

 Karlsruhe Reports in Informatics 2012,21
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

 Palladio Days 2012

 Proceedings

 8–9 November 2012
 Universität Paderborn, Germany

Steffen Becker, Jens Happe,
Anne Koziolek, Ralf Reussner (Editors)

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Palladio Days 2012
Proceedings

8–9 November 2012
Universität Paderborn, Germany

Steffen Becker, Jens Happe,
Anne Koziolek, Ralf Reussner (Editors)

Karlsruher Institut für Technologie
Fakultät für Informatik
Bibliothek
Postfach 6980
76128 Karlsruhe

ISSN 2190-4782

Preface

The prediction of software quality (e.g. performance, reliability and maintainability) based on software
architectures is useful in many software development scenarios, such as support for design decisions,
resource dimensioning or scalability analysis.

The open source tool Palladio can be seen as a “software architecture simulator”. Palladio includes a
metamodel for specifying software architectures (Palladio Component Model, PCM), a simulator (Simu-
Com), and a set of analytical solvers to gather simulation data on different software quality attributes. By
its flexible design, extensive documentation, and high number of industrial case studies, Palladio is a ma-
ture platform to be utilised by other developers and scientists to explore further possibilities of modelling
and simulating architectures. There are several dimensions of building on Palladio: extending Palladio
for specific application domains, such as embedded systems, adding analyses for additional quality met-
rics (such as maintainability) or using Palladio for non-software architectures (e.g., production plants or
logistics).

Therefore, the Palladio Days 2012 have the goal to bring together practitioners using Palladio and
researchers who intend to work on Palladio as well as those who drive the Palladio project or who would
like to learn about Palladio and its latest improvements.

Specific topics of this year’s Palladio Days is Performance Prediction of Software in Dynamic (On-
the-Fly) Contexts. In general, we seek reports on applications and extensions of Palladio in academic or
scientific contexts.

4

Programme Committee Chairs

• Steffen Becker, University of Paderborn
• Jens Happe, SAP Research Karlsruhe
• Anne Koziolek, University of Zurich
• Ralf Reussner, Karlsruhe Institute of Technology/FZI Forschungszentrum Informatik

Programme Committee

• Babora Buhnova, University of Brno
• Wilhelm Hasselbring, University of Kiel
• Samuel Kounev, Karlsruhe Institute of Technology
• Heiko Koziolek, ABB Research
• Klaus Krogmann, FZI Forschungszentrum Informatik
• Heike Wehrheim, University of Paderborn

Organizers

• Matthias Becker, University of Paderborn, Germany
• Steffen Becker, University of Paderborn, Germany
• Sebastian Lehrig, University of Paderborn, Germany

5

Programme

Thursday, 8 November

9.00 Developer Meeting
12.00 Lunch Break
13.00 Opening and Welcome (Organizers)
13.15 Keynote

Jun.-Prof. Dr. Oliver Hummel, Karlsruhe Institute of Technology
“Reuse and Beyond: Innovative Software Retrieval Approaches”

14.00 Break
14.30 Palladio Days Paper Session

Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss,
Martin Küster, Philipp Merkle and Andreas Rentschler
“Extending the Palladio Component Model using Profiles and Stereotypes”
Robert Heinrich, Jörg Henss and Barbara Paech
“Extending Palladio by Business Process Simulation Concepts”
Jens Frieben and Henning Heutger
“Case Study: Palladio Based Modular System For Simulating PLC Performance”

16.00 Break
16.30 Heinz-Nixdorf Museum
19.00 Dinner and Socializing

Friday, 9 November

9.00 Special Focus Talks
Andreas Brunnert and Christian Vögele
“Applying the Palladio tool in a SOA Project”
Benjamin Klatt and Christoph Rathfelder
“Predicting Event-Based Communication with Palladio”
Matthias Becker
“SimuLizar: Design-Time Modeling and Performance Analysis of Self-Adaptive Systems”

10.30 Break
11.00 Jörg Henß

“OMPCM - An OMNet++ simulator for Palladio”
11.30 Discussion: PCM 3.4 Release
11.45 Open Discussion

Contents

Extending the Palladio Component Model using Profiles and Stereotypes
Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle
and Andreas Rentschler . 7

Extending Palladio by Business Process Simulation Concepts
Robert Heinrich, Jörg Henss and Barbara Paech . 17

Case Study: Palladio Based Modular System For Simulating PLC Performance
Jens Frieben and Henning Heutger . 27

Extending the Palladio Component Model using
Profiles and Stereotypes

Max E. Kramer⇤, Zoya Durdik⇤, Michael Hauck†, Jörg Henss⇤, Martin Küster†,
Philipp Merkle⇤ and Andreas Rentschler⇤

⇤Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
†FZI Research Center for Information Technology, Karlsruhe, Germany

Abstract—Extending metamodels to account for new concerns
has a major influence on existing instances, transformations
and tools. To minimize the impact on existing artefacts, var-
ious techniques for extending a metamodel are available, for
example, decorators and annotations. The Palladio Component
Model (PCM) is a metamodel for predicting quality of component-
based software architectures. It is continuously extended in order
to be applicable in originally unexpected domains and settings.
Nevertheless, a common extension approach for the PCM and
for the tools built on top of it is still missing. In this paper, we
propose a lightweight extension approach for the PCM based on
profiles and stereotypes to close this gap. Our approach is going
to reduce the development effort for new PCM extensions by
handling both the definition and use of extensions in a generic
way. Due to a strict separation of the PCM, its extension domains,
and the connections in between, the approach also increases the
interoperability of PCM extensions.

I. INTRODUCTION & MOTIVATION

Domain-specific languages (DSLs), are designed for par-
ticular purposes. Their vocabulary is usually restricted to the
terms used in their specific domains. On the one hand, this is
their biggest strength: for a focused DSL, you can define the
semantics more easily. Furthermore, narrow DSLs are easier to
learn. On the other hand, being specific and concise is limiting,
too. The expressiveness of a DSL might not be sufficient to
cover all aspects of a problem that people would like to treat
in the future. Additional DSLs need to be defined for the
different viewpoints to cover the additional aspects. However,
combining existing DSLs is difficult: First, the languages need
to be combined on the abstract syntax level, making one DSL
dependent on the other. Second, the tools that are generated
for the concrete syntaxes need to be integrated. In general, this
is a hard task.

A well-established approach to solve the problem of com-
bining DSLs is to define a core metamodel with extensions
designed as decorator models around it. Having a well-defined
core, the conciseness and type-safety of the DSL are not
corrupted. It is, however, the responsibility of the author of
the extension to provide tool support that integrates the editors
for the core DSL and the editors for the extension. The central
concept is that the editors for the core model do not know about
any decorator and can exist without any extension. Writing,
maintaining and using additional editors for the extensions is
a repetitive and time-consuming task. Here, we identify the
need for a mechanism enabling general extensions of the DSL
with a reusable set of tools for the definition of the extensions.

Another way to define extensions are annotations that seek
to solve the problem by being very flexible. They allow to add
arbitrary information to model elements. These additions must
be interpreted at runtime by transformations processing the
model. As type-safety is lacking, checking the syntax of any
annotation is not possible at development time in EMF-based
modeling environments, which is an unfortunate fact.

The abovementioned problems hold for the Palladio Com-
ponent Model (PCM) [1] [2], too. While being a DSL for
performance- and reliability prediction on the architecture level,
a variety of additions to the core language have been intro-
duced. Additions include information attached to connectors
as performance completions, design patterns that are employed
by the system or design decisions that have been made while
designing the system structure or the deployment. All these
additions have been defined outside the core of the PCM,
raising the need for editors and adaptation of tools that process
models with additions.

B:ResourceContainerA:ResourceContainer

:ComponentA :ComponentB

:AllocateSeparately
Decision

allocationContexts[1]allocationContexts[0]

invariant:
self.allocationContexts
 ->forAll(ac1, ac2| ac1 <> ac2 implies
ac1.resourceContainer <>
ac2.resourceContainer

Fig. 1. Illustration of an architectural decision to allocate components
separately applied to the deployment of PCM components (without stereotypes)

Fig. 1 exemplifies a design decision decorating a PCM
allocation model. The element AllocateSeparatelyDecision in-
dicates that the architect decided to deploy ComponentA
and ComponentB on different hardware nodes A and B. The
corresponding invariant formalises this decision through OCL.

Of course, the decision model that is attached to the PCM
architecture model can be edited separately. The links to the
PCM elements can be defined outside any PCM-related editor.
But for an architecting process it is somewhat counterintuitive
to have different model editors for the same information, which
is architecture and architectural decisions. Therefore, we see
the need for a generic mechanism that enables additions to the
PCM without the need to re-generate any graphical or textual

Palladio Days 2012

«Metaclass»
Interface

«stereotype»
Remote

Fig. 2. UML stereotype example (from [3], p. 663)

editor for PCM elements. The example above illustrates the
situation we have in mind for extensions. A domain metamodel
(decisions) exists independent of the PCM metamodel. The
bridge between the two models, i.e. adding decision-related
information to PCM elements, needs to be established by a
profile-based extension mechanism.

For a generic extension mechanism, we identified five major
requirements: It has to support type-safe extensions that can
be created in a non-invasive way, so that the PCM does not
have to be adapted to account for extensions. Furthermore, the
mechanism has to be lightweight in the sense that extending
the PCM has to be easier than creating a complete and separate
metamodel. In addition, the mechanism has to be flexible and
intuitive so that it is possible to create small as well as complex
extensions using tools and notations that are familiar to many
PCM developers. As a last requirement, extensions have to be
composable so that new extensions can rely on existing ones.

This paper presents a PCM extension approach that addresses
these requirements through profiles and stereotypes as known
from the Unified Modeling Language (UML) [3]. It takes ideas
from decorator models, but brings it to a level where PCM
models can be extended without re-generating editors.

The rest of the paper is structured as follows: Section II
provides the foundations for our work. The main features and
concepts of our approach are presented in detail in Section III.
Section IV discusses the technical realization of our extension
approach. Four different examples of PCM extensions that
would profit from our approach are presented in Section V.
The paper is completed with a discussion of related work in
Section VI and conclusions in Section VII.

II. FOUNDATIONS

In this section, we first give an introduction on the profile
concept of the UML for extending the UML metamodel. We
then explain an approach based on the Eclipse Modeling
Framework (EMF) called EMF profiles. This approach adopts
the UML profiles concept to DSLs based on EMF and appears
to be suitable for providing a lightweight extension mechanism
for PCM models.

A. UML Profiles

The UML provides a mechanism called Profiles for extending
metaclasses to adapt them for different purposes [3]. By using
the profile mechanism, user-defined UML extensions called
stereotypes can be defined that carry specialized semantics. Dur-
ing the last years, several UML profiles have been standardized
by the OMG and are included in common UML tools.

Fig. 2, taken from the UML standard [3], shows the UML
element Interface extended by a stereotype Remote. With this

Ecore

EMF Profiles MM

aProfile aProfileApplication

 «instanceOf»

 «instanceOf»

«instanceOf»

«inheritsFrom»

M
1

M
2

M
3

M
et

am
o

d
el

 L
ev

el

Metalevel lifting
by inheritance

Fig. 3. EMF Profiles architecture (adapted from [5])

extension, remote interfaces are metamodelled indicating an
interface with specific properties for remote usage. With
appropriate tooling, remote interfaces can appear as basic
building blocks, such as conventional UML elements. Note
that the UML stereotype element inherits from the UML class
element. Thus, associations and attributes can be used to further
specify the properties of the stereotype.

The UML Profile element is a special UML package used
for collecting all UML stereotypes defined for a certain domain
or platform (e.g. embedded systems, JEE, etc.).

B. EMF Profiles
To apply the profile mechanism to EMF-based metamodels,

and to overcome issues with the UML profiles concept, Langer
et al. developed an approach called EMF Profiles [4], [5].

Fig. 3 shows how EMF Profiles extend the metamodelling
language Ecore with a profile mechanism. EMF Profiles
provides a metamodel for defining profiles consisting of
stereotypes. This metamodel inherits from Ecore metamodel
elements. Aa profile inherits from Ecore EPackage, a stereotype
inherits from EClass. A profile model is then defined on the
same layer as a metamodel defined with Ecore (such as the
PCM). The instance of a profile, i.e. a profile application,
resides on the same layer as an instance of the metamodel.

EMF Profiles comes with a tool that supports the spec-
ification of profiles as well as the application of profiles in
generated EMF and GMF editors. Besides adopting the concept
of profiles from UML, this approach and the corresponding
tooling facilitate the extension of EMF models by providing
additional functionality. This includes the issue of storing
profiles in a separate container (in UML, profile applications are
directly included into the UML model), as well as a clean-up
function to automatically delete stereotype instances referencing
deleted model elements. As a stereotype can be used to extend
multiple metaclasses, it provides a powerful mechanism for
specifying extensions of EMF-based DSLs.

We decided to adopt EMF Profiles for implementing a
lightweight extension mechanism for PCM models which is
described in more detail in the following sections.

III. CONCEPT

In this section, we explain the proposed PCM extension
approach on a conceptual level. First, we outline the complete

8 Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle and Andreas Rentschler

Ecore

Profiles MM

aProfile

aProfileApplication

 «instanceOf»

 «instanceOf»

«instanceOf»

M
1

M
2

M
3

M
et

am
o

d
el

 L
ev

el

aBaseModel

PCM Domain MM

aDomainModel
extends

«instanceOf» «instanceOf»

extends references

references

«instanceOf» «instanceOf»

Fig. 4. Models, layers and relations of a profile application extending a PCM
instance and referencing a domain model

approach and present all involved artefacts. Then, we explain
in detail how an extension engineer defines an extension
profile. Last, we switch to the process of applying an extension
profile at runtime. Both extension steps are presented in a
generic manner and illustrated using the PCM profile for design
decisions as introduced before.

A. Overview

We propose a practical extension mechanism for Palladio
to handle PCM extensions in a common way. In our vision
developers of the Palladio Bench are enabled to extend the
PCM by defining a profile that consists of stereotypes. In order
to provide users of Palladio the possibility to use the extension
profile, its developer has to register it using an Eclipse extension
point. Afterwards users will directly be able to add information
to models, because stereotypes provided in a profile can be
applied in a generic way. Note that our approach only provides
a way to add information to elements of the PCM. It does not
address the use of this information nor is it concerned with
extension possibilities for other parts of the Palladio Bench.

