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Abstract. In this paper we address the task of finding convex cuts of a graph. In addition to the
theoretical value of drawing a connection between geometric and combinatorial objects, cuts with this
or related properties can be beneficial in various applications, e. g., routing in road networks and mesh
partitioning. It is known that the decision problem whether a general graph is k-convex is NP-complete
for fixed k ≥ 2. However, we show that for plane graphs all convex cuts (i. e., k = 2) can be computed
in polynomial time. To this end we first restrict our consideration to a subset of plane `1-graphs for
which the so-called alternating cuts can be embedded as plane curves such that the plane curves form
an arrangement of pseudolines. For a graph G in this set we formulate a one-to-one correspondence
between the plane curves and the convex cuts of a bipartite graph from which G can be recovered.
Due to their local nature, alternating cuts cannot guide the search for convex cuts in more general
graphs. Therefore we modify the concept of alternating cuts using the Djoković relation, which is of
global nature and gives rise to cuts of bipartite graphs. We first present an algorithm that computes all
convex cuts of a (not necessarily plane) bipartite graph H ′ = (V,E) in O(|E|3) time. Then we establish
a connection between convex cuts of a graph H and the Djoković relation on a (bipartite) subdivision
H ′ of H. Finally, we use this connection to compute all convex cuts of a plane graph in cubic time.

Keywords: Plane graphs, convex cuts, Djoković relation, partial cubes, bipartite graphs

1 Introduction

A convex cut of a graph G = (V,E) is a partition of V into V1 and V2 such that both subgraphs of G
induced by V1 and V2 are convex. A convex subgraph of G, in turn, is a subgraph S of G such that for any
pair of vertices v, w in S all shortest paths from v to w in G are fully contained in S. Following Artigas et
al. [1], a convex k-partition in a graph is a partition of the vertex set into k convex sets. If G has a convex
k-partition, then G is said to be k-convex. Deciding whether a (general) graph is k-convex is NP-complete
for fixed k ≥ 2 [1]. Moreover, given a bipartite graph G = (V,E) and an integer k, it is NP-complete to
decide whether the largest convex set ∅ 6= S ⊂ V has at least k vertices [8].

The fundamental notion of convexity in graphs can be used to draw a connection to continuous objects
in a metric space. Note that there exists a different notion of convexity for plane graphs. A plane graph
is called convex if all of its faces are convex polygons. This second notion is different and not object of
our investigation. The notion of convexity in acyclic directed graphs, motivated by embedded processor
technology, is also different [2]. There, a subgraph S is called convex if there is no directed path between any
pair v, w in S that leaves S. In addition to being directed, these paths do not have to be shortest paths as
in our case.

Graph partitions with particular properties are of high interest in many applications [3]. Sample appli-
cations that potentially benefit from convexity of a cut are parallel numerical simulations. For some linear
solvers used in these simulations, the shape of the partitions, in particular short boundaries, small aspect ra-
tios, but also connectedness and smooth boundaries, plays a significant role [11]. Convex subgraphs typically
admit these properties. Another example is the preprocessing of road networks for shortest path queries by
partitioning according to natural cuts [6]. The definition of a natural cut is not as strict as that of a convex
cut, but they have a related motivation.

Both from a theoretical point of view and due to the practical importance, it is natural to ask whether
the time complexity of finding convex cuts is polynomial for certain types of inputs. In this paper, we focus
on plane graphs as they are important in a large number of applications. Their special structure gives rise to
the hope that finding their convex cuts is fundamentally easier. To the best of our knowledge, there exists
no polynomial-time algorithm yet for computing convex cuts of plane graphs.



1.1 Related Work

Artigas et al. [1] show that every connected chordal graph G = (V,E) is k-convex, for 1 ≤ k ≤ |V |. They also
establish conditions on |V | and p to decide if the pth power of a cycle is k-convex. Moreover, they present a
linear-time algorithm that decides if a cograph is k-convex.

Our method for finding all convex cuts of a plane graph G is motivated by the work in Chepoi et al. [5]
on the links between alternating and convex cuts of plane graphs. Plane graphs usually have alternating cuts
that are not convex and convex cuts that are not alternating. Proposition 2 in [5] characterizes the plane
graphs for which the alternating cuts coincide with the convex cuts in terms of a condition on the boundary
of any alternating cut. In this paper we represent the alternating cuts as plane curves that we call embedded
alternating paths (EAPs) – any EAP partitions G exactly like the alternating cut it represents. In contrast
to [5], however, we focus on the intersections of the EAPs (i. e., alternating cuts).

If any pair of EAPs intersects at most once, we have a slight generalization of so-called arrangements of
pseudolines. The latter arise in discrete geometry, computational geometry and in the theory of matroids [4].
Duals of arrangements of pseudolines are known to be partial cubes – a fact that has been applied to graphs
in [9], for example. For basics on partial cubes we rely on the survey [12]. The following basic fact about
partial cubes is crucial for our method for finding convex cuts: partial cubes are precisely the graphs that
are bipartite and on which the Djoković relation [7] is transitive.

1.2 Paper Outline and Contribution

In Section 3 we first represent the alternating cuts of a plane graph G = (V,E), as defined in [5], by EAPs.
The main work here is on the proper embedding. We then study the case of G being well-arranged, as we call
it, i. e., the case in which the EAPs form an arrangement of pseudolines, or a slight generalization thereof.
We show that the dual of such an arrangement is a partial cube, and that this partial cube contains another
partial cube G̃E with the property that every other vertex on a path in G̃E has degree two. More importantly,
G can be regained from G̃E by fusing edges via degree-two vertices and deleting certain parallel edges. In
particular, G is an isometric subgraph of a half-cube, i. e., an `1-graph, because for plane graphs this is
equivalent [5]. We reveal a one-to-one correspondence between the EAPs of G and the convex cuts of G̃E .
Specifically, the edges of G̃E intersected by any EAP form the cut-set of a convex cut of G̃E . Conversely, the
cut-set of any convex cut of G̃E is the set of edges intersected by a unique EAP of G.

