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Abstract 

In present ceramic breeder blanket for fusion power reactors both the ceramic breeder material and be-

ryllium are used in form of pebbles. The interconnected quasi-square containers are filled up with pebbles 

through small pipes. One dimension of these containers, i.e. the pebble bed height H is much smaller than 

the other two dimensions. By appropriate techniques the pebble beds are densified in order to obtain a 

homogeneous pebble distribution within the pebble bed and a high density of the total pebble bed, charac-

terized by the so-called packing factor.  

Previous packing investigations concentrated on pebble beds consisting of spherical particles in verti-

cal, long cylindrical cavities with a piston at the top. Both single-size (only one sphere diameter d) and 

multi-size systems (mixture of diameters) were investigated.   

The aims of the present experiments are both the comparison of the packing behaviour of non-spherical 

beryllium pebbles with that of spherical beryllium particles used in the past, and the use of cavities domi-

nated by flat walls. The available small amounts of the four non-spherical pebble batches dictated the sizes 

of the cavities; i) a cylindrical cavity (diameter D=50mm, maximum height H=65mm) with either a piston 

at the top in order to vary H or with a fixed top plate and filled through a small opening, and ii) closed 

parallelepidedal cavities of 100x100mm base and bed heights of 10 or 20mm, filled through a small open-

ing. In order to broaden the experimental parameter range, further experiments were performed using sin-

gle- and multi-size spherical glass, steel, and lithium orthosilicate (OSi) particles. 

In pebble beds, two different zones exist: i) the bulk zone where pebbles do not show a regular ar-

rangement, and ii) the wall zones with structured packs depending on the wall curvature. Previous tomog-

raphy investigations at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, revealed 

already many details (void distributions, contact numbers, etc.). Further analyses of these experiments 

were performed and local packing factors were determined for the bulk, cylindrical and flat wall zones. 

The important result is that the packing factors close to a flat wall are about the same as that of the bulk, 

whereas in the cylindrical wall zone and, even more pronounced, in corners, the packing fraction can be 

significantly smaller.         

For pebble bed densification after filling, both vibration and/or knocking were applied. The visual ob-

servation through the Plexiglas containers walls was very helpful to judge the effectiveness of the densifi-

cation parameters, e.g. the role of granular convection flows in closed cavities. 

Concerning single-size pebble beds, packing factors in the cylindrical container with a movable top 

plate agree well with previously obtained values of 62.5% and 64.5% for the reference beryllium batch, 

respectively, OSi pebbles. The values for the non-spherical beryllium grades are very close to that of the 
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reference beryllium material, except for that grade with a significantly larger pebble roughness. Generally, 

it can be concluded that the packing density for all investigated single-size materials does not decrease 

with decreasing bed height down to at least H/d 10.  

For the fixed cavity dimensions, the development of structured packs is rendered more difficult, espe-

cially for pebbles with rough surface and/or irregular shape. In the 10mm square cavity all beryllium 

grades show decreased packing densities, whereas for the same height in the cylindrical cavity the refer-

ence value was reached. For small, rather smooth spherical particles, e.g. OSi, no decrease was observed in 

the 10mm cavity. 

Using multi-size systems, segregation effects are of large concern. Even if the blended material has the 

defined composition during the filling, segregation due to sifting generally occurs within the cavity. Densi-

fication techniques, even visually controlled, cannot undo effectively segregation. Granular convection 

flow can even enhance segregation. For pebble diameter ratios larger than 7, homogeneous packings can 

be achieved by pouring the small pebbles into the interstices of the formerly densified and fixed larger 

pebbles. Packing factors of more than 84% were thus obtained. At present, this special type of binary peb-

ble beds is, at present, not considered for the EU ceramic breeder blankets because of the potential segre-

gation effects during cyclic blanket operation. Further investigations are required in order to prove if these 

effects are a critical issue. 

 

 

 

 



 
 

 

Zusammenfassung 

In derzeitigen keramischen Brutblankets für Leistungs-Kernfusionsreaktoren werden sowohl für das 

keramische Brutmaterial als auch für Beryllium granulare Materialien verwendet. Die miteinander verbun-

denen nahezu quaderförmigen Behälter werden durch kleine Rohre mit Schüttgut gefüllt. Eine Dimension 

dieser Behälter, nämlich die Schüttbetthöhe H, ist sehr viel kleiner als die beiden anderen Dimensionen. 

Durch entsprechende Techniken werden die Schüttbetten verdichtet um eine homogene Verteilung des 

Schüttguts im Schüttbett zu erreichen sowie eine hohe Dichte im gesamten Schüttbett, charakterisiert 

durch den sogenannten Schüttfaktor. 

Frühere Schüttversuche konzentrierten sich auf Schüttbetten bestehend aus sphärischen Partikeln in 

senkrechten, langen zylindrischen Hohlräumen mit einem Kolben an der Oberseite. Sowohl Einkorn- (nur 

ein Korndurchmesser d) als auch Mehrkorn-Mischungen (verschiedene Durchmesser) wurden untersucht. 

Das Ziel der jetzigen Experimente ist zum einen der Vergleich des Packungsverhaltens von 

nichtsphärischen Berylliumpartikeln mit dem von in der Vergangenheit verwendeten sphärischen Beril-

liumpartikeln, zum anderen die Verwendung von Hohlräumen, die durch flache Wände dominiert werden. 