In Fig. 4 we show how a profile and its application are
related to other models. A profile is an instance of the profiles
metamodel, which is based on the metamodel presented by
Langer et al. [4]. This metamodel conforms to the Ecore
metamodelling language used by EMF and the PCM. A profile
instance (aProfile) extends the PCM by specifying which
specific elements of the PCM can be extended using stereotypes.
If necessary, a profile instance can connect instances of its
stereotypes to a domain model instance (aDomainModel).
It is optional to refer to such an instance of a metamodel
representing the extension domain (aDomainMM), but to show
full capabilities we depict the corresponding metamodel, model
and relations in Fig. 4. When a PCM instance (aBaseModel)
is extended, an instance of the profile (aProfileApplication) is
created to represent the profile and stereotypes applications.
Such a profile instance can refer to other models conforming to
the PCM or to models representing the extension domain. We
placed the profile application instance on the border of the first
two model levels to highlight the two roles it is playing. On
the one hand, the profile application is instantiated by profile
applications in M1. On the other hand, the profile application
itself is an instance of the profile metamodel in M2.

Fig. 5. Example design decision profile for the PCM showing the stereotype
AllocateSeparatelyDecision and its context.

B. Extension Profile Definition

The first step in extending the PCM using our approach is
the definition of an extension profile using the graphical profile
editor. We are developing this profile editor based on the editor
presented by Langer et al. [4]. As shown in Fig. 5, this editor
is in turn based on the standard graphical editor for Ecore
metamodels that is part of the EMF. For the design decision
extension, for example, a developer has to create a profile
that contains at least one stereotype for each possible decision
type. In Fig. 5 we present how a part of this profile could
look like. The profile contains everything that is necessary
to enable users to specify the design decision mentioned in
the introduction. This design decision states that two or more
components have to be allocated to separate resource containers.
The stereotype AllocateSeparatelyDecision of the DesignDecisions
profile is linked to the metaclass AllocationContext of the PCM.
This is done using a special extends relation. It states that this
stereotype can only be applied to instances of the metaclass
AllocationContext or to instances of its subclasses. Note that
these semantics of extends relations between stereotypes and
metaclasses are different from inheritance relationships among
metaclasses. In our example, the extends relation is specified
with a multiplicity of 2..*. Therefore, possible applications
are restricted to cases where at least two entities have been
selected. An additional restriction for applications of the
AllocateSeparatelyDecision stereotype is specified using an OCL
expression. This restriction is shown in the graphical profiles
editor as an attached note. It states that the stereotype can
only be applied to AllocationContexts that correspond to distinct
resource containers.

With the profile editor it is also possible to define stereotype
attributes and references as well as dependencies between
stereotypes. These three possibilities are not used in our
small design decision example and therefore only explained
generically: Stereotype attributes are graphically specified in the
same way metaclass attributes are defined using the graphical
ecore editor. Such attributes have to be of primitive type
and correspond to tagged values of UML profiles. References
to complex-typed elements of additional domain models are
graphically defined in the same way metaclass references are
defined in EMF. Dependencies between stereotypes can be used
to specify that a stereotype s1 can only be applied if another
stereotype s2 has already been applied. These dependencies
are graphically defined using a special depends on relation. We

Extending the Palladio Component Model using Profiles and Stereotypes 9

introduce this new dependency concept for stereotypes with
our approach as it is not part of UML or EMF Profiles.

The second and last step in defining a PCM profile is
the registration of the profile. For this registration we use
Eclipse’s extension mechanism and define an extension point.
This extension point requires extensions to provide a profile
name and the path to the profile model itself. Every profile
registered for the extension point is retrieved automatically
by the Palladio Bench during start-up. Based on this, the
application of profiles to regular PCM instances and all related
tasks can be handled in a generic way as explained in the
following subsection.

C. Profile Application
A profile registered for the extension point as described

above is automatically available in the tree-based editor and
in the graphical editor of Palladio. Whenever a user selects
entities in an editor, stereotypes of extensions can be applied
if the corresponding conditions are met. For this purpose, a
menu is automatically created for each extension based on
the information provided by the extension point registration
and the profile itself. During runtime it is decided whether a
stereotype can be applied with respect to the extends relations
and OCL conditions defined in the profile. If a stereotype can
be applied, the corresponding menu entry is activated.

During the application of a stereotype, a properties view
showing the values of the stereotype application is opened.
Using this view the user can enter values for attributes of
primitive type. For complex-typed references elements of
existing models can be selected. For each model and each
applied profile the values for attributes and references of applied
stereotypes are stored in a separate profile application file. This
is an important difference to UML profiles and one of the
reasons why parts of the Palladio bench can ignore profile
applications if they are unaffected by them. The described
possibility to edit stereotype application values is provided out-
of-the-box and available for all profiles. An extension developer
can also replace the standard view for editing stereotype
applications with a graphical editor. Such a custom editor for
stereotype applications could be used to conceal that elements
are not part of the PCM.

When performing analysis, simulations or model transfor-
mations are executed in Palladio that may request extension
information for input models using an API for our generic
extension mechanism. The extension information obtained can
be kept separate or can be used to create augmented versions of
models in a pre-processing step. If a workflow in the Palladio
Bench does not explicitly request information for a certain
profile it operates as if the profile is not applied. On the other
hand, Palladio can be easily extended by different types of
analyses, without having to change PCM core functionality
(e.g. by using various eclipse extension points or workflow
engine extensions). Providing such analyses is out of scope of
this paper, but the proposed Palladio extension can be used to
facilitate such analysis without changing the PCM core (and
the PCM core metamodel).

Fig. 6. Graphical editor showing a profile application and a validation error

IV. IMPLEMENTATION

The technical realization of the extension approach presented
in this paper is going to reuse existing infrastructure from
EMF and EMF Profiles. In this section we outline which steps
are necessary to implement our approach as three artefacts: A
graphical profile editor, an integration into Palladio’s tree-based
and graphical editors and an API for persisting and retrieving
extension information.

A. Extension Profile Definition

The profiles editor of EMF Profiles provides the basic
functionality needed to define the proposed PCM profiles. It is
possible to define new stereotypes and to specify to which PCM
elements can be applied. Furthermore, primitive-type attributes
and complex-typed references can be added to stereotypes. Sup-
port for additional OCL constraints restricting the application
of stereotypes is missing and has to be implemented for our
approach. This could be done by integrating functionality of
existing OCL-editors in order to provide syntax-highlighting,
auto-completion and syntax checking. To ease the definition
of big profiles, support for profile subpackages and inheritance
among stereotypes could be added. EMF Profiles currently
forces profile developers to choose either a graphical profile
editor or a tree-based profile editor. In the future it would be
helpful if a single profile can be edited with both editors as it
is the case for Ecore metamodels.

B. Profile Application

Currently EMF Profiles provides only restricted tool-support
for the application of profiles and stereotypes using existing
tree-based and graphical model editors. It is possible to apply
stereotypes to a model once a profile has been explicitly
loaded by a user. Our idea is to perform an automatic retrieval
of registered and applicable profiles based on the current
modelling context. This can be done by realizing a profile
registry mechanism using an Eclipse extension point. To
incorporate support for profiles into the existing PCM graphical
editors some additional effort is necessary. Stereotyped entities
have to show applied stereotypes in guillemets. Validation of
stereotype constraints has to be done while adding and editing
stereotype applications. Fig. 6 shows for our design decision
example how the integration into a graphical editor and the
result of a failed validation may look like.

10 Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle and Andreas Rentschler

Setting values for attributes or references and the persistence
of stereotype applications is not yet fully supported in EMF
Profiles. Therefore, an editor for stereotype applications has
to be implemented for our approach. In addition, the type,
multiplicity and general OCL constraints defined in registered
profiles have to be evaluated in a modified version of the
stereotype application hook. As mentioned above, it is currently
possible to restrict stereotype applications in the profile editor of
EMF Profiles with respect to the type and number of elements to
be extended. In the integration for the tree-based and graphical
model editor, however, only the type restrictions are evaluated.
For our approach, it is crucial that correct multiplicities are
ensured. In cases where the lower bound of the multiplicity
of an extends relationship is greater than one, it has to be
ensured that the corresponding stereotype can only be applied
to the desired number of elements. Upper bounds of extends
relationships have to be checked similarly. At the moment it is
not possible to set the values for attributes and references of
stereotype applications in a dedicated view. For our approach,
a property view that can be used to enter attribute values and to
select referenced elements as described in the previous section
has to be implemented. Moreover, a clean-up mechanism has
to be introduced to remove dangling stereotype applications
caused by model element deletions.

A last important area for the implementation of our exten-
sion approach is the persistence, validation and retrieval of
stereotype application information. In EMF Profiles stereotype
applications have to be explicitly persisted in publicly visible
XMI-files. For our approach, stereotype application files have
to be automatically validated and stored. Furthermore, these
files should be hidden in the package explorer of the Palladio
Bench as long as nothing contrary is specified by the extension
or by plug-ins depending on it. This can be achieved by using a
specific PCM project nature or project type. Last but not least,
the implementation of our approach has to provide an API for
querying and retrieving the stereotype application information
in analyses, simulations and transformations.

V. EXAMPLE EXTENSIONS

A number of examples from existing Palladio decorator
models can serve as illustration of both the usefulness and
applicability of the EMF profile-based extension mechanism
that we introduced so far. The examples come from the
performance engineering domain, such as the middleware
completion V-C, and the specification of measurements V-D.
Others are aligned with the use of PCM as an architecting
tool: The recording of design decisions and patterns V-B, and
finally the definition of security-related information to PCM
elements V-A, which we will discuss in the following.

A. Security
In the EMERGENT project, initial work has been carried

out in order to extend Palladio by an analysis of security
and privacy attributes of a software architecture [6]. The
approach aims at supporting the software architect or Quality
of Service (QoS) analyst in specifying such attributes on

the architecture level. By analysing the architecture, it helps
answering questions related to security and privacy issues, such
as “Is it possible for an attacker to get access to a certain kind
of data?” A prototypical implementation of the approach has
been developed using a decorator metamodel. This metamodel
facilitates the specification of security-related annotations to
a PCM model. The PCM model and the annotations are then
transformed into an analysis model that can be solved by a
protocol checker using predefined rules.

Fig. 7. Security PCM annotations using a decorator model

Fig. 7 shows an excerpt of the security annotation metamodel
and the referenced PCM metamodel entities. In the figure,
two security-related elements are shown that decorate the
PCM metamodel. A SecureContainer can be used to indicate
that a PCM ResourceContainer meets certain requirements for
secure operation. In addition, the Attacker element can be used
to model malicious users in the system. The approach uses
the PCM UsageScenario to indicate such users, hence the
according reference. For the Attacker element, references to
PCM ResourceContainers can be provided to indicate on which
servers the user has access to.

Fig. 8. Security PCM stereotypes using the EMF Profiles approach

Fig. 8 shows how the security extensions can be imple-
mented by using the EMF Profiles approach. The elements
SecureContainer and Attacker are defined as stereotypes residing
in a security profile. In this example, we only use a subset of the
Palladio security extensions. However, the remaining security
extension elements can be modelled as stereotypes in a similar
way. The example shows that, regarding the metamodel, the
existing decorator approach can be replaced by using the EMF
Profiles approach. By using common tooling as described in
Section IV, modelling security attributes can be included in
existing PCM editors. We plan to convert the complete existing
security decorator model into a profile model and integrate
the profile model into the existing security analysis toolchain,
where the model is transformed into an analysis model which

Extending the Palladio Component Model using Profiles and Stereotypes 11

is checked with predefined security rules. If common PCM
editors support the profiles mechanism, no custom editor for
the security extensions has to be implemented Instead of
implementing a custom editor for the security extensions,
common PCM editors supporting profiles could be reused,
leading to decreased development efforts needed for providing
editor support for the security extension.

B. Design Patterns and Rationale
Design patterns are a subclass of design decisions, which

can influence one or multiple architectural elements, such as
components, provided and required roles, and connectors. In
architectural diagrams, design patterns are commonly repre-
sented with pattern roles and role connectors [7]. For example,
a Model-View-Controller (MVC) pattern [8] consists of three
roles (Model, View, and Controller), and three connectors
between them (View-Model, Controller-View, and Controller-
Model). In the PCM this pattern would be represented through
three component instances (AssemblyContext in PCM) and
three connectors between them (AssemblyConnector and Oper-
ationProvidedRole in PCM). Consequently, the rationale for
the existence of these PCM elements would be the decision to
apply the MVC pattern. This decision shall be explicitly visible
in the model to prevent accidental modification or deletion of
the participating components and connectors.

We have implemented a metamodel to capture pattern
design decisions for the PCM. An excerpt of it can be seen
on Fig. 9 (for full version refer to [9]). The two levels of
instantiation required for the design patterns can be seen. The
meta-level defines that a pattern consists of roles and connectors
between roles. First, the general pattern gets instantiated with a
PatternType element, for example, MVC or Observer [8]. Such
a type instance specifies the number of and the names for the
roles and connectors, e.g. Observer pattern type has two roles
(Observant and Observee), and one connector between them.

Second, a modelled system can contain multiple patterns of
a certain pattern type. Therefore, a pattern gets instantiated
with a PatternApplication element referencing the PatternType.
At this step, pattern roles and role connectors are mapped to
the components and component connectors in the PCM model.

Such a metamodel realisation has several drawbacks. First,
the two instantiation levels increase the complexity and reduce
the comprehensibility of the metamodel. Second, the pattern
decoration model references multiple PCM elements, and
evolution of the PCM may ripple though multiple elements of
the pattern metamodel causing significant maintenance effort
of the tool-chain. Finally, when working with the PCM models,
which components are annotated with the pattern information,
the information on these annotations is not visible unless the
related plugins are installed. This might lead to undesired
changes, e.g. deletion of a component that was part of a pattern.

These drawbacks of the current implementation could be
resolved through the proposed generic PCM profile mechanism.
The double instantiation would not be required anymore,
and the metamodels will be decoupled, thus allowing for
an independent co-evolution of the metamodels. Finally, the

Fig. 9. Excerpt of the pattern metamodel: Decoration of the PCM

annotation information (although in a brief way) would be
visible also without additional plugins, thus reducing the risk
of unintended design decision violation.

C. Performance Completions
Performance completions, initially proposed by Woodside

et al. [10], is a technique to programmatically refine an archi-
tecture model, to have it better reflect performance influences
arising from technological choices. Palladio offers a rich set
of performance completions, implemented as in-place model
transformations.

Completion transformations can be parameterised via mark
models. A mark model is an external configuration model which
decorates the architectural main model. For some completions
in Palladio, parameter configurations are forming a feature-
tree, reflecting the tree-like structure of options and possible
combinations thereof. For instance, in order to predict the
effect of middleware communication, Palladio provides several
middleware-specific completions, each with its own set of
configurable options.

As of today, Palladio’s Chilies Project is one possible way
for configuring completion transformations to be run as a
preprocessing step prior to performance analysis. In Chilies,
each transformation needs to be triggered manually. Elements
are annotated outside of the graphical PCM editors, in a tree-
based feature configuration editor.

Other completions, like the event-based middleware com-
pletion [11], introduce several new concepts by extending the
Palladio metamodel with new classes. At the moment, extending
PCM is done invasively, and new elements are further hard-
coded into the GMF editors.