The one-to-one correspondence between the EAPs of a well-arranged graph G and the convex cuts of
bipartite G̃E suggests that, for the case in which G is more general, it might be helpful to employ a bipartite
graph that can be turned into G by contraction of degree-two vertices and reduction of parallel edges. We
choose the simplest way to generate such a graph G′, i. e., we subdivide any edge of G. Before we find all
convex cuts of plane G using G′, we show in Section 4 that all convex cuts of a bipartite graph G′ = (V ′, E′)
can be found in O(|E′|3) time, even if G′ is not plane. The fact that we can compute all convex cuts in
bipartite graphs in polynomial time is no contradiction to the NP-completeness of the decision problem
whether the largest convex set in a bipartite graph has a certain size. In a convex cut both subgraphs have
to be convex, while a convex set S makes no assumptions on V \ S. The key to finding all convex cuts of a
plane graph is a theorem that holds for non-plane graphs, too. In particular, we characterize convex cuts of
G in terms of the Djoković relation on G′.

The results of Section 4 are then used in Section 5 to find all convex cuts of a plane graph G = (V,E).
As in the case of well-arranged graphs, we iteratively proceed from an edge to another edge opposite to a
face bounded by e, and the number of such cuts is bounded by 2|E|. This time, however, “opposite” is with
respect to the Djoković relation on G′. Thus we arrive at a set of potentially convex cuts, which includes all
convex cuts. It remains to check whether the potentially convex cuts are actually convex. This can be done
in O(|V |2) time per potentially convex cut, totalling up to O(|V |3) for all such cuts.

2 Preliminaries

Our methods for finding all convex cuts apply to finite, undirected, unweighted, and connected graphs that
are free of self-loops and whose vertices all have degree greater than one. The last two conditions are not
essential: self-loops have no impact on the convex cuts, and any edge on a dead-end path toward a degree-one
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vertex gives rise to a trivial convex cut that does not interfere with the non-trivial convex cuts. We often
associate a cut (V1, V2) with its cut-set, i. e., the set of edges running between V1 and V2.

If G is plane, we may identify V with a set of points in R2 and E with a set of plane curves that intersect
only at their end points, which, in turn, make up V . For e ∈ E with end points u, v (u 6= v) we sometimes
write e = {u, v} even when e is not necessarily determined by u and v due to parallel edges. F∞ denotes the
unbounded face of G and, if F is a face of G, we write E(F ) for the set of edges that bound F .

We denote the standard metric on G by dG(·, ·). In this metric the distance between u, v ∈ V amounts to
the number of edges on a shortest path from u to v. A subgraph S = (VS , ES) of a (not necessarily plane)
graph H is an isometric subgraph of H if dS(u, v) = dH(u, v) for all u, v ∈ VS .

Following [7] and using the notation in [12], we set

Wxy = {w ∈ V : dG(w, x) < dG(w, y)} ∀{x, y} ∈ E. (1)

Let e = {x, y} and f = {u, v} be two edges of G. The Djoković relation θ on G’s edges is defined as
follows:

e θ f ⇔ f has one end vertex in Wxy and one in Wyx. (2)

The Djoković relation is reflexive, symmetric [14], but not necessarily transitive. The vertex set V of G
is partitioned by Wab and Wba if and only if G is bipartite.

A partial cube Gq = (Vq, Eq) is an isometric subgraph of a hypercube. For a survey on partial cubes
see [12]. Partial cubes and θ are related in that a graph is a partial cube if and only if it is bipartite and
θ is transitive [12]. Thus, θ is an equivalence relation on Eq, and the equivalence classes are cut-sets of Gq.
Moreover, the cuts defined by these cut-sets are precisely the convex cuts of Gq [12]. If (V 1

q , V
2
q ) is a convex

cut, the (convex) subgraphs induced by V 1
q and V 2

q are called semicubes. If θ gives rise to k equivalence
classes E1

q , . . . E
k
q , and thus k pairs (Si

a, S
i
b) of semicubes, where the ordering of the semicubes in the pair is

arbitrary, one can derive a so-called Hamming labeling b : Vq 7→ {0, 1}k by setting

b(v)i =

{
0 if v ∈ Si

a

1 if v ∈ Si
b

(3)

In particular, dGq
(u, v) amounts to the Hamming distance between b(u) and b(v) for all u, v ∈ Vq. This

is a consequence of the fact that the corners of a hypercube have such a labeling and that Gq is an isometric
subgraph of a hypercube.

A half-cube H is a graph whose vertices correspond to the vertices in one part of a bipartite representation
of a partial cube Q. Two vertices of H are adjacent in H if their distance in Q is two [5].

3 Convex Cuts of a Class of Plane `1-Graphs

In Section 3.1 we define a multiset of (not yet embedded) alternating paths that are analogous to the alter-
nating cuts defined in [5]. Section 3.2 is devoted to embedding the alternating paths into R2. In Section 3.3
we study the class of plane graphs that have embedded alternating paths (EAPs) which form an arrange-
ment of pseudolines or a slight generalization thereof. For these so-called well-arranged graphs, the EAPs
are equivalent to the convex cuts.

