
A
rs

en
ic

 in
 g

ro
un

dw
at

er
 o

f 
W

es
t 

Be
ng

al
: I

m
pl

ic
at

io
ns

 f
ro

m
 a

 fi
el

d 
st

ud
y

H
. N

ei
d

h
ar

d
t

Karlsruher Mineralogische und Geochemische Hefte
Schriftenreihe des Instituts für Mineralogie und Geochemie

 39

Harald Neidhardt

Arsenic in groundwater of West Bengal: 
Implications from a field study

Impact of groundwater abstraction and of the 
organic matter on release and distribution of
arsenic in aquifers of the Bengal Delta Plain, India





Harald Neidhardt

Arsenic in groundwater of West Bengal: 
Implications from a field study

Impact of groundwater abstraction and of the organic matter 
on release and distribution of arsenic in aquifers of the Bengal 
Delta Plain, India



Karlsruher Mineralogische und Geochemische Hefte

Schriftenreihe des Instituts für Mineralogie und Geochemie, 

Karlsruher Institut für Technologie (KIT)

Band 39



Arsenic in groundwater of West Bengal: 
Implications from a field study

Impact of groundwater abstraction 
and of the organic matter on release 
and distribution of arsenic in aquifers 
of the Bengal Delta Plain, India

by 
Harald Neidhardt



Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz 
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2012
Print on Demand

ISSN 1618-2677
ISBN 978-3-86644-941-1

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften, 2012
Referenten: PD Dr. Stefan Norra, Univ.-Prof. Dr. Thomas R. Rüde

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und  
nationales Forschungszentrum in der Helmholtz-Gemeinschaft







Impact of groundwater abstraction and 
of the organic matter on release and 

distribution of arsenic in aquifers of the 
Bengal Delta Plain, India 

Zur Erlangung des akademischen Grades eines 

DOKTORS DER NATURWISSENSCHAFTEN 

von der Fakultät für 

Bauingenieur-, Geo- und Umweltwissenschaften 
des Karlsruher Instituts für Technologie (KIT) – Universitätsbereich 

genehmigte 

DISSERTATION  

von 

Diplom-Geoökologe Harald Neidhardt 

aus Karlsruhe 

Tag der mündlichen Prüfung: 04.07.2012 

Hauptreferent: PD Dr. Stefan Norra 

Korreferent: Univ.-Prof. Dr. Thomas R. Rüde 

Karlsruhe 2012





     "Der denkende Mensch irrt besonders, wenn er sich 
nach Ursache und Wirkung erkundigt: sie beide 
zusammen machen das unteilbare Phänomen.  
Wer das zu erkennen weiß, ist auf dem  
rechten Weg zum Tun und zur Tat!" 
Johann Wolfgang von Goethe 





 

 

ABSTRACT 

Naturally occurring arsenic-bearing groundwater threatens the health of 

millions of residents in the Bengal Delta Plain (BDP), which is amongst 

other Asian regions one of the most severe affected areas worldwide. For 

more than three decades, inhabitants have been exposed to arsenic-

enriched groundwater, which is the often available source of presumably 

safe drinking water. This fatal misconception resulted in the widespread 

occurrence of chronic arsenic (As) intoxications. After more than two 

decades of intensive research, the interactions of biogeochemical 

processes induced by metal-reducing microbes and hydrological conditions 

have been identified as cause of locally high concentrations of dissolved As 

in shallow groundwaters. The present thesis aims at assessing the relative 

roles of biological and inorganic controls that underlie As mobilisation and 

accumulation at two study sites with contrasting As concentrations. 

Based on a comprehensive sampling campaign in the Nadia district 

(West Bengal, India), an area well known for the occurrence of high As 

concentrations in shallow groundwater, two representative study sites were 

chosen. At each site, five nested monitoring wells were installed. The well 

screens cover different depth ranges and reach down to a depth of 45 m 

(low As site) and 37 m (high As site). During well drilling, sediment samples 

were taken in regular intervals of 0.65 m and the lithology was recorded. 

The lithology at both sites is similar. Fine and medium sandy aquifer 

sediments are capped by thin clayey and silty layers that form a surface 

aquitard. Here, mottles of secondary Mn- and Fe-(oxyhydr)oxides are 

accompanied by highest sedimentary As contents of up to 122 mg kg-1. This 

depth range represents rather a sink for As than a source. Despite this, 

average sedimentary As contents of the underlying aquifer sands are 

characteristically low (high As site: 3.8 ± 1.2 mg kg-1, low As site: 3.2 ± 1.3 

mg kg-1). Sequential extractions and statistical interpretations of geo-

chemical element analysis revealed that Fe-(oxyhydr)oxides are the primary 

hosts for surface adsorbed as well as incorporated As. 
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II 

Isotopic signatures of C and N were combined with C/N ratios 

determined from sedimentary organic matter to draw conclusions regarding 

the highly dynamic sedimentation history of the study area. 

High concentrations of HCO3
- (>400 mg L-1), Mn (>0.35 mg L-1), Fe 

(>1.10 mg L-1), PO4
3- (>1.10 mg L-1) and the absence of NO3

- and partially 

even SO4
2- reflect pronounced microbial influences on the chemical compo-

sition of groundwater at the study sites, which resulted in moderate to 

strongly reducing conditions. Additionally, multiple and superimposed pro-

cesses of groundwater evolution formed hydrochemically stratified water 

columns, particularly at the high As site. Characteristic As concentrations 

ranged from 98.0 to 296 µg L-1 at the high As site and varied between 49.1 

and 155 µg L-1 at the low As site. The reduced form As(III) was constantly 

the prevailing As species. 

After a one year long monitoring period, in-situ field experiments were 

performed. At the low As site, indigenous microbes were locally stimulated 

by infusing dissolved sucrose (saccharose) into the aquifer. This provoked a 

stimulation of Fe(III)-reducing microbes as indicated by Fe(II) concentra-

tions in groundwater that temporary increased 36-folds. Although As 

concentrations concomitantly rose by up to 48.6 %, As mobilisation was 

decoupled from the reductive dissolution of metal oxides and the release of 

other trace elements with partly steep raises (Zn x 78.0, Co x 47.3, Ni x 

36.5, and V x 33.1). The release of As into groundwater is primarily 

attributed to reductive dissolution of the hosting Fe-(oxyhydr)oxides, 

although an influence of As(V)-reducing microbes cannot be excluded. The 

decoupling of As release from microbial activity in general, and from Fe(III) 

reduction in particular, points at a fast adsorption of dissolved As to residual 

and/or newly formed Fe-minerals. 

At the high As site, investigations focused on abiotic aspects of the As 

distribution in local groundwater. Here, extensive abstraction of shallow 

groundwater was simulated. The extraction promoted a rapid increase of As 

in the upper pumping well from 83.4 to 296 µg L-1, which was caused by 

mixing with arsenic-enriched groundwater from deeper layers. 
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Between December 2008 and August 2010, all ten monitoring wells 

were sampled in regular intervals of two weeks. At the low As site, active As 

and Fe mobilisation occurred in the shallowest monitoring well (well screen 

located in 12-21 m below land surface), which was additionally super-

imposed by seasonal fluctuations. These temporal trends were directly 

linked to vertical oscillations (~1.55 m) of the water table between the dry 

season and the monsoon rains. At the high As site, temporal trends in the 

local groundwater hydrochemistry appeared in one well, too. These 

changes were induced by clear pumping of a newly installed well 

(2008/2009) and by the groundwater abstraction experiment (2009/2010). 

Monitoring results further revealed that the hydrochemistry at both sites 

subsequently returned to the initial baseline values in the following weeks 

after the in-situ experiments were finished. The patterns of As release 

during the monitoring and the injection experiment strongly suggest that As 

release at the low As site was induced by Fe(III)-reducing microbes. Results 

further demonstrate that temporal fluctuations in dissolved As occur in 

shallow groundwater of the investigation area. Such temporary trends can 

either arise from active As release by microbial metabolic reactions and/or 

from vertical and horizontal flow of the hydrochemically stratified ground-

water body. This flow originates from seasonal fluctuations of the ground-

water table, but it can also be connected to groundwater abstraction. 

The abstraction experiment clearly shows that pumping endangers the 

limited and still arsenic-free groundwater resources of the BDP. Results 

were discussed in context with findings of previous studies in an effort to 

develop an advanced concept of As release and distribution within the 

investigation area. The outcomes of this concept can be further transferred 

to the entire BDP as well as other affected Asian regions. This concept is 

based on the close relationship, which exists between As, Fe and PO4
3- 

during water-sediment interactions and arises from microbial Fe(III) 

reduction. This induces in turn concomitant precipitation and transformation 

of Fe-minerals and competitive adsorption of dissolved As and PO4
3-.  

The active zone of As release and enrichment occurs in reducing aquifer 

parts in approximately 20 to 40 m depth, where a biogeochemically 

controlled environment of competing As release and retention prevails. 





ZUSAMMENFASSUNG 

Natürlich auftretende hohe Gehalte an Arsen (As) im Grundwasser ge-

fährden die Gesundheit von Millionen Einwohnern der Bengalischen Delta 

Ebene (BDE). Diese ist, neben anderen Regionen Asiens, eines der welt-

weit am stärksten von diesem Phänomen betroffenen Gebiete. Seit mehr 

als drei Jahrzehnten sind die Bewohner arsenhaltigem Wasser ausgesetzt, 

welches die oftmals einzig verfügbare Quelle für vermeintlich sicheres 

Trinkwasser darstellt. Diese tragische Fehleinschätzung führte zu einer 

andauernden Exposition, was letztendlich zum massenhaften Auftreten von 

Symptomen chronischer Arsenvergiftung führte. Nach mehr als zwei Jahr-

zehnten intensiver Forschung konnten Wechselwirkungen zwischen bio-

geochemischen Prozessen (hervorgerufen durch metallreduzierende 

Bakterien), sowie die örtlichen hydrologischen Rahmenbedingungen als 

Ursache der hohen Arsengehalte in oberflächennahem Grundwasser 

identifiziert werden. Ziel der vorliegenden Studie ist es, die relativen Anteile 

biologischer und abiotischer Kontrollmechanismen an der Freisetzung und 

Anreicherung des Arsens am Beispiel zweier Standorte mit gegensätzlichen 

Arsengehalten zu ermitteln. 

Basierend auf einer umfangreichen Analyse des lokalen Grundwassers 

wurden zwei repräsentative Untersuchungsstandorte im Nadia Distrikt des 

indischen Bundesstaates West Bengalen ausgewählt, welcher bekannt ist 

für das Vorkommen erhöhter Arsengehalte im Grundwasser. An beiden 

Standorten wurden jeweils fünf in unterschiedlichen Tiefenbereichen 

verfilterte Grundwassermessstellen eingerichtet. Die Filterstrecken decken 

verschiedene Teilbereiche des Aquifers ab. Im Falle des niedrig arsen-

belasteten Standorts reichen diese bis zu einer Tiefe von 45 m, während 

der hoch arsenbelastete Standort bis in 37 m Tiefe verfiltert ist. Während 

der Installation der Messstellen wurden fortlaufende Kernproben von je 

0.65 m Länge gewonnen. Dabei wurde zusätzlich die auftretende Lithologie 

erfasst, welche an beiden Standorten sehr ähnlich ist.  
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Die aus Fein- und Mittelsanden aufgebauten Grundwasserleiter werden 

jeweils von dünnen, tonigen und schluffigen Schichten überdeckt, welche 

einen an der Oberfläche anstehenden Grundwasserhemmer bilden. Dieser 

Bereich erscheint durch das Auftreten von sekundären Mangan- und Eisen-

(oxyhydr)oxiden als marmoriert, wobei hier die höchsten sedimentären 

Arsengehalte von bis zu 122 mg kg-1 nachgewiesen werden konnten. Diese 

jüngsten Ablagerungen scheinen daher eher eine Senke denn als eine 

Quelle für Arsen zu sein. Im Gegensatz dazu sind die durchschnittlichen 

Arsengehalte der darunterliegenden Grundwassersedimente deutlich 

niedriger (hoch arsenbelasteter Standort: 3.8 ± 1.2 mg kg-1, niedrig 

arsenbelasteter Standort: 3.2 ± 1.3 mg kg-1). Sequentielle Extraktionen und 

statistische Auswertungen der Elementanalysen zeigten außerdem, dass 

Eisen-(oxyhydr)oxide die primäre Quelle für oberflächenadsorbiertes, sowie 

in die Kristallstruktur eingebundenes Arsen darstellen. Die Isotopen-

signaturen (δ13C und δ15N) sedimentärer organischer Substanz wurden 

zusammen mit den C/N Verhältnissen dazu verwendet, die dynamische 

Sedimentationsgeschichte des Untersuchungsraumes zu rekonstruieren. 

Durchgehend hohe Gehalte von gelöstem HCO3
- (>400 mg L-1), Mn 

(>0.35 mg L-1), Fe (>1.10 mg L-1), PO4
3- (>1.10 mg L-1) und die Abwesenheit 

von NO3
- sowie stellenweise SO4

2- zeugen von einem starken Einfluss 

mikrobieller Prozesse auf die chemische Zusammensetzung des Grund-

wassers im Bereich der Untersuchungsstandorte. Dies führte zu moderaten 

bis stark reduzierenden Redox-Milieus im Aquifer. Mehrere, sich teils über-

lagernde Prozesse der Grundwasserentwicklung erzeugten im Laufe der 

Zeit hydrochemisch stark differenzierte Wasserkörper, was besonders beim 

hoch arsenbelasteten Standort deutlich wird. Typische Arsengehalte 

variierten hier zwischen 98.0 und 296 µg L-1, während die Gehalte des 

gering belasteten Standortes zwischen 49.1 und 155 µg L-1 lagen. Dabei 

stellte reduziertes As(III) die generell dominierende Arsenspezies im 

Grundwasser dar. 

Nach einem Jahr regelmäßiger Probenahme wurden in-situ Feld-

experimente durchgeführt. Beim gering mit Arsen belasteten Standort 

wurden indigene Bakterien innerhalb des Aquifers durch die Zugabe 

gelöster Saccharose angeregt. Dies bewirkte eine erfolgreiche Stimulierung 



ZUSAMMENFASSUNG 

VII 

Fe(III)-reduzierender Bakterien, was durch kurzfristige, aber teilweise starke 

Anstiege der Gehalte an gelöstem Fe um das bis zu 36-fache des Aus-

gangsgehaltes verdeutlicht wurde. Obwohl die Arsengehalte im Grund-

wasser parallel dazu um bis zu 48.6 % anstiegen, erscheint die 

Mobilisierung generell entkoppelt von der reduktiven Auflösung von Metall-

(oxyhydr)oxiden und den dabei freigesetzten Mengen anderer Spuren-

elemente, welche teilweise extrem deutliche Anstiege verzeichneten (Zn x 

78.0, Co x 47.3, Ni x 36.5 und V x 33.1). Der Anstieg der Arsengehalte ist 

primär der reduktiven Auflösung von arsenhaltigen Fe-(oxyhydr)oxiden 

zuzuschreiben, wobei ein möglicher Einfluss  As(V)-reduzierender Bakterien 

nicht ausgeschlossen werden konnte. Die Entkopplung der Arsen-

mobilisierung von der Intensität mikrobieller Aktivität im Allgemeinen, sowie 

der Freisetzung von gelöstem Fe im Speziellen, deutet auf eine sofortige 

Adsorption von gelöstem As an residuale, beziehungsweise neugebildete 

Eisenminerale hin. 

Die Untersuchungen am stark mit Arsen belasteten Standort waren 

primär auf abiotische Aspekte der Verteilung von As im Grundwasser 

fokussiert. Hier wurde die massive Entnahme von oberflächennahem 

Grundwasser simuliert. Diese Entnahme verursachte einen raschen 

Anstieg der As Konzentrationen von 83.4 auf 296 µg L-1 im Grundwasser, 

welches der zentralen und gleichzeitig auch flachsten Grundwassermess-

stelle entnommen wurde. Änderungen in der hydrochemischen Zusammen-

setzung des Grundwassers sowie des Arsengehaltes konnten in diesem 

Bereich des Aquifers auf Mischungsprozesse  geschichteter Wasserkörper 

zurückgeführt werden. 

Zwischen Dezember 2008 und August 2010 wurden in den 10 Grund-

wassermessstellen in regulären Abständen von zwei Wochen Wasser-

proben entnommen. Bei dem gering arsenbelasteten Standort konnte im 

flachsten Beobachtungsbrunnen (verfiltert im Bereich 12 bis 21 m unter 

Geländeoberkante) ein Anstieg der Arsengehalte infolge aktiver Fe(III) 

Reduktion beobachtet werden, welcher durch saisonale Konzentrations-

schwankungen überlagert wurde. Die saisonalen Trends gingen direkt mit 

Änderungen der Standrohrspiegelhöhen bis zu 1.55 m einher, die zwischen 

der Trockenzeit und des Monsunregens auftraten. Im Falle des stark mit 
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Arsen belasteten Standortes konnten ebenfalls zeitliche Schwankungen der 

hydrochemischen Grundwasserzusammensetzung in einem der über-

wachten Brunnen verzeichnet werden. Diese Veränderungen konnten auf 

die Simulation der Grundwasserentnahme (2009/2010), sowie das Klar-

spülen des zentralen Brunnens nach dessen Neuinstallation (2008/2009) 

zurückgeführt werden. Die Resultate der Langzeitbeobachtung zeigten 

außerdem, dass die direkten Auswirkungen der beiden Feldexperimente auf 

die lokale Hydrochemie auf nur wenige Wochen beschränkt waren. 

Die beobachtete Freisetzung von As am gering arsenbelasteten Stand-

ort wurde sowohl während der Langzeitbeobachtung, als auch während des 

Biostimulationsexperimentes sehr wahrscheinlich durch die Stoffwechsel-

aktivität Fe(III)-reduzierender Bakterien hervorgerufen. Die Ergebnisse 

dieser Studie zeigen außerdem, dass zeitliche Schwankungen der Arsen-

gehalte in lokalem Grundwasser des Untersuchungsgebietes auftreten. 

Diese Schwankungen können einerseits durch die Tätigkeit anaerober 

Bakterien entstehen, andererseits aber auch durch horizontale wie vertikale 

Strömung im hydrochemisch geschichteten Grundwasserkörper. Eine 

solche Verlagerung kann wiederum auf saisonalen Schwankungen der 

Grundwasseroberfläche basieren, oder Folge einer intensiven Wasser-

entnahme sein. 

Diese Ergebnisse zeigen deutlich, dass Grundwasserentnahme die be-

grenzten und bisher noch arsenfreien Grundwasserressourcen innerhalb 

der BDE gefährden. Die Zusammenführung der Ergebnisse dieser Studie 

mit bereits publizierten Erkenntnissen hat zu einem neuen Konzept der 

Freisetzung und Verteilung von As innerhalb des Untersuchungsgebietes 

geführt, welches auch auf die gesamte BDE sowie weitere betroffene 

Gebiete Asiens übertragbar ist. Die zugrunde liegende Hypothese dieses 

Konzepts basiert auf einer engen Verbindung zwischen As, Fe und PO4
3- 

bei den auftretenden Grundwasser-Sediment-Wechselwirkungen und the-

matisiert die Freisetzung dieser Substanzen infolge mikrobieller Fe(III) Re-

duktion. Die Mobilisierung infolge von Fe(III) Reduktion ruft wiederum eine 

parallele Ausfällung und Transformation von Eisenmineralen hervor, was 

von einer konkurrierenden Resorption gelösten As und PO4
3- begleitet wird.  
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Der aktive Bereich der Arsenmobilisierung und Anreicherung wird in 

reduzierenden Aquiferbereichen in ungefähr 20 bis 40 m Tiefe vermutet, wo 

eine biogeochemisch kontrollierte Umgebung mit konkurrierender Arsen-

freisetzung und Zurückhaltung vorherrscht.  
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1. INTRODUCTION

1.1 BACKGROUND 

Providing freshwater for domestic use and new agricultural practices is 

becoming more and more important due to an increasing exploitation and 

pollution of the strictly limited water resources (UNESCO 2009). This is the 

current situation in the Bengal Delta Plain (BDP) that covers huge parts of 

the Indian state West Bengal and the bigger part of Bangladesh. Here, 

naturally occurring arsenic-bearing groundwater threatens the health of 

millions of residents (JOHNSTON et al. 2011, MATSCHULLAT 2000). For 

more than three decades, inhabitants are exposed to arsenic-enriched 

groundwater since millions of tube wells have been installed with support of 

international developing aid (SMITH et al. 2000). After symptoms of chronic 

arsenic (As) exposure had been diagnosed in the local population, inter-

national research began in the early nineties to monitor scale and origin of 

this calamity (e.g., BGS & DPHE 2001). Results soon revealed that As in 

groundwater is inorganic and geogenic in nature, with anaerobic microbes 

as key players in the biogeochemical cycling of As (ISLAM et al. 2004). 

Development of applicable mitigation strategies developed soon as an 

important scope of As research, while more and more affected countries 

and areas were identified in Asia as well as in other regions all over the 

world (NRIAGU et al. 2007). 

This present thesis arose from a German-Indian research project funded 

by the German Research Foundation (DFG) and the German Federal 

Ministry for Economic Cooperation and Development (BMZ), entitled “’The 

role of microbiogeochemical processes in releasing As from aquifer 

sediments in the Bengal Delta Plain (BDP): An experimental approach“ (Stu 

169/37-1). It is the underlying working hypothesis that As release originates 

from microbially mediated decomposition of organic matter (OM) under 

specific redox-conditions, and concurrently interferes with abiotic hydro-

logical and geochemical processes on a local to regional scale. 
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1.2 OBJECTIVE 

Stated aim of this thesis is to shed light on the biotic and abiotic controls 

of mobilisation and distribution of As in shallow groundwater of the BDP. 

The scientific focus is defined by the identification and description of two 

capable study sites, the characterisation of sediment samples, the 

conduction and interpretation of two in-situ field experiments and the inter-

pretation of hydrochemical monitoring data from both sites. The underlying 

research concept is illustrated in Figure 1.1. 

All results are combined in an effort to develop an advanced concept 

explaining the distribution of As in local groundwater, which is transferable 

to the entire BDP as well as other arsenic-affected regions in Asia. 

The key questions are: 

 How is As release linked to the availability of OM in the aquifer?

 Which biogeochemical reactions are induced by indigenous

microbial communities that control the mobilisation of As into

groundwater of the BDP?

 What are the specific local conditions that determine As

mobilisation, and how do such conditions arise?

 How does dissolved As response to interfering abiotic processes

like temporal changes in the groundwater level?
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Figure 1.1: Illustration of the research concept. 
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1.3 STATEMENT OF NOVELTY 

New aspects and approaches covered by this study are: 

1. The in-situ biostimulation experiment that was conducted at the low

As site to reveal biotic influences on the mobility of As. In contrast to the few 

previously conducted experiments using a similar approach (HARVEY et al. 

2002, SAUNDERS et al. 2008), no additional TEA substances like NO3
- or 

SO4
2- were added. 

2. Simulation of excessive groundwater abstraction at the high As study

site with an accompanying hydrochemical monitoring was used to identify 

subsequent abiotic effects on the distribution of dissolved As in shallow 

groundwater. This approach is a novelty in the BDP and the results 

constitute a valuable contribution to the discussion of pumping impacts. 

3. The detailed geochemical characterisation of sediments from the

study sites provides information about potential water-sediment interactions 

within the surface near groundwater fluctuation zone of the BDP. Without 

further characterisation, this zone was previously interpreted as a potential 

source of As (HARVEY et al. 2006). In this study, sediments from this zone 

are analysed in detail to prove this hypothesis. 

4. All results are combined to develop an advanced concept that

explains the underlying processes of As mobilisation and spatiotemporal 

distribution in the BDP.  



2. THE FATE OF ARSENIC IN THE ENVIRONMENT

2.1 ARSENIC IN THE ENVIRONMENT 

2.1.1 GEOCHEMISTRY 

Arsenic is a metalloid belonging to the nitrogen group with the atomic 

number 33, a molecular weight of 74.9 g mol-1 and 75As as the only naturally 

occurring isotope (DE LAETER et al. 2003). With five valence electrons, it 

has four possible oxidation states: As(-III) (arsenide), As(0) (elemental 

arsenic), As(III) (arsenite) and As(V) (arsenate). Arsenic can be 

incorporated as a major constituent in the crystal lattice of more than 200 

minerals, including elemental As(0), arsenides, sulphides, oxides, arsenates 

and arsenites (SMEDLEY & KINNIBURGH 2002). Common minerals that 

are often associated with ores are arsenopyrite (FeAsS), realgar (As4S4) 

and orpiment (As2S3). These minerals are generally rare in the environment, 

but As often occurs as trace element, especially in sulphides.  

Average As contents of the upper crust range from 1.5 to 2.0 mg kg-1, 

while average contents in rocks reach 0.5 to 2.5 mg kg-1. Elevated contents 

appear in sedimentary iron formations and iron-rich sediments (up to 

2,900 mg kg-1), sandstones (0.6-120 mg kg-1), coals (0.3–35,000 mg kg-1), 

bituminous shale (100–900 mg kg-1) and marine shale and  mudstone (up to 

490 mg kg-1) (MATSCHULLAT 2000, SMEDLEY & KINNIBURGH 2001). 
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2.1.3 HYDROCHEMISTRY 

Typical As concentrations in fresh water range between 1 to 2 µg L-1 

(HINDMARSH & MC CURDY 1986). In groundwater, As concentrations can 

increase up to several milligrams per litre, depending on parental rock 

contents and prevailing geohydrochemical conditions. The speciation of As 

in surface or groundwater is primarily determined by prevailing redox state 

(EH) and pH. In oxic systems, the thermodynamically favoured form is in-

organic arsenate, abbreviated in the following as As(V), which forms oxy-

anions (AsO4
3-) similar to phosphate (PO4

3-). In acidic environments, 

H2AsO4
- dominates, whilst HAsO4

2- appears at neutral and alkaline pH 

conditions (see Figure 2.1). The other two possible forms H3AsO4 and 

AsO4
3- only occur under extreme acidic, respective alkaline conditions. The 

prevailing form in reducing environments is arsenide, abbreviated as As(III). 

Under acidic and neutral pH values, uncharged H3AsO3 dominates 

(SMEDLEY & KINNIBURGH 2002). Due to kinetic inhibition or microbially 

induced catalytic reactions, As(V) can also exist in As(III) dominated 

systems and vice versa (INSKEEP et al. 2002, NRIAGU et al. 2007). 

The predominating forms of dissolved As in dependence of pH and EH 

can be summarised in pH-EH-stability diagrams based on thermodynamic 

calculations (STUMM & MORGAN 1996, Figure 2.1). When the redox 

potential changes from anaerobic to aerobic (for example by irrigation with 

reduced groundwater), As(III) reacts with atmospheric oxygen and oxidises 

within hours to As(V) (NEIDHARDT et al. 2012a). If groundwater holds high 

concentrations of dissolved Fe(II), As(III) and As(V) will rapidly co-

precipitate with Fe-(oxyhydr)oxides by aeration (BERG et al. 2006). 
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Figure 2.1: Characteristic pH-EH-stability diagram for the system As-O2-H2O at 

25°C and 0.1 MPa based on latest thermodynamic data (LU & ZHU 2011). Also 

included is the solid phase of As (grey shaded). The activity of As was set as 

10-6 M (74.9 µg L-1). Figure from LU & ZHU (2011), reprinted with permission 

from Springer through the Copyright Clearance Center. 

2.1.3 BEHAVIOUR OF INORGANIC ARSENIC 

Identification of the aqueous-solid-phase-interactions between aquifer 

sediments and the surrounding groundwater are the key to predict As 

mobility in aquifer systems. These interactions are strongly influenced by 

the activity of autochthonous microbes that interfere with the hydrochemical 

composition of groundwater and the mineralogical inventory of the aquifer 

sediments. According to the prevailing conditions, sediments can act both, 

as source and as sink for As. Important processes are complexation, redox-

reactions and competitive anion exchange, whereas redox state and pH 
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have the most important influence on the mobility of As. Surface adsorbed 

As, which is either weakly adsorbed (electrostatic attraction) or strongly 

bound (ligand exchange), is easily accessible to interactions with dissolved 

compounds and microbes. Both, As(III) and As(V), have high binding 

affinities for Fe-(oxyhydr)oxides (e.g., goethite) and form strong bidentate 

complexes via ligand exchange (DIXIT & HERING 2003, MÜLLER et al. 

2010, ONA-NGUEMA et al. 2005). Especially amorphous hydrous Fe-

oxides and poorly crystalline Fe-(oxyhydr)oxides (e.g., ferrihydrite) have 

large surface areas, resulting in a chemical reactivity that is far out of 

proportion to their abundance (BORCH et al. 2010). Iron-(oxyhydr)oxides 

often occur in sediments as alteration products in form of partial coatings 

around mineral grains and act as important sinks for many trace elements 

including As (EICHE at al. 2010, GUO et al. 2007). To a lesser extent, As in 

sediments is associated with Mn- and Al-(oxyhydr)oxides, clay minerals, 

sulphates, calcium carbonates and organic acids (O’DAY 2006).  

It is very difficult to estimate the sorption behaviour of dissolved As in a 

certain system, which is primarily influenced by pH and redox state of the 

solution and the presence of adsorbing mineral phases (DIXIT & HERING 

2003, GOH & LIM 2004). Despite the complex nature of a multi-component 

system like natural aquifers, previous studies that examined the sorption 

behaviour of As used strongly simplified experimental setups (MOHAN & 

PITTMAN 2007). Additionally, the similar sorption behaviour of PO4
3- and 

other anions plays an important role regarding competitive ion exchange 

and adsorption (POSTMA et al. 2007). In case of a tropical soil rich in Fe-

(oxyhydr)oxides, As exchange potentials declined in order of PO4
3- >> CO3

2- 

> SO4
2- ≈ Cl- (GOH & LIM 2005). Arsenic retention through adsorption 

generally depends on respective flow velocities, available binding sites and 

adsorption partners, as well as concentrations of competing ions and 

solutes in groundwater. 
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2.1.4 TOXICITY 

Arsenic has influenced human history for thousands of years according 

to its extremely high toxic potential and can therefore be entitled as the king 

of poison. Arsenic uptake causes acute as well as chronic intoxications, 

even at very low doses. Acute arsenic poisoning mostly manifests after 

accidents with pesticides or homicidal intensions, while chronic intoxication 

is mainly derived from oral ingestion of arsenic-enriched drinking water 

(MELIKER & NRIAGU 2007). Resulting effects of chronic poisoning are 

complex and depend on the prevailing chemical form, whereas both in-

organic species As(V) and As(III) are much more reactive than methylated 

organic forms (HOPENHAYN 2006, WHO 2003). Inorganic As is supposed 

to act genotoxic, carcinogenic and teratogenic (WHO 2003). Due to its 

similarity to phosphate, As(V) can interact with up to 200 enzymes, most of 

them being part of the adenosine-tri-phosphate (ATP) synthesis pathway or 

the DNA synthesis and repair system (ABERNATHY et al. 1999, ISLAM 

2008). Reduced inorganic As(III) is considered even more toxic to human 

organism, which results from its high affinity for reactive thiol groups of 

enzymes (KNOWLES & BENSON 1983). The principal organ of As meta-

bolism is the liver, where inorganic As is methylated to dimethylarsinic acid 

(DMAA) and monomethylarsonic acid (MMAA), before it is excreted via 

urine. The half-life of inorganic As compounds in the human body is 2-40 

days after resorption, but a continuously uptake results in enduring enrich-

ment in liver, kidneys, heart, lungs and ectodermic tissues (POMROY et al. 