Die kleine zur Verfügung stehende Menge der vier nichtsphärischen Beryllium-Sorten diktierte die Größen 

der verwendeten Hohlräume: i) Zylindrischer Hohlraum (Durchmesser 50mm, maximale Höhe H=65mm) 

mit entweder einem oben angeordneten Kolben um H zu variieren oder einer festen oberen Scheibe und 

Füllung durch eine kleine Öffnung und ii) geschlossenen quaderförmigen Hohlräumen mit Abmessungen 

100x100mm und Schüttbetthöhen von 10 und 20mm, gefüllt durch eine kleine Öffnung. Um den experi-

mentellen Parameterbereich zu erweitern wurden zudem Experimente mit Ein- und Mehrkorn-Glas- und 

Stahlkugeln sowie Lithium-Orthosilikat (OSi) Partikeln durchgeführt. 

In Schüttbetten unterscheidet man zwei verschiedene Bereiche: i) den Kernbereich, wo die Partikel 

keine regelmäßige Anordnung besitzen und ii) Wandbereiche mit strukturierter Packung, abhängig von der 

Wandkrümmung. Frühere tomografische Untersuchungen in der European Synchrotron Radiation Facility 

(ESRF), Grenoble, Frankreich,  zeigten bereits viele Details der Kugelanordnungen (Verteilung des 

Hohlvolumenanteils, Kontaktzahlen, usw.).  Weitere Analysen dieser Experimente wurden durchgeführt  

und lokale Schüttfaktoren  wurden bestimmt für den Kernbereich, zylindrische und ebene Wandbereiche. 

Das wichtige Ergebnis ist, dass der Schüttfaktor nahe einer ebenen Wand ungefähr den gleichen Wert 

besitzt wie der des Kernbereichs, während die Werte nahe zylindrischer Wände, oder noch ausgeprägter, in 

Eckenbereichen, sehr viel kleiner sein können. 
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Nach dem Einfüllen wurden die Schüttbetten durch Vibration und/oder Klopfen verdichtet. Die Be-

obachtung durch die Plexiglas-Wände war sehr hilfreich für die Beurteilung der  Effektivität der Verdich-

tungsparameter, insbesondere der Bedeutung von granularen Strömungen in geschlossenen Behältern. 

Die Schüttfaktoren für Einkorn-Schüttungen in dem zylindrischen Behälter mit Zylinder stimmen gut 

mit früheren Werten von 62,5% und 64,5% für das Referenz-Berylliummaterial, bzw. OSi überein. Die 

Werte für nichtsphärische Berylliumsorten stimmen recht gut mit denen des Referenzmaterials überein 

außer für eine Sorte mit einer deutlich größeren Rauigkeit der Partikel. Allgemein kann festgestellt 

werden, dass die Schüttdichte für alle untersuchten Einkorn-Systeme nicht mit fallender Schüttbetthöhe 

abnimmt, zumindest bis zu einem Wert H/d 10. 

Bei Hohlräumen mit festen Abmessungen wird die Ausbildung regulärer Packungen erschwert; speziell 

für Partikel mit rauer Oberfläche und/oder unregelmäßiger Form. Im quaderförmigen Hohlraum mit 

H=10mm besaßen alle Beryllium-Sorten eine niedrigere Schüttdichte, während bei gleichem H und zylin-

drischen Hohlräumen der Referenzwert erreicht wurde. Für kleine, glatte und nahezu sphärische  Partikel, 

z.B. OSi, trat keine Verringerung in quaderförmigen 10mm Hohlraum auf. 

Bei Mehrkorn-Mischungen sind Segregationseffekte von großer Bedeutung. Selbst wenn 

vorgemischtes Material mit richtiger Zusammensetzung in den Behälter eingefüllt wird, tritt im Behälter 

im Oberflächenbereich des Schüttkegels Sedimentation auf. Mittels anschließender Verdichtungstechniken 

kann selbst bei visueller Kontrolle diese Sedimentation nicht effektiv beseitigt werden. Granulare Konvek-

tionsströmungen können die Sedimentation sogar verstärken. Für Partikeldurchmesser-Verhältnisse größer 

als 7 können homogene Schüttdichten dadurch erreicht werden, dass die kleinen Partikel in die Zwischen-

räume der großen Partikel eingerieselt werden, die zuvor verdichtet und  fixiert wurden. Schüttfaktoren 

von mehr als 84% wurden auf diese Weise erreicht. Diese spezielle Art binärer Schüttbetten wird jedoch 

derzeit für das EU Keramische Brutblanket nicht in Erwägung gezogen wegen eventueller Segregationsef-

fekte bei zyklischem Blanketbetrieb. Weitere Untersuchungen sind notwendig um zu zeigen ob diese 

Effekte ein kritisches Problem darstellen. 
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1 Introduction 

Granular materials enclosed in containers exist in numerous applications, such as silos in construction 

industry, grain elevators in food industry, blast furnaces for steel production, columns in chemical engi-

neering processes, see e.g. [McG63], [Jes64], [Mar78]. Besides the necessity for knowing the amount of 

granular material in a given cavity, the distribution of the granular particles, especially those close to the 

container walls is of interest if granular materials are used for heat and mass processes. 

In future nuclear fusion reactors with ceramic breeder blankets, granular materials, generally designat-

ed as pebble beds, play an essential role because both the ceramic breeder material and the beryllium, re-

quired as neutron multiplier, are used in form of pebbles. In these blankets, the pebbles are poured through 

small pipes in interconnected quasi-square cavities where one dimension, the pebble bed height H is much 

smaller than the other two dimensions, thus resulting in shallow pebble beds. Figure 1 shows the mock-up 

of the EU breeder unit with internal pebble bed volumes of Hx400x200mm, where H is 14,5 or 29mm. 