At the bottom line, current integration of completions is hard
to handle because mark models are not standardised in a manner
that fosters integration into the editors. Also, completions which
extend the core metamodel with new concepts need to modify
it, since there is no method to extend the component model
and the graphical editors non-invasively.

With a PCM profile mechanism in Palladio, we can define a
standardised framework for completion integration, which helps
us to solve the aforementioned shortcomings. We are gaining
the following benefits: Better integration into the editors, the
chance to non-invasively add new concepts to the core, as well
as the automatic integration into Palladio’s workflow.

A profile mechanism lets Palladio users annotate model
elements directly within the editor, in a uniform manner.
This can be realised with a stereotype which is capable of

12 Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle and Andreas Rentschler

Fig. 10. Connector completion for message-oriented middleware

specialising a PCM element, displaying an icon as a distinct
visual feature in the editors, and listing the stereotype’s
attributes context-sensitively in the properties view. Still, a
lot of completions exist, whose parameter space is modelled
as a feature tree. In the past, these completions had to be
configured in an external feature editor. As an alternative,
when registering a new stereotype for these completions, a
custom properties view tab can provide an editable view for
such feature configurations. With the help of OCL, however,
even 3-layered feature trees, as used by the message-oriented
middleware (MOM) completion, can be mapped onto a set of
tagged values (depicted in Fig. 10).

As a second benefit, Palladio’s core models can be extended
with further concepts, without polluting the core models. Exist-
ing concepts, like, in the case of the event-based middleware
completion, events, event groups, event connectors etc., but
also future macro concepts, can be factored out of PCM’s core
model, keeping it clean and concise.

A third benefit is that each completion transformation can
be obliged to specify at registration time a list of profiles
it processes. This enables Palladio to automatically trigger a
completion, depending on the profiles which are found to be
applied to a given model. If execution is automatically triggered,
manual approaches like that of Chilies would become obsolete.

D. ProbeSpecification
Another promising field of application is to attach measuring

information to PCM models, which can then be used by
the simulation to decide where to take measurements to
satisfy the performance analyst’s information need. When, for
instance, the response time of a system call is of interest,
the corresponding EntryLevelSystemCall could be annotated to
indicate that the time span between call and return shall be
recorded throughout a simulation run. Enabling the performance
analyst to define measurement points manually avoids wasting
resources due to unwanted measurements and renders highly
specific measurement settings possible.

With the idea in mind of specifying measurement points
manually, the ProbeSpecification metamodel (PS-MM) and
a corresponding framework has been developed. While the
metamodel allows for expressing measurement points, the
framework provides the measuring infrastructure to Palladio
simulators. The framework is already employed in SimuCom as

position: ProbeSetPosition

ProbeSet

Probe

EObject

1..* probes

1*

annotatedElement

1

BEFORE
AFTER
NONE

<<enumeration>>
ProbeSetPosition

Fig. 11. Current ProbeSpecification metamodel (excerpt)

well as EventSim [12], whereas the metamodel has never been
adopted. One of the major reasons is the lack of tool support
to handle PS-MM instances. Namely, automatically generated
EMF tree editors do not provide the ease of use we desire,
which is mainly due to the separate PS-MM editor forcing
the modeller to constantly switch between Palladio editors and
the PS-MM editor when specifying measurement points. An
integration with Palladio’s graphical GMF editors does not exist
at all and failed so far due to limited development capacities. As
a result from the absent PS-MM support by Palladio simulators,
measurement points are currently hard-coded in the simulation
code, hence bringing along all drawbacks for such a predefined
setting as discussed earlier. Adopting EMF profiles, we believe
to benefit from a reduced development effort for integrating
the PS-MM with Palladio’s EMF and GMF editors.

The PS-MM was designed as a decorator model as illustrated
in Fig. 11. ProbeSets subsume one or more Probes to form a
unit which can then be mounted at a measurement location.
While Probes can be seen as devices capable of measuring
different quantities (e.g. the current time instant or the queue
length of a processor), a ProbeSet can be seen as the appli-
cation of measuring devices at a specific location (e.g. an
EntryLevelSystemCall). Not shown in Fig. 11 is the concept of
Calculators, which serve to calculate performance metrics out
of measurements produced by Probes. Calculating response
times, for example, involves two timestamps representing a
service’s invocation time and its return time. The reference
annotatedElement reveals the decorator nature of the meta-
model. Each ProbeSet decorates exactly one EObject, which
can be an arbitrary PCM modelling-element, but also any other
modelling-element from an arbitrary EMF meta-model.

A major drawback accompanying this design is the missing
type safety for ProbeSet applications. That is, ProbeSets may
be applied to any instance of an EMF metaclass even if the
application makes no sense at all. OCL constraints could
mitigate this problem, but introduce additional complexity.

To address these shortcomings, we are planning to refactor
the PS-MM towards the presented profiles approach. Since the
ProbeSpecification targets not only Palladio, but should also
be applicable in similar contexts, generic profiles [5]—a part
of EMF profiles—seem well-suited and is therefore planned
to be supported by Palladio profiles. Generic profiles take into
account that profiles are sometimes created with the intention to
apply them to a broader range of metamodels. Thus, stereotypes
in a generic profile may not refer to concrete metaclasses, but
instead extend generic types. Each generic type represents a
role which needs to be bound to a concrete metaclass once
applying the profile to a specific metamodel. This is illustrated

Extending the Palladio Component Model using Profiles and Stereotypes 13

<<profile>> ProbeSpecification

<<stereotype>>
QueueLengthProbe

<<generictype>>
QueuingEntity

1

QueuingEntity

PCM

ProcessingResourceSpecification

<<bind>> <QueuingEntity -> ProcessingResourceSpecification>

<<applies to>>

Fig. 12. Generic profiles example

by the example shown in Fig. 12. In the example, the PCM
metamodel and the PS-MM are unaware of each other until
the binding maps the abstract role of a QueuingEntity to the
PCM metaclass ProcessingResourceSpecification.

The challenges of this approach are as follows. First, it has to
be decided what PS-MM metaclasses will serve as stereotypes.
Deciding for ProbeSets would closely resemble the current
metamodel, but bears some disadvantages compared to using
Probes, which also seems more natural. Second, although not
explicitly foreseen in EMF profiles, the PS-MM will likely
need to reference the corresponding profile since Calculators
residing in the PS-MM refer to their ProbeSets or Probes. Third,
SimuCom’s Xpand transformations need to be extended and
TraversalListeners are required for EventSim (cf. [12]).

VI. RELATED WORK

The autosar metamodel [13], used in the automotive domain,
supports annotations on multiple levels. For each Identifiable
entity it is possible to add multi-language textual information
as annotations. Each of these annotations is identified by an
arbitrary string given the Origin of the information. Furthermore,
each autosar PortPrototype can have multiple specialised and
typed annotations to provide domain specific information. In
the autosar metamodel, annotations are realised with dedicated
containment relations.

Another annotation mechanism can be found at the heart
of the Ecore metamodel [14]. It allows to add EAnnotations
to every instance of EModelElement, i.e. basically any Ecore
element can be annotated. An EAnnotation has an identifier and
a key value map to store arbitrary values. This mechanism
is especially used for storing metamodel documentation. The
EAnnotations are stored as containment relations.

In the Service Architecture Meta-Model (SAMM) [15]
developed in the Q-ImPrESS project, annotations are used
to add QoS specifications, like resource demands, to model
elements. Annotations in the SAMM are stored in a detached
model using a decorator approach, i.e. each annotation has
references to the annotated element. While initial tool support
for specifying annotations exists, no tooling is available for
adding new annotations. In addition, the implementation is
strongly connected to SAMM concepts and thus not reusable.

The Ontology Annotation Metamodel (OAM) [16] was
developed in order to derive ontologies from models based
on annotated information. This way ontology concepts such
as classes or object and data properties are assigned to an
existing model. The implementation is based on the Atlas

Model Weaver (AMW) and uses a dedicated model based on
the AMW mapping model to store link elements that map
between annotations and model elements.

VII. CONCLUSIONS

In this paper, we presented an approach for extending the
PCM in a standardized way. The proposed extension mechanism
uses profiles consisting of stereotypes to define extensions
for the PCM. As a result, extensions for Palladio can be
specified in a uniform format, which makes it possible to
handle them generically. In addition to the extension format, we
presented a mechanism to register extensions and we introduced
a possibility to integrate them into Palladio’s graphical editors.
The envisioned approach strictly separates base models and
extension information. As a result, the Palladio Bench can
be unaware of future extensions. In order to provide a solid
foundation for our approach, we also discussed practical
challenges for an implementation based on EMF Profiles.

Using four existing PCM extensions, we illustrated that
current extensions would benefit from a consistent extension
mechanism using profiles. The example of a security extension
showed that the used decorator approach could easily be
replaced by a profile in order to benefit from generic tooling.
With an extension for design patterns and related rationale,
we demonstrated how extension metamodels can be simplified
if the relation to the PCM is factored out into a profile. The
third example of performance completions exemplified how our
extension approach could render concepts of extension domains
more explicit. Finally, an extension example for specifying
measurements illustrated a use case for generic profiles, which
are supposed to be applicable to a broader range of metamodels.

The approach that we presented in this paper meets the
requirements that we identified upfront: its profiles are type-
safe and non-invasive as they can be defined, registered and
applied based on the type of existing PCM elements without
changing the PCM. The Palladio Bench can be unaware of
extensions, because extended model instances appear to the user
and the Palladio Bench as ordinary models as long as they do
not explicitly ask for extension information. Furthermore, the
approach is lightweight because it provides specific concepts
for stereotype applications so that it becomes unnecessary to
explicitly model similar application mechanisms in extension
metamodels. In addition, the approach is flexible because it
supports profiles of different complexity: profiles that add
only simple-typed information as well as profiles that refer
to extension metamodels or involve application conditions
formulated using the Object Constraint Language (OCL). We
are convinced that the approach we presented is intuitive
because profiles are graphically defined using a notation that
is adopted from UML profiles. Profiles can be based on other
profiles but they can also be applied independently of each
other. Therefore, the approach supports composable extensions.

In future work, we are going to implement the proposed
approach in the Palladio Bench and we plan to evaluate it
using some of the example extensions presented in this paper.

14 Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle and Andreas Rentschler

ACKNOWLEDGEMENTS

We are grateful to Anne Koziolek and Erik Burger for co-
developing this approach and thank Benjamin Klatt, Klaus
Krogmann and Qais Noorshams for their comments on drafts.
Many thanks go to the anonymous reviewers for their feedback.

REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems and
Software, vol. 82, no. 1, pp. 3 – 22, 2009.

[2] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,
H. Koziolek, K. Krogmann, and M. Kuperberg, “The Palladio Component
Model,” Karlsruhe, Tech. Rep., 2011.

[3] Object Management Group (OMG), “OMG Unified Modeling Language
(OMG UML), Superstructure, Version 2.4.1,” http://www.omg.org/spec/
UML/2.4.1/Superstructure/PDF/, August 2011.

[4] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “From UML Profiles
to EMF Profiles and Beyond,” in Objects, Models, Components, Patterns,
ser. Lecture Notes in Computer Science, J. Bishop and A. Vallecillo,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6705, pp. 52–67.

[5] ——, “EMF Profiles: A Lightweight Extension Approach for EMF
Models,” Journal of Object Technology, vol. 11, pp. 1–29, 2012.

[6] EMERGENT Project, “Deliverable D.Q1.G1.3.2 / M24: Beschreibung
von Anforderungen und Architektur für Qualitätssicherungssysteme in
föderierten Cloud-Umgebungen,” http://www.software-cluster.com/en/
projects/joint-projects/emergent-en, 2012.

[7] M. Elaasar, L. C. Briand, and Y. Labiche, “A Metamodeling Approach
to Pattern Specification,” in 9th Int. Conf. on Model Driven Eng. Lang.
and Syst., ser. MoDELS’06, 2006, pp. 484–498.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, Amsterdam, 1995, no. 1.

[9] Z. Durdik and R. Reussner, “Position Paper: Approach for Architectural
Design and Modelling with Documented Design Decisions (ADMD3),”
in Proc. of the 8th Int. ACM SIGSOFT Conf. on Quality of Software
Architectures, ser. QoSA ’12. New York, NY, USA: ACM, 2012, pp.
49–54.

[10] M. Woodside, D. Petriu, and K. Siddiqui, “Performance-related Comple-
tions for Software Specifications,” in Int. Conf. on Software Engineering
(ICSE), 2002.

[11] B. Klatt, C. Rathfelder, and S. Kounev, “Integration of event-based
communication in the palladio software quality prediction framework,”
in Proceedings of the joint ACM SIGSOFT conference – QoSA and ACM
SIGSOFT symposium – ISARCS on Quality of software architectures –
QoSA and architecting critical systems – ISARCS (QoSA-ISARCS 2011).
New York, NY, USA: ACM, 2011, pp. 43–52.

[12] P. Merkle and J. Henss, “EventSim – an event-driven Palladio software
architecture simulator,” in Palladio Days 2011 Proceedings, ser. Karlsruhe
Reports in Informatics ; 2011,32, S. Becker, J. Happe, and R. Reussner,
Eds. Karlsruhe: KIT, Fakultät für Informatik, 2011, pp. 15–22.

[13] AUTomotive Open System ARchitecture (AUTOSAR), “AUTOSAR
Software Component Template,” October 2011.

[14] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed., ser. Eclipse series. Addison-Wesley
Longman, Amsterdam, Dec. 2008.

[15] Q-ImPrESS Project Consortium, “Project Deliverable D3.1 Prediction
Model Specification,” http://www.q-impress.eu/wordpress/wp-content/
uploads/2009/05/D3.1-Prediction model specification v20.pdf, 2009.

[16] G. Hillairet, “AMW Use Case - Metamodel Annotation for Ontology
Design,” http://www.eclipse.org/gmt/amw/usecases/oamusecase/.

Extending the Palladio Component Model using Profiles and Stereotypes 15

Extending Palladio
by Business Process Simulation Concepts

Robert Heinrich, Barbara Paech
Institute of Computer Science

University of Heidelberg, Germany
{heinrich, paech}@informatik.uni-heidelberg.de

Jörg Henss
Institute for Programme Structures

and Data Organisation
Karlsruhe Institute of Technology, Germany

joerg.henss@kit.edu

Abstract—Business process design and enterprise information
system (IT system) design are often not well aligned, which
leads to problems at runtime caused by neglecting the mutual
impact of business processes and IT systems. Simulation is a
promising approach to support the alignment of business process
design and IT system design by impact prediction. Currently, the
Palladio approach does not include business process modeling
and simulation functionality, which impairs the accuracy of
simulation results. We propose an extension to the Palladio
Component Model (PCM) and the simulation behavior in order
to enable the modeling of business processes and the simulation
of the mutual impact of business processes and IT systems using
the existing Palladio tool chain.

Index Terms—Business Process; Enterprise Information Sys-
tem; Simulation; Alignment; Performance.