1980). Chronic exposure to increased concentrations of inorganic As, 

especially As(III), is known to entail severe diseases and its carcinogenic 

character promotes an increased appearance of cancer (skin, lung, bladder 

and liver) in affected populations, which was observed in various case 

studies in Bangladesh, Taiwan and China (e.g., CHEN et al. 1992, KAPAJ 

et al. 2006, SMITH et al. 2000). Another characteristic expression is 

arsenicosis, a collective term for skin lesions like keratosis, hyperkeratosis 

and pigmentary abnormalities of the extremities (AHMAD et al. 1997). 

One of the most famous examples for an endemic occurrence of 

arsenicosis is an area in the southwest of Taiwan, where local villagers had 
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changed their drinking water source from surface water to arsenic-enriched 

artesian groundwater in the 1920’s. This undiscovered exposure soon 

caused symptoms of chronic As intoxications, which were first described in 

the 1950’s as “black foot disease” (IPCS 2001). Long-term cohort studies in 

affected villages of Vietnam, China and Bangladesh imply that chronic As 

uptake may also trigger foetal loss and infant death, development of 

diabetes mellitus, cardio-vascular disease and eventually neurotoxic effects 

and inhibition of children’s mental development (ALAM et al. 2002, ARGOS 

et al. 2010, FUJINO et al. 2006, LIN et al. 2004, RAHMAN et al. 1998 & 

2007, WASSERMANN et al. 2004). A profound overview over health effects 

related to As can be found in the work of NRIAGU (1994). To the present 

day, no proper therapy for arsenicosis exists, which is why mitigation 

strategies are the only available possibility to avoid diseases related to 

chronic As uptake. It is further very problematic to assess a proper 

threshold value for drinking water and food, since no dose-response 

relationship exists according to the carcinogenic character of inorganic As. 

The WHO released a provisional guideline value for total As in drinking 

water of 10 µg L-1, based on the level that can be achieved through practical 

treatment methods (WHO 2011). In India, there is actually a legal limit of 50 

µg L-1 for the total As concentration in drinking water in force (Indian 

Standard Specifications for drinking water IS 10500, reaffirmed 1993).  

2.1.5 WORLDWIDE OCCURRENCE AND THE HUMAN HEALTH 

DISASTER IN THE BENGAL DELTA PLAIN 

Concentrations of As in natural aquifers exceeding 10 µg L-1 were 

reported from all over the world, e.g., Argentina, Australia, Bolivia, 

Cambodia, Chile, Ecuador, El Salvador, Honduras, Hungary, Mexico, 

Nepal, New Zealand, Nicaragua, Myanmar, Philippines, Taiwan, Thailand, 

Uruguay and the United States. In total, a population of more than 100 

million people relies in these affected areas on groundwater as often only 

available drinking water source (NRIAGU et al. 2007). The worldwide 

largest affected areas are located in deltaic floodplains of Asia, comprising 
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the BDP in India and Bangladesh and the Red River Delta in Vietnam 

(BERG et al. 2001, VAN GEEN et al. 2006). Today, still new incidences are 

discovered in South America and only little is known about the situation on 

the African continent. 

The situation in West Bengal and Bangladesh won notoriety due to the 

epidemic spread of arsenicosis two decades after millions of tube wells 

were installed with the help of international development aid in the 1970’s 

(CHARLET & POLYA 2006, POLYA & CHARLET 2009). Pathogenic 

polluted surface water was replaced by supposedly safe groundwater as 

principal drinking water source for the rural population, but the water was 

not tested for As. Partly extremely As(III)-enriched groundwater provoked a 

creeping mass poisoning, which was dubbed by the WHO as the largest 

mass poisoning of a population in human history (SMITH et al. 2000). The 

common use of groundwater for irrigation purposes raises additionally the 

risk of As entering the food chain. Rice, the fundamental crop grown in the 

BDP, does fortunately not enrich As in its grains, since rice roots are 

naturally covered with a coating of Fe-(oxyhydr)oxides that serve as an 

effective barrier (NORRA et al. 2005). Other crops seem to efficiently 

prevent As enrichment in the grains, although other plant tissues like roots 

or leaves may accumulate As (NEIDHADRT et al. 2012a). 

2.1.6 MITIGATION STRATEGIES 

The key problem of rural areas in underprivileged countries is the lack of 

a centralised water supply, where As can be effectively removed during the 

step of Fe-removal via groundwater aeration. A large-scale treatment of 

affected aquifers is impossible due to the immense dimensions and the 

diffuse spreading of dissolved As. In Vietnam, people successfully use self-

made sand filters to remove undesired high concentrations of dissolved Fe. 

During filtration, Fe-(oxyhydr)oxides precipitate because of aeration, 

additionally co-precipitating dissolved As(III/V). BERG et al. (2006) 

demonstrated that this technique removed an average of 80 % of the initial 

total As concentrations that ranged from 10 to 382 µg L-1. The challenge is 
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to recognise when the filter material needs to be exchanged, and to dump 

the loaded filter sands safely under oxic conditions in order to prevent re-

mobilisation of As. The same applies to more sophisticated filter systems, 

which are provided in form of public central water supply wells to local 

villagers. In West Bengal and Bangladesh, the socio-economic situation of 

the plain’s inhabitants often hinders a successfully implementation and 

maintenance of commercial filter techniques to the present day. Pond sand 

filters and rain water harvesting are alternative options to obtain drinking 

water, but inadequate maintenance often bears the risk of contamination 

with pathogenic microorganisms (AHUJA 2008). A promising approach is 

the identification of safe wells by using cheap and simple As measuring 

methods like field test kits (KINNIBURGH & SMEDLEY 2001, WORLD 

BANK 2005, YU et al. 2003). In recent years, the local government favoured 

the installation of deep tube wells (>150 m depth) to maintain arsenic-free 

water to the public. Installation of centralised water treatment facilities 

enables meanwhile at least wealthy families in larger villages access to 

treated water. In smaller villages, households who can afford it try to avoid 

arsenic-rich groundwater by installation of deeper private tube wells 

(CHARLET et al. 2007). 

A new and innovative approach to predict endangered areas is the use 

of modelling software and easy available surface data (topography, spatial 

data) (WINKEL et al. 2008). The Japan International Cooperation Agency 

(JICA) concluded that the most appropriate As mitigation strategy in low 

income countries is an enduring area-wide information and education 

campaign that imparts the development of a public awareness and 

knowledge of the correct use of simple filter systems (JICA 2003). 
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2.2 MOBILITY OF ARSENIC IN AQUIFER SYSTEMS 

2.2.1 BACKGROUND 

In order to understand local distribution patterns of As in an affected 

area, it is mandatory to reveal the underlying mechanisms of release and 

transport. In general, As can be released into groundwaters either by 

natural processes or by anthropogenic activities. Natural processes involve 

mainly chemical and biological weathering of rocks and sediments, hot 

springs and thermal waters, volcanic eruptions and fumaroles. About 80 % 

of arsenic utilised by human is released diffusely into the environment, for 

example as constituent of herbicides, insecticides, desiccants, defoliants, 

feed additives, wood preservation agents, pigments, drugs and alloying 

elements (NRIAGU et al. 2007). Industrial activities, especially mining, 

smelting and coal combustion, are further important point sources releasing 

As through mine drainage, waste water and exhausted air (IPCS 2001). 

In case of the BDP, geogenic As is naturally released from saturated 

aquifer sediments under anaerobic conditions by water-rock interactions, 

which are described in the following. Arsenic was found to be mainly 

associated with Fe-(oxyhydr)oxides and sulphides, which are believed to 

originate from the Himalaya Mountains (AKAI et al. 2004). Here, As is 

released from minerals (e.g., realgar, orpiment, arsenian pyrite) via physical 

weathering of igneous and highly metamorphic rocks under oxic conditions. 

After release, As immediately co-precipitates and/or adsorbs onto Fe-

(oxyhydr)oxides that precipitate in form of nanoparticles, colloids and 

coatings (RAISWELL 2011, HASSELHÖV & KAMMER 2008, EICHE et al. 

2010). In the following, the three huge streams of the BDP (Ganges, 

Brahmaputra and Hooghly River) and their tributaries transport a mixture of 

arsenic-enriched primary mineral fragments and secondary arsenic-hosting 

Fe-particles as suspended matter into the BDP. With decreasing relief 

energy, sediments get buried together with high amounts of OM in the huge, 

coastal near floodplains. Microbial decomposition of buried organic carbon 

soon generates reducing conditions in the subsurface. Attempts to directly 

link high As concentrations within Holocene aquifers to the respective 
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mineralogy have failed, and it remains unclear whether human activities 

additionally affect As release and distribution (BGS & DPHE 2001). The 

ultimate mechanism that drives As enrichment in groundwater of the BDP is 

still object of intense debate as described in the following. 

2.2.2 OXIDATION HYPOTHESIS 

One of the first proposed mobilisation mechanisms was the oxidation 

hypothesis (DAS et al. 1996). Arsenic is supposed to be released via 

oxidation of arsenic-enriched sulphides within the partly oxic groundwater 

fluctuation zone, followed by downward transport during surface recharge. 

The underlying assumption is that high concentrations of dissolved As 

require high sedimentary As contents. In early studies, arsenic-enriched 

pyrite was found and therefore designated as origin of dissolved As in 

groundwater (CHOWDHURY et al. 1999, DAS et al. 1996). Chemical 

weathering of pyrite-rich barren rock deposits in mining areas is known to 

have caused large-scale As releases via acid mine drainage, e.g. in South 

America (BUNDSCHUH et al. 2010, MORIN & CALAS 2006). HARVEY et 

al. (2002) further argue that a widespread and excessive groundwater with-

drawal in many areas of the BDP causes enduring decreases in the local 

water levels and therefore aeration of normally saturated sediments, 

followed by additional release of As. This publication provoked an open 

clash of opinions settled in renowned journals since arsenic-enriched 

groundwater was also reported from large-scale areas in the BDP, which 

are considered unaffected by groundwater extraction (AGGARWAL et al. 

2003, HARVEY et al. 2003, VAN GEEN et al. 2003). Another point of 

criticism is the fact that high contents of dissolved As do not necessarily 

require high sedimentary As contents. Excluding flow and influences of 

transport and re-adsorption, the release of one mg kg-1 As in one m3 of 

sediments will result in a concentration increase of 2,650 µg L-1 in ground-

water, assuming a pore volume of 50 % and a sediment density of 

2.65 g cm-3.  
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Hence, prevailing conditions that cause release of comparatively small 

amounts of available sedimentary As and a slow groundwater flow are 

under certain conditions more important than absolute contents present in 

the sediments. 

2.2.3 IRON REDUCTION HYPOTHESIS 

In the past few years, indications grew stronger that mobility, reactivity, 

bioavailability and toxicity of As are primarily determined by biogeochemical 

transformations. Positive correlations between As and Fe(II) contents in 

groundwater point at a potential influence of redox reactions, which cause 

reductive dissolution of Fe-minerals (MC ARTHUR et al. 2001, NICKSON et 

al. 1998 & 2000, RAVENSCROFT et al. 2001, STÜBEN et al. 2003, 

WAGNER et al. 2005). Numerous field studies concluded that As is 

released passively through microbial oxidation of OM in absence of O2 

(ISLAM et al. 2004, MC ARTHUR et al. 2004). Nowadays, there is broad 

agreement within the scientific community that extensive reductive dis-

solution of arsenic-hosting Fe-(oxyhydr)oxides is the key factor of As 

release in Asia (FENDORF et al. 2010, SAUNDERS et al. 2008). The gist of 

this hypothesis dates back to studies of DEUEL & SWOBODA (1972), 

GULENS et al. (1979) and the pioneering work of LOVLEY and co-workers 

in the field of Geomicrobiology during the last three decades (e.g., LOVLEY 

et al. 1986). This hypothesis extensively was tested in the following and was 

further supported by laboratory column, batch and microcosm experiments 

(e.g., FAROOQ et al. 2010, ISLAM et al. 2004, RADLOFF et al. 2007, VAN 

GEEN et al. 2004). 

Microbiologically mediated redox reactions related to anaerobic 

dissimilatory (energy yielding) degradation of OM in aquifer systems 

proceed with a successive consumption of terminal electron acceptors 

(TEA) and a decreasing energy yield, until all available degradable OM 

(solid and dissolved) is exhausted (BORCH et al. 2010, CHAPELLE 1993, 

JURGENS et al. 2009, LANGMUIR 1997, MC MAHON & CHAPELLE 

2008). In a static pool of water, increasing depth is equivalent to increasing 
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age and therefore reaction time, allowing the establishment of horizontally 

layered redox zones. Each zone is dominated by one specific TEA 

consuming process and the respective metabolic pathway used by involved 

microorganisms (Figure 2.2 and Table 2.1).  

After depletion of dissolved O2, the system turns from oxic to anoxic, 

accompanied by a continuously declining redox potential (CHRISTENSEN 

et al. 2000, STUMM & MORGAN 1996). This sequence is the result of a 

dynamic competition between different heterotrophic microbes and the 

metabolic pathways they are able to use for decomposition of OM. Those 

species are preferred that can gain the highest energy yield from available 

OM and TEA in a certain environment (ACHTNICH et al. 1995).  

Figure 2.2: Microbial consumption of available and degradable organic carbon 

(Corg) in a static pool of water, causing sequential depletion of available TEA 

and a decrease of the redox potential with depth and age. Different redox 

reactions may overlap and occur parallel to each other, such as NO3
- and 

Mn(IV) reduction. Figure based on BORCH et al. (2010), KOCAR & FENDORF 

(2009), STUMM & MORGAN (1996). 
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When iron reduction arises, Fe-(oxyhydr)oxides get dissolved, causing a 

passive release of adsorbed and incorporated trace elements including As 

(LOVLEY 1995 & 1997). Amorphous (hydrous ferric oxides) and poorly 

crystalline (e.g., ferrihydrite) Fe-phases are the favoured source of Fe(III) for 

microbes, although crystalline and thermodynamically more stable minerals 

like lepidocrocite, goethite, hematite and magnetite can be utilised, too, 

when the redox potential declines accordingly (LOVLEY & PHILLIPS 1986, 

LOVLEY & PHILLIPS 1987). 

Table 2.1: Ecological redox sequence in order of decreasing energy gain (after 

STUMM & MORGAN 1996). 

TEA consuming 
process 

TEA Redox-reactions 

Aerobic respiration O2 O2 + {CH2O} → H2O + CO2 

Nitrate reduction NO3
- NO3

-+ 2{CH2O} + 2H+ → NH4
+  + 2CO2 + H2O 

Manganese reduction Mn(IV) 4MnO2 + 2{CH2O} + 8H+ → 4Mn2+ + 2CO2 + 6H2O 

Iron reduction Fe(III) 4Fe(OOH) + {CH2O} +8H+ → 4Fe2+ + CO2 + 7H2O 

Sulphate reduction SO4
2- SO4

2-+ 2{CH2O} + H+ → HS- + 2CO2 + 2H2O 

Methanogenesis {CH2O} 2{CH2O} → CH4 + CO2  

It is mandatory to understand that the biogeochemical cycling of an 

element like As or Fe never depends on the activity of a single microbial 

species (COZZARELLI & WEISS 2007, LOVLEY & PHILLIPS 1989). 

Microbes form species-independent, connected networks (consortiums) that 

are adapted to the present environment (quality of OM, prevailing Fe-

minerals, pH, temperature, intra-species interactions, etc.) enable their 

members to degrade OM stepwise (CUMMINGS & MAGNUSON 2007, 

KONHAUSER 2007). Involved organism mainly belong to the domain of 

Bacteria and therein to the heterotrophic dissimilatory Fe(III)-reducing 

bacteria (FeRB), which couple the reduction of Fe(III) with the oxidation of 

metabolic products released by synergistic bacteria (alcohols, short- and 
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long-chain fatty acids, mono-aromatic compounds or H2) (KONHAUSER et 

al. 2011, LOVLEY & PHILLIPS 1989, LOVLEY et al. 2004). The most 

important fermentation product for microbial Fe(III) reduction in soils and 

sediments is acetate (CH3OOH), as demonstrated by Geobacter 

metallireducens, an ubiquitous species in aquifer environments: 

2CH3OO- + 8Fe(III) + 2H2O  →  2HCO3
- + 8Fe(lI) + 8H+         (2.1) 

(LOVLEY 1993) 

In addition to the release of Fe(II), this metabolic reaction causes 

formation and release of protons and bicarbonate, which trigger in turn 

subsequent geochemical reactions like carbonate dissolution. 

Depending on the availability of TEA and OM, microbial communities 

and resulting geomicrobiological reactions evolve over time. Importantly, 

Fe(III) reduction may even occur when other redox reactions are thermo-

dynamically favoured (RODEN 2003) and Fe(III)-reducing microbes are 

often able to use other metabolic pathways as well, like the reduction of 

Mn(IV) (LOVLEY 1993). A complete reduction of the Fe(III) pool in natural 

aquifer systems is rather unlikely, since amounts of available OM are 

commonly limited compared to ubiquitously occurring Fe(III)-minerals 

(BORCH et al. 2010). 

At circum-neutral pH values, available dissolved Fe(III) is quite rare 

since Fe(III)-minerals are poorly soluble under such conditions. To 

overcome the resulting lack, many FeRB excrete specific low molecular 

weight organic compounds that serve as Fe(III)-electron shuttles (WOLF et 

al. 2009). For example, siderophores specifically adsorb onto Fe(III)-bearing 

mineral surfaces, thereby mobilising Fe(III) via surface complexion 

(KONHAUSER et al. 2011, RODEN et al. 2010). Most FeRB are able to 

release different kinds of electron shuttles, depending on the present 

mineral phases (PAGE & HUYER 1984). Despite this, other species are 

able to directly mobilise and uptake Fe(III) after adsorption to the mineral 

surface via pili and flagella (WOLF et al. 2009). 
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It is not easy to proof that Fe(III) reduction is a currently active redox 

process in an aquifer system. Measuring of the redox potential is not suf-

ficient to exclude Fe(III) reduction since the respective pathway may also be 

active in redox zones beyond the characteristic redox potentials. 

Determination of genes necessary for Fe(III) reduction via molecular bio-

logical methods is also a non-reliable predictor, because a proof of 

presence is no evidence for respective metabolic activity (CUMMINGS et al. 

2000, CUMMINGS & MAGNUSON 2007).  

When Fe(III) reduction is the predominating redox process, the following 

conditions require to be fulfilled:  

 Absence of O2 and NO3
- as competing TEA;

 Presence of Fe(II) (dissolved and/or in solid form);

 Degradation of acetate to HCO3
-;

 Absence of high molybdate concentrations that would inhibit

microbial oxidation of acetate;

  High concentrations of SO4
2- and concomitant low S2- contents

(CUMMINGS & MAGNUSON 2007, LOVLEY et al. 1994).

In addition, the occurrence of magnetite is considered a circumstantial 

evidence for past Fe(III) reduction (see chapter 2.2.4, mineral trans-

formation processes) (CUMMINGS & MAGNUSON 2007, GIBBS-EGGAR 

et al. 1999). 

Similar processes are associated with microbial reduction of Mn-oxides. 

Microbes capable of Mn(IV) reduction are also ubiquitous in sediments as 

well as Mn-oxides, which may act as arsenic-hosting mineral phases, too 

(LOVLEY et al. 1993, 1995, 2004). 
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2.2.4 DISSIMILATORY ARSENATE RESPIRING 

PROKARYOTES 

Some microorganisms are able to reduce As(V) to As(III) via respiration 

pathways (dissimilatory arsenate respiring prokaryotes, DARPs). The 

mobility of As largely depends on the prevailing pH and redox potential and 

on the availability of potential sorption phases, especially Mn-oxides and 

Fe-(oxyhydr)oxides (LEAR et al. 2007, OREMLAND & STOLZ 2005). In 

anoxic environments with near-neutral pH values, As mobility is believed to 

increase after reduction to As(III) (HARVEY et al. 2002, KINNIBURGH & 

SMEDLEY 2001). Despite this, laboratory experiments have demonstrated 

that this statement is an oversimplification and that an estimation of the 

species dependent As mobility is very difficult in natural aquifer systems 

(HERING & KNEEBONE 2002). Sorption behaviour of dissolved As(III) and 

As(V) strongly depends on the solid-to-solution ratio of both As species; the 

quantity and type of adsorbing mineral phases, and the concentration of 

phosphate, which is known to act as a strong competitor for As binding sites 

(MOHAN & PITTMAN 2007). 

Following thermodynamic analysis, As(V) reduction appears in range of 

similar redox potentials like Fe(III) reduction under most environmental 

conditions (KOCAR & FENDORF 2009). The presence of DARPs can be 

validated by screening for the referring arsenate respiratory reductase gene 

(arrA), which is necessary for the formation of As(V) reductase 

(MALASARN et al. 2004). A presence of the arrA-gene in local microbial 

communities means neither that bacteria actually synthesise arsenate 

reductase, nor that it is an essential metabolic pathway, since many 

microbes have different possible respiratory mechanisms. For example, the 

arrA-gene could have been identified in many FeRB (CAMPBELL 2006, 

ZOBRIST et al. 2000). Additionally, some bacteria detoxify As(V) by 

reduction, using the so called arsC pathway (CAMPBELL et al. 2006). In 

groundwater of the BDP, As(III) is often the predominating species of dis-

solved As and it is most likely that both, Fe(III) and As(V) reduction, are 

closely linked (KAPPLER 2011, LLOYD & OREMLAND 2006).  
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X-ray absorption near edge structure (XANES) measurements support the 

assumption that a direct reduction of surface adsorbed As(V) may play an 

important role in As mobilisation during the early sedimentary diagenesis, 

while in matured sediments As(III) dominates (ROWLAND et al. 2005). 

2.2.5 THE ROLE OF ORGANIC MATTER 

The variety of microbially mediated degradation processes involved in 

mobilisation of As emphasizes the relevance of OM. Pristine aquifers are 

commonly carbon limited systems (COZZARELLI & WEISS 2007), but the 

high sedimentation rate in active deltas and floodplains enables a rapid 

burial of considerable amounts of organic matter (KINNIBURGH & 

SMEDLEY 2001, QUICKSALL et al. 2008). The lack of O2 and light 

generally impedes biodegradation in saturated aquifers, causing reaction 

rates to slow down. Labile, reactive or easily degradable are partly 

synonymous adjectives to describe organic carbon (e.g., sugars, amylum) 

that can be readily degraded by a wide range of microbes including FeRB, 

and therefore decreases in aquifer sediments with time and depth. In 

mature sediments, only recalcitrant organic matter like plant fibres and long-

chain molecules carrying double bonds and aromatic compounds (e.g., 

humic and fulvic acids, petroleum products) remain preserved (ROWLAND 

et al. 2006 & 2007). Reduced humic substances function as important 

electron shuttles and dominate the dissolved organic carbon (DOC) fraction 

in Fe(III)-reducing aquifer parts (KAPPLER et al. 2004, LOVLEY et al. 1996, 

MLADENOV et al. 2010). Hence, DOC plays a dual role depending on the 

degradability: labile DOC serves as electron donor in microbial respiration, 

while persistent humic substances are used as electron shuttles during 

Fe(III) reduction. Dissolved organic molecules are mobile and can be easily 

transported along hydrological flow paths. In deltaic regions of Asia, 

wetlands, ponds and fields may serve as important potential sources of 

infiltrating OM, especially during monsoon rains, when the surface recharge 

drastically increases (KOCAR et al. 2008).  



2 THE FATE OF ARSENIC IN THE ENVIRONMENT 

22 

Surface-derived OM is furthermore one of the key issues in the discussion 

of anthropogenic influences on the release of As (2.2.7). 

2.2.6 FURTHER MICROBIAL INTERACTIONS 

The following processes and mechanisms have the potential to effect As 

release in natural environments, but are considered to play minor roles in 

context of the processes involved in aquifers of the BDP. 

Toxic effects arise from the high similarity between As(V) and PO4
3- that 

can also affect microbial respiration. Hence, some bacteria are capable to 

reduce dissolved As(V) to As(III) or even further to methylated organic As 

compounds in order to detoxify it. Experiments with Shewanella sp. 

conducted by CAMPBELL et al. (2006) revealed that the formation of ArsC 

reductase (an enzyme catalysing As(V) reduction) triggers at a threshold 

concentration of 100 µmol L-1 As(V). Such a relatively high threshold 

concentration indicates that this process is most likely not relevant in 

shallow Asian aquifers, where As(III) is the predominating species in 

groundwater and even highest total As concentrations clearly remain below 

100 µmol L-1 (SMEDLEY & KINNIBURGH 2002). Most important organic As 

compounds are DMAA, MMAA and volatile arsine (AsH3). Methylation of As 

is considered to primarily occur in marine and geothermal environments, but 

not in low-temperature aquifers (BEDNAR et al. 2004, LE 2002). 

 In contrast, arsenic-oxidizing bacteria are capable to oxidize As(III) to 

As(V) in order to yield metabolic energy (heterotrophic arsenide oxidising 

bacteria, HAO) (OREMLAND & STOLZ 2005, SALMASSI et al. 2002). 

Chemolitho-autotrophic bacteria (CAO) couple the oxidation of As(III) with 

the reduction of O2 or NO3
- to gain energy, a process that does not depend 

on organic matter as electron donor (JACKSON et al. 2001, SENN & 

HEMOND 2002). 
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2.2.7 INFLUENCES OF HYDROLOGY AND ANTHROPOGENIC 

ACTIVITIES 

The fate of aqueous As is further determined by the local hydrogeology, 

which directs the transport of arsenic-enriched groundwater within the 

aquifer. In addition, the reaction time for groundwater-sediment interactions 

is set by the flow velocity and becomes an important factor in case of 

kinetically controlled hydrochemical balance reactions, like competitive 

surface exchange, biotransformation processes and dissolution of mineral 

phases. Reactions following hydrochemical water-rock interactions can be 

abiotic and/or biotic and influence As mobility by either inducing additional 

release or retention. STUTE et al. (2007) postulated a significant positive 

correlation between groundwater age and As concentrations in shallow 

groundwater of the BDP. They observed a nearly constant increase in As 

over time until a certain maximum was reached, and assumed that As 

release is the result of a kinetically inhibited balance reaction. However, this 

hypothesis cannot explain the typically bell-shaped depth distribution of As 

and the fact that older aquifer parts are practically arsenic-free. 

The monsoon climate strongly affects the regional hydrology in entire 

Asia, especially in the BDP. Seasonal changes between the dry season and 

the annual monsoon rain induce here pronounced oscillations in the local 

water table, reaching annual net fluctuations of up to 5 m (HARVEY et al. 

2005). Accompanying shifts in the redox potential within affected surface 

near aquifer sediments comprise oxic conditions during the dry season as 

well as reducing milieus following monsoonal recharge. 

Groundwater flow within the Bengal Basin follows a superior regional 

flow direction from the Himalayan Mountains in the north, to the Bay of 

Bengal in the south. The horizontal hydraulic conductivity is normally higher 

than in vertical direction, thereby preserving heterogeneous vertical As 

distributions once they have been established (MICHAEL & VOSS 2009a). 

In addition, the generally flat landscape results in extremely low ground-

water flow velocities and long-lasting residence times, inducing a 

subsequent enrichment of As when it is locally released.  



2 THE FATE OF ARSENIC IN THE ENVIRONMENT 

24 

As long as permanently new As is released, a flush-out into the Bay of 

Bengal either by groundwater (dissolved As) or surface streams (part of 

suspended matter) is limited. 

Extreme low flow velocities further provoke a high vulnerability towards 

pumping (MICHAEL & VOSS 2009b). For example, groundwater abstraction 

for irrigation purposes was propagated in time of India’s green revolution to 

overcome the annual dry season between October to April. During the past 

four decades, about 10 million irrigation and tap water wells had been 

installed in the Bengal Basin, providing drinking water to more than 100 

million people and affecting the hydrology at a regional scale 

(BHATTARACHARYA et al. 2004, HARVEY et al. 2005). This has caused 

partly massive depletions in local hydraulic heads, causing aeration and 

oxidation of surface near reduced sediments, which could have entailed 

additional As release according to the oxidation hypothesis (chapter 2.2.2). 

Another severe problem is the vulnerability of arsenic-free aquifers towards 

attraction of arsenic-rich groundwater in direction of the pumping wells. In 

case of a newly installed pumping field in Hanoi (Vietnam), the originally 

arsenic-free water soon increased in As due to attraction of arsenic-

enriched groundwater (NORRMAN et al. 2008). Additionally, increasing As 

concentrations were recently reported from deep wells situated in the 

Bengal Basin as well as in the Vietnamese Red River Delta (BURGES et al. 

2010, FENDORF et al. 2010, MUKHERJEE et al. 2011, NORRMAN et al. 

2008, VAN GEEN 2008, WINKEL et al. 2011). 

Excessive irrigation pumping may further cause infiltration of fresh and 

organic-rich water into mature, carbon-limited aquifer parts, what could 

stimulate indigenous FeRB and/or DARPs (HARVEY et al. 2002, 

NEUMANN et al. 2009, SUTTON et al. 2009, VAIDYANATHAN 2011). 

Additional OM can by derived from anthropogenic sources like agriculture, 

pit latrines and artificial ponds (NATH et al. 2008, POLIOZOTTO et al. 

2008). Especially the potential influence of the mainly artificial ponds on As 

release remains unclear, as demonstrated by contradictory studies 

(FAROOQ et al. 2010, HARVEY et al. 2006, SENGUPTA et al. 2008, 

NEUMANN et al. 2009).  
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2.2.8 BIOTIC VERSUS ABIOTIC EFFECTS CONTROLLING 

ARSENIC MOBILITY 

Stepwise anaerobic degradation of OM can directly affect the mobility of 

As in various ways (chapter 2.2.4). Despite the extensive research on 

microbiological controls on As mobilisation, there is no consensus regarding 

the potential influence of consecutive abiotic reactions. Following microbial 

Mn(IV)- and Fe(III)-reduction, concentrations of HCO3
-, Mn(II) and Fe(II) 

increase in groundwater (see chapter 2.2.3, equation 2.1), which is often 

characteristic for arsenic-enriched groundwaters in Asia. Degradation of OM 

and reductive dissolution of Fe(III)-minerals further releases considerable 

amounts of PO4
3- to local groundwater, which is capable to interfere with As 

adsorption (APPELO et al. 2002, DIXIT & HERING 2003, GOH & LIM 

2004). In contrast, high amounts of dissolved Fe(II) can cause chemical 

reduction of surface adsorbed As(V), thereby potentially increasing its 

mobility (ITAI et al. 2010). Recent laboratory experiments (e.g., HANSEL et 

al. 2003, KOCAR et al. 2006, PEDERSEN et al. 2005, TUFANO & 

FENDORF 2008) have further demonstrated that dissolved Fe(II) is capable 

of transforming thermodynamically less stable sedimentary iron phases 

(e.g., ferrihydrite) rapidly into highly ordered mineral structures like 

magnetite (ISLAM et al. 2005, O’LOUGHLIN et al. 2010, YANINA & ROSSO 

2008). The newly formed iron phases promote in turn retention of dissolved 

As, thereby decoupling As mobilisation from the reductive dissolution of Fe-

(oxyhydr)oxides. Such transformation processes further affect the As 

surface adsorption capacity of affected Fe-minerals largely. For example, 

transformation of ferrihydrite to goethite causes a net loss of the As ad-

sorption capacity, but re-adsorbed As appears to be stronger bound 

(COKER et al. 2006, HANSEL et al. 2003, PEDERSEN et al. 2005). Hence, 

a complex environment of interconnected biotic and abiotic processes 

arises in Fe(III)-reducing redox zones and induces competing As release 

and retention (COKER et al. 2006, HERBEL & FENDORF 2006, KOCAR et 

al. 2006, PEDERSEN et al. 2006). 



2 THE FATE OF ARSENIC IN THE ENVIRONMENT 

26 

Another example for consecutive abiotic reactions affecting As mobility 

is the formation of arsenic-retaining sulphides during SO4
2--reduction. 

