increasing frequency.

The differences between the modelling approaches are well displayed by the curves
of the group velocity in dependence on observation direction ϕ (see Equation (2.55)1),
i.e. the group velocity of wave front (GWS), for the A0 wave mode. These velocities
are calculated for the A0 mode using the roots of dispersion equations (4.9) for CLPT,
(4.8) for MLPT and (4.1) for elasticity theory and plotted for two values of frequency-
thickness products f · h = 11 KHz · mm and f · h = 50 KHz · mm in dependence on ϕ

in Figures 4.5a and b, respectively. While all these curves are well coinciding for the
frequency-thickness product value of 11 KHz · mm, the differences between dispersion
curves obtained using MLPT and elasticity theory at the higher frequency-thickness

1This formula provides a way for the computation of these group velocities in an implicit dependence
on ϕ.
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4 Dispersion properties of laminated composite plates

a b

Figure 4.5: Group wave surfaces (GWS) of fundamental Lamb wave mode A0 at
frequency-thickness products f · h = 11 KHz · mm (a) and f · h =
50 KHz · mm (b) in a laminated plate of graphite-epoxy II with stacking
sequence [0/90/45/ − 45]s

product value of 50 KHz · mm are notable. The group velocities of the wave front
for the mode A0 obtained using CLPT (in Figure 4.5 marked as “o“) are considerably
higher than the values obtained using MLPT and elasticity theory for the frequency-
thickness product value of 50 KHz · mm.

The comparison of the group velocities of wave fronts of fundamental wave modes
for the composite plate of IM7-Cycom-977-3 (Table A.1 in Appendix A.9) with stack-
ing sequence [0/45/ − 45/90]2s is presented for two frequency-thickness products
f · h = 11 KHz · mm (Figures 4.6a and b) and f · h = 500 KHz · mm (Figures 4.6c and
d). The coincidence of the dispersion properties of symmetric wave modes observed
at low frequencies previously is observed also in Figure 4.6c. However, at a higher
frequency-product f · h = 500 KHz · mm (Figure 4.6d), the curves of group velocities
are not coincident. The results for the antisymmetric mode A0 are also nearly equal at
low values of the frequency-thickness product f · h = 11 KHz · mm and considerably
different at a much higher value of frequency-thickness product f · h = 500 KHz · mm.
These results are illustrating the fact that the plate theories give acceptable results only
at low frequencies, while they fail for higher frequencies.

The composite plates considered before are symmetric with respect to their mid-
planes. However, the conclusions made about the frequency range of validity of the
models based on plate theories are also true for non-symmetric plates. In Figure 4.7,
the group wave surfaces of all fundamental wave modes qA0, qSH0 and qS0 propa-
gating in a cross-ply non-symmetric plate of CFRP-T700GC/M21 (Table A.1 in Ap-
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a c

b d

Figure 4.6: Group wave surfaces (GWS) of fundamental Lamb wave modes S0, SH0

and A0 at frequency-thickness products f · h = 11 KHz · mm (a and b) and
f · h = 500 KHz · mm (c and d) in a laminated plate of IM7-Cycom-977-3
with stacking sequence [0/45/ − 45/90]2s

pendix A.9) with stacking sequence [0/90/0/90] are plotted for frequency-thickness
values f · h = 11 KHz · mm (a) and f · h = 75 KHz · mm (b) in dependence on ϕ. As
before, the same notations are used for the curves obtained using CLPT, MLPT and
elasticity theory. Analysis of Figure 4.7 shows that as well as for symmetric compos-
ites, at low frequencies the dispersion curves for non-symmetric composites calculated
using different theories are almost fully coinciding, and with growth of frequency the
difference between them increases. Thus, already at a frequency-thickness product
of 75 KHz · mm, GWS of the quasi-antisymmetric wave mode calculated by means of
models on the basis of CLPT and elasticity theory are considerably different. Note
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a b

Figure 4.7: Group wave surfaces (GWS) of fundamental Lamb wave modes S0, SH0

and A0 at frequency-thickness products f · h = 11 KHz · mm (a) and
f · h = 75 KHz · mm (b) in a non-symmetric laminated plate of CFRP-
T700GC/M21 with stacking sequence [0/90/0/90]. Values are calculated
by solving the dispersion equation for CLPT: "‘o"’, MLPT (κ1 = κ2 = 1):
"‘x"’, MLPT (κ1 = κ2 =

√
5/6): "‘−−"’ and elasticity theory: "‘−"’

that in contrast to the GWS of fundamental wave modes in quasi-isotropic laminates
(Figures 4.5 and 4.6a and b), the influence of anisotropy on wave curves of fundamen-
tal wave modes in a cross-ply plate [0/90/0/90] is much higher (Figure 4.7), i.e. the
dependence of the dispersion properties on the propagation direction is stronger than
for quasi-isotropic laminates (Figures 4.4, 4.5 and 4.6). Also the multifolding of the
wave curve (multiple values of velocity) for the mode qSH0 is observed in directions
ϕ ∈ [7◦, 83◦] (in the first quadrant). As it was described previously in section 2.3.5,
the multiple (three) values of group velocities of wave front for the mode qSH0 in one
observation direction ϕ imply that the energy travels with this mode from the point
source according to multiple (three) pulses at different group velocities. The directions
of ϕ = ϕc1 = 7◦ and ϕ = ϕc2 = 83◦ are caustics1 of the qSH0 wave mode.

In Figure 4.8b and d the values of group velocities of wave fronts are presented for
the symmetric plate [0/90]s (b) and non-symmetric [0/90/0/90] (d) cross-ply plate
for the frequency-thickness product f · h = 300 KHz · mm. The values of wavenum-
bers km(γ, ω) are obtained by solving the corresponding dispersion equation obtained
for the elasticity theory (4.1), then these values are used for plotting the slowness
curves sm = km(γ, ω)/ω (Figure 4.8a and c) and applying the formula given by (2.55),
wavenumbers are used for the calculation of the GWS (Figure 4.8b and d). In the

1The values ϕcj + π/2 are also the caustics due to the symmetry of wave curves.
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a c

b d

Figure 4.8: Slowness curves in s/km of fundamental Lamb modes in symmetric [0/90]s
(a) and non-symmetric [0/90/0/90] (c) composite plates made of CFRP-
T700GC/M21 at frequency-thickness product 300 KHz · mm. Group veloc-
ities of wave fronts observed in [0/90]s (b) and [0/90/0/90] (d) plates

case of the quasi-antisymmetric mode qA0, the slowness curve is similar to that of
the isotropic or quasi-isotropic materials. In constrast, the slownesses of the quasi-
symmetric modes qS0 and qSH0 strongly depend on the propagation direction γ. A
comparison of slowness curves for both plates leads to the conclusion that the swap
of the last two layers in the plate does not influence the curves of quasi-symmetric
and quasi-shear horizontal modes, but some changes for the qA0 mode are visible,
namely the dependence of slownesses on the angle γ is stronger for the symmetric
plate [0/90]s than for the non-symmetric plate [0/90/0/90]. Due to the low dispersion
of fundamental quasi-shear horizontal mode qSH0 at frequencies below 500 KHz · mm
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4 Dispersion properties of laminated composite plates

and due to nearly the same values of slownesses for qSH0 in both plates, the caustics
are equal to the caustics ϕc1 and ϕc2 previously found for the non-symmetric plate at
frequencies 11 and 75 KHz · mm, i.e. ϕc1 = 7◦ and ϕc2 = 83◦.

a b

Figure 4.9: (a) Steering angle θm(γ) of Lamb wave modes in symmetric [0/90]s
(−−) and non-symmetric [0/90/0/90] (−) composite plates at frequency-
thickness product 300 KHz · mm. (b) Observation direction ϕm(γ) =
γ − θm(γ) for wave excitation in direction γ

Note that the considerable difference between the slowness curves and group wave
curves (surfaces) is explained by the fact that due the strong influence of the anisotropy
on the wave modes in Figure 4.8, these waves strongly deviate from the incident angle
γ, i.e. the values of deviation or steering angles θ(γ) = γ − ϕ (2.58) are high. In Fig-
ure 4.9a a steering angle θ(γ) in dependence on the propagation direction γ is shown
for both [0/90]s and [0/90/0/90] composite plates at the same frequency-thickness
product f · h = 300 KHz · mm. Its values are varying between −60◦ and 60◦ for the
quasi-shear horizontal mode qSH0 and between −30◦ and 30◦ for the quasi-symmetric
mode qS0. The maximum deviation of quasi-antisymmetric Lamb wave qA0 from the
propagation direction γ is ±10◦ in the symmetric [0/90]s plate, while for the non-
symmetric plate [0/90/0/90] its value is about ±4 degrees. Using the steering angle
θm(γ), observation directions ϕ(γ) = γ − θ(γ) in dependence on incident angle γ are
plotted (Figure 4.9b). This plot shows the directions in which Lamb waves with wave
vector in the direction γ can be observed. As seen from Figure 4.9b, the functions
ϕ(γ) are not one-to-one for the quasi-shear horizontal mode qSH0, and in observation
directions between 7◦ and 83◦ more than one wave can be observed. It explains a pre-
viously detected multiplicity of group and phase velocities of Lamb waves.

The dispersion characteristics can also be plotted as surfaces in dependence on both
angle ϕ (or γ) and frequency-thickness product f · h in 3D. The surfaces of group veloc-
ities of the wave front for S0 (a) and SH0 (c) Lamb modes are illustrated in Figure 4.10
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a c

b d

Figure 4.10: Group wave surfaces (GWS) of fundamental Lamb wave modes S0 (a) and
SH0 (c) for frequencies lower than 1000 KHz · mm presented as a surface
in dependence on ϕ (xy-plane) and f · h (vertical axis) in a cross-ply plate
[456/ − 456]s made of CFRP-T700GC/M21. GWS for S0 (b) and SH0 (d) at
fixed values of frequency-thickness product

for CFRP-T700GC/M21 (Table A.1 in Appendix A.9) plate with stacking sequence
[456/ − 456]s in a frequency-thickness range f · h ≤ 1000 KHz · mm. The blue-colored
and red-colored areas of these surfaces correspond to low and high frequencies, respec-
tively. The group velocities of both modes S0 and SH0 in the low-frequency range are
almost constant, i.e. the modes are low-dispersive. For higher frequencies the group
velocity of both wave modes decreases and the form of their wave fronts changes.
It is well displayed in Figures 4.10b and d, which represent the GWS curves of S0

(b) and SH0 (d) wave modes at three different values of frequency-thickness prod-
uct 11 KHz · mm (straight lines), 500 KHz · mm (dashed lines) and 1000 KHz · mm
(“x“ markers). The dependence on angle for the fundamental symmetric wave modes
becomes more complicated with increasing frequency. It is true even for the quasi-
isotropic composites, as it can be concluded from the comparison of the group veloc-
ities of wave fronts of symmetric wave modes for a plate made of IM7-Cycom977-3
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(Table A.1 in Appendix A.9) with stacking sequence [0/45/ − 45/90]2s computed at
f · h = 1000 KHz · mm (Figure 4.11a) with the GWS computed for lower frequencies
f · h = 11 KHz · mm (Figure 4.6c) and f · h = 500 KHz · mm (Figure 4.6d).

a c

b d

Figure 4.11: The GWS of symmetric (a and c) and antisymmetric (b and d) Lamb wave
modes propagating at values of frequency-thickness product
1000 KHz · mm (a and b) and 1400 KHz · mm (c and d) in a quasi-isotropic
plate [0/45/ − 45/90]2s made of IM7-Cycom977-3

The frequency-thickness product 1000 KHz · mm is higher than the cut-off frequen-
cies1 of higher-order antisymmetric wave modes A1 (690 KHz · mm) and SH1

1The cut-off frequencies of the first higher-order Lamb wave modes propagating in laminated compos-
ites considered in this thesis are listed in Table A.2 in Appendix A.9.
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(700 KHz · mm), i.e. these wave modes are propagating at 1000 KHz · mm. The GWS of
A1, SH1 and A0 are plotted in Figure 4.11b. The dependence of the A0 wave mode on
the observation direction ϕ is weak, and with increasing frequency this dependence
almost disappears, i.e. the wave front of this mode has a quasi-isotropic structure.
However, the dependence of both higher-order modes A1 and SH1 on ϕ is compli-
cated. These conclusions are valid for the dispersion curves of A1, SH1 and A0 for the
frequency-thickness product f · h = 1400 KHz · mm (Figure 4.11d). At this value of
f · h, there are four propagating symmetric wave modes (Figure 4.11c), namely funda-
mental Lamb modes S0 and SH0 and higher-order Lamb modes S1 and SH2, which are
observed at frequencies higher than their cut-off frequency1 f · h = 1389 KHz · mm.
The curves of fundamental wave modes are complicated, whereas the curves of higher-
order symmetric wave modes at the frequencies near to the cut-off frequency-thickness
are quasi-isotropic.

a b

Figure 4.12: Frequency-thickness of first appearance of S1 mode and backward mode
S2b in dependence on γ in two plates made of CFRP-T700GC/M21 with
stacking sequences [456/ − 456]s (a) and [45/ − 45/0/90]s (b)

The Lamb wave modes studied in previous figures correspond to the regular poles,
i.e. their group velocities are positive. Irregular poles first appear on the real axis
only at high frequencies. Moreover, for some frequency ranges, irregular poles (in
contrast to regular poles) approach the real axis not simultaneously. For example, this
phenomenon is observed for values of frequency-thickness product between 1400 and
1426 KHz · mm in a symmetric composite plate made of AS4/3502 with stacking se-
quence [456/ − 456]s. The Lamb wave mode corresponding to this irregular pole is
named S2b (“b“ stands for backward mode). At the same frequencies, the wave mode
S1 corresponding to a regular pole also becomes to be propagating. Figure 4.12a illus-
trates the dependence of the frequency-thickness of the first appearance of the back-

1These modes are decoupled at this frequency, i.e. they correspond to poles of different components
of Green’s matrix.
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ward mode S2b (as well as S1 mode) on the propagation direction γ. In Figure 4.12b
the frequency-thickness of first appearance of the S2b wave mode in a quasi-isotropic
plate [45/ − 45/0/90]s made of AS4/3502 is plotted. The wave modes S1 and S2b in
a frequency range between minimal and maximal frequency-thickness of first appear-
ance are propagating not in all directions.

The wavenumber curves of symmetric wave modes propagating in a frequency-
thickness range f · h ∈ [1300, 1430] (in KHz · mm) are presented for the AS4/3502 lam-
inated plate with stacking sequence [456/ − 456]s in Figures 4.14a and b for directions
γ = 0◦ and γ = 45◦, respectively. The wave modes S1 and S2b appear firstly at different
frequencies and with different values of wavenumbers. The dependence of wavenum-
bers for both wave modes on γ is shown for this composite plate in Figures 4.13a, b
and c, when the roots of dispersion equation are calculated for the frequency-thickness
products 1425 KHz · mm (a), 1400 KHz · mm (b) and 1390 KHz · mm (c). In Fig-
ures 4.13d, e and f, the corresponding values of attenuation coefficients for this mode
are plotted in directions γ, in which both wave modes are non-propagating. These di-
rections are clearly observed in Figures 4.13d, e and f, while the real parts of wavenum-
bers of both modes are equal in these directions. Note that at f · h = 1390 KHz · mm,
both modes S1 and S2b are non-propagating, the values of wavenumbers of S2b have
the same real part as the wavenumbers of S1 but their imaginary parts are of opposite
sign, however both modes are represented by the same curves in Figure 4.13f.

Remark 4.4 The algorithm for the evaluation of Green’s matrix described in chapter 3 can

be applied for modelling of the wave propagation in a composite plate with clamped lower

boundary. It can be done by considering the matrix

S
(N)
clamped =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 (4.16)

instead of the matrix S(N) in (3.39). An example of dispersion curves for a composite plate with

a clamped lower boundary is given in Figure 4.15 as wavenumber curves in dependence on γ at

frequency-product values 500 KHz · mm (a) and 710 KHz · mm (b). The corresponding wave

modes are surface waves of the Rayleigh wave type.

As shown in this section, Lamb waves in multilayered composite plates can have
a very complex structure, and therefore an analysis of dispersion properties is an
important step in the development of methods for structural health monitoring [20].
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a d

b e

c f

Figure 4.13: Real (a, b and c) and imaginary (d, e and f) parts of wavenumbers of S1

and S2b wave modes in dependence on γ in a laminated plate [456/− 456]s
made of AS4/3502 at frequency-thickness products 1425 KHz · mm (a and
d), 1400 KHz · mm (b and e) and 1390 KHz · mm (c and f)
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a b

Figure 4.14: Wavenumbers of symmetric wave modes propagating at frequencies f · h

∈ [1300 KHz · mm, 1430 KHz · mm] in a laminated plate of AS4/3502 with
stacking sequence [456/ − 456]s, plotted in directions γ = 0◦ (a) and γ =
45◦ (b)

a b

Figure 4.15: Wavenumbers of propagating wave modes in a plate made of AS4/3502
with stacking sequence [45/ − 45/0/90]s with lower boundary clamped.
Curves are calculated in dependence on γ at fixed frequency-product val-
ues 500 KHz · mm (a) and 710 KHz · mm (b)
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5 Methods of evaluation of

two-dimensional wavenumber

integral

As expressed in chapter 3, the application of an integral approach based on the Fourier
transform after finding the solution of the problem in Fourier domain requires the
computation of the inverse Fourier transform (3.10), i.e. the computation of two-
dimensional wavenumber contour integral and consecutive evaluation of the integral
with respect to the frequency ω. The most time-consuming step is the computation of
the double integral over wavenumbers

u(r, ϕ, z, ω) =
1

4π2

2π∫

0

∫

Γ+(γ)

K(α, γ, z, ω)Q(α, γ) e−iαr cos(γ−ϕ)α dαdγ, (5.1)

which causes difficulties such as integral singularity near real poles (or branch points
of Green’s matrix, if they present, e.g. for a half-space) of Green’s matrix, strong
oscillations of the integrand and significant time expenses. In this chapter, the methods
of the evaluation of the double integral (5.1) pare given in detail and compared by
numerical examples. Note that some parts of this research are presented by the author
of this thesis at several conferences [57, 58, 59, 60] and published in international
journals [58, 62].

5.1 Short overview on methods of evaluation of

2D-wavenumber integral

Methods of evaluation of the 2D-wavenumber integral (5.1) are differing depending
on the spatial domain with respect to the excitation source, in which their application
is more effective/more precise. It is known that at short distances from the excitation
source, the wave field is garbled by the interaction of multiple waves from all parts of
the source surface. This is confined to the region called the near-field

r ≤ A2
o/λmin = A2

okmax/(2π), (5.2)

where Ao corresponds to the radius of the circle which contains the loading domain
Ω and λ (kmax) is a minimal wavelength (maximal wavenumber) of the waves. The
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far-field is the region outside the near-field where the transducer waves coalesce to
produce a plane wave whose on-axis intensity decreases inversely with distance [75].
Note that according to (5.2), a large excitation source produces a large near-field and
is thus not suitable for use on a thin object [75].

The evaluation of the 2D-wavenumber integral (5.1) is difficult due to the presence of
singularities within the integration domain and the highly oscillatory nature of the in-
tegrands at higher frequencies and large distances between the field and source points.
Moreover, to date there is no algorithm available to evaluate the double wavenumber
integrals [33]. In the near-field to an excitation source, contour integrals of the in-
verse Fourier transform (5.1) can be evaluated directly using adaptive two-dimensional
numerical integration schemes (Clenshaw-Curtis quadrature schemes) [84, 140, 153].
Another approach to the integration of slowly decreasing oscillating functions is sug-
gested in [123]. But the computational costs are still considerable since these ap-
proaches require millions of function evaluations. Another disadvantage lies in the
fact that the wave structure of the solution using these techniques is not taken into
account and the wave field cannot be analysed for each Lamb wave mode separately.

Other methods for the computation of the double wavenumber integral are based
on the residue theorem or on the modal expansion technique, which allow to reduce
computational costs considerably and to analyse the contribution of each Lamb wave
mode. Thus, Lamb waves excited by point loads in isotropic [12] and anisotropic [26]
plates are obtained using the hybrid numerical method and modal expansion tech-
nique. The steady-state vibrations are evaluated in the wavenumber domain by means
of double sums: the inner sum with respect to normal modes and the outer sum with
respect to the propagation directions of plane waves. Wave propagation from surface-
bonded piezoeletric actuators in an isotropic plate is considered in [108, 119] using the
residue theorem. A similar approach is originally offered for isotropic media in case
of an axisymmetric loading [10]. When computing a wave propagation from surface-
bonded piezo-actuators in an anisotropic layered plate, the authors in [107] substituted
the integration along the positive real semi-axis by an integration along the whole real
axis. The integral along the real axis is evaluated as before using the residue theorem.
The integral over the angle γ of wavenumbers is then evaluated using the stationary
phase method. In [13], the double integral over wavenumbers obtained for CLPT-
based model is considered in Cartesian coordinates and is reduced by the use of the
residue theorem to a one-dimensional integral taking into account the analytical rep-
resentation of dispersion curves. The remaining improper integral is then computed
numerically using standard quadratures. In [141], a far-field asymptotic expansion of
related two-dimensional wavenumber integrals is obtained again using the stationary
phase method in terms of the modal solutions to the forced 2D problem (i.e. using
excitability matrices) for the case of loading by point sources. In a research carried out
by the group of E. Glushkov [40, 43, 69] at the same time as this work was performed,
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5.2 Method of direct integration using adaptive quadratures

Figure 5.1: Finite integration contour ΓR+(γ) in case all real poles except of only one
irregular pole k1(γ) are regular; d = Im knc(γ)/2 is the value of the devi-
ation of the integration contour from the real axis into the complex plane,
M = max

m
km(γ) and R is such a value that M < Re α ≤ R

the results of Velichko and Wilcox [141] are extended to the case of the general surface
load. The approximation of order O(r−1), r =

√
x2 + y2 for the computation of the

integral (5.1) in a far-field to the excitation source is obtained applying again the sta-
tionary phase method.

In spite of many publications referenced here, wave propagation from common types
of sources of finite size anisotropic layered composites has not yet been completely
analysed. As it will be shown in this chapter, the integral (5.1) can be evaluated in a
far-field with an error not more than O(r−2). Moreover, it will be shown on numerical
examples that the formulas obtained in this thesis give good results under certain
conditions for the analysis in the near-field to an excitation source. Additionally, the
asymptotic expansion used by many authors [40, 43, 69, 107, 109, 141] is extended
in this thesis to the case of the calculation of displacements near caustics. Finally,
the results of different techniques described in this thesis are compared to each other,
the pros and contras as well as the limits of the applicability of each technique are
discussed.