I. INTRODUCTION

Business processes and IT systems mutually impact their
performance in non-trivial ways. Nonetheless, business pro-
cess design and IT system design are often not well aligned.
Missing alignment of business process design and IT system
design results in problems at runtime such as large IT response
times, large process execution times, overloaded IT systems
or interrupted processes. Simulation is a powerful approach
to predict the impact of a business process design on the
performance of supporting IT systems and vice versa. Based
on the predicted impact, business process design and IT system
design can be adapted to enable alignment.

There are several business process simulation approaches
and several IT system simulation approaches. In the business
process domain, simulation is commonly used to predict busi-
ness process performance and financial impact (e.g. [1]). In the
IT domain, computer network simulation is widely spread for
decades to estimate performance of network topologies. More-
over, there are approaches for software architecture simulation
on component level (e.g. [2]) and service-oriented architecture
simulation (e.g. [3]). Focused on one domain, these approaches
are adequate to predict the performance of a business process
or an IT system isolated of each other. However, in current
simulation approaches, there is little integration between the
business process domain and the IT domain.

Considering business processes along with IT systems in
simulation can support several roles in the joint development
of business processes and IT systems.

• Requirement engineers can check in design phase
whether an IT requirement can be met by a proposed
IT system design for a given business process design.

• System developers can compare design alternatives of IT
systems invoked in a given process to each other without
implementing prototypes.

• Hardware administrators can check the utilization of IT
resources such as CPU or hard disk drive for a proposed
IT system design and a given business process design.

• Business analysts can check in design phase whether a
process requirement can be met by a proposed business
process design and a given IT system design.

• Process designers can compare business process design
alternatives to each other without executing a business
process in practice. Thereby, the impact of the given IT
system(s) on the process is considered.

The Palladio approach [2] currently does not provide busi-
ness process modeling and simulation functionality. This im-
pairs the accuracy of IT simulation results since mutual impact,
e.g. on workload distribution, is not correctly considered. Betz
et al. [4] sketch a framework to integrate the life-cycles of
business processes and IT systems based on Palladio. This
framework uses IT simulation and business process simulation
isolated of each other. However, isolated simulations are not
able to consider the mutual impact of business processes and
IT systems addressed in this paper.

If we abstract from the different semantics of business pro-
cess simulation and IT simulation, there are several analogies.
Both kinds of simulations...

• ...can be built upon queuing networks (queuing theory
[5])

• ...simulate the utilization of resources (human actor re-
sources or IT resources). An actor resource is the repre-
sentation of a human actor in the process. Actor resources
as well as IT resources process jobs from their waiting
queue in a certain processing rate. See [1] for an example
of actor resources and their waiting queues in business
process simulation.

• ...use a specification of a workflow of actions to be pro-
cessed by the resources. In business process simulation
besides system steps also actor steps are considered.

• ...use actions that can be composed hierarchically.

Palladio Days 2012

• ...use a specification of workload. In process simulation
workload is often specified in the form of inter-arrival
times which is comparable to the open workload in
Palladio.

• ...acquire and release shared passive resources. In analogy
to passive resources in Palladio, passive resources in
a business process are devices or machines which are
available in limited capacity and are required to perform
the process but do not actively process it (cf. [1]).

Considering these analogies, Palladio seems to be an ade-
quate foundation to be extended by business process simula-
tion concepts to enable an integrated process and IT simulation
for performance prediction purposes.

In this paper, we propose extensions of the PCM and the
simulation behavior in order to enable the simulation of the
mutual impact of business processes and IT systems. The
paper is structured as follows: In Section II, we introduce
definitions required for understanding the following sections.
We present an example process and discuss the mutual impact
of business processes and IT systems in Section III. The
need for an integrated business process and IT simulation
is presented in Section IV by pointing out open issues in
Palladio. Requirements on an integrated simulation are listed
in Section V. In Section VI, we show how to extend the PCM
and the simulation behavior by business process concepts to
enable an integrated simulation. An example of the behavior
of the proposed extensions to the simulation is shown in
Section VII. Section VIII concludes the paper and presents
future work.

II. DEFINITIONS

A business process is a “set of one or more linked activities
which collectively realize a business objective or policy goal,
normally within the context of an organizational structure
defining functional roles and relationships“ [6]. Each activity
within the process consists of a set of one or more linked steps.
Steps are either completely performed by a human actor –
called actor steps – or completely performed by an IT system
– called system steps. In the PCM, a system step is represented
by an EntryLevelSystemCall [2]. Yet, to keep things generally
intelligible, we use the term system step in this paper.

A human actor performs actor steps lined up in his/her
worklist. A worklist is comparable to a waiting queue of an
IT resource (cf. [2]) which lines up jobs to be processed
by the IT resource. Business processes are typically spec-
ified on several levels of abstraction which are composed
hierarchically. Processes consist of subprocesses, subprocesses
consist of activities, and activities consist of actor steps and
system steps. Hierarchical composition is required to keep
track of large processes. In this paper, we focus on the level
of steps as detailed actor steps and system steps are required
to determine the mutual impact of business processes and
IT systems in simulation. The mutual impact is discussed
in detail in Section III. A business process instance is the
“representation of a single enactment of a process“ [6]. An
IT system instance is an executable representation of the IT

system design. A business process design P and an IT system
design S are aligned, if

• System steps of S are invoked in P, and
for all the process instances P0 of P and all the system

instances S0 of S holds:
• S0 meets the requirements of S when used in P0, and
• P0 meets the requirements of P when uses S0.

Workload is “the amount of work to be done“ [7]. Business
process workload determines the amount of process instances
that traverse the business process. Often workload is measured
in process instances per time unit. Process instances traverse
all the actor steps and system steps on a certain path of
the process from the process start point to a process end
point. Response time is the total time required by a process
instance to traverse a system step. Execution time is the total
time required by a process instance to traverse an actor step.
The time required to traverse an activity within the process
or an entire process is called execution time, too. Distance
refers to the difference in time in which the process instances
reach a certain point in the process. The distance between two
process instances begin the execution of the process is called
inter-arrival time. Workload distribution refers to the distance
between process instances within the process. For example,
three process instances can occur in a constant distance (30
seconds) to each other, or they can occur in bursts, e.g.
all three process instances occur directly after the other or
even at the same time. In all cases, the workload is three
process instances in one minute. While traversing the process,
the distance between process instances can vary. Bursts of
process instances or gaps between the process instances can
be created.

III. MUTUAL IMPACT OF BUSINESS PROCESSES AND IT
SYSTEMS

Business processes and involved IT systems mutually im-
pact each other in several ways. In this paper, we focus
on performance impact. In the following, we introduce an
example and discuss the mutual impact of business processes
and IT systems based on the example.

A. The Process of Order Picking
Suppose the process of order picking in the store of a

manufacturer. Goods requested in an order are taken from
the store and are packed to be transported by trucks. The
process is illustrated in Figure 1. The example process is a
simplified representation of a process from practice we are
currently analyzing in a case study.

The process has a start event and an end event, represented
by circles. Steps are represented by rectangles with rounded
corners. “AS:” is used to mark actor steps. “IT:” is used to
mark system steps. Arrows represent the control flow in the
process. Lanes represent roles of human actors. For each role,
several human actors are available, i.e. orders can be processed
concurrently.

The shift leader first gathers the data from the order for
picking. The IT system inserts the data into a database and

18 Robert Heinrich, Jörg Henss and Barbara Paech

Fig. 1. Example Process

sends the order data from the database to a mobile client of the
fork–lift driver. The fork–lift driver accepts the order, which
is registered in the database by the IT system. The IT system
then calculates the shortest route to the goods in the store
of the manufacturer. After the route has been calculated, the
fork–lift driver takes the goods out of the store and put them
on a location where they are packed for transport. Then, s/he
confirms the transport. The IT system updates the database
and informs the warehouser. Then, the warehouser packs the
goods for transport, put them on a location where they are
picked up by a truck later, and confirms the transport. Finally,
the IT system updates the database.

There are strict time constraints in the process, since re-
quested orders have to be available for transport at the time the
trucks arrive. Since delays are very expensive in the logistics
business, it is a time-critical process.

B. Process Impact on IT System Performance
IT system performance is determined by the business pro-

cess design as well as the business process workload. The
business process design determines which system steps are
invoked in the process, when a specific system step is invoked
and which system steps are invoked concurrently. For example,
suppose a business process that includes two system steps.
IT system performance may differ depending on whether the
steps are invoked sequentially or concurrently. As defined in
Section II, business process workload determines the amount
of process instances that traverse the process. Process instances
traverse all the actor steps and system steps on a certain path
of the process from the process start point to a process end
point. Thus, business process workload determines how often
an IT system is invoked. IT system performance may differ
depending on whether the system is invoked once per second
or 100 times per second.

C. IT System Impact on Process Performance
IT system performance impacts the business process per-

formance in two ways. Firstly, if the IT system is overloaded
because too many actors invoke the system, it is no longer
available for actors in the business process. Thus, the execution
of the business process is impeded or even interrupted. For

example, if the IT system cannot send the order data to the
mobile client (e.g. as it is overloaded by too many actors), the
goods may not be available for the truck in time. Secondly,
the response time of system steps may impact the business
process performance if its extent is comparable to the extent
of execution time of actor steps within the process. Thus, IT
system response time may significantly increase the execution
time of the entire business process or single activities within
the process. Response time and execution time is defined in
Section II. For example, in our case study, the transmission of
order data to the mobile client of the fork–lift driver can last
up to 40 minutes and more which heavily impacts the process
execution time as it increases accordingly.

D. Mutual Impact of Actor Steps and System Steps on Work-
load Distribution

IT system performance and business process performance
are influenced by workload distribution within the process.
See Section II for a definition of workload distribution. Ac-
cording to Mi et al. [8], workload distribution has “paramount
importance for queueing prediction, both in terms of response
time mean and tail” as it impacts performance significantly.
Unequal distributions of workload (“burstiness” factor) often
lead to increasing response times. As human actors process
jobs on their worklist in a similar manner as IT resources, e.g.
following the FIFO (First In First Out) principle, it is logically
comprehensible that workload distribution impacts process
performance the same way as it impacts IT performance.

Workload distribution in the process is influenced by actor
steps as well as system steps assuming synchronous scheme
of communication. In this paper, we discuss synchronous
scheme of communication. Assuming asynchronous scheme
of communication (i.e. actors do not wait for system steps
to finish), workload distribution is only influenced by actor
steps. If an actor is already busy when an actor step should
be performed by this actor, the execution of the actor step has
to wait until the actor is ready to perform the actor step. If an
IT resource used in a system step is already busy when it is
invoked by an actor request, the request has to wait until the
resource is ready to process the request. Process instances may
also have to wait for shared passive resources to be released.
As mentioned above, there are shared passive resources in
business processes as well as in IT systems. Waiting times
hinder the flow of the process instances through the business
process. For each step, waiting times may differ from process
instance to process instance. Thus, the distances between the
process instances in the process may vary during process
execution. The example in Table I shows how the distance
between process instances is decreased which may result in a
burst.

Suppose, there are two actors A1 and A2 of the role fork–
lift driver. The queue of A1 has a length of five time units at
t0. The queue of A2 has a length of six time units at t0. This
represents the processing time of the remaining work to be
done by the actors. There are two process instances I1 and I2
which reach the actor step “AS: Accept order” at a distance

Extending Palladio by Business Process Simulation Concepts 19

Time t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
Actor A1 5 (+3 from I1) 4 (+3) 3 (+3) 2 (+3) 1 (+3) I1 I1 I1 – –
Actor A2 6 5 4 (+3 from I2) 3 (+3) 2 (+3) 1 (+3) I2 I2 I2 –

TABLE I
EXAMPLE: DECREASING THE DISTANCE

Time t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
Actor A1 5 (+3 from I1) 4 (+3) 3 (+3) 2 (+3) 1 (+3) I1 I1 I1 – –
Actor A2 6 5 4 (+3 from I2) 3 (+3) 2 (+3) 1 (+3) I2 I2 I2 –

TABLE I
EXAMPLE: DECREASING THE DISTANCE

Resources

Service Effect
Specifications

Components

Usage Model

Workload

Fig. 2. Simulation Layers Used in the PCM

of two time units. Both instances put a demand of three time
units on the actors. At the point in time t0 the process instance
I1 is allocated to the actor A1, because the queue of A1 is
the shortest. At the point in time t2 the process instance I2 is
allocated to actor A2, because its waiting queue is the shortest,
now (see Table). The processing of I1 is finished at the point
in time t7. The processing of I2 is finished at the point in time
t8. The distance between both process instances has decreased
to one time unit. If A1 and A2 both had a waiting queue of
length five time units at t0, the processing of both process
instances would have finished at the same time.

In this case, I1 and I2 reach the system step “IT: Calculate
shortest route” at the same time which, according to Mi et al.
[8], may results in a higher mean response time than if the
process instances reach the system step at a distance of two
time units.

IV. OPEN ISSUES IN PALLADIO

Considering the mutual impact of processes and IT systems
described above, the following open issues currently appear
when using Palladio and a business process simulation isolated
from each other to simulate IT systems used in a business
process.

O1: In the PCM usage model (cf. Figure 2) actor steps
are considered as “black boxes” representing a delay. The
execution time of actor steps (i.e. the extent of the delay) is not
determined in simulation but has to be specified before simula-
tion as an input. Thus, execution times represent assumptions
made before simulation. The extent of the execution time of
an actor step depends on the utilization of the corresponding
actor which is unknown before simulation.

Palladio requires a specification of the usage of the IT
system in the form of one or more usage scenarios. Using

process simulation and IT simulation isolated of each other
requires deriving an IT usage profile (i.e. a usage scenario)
for IT simulation from the business process specification.
The following open issues appear while deriving an IT usage
profile:

O2: Variation of process arrival distribution during simula-
tion cannot be easily mapped to a time-invariant IT workload
specification as it is assumed in the PCM usage scenario. The
execution of a business process typically lasts several hours
or even days. Thus, there may be changes in the workload
during simulation. For example, from 9:00 am to 11:30 am
the process is triggered 100 times per minute, and from 12:30
pm to 5:00 pm, the process is triggered 50 times per minute.
From 11:30 am to 12:30 pm, the process is not triggered at
all, due to a lunch break. Figure 3 shows an example for time-
variant workload on a resource and the resulting queue length
assuming the resource has a processing rate of 53 requests per
minute.

As shown in the example, inter-arrival time changes over
time. The PCM assumes a time-invariant workload which can
have a probabilistic distribution. Even so, changing arrival
distributions cannot be mapped to a time-invariant workload
without approximation. Approximation usually results in re-
duced accuracy of the predicted IT response times.

Moreover, deriving an IT usage profile includes the spec-
ification of actor steps and their execution time which is
unknown at this stage (see O1).