Microbially released H2S reacts with dissolved Fe(II) and precipitates, for 

example, as pyrite, thereby incorporating dissolved As (KIRK et al. 2010). 

More interestingly, some bacteria that are capable to reduce sulphate (SRB) 

also have the ability to reduce As(V) (NEWMAN et al. 1998). HÉRY et al. 

(2010) suggested a controlled introduction of labile organic carbon into 

SO4
2--reducing aquifers as an efficient remediation technique to remove As 

from groundwater with low Fe(II) concentrations. 

Groundwater flow enables the connection of different redox zones within 

an aquifer and therefore relocation of released As, dissolved TEA (NO3
-, 

SO4
2-), DOC and reactive metabolic products like Fe(II), H2S, and acetate, 

which trigger in turn subsequent reactions. Hence, it is nearly impossible to 

strictly distinguish between abiotic and biotic processes that affect the 

mobility of As in an aquifer, where all processes and mechanisms are 

inseparably connected. It is further extremely difficult to extract information 

about the quantitative influence of each process due to the large variety of 

potentially superimposing mechanisms. Laboratory experiments like 

column, batch or microcosm experiments are helpful to reproduce and focus 

on one or two mechanisms, but they can never cover the full range of 

naturally occurring processes. On the other hand, the evaluation of in-situ 

experiments is problematic as well, according to the high complexity of 

natural aquifer systems. 



3. THE BENGAL DELTA PLAIN

3.1 GEOGRAPHY AND GEOMORPHOLOGY 

The study area is located in the Indian part of the Bengal Basin and is 

situated in the Himalayan foreland at the junction of the Indian, Eurasian 

and Burmese Plates. On the west and northwest, the Bengal Basin is 

bounded by the Rajmahal Hills, and from northeast to east, it is flanked by 

the Shillong Plateau, the Tripura Hills and the Indo-Burmese Fold Belt 

(Figure 3.1). The southern delta and the adjacent floodplain are bounded by 

the Bay of Bengal, which forms the world’s largest submarine fan 

(MUKHERJEE et al. 2009). Today’s basin is the largest fluvio-deltaic 

sedimentary system on earth, occupying an area of about 200,000 km2, 

where approximately 120 million people live in three federal states of India 

(Bihar, West Bengal, Assam) and the entire state of Bangladesh (ALAM et 

al. 2003) (Figure 3.2). 

Present geomorphologic characteristics divide the Bengal Basin into 

Holocene lowland and Pleistocene uplands. Pleistocene units include four 

terraces, which are interpreted as remains of former floodplains. Two of 

them flank the basin in front of the Rajmahal Hills and the Tripura Hills, 

while the Barind and Madhupur terraces are situated inside the basin 

(Figure 3.1). Although outcropping Pleistocene formations are similar to 

Holocene units, they are characterised by a reddish brown colour, are 

mottled and relatively dry, have low organic contents and contain nodules of 

secondary iron phases and carbonates (BGS & DPHE 2001). The Holocene 

lowland can be subdivided into the Holocene alluvial floodplain (fluviatile, 

freshwater dominated floodplains) and the intergradient delta (the saline 

lower delta in the south), which are often aggregated as the Ganges-

Brahmaputra-Meghna flood and delta plain, or simply as the Bengal Delta 

Plain, henceforth referred to as BDP (MUKHERJEE et al. 2009). 
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Four different Holocene geomorphologic main units can be distinguished in 

the Bengal Basin:  

 The alluvial fans located at the foothills of the Himalaya, which are

mainly composed of fresh coarse sand and gravel;

 The Tippera Surface near the Tripura Hills;

 The Sylhet Basin located in the northeast;

 The central floodplain and the southern delta of the BDP that cover

together an area of about 105 km2 and represent the central

formation (MUKHERJEE et al. 2009).

In the central floodplain and the southern delta, numerous sub-deltas of 

the three rivers (Ganges, Brahmaputra and Meghna) overlap and create a 

dense system of adjacent alluvial flood- plains. The elevation of this areal 

reaches from 15-20 m above the sea level (asl) in the northwest, to 1-2 m 

asl near the southern shoreline (Figure 3.2). Meanwhile inactive Quaternary 

faults had changed the flow of important tributaries for several times, and 

created numerous interconnected abandoned tributary channels that are 

distributed among the entire floodplain and delta complex (ACHARYYA et 

al. 2000). 
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Figure 3.1: Pseudo colour mosaic picture of the Bengal Basin created with 

NASA World Wind (Landsat 7 image). Coloration emphasizes the presence of 

water (blue), vegetation (green) and bare soil (purple). The picture is completed 

by landform features, location of the investigation area and principal regional 

flow directions of groundwater (after MICHEAL & VOSS 2009a,b and 

MUKHERJEE et al. 2007, 2009). Underlying pseudo colour image provided by 

MDA Federal Information Systems for NASA World Wind. 
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Figure 3.2: Satellite imaginary (Landsat 7) and transect elevation profiles 

(super-elevated) of the Bengal Basin. Image created with NASA World Wind. 

Resolution of satellite image is 15 m. Elevation profiles generated with NASA 

World Wind Terrain Profiler, based on the SRTM-30 PLUS digital elevation 

model (resolution: 3 arc-seconds). 
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3.2 GEOLOGY 

The geological history of the Bengal Basin is relatively complex 

according to a large variety of geological processes involved in the basin 

formation (ALAM et al. 2003). Evolution of the proto-basin began with the 

break-up of Gondwanaland during the mid to late Mesozoic, followed by 

massive basalt extrusions at the Rajmahal and Shillong areas during the 

late Jurassic to the early Cretaceous (LINDSAY et al. 1991). Slow 

subsidence of the Bengal Shelf caused marine transgressions into the 

south-eastern part of the proto-basin and repeated sequences of 

submergence and transgression caused deposition of the first deltaic 

sediments. Increased tectonic activity generated a massive transgression in 

the middle Eocene, which covered the whole basin and formed the Sylhet 

limestone formation (see Table 3.1). Due to varying tectonic movement 

rates, evolution of the eastern and western part differed. A permanent 

change in the local sedimentation environment arose from the collision of 

the Indian and Eurasian Plates that induced uplift of the basin’s stable shelf 

and finally formation of the Himalayan Mountains. While the eastern part 

remained under marine influence, the uplift changed the sedimentation 

environment in the rest of the basin during the middle to late Eocene, super-

imposing preliminary marine carbonatic-clastic sediments by fluvio-clastic 

sediments (LINDSAY et al. 1991).  

Modern deltaic basin evolution was initiated by intensive tectonic 

activities along the Dauki fault zone (ranging from east to west in front of the 

Shillong Plateau) and the Naga thrust zone (parallel to the Indo-Burmese 

Fold Belt, see Figure 3.1) during the middle and late Miocene (LINDSAY et 

al. 1991). A basin-wide regression followed and changed the previously 

marine-estuarine environment in the eastern part into a fluvial-tidal 

dominated system. 
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Table 3.1: Geology of the western part of the Bengal Basin where West Bengal 

is located (after ALAM et al. 2003, MUKHERJEE et al. 2009, SARKA et al. 2009). 

Age 

Holocene 

Pleistocene 

Pliocene 

Miocene 

Oligocene 

Eocene 

Paleocene 

Cretaceous 

Jurrassic 

Pre-Jurassic 

Stable Shelf, Western Basin 

Group Formation (thickness) Lithology 

Alluvium (~30-60 m) Silt, clay, sand, gravel 

Barind Barind  (~200 m) Brown clay, silty clay, silty sand 

Bhagirathi 

Debagram / Ranaghat (~1200 m) Sandstone, siltstone, shale 

Pandua / Matla (~400 m) 
Sandstone, siltstone, silty 

mudstone 

Memari / Burdwan (~150 m) Sandy mudstone 

Jainitia 

Kopili (>100 m) Shale, mudstone, sandstone 

Sylhet Limestone (~300 m) 
Fossiliferous limestone, 

interbedded sandstone 

Upper Jalangi (~230 m) Sandstone, sandy mudstone 

Lower Jalangi (~400 m) Sandstone 

Rajmahal 

Ghatal (~150 m) Sandstone, limestone, shale 

Bolpur (100 m) Sandstone, mudstone 

Rajmahal (~250 m) Basalt, andesite, shale 

Gondwana 

Beginning in the late Quaternary, basin development was mainly 

controlled by tectonic activities. This differs from traditional models of delta 

formation, which base on sea level fluctuations as controlling factor 

(GOODBRED et al. 2003). Tectonic movement mainly influenced the north-

west of the basin close to the stable shelf, causing alternating fluvio-

dynamic processes. In contrast, sedimentation at the coast was primarily 

affected by changes in the eustatic sea level during the ice ages, where 

mangrove forests and swamps followed the active coastline. Last chapter in 

the Modern-Delta evolution began at the onset of the last glacial maximum 
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(LGM) at around 20 ka BP, when the sea level was approximately 120 m 

lower than today. To this time, the lowest units of the delta sediments were 

exposed to erosion and weathering. Channel erosion incised broad valleys, 

while soils of several metres developed on top of the interfluves 

(ACHARYYA et al. 2000, ISLAM & TOOLEY 1999, LAMBECK et al. 2002).  

A period of highest delta progradation followed between 7 to 9 ka BP, 

when changes in the regional climate intensified the seasonal monsoon 

precipitation. Hence, fluviatile transport and sedimentation rate of the three 

rivers Ganges, Brahmaputra and Meghna reached a maximum of 

approximately 2.4 x 109 t a-1 (GOODBRED et al. 2003). Due to sea-level 

rise at the early Holocene, the shoreline shifted again gradually in northern 

direction, where a huge estuary formed. Mangrove forests followed the 

coastline and organic-rich sediment deposit developed. During this time, 

fine sediments were deposited up to the northern part of the basin that filled 

the incised Pleistocene channels and buried the older interfluves 

(MC ARTHUR et al. 2008, WRIGHT & MARRIOTT 1993). After a rapid 

decrease, the annual sediment discharge stagnated at around 5 ka BP, but 

a constant sedimentation flux of about 1.0 x 109 t a-1 allows the active delta 

to gradually progradate into the Bay of Bengal to the present day 

(GOODBRED et al. 2003). As a result, a more fluviatile influenced floodplain 

environment developed in the hinterland, where thick sediment packages 

deposited (ALAM et al. 2003). Today, Holocene sediments can be divided 

into a clay- and silt-rich top, and an underlying sandy part with locally 

increased OM contents, especially in the southern dellta and the central 

floodplain (located in the western part of the Bengal Basin). 
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3.3 CLIMATE 

The tropical monsoon climate of the Bengal Basin is mainly controlled by 

the southeast monsoon regime that transports moist air masses inland from 

the Bay of Bengal from early June to mid of October (BGS & DPHE 2001). 

Average air temperatures range from 10°C during winter to 35°C in 

summer, and annual rainfall varies between <1,200 mm in the flat western 

and central basin and >1,600 mm towards the Himalaya Foreland 

(MUKHERJEE et al. 2007). A total of 82.2 % of the annual average rainfall 

(AAR) falls during the monsoon season, while the dry season can be 

subdivided into the pre-monsoon season (between January and May with 

16.2 % of the AAR) and the post-monsoon season (November to December 

with 1.57 % of the AAR) (MUKHERJEE et al. 2007). Extensive irrigation is 

supposed to exceed the absolute recharge from precipitation in parts that 

are under intensive agricultural use (MUKHERJEE et al. 2007). When 

heavy monsoon rains meet discharge water from the Himalayan snowmelt, 

heavy flood events occur in the flat areas of Bangladesh. 

3.4 SEDIMENT FLUX AND HYDROLOGY 

The annual sediment flux of the three rivers Ganges, Brahmaputra and 

Meghna and their tributaries was estimated as 1.0 x 109 t a-1, with 

sedimentation rates in the BDP of about 0.5 to 1.2 m ka-1 since the late 

Holocene (SARKA et al. 2009). The mineral composition of the sediments is 

dominated by detrital quartz, feldspars, and minor amounts of carbonates 

and clay minerals (primary illite and kaolinite) (ALLISON et al. 

2003, MUKHERJEE et al. 2009). Additionally, suspended matter of River 

Ganges generally contains high contents of smectite and carbonates, 

since only marginal chemical alteration appears during erosion, 

transportation and sedimentation (HEROY et al. 2003). River Ganges 

drains the Himalayan mountains and foothills and enters the basin 

from northwest, where he divides into two distributaries (Figure 3.1). 

River Padma is the main stream, which flows in southeast direction 

towards the confluence with the Brahmaputra in Bangladesh.
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The minor part flows directly in southern direction through West 

Bengal, where he is called River Bhagirathi-Hooghly or simply Hooghly 

River. In the flat basin, the course of the Ganges is strongly 

meandering and has been continuously shifting eastwards for the last 

250 years (MUKHERJEE et al. 2009). The Brahmaputra enters the 

basin in the northeast after draining Tibet and the Indian state of Assam. 

The Meghna River drains the Sylhet Basin and parts of the Tripura Hills, 

before he merges with the Brahmaputra. The active part of the delta is 

represented by the Sunderbans, which form a huge mangrove forest south 

of Calcutta (Figure 3.1). 

Groundwater in the Bengal Basin is generally of the Ca-HCO3
- -type and 

is mainly influenced by reducing conditions, as demonstrated by high 

concentrations of Fe(II) and methane (HARVEY et al. 2005). Slow ground-

water flow processes enable intense water-rock interactions like carbonate 

dissolution, metal oxide reduction, silicate weathering as well as intrusion of 

saline water in areas of the southern delta. These processes have the 

potential to create heterogeneous and hydrochemically stratified ground-

water bodies (MICHEAL & VOSS 2009a). A comprehensive groundwater 

survey programme conducted by the United Nations Development 

Programme (1978-1982) distinguished three different aquifers in 

Bangladesh based on a lithological stratification scheme (UNDP 1982). The 

uppermost water-bearing zone is represented by a shallow aquifer, situated 

in fine sand units below a thin confining clayey and silty unit. Below, the 

main aquifer is encountered in medium- and coarse-grained sandy 

sediments in varying depths between 75 to 140 m. In depths of 140 to 460 

m, a deep aquifer represents the deepest water-bearing unit. All three 

aquifers are characterised by a high variability of the sediment thicknesses 

and locally appearing interbedded units of gravel, clay and peat. 

A different approach to classify the aquifers in Bangladesh regarding 

their 14C groundwater ages (AGGARWAL et al. 2000). In the shallowest 

aquifer (up to 100 m depth), groundwater age was determined as younger 

than 100 a. In the main aquifer between 200-300 m depth, groundwater age 

reaches up to 3 ka, while water residing in the deepest aquifer below is 

about 20 ka old. 
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In the Indian part of the BDP, available hydrogeological data is strongly 

limited, and assumptions on the local aquifers depend mainly on inter-

pretations of lithological data and hydrochemical surveys. In the central 

floodplain along the Hooghly River, where the investigation area of this 

study is located, the aquifer has varying thicknesses of about 60 to 220 m, 

and comprises numerous thin clayey layers (MUKHERJEE et al. 2011). 

According to 3H/3He isotope dating, groundwater in depths of 20 m is 

younger than 30 a (STUTE et al. 2007). 

MICHEAL & VOSS (2009a,b) raise the question if there really are 

multiple, disconnected aquifers within the entire Bengal Basin. Due to the 

heterogeneous nature of the local stratigraphy, which includes locally 

restricted embedded aquitards, there is no evidence for a consistent 

separation of distinctive aquifers at a regional scale. Despite this, basin 

sediments are considered to behave as one huge, hydraulically inter-

connected, vertically layered and anisotropic aquifer system. The 

occurrence of discontinuous and thin layers of fine grained sediments (clay 

and silt) is expected to generate anisotropic hydraulic conductivities. Aquifer 

pumping tests revealed that lateral conductivities (Kh) range in orders of 10-5 

to 10-3 m sec-1, whereas vertical conductivities (Kv) can be orders of 

magnitude lower (MICHEAL & VOSS 2009a,b). Based on driller log 

analysis, hydraulic conductivities were calculated for different regions of the 

Bengal Basin. In the central floodplain, the Kh was calculated as 2.2 x 10-3 

m sec-1 and the Kv as 3.2 x 10-8 m sec-1 (MICHAEL & VOSS 2009b). Such a 

large-scale vertical anisotropy requires aquitard layers with extensions of 

several square kilometres and explains why local aquifers often appear to 

be semi-confined and disconnected. 

The principal regional groundwater flow direction is from north to south, 

whereas the extreme flat topography of the central floodplain creates 

extreme slow flow rates of several decimetres per year (MC ARTHUR et al. 

2008). Hence, a high vulnerability of the aquifer system arises towards 

perturbations caused by pumping (MICHAEL & VOSS 2009a,b). 



3.5 ARSENIC IN GROUNDWATER OF THE BENGAL DELTA PLAIN 

37 

3.5 ARSENIC IN GROUNDWATER OF THE BENGAL DELTA 

PLAIN 

The BDP is known as one of the worst affected areas worldwide by the 

occurrence of partly notorious concentrations of inorganic As in local 

groundwater (CHARLET & POLYA 2006, POLYA & CHARLET 2009). Many 

studies have been conducted since the 1990’s to reveal the dimension and 

distribution of As in local groundwater, to identify the reason of As 

enrichment and to provide potential mitigation strategies (e.g., BERG et al. 

2001, FENDORF et al. 2010, HARVEY et al. 2002 & 2005, MC ARTHUR et 

al. 2001 & 2004, NEUMANN et al. 2009, POSTMA et al. 2010, VAN GEEN 

et al. 2004). A large field survey conducted by the British Geological Survey 

(BGS) and the Bangladesh Department of Public Health Engineering 

(DPHE) included sampling of 3,534 tube wells in the Bangladesh part of the 

BDP. Results revealed that 27 % of the tested wells exceeded 50 µg As L-1, 

whereas most concerned wells are filtered in depths down to 150 m 

(KINNIBURGH & SMEDLEY 2001). Concentrations of total As reached up 

to 3,200 µg L-1, with As(III) as dominating species. Groundwater with 

increased As concentrations was found to be characterised by high 

concentrations of Fe(II), HCO3
-, PO4

3- and Mn, and concomitant low 

contents (<1 mg L-1) of O2, SO4
2- and NO3

-. This distribution of TEA clearly 

points at pronounced influences of microbial Mn(IV), Fe(III) and SO4
2- 

reduction in the shallow aquifer parts. 

Elevated As concentrations typically occur in organic-enriched, grey 

reduced Holocene sand aquifer parts of the Ganges, Brahmaputra and 

Meghna delta and floodplain areas, as well as in the Sylhet Basin 

(ACHARYYA et al. 2000). Despite this, Pleistocene and older units are 

generally free of As, as well as the alluvial tract of the Ganges upstream the 

Rajmahal Hills (MC ARTHUR et al. 2004, MUKHERJEE et al. 2011). 

Typically punctual As sources like volcanic activities, thermal springs, heavy 

industry or mining activities could be excluded as potential sources of As 

(ACHARYYA et al. 2000). Arsenic concentrations can change within a 

couple of metres by up to three orders of magnitude (MUKHERJEE et al. 

2008). Terms like “hot spots & cold spots” (CHARLET et al. 2007, NATH et 
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al. 2008) or "patchiness” (RAVENSCROFT et al. 2001) were used to 

describe these inhomogeneous distribution patterns. Despite this extremely 

horizontal heterogeneity, concentrations of As in local groundwater also 

varied vertically within metres to centimetres (CHARLET et al. 2007, VAN 

GEEN et al. 2006). Depth profiles of dissolved As were described as bell-

shaped, with maxima usually occurring in depths between 20 to 30 m below 

land surface (bls) (HARVEY et al. 2002). Similar inhomogeneous 

distribution patterns occur in other deltaic regions of Asia, too, for example 

in Vietnam, Taiwan or in several regions of China (CHEN et al. 1994, GUO 

et al. 2008, VAN GEEN et al. 2008). This high spatial variability of As is 

linked to the complex sedimentation history of the BDP. On the one hand, 

palaeo-channels and marine deposit witness an influence of regression and 

transgression events in dependence on the distance to the coast (SARKA et 

al. 2009). On the other hand, frequent river bed changes created wetlands, 

levees and oxbow lakes, where sedimentation caused a rapid burial of OM 

(sparsely distributed or concentrated in form of peat layers) (CHARLET et 

al. 2007, MC ARTHUR 2004 & 2008, MUKHERJEE 2009). As a result, local 

lithology and related geochemical and geomicrobiological processes that 

control the mobility of As may vary vertically as well as horizontally on a 

small scale. 

Not much is known about the primary sources and transport 

mechanisms of As from the delivery areas of the Bengal Basin. Holocene 

sediment deposit originate from the Himalayan Mountain Range, where 

metamorphic rocks and magmatic intrusions form a complex geologic 

setting and include arsenic-bearing phases like apatite, pyrite and magnetite 

(HATTORI et al. 2005, MAILLOUX et al. 2009). Arsenic can be directly 

transported by the drainage system in fragments of As(V)- and/or As(III)-

hosting minerals. In addition, As can first be mobilised in the Himalaya by 

weathering of surface exposed arsenic-hosting parent rock, before it 

adsorbs to and/or co-precipitates with Fe-(oxyhydr)oxides. These secondary 

Fe-mineral phases either form as thin coatings around mineral grains or as 

nano-particles, and act as primary carrier phases for As (RAISWELL 2011). 

In both cases, As(III) and As(V) are transported via surface runoff into the 

Bengal Basin, where they are deposited (KINNIBURGH & SMEDLEY 2001). 
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3.6 THE INVESTIGATION AREA AT A LOCAL TO REGIONAL 

SCALE 

Local sites, which are located close to the study area described in the 

scope of this work, have been previously investigated by international 

research groups. During the past years, the knowledge of these sites 

continuously evolved based on the application of new methods and 

techniques. Principal results are summarised in the following and form the 

base to compare and incorporate new findings from this study. 

3.6.1 CHAKDAH CITY ARSENIC HOTSPOTS

One of the first and currently best investigated study area in the BDP is 

located next to the city of Chakdah, the capital of the Nadia district. The 

town with its approximately 75,000 inhabitants is seated at an elevated river 

bank of the Hooghly River in the active floodplain of the Bengal Basin, about 

60 km south of Kolkata (CHARLET et al. 2003). The geomorphologic highly 

dynamic area is marked by past channel shifts of the Hooghly River, which 

created series of oxbow lakes, meander scars, swamps, natural levees and 

ponds. Ponds were often used to obtain clayey building material for the 

traditional houses and often follow dry fallen meanders. 

From 1998 to 1999, 636 deep, 245 medium deep, and 587 shallow tube 

wells have been used together with 319 river lift pumps to irrigate 

approximately 112,089 hectares of land in the Nadia district, which is about 

78 % of the locally cultivated land (NATH et al. 2008). Since then, irrigation 

based on shallow groundwater has furthermore increased. 

Groundwater from local tube wells and newly installed monitoring wells 

reflected a characteristic groundwater composition, including pronounced 

spatial variations of As concentrations that reached up to 500 µg L-1 and 

appeared in form of plumes (CHARLET et al. 2003 & 2007). High ground-

water HCO3
- contents (compared to Hooghly River water) in the shallow 

groundwater were attributed to the microbial degradation of considerable 

amounts of OM (MÉTRAL et al. 2008). According to EH measurements and 
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hydrochemical compositions of groundwater with increased As contents, 

Fe(III) reduction was identified as one of the predominating TEA consuming 

processes. In order to determine the spatial extent of a typical As hot spot, 

transects reaching from the Hooghly River banks towards the city were 

sampled with the needle sampler technique developed by VAN GEEN et al. 

(2006). Interpolated results reflected a partly decoupling of groundwater As 

concentrations from dissolved Fe, and a distribution pattern mirror-inverted 

to that of SO4
2- (MÉTRAL et al. 2008). Two As plumes were described with 

spatial extensions of only a few hundred metres and thicknesses of about 

10 to 30 m. The spatial extension of a several metres thick surface clay 

layer that overlies the sandy aquifer could be determined by combining 

drillings and electromagnetic conductivity mappings. This hydraulically 

nearly impermeable layer turned out to be patchy, comprising pockets of 

sandy sediments. In groundwater below these sandy pockets, As, Fe, and 

major ion concentrations turned out to be low, while SO4
2- was increased 

(MÉTRAL et al. 2008). These patterns were attributed to locally restricted 

recharge with vertically infiltrating, oxygen- and nitrogen-rich surface water, 

which keeps the system constantly in a state of less reducing conditions. 

Piezometric measurements reflected seasonal, vertical fluctuations in 

the hydrostatic head of about five metres, whereas the Hooghly River acts 

as recharge during the dry season, and as drainage during the monsoon 

(NATH et al. 2008). Deep and shallow aquifer zones are intra-connected as 

demonstrated by influences of a newly installed governmental deep drinking 

water well in the eastern part of Chakdah. Excessive withdrawal of ground-

water in depths of 100 m and deeper created a local depression cone in the 

surface near shallow aquifer, causing subsequent attraction of a nearby As 

plume and drawdown of arsenic-rich groundwater in range of the deep 

supply well (CHARLET et al. 2007, LAWSON et al. 2008). 

Geochemical characterisations confirmed the outstanding role of Fe-

(oxyhydr)oxides as primary carrier phase of the predominantly low As 

contents (around 2.5 mg kg-1) and the prevalence of As(III) (>70 %) in the 

reduced sediments (ROWLAND et al. 2005). Geo-microbiological cultivation 

experiments with sediment samples from a field site near the Hooghly River 

provided important insights into the biogeochemical cycling of As. 
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Indigenous microbial communities were found to be very diverse, covering 

nine classes, six phyla and many unknown species (HÉRY et al. 2008, 

HÉRY et al. 2010).  

The following species could be identified demonstrating the close relation 

between Fe(III) reduction and As release: 

 Sulfurospirillum spp., capable of Fe(III) and As(V) reduction

(ROWLAND et al. 2009);

 Acinetobacter spp., As tolerant and known to release As from wood

preservatives (GAULT et al. 2005);

 Geobacter spp., generally capable of Fe(III) reduction (ISLAM et al.

2004), with the arrA-gene detected in Geobacter uraniireducens

and Geobacter lovleyi (HÉRY et al. 2010).

Laboratory experiments with isolated strains of these indigenous strains 

successfully demonstrated the ability of Fe(III) reduction and release of 

dissolved As(III) and Fe(II) (ISLAM et al. 2004). Further experiments 

revealed a partial decoupling of As mobilisation from Fe(II) release. This 

was attributed to As re-adsorption following transformations of Fe(III)-

mineral phases by dissolved Fe(II) and/or the presence of DARPs (GAULT 

et al. 2005, ROWLAND et al. 2009). Although peat layers are supposed to 

be closely linked to the occurrence of arsenic-enriched redox zones, no 

peat was found in local aquifer sediments (CHARLET et al. 2007, 

ROWLAND et al. 2006). Sedimentary organic matter was characterised as 

strongly biodegraded, not of anthropogenic origin, increased in high 

molecular weight hydrocarbons (n-alkanes) and still able to support 

microbially mediated As(III) release in microcosm experiments (ROWLAND 

et al. 2006). Results alluded to the conclusion that release and distribution 

of As in groundwater of this area is driven by microbial activity in anoxic 

aquifer parts, which is in turn influenced by local geomorphologic 

characteristics and pumping (CHARLET et al. 2007). 
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3.6.2 INFLUENCES OF THE LOCAL SEDIMENT 

STRATIGRAPHY 

Another long and well investigated study site is located at the junction of 

three neighbouring villages Joypur, Ardevok and Moynar (abbreviated as 

JAM), about 38 km south of Chakdah and 12 km east of the Hooghly River. 

Shallow groundwater compositions met in local tube wells turned out to be 

typically for the Bengal Basin, with As concentrations reaching up to 1,180 

µg L-1 (MC ARTHUR et al. 2004). Field survey results revealed that local 

groundwater is compositionally stratified by depth, with strong variations of 

redox sensitive parameters like As, Mn, Fe, and SO4
2- that formed so called 

“redox fronts” (MC ARTHUR et al. 2008). These redox fronts reflect a 

downward decreasing redox potential in the local aquifer. Faecal OM could 

be excluded as potential source for organic carbon triggering As release 

(MC ARTHUR et al. 2004). Age determination of the local aquifer sediments 

revealed that in 31.5 m depth Holocene (~7,000 a BP), and in 50 m depth 

Pleistocene (~27,230 a BP) sediments occur (MC ARTHUR et al. 2004). 

Despite this, respective groundwater turned out to be very young with ages 

ranging from 1.4 to 32.2 a in the Holocene aquifer and >50 a in the 

Pleistocene parts (MC ARTHUR et al. 2010). Lateral groundwater flow rate 

in the Holocene shallow aquifer part was calculated from piezometric data 

as ~0.1 m d-1 (~30 m a-1), while downward velocities ranged in dependence 

of local irrigational pumping between 0.05 and 0.60 m d-1 (MC ARTHUR et 

al. 2008). 

Some of the nested monitoring wells were installed in sandy palaeo-

channel sediments, while others were suited in sediments of a palaeo-

interfluve, including buried remains of an oxidised palaeosol. The palaeosol 

covers an area of about 400 x 450 x 5 m, is composed of brown clay 

holding up to 299 mg As kg-1, and is underlain by Pleistocene brown sand 

(MC ARTHUR et al. 2010). It was proposed that this soil had developed 

during the last sea-level lowstand in time of the last Pleistocene glacial 

maximum (LGM), before it was subsequently buried by Holocene deposits.  
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Buried palaeosols are considered as a widespread geomorphologic feature 

in the BDP, whose Fe(III)-rich brown sands function as effective As barriers 

and protect underlying aquifers from sinking arsenic-rich groundwater 

(MC ARTHUR et al. 2011, STOLLENWERK et al.2007). 

Annual sampling in the monitoring wells revealed diverse temporal 

changes in As concentrations between 2001 and 2009, varying from 

decreasing over peaking to increasing trends (MC ARTHUR et al. 2010). 

These trends were attributed to (i) flushing and infiltration of arsenic-low 

groundwater; ii) downward movement of the chemically-stratified water 

column; (iii) and lateral invasion of arsenic-enriched water in zones of brown 

sand (MC ARTHUR et al. 2010). Excessive local abstraction of groundwater 

for irrigation and drinking water supply has strongly influenced the local 

groundwater flow directions and caused temporal trends in dissolved As 

concentrations of some monitoring wells, although the occurrence of high 

As groundwater generally predates pumping (MC ARTHUR et al. 2010).  