3.1 Alternating Paths

Intuitively, an EAP P runs through a face F of G such that the edges through which P enters and leaves
F are opposite—or nearly opposite because, if |E(F )| is odd, there is no opposite edge, and P has to make
a slight turn to the left or to the right. The exact definitions leading up to (not yet embedded) alternating
paths are as follows.

Definition 3.1 (Opposite edges, left, right, unique opposite edge).
Let F 6= F∞ be a face of G, and let e, f ∈ E(F ). Then e and f are called opposite edges of F if the lengths
of the two paths induced by E(F ) \ {e, f} differ by at most one. If the two paths have different lengths, f is
called the left [right] opposite edge of e if starting on e and running clockwise around F , the shorter [longer]
path comes first. Otherwise, e and f are called unique opposite edges.
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Definition 3.2 (Alternating path graph A(G) = (VA, EA)).
The alternating path graph A(G) = (VA, EA) of G = (V,E) is the (non-plane) graph with VA = E and EA

consisting of all two-element subsets {e, f} of E such that e and f are opposite edges of some face F 6= F∞.

The alternating path graph defined above will provide the edges for the multiset of alternating paths defined
next. We resort to a multiset for the sake of uniformity, i.e., to ensure that any edge of G is contained in
exactly two alternating paths (see Figure 1a).

(a) (b)

Fig. 1. Primal graph: Black vertices, thin solid edges. Dual graph: White vertices, dashed edges. (a) Multiset P(G) of
alternating paths: Red vertices, thick solid lines. The paths in P(G) are colored. In this ad-hoc drawing all alternating
paths that contain a vertex vA (edge e of G) go through the same point on e, i. e., where a red vertex was placed.
(b) Collection E(G) of EAPs: Red vertices, thick solid colored lines.

Definition 3.3 ((Multiset P(G) of) Alternating paths in A(G)).
A maximal path P = (v1A, e

1
A, v

2
A, . . . e

n−1
A , vnA) in A(G) = (VA, EA) is called alternating if

– viA and vi+1
A are opposite for all 1 ≤ i ≤ n− 1 and

– if vi+1
A is the left [right] opposite of viA, and if j is the minimal index greater than i such that vjA and

vj+1
A are not unique opposites (and j exists at all), then vj+1

A is the right [left] opposite of vjA.

The multiset P(G) contains all alternating paths in A(G): the multiplicity of P in P(G) is two if vi+1
A is a

unique opposite of viA for all 1 ≤ i ≤ n− 1, and one otherwise.

3.2 Embedding of Alternating Paths

In this section we show that the alternating paths in P(G) can be embedded into R2 such that any edge
{e, f} of any path in P(G) turns into a non-self-intersecting plane curve with one end point on e and the
other end point on f . Moreover, for any face F of G any pair of embedded paths intersects at most once in
the filled polygon F = F ∪ E(F ). A path in P(G) with multiplicity m ∈ {1, 2} gives rise to m embedded
paths. Visually, we go from Figure 1a to Figure 1b.

In the following we set rules for embedding alternating paths locally, i. e., into F . Later on we will make
sure that the locally embedded paths fit together at the face boundaries. We formulate the rules only for
faces whose boundaries are regular polygons. We may do so because all filled polygons in R2 (with the same
number of sides) are homeomorphic—a consequence of the Jordan-Schönflies theorem [13]. Thus, we may
embed the alternating paths first into a regular polygon Fr and then map the embedded paths from Fr into
F using a homeomorphism from Fr onto F . The homeomorphism will not affect the intersection pattern of
the local embedding, i. e., information on which paths intersect in F or hit an edge in E(F ). The intersection
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(a) (b)

8

even face odd face

odd faceodd face

F (c)

8

even face odd face

odd faceodd face

F

Fig. 2. (a) Intersection pattern of a filled hexagonal face (b,c) Two intersection patterns of a filled pentagonal face
(see gray circle for difference).

pattern in Fr will depend not only on Fr, but also on the cyclical order in which the EAPs from outside Fr

hit E(F ). For examples see Figures 2b,c and Figure 3a.

Embedding Rules. We call a face F of G even [odd] if |E(F )| is even [odd]. The rules for embedding
alternating paths locally are:

1. The part of an EAP that runs through Fr is a straight line, and EAPs cannot coincide in Fr.
2. An EAP can hit e ∈ E(Fr) only at e’ s relative interior, i. e., not at e’s end vertices.
3. If two EAPs share a point p on an edge e ∈ E(Fr), they must cross at p and not just touch.
4. Let Fr 6= F∞ be an even face of G, let e, f be unique opposite edges in E(Fr), and let P1, P2 be the

two non-embedded alternating paths in P(G) that contain the edge {e, f} (P1 = P2 if and only if the
multiplicity of P1 is two). Then the parts of embedded P1 and P2 that run through Fr must form a pair
of distinct parallel line segments (see Figure 2a).

5. Let Fr 6= F∞ be an odd face of G, let e ∈ E(Fr), and let P1, P2 ∈ P(G) be the two paths that contain
the vertex e. If e also bounds an even bounded face, embedded P1, P2 must hit e at two distinct points.
If the other face is a bounded odd face, embedded P1, P2 must hit at a point on e. (see Figures 2b,c).

6. Let e be an edge of G that separates F∞ from a bounded face, and let P1, P2 ∈ P(G) be the two paths
that contain the vertex e. Then, embedded P1, P2 must hit e at two distinct points (see Figures 2b,c).