5.2 Method of direct integration using adaptive

quadratures

In this section the direct method of 2D-wavenumber integral computation using adap-
tive quadratures is discussed. This approach is generally similar to the adaptive
quadratures used in [84, 153] and can be applied for the computation of displacements
based on the elasticity (2.5) as well as on plate theories (2.29), (2.36).
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5 Methods of evaluation of two-dimensional wavenumber integral

5.2.1 The convergence of 2D-wavenumber integral

If the double integral (5.1) is considered for z < 0, it is obtained that it converges at all
points of xy-plane since, if α → ∞, the components of Green’s matrix1 contain decay-
ing exponents, Equations (3.55), (3.56), and the function under the double integral sign
is absolutely integrable [10]. Moreover, according to Fubini’s theorem it can be calcu-
lated as an iterated integral [118]. For z = 0, the convergence of the double integral
according to (5.1) depends on the properties of the load vector Q(α, γ) in transformed
domain:

if Q(α, γ) ∼ o(α−1), α → ∞, (5.3)

then the function in the integral is absolutely integrable for all r and ϕ. If the con-
dition (5.3) is not satisfied, then the function in the integral sign is not absolutely
integrable, however the integral converges due to the oscillations of exponential term
exp(−iαr cos(γ − ϕ)) for all values of r and ϕ except of origin r = 0, where a logarith-
mic singularity occurs [10, 145]:

u(r, ϕ, 0, ω) = u0(ϕ, 0, ω) log r + u1(r, ϕ, 0, ω), r → 0, (5.4)

where u0(ϕ, 0, ω) and u1(r, ϕ, 0, ω) are continuous functions of their variables.

Note that if the double integral (5.1) is not converging absolutely for z = 0, r > 0,
the corresponding iterated integrals can be diverging or lead to the results, different
from the value of original double integral [118]. Nevertheless, instead of the improper
double integral (5.1) the sequence of following double integrals can be considered:

uRn(r, ϕ, z, ω) =
1

4π2

2π∫

0

∫

Γ+
Rn

(γ)

K(α, γ, z, ω)Q(α, γ) e−iαr cos(γ−ϕ)α dαdγ, (5.5)

where Γ+
Rn

→ Γ+, n → ∞. Obviously, this sequence converges to the initial 2D-
wavenumber integral, i.e. ∀ε > 0, ∀ω, ϕ, z, ∀r > 0 ∃n > 0 that

∣∣uj(r, ϕ, z, ω) − uj,Rn
(r, ϕ, z, ω)

∣∣ < ε, j = 1, 2, 3. (5.6)

It is concluded that instead of the improper double integral (5.1) the double integral
over the bounded domain (5.5) can be considered, i.e. for given value of ε such R = Rn

exists that

u(r, ϕ, z, ω) ≈ uR(r, ϕ, z, ω), (5.7)

1All procedures of the wavenumber integral evaluation given in this chapter can be in the same way
applied for models based on CLPT and MLPT. If needed, the differences in the application are
explicitly discussed.

96



5.2 Method of direct integration using adaptive quadratures

and (5.6) is satisfied. Such a contour Γ+
R (γ), in the case that all real poles except of only

one irregular pole k1(γ) are regular, is presented in Figure 5.1. Note that since double
integral (5.7) converges absolutely, it can be evaluated as an iterated integral [118].
In the following the evaluation of the 2D-wavenumber integral (5.1) as an iterated
integral (5.7) is called Direct Contour Integration (DCI).

Remark 5.1 Due to the asymptotic properties of Green’s matrices for models based on CLPT

(3.77) and MLPT (3.75), the inner integrals with respect to α in (5.1) are converging1 even

for a concentrated point source, see Equation (3.17). The speed of convergence of (5.7) with

an increasing of R is due to the asymptotic properties of corresponding Green’s matrices (3.78)
higher than in case of modelling by elasticity theory.

5.2.2 Estimation of the truncation error in case of excitation by

point source

In this section the truncation error of formula (5.7) with respect to the exact formula
(5.1) is analysed for the case of wave excitation by point source in direction xj, j =
1, 2, 3 (see Equation (3.17)). The difference between the exact and the approximate
expressions for displacements is given for the i-th component of displacement vector
as

ui(r, ϕ, z, ω) − ui,R(r, ϕ, z, ω) =
1

4π2

2π∫

0

∞∫

R

Kij(α, γ, z, ω) e−iαr cos(γ−ϕ)α dαdγ, (5.8)

where instead of Green’s matrix its asymptotics for a model based on the elasticity
theory (3.70) can be applied for α > R ≫ 1:

1
4π2

2π∫

0

∞∫

R

Kij(α, γ, z) e−iαr cos(γ−ϕ)α dαdγ (5.9)

≈ 1
4π2

∞∫

R

α

2π∫

0

Tij(γ, z, ω) e−iαr cos(γ−ϕ) dγdα + o(1).

Then, the main term in (5.9) can be estimated by applying the stationary phase method
to the integral with respect to γ in (5.9) (for detail on stationary phase method see
Appendix B.2): as α > R ≫ 1 and r > 1, the value αr ≫ 1 and it follows that

1
4π2

∞∫

R

2π∫

0

Tij(γ, z, ω) e−iαr cos(γ−ϕ) dγdα =

√
1

8π3


Tij(ϕ, z, ω) eiπ/4

∞∫

R

√
1
rα

× e−iαr dα + Tij(ϕ + π, z, ω) e−iπ/4
∞∫

R

√
1
rα

eiαr dα


 , (5.10)

1Except of values γ = ϕ + π/2, γ = ϕ + 3π/2, where due to the absence of an oscillation the logarith-
mic singularity can occur, which is integrable when evaluating the integral with respect to γ.
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5 Methods of evaluation of two-dimensional wavenumber integral

for i, j = 1, 2, 3, and where stationary points are found to be γ1 = ϕ, γ2 = ϕ + π. The
improper integrals with respect to α in (5.10) converge due to the oscillation of the
exponent and due to the decaying multiplier 1/

√
α. Using an integration by parts for

the integrals with respect to α in (5.10), it is obtained

∞∫

R

√
1
rα

e±iαr dα = ± i

r
√

rR
e±iRr + O(r−5/2R−3/2), (5.11)

i.e. the residual (5.8) tends to zero, because r−3/2R−1/2 tends to zero with increasing
values r or R. This means that the truncation of the contour Γ+(γ) is valid in a near-
field for high enough values of R and in a far-field where is no need to consider such
high values of R and the computation time can be saved.

a b

Figure 5.2: |uz(ϕ)| calculated by DCI (Equation (5.7)) when f · h = 500 KHz · mm,
r/h = 2 (a) and r/h = 42 (b), z = 0 for R = 50 and for R = 20 for an
excitation source given by a concentrated vertical force at r = 0 on the
surface of the cross-ply [456/ − 456]s plate made of AS4/3502 (Table A.1)

The dependence on r and R is illustrated in Figure 5.2 where the results of the
computation of |uz(ϕ)| at values r/h = 2 (a) and r/h = 42 (b) for the values of R = 20
(“−“) and R = 50 (“o“) are compared. Whereas at r/h = 2 the amplitudes of uz(ϕ) are
similar but not equal for R = 20 and R = 50, the difference between the corresponding
results seem to be neglible at r/h = 42.

Remark 5.2 Since the loading functions can be approximated by the sum of the point sources

(see section 3.1.4.5), for the load of general type the corresponding error estimation can be ob-

tained using formula (5.11). Moreover, the wavenumber representation of distributed sources

Q(α, γ), e.g. for representations given in section 3.1.4, the decay rate of the estimation error

with respect to R is usually higher than in case of the point excitation sources, see Equa-

tion (5.11).

98



5.2 Method of direct integration using adaptive quadratures

5.2.3 Details on the computation of wavenumber integral

Applying the representation (5.7) for the computation of displacements, it is needed
to choose the contour Γ+

R (γ) according to the principle of limiting absorption (see
section 3.1.3) as deviating from the positive real semi-axis while enclosing real poles of
Green’s matrix in the complex plane α. However, due to the presence of only a finite
number of real poles, the value M = max

m
km(γ) exists, where km(γ), m = 1, . . . , Nr are

real poles. For values Re α > M the contour Γ+(γ) coincides with the real axis. For
numerical calculation, the contour Γ+

R (γ) should be chosen to be far enough from the
real axis for values Re α ≈ km(γ), m = 1, . . . , Nr, in order to avoid the high gradient of
Green’s matrix components near to real singularities. However, the complex poles with
negative imaginary part should be enclosed by the contour from above. The optimal
value of the deviation d of the integration contour from the real axis into the complex
plane should be d = Im knc(γ)/2, where knc(γ) is the complex pole nearest to the real
axis1.

Remark 5.3 Instead of the real-valued frequency ω = ωR, the complex frequency ωC =
ωR + iωI where 0 < ωI ≪ ωR, can be considered. Then, the integral with respect to α in (5.7)
is evaluated directly along the real semi-axis since all real poles shift from the real axis into the

complex plane. Note that introducing the complex frequency is equivalent to introducing of an

internal friction, i.e. the waves become to be attenuating and the inaccuracy of such a modelling

in comparison to the exact elastic model grows as r increases [58]. It requires the choice of small

ωI which in turn, requires a large number of grid spacings near to the poles appearing close to

the real axis.

However, it seems to be the only one possible approach in case the frequency ω equals to

the resonance frequency since according to the principle of limiting absorption the wavenumber

integral cannot be evaluated as standard definite integral (see section 3.1.3).

Then, the double integral (5.7) can be evaluated as an iterated integral with respect
to α and γ. However, integrals with respect to both variables are oscillating with re-
spect to r, i.e. in the far-field, with an increasing of r, the computational time needed
for the computation of the integral (5.7) increases significantly comparing to the time
needed for its evaluation at points in the near-field of the excitation source. It is espe-
cially appreciable due to the considerable costs of the computation of Green’s matrix
for each parameter pair (α, γ) in case of the high number of layers in a plate. However,
for each z and ω, the components of Green’s matrix are smooth functions of γ and α

if α lies on the contour Γ+
R (γ). Green’s matrix components in dependence on γ and α

can be interpolated on a two-dimensional grid2, and then, these interpolations will be
used instead of the corresponding Green’s matrix components. Finally, the oscillating

1In case of Green’s matrix for the models based on CLPT and MLPT without taking into account
internal friction, there are no complex poles and the value d can be chosen arbitrarily, e.g. d = 0.2.

2It is prefered to use a non-regular grid if the integration contour goes near to the real or complex
poles as it produces the high gradient of some Green’s matrix components near these poles.
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5 Methods of evaluation of two-dimensional wavenumber integral

integrals with respect to both variables can be evaluated using some adaptive quadra-
tures, such as used in [123, 140, 153] or the commercial Fortran subroutine D01AKF of
NAG Library [1].

a b

Figure 5.3: Results of the calculation of the double integral (5.7) for complex ampli-
tudes of ux(r/h) (a) and uz(r/h) (b) when f · h = 100 KHz · mm, ϕ = 0◦,
z = 0: the straight ( Re ) and the dotted lines ( Im ) correspond to R = 10,
circles correspond to R = 500. An excitation source is given by a con-
centrated vertical force at r = 0 on the surface of a cross-ply [456/ − 456]s
plate made of AS4/3502 (Table A.1). Plate is modelled applying MLPT
(κ1 = κ2 =

√
5/6)

An example of the calculation of the wavenumber integral (5.7) for the model based
on the MLPT (κ1 = κ2 =

√
5/6) is illustrated in Figure 5.3 for different values of r in

a direction ϕ = 0◦ on the surface z = 0. The harmonic wave propagation is excited by
a point vertical force at r = 0, see Equation (3.17), for the frequency-thickness product
f · h = 100 KHz · mm. As it can be seen, the results for R = 10 and R = 500 are equal
to each other already at distances about r/h < 10, so the use of the value R = 10 is
sufficient for a good accuracy in a computation of the double integral (5.7) for Green’s
matrix based on the MLPT. However, in case of the models based on the elasticity
theory, the recommended value for R is about R = 50 and depends on the required
accuracy of the displacement vector.

The algorithm described in this section reduces the amount of calculation for the
evaluation of (5.1) considerably and can be applied for studying the harmonic wave
propagation in anisotropic laminates excited by surface source. However, the compu-
tational resources needed for the evaluation of wavenumber integral in the far-field are
significant and the analysis of a transient problem is still very time consuming since
the integral (5.1) needs to be evaluated for a wide range of frequencies. Moreover, the
presented algorithm does not take into account the wave structure of the solution, i.e.
the wave modes cannot be studied separately of each other.
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5.3 Cauchy’s residue theorem-based method for evaluation of the 2D-wavenumber integral

5.3 Cauchy’s residue theorem-based method for

evaluation of the 2D-wavenumber integral

In this section an algorithm of the computation of the wavenumber integral (5.1) based
on Cauchy’s residue theorem for the computation of the improper contour integral
with respect to α and consequent numerical integration with respect to γ is presented.
Similar techniques are known for anisotropic layered structures for some cases of point
loads [20, 141], circular and square piezo-electrical actuators [107, 109]. The procedure
presented here extends this technique to the case of a load of general type, which can
be represented in the wavenumber domain in the form

Q(α, γ) = ∑
j

e−iαgj(γ)Q̃j(α, γ), (5.12)

where the functions Q̃j(α, γ) and gj(γ) are known. The functions Q̃j(α, γ) should
be at least bounded functions for Im α → +∞ or Im α → −∞. Note that such a
representation in a wavenumber domain can be obtained for each load function, at
least approximately, since the load function can be approximated by the sum of point
sources with some coefficients (see Equation (3.25)), leading to the terms

Q(α, γ) ≈ δ2
s

Nq

∑
j=1

qj eiαrj cos(γ−ϕj), (5.13)

corresponding to point loads at (xj, yj) = (rj cos ϕj, rj sin ϕj), j = 1, . . . , Nq. In nota-
tions of (5.12), the following coefficients can be obtained: qj ≡ Q̃j(α, γ) and gj(γ) =
−rj cos(γ − ϕj).

However, note that such a representation in a wavenumber domain can often be
obtained also for the analytical wavenumber domain representation of the surface load.
For example, the Bessel function J1(Aoα) in the load function corresponding to the
circular PZT disk of a radius Ao given by (3.17) using the property of Bessel function
(Equation (B.15) in Appendix B.3) can be splitted into two terms as follows

J1(Aoα) =
H

(1)
1 (Aoα) + H

(2)
1 (Aoα)

2
(5.14)

=
e−iα(−Ao)H̃

(1)
1 (Aoα) + e−iαAo H̃

(2)
1 (Aoα)

2
,

where H
(j)
1 (Aoα) is a Hankel function of kind j and of first order and H̃

(j)
1 (Aoα) is the

same function scaled by the factor exp((−1)j iαAo).

Similarly, the wavenumber domain representation of the loads frequently used in
practical applications (see section 3.1.4) can be brought to the form (5.12) and the
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5 Methods of evaluation of two-dimensional wavenumber integral

computational algorithm for evaluation of wavenumber integrals for loads of this form
is of a great interest for the investigation of propagating Lamb waves.

Remark 5.4 In the case of the vertical point load located at the origin, its wavenumber repre-

sentation is according to (3.17) a constant, i.e. in the form (5.12) gj(γ) ≡ 0:

Q3(α, γ) = e−iα·g1(γ) ≡ 1. (5.15)

5.3.1 Algorithm of calculation of the 2D-wavenumber integral

with respect to α in case of a load of general type

Assuming that a surface excitation source can be represented in the form (5.12), the
displacement vector (5.1) can be calculated for each term j in the representation of load
(5.12) as

u(r, ϕ, z, ω) = ∑
j

uj(r, ϕ, z, ω), (5.16)

where

uj(r, ϕ, z, ω) =
1

4π2 (5.17)

×
2π∫

0




∫

Γ+(γ)

K(α, γ, z, ω)Q̃j(α, γ) e−iα(r cos(γ−ϕ)+gj(γ))α dα


dγ.

For the computation of the term uj(r, ϕ, z, ω) an algorithm of the evaluation of the
contour integral along Γ+(γ) is considered. It is based on Cauchy’s theorem, where
γ as well as z, ω, r, ϕ are considered as parameters. First, the intervals with respect
to γ are determined, in which the integrand in (5.17) decreases in the upper or lower
half-plane respectively. These intervals1 are found to be γ±

j (r, ϕ), where

cos(γ − ϕ) +
gj(γ)

r
< 0 for γ ∈ γ+

j (r, ϕ),

cos(γ − ϕ) +
gj(γ)

r
> 0 for γ ∈ γ−

j (r, ϕ), (5.18)

(0, 2π) = γ+
k (r, ϕ) ∪ γ−

k (r, ϕ).

The exponents exp
(
−iα

(
r cos(γ − ϕ) + gj(γ)

))
in (5.17), corresponding to these two

subsets, are decaying in the upper half-plane for γ ∈ γ+
j (r, ϕ) and in the lower half-

plane for γ ∈ γ−
j (r, ϕ). It allows to rewrite the integral (5.17) as a sum

uj(r, ϕ) = u+
j (r, ϕ, z, ω) + u−

j (r, ϕ, z, ω),

1As a rule, the sets γ±
j (r, ϕ) are the sets of separate non-crossing.
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where

u±
j (r, ϕ, z, ω) =

1
4π2 (5.19)

×
∫

γ±
j (r,ϕ)




∫

Γ+(γ)

K(α, γ, z, ω)Q̃j(α, γ) e−iα(r cos(γ−ϕ)+gj(γ))α dα


dγ.

Note that for loads given in section 3.1.4, the intervals γ±
j (r, ϕ) can be written in an

explicit form. For example, for a point excitation source (see Equation (3.17)) it follows
that

γ+
1 (r, ϕ) = (ϕ + π/2, ϕ + 3π/2), γ−

1 (r, ϕ) = (ϕ − π/2, ϕ + π/2). (5.20)

a

b

Figure 5.4: Decomposition of interval (0, 2π) according to (5.18) for a circular piezo-
electric wafer (3.17). (a) Intervals γ+

1 (r, ϕ) and γ−
1 (r, ϕ). (b) Intervals

γ+
2 (r, ϕ) and γ−

2 (r, ϕ)

For a circular piezo-actuator (3.17) the intervals

γ+
1 (r, ϕ) = (ϕ + ψ(r), ϕ + 2π − ψ(r)) ,

γ−
1 (r, ϕ) = (ϕ + π − ψ(r), ϕ + π + ψ(r)) ,

γ+
2 (r, ϕ) = (ϕ − ψ(r), ϕ + ψ(r)) , (5.21)

γ−
2 (r, ϕ) = (ϕ − π + ψ(r), ϕ + π − ψ(r))

are obtained, where ψ(r) = arccos(A/r). These intervals are schematically depicted
in Figure 5.4. For a rectangular piezo-actuator and MFC piezo-actuator described by
pin-force models in a wavenumber domain by formulas (3.19) and (3.20) respectively,
the intervals are

γ+
j (r, ϕ) =

(
θj(r, ϕ) + π/2, θj(r, ϕ) + 3π/2

)
, (5.22)

γ−
j (r, ϕ) =

(
θj(r, ϕ) − π/2, θj(r, ϕ) + π/2

)
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similar to [109] are obtained, where j = 1, 2, 3, 4 and

θ1(r, ϕ) = arctan
(

r sin ϕ − A2

r cos ϕ − A1

)
, θ2(r, ϕ) = arctan

(
r sin ϕ − A2

r cos ϕ + A1

)
,

θ3(r, ϕ) = arctan
(

r sin ϕ + A2

r cos ϕ − A1

)
, θ4(r, ϕ) = arctan

(
r sin ϕ + A2

r cos ϕ + A1

)
.

(5.23)

a b

Figure 5.5: Contour Γ+(γ) ∪ C±
R ∪ ΓI± resulting after closing the contour Γ+(γ) up-

wards (a) or downwards (b)

As the sets γ±
j (r, ϕ) are determined, the contour Γ+(γ) is closed upwards into the

first quadrant of α complex plane for γ ∈ γ+
k (r, ϕ) and downwards into the fourth

quadrant of α complex plane for γ ∈ γ−
k (r, ϕ) by adding to the contour Γ+(γ) the con-

tours C±
R in form of a corresponding quarter of a circle with radius R (R → ∞) and ΓI± ,

i.e. contours going along the positive and negative imaginary semi-axes, respectively.
The resulting closed contour1 is shown in Figure 5.5. According to Cauchy’s residue
theorem [3], the integral over the closed contour Γ+(γ) ∪ C±

R ∪ ΓI± equals to the sum
of the residues evaluated in poles located inside of the contour times factor 2πi, i.e.
the integral (5.19) can be evaluated as

u±
j (r, ϕ, z, ω) = ± i

2π

∞

∑
m=1

∫

γ±
j (r,ϕ)

b±
j,m(γ, z, ω) e−ik±m(γ)(r cos(γ−ϕ)) dγ (5.24)

− d±
j (r, ϕ, z, ω),

1This contour corresponds to the case of the plate with free upper and lower boundaries, whereas for
a half-space and for a plate with a clamped lower boundary, the branch cuts at branch points should
be taken into account.
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where it is taken into account that integrals over the quadrants C±
R are equal to zero

(see proof in [109]). The functions b
(±)
j,m (γ, z, ω) are expressed in terms of residues of

Green’s matrix K(α, γ, z, ω), namely

b±
j,m(γ, z, ω) = res K(α, γ, z, ω)

∣∣∣∣
α=k±m(γ)

Qj(k±m(γ), γ)k±m(γ). (5.25)

The poles k+
m(γ) correspond to the real regular, complex and purely imaginary poles

located above the contour Γ+(γ) in the first quadrant, whereas the poles k−m(γ) are
irregular real poles and the complex poles located below the contour Γ+(γ) in the
fourth quadrant. In an implementation on PC, the residues can be evaluated with a
high accuracy according to (B.1) given in Appendix B.1.