3.6.3 CONCEPTIONAL MODEL OF ARSENIC RELEASE 

ACCORDING TO PRESENT KNOWLEDGE 

Arsenic release within groundwater of the BDP is an active process, 

which is controlled by microbial redox reactions as well as related abiotic 

processes. Resulting As distribution patterns in groundwater are influenced 

by regional and local hydrogeological conditions and artificial groundwater 

abstraction. Arsenic itself can be considered as a passive element, which 

does not directly influence the controlling factors. The complex interactions 

involved in biogeochemical cycling of As in the BDP can be summarised in 

a conceptual model (Figure 3.3). 
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Figure 3.3, continued: 

1. Release of As in the Himalaya region by weathering of parent rock followed

by immobilisation through secondary Fe-(oxyhydr)oxides; 

2. Fluvial transport of fragments of arsenic-bearing primary minerals and

secondary arsenic-hosting Fe-(oxyhydr)oxides; 

3. Continuous burial of arsenic-bearing minerals together with high amounts of

organic matter; 

4. Surface recharge from ponds, wetlands and irrigated fields provides

infiltration of fresh water (enriched in DOC and TEA) through sandy gaps in the 

surface aquitard; 

5. Development of vertically and horizontally stratified redox zones in the

aquifer sediments depending on the availability of OM and TEA. Interconnected 

biotic and abiotic processes affect the mobility of As, when the redox potential 

successively declines in shallow aquifer parts; 

6. + 7. Arsenic re-adsorption onto transformed Fe-minerals (6) and precipitation

of arsenic-retaining Fe-sulphides (7) result in extremely varying groundwater 

As concentrations; 

8. Slow and anisotropic transport of dissolved As and adsorption onto Fe(III)-

oxides of buried palaeosols, which protect the underlying aquifer parts; 

9. Excessive groundwater abstraction redirects natural flow paths, which

induces mixing of water with different hydrochemical properties and endangers 

arsenic-free groundwater; 

10. Irrigation water causes increase in soil As contents and partially re-import

of As into the aquifer via infiltration; 

11. Flush-out of As via surface and groundwater discharge in southern

direction into the Bay of Bengal. 
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It is not the question if there is As release in the BDP, but how, where and 

when it occurs. Though considerable progress has been made, a huge 

number of questions remains unsolved that will be addressed in the 

following chapters: 

 The ultimate cause for the development of small-scaled redox

zonings in the aquifer sediments remains obscure and there is in

addition a lack of necessary data to discern the relative importance

of other than microbial mechanisms related to As release and

enrichment (VAN GEEN 2011);

 Regarding the widely accepted Fe(III) reduction hypothesis, it

remains unclear why no steady re-adsorption of As onto surfaces of

residual Fe-minerals appears (WELCH et al. 2000). This critical

question appears to be a concealed aspect in present literature

reporting about As enrichment in the BDP as well as other affected

Asian deltas and floodplains;

 Further, little is known so far regarding the recently discovered

transformations of Fe-minerals, which influences the sedimentary

As retention potential (KOCAR et al. 2006, PEDERSEN et al. 2006);

 In present literature, nearly no attention is paid to processes in the

groundwater fluctuation zone close to the surface, where redox

transformations at the solid-water-interface appear in scales of µm

to cm;

 Importantly, it is of greatest relevance to answer how vulnerable

shallow arsenic-free aquifers are really to pumping, since they are

the currently preferred source of drinking and irrigation water in the

BDP (MICHAEL & VOSS 2009a, NATH et al. 2008).



4. MATERIALS AND METHODS

4.1 MULTILEVEL WELL INSTALLATION AND SEDIMENT 

SAMPLING 

Five nested multilevel wells were installed at two study sites entitled as 

the high As site and the low As site during June 2008. Each well was 

installed in a separate borehole, with a maximum distance of ~3 m to a 

central well in the middle. Well screens and casings made of PVC were 

placed in different depth ranges (well screen positions low As site: 12-21, 

24-27, 30-33, 36-39 and 42-45 m bls; high As site: 12-21, 22-25, 26-29, 30-

33, 34-37 m bls). Gravel surrounds the well screens (pore size of the 

screens: 2 mm) as filter pack and overlaying, compacted bentonite serves 

as sealing (see Figure 4.1). The lockable tube wells are additionally sealed 

with concrete at the surface to prevent infiltration of surface water. Below 

each well screen, a mud trap of 1 m length is located. The central well A of 

each site has a diameter of 20 cm, while the surrounding wells are equipped 

with 7.5 cm well screens and casings. At both sites, installation of the 

deepest wells was combined with sediment sampling. A split-spoon core 

barrel lined with a PVC tube (length: 60 cm, diameter: 5 cm) was used as 

core catcher (KIEFT et al. et al. 2007). The core barrel was locked in front 

with a cutting shoe, providing additional 5 cm of core samples that were 

retained separately. The system was attached to a drilling rig and 

hammered manually into the unconsolidated aquifer sediments with a 50 kg 

weight (ISLAM et al. 2004). After sampling of 1.30 m (2 x 0.65 m), drilling for 

the well instalment was made up for the respective depth interval, before 

the next interval was sampled and so on. 
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Figure 4.1: Construction details of the monitoring wells according to LAPHAM 

et al. (1997). 

The challenge was to obtain uncompromised, representative sediment 

samples for microbiological investigations and column experiments. Thus, 

the use of drilling fluid was avoided as long as possible and the equipment 

was cleaned with a disinfecting agent (Sterillium®, BODE CHEMIE) before 

sampling. First, hollow stem augering was used until the saturated zone 

was reached. Then, drilling was continued with a cable tool drilling rig until a 

depth of about 11 m bls (low As site), respectively 13 m bls (high As site). 

Finally, drilling was completed with rotary drilling, using bentonite solution 
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as drilling fluid. Captured sediment cores (average recovery: 64.4 %) were 

immediately purged with N2 and sealed with a PVC cap and air tight tape to 

minimize contact with O2. Uncompromised cores with aquifer sediments and 

pore water were separated and used for microbial column experiments. 

Sample material from the cutting shoe was rapidly transferred into nitrogen 

purged HDPE bags, sealed twice and stored under N2 atmosphere in two 

PVC barrels to avoid oxidation. The tightly closed barrels were regularly 

(once per week) purged with N2 until sample analysis. 

After installation of the monitoring wells, well development was done 

according to common practice (LAPHAM et al. 1997). Unfortunately, the 

central wells (12-21 m bls) collapsed at both sites and were rebuilt in 

December 2008. The two new wells were finalised in December, shortly 

before the first sampling. 

4.2 GEOCHEMICAL SEDIMENT CHARACTERISATION 

Sediment analyses aimed to gather information about the aquifer 

mineralogy, geochemistry and OM in general, and the arsenic-bearing 

mineral phases in particular. All measurements were carried out at the IMG, 

except for TN determinations (done at the Institute of Geography and 

Geoecology, IfGG). Sample treatment procedures are summarised in Figure 

4.2. Samples were measured in replicates and blank measurements were 

included for blank value correction and to calculate respective limits of 

detection (ld). The same applies to hydrochemical analyses (chapter 4.3). 
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Figure 4.2: Flow chart representing sample preparation and sediment analyses. 

Abbreviations given in text below. 

Sediment analysis. Grain size analysis was done following DIN 4188, 

differentiating down to the silt and clay fraction (grain size <63 µm). Clayey 

samples were wet-sieved, sandy samples dry. Results were used to 

estimate hydraulic conductivities (K) of respective aquifer parts with the 

Beyer formula (BEYER 1964). Samples were dried (60°C), homogenised in 

an agate grinding mill and analysed for major and trace elements by energy 

dispersive X-ray spectroscopy (EDX; Epsilon 5, PANanalytical). Results 

were corrected to average deviations from certified values of reference 

materials (see APPENDIX I, Table A 1.1). Accuracy and precision were 

generally very good.  
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For example, relative standard deviations (%RSD) for As in the reference 

material GXR-5 was 2.78 % (average content: 12.2 mg kg-1 As, n: 10), and 

in case of a low As sample 1.84 % (average content: 2.16 mg kg-1, n: 3). 

Representative samples from different depths were chosen for detailed 

analyses. Microwave assisted acid digestions were conducted (following 

MLS application E704 for rock and sediment) to determine additional 

elements (Na, Mg, P and V) and to validate EDX and sequential extraction 

results (see below). For each measurement, previously frozen sediment 

material (about 50 mg) was transferred into microwave Teflon flasks (MW 

system Start 1500, MLS GmbH) and the exact weight noted. Then, 0.5 mL 

H2O2 (30 % p.a.; ROTH), 0.25 mL HF (40 % suprapure, Merck), 2.0 mL 

HNO3 (65 % sub-boiled, Fluka) and 1.0 mL of Milli-Q water were added. 

After digestion, the solution was transferred into small Teflon cups and 

evaporated at about 120°C to the size of a small drop. Residues were 

diluted with HNO3 (1 % sub-boiled, Fluka) and evaporated again. After two 

repetitions, digestions were transferred into 10 mL volumetric flasks and 

stored in the refrigerator at 4°C until elemental analysis. This was done in a 

cleanroom by means of inductively coupled plasma mass spectrometry 

(ICP-MS; XSERIES 2 ICP-MS, Thermo Fischer). The GXR-2 reference 

material was included as reference material, see section “sequential 

extraction” below.  

Mineral phases were qualitatively identified by powder X-ray diffraction 

(XRD; D500 Kristalloflex, Siemens; measuring quality and reproducibility of 

reference materials and samples summarised in APPENDIX I, Table A 1.2). 

Detection limits for accessory minerals were improved by stepwise 

separation and pre-concentration of para- and diamagnetic minerals using a 

magnetic separator (Isodynamic separator model 2, Frantz; settings 

summarised in APPENDIX I, Table A 1.3). Sample material (30 g) was dry-

sieved to separate the fraction between <2 mm and >0.063 mm, which was 

weighted and further separated by magnetic separation. Before, highly 

magnetic magnetite was qualitatively detected with a bar magnet. Clay 

minerals were determined via XRD from clay-rich samples (nine samples 

from the high As site and six samples from the low As site) by comparing 

powder X-ray diffractograms (2 to 22° 2θ) of untreated samples to glycol 
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treated (24 h) and heat exposed (550°C, 1 h) subsamples. All XRD 

measurements were carried out with CuKα radiation (40 kV and 25 mA) in 

steps of 0.01° 2θ s-1. Obtained spectra were processed (background 

subtraction, k-alpha stripping and minor smoothing) with PowderX (beta 

version, developed by Cheng Dong) before data was evaluated with 

DIFFRAC PLUS EVA (version 13.0.0.1, Bruker AXS) and Qual-X (version 

1.2, Instituto di Cristallografia Italia), which both use the PDF-2 database 

(version 2004, ICDD). 

Sequential extraction procedure. In order to identify the host phases 

of sedimentary As in sediments, a sequential extraction procedure (SEP) 

was performed according to EICHE et al. (2008 & 2010) and WAGNER 

(2005). This extraction is a modification of the SEP developed by KEON et 

al. (2001), VAN HERREWEGHE et al. (2003) and WENZEL et al. (2001). 

The detailed procedure is summarised in APPENDIX I, Table A 1.4. Results 

of samples analyses of the study sites are presented in chapters 6 and 7 

(Figures 6.4 and 7.3). In 3 out of 17 extractions, the sum of extractable As 

was considerably lower than total As (Astot) contents determined by EDX 

and acid microwave digestions, while the other samples showed a 

moderate agreement. A certified reference material (GXR-2) was analysed, 

too. The measured Astot content of 28.8 mg kg-1 is in accordance to results 

of microwave acid digestions (28.4 and 28.2 mg kg-1), but EDX 

measurements (24.9 ± 0.8 mg kg-1; n: 11) as well as the certified value 

(25.0 mg kg-1) are lower. Additionally, two samples were extracted in 

duplicate. Although total As contents are similar (high As site: 4.73 and 4.89 

mg kg-1; low As site: 1.49 and 1.63 mg kg-1, respectively), the relative 

portions in fractions I to VII appear to be shifted, especially in fraction II 

(strongly adsorbed As). 

Increased contents of dissolved Fe occurred in fraction II, which is 

attributed to an early dissolution of iron phases (see APPENDIX II, Table A 

2.2 and APPENDIX III, Table A 3.2). The long (16 & 24 h) and repeated 

leaching with 0.5 M NaH2PO4 solution caused most likely dissolution of 

amorphous Fe-(oxyhydr)oxides, although the underlying mechanism 

remains unclear. This results in an overestimation of As contents in SEP 
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fraction II at the expense of fraction III, which includes very amorphous Fe-

(oxyhydr)oxides. However, an increased proportion of As in the strongly 

adsorbed fraction is still plausible according to high contents of dissolved As 

in local groundwater, prolonged water-rock interaction and high affinities of 

Fe-(oxyhydr)oxide surfaces for As(III) and As(V) (DIXIT & HERING 2003). 

The reliability of this method was proved by EICHE et al. (2008), where 

differences in replicates were less than 10 %. Differences in Astot contents 

between sum of the SEP fractions, EDX and acid microwave digestions as 

well as deviant As distribution patterns in replicates are attributed to 

inhomogeneities within the untreated sample material and the generally low 

As contents. Furthermore, it is difficult to distinguish the role of specific 

oxides from extraction data due to the limited selectivity of the extractants 

(KINNIBURGH & SMEDLEY 2001). Thus, results of the SEP must be 

treated with caution and considered as semi-quantitative. 

Determination of iron minerals. Iron contents (determined as Fe2O3) 

of 1.36 to 5.83 weight % (wt.%) indicate the presence of considerable 

amounts of iron-bearing minerals, but crystalline Fe-(oxyhydr)oxides could 

not be directly identified by XRD (ld: ~5 %).  

Semi-quantitative estimations can be made from the different SEP fractions, 

but results must be considered as underestimated regarding the previously 

mentioned loss of Fe in fraction II: 

 Fraction III (HCl): Iron bound in sulphides, carbonates and very

amorphous Fe-(oxyhydr)oxides (KEON et al. 2001);

 Fraction IV (AOD): Iron in form of amorphous Fe-(oxyhydr)oxides

(CORNELL & SCHWERTMANN 2003);

 Fraction V (DCB): Most well crystallised Fe(III)-oxides (PANSU &

GAUTHEROU 2006).
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More precise methods for direct detection of arsenic-hosting phases as 

micro-synchrotron (µS) based techniques (µS-XAFS and µS-XRD in 

combination with µS-EDX) were extensively tested at the SUL-X beamline 

of the ANKA facility. These methods turned out as inadequate due to the 

overall low As contents. 

Characterisation of organic matter. Total S (TS; ld: 26 mg kg-1) and C 

(TC; ld: 71 mg kg-1) contents were determined with a carbon sulphur 

analyser (CSA; CS 2000 MultiLine F/SET-3, Eltra). Total organic C (TOC) 

and inorganic C (TIC) were distinguished by comparing untreated sediment 

samples with decarbonised (with 20 % HCl p.a., Merck, at 60°C) ones. 

Quality of the analyses was controlled by repeated determinations (per 10 

samples) of two reference materials (see APPENDIX I, Table A 1.5). Total 

N contents were measured in triplicates with an elemental analyser (EA; 

EuroEA3000, Euro Vector). Results of the two regularly measured reference 

materials were constantly too high (see APPENDIX I, Table A 1.5), whereas 

results were batch-wise corrected to the certified value of the standard NCS 

DC 73326. 

Analytical limitations arose for stable isotope measurements of δ13C 

from the generally low TOC contents that were previously determined by 

CSA. Thus, isotopic analyses were restricted to a subset of 49 samples 

(high As site: 27; low As site: 22). Isotopic δ13C (measured against VPDB) 

and δ15N (measured against atmospheric N) values were determined with 

an EA (EuroEA3000; Euro Vector) coupled online to an isotope ratio mass 

spectrometer (IRMS; IsoPrime, GV Instruments). The δ-values were 

calculated according to HOEFS (2009). Isotopic values were determined 

from previously decarbonised TOC samples. To remove unwanted remains 

of Cl-, samples were repeatedly washed with Milli-Q water in glass bottles 

before drying at 40°C. Accuracy was checked with certified reference 

materials in regular intervals (see APPENDIX I, Table A 1.5). 
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4.3 HYDROCHEMICAL MONITORING AND IN-SITU 

EXPERIMENTS 

4.3.1 FIELD SURVEY AND REGULAR MONITORING 

Field survey. The aim of the preliminary survey was to obtain a detailed 

picture of the local aquifer hydrochemistry in the proposed study area within 

the Nadia district. Between September and November 2007, 174 private 

and governmental wells were sampled in an area of approximately 20 km2. 

The study area is located approximately 80 km north of Calcutta (Figure 

5.1). Sampling of local private tube wells was conducted by two Indian PhD 

students (A. BISWAS and S. MAJUMDER) from the Department of 

Chemistry of the University of Kalyani (West Bengal, India). During 

sampling, field parameters (electrical conductivity, pH, water temperature) 

were measured on-site with a multi meter (MultiLine F/SET-3, WTW). 

Groundwater samples were collected after field parameters had stabilised to 

assure that well water was completely exchanged. Results of this survey 

were used to identify two capable field sites with contrasting As contents in 

shallow groundwater. The detailed decision-making process is discussed in 

chapter 5.3.2. 

Regular monitoring. The monitoring wells enabled sampling and 

monitoring of the groundwater chemistry in five different depth ranges at 

each study site. Between December 2008 and August 2010, sampling was 

done in bi-weekly intervals by A. BISWAS and S. MAJUMDER. Samples 

were taken with a submersible electrical pump system (delivery rate: 2.4 L 

min-1) after stabilisation of field parameters. The low pump delivery rate was 

applied to avoid mixing of water from different depth ranges. 

Undisturbed conditions were recorded during the first year, while in 2010 

short- and middle-term influences of the in-situ experiments were 

monitored. Before sampling, undisturbed hydraulic heads were recorded 

with a light plummet. Since no exact elevation data was available, the top 

edges of the monitoring well tubes were levelled against each other using a 



4 MATERIALS AND METHODS 

56 

water filled hosepipe to obtain a comparative point of reference for 

hydrostatic head measurements. Additionally, the tube well height above 

the ground level was measured. Immediately after sampling, dissolved 

Fe(II) and total Fe concentrations were determined spectrophotometrically 

(Lambda 20 UV-VIS Spectrophotometer, Perkin Elmer) with the 

phenanthroline method (SANDELL 1959) at the Kalyani University. Samples 

were shipped regularly to the Karlsruhe Institute of Technology (KIT), where 

the hydrochemical analyses were carried out at the Institute of Mineralogy 

and Geochemistry (IMG). Organic and microbiological analyses were done 

at the Institute of Biology for Engineers and Biotechnology of Waste Water 

Treatment (IBA) by D. FREIKOWSKI. 

4.3.2 IN-SITU FIELD EXPERIMENTS 

After one year of monitoring, in-situ experiments were conducted 

between 04/12/09 to 18/12/09. In addition to measurements done during the 

regular monitoring, total alkalinity (TA) was determined on-site using a 

titrimetric test kit (alkalinity test 1.11109.0001, Merck; %RSD: ± 2.00, n: 5). 

Groundwater O2 concentrations and EH were measured with respective 

multi meter probes inside a glassy flow cell to avoid influences of 

atmospheric O2. Unfortunately, only a few reliable EH measurements are 

available because the probe broke soon. Generally, all probes were 

calibrated before use. The undisturbed hydrochemistry was recorded at 

each site one day before the experiments were conducted (03/12/09). 

Before and at the end of the experiments, NH4
+ was measured in triplicates 

spectrophotometrically (NH4
+ test kit for Spectroquant® 0.26-10.30 mg L-1, 

Merck). Details of sample treatment are included in Figure 4.3.  
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Figure 4.3: Treatment and hydrochemical analyses of samples taken during the 

in-situ field experiments. 

The field experiments were supported by the Indian project partner 

regarding permissions, logistics and completion. The regular monitoring was 

continued during the next seven months to monitor mid-term effects. 

In-situ biostimulation experiment. At the low As site, the microbial 

potential of releasing As by anaerobic degradation of OM was investigated. 

Therefore, sucrose (saccharose) was introduced into the local aquifer as an 

easy biodegradable and non-reducing organic carbon source (PÉREZ 

1995). Sucrose was dissolved in 30 L of previously extracted groundwater 

and added stepwise into the four surrounding wells B, C, D and E. Four kg 

of dissolved sucrose was each introduced into wells B and E, and two kg 

into wells C and D, respectively. Importantly, sucrose was added only once 

and no further substances (especially TEA) were introduced. To create a 

diffuse distribution of sucrose within the aquifer by avoiding insertion of O2, 
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circular pumping was used. To do so, groundwater was drawn from the 

central well A with an electrical pump (delivery rate: 70 L min-1) and was 

directly re-introduced into the surrounding wells, beginning with the deepest 

well E (Figure 4.4). To assure that the extracted and re-introduced ground-

water contained sucrose, a simple qualitative colorimetric field test using 

CoNO3-solution was done every minute (according to WHITEHEAD & 

BRADBURY 1950). After three minutes, the test indicated the presence of 

sucrose in delivered groundwater. Thus, sucrose was successfully 

introduced and locally restricted distributed in the aquifer via circular 

pumping. This step was repeated for wells B, C and D at the 04/12 and 

05/12/09. For each well, a volume of 1,200 L was circulated. To increase 

the hydrostatic pressure during re-injection, a 200 L barrel was mounted on 

top of wells B and E. Assuming a slow groundwater flow velocity, the 

generated sucrose cloud was expected to last at the study site for the next 

couples of weeks. After infusion, samples were taken from all wells every 

second day (06/12 to 18/12/09). 

Figure 4.4: Schematic sketch of step-wise sucrose injection by circular 

pumping. The procedure was repeated for the four surrounding wells B to E. 
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Groundwater abstraction experiment. At the high As site, a ground-

water table drawdown experiment was conducted to simulate excessive 

groundwater abstraction and to aerate surface near, permanently reducing 

aquifer sediments (setup illustrated in Figure 7.9, chapter 7.2.2.2). The 

pump used for the experiment (borewell pump model 100W15RA3, 

Crompton Greaves LTD) was purchased in Chakdah city and is a common 

model used by local farmers for irrigation purposes. It has a diameter of 

100 mm, 2.2 kW performance and a maximum discharge of 150 L min-1 

down to 50 m depth. The pump was installed at a depth of 15 m inside the 

central pumping well A (well screen covering 12-21 m bls). This is a 

common depth range used for local tube wells (NATH et al. 2008). After 

installation, four pump and rest cycles were completed between 04/12/09 

and 17/12/09. Each cycle included 48 h of continuous pumping, followed by 

a rest cycle of 24 h. Accompanying sampling was done after each rest cycle 

to include potential ion exchange reactions, which may have subsequently 

affected the mobility of As. For comparison, one additional sampling was 

done immediately after the third pumping interval before the rest cycle. In 

total, a volume of about 1,730 m3 was abstracted and distributed among 

surrounding ponds and fields. To avoid re-infiltration of discharged water, a 

minimum distance of 150 m to the pumping site was maintained. 

4.3.3 GROUNDWATER ANALYSIS 

Major and trace elements. Major and trace elements (including As and 

P) were determined from filtered (0.45 µm cellulose acetate filter, Sartorius)

and acidified (1 % v/v HNO3 suprapure, Merck) samples by high resolution 

ICP-MS (HR-ICP-MS; AXIOM, VG Elemental) in a cleanroom (APPENDIX I, 

Table A 1.6). The analytical precision was estimated by multiple sample 

replicates (triplicates), while the accuracy was assessed by analysing two 

certified reference materials every seven samples (APPENDIX I, Table A 

1.7). In addition, samples for As speciation were additionally percolated 

through an As(V) retaining filter cartridge (MetalSoft Centre, MENG et al. 

2001). Net differences between total As and As(V) removed samples are 
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interpreted as inorganic As(III), whereas the presence of organic species 

like MMAA and DMAA are considered negligible according to previous 

speciation studies done in the BDP (CHATTERJEE et al. 1995, DAS et al. 

1996) and in the black foot disease area of Taiwan (CHEN et al. 1994, LIN 

et al. 1998). Constantly high ratios of determined As(III) (>90 %) that are in 

good agreement with thermodynamic species calculations done with 

PHREEQC (see below) demonstrate that As(III) oxidation did not occur in 

samples during storage. Limits of detection were calculated for each sample 

batch separately from the standard deviation (σ) of blank values that were 

included every seven measurements (APPENDIX I, Table 1.6). 

Anion concentrations (Cl-, NO3
- and SO4

3-) were determined by ion 

chromatography (IC; ICS 1000, DIONEX) from filtered sample aliquots, 

except for PO4
3-. Quality control was done with regular measurements of a 

reference solution containing comparable anion concentrations (SPEC 

PURETM Multi Ion IC Standard Solution, Alfa-Aesar). Limits of quantification 

(lq) strongly depend on the column and sample volumes used. During the 

monitoring period, two different separation columns were used (AS 4 SC 

and AS14, both DIONEX). Hence, quantification limits were determined for 

each column separately (according to DIONEX Application Note 133) based 

on regularly included control measurements (APPENDIX I, Table A 1.8). 

From anion samples, δ2H and δ18O signals were obtained by Gasbench-

IRMS (Delta V Advantage, Thermo SCIENTIFIC) and standardised to the 

VSMOW reference material (COPLEN et al. 2000). Analysis quality was 

regularly checked with three certified reference solutions (see APPENDIX I, 

Table A 1.9).  

While anions measured by IC are given with respective ionic charge, 

major and trace elements determined by HR-ICP-MS are given in non-ionic 

form if not stated otherwise. Although these elements are definitely present 

in ionic form, it is common practice in the As research community not to 

state the ionic charge (e.g., CHARLET et al. 2007, MC ARTHUR et al. 

2010, VAN GEEN et al. 2006). In order to distinguish between results of the 

speciation analysis for As and Fe, species concentrations are given as 

Fe(II) and As(III). 
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In some cases thermodynamic species calculations were done with 

PHREEQC (described below). To avoid confusion, these calculated species 

are stated additionally when used in tables and figures. The only exception 

is P. Phosphate was calculated from P contents measured by HR-ICP-MS, 

assuming that dissolved P occurs in orthophosphate (PO4
3-) form (DATES 

1994). This step is necessary because present groundwater is reduced. 

Otherwise, Fe-(oxyhydr)oxides precipitate in non-acidified anion samples 

and remove thereby dissolved PO4
3-. For example, one acidified sample 

was compared to a non-acidified sample, both analysed by HR-ICP-MS. 

Dissolved Fe declined from 5.57 to 0.19 mg L-1, concomitantly removing 

dissolved As (from 151 to 74.5 µg L-1) and PO4
3- (3.54 to 0.18 mg L-1). This 

is an impressive demonstration how effective Fe-(oxyhydr)oxides can im-

mobilise PO4
3- and As(III) (representing 98.5 % of total As in this sample) by 

adsorption and incorporation. 

Organic and microbial analyses. Organic and microbial analyses were 

done by D. FREIKOWSKI at the IBA. Dissolved organic carbon (DOC) was 

determined from acidified samples (1 % v/v HCl suprapure, Merck) with a 

TOC analyser (HighTOC, Elementar). In addition to DOC analysis, further 

determinations were done for samples obtained during the in-situ bio-

stimulation experiment. Sucrose concentrations were measured with a 

spectrometric method (enzymatic test kit for saccharose / D-glucose, 

Böhringer) from acidified samples (1 % v/v HCl suprapure, Merck). Fatty 

acids (acetate, butyrate, and propionate) were measured from filtered and 

acidified samples (4 % v/v H3PO4 suprapure, Merck) and analysed with a 

gas chromatograph (GC; model 437, Chrompack) according to GALLERT & 

WINTER (1997). Total plate count (TPC) representing the presence of free 

germs in groundwater was determined from untreated samples (in 

dependence on DIN 38411, TPC assignment in water) as an applicable 

method for the monitoring of relative changes in microbial populations 

(KIEFT et al. 2007). 
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Quality of analytical measurements. Ion balances represent as sum 

parameter the quality of all cation and anion measurements. They were 

calculated for samples taken before and during the field experiments in 

December 2009 with PHREEQC (see below). Deviations for samples from 

the high As site vary within a range of +1.23 and -15.3 (median: -9.57 %). In 

case of the low As site, balances are worse (median: -10.4 %) and 

deviations strongly increase after addition of sucrose, especially in wells B 

and E (up to +41.4 %), where intense microbial reactions developed. 

Cations were determined by HR-ICP-MS, where measurements showed a 

very good accuracy regarding sample replicates and reference solutions. 

The same applies to anion determinations by IC. Since HCO3
- represents 

the principal anion (>85 %), detection inaccuracies contribute to the ion 

balance nearly one to one. Thus, differences are considered to result from 

the titrimetric determination of the TA in field. Another possibility is that not 

all ions were determined, especially organic compounds. This became 

apparent during the sucrose experiment. Here, large amounts of organic 

acids occurred, which were not included in the balance calculations.  

Due to the comparatively limited spectrum of analysed parameters, no 

ion balances could be calculated for samples of the field survey and the 

regular monitoring samples. Comparisons of the monitoring data provided a 

reliable tool to identify potential outliers, since the groundwater composition 

of most wells remained stable until the in-situ experiments were conducted. 

Further considerations regarding data quality are included in chapters 6 

and 7, respectively. 

Hydrochemical calculations. Results of hydrochemical analysis were 

used to derive further important parameters. Ion balances were calculated 

with PHREEQC (version 2.16, thermodynamic data from the wateq-4 data 

base), which offers “a wide variety of low-temperature aqueous geo-

chemical calculations” based on an “ion-association aqueous model” and 

“thermodynamic controlled water-sediment equilibrium reactions” 

(PARKHURST & APPELO 1999).  
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PHREEQC was further used to determine: 

 Thermodynamic predominating element species;

 pH-EH-stability diagrams;

 Saturation indices (SI) of mineral phases.

Saturation indices are important to estimate the behaviour of a pure 

phase in an aquatic environment. They are calculated from the log Kd value 

(distribution coefficient aqueous/solid phase) of the chemical equation 

(describing precipitation, respectively dissolution), as well as respective 

solute concentrations and their activities. A SI of 0 reflects state of 

equilibrium, positive SI indicate supersaturation and negative under-

saturation. For example, the SI of dolomite is based on Ca, Mg and HCO3
- 

concentrations in groundwater and the prevailing pH and temperature 

(PARKHURST & APPELO 1999). It is further mandatory to consider the 

prevailing redox potential, which has a decisive influence on the solubility of 

different metal minerals, especially Fe-(oxyhydr)oxides. Reaction rates of 

respective precipitation or dissolution reactions need to be estimated from 

concentration changes in a certain time span and space. Hence, it is very 

difficult to assess how fast a supersaturated mineral phase will precipitate 

from a certain solution. Depending on the prevailing conditions, precipitation 

or dissolution of calcite is for example considered a relatively fast process 

that can proceed within hours to months (MERKEL & PLANER-FRIEDRICH 

2008). When certain parameters like pH or the CO2 partial pressure [p(CO2)] 

change (e.g., through microbial respiration reactions), the water-sediment 

equilibrium (and therefore the SI) of carbonates will accordingly adjust. 

Additionally, the attempt was made to use inverse modelling to describe 

the mixing of different groundwater layers during the pumping experiment, 

but the equation system was over-determined by the high amount of 

included parameters. 
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4.4 STATISTICICAL METHODS 

Statistical methods were used to support interpretation of the 

comprehensive sediment and groundwater data. Therefore, average values 

(arithmetic mean), σ and %RSD were calculated. To describe the 

dependence between two variables X and Y, the Pearson correlation 

coefficient (rx-y) was calculated from outlier cleaned (Grubbs test) results, 

presuming a normal (Gaussian) distribution (SCHUENENMEYER & DREW 

2011). In some graphics, the R2 value (coefficient of determination) is 

included to describe the agreement of a regression line with respective data 

points. To reduce the influence of extreme values and potential outliers, 

median and 25 % and 75 % quartiles were calculated as well. These values 

were partly summarised in form of Box-Whisker-Plots (STATISTICA, 

StatSoft®, version 8), comprising extreme values, outliers and non-outlier 

boundaries, the so called whiskers (defined as 1.5* of the interquartile range 

between the 75 % and 25 % quartiles). 

Dendrograms represent graphical summaries that were used to describe 

results of the sediment analysis (SCHUENENMEYER & DREW 2011). 

Here, variables were grouped in different clusters in dependency of their 

statistical distances with STATISTICA. To compensate difference in scale, 

data was previously z-normalised (STOYAN et al. 1997). Clusters were 

calculated from data with an agglomerative hierarchical cluster analysis. 

Euclidean distances were used to compute the geometric distance in the 

multidimensional space, while clustering was done by the Ward’s method. 

This method uses the variance to evaluate the distance between presumed 

clusters, and identifies the best fitting clusters by iteratively minimizing the 

sum of squares. This step is repeated until hierarchical clusters with 

minimum distances are determined (WARD 1963). 