This mock-up was used for packing experiments [Abo08] simulating the beryllium bed with glass pebbles 

with d= 1mm. In other designs, H is in the range of 30 to 55mm [Her03]. For the Japanese blanket con-

cept, special binary beryllium pebble beds are proposed [Eno98], consisting of mixtures of pebbles with 

large diameters dl  2mm and small diameters ds  0.2mm. The bed heights of the cavities for ceramic 

breeder materials in the EU breeder unit are in the range of 15-20mm; pebble diameters are between 0.25 

and 0.65mm for orthosilicate (OSi) pebbles and between 0.8 and 1.2mm for lithium metatitanate pebbles.  

 

Influence of the filling procedure:  Large packing factors are desired in most technical applications 

and pebble beds need to be densified by technical means after filling the cavities.  In most systematic in-

vestigations, cylindrical cavities were used (length L to diameter D ratio > 1) with a moveable lid (piston, 

weighted plunger) at the top. Different densification methods were applied: dropping the container for 

several cm [Wes30], using a vibrator [McG63], hammering the container walls [Dal00] or filling in the 

granular material with a small fall height to the bed surface [Jes64].  

Multi-size pebble beds, consisting of pebble mixtures with several different pebble diameters, are of 

special importance because very high packing factors can be obtained. Most investigated were binary mix-

tures consisting of pebbles with two different nominal diameters (although in practice each group of peb-

bles has already a certain diameter variation). In this case, for diameter ratios of large to small pebbles of 

dl/ds > 7, the small particles can flow in the interstices of the large particles. Segregation effects are avoid-

ed by filling in first the large particles followed by densification. The large particles are then fixed, e.g. by 

a sieve (first proposed by [Aye65]) and the small pebbles fill the gaps between the large pebbles.  
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Fig. 1 EU breeder mock-up, from [Abo08]. 

With pebble ratios dl/ds < 7, segregation effects are difficult to avoid. One procedure [Wes30, Aye65] 

is to pour in again the large pebbles first, then, the small pebbles are layered on the top of the bed. The 

system is vibrated in such a way that the packing of the large particles is loosened in order that the small 

particles can enter the gaps in between. The other way is to use premixed (blended) material. The problem 

is to avoid segregation already within the filling reservoir.  This effect plays a large role also in the phar-

maceutical industry. Often, a third material is added in order to generate a paste and e.g. special screw 

mixers are used to homogenize the pebble diameter distribution [Pah85]. For the granular materials of 

interest in the present investigation, this method is not feasible. 

If granular materials with a considerable particle size variation are poured in through openings at the 

top of the container, significant segregation effects occur because of sifting (Fig. 2a) or different repose 

angles (Fig. 2b), from [Sch09]. Subsequent vibration of pebble beds exhibiting free surfaces can easily 

cause granular convection flows which can either enforce or lessen segregation effects. However, this 

process is difficult to control.    

In many technical applications, the pebbles must be often filled through small openings in an otherwise 

closed cavity. The achievement of a homogeneous and dense packing is not a trivial task even for single-

size materials, as demonstrated by [Rei03] using a steel casing with dimensions of 100x100x15mm and a 

small filling pipe at the upper corner. One square plate served also as piston for subsequent uniaxial com-

pression tests. By means of a pressure sensitive film at the inner side of this plate it was shown that a ho-

mogeneous pebble stress distribution was generally not reached (Fig. 3). 
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Top plate 

232m
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a ) sifting: the fine particles concentrate under the point of impact while the larger particles roll off the 

pile. 

 

 

 

 

 

 

 

 

 

 

 

 

b) different repose angles: rough particles are characterized by larger repose angles  compared to parti-

cles with a smooth surface (left hand side); very small particles have larger repose angles  compared to 

large particles (right hand side) 

 

Fig. 2.  Segregation mechanisms [Schu09]. 

 

The EU breeder unit mock-up was also best filled through an opening at the highest location (Fig. 4). 

Stepwise filling and vibrating were applied. The use of Plexiglas walls was helpful for defining the opti-

mum vibration parameters [Abo08]. 

Influence of particle shape and size distribution (large cavities): For a wide range of granular parti-

cles ranging from grain to coal, packing factors , defined as the ratio of volume occupied by the particles 

to the total volume, is between 60 to 64%, cf. e.g. [McG63].  
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Fig. 3. Pebble bed stress distribution in square ducts [Rei03]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Packing experiments with Breeder Unit Mock-up [Abo08]. 

 

Other detailed investigations with single-size spherical particles in large cylindrical cavities (diameter 

D/d » 10) by [Wes30], [McG63], [Jes64], [Aye65] resulted in packing factors between 62.5 and 63.5%. 

Although it was claimed by each author that the values are independent of sphere diameter and density, the 

differences indicate that a certain influence of the experimental parameters still exists. For the EU breeder 

mock-up a maximum value of  =63.6% was obtained [Abo08] for 1mm glass spheres, which are also used 

in the present investigations.    

Results for binary pebble beds from [McG63] are shown in Fig. 5.  For the largest diameter ratios, val-

ues of   84% were reached. The filling procedure of all experiments except that for a blended material 

X 
Y 

Z 

Best location for filling hole 
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with the smallest diameter ratio of dl/ds = 3.44 consisted of pouring the small particles into the interstices 

of fixed large particles, as described above. Segregation effects could not be avoided. 