The functions d±
j (r, ϕ, z, ω) represent the integrals over contours ΓI± which are go-

ing in the complex plane α along the imaginary positive and negative semi-axes, i.e.
Re α = 0, Im α ≥ 0 and Im α ≤ 0 for ΓI+ and ΓI− , respectively. The contours ΓI± are
deviating from the imaginary axis in the complex plane in order to bypass the purely
imaginary poles of Green’s matrix. Due to the condition on α: Im α > 0 if Re α = 0,
the contours bypass all positive pure imaginary poles from the left (deviating into the
second quadrant) and all negative pure imaginary poles from the right (deviating into
the fourth quadrant), respectively, as it is shown in Figure 5.5. However, such contours
are chosen for convenience since the radiation principles do not define any limitations
on the choice of the integration paths over the imaginary axis. The corresponding
integrals over these contours are defined as

d±
j (r, ϕ, z, ω) =

1
4π2

∫

γ±
j (r,ϕ)



∫

ΓI±

K(α, γ, z, ω)Qj(α, γ) e−iαr cos(γ−ϕ)α dα


dγ. (5.26)

Note that Equation (5.24) requires the numerical integration with respect to γ for the
terms corresponding to the contributions of residues and the evaluation of double
integral (5.26), which is generally simpler because of the higher rate of decay as for
an initial integral (5.1). In the following the evaluation of displacement applying the
Equation (5.24) is called Residue Integration Technique (RIT).

Note that the formula (5.24) for the computation of the displacement vector
u(r, ϕ, z, ω) is similar to those obtained in [109] for partial cases of loads (3.17), (3.19).
The main difference lies in the fact that in the approach applied in [109], the integrals
along the imaginary semi-axes (5.26) are not taken into account. However, in spite
of the exponential decay of the integrands at all values of γ (except of the endpoints
of intervals γ±

j (r, ϕ)) while integrating with respect to α, the contribution of these
integrals can considerably influence the solution of the problem especially in a near-
field to an excitation source. This is the reason why the formula (5.24) is not convenient
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5 Methods of evaluation of two-dimensional wavenumber integral

for practical applications. However, the representation obtained in this section can
essentially be simplified, as it is shown in the next sections.

5.3.2 Analysis of the solution of the problem in the far-field.

Contribution of integrals along the imaginary semi-axes

In this section the formula (5.24) is considered if r → ∞ is assumed. Due to the
independence of gj(γ) on r (see Equation (5.18)), all intervals γ±

j (r, ϕ) are found to be
independent of j, namely

γ+
j (r, ϕ) → γ+(ϕ) =

(
ϕ +

π

2
, ϕ +

3π

2

)
,

γ−
j (r, ϕ) → γ−(ϕ) =

(
ϕ − π

2
, ϕ +

π

2

)
, (5.27)

i.e. γ±(ϕ) =
(

ϕ ± π

2
, ϕ + π ± π

2

)
.

This means that at sufficiently large distances, the influence of the type of the load on
the intervals, where the contour is closed upwards or downwards, is neglible and it
leads to the following representation for the displacement vector for r → ∞:

u(r, ϕ, z, ω) ∼ u+(r, ϕ, z, ω) + u−(r, ϕ, z, ω), (5.28)

u±(r, ϕ, z, ω) = ± i
2π

∞

∑
m=1

∫

γ±(ϕ)

b±
m(γ, z, ω) e−ik±m(γ)r cos(γ−ϕ) dγ − d±(r, ϕ, z, ω),

where

b±
m(γ, z, ω) = res K(α, γ, z, ω)

∣∣∣∣
α=k±m(γ)

Q(k±m(γ), γ)k±m(γ), (5.29)

and

d± =
(
d±1 , d±2 , d±3

)
, d±i =

3

∑
j=1

d±ij , (5.30)

d±ij (r, ϕ, z, ω) =
1

4π2

∫

ΓI±




ϕ+π±π/2∫

ϕ±π/2

Kij(α, γ, z, ω)Qj(α, γ) e−iαr cos(γ−ϕ) dγ


 αdα.

Note that the terms equal to (5.30) occur in the research works [40, 43, 69].

In terms d±(r, ϕ, z, ω) the method of stationary phase (see Appendix B.2) is applied
to the integral1 with respect to γ. This yields the representation for the integral along

1In the following the dependence of the integrands on parameters z and ω is omitted for simplicity.
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the positive imaginary semi-axis

d+
ij (r, ϕ) =

1
4π2

∫

ΓI+

α

(
1

iαr

(
−Kij

(
α, ϕ +

3π

2

)
Qj

(
α, ϕ +

3π

2

)

− Kij

(
α, ϕ +

π

2

)
Qj

(
α, ϕ +

π

2

))
dα + O

(
α−1r−2

))
(5.31)

=
i

4π2r

∫

ΓI+

(
Kij

(
α, ϕ +

3π

2

)
Qj

(
α, ϕ +

3π

2

)

+ Kij

(
α, ϕ +

π

2

)
Qj

(
α, ϕ +

π

2

))
dα + O

(
r−2
)

,

where i, j = 1, 2, 3. Then, the corresponding integral along the negative imaginary
semi-axis is obtained for i, j = 1, 2, 3 as1

d−ij (r, ϕ) = − i
4π2r

∫

ΓI−

(
Kij

(
α, ϕ +

π

2

)
Qj

(
α, ϕ +

π

2

)
(5.32)

+ Kij

(
α, ϕ +

3π

2

)
Qj

(
α, ϕ +

3π

2

))
dα + O

(
r−2
)

.

Then, taking into account the fact that ΓI− ∪ −ΓI+ = ΓI, where ΓI is a contour mostly
coinciding with the whole imaginary axis, the integrals in (5.31), (5.32) are combined
for each i, j = 1, 2, 3 to one integral:

dij(r, ϕ) = d+
ij (r, ϕ) + d−ij (r, ϕ) = − i

4π2r

∫

ΓI

(
Kij

(
α, ϕ +

π

2

)
(5.33)

× Qj

(
α, ϕ +

π

2

)
+ Kij

(
α, ϕ +

3π

2

)
Qj

(
α, ϕ +

3π

2

))
dα + O

(
r−2
)

.

The integrand decays at least as2 α−1 in the whole complex plane as it follows from
the properties of Green’s matrix components (3.70). The contour ΓI can be closed
rightwards in the right half-plane. The application of the residue theorem brings the
integrals (5.33) to the form

dij(r, ϕ) =
1

2πr

∞

∑
m=1


 res Kij

(
α, ϕ +

3π

2

)
Qj

(
α, ϕ +

3π

2

)∣∣∣∣
α=km

(
ϕ+

3π

2

) (5.34)

+ res Kij

(
α, ϕ +

π

2

)
Qj

(
α, ϕ +

π

2

)∣∣∣∣
α=km

(
ϕ+

π

2

)


+ O(r−2),

1Using the periodicity of the functions Kij(α, γ) and Qj(α, γ) with respect to γ (period 2π).
2If the decay rate is exactly α−b, 0 < b ≤ 1, then the result should be understood as a generalized

function.
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where the poles km(γ) are located in the first and fourth quadrants (i.e. in the right
half-plane) for both values of γ: ϕ + π/2 and ϕ + 3π/2.

Finally, for r → ∞ the representation

u(r, ϕ, z, ω) ∼
∞

∑
m=1

u+
m +

∞

∑
m=1

u−
m − d(r, ϕ, z, ω), (5.35)

u±
m(r, ϕ, z, ω) = ± i

2π

ϕ+π±π/2∫

ϕ±π/2

res K(α, γ, z, ω)Qj(α, γ)

∣∣∣∣
α=k±m(γ)

e−ik±m(γ)r cos(γ−ϕ) dγ

for the computation of displacements is derived, where the components of the vector
function d(r, ϕ, z, ω) are given by (5.34). The application of this modified formula (5.35)
in the following is called Far-Field Residue Integration Technique (FFRIT).

Note that the displacement values u±
m(r, ϕ, z, ω) in (5.35) corresponding to an m-th

pole in the I (“+“) or IV (“−“) quadrants should be not confused with the values
u±

j (r, ϕ, z, ω) from (5.17) corresponding to the contribution of the j-th function qj(x)

in the representation (5.12).

Remark 5.5 In case of symmetry of Kij(α, γ)Qj(α, γ) with respect to Re α = 0, the term

O(r−2) in (5.35) can be replaced by O(r−3).

Again, as in case of the expression (5.24), here the evaluation of a single oscillating
integral over γ is needed. However, expression (5.35) requires the integration over
simple intervals γ±(ϕ) instead of more complex intervals γ±

j (r, ϕ) in (5.24). Moreover,
the double integral over γ and ΓI± is replaced by its asymptotics and can be computed
in an explicit form as (5.34).

5.3.3 Approximation of surface load as a sum of point sources

Below the formulas derived in section 5.3.2 are applied to the case of the load function
given as a sum of point sources. Note that if the point source at the origin is considered,
its γ±

j (r, ϕ) and γ±(ϕ) are equal, i.e. the far-field assumption (5.27) is exactly satisfied
for all r. Hence, in a local polar coordinate system (r̃j, ϕ̃j) associated with a point
source at1 (xj, yj) (see Figure 5.6) given as

r̃j =
√

(x − xj)2 + (y − yj)2, cos ϕ̃j = (x − xj)/r̃j, sin ϕ̃j = (y − yj)/r̃j, (5.36)

the displacement vector can be calculated at each point (x, y) = (r cos ϕ, r sin ϕ),
(x, y) 6= (xj, yj) using the representation (5.35). In global coordinates the displacement

1Here all points have the same z-coordinate.
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Figure 5.6: Local coordinate system associated with (xj, yj)

corresponding to the sum of point sources in form of (5.13) is found to be

u(r, ϕ, z, ω) = δ2
s

Nq

∑
j=1

[
∞

∑
m=1

u+
j,m +

∞

∑
m=1

u−
j,m − dj(r, ϕ, z, ω)

]
+ O(r−2), r → ∞,

u±
j,m(r, ϕ, z, ω) = ± i

2π

ϕ̃j+π±π/2∫

ϕ̃j±π/2

b±
j,m(γ, z, ω) e−ik±m(γ)r̃j cos(γ−ϕ̃j) dγ,

b±
j,m(γ, z, ω) = res K(α, γ, z, ω)

∣∣∣∣
α=k±m(γ)

qjk
±
m(γ), (5.37)

dj(r, ϕ) = d+
j + d−j

=
1

2πrj

∞

∑
m=1


 res K

(
α, ϕ̃j +

3π

2

)
qj

∣∣∣∣
α=km

(
ϕ̃j+

3π

2

)

+ res K
(

α, ϕ̃j +
π

2

)
qj

∣∣∣∣
α=km

(
ϕ̃j+

π

2

)


+ O(r̃−2

j ).

If the pointwise approximation (5.13) describes the excitation source with only minor
errors, the former (5.37) gives the nearly exact solution of the corresponding wave
propagation problem. This representation in the following is called Pointwise Far-Field

Residue Integration Technique (P-FFRIT).

Remark 5.6 At large distance r, in (5.36) the angle ϕ̃j ≈ ϕ and r̃j ≈ r, i.e. the solution given

by (5.37) in a far-field is turning to the far-field solution according to (5.35).
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5.3.4 Comparison of methods of displacement evaluation based on

the residue theorem

a b

Figure 5.7: Comparison of complex displacements uz(r) obtained using the DCI (5.7)
applying adaptive quadratures (R = 50, “−“) and FFRIT (5.24), (“o“) at z =
0, ϕ = 0◦ (a) and ϕ = 30◦ excited in a unidirectional plate made of graphite-
epoxy I (Table A.1) at a frequency-thickness product 1.472MHz · mm by a
concentrated vertical point source (3.17) at r = 0

All the expressions obtained in previous sections for the displacement vector are
based on the residue theorem and represent it as a sum of contributions of residues
in the poles of Green’s matrix, or, in other words, as a sum of Lamb wave modes.
In (5.24) additionally the integrals over the imaginary semi-axes contribute to the dis-
placements. As it is shown in section 5.3.2, these integrals contribute in the far-field as
O(r−1) and they can be represented again a sum of contributions of residues in poles.
It is concluded that in the formula (5.24) the integrals over ΓI± are ignored, as it is done
by authors in [107, 109], the sum of contributions of residues even in a large number
of poles, does not lead to more accurate result.

The modified far-field residue representation (5.35) takes into account the asymp-
totic expansion for the integrals over the imaginary semi-axes and represents the dis-
placement solely as a sum of contributions of residues in poles of Green’s matrix. It
is proven to be more accurate than the former (5.24), at least in the far-field. How-
ever, the numerical error can grow if the complex poles with a large imaginary part
kI > 0 are considered, e.g. for the circular piezoelectric wafer, see Equation (3.17),
the corresponding multiplier J1(Aok+

m) ∼ exp(AokI) (considering the decomposition
provided in the given formula). For values of γ ∈ (ϕ + π/2, ϕ + π − ψ(r)) according
to (5.21), in the representation (5.35) the integral over γ needs to be evaluated numeri-
cally, whereas the integrand is taking large values which together with the numerical
errors occuring in a numerical computation of Bessel function of the complex argu-
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5.3 Cauchy’s residue theorem-based method for evaluation of the 2D-wavenumber integral

ment with a large imaginary part can lead to a significant error in the result, i.e. the
use of a larger number of complex poles do not lead to a more accurate result even in
the far-field. Moreover, this representation gives just the far-field approximation of the
displacement problem and its use in the near-field may lead to wrong results.

a b

Figure 5.8: Comparison of ux(r) (a) and uz(r) (b) computed applying different ap-
proaches for ϕ = 45◦ in case of the excitation of Lamb waves by MFC
piezo-electric actuator (3.20), (A1/h = 8, A2/h = 2) at a frequency-
thickness 500 KHz · mm in a cross-ply symmetric [456/ − 456]s plate made
of AS4/3502 (Table A.1). Results of DCI (5.7) with R = 25 (“o“), of FFRIT
(“−“, Equation (5.35)) and of P-FFRIT with modelling of MFC by 21 point
sources on each side (“∗“, Equation (5.37)) are plotted

In contrast, the representation (5.37) allows to obtain accurate results in both the
near- and the far-field by taking into account without any limitations so many com-
plex poles as are known. Moreover, this approach is working well even for surface
loads, for which the analytical wavenumber representation Q(α, γ) is not available.
On the other hand, this approach has several limitations, namely only the approxima-
tion of the load function is used, so that the accuracy of the modelling depends on the
number of point sources considered. Moreover, it causes an additional computational
time due to the calculation of 2 · Nq integrals over γ against two integrals over γ in
(5.35).

These properties of the approaches given in previous sections are discussed on sev-
eral examples of numerical computations. A first example is given by the unidirec-
tional plate of graphite-epoxy I under the excitation by a vertical point source, see
Equation (3.17), at r = 0 at a frequency-thickness 1.472MHz · mm. The values of
out-of-plane displacement component (real and imaginary parts) are calculated in di-
rections ϕ = 0◦ (Figure 5.7a) and (Figure 5.7b) for z = 0 applying the DCI according to
(5.7) using adaptive quadratures (R = 50, “−“) and FFRIT (see Equation (5.24), “o“),
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whereas in the residue integration only real poles are taken into account. Note that at
this frequency in spite of regular poles also one irregular pole exists (see Figure 4.2).
The results of both methods well coincide with each other and the difference between
them decreases as r increases. However, in spite of good coincidence, the results of
both methods are not exactly equal in near-field to the source.

a c

b d

Figure 5.9: Comparison of |ux(ϕ)| (a and b) and |uz(ϕ)| (c and d) computed for
r/h = 10 (a and c) and r/h = 50 (b and d) in case of the excitation
of Lamb waves by a circular piezo-electric actuator of radius Ao/h = 4
(3.17) at a frequency-thickness 1000 KHz · mm in a cross-ply non-symmetric
[0/90/0/90] plate made of CFRP-T700GC/M21 (Table A.1)

Another example is given by the [456/− 456]s cross-ply plate made of AS4/3502 (Ta-
ble A.1), which is harmonically excited by an MFC piezo-electric actuator (see Equa-
tion (3.20)) with A1/h = 8 and A2/h = 2 at frequency-thickness 500 KHz · mm. The
real and imaginary amplitudes of ux(r) (Figure 5.8a) and uz(r) (Figure 5.8b) are eval-
uated in direction ϕ = 45◦ using three approaches: direct integration (DCI: see Equa-
tion (5.7)) for R = 25 - marked as “o“, far-field residue integration technique (FFRIT:
see Equation (5.35)) - plotted as straight lines, and the results of modelling of MFC
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by 21 point sources on each side (P-FFRIT: see Equation (5.37)) - marked as “∗“, re-
spectively. In FFRIT and P-FFRIT, only contributions of all three real regular poles are
taken into account. Due to the large near-field produced by a large transducer, the
far-field approximation (“−“) does not allow to reach a sufficient accuracy at distances
below r/h = 20. The results of modelling by point sources, however, agree well with
the results of direct integration at distances r/h > 9. At the same time, this technique
requires much more computational time as the use of (5.35) since the sum with respect
to j in Equation (5.37) should be computed for each value of r and ϕ, i.e. the compu-
tational time increases Nq times.

A similar comparison is performed for a cross-ply non-symmetric [0/90/0/90] plate
made of CFRP-T700GC/M21 (Table A.1) under harmonic excitation by a circular piezo-
electric actuator of radius Ao/h = 4 (3.17) at a frequency-thickness 1000 KHz · mm
(Figure 5.9). However, additionally the displacement vector is computed applying
(5.24), where, as before, only the contributions of all five real regular poles are con-
sidered. Whereas at r/h = 50 (Figure 5.9b and d) no differences between the results
of all approaches are visible, at r/h = 10 the approach without considering the inte-
grals over imaginary semi-axes (5.24) shows for most values of ϕ the largest deviation
of results from the most accurate approach, namely the DCI (5.7). The technique of
modelling by point sources (5.37) coincides well with the direct integration, the results
of far-field residue integration (5.35) are almost coinciding with the direct integration
approach, however, at r/h = 10 this agreement is not perfect.

5.4 Analysis of expressions obtained for the example of

an isotropic laminate

The far-field representation (5.35) of the displacement vector can be validated for the
isotropic laminate, for which in case of the axis-symmetric excitation source an exact
analytic solution is known [39, 108]. For example, the isotropic plate under an excita-
tion by a circular piezo-actuator (3.17) of radius Ao, the following exact representation
of the displacement field

ur(r, z, ω) =
τ0

2

∞

∑
m=1

res M(α, z, ω)

∣∣∣∣
α=km

km J1(km Ao)H
(1)
1 (kmr), (5.38)

uz(r, z, ω) = −τ0

2

∞

∑
m=1

res S(α, z, ω)

∣∣∣∣
α=km

J1(km Ao)H
(1)
0 (kmr)

is obtained for r > Ao, where M(α, z, ω) and S(α, z, ω) are given in Appendix A.8,

H
(1)
n (α) are the Hankel functions of the first kind, and where the poles km lie in the

upper half-plane.
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In the following the solution is analyzed in the form (5.35) for the isotropic case. It
is obtained in the wavenumber domain as

Fxy[u(x, y, z, ω)] = K(α, γ, z, ω)Q(α, γ) = iτ0 J1(αAo)




−i cos γM(α, z, ω)
−i sin γM(α, z, ω)

S(α, z, ω)/α


 . (5.39)

The radial in-plane displacement component in Fourier domain is found to be

Fxy[ur(x, y, z, ω)] = Fxy[ux(x, y, z, ω)] cos ϕ + Fxy[uy(x, y, z, ω)] sin ϕ (5.40)

= τ0 J1(αAo)M(α, z, ω) cos(γ − ϕ),

which by substituting it in (5.35) leads to the expressions

ur(r, z, ω) =
iτ0

2π




∞

∑
m=1

J1(k+
m Ao)

(
res M(α, z, ω)

∣∣∣∣
α=k+

m

k+
m

) ϕ+3π/2∫

ϕ+π/2

cos(γ − ϕ)

× e−ik+
mr cos(γ−ϕ) dγ −

∞

∑
m=1

J1(k−m Ao)

(
res M(α, z, ω)

∣∣∣∣
α=k−m

k−m

)

×
ϕ+π/2∫

ϕ−π/2

cos(γ − ϕ) e−ik−mr cos(γ−ϕ) dγ


+ dr(r, z, ω), (5.41)

uz(r, z, ω) = − τ0

2π




∞

∑
m=1

J1(k+
m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

ϕ+3π/2∫

ϕ+π/2

cos(γ − ϕ)

× e−ik+
mr cos(γ−ϕ) dγ

−
∞

∑
m=1

J1(k−m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

×
ϕ+π/2∫

ϕ−π/2

cos(γ − ϕ) e−ik−mr cos(γ−ϕ) dγ


+ dz(r, z, ω),

where the poles km are located in the right half-plane and according to (5.34) following
relation holds

(
dr(r, z, ω)
dz(r, z, ω)

)
=

τ0

2πr

∞

∑
m=1

(
J1(km Ao) res

(
M(α, z, ω) cos(3π/2)

S(α, z, ω)/α

)∣∣∣∣
α=km

+ res
(

M(α, z, ω) cos(π/2)
S(α, z, ω)/α

)∣∣∣∣
α=km

)
+ O(r−2) (5.42)

=
iτ0

πr

∞

∑
m=1

J1(km Ao) res
(

0
S(α, z, ω)/α

)∣∣∣∣
α=km

+ O(r−2).