O3: Although Palladio is already able to simulate system
steps within the PCM usage model, systems steps cannot be
included in the simulation of business process scenarios as
the usage model currently does not provide business process
model elements such as actor steps and existing simulators
do not reflect business process simulation behavior such as
simulating the utilization of actors.

O4: Workload distribution is only influenced by IT system
steps. The impact of actor steps on workload distribution is
neglected in current Palladio simulations. There may be some
workarounds to manipulate workload distributions, e.g. by
modeling delays as stochastic expressions. However, this is not
an adequate way as it does not result from simulation but has
to be specified before simulation. Thus, workload distributions
are not correctly represented in current Palladio simulations.
As a result, performance may not be predicted accurately (cf.
[8]).

O5: Currently, the system steps contained in a PCM usage
model are stochastically independent in terms of their parame-
ters. Parametric dependencies are also possible for actor steps.
Probabilistic parametric dependencies in the process impact on

Fig. 2. Simulation Layers Used in the PCM

of two time units. Both instances put a demand of three time
units on the actors. At the point in time t0 the process instance
I1 is allocated to the actor A1, because the queue of A1 is
the shortest. At the point in time t2 the process instance I2 is
allocated to actor A2, because its waiting queue is the shortest,
now (see Table). The processing of I1 is finished at the point
in time t7. The processing of I2 is finished at the point in time
t8. The distance between both process instances has decreased
to one time unit. If A1 and A2 both had a waiting queue of
length five time units at t0, the processing of both process
instances would have finished at the same time.

In this case, I1 and I2 reach the system step “IT: Calculate
shortest route” at the same time which, according to Mi et al.
[8], may results in a higher mean response time than if the
process instances reach the system step at a distance of two
time units.

IV. OPEN ISSUES IN PALLADIO

Considering the mutual impact of processes and IT systems
described above, the following open issues currently appear
when using Palladio and a business process simulation isolated
from each other to simulate IT systems used in a business
process.

O1: In the PCM usage model (cf. Figure 2) actor steps
are considered as “black boxes” representing a delay. The
execution time of actor steps (i.e. the extent of the delay) is not
determined in simulation but has to be specified before simula-
tion as an input. Thus, execution times represent assumptions
made before simulation. The extent of the execution time of
an actor step depends on the utilization of the corresponding
actor which is unknown before simulation.

Palladio requires a specification of the usage of the IT
system in the form of one or more usage scenarios. Using

process simulation and IT simulation isolated of each other
requires deriving an IT usage profile (i.e. a usage scenario)
for IT simulation from the business process specification.
The following open issues appear while deriving an IT usage
profile:

O2: Variation of process arrival distribution during simula-
tion cannot be easily mapped to a time-invariant IT workload
specification as it is assumed in the PCM usage scenario. The
execution of a business process typically lasts several hours
or even days. Thus, there may be changes in the workload
during simulation. For example, from 9:00 am to 11:30 am
the process is triggered 100 times per minute, and from 12:30
pm to 5:00 pm, the process is triggered 50 times per minute.
From 11:30 am to 12:30 pm, the process is not triggered at
all, due to a lunch break. Figure 3 shows an example for time-
variant workload on a resource and the resulting queue length
assuming the resource has a processing rate of 53 requests per
minute.

As shown in the example, inter-arrival time changes over
time. The PCM assumes a time-invariant workload which can
have a probabilistic distribution. Even so, changing arrival
distributions cannot be mapped to a time-invariant workload
without approximation. Approximation usually results in re-
duced accuracy of the predicted IT response times.

Moreover, deriving an IT usage profile includes the spec-
ification of actor steps and their execution time which is
unknown at this stage (see O1).

O3: Although Palladio is already able to simulate system
steps within the PCM usage model, systems steps cannot be
included in the simulation of business process scenarios as
the usage model currently does not provide business process
model elements such as actor steps and existing simulators
do not reflect business process simulation behavior such as
simulating the utilization of actors.

O4: Workload distribution is only influenced by IT system
steps. The impact of actor steps on workload distribution is
neglected in current Palladio simulations. There may be some
workarounds to manipulate workload distributions, e.g. by
modeling delays as stochastic expressions. However, this is not
an adequate way as it does not result from simulation but has
to be specified before simulation. Thus, workload distributions
are not correctly represented in current Palladio simulations.
As a result, performance may not be predicted accurately (cf.
[8]).

O5: Currently, the system steps contained in a PCM usage
model are stochastically independent in terms of their parame-
ters. Parametric dependencies are also possible for actor steps.
Probabilistic parametric dependencies in the process impact on

20 Robert Heinrich, Jörg Henss and Barbara Paech

0"

20"

40"

60"

80"

100"

120"

07:00" 09:24" 11:48" 14:12" 16:36" 19:00"

re
qu

es
ts
'p
er
'm

in
ut
e

-me

requests'per'minute

0"

1000"

2000"

3000"

4000"

5000"

6000"

07:00" 09:24" 11:48" 14:12" 16:36" 19:00"

qu
eu

e$
le
ng
th

+me

avg$queue$length

Fig. 3. Example: Time Dependent Workload on a Resource and Resulting Queue Length

workload as parameters such as the number of goods included
in an order may increase the number of loop iterations required
to handle the order. For example, when an order arrives at the
IT system, it is first processed by the IT system optimizing
the pickup sequence. Afterwards, the fork-lift driver has to
pickup all the goods from the store. Therefore, not only the
processing time of the order in the IT system is dependent on
the number of goods included in the order, but also the actor
step of picking up the goods. The more goods are ordered, the
higher is the time required to process the steps.

V. REQUIREMENTS ON PALLADIO

In order to adequately represent the mutual impact of
business processes and IT systems in simulation, Palladio has
to fulfill the following requirements.

R1: In IT performance prediction the execution time of
actor steps are determined by simulation instead of using
assumptions. This requirement addresses O1.

R2: IT resources are demanded directly from the process
simulation without deriving an IT usage profile. Thus, IT
resource utilization directly results from the process model
and the process workload without any approximation (see
Section III-B). This requirement ensures that the process
model and process workload specification correctly impacts
on IT performance and thus addresses O2.

R3: In process performance prediction the response time of
system steps are determined by simulation instead of using
assumptions and system steps are considered as a factor of
process performance. This requirement addresses O3 and is
required to ensure that the impact of IT performance on
process performance is adequately represented as described
in Section III-C.

R4: In simulation the workload distribution within the
process model is influenced by the utilization of actor waiting
queues within actor steps and the utilization of IT resource
waiting queues within system steps as described in Sec-
tion III-D. This requirement addresses O4.

R5: Probabilistic parametric dependencies of actor steps and
system steps within the process are considered in simulation.
This requirement addresses O5.

VI. EXTENDING PALLADIO BY BUSINESS PROCESS
SIMULATION CONCEPTS

In this section, we describe how to extend Palladio by
process simulation concepts in order to meet the requirements
introduced above. The proposed extensions include extensions
to the PCM as well as extensions to the behavior of the
simulation which are discussed in the following.

Figure 4 gives an overview of the proposed extensions on
several layers. Extensions are colored blue in the figure. In the
following sections we refer to certain layers of the figure to
explain it in detail.

A. Extension of the Palladio Component Model

a) Process model: The PCM usage model is extended
by the model element ActorStep in order to model steps
performed by a human actor. Figure 5 shows the extension.
ActorSteps are visualized as rectangles with rounded corners
and a stickman icon in Figure 4. For each ActorStep the
processing time has to be specified which is described in
detail in the following. Moreover, delays commonly used in
business process specifications (cf. [1]) can be documented
and included in simulation. Idle time is the delay between
the possible start and the actual start of the execution of the
actor step. Resting time is the delay between the completion
of an actor step and the start of the following step respectively
the start of a transport. Transport time is the delay required
to transport objects. Moreover, the model element Activity is
added to enable the modeling of sub processes. The extension
of the PCM usage model to a process model contribute to R1
as the modeling of actor steps is required to include them in
simulation. It also contributes to R3 as now a process model
is available for process performance prediction which also
includes system steps. Moreover, the extension contributes to
R2 as system steps are now triggered directly from the process
model without deriving a usage profile.

b) Simulated resources: The PCM is extended by the
organization environment model which is the counterpart of
the hardware environment model. Figure 6 shows the orga-
nization environment model. It represents the organizational
context of the process and contains basically three types of
elements – ActorResources, Roles and DeviceResources. An
ActorResource represents a human actor. ActorResources are
visualized as circles around a stickman icon in Figure 4.

Extending Palladio by Business Process Simulation Concepts 21

IT Resources

Service Effect
Specifications

Actor Resources
Components

Process Model

Process Workload

Fig. 4. Extended Simulation Layers

Fig. 5. Extension of the PCM Usage Model

In analogy to the ProcessingResource, which represent IT
resources in Palladio [2], each ActorResource has a waiting
queue in which the actor steps (i.e. the jobs) to be done by the
ActorResource are lined up. In contrast to ProcessingResources,
ActorResources are not continuously available, e.g. human
actors have to take a lunch break or to sleep at night. Thus,
the availability of each ActorResource has to be specified in
one or more WorkingPeriods. Each WorkingPeriod is specified
by a start time and an end time. Each ActorResource can have
one or more Role(s) which group several ActorResources that
have the same properties.

A DeviceResource is a device or machine which is re-
quired to perform an actor step of the process but does
not actively process the step. Thus, it is called a passive
resource. DeviceResources are shared by process instances and
are available in a limited capacity. A process instance can
acquire a DeviceResource required to perform one or more
actor step(s) and release again when the actor step(s) are
finished.

Fig. 6. Organization Environment Model

The extension of the simulated resources contributes to R1.
c) Modeling of demand on ActorResource: Actor steps

specify resource demands in terms of their processing time as
shown in Figure 5. Processing time is the time a human actor
spends actively processing an actor step. The processing time
is specified as a number of abstract time units. In contrast to
resource demands on IT resources, work of human actors does
not have a measuring unit such as CPU cycles or byte. So we
decided to use the time required to perform a step as measuring
unit. In contrast to system steps there is only one resource
demand per actor step possible. Moreover, there is only one
type of resource demand – demand on ActorResources. In
contrast to ProcessingResources in Palladio, it is not directly
specified which ActorResource performs a certain actor step
but in each actor step it is specified which role is required to
perform the step. The ActorResource that performs the step is
selected dynamically in simulation. From the ActorResources
that are available at the current point in simulation time, the
ActorResource that has the shortest waiting queue in terms of
the sum of processing time of the actor steps in the queue will
be selected to perform the actor step. Dynamic selection of
actors in simulation is common in process simulation (cf. [1]).

22 Robert Heinrich, Jörg Henss and Barbara Paech

This extension contributes to R1.
d) Modeling of process workload: Besides the simulated

resources and resource demands also the workload to be
processed by the resources has to be specified for simulation.
In Figure 4, workload is represented on the upper layer.
In PCM, to each usage scenario within the usage model a
workload driver is associated. Currently, there are two types
of workload drivers in the PCM – closed workload and open
workload. In a closed workload a population of n users execute
the scenario concurrently [2]. In an open workload users enter
the scenario at a specific arrival distribution [2]. Both workload
drivers do not support changing process arrival distributions
as described in Section IV (O2). We derived a new Process-
Workload driver from the OpenWorkload driver as visualized
in Figure 7. The workload of the process results from the
arrival distributions of the ProcessTriggerPeriods associated to
the ProcessWorkload driver. A ProcessTriggerPeriod specifies
an interval of simulation time in which process instances
start the execution of the process in simulation. Outside of
the interval there is no start of process instances possible.
Each ProcessTriggerPeriod consists of a start time point, an
end time point and an inter-arrival time specification. Time
designation in the ProcessTriggerPeriod follows the common
date and time format which is more readable for human
modelers than number of abstract time units usually used
in Palladio. However, as Palladio only supports abstract time
units, time designations are converted into abstract time units
before simulation.

The workload on the IT system is a consequence of the
process workload as system steps are invoked by the process
instances. The introduction of the ProcessWorkload driver
contributes to R2.

Fig. 7. Process Workload Driver

B. Extension of the Behavior of the Simulation
e) Simulation of process instance arrival: The simulation

continuously generates process instances that traverse the
process model. The start point of the first instance is the start
time of the first ProcessTriggerPeriod of the process. Then, the
distance to the start point of the next instance is generated

randomly, based on the arrival distribution of the current
ProcessTriggerPeriod allocated to the process, and added to
the last start point. The next instance starts traversing the
process model at that point in time. Instance start points will
be generated and instances start traversing the process model
until the generated start point of a process instance exceeds
the end time of the last ProcessTriggerPeriod. This extension
contributes to R2 as the simulation is now able to consider
time-variant process workload.

f) Simulation of execution time: If a process instance
reaches an actor step within the usage model, the actor step
is put as a job into the waiting queue of an ActorResource
allocated via his/her role to the actor step. The specific Actor-
Resource is selected based on the length of its waiting queue
and whether it is currently available (i.e. the current simulation
time lies within a WorkingPeriod). Each ActorResource pro-
cesses the actor steps in its waiting queue, e.g. following the
FIFO principle. For actor steps, the processing time is already
specified as resource demand. The waiting time is determined
in simulation by waiting in the queue of the ActorResource.
The resulting execution time of an actor step is the sum of
its processing time and its waiting time at the corresponding
ActorResource. This extension determines the execution time
of actor steps in simulation and thus contributes to R1. The
behavior of DeviceResource in simulation is comparable to the
behavior of passive IT resources already contained in Palladio.
They can be acquired and released again. Thus, the simulation
of DeviceResource is not described in detail.

g) Simulation of workload distribution: In order to fulfill
R4, simulation has to consider the mutual impact on workload
distribution as described Section III-D. This is represented by
the waiting queues of ActorResources and ProcessingResources
in simulation. If a job is put in a waiting queue as the resource
is busy at the time the job arrives at the resource, the flow
of the process instance is hindered. For both kinds of steps,
waiting times may vary from instance to instance. As a result,
the distance between instances in the process model may
change. Thus, workload distribution is manipulated by actor
steps as well as system steps in the simulation.

h) Simulation of parametric dependencies: Currently,
probabilistic parametric dependencies are limited to basic
definitions in the usage model layer, i.e. it is only possible to
define variable characterizations for input parameters. This is
a good staring point to fully include parametric dependencies
of actor steps as well as system steps to fulfill requirement R5.
We can built upon the parametric dependency implementation
already contained in EventSim [9] for simulating dependencies
of Service Effect Specifications (SEFFs).

R3 is addressed as a consequence of the realization of the
other requirements as system steps are already contained in
the PCM usage model and are included in the simulation. As
the PCM and the simulation behavior are extended by process
simulation concepts, system steps are included in the process
simulation.