Packing factors of   82% were reached for mixtures of 2 and 0.2mm diameter beryllium pebbles 

[Dal00], [Rei07b]. Owing to potential segregation effects during cyclic blanket operation, these binary 

beryllium pebble beds are presently not considered for the EU blankets.  

 

Influence of container walls: Whilst in the pebble bed bulk no preferential orientation of pebble ar-

rangements exist, a structured packing is observed in the vicinity of walls. The majority of the pebbles in 

the first layer adjacent to the wall are in contact with the wall and regions with regular pebble arrange-

ments occur. With increasing number of layers, this regularity decreases and is no longer observed after 

about 5 layers. The structured packing in wall-neighbouring zones is characterized by fluctuations of the 

void distribution (void fraction = ratio of empty volume to total volume). Fig. 6 displays early results from 

[Ben62] with long cylindrical containers showing for the first time that with decreasing D/d the radial void 

fraction in the wall zone increases (and conversely the packing factor for the total volume decreases).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Binary mechanical packing of a coarse steel shot with some other sizes [McG63]. 

Since then, many investigations have confirmed that the packing factors start to decrease with decreas-

ing ratio D/d at values about 20. The void distributions shown in Fig. 6, measured in a quite complex way, 

were fitted by expressions containing cosines and exponential terms. However, already [Rid68] showed 

mathematically that more complex distributions should exist, see Section 2.  
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Fig. 6. Void fraction distributions in spherical pebble beds from [Ben62]. 

 

Many more details of both the arrangement of pebbles and the interaction of individual pebbles with 

neighbouring pebbles or walls were obtained in the last few years by three-dimensional (3D) computer 

aided microtomography (CMT) analyses of experiments performed at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France [Rei05,06b,07a, Pie11]. Besides evaluating void fraction distributions 

similar to those shown in Fig. 6, the position of each pebble in the container was determined as well as the 

number of contacts of the individual pebbles, the positions of these contacts on the pebble surface and 

even the sizes of the contacts, which are of special interest of interest for compressed pebble beds. 

As an example, results of the experiment E0 with 2.3mm diameter aluminum spheres in a cylindrical 

cavity (D=49mm, H=46mm), compare Fig.10, are shown in Fig. 7 [Pie11]. The horizontal and vertical 

positions of the sphere centers are presented in graphs with the radial distance r and vertical distance as 

coordinates: the structured distributions with several layers at the cylindrical wall and at the bottom and 

 

 

 

 

 

 

 

 

 

 

 

         a) vertical positions of sphere centres                           b) horizontal positions of sphere centres 

 

Fig. 7. Vertical (a) and horizontal (b) positions of sphere centres (7768 elements) [Pie11]. 
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top plates are clearly seen. A horizontal cut through the spheres in the first layer above the bottom plate is 

depicted in Fig. 8 (from [Pie11]): in the inner part, isles of hexagonal structure exist.      

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Horizontal cut at z=1.5mm from the bottom of capsule E0 [Pie11]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Poloidal distribution of contact angles in the bottom plate zone [Rei07a]. 

 

Fig. 9, from [Rei07a] shows for a similar experiment the poloidal distribution of sphere contacts, Nci, 

starting with =0° at the sphere north-pole. The 1st bottom layer exhibits peaks in the intervals 35°   

<45°, 85 °   <95°, and at  180°. These peaks are characteristic for a hexagonal packing, where ideally 

three contacts exist at   37° and six contacts at  = 90°. With increasing distance from the bottom, the 

hexagonal symmetry characteristics become less expressed but even in the 4th layer peaks are still present. 

For the bulk, the contact distribution approaches a cosine-type behaviour, which is the condition for ho-

mogeneously distributed contacts on the spheres. 
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2 New results of microtomographic investigations 

Further analyses of the experiment E0 were performed, details of the experiments and the analytical 

methods are described elsewhere, see e.g. [Pie11]. Previous radial and axial void distributions were evalu-

ated taking into account the total cavity volume. From Fig. 7 it is obvious that the characteristics of the 

axial void distribution should be evaluated more correctly using a cylinder that does not include the layers 

close to the cylindrical wall. Correspondingly, a cylinder without bottom and top layers should be better 

suited to evaluate the radial distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Definition of inner cylinders. 

 

Fig. 10 shows the resulting inner volumes. Different values were assumed for the thicknesses of the 

wall zones at the cylinder (4 layers with a total thickness of 7.2mm) and the bottom and top plates (6 layers 

with a thickness of 10.8mm). This fact takes into account that near flat walls the structured packing is 

more pronounced than near curved walls. 

Figure 11a shows the axial distributions evaluated for the total (“..t”) and inner (“..i”)  volumes: the 

values for the inner volume are distinctively smaller; the fluctuations close to the wall are more expressed. 

The differences in the radial distributions (Fig.11b) are negligible. 

Fig. 12 shows void fraction distributions for the inner volumes as a function of the normalized wall dis-

tance z/d. The radial distribution is characteristic for the cavity diameter to sphere diameter ratio of 

D/d=21 whereas the axial distribution stands for the flat wall, D/d= . The void distribution for the flat 

wall is much more complex than that for D/d=21, caused by the fact that here structured packings are the 

most expressed. Applying the procedure of [Rid68] and using sphere wall coverage ratios  from the ex-

periment, void distributions were calculated for the first wall layer both for D/d=21 and the flat wall, see 
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Fig. 13. For the flat wall, the calculated and measured distributions agree fairly well which again demon-

strates that in this case predominantly a hexagonal packing exists. 