114



5.4 Analysis of expressions obtained for the example of an isotropic laminate

The integrals with respect to γ in (5.41) can be evaluated analytically applying for-
mulas (B.18), (B.20) from Appendix B.3. This yields

ur(r, z, ω) =
τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res M(α, z, ω)

∣∣∣∣
α=k+

m

k+
m ·
(

J1(k+
mr)

+ i
(

H1(k+
mr) − 2

π

))
−

∞

∑
m=1

J1(k−m Ao) res M(α, z, ω)

∣∣∣∣
α=k−m

k−m ·
(

J1(k−mr)

− i
(

H1(k−mr) − 2
π

)))
+ dr(r, z, ω), (5.43)

uz(r, z, ω) =
−τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

(
J0(k+

mr) + iH0(k+
mr)
)

−
∞

∑
m=1

J1(k−m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

(
J0(k−mr) − iH0(k−mr)

)
)

+ dz(r, z, ω),

where Jn(αr) are Bessel functions and Hn(αr) denote Struve functions1 (see Equa-
tions (B.19), (B.21)). Taking into account the asymptotic properties of Bessel and Struve
functions (B.14), (B.23) leads to the asymptotic expression

ur(r, z, ω) =
τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res M(α, z, ω)

∣∣∣∣
α=k+

m

k+
m ·
(

H
(1)
1 (k+

mr) +
2i

π(k+
m)2r2

)

−
∞

∑
m=1

J1(k−m Ao) res M(α, z, ω)

∣∣∣∣
α=k−m

k−m

(
H

(2)
1 (k−mr) − 2i

π(k−m)2r2

))

+ dr(r, z, ω) + O(r−2), (5.44)

uz(r, z, ω) =
−τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

(
H

(1)
0 (k+

mr) +
2i

π(k+
m)r

)

−
∞

∑
m=1

J1(k−m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

(
H

(2)
0 (k−mr) − 2i

πk−mr

))

+ dz(r, z, ω) + O(r−3),

for (5.43), where H
(j)
n (αr), j = 1, 2 are the Hankel functions of the first and second

kind, respectively. Taking into account asymptotic expressions for the integrals along

1Struve functions are scalar functions. However, as an exception they are traditionally denoted using
bold font.
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5 Methods of evaluation of two-dimensional wavenumber integral

the imaginary axes (5.42) in (5.44) leads to expressions for the displacements:

ur(r, z, ω) =
τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res M(α, z, ω)

∣∣∣∣
α=k+

m

k+
m H

(1)
1 (k+

mr)

−
∞

∑
m=1

J1(k−m Ao) res M(α, z, ω)

∣∣∣∣
α=k−m

k−m H
(2)
1 (k−mr)

)
+ O(r−2), (5.45)

uz(r, z, ω) =
−τ0

2

(
∞

∑
m=1

J1(k+
m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

H
(1)
0 (k+

mr)

−
∞

∑
m=1

J1(k−m Ao) res S(α, z, ω)

∣∣∣∣
α=k+

m

H
(2)
0 (k−mr)

)
+ O(r−2).

The only difference which remains between the far-field representation (5.45) and the
exact solution (5.38) is that the poles in (5.45) lie in the first and fourth quadrants
instead of the first and second quadrants in (5.38). However, due to the symmetry
of the poles km,IV = −km,II (see section 4.1.1) and taking into account the properties
of Bessel (B.13) and Hankel (B.16) functions as well as the properties of residues for
even functions M(α, z, ω) and S(α, z, ω) (B.2), the far-field representations (5.35) of
displacements in the isotropic laminate for an axis-symmetric excitation at the surface
are finally written for r → ∞ as

ur(r, z, ω) =
τ0

2

∞

∑
m=1

J1(km Ao)km res M(α, z, ω)

∣∣∣∣
α=km

H
(1)
1 (kmr) + O(r−2), (5.46)

uz(r, z, ω) = −τ0

2

∞

∑
m=1

J1(km Ao) res S(α, z, ω)

∣∣∣∣
α=km

H
(1)
0 (kmr) + O(r−2),

where Im km ≥ 0 (km lies in an upper half-plane above the contour Γ). It is concluded
that for r → ∞ the difference between the exact analytical representation (5.38) and the
representation (5.35) derived in section 5.3.2 is, as it was estimated, of order O(r−2).

Remark 5.7 In fact, it can be proven that the expression for uz(r, z, ω) is of order O(r−3).

In Figure 5.10a the magnitude of the out-of-plane displacement is plotted in depen-
dence on r, where the isotropic steel plate is excited by a circular piezoelectric wafer
of radius Ao/h = 4 (3.17) at 850 KHz · mm. Here, the displacement is computed using
the analytical formula (5.38) taking into account the contribution of all real poles and
two nearest to the real-axis complex poles ( Im kc ≈ 0.6). In Figure 5.10a the good coin-
cidence of both results is observed for r/h > 13. Note that according to formula (5.2)
the near-field is defined as r/h ≤ 42 · 5/(2π) ≈ 13. In Figure 5.10b only the contribu-
tion of these two complex poles is presented, however, additionally to the analytical
representation (5.38), (“−“) their contribution is calculated using the corresponding
terms in formula (5.35) (“o“) and in formula (5.24) (“−−“). The results of applying
the far-field representation (5.35) coincide with analytical results already at r/h > 5,
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a b

Figure 5.10: (a) Magnitudes |uz(r)| occuring in a steel plate at 850 KHz · mm under
excitation by a circular piezoelectric wafer of radius Ao/h = 4, see Equa-
tion (3.17), computed using the exact analytical formula (5.38) taking into
account all real poles and two nearest to the real axis complex poles (kc

and −k∗c ). (b) Contribution of complex (kc and −k∗c ) poles into |uz(r)|
computed applying different approaches

whereas the results corresponding to the more general representation (5.24) do not
agree with an asymptotic solution. One can explain it by ignoring1 the contribution
of integrals over the imaginary semi-axes in (5.24) against considering it as a far-field
estimation in (5.35).

5.5 Far-field asymptotics of the displacement vector

5.5.1 General asymptotic expansion

The expressions obtained for the displacement vector in section 5.3 give the acceptable
accuracy often already in the near-field to the excitation source and allow to obtain an
exact result in the far-field. However, the time needed for the evaluation in the far-
field increases due to the oscillation of the integrands with respect to γ for growing
r. Nevertheless, in practical applications of SHM mainly the displacements far away
from the excitation source, where r ≫ A2

ok/(2π) are needed (A0 describes the minimal
radius of circle, which contains the bounded domain Ω, where the surface load is
applied; k is a maximal wavenumber of propagating wave modes for the frequency
considered). For the evaluation of integrals over γ in (5.35) for r → ∞, the stationary
phase method is applied (see Appendix B.2) similarly as it is performed in section 5.3.2
for an asymptotic analysis of expressions corresponding to the integration over γ and

1In the far-field according to section 5.3.2, the integrals over imaginary semi-axes can be represented
as a sum of contribution of poles.
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5 Methods of evaluation of two-dimensional wavenumber integral

over the imaginary semi-axes. Then, the following integrals are considered

u±
m(r, ϕ, z, ω) = ± i

2π

ϕ+π±π/2∫

ϕ±π/2

b±
m(γ, z, ω) e−ik±m(γ)r cos(γ−ϕ) dγ (5.47)

for r → ∞. The contribution of the pole k±m(γ) into the integral (5.47) is brought by the
endpoints of the interval (ϕ ± π/2, ϕ + π ± π/2) and by the internal stationary points
of the phase function

P±
m (γ, ϕ) = −k±m(γ) cos(γ − ϕ). (5.48)

First, the contribution e±m(r, ϕ, z, ω) of the endpoints of γ±(ϕ) is found to be1

e±m(r, ϕ, z, ω) = ± i
2π

1
r




b±
m

(
ϕ + π ± π

2
, z, ω

)

iP′
m

(
ϕ + π ± π

2

) −
b±

m

(
ϕ ± π

2
, z, ω

)

iP′
m

(
ϕ ± π

2

)




+ O(r−2) (5.49)

= − 1

2πrk±m
(

ϕ +
π

2

)
(

b±
m

(
ϕ +

3π

2
, z, ω

)
+ b±

m

(
ϕ +

π

2
, z, ω

))

+ O(r−2).

Then, according to (5.35) the sum of all of contributions of endpoints of all poles in the
right half-plane is brought to the form

∞

∑
m1=1

e+
m1

+
∞

∑
m2=1

e−m2
= − 1

2πr

×
∞

∑
m=1


 res K

(
α, ϕ +

3π

2
, z, ω

)∣∣∣∣
α=km

(
ϕ+

π

2

)Q

(
km

(
ϕ +

π

2

)
, ϕ +

3π

2

)
(5.50)

+ res K
(

α, ϕ +
π

2
, z, ω

)∣∣∣∣
α=km

(
ϕ+

π

2

)Q
(

km

(
ϕ +

π

2

)
, ϕ +

π

2

)

+ O(r−2).

This expression is the same as (5.34), but with an opposite sign. One can see from the
asymptotic expansion of (5.35) for r → ∞, these terms compensate each other and only
the contributions of the internal stationary points of phase function (5.48) remain.

For a real-valued or pure imaginary-valued pole k±m(γ), its contribution is given by
the stationary points γ±

mp(ϕ) satisfying the so called phase equation

k′±m,γ(γ)

k±m(γ)
= tan(γ − ϕ), γ ∈ (ϕ ± π/2, ϕ + π ± π/2). (5.51)

1Using the periodicity of the function b±
m(γ, z, ω) with respect to γ (period 2π).
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5.5 Far-field asymptotics of the displacement vector

Note that this equation can be rewritten using the definition of the steering angle (2.57)
as

ϕm − γ − θm(γ) = 0. (5.52)

As discussed in section 2.3.5, this relation may not be one-to-one, so that for some
values of ϕ more than one γ satisfies (5.52). This can be clearly seen from Figure 4.9b.
The inverse dependence of γ on ϕ, obtained by interchanging the axes in Figure 4.9b, is
plotted in Figure 5.11a for a symmetric plate and in Figure 5.11b for an non-symmetric
plate. The same dependence is also obtained using the numerical solution of the phase
equation (marked by circles “o“ in both figures). The stationary points correspond to
the propagation directions in which the waves, observed in the direction ϕ, are excited.

a b

Figure 5.11: Stationary points γml(ϕ) − π of Lamb wave modes in degrees in sym-
metric [0/90]s (a) and non-symmetric [0/90/0/90] (b) composite plates
made of CFRP-T700GC/M21 (Table A.1) at frequency-thickness product
300 KHz · mm

In case of the complex pole k±m(γ) = Re k±m(γ) + i Im k±m(γ), its internal stationary
points γ±

mp(ϕ) satisfy

Im
∂P±

m (γ, ϕ)

∂γ
= 0 or (5.53)

Im k′±m,γ(γ)

Im k±m(γ)
= tan(γ − ϕ), γ ∈ (ϕ ± π/2, ϕ + π ± π/2).

According to the stationary phase method, the contribution of the stationary point
γ±

mp(ϕ) found for the pole k±m(γ) is given for r ≫ Ao by

G±
mp(r, ϕ, z, ω) = ± i

2π

√
2π

r

b±
m(γ±

mp(ϕ), z, ω)
√
−i · P′′±

m,γ2(γ±
mp(ϕ), ϕ)

eirP±
m (γ±

mp(ϕ),ϕ) (5.54)

+ O(r−3/2),
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a b

Figure 5.12: Comparison of PWS curves (“−“) and the phase velocities obtained from
the asymptotic expansion ω/Pm(γmp(ϕ)) (“o“) for the frequency-thickness
product 800 KHz · mm (a) in a [45/ − 45/0/90]s composite plate made of
AS4/3502 (Table A.1) and 500 KHz ·mm in a [456/− 456]s composite plate
made of AS4/3502 (Table A.1), respectively

where

P′′
m,γ2(γ±

mp(ϕ), ϕ) =
∂2P±(γ±

mp(ϕ), ϕ)

∂γ2 6= 0. (5.55)

According to (5.54) the contribution of real poles is obtained as

Hmp(ϕ, z, ω)√
r

eihmp(ϕ)r + O(r−3/2), hmp(ϕ) > 0. (5.56)

The contribution of pure imaginary poles is

Hmp(ϕ, z, ω)√
r

e−dmp(ϕ)r +O(r−
3
2 e−dmp(ϕ)r) ∼ O( e−r), dmp(ϕ) > 0, hmp(ϕ) > 0, (5.57)

and, finally, the complex poles contribute as

Hmp(ϕ, z, ω)√
r

eihmp(ϕ)r e−dmp(ϕ)r + O(r−3/2 e−dmp(ϕ)r) (5.58)

∼ O( e−dmp(ϕ)r) = O(r−∞),

where dmp(ϕ) > 0, hmp(ϕ) > 0. For all their stationary points the contributions of
imaginary and complex poles show an exponentional decay with respect to r, i.e.
in the far-field, their contributions are negligible. However, the contribution of each
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5.5 Far-field asymptotics of the displacement vector

stationary point for each real pole (5.56) describes a cylindrical wave with a slowly
decaying amplitude O(r−1/2) and propagating with a phase velocity given by

Cmp(ϕ) =
ω

P±
m (γ±

mp(ϕ), ϕ)
. (5.59)

The phase velocity (5.59) is independent of the type of the load. The values Cmp(ϕ)
plotted in dependence on the observation direction for all propagating wave modes
and all their stationary points should agree with the PWS curves (for its calculation in
Equation (2.55) the group velocity cg(γ) should be replaced by a phase velocity cp(γ)),
defined for an excitation by a point source. It is well illustrated in Figure 5.12, where
the PWS curves are compared with curves of Cmp(ϕ) for [45/ − 45/0/90]s (a) compos-
ite plate at 800 KHz · mm and for [456/ − 456]s (b) composite plate at 500 KHz · mm.
Both plates are made of AS4/3502 (Table A.1). The main difference of Equation (5.59)
in comparison to Equation (2.55) lies in the fact that Equation (5.59) defines the velocity
curves explicitly whereas in Equation (2.55) the curves are defined implicitly.

Remark 5.8 In case of an isotropic laminate, the wavenumbers are independent of γ, i.e.

k±(γ) ≡ k±. Hence, each pole k±m has only one stationary point γ±(ϕ) = ϕ + π/2 ± π/2.

Moreover, P′′±
m,γ2(γ±

m(ϕ), ϕ) = ∓k±m and Equation (5.54) in case of an excitation by a circular

piezo-actuator (3.17) is derived in the far-field as follows1:

G±
r,m(r, ϕ, z, ω) = ∓ τ0√

±2iπk±mr

(
±i res M(α, z, ω)

∣∣∣∣
α=k±

k±
)

J1(k±Ao) e±ik±mr

+ O(r−
3
2 )

= ∓ iτ0√
2πk±mr

res M(α, z, ω)

∣∣∣∣
α=k±

k± J1(k±Ao) e±i(k±mr−π/4) (5.60)

+ O(r−
3
2 ).

The equation obtained is the asymptotics of the exact analytical solution (5.38) if the asymptotics

of Hankel function (B.17) for the term corresponding to the m-th pole is considered.

Note that the error in the representation (5.54), according to the method of stationary
phase (B.4) is given as

H±
mp(ϕ, z, ω)

(
r · |P′′±

m,γ2(γ±
mp(ϕ), ϕ)|

)−3/2
+ O(r−5), (5.61)

i.e. it becomes to be sufficiently small only if

r ≫ 1
|P′′±

m,γ2(γ±
mp(ϕ), ϕ)| . (5.62)

1For simplicity only the expression corresponding to ur(r, z, ω) is provided, however, the conclusion
of this remark holds also for uz(r, z, ω).
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The estimation (5.62) means that a sufficient accuracy of the computation of the dis-
placement vector applying the asymptotic expansion (5.54) is reached in those obser-
vation directions ϕ faster, for which P′′±

m,γ2(γ±
mp(ϕ), ϕ) is large. If this value is small or

nearly zero, the accuracy is reached only at far distances from the excitation source.

Finally, the asymptotic expansion (AE) for the displacement vector is derived as

u(r, ϕ, z, ω) =
Nr

∑
m=1

N±
mp(ϕ)

∑
p=1

G±
mp(r, ϕ, z, ω) + O(r−3/2), (5.63)

where Nr is the number of real poles, and N±
mp(ϕ) is the number of stationary points

found for the pole k±m(γ) in direction ϕ.

The asymptotic expansion (5.63) is obtained by many authors [43, 69, 107, 109, 141]
and is therefore predicted to be true in [10]. However, these authors do an estima-
tion O(r−1), but in fact, in this thesis it is derived to be of order O(r−3/2) due to a
more accurate analysis of the contributions of integrals over imaginary semi-axes in
section 5.3.2.

Note that the approach, described in this section, can be applied to each term in the
representation (5.37) in the coordinate system (5.36). Then, the asymptotic expansion
for pointwise given load vector (P-AE) is derived in the form

u(r, ϕ, z, ω) = ± iδ2
s√

2π
(5.64)

×
Nq

∑
j=1

Nr

∑
m=1

N±
mp(ϕ̃j)

∑
p=1

K(α, γ±
mp(ϕ̃j), z, ω)qj

∣∣∣∣
α=k±m(γ±

mp(ϕ̃j))√
−ir̃j · P′′±

m,γ2(γ±
mp(ϕ̃j), ϕ̃j)

eir̃jP
±
m (γ±

mp(ϕ̃j),ϕ̃j)

+ O(r−3/2).

Note that the same asymptotic expansion is obtained also in [40]. Therefore its authors
estimated that by taking the sufficient number of point sources for describing the load
Q(α, γ), at large distances r, where the direction ϕ̃j becomes to be “practically parallel“
to each other, the representation (5.64) turns to the asymptotic expansion (5.63).

5.5.2 Asymptotic expansion for directions near caustics

The asymptotic expansions derived in section 5.5.1, are valid if (5.55) is satisfied.
On the contrary, the observation directions for which P′′±

m,γ2(γ±
mp(ϕ), ϕ) = 0 is full-

filled, correspond to caustics, and the representation (5.54) is no longer valid. In
such a direction ϕc, two stationary points γ±

mp1
(ϕ) and γ±

mp2
(ϕ) join each other, i.e.
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5.5 Far-field asymptotics of the displacement vector

γ±
mp1

(ϕ) − γ±
mp2

(ϕ) → 0 if ϕ → ϕc. This situation is illustrated in Figure 5.11, where
two stationary points corresponding to SH0 and qSH0 modes for symmetric and non-
symmetric plate, respectively, become to be equal at caustics ϕc ≈ 7◦ and ϕc ≈ 83◦.
In the vicinity of ϕc, where these two stationary points are nearly equal, the sum of
corresponding displacements1 is expressed for r → ∞ as [29]

G±
mp1

(r, ϕ, z, ω) + G±
mp2

(r, ϕ, z, ω) = r−
1
3 eirL(ϕ)V(s) (5.65)

×


b±

m(γmp2(ϕ), z, ω)

√√√√2
√

S(γmp2(ϕ))

P′′±
m (γmp2(ϕ))

+ b±
m(γmp1(ϕ), z, ω)

√√√√−2
√

S(γmp1(ϕ))

P′′±
m (γmp1(ϕ))




+ O(r−2/3),

where

L(ϕ) =
1
2

[
P±

m (γ±
mp1

(ϕ), ϕ) + P±
m (γ±

mp2
(ϕ), ϕ)

]
, s = −r2/3S(ϕ), (5.66)

S(ϕ) =

[
3
4
(P±

m (γ±
mp2

(ϕ), ϕ) − P±
m (γ±

mp1
(ϕ), ϕ))

]2/3

(5.67)

and V is the so called Airy function. It is assumed in (5.65) that

P′′±
m (γ±

mp1
(ϕ), ϕ) < 0, P′′±

m (γ±
mp2

(ϕ), ϕ) > 0. (5.68)

This estimation is valid when [135]

S(ϕ) = O(r−
2
3 ), r → ∞, (5.69)

or, in other words,

|Pm(γm2(ϕ), ϕ) − Pm(γm1(ϕ), ϕ)| = O(r−1), r → ∞. (5.70)

From the left of the caustic ϕc ≈ 7◦ and from the right of the caustic ϕc ≈ 83◦, re-
spectively (Figure 5.11), only a single stationary point is observed. The corresponding
displacement field decays with O(r−1/2) (it is so called shadow zone), whereas from the
opposite sides of caustics three stationary points exist and the displacement decays
according to (5.65) with O(r−1/3). It means that at a large distance from the source,
the amplitudes near the caustic are much higher compared with neighboring direc-
tions. This phenomenon causes an effect of waves (energy) focussing [20, 117]. It is
also observed in numerical computations applying the spectral FEM in [138]. Note
that such a theoretically obtained discontinuity of the displacement field is also ob-
served theoretically near caustics for phonon [85] and acoustic waves [88]. Moreover,
the representation based on the Airy function similar to (5.65) is obtained for elastic

1Note that in the following for the modified asymptotic expansion for directions near caustics (Equa-
tion (5.65)) the abbreviature AE-C is used.
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5 Methods of evaluation of two-dimensional wavenumber integral

waves in anisotropic unbounded media by Kravtsov and Orlov [68]. However, in [67]
it is also noted that the wave solution near caustics is not really discontinuous due to
wave difraction. For more accurate computation of the waves at far-field near caustic
a generalization of the caustics to the complex caustics (considered in complex plane)
similarly to the work [66] is needed. In this thesis this approach is not considered.

5.5.3 Numerical results of applying the far-field asymptotic

expansion for computation of displacements

a b

Figure 5.13: Results of the calculation of ux(r) (a) and uz(r) (b) at z = 0 in direction of
ϕ = 0◦ in a [456/ − 456]s composite plate made of AS4/3502 (Table A.1)
and modelled by MLPT (κ1 = κ2 =

√
5/6). An excitation source is given

by a vertical point source at r = 0 (3.17) acting for the frequency-thickness
f · h = 100 KHz · mm. Straight lines correspond to FFRIT (5.35), circles
mark the results of DCI (5.7) with R = 25, and dashed lines are the results
obtained using AE (5.63)

The asymptotic expansions given in sections 5.5.1 and 5.5.2 are applied in this sec-
tion to some harmonic wave propagation problems in composite plates, the achieved
results are compared with results of methods described before.

The most simplest case is a [456/ − 456]s composite plate modelled by MLPT (κ1 =
κ2 =

√
5/6) under an excitation by a vertical point load (3.17), see Figure 5.13. There

are no complex poles (except of pure imaginary poles) and the frequency-thickness
f · h = 100 KHz · mm is notably below the cut-off frequency-thickness of waves. The
displacement vector is almost fully defined by the contribution of a bending mode A0,
which propagates as a single pulse (only one stationary point), and the corresponding
wave curves are smooth, i.e. the value P′′(γ, ϕ) does not take small values and the
corresponding asymptotic expansion (5.63) (“−.“) is valid already relatively near to
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5.5 Far-field asymptotics of the displacement vector

the excitation source. It can be observed here for both displacement components ux(r)
(Figure 5.13a) and uz(r) (Figure 5.13b) by comparing with the FFRIT (5.35) (“−“). and
the DCI (5.7) (“o“).

a b

Figure 5.14: Results of the calculation of |uz(ϕ)| applying different approaches for
z = 0, r/h = 10 (a) and r/h = 50 (b) for the frequency-thickness prod-
uct f · h = 800 KHz · mm in [45/ − 45/0/90]s composite plate made of
AS4/3502 (Table A.1). An excitation source is given by a CLoVER sector
(see Equation (3.22)): ϕR = 22.5◦, ϕR = 67.5◦, Ai/h = 4, Ao/h = 5

Another example (Figure 5.14) is given by a harmonic Lamb wave propagation in
[45/ − 45/0/90]s composite plate under an excitation by a CLoVER sector (3.22) at
f · h = 800 KHz · mm, which is below the first cut-off frequency-thickness of this lam-
inate (Table A.2 in Appendix A.9). All three propagating fundamental wave modes
are taken into account. Here, due to the quasi-isotropy of all wave modes, the con-
dition (5.62) is satisfied for relatively low values of r, however, the near-field zone is
larger because of the dimensions of the actuator. In Figure 5.14a at r/h = 10 the in-
nacuracy of the asymptotic expansion (5.63) is clearly observed, however at r/h = 50
(Figure 5.14b), it becomes to be minor in almost all directions except of directions near
to ϕ = 45◦ (the fiber direction of the upper layer in a laminate).