We now map the embedded paths from any Fr into F using a homeomorphism from Fr onto F . The
following is about tying the loose ends of the locally embedded paths, which all sit on edges of G, so as
to arrive at a global embedding of the alternating paths (see Figures 3b,c). Let e ∈ E(G), and let F, F ′ be
the faces of G that are bounded by e. We have two locally embedded paths P 1

F , P
2
F in F and two locally

embedded paths P 1
F ′ , P 2

F ′ in F ′ that all hit e. If F and F ′ are bounded odd faces, we bend the four paths such
that they all hit the same point q on the interior of G (for details see below). Otherwise, let the end point of
P 1
F , P

2
F , P

1
F ′ , and P 2

F ′ be denoted by p1F , p
2
F , p

1
F ′ , and p2F ′ , respectively. Due to having used homeomorphisms

to obtain the embedded paths in F and F ′, it holds that p1F 6= p2F and p1F ′ 6= p2F ′ . Let e = {u, v}, and let
q1, q2 be points on the interior of e such that q1 is closer to u than q2. Without loss of generality we may
assume that p1F is closer to u than p2F and that p1F ′ is closer to u than p2F ′ . We now bend p1F and p1F ′ [p2F
and p2F ′ ] toward q1 [q2].

It remains to show that the bending operations above can be done such that the intersection patterns do
not change in the interiors of F and F ′. Recall that the paths are homeomorphic to straight line segments.
Thus, there exists ε > 0 such that all locally embedded paths in F and F ′ other than P 1

F , P
2
F , P

1
F ′ , and P 2

F ′

keep a distance greater than ε to e. The bending, in turn, can be done such that it affects P 1
F , P

2
F , P

1
F ′ , and

P 2
F ′ only in an ε-neighborhood of e.

Notation 3.1. The collection of globally embedded alternating paths (EAPs) is denoted by E(G) (see again
Figures 3b,c).

The EAPs in Figure 1b are special in that they form an arrangement in the following sense.
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(a) (b)

P

F

F’

v

u
e

ε

ε

q

F

F’

1

F

F’

P

P

P

2

1

2

(c)

FF

F’
F’

1

F’P
2

P

u

v
F

p1

2p
F

ε

p1

F’

q
1

q
2

ε

e

pF’
2

2

PF

1
P

Fig. 3. (a) Hexagonal face with the same intersection pattern as in Figure 2a. (b,c) Bending of alternating paths is
indicated by the dashed colored lines. For the notation see the text. (b) Bending toward a single point q on e. (c)
Bending toward two points q1, q2 on e.

Definition 3.4 (Arrangement of alternating paths, well-arranged graph).
E(G) is called an arrangement of (embedded) alternating paths if

1. none of the EAPs is a cycle,
2. none of the EAPs intersects itself, and
3. there exist no paths P1 6= P2 ∈ E(G) such that P1 ∩ P2 contains more than one point.

We call a plane graph G well-arranged if E(G) is an arrangement of alternating paths.

The notion of an arrangement of alternating paths can be seen as a generalization of the notion of an
arrangement of pseudolines [4]. The latter arrangements are known to have duals that are partial cubes [9].

3.3 Embedded Alternating Paths of Well-arranged Graphs

The purpose of the following is to prepare for the definition of a graph GE (see Definition 3.6), which will
turn out to be a partial cube if G is well-arranged. In this case we are able to (i) efficiently compute the
convex cuts of GE and (ii) establish a one-to-one correspondence between the convex cuts of GE and those
of G.

Definition 3.5 (Domain D(G) of G, facet of E(G), adjacent facets).
The domain D(G) of G is the set of points covered by the vertices, edges and bounded faces of G. A facet of
E(G) is a (bounded) connected component (in R2) of D(G) \ (

⋃
e∈E(G) e ∪

⋃
v∈V (G) v). Two facets of E(G)

are adjacent if their boundaries share more than one point.

In the following DEAP stands for Dual of Embedded Alternating Paths.

Definition 3.6 (DEAP graph GE of G).
A DEAP graph GE of G is a plane graph that we obtain from G by placing one vertex into each facet of
E(G) and drawing edges between a pair (u, v) of these vertices if the facets containing u and v are adjacent
in the sense of Definition 3.5. A vertex of GE can also sit on the boundary of a face as long as it does not
sit on an EAP from E(G) (for an example see the black vertex on the upper left in Figure 4a).

Since we are not interested in the exact location [course] of GE ’s vertices [edges], there exists basically
one DEAP graph of G. Due to the intersection pattern of the EAPs in G’s bounded faces, as specified in
Section 3.2 and illustrated in Figure 2, there are the following three kinds of vertices in V (GE):

Definition 3.7 (Primal, intermediate and star vertex of GE).

– Primal vertices: Vertices which represent a facet that contains a (unique) vertex v of G in its interior
or on its boundary. As we do not care about the exact location of GE ’s vertices, we may assume that the
primal vertices of GE are precisely the vertices of G.
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(a) (b)

Fig. 4. DEAP graph GE of the primal graph G shown in Figure 1a. (a) Collection E(G) of EAPs: Red vertices, thick
solid colored lines. DEAP graph GE : Black, gray and white vertices, thin black solid lines. The black, gray and white
vertices are the primal, intermediate and star vertices, respectively. The dashed polygonal line delimits D(G). (b) GE
only. The red edge, however, is an edge of G. The path formed by the two bold black edges is an example of a path
in GE of length two that connects two primal vertices that are adjacent in G via an intermediate vertex in GE .

– Intermediate vertices: The neighbors of the primal vertices in GE .
– Star vertices The remaining vertices in GE .

For an example of a DEAP graph see Figure 4, where the black, gray and white vertices correspond to
the primal, intermediate, and star vertices, respectively.