Extending Palladio by Business Process Simulation Concepts 23

C. Implementation-related Considerations
Extending the simulation behavior requires to extent the im-

plementation of an existing simulator as well. Currently, there
are two specialized software architecture simulators available
for the PCM, SimuCom [2] and EventSim [9]. Furthermore,
there exist transformations for translating PCM instances to the
Layered Queueing Networks (LQNs) [10] and the Queueing
Petri Nets (QPNs) [11] formalisms. The transformations and
corresponding formalisms were successfully used in [12] and
[13] to simulate complex Palladio models.

We decided to build upon the new event-driven simulator
EventSim as the traversal strategy concept implemented in
EventSim allows for a simpler extension of the simulation
behavior as we expect it for SimuCom. Some of the existing
traversal strategies can be reused or easily adapted for the
new metamodel elements. Furthermore, using EventSim we
can built upon the parametric dependency implementation.

Moreover, especially for high degrees of parallelism and
concurrency, EventSim can perform simulations faster than
SimuCom (cf. [9]). This is important, as process models
usually have many process instances working concurrently.
In addition, simulation speed is especially important in the
business process context where simulated time is typically
much longer than in the IT context. Simulated time in the
business process context often spans months or even an entire
year.

We decided against the LQN and QPN simulation ap-
proaches as these would require the development of additional
model transformations to support the newly introduced ele-
ments and behavior.

D. Simulation-related Considerations
The different granularities of events in terms of their du-

ration may limit the feasibility of the simulation. In cases
where many events happen during a short time frame (e.g. a
second) simulating a year may take a long time. Nevertheless,
in order to get statistically significant results with workloads
that vary over the day, many days have to be simulated.
Also, if the actor steps may last several minutes, one needs
to simulate longer. Thus, the combination of short running
demands (milliseconds for IT events) on the one hand and
long running demands (minutes for actor steps) as well as
different time intervals (e.g. working time or breaks) on the
other hand may cause large simulation times, as fine-grained
simulation (which takes long per simulated minute) is required
but also a long simulated time frame (e.g. a year) is needed.
Especially the time and number of replications required for
reaching a given confidence, when using a transient analysis,
are a limiting factor. Thus, smart simulation strategies will be
useful to circumvent these problems.

In our research, we focus on IT response times that may
impact the business process performance as the extent of
response time is comparable to the execution time of actor
steps. Thus, we do not necessarily need to consider cases
where the IT simulation has a large number of fine-grained
events per second. Rough estimates of these events seem to

be sufficient in the business process context. In the future,
we want to analyze the feasibility of the integrated simulation
based on several examples. If necessary, we want to investigate
strategies to consider fine-grained IT events in a feasible way
while simulating a long time frame. One possible strategy is
to perform isolated fine-grained IT simulations prior to the
integrated simulation for a set of representative classes of
workload and workload distribution. During simulation the
response time is then determined by looking up results from an
equivalent class. Furthermore, an iterative refinement approach
can be used to simulate critical time spans in more detail or
add missing classes.

VII. EXAMPLE OF THE SIMULATION BEHAVIOR

In this section, we continue the example introduced in
Section III-A and sketch how the integrated simulation works.

Suppose there are two ProcessTriggerPeriods in the order
picking process per working day. It is common that Pro-
cessTriggerPeriods repeat for example per day or per week.
From 8:00 am to 1:00 pm orders arrive and process instances
start the execution of the process in a certain distribution. From
2:00 pm to 6:00 pm orders arrive and process instances start
the execution in another distribution.

The simulation starts at 0:00 am of the first simulation day.
The waiting queues of the ActorResources and the waiting
queues of ProcessingResources are empty until the first process
instance starts the execution of the process at 8:00 am of
the first simulation day. At 8:00 am the first actor step “AS:
gather data from order” is put in the waiting queue of an
ActorResource that own the role shift leader. As at that point
in simulation the waiting queues of all the ActorResources have
the same length – they are all empty – the first ActorResource
on a list of ActorResources that own the role shift leader
is selected. For each ActorResource several working periods
are defined. For example, from 8:00 am to 12:30 pm and
from 1:00 pm to 6:00 pm. Between both periods there is
a lunch break. In the course of simulation, actor steps line
up in the waiting queues of ActorResources and internal
actions of system steps line up in the waiting queues of
ProcessingResources. Each ActorResource processes the actor
steps in its waiting queue following the FIFO principle as
long as the current simulation time is located within one of
the ActorResource’s WorkingPeriods. If the current simulation
time exceeds a WorkingPeriod of the ActorResource, e.g. the
current simulation time exceeds 12:30 pm, the ActorResource
interrupts the processing of the actor steps until the current
simulation time is again located in a WorkingPeriod. In the
time between WorkingPeriods the process instances stuck in the
waiting queue of the ActorResource and cannot reach another
waiting queue, e.g. of a ProcessingResource. Being stuck in a
waiting queue increases the waiting time for the corresponding
instances. As ProcessingResources keep on processing jobs
from their waiting queue during lunch break, waiting queues
of ProcessingResources empty during lunch break and refill
again in the afternoon as then another WorkingPeriod starts.

24 Robert Heinrich, Jörg Henss and Barbara Paech

In the example process, the warehouser requires a fork-
lift to put the goods on a location where they are picked
up by a truck. Fork–lifts are shared DeviceResources which
are available in a limited capacity. If all the fork–lifts are
acquired at the moment, the warehouser has to wait until a
fork-lift is released. Thus, in simulation the flow of process
instances stuck. Waiting time is caused. The next system step
“IT: Update database” is not reached by the process instance
before a DeviceResource is released and acquired by the
process instance. Waiting queues, e.g. of ProcessingResources
demanded by the system step “IT: Update database”, empty
in meantime.

If a process instance is waiting for a passive IT resource,
the flow of process instances stuck, too. Waiting time is
caused which can impact the process performance, if its is
long enough. Waiting queues, e.g. of ActorResources, empty
in meantime.

As shown in the example, the integrated simulation of
business processes and IT systems as proposed in this paper
considers the process impact on waiting queues of Process-
ingResources as well as the IT impact on waiting queues
ActorResources. The other impact discussed in the paper is
considered, too. Thus, we expect the integrated simulation
to adequately represent the mutual performance impact of
business processes and IT systems that occur in reality which
results in increased performance prediction accuracy.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discussed the mutual impact of business
processes and involved IT systems in terms of performance.
We pointed out the need for an integrated simulation of
business process and IT and argued that Palladio is an adequate
foundation to realize an integrated simulation. We also showed
some open issues in Palladio to support business processes. We
presented extensions of the PCM and the simulation behavior
in order to enable the simulation of the mutual impact of
business processes and IT systems.

Currently, we are implementing the extensions proposed in
this paper in the new Palladio software architecture simulator
EventSim. In a case study, we are currently investigating
the mutual impact of business processes and IT systems in
practice. We plan to use the extended tool support in the case
study to perform what-if analysis on a process and IT system
from practice.

In the future, we want to evaluate the prediction accuracy
of the integrated simulation. We also plan to investigate
the feasibility of a combined simulation of fine-grained IT
events and long simulated time frames. The usability of the
new features has to be improved and further evaluated. For
example, a graphical representation of a calendar is useful for
human modelers to specify ProcessTriggerPeriods quickly in
the ProcessWorkload driver. In addition to the FIFO principle,
further scheduling policies for actor resources are possible and
will be explored in the future. Furthermore, a translation to the
LQN and QPN formalisms could be developed to allow for
more lightweight simulation.

IX. ACKNOWLEDGEMENT

The authors want to thank Philipp Merkle for valuable com-
ments and support related to the implementation in EventSim.

REFERENCES

[1] S. Junginger, H. Kühn, F. Bartl, and J. Herbst, “Evaluation of financial
service organizations with adonis simulation agents,” in Proceedings of
the 10th European Simulation Symposium (ESS 98), 1998, pp. 582–588.

[2] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009.

[3] “Jboss community, Savara.” [Online]. Available:
http://www.jboss.org/savara

[4] S. Betz, E. Burger, A. Eckert, A. Oberweis, R. Reussner, and R. Trunko,
An approach for integrated lifecycle management for business processes
and business software. IGI Global, 2012.

[5] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing networks
and Markov chains: modeling and performance evaluation with com-
puter science applications. New York, NY, USA: Wiley-Interscience,
1998.

[6] W. M. C. Specification, Workflow Management Coalition, Terminology
& Glossary (Document No. WFMC-TC-1011). Workflow Management
Coalition Specification, Feb. 1999.

[7] “Oxford dictionaries online.” [Online]. Available:
http://oxforddictionaries.com/

[8] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in multi-
tier applications: symptoms, causes, and new models,” in Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware,
ser. Middleware ’08. Springer-Verlag New York, Inc., 2008, pp. 265–
286.

[9] P. Merkle and J. Henss, “EventSim – an event-driven Palladio soft-
ware architecture simulator,” in Palladio Days 2011 Proceedings, ser.
Karlsruhe Reports in Informatics ; 2011,32, S. Becker, J. Happe, and
R. Reussner, Eds., Karlsruhe, 2011, pp. 15–22.

[10] J. Rolia and K. Sevcik, “The method of layers,” Software Engineering,
IEEE Transactions on, vol. 21, no. 8, pp. 689–700, Aug. 1995.

[11] F. Bause, “Queueing Petri Nets˜- A formalism for the combined qual-
itative and quantitative analysis of systems,” in Proceedings of the
5th International Workshop on Petri Nets and Performance Models,
Toulouse, France, Oct. 1993, pp. 14–23.

[12] H. Koziolek and R. Reussner, “A model transformation from the palladio
component model to layered queueing networks,” in Performance Evalu-
ation: Metrics, Models and Benchmarks, ser. Lecture Notes in Computer
Science, S. Kounev, I. Gorton, and K. Sachs, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5119, pp. 58–78.

[13] P. Meier, S. Kounev, and H. Koziolek, “Automated transformation of
component-based software architecture models to queueing petri nets,”
in Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International Symposium on, Jul.
2011, pp. 339–348.

Extending Palladio by Business Process Simulation Concepts 25

Case Study: Palladio-based Modular System for

Simulating PLC Performance

Jens Frieben
Fraunhofer IPT

Project Group Mechatronic Systems Design
Zukunftsmeile 1

33102 Paderborn, Germany
Email: jens.frieben@ipt.fraunhofer.de

Dipl.-Ing. Henning Heutger
PHOENIX CONTACT Electronics GmbH

Business Unit Control Systems
Dringenauer Strasse 30

31812 Bad Pyrmont, Germany
Email: hheutger@phoenixcontact.com

Abstract—Modern facilities controlled by programm-

able logic controllers (PLC) have to fulfill a broader

range of tasks and meet higher performance require-

ments than a few years ago. They have to cope with

their basic control tasks as well as communicating with

each other or external systems. The selection of an ap-

propriate performance class during the early develop-

ment phases is based on the experience of a developer

or expensive and time consuming tests. In this paper,

we present an approach to simulate the PLC and its en-

vironment to predict the CPU utilization. For this pur-

pose, the PLC and its internal and external influences

on the CPU utilization have been modeled with Palla-

dio. Based on the simulation results of di�erent usage

scenarios, the developer is now able to choose a fitting

performance class without conducting expensive tests.

I. Introduction
The vision of increased flexibility in production by smart

factories is becoming reality. Modern facilities and pro-
duction plants are developed towards smaller production
sizes and better reuse of machines. For this goal, the com-
munication between di�erent stations and even di�erent
plants, as well as more self-aware systems, have to be re-
alized. This for example allows ad-hoc reconfiguration re-
sulting in shorter setup times. Therefore, the Programm-
able Logic Controller (PLC) controlling and coordinating
the di�erent machines in a factory, need not only to handle
more actuators and sensors (I/Os), but also react faster to
more events and even provide additional services to exter-
nal systems. To cope with these requirements, the PLC
must fulfill higher and higher performance requirements.

Figure 1 shows a standard PLC communicating with
various systems over one or more fieldbusses. It is manda-
tory that the provided input by di�erent sensors is pro-
cessed by the PLC and the correct commands are send
out to the actuators in time. Any violation of these hard
real-time constraints could lead to failures in the plant or,
in case of safety-critical systems, cost lives. Their control-
ling functionality is performed by several programs run-
ning in tasks. These tasks are regularly executed in in-
tervals (e.g. every four milliseconds) and called Cyclic-
Tasks. Also, other execution strategies like EventTasks ex-

ists, which are triggered by events. If the execution of the
programs set inside a cyclic task takes longer than their
specified time intervals, a run-time exception is thrown
and the PLC stops all programs for safety reasons. There-
fore it is most important to assure that the PLC provides
enough performance for the in-time execution of programs.
On top of the basic controlling functionality the PLC has

 






 

Figure 1. The PLC and its environment

to provide additional services. Figure 1 shows also exter-
nal systems connected via fieldbus that communicate with
the PLC. These services might belong to the upper man-
agement layer that coordinates the whole production plant
(e. g. SCADA1) or machine to machine communication to
negotiate new setups or configurations for di�erent prod-
ucts. These service functions influence the performance of
the PLC as well.

During the development of automated systems, the spe-
cific details of the plant, the control programs and the ser-
vices are not fully worked out. The most important factor,
the control programs, are often finished after the plant has
been set up or at least close to its end. This complicates
the early selection of a suitable PLC performance class,
considering the performance of the CPU.

In practice, an appropriate performance class is esti-
mated based on the experience of the developer or with
the help of time-consuming and expensive tests. Despite
the fact that these tests run in parallel to the late devel-
opment phases, they can often not consider or replicate

1Supervisory Control And Data Acquisition (SCADA) systems
monitor and control industrial processes

Palladio Days 2012

all the factors and scenarios that should be taken into ac-
count.

In cooperation with Phoenix Contact, we developed an
approach for simulating their PLC to predict the future
utilization of the CPU. This allows the developer to pick
a fitting PLC performance class for the specific task at
hand. These simulations, which can be easily set up and
executed, provide a fast feedback to the developer and can
be refined along the development process of the automa-
tion system. The key data used as parameters for the sim-
ulation is updated based on the current or future devel-
opment states. This approach helps to cover more usage
scenarios than it would be feasible with tests and to save
costly setups.

The focus of this work lies on predicting the CPU uti-
lization of the PLC and not its hard real-time behavior
like it is done for other embedded devices[1]. However, the
simulation can provide approximated insights to the re-
sponse times of the running programs and anticipate pos-
sible run-time exceptions.

Figure 2 shows the process from specifying the automa-
tion system to its simulation. First, the developer cre-
ates an abstract automation model containing the key data
used for the simulation. In the next step, this information
is transformed into Palladio Component Models (PCM).
These models belong to the Palladio [2; 3] performance
prediction framework which carries out the simulation.
The result of this simulation is a collection of sensor values
which are used to calculate the overall CPU utilization.