The evaluation of axial and radial void fraction distributions for the different volumes allows also the 

determination of void fractions, respectively, packing factors, in characteristic zones, see Fig. 14. The 

packing factors of the bulk, bottom and top zones are very similar with values larger than 64%. The values 

in the cylindrical zone are about 60% in the corner regions and about 61 % in the middle zone.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                  a.   axial void fraction distributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                               b.   radial void fraction distributions 

 

Fig. 11. Axial and radial void distributions in the total container volume and in its inner volumes. 
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The packing factor for the total volume is 62.3%. It should noted, that the value for the inner bottom zone 

is even slightly larger than that of the bulk, whereas at the top the value for the inner bottom zone is even 

slightly larger than that of the bulk, whereas at the top the value is smaller. The smaller value is caused by 

the fact that - during filling and subsequent densification - less pebbles can get in contact with the adjacent 

plate than in the bottom zone.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. Void fraction distributions (inner volumes) for flat plate and cylindrical wall (D/d=21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13. Measured and calculated void distributions for the first layer adjacent to a flat wall. 
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Fig. 14. Packing factors (%) in characteristic container zones. 

 

The important conclusion from the present result is that the packing factor in wall zones decreases with 

decreasing D/d. For flat walls, the value can be about the same as for the bulk at least for mono-sized 

spherical particles. The reported results should not be extrapolated quantitatively to other experimental 

conditions e.g. to pebble beds consisting of particles with a distinct variation in size and shape. Further 

tomography investigations would improve considerable our understanding of these types of pebble beds.  

 

 



 

 

3 Experimental work 

3.1 Cavity geometries  

The experiments were performed in the Karlsruhe Beryllium Handling Facility, KBHF, [Kur09]. The 

main goal was the measurement of packing factors with non-spherical beryllium grades. The limited 

amounts of these materials dictated the dimensions of the Plexiglas containers:  the cylindrical container 

with D = 50mm, Hmax = 65mm and the square one with a volume of 100x100x10mm. In order to generate a 

broader data base, a square container with 100x100x20mm was also manufactured for the investigation of 

other granular materials, see Fig. 15. The cylindrical container was operated either by using a moveable 

piston at the top of the pebble bed (Type A cavity), or by fixing its dimensions (Type B cavity). With the 

arrangement of Type A, conventionally used in previous investigations, experiments with different bed 

heights H were performed. The Type B cavities are more representative for technical applications; both the 

cylindrical and square cavities were filled in tilted positions through a 4mm opening at the top corner. 
 

   
 

         Type A container with different pistons                                        Type B containers  

Fig.15. Container geometries. 
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3.2 Granular materials  

Table 1 lists characteristics of the investigated granular materials; photographs of pebbles are shown in 

Fig. 16. Before channelling the experimental set-up into the glove-box required for the beryllium experi-

ments, investigations were performed with glass, steel and lithium orthosilicate (OSi) spherical particles. 

The OSi experiments were carried out using an argon purged plastic glove-box in order to avoid the uptake 

of humidity. 

 

 
Material nominal 

diameter 
 d(mm) 

diameter 
distribution 
(mm) 

material 
density 
(g/cm3) 

pebble/ 
Material 
density 
(%)  

morphology 

glass 0.4 0.4 0.25 - 0.65  100  
   spherical, smooth 

 glass 0.65 0.65 0.55 - 0.75  100 

glass 1.0 1.0 0.85 - 1.25  100 

OSi 0.3 0.3 0.25-0.65  95 spherical with indentations 

steel 2.0 2.0 2+-0.05  100   spherical, smooth 
 steel 4.0 4.0 4+-0.05  100 

beryllium 1 1.0 0.8 -1.2  98 spherical with indentations 

beryllium A 1   98 nonspherical; crushed material 
with rounded edges beryllium B 1.5   98 

beryllium C 1.5   98 

beryllium D 1.5   98 

Tab. 1.: Single-size granular materials. 

Five different beryllium batches were investigated: nearly spherical pebbles with a mean diameter of 

1mm used also in previous investigations, see e.g. [Rei06a], produced by NGK, Japan, via the rotating 

electrode process (Be-1), and four materials manufactured by crushing sintered beryllium blocks and sub-

sequent grinding.  As a result, non-spherical pebbles are fabricated and the values of the largest pebble 

dimension reach up to 2.5mm. As a characteristic diameter, a value of 1.2mm is assumed. The batches Be-

A, B, and C were produced by Bochvar Institute, Russia, and differed in grain size. The batch Be-D origi-

nated from Materion, USA, formerly Brush Wellman. The very small available amount of this material 

restricted however the range of experiments. 
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          OSi 0.30               Glass 0.35              Glass 1.0                   Steel 2.0                 Steel 4.0   

 

 
          Be-A                       Be-B                        Be-C                        Be-D                      Be-1 

 

Fig.16. Pebble images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17. Size distribution of some granular materials. 

 

The size distribution of some of the used materials is shown in Fig. 17. The batches are denominated 

according to their mean diameters, and are considered as single-size batches in order to differentiate them 

from mixtures of these which are named as multi-size materials. The diameters of the steel spheres deviate 

only marginally from the nominal diameter. The 2mm steel spheres were selected because the experi-

mental parameters are close to those of the previously discussed experiment E0. The 4mm steel pebbles 
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resemble those used in former tomography experiments (not mentioned in this report). In this case, the D/d 

value is so small, that a bulk zone no longer exists.     