Theorem 3.1. The DEAP graph GE of a well-arranged plane graph G is a partial cube.

Proof. We denote the Hamming distance by h(·, ·). To show that GE = (VE , EE) is a partial cube, it suffices
to specify a labeling l : VE 7→ {0, 1}n for some n ∈ IN such that dGE (u, v) = h(l(u), l(v)) for all u, v ∈ VE (see
Section 2).

We set the length n of any binary vector l(v) to the number of paths in E(G), and let the entries of
l(v) indicate v’s position with respect to the paths in E(G). Specifically, we start by numbering the paths in
E(G) from one to n, which yields the paths P1, . . . , Pn. For each 1 ≤ i ≤ n we then select one component of
D(G) \ Pi. Then we set the ith entry of l(v) to one if the face represented by v is in the selected component
of D(G) \ Pi (zero otherwise).

It remains to show that dGE (u, v) = h(l(u), l(v)) for any pair u 6= v ∈ V . Since on any path of length k
from u to v in GE it holds that h(l(u), l(v)) ≤ k, we have dGE (u, v) ≥ h(l(u), l(v)).

To see that dGE (u, v) = h(l(u), l(v)), it suffices to show that u has a neighbor u′ such that h(l(u′), l(v)) <
h(l(u), l(v)) (because then there also exists u′′ such that h(l(u′′), l(v)) < h(l(u′), l(v)) and so on until v
is reached in exactly h(l(u), l(v)) steps). The claim follows from the case distinction in Section A.1 in the
appendix. ut

The Hamming labelling of GE defined in the proof of Theorem 3.1 guarantees the following.

Corollary 3.1. If G is well-arranged, there exists a one-to-one correspondence between the EAPs of G and
the convex cuts of GE . Specifically, the edges intersected by any EAP of G form a cut-set of a convex cut of
GE . Conversely, the cut-set of any convex cut of GE is the set of edges intersected by a unique EAP of G.

3.4 Convex Cuts from Alternating Paths

In case of G being well-arranged, the subgraph defined below will serve as a stepping stone for relating the
convex cuts of GE to those of G. For an example see Figure 5.
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(a) (b)

Fig. 5. (a) Isometric subgraph G̃E of the DEAP graph GE shown in Figure 4b. The subgraph is obtained by deleting
the star vertices of GE and replacing parallel edges by single ones. A color of an edge is the color of the EAP that
hits it. Here, the coloring is restricted to the edges in the vicinity of the brown cut-set. (b) EAPs from Figure 4a
drawn on the isometric subgraph shown on the left.

Definition 3.8 (Subgraph G̃E of GE).
G̃E is the graph obtained from GE by deleting all star vertices and replacing parallel edges by single edges.

On the one hand G̃E is bipartite, every other vertex on a path being a vertex of G (recall that we may
interpret the primary vertices of V (GE) as vertices of G). Thus, the distances between the primary vertices
in G̃E are always twice the distances between the corresponding vertices in G. On the other hand, G̃E is an
isometric subgraph of GE .

Lemma 3.1. G̃E is an isometric subgraph of GE .

Proof. For any face F of G let GF [GF
E ] denote the subgraph of G [GE ] that is contained in F . Any inter-

section pattern of F constitutes an arrangement of alternating paths of GF , i.e., GF is well-arranged. Thus,
Theorem 3.1 yields that GF

E is a partial cube. In particular, the distance between any u, v in GF
E amounts

to the minimum number of EAPs one has to cross on a path from u to v. Let (P1, . . . , Pk) be the sequence
of paths crossed by a shortest path from u to v, where u and v are vertices of G̃E . The same sequence of k
paths is crossed in the same order, with no other paths in between, on the shorter of the two paths in G̃E
that go around the star vertices in F (see the intersection patterns).

So far we have seen that the distance between two vertices of GF
E does not change when we delete the

star vertices. Since any path on G̃E traverses adjacent faces of G, and since replacing parallel edges by single
ones has no effect on the distances, we are done. ut

The first of the following corollaries is a straightforward extension of Corollary 3.1.

Corollary 3.2. If G is well-arranged, there exists a one-to-one correspondence between the EAPs of G and
the convex cuts of G̃E . Specifically, the edges intersected by any EAP of G form a cut-set of a convex cut of
G̃E . Conversely, the cut-set of any convex cut of G̃E is the set of edges intersected by a unique EAP of G.

Corollary 3.3. A well-arranged graph is an `1-graph.

Proof. Theorem 3.1 yields that GE is a partial cube, and Lemma 3.1 then yields that G̃E is a partial cube,
too. From G̃E being bipartite and the fact that one part consists of the primary vertices, i.e., vertices of G,
we conclude that G is a an isometric subgraph of a half-cube (see Section 2). The claim now follows from
the fact that a plane graph is a partial half-cube if and only if it is an `1-graph [5]. ut

8



The EAPs of a general plane graph can have self-intersections, and a pair of EAPs can cross more than
once. Thus, in such a more general setting, EAPs and the equivalent alternating cuts do not give rise to a
one-to-one correspondence as in Corollary 3.2 and thus cannot be employed to find convex cuts. To solve this
problem, we extend the concept of alternating cuts to graphs that are not necessarily plane by employing
the Djoković relation on a (bipartite) subdivision of these graphs.

4 Convex Cuts of not Necessarily Plane Graphs

In this section we assume that H ′ = (V,E) is bipartite (but not necessarily plane). As mentioned in Section 2,
any edge e = {a, b} of H ′ gives rise to a cut of H ′ into Wab and Wba. The cut-set of this cut is Ce = {f ∈ E |
e θ f} = {f = {u, v} ∈ E | dH′(a, u) = dH′(b, v)}. In the following we characterize the cut-sets of the convex
cuts of H ′. This characterization is key to finding all convex cuts of a bipartite graph in O(|E|3) time.