In some situations, the domain of applicability of the asymptotic expansion is con-
siderably smaller, i.e. it can be applied for the displacement computation only in points
far away from the excitation source. Such a situation is well illustrated by the com-
parison of in-plane radially directed and out-of-plane displacements in Fgiures 5.15
on the left and right sides, respectively, if computed using an asymptotic expansion
((5.63): “−.“), far-field residue integration ((5.35): “−“) and direct integration ((5.7):
“o“) in directions ϕ = 0◦, ϕ = 7◦ and ϕ = 45◦. Again, only the contributions of real
poles are considered and it is found that the agreement between the direct integration
and far-field residue integration is well in all presented figures already for r/h > 15
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a d

b e

c f

Figure 5.15: Radial in-plane (a, b and c) and out-of-plane (d, e and f) surface displace-
ments excited by a circular piezo-actuator according to (3.17) with a ra-
dius of Ao/h = 5 for the frequency-thickness 300 KHz · mm in directions
ϕ = 0◦ (a and d), ϕ = 7◦ (b and e) and ϕ = 45◦ (c and f) in a symmetric
composite plate [0, 90]s made of CFRP-T700GC/M21 (Table A.1). Compar-
ison of results obtained using AE (5.63) (“−−“), FFRIT (5.35) (“−“) and
DCI (5.7) (“o“)
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5.5 Far-field asymptotics of the displacement vector

except of the radial in-plane displacement in direction ϕ = 45◦ (Figure 5.15c). Here, a
coincidence between both approaches is reached only for r/h > 25. On the other hand,
the asymptotic expansion agrees well for both methods for r/h > 25 in Figures 5.15c,
d, e and f, and disagree for radial in-plane displacements in directions ϕ = 0◦ (Fig-
ure 5.15a) and ϕ = 7◦ (Figure 5.15b). In situations, where the asymptotic expansion
gives accurate results at relatively small distances, the main contribution into the cor-
responding displacement components is brought by the A0 wave mode, the velocity
of which is weakly dependent on ϕ and the condition (5.62) is satisfied for relatively
small r. In directions of ϕ = 0◦ and ϕ = 7◦, on the contrary, the S0 Lamb wave
mode brings the main contribution into the displacement field1, and for this mode the
condition (5.62) is satisfied only for considerably larger values of r since the second
derivative of phase function is small.

a c

b d

Figure 5.16: Results of Figure 5.15 but for fixed r/h = 90 (a and c) and r/h = 250
(b and d) in dependence on direction ϕ. Obtained applying AE (5.63)
(“−−“), P-AE ((5.64)) for Nq = 40 (“x“), FFRIT (5.35) (“−“) and P-FFRIT
(5.37) for Nq = 40 (“∗“)

1It is clearly visible because of the considerably larger wavelength in corresponding displacements.
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5 Methods of evaluation of two-dimensional wavenumber integral

In Figure 5.16 the values of in-plane ur(ϕ) and out-of-plane displacements uz(ϕ) are
plotted. These correspond solely to the mode S0, computed for fixed values r/h = 90
(Figures 5.16a and c) and r/h = 250 (Figures 5.16b and d) using the corresponding
terms in a far-field residue integration for an exact analytical (Equation (5.35): “−“)
and pointwise (Equation (5.37): “∗“, Nq = 40) representations of loading function
as well as using the asymptotic expansion for an exact analytical ((5.63): “−−“) and
pointwise ((5.64): “x“, Nq = 40) representations of loading function. Note that the dif-
ference between pointwise and analytical representations is insignificant at almost all
directions ϕ. However, the difference between the use of an asymptotic expansion and
the far-field residue representation is still being observable, especially for r/h = 90.
For a large value1 r/h = 250 the difference is visible only in direction ϕ = 0◦. It let
to conclude that the asymptotic expansion should be used carefully, and applied only
at points, which belong to the corresponding domain of applicability of this expansion.

a b

Figure 5.17: Out-of-plane displacement |uz(ϕ)| calculated for r/h = 250 (a) and
r/h = 2152 (b) for z = 0 for the frequency-thickness 300 KHz · mm in
a [0/90]s composite plate made of CFRP-T700GC/M21 (Table A.1) appy-
ing different approaches. The excitation source is given by a vertical point
source at r = 0 (3.17)

The inaccuracies in using the asymptotic expansion occur also in directions near
caustics. Figure 5.17a shows that the difference between the results obtained using
the asymptotic expansion (5.63) do not agree with the results of far-field residue inte-
gration (5.35) for the mode SH0 in directions near caustic ϕc ≈ 7◦ even at a distance
r/h = 250. At the larger distance r/h = 2152 (Figure 5.17b) the differences are still
significant even if the asymptotic expansion for directions near caustics (5.65) (“o“) is
used. Especially it is notable for directions from the left of caustic ϕc ≈ 7◦, since they
propose the discontinuity of the displacements, which cannot occur for any finite value

1For a 1 mm-thick plate this distance is 25 cm.
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5.6 Conclusions of the chapter

of r as it follows from (5.35). However, at r/h = 2152, the accuracy of the asymptotic
expansion is much higher than for r/h = 250.

5.6 Conclusions of the chapter

Different methods of the evaluation of 2D-wavenumber integrals for displacements are
discussed in this chapter. They are differing considerably not only in the most suitable
domain of application but also in the computational costs.

The direct integration method (5.7) is slow, and in the far-field the computational
costs increase rapidly - for one point on the surface of the composite plate about one
minute of computational time on a standard PC is needed. On the other hand, for
the evaluation of displacements in the near-field this method is most convenient since
other approaches require a large number of complex poles to be taken into account
or an evaluation of the integrals over the imaginary semi-axes (5.24), which leads to
almost the same computational time as the direct integration. One of the main disa-
vantages of this approach is the impossibility of taking into account the wave structure
of the solution.

After preliminarily evaluation of the stationary points and corresponding values of
the phase function and its second derivative, the computational costs for the use of
asymptotic expansions (5.63), (5.65) in the far-field are in the range of milliseconds on
a standard PC for each point of the plate. Moreover, this approach allows to represent
the displacement vector as a sum of the propagating cylindrical waves with different
velocities. However, for the wave modes with a presence of caustic directions or di-
rections of strong focussing, the domain of its applicability lies outside of the circle
with a large radius ra.e., i.e. this approach does not work for the points inside of this
considerably large circle. The value of ra.e. can be more than 100 times larger than
the radius of the excitation domain Ao. This disadvantage is especially noticeable
at higher frequencies, where the wave structure becomes to be complicated even for
quasi-isotropic composites (see chapter 4). Also note that here the pointwise represen-
tation of the loading function (5.13) does not bring any advantage since the inaccuracy
of the asymptotic expansion is due to the large error terms in expansions (5.63), (5.65)
but not due to any inaccuracies in modelling itself.

For the domain outside the near-field, or frequently already outside of the loading
domain Ω, the far-field residue integration (5.35) is convenient. This approach contains
some errors brought by the assumptions made in section 5.3.2, which can be valuable
in the near-field if the source is not a point source, however, it is more accurate than
the use of asymptotic expansion (5.63). It also allows to analyse the contributions of
single wave modes separately and is considerably faster than the direct integration
(5.7) since depending on the value of r it requires on a standard PC about 1 − 5 sec-
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5 Methods of evaluation of two-dimensional wavenumber integral

onds for each value of r and ϕ. If in the near-field the contributions of the single wave
modes are of interest, then, instead of the direct integration, the far-field residue rep-
resentation for pointwise approximated loading function (5.37) can be used. However,
the computational time increases proportionally to the number of nodes in a pointwise
representation. But it is the only possible approach for the case when the wavenumber
domain representation of the surface load is not available.

Remark 5.9 The approaches, described in this chapter for the evaluation of displacements can

be applied in the same way to the calculation of strains and stresses by considering their

wavenumber domain representations.1

1The representations for strains and stresses can be simply derived from this representation by apply-
ing the corresponding derivative operators.

130



6 Analysis of Lamb wave

propagation in laminated

composite plates

The algorithms for the evaluation of wavenumber integrals, presented in chapter 5,
give a quite effective tool for investigation of Lamb waves excited by surface sources
(e.g. piezo-electrical wafers) in laminated composites. In the following, only the far-
field residue integration (5.35) and asymptotic expansion (5.63) as the two simplest
and quickest ways for studying the properties of Lamb waves are considered. Since
the fundamental Lamb wave modes are of main interest for practical application, their
properties are studied in this chapter on various numerical examples. Amongst oth-
ers, the through-thickness properties of Lamb waves, their focussing and the aspects of
the transient wave propagation are discussed. Additionally, the results obtained using
an integral approach applied to a transient wave propagation problem (section 3.1.2),
are validated by comparing with results of conventional FEM and by comparing with
experimental data.

6.1 Investigation of properties of Lamb waves

6.1.1 Through-thickness properties of Lamb waves

All techniques of the evaluation of the 2D-wavenumber integral discussed in chap-
ter 5, except of the direct integration (DCI), give a representation of the displacement
vector as a sum of propagating Lamb wave modes. As it is stated in section 2.3.4, the
Lamb wave modes in anisotropic plates are differing in their properties with respect
to thickness coordinate z: there are symmetric and antisymmetric wave modes. Since
in the wavenumber integral (5.1) only Green’s matrix K(α, γ, z, ω) depends on z, i.e.
the dependence of the displacement vector components on z is completely defined
by the dependence of residues of Green’s matrix res K(α, γ, z, ω) for α = km(γ) on z

and is independent of the load. In Figure 6.1 the normalized real parts of horizon-
tal (ux) and out-of-plane (uz) displacements corresponding to the Lamb wave modes
qS0 (Figure 6.1a and b) and qA0 (Figure 6.1c and d) are presented for a symmetric
[0/90]s (marked by straight lines) and non-symmetric [0/90/0/90] (marked by circles)
composite plates made of CFRP-T700GC/M21. The excitation frequency-thickness is
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6 Analysis of Lamb wave propagation in laminated composite plates

a c

b d

Figure 6.1: Corresponding to Lamb wave modes qS0 (a and b) and qA0 (c and d) nor-
malized horizontal (a and c) and out-of-plane (b and d) components of
displacement vector (real part) caused by the circular piezo-actuator (2.83)
with a radius Ao/h = 5 for the frequency-thickness 300 KHz · mm in di-
rections of ϕ = 0◦ (black), ϕ = 45◦ (red) and ϕ = 90◦ (blue), computed
in symmetric [0/90]s (marked with "‘−"’) and non-symmetric [0/90/0/90]
(marked with "‘o"’) composite plates with layers of CFRP-T700GC/M21

f · h = 300 KHz · mm. Values are presented in Figure 6.1 in three observation direc-
tions: ϕ = 0◦, ϕ = 45◦ and ϕ = 90◦. As it can be observed from Figure 6.1, the
in-plane and out-of-plane displacements corresponding to qS0 (or S0) and qA0 (or A0)
wave modes propagating in the symmetric plate [0/90]s are even or odd functions
with respect to z variable, if the origin is placed at z/h = −0.5. This property is con-
venient with the classification of symmetric and antisymmetric wave modes, which is
given in section 2.3.4. However, if in the [0/90]s laminated plate two bottom layers are
interchanged, i.e. the non-symmetric plate [0/90/0/90] is considered, the through-
thickness properties of Lamb waves are changing significantly: the plots of through-
thickness displacements corresponding to qS0 and qA0 wave modes do not display any
symmetry properties of these modes with the exception of the qS0 wave mode in the
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6.1 Investigation of properties of Lamb waves

direction of ϕ = 45◦, where this wave mode is a pure symmetric wave mode. Note
that the comparison of group velocities of quasi-symmetric wave modes qS0 and qSH0

in both of these plates, done in chapter 4, shows no differences between their velocities.

The difference between the velocities of quasi-antisymmetric wave modes qA0 in both
plates is small, however, their through-thickness properties are significantly different.

6.1.2 Focussing of Lamb waves

a b

Figure 6.2: Normalized Maris factors (Mf ) for fundamental Lamb wave modes A0

(red), S0 (blue) and SH0 (black) for a frequency-thickness of 500 KHz · mm
in a symmetric composite plate [0/90]s (a) with layers of CFRP-
T700GC/M21 and in symmetric hybrid [I90/C45/C − 45]s laminated
plate (b), where “I“ stands for IM7-Cycom-977-3 and “C“ for CFRP-
T700GC/M21

In practical applications for SHM, the distribution of wave amplitudes in different
observation directions for different wave modes in laminated composites is of great
importance. Due to the anisotropy of the layers, the amplitudes of waves in laminated
composites can exhibit a strong focussing in certain directions [20, 40]. For example,
in [20] the authors observe the focussing of the S0 wave mode in the fiber directions
in a [0/90]s composite plate of CFRP-T700GC/M21 at the range of frequencies below
the first cut-off frequency. As the simplest way for the prediction of the amplitudes in
different directions, the authors use the Maris factor for Lamb waves, which is given
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6 Analysis of Lamb wave propagation in laminated composite plates

by the multiplier in the asymptotic expansion (5.63) as [20, 85, 88]

Mf ,mp(ϕ) =
1√∣∣∣P′′±

m,γ2(γ±
mp(ϕ), ϕ)

∣∣∣
. (6.1)

In Figure 6.2 the normalized Maris factors of fundamental Lamb waves in a [0/90]s
plate of CFRP-T700GC/M21 and a hybrid laminated plate [I90/C45/C − 45]s (“I“
stands for IM7-Cycom-977-3 and “C“ for CFRP-T700GC/M21) are shown for the fre-
quency-thickness of 500 KHz · mm. In the cross-ply plate (Figure 6.2a) the strong
focussing of S0 in the fiber directions is observed. The SH0 wave mode is predicted to
radiate preferably in caustic directions of ϕ ≈ 7◦ and ϕ ≈ 83◦, the amplitudes of A0

are predicted to be the highest in fiber direction of the upper ply ϕ = 0◦, ϕ = 180◦.
The angle dependence of the Maris factor for the hybrid plate (Figure 6.2b) on ϕ is
more complicated, the A0 mode is focussed in the direction of ϕ ≈ 97◦, the amplitudes
of S0 mode are concentrated mainly in directions of ϕ ≈ 57◦ and ϕ ≈ 113◦, whereas
the SH0 mode radiates again mainly in its caustic directions of ϕ ≈ 22◦ and ϕ ≈ 75◦.

a b

Figure 6.3: Normalized out-of-plane displacements corresponding to the fundamental
Lamb wave modes A0 (a) and S0 (b) at a distance r/h = 100
in case of the excitation by the circular piezo-actuator (2.83) of radius
Ao/h = 5 (straight lines) and the CLoVER sector (2.87) (Ai/h = 3,
Ao/h = 5, ϕR = π/8, ϕL = 3π/8, dotted lines) at a frequency-thickness
of 300 KHz · mm in a symmetric composite plate [0/90]s with layers of
CFRP-T700GC/M21

The main advantage of using the Maris factor for the analysis of the directivity of
wave modes is that it can be evaluated using the dispersion curves only. However, the
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6.1 Investigation of properties of Lamb waves

prediction of the wave amplitudes by the Maris factor is valid under certain conditions
in case of the excitation by a vertical point source since it corresponds to the multi-
plier in the asymptotic expansion (5.63). As such a condition, a small variation of the
residues of Green’s matrix with respect to γ can be chosen. However, the Maris factor
does not take into account the properties of the excitation source.

a c

b d

Figure 6.4: Out-of-plane displacements corresponding to fundamental Lamb wave
modes S0 (a and c) and A0 (b and d) at a distance r/h = 100 in case of
the excitation by a circular piezo-actuator (2.83) of radius Ao/h = 5 (a
and b) in a hybrid [I90/C45/C − 45]s plate and by a CLoVER sector (2.87)
(Ai/h = 3, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦, c and d) in a symmetric
[45/ − 45/0/90]s composite plate with layers of CFRP-T700GC/M21. The
harmonic excitation frequency-thickness is 500 KHz · mm
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6 Analysis of Lamb wave propagation in laminated composite plates

For prediction of the Lamb wave directivity in a composite plate under an excitation
by a source of general type, instead of the Maris factor the distribution of the displace-
ments with respect to the observation direction ϕ needs to be analysed. In Figure 6.3
the surface amplitudes corresponding to the circular excitation source (2.83) (Ao/h = 5,
straight lines) are compared with the surface amplitudes caused by a CLoVER sector
(2.87) (Ai/h = 3, Ao/h = 5, ϕR = π/8, ϕL = 3π/8, dotted lines). The A0 (Figure 6.3a)
and S0 (Figure 6.3b) Lamb waves are simulated here applying the asymptotic expan-
sion (5.63) for r/h = 10 and f · h = 300 KHz · mm in [0/90]s laminated plate with
layers of CFRP-T700GC/M21. The A0 wave mode in case of an excitation by a circular
piezo is mainly radiated in the direction of ϕ = 90◦, whereas in case of the CLoVER
sector it is directed in the direction of ϕ = 45◦. In this case the use of the CLoVER
sector allows to control the primary radiation direction of A0 wave mode. Note that
the Maris factor of the A0 for this laminate predicts the main radiation in the direction
of ϕ = 0◦ (see Figure 6.2a since the Maris factors for A0 at f · h = 300 KHz · mm and
at f · h = 500 KHz · mm are nearly equal). In contrast to the A0 wave mode, for the
S0 wave mode the highest amplitudes are observed in directions near to the fiber di-
rections ϕ = 0◦ and ϕ = 90◦ for both sources. This means that the focussing of waves
is so strong, that it cannot be controlled even by the actuator, which is designed for
producing the waves in the given angular range only. Low amplitudes in this angular
range cause a low sensibility of S0 Lamb wave mode-based SHM systems.

In Figure 6.4 similar radiation diagrams for the out-of-plane displacements are plot-
ted for S0 (a and c) and A0 (b and d) harmonic wave modes excited at 500 KHz · mm
in a hybrid [I90/C45/C − 45]s laminate by a circular source (2.83) of radius Ao/h = 5
and in a quasi-isotropic composite [45/ − 45/0/90]s plate with CFRP-T700GC/M21
layers by a CLoVER sector (2.87). Whereas in a quasi-isotropic [45/ − 45/0/90]s lam-
inate (Figures 6.4c and d) both waves are strongly directed in the direction given by
the geometry of the CLoVER sector. In a hybrid [I90/C45/C − 45]s laminate under
an axis-symmetric excitation, the amplitude curves are similar to the curves of Maris
factors (Figure 6.2b) but much more complicated. Moreover, zero amplitudes in sev-
eral directions (ϕ = 0◦ for S0 wave mode, ϕ = 45◦ and ϕ = 135◦ for A0 wave mode)
are observed. These correspond to the directions, where the waves from the opposite
points on the actuator boundary are excited in an antiphase. From the mathemati-
cal point of view, this situation corresponds to such values of wavenumbers kmp(ϕ),
for which the load vector of a circular piezo-actuator in a wavenumber domain (2.83)
is equal to zero, i.e. J1(Aokmp(ϕ)) = 0. In such directions (for a given frequency)
the laservibrometer-based measurements shoud be avoided [41]. Similarly, in case
of laservibrometer-based measurements such central frequencies and dimensions of
piezoactuators should be avoided. Note that in Figure 6.4 the amplitudes are not nor-
malized, and it can be observed that the out-of-plane amplitudes of A0 wave modes
are about 5 times (hybrid plate) and 20 times (quasi-isotropic plate) higher than the
amplitudes of S0 wave modes, respectively.
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6.2 Analysis of energy properties of Lamb wave modes

6.2 Analysis of energy properties of Lamb wave modes

6.2.1 Energy flow. Umov vector

Another way for the analysis of wave propagation in mechanical structures is the
study of energy characteristics of the waves. In this section an energy brought into the
structure by a surface source and its radiation through a structure to infinity is studied
using the definitions of values of energy flow and the vector of its power density given
by Umov1 [139]. The change of the total amount of energy contained in an elastic
volume V is given by the flux of the energy through its surface S [10]

dE

dt
=
∫

S
en dS, (6.2)

where en(x, t) = −(∂u/∂t, σσσn) is the density of energy flux through the surface S in the
direction of its normal n at a point x ∈ S, σσσn is the complex stress vector at the surface
element specified by the normal n as σn,i = ∑

n
j=1 σijnj. In (6.2) (a, b) = ∑

n
k=1 akb∗k de-

notes the dot product of vectors, and the asterisk indicates complex conjugate values.

The energy fluxes in steady-state time-harmonic fields are given as an average change
of energy amount in the domain V during one period of oscillation T = 2π/ω, which
can be reduced to the Umov-Poynting representation in terms of stresses σσσn and dis-
placements u as

Eω =
1
T

T∫

0

dE

dt
dt = −ω

2
Im

∫

S
(u, σσσn) dS. (6.3)

Then, the energy brought into a composite plate by surface source σσσn(x, y, 0) = q(x, y)
acting in the domain Ω is obtained as

Eω
0 = −ω

2
Im

∫

Ω

(u(x, y, 0), q(x, y)) dxdy. (6.4)

Using an integral approach this energy can be represented in terms of Green’s matrix
K(α1, α2, z, ω) and the surface load vector in the frequency-wavenumber domain

Eω
0 = − ω

8π2 Im
∫

Γ1

∫

Γ2

(K(α1, α2, z, ω)Q(α1, α2), Q(α∗1 , α∗2)) dα1dα2. (6.5)

Applying the residue integration technique to the integrals in (6.5) similarly as done in
chapter 5 for the representation of displacement the following formula is obtained [135]:

Eω
0 = − ω

4π
(6.6)

× Im

2π∫

0

i

(
Nr

∑
m=1

res K(α, γ, z, ω)

∣∣∣∣
α=km(γ)

Q(km(γ), γ), Q(k∗m(γ), γ)

)
km(γ) dγ.