It should be reminded here that the packing factor , defined as the ratio of volume occupied by the 

pebbles, Vpebbles, to volume of the cavity, Vcavity, and is given by 

 

                   (1)  = Vpebbles/Vcavity = mpebble bed/((1-P) Vcavity), 

 

where mpebble bed is the total mass of pebbles,  is the density of the pebble material, and   P is the  

 

 

 

 

 

 

 

 

 

a:    Definition of  repose angle  

 

 

 

 

 

 

 

 

 

 

                                                    b:    Results  

            

Fig.18. Repose angles of the investigated materials. 
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porosity of the pebbles. Whilst for the glass and steel spheres a porosity P = 0 was assumed, P = 0.05 was 

used for the OSi pebbles as found by Hg porosity measurements [Kni07] and, for Be-1, P = 0.02, as used 

previously. For the other Be batches, P = 0.02 was also assumed. 

 

Fig. 18b displays results of the repose angle of some batches, measured after pouring  the granular ma-

terials in a square cavity, see  Fig. 18a. The repose angle is a measure of the pebble friction and is expected 

to influence the pebble bed packing. The repose angle  generally increases with increasing surface rough-

ness, irregular shape, and particle size. The smooth spherical glass spheres show values between 23.5-26°, 

a value of     28° for the rather spherical 1mm Be pebbles was found and the strongly irregular pebble 

shapes of Be-A, B, and C resulted in values of about 40°. 

Table 2 shows that also mixtures of the materials listed in Table 1 were investigated. These materials 

were either blended before filling or the large spheres were first poured in and then the small ones. 

 

 

 

 

 

 

 

 

 

 

                              Table 2. Multi-size granular materials (equal volume fractions). 

 

In order to obtain dense packs, energy must be introduced into the system by knocking the container 

walls or vibrating the containers to such an extent that pebbles can overcome frictional forces with neigh-

bouring pebbles in order to find positions with the smallest potential energy. For vibration, a vibration 

table (Renfert Vibrax Vibrator M-13295) was used which operated at (230 V / 50 Hz) with different ampli-

tudes. 

 

Granular material Filling  

glass 0.35 + 0.65 blended 

glass 0.35 + 1.0 

glass 0.35 + 0.65 +1.0 

steel 2.0 + 4.0 

steel 2.0 + glass 0.35 separate 

steel 4.0 + glass 0.35 





 

 

4 Results 

4.1 Densification techniques 

Filling the containers by a funnel resulted in non-densified pebble beds with packing factors of about 

59%. Densification of the bed can be achieved either with i) a free pebble bed surface (Type A cavity 

without piston or stepwise filling of a Type B cavity) or ii) without a free surface (Type A cavity with 

piston or initial complete filling of a Type B cavity).     

The segregation issue of densification by vibration of multi-size pebble beds was already mentioned 

before. However, densification via vibration poses also problems for single-size granular materials if the 

vibration energy is large enough to cause granular convection.  Convection flows can happen only in loos-

ened pebble beds, hence, a priori, a dense packing does not exist in these zones. 

In pebble beds with a free surface, the vibration energy required for convection flow generation in-

creases with decreasing fraction of the free surface to the surrounding wall surface. If, for instance Type B 

cavity is filled in the tilted position to about 50%, a small vibration energy is sufficient to generate a con-

vection flow in almost the complete pebble bed, see Fig.19. For the same vibration parameters and a filling 

of 90%, the convection flow restricted to a very small zone at the top. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.19. Granular convection flow. 

Despite of the detrimental effect of convection flows described above, these flows can be helpful under 

controlled conditions to generate dense packs, especially in large cavities of Type B. Stepwise filling is 
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recommended; for each filling level, the convection flow should be adjusted stepwise in such a way that 

the flow region becomes smaller and shifts upwards. The idea is that at the lower border of the convection 

region the pebbles can achieve dense arrangements of positions. 

The alternative to densification by vibration is hammering/knocking against container walls. Again, 

similar problems occur:  in order to affect the lower part of the pebble bed, energies are required which, on 

the other hand, cause a pebble bed loosening in the upper part.   

In the present experiments, a combination of vibration and knocking was generally applied. The pa-

rameters could be visually controlled, and the obtained packing factors are generally larger than in previ-

ous investigations where often steel containers were used, see e.g. [McG63].  The values obtained are 

probably at the upper limit of the range of values achievable in large blanket components 

The above statements emphasize that it is not possible to recommend unique densification parameters 

for large pebble bed containers. Even for a given container, the parameters depend on the filling level, and 

relevant pre-tests are highly recommended. 

4.2 Pebble bed packing characteristics 

For visualization of pebble structures, the steel spheres were best suited. Fig. 20 shows 2mm spheres in 

the Type A cavity after densification: hexagonal structures of the layers at the cylindrical wall and bottom 

plate are well developed; ordered structures at the top plate (piston) exist to a much lesser extent. During 

filling, the spheres at the bottom plate arrange already in a quite close-packed array; densification enforces 

then this tendency. At the pebble bed top, the pebbles, except those in the cylindrical wall layer, arrange 

irregularly after filling, like those in the bulk zone. With the movable piston on top of the bed and subse-

quent densification, the generation of contacts with the upper wall is favoured and, to a smaller degree, 

also the development of regular structures. In Fig. 20, the differences in the wall layers can be seen. 