5. FIELD SURVEY AND STUDY SITE SELECTION

5.1 INTRODUCTION 

The following considerations focus on an aggregated data set, which 

was used to characterise groundwater in the investigation area. Additionally, 

the results formed the base to select two appropriate study sites with 

contrasting As groundwater concentrations (referred to as high As site and 

low As site, see chapter 5.3.2 and figure 5.1). 

5.2 RESULTS 

In contrast to the comparatively small size of the investigation area, 

hydrochemical properties in groundwater samples vary spatially in a wide 

range, especially in respect of As, Fe and PO4
3- concentrations (Table 5.1). 

Local groundwater generally belongs to the Ca-(Mg)-HCO3
- type and redox 

parameters reflect predominantly reducing conditions in related aquifer 

parts. Vertical and horizontal distributions of dissolved As are 

inhomogeneous. Concentrations vary within a few decimetres (laterally) and 

metres (vertically) by up to two orders of magnitude (Figure 5.2). The 

median of As concentrations is 33.9 µg L-1, while concentrations reach up to 

of 333 µg L-1 (Table 5.1). The provisional WHO (2003) drinking water 

guideline standard (10 µg As L-1) is exceeded in 127 out of 174 samples 

(73 %), whereas the national Indian drinking water standard (50 µg As L-1) 

is exceeded in half as many samples (36 %). Some of the sampled wells 

are recently installed governmental wells tapping water from deeper than 

100 m. After realising the As problem, the regional government set up the 

installation of deep wells and arsenic-removing filter systems to provide a 

central supply with arsenic-free drinking water to the local communities. 
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Figure 5.1: Landsat 7 imaginary and pseudo colour picture of the investigation 

area, including a S-W transect from the Hooghly River towards the study sites. 

The surface reflects an inhomogeneous and complex distribution of meanders, 

abandoned river beds, oxbow lakes, fields and artificial ponds. The relief profile 

underlines the characteristic topography of the floodplain with marginal 

differences in elevation. Figure caption continued on next page. 



5.2 RESULTS 

67 

Figure 5.1, continued: Satellite image and pseudo colour picture were created 

with NASA World Wind 1.4, based on Landsat 7 image data. The pseudo colour 

picture was provided by MDA Federal Information systems for NASA World 

Wind. The elevation profile is super-elevated and was generated with NASA 

World Wind Terrain Profiler, based on the SRTM-30 PLUS digital elevation 

model. Resolution of satellite image: 15 m, resolution of digital elevation 

model: 3 arc-seconds. 

According to well depths and characteristic hydrochemical compositions, 

groundwater samples were further separated into three different classes 

(Table 5.2). The deeper the wells, the higher the Na/Cl ratios and the lower 

the SO4
2- concentrations. In wells with depths between 20 to 40 m, highest 

As, Fe and PO4
3- concentrations occur. In range of these wells, lowest 

As/PO4
3- mol ratios prevail. The common drilling technique (a labour-

intensive variant of rotary drilling) used for installation of local private wells 

is strongly depth limited, which is why most wells only reach to a depth of 

about 24 m. Considering the complete data set, weak positive correlations 

exist between dissolved As, PO4
3- and Fe concentrations, whilst other 

parameters do not show any correlations with As (Table 5.1). 

Samples were further distinguished based on the NO3
-, Mn, Fe and 

SO4
2- concentrations, from which the prevailing redox state was derived 

following to the classification scheme of JURGENS et al. (2009). It is 

presumed that groundwater is generally suboxic to anoxic (O2 <0.5 mg L-1), 

and dissolved Fe and Mn are present in reduced form, as it was reported 

from the Chakdah area (Figure 5.3; CHARLET et al. 2003 & 2007, MÉTRAL 

et al. 2008). Based on these results, two locations with contrasting As 

concentrations in shallow groundwater were chosen as high As site and low 

As site (Figure 5.2). An overview of the groundwater compositions at both 

sites is given in Table 5.3, while the decision to choose these locations is 

discussed in chapter 5.3.2.
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Table 5.1: Summary of the field survey results comprising respective median, 

lower and upper quartiles (25 % and 75 % Q.) to express characteristic 

concentration ranges of solutes in samples from different depths (n: 174). 

Value range Depth pH EC Ca Mg Na K Cl- 

(m bls) (µS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Minimum 7 6.5 200 20.6 5.42 4.41 0.77 0.67 

25 % Q. 21 6.8 591 81.6 18.4 13.0 2.40 6.29 

Median 24 7.1 668 96.3 21.7 17.2 3.01 12.3 

75 % Q. 36 7.4 768 115 25.6 26.6 3.74 25.6 

Maximum 270 8.0 1514 177 43.7 112 44.5 147 

Average 40 7.1 696 98.7 22.5 21.7 3.73 21.1 

r As- -0.02 -0.12 +0.03 +0.00 +0.09 +0.09 -0.10 -0.16 

Value range DOC NO3
- SO4

2- PO4
3- Mn Fe As 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L)

Minimum 0.12 <0.88 <0.85 0.01 0.01 0.01 0.31 

25 % Q. 1.38 <0.88 <0.85 0.18 0.16 0.47 7.99 

Median 1.76 1.23 <0.85 1.29 0.27 2.47 33.9 

75 % Q. 2.50 2.18 7.08 3.63 0.40 4.55 69.4 

Maximum 20.5 550 50.3 10.1 2.53 45.9 333 

Average 2.16 5.84 5.20 1.99 0.32 3.72 51.7 

r As- +0.04 -0.06 -0.29 +0.53 +0.02 +0.48 - 
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Table 5.2: Summary of selected parameters that express characteristic values 

for groundwater samples from different depth intervals (n: 165, nine samples 

with unknown depths were removed). 

Depth Range pH Ca Mg Na Cl- NO3
- Na/Cl* 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mol ratio)

<20 m 

(n: 37) 

25 % Q. 6.9 94.3 18.6 13.6 10.7 <0.88 1.01 

Median 7.2 102 22.4 18.7 19.3 1.21 1.35 

75 % Q. 7.4 122 26.0 23.5 33.7 1.98 2.28 

20-40 m

(n: 92) 

25 % Q. 6.8 80.3 17.5 13.1 7.79 <0.88 1.12 

Median 7.1 101 21.7 17.8 15.8 1.40 1.66 

75 % Q. 7.4 118 26.0 26.8 32.3 2.16 2.91 

>40 m 

(n: 36) 

25 % Q. 6.9 73.4 20.0 12.8 2.52 <0.88 4.77 

Median 7.1 85.1 21.6 16.1 3.78 <0.88 7.36 

75 % Q. 7.4 95.2 23.1 27.4 5.39 1.79 11.4 

Depth Range SO4
2- PO4

3- Mn Fe As As/PO4
3- 

(mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (mol ratio)

<20 m 

(n: 37) 

25 % Q. <0.85 0.11 0.21 0.18 3.10 0.01 

Median 6.83 0.43 0.33 1.71 17.0 0.03 

75 % Q. 13.4 1.74 0.48 3.39 38.4 0.06 

20-40 m

(n: 92) 

25 % Q. <0.85 1.21 0.20 2.25 21.1 0.01 

Median <0.85 3.06 0.31 3.81 46.2 0.02 

75 % Q. 6.14 4.23 0.39 6.24 88.6 0.04 

>40 m 

(n: 36) 

25 % Q. <0.85 0.06 0.08 0.05 1.49 0.02 

Median <0.85 0.14 0.14 0.46 14.9 0.15 

75 % Q. <0.85 0.46 0.28 1.52 82.2 0.26 

*Na/Cl mol ratio determined from local rain water: 0.41 
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Figure 5.2: Location and As concentrations of sampled tube wells (n: 174) 

within the investigation area, east of Chakdah and the Hooghly River. Samples 

are grouped into four classes according to the As concentrations:  

1) < 10 µg L-1, the WHO threshold value;

2) > 10 µg L-1 and < 50 µg L-1, the Indian threshold value;

3) > 50 µg L-1 and < 200 µg L-1;

4) > 200 µg L-1 and < 334 µg L-1.

Underlying Landsat 7 imaginary created with NASA World Wind 1.4 (resolution: 

15 m). Arsenic distribution plotted with Surfer (version 7, Golden Software). 
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Table 5.3: Summary of the groundwater hydrochemistry at the high As site and 

the low As site. At the high As site, four other wells were sampled within ~500 

m around well 132, located in the villages Sahispur and Maturagachi. At the low 

As site, 8 surrounding wells were sampled in the villages Chakudanga and 

Amdangaround, all within ~700 m around well 125. Well 122 represents a public 

well equipped with an As filter system, with raw groundwater (122a) and filtered 

water (122b). Well 120 is located at a primary school. 

Well Depth pH Na K Ca Mg Cl - NO3
- SO4

2- PO4
3- DOC Mn Fe As  

(m bls) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L)

High As site 

132 24 7.1 26.8 3.33 91.7 22.5 18.5 1.40 1.44 4.23 1.47 0.49 3.30 285 

131 24 7.3 18.5 1.78 77.0 17.5 10.9 <0.88 <0.85 3.74 0.99 0.51 5.46 84.9 

179 55 7.1 17.0 2.32 66.9 19.0 6.67 <0.88 3.99 0.70 1.54 0.16 0.03 120 

180 24 7.2 25.8 1.63 74.3 19.8 7.04 1.60 <0.85 4.90 1.56 0.11 3.88 116 

181 20 7.4 14.0 3.03 71.6 17.3 4.23 1.34 <0.85 4.77 1.22 0.21 3.65 124 

Low As site 

125 24 7.2 15.1 4.03 109 24.1 46.7 1.68 10.7 0.03 1.07 0.51 0.05 2.29 

117 30 7.1 15.6 2.20 83.5 20.9 21.9 1.72 16.3 4.16 1.24 0.37 6.54 37.9 

118 ? 7.0 9.65 3.71 105 20.2 14.3 1.17 3.91 0.57 6.24 0.57 13.9 4.62 

119 18 7.3 9.29 2.65 113 16.4 10.7 1.43 4.51 0.14 2.78 0.40 1.38 3.24 

120 183 7.2 14.3 3.42 108 21.2 4.96 1.88 <0.85 0.07 2.04 0.06 1.30 34.8 

121 25 7.2 10.8 2.72 80.8 20.9 10.9 <0.88 2.00 3.79 0.89 0.18 4.05 50.4 

122a 167 7.5 9.46 2.36 71.0 14.0 2.25 <0.88 <0.85 0.41 1.34 0.06 1.07 77.4 

122b 167 7.3 13.2 3.30 94.2 19.4 2.31 3.13 <0.85 0.50 1.86 0.08 1.28 101 

124 24 7.3 13.8 3.69 85.9 16.4 3.55 <0.88 <0.85 2.58 2.30 0.47 4.85 160 

126 24 7.2 10.8 3.01 71.3 14.3 3.56 1.38 5.42 3.83 0.74 0.27 1.04 61.0 
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Predominating redox process NO3
- Mn Fe SO4

2- n

(mg/L) (mg/L) (mg/L) (mg/L) (avg. As µg/L) 

NO3
- reduction ≥ 2.215 < 0.05 < 0.10 - 4 (19.4)

Mn(IV) reduction < 2.215 ≥ 0.05 < 0.10 - 5 (2.89) 

Fe(III)/SO4
2- reduction < 2.215 > 0.05 ≥ 0.10 ≥ 0.90 53 (38.3) 

Methanogenesis < 2.215 > 0.05 ≥ 0.10 < 0.90 62 (82.2) 

Mixed redox state 50 (36.7) 

Figure 5.3: Profile of As distributions plotted against well depths. Results 

display that highest As concentrations appear between 20 to 40 m depth. 

Figure caption continued on next page. 
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Figure 5.3, continued: Plots of As-Fe, As-Mn and As-PO4
3- concentrations 

emphasise close correlations between these solutes and the predominating 

redox state. Number of samples included: 174. The redox state classification 

following JURGENS et al. (2009) bases on the given threshold values. Due to 

the SO4
2- quantification limit (lq) of 0.85 mg L-1, the respective threshold was 

increased from 0.50 to 0.90 mg L-1. 

5.3 DISCUSSION 

5.3.1 GEOCHEMICAL CHARACTERISATION OF LOCAL 

GROUNDWATER 

Redox processes. In the following, presented results of the hydro-

chemical survey are used to answer the questions raised in the introduction 

(chapter 1.2). The flat topography of the Bengal Basin and constantly slow 

horizontal groundwater flow velocities entail intensive water-rock 

interactions (MICHAEL & VOSS 2009b). Results of groundwater dating 

conducted in nearby areas revealed that shallow groundwater in Holocene 

aquifer sediments is not older than 100 years (HARVEY et al. 2005, 

MC ARTHUR et al. 2010, STUTE et al. 2007). Increase and/or decrease of 

redox sensitive parameters reflect decisive influences of anaerobic 

microbial metabolic processes, of which different TEA consuming redox 

processes were identified, ranging from NO3
- reduction over Mn(IV), Fe(III) 

and SO4
2- reduction to methanogenesis.  

The applied redox classification concept after JURGENS et al. (2009) is 

generally a simplification and does not necessarily match with situations 

met in complex natural systems, where groundwater is often not in redox 

equilibrium. Here, multiple redox reactions may partly overlap at a certain 

point of time, although usually one process dominates (JURGENS et al. 

2009, STUMM & MORGAN 1996). For example, NO3
- and Mn(IV) reduction 

often occur parallel to each other, as well as Fe(III) and SO4
2- reduction. 

Results reflect that groundwater is mainly in state of Fe(III)/SO4
2- reduction, 
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methanogenesis, or in a mixed redox state (Figure 5.3). It was not possible 

to further differentiate between Fe(III)/SO4
2- reduction since no sulphide 

determination was done (MC MAHON & CHAPELLE 2008). Spatial 

variations of these redox indicators reflect the presence of inhomogeneous 

redox zones in the aquifer. This aspect is discussed later in detail for the 

two study sites (chapters 6.3.4 and 7.3.4). 

Indications for arsenic release. The hydrochemistry of groundwater 

from the investigation area supports the assumption that microbially 

mediated processes are the key mechanism for As mobilisation. The 

presence of As concentrations exceeding 50 µg L-1 is limited to samples in 

state of Fe(III)/SO4
2- reduction, methanogenesis or a mixed redox state (see 

Figure 5.3). The more reducing the redox conditions, the higher the 

concentrations of dissolved As. This trend manifests in a moderate positive 

correlation among As and Fe concentrations (correlation coefficient: +0.46), 

pointing at release according to the Fe(III) reduction hypothesis (chapter 

2.2.3). It is noteworthy that samples in state of Fe(III)/SO4
2- reduction were 

found to have not yet reached As concentrations found in samples that are 

in state of methanogenesis. This can be explained by the assumption that 

these samples originate from more mature aquifer parts, where Fe(III) 

reduction and associated As release is completed or at least non-dominant.  

Samples indicating mixed redox states.  A considerable number (50) 

of samples did not fit into one of the four principal redox classes and were 

therefore assigned as “mixed redox state”. Two important types can be 

distinguished within these samples. The first group includes 34 samples 

with elevated As concentrations, where the state of Fe(III)/SO4
2- reduction 

or methanogenesis should be reached, but NO3
- concentrations clearly 

exceed the threshold value of 2.25 mg L-1. This is attributed to mixing 

processes, which are caused by infiltration of nitrate-rich surface water into 

more reducing zones. For example, extensive pumping has been proven to 

cause such effects in case of the Chakdah area (CHARLET et al. 2007), as 

well as in Hanoi, Vietnam (NORRMAN et al. 2008). 
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The second group contains 16 samples that appear to be in a transition 

between Mn(IV) and Fe(III)/SO4
2- reduction. These samples hold low NO3

- 

and Fe concentrations that remain closely below the threshold values of the 

classification scheme, while Mn concentrations are increased. Here, 

measured As concentrations are comparatively low, except for three 

samples. Results point at precipitation and adsorption processes, which are 

discussed in the following. 

     Arsenic and phosphate. The strongest correlation between As 

concentrations and any other determined parameter in all samples is related 

to PO4
3- (rAs-P: +0.53). Phosphate in groundwater generally originates from 

mineralisation of organic matter and from reductive dissolution of 

phosphate-hosting Mn- and Fe-(oxyhydr)oxides, which is known from 

oxbow lake sediments (LEWANDOWSKI & NÜTZMANN 2010, O’DAY 

2006). Phosphate is further considered a strong competitive anion that can 

induce As release from host surfaces. Since As(III/V) and PO4
3- have similar 

geochemical properties and preferentially adsorb to surfaces of Fe-

(oxyhydr)oxides (GOH & LIM 2004), it is here more likely that both are 

controlled by the same mobilisation mechanism, which would be the activity 

of FeRB. Additionally, P could be fertiliser derived and enter the aquifer via 

infiltrating irrigation water (ACHARYYA et al. 2000). 

Highest concentrations of dissolved As, PO4
3- and Fe occur in wells that 

are 20 to 40 m deep. Only a few samples (n: 36) were taken from wells 

exceeding 40 m in depth, but this distribution is in accordance to results 

from other surveys that have been previously conducted in the Bengal 

Basin (BGS & DPHE 2001, HARVEY et al. 2002). Here, dissolved As, PO4
3- 

and Fe concentrations never were that high, or enrichment processes have 

stopped and solutes were slowly, but constantly flushed-out into the Bay of 

Bengal. In the BDP, increasing depth is equivalent to increasing groundwa-

ter age (HARVEY et al. 2005, MC ARTHUR et al. 2010). This increases the 

influence of kinetic based solid-water equilibrium reactions like the 

precipitation of supersaturated mineral phases. Hence, precipitation of 

supersaturated minerals, especially Fe-minerals, is another potential 

mechanism able to explain this depth depending decline of As and PO4
3- 
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concentrations in groundwater. Precipitation of Fe-minerals enables an 

immobilisation of dissolved As and PO4
3-. This aspect is discussed later on 

in the discussion of the low As site (chapter 6.3.4) and in the final summary 

(chapter 8.2). 

Manganese. In addition to the problematic As concentrations, 

manganese exceeds in 79 samples the Indian drinking water threshold 

value of 0.30 mg L-1 (if no other drinking water source is available, other-

wise 0.10 mg L-1; IS 10500, reaffirmed 1993). This is known from other 

areas of the BDP as well and is considered to originate from the reductive 

dissolution of Mn-minerals under mildly reducing conditions (MC ARTHUR 

et al. 2012, VAN GEEN et al. 2007). The occurrence of neurobiological 

effects related to chronic Mn uptake is still under debate, but the WHO 

decided to remove the provisional guideline recommendation in the latest 

edition of the guideline values for drinking water (WHO 2011). This was 

decided because the former guideline value of 0.40 mg L-1 was considered 

well above concentrations normally found in drinking water, which is 

definitively not true in case of the BDP (MC ARTHUR et al. 2012). 

Arsenic in public wells. Most people meanwhile rely on official 

governmental wells, which deliver water from deep aquifer parts and are 

partly equipped with As filters (Figure 5.4). Pipelines were recently installed 

to provide a central water supply with treated surface water. Nevertheless, 

some small communities still rely on private tube wells. All in all, 15 wells 

turned out to be critically burdened with As in the investigation area, 

reaching high concentrations of 159 to 333 µg As L-1. Unfortunately, 

providing technical solutions exceeded the competence of the project. The 

Indian project partner intends to contact the corresponding local 

responsibilities in order to find a solution for critically burdened wells with As 

concentrations well above the national Indian threshold value, including one 

public school well (GSFC school, 83.0 µg As L-1). 
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Figure 5.4: Picture of a public well installed in 2003 in the village Chakudanga, 

which is equipped with an As filter cartridge (well depth: 163 m). Surprisingly, 

the As concentration in filtered water was higher as compared to the raw 

water (77.4 compared to 101 µg L-1), strongly suggesting that the filter material 

needs to be replaced. This example demonstrates that current mitigation 

strategies (use of deep wells and filter systems) can be unreliable. 
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5.3.2 STUDY SITE SELECTION 

Based on the results of this survey and considering the proposed 

monitoring and field experiments, two appropriate study sites were selected. 

The underlying idea of this concept is to compare two sites that are located 

within the same area, but hold contrasting As concentrations in shallow 

groundwater. With this approach information regarding the As release 

mechanism shall be derived.  

To find two capable sites that are characterised by high, respectively low 

dissolved As concentrations, results of the field survey were analysed 

regarding manifold selection criteria. 

“Hard” selection criteria for each site: 

 Adequate (high/low) concentrations of dissolved As in regard to the

WHO threshold value of 10 µg L-1 and characteristic local contents;

 Reducing redox state (indicated by NO3
-, Mn, Fe and SO4

2 

concentrations) to prove if As is released during Fe(III) reduction;

 Restriction to shallow groundwater (maximum depth 40 m), which is

the preferred zone of As enrichment as well as the predominating

depth of local tube wells;

 Adequate distance to the well investigated Chakdah area to avoid

influences of the  local depression cone underneath the city.

“Weak” selection criteria for each site: 

 Easy accessibility by car and small distances between the candidate

sites to facilitate the regular monitoring sampling;

 Low concentrations of compounds toxic to microbes (Cu and Cd);

 Possibility to discharge large volumes of water during pumping;

 A minimum distance between the Hooghly River and the candidate

sites to avoid influences of flooding on the hydrology.



5.3 DISCUSSION 

79 

According to results of the field survey, the small village Sahispur is 

considered to be located above an As plume. Concentrations of As in the 

groundwater sample from well 132 reaches 285 µg L-1, while four nearby 

wells hold concentrations of 85.0 to 124 µg L-1 in depths between 20 to 55 

m (Table 5.3). Groundwater of these wells is typically enriched in dissolved 

Ca, Fe, Mn and PO4
3-, with low NO3

- and SO4
2- concentrations.  

Hence, results indicate moderate to strong reducing conditions in the 

shallow aquifer. The location around well 132 meets the criteria mentioned 

above and was therefore chosen as “high As site”, located at 23°04’15.5’’N 

and 88°36’33.5’’E (Figure 5.2). Here, five nesting monitoring wells were 

installed. The monitoring well setup is shown in Figure 5.5. 

In contrast, water from well 125 was measured with only 2.29 µg As L-1. 

This well is located at the rim of the larger village Chakudanga (around 

2,000 inhabitants) in a distance of about 3.1 km to the high As site. Well 125 

is further situated next to an unpaved cricket field and a young tree 

plantation, providing a suitable environment for the in-situ biostimulation 

experiment. The hydrochemistry turned out to be less reducing than at the 

low As site, holding 10.7 mg L-1 SO4
2- and 0.05 mg L-1 Fe. In the 

surrounding of well 125, 8 additional wells were sampled. Results display 

highly variable concentrations of major and trace elements like Cl-, Fe, and 

As in the shallow groundwater (Table 5.3). Since local conditions at well 125 

were considered appropriate, this area was chosen as low As site 

(coordinates: 23°04’58.2’’N, 88°38’13.1’’E, Figure 5.2). Again, five nested 

monitoring wells were installed similar to the high As site. 
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Figure 5.5: The monitoring well setup of the high As site, directly before the 

concrete sealing was placed. Included is the position of the new central well A, 

which was installed after the old one collapsed soon after installation. 

Well A 
(old)

Well E

Well D

Well C

Well B

Well A 
(new)

Pond



6. THE LOW ARSENIC STUDY SITE

6.1 INTRODUCTION 

The low As site was chosen to investigate the influence of the 

availability of OM on the release of As under in-situ field conditions 

(NEIDHARDT et al. 2012b). In contrast to extensive research on the spatial 

distribution of As in groundwaters of the BDP, very few systematic field 

experiments have been carried out in order to reveal the relationships 

between geochemical reactions and microbial mechanisms that mobilise As 

from aquifer sediments and to verify preliminary findings (HARVEY et al. 

2002, SAUNDERS et al. 2008). Various methods originating from different 

fields of Environmental Science (Geochemistry, Hydrogeology and 

Environmental Microbiology) were combined to cover the most probably 

influences related to As release and enrichment in the scope of this work.  

Investigations involved a unique and interdisciplinary approach, which 

combined comprehensive laboratory analyses, regular groundwater 

monitoring and an in-situ field experiment in four different phases: 

 Biogeochemical analysis of autochthonous aquifer sediments was

used to determine As host phases and characterise available OM.

Microbial incubation experiments using aquifer sediments from the

two study sites were conducted at the IBA to estimate the As

release potential and to prepare the in-situ field experiment.

  A one year long hydrochemical monitoring of groundwater was

used to capture the status quo of the aquifer. Therefore, five

adjacent nested multilevel wells were installed at the study site and

sampled in regular intervals of two weeks.



6 THE LOW ARSENIC STUDY SITE 

82 

 An in-situ biostimulation experiment was conducted, introducing

organic carbon (sucrose) into the local aquifer. Influences on the

groundwater were recorded during the following three weeks

through an elaborate hydro-chemical monitoring.

 Potential mid-term effects of this experiment on the groundwater

composition were monitored during the following eight months.

6.2 RESULTS AND INTERPRETATION 

6.2.1 SEDIMENT CHARACTERISATION 

Stratigraphy and geochemistry. Well screens of the five monitoring 

wells are situated within a single, shallow aquifer. The sandy aquifer 

sediments are covered by olive-brown, thin layers that reach down to 3.85 

m bls and comprise varying proportions of clay and silt (referred to as facies 

F4, Figure 6.1). The top 0.60 m are compacted and contain fragments of 

clinker. Between 1.90 and 3.85 m bls, mollusc shells as well as reddish and 

black mottles of Mn- and Fe-(oxyhydr)oxides occur, while Ca and TIC 

contents are here lower than in the surrounding sediments (Figure 6.2 and 

APPENDIX II, Table A 2.1). In this part, relatively high contents of As, Fe, 

Mn, Ni, Cu, Zn as well as TOC and TS appear. Between 3.20 to 3.85 m bls, 

a thin layer of silty fine sand is located, where the sediment colour changes 

into dark grey. Below, fine to medium grained sand dominates down to the 

target depth of 45.5 m bls. Due to the limited drilling depth, no information is 

available regarding the total thickness of the aquifer. From 3.85 to 

approximately 19 m bls (facies F3b), silt contents, TOC, major and trace 

elements (except for Zr and Ce) gradually decrease with depth in the silty 

medium and fine sands. The vertical distributions of sedimentary As, TOC 

and TS constitute an exception, they peak within a thin, brown coloured 

segment composed of fine sandy silt around 7.75 m bls. From about 19 to 

29 m bls (facies F3a), silt is completely absent and previously decreasing 

elements stabilise at the lowest levels of the respective contents. Remaining 

sediments down to 45.5 m bls (facies F2) are composed of medium sandy 
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fine sands, which hold throughout low proportions of silt and an embedded 

gravel lens in about 31 to 33 m bls. In this part, most element contents 

strongly vary similar to the upper layers of F4. Sediments from facies F1 do 

not occur within this profile and are described in context of the high As site 

(chapter 7.2.1). 

Figure 6.1: Grain size distribution of the sediment samples, including litho-

facies boundaries. 
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Figure 6.2: Vertical distribution of major and trace elements, TOC, TIC, TS and 

silt and clay contents. The profile comprises 70 samples in intervals of 0.65 m. 
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Mineralogy.  Mineralogical constituents are summarised in Table 6.1. 

Detrital quartz grains represent the greater part of the aquifer sediments, 

followed in frequency by feldspar (according to XRD spectra presumably 

anorthite, see APPENDIX II, Figure A 2.1), carbonate (calcite and dolomite), 

mica (muscovite) and chlorite (clinochlore). All samples from the clayey 

surface sediments (facies F4) were analysed for the respective clay mineral 

inventory. Results reveal the presence of smectite and potentially traces of 

kaolinite and illite (see APPENDIX II, Figure A 2.2), which are considered 

common constituents of BDP sediments (MUKHERJEE et al. 2009).  

Pre-concentration of the sample material by magnetic separation 

allowed identification of iron-rich minerals from concentrates. Traces of Fe-

oxides (magnetite, hematite), garnet (almandine), biotite (phlogopite, which 

could be separated from muscovite), chloritoid, actinolite and presumably 

epidote could be additionally distinguished in respective concentrate 

fractions (APPENDIX II, Figures A 2.3 and A 2.4). 

Table 6.1: Summary of identified minerals in representative sediment samples. 

With “?” marked minerals could not be proved beyond any doubt due to weak 

and partly superimposed XRD peaks. 

Main mineral phases 

• Quartz 

• Feldspar 

• Calcite 

• Dolomite 

• Muscovite 

• Chlorite (clinochlore) 

• Smectite 

• Kaolinite (?) 

• Illite (?) 

Minor mineral phases 

• Magnetite 

• Chloritoid 

• Almandine 

• Actinolite 

• Biotite (phlogopite) 

• Epidote (?) 

• Fe(III)-oxides (hematite ?) 

• Amorphous Fe-(oxyhydr)oxides 
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Arsenic content. Despite the comparatively high arsenic contents in 

samples of the clayey surface layers, bulk As contents in the aquifer 

sediments range between 1.8 and 12.6 mg kg-1 (average: 3.2 ± 1.3 mg kg-1; 

n: 64). The depth distribution of As correlates significantly (r >+0.75) with 

Fe, TOC, the fine grain fraction (<0.063 mm) and trace elements that are 

typically associated with iron bearing minerals (e.g., Ni, Cu and Zn) (Table 

6.2). The comprehensive results are summarised in form of an 

agglomerative hierarchical cluster analysis, which groups the different 

variables (analytical parameters) in form of a dendrogram in dependence of 

their statistical similarities (Figure 6.3). This dendrogram indicates a close 

statistical distance of As to Fe and affiliated trace elements (Cu, Ni and Zn). 

A SEP was performed to obtain detailed information about the 

sedimentary arsenic-bearing host phases (Figure 6.4 and APPENDIX II, 

Table A 2.2). Results indicate that a considerable percentage (42.4-84.7 %) 

of the total sedimentary As content is PO4
3--extractable (interpreted as 

strongly adsorbed fraction), although this fraction was found to be 

overestimated at the expense of fraction III (see chapter 4.2). Remaining As 

is associated with (a) acid volatile sulphides, carbonates, Mn-

(oxyhydr)oxides and very amorphous Fe-(oxyhydr)oxides (fraction III, 

average: 14.5 %), (b) amorphous Fe-(oxyhydr)oxides (fraction IV, average: 

6.1 %) and (c) crystalline Fe-(oxyhydr)oxides (fraction V, average: 8.6 %) as 

possible hosts. Only a minor fraction (average: 1.4 %) is SO4
2--extractable 

(fraction I, interpreted as weakly bound phase). Samples from depths below 

13 m bls are characterised by similar distribution patterns and hold 

throughout low As contents of <3 mg kg-1. In the two surface near clayey 

samples, As contents are higher, and As is additionally (d) associated with 

silicates (18.5 % in 2.60 m bls) and (e) As-sulphides, OM and/or refractory 

minerals (8.7 % in 3.20 m bls). These conclusions agree in general with 

findings from the well investigated Chakdah site (CHARLET et al. 2007, 

MÉTRAL et al. 2008). In contrast to other study sites in the BDP (AKAI et al. 

2004, HARVEY et al. 2002, NICKSON et al. 2000), sulphides and OM as 

potential As sources are only in two samples detectable (Figure 6.4). 

According to the generally very low TOC contents in the aquifer sediments 

(<0.1 %), OM is considered to play a minor role as As host in general. 
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Table 6.2: Statistical summary of relevant element contents in the aquifer 

sediments (ranging from 3.85 to 45.5 m bls, n: 64). Included are median values, 

lower and upper quartiles (25 % and 75 % Q.), minimum and maximum contents 

as well as average values (arithmetic mean) and correlation coefficients. 