Lemma 4.1. Let H ′ = (V,E) be a bipartite graph, and let e ∈ E. Then Ce is the cut-set of a convex cut of
H ′ if and only if f θ f̂ for all f, f̂ ∈ Ce.

Proof. Let Ce be a non-convex cut ofH ′, and let e = {a, b}. Then there exists a shortest path P = {v1, . . . vn}
with both end vertices in, say Wab, such that P has a vertex in Wba. Let i be the smallest index such that
vi ∈ Wba, and let j be the smallest index greater than i such that vj ∈ Wab. Then f = {vi−1, vi} and
f̂ = {vj , vj+1} are two edges in Ce. Lemma 3.5 in [12] says that no pair of edges from a shortest path are
related by θ, i. e., f θ f̂ does not hold.

Conversely, let f = {u, v}, f̂ = {û, v̂} ∈ Ce such that f θ f̂ does not hold. Without loss of generality
assume û ∈ Wuv, v̂ ∈ Wvu and dH′(u, û) < dH′(v, v̂). Then dH′(v, v̂) − dH′(u, û) ≥ 2. Indeed, dH′(v, v̂) −
dH′(u, û) must be even because otherwise one of the two distances dH′(u, û) and dH′(v, v̂) is even and the
other one is odd. Hence, due to H ′ being bipartite and the fact that (adjacent) u and v are in different
parts of H ′, the vertices û and v̂ are in the same part of H ′, a contradiction to û and v̂ being connected by
f̂ ∈ Ce. From dH′(v, v̂) − dH′(u, û) ≥ 2 it follows that one can go from v to v̂, which are both in Wvu, by
first traversing f , then going from u to û within Wuv, and finally traversing f̂ . The length of this path is
≤ dH′(v, v̂). Thus, Ce is not a cut-set of a convex cut of H ′. ut

Lemma 4.1 suggests to determine the convex cuts of H ′ as sketched in Algorithm 1.

Theorem 4.1. Algorithm 1 computes all convex cut-sets of a bipartite graph H ′ using O(|E|3) time and
O(|E|) space.

Proof. The correctness follows from Lemma 4.1 due to the symmetry of the Djoković relation. For each
candidate cut-set, one needs to determine if all pairs of contained edges are Djoković related.

Regarding the running time, observe that for any edge e, the (not necessarily convex) cut-set Ce can
be determined by using BFS to compute the distances of any vertex to the end vertices of e. Hence each
Ce can be determined in time O(|E|). The inner for-loop has O(|E|)) iterations. Each iteration has time
complexity O(|E|)) when using a linear-time set equality algorithm [10] (which requires linear space). Hence
Algorithm 1 runs in O(|E|3) time. Moreover, each cut-set is processed sequentially. Since no more than two
cut-sets (with O(|E|) edges each) have to be stored at the same time, the space complexity of Algorithm 1
is O(|E|). ut

A simple loop-parallelization over the edges in line 3 would lead to a parallel running time of O(|E|2) with
O(|E|) processors. If one is willing to spend more processors and a quadratic amount of memory, then even
faster parallelizations are possible. Since they use standard PRAM results, we forgo their description.

For the remainder of this section H denotes a graph (self-loops and degree-one vertices allowed). We
subdivide each edge of H into two edges and thus get a bipartite graph H ′. An edge e in H that is subdivided
into edges e1, e2 of H ′ is called parent of e1, e2, and e1, e2 are called children of e. The Djoković relation on
H ′ is denoted by θ′.

The next lemma characterizes the convex cuts of H in terms of the Djoković relation on H ′. The lemma
does, however, not imply that the convex cuts of H can be derived from those of H ′ in polynomial time.
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Algorithm 1 Find all cut-sets of convex cuts of a bipartite graph H ′

1: procedure EvaluateCutSets(bipartite graph H ′)
. Computes the cut-set Cei for each edge ei and stores in isConvex[i] if Cei is the cut-set of a convex cut

2: Let e1, . . . em denote the edges of H ′; initialize all m entries of the array isConvex as true
3: for i = 1, . . . ,m do
4: Determine Cei = {f1, . . . , fk}
5: for all f j do
6: Determine Cfj

7: if Cfj 6= Cei then
8: isConvex[i] := false
9: break
10: end if
11: end for
12: end for
13: end procedure

Lemma 4.2. A cut of H with cut-set C is convex if and only if for all e, f ∈ C there exists a child e′ of e
and a child f ′ of f such that e′ θ′ f ′.

Proof. Let C be the cut-set of a convex cut that partitions V into V1 and V2, and let e, f ∈ C (see Figure 6a).
We want to find a child e′ of e and a child f ′ of f such that e′ θ′ f ′. Let e = {ue, ve} and f = {uf , vf}, and
let w′e [w′f ] denote the vertex of H ′ that subdivides e [f ]. Without loss of generality we assume ue, uf ∈ V1
and ve, vf ∈ V2. Since C is the cut-set of a convex cut, we know that dH(ue, uf ) and dH(ve, vf ) differ by at
most one. If dH(ve, vf ) = dH(ue, uf ), let e′ be the child of e that has ue as an end vertex, and let f ′ be the
child of f that has vf as an end vertex (this is the case illustrated in Figure 6a). Then, due to the degrees of
w′e and w′f being two, dH′(ue, w