 

 
                  a ) cyl. wall layer                     b) bottom plate layer               c) top plate layer  

 

Fig. 20. Cylindrical cavity, H = 32.5mm, 2mm steel spheres,  = 63.85%.  
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Results for the square cavity are presented in Fig. 21: the denser packing is visible at the bottom sides 2 

and 3, as compared to the top sides 1 and 4. For a blanket breeder unit, side 2 would correspond to the First 

Wall; a dense packing would promote heat transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Square cavity, H = 20mm, 2mm steel spheres,  = 64.19%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Cylindrical cavity, H = 65mm, Be-1,  = 61.85%.  
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The next figures contain photographs of beryllium batches. The pictures were taken through the Plexi-

glas glove-box pane, therefore, the quality is worse compared to the previous figures. Figures 22 and 23 

show cavities filled with Be-1. Although these pebbles are quite spherical, regular patterns are much less  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  23. Square cavity, H = 10mm, Be-1,  = 62.19%. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Square cavity, H = 10mm, Be-A,  = 62.0%. 
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pronounced than for the steel spheres. The visual differences between the different cavity sides are 

much smaller, see Fig. 23. One reason for the smaller regularity of the Be-1 pebbles might be the signifi-

cantly larger diameter variation with respect to the steel spheres. 

Fig. 24 shows the non-spherical particles Be-A in the square cavity. Regular pebble arrangements are 

not detected, however, the particles tend to align their largest side along the wall. This fact is also consid-

ered as structured packing; the question is to which extent this tendency also exists in the next inward wall 

layers. Tomography experiments with this type of pebbles would allow measuring void fraction distribu-

tions and determining local packing factors for the wall and bulk zones. It should be noted that the largest 

particle size preferentially being in contact with the wall is expected to be beneficial for heat transfer. 

Fig. 25 a) and b) show examples for blended multi-size glass sphere beds. Segregation occurred be-

cause i) segregation existed already in the filling bottle, and ii) according to the sifting effect, see Fig. 2. 

Although the effectiveness of vibration parameters was controlled visually, segregation could not be 

avoided completely. 

Fig. 26a) shows a binary bed consisting of 4mm steel and 0.35mm glass spheres, dl/ds = 11.4, where, 

first, the large steel spheres were poured into the cavity and densified until particle movement no longer 

occurred. Then, the glass spheres were poured in through the small opening and vibrated. At one container 

corner, a gap was formed during this vibration period, therefore, the filling is not complete. The container 

failure is an indication for the occurrence of large forces during vibration of binary beds with large dl/ds 

ratios. In experiments with similar binary beryllium experiments, pressures of 6MPa were measured at the 

container walls [Gor12]. 

  

 
                                   a)                                                                         b)  

 

Fig. 25. Binary pebble beds; a) glass spheres, dl = 0.65mm, ds = 0.35mm,  = 65.0%; b) glass spheres, 

dl = 1.0mm, ds = 0.35mm,  = 67.7%.  
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                                                a)                                                     b) 

 

Fig. 26. Binary bed with a) 4.0mm steel spheres and 0.35mm glass spheres, b) 2.0mm steel spheres and 

0.35mm glass spheres. 

The binary bed consisting of 2mm steel and 0.35mm glass spheres was generated in a different way: 

First, the container was filled to about 30% with the steel spheres, then, covered with a layer of glass 

spheres. A modest vibration caused the movement of the small spheres in the gaps between the large 

spheres. This procedure was repeated several times until the container was completely filled. No homoge-

nous filling was obtained as can be seen in Fig. 26b. 

4.3 Packing Factors 

4.3.1 Packing factors of single-size granular materials 

Fig. 27 shows packing factor versus pebble bed height results for spherical pebbles in a cylindrical cav-

ity. As mentioned before, all experiments were performed with a piston on top of the pebble bed (Type A 

cavity) except for H=65mm, where the top plate was fixed (Type B cavity).  For pebble diameters d  

1mm, the ratio D/d is  50. With this, the cylinder wall should hence play a negligible role, except for the 

4mm steel spheres. The data should thus be representative for shallow pebble beds and the relevant para-

meter is the H/d ratio. However, the previous statement, that below D/d  20 a wall effect occurs, resulted 

from experiments with long cylinders. For decreasing H, the corner zones have an increasing influence, cf. 

Fig.14. Therefore, the result for the 2mm steel spheres at H=10mm might be influenced by this effect. The 

same holds even more for the 4mm steel spheres, where an expressed bulk zone does not exist at all H. 

For pebble diameters d  1mm, there is a weak tendency for  to increase with decreasing H. This ten-

dency differs characteristically from that found in long cylinders where D/d  is the characteristic parame-

ter. With decreasing H, the bulk zone becomes smaller and the influence of the flat wall zones increases. 
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The moveable top plate favours also the development of structured packs at the top wall, which is associ-

ated with a large local packing factor, cf. Fig.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27 Single-component packing factors for cylindrical cavities with different heights. 

 

At large H, the obtained packing factors are generally larger (exception: 4mm steel sphere beds) than 

those reported by [McG63]. The reasons for this can be i) more efficient densification procedures, and/or 

ii) the fact that most “single-size” materials consist of pebbles with a larger size spread than those used by  

[McG63].   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. Single-size packing factors for H = 10 and 20mm for cylindrical (left) and square (right) cavi-

ties.  
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Packing factors of the OSi pebble and the 0.35mm glass sphere beds are about the same. Both pebble 

batches have a similar diameter spread and repose angle, see Figs. 17 and 18. The present OSi values agree 

very well with those defined previously as reference values [Rei04]. For Be-1,  is about 62.5% [Rei06a]. 

This value is about 1% smaller than the comparable 1mm glass pebble bed.  The difference is attributed to 

the rougher surface of the Be pebbles and the smaller sphericity. 

The maximum height H = 65mm belongs to the Type B cavity. The packing factors are similar to those 

for large bed heights with the piston on the top. 