 

Figure 2. From automation model to simulation results

The paper is structured as follows. We introduce the dif-
ferent influence factors of a PLC in Section II. In the fol-
lowing Section III the automation model used to specify
these influence factors is presented. In addition, the Pal-
ladio models used for the simulation and the transforma-
tions to generate them from the automation model are de-
scribed. Section IV gives a short overview of the simula-
tion results. We conclude this paper in Section V and give
a short outlook of future work.

II. Influence factors
In this section we explain the influence factors that are

covered in our approach and shown in figure 3. We intro-
duce each factor but will detail only a few to give an idea
of the di�erent levels of detail used for the final simulation
model.








 

















Figure 3. Performance influence factors of a PLC

• Hardware is one of the most obvious influence fac-
tors on PLC performance. Primary factor is the clock
rate of the PLC, which is specified as instructions per
simulation time unit. For our first attempts to simu-
late the Phoenix Contact PLC we focused on a spe-
cific product, the RFC 470. This PLC has a clock rate
of 1 GHz and therefore is specified with 1.000.000 in-
structions per time unit, setting the simulation time
unit to 1 ms.

• User-Tasks are the most important influence fac-
tors on the PLC performance. Each task carries out
one or more programs that calculate the commands
for the actuators and therefore controls the behavior
of the machine. There are di�erent kinds of tasks:
event based, system, default, and cyclic. For this use
case, only the cyclic task - which is the most com-
monly used task type - has been regarded. For the
cyclic task, three values can be specified. The in-
terval between executions (cycletime), the priority
of the task (priority), and an estimated worst-case-
execution-time (WCET) of the programs (execution-
time). The execution time is specified in milliseconds
and currently is based on the developers estimation
or measurements, in case the programs already exists.

• (Realtime) OS and IEC-Runtime system belong
to the PLC performance base load. The IEC-Runtime
system (called ProConOS in Phoenix Contact PLC)
executes the programs defined in the tasks, written
in the languages specified in the IEC 61131-3[4] stan-
dard. The IEC-Runtime system is executed on top of
an operating system. Both systems, IEC and OS, put
a certain amount of load onto the PLC.

• Scheduling takes place in the IEC-Runtime system
to schedule the di�erent tasks according to their pri-
orities and on the level below regarding the operat-
ing system. Caused by preemption, low priority tasks
might have significantly increased response times.
Therefore the scheduling must be incorporated into
the simulation to get precise results.

28 Jens Frieben and Henning Heutger

• IO-Systems are a crucial part of automation sys-
tems. Sensors provide input for a PLC and actuators
influence their environment. The data send from and
to the PLC is transmitted via fieldbusses. A field-
bus is an industrial network system for real-time dis-
tributed control. A PLC might be connected to one
or more di�erent fieldbus systems like PROFINET[5]
or INTERBUS[6]. Depending on the PLC, the com-
munication over fieldbusses is either realized in hard-
ware (e.g. DPM2, FPGA3) or in software. A commu-
nication over hardware also uses a certain amount of
CPU time, but is significantly faster than a software
solution. Due to the real-time constraints (fieldbusses
must adhere short communication cycles down to
250µs), they consume a significant part of the CPU
performance.
For the case study conducted with Phoenix Con-
tact, the first fieldbus system under investigation is
PROFINET. We focused only on the CPU utiliza-
tion, not remote communication e�ects or response
times. It supports di�erent operating modes rang-
ing from non-real-time (e.g. HMI access) to real time
use in motion control. Sensors and actuators are
called PROFINET-Devices (short pndevice). Data
between PLC and pndevices are send in predefined
time slots in a cyclic manner. Each pndevice consists
of one or many modules, on which sensors and actu-
ators can be connected to. The module size defines
the amount of data that can be send to or from a pn-
device. At the PLC, the data is provided to the run-
ning programs as variables, also called process data.
Therefore, each task has a connection to a specific
module in the PROFINET. A message send from
the PLC to a pndevice has a fixed length based on
the sum of all modules. The payload it transports is
data that will update the programs variables. Fig-
ure 4 shows a short summary over the important
properties needed to specify the influence factor IO-
System on the PLC. The pndevice that sends and
receives messages in specified intervals, the modules
(modulsize) attached to it, and the data (datasize)
transferred to the PLC.

• Base modules (services) are used for secondary
functions of the PLC. Most of these services pro-
vide means for communication with other devices or
systems. The three services handled for this study
are:

– OPC: OPC stands for for Object Linking and
Embedding (OLE) for Process Control and is
used to exchange data between control devices.
The OPC-Server provides the variables used by
the programs for either visualization (user inter-
faces) or for SCADA-systems for controlling pur-

2Digital Processing Module (DPM)
3Field-Programmable Gate Array (FPGA)

 





















Figure 4. Sending and receiving of PROFINET messages

poses. The OPC-client requests these variables
in predefined intervals. In addition, the variable
type and the number of variables have an impact
on the PLC performance.

– FTP-Server: A FTP-Server is used to download
log-files from the PLC or to upload new projects
(specifying tasks and programs) to it. The filesize
and the access frequency is important for simu-
lating the CPU utilization.

– Web-Server: The Web-Server allows remote
users to view the state and variables of the PLC.
Of course this generates a certain amount of CPU
usage depending on the access time and the file
size.

• IP-tra�c is an influence factor depending on the
fieldbus implementation. Tra�c, whether from the
control network or other IP-based devices, can cause
additional CPU load for analyzing and forwarding the
messages either to the windows- or the PROFINET
communication stack.

III. Modeling

In this section the di�erent models and their relations to
each other are described. One important goal is the easy
use and handling of a simulation. The target audience for
carrying out performance simulations are electrical engi-
neers and, for future plans, non-technical personnel. Due
to the complexity of modeling (even a medium sized PLC)
with Palladio, a domain specific language for abstract-
ing the details was necessary. In Section II the most im-
portant influence factors have been identified. These fac-
tors can now be specified with the automation model. The
following subsections highlight some details about the au-
tomation model, the Palladio models that are used for
the final simulation, and the transformation rules for mak-
ing the transition between them.

A. Automation model
The automation model is used to specify the influence

factors of the PLC in a simple way. Its structure is similar

Case Study: Palladio Based Modular System For Simulating PLC Performance 29

to the tool PC Worx4 used to program and configure the
fieldbusses of PLC. First we created an Eclipse Modeling
Framework (EMF) based meta model to be able to specify
the automation system in a precise and automatically an-
alyzable form. This allows the developer to create an au-
tomation system with a PLC and its specific settings and
environment.

Figure 5 shows an excerpt from the automation model
meta-model without properties. Root element is the Au-
tomationSystem element, which can contain multiple
PLCs. Currently the simulation only supports one, but
for future use, a complete system of PLCs communicat-
ing with each other, should be realized. Several Services
may be added to the PLC, which can be used to set
up Web-Server or OPC-Server loads. Also, one or more
Tasks can be added to the model. The properties that can
be specified for a task, like calculation time or priority,
are identified in Section II. The ProcessDataMappings are
used to connect variables of the task with specific IOMod-
ules which are added to IODevices. They are part of a
fieldbus like PROFINET.














  













































Figure 5. Automation model meta-model (excerpt)

A possible instance of this meta-model is shown in figure
6. The screenshot of the generated EMF-Editor shows two
CyclicTasks (Main and ValveCheck) which are executed
every 4 ms, resp. every 100 ms. Each task needs exactly
1.5 ms execution time. In this example, di�erent variables
are connected to the pndevices via ProcessDataMappings
(PDM), which specify the size of the variable send over
the fieldbus in bytes. The pndevices haven been created
with an send/receive interval of 16 ms. Two additional
services are the OPC-Server, providing several variables
at a fixed refresh interval and a Web-Server with varying
access times.
B. Palladio models

In this subsection, we explain how we measured the
di�erent influence factors and captured them in a sim-

4Phoenix Contact development and configuration tool

Figure 6. Screenshot of the eclipse based automation model editor

ulation model. For our approach, we used the Palladio
Component model (PCM) and SimuCom[7] for the sim-
ulation. PCM consists of five models (repository, usage,
system, allocation, and resource environment) each spec-
ifying a specific aspect of the automation system. The
repository is used to model the influence factors and in-
ternal processes of the PLC. Most important element
to model the CPU utilization is the ResourceDemand. It
is specified in Service-E�ect-Specifications (SEFF) which
can be compared to methods or functions of program-
ming languages. They might call internal and external
actions which refer to other SEFFs. Inside a SEFF, a Re-
sourceDemand for a given resource (e.g. CPU or HDD)
can be defined. When calling for example the SEFF named
receive_PROFINET_Message, the simulation will stress
the CPU with 1000 units of CPU time. This corresponds to
the number of instructions used to read from the network
hardware and write the data into the memory. A SEFF
also supports a conditional control flow, which allows the
modeling of alternative resource demands depending on
given parameters.

For our approach, we provided only the resource "CPU",
since it is the primary goal to predict the CPU utiliza-
tion. The HDD, a compact flash card, was neglected in
our models due to rare accesses and its fast response time.
Including the network interface into the model, as a possi-
ble bottleneck for some operations, is up for future work.
The other PCM models are used to specify how a sys-
tem is composed from elements specified in the repository
(system model) or how the system is deployed (allocation
model) onto the hardware (resource environment model).
The usage model is used to specify how often, in which
intervals, and with what parameters the SEFFs are called.

In the following we will give an insight how the PLC
and its environment have been modeled with Palladio
and how we measured the necessary resource demands for
the di�erent parts of the model. For this case study, we
focus only on four influence factors: the operating sys-
tem including its scheduler, cyclic tasks, the PROFINET

30 Jens Frieben and Henning Heutger

load, and the OPC-Server.

Operating system & scheduler: To model the operating
system in Palladio, two points have to be considered.
First the scheduler and second the base load generated by
the OS internal processes. Scheduling influences the re-
sponse times for the di�erent processes, not the CPU uti-
lization in general, which is focused in this work. Still,
a realistic preemption of processes was requested for fu-
ture work. High priority tasks for the communication (like
PROFINET) will always be executed before tasks, which
can lead to run-time exceptions. Palladio supports some
abstract out-of-the-box schedulers, but don’t provide the
means to set up the process priorities in the PCM. There-
fore the scheduler and means to model the process pri-
orities had to be implemented. The operating system for
the RFC 470 is a modified version of WindowsCE 5.0, for
which a new scheduler specific resourcetype has been cre-
ated. This resourcetype is referenced in the resource en-
vironment, which is used to specify the hardware and its
properties. Accompanying the resourcetype is a scheduler-
file that configures the properties of the OS scheduler.
These properties influence how the OS handles the di�er-
ent running processes. The most important settings are:

• Prioritylevel, which specify the range of integer values
that can be used to put processes in an order. This
order is used to process higher priorities (0) before
lower priorities (255).

• Process-Handling defines in which order the processes
are run or continued. The strategy used by Win-
dowsCE 5.0 is that lower priority processes are pre-
empted by higher ones. Processes with the same pri-
orities are handled with a Round-Robin strategy.

• Timeslice/Quantumsize defines a unit for available
running time. After a process completes its quantum,
WindowsCE 5.0 may choose to run another process
based on priority or state. The default quantum time
set in the resourcetype is 25 ms.

• Starvationboosts are used to push threads which have
been preempted for too long. The setting for the sim-
ulation is 0.

The simulation uses the configuration to set up the inbuilt
scheduler, which manages the di�erent incoming resource
demands. For further information about the scheduler, its
configurations, and functionality see [8].

In addition to the scheduling, the basic load of the PLC
has to be considered. With a special version of the RFC
470 is it possible to see the CPU utilization calculated by
the operating system. Unfortunately this includes not only
the basic OS functions, but also the IEC-Runtime system
executed on start-up. Since both influence factors could
not be separately measured, the IEC-Runtime load has
been combined with the OS basic load to a module named
WinCE5 load. To determine the ResourceDemand, the
PLC has been set into a running state with no projects,

services and connected devices. The CPU utilization has
been read o� the display, showing 16%, spiking between
15 % to 17 %. With a 1 GHz CPU, resulting in 1,000,000
instructions processable per millisecond in the simulation
model, the ResourceDemand for WinCE5 is set to 160,000
CPU units. To reflect the spikes, a range of possible val-
ues has been set up in the SEFF’s ResourceDemand with
a DoublePDF-formula:

DoublePDF[(155200.0; 0.0)(157600.0; 0.05)
(162399.99; 0.90)(164800.0; 0.05)]

The deviation of the exact value can also be specified in
a transformation rule (see section III-C) allowing a fine
tuning without changing the repository model. To trigger
the SEFF containing the resource demand for WinCE5,
a usage scenario with an closed workload has been cre-
ated. The workload, containing just one worker, starts ev-
ery millisecond. The result of a simulation with just the
WinCE5 load is shown in figure 7. The red dots show the
simulated load of the windows operating system. The load
varies exactly in the ranges specified by the DoublePDF
function.

Figure 7. TimeSeries for the WindowsCE and ProConOS baseload

CyclicTasks: The creation of the Palladio models for
cyclic tasks is pretty straight forward. Each CyclicTask
has a property executiontime which specifies how many
milliseconds the task will put a load on the CPU. This
time can be converted to a ResourceDemand by check-
ing how many instructions the hardware can process per
millisecond. More complex is the issue of cyclic execu-
tions with fixed intervals. Palladio supports two types
of workloads - open workload and closed workload. Both
types wait a predefined time and call the specified SEFFs.
After the SEFF has been executed, they start waiting
again. This behavior can be applied if no preemption takes
place and the tasks are executed always with the same
response times. In this case, the execution time can be
subtracted from the cycletime and the di�erence used for
the workload specification. Due to preemption it is pos-
sible that the task response times vary. Therefore we use

Case Study: Palladio Based Modular System For Simulating PLC Performance 31

a workaround to start the SEFFs in exactly the same in-
tervals via closed workloads. To do so, we use a TASK-
component with a SEFF including a fork. This fork calls in
one execution path the SEFF with the actual ResourceDe-
mand inside a LOAD-component. The other path contains
no actions and therefore returns immediately to the work-
load, restarting the waiting time. Figure 8 shows the two
components and their interfaces for the task Main.

Figure 8. Interfaces and components for CyclicTasks

IO: PROFINET: A more sophisticated example is the
modeling and simulation of PROFINET, which supports
di�erent performance modes. One of this modes, IRT
(Isochronous Real-Time), has been investigated in more
detail and its CPU utilization depending on the previ-
ously identified parameters (see Section 3) modeled in
Palladio. For determining the resource demands, a se-
ries of measurements conducted by Phoenix Contact has
been used. They instrumented the communication stack
and important parts of the data flow from the network in-
terface up to the tasks. Based on these information, four
phases have been identified, which are shown in figure
9. In the first phase (receive), the pndevices send their







 




























 












Figure 9. The four phases for the processing of PROFINET data.

messages via the network to the PLC. There, a function
takes the message from the hardware consumer (interface
bu�er), decodes and analyses it, and puts the data into
a predefined position in a shared memory. This function
uses a certain amount of processing power, depending on
module size (=message size) and the size of the data that

will be copied. In the next phase (IRT-IN), each tasks
refreshes its variables with data from the shared memory.
The cycletime of the tasks and the size of the variables
influence the consumption of CPU resources. After the
task has finished, the variables are written back into the
shared memory (IRT-OUT), packed into a message and
send out to the pndevices (send). Based on the provided
measurements, a function for each phase could be deter-
mined that is used to calculate the resource demand. At
the current level of detail, we use the functions to calcu-
late a mean value for each phase. This simplifies the cal-
culation and we are able to combine all phases in one us-
age scenario. This might result in a slightly di�erent load
profile, but due the nature of the IRT-modus, in which
the tasks usually have cycle times of 1 to 2 ms this is a
reasonable deviation. For other PROFINET modes like
RT new models and functions are needed.