Range Silt & 
 clay 

K2O CaO TOC Fe2O3 MnO TS Ni Cu Zn As 

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Minimum 0.19 1.37 2.08 0.02 1.40 0.02 <26 21.2 8.73 19.0 1.8 

25 % Q. 2.71 1.82 2.63 0.02 2.05 0.03 <26 23.2 9.75 27.1 2.8 

Median 9.85 2.25 2.98 0.03 2.34 0.04 26.6 24.0 10.4 29.8 2.9 

75 % Q. 15.7 2.60 3.80 0.04 2.95 0.05 54.6 27.1 11.2 38.3 3.2 

Maximum 66.0 3.29 5.33 1.67 4.99 0.08 610 37.4 33.1 71.3 12.6 

Average 13.0 2.25 3.18 0.07 2.58 0.04 51.5 25.4 11.6 33.6 3.2 

r As- +0.76 +0.64 -0.11 +0.75 +0.86 +0.67 +0.53 +0.89 +0.92 +0.87 - 

Figure 6.3: Dendrogram for 21 variables expressing the statistical distance 

between elements and other parameters in aquifer and aquitard sediments (0.0 

to 45.5 m bls, n: 69; Ward’s method and Euclidean distances; one outlier 

removed). Arsenic in the sediments appears to be closely associated with Fe, 

Zn, Ni and Cu. This group is interpreted to be primarily composed of Fe-

(oxyhydr)oxides (data summarised in APPENDIX II, Table A 2.1). 
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Figure 6.4: Sequential extraction procedure (according to EICHE et al. 2008) 

results for 9 samples that represent different parts of the aquifer. Sedimentary 

As is primary strongly adsorbed (extraction step II) and associated with 

fractions that comprise various forms of Fe-(oxyhydr)oxides (steps III-V). 
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Sedimentary organic matter. Since no peat layers were observed 

during drilling, sedimentary OM solely appears in dispersed form. In the 

organic-enriched clayey facies F4, TN contents as well as δ13C and δ15N 

values gradually decrease with depth, while the C/N ratios (weight ratio of 

TOC to TN) remain stable at values of about 8 (Figure 6.5). In sandy aquifer 

sediments of facies F3b beneath, C/N ratios shift to values above 10, while 

most δ13C values vary between -23 and -20 ‰, and δ15N values stabilise 

around + 2.5 ‰. Due to the throughout low TOC contents, no samples 

could be analysed from facies F3a (19–29 m bls), and only two from facies 

F2 (29-45 m bls). 

Figure 6.5: Detailed characterisation of OM from sediment samples, including 

δ13C values, C/N-ratios, TOC fraction, TN contents and δ15N values (n: 22). 

The comparison of C/N-ratios, δ13C and δ15N values is known to serve 

as a reliable and commonly used biomarker for source identification in 

fluvio-deltaic sedimentation environments (HOEFS 2009). In addition, 

isotopic characterisation of OM can be included in sequence stratigraphic 

considerations to interpret palaeo-environmental sequences in coastal 

sediment deposits (LAMB et al. 2006). In the Bengal Basin, different 

sediment facies occur that witness tectonic activities, eustatic sea level 

changes and climate changes, although erosion processes and subsequent 
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valley and channel fills have locally disrupted local facies successions 

(MIALL 1996). Thus, deposits can contain varying ratios of terrestrial and 

marine derived organic matter. The use of δ13C values allows differentiating 

between OM derived from C3 and C4 land plants. By combining δ13C with 

C/N-ratios, it is further possible to distinguish between C3 and C4 plant 

signatures and particulate organic matter (POM) derived from marine or 

freshwater algae and microbes (HOEFS 2009). Another common isotopic 

marker to distinguish marine from terrestric sources is the δ15N value. 

Average C/N ratios indicate that algae and microbes (freshwater and 

marine) as well as C4 plants are the potential origin of the respective 

sedimentary OM (APPENDIX II, Table A 2.3). By comparing C/N ratios with 

δ13C values, potential OM sources can be further differentiated (Figure 6.6). 

Samples from the sandy aquifer show C/N ratios of 6 to 12, and δ13C values 

of  -24 to -20 ‰ that are characteristic for OM derived from marine POM 

(HOEFS 2009, LAMB et al. 2006, MEYERS 1994, SARKA et al. 2009, 

SHARP 2006). Despite this, δ15N values in this part of the aquifer are in a 

characteristic range of terrestric mangrove trees (C3 plants), although most 

are very close the threshold value of marine POM (MUZUKA & SHUNULA 

2006). A few signals even plot in range of δ15N values of marine POM 

samples from sediments of the Bay of Bengal (GAYE-HAKE et al. 2005). 

Only few data is available regarding δ15N values for plants in general and 

for mangrove plants in particular. Hence, interpretation of the δ13C and C/N 

values that bases on a sound data base should be preferred to δ15N 

signature interpretation. Nevertheless, influences of terrestric C3 plant 

matter is typical for estuary environments and cannot be excluded in this 

case (MIALL 1996). 

In the youngest silty and clayey deposit of facies F4, δ13C values occur 

(> -20 ‰) that represent mixed signals, indicating an increasing influence of 

terrestric C4 plant matter in the recent past. This is further supported by 

increasing δ15N signals. Due to the low TOC contents samples from below 

19 m bls, nearly no information is available for facies F3a and F2. 
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Figure 6.6: Distribution of C/N ratios and δ13C and δ15N values in comparison to 

characteristic ranges for different OM sources (n: 22). 

*δ15N range for mangrove (C3 type) tissues (MUZUKA & SHUNULA 2006) 

**δ15N range for sedimentary POM from the Bay of Bengal (GAYE-HAAKE et al. 2005) 

***δ15N range for C4 plant pollen (DESCOLAS-GROS & SCHÖLZEL 2007)
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6.2.2 GROUNDWATER CHARACTERISATION 

6.2.2.1 Groundwater properties 

Monitoring wells. Physico-chemical properties determined from 

recorded data of the five monitoring wells before the in-situ experiment was 

performed in December 2009 are summarised in Table 6.3. These results 

are considered to reflect representative baseline values for the low As site 

two months after the monsoon season ended. To identify potential outliers, 

results were compared to previously taken monitoring samples. 

Table 6.3, part I: Selection of hydrochemical baseline values that are used in 

the following to interpret changes in the groundwater composition (complete 

results presented in APPENDIX II, Table A 2.5). Samples were taken directly 

before the sucrose experiment was conducted (03/12/09). Table continued on 

next page. 

Well pH EC Temp. TA 

HCO3
-

Na 

Na+ 

K 

K+ 

Ca 

Ca2+ 

Mg 

Mg2+ 

(m bls) (µS/cm) (°C) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

A (12-21) 7.1 647 27.0 415 18.6 2.49 86.5 20.6

B (24-27) 7.2 623 27.0 482 12.5 3.79 79.3 17.3

C (30-33) 7.2 624 26.8 451 11.4 6.82 69.5 17.4

D (36-39) 7.2 604 26.5 464 10.8 3.72 67.6 15.8

E (42-45) 7.1 590 26.8 445 11.1 3.18 68.0 15.1

Aqueous/solid 
phase ratio 

range 
nd 

1.09 to 1.86 
 10-3 

1.73 to 4.80 
 10-4 

3.43 to 6.23 
 10-3 

3.32 to 5.94 
 10-3 
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Table 6.3, part II: Negative ion balances are attributed to inaccuracies of the 

titrimetric alkalinity field kit. Thermodynamically dominating species according 

to PHREEQC calculations. 

Well Cl- SiO2 DOC δ18O δ2H O2 NO3
- NH4

+ 
Ion 

balance 

(m bls) (mg/L) (mg/L) (mg/L) (‰ VSMOW) (mg/L) (mg/L) (mg/L) (%) 

A (12-21) 7.85 34.8 7.47 -4.35 -29.2 error <0.88 1.68 +0.90 

B (24-27) 2.65 31.5 6.68 -4.45 -28.7 0.53 <0.88 3.01 -9.90 

C (30-33) 2.43 28.5 5.10 -3.99 -28.3 0.33 <0.88 3.67 -11.4 

D (36-39) 2.64 26.6 4.73 -4.28 -29.4 0.24 <0.88 3.39 -14.2 

E (42-45) 2.59 25.5 6.67 -4.55 -30.6 0.18 <0.88 3.03 -14.8 

Aqueous/ 
solid phase 
ratio range 

nd nd nd  nd nd nd 

Well 
Mn 

Mn2+ 

Fe 

Fe2+ 

SO4
2- PO4

3- 

H2PO4
- 

As* 

H3AsO3

Zn 

Zn2+ 

Co 

Co2+ 

Ni 

NiCO3

V 

H2VO4
- 

(m bls) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) 

A (12-21) 0.77 4.34 <0.85 2.38 49.1 7.48 4.33 0.52 0.08 

B (24-27) 0.47 3.76 <0.85 3.39 155 3.05 0.41 0.51 0.12 

C (30-33) 0.41 5.57 <0.85 1.12 135 4.50 0.29 0.36 0.02 

D (36-39) 0.42 2.86 <0.85 2.18 132 5.79 0.37 0.37 0.08 

E (42-45) 0.60 2.15 <0.85 1.93 133 5.35 0.41 0.37 0.06 

Aqueous/ 
solid phase 
ratio range 

0.88 to 
1.92  
 10-3 

1.46 to 
5.34  
 10-3 

nd 
1.51 to 

3.18  
 10-3 

2.03 to 
9.12  
 10-2 

1.22 to 
2.04  
 10-4 

0.60 to 
9.45  
 10-4

3.55 to 
6.37  
 10-5 

0.96 to  
4.11  
  10-6 

*Average As(III) percentage: 95.8 % 

nd: not determined

Outlier, replaced by monitoring result from 25/11/09 
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Results reveal that noticeable concentrations of Fe, Mn, PO4
3-, and As 

are in solution, while O2, NO3
- and SO4

2- are virtually absent. Aqueous to 

solid phase ratios for different elements were determined from groundwater 

and sediment samples of corresponding depth intervals (Table 6.3 and 

APPENDIX II, Table A 2.4) and reflect a striking enrichment of As in 

groundwater. On 03/12/09, the hydrostatic head was met at 1.81 m bls in 

the monitoring wells, which is clearly above the base of the silty and clayey 

layers (reaching down to 3.20 m bls). Hence, the aquifer was in a confined 

condition to this time. Results reveal that the anoxic groundwater is 

characterised by circum-neutral pH values, a high alkalinity and belongs to 

the Ca-(Mg)-HCO3-type (Figure 6.7). 

Figure 6.7: Piper diagram presenting the major solute composition in ground-

water of the five monitoring wells (03/12/09). 
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Values of δ18O and δ2H appear as comparatively indifferent in contrast 

to the high As site (see Figure 7.8, chapter 7.2.2.1). Values plot consistently 

to the right of the local meteoric waterline (LMWL), which is according to 

GAT (1996) a strong evidence for previous evaporation influences (Figure 

6.8). According to hydrochemical conditions, SI further display that ground-

water is supersaturated regarding magnetite, hematite, siderite, calcite and 

ordered dolomite, whereas disordered dolomite is undersaturated (see 

Table 6.4). 

Figure 6.8: Isotopic compositions of O and H in samples (03/12/09) compared 

to the global meteoric water line (GMWL), the local meteoric water line 

(LMWL), and the volume-weighted average composition of rainfall in 2004/05 

(in SENGUPTA et al. 2008) for an area situated about 40 km south of the study 

site (JAM study site). 
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Table 6.4: Saturation indices for detected and potentially present mineral 

phases, calculated on the basis of field measurements and analyses of 

samples taken on the 03/12/09 (redox assumptions: O2: 0.24 mg L-1, EH: -85 mV). 

Well 

(m bls) 
Quartz Anorthite Calcite 

Dolomite 

ord./ disord. 
Chlorite Phlogopite

A (12-21) 0.38 -1.96 0.20 0.15 -0.39 -7.85 -8.52 

B (24-27) 0.34 -2.67 0.29 0.30 -0.24 -8.39 -8.57 

C (30-33) 0.30 -5.68 0.19 0.16 -0.38 -11.6 -9.99 

D (36-39) 0.28 -4.47 0.19 0.12 -0.42 -10.6 -9.82 

E (42-45) 0.25 -4.73 0.16 0.03 -0.51 -11.2 -10.3 

Well 

(m bls) 

Fe(OH)3

amorph.
Magnetite Hematite

Siderite 

ord./ disord. 
Halite 

A (12-21) -2.45 11.1 9.04 1.00 0.55 -8.42 

B (24-27) -2.33 11.4 9.28 1.05 0.60 -9.07 

C (30-33) -2.21 11.8 9.50 1.19 0.74 -9.14 

D (36-39) -2.51 10.9 8.88 0.91 0.46 -9.13 

E (42-45) -2.71 10.3 8.51 0.75 0.30 -9.12 

Recorded abundances of microbes as indicated by the presence of free 

and cultivatable germs in water range between 3.4 to 6.3 × 105 cfu mL-1 

(24 h incubation at 30°C), with no evidence of pathogenic germs in general, 

and for Escherichia coli in particular. In agreement with the computed EH-

pH-diagram for the local groundwater composition (Figure 6.9), As(III) is 

with a percentage of >95.8 % the predominating As species.  

The hydrochemical composition of groundwater from the shallowest well 

A differs significantly from the deeper wells. Concentration differences 

comprise Cl-, Na, Ca, Co, NH4
+, and importantly, As and As(III). Hence, 

results point at the presence of two distinctive hydrological layers within the 

groundwater body, which are divided by a boundary located in between the 

well screens of wells A and B (in about 21 to 24 m bls). 
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Figure 6.9: EH-pH diagram reflecting the As species distribution within the 

As-O2-H2O-system and the Fe species distribution in the Fe-O2-H2O-CO3 system 

in solution, based on the groundwater composition in well B (03/12/09). At the 

study site, H3AsO3 and Fe(II) are the dominating species (conditions: 27°C, 0.1 

MPa, pH ranging from 3.5 to 11.5, pe ranging from +17.5 to -10, created with 

PHREEQC; based on MERKEL & PLANER-FRIEDRICH 2008). 
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Monitoring wells and adjacent tube wells. In the following, the five 

monitoring wells are compared to adjacent local tube wells in order to 

estimate their representativity for the study area. No significant differences 

are visible between principal groundwater properties in the monitoring wells 

of the low As site and 11 adjacent tube wells situated in the villages 

Chakudanga and Amdanga (Table 6.5). Depending on the concentrations of 

redox sensitive parameters in groundwater (NO3
-, Mn, Fe, and SO4

2-), six 

wells are considered to be in a less reducing state of Fe(III)/SO4
2- reduction 

than the monitoring wells. Two wells (wells 118 and 119) hold extremely low 

As and PO4
3- concentrations. According to the high similarity with the 

majority of the surrounding wells, groundwater samples from the low As 

study site are considered as representative for the local area. 

Results for well 125, which was sampled during the field survey 

(conducted between September to November 2007) are of special interest, 

since this well was the reason to choose this area as low As study site. 

Although nearly all major and trace elements are comparable to the 

monitoring wells, NO3
-, PO4

3-, Fe, and As significantly differ from ground-

water of the monitoring wells (well 125a in Table 6.5). Hence, the well was 

sampled again in December 2009, revealing that results were now 

comparable to those of the deeper monitoring wells, except for the higher 

Cl- and SO4
2- concentrations (well 125b in Table 6.5). The reason for this 

temporal change is very likely an on-going activity of microbially mediated 

redox reactions (discussed in chapter 6.3.4). 
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Table 6.5: Comparison of monitoring wells (03/12/09) with nearby wells that 

were sampled during the field survey in 2007. Well 125 formed the base of 

decision to choose this area as low As study site. This well was sampled again 

in 2009 (125b). 

Well Year Ca Mg Na K Cl - NO3
- Mn Fe SO4

2- PO4
3- As As/PO4

3- Na/Cl-

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (mol ratio) 

Monitoring wells: 

A  

(12-21) 
2009 86.5 20.6 18.6 2.49 7.85 <0.88 0.77 4.34 <0.85 2.38 49.1 0.03 2.36 

B  

(24-27) 
2009 79.3 17.3 12.5 3.79 2.65 <0.88 0.47 3.76 <0.85 3.39 155 0.06 4.72 

C  

(30-33) 
2009 69.5 17.4 11.4 6.82 2.43 <0.88 0.41 5.57 <0.85 1.12 135 0.15 4.70 

D  

(36-39) 
2009 67.6 15.8 10.8 3.72 2.64 <0.88 0.42 2.86 <0.85 2.18 132 0.08 4.11 

E  

(42-45) 
2009 68.0 15.1 11.1 3.18 2.59 <0.88 0.60 2.15 <0.85 1.93 133 0.09 4.31 

Adjacent wells: 

125a 
(24) 

2007 109 24.1 15.1 4.03 46.7 1.68 0.51 0.05 10.7 0.03 2.29 0.10 0.50

125b 
(24) 

2009 82.5 20.3 12.3 3.97 56.6 <0.88 0.41 4.18 12.4 5.95 136 0.03 0.33

124 (24) 2007 85.9 16.4 13.8 3.69 3.55 <0.88 0.47 4.85 <0.85 2.58 160 0.08 5.99 

126 (24) 2007 71.3 14.3 10.8 3.01 3.56 1.38 0.27 1.04 5.42 3.83 61.1 0.02 4.66 

122 
(167)  

2007 71.0 14.0 9.46 2.36 2.25 <0.88 0.06 1.07 <0.85 0.41 77.4 0.24 6.49

Well 
east (24) 

2009 69.9 15.1 11.7 3.51 11.7 <0.88 0.35 3.54 <0.85 5.26 124 0.03 1.55

Pumping 
well (24) 

2009 72.4 15.5 11.0 2.36 8.09 <0.88 0.28 4.84 <0.85 5.64 63.7 0.01 2.10

117 (30) 2007 83.5 20.9 15.6 2.20 21.9 1.72 0.37 6.54 16.27 4.16 37.9 0.01 1.10 

118 (?) 2007 105 20.2 9.65 3.71 14.3 1.17 0.57 13.9 3.91 0.57 4.62 0.01 1.04 

119 (18) 2007 113 16.4 9.29 2.65 10.7 1.43 0.40 1.38 4.51 0.14 3.24 0.03 1.34 

121 (25) 2007 80.8 20.9 10.8 2.72 10.9 <0.88 0.18 4.05 2.00 3.79 50.4 0.02 1.52 

120 
(183) 

2007 108 21.2 14.3 3.42 4.96 1.88 0.06 1.30 <0.85 0.07 34.9 0.63 4.46

(m bls) 
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6.2.2.2 The sucrose injection experiment 

Preliminary experiments. The fundamental design of the in-situ 

sucrose injection experiment bases on a field experiment done by HARVEY 

et al. (2002) and laboratory incubation experiments that have examined the 

role of geomicrobiological related processes in As mobilisation (DEUEL & 

SWOBODA 1972). Anaerobic microbial column experiments conducted by 

D. FREIKOWSKI with sediment material from both sites demonstrated that 

indigenous microbes are still capable of As mobilisation as soon as OM is 

provided (FREIKOWSKI et al., unpublished results). 

Consequences of circular pumping. In order to equally distribute the 

dissolved sucrose that was added into the four surrounding wells (B to E), 

groundwater was extracted from the central well A and directly re-

introduced into the surrounding wells one after another (see Figure 4.3 in 

chapter 4.3.2). This circular pumping successfully distributed the sucrose 

within the local aquifer, as demonstrated by sucrose concentrations 

determined two days after infusion (Table 6.6). However, nearly no sucrose 

occurred in groundwater from wells A and C. Since no sucrose was 

introduced into well A, concentrations remained throughout low (Figure 

6.10). In contrast, the initially low concentration in well C remains obscure, 

since the same amount of sucrose was inserted than into well D. The next 

sample taken four days later contained considerable 486 mg L-1 of sucrose 

(APPENDIX II, Table A 2.5). 

Samples taken two days after sucrose addition (06/12/09) displayed 

influences on the local groundwater composition related to circular pumping, 

which caused mixing of the hydrochemically layered groundwater. In the 

central well A, As concentrations temporarily increased from initially 46.2 to 

66.4 µg L-1, while major solutes declined (e.g., Cl- and Na). Contrary effects 

occurred in groundwater of the deeper monitoring wells as indicated by 

concentration changes, for example, in conservative Cl-. By contrast, PO4
3- 

contents had multiplied in wells C and E, and with a lag of two days in the 

other three wells, too.  
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A significant input of As and Fe by sucrose was excluded, 500 mg L-1 

solution contained 0.94 µg L-1 As and 3.70 µg L-1 Fe, only. 

Table 6.6: Sucrose concentrations in groundwater from the monitoring wells 

two days after sucrose addition reflect a successful distribution within the 

aquifer, except for well A (where no sucrose was added) and well C. 

Temporal changes in groundwater following sucrose injection. In 

addition to effects of circular pumping, the hydrochemistry in groundwater of 

the study site changed rapidly in the following days, with an intensity and 

duration of response directly depending on the available sucrose contents 

(Figure 6.10). 

The following changes manifested in the groundwater composition:  

 Well A: Around the central well A, the throughout low sucrose

concentrations provoked comparatively weak changes in the

groundwater composition, except for the effects related to circular

pumping during sucrose addition.

 In the four other wells, most parameters developed trends peaking

6-8 days after injection, while sucrose concentrations gradually

decreased and completely vanished after 14 days.

Well 

(well screen m bls) 
Date 

Sucrose 

(mg/L)       (mM) 

A (12-21) 06/12/09 8.20 0.02 

B (24-27) 06/12/09 290 0.85 

C (30-33) 06/12/09 6.23 0.02 

D (36-39) 06/12/09 259 0.76 

E (42-45) 06/12/09 873 2.55 
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 Well E: Strongest reactions developed in well E, which showed the

highest initial sucrose concentration. Here, temporary drastic

increases in conductivity and alkalinity arose, while fatty acids

(primarily acetate, to a lesser extent butyrate and propionate, see

APPENDIX II, Table A 2.5) occurred. This was accompanied by a

temporary drop in the pH by two units down to 5.0, changing the

groundwater chemistry from circum-neutral to weakly acidic. With a

lag of two days, Fe concentrations rose to a maximum (77.8 mg L-1)

that was 36-times higher than the baseline (2.15 mg L-1). Dissolved

Mn concomitantly increased from 0.59 to 4.47 mg L-1 (x 7.48;

corresponds to a maximum multiplication factor of 7.48), while

concentrations of trace elements witnessed partly also steep raises

(Zn x 78.0, Co x 47.3, Ni x 36.5, and V x 33.1). Furthermore, sharp

increases in alkaline earth metals (Ca x 3.83, Mg x 2.42, Ba x 5.20,

and Sr x 3.37) and a moderate release of Si (x 1.47) appeared,

forming similar trends to those of Fe. Conductivity nearly tripled

(from 590 to 1,700 µS cm-1), while alkalinity doubled (from 445 to a

maximum of 976 mg L-1).

 Wells B, C and D: Hydro-chemical parameters evolved similar in

wells B and C, where highest sucrose concentrations reached

33.2 % (B), respectively 53.6 % (C), of that in well E. The gradual

decline of sucrose in groundwater was accompanied by similar

temporary effects previously described for well E. Fatty acids

emerged, pH values declined and concentrations of Ca, Fe, Mn,

and other trace elements rose. In contrast, trends in well D (initial

sucrose concentration was 29.7 % of that in well E) differed from

those observed in the other wells. Here, characteristic parameters

like dissolved Ca and Fe increased slowly and peaked very late.
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 All wells: Dissolved O2 in groundwater permanently remained below

0.5 mg L-1, and neither NO3
- nor SO4

2- was detectable. Reduced

Fe(II) was consistently the prevailing Fe species, with an average

percentage of 96.7 ± 3.3 % (n: 30). The presence of free germs

escalated by several orders of magnitude and demonstrated a

dramatic growth of the microbial population within the aquifer. Four

days after sucrose infusion, the appearance of foam and an acidic

smell of fermentation was noticed during sampling.

Hydrochemical parameters that developed trends in wells B, C and E 

peaked between six (10/12/09) to eight days (12/10/12) after sucrose 

infusion. To this time, the approximate redox potentials were measured, 

allowing calculations of respective SI for Fe-minerals (Table 6.7). In 

addition, partly high concentrations of dissolved CO2 were calculated from 

TA. After peaking, most parameters developed rapid trends in direction of 

the initial baseline values. Nevertheless, a few strongly increased 

parameters (e.g., TPC, Fe, TA, Co and PO4
3-) stagnated at first, or declined 

only very slowly. 

    Arsenic. Arsenic concentration trends matched with those of other 

elements and parameters, but the relative increases were throughout lower. 

In groundwater of all wells, ratios of As to PO4
3- as well as As to Fe 

continuously declined. Maximum relative increments of dissolved As 

reached 19.0 % (well C), 23.0 % (well D), 39.9 % (well B) and 48.6 % (well 

E) in respect to the initial baseline values. As(III) remained with an average

percentage of 95.5 ± 2.8 % (n: 37) the predominating As species. Except for 

well B, total As and As(III) concentrations rapidly returned to the respective 

baseline concentrations after maximum concentrations were reached. 
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Figure 6.10, part I: Effects on the local hydrochemistry during the following 14 

days after biostimulation with sucrose. Included are thermodynamically 

favoured species for each solute. Figure continued on next page. 
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Figure 6.10, part II: Effects on the local hydrochemistry during the following 14 

days after biostimulation with sucrose. Included are thermodynamically 

favoured species for each solute. For a better comparability of the trends, 

concentrations are given in molar concentrations. Strongest temporary 

mobilisation reactions occurred in the deepest well E, where highest initial 

sucrose concentrations prevailed. 
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Table 6.7: Results and computed SI of detected and potentially relevant mineral 

phases. Calculations based on samples taken six days after sucrose addition 

(10/12/09), except for well E, here eight days later (12/12/09). EH measurements 

are mandatory to calculate SI for redox dependent mineral phases. Computed 

HCO3
- and CO2 distributions were calculated from measured alkalinity, pH and 

temperature with PHREEQC.  

Well pH Eh EC O2 NO3
- SO4

2- PO4
3- Fe Mn As 

(m bls) (mV) (µS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) 

A (12-21) 7.1 -85.9 638 error <0.88 <0.85 5.22 3.25 0.52 44.5 

B (24-27) 6.5 -290 1013 0.25 <0.88 <0.85 6.61 20.2 1.67 159 

C (30-33) 6.8 -291 928 0.14 <0.88 <0.85 8.31 14.9 1.30 158 

D (36-39) 7.0 -190 738 0.11 <0.88 <0.85 7.24 7.70 0.89 158 

E (42-45) 6.2 -384 1705 error <0.88 <0.85 2.65 77.8 4.47 177 

Well HCO3
-

measured 
HCO3

-

calculated 
CO2 

calculated 
Sucrose Acetate Butyrate Propionate 

(m bls) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

A (12-21) 458 443 54.2 3.30 <dl* <dl <dl 

B (24-27) 695 661 500 126 210 22.2 33.7 

C (30-33) 738 705 151 468 210 <dl <dl 

D (36-39) 604 582 79.5 145 39.0 <dl <dl 

E (42-45) 976 888 817 nd 406 34.8 124 

Well Quartz Anorthite Calcite
Dolomite 
disord. 

Fe(OH)3 
amorph.

Magnetite Hematite Goethite
Siderite 
disord. 

Vivianite 

(m bls) (SI) (SI) (SI) (SI) (SI) (SI) (SI) (SI) (SI) (SI) 

A (12-21) 0.29 -4.06 0.11 -0.57 -2.71 10.4 8.53 3.26 0.42 1.91 

B (24-27) 0.88 -2.53 0.02 -0.96 -11.8 -7.59 -8.83 -5.55 0.75 0.40 

C (30-33) 0.36 -4.85 0.23 -0.36 -6.37 3.10 1.17 -0.42 0.93 3.12 

D (36-39) 0.30 -4.97 0.23 -0.32 -4.31 7.37 5.29 1.63 0.80 2.93 

E (42-45) 0.41 -4.60 0.03 -1.07 -9.22 -3.16 -4.48 -3.25 1.03 1.74 
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6.2.2.3 Monitoring results 

The bi-weekly taken monitoring samples cover a period of 20 months 

(January 2009 to August 2010) and comprise 35 times of sampling (Figure 

6.11). This elaborate data set is used in the present thesis to trace ground-

water evolution notably in respect of As mobility, and to determine mid-term 

influences of the sucrose experiment. Records of the hydrostatic head 

revealed pronounced oscillations during this period, which were closely 

linked to prevailing climatic conditions. Hydrostatic head positions in well A 

ranged from 0.39 m bls (end of the monsoon season 2009), to 4.35 m bls 

(end of the pre-monsoon season in April 2010). 

Time resolved variations in the groundwater hydrochemistry 

during 2009. Changes in the hydrostatic head were accompanied by 

pronounced variations in different parameters recorded in the shallowest 

well A (Figure 6.11). During the dry pre-monsoon season, elements with 

deviant concentrations from the deeper wells like As, As(III) and PO4
3-

increased, respectively decreased considerably at the same time (e.g., Na, 

Cl-). During the following monsoon season, opposite trends appeared and 

respective concentrations stabilised rapidly at new levels until end of May. 

Until sucrose was introduced in December 2009, most major and trace 

element concentrations in the four other monitoring wells remained stable, 

except for δ18O values, PO4
3- concentrations and As(III) percentages. These 

specific parameters decreased during the pre-monsoon season to increase 

again with onset of the monsoon rains. In all samples, NO3
- concentrations 

remained constantly below the limit of quantification, except for some 

sporadic outliers observed at the beginning of the monitoring. 
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Figure 6.11, part I: Summary of hydrochemical parameters relevant for As 

mobility from monitoring samples taken between 06/01/09 and 12/08/10 (PRM: 

pre-monsoon season; PSM: post-monsoon season). Average monthly 

precipitation values for the Nadia district from 2008 to 2010 provided by the 

Hydromet Division of the India Meteorological Department. Figure continued on 

next page. 
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Figure 6.11, part II. 
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Mid-term effects following the sucrose experiment. In January, 

characteristic parameters like Fe and As finally peaked in well D, too. 

Generally, parameters developed steady decreases towards the baseline 

values (e.g., Fe, Zn, Ni, and Co) (Figure 6.12). 

Figure 6.12, part I: Summary of hydrochemical trends relevant for As mobility 

following the biostimulation experiment. Parameters that increased by sucrose 

addition continuously declined until beginning of the monsoon season. 

Additionally, characteristic elements (e.g., As, Na, Cl-, and PO4
3-) developed 

trends in well A that were closely linked to oscillations of the hydrostatic head 

(PSM: post-monsoon season; PRM: pre-monsoon season). Figure continued on 

next page. 
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Figure 6.12, part II: Parameters that increased after addition of sucrose 

continuously declined until beginning of the monsoon season (PSM: post-

monsoon season; PRM: pre-monsoon season).  
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At the beginning of the monsoon season end of April 2010, the 

hydrostatic head slowly increased. Again, pronounced trends in PO4
3-, As, 

Na, Cl-, and Co concentrations occurred in well A, similar to the values at 

the beginning of the monsoon season in 2009. This time, some parameters 

changed in the other wells, too, especially Fe increased again and levelled 

off at concentrations above the initial baseline. Additionally, As abruptly 

increased in well B, before declining again. Compared to average 

concentrations recorded shortly before sucrose was infused, As and Fe 

concentrations had increased in all of the wells (Figure 6.13). 