1In the western literature it is frequently named Poynting vector.
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6 Analysis of Lamb wave propagation in laminated composite plates

Equation (6.6) allows to analyse the energy partition between different Lamb waves,
excited by the surface load q(x).

The energy propagating from the source to infinity can be evaluated by the same
way as Eω

0 . A cylinder is considered, the center of which is located at the origin and
its radius is R > Ao (a cylinder is taken outside of the source, which is located inside
of the circle with a minimum radius Ao), and its height is equal to the thickness of the
laminated plate h. Then, the energy propagating through the surface of the cylinder
to infinity is given by

Eω
R (R, ω) = −ωR

2
Im

2π∫

0

0∫

−h

(u(R, ϕ, z), σσσn(R, ϕ, z)) dϕ dz (6.7)

= −ωR

2
Im

2π∫

0

0∫

−h

E(R, ϕ, z) dϕ dz.

A vector of stresses σσσn along the surface normal n = (cos ϕ, sin ϕ, 0) is calculated using
the stress tensor σij as

σn,i =
3

∑
j=1

σijnj = σi1 cos ϕ + σi2 sin ϕ, (6.8)

where the stresses σij are connected with displacements by Hooke’s law (2.1).

The dot product (u(R, ϕ, z), σσσn(R, ϕ, z)) = E(R, ϕ, z) in the integral in (6.7) represents
the density of energy flow (power density) in a point with coordinates (R, ϕ, z) on the
surface of the cylinder along its normal. The value of power density depends on the
observation angle ϕ, the depth z and the radius R of the cylinder. But it is evident
that, if no attenuation is considered in the model, according to the law of conservation
of energy, the value of total energy Eω

R propagating to infinity through the surface of
the cylinder with a radius R does not depend on its radius and is equal to the value of
energy brought into the composite by a surface source

Eω
0 = Eω

R1
= Eω

R2
, ∀R1 > Ao, R2 > Ao, (6.9)

where Ao is the radius of the minimum circle, which contains the domain Ω, on which
the surface load is applied. This relation is frequently called “energy balance“. How-
ever, the distribution of energy in dependence on z and ϕ can vary for different values
of R. For example, the total through-thickness energy flow can be computed for the
analysis of the total energy flow in different directions

Eω
R,ϕ(R, ϕ, ω) = −ωR

2
Im

0∫

−h

E(R, ϕ, z, ω) dz. (6.10)
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6.2 Analysis of energy properties of Lamb wave modes

Remark 6.1 In case of absence of backward propagating modes the values of energy corre-

sponding to all wave modes are positive: Eω
R,ϕ(R, ϕ, ω) > 0 and Eω

0 > 0.

While computing the energy flow for different values of R, ϕ and z, different algo-
rithms of the displacement and the stress vector computation can be used. However,
most convenient is to use the far-field residue integration (5.35) or the asymptotic ex-
pansion (5.63). Both of these approaches allow to represent the solution of the wave
propagation problem as a sum of propagating wave modes, i.e. the total power density
of the energy propagating from the source to infinity can be obtained as

E(R, ϕ, z, ω) =

(

∑
j

uj(R, ϕ, z, ω), ∑
k

σσσn,k(R, ϕ, z, ω)

)
(6.11)

= ∑
j

Ej(R, ϕ, z, ω) + ∑
j,k, j 6=k

Ejk(R, ϕ, z, ω),

where

Ej(R, ϕ, z, ω) =
(
uj(R, ϕ, z, ω), σσσn,j(R, ϕ, z, ω)

)
, (6.12)

and

Ejk(R, ϕ, z, ω) =
(
uj (R, ϕ, z, ω) , σσσn,k (R, ϕ, z, ω)

)
(6.13)

+
(
uk (R, ϕ, z, ω) , σσσn,j (R, ϕ, z, ω)

)
.

The values Ej(R, ϕ, z, ω) correspond to the energy, carried out solely by the i-th wave
mode, i.e. these values are called pure energy contributions. The values Ejk(R, ϕ, z, ω)
correspond to the energy, carried out due to the interaction of two wave modes,
they are named mixed energy contributions. Note that the mixed energy components
Ejk(R, ϕ, z, ω) are in general non-zero only in some directions, where the correspond-
ing wave modes j and k are coupled.

If for the computation of the energy flow in the far-field to the excitation source the
asymptotic expansion (5.63) is used, it is obtained that1

Ej(R, ϕ, z, ω) ∼ Ejk(R, ϕ, z, ω) ∼ O(R−1) (6.14)

is fullfilled. However, in following the representation of the total energy radiated by
the source (6.10) is taken into account and the following formula for the computation
of the power density is used:

Eω
j (R, ϕ, z, ω) = −ωR

2
Ej(R, ϕ, z, ω), Eω

jk(R, ϕ, z, ω) = −ωR

2
Ejk(R, ϕ, z, ω). (6.15)

It follows immediately that

Eω
j (R, ϕ, z, ω) ∼ Eω

jk(R, ϕ, z, ω) ∼ O(1), (6.16)

1Except of the directions ϕ near to caustics of wave mode.
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6 Analysis of Lamb wave propagation in laminated composite plates

i.e. the normalized values of the power density (6.10) turn to some constant values.
Note that if in the far-field the asymptotic expansion (5.63) is used for the computation
of power density and there exist multiple stationary points for one of the dispersion
curves, the equation of energy balance (6.9) is not exactly satisfied due to the inaccu-
racies of the stationary phase approach in this case.

Remark 6.2 In case of isotropic laminates the mixed energy components are generally zero:

Ejk(R, ϕ, z, ω) ≡ 0.

Remark 6.3 The total mixed energy after integration with respect to z and ϕ should be equal

to zero1, i.e.

2π∫

0

0∫

−h

Eω
j (R, ϕ, z, ω) dzdϕ = 0. (6.17)

6.2.2 Analysis of energy characteristics

a b

Figure 6.5: Through-thickness power density corresponding to fundamental Lamb
wave mode A0 (pure component) at a distance r/h = 150 in case of the ex-
citation by the circular piezo-actuator (2.83) of radius Ao/h = 5 in a hybrid
[I90/C45/C − 45]s plate (a) and by the CLoVER sector (2.87) (Ai/h = 4,
Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦) in a symmetric [45/ − 45/0/90]s com-
posite plate (b) with layers of CFRP-T700GC/M21. The harmonic excitation
frequency-thickness is 500 KHz · mm

If the power density of the energy flow is analysed in dependece on the depth z, it
can be observed that in contrast to the displacements and stresses, the power density

1In practice, some small but non-zero values of total mixed energy can occur due to numerical errors.
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6.2 Analysis of energy properties of Lamb wave modes

depends on the stresses σ11, σ12, σ22, which can have discontinuities at the layer inter-
faces since only the continuity of the stress vector (σ13, σ23, σ33) and of the displace-
ment vector u is assumed (see Equation (2.8)). Note that in case of a homogeneous
structure the power density is a continuous function of z [10]. The discontinuous de-
pendence of the power density on the depth coordinate is illustrated in Figure 6.5 for
the A0 wave mode, excited in a hybrid [I90/C45/C − 45]s (a) and a quasi-isotropic
[45/ − 45/0/90]s (b) laminated plate by circular (2.83) and CLoVER sector (2.87) actu-
ators for the frequency-thickness 500 KHz · mm at r/h = 150, respectively. Comparing
the power density in different directions, it is observed that its dependence on z varies
from direction to direction significantly.

a b

Figure 6.6: Total through-thickness energy flow E(ϕ) (6.10) for wave modes A0 (a) and
S0 (b) (pure components) in case of the actuation of waves by the circular
wafer (2.83) of radius Ao/h = 5 at 300 KHz · mm in a [0/90]s plate with
layers made of CFRP-T700GC/M21

After integration with respect to z (6.10), the total energy flow in the direction ϕ can
be analysed. However, in general, the distribution of power flow over the whole range
of directions ϕ ∈ [0, 2π] depends on R, the distance to the origin. The application of the
asymptotic expansion (5.63) gives the power density, which is independent of R since
it is defined as the power density at points R → ∞ (see Equation (6.16)). If instead of
the asymptotic expansion the far-field residue integration (5.35) is applied, the differ-
ences between the energy distributions with respect to ϕ can be analysed for different
values of R. As an example, the energy distributions for directions in the first quadrant
(ϕ ∈ [0◦, 90◦]) at R/h = 100 are shown in Figure 6.6 for wave modes A0 (a) and S0 (b)
propagating in a [0/90]s plate with layers of CFRP-T700GC/M21 under harmonic wave
excitation by a circular wafer (2.83) (Ao/h = 5) for f · h = 300 KHz · mm. The differ-
ences between the values obtained applying the asymptotic expansion (Equation (5.63),
marked by “o“ ) and the far-field residue integration (Equation (5.35), straight lines)
are clearly visible and the maximal values of differences are observed in directions of
the fibers. Note that with increasing R, the distribution of the energy obtained by rep-
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6 Analysis of Lamb wave propagation in laminated composite plates

resentation (5.35) turns to the one predicted by the use of asymptotic expansion (5.63),
if the wave mode propagates as a single wave, i.e. only one stationary point occurs for
the corresponding dispersion curve.

a c

b d

Figure 6.7: Total through-thickness power flow corresponding to fundamental Lamb
wave modes S0 (a and c) and A0 (b and d) (both are energy components
of pure modes) in dependence on ϕ at a distance r/h = 150 in case of
the excitation by the circular piezo-actuator (2.83) of radius Ao/h = 5 in a
hybrid [I90/C45/C − 45]s plate (a and b) and by the CLoVER sector (2.87)
(Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦) in a symmetric [45/ −
45/0/90]s composite plate (c and d) with layers of CFRP-T700GC/M21.
Harmonic excitation frequency-thickness is 500 KHz · mm
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6.3 Frequency spectrum of the wave propagation problem

Figure 6.7 represents the distributions of energy flow of harmonic Lamb wave modes
S0 (a and c) and A0 (b and d) excited at 500 KHz · mm in a hybrid [I90/C45/C − 45]s
laminate by a circular source (2.83) of radius Ao/h = 5 and in a quasi-isotropic com-
posite [45/ − 45/0/90]s plate with layers of CFRP-T700GC/M21 by a CLoVER sec-
tor (2.87), respectively. It is observed that the energy radiation diagrams are quite
similar to those previously discussed for the out-of-plane displacements in this case
(Figure 6.4). Nevertheless, the analysis of guided Lamb waves using the energy distri-
bution takes into account all displacement components and is more convenient for the
analysis of the wave directivity since it represents the results, which are independent
of the measuring procedure. For example, the method of the selective Lamb wave ex-
citation in isotropic laminates by piezoelectric ring sources, presented in [41], is based
on the analysis of the energy, radiated by the source to infinity.

6.3 Frequency spectrum of the wave propagation

problem

All numerical examples considered in the previous section correspond to the solutions
of the harmonic Lamb wave problem in laminated composites under the excitation by
the piezoelectrical wafers. Since the algorithms for the displacement vector computa-
tion based on the residue theorem are time-efficient, a similar analysis can be done for
all frequencies in the given frequency range. Since the dispersion properties of Lamb
waves at high frequencies become to be complicated even in quasi-isotropic laminates
(see chapter 4), in practical applications of SHM it is convenient to use the fundamental
Lamb wave modes at frequencies below the first cut-off frequency. Another reason of
using fundamental wave modes consists in the requirement of the use of high power
electronic amplifiers for producing the waves by piezoelectric actuators at high fre-
quencies [33]. In this section the properties of the harmonic spectrum of fundamental
Lamb modes are discussed on several numerical examples.

First, the radial in-plane displacement spectrum of the sum of quasi-symmetric wave
modes qS0 and qSH0 are calculated in a non-symmetric [0/90/0/90] laminated plate
(CFRP) for z = 0, r/h = 150 in dependence on the frequency-thickness product f · h

and the observation direction ϕ using the model based on the elasticity theory (Equa-
tion (2.5), Figure 6.8a) and the model based on CLPT (Equation (2.36), Figure 6.8b). The
waves are considered to be excited by a circular piezoelectric wafer (2.83) of the radius
Ao/h = 5. As computational algorithm the far-field residue integration is chosen here.
In the following figures, the red-colored areas correspond to high amplitudes, whereas
the blue-colored areas correspond to low amplitudes. The results of both modelling
approaches are well coinciding for the frequency-thicknesses below 100 KHz · mm.
Above this frequency-thickness value, the differences between the results become to
be clearly observable, i.e. the CLPT for quasi-symmetric wave modes is valid only for
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6 Analysis of Lamb wave propagation in laminated composite plates

a b

Figure 6.8: Surface radial displacements (|ur(ϕ, ω)|) for the sum of wave modes qS0

and qSH0 at r/h = 150 in case of the actuation of waves by the circular
wafer (2.83) of radius Ao/h = 5 in a [0/90/0/90] plate with layers made
of CFRP-T700GC/M21. Results are calculated using the far-field residue
representation (5.35) for the elasticity theory-based (a) and CLPT-based (b)
models

a b

Figure 6.9: (a) Surface out-of-plane logarithmic displacements (lg |uz(ϕ, ω)|) at r/h =
45.7 for the wave mode A0 in case of the actuation of waves by the circular
wafer (2.83) of radius Ao/h = 5 in a [0/90]s plate with layers made of
CFRP-T700GC/M21. (b) Same displacements in different directions
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6.3 Frequency spectrum of the wave propagation problem

frequency-thicknesses below 100 KHz · mm. Note that due to the non-symmetric se-
quence of layers in the plate, the in-plane shear tractions produced by the piezoelectric
wafers also result in a non-zero out-of-plane displacement component in both linear
elastic and CLPT models. If instead of a non-symmetric [0/90/0/90] plate a symmet-
ric [0/90]s plate is considered, the CLPT model is decoupled, i.e. the in-plane shear
stresses produce only in-plane motions, whereas the linear elastic model is remaining
to be coupled.

For the illustration of the frequency-thickness spectrum (as an analog of frequency
spectrum) of the A0 Lamb wave mode at low values of frequency-thickness, for which
out-of-plane displacements are increasing as the frequency (or frequency-thickness)
turns to zero, it is convenient to use logarithmic values of the displacements. In Fig-
ure 6.9a the frequency-thickness spectrum of out-of-plane logarithmical displacements
of the A0 wave mode at r/h = 45.7, z = 0 under an excitation by a circular actuator
(2.83) (Ao/h = 5) are presented. The maximal amplitudes in different directions are
comparable here, however due to the zeroes of the Bessel function J1(Aok) in (3.17),
anti-resonances of the frequency-thickness spectrum occur. Due to the dependence of
wavenumbers on the observation direction, resonances and anti-resonances occur for
the different directions not simultaneously. It is well observed in Figure 6.9b, where
the corresponding logarithmical displacements are plotted for directions of ϕ = 0◦,
ϕ = 45◦ and ϕ = 90◦. The difference between the anti-resonance frequency-thicknesses
is about 45 KHz · mm. It implies that in case of the resonance (or anti-resonance) ex-
citation of waves in anisotropic laminates in one direction, in some range of other
directions, the amplitudes will be lower (higher), i.e. it is nearly impossible in case of
the excitation at frequency-thicknesses higher than the first anti-resonance frequency-
thickness to suppress (or to spread) the wave propagation of the wave mode in all
directions simultaneously.

a b

Figure 6.10: Results of Figure 6.9 but for S0 wave mode at r/h = 150
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6 Analysis of Lamb wave propagation in laminated composite plates

For the symmetric wave mode S0 similar computations show (Figure 6.10) that due
to its higher wavelength in comparison to the A0 mode, anti-resonances occur at fre-
quencies higher than for the A0 wave mode. For example, in case of an actuator of
size Ao/h = 5, the lowest anti-resonance frequency-thickness in a [0/90]s composite is
about 650 KHz · mm. Note that the strong focussing of the S0 wave mode observed at
300 KHz · mm (Figure 6.6b) and 500 KHz · mm (Figure 6.2a) is observed in the whole
low frequency range.

a c

b d

Figure 6.11: Results of Figure 6.9 and Figure 6.10 but for S0 (a and c) at r/h = 150
and A0 at r/h = 45.7 in case of an excitation by the CLoVER sector (2.87)
(Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦)

If in the same [0/90]s plate the waves are excited by a CLoVER sector (Equation (2.87),
Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦), then due to the small dimensions
of the actuator the anti-resonances do not occur in a frequency-thickness range be-
low 500 KHz · mm (see Figure 6.11). Moreover, the use of an actuator specially de-
signed for the actuation of waves in desired sectors gives a good result for the A0
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6.3 Frequency spectrum of the wave propagation problem

wave mode in the whole frequency-thickness range below 500 KHz · mm. For the S0

wave mode the maximal amplitudes are still occuring in the fiber directions for all
f · h ∈ [25, 500] KHz · mm. At low frequency-thicknesses f · h ≤ 25 KHz · mm this is
not true and the amplitudes of waves in all directions are of the same order.

a c

b d

Figure 6.12: Total through-thickness energy flow in dependence on ϕ and ω, calculated
in a hybrid [I90/C45/C − 45]s plate (a and b) under an excitation by the
circular source (2.83) (Ao/h = 5) and in a quasi-isotropic [0/45/− 45/90]2s

plate (c and d) with layers of IM7-Cycom977-3 under an excitation by an
MFC source (A1/h = 8, A2/h = 2). Values of energy flow at r/h = 150
for A0 wave mode (b and d) and for the sum of S0 and SH0 (taking into
account mixed energy components (6.13)) wave modes (a and c)

Similar to the amplitudes, the energy flow can be computed for a given frequency
range. As an example, the total energy flows of the A0 (Figure 6.12b and d) wave mode
and both symmetric wave modes S0 + SH0 (Figure 6.12a and c) in dependence on ϕ and
f · h are computed in a hybrid [I90/C45/C − 45]s plate excitated by a circular actuator
(2.83) (Ao/h = 5) and in a quasi-isotropic plate [0/45/ − 45/90]2s with layers of IM7-
Cycom977-3 under an excitation by an MFC actuator (A1/h = 8, A2/h = 2). Whereas
the directivity of the energy flow in the hybrid plate is caused by the anisotropy of
the structure, the direction-dependent propagation of both wave modes in a quasi-
isotropic plate is due to the use of the non-axis-symmetric source. Here an MFC
actuator produces for the A0 wave mode the power flow mostly in directions along the
fiber directions in MFC (ϕ = 0◦, ϕ = 180◦), whereas the energy distribution of S0 and
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6 Analysis of Lamb wave propagation in laminated composite plates

SH0 is much more complicated and has many peaks in different directions at different
values of frequency-thickness.

a b

Figure 6.13: Contribution of wave modes in a total energy flow in dependence on fre-
quency: (a) an excitation by an MFC actuator with dimensions A1/h = 8,
A2/h = 2 in a [0/45/ − 45/90]2s composite plate of IM7-Cycom-977-3; (b)
an excitation by the circular piezo actuator (2.83) of radius Ao/h = 5 in a
hybrid [I90/C45/C − 45]s composite plate

After the integration of the energy flow over all observation directions (ϕ ∈ [0, 2π])
and evaluating the value of the total energy Eω

0 brought into the plate by the excita-
tion sources, the corresponding contributions of the fundamental Lamb wave modes
into the whole energy flow can be analysed. For the previous example (Figure 6.12),
such plots of Lamb wave mode contributions are presented in Figure 6.13. As it is
observed from these figures, for low frequency-thicknesses ( f · h ≤ 30 KHz · mm and
f · h ≤ 80 KHz · mm for hybrid and quasi-isotropic plates, respectively) the main con-
tribution to the total energy flow is given by the A0 wave mode. At higher frequency-
thicknesses, the main contribution of the energy is carried out by the symmetric wave
modes. Note that the non-zero total contribution of the mixed energy component
(Equation (6.13), S0 × SH0) is negligible in comparison to the energy contributions of
pure wave modes and caused by inaccuracies in computation of power density using
the asymptotic expansion (5.63).

6.4 Solution of the transient problem

The study till this point in the thesis is focused on the analysis of the harmonic steady-
state problem of wave propagation. The results obtained for the harmonic problem
can be used for obtaining the solution of the more general transient problem (3.11).
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6.4 Solution of the transient problem

6.4.1 Method based on an integral approach

For the computation of the solution of the transient problem of wave propagation
according to the integral approach (3.11), it is necessary to evaluate the displacement
fields for a frequency range below the frequency ωmax. It can be done by considering
the non-uniformly distributed discrete frequencies ωj: 0 ≤ ωj ≤ ωmax, j = 1, . . . , Nω,
where the harmonic wave fields are computed. Then, by applying the trapezoidal
rule1, the integral (3.11) is approximated by

u(x, t) ≈ 1
2π

Re
Nω−1

∑
j=1

(
V(ωj)u(x, ωj) e−iωjt + V(ωj+1)u(x, ωj+1) e−iωj+1t

)
∆ωj, (6.18)

where ∆ωj = ωj+1 − ωj and the values of u(x, ω) are computed by one of the algo-
rithms provided in chapter 5. Due to replacing of the improper integral (3.11) with
respect to ω by an integral over the finite interval [0, ωmax], it is assumed that the ex-
citation signal v(t) is sufficiently smooth, i.e. the contribution of high-frequency wave
fields is negligible. However, this assumption leads to some noise in the numerical
solution (6.18), which results in the small but non-zero displacements even for the
timepoints before arrival of the first propagating wavefront. However, this noise does
not influence the arrival time of wave packets just making the displacement curves to
be non-smooth [69]. Note that the time-domain response can be obtained alternatively
by the method of exponential windows [64, 78, 79, 140] or Fast Fourier Transform
[80, 81].

In contrast to FEM and FD, the use of the representation (6.18) allows to evaluate
the dynamic displacement at each space point and at each time point independently.
In particular, it is convenient if only the displacements at a few number of points need
to be computed, as it is usually required in SHM systems.