′
f ) = dH′(w′e, vf ), i. e., e′ θ′ f ′. If dH(ue, uf ) and dH(ve, vf ) differ by exactly

one, we may assume without loss of generality that dH(ve, vf ) = dH(ue, uf ) + 1. Let, as above, f ′ be the
child of f that has vf as an end vertex, but let e′ be the child of e that has ve as an end vertex. Then, due
to the degrees of w′e and w′f being two, dH′(ve, vf ) = dH′(w′e, w

′
f ), i. e., e

′ θ′ f ′.
Conversely, let C be the cut-set of a cut that partitions V into V1 and V2. We now assume that for all

e = {ue, ve}, f = {uf , vf} ∈ C there exists a child e′ of e and a child f ′ of f such that e′ θ′ f . As above
we assume without loss of generality that ue, uf ∈ V1 and ve, vf ∈ V2. There are four possibilities for the
positions of e′ and f ′ within e and f , only two of which need to be considered due to symmetry.

1. e′ = {ue, w′e} and f ′ = {uf , w′f}. In this case dH′(ue, uf ) = dH′(w′e, w
′
f ) = dH′(ve, vf )± 2.

2. e′ = {ue, w′e} and f ′ = {w′f , vf}. Since the degrees of w′e and w′f are two, and since e′ θ′ f ′, any
shortest path from ue to w′f runs via uf , and any shortest path from w′e to vf runs via ve. Hence,
dH′(ue, uf ) = dH′(ue, w

′
f )− 1 = dH′(w′e, vf )− 1 = dH′(ve, vf ).

Thus dH(ue, uf ) = dH(ve, vf ) ± 1 for all e = {ue, ve}, f = {uf , vf} ∈ C. Hence, any shortest path with
end vertices in V1 [V2] stays within V1 [V2], i. e., C is the cut-set of a convex cut. ut

5 Convex Cuts of Plane Graphs

Let G = (V,E) denote a plane graph without self-loops and degree-one vertices. Analogous to Section 4,
G′ = (V ′, E′) denotes the (plane bipartite) graph that one obtains from G by placing a new vertex into the
interior of each edge of G. For any face F of G, we denote by F ′ the face of G′ for which the parents of
E′(F ′) form E(F ). The method for finding all convex cuts of G in polynomial time that we present in this
section is motivated by the following observations.

1. Using the Djoković relation, we can find all convex cuts of a bipartite graph in polynomial time, even if
the graph is not plane (see Lemma 4.1).

2. A cut-set C of a non-bipartite graph H is the cut-set of a convex cut if and only if certain children of
edges in C are in the Djoković relation on H ′ (see Lemma 4.2). Again, H does not need to be plane,
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Fig. 6. (a) Illustration to proof of Lemma 4.2. (b) Cut-sets {e0, e1,l} and {e0, e1,r}.

3. Let C be the cut-set of a plane graph. Then one can brachiate through the edges of C by forming a
cyclic sequence (e0, . . . e|C|−1 = e0) such that for any pair (ei, ei+1) of consecutive edges there exists a
face F with {ei, ei+1} ∈ E(F ) (indices are modulo |C|). Such a cyclic sequence, in turn, is equivalent to
a cyclic sequence (F0, . . . , F|C|−1), where the (unique) Fi are such that {ei, ei+1} ∈ E(Fi). The cut-set
C is non-cyclical if and only if Fi = F∞ for some i.

In the following we will narrow down the search for convex cuts in G by specifying cut-sets of potentially
convex cuts, while making sure that the cut-set of any convex cut is among the specified cut-sets. We start
with cut-sets that contain an edge e0 bounding F∞. We also choose a face F0 6= F∞ with e0 ∈ E(F0). Cases
in which this is impossible are trivial. Below we will assemble cut-sets of potentially convex cuts, starting
with e0 and F0. To do this, we need the following notation (see Figure 6b).

Let e′0,l = {v0,l, w′0} and e′0,r = {w′0, v0,r} be the two children of e0. Here v0,l [v0,r] is the left [right] vertex
of e0 when looking onto e0 from the (unique) face 6= F0 that bounds e0, and w′0 is the vertex in G′ that
subdivides e0. As in Section 4, C ′e′ = {f ′ ∈ E′ | e′ θ′ f ′} is a cut-set of G′ for all e′ ∈ E′. In particular, C ′e′0,l
[C ′e′0,r ] contains two edges of E′(F ′), i. e., e′0,l [e

′
0,r] and an edge denoted by e′1,l [e

′
1,r]. Finally, e1,l [e1,r] is

defined as the parent of e′1,l [e
′
1,r].

Lemma 4.2 yields that, if the cut of G with cut-set Ce0 is convex, then Ce0 ∩E(F0) is equal to {e0, e1,l}
or {e0, e1,r}. It will turn out to be important that the sibling (child with same parent) of e′1,l [e

′
1,r] is not

related to e′0,r [e′0,l] via θ
′, even if the cut is not convex. This follows from the fact that e′1,l and e′1,r are

unique. Thus, using Lemma 4.2 again, if e1,l 6= e1,r, there can be at most one cut-set of a convex cut that
contains e0 and e1,l [e0 and e1,r].

Analogous to the way in which e′0,l [e
′
0,r] gives rise to e′1,l [e

′
1,r], e′1,l [e

′
1,r] gives rise to e′2,l [e

′
2,r], and so

on, until some e′k,l [e
′
k,r] bounds F∞ or coincides with some e′

k̂,l
[e′

k̂,r
] with k̂ < k. Using Lemma 4.2 in each

face Fi, as we have used it in F0, yields the following.

Observation 5.1. If there exists a convex cut whose cut-set C contains e0, then C = {e0, e1,l, . . . , e|C|−2,l}
or C = {e0, e1,r, . . . , e|C|−2,r}.