Figure 6.13: Summary of As and Fe concentrations before (1: 06/01/09- 

03/12/09; n: 22) and after (2: 18/12/09 – 12/08/10; n: 13) the experiment in form of 

Box-Whisker-Plots. 
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Constant arsenic increase in well A. The short termed, seasonal 

increases and decreases of As concentrations in well A were superimposed 

by a constantly increasing trend (Figure 6.14). Iron and PO4
3- 

concentrations paralleled this increase, while conservative tracers Cl- and 

δ18O and most other parameters did not follow this trend. In order to 

quantify the net increases in As, PO4
3- and Fe concentrations, the seasonal 

minima in July 2009 and 2010 are compared to the first sample taken in 

January 2009 (Table 6.8). In contrast to changes in absolute As 

concentrations, As(III) remained constantly the prevailing As species. 

Groundwater from the central well A further differed from the deeper wells in 

respect of the mol ratios of As, Fe and PO4
3- (Figure 6.15). 

Table 6.8: Concomitant net increases of As, Fe and PO4
3- in groundwater of well 

A to the begin of the monitoring and respective As minima in July 2009 and 

July 2010. 

Date Mn Fe PO4
3- As As to PO4

3- 

(mg/L) (mg/L) (mg/L) (µg/L) (mol ratio) 

06/01/09 0.60 1.73 (baseline) 0.68 (baseline) 17.6 (baseline) 1 : 30 

14/07/09 0.67 2.78 (+61 %) 1.25 (+84 %) 30.5 (+73 %) 1 : 31 

21/07/10 0.59 6.44 (+272 %) 2.37 (+249 %) 45.8 (+160 %) 1 : 40 
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Figure 6.14, part I: Comparison between monitoring results for well A from 2009 

and 2010. In order to distinguish between permanent net increases and 

temporary, seasonal concentration changes, areas below the trend lines are 

shown in red (F: net increase) and blue (M: seasonal effect). Net increases refer 

to the first sample taken in January 2009. Figure continued on next page. 
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Figure 6.14, part II: Mol ratios of As, PO4
3- and Fe for monitoring samples from 

well A (2009: purple, 2010: green). 

Figure 6.15: As, Fe and PO4
3- in monitoring samples (06/01/09 to 12/08/10) 

display strong positive correlations and contrasting concentrations in well A. 

The partial decoupling of As from Fe in well A originates from the seasonal 

fluctuations of the As concentrations. 
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6.3 DISCUSSION 

6.3.1 SEDIMENT STRATIGRAPHY 

Following considerations regarding the aquifer characteristics at the low 

As site are based on data from well E, where the sediment samples were 

collected. Since the distances to the other four wells are less than 4-5 m, 

similar conditions can be assumed for the whole study site. 

When investigating the fate of a highly versatile element such as As, it is 

mandatory to understand the investigation area’s evolution history and 

geomorphologic background. Local sediments witness various significant 

changes during the evolution of the floodplain. Present lithology was and 

still is strongly influenced by the nearby Hooghly River, which is currently 

located 12.6 km west of the low As site. Additionally, regression and 

transgression events that occurred during the late Quaternary had decisive 

influences on the regional sedimentation history (see chapters 3.1 and 3.2). 

By combining geochemical and lithological data with characteristics of the 

sedimentary OM, further conclusions can be drawn concerning the delta 

and floodplain evolution. Together with results from the high As site, the 

facies can be interpreted in context of a fluvial sequence model (GIBLING & 

BIRD 1994, MIALL 1996, SHANLEY & MC CABE 1994, WRIGHT & 

MARRIOTT 1993). The outcomes are further compared to the nearby JAM 

study site, where a similar approach was persuaded and included 

additionally radio-carbon and optically stimulated luminescence (OSL) 

dating (MC ARTHUR et al. 2008, SARKA et al. 2009). 

Interpretations and outcomes summarised in Table A 2.6 (APPENDIX II) 

are in good agreement with those of the JAM site, except for contrary 

conclusions regarding past marine influences. SARKA et al. (2009) 

excluded marine influences on the bases of strong variations in δ15N signals 

(-3.54 to +2.76 ‰) of a set of six analysed samples only. Although both 

study sites are located approximately 40 km north of the JAM area, OM in 

facies F2 and F3 carries here marine signals as visible in δ15N and δ13C 

signals as well as C/N ratios (Figure 6.6). According to LAMB et al. (2006), 

the mixing of marine and terrestric signals is in general characteristic for 



6.3 DISCUSSION 

117 

estuarine systems like salt marshes or lagoons. Hence, sediment samples 

are considered to indicate a subsequent transition from a marine-deltaic 

environment towards a more terrestric influenced floodplain environment 

during the early to middle Holocene (see APPENDIX II, Table 2.8). 

Comparing the outcomes of this sequence stratigraphic analysis to the 

dating results of SARKA et al (2009), the conclusion is drawn that increased 

As concentrations in groundwater of both sites are closely linked to 

Holocene and late Pleistocene aquifer sediments. 

6.3.2 ROLE OF THE SURFACE AQUITARD 

The unconsolidated aquifer sediments are covered by the 3.85 m thick 

facies F4, which is interpreted as fluviatile overbank deposit of the Hooghly 

River (see chapter 6.2.1). These sediments are considered to act rather as 

an aquitard than an aquiclude and are characterised by low hydraulic 

conductivities. This unit is a common feature of the floodplain, where it 

occurs in varying thicknesses of up to ~24 m and is locally flooded during 

the monsoon season, similar to some areas in Bangladesh (MC ARTHUR et 

al. 2004). 

Between the riverbanks of the Hooghly River and Chakdah, mildly to 

strongly reducing conditions were reported from the shallow aquifer parts 

beneath this clay-rich layer, which reaches thicknesses of 5 to 15 m here 

(CHARLET et al. 2007). Within the aquitard, small-scaled sandy lenses with 

diameters of several decimetres were detected with electromagnetic 

conductivity measurements (MÉTRAL et al. 2008). These lenses in the 

aquitard enable locally restricted infiltration of oxygen- and nitrate-rich 

surface water, which prevents a decrease of the redox potential in the 

underlying aquifer (MÉTRAL et al. 2008). This is a very important 

observation, giving some clues to understand how the aquifer is recharged 

during the monsoon season, and why the hydrochemistry is often spatially 

varying within distances of decimetres.  
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At the low As site, the clay layer obviously prevents the inflow of oxygen-

rich surface water, as indicated by groundwater chemistry that indicates 

moderate to strongly reducing conditions in the aquifer. This also hinders 

the import of DOC and PO4
3- from adjacent fields. In addition, clinker 

fragments and compacted sediments in the top 0.60 m reflect an 

anthropogenic influence close to the surface, while sediments below are 

considered as undisturbed. 

Seasonal changes in the hydrostatic head induce switches between 

unconfined and confined conditions as soon as the water table reaches the 

clayey and silty aquitard, which reaches down to approximately 3.20 m bls. 

Aggregations and mottles of secondary Mn- and Fe-(oxyhydr)oxides mark 

here the fluctuation range of the unsaturated zone, while permanently 

reducing conditions are indicated by grey coloured sands in below 

3.20 m bls. Where aggregations and mottles of Mn- and Fe-(oxyhydr)oxides 

occur, trace elements like Zn, Ni, Cu and As are enriched (Figure 6.2). 

Similar to the sandy aquifer sediments below, As is predominantly strongly 

adsorbed, but the average content (9.4 mg kg-1) is about three times higher 

here. In contrast to the assumptions of HARVEY et al. (2006), these 

sediments appear to act rather as a sink then a source for As. As soon as 

anoxic groundwater rises into the aerobic vadose zone via capillary rise, the 

fine grain size of these layers promotes the precipitation of secondary Mn- 

and Fe-(oxyhydr)oxides, which is in turn accompanied by co-precipitation 

and/or adsorption of various trace elements, including As. Results from the 

high As site further support this assumption (see chapter 7.3.2). 
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6.3.3 ARSENIC IN SEDIMENTS 

To assess the As release potential of the aquifer sediments, a multiple 

physico-chemical approach was used. Analytical limitations arose from the 

throughout low As contents in the sediments and of the hosting mineral 

phases. Generally, sedimentary As appears to be closely linked to the fine 

grain size fraction of the sediments, as suggested by KINNIBURGH & 

SMEDLEY (2001). Strong positive correlations between bulk As contents 

and Fe as well as other typically iron-associated trace elements (Cu, Ni and 

Zn) allude to the conclusion that Fe-(oxyhydr)oxides are important As hosts 

(see chapter 6.2.1). This assumption is further supported by results of the 

SEP targeting the identification of arsenic-bearing phases. Here, the biggest 

part of As turned out to be PO4
3--extractable, which is interpreted as 

strongly adsorbed fraction. Remaining sedimentary As is primary associated 

with Fe-(oxyhydr)oxides (fractions III, IV and V). Significant amounts of HCl-

extractable As (fraction III) are not considered to originate from Mn-oxides, 

since extractable amounts of Mn were negligible compared to Fe 

(APPENDIX II, Table A 2.2).  

According to the high positive correlations of the bulk As contents with 

Fe and the generally high binding affinities of Fe-(oxyhydr)oxides for As 

(MOHAN & PITTMAN 2007), the conclusion is drawn that Fe-

(oxyhydr)oxides are the dominating host for strongly adsorbed (fraction II) 

as well as for incorporated As (fractions III, IV and V) in sediments of the 

low As site. Similar outcomes where reported from the Chakdah site 

(CHARLET et al. 2007). 
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6.3.4 GROUNDWATER PROPERTIES 

Contradictory arsenic concentrations. Arsenic concentrations in 

samples of the five monitoring wells were found to be surprisingly much 

higher than in the adjacent tube well no. 125, which was the reason to 

choose this location as low As study site (see chapter 5.3.2). Despite 

comparable depths of the well screens, some important parameters (Cl-, 

SO4
2-, NO3

-, As, Fe, and PO4
3-) strongly differed in values observed in 

groundwater from well 125. Consequently, well 125 was re-sampled during 

the field trip in 2009. In this new sample, As, Fe and PO4
3- concentrations 

were more alike the monitoring wells than to the sample taken during the 

post-monsoon season in 2007 (Table 6.5). These concentration changes 

are attributed to on-going redox processes in the aquifer as discussed later 

on in chapter 6.3.6. Since As concentrations in all five monitoring wells 

turned out to be throughout high, the designation “low As site” appears 

inappropriate and the site should be considered rather as a “lower As site” 

compared to the second study site, where As concentrations are twice as 

high (see Table 8.1 in chapter 8). 

Arsenic release and groundwater evolution. Compared to the field 

survey (chapter 5.2), numerous additional parameters were determined 

during the monitoring, allowing a much more precise identification of 

processes related to groundwater evolution. Solute concentrations, 

calculated SI and results of the sediment analyses were used to identify 

hydrogeochemical reactions that have influenced the groundwater 

composition in the study area. In addition, conservative tracers (Cl-, K, 

stable isotope compositions of O and H) were used to identify influences of 

physical processes like mixing or evaporation (SENGUPTA & SARKA 

2006). Nevertheless, subsequent reactions caused by microbial activity or 

ion exchange reactions may have re-changed distribution patterns of non-

conservative solutes like As in groundwater as discussed in the following. 
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The following processes and mechanisms were identified: 

(a) Carbonate and silicate weathering 

As previously assumed from results of the field survey, throughout elevated 

concentrations of Ca, Mg and HCO3
- in groundwater indicate pronounced 

influences of carbonate weathering during evolution of the groundwater 

(Tables 6.4 and 6.7). This is attributed, on the one hand, to the presence of 

considerable amounts of carbonates in the aquifer sediments (calcite and 

dolomite), and on the other hand, to the slow groundwater flow supporting 

the carbonic acid–bicarbonate–carbonate–equilibrium to balance. Dissolved 

Si concentrations, as well as the mineral inventory, both point at silicate 

weathering, which is most likely related to the dissolution of instable 

feldspars (e.g., anorthite). 

Due to the carbonate-rich sediments, the groundwater pH is circum-neutral. 

This controls the protonation of As species and influences in turn their 

adsorption behaviour. The predominating As species is here uncharged 

H3AsO3 (see EH-pH-diagram in Figure 6.9). This strongly reduces the 

importance of ionic surface adsorption / desorption processes, but 

increases the sorption potential of As(III) to Fe-(oxyhydr)oxides by ligand 

exchange (DIXIT & HERING 2003). Results of the SEP support these 

assumptions. Nearly no weakly bound As was observed (fraction I), but 

strongly adsorbed As (fraction II) was identified as a principal form (even if 

this fraction was overestimated, see chapter 4.2). 

(b) Ion exchange reactions 

The presence of surface reactive minerals like Fe-(oxyhydr)oxides and clay 

minerals generally foster ion exchange reactions, especially Na-Ca-

exchange. The Na content of the sediments originates from past 

transgression events (GOODBRED et al. 2003), when intrusions of marine 

water caused the reverse exchange reactions (APPELO & POSTMA 1996). 

Thus, Na/Cl ratios in solution are a good proxy to estimate the groundwater 

maturity and further support identification of mixing influences, which is 

used in the following chapters. In contrast to Na-Ca-exchange, PO4
3- to As 
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ratios in solution seem to be not high enough to induce As-PO4
3--exchange 

and release of adsorbed As by PO4
3- as proposed by ARCHARYA et al. 

(1999). This assumption is further supported by results of the in-situ 

experiments that were carried out the high As and the low As study sites. 

Here, strong increases in local PO4
3- concentrations did not provoke an 

additional As release. The long-term monitoring additionally revealed that 

As to PO4
3- ratios and concentrations in almost all monitoring wells 

remained constant during the time of observation (see chapter 6.3.6 and 

chapter 7.3.5.2). 

(c) Hydrochemical stratification 

Results reveal the presence of two distinctive hydrochemical layers with 

partially sharp concentrations gradients in many different solutes between 

the well screens of wells A and B. This set of solutes comprises a wide 

range of hydro- and geochemically deviant acting compounds including As 

(Table 6.3). For example, Cl- is considered a conservative parameter that 

does not tend to react with solid phase compounds (SENGUPTA & SARKA 

2006). In contrast, Na and Ca can be influenced by ion exchange, while As, 

NH4
+, SO4

2-, and Co are sensitive to redox changes. The observed 

stratification effects can be hardly explained by a single process and are 

attributed to multiple processes. First, groundwaters with different 

compositions (especially concerning major solutes, like the conservative Cl-) 

must have been mixed around the depth range of well A. After mixing, 

consecutive reactions additionally superimposed the initial distribution of 

non-conservative solutes including As, what is discussed in the following. 

(d) Microbially mediated reactions 

Temperatures of around 27°C as observed in the investigation area provide 

optimum conditions for microbiological growth and activity. Depth 

decreasing DOC and SOM, as well as the presence of considerable 

amounts of cultivatable germs and an increased alkalinity in groundwater all 

indicate pronounced microbial degradation processes in the recent past. 

Anaerobic decomposition of OM is known to cause formation of fatty acids 
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as intermediate products and HCO3
- as end product (LOVLEY 1993). 

Microbial released organic acids further trigger carbonate dissolution 

through acid neutralisation reactions. Hence, microbial decomposition of 

OM in reducing aquifer parts entails an increase in groundwater alkalinity, 

which was demonstrated by the sucrose injection experiment (chapter 

6.3.5). In addition, high concentrations of Mn, Fe(II), As(III) coupled with low 

O2, NO3
-, and SO4

2- concentrations reflected a decisive influence of 

microbial mediated redox reactions on the local groundwater composition. 

According to the redox classification criteria of JURGENS et al. (2009), 

methanogenesis is currently the predominating redox process (Table 6.9). 

Although not being the dominating TEA consuming process any more, 

Fe(III) reduction can still be a relevant process (JURGENS et al. 2009), 

which could be demonstrated by the biostimulation experiment (described in 

chapter 6.3.5). 

Table 6.9: Biogeochemical fingerprints of groundwater samples (03/12/09) 

following the classification scheme of JURGENS et al. (2009). Groundwater 

from the monitoring wells reflects strongly reducing conditions allowing 

formation of methane (methanogenesis). 

Parameter 
NO3

- 

(mg/L)

Mn 

(mg/L)

Fe 

(mg/L)

SO4
2- 

(mg/L)

Redox classification criteria: 

Fe(III)/SO4
2- reduction <2.22 >0.05 >0.10 >0.90 

Methanogenesis <2.22 >0.05 >0.10 <0.90

Concentration in groundwater (depth m bls): 

A (12-21) <0.88 0.77 4.34 <0.85 

B (24-27) <0.88 0.47 3.76 <0.85 

C (30-33) <0.88 0.41 5.57 <0.85 

D (36-39) <0.88 0.42 2.86 <0.85 

E (42-45) <0.88 0.60 2.15 <0.85 
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In addition to the problematic enrichment of As, Mn concentrations 

exceeded the Indian threshold value of 0.10 mg L-1 in drinking water (IS 

10500; standard value is extendable to 0.30 mg L-1 if no other sources of 

drinking water are available), raising the risk of chronic intoxications for the 

local population (MC ARTHUR et al. 2012). 

(e) Arsenic mobilisation 

Similar to arsenic-rich tube wells, hydrochemical properties of groundwater 

at the low As site appear to be closely related to the microbial reduction of 

both Fe(III) and As(V). Poorly ordered Fe-(oxyhydr)oxides like ferrihydrite 

are highly instable under the prevailing hydrochemical conditions, while 

ordered Fe-minerals (e.g., hematite, magnetite and siderite) are super-

saturated and therefore considered as stable (STUMM & MORGAN 1996). 

From a kinetic point of view, a strong negative or positive SI does not 

necessarily mean that the respective minerals dissolve or precipitate in a 

certain period of time (MERKEL & PLANER-FRIEDRICH 2008). However, 

the occurrence of arsenic-bearing, poorly crystalline Fe-(oxyhydr)oxides in 

the aquifer sediments (see chapter 6.3.3) can support on-going microbial 

Fe(III) reduction with concomitant release of As if degradable OM is 

available. In fact, Fe(III) reduction and As release can be still active 

processes, which was demonstrated by both, the biostimulation experiment 

and the long-term monitoring (chapter 6.3.5). 

Increased concentrations of Mn reflect that reductive dissolution of Mn-

oxides took also place, which often accompanies Fe(III) reduction (LOVLEY 

1993). Although aqueous to solid phase ratios of Mn were comparable to 

those of Fe, concentrations in groundwater and sedimentary contents 

underline that As mobilisation via Mn(IV) reduction is secondary compared 

to Fe(III) reduction. 

Another potential As release mechanism is biogenic weathering of apatite 

(MAILLOUX et al. 2009). The presence of potentially arsenic-hosting apatite 

could neither be proved nor ruled out by the characterisation of the 

sediments. It is difficult to detect traces of apatite in carbonate-rich sandy 

sediments by means of XRD, since the main peaks are superimposed by 
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those of quartz. Occurrence of arsenic-bearing apatite was not reported 

from other study sites in the Bengal Basin until now. According to 

MAILLOUX et al. (2009), this kind of release would be decoupled from 

redox processes. Hence, increased As would also appear under less 

reducing or even oxic conditions, what stands in contrast to common 

observations in the Bengal Basin. 

(f) Competitive adsorption 

Groundwater from the investigation area reflects a close connection 

between As and PO4
3-, which was reported from other locations in the BDP 

as well (e.g., BGS & DPHE 2001). In the present thesis, the hypothesis was 

developed that dissolved As and PO4
3- competitively adsorb to residual and 

newly formed Fe-minerals. This process is considered as an important 

process in the development of reducing groundwaters in the Bengal Basin 

as well as other Asian delta areas. 

Reductive dissolution of Mn- and Fe-(oxyhydr)oxides should be 

accompanied by a fast re-adsorption of previously released As until the 

sorption capacity is reached or available potential sorbents are completely 

dissolved (DIXIT & HERING 2006, WELCH et al. 2000). Geochemical data 

support the former, since amorphous and weakly ordered Fe-

(oxyhydr)oxides with considerable amounts of As are still available within 

the aquifer sediments, despite the strong negative SI (see chapter 6.3.3). In 

contrast to the prevailing reducing conditions, some Fe-mineral phases that 

are capable of arsenic retention are supersaturated in groundwater (see SI 

of hematite, magnetite and siderite in Table 6.4). While precipitation of Fe-

(oxyhydr)oxides like hematite or magnetite is considered unlikely due to the 

nearly absence of dissolved O2, previous studies revealed that high 

concentrations of dissolved Fe(II) can induce transformation of weekly 

ordered Fe-(oxyhydr)oxides into more stable forms like magnetite. These 

transformed minerals are again capable of As(III) and As(V) adsorption 

(HANSEL et al. 2003, PEDERSEN et al. 2005) as well as incorporation of 

previously adsorbed As(V) into the magnetite crystal structure (COKER et 

al. 2006). In addition, precipitation of siderite is also possible (positive SI 
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values according to the low redox potential and the throughout high HCO3
- 

and Fe concentrations), which has a pH-EH-stability field close to magnetite 

and is able to remove dissolved As(III) as well as As(V) by adsorption (GUO 

et al. 2007, JÖNSSON & SHERMAN 2008). Detection of siderite in the 

sediment samples by XRD was not possible (principal siderite peaks are 

superimposed by mica and feldspar peaks), but magnetite was proved by 

bar magnet. However, magnetite and concretes of siderite have been 

previously identified in sediments of West Bengal under reducing conditions 

(PAL et al. 2002). 

In fact, outcomes of the field survey and the biostimulation experiment 

strongly support the assumption of As (re-)adsorption within aquifers of the 

investigation area (see chapters 5.3.1 and 6.3.5). The predominating As 

species in local groundwater is always As(III), which can strongly adsorb to 

free binding sites of Fe-mineral surfaces via inner-sphere surface 

complexes (ONA-NGUEMA et al. 2005). At neutral pH values, PO4
3- has 

higher binding affinities for Fe-minerals than both, As(III) and As(V) (GOH & 

LIM 2004). Hence, it can be expected that adsorption to newly formed Fe-

minerals is competitive and that PO4
3- adsorption is preferred. All available 

As and PO4
3- binding sites in the aquifer sediments are considered to be 

currently occupied because of the constantly increased concentrations in 

groundwater. This assumption is further supported by the high percentages 

of strongly adsorbed As in local sediments, based on the SEP results. The 

aqueous to solid phase ratios (Table 6.3) show that As is relatively more 

enriched in groundwater than PO4
3-, suggesting that PO4

3- is favoured over 

As(III) and/or As(V) adsorption. Depending on available binding sites and 

prevailing solute concentrations, distinctive As-PO4
3- ratios developed in 

groundwater (Table 6.10). This alludes to the conclusion that As 

concentrations in groundwater would be distinctively lower in absence of 

dissolved PO4
3-. The concept of competitive adsorption of As and PO4

3- is 

further developed in the following chapters.  
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Table 6.10: Comparison of As to PO4
3- mol ratios in groundwater (samples from 

03/12/09) and in sediments from respective depths (determined from micro-

wave acid digestions).

Well 

(depth m bls) 

Groundwater 

(As to PO4
3- mol ratio) 

Sediment 

(As to PO4
3- mol ratio) 

A (12-21) 1 : 37 1 : 268 

B (24-27) 1 : 17 1 : 237 

C (30-33) 1 :   6 1 : 300 

D (36-39) 1 : 13 1 : 312 

E (42-45) 1 : 11 1 : 127 

(g) Anthropogenic influences 

Since the study site is located in a rural area of intense agriculture, the 

question arises whether there are any traceable anthropogenic influences 

that influence the mobilisation and distribution of As in the groundwater. 

Three possible effects were identified: 

 Inflow of anthropogenic derived OM

An intensively discussed issue is the infiltration of OM either by

sewage from pit latrines, by artificial ponds, or by irrigation water

from fertilised fields. Since OM is considered as a limiting factor for

microbial mediated reactions in aquifer sediments of the BDP

(RADLOFF et al. 2008), an inflow of OM into the aquifer would most

likely induce additional As release (NEUMANN et al. 2009).

However, DOC concentrations in the monitoring wells range below

10 mg L-1, which is considered as common for pristine groundwater

(COZZARELLI & WEISS 2007). Total microbial abundance as

indicated by TPC reflects a moderate burden of the groundwater,

which is fostered by the comparatively high groundwater

temperatures of about 27°C.
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The absence of NO3
- and coliform bacteria (especially E. coli) 

further supports the assumption that groundwater at the study site is 

not affected by sewage or organic fertiliser. 

 Influences of excessive pumping

Potential influences on the groundwater composition can arise from

an adjacent irrigation pump. Since irrigation is restricted to the dry

pre-monsoon season, this issue is discussed in context of the

monitoring results (see chapter 6.3.5). Nevertheless, the pumping

stations of Chakdah described by NATH et al. (2008) are assumed

to have no or minor effects on the local hydrology, since they are

located more than 10 km east of the study site.

 Influences of wet rice cultivation

Cultivation of wet rice is widespread in the BDP (NORRA et al.

2005). The typically clayey paddy field soils constitute an effective

barrier that prevents infiltration of O2 into the aquifer parts below,

supporting development of reducing conditions and by association

As release (MÉTRAL et al. 2008).

6.3.5 INFLUENCE OF THE AVAILABILITY OF ORGANIC 

MATTER ON THE RELEASE OF ARSENIC: THE 

BIOSTIMUALTION EXPERIMENT 

Microbial metabolic pathways can be directly identified and quantified 

only with latest cutting edge methods of molecular biology, which enable to 

determine the share of active microbial species based on the present DNA, 

respectively RNA (FREEMAN & GOLDHABER 2011). Unfortunately, such 

kind of analyses exceeded the analytical possibilities of the project. Hence, 

conclusions regarding active microorganisms need to be indirectly drawn 

from concentration changes of available TEA and released metabolic 

products such as fatty acids.  
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Where possible, interpretations of the results obtained from this 

experiment are compared to similar experiments (e.g., HARVEY et al. 

2002). Available literature is generally limited, in particular regarding field 

experiments (RADLOFF et al. 2008). Additionally, hydrochemical analyses 

done for laboratory incubation experiments are often restricted to As and Fe 

and do not consider other trace elements. 

Effects of pumping during sucrose injection. It is necessary to 

distinguish between effects related to the introduction of sucrose via circular 

pumping and alterations arising from microbially mediated consecutive 

reactions. Consequences of abiotic mixing induced by circular pumping can 

be best observed in the shallowest well A, in which no sucrose was directly 

added and therefore nearly no sucrose occurred. Since initial baseline 

values of groundwater in well A differed significantly from the other wells, 

concentration changes for example in conservative Cl- in samples taken two 

days after sucrose addition by circular pumping reflected mixing influences 

that were visible in all wells. Additionally, As and Co concentrations 

behaved inversely. Both slightly increased in well A and concomitantly 

decreased in wells B and E. 

Phosphate behaved differently from all other parameters. Direct 

increases in wells C and E following circular pumping were several times 

higher than the respective baseline values. This behaviour is attributed to 

entrainment of loosely bound, electro-statically adsorbed PO4
3- during 

circular pumping (DORIOZ et al. 1989, REDDY et al. 1999). A similar effect 

occurred during the groundwater abstraction experiment at the high As site, 

where even higher increases occurred (chapter 7.3.5.1). Despite this, PO4
3- 

concentrations rose in wells A, B and D, too, but with a lag of two days. A 

relation to microbial processes is considered unlikely to this early point of 

time. This is supported by the control well A, where a similar PO4
3- increase 

occurred despite the nearly absence of sucrose. 
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Surprisingly, no sucrose was detectable in samples from well C taken 

two days after sucrose insertion, but four days later. As a result, subsequent 

changes due to microbial decomposition of sucrose appeared to be delayed 

as well, as discussed in the following. 

Availability of sucrose determines the intensity of microbial 

reactions. Changes in the hydrochemical composition of samples have 

shown to directly depend on the availability of dissolved sucrose. Ground-

water of monitoring well E had the highest initial sucrose concentrations and 

showed strongest influences of microbially mediated metabolic reactions. 

Similar changes in groundwater chemistry occurred also in wells B, C and 

D, but intensities were less and partly delayed (well D) due to the lower 

sucrose availability. Due to the low sucrose concentrations, nearly no 

changes occurred in the chemistry of well A. In spite of the low sucrose 

input, microbial growth was induced, as indicated by slightly increasing 

alkalinity and TPC values. Changes in As and Cl- are solely attributed to 

circular pumping. Hence, well A is considered to be suitable to control 

changes induced by sucrose addition. 

The quick response of indigenous microbial populations as indicated by 

an escalating TPC proved the presence of microbes in the aquifer, which 

were successfully stimulated via sucrose addition. Further on, circular 

pumping proved to be a suitable method to introduce dissolved substances 

into an anaerobic system without introducing external O2, which is toxic to 

most strictly anaerobic microbes (KIEFT et al. 2007). Compared to 

preliminary column experiments conducted by D. FREIKOWSKI, in-situ 

reactions have been proved to be even faster and more intensive. Very 

likely, the relatively high groundwater temperature of around 27°C provided 

optimum conditions for microbial growth and activity, much similar to 

laboratory incubation experiments. 
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Microbial reactions following biostimulation. Groundwater samples 

were taken every 48 h for the following two weeks to monitor changes in the 

local hydrochemistry following sucrose introduction. The recorded trends 

reflected an efficient stimulation of cooperative anaerobic microbes in wells 

B, C, D and E. Rapid microbial growth was indicated by an exponential 

rising number of free germs (TPC), which was accompanied by formation 

and subsequent consumption of intermediate catabolic products such as 

fatty acids (predominantly acetate). The strong increase in dissolved Fe(II) 

concentrations reflects that dissimilatory Fe(III) reduction was involved in 

the degradation of sucrose. This assumption is further supported by a 

positive correlation between Fe(II) and acetate (Figure 6.16, A). Acetate, 

which is considered the most important fermentation product related to 

microbial Fe(III) reduction, has occurred two to six days after infusion of 

sucrose (LOVLEY 1993, LOVLEY et al. 2004). The formation of 

considerable amounts of fatty acids was accompanied by declining pH 

values, especially in well E, in which the strongest reactions could be 

observed. With an approximate delay of two days relative to the occurrence 

of acetate, the activity of FeRB was indicated by strongly increasing Fe(II) 

concentrations. Manganese was released parallel to Fe and formed similar 

trends, but with less absolute and relative increases. Hence, microbes using 

Mn(IV) reduction to decompose OM were likely active, too, but with a far 

lesser impact compared to Fe(III) reduction. 

Concentration increases in dissolved Fe(II) appeared as throughout too 

low as compared to the peaking acetate concentrations. For example, 

maximum acetate concentrations in well E were 7.66 mM (12/12/09). If this 

amount was solely ascribed to the degradation by Geobacter 

metallireducens (a typical FeRB), the concentration of Fe(II) in groundwater 

would have increased by 30.6 mM (according to equation 2.1, chapter 

2.2.3). Instead, the maximum increase in dissolved Fe in this well was only 

1.35 mM. The same is true for metabolically released HCO3
-. According to 

equation 2.1, the decomposition of one mol acetate should result in a HCO3
- 

to Fe(II) ratio of 1 : 4. Instead, results for well E (12/12/09) display an 

approximate ratio of 1 : 0.45 (Figure 6.16, B).  
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Hence, acetate was consumed and HCO3
- must have been released by 

other anaerobic microbes in addition to FeRB (e.g., methane producing 

microbes during methanogenesis). 

Figure 6.16: A) Positive correlations between Fe and acetate concentrations 

after sucrose addition (samples 03/12/09 to 18/12/09). B) Both, Fe and 

metabolically released HCO3
- increased, but never reached stoichiometric ratios 

that are characteristic for pure FeRB cultures. Metabolically released HCO3
- was 

calculated as difference of total HCO3
- and carbonate HCO3

- mol concentrations 

(carbonate HCO3
- = Ca + Mg mol concentrations). C) With on-going microbial 

decomposition of sucrose, Ca and Mg as well as total HCO3
- concentrations 

increased, with increases in HCO3
- clearly exceeding carbonate dissolution. 