Fig. 28 shows results for H=10 and 20mm both for the cylindrical Type A cavity and the square Type B 

cavity. Fixed cavity walls partly result in less dense packs, as shown in Section 4.2, thereby lower packing 

factors are expected in square Type B cavities. This is generally found for the H=10mm cavity but to a 

much smaller extent for the 20mm cavity; see e.g. the results for Be-1. However, for square cavities with 

H in the range of 30mm or more, used in present HCPB blanket designs, the packing factor for Be-1 is 

expected to reach the reference value of 62.5%. 

For OSi, packing factors of about 64.5% were obtained in both square cavities. The H/d ratio is consid-

erably larger than 10 for the 10mm cavity, furthermore, the small repose angle might promote the for-

mation of dense packs in small closed cavities. This is an important result because in several blanket de-

signs bed heights between 10 and 20mm are considered. 

The packing factors for the 2mm steel spheres are also surprisingly high in the 20mm cavity, although 

H/d is only 5, probably caused by the very regular packing in the wall zone, cf. Fig. 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Packing factors for different granular beryllium materials in cylindrical cavities.  
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Fig. 29 shows results for the different beryllium grades in the cylindrical cavity. The mean packing fac-

tors for all materials, except Be-B, are very similar although repose angles differ considerably between Be-

1 and the other grades. One reason might be the formation of dense wall layers by the irregularly shaped 

pebbles owing to the fact that these particles tend to align their largest side along the wall, see Fig. 24. As 

mentioned before, densification with the movable piston might favour this formation. The low values for 

Be-B can be explained in different ways: i) this grade has a much rougher appearance than the other 

grades, confirmed by the largest repose angle, see Figs. 16, 18b. This large roughness was probably caused 

by a non-perfect sintering process [Kur12] which also could result ii) in a larger value of the pebble po-

rosity than that assumed for all beryllium grades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. Packing factors for different granular beryllium materials in square cavities.  

 

Figure 30 shows results for the square cavity. The available amounts of Be-A, B, and C sufficed just to 

fill the 10mm cavity. As observed for the spherical pebbles, the packing factor in the cavity with fixed 

walls is smaller than that with the movable wall. Again, it is expected that with increasing bed heights the 

packing factor increases, as for Be-1. 
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4.3.2 Packing factors of multi-size granular materials 

Results for multi-size particle mixtures in the cylindrical Type A cavity are shown in Fig. 31. As men-

tioned before, packing factors should increase with increasing ratio of dl/ds. All experiments were per-

formed with blended materials, therefore, segregation effects could not be avoided. For the mixtures of 

0.35 + 0.65mm, and 0.35 + 1mm glass spheres, packing factors of 66 and 69%, respectively, were ob-

tained. These values are below those calculated by the correlations proposed by [Jes64], i.e. 67.3 and 

69.4%, respectively. For a ternary mixture of glass spheres, also a packing factor larger than that of a sin-

gle component pebble bed was found; again, significant segregation effects were visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Multi-size packing factors for cylindrical cavities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. Multi-size packing factors for square cavities.  
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Results for the square cavities are presented in Fig. 32. Filling up the containers with blended material 

through the small opening causes even stronger segregation because of the sifting effect. As a conse-

quence, the packing factors are smaller compared to the cylindrical cavity.  For the binary beds with steel 

and glass pebbles, produced as described in Section 4.2,   = 84.2% was obtained for the 4mm steel and 

0.35mm glass sphere bed which agrees well with the results shown in Fig. 5. The value of  = 75.6% for 

2mm steel and 0.35mm glass sphere bed is lower due to significant segregation effects. 

 

 

 

 

 

 





 

 

5 Conclusions 

 

The objective of the present investigations is to determine packing factors in cavities with flat walls and 

bed heights relevant for both ceramic and beryllium pebble beds in combination with blanket-relevant 

filling conditions.  

In the past, packing factor experiments focused mainly on cylindrical cavities and a decrease of the 

packing factor with decreasing ratio of cylinder diameter to pebble diameter was observed. In cavities with 

flat walls and small widths (bed heights H), the ratio H/d is the relevant parameter.  

New analyses of recently performed tomography investigations at the European Synchrotron Radiation 

Facility (ESRF) showed quantitatively that for flat walls packing factors in the wall zone are as high as in 

the bulk zone, in contrast to the values obtained near cylindrical walls and corner zones.  

Experiments with a cylindrical cavity and a movable piston on the top showed the tendency of  the 

packing factor to even increase slightly with decreasing bed height. This was attributed to the fact that for 

this experimental condition, the development of structured packs close to the flat walls is favoured. 

The experiments with closed square cavities indicated that for both beryllium and OSi pebble beds the 

reference values of the packing factors obtained in large cavities are reached for blanket-relevant bed 

heights (10-20mm for OSi and 30mm or more for beryllium).  

Whereas most pebble grades had rather spherical shapes, the experiments with granular beryllium were 

performed with five different batches: the reference material with almost spherical 1mm diameter pebbles 

and four other grades with quite irregular shapes and a characteristic diameter of about 1.2mm, originating 

from crushed beryllium blocks. The results for the reference materials and three other grades behaved very 

similarly for all experimental parameters, although, visually the wall layers looked quite different. 

Further experiments with the non-spherical materials are required in order to judge if these materials 

could be candidates for blankets; the next steps should be uniaxial compression tests and thermal conduc-

tivity measurements. 

Additional tomography experiments would increase considerably the understanding of the morphology 

and topology of these pebble beds. 
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