Above we assumed that e0 bounds F∞. Cut-sets of potentially convex cuts that do not involve edges
bounding F∞ can then be found by starting at edges that do not bound F∞ and proceeding as above.
Observation 5.1 then holds for all potentially convex cuts. In particular, for any edge e of G there exist at
most two potentially convex cuts that both contain e. Thus, the total number of potentially convex cuts
cannot exceed 2|E|. Moreover, any potentially convex cut can be computed using O(|E|) time and O(|E|)
space.

It remains to check whether a potentially convex cut is a convex cut. Due to Lemma 4.2 it suffices to
perform the following for each edge e of a cut-set C of a potentially convex cut.

1. Let e′1 and e′2 denote the children of e. Determine Ce′1
= {f ′ ∈ E′ | e′1 θ′ f ′} and Ce′2

= {f ′ ∈ E′ | e′2 θ′ f ′}.
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2. For all f 6= e in C check whether a child of f is in Ce′1
or in Ce′e

. If and only if at least one check fails,
C is not the cut-set of a convex cut.

Thus, as in Algorithm 1, checking whether one potentially convex cut is in fact convex, can be done using
O(|E|2) time. If the O(|E|) checks are performed successively, the space complexity is O(|E|). Since G is
plane, O(|E|) = O(|V |). Also recall that the complications from self-loops and degree-one vertices can be
solved in linear time (see Section 2). To summarize, we have shown the following.

Theorem 5.1. One can compute all convex cuts of a plane graph G = (V,E) using O(|V |3) time and O(|V |)
space.

6 Conclusions

We have presented an algorithm for computing all convex cuts of a plane graph in cubic time. To the best
of our knowledge, it is the first polynomial-time algorithm for this task. On the way to this result, we
first represented alternating cuts as plane curves (EAPs) and focussed on a subset of `1-graphs for which
the EAPs basically form an arrangement of pseudolines. Thus we came across a one-to-one correspondence
between the EAPs of a graph G and the convex cuts of a bipartite graph G̃E , one half of which is G. A
similar correspondence on general graphs, in conjunction with an algorithm that computes all convex cuts
of a bipartite graph in cubic time, formed the basis for our algorithm to compute all convex cuts of a general
plane graph in cubic time, too. Consequently, while the problem is NP-hard for general graphs, we have
shown that it becomes polynomial-time solvable for plane graphs. In future work we would like to investigate
if the convexity test for potentially convex cuts can be accelerated asymptotically. It seems also worthwhile
to apply the techniques based on the Djoković relation to other graph classes.

Acknowledgements. We thank Peter Sanders and Christian Schulz for helpful discussions on the topic.
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A Appendix

A.1 Proof Remainder of Theorem 3.1

Proof. Let Fu denote the facet of E(G) that is represented by u, and I(u) denote the set of indices of paths
in E(G) that bound Fu.

1. If u has only one neighbor u′, then I(u) = {k} for some k, and the only vertex in one of the components
of D(G) \ Pk is u. For an example see the black vertex in the upper left corner of Figure 4b. Since l(u)
and l(u′) differ only at position k, it must hold that h(l(u′), l(v)) < h(l(u), l(v)).

2. If u has at least two neighbors, we first assume that none of the Pk with k ∈ I(u) cross each other (see
Figure 7a). Then u is uniquely determined by the entries of l(u) at the positions given by I(u). Indeed,
Fu is then bounded by non-intersecting and non-self-intersecting paths in E(G) that go from a point on
the border of D(G) to another point on the border of D(G). Hence only a vertex inside Fu can have
the same entries in l(·) as l(u) at the positions given by I(u). Thus, since u is the only vertex in Fu and
since u 6= v, l(u) and l(v) must differ at a position in I(u), and we are done.

3. The remaining case is that u has at least two neighbors and there exists at least one pair (i, j) ∈
I(u)× I(u), i 6= j, such that Pi crosses Pj . Let C denote the set of all such pairs. For any pair (i, j) ∈ C
the path Pi crosses the path Pj exactly once, because E(G) is an arrangement of alternating paths (see
Figure 7b). Thus Pi and Pj subdivide D(G) into four regions, each of which is characterized by one of
the four 0/1 combinations of vertex label entries at i and at j. We may assume that v is contained in
the same region as u for each pair (i, j) ∈ C (otherwise we choose u′ on the other side of Pi or Pj and
are done). The intersection of all these regions, one region per pair in C, is denoted by R.
If all pairs (i, j) ∈ I(u) × I(u), i 6= j, are in C, we are done. Indeed this means that R = Fu and
thus that u is uniquely determined by the entries of l(u) at the positions given by I(u). We can then
proceed as above. The remaining case is that there exist i ∈ I(u) such that Pi does not intersect any
Pj with j ∈ I(u), j 6= i (see Figure 7c). Let the set of these indices be denoted by I ′(u). In particular
the facets of E(G) that are contained in R are separated by the paths Pi with i ∈ I ′(u). Recall that we
assumed u 6= v, u, v ∈ R, i. e., u and v are contained in different facets of R. Since the paths Pi with
i ∈ I ′(u) do not cross each other, the entries of l(u) and l(v) differ at all positions in I(u), and u′ with
h(l(u′), l(v)) < h(l(u), l(v)) can be reached from u by crossing a single path Pi with i ∈ I ′(u). ut
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Fig. 7. (a) Illustration to item 2) in proof of Theorem 3.1. (b,c) Illustrations to item 3) in proof of Theorem 3.1. The
shaded facet in (c) indicates R.
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