6.4.2 Comparison of the results with FEM and with experimental

data

The results, obtained applying the integral approach to the transient problem are com-
pared in this section with FEM simulations using commercial software ABAQUS [51]
for a couple of test cases. The FEM models are created for symmetric wave modes
by considering only the half of cross-section with respect to the thickness coordinate z

with symmetric boundary conditions. Nevertheless, replacing the symmetric bound-
ary conditions by corresponding antisymmetric boundary conditions, the results can
be compared also for the case of propagation of the A0 wave mode and higher-order
antisymmetric modes [107]. Due to the simulation of Lamb waves propagation excited

1Alternatively, the data can be interpolated by splines and another more accurate cubature formula
can be applied. Especially, this is necessary for (dimensionless time) timepoints t ≫ 1.
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6 Analysis of Lamb wave propagation in laminated composite plates

Figure 6.14: Geometry of the dimensionless FEM model for the analyis of symmetric
wave motion under an excitation by the CLoVER sector (2.87)

by non-axis-symmetric sources and due to the different layouts of the laminates under
consideration, the whole angular range ϕ ∈ [0, 2π] is considered. However, in case
of a unidirectional plate under an axis-symmetric loading (i.e. circular source), only
a quarter-section of the plate needs to be considered and the computational time can
be reduced. For creating the FEM mesh it is taken into account that for resolving the
smallest wavelength over the frequency bandwidth at least 10 nodes per wavelength
are required, and that the propagation velocities of S0 and SH0 wave modes are high.
Finally, taking into account the dispersion properties of symmetric wave modes in a
low frequency-thickness range ( f · h ≤ 500 KHz · mm), dimensions of one brick (C3D8)
element are found to be 1.3 × 1.3 × 0.5 (the values are normalized with respect to the
thickness h of the plate). Note that the laminated plate is modelled in ABAQUS as a
composite layup, where three integration points in through-thickness directions are as-
signed. Such dimensions of the elements in the FEM mesh allow to simulate the wave
propagation in a plate of dimensions 200 × 200 × 0.5 on a standard PC. Note that the
resulting FEM model has about 150000 degrees of freedom. The action of a circular-
shaped piezo (2.83) of radius Ao = 5 is simulutad by 16 equally-distant point sources,
with shear forces applied in radial direction. Another surface excitation source used
for the test simulations is the CLoVER sector (see Equation (2.87)), the parameters of
which are selected as ϕL = 76.5◦, ϕR = 22.5◦, Ai/h = 4, Ao/h = 5. The CLoVER
sector is modelled in a similar way by 2 · 9 = 18 point sources located at outer and
inner radii of the actuator with shear forces applied in positive and negative radial di-
rections, respectively. The FEM simulation is carried out until the waves hit the outer
boundaries of the plate. This timepoint is estimated on the basis of the propagation
velocity of the S0 wave mode. Infinite elements cannot be used to suppress reflections
in these simulations, since they are not available in ABAQUS for the use of anisotropic
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6.4 Solution of the transient problem

materials [107]. Note that in the FEM calculations the time step was chosen to be small
enough to accurately capture the highest excited frequency.

a b

Figure 6.15: Surface out-of-plane displacements (uz(x, y)) at t = 13.5 for the sum of
wave modes S0 and SH0 in case of the actuation of waves by the circular
wafer (2.83) of radius Ao/h = 5 in a [0/90]s plate with layers made of
CFRP-T700GC/M21. The excitation signal is the 3-cycles sine toneburst
(2.67) with a central frequency-thickness of 300 KHz · mm. FEM simula-
tion (a), semi-analytical solution (FFRIT) (b)

In Figure 6.15 the snapshots of out-of-plane surface displacements corresponding
to propagating wavefronts in a [0/90]s plate of both1 symmetric wave modes S0 and
SH0 are presented at t = 13.5, when the waves are excited by a circular actuator
(2.83) applying the 3-cycles sine toneburst (2.67) with a central frequency-thickness
fc · h = 300 KHz · mm. The results of the FEM simulation (Figure 6.15a) are compared
with the results of applying the integral approach (FFRIT, Figure 6.15b). Except of the
near-field of the excitation source, the results coincide well. Note that for the integral
approach, the analytical representation for a circular source is used in contrast to the
pointwise excitation of waves in the FEM model. The wavefront of the sum of both
symmetric modes is illustrated here since it is impossible to decouple the symmetric
wave modes S0 and SH0 from each other using FEM. However, applying the integral
approach (e.g. FFRIT) both wave modes can be studied separately.

A similar comparison is done for the case of wave excitation by the CLoVER sec-
tor (2.87). The snapshot (Figure 6.16a) of the wavefront for S0 and SH0 at t = 16
propagating in the first quadrant obtained by ABAQUS coincides well with similar
computations using the integral approach (FFRIT, Figure 6.16b). In Figure 6.16 the
waves are excited by the 3.5 Hann-modulated toneburst (2.71) with central frequency-
thickness fc · h = 300 KHz · mm. Some minor differences between the wavefronts in
Figure 6.16a and Figure 6.16b can be explained by the use of a pointwise representa-
tion of the load in the FEM model instead of the analytical representation of CLoVER
sector in the far-field residue integration technique.

1The symmetric wave modes in FEM simulations are coupled and cannot be separated.
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6 Analysis of Lamb wave propagation in laminated composite plates

a b

Figure 6.16: Surface out-of-plane displacements (uz(x, y)) at t = 16 for the sum of wave
modes S0 and SH0 in case of the actuation of waves by the CLoVER sector
(2.87) (Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦) in a [0/90]s plate
with layers made of CFRP-T700GC/M21. The excitation signal is the 3.5
Hann-modulated toneburst (2.71) with a central frequency-thickness of
300 KHz · mm. FEM simulation (a), semi-analytical solution (FFRIT) (b)
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Figure 6.17: Surface out-of-plane displacements (uz(x, y)) at t = 80 for wave mode A0

in case of the actuation of waves by the circular source (2.83) (Ao/h = 5)
in a [0/90]s plate with layers made of CFRP-T700GC/M21. The exci-
tation signal is the 3.5 Hann-modulated toneburst (2.71) with a central
frequency-thickness of 25 KHz · mm. Both results are obtained applying
a semi-analytical integral approach (FFRIT) for the models based on the
elasticity theory (a) and MLPT (b)

152



6.4 Solution of the transient problem

In Figure 6.17 the snapshots (t = 80) of the wavefront of the A0 wave mode in a
[0/90]s plate under an excitation by the circular source (2.83) (Ao/h = 5) with the 3.5
Hann-modulated toneburst (2.71) for fc · h = 25 KHz · mm are shown. The results on
the left (Figure 6.17a) are computed using the integral approach (FFRIT) for the model
based on the linear elasticity theory, the results on the right side are computed using
the integral approach (FFRIT) applied to the MLPT model (2.29). It is observed from
the figures that for such a low frequency-thickness, a more simple and more time-
efficient MLPT model can be used for modelling the wave propagation instead of the
conventional model based on elasticity theory.

a b

Figure 6.18: Content of Figure 6.17 but for a [45/ − 45/0/90]s composite plate with
layers of AS4/3502 and the CLoVER excitation source (2.87) (Ai/h = 4,
Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦)

The similar comparison is done for a [45/−45/0/90]s laminated plate with AS4/3502
layers under an excitation by the CLoVER sector (2.87) (Ai/h = 4, Ao/h = 5, ϕR =
22.5◦, ϕL = 67.5◦) with the same signal as in the previous example. The results ob-
tained by application of the integral approach (FFRIT) for the model based on the
elasticity theory (Figure 6.18a) are in good agreement with the results computed using
the FFRIT applied to the MLPT model (Figure 6.18b).

In Figure 6.19b the out-of-plane displacement corresponding to the first symmet-
ric modes S0 and SH0 obtained using far-field residue integration technique (5.35) at
r = 10 cm, z = 0 is compared for different values of ϕ with results [20] obtained exper-
imentally. The waves are actuated by a PZT disk of the same size as in the theoretical
model (diameter 1 cm) at a frequency of 300 KHz. The thickness of the plate under
study is h = 1 mm. A good coincidence between numerical results and experimental
data is observed. Note that the SH0 and S0 modes propagate at nearly equal veloci-
ties (Figure 4.8) and it is very hard to distinguish these modes in experimental data.
Moreover, contribution of the shear-horizontal mode into out-of-plane displacement is

153



6 Analysis of Lamb wave propagation in laminated composite plates

a b

Figure 6.19: Wavefront corresponding to the sum of symmetric wave modes S0 and
SH0 measured by a laservibrometer at t = 22.6 µs [20] (a). Comparison of
out-of-plane displacement corresponding to S0 and SH0 modes due to ac-
tuation in a symmetric composite plate [0/90]s by a PZT disk of diameter
1 cm at a frequency-thickness of 300 KHz obtained using FFRIT (−−) and
experimentally (−) in [20] (b)

small, and out-of-plane displacement can be well predicted taking into account only
S0 as it is done in [20] using the Maris factor [85] for this mode. In Figure 6.19a the
snapshot (out-of-plane displacement) of the propagating wavefront of the modes S0

and SH0 for the out-of-plane displacement field obtained in [20] for the experimental
setup, is presented. This wavefront coincides well with the wavefronts resulting from
the FEM simulation and the application of the integral approach (see Figure 6.15).

It is concluded that the results of application of semi-analytical algorithm of the
computation of displacements coincide well with the FEM simulations and with at
least one experimental data. It is concluded that the method described in this thesis is
a promising technique in the development of a Lamb wave-based SHM system. The
most critical points are lying in the assumptions done for the piezo-structure interac-
tion (section 2.4.3) and the pure elasticity of the composite plate since the damping (or
viscosity) of the layers is in general not negligible.

6.4.3 Time histories of displacements measured by

laservibrometers and piezoelectric sensors

Snapshots of wavefronts at different time-points presented in the previous section are
representing the process of wave propagation in composite structures quite good. Nev-
ertheless, to get such a snapshot experimentally requires to perform many measure-
ments using laservibrometer focussed to different points of the plate surface. How-
ever, in practice it is convenient to use only a small discrete number of points on the
surface, where the measurements are performed. The time histories of the out-of-
plane displacements, measured by a laservibrometer are taking the form presented
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a b

Figure 6.20: Time history of out-of-plane displacement in different directions ϕ for
r/h = 45.7 for A0 wave mode excited by the circular actuator (Ao/h = 5,
Equation (2.83)) in a [0/90]s plate made of CFRP-T700GC/M21 with
3.5 Hann-modulated tonebursts (2.71) with central frequency-thicknesses
150 KHz · mm (a) and 215 KHz · mm(b)

in Figure 6.20. Here and hereinafter in this section the results are evaluated for a
[0/90]s laminated plate. Figures 6.20a and b correspond to the time histories of out-of-
plane displacement of the A0 wave mode excited by the circular wafer (2.83) with 3.5
Hann-modulated toneburst (2.71) for central frequency-thicknesses of 150 KHz · mm
(a) and 215 KHz · mm (b). They are calculated at r/h = 45.7, z = 0 in directions
of ϕ = 0◦ (straight lines), ϕ = 45◦ (dashed lines) and ϕ = 90◦ (dashdot lines) by
use of the integral approach (FFRIT). As it follows from the corresponding frequency-
thickness spectrum (Figure 6.9b), the frequency-thickness 150 KHz · mm is the reso-
nance frequency-thickness for directions of ϕ = 45◦ and ϕ = 90◦. As it is predicted by
the frequency-thickness spectrum, in Figure 6.20a the maximal amplitudes occur also
in these directions. The time history in the direction of ϕ = 0◦ is more complicated
since the signal does not have a central frequency-thickness and is more dispersive. In
Figure 6.20b due to the anti-resonance excitation in directions of ϕ = 45◦ and ϕ = 90◦

the corresponding time histories have two central frequency-thicknesses, i.e. the A0

wave propagates in these directions as two pulses with different velocities. In the di-
rection of ϕ = 0◦ these two pulses are combining to a single pulse with the desired
central frequency-thickness 215 KHz · mm.

Similar time histories at r/h = 150, z = 0 in the same directions for the S0 wave
mode excited by the circular wafer (2.83) (Ao/h = 5) and the CLoVER sector (2.87)
(Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦) for the frequency-thickness f · h =
200 KHz · mm are plotted in Figure 6.21a and Figure 6.21b, respectively. The corre-
sponding frequency-thickness spectra are shown previously in Figure 6.10b and Fig-
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6 Analysis of Lamb wave propagation in laminated composite plates

a b

Figure 6.21: Results of Figure 6.20 but for S0 wave mode at r/h = 150 under the excita-
tion by the circular actuator (Ao/h = 5, Equation (2.83)) and the CLoVER
sector (Ai/h = 4, Ao/h = 5, ϕR = 22.5◦, ϕL = 67.5◦, Equation (2.87)) us-
ing 3.5 Hann-modulated tonebursts (2.71) for central frequency-thickness
200 KHz · mm

ure 6.11c, respectively. For both excitation sources, the results in directions of ϕ = 0◦

and ϕ = 90◦ are nearly equal and are about 10 times (for the circular wafer) and 4
times (for the CLoVER actuator) higher than in direction ϕ = 45◦. It means that the
use of the CLoVER sector aligned along ϕ = 45◦ allows to increase the amplitudes
of propagating waves, however the waves are still focussed along the fiber directions.
Strong anisotropy of the cross-ply plate under study results also in the differences
in the propagation speed of the S0 wave mode in different directions: it propagates
slower in the direction of ϕ = 45◦. Note that the amplitudes of the S0 wave mode
excited by a CLoVER sector and in case of the excitation by a circular piezoactuator
cannot be directly compared with each other since different constant multipliers for
the surface load (i.e. different constant voltages) are used.

The previous examples illustrate the time histories, which can be measured by the
laservibrometers. For the SHM, however, it is more convenient to use for measuring
the same piezoelectric elements, but now as sensors (see section 2.4.4). In this case,
instead of displacements, the averaged strains are measured (2.80). The frequency-
thickness spectrum of such measurements multiplied by the excitation signal is shown
in Figure 6.22 for the sum of the S0 and the SH0 wave modes excited in a hybrid
[I90/C45/C − 45]s plate by the circular piezoactuator (2.83) (Ao/h = 5) with 3.5 Hann-
modulated signal at fc · h = 25 KHz · mm (a) and at fc · h = 300 KHz · mm (b). The
results are plotted as straight lines of different colours for circular sensors of radius
Ao/h = 5, the centers of which are located at z = 0, r/h = 150 in directions of ϕ = 0◦

(blue), ϕ = 45◦ (green) and ϕ = 90◦ (red). As circles corresponding results obtained
applying the simplified formula (2.81) are plotted. This formula estimates the averaged
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a b

Figure 6.22: Spectra of sensor (circular sensor, Ao/h = 5) outputs corresponding to the
sum of fundamental symmetric wave modes S0 and SH0 in a hybrid lami-
nate [I90/C45/C− 45]s when calculated applying exact and approximated
formulas (2.80) and (2.81), respectively. Waves are excited by the circular
piezo-actuator (2.83) of radius Ao/h = 5 using the 3.5 Hann-modulated
signal (2.71) with a central frequency-thickness of fc · h = 25 KHz · mm (a)
and of fc · h = 300 KHz · mm (b)

a b

Figure 6.23: Results of Figure 6.22b but in time-domain

strains by the strains at the center of the wafer. The simplified formula is found to give
accurate results only in case of a low frequency excitation (Figure 6.22a), whereas in
case of the excitation with a higher center frequency-thickness fc · h = 300 KHz · mm
the results are overestimated.

The differences between the use of the two formulas described are illustrated in Fig-
ure 6.23 for the corresponding time histories (excitation at fc · h = 300 KHz · mm): on
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6 Analysis of Lamb wave propagation in laminated composite plates

the left the results of using exact1 (Equation (2.80), Figure 6.23a) and approximated
(Equation (2.81), Figure 6.23b) formulas are shown. The amplitudes predicted by the
approximated formula are about two times higher than the exact values. Moreover, the
structure of the signal captured by the simplified sensor (Equation (2.81), Figure 6.23b)
in the direction of ϕ = 0◦ (blue lines) differs significantly from the exact signal. Note
that for the use of the exact formula due to the numerical evaluation of integrals in
(2.81) the computational time is about2 100 times higher compared to using the sim-
plified formula. Nevertheless, for frequency-thicknesses about fc · h = 25 KHz · mm
due to the large wavelengths of symmetric wave modes it is sufficient to approximate
the sensor output by the center strains of the actuator.

1Assuming an ideal bonding of piezos.
2The exact value of computational time depends on the number of evaluations of the function in the

integral for the quadrature rule, taken for numerical evaluation.
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7.1 Conclusion

In this thesis the major aspects of the methods of the numerical simulation of time-
harmonic and transient wave propagations in layered anisotropic plate-like structures
based on the integral approach are examined. The results of computations are found
to be in well coincidence with the results obtained applying other techniques as well
as with experimental data published in [20].

The application of the integral approach to the equations of motion of elasticity the-
ory, classical laminated plate theory and Mindlin laminated plate theory results in the
solution of the problem in the transformed (i.e. wavenumber-frequency) domain as
a product of Green’s matrix and the load vector. Since the real poles of Green’s ma-
trix correspond to the wavenumbers of guided Lamb waves propagating in a plate,
this approach can be an efficient tool for the investigation of dispersion properties of
laminated composites in addition to the commonly used matrix methods. A numerical
algorithm for the computation of wavenumbers in dependence on angle and frequency
is presented in part 4 of this thesis. Then, its application to some numerical examples
demonstrates the good coincidence of results with other results from recent publica-
tions, which are therewith approved by comparison with experimental data. The mul-
timode structure of wave solutions, their frequency and angular dispersions as well as
the influence of the stacking sequence of the laminate on the dispersive properties are
investigated in this work on numerous examples, where not only wavenumbers but
also the phase and group velocities of both incident and observed waves are studied.
The investigation of dispersion properties of concrete composite specimens showed a
highly complicated structure of high-order Lamb wave modes even in quasi-isotropic
laminates. This means that energy distribution with respect to observation direction
has directions of strong focussing, some wave modes are propagating as several wave
packages with different velocities. These properties make difficult the application of
higher-order wave modes (i.e. with short wavelengths) for purposes of SHM.

The solution of the problem in the wavenumber-frequency domain can be trans-
formed to the time-space domain applying algorithms presented in chapters 5 and 6.
The main problem here was the evaluation of the governing two-dimensional wavenum-
ber integral, for which only the time-consuming adaptive two-dimensional numerical
integration schemes or the asymptotic expressions at the far-field were known from
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the literature. The far-field residue integration techniques, suggested in this thesis al-
low to obtain the representation of the displacements as a sum of propagating Lamb
waves, which is valid in both middle- and far-fields to the excitation source. Moreover,
results of numerical computations presented in this thesis let to conclude that in many
cases, these techniques provide quantitatively good approximation of displacements
and stresses already in a near-field to the excitation source. Due to the reduction of the
dimension of wavenumber integrals to one-dimensional integrals over the incident an-
gles, this algorithm is much more time-efficient than adaptive integration techniques.
Furthemore, numerical calculations showed the fitness of this approach for the calcula-
tion of displacements in directions of strong focussing since the asymptotic expansion
is valid only at distances far away from the excitation source.

After the transformation of the problem into a space-frequency domain, the study
of the properties of surface-excited Lamb waves in composite plates is performed for
the case of steady-state actuation at different frequencies applying the techniques pre-
sented in this thesis. Then, the effect of wave focussing is investigated for various
composite specimens using the displacement directivity plots and energy distribution
plots. These techniques do not only allow an efficient analysis of the directivity of
the excitation source at different excitation frequencies, but also provide a tool for the
selective wave mode excitation and for the study of optimal design of the excitation
source(s). However, in a general case1 Lamb wave modes can be selectively gener-
ated by tuning the size of the excitation source and frequency of the excitation not in
all directions simulateneously, i.e. whereas in some directions this problem will be
solved nearly exact, in other directions also other wave modes will have considerable
contributions. The next step consists in the direct numerical evaluation of frequency
integrals, which results in the solution of the transient problem. The transient problem
is solved in this work for various excitation signals. The results obtained are validated
by comparing with results computed using the conventional finite element method
(implemented in ABAQUS software) and by comparing with experimental results.
Also by comparing with the results of calculations for the model based on elasticity
theory, it is shown that the plate theories (CLPT and MLPT) give not only qualitatively
but also quantitatively good results at some narrow range of low frequencies. Finally,
the differences between measuring of displacements (strains) by laser-vibrometers and
piezoelectrical wafers used as sensors are shown based on several numerical exam-
ples. Here a more accurate integral model for the waves excited at middle and high
frequencies is found to be more appropriate.

1Instead of frequency ranges with quasi-isotropic behaviour of waves.
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7.1 Conclusion

Summarizing the above conclusions, the main results of this work are listed as

1. An algorithm based on the application of the integral approach is developed
for the evaluation of the frequency-wavenumber domain solution of 3D wave
propagation problem in laminated composites consisting of the layers of arbitrary
elastic anisotropy considering the equations of motion of elasticity theory. This
solution is obtained as the product of Green’s matrix and the representation of
the surface source in the transformed domain. The algorithm of Green’s matrix
evaluation is proved to be stable since no growing exponents appear on all stages
of the computation.

2. A stable numerical algorithm for the calculation of Lamb wave dispersion curves
of incident and observed waves in laminated composite plates is developed in
this thesis. It uses the dispersion relations obtained from the properties of Green’s
matrix in the transformed domain. The resulting dispersion curves are validated
by comparing with the results published in literature and by comparing with the
dispersion curves for plates by CLPT and MLPT.

3. A time-efficient algorithm of the evaluation of 2D-wavenumber integrals for
points located in middle- and far-fields, namely the far-field residue integra-
tion technique is developed. Its efficiency and high accuracy are proven for the
numerical examples by comparing with accurate but time-consuming adaptive
integration schemes and with an asymptotic expansion. The accuracy of far-field
residue integration technique is studied for the isotropic laminates analytically
whereas for anisotropic laminates the approximate formula is obtained.

4. Formulas for the calculation of the 2D-wavenumber integral using the far-field
residue integration technique and the asymptotic expansion are provided for the
case of modelling of the surface source by several point sources.

5. The formula for the computation of the 2D-wavenumber integral for directions
near caustics is obtained in this thesis applying the Airy function.

6. All the methods developed in this work are implemented on PC and tested on
various numerical examples considering the harmonic steady-state as well as
transient wave propagation problems. The results are validated by comparing
with results of FEM simulations and data obtained experimentally.