An exemplary function to calculate the CPU resource
demand for the receiving of messages and storing their
values in the shared memory is shown in equation 1. The
function conDev returns all pndevices for the PLC, mod-
ules returns a set of modules for a pndevice, modulsize re-
trieves the size of the given module, and sendInterval re-
turns the millisecond between each message send to the
PLC.

f
P N

receive

(plc) = 10+

dÿ

conDev(plc)

(0.023ú

3
mq

modules(d)
modulsize(m))

4
+2,380

sendInterval(d)

(1)

OPC-Server: The last influence factor we like to present
is the OPC-Server. During the measurements, we iden-
tified the previously mentioned parameters (see Section
II) variabletype, amount, and the OPC-Clients request in-
tervals. Table I shows the CPU utilization for varying
amounts of String variables and di�erent refresh times.

Table I
CPU utilization for string variables with different refresh

intervals (excerpt).

#vars 0 1 10 50 100 200 1000

1 ms 16% 19,5% 19,5% 21% 24% 26% 30%

10 ms 16% 19,5% 19,5% 21% 24,5% 25% 30%

100 ms 16% 16,5% 16,5% 17% 17% 18% 18,5%

For the measurements we created an IEC program run-
ning in a low priority task, performing no operations. With
the tool PC Worx the amount of initialized variables
could easily be adjusted. The OPC-Client has been simu-
lated with the tool OPC Test Client, which allows to
configure di�erent refresh rates. The variable type has a

32 Jens Frieben and Henning Heutger

non-negligible impact on the CPU utilization. When test-
ing only a subset of all possible variable types (includ-
ing self-defined STRUCTS), the type string used up more
CPU resources than others.

The result of the measurements for a refresh interval of
1 ms is also visualized in figure 10. Starting at a base load
of 16 % CPU utilization, an almost linear increase up to
2000 variables can be identified. Afterwards a saddle point
is observable which could be an indicator for a bottleneck.
Due to the limited sensors available, we can only assume
that this bottleneck is caused by the network interface,
pushing out messages to the OPC-Client. Therefore, only
the linear section, marked with the dotted rectangle, is
used to determine the CPU resource demand, allowing us
to create the following function which is parameterized by
the number of variables n:

f
String

(n) = 0.0105 ú n + 34895

Such a function must be created for each variable type.
Due to the similarities of most types, we combined them
to groups and thereby reducing the number of needed cal-
culations. Using String and other variables in one OPC-
Server request had the e�ect of using the lower CPU uti-
lization curve instead of the higher. The reason for this be-
havior still needs to be investigated. Finally a usage sce-
















   













Figure 10. CPU utilization for the OPC-Server (String, 1 ms)

nario can be created which calls the OPC-Server SEFF
that generate CPU resource demand. A single worker in
an open workload is run in intervals specified by the OPC-
Clients refresh interval.

C. Transformation
Creating performance models with Palladio is a com-

plex and time consuming task. For this reason, the au-
tomation model has been created, which hides the Pal-
ladio modeling from the user. This section will give some
insights how the automation model is transformed to Pal-
ladio models and what advantages this approach o�ers.

The automation model and the five Palladio models
(repository, usage, allocation, system, and resourceenvi-
ronment) are based on the EMF technology. This allows

us to choose from a range of Model-To-Model approaches
provided for Eclipse5. To select a fitting transformation
technology we used the study conducted by Lehrig[9]. He
provides a first guidance in form of a decision-tree. Based
on the requirement to allow an easy modification of the
transformation rules and a target audience of C/C++
developers, we choose QVT-Operational (QVTO)[10].
QVT-O is an imperative language designed for writing
unidirectional transformations. Its imperative language
is similar to programming languages like C++ and its
text based specification allows an easy customization of
its transformation rules. Additionally, QVTO supports
QVT-BlackBox operations for invoking external code.
This allows us to specify complex calculations or queries
through the automation model in JAVA. Alternatives to
QVT-O like ATL[11], TGG[12], or XTend[13] were not
covered in Lehrig’s work.

For the design of the transformation rules we followed
the requirement to be as modular as possible. This lead
us to the decision to create one transformation for each
influence factor. A transformation contains mapping rules
that specify how an object from the automation model is
transformed to an object in the Palladio models. The
top-level object in the automation model is of type Au-
tomationsystem. The root-transformation rule creates the
five Palladio models based on this Automationsystem
and sets up the hardware. Afterwards one or more follow-
up transformations can be executed. This approach gives
us the flexibility to build up the Palladio models in-
crementally, creating first model elements for cyclic tasks,
OPC-Server, WindowsCE and so on. The functions used to
calculate the di�erent resource demands are implemented
in the QVTO-Blackbox operations for each transforma-
tion. This modular approach allows us to combine di�erent
transformation rules to a product configuration. Such an
exemplary configuration is shown in figure 11. The config-
uration named RFC_470_Rev_2.34 is used for a specific
firmware revision of the RFC 470. The firmware consists
of several transformations, each creating a specific part
of the Palladio models. These sub-transformations are
called by the root-transformation. In case a FTP-Server
firmware update enhances the performance of the service,
a new sub-transformation is created and the old one is re-
placed. This allows a simpler creating and customizing of
existing firmware configurations.

Another advantage of using QVTO-transformations to
generate the Palladio models is the possibility to easy
modify attributes and configurations. The listing 1 shows
an excerpt from the transformation WinCE5.0_Rev01,
which contains several global variables. Changing the pri-
ority of WindowsCE related processes can be done by just
setting a new integer value. The same applies to the osI-

5Eclipse IDE - www.eclipse.org

Case Study: Palladio Based Modular System For Simulating PLC Performance 33





 





Figure 11. Product configuration for a specific RFC470 firmware
version.

dlePercentage and osDeviation, which influences the cre-
ation of the ResourceDemand as mentioned in III-B.

Listing 1. Excerpt from the WinCE5.0_Rev01 transformation rule
// ≠≠≠≠≠≠ Operat ingsystem (Windows CE 5.0)
property osName : S t r ing = ’WinCE50 ’ ;

property o s P r i o r i t y : I n t e g e r = 250 ;

property os Id l ePe r cen tage : Real = 0 . 1 6 ;

property osDev iat ion : Real = 0 . 0 3 ;

The validity of the resulting performance model holds
for this level of detail and as long the influence factors
only use the resource CPU and the scheduler manages all
demands. As more fined grained actions are added to the
model, interactions between the di�erent modules (e.g. via
passive resources like shared memory or FCFS queues at
the network interface) should be considered, too. For this,
the root-transformation, which creates all necessary mod-
els before executing the sub-transformations, could create
the needed common resources as well.

IV. Evaluation
Performance tests with actual hardware in a networked

environment are a time consuming and costly task. There-
fore an sophisticated test covering all influence factors
could not be conducted. Instead several smaller tests could
be made which focus on one or two influence factors at
once. These tests are based on measurements carried out in
Phoenix Contact’s dedicated testing facilities or in small,
controlled environments.

Due to the nature of this contract research, most of the
timing results and actual readouts are not approved for
the public. Therefore only a few or just small excerpts
from the simulation results can be shown here.

In the first test, di�erent cyclic tasks have been simu-
lated and compared with real executions on the PLC. For
this, an IEC program has been created that allows the
generation of load. The program performs stressing cal-
culations such as cosine operations and watched its own
execution time. This time is not the response time, which
might be influenced by preemption, but the aggregated
execution times. In Table II di�erent tests are listed. Each
test contains its simulated and real CPU utilization or
run-time exception (RTX). In addition to this, the test
name and a brief description of the setups are given. For
example, stands T(15 ms,5 ms),T(150 ms,5 ms) for two
tasks, in which the first produces a load of 5 ms and cycles

with 15 ms, the second task with 5 ms load every 150 ms.
These tests include the WinCE5.0 module and its base
load. The average deviation between simulated and real
values are just about 2 percent. This fault could be caused
by internal caching e�ects that are not yet considered in
our performance models.

Table II
CPU utilization of cyclic tasks with various configurations

Testname Real(%) Sim(%) Description

1T 40-42 38 T(4ms,1ms)

3T 52 53 3x T(15ms,2ms)

3TSEMI6 60 63 3x T(6ms,1ms)

5T 61 63 5x T(10ms,1ms)

1TFAST 63 63 T(2ms,1ms)

T2-MIX1 48-50 50 T(15ms,5ms),T(150ms,5ms)

T3-MIX2 54 53 T(4ms,1ms),

T(10ms,1ms),T(15ms,1ms)

T4-MIX3 RTX 61 T(4ms,2ms),T(15ms,2ms),

T(30ms,4ms),T(150ms,6ms)

T4-MIX4 63-65 68 T(4ms,1ms),T(15ms,2ms),

T(15ms,4ms),T(150ms,6ms)

Second, we present the comparison of measured and sim-
ulated CPU utilization of PROFINET running in IRT
mode. Table III shows the number of pndevices, module-
size, size of the data sent (none or all), and the simulated
and measured CPU utilization. Despite a constant o�set

Table III
CPU utilization comparison PROFINET real measurements

with simulation (excerpt).

#Devices 3 12 16

ModSize 1x32 1x128 1x64

DataSize 0 32 0 128 0 64

Real(%) 27,5 32,5 33,2 50 35,5 57

Sim(%) 29,8 33,9 35,6 51,6 38,6 59,87

of about two percentage points the values are almost iden-
tical. The measurements were collected with instrumented
code that logged the execution times. This could also be a
possible reason for this deviation, due to fact that logging
also consumes CPU processing power.

V. Conclusion and Outlook
Future production plants and automation systems need

to cope with more complex tasks, including communica-
tions with each other and external systems. To cope with
these requirements, their PLC have to handle their nor-
mal controlling tasks as well as new services. This compli-
cates the early selection of a suitable PLC performance
class by the developer. With our approach, we support
this decision by providing a performance prediction of
the PLC and its future environment and tasks. To sim-
plify the simulation, we created an abstract automation
model, containing all viable information about the au-
tomation system in a form that is familiar to the de-
veloper. This model is automatically transformed to the

34 Jens Frieben and Henning Heutger

Palladio models needed as input for the simulation. The
transformations used for this step are created in a mod-
ular way, allowing the combination of di�erent influence
factors to a specific product configuration. Despite a full
evaluation was not available at the time this paper was
written, the results of smaller evaluation tests showed a
promising start.

During the modeling of the internal and external influ-
ence factors on the PLC we also identified some Palladio
features that were missing and could be used for detailing
the model:

• Usage scenarios might use state based information to
call di�erent functions or use di�erent parameters.
This would allow us to model di�erent amount of com-
munication accesses for a system tick instead of cal-
culating the mean value, leading to a more precise
model.

• A (graphical) tool for easy definition of DoublePDM
and DoublePDF functions would have helped to add
various resource demands based on given load-curves.

• More sensors for easier analysis of for example mini-
mum and maximum response times to detect run-time
exceptions.

• Use of interpolated multidimensional look-up tables
which are able to return a resource demand based on
given parameters, like MatLab[14].

In the future, further influence factors should be incor-
porated into the simulation as well as refining existing
ones. Using a modular system, some parts of the model
can easily be exchanged by more precise ones. Also, new
hardware modules should be added to the simulation like
FPGA or DPM. Finally a full scale evaluation, which is
already being prepared, based on an existing application
will show the accuracy of the performance prediction.

References
[1] J. Happe, “Performance Prediction for Embedded

Systems,” pp. 1–16, 2005.
[2] R. Reussner, S. Becker, E. Burger, J. Happe,

M. Hauck, A. Koziolek, H. Koziolek, K. Krog-
mann, and M. Kuperberg, “The Palladio Component
Model,” Karlsruhe, Tech. Rep., 2011.

[3] S. Becker, “Coupled model transformations for qos
enabled component-based software design,” Ph.D.
dissertation, UniversitÃ�t Oldenburg, Uhlhornsweg
49-55, 26129 Oldenburg, 2008.

[4] INTERNATIONAL ELECTROTECHNICAL COM-
MISSION, “IEC 61131-3: Programmable controllers -
Part 3: Programming languages,” 2003.

[5] Profibus and Profinet International (PI). [Online].
Available: http://www.profibus.com

[6] Profibus Nutzerorganisation e.V. (PNO). [Online].
Available: http://www.interbusclub.com/

[7] S. Becker, H. Koziolek, and R. Reussner, “The Palla-
dio component model for model-driven performance

prediction,” Journal of Systems and Software, vol. 82,
no. 1, pp. 3–22, 2009.

[8] J. Happe, “Predicting Software Performance in Sym-
metric Multi-core and Multiprocessor Environments,”
Dissertation, University of Oldenburg, Germany, Au-
gust 2008.

[9] S. Lehrig, “Assessing the quality of model-to-model
transformations based on scenarios,” Master’s thesis,
University of Paderborn, Zukunftsmeile 1, October
2012.

[10] Object Management Group. "Meta Object Facility
(MOF) 2.0 Query/View/Transformation (QVT)".
[Online]. Available: http://www.omg.org/spec/QVT/

[11] E. M. Project, “Atl (version 3.2.1).” [Online].
Available: http://www.eclipse.org/atl/

[12] A. SchÃ�rr, “Specification of graph translators with
triple graph grammars,” in in Proc. of the 20th Int.
Workshop on Graph-Theoretic Concepts in Computer
Science (WG ‘94), Herrsching (D. Springer, 1995.

[13] Eclipse.org, “Xtend (version 2.3.1).” [Online]. Avail-
able: http://www.eclipse.org/

[14] MathWorks, “Matlab (matrix laboratory) numerical
computing environment.” [Online]. Available: http:
//www.mathworks.de/products/matlab/

Case Study: Palladio Based Modular System For Simulating PLC Performance 35

	Extending the Palladio Component Model using Profiles and Stereotypes Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin Küster, Philipp Merkle and Andreas Rentschler
	Extending Palladio by Business Process Simulation Concepts Robert Heinrich, Jörg Henss and Barbara Paech
	Case Study: Palladio Based Modular System For Simulating PLC Performance Jens Frieben and Henning Heutger