7. Multiple simulations done for various excitation sources and laminated plates
show the applicability of this approach for optimization of the wave fields for
structural health monitoring of the plate-like structures (i.e. the choice of a more
suitable wave mode, the choice of optimal number, form and size of the actuation
sources and their positions, the choice of the optimal excitation frequency). This
optimization can be done by investigating the energy properties, directivity of
displacements and values of sensor outputs as it is shown on numerical examples
in this work.
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7.2 Outlook

The study presented in this thesis does not yet solve all questions for the creation of
a stable and effective SHM system based on elastic waves. However, the algorithms
given in this work provide a quite good tool for development of other algorithms
solving these questions. The main problems for future studies are listed as follows:

• Extension of the integral approach on the material models given by the higher-
order plate theories. This step can allow to simplify and to accelerate the compu-
tation of displacements at frequencies in the mostly used frequency range below
the cut-off frequencies of higher-order wave modes.

• Investigation of potential of Lamb waves at higher frequencies including higher-
order wave modes.

• Tuning for higher efficiency: the development of techniques for selective wave
mode excitation, excitation of waves with a given directivity (by one or several
actuators similarly to phased arrays) and the optimization of power required for
wave actuation.

• Study of the influence of damping on wave propagation in laminated fibre-
reinforced composites since they are known to attenuate the waves due to the
viscosity of the matrix in which the fibers are placed.

• Another issue is the investigation of the contact between the host structure (lami-
nated plate) and the piezoelectric actuators bonded on its surface in case of using
both as actuators and as sensors. Since from previous works it is known that the
pin-force model provides accurate results only in the low frequency range and
does not take into account the interaction of piezoelectrical wafers with propagat-
ing waves, it is important to study the solution of the related contact problems.

• An obligatory step for the development of Lamb wave based SHM systems con-
sists in the simulation of wave interaction with damages and in the development
of the effective algorithms of damage identification.
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A Elastic properties of composite

materials

The properties of pure elastic materials summarized in this section are provided in
various books on modelling of anisotropic materials [56, 74, 113]

A.1 Voigt notation

The vectors of strain εεε and stress σσσ used in a representation (2.2) are given in Voigt
notation as

ε1 = εxx = ux,x, ε2 = εyy = uy,y, ε3 = εzz = uz,z, ε4 = γzy = 2εzy = uz,y + uy,z,

ε5 = γzx = 2εzx = uz,x + ux,z, ε6 = γxy = 2εxy = ux,y + uy,x, (A.1)

σ1 = σx, σ2 = σy, σ3 = σz, σ4 = σzy, σ5 = σzx, σ6 = σxy.

The stiffness matrix C in (2.2) is obtained from the stiffness tensor C

{Cij} =




C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212




(A.2)

The relation between the stress and strain vectors is frequently presented in an inversed
form

εi = Sijσj, i = 1, . . . , 6, (A.3)

where S = C−1 is the so-called compliance matrix. It is a historic absurdity that
stiffness is denoted by C and compliance by S [56]!
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A Elastic properties of composite materials

A.2 Transformation of coordinates for the stiffness

matrix

For the transformation matrix between two coordinate systems given by direction
cosines of the angles between the old and new coordinate axes as

a =




l1 m1 n1

l2 m2 n2

l3 m3 n3


 , (A.4)

when the stiffness matrix coordinates in a new coordinate system (2.3) are given in
Voigt notation by

C′
ij = qikqjlCkl, (A.5)

where the 6 × 6 matrix q is defined [74] as

q =




l2
1 m2

1 n2
1 2m1n1 2n1l1 2l1m1

l2
2 m2

2 n2
2 2m2n2 2n2l2 2l2m2

l2
3 m2

3 n2
3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 + m3n2 n2l3 + n3l2 l2m3 + l3m2

l3l1 m3m1 n3n1 m3n1 + m1n3 n3l1 + n1l3 l3m1 + l1m3

l1l2 m1m2 n1n2 m1n2 + m2n1 n1l2 + n2l1 l1m2 + l2m1




. (A.6)

A.3 The types of symmetries of materials

When the stiffness matrix (A.2) is fully occupied, it describes the triclinic, i.e. fully
anisotropic material. It is the most general case of the anisotropy because there are
no planes of symmetry for the material properties. However, composite materials
usually involve some symmetries of their properties. If the material has one plane of
material property symmetry, e.g. z = 0, it is called monoclinic and characterized by 13
independent stiffness constants




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66




. (A.7)

In case of two orthogonal planes of material property symmetry, the symmetry ex-
ists relative to a third mutually orthogonal plane. The stiffness matrix in coordinates
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aligned with principal material directions1 are



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




. (A.8)

Composites with fully unidirectional reinforcement are approximately transversely isotropic

materials (i.e. if all fibers are oriented in x direction when directions y and z are equal).
A transversely isotropic material is symmetric with respect to a rotation about an axis
of symmetry, e.g. the x-axis. The stiffness matrix has 5 independent constants:




C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 (C22 − C23)/2 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66




. (A.9)

If all directions in the material are equal, then the material is termed isotropic and its
stiffness matrix is given only by 2 independent constants




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 (C11 − C12)/2 0 0
0 0 0 0 (C11 − C12)/2 0
0 0 0 0 0 (C11 − C12)/2




. (A.10)

A.4 Engineering notation for elastic constants

Engineering constants are more appropriate for industrial applications because they
have an obvious physical interpretation and can be measured in simple tests such as
uniaxial tension or pure shear tests. The compliance matrix for an orthotropic material
in terms of engineering constants is given as

S = C−1 =




1/Ex −νyx/Ey −νzx/Ez 0 0 0
−νxy/Ex 1/Ey −νzy/Ez 0 0 0
−νxz/Ex −νyz/Ey 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gxz 0
0 0 0 0 0 1/Gxy




, (A.11)

1Principal material directions are directions that are parallel to the intersections of the three orthogonal
planes of material property symmetry.
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where

• Ex = longitudinal modulus of elasticity,

• Ey = transverse modulus of elasticity,

• Ez = through-thickness modulus of elasticity,

• Gxy = longitudinal in-plane shear modulus,

• Gxz = longitudinal through-thickness shear modulus,

• Gyz = transverse through-thickness shear modulus,

• νxy = major Poisson’s ratio,

• νxz = minor Poisson’s ratio,

• νyz = transverse Poisson’s ratio.

Note that Poisson’s ratios are not symmetric, i.e. νxy 6= νyx.

For transversely-isotropic material, the following relations between engineering con-
stants are satisfied:

Ey = Ez, νxy = νxz, νyx = νzx, Gxy = Gxz, Gyz = Ey/(2(1 + νyz)). (A.12)

The engineering constants for the isotropic case are presented by two independent con-
stants, the well-known Young’s modulus E and Poisson’s ratio ν:

E = Ei, ν = νij, G = Gij = E/(2(1 + ν)), i, j = 1, 2, 3. (A.13)

A.5 Elastodynamic equations in matrix form

The matrices occuring in the elastodynamic equations (2.7) are given as

A(01) =




C11 C16 C15

C61 C66 C65

C51 C56 C55


 , (A.14)

A(02) =




C66 C62 C64

C26 C22 C24

C46 C42 C44


 , (A.15)

A(03) =




C16 + C61 C12 + C66 C14 + C65

C66 + C21 C62 + C26 C64 + C25

C56 + C41 C52 + C46 C54 + C45


 , (A.16)
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A(04) =




−̺∂2/∂t2 0 0
0 −̺∂2/∂t2 0
0 0 −̺∂2/∂t2


 , (A.17)

A(11) =




C15 + C51 C14 + C56 C13 + C55

C65 + C41 C64 + C46 C63 + C45

C55 + C31 C54 + C36 C53 + C35


 , (A.18)

A(12) =




C65 + C56 C64 + C52 C63 + C54

C25 + C46 C24 + C42 C23 + C44

C45 + C36 C44 + C32 C43 + C34


 , (A.19)

A(2) =




C55 C54 C53

C45 C44 C43

C35 C34 C33


 . (A.20)

A.6 Matrix for Mindlin Laminated Plate Theory

The equation of motion within the Mindlin Laminated Plate Theory for the displace-
ment vector can be given in an explicit form (2.29), with matrix TM defined as

TM,11 = A11dxx + 2A16dxy + A66dyy − I0dtt,
TM,12 = A16dxx + (A12 + A66)dxy + A26dyy,
TM,13 = 0, TM,14 = B11dxx + 2B16dxy + B66dyy − I1dtt,
TM,15 = B16dxx + (B12 + B66)dxy + B26dyy, TM,21 = TM,12,
TM,22 = A66dxx + 2A26dxy + A22dyy − I0dtt, TM,23 = 0,
TM,24 = TM,15, TM,25 = B66dxx + 2B26dxy + B22dyy − I1dtt,
TM,31 = TM,13, TM,32 = TM,23, TM,33 = κ2

1 A55dxx + 2κ1κ2A45dxy + κ2
2 A44dyy − I0dtt,

TM,34 = κ2
1 A55dx + κ1κ2A45dy, TM,35 = κ1κ2A45dx + κ2

2 A44dy,
TM,41 = TM,14, TM,42 = TM,24, TM,43 = −TM,34,
TM,44 = D11dxx + 2D16dxy + D66dyy − κ2

1 A55 − I2dtt,
TM,45 = D16dxx + (D12 + D66)dxy + D26dyy − κ1κ2A45,
TM,51 = TM,15, TM,52 = TM,25, TM,53 = −TM,35, TM,54 = TM,45,
TM,55 = D66dxx + 2D26dxy + D22dyy − κ2

2 A44 − I2dtt,

with dx = ∂/∂x, dy = ∂/∂y, dxx = ∂2/∂x2, dxy = ∂2/∂x∂y, dyy = ∂2/∂y2 and dtt =
∂2/∂t2.

A.7 Matrix for Classical Laminated Plate Theory

Similarly to the MLPT, the equation of motion within the Classical Laminated Plate
Theory for displacement vector can be given in an explicit form (2.36), with the matrix

169



A Elastic properties of composite materials

TC defined as

TC,11 = A11dxx + 2A16dxy + A66dyy − I0dtt,
TC,12 = A16dxx + (A12 + A66)dxy + A26dyy,
TC,13 = −B11dxxx − 3B16dxxy − (B12 + 2B66)dxyy − B26dyyy,
TC,21 = TC,12, TC,22 = A66dxx + 2A26dxy + A22dyy − I0dtt,
TC,23 = −B16dxxx − (B12 + 2B66)dxxy − 3B26dxyy − B22dyyy,
TC,31 = −TC,13, TC,32 = −TC,23,
TC,33 = −D11dxxxx − D22dyyyy − 2(D12 + D66)dxxyy − 4D16dxxxy − 4D26dxyyy − I0dtt,

with the same notations for partial derivative operator as for a Mindlin plate, i.e.
dxxxy = ∂4/∂x3∂y and so on.

A.8 Wavenumber domain Green’s matrix for an

isotropic plate

In case of an isotropic single-layered plate Green’s matrix for the elastodynamic prob-
lem (2.5), (2.10), (2.12) is described by matrix (3.65), where functions M, P, S, R and N

are given as follows [10]:

M = M1/∆, P = P1/∆, S = S1/∆, R = R1/∆, N = N1/∆, (A.21)

M1(α, z) = −iσ2/α2
{

α2(σ1σ2η2 sinh σ2z + η4 sinh σ1z) (A.22)

− α2η4 cosh σ2h sinh σ1(z + h) + α4σ1σ2 sinh σ2h cosh σ1(z + h)

− α2σ1σ2η2 cosh σ1h sinh σ2(z + h) + η6 sinh σ1h cosh σ2(z + h)
}

,

N1(α, z) = i cosh σ2(z + h)/(Gα2σ2 sinh σ2h), (A.23)

P1(α, z) = −σ1σ2[η
2α2 cosh σ1z + η4 cosh σ2z] (A.24)

− α2σ2
1 σ2

2 sinh σ1h sinh σ2(z + h) + σ1σ2η4 cosh σ1h cosh σ2(z + h)

+ α2σ1σ2η2 cosh σ2h cosh σ1(z + h) − η6 sinh σ2h sinh σ1(z + h),

S1(α, z) = −i
{

σ1σ2(α2η2 cosh σ2z + η4 cosh σ1z) (A.25)

− σ1σ2η4 cosh σ2h cosh σ1(z + h) + α2σ2
1 σ2

2 sinh σ2h sinh σ1(z + h)

− α2σ1σ2η2 cosh σ1h cosh σ2(z + h) + η6 sinh σ1h sinh σ2(z + h)
}

,

R1(α, z) = σ1

{
−α2(σ1σ2η2 sinh σ1z + η4 sinh σ2z) (A.26)

+ α2σ1σ2η2 cosh σ2h sinh σ1(z + h) − η6 sinh σ2h cosh σ1(z + h)

+ α2η4 cosh σ1h sinh σ2(z + h) − α4σ1σ2 sinh σ1h cosh σ2(z + h)
}

,
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∆(α) = 2G
[
−2α2σ1σ2η4 − (η8 + α4σ2

1 σ2
2 ) sinh σ1h sinh σ2h (A.27)

+ 2α2σ1σ2η4 cosh σ1h cosh σ2h
}

, η2 = α2 − 0.5ζ2
2,

where ζ2
2 = ω2/c2

s , G is the shear modulus of the plate (see Equation (A.13)), σ2
1 =

α2 − ω2/c2
l , σ2

2 = α2 − ω2/c2
s and cl =

√
C11/̺, cs =

√
G/̺. Note that in a general

case of N-layered isotropic laminated structure the functions M, P, S, R, N and ∆ can
be evalauted numerically only.

A.9 Properties of composite materials under study

Table A.1: Materials properties (elastic constants in 1011 Pa, density in 103 kg/m3)

C11 C12 = C13 C22 = C33 C23 C44 C55 = C66 ̺

AS4/3502 [149] 1.308 0.053 0.13 0.046 0.038 0.06 1.578
CFRP-T700GC/M21 [20] 1.234 0.055 0.115 0.064 0.026 0.045 1.6
IM7-Cycom-977-3 [120] 1.528 0.11 0.232 0.176 0.028 0.033 1.558
Graphite-epoxy I [26] 1.607 0.064 0.139 0.064 0.035 0.07 1.6
Graphite-epoxy II [109] 1.607 0.064 0.139 0.069 0.035 0.07 1.578

Table A.2: Cut-off frequencies (in KHz · mm) of lowest higher-order Lamb wave modes
in different laminated plates

Stacking sequence Material A1, SH1 MLPT, κ1 = κ2 =
√

5/6 S1

[456/ − 456]s AS4/3502 797, 922 883 1434
[45/ − 45/0/90]s AS4/3502 835, 872 883 1434
[0/90]s CFRP-T700GC/M21 662, 785.5 750 1343
[0/90/0/90] CFRP-T700GC/M21 716, 1343 750 1423
[0] Graphite-epoxy I 739, 1051 745, 1058 1475
[0/90/45/ − 45]s Graphite-epoxy II 833, 887 921 1488
[0/45/ − 45/90]2s IM7-Cycom-977-3 689, 700 701 1389
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B Mathematical background

B.1 Residue theorem and evaluation of residues on PC

Numerical evaluation of residues:

res f (α)

∣∣∣∣
α=k

= ( f (k + δ) − f (k − δ)) δ/2 + O(δ2). (B.1)

Note that δ should be of order δ ∼ 103ε if ε is the precision of the finding of a pole [10].

The residues of even and odd functions are odd and even functions, respectively:

res f (α)

∣∣∣∣
α=−k

= − res f (α)

∣∣∣∣
α=k

, if f (−α) = f (α), (B.2)

res f (α)

∣∣∣∣
α=−k

= res f (α)

∣∣∣∣
α=k

, if f (−α) = − f (α).

B.2 Asymptotic methods

Below the stationary phase method is summarized, which is also known as the method
of steepest descent [28]. Consider the integral

F(r) =

b∫

a

f (x) erS(x) dx, (B.3)

for r → ∞, where functions f (x), S(x) are smooth functions for x → x0, x ∈ [a, b]. If
max

x0∈(a,b)
Re S(x) is reached in an internal point x0, where S′(x0) = 0, S′′(x0) 6= 0, then

for r → ∞, the representation

F(r) ≡
b∫

a

f (x) erS(x) dx ∼ erS(x0)
∞

∑
k=0

ckr−k−1/2 (B.4)

is valid, which is differentiable with respect to r any times. Here,

ck =
Γ(k +

1
2
)

(2k)!

(
d

dx

)k
[

f (x)

(
2(S(x0) − S(x))

(x − x0)2

)−k−1/2
]

(B.5)
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or in other form

F(r) ∼ erS(x0)
∞

∑
k=0

b2k(r)

(2k)!

[
−rS′′(x0)

2

]−k−1/2

Γ(k +
1
2
), (B.6)

where

bk =

(
d

dx

)k (
f (x) exp

[
r(S(x) − S(x0) −

(x − x0)
2

2
S′′(x0))

])∣∣∣∣
x=x0

. (B.7)

The main term in (B.4) is given by

F(r) ∼ erS(x0) f (x0)

√
− 2π

−rS′′(x0)
+ O(r−3/2). (B.8)

The contribution of an endpoint x = a, if max
x∈[a,b]

S(x) is reached in x = a and for

x → a the functions f (x) and S(x) are smooth, and S′(a) 6= 0, then for r → ∞, the
relation

F(r) ∼ erS(a)
∞

∑
k=0

ckr−k−1 (B.9)

holds, where

ck = −
(
− 1

S′(x)

d
dx

)k ( f (x)

S′(x)

)∣∣∣∣
x=a

. (B.10)

The main term in (B.9) is given by

F(r) ∼ erS(a)r−1
(

f (x)

S′(x)

)∣∣∣∣
x=a

+ O(r−2). (B.11)

B.3 Properties of Bessel, Hankel and Struve functions

B.3.1 Bessel and Hankel functions

Jacobi-Anger expansion is a series representation of exponentials of trigonometric
functions

eiα cos θ =
∞

∑
n=−∞

in Jn(α) einθ = J0(α) + 2
∞

∑
n=1

in Jn(α) cos(nθ), (B.12)

eiα sin θ =
∞

∑
n=−∞

Jn(α) einθ,

where Jn(α) are Bessel functions. The Bessel functions exhibit the symmetry properties

Jn(−α) = (−1)n Jn(α), (B.13)
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and the asymptotic properties

Jn(α) =

√
2

πα
cos

(
α − nπ

2
− π

4

)
+ O(r−3/2), |α| ≫ 1 (B.14)

for α → ∞.
The Bessel function can be separated into the sum of Hankel functions H

(j)
n (α), j = 1, 2:

Jn(α) =
H

(1)
n (α) + H

(2)
n (α)

2
. (B.15)

Hankel functions of the second kind are connected with Hankel function of the first
kind by

H
(2)
n (−z) = (−1)n+1H

(1)
n (z). (B.16)

The asymptotic forms of Hankel functions are given as

H
(1)
m (z) = (−i)m

√
2

πz
ei(z−π/4) + O(r−3/2), (B.17)

H
(2)
m (z) = im

√
2

πz
e−i(z−π/4) + O(r−3/2),

B.3.2 Struve functions and some typical integrals

The integrals (5.41) derived in section 5.4 for computation of out-of-plane displacement
for isotropic laminate can be calculated using the Jacobi-Anger expansion (B.12):

ϕ+3π/2∫

ϕ+π/2

e−iαr cos(γ−ϕ)dγ = π (J0(αr) + iH0(αr)) , (B.18)

ϕ+π/2∫

ϕ−π/2

e−iαr cos(γ−ϕ)dγ = π (J0(αr)− iH0(αr)) ,

where H0(αr) is the so-called Struve function of zero order, defined as [105]

H0(α) =
4
π

∞

∑
n=0

J2n+1(α)

2n + 1
. (B.19)

Similarly, the integrals for computation of in-plane radial displacement for isotropic
laminate can be brought to an analytical representation while using the Jacobi-Anger
expansion (B.12):

ϕ+3π/2∫

ϕ+π/2

cos(γ − ϕ)e−iαr cos(γ−ϕ)dγ = π

(
J1(αr) + i

(
H1(αr)− 2

π

))
, (B.20)

ϕ+π/2∫

ϕ−π/2

cos(γ − ϕ)e−iαr cos(γ−ϕ)dγ = π

(
J1(αr) − i

(
H1(αr)− 2

π

))
,
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where H1(αr) is a Struve function of first order and it is represented by [105]

H1(α) =
2
π

(1 − J0(α)) +
4
π

∞

∑
n=1

J2n(α)

4n2 − 1
. (B.21)

The Struve functions of an odd order are even functions:

Hn(−α) = (−1)n+1Hn(α). (B.22)

The analytical expressions obtained for the integrals (B.18), (B.20) have the asymptotic
properties

π
(

J1(αr) + (−1)(j+1)i(H1(αr) − 2
π )
)

= πH
(j)
1 (αr)

+2i(−1)(j+1)

(
1

α2r2 − 3
α4r4 + O(r−6)

)
, (B.23)

π
(

J0(αr) + (−1)(j+1)iH0(αr)
)

= πH
(j)
0 (αr)

+2i(−1)(j+1)

(
1
αr

− 1
α3r3 + O(r−5)

)
,

where j = 1 for the first and j = 2 for the second integrals in Equations (B.18), (B.20),
respectively. Note that the last asymptotics can be directly derived by applying to
integrals (B.18), (B.20) the method of steepest descent (Appendix B.2).
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The methods of time-efficient simulation of sur-
face-excited wave propagation in plate-like multi-
layered composites are presented. These methods 
are of great interest for nondestructive testing and 
structural health monitoring of many construction 
parts, which can be considered as waveguides.

The mathematical model of wave propagation in 
composite plate based on the elasticity theory is 
transformed and solved in wavenumber-frequency 
domain. Then, the poles of the Green’s matrix of 
the problem are used for analysis of dispersion 
properties of Lamb waves. The numerical methods 
for computation of the solution of wave propaga-
tion problem in time-space domain are developed 
applying the Cauchy’s residue theorem. A good 
coincidence of results obtained numerically apply-
ing residue-theorem approach with results of FEM 
simulations and experimental data is observed. 
Wave and energy propagation phenomena oc-
curring in various composite plates under typical 
excitation sources are analyzed using obtained  
numerical data.
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