Another possibility is a continuous removal of dissolved Fe(II) via 

precipitation and adsorption. Considering the strongly reducing conditions, 

when the maximum Fe(II) mobilisation was reached in wells B and E, only 

two Fe-minerals, siderite (FeCO3) and vivianite (Fe3(PO4)2 x 8H2O), could 

have precipitated according to thermodynamic calculations (positive SI, 

Table 6.7). A quick precipitation of siderite has been previously linked to 

Fe(III) reduction in systems with increased alkalinity (KONHAUSER 2007). 

ISLAM et al. (2005) further described removal of As(V) and As(III) from 

solution by sorption to biogenic siderite and vivianite during a three week 
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long incubation experiment conducted with Geobacter sulfurreducens, a 

Fe(III)-reducing bacteria. As discussed in chapter 6.3.4 (f), under reducing 

conditions and in absence of H2S, high concentrations of dissolved Fe(II) 

can further entail the transformation of residual Fe-(oxyhydr)oxides into 

more stable forms, which is primarily magnetite (e.g., O’LOUGHLIN et al. 

2010, YANINA & ROSSO 2008). 

Since microbial communities are highly diversified and groundwater is 

strongly reducing and enriched in reactive solutes like Fe(II) and HCO3
-, it is 

most likely that precipitation of siderite and transformation of residual 

weakly ordered Fe-phases into magnetite occurred more or less 

successively in course of the experiment as a function of the prevailing 

redox potential and pH.  

Consecutive reactions. The microbial degradation of sucrose to fatty 

acids and finally CO2/HCO3
- caused an increase in alkalinity and release of 

protons (e.g., KONHAUSER et al. 2011, LOVLEY & PHILLIPS 1989). 

Hence, alkalinity increased by metabolic reactions as well as by carbonate 

dissolution following acid neutralisation reactions (Figure 6.16, C). 

Importantly, throughout increased alkalinities in the baseline values (before 

sucrose was introduced) clearly point at a high microbial activity during 

previous groundwater evolution as shown in chapter 6.3.4 (d). 

Since most trace metals turned out to be primarily associated with Fe-

(oxyhydr)oxides, increases in Ni, Zn, Co, V and As concentrations are 

primary attributed to Fe(III) reduction. Temporary low pH values have 

further fostered the mobility of adsorbed trace elements like Zn and Ni 

(CAPPUYNS & SWENNEN 2008). Changes in the redox state of adsorbed 

trace metals has likely influenced their mobility, too. For example, reduction 

can increase the mobility of As, Zn, Ni and Co, while decreasing that of U, 

V, and Mo (ADRIANO 2001, WEHRLI & STUMM 1988). In addition, organic 

acids and HCO3
- can form complexes with cations, increasing their mobility 

and preventing adsorption and co-precipitation (BORCH et al. 2010). 

Hence, multiple and partly counteracting mechanism may have occurred 

after sucrose addition, significantly influencing the mobility of certain trace 



6 THE LOW ARSENIC STUDY SITE 

134 

elements. The pool of elements which can be mobilised is generally a 

function of the prevailing mineralogical composition of the aquifer 

sediments, which is homogenous in range of the well screens (chapter 

6.3.1). Hence, differences in the mobility of major and trace elements were 

obviously solely controlled by geo-microbiological factors, which were in 

turn controlled by the availability of e--donors in form of sucrose and its 

decomposition products. 

Return to baseline values. After the complete consumption of sucrose 

and its intermediate catabolic products, microbial growth and also metal 

reduction stopped, as indicated by stagnation of the TPC and the releases 

of Fe and Mn. Calcium and most trace elements gradually returned towards 

the initially recorded baseline values. Strongly increased parameters (e.g., 

TPC, Fe and PO4
3-) stagnated at first, or declined very slow. Declining 

trends of major elements are primarily attributed to precipitation of super-

saturated mineral phases, while trace elements have been rather adsorbed 

by residual minerals and/or by newly formed minerals (ZACHARA et al. 

2001). In addition, mixing with slowly inflowing unaffected groundwater 

appeared as indicated by trends of conservative Cl-. 

Trends in well D appeared delayed relative to the other wells, since 

none of the increasing parameters (except for As and PO4
3-) peaked during 

the two weeks of detailed sampling. The subsequent monitoring revealed 

that the “missing” peaks occurred before 06/01/10, when the next 

monitoring sample was taken.  

Concomitant mobilisation and retention of arsenic. Total arsenic and 

As(III) concentrations in groundwater of the sucrose influenced wells 

increased during the experiment, but relative increases of up to 49 % (well 

E, As) were throughout low compared to the baseline values. The high As 

concentrations are considered to result primarily from microbial Fe(III) 

reduction, since Fe-(oxyhydr)oxides were identified as principal As hosts in 

the investigated sediments and considerable amounts have been dissolved 

after sucrose addition. The close relationship between As and Fe is 
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displayed in Figure 6.17. Despite this, potential influences of Mn(IV)-

reducing microbes on the release of As are considered marginal due to the 

throughout low increase in the Mn concentrations. Since As(III) was found 

to be constantly the dominating As species, activity of As(V)-reducing 

bacteria cannot be excluded, especially since many FeRB carry the 

necessary gene sequences (OREMLAND & STOLZ 2005, ZOBRIST et al. 

2000). Cultivation experiments conducted by CAMPBELL et al. (2006) with 

Shewanella sp. strains demonstrated that As(V) reduction via the de-

toxification pathway required relatively high As(V) concentrations 

(>100 µmol L-1), whereas the arrA-gene necessary for the metabolic 

pathway was expressed at comparatively low concentrations (>100 nM). 

Hence, the activity of DARPs cannot be excluded for this experiment. Figure 

6.18 provides a summary of the processes and mechanisms involved in the 

biostimulation experiment in form of a conceptual model. 

Figure 6.17: Dissolved concentrations of Fe, As and PO4
3- (03/12/09 – 18/12/09) 

display a close relationship between the three parameters in wells B, C and E. 

In addition, the pronounced shift in the PO4
3- concentrations following circular 

pumping is clearly visible in the plots. Respective baseline values (03/12/09) in 

the plots are marked by grey circles. 
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Figure 6.18: Arsenic mobilisation and retention during the experiment. 
a) Simplified scheme illustrating the reductive dissolution of ferrihydrite that

hosts As(V) and As(III).  b) Complexation and mobilisation of Fe(III) by Fe(III)-

shuttles triggers the passive release of adsorbed and incorporated trace 

elements including As(III) and As(V).  c) Sequential dissimilatory de-

composition of sucrose by a consortium of cooperating microbes with different 

metabolic pathways (fermenter, FeRB, DARPs) that causes the release of 

intermediate catabolic products, including protons, fatty acids and reduced 

Fe(II).  d) Potential dissimilatory reduction of As(V) by DARPs.  e) Fast re-

adsorption of previously mobilised As(III) and/or As(V) onto free binding sites 

of residual ferrihydrite.   f) High concentrations of Fe(II) trigger transformations 

of residual ferrihydrite, resulting in the formation of magnetite and adsorption 

of As(III) and/or As(V). Similar behaviour is expected for PO4
3-, which is 

additionally released from sucrose decomposition and competed with As(III) 

and As(V) for binding sites during adsorption. 
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Concentrations of other trace elements (Zn Ni, Co and V) increased 

much more compared to As, especially in the deepest well E, where most 

intensive microbial reactions occurred. These elements are primarily 

associated with sedimentary Fe-(oxyhydr)oxides according to sediment 

analysis. This stronger mobilisation can be explained by additional release 

mechanisms, like pH controlled desorption or changes in the redox state. 

Nevertheless, As mobilisation appears to be at least in part inhibited, since 

the net increase in As was generally decoupled from the initial sucrose 

concentrations and the intensity of Fe(III) reduction. The gap between the 

amount of released As and Fe(II) increased with time, until an As to Fe mol 

ratio of approximately 1:100 was reached four to eight days after sucrose 

insertion in all wells (Figure 6.10). Such a decoupling was predicted by 

HERBEL & FENDORF (2006), PEDERSEN et al. (2006) and WELCH et al. 

(2000) for natural aquifer systems in state of Fe(III) reduction. 

According to the geochemical characteristics of the sediments, this 

decoupling cannot be attributed to a limited availability of sedimentary As. 

Hence, fast re-adsorption of the mobilised As by residual Fe-

(oxyhydr)oxides as well as a subsequent retention by newly formed Fe-

minerals can be assumed. When the redox potential temporarily strongly 

declined and Fe(II) concentrations rose, it can be assumed that first 

magnetite was formed by transformation of residual, less stable iron phases 

through dissolved Fe. Where pH and redox potentials reached the 

necessary low values, siderite and even vivianite could have precipitated. 

For example, when strongest reactions occurred, magnetite formation was 

thermodynamically favoured in range of well D, siderite precipitation in case 

of well B, and vivianite precipitation in well E (see Table 6.7).  

The (re-)adsorption of As also explains the observed decoupling of As 

mobilisation from Fe release. Other possibilities of As retention were 

excluded as far as possible. Immobilisation of As and other trace elements 

due to formation of sulphides was excluded, as there was only marginal 

dissolved SO4
2- available. The possibility of volatile arsine formation by 

anaerobic microbes cannot be ruled out, but it is considered as unlikely, 

since detoxification mechanism require much higher As concentrations to 

be activated (CAMPBELL et al. 2006).  To estimate the possibility of As loss 
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in filtrated samples by arsenic-trapping Fe-colloids that exceeded the filter 

size of 0.45 µm (GUO et al. 2009), the As concentration in filtered and 

unfiltered samples was compared. Observed differences remained <3 %, 

indicating that no loss of As appeared by filtration of groundwater samples. 

Mid-term effects following sucrose injection. The successful 

stimulation of indigenous FeRB by sucrose has caused a pronounced 

temporary change in the prevailing As-PO4
3--Fe-ratios of the groundwater. 

Once available OM was exhausted, precipitation of supersaturated mineral 

phases dominated, and the system returned to a state close to 

hydrochemical equilibrium. Figure 6.19 summarises the described 

processes during and after the biostimulation experiment in form of a 

conceptual model. Here, it can be distinguished between a fast re-

adsorption that accompanied directly the release of As and PO4
3- (Figure 

6.19, B) and a subsequent adsorption related to precipitation and formation 

of new Fe-minerals (Figure 6.19, C and D). A slow lateral inflow of 

unaffected groundwater followed the monsoon rains end of April. At this 

time, declines stopped suddenly and parameters stabilised all of a sudden. 

Although parameters returned to near-baseline concentrations, Fe and 

As remained at rather elevated levels in the sucrose influenced wells until 

the end of the groundwater monitoring in August 2010. Hence, sucrose 

addition presumably caused a net loss of available As binding sites, which 

was not (yet) compensated by precipitation of new Fe-minerals. 
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Figure 6.19: A) Initial situation before the sucrose introduction, where Fe(III) 

reduction has stopped or slowed down after the pool of degradable OM was 

exhausted and available As and PO4
3- binding sites were occupied. B) and C) 

Addition of sucrose fuelled new Fe(III) reduction, causing the release of 

incorporated and adsorbed As and PO4
3-, and thereby their fast competitive re-

adsorption on residual Fe-(oxyhydr)oxides and newly formed Fe-minerals. After 

sucrose was exhausted, As release stopped, whereas As and PO4
3- 

concentrations in groundwater remained high due to a net loss of binding sites. 

D) Since high amounts of Fe(II) were dissolved, transformation and

precipitation of new Fe-phases continued in the following months. Figure 

caption continued on next page. Figure caption continued on next page. 
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Figure 6.19, continued: New As binding sites were generated, allowing further 

removal of dissolved As and PO4
3-. Since PO4

3- adsorption is preferred over As, 

adsorption caused a subsequent shift in the groundwater As to PO4
3- mol ratios 

in favour of As. Not included are DARPs and specific binding-sites that are 

restricted to As(III) or PO4
3-. Included Fe and As concentrations and As to PO4

3- 

mol ratios refer to well E, where strongest reactions occurred. 

6.3.6 INTERPRETATION OF THE MONITORING RESULTS: 

SEASONAL TRENDS AND ONGOING ARSENIC 

RELEASE 

The question arises, what kind of processes control the mobilisation of 

As and which are still active. Evidence for current As release coupled to 

intensive microbial degradation was previously reported from the Chakdah 

area, where long-chained hydrocarbons are still subject to slow, but 

consequent decomposition through FeRB as demonstrated by microbial 

incubation experiments (ROWLAND et al. 2006 & 2009). Since residual Fe-

minerals contain significant amounts of adsorbed and incorporated As, on-

going activity of FeRB and/or DARPs should further induce As mobilisation 

at the low As site by reducing available binding sites. 

Seasonal effect. Although As and PO4
3- concentrations are generally 

controlled by biogeochemical processes, a strong correlation of these 

parameters with the hydrostatic head and conservative elements (e.g., Cl-, 

Na) could be observed in monitoring samples from well A. Hydraulic 

conditions changed periodically from unconfined towards confined, every 

time the rising water table reached the base of the near-surface aquitard (at 

3.20 m bls) during the monsoon season. The close connection between 

changes in As concentrations, conservative tracers and the hydrostatic 

head strongly suggests that described trends in 2009 and 2010 were 

caused by groundwater movement. 
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Similar temporary changes were previously reported from a shallow 

monitoring well in Bangladesh and from wells of the JAM study site (DHAR 

et al. 2008, MC ARTHUR et al. 2010). The hydrogeological situation in this 

area is quite similar to the low As site: local groundwater is hydrochemically 

stratified and covered by a clayey aquitard. Changes in the groundwater 

composition were attributed to vertical and horizontal movement of the local 

water bodies during the monsoon seasons. 

At the low As study site, a direct inflow of surface water (irrigation water, 

rain water or sewage) is unlikely, since the actual aquifer is covered by an 

aquitard (discussed in 6.3.2). Nevertheless, the hydrostatic head 

continuously rose during both monsoon seasons, reflecting recharge 

connected to the monsoon rains. Rainwater is supposed to have infiltrated 

via adjacent sandy lenses within the surface aquitard, as suggested by 

MÉTRAL et al. (2008) for a study site west of Chakdah. 

Hence, the study site is considered to be indirectly influenced by 

infiltrating rain water during the monsoon seasons, which causes 

displacement and mixing of groundwater. Since the well screens are located 

in depths below 12 m bls, it is generally difficult to identify such an influence 

in the monitoring samples. Changes in the groundwater chemistry during 

the monsoon season allude to the conclusion that percolating water is 

increased in Cl- and Na, and depleted in As and PO4
3-. In addition, mixing 

effects following the strong rainfall in 2009 caused a visible shift in the δ18O 

values of about 0.50 ‰ towards the heavier isotope. In contrast, the 

infiltration of sewage or fertiliser is unlikely, since no input of NO3
- was 

detectable during the monsoon season. 

This effect is obviously reversible, since opposite trends developed 

during the dry seasons in 2009 and 2010, when the groundwater table had 

declined. In 2010, the drop in the water table was greater and it was 

accompanied by much more pronounced changes in the hydrochemistry. 

During the dry season, adjacent fields are irrigated by a 24 m deep pumping 

well, located about 75 m from the study site. Excessive groundwater 

abstraction has potentially caused redirection and an increase of the local 

lateral groundwater flow during the dry season. For example, attraction of 

arsenic-enriched groundwater towards pumping wells was previously 
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described in context of a larger scale for Chakdah (CHARLET et al. 2007) 

and a pumping field near Hanoi, Vietnam (NORRMAN et al. 2008). Within 

the following considerations, it is necessary to distinguish between seasonal 

effects and changes in the hydrochemistry that are related to on-going 

processes of groundwater evolution. 

Evolution of groundwater chemistry. During the monitoring, well A 

displayed a continuous change towards a hydrochemical composition 

similar to that in the deeper wells. Concentrations of As, PO4
3- and Fe have 

multiplied relative to the first sampling in January 2009. These net increases 

added up to the previously described seasonal variations in As and PO4
3- 

concentrations, and additionally included Fe (Figure 6.14). Hence, these 

results reveal that Fe(III) reduction and concomitant As and PO4
3- release is 

obviously an active process in the shallow aquifer part in around 12 to 21 m. 

The influence of the biostimulation experiment in this part of the aquifer is 

considered as negligible, since the sucrose input was marginal and the 

increase had already began in January 2009. An influence of microbial 

mediated Mn(IV) reduction is also excluded according to throughout stable 

Mn concentrations in all wells. Similar changes occurred in the adjacent and 

similar deep tube well 125, which was first sampled during the field survey 

in 2007, and two years later again (see Table 6.5, well 125a and 125b). 

During this time period, As, PO4
3- and Fe concentrations have strongly 

increased, while NO3
- disappeared. This trend indicates changes in the local 

redox state, which has gradually shifted from NO3
- to Fe(III) reduction. 

In the other monitoring wells, As and PO4
3- concentrations had remained 

at relatively stable levels between April and the sucrose experiment in 

December 2009, which means that no noteworthy As release or 

immobilisation occurred here. Arsenic to PO4
3- ratios in bulk sediment range 

between 1:438 (depth range of well C) to 1:595 (around well E), whereas in 

groundwater characteristic and relatively stable ratios prevailed since April 

2009. The As to PO4
3- ratio in groundwater of the redox active well A 

(~1:32) was throughout different from the four other wells (between 1:17 

and 1:14). The ratio of well A was equal to the value that adjusted in 

groundwater of well E when As release reached its maximum during the 
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biostimulation experiment (see Figure 6.19, B). These shifts in respective 

ratios suggest an increasing influence of competitive adsorption once As 

and PO4
3- release has slowed down or completely stopped, e.g., after the 

biostimulation experiment (Figure 6.19, C and D). 

Before April 2009, δ18O values, As(III) percentages and PO4
3- 

concentrations strongly varied in most monitoring samples, which is 

interpreted as a consequence of drilling of a new central well A in November 

2008. According to common practice, the well was intensively “flushed” after 

completion, thereby causing pronounced perturbations that lasted several 

weeks before the hydrochemistry returned to the initial baseline values. 

Comparison to literature. Available literature presenting results from 

in-situ experiments related to the mobility of As is very rare. The only two 

available studies that used in-situ addition of organic matter in the BDP 

(Bangladesh) to monitor influences on As mobility were conducted by 

HARVEY et al. 2002 and SAUNDERS et al. 2008. Experimental setups and 

focuses were different and in both cases molasses was used as OM source. 

HARVEY et al. (2002) injected molasses into a 31 m deep well with 8.5 μM 

As, which first caused increasing As concentrations caused by FeRB, 

followed soon by decrease (attributed to sulphide precipitation). 

SAUNDERS et al. (2008) first introduced molasses into a shallow single 

well, followed by MgSO4 after 127 d to stimulate SRB and to immobilise 

dissolved As via sulphide formation. Here, dissolved As concentrations first 

declined before they re-increased, which is attributed to a lack of available 

SO4
2- to compensate As release caused by FeRB.  

In both studies, no trace elements other than As and Fe were taken into 

account. Hence, the comparability with outcomes of the biostimulation 

experiment done at the low As site is strongly limited and the newly 

developed concept of competitive As and PO4
3- adsorption cannot be 

validated. Results only support the assumption that microbiological 

reactions strongly influence the mobility of As.  
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The same applies to microbiological column experiment studies using 

FeRB (e.g., ISLAM et al. 2005, KOCAR et al. 2006, PEDERSEN et al. 2006, 

TUFANO & FENDORF 2008), which focused on the As-Fe system, but did 

not consider other trace elements, especially the behaviour of PO4
3-. 

In 36 wells located in Bangladesh that were monitored by BGS & DPHE 

(2001), generally minor changes in As concentrations appeared over time. 

These changes were neither related to seasonal effects nor on-going Fe(III) 

reduction. Trends in PO4
3- concentrations generally traced those of 

dissolved As, further supporting the assumption that both are controlled by 

similar mechanisms. 

The few other hydrochemical monitoring campaigns that were 

conducted at study sites in West Bengal (MC ARTHUR et al. 2010, NATH et 

al. 2008) and Bangladesh (VAN GEEN et 2007) described temporary 

changes in concentrations of As groundwater. In all studies, temporal 

changes (comprising increases as well as decreases) were attributed to 

mixing of groundwaters with deviant dissolved As concentrations. The same 

applies to the Red River Delta in Vietnam, where pumping could be 

identified as controlling mechanism for increasing As concentrations 

(WINKEL et al. 2011). In no case, increasing As concentrations could be 

linked to an active mobilisation as described for well A at the low As site. 



7. THE HIGH ARSENIC STUDY SITE

7.1 INTRODUCTION 

Investigations at the high As site primarily focused on abiotic influences 

on mobilisation and distribution of As in groundwater of the BDP 

(NEIDHARDT et al. 2012c). The approach was generally similar to the low 

As site. First, the spatiotemporal distribution of As and other solutes was 

recorded in local groundwater based on bi-weekly samples taken from five 

nested multilevel wells. After one year, an in-situ experiment was conducted 

to simulate shallow groundwater abstraction, which is widespread in the 

Nadia district and the entire BDP (Nath et al. 2008). After that, the 

monitoring was continued in order to determine potential mid-term effects 

related to this experiment. The hydrochemical data was completed by a 

thorough characterisation of the aquifer sediments that were obtained 

during well drilling to identify As hosts and draw conclusions regarding the 

aquifer architecture and sedimentation history. 

The monitoring wells are located in the backyard of a farming family in 

the small village Sahispur. The village consists of a few homesteads along 

an unconsolidated road and is surrounded by agricultural fields. A small 

pond with approximate dimensions of 7 x 4 m and a depth of about 2 m is 

located adjacent to the monitoring wells. This offered the opportunity to 

examine potential connections between infiltrating pond water and the 

aquifer below, which was assumed by FAROOQ et al. (2010) and 

NEUMANN et al. (2009).
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7.2 RESULTS AND INTERPRETATION 

7.2.1 SEDIMENT CHARACTERISATION 

Stratigraphy and geochemistry. The five well screenings are located 

in different depths of a single aquifer that is composed of fine to medium 

grained sand including varying proportions of silt. Similar to the low As site, 

layers of silty clay and clayey silt with a total thickness of 3.35 m (entitled as 

facies F4) confine the aquifer towards the surface (Figure 7.1). Buried 

clinker fragments occur down to a depth of 2.00 m bls, whereas in 

2.70 m bls conches of molluscs appear. Between 2.05 to 4.65 m bls, Ca 

and TIC contents are lowest. In addition, reddish and black aggregations 

and mottles of Mn- and Fe-(oxyhydr)oxides occur here that are 

accompanied by highest contents of Fe, Mn, Ni, Cu, Zn, and As (Figure 

7.2). Between 2.70 and 5.95 m bls, the sediment colour changes from 

brown to olive grey and below 5.95 m bls to reduced dark grey. Here, the 

intensity of visible reactions with HCl decreases from strong to low. 

Between 3.35 and about 17.0 m bls, the silt content gradually decreases 

with depth and with it TOC, major and trace elements with the exception of 

Zr and Ce (facies F3b, Figure 7.2). A sharp gradient of the grain size 

distribution is located in about 17.0 m bls, where medium sand 

occurs. Between 17.0 to 32.0 m bls, most major and trace elements 

reach lowest contents and show relatively invariant depth distributions 

(facies F3a). In the sediments located between 32.0 to 39.2 m bls 

(facies F2), several thin layers of poorly sorted sediments are 

interbedded (ranging from fine gravel to clay), which are accompanied 

by sporadic changes in the sediment colour (from dark grey to 

brownish) and partly varying contents of TOC and most major and trace 

elements. The fine gravel is composed of poorly to medium rounded 

quartz pebbles and carbonate nodules.  
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Figure 7.1: Grain size composition in sediment samples and position of the 

litho-facies boundaries. 

In F2, TOC, TS and most trace elements including Fe and As have 

pronounced peaks similar to the surface near clay layer (Figure 7.2). This 

part is further underlain by a clay layer beginning in 39.2 m bls (facies F1), 

which is why drilling was stopped before the intended final depth of 45.0 m 

bls was reached.  

Sandy sediments located between 3.35 and 39.2 m bls (facies F2, F3a 

and F3b) form one shallow aquifer, which is confined by clayey aquitard 

layers towards the bottom and the surface. Hydraulic conductivities (K) were 

estimated with the Beyer formula (BEYER 1964) based on the grain size 

distribution. Respective K values range from 2.6 x 10-8 m sec-1 (poorly 

permeable) in case of the clayey layers, over 4.4 x 10-5 m sec-1 (permeable) 

for the silty fine sands, and up to 3.6 x 10-4 m sec-1 (well permeable) for the 

medium sand rich strata. Complete results are summarised in APPENDIX 

III, Table A 3.1 and Figure A 3.4. 
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Figure 7.2: Depth profiles of the fine grain fraction (<0.063 mm), major and trace 

elements, TIC, TOC and TS contents. The profile comprises 61 samples in 

intervals of 0.65 m. 
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Mineralogy. The constituent minerals within the aquifer are quartz, 

followed in frequency by feldspar (according to XRD spectra presumably 

anorthite, see APPENDIX III, Figure A 3.1), carbonate (calcite and 

dolomite), mica (muscovite) and chlorite (clinochlore). In clayey samples 

from F2 and F4, smectite and potentially traces of kaolinite and illite occur, 

which are characteristic for sediments of the entire Bay of Bengal (DATTA & 

SUBRAMANIAN 1997) (APPENDIX III, Figure A 3.2). High amounts of 

dissolved Fe in the Fe-mineral selective steps of the SEP (steps III, IV and 

V) further indicate the presence of weakly ordered and well crystalline Fe-

(oxyhydr)oxides, respectively (see APPENDIX III, Table A 3.2). 

Figure 7.3: SEP results of samples representing different depths and facies. 

Sedimentary As primarily occurs in the strongly adsorbed fraction (step II) and 

the fractions that comprise various forms of Fe-(oxyhydr)oxides (steps III, IV 

and V). Additionally, results for total As are included to approve the recovery 

rate for As. 
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    Arsenic. In contrast to the aquitard layers of F4, where As contents of up 

to 122 mg kg-1 occur, bulk As contents of the aquifer sediments range from 

2.3 to 8.0 mg kg-1 (average: 3.8 ± 1.2 mg kg-1; n: 56). Here, As contents 

correlate positively with Fe, Cu and Zn (Table 7.1). A cluster analysis in 

form of a dendrogram provides a compact summary of the statistical 

dependencies of different variables (Figure 7.4). The dendrogram displays 

close statistical distances of As to Fe, Mn and affiliated trace elements (Cu, 

Ni and Zn), as well as to TOC and the fine grain fraction (silt and clay). 

Results of the SEP (Figure 7.3) demonstrate that the bigger part (average: 

42.9 %) of As is PO4
3--extractable (fraction II, interpreted as strongly 

adsorbed fraction), but this content is most likely overestimated at the 

expense of fraction III (see chapter 4.2).  

Remaining detectable As is associated with (a) acid volatile sulphides, 

carbonates, Mn-oxides and very amorphous Fe-(oxyhydr)oxides (fraction 

IIII, average: 7.26 %), (b) amorphous Fe-(oxyhydr)oxides (fraction IV, 

average: 12.9 %); (c) crystalline Fe-(oxyhydr)oxides (fraction V, average: 

14.5 %) and (d) As-sulphides, OM and refractory minerals (fraction VII, 

average: 22.1 %). In all samples, Mn-oxides play a minor role compared to 

Fe-(oxyhydr)oxides, as indicated by the absolute contents in the respective 

fraction (APPENDIX III, Table A 3.2) In case of the clayey layer, the sample 

from 3.30 m bls has a similar distribution pattern, although the absolute As 

content is pronounced higher. In the sample from 2.65 m bls, As is 

increased in the Fe-(oxyhydr)oxide fractions, but has a significant lack of As 

in the strongly adsorbed phase. The total As content of the seven fractions 

in this sample is pronounced lower than the bulk As content detected by 

EDX. This value is therefore considered as an outlier that originates from 

the inhomogeneous nature of the sample material. Only two samples hold 

some weakly bound As, while no As is detectable in fraction VI that 

comprises silicates. 
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Table 7.1: Summary of a selection of element contents in the aquifer sediments 

(ranging from 3.35 to 39.1 m bls, n: 56). Included are respective median, lower 

and upper quartiles (25 % and 75 % Q.), minimum and maximum contents as 

well as average contents (arithmetic mean) and As correlation coefficients.  

Value 
range 

Silt & 
clay 

K2O CaO TIC TOC Fe2O3 MnO TS Ni Cu Zn As 

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Minimum 0.32 1.30 1.37 0.15 0.02 1.36 0.02 <26 21.6 8.58 19.3 2.3 

25 % Q. 3.81 1.79 2.09 0.28 0.03 2.07 0.03 <26 23.4 9.62 29.3 3.0 

Median 7.62 2.06 2.97 0.43 0.04 2.44 0.04 <26 28.3 11.0 34.0 3.5 

75 % Q. 17.5 2.50 3.81 0.58 0.07 3.26 0.05 44.6 39.4 14.0 44.9 4.3 

Maximum 57.0 3.62 6.16 1.00 0.53 5.83 0.08 256 36.1 32.3 72.2 8.0 

Average 11.5 2.16 2.99 0.45 0.08 2.70 0.04 30.6 26.6 11.6 37.3 3.8 

rAs- +0.52 +0.52 +0.73 +0.76 +0.72 +0.83 +0.71 +0.79 +0.77 +0.80 +0.85 - 

Figure 7.4: Dendrogram for 21 variables (Ward’s method, Euclidean distances; 

n: 61) expressing statistical distances between parameters in aquifer and 

aquitard sediments. 
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Sedimentary organic matter. In samples from the organic-rich surface 

near clayey and silty layers of facies F4, δ13C and δ15N values, TOC and TN 

contents are higher than in F3b below (Figure 7.5). In the sandy aquifer 

sediments of F3b and F3a, TOC and TN concentrations and isotopic values 

remain comparatively stable. Only two few samples were analysed from 

F3a due to the throughout low TOC contents. Within facies F2, the lithology 

changes and TOC and TN contents increase again, whereas δ13C and δ15N 

values further decrease. Since no peat was observed during drilling and 

sampling, OM exclusively appears in dispersed form. 

Figure 7.5: Detailed characterisation of OM (n: 27). 

Average C/N ratios of samples from facies F4, F3b and F3a are close 

around 8, which points at freshwater and marine algae as well as C4 plants 

as potential origins (Figure 7.6 and APPENDIX II, Table A 2.3). Youngest 

sediments from F4 carry mixed δ13C values, reflecting an upward shift to 

more C4 influenced sources. Organic matter in F3b and F3a is obviously 

derived from marine POM. In facies F2, OM consists of more freshwater 

influenced POM, although the C/N ratio was altered in four samples. In 

addition, δ15N values in F4 sediments indicate a potentially increasing 

influence of terrestric C4 plants. δ15N values from F3b and F3a (average: 

3.82 ± 0.84 ‰; n: 16) are in a range that is characteristic for marine POM 
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originating from sediments of the Bay of Bengal (+3.43 to +4.29 ‰ 

according to GAYE-HAAKE et al. 2005). Four out of six samples from F2 

appear to be depleted in δ15N (values ranging from +1.16 to +4.20 ‰, 

average: 2.29 ‰; n: 6), which is likely the result of diagenetic effects. The 

remaining two samples that are considered unaltered are corresponding to 

F3b and F3a. 

In general, δ13C and C/N values in OM deposited in estuarine sediments 

are considered to remain stable after sedimentation (LAMB et al. 2006). 

Nevertheless, GAYE-HAAKE et al. (2005) reported that OM is sensitive to 

selective degradation during early diagenesis, which may cause a loss of 

labile compounds (e.g., sugars, amino acids) and an enrichment of stable 

hydrocarbons (e.g., lignin, cellulose) in vascular vegetation. This causes 

slight shifts in δ13C, but changes are usually insufficient to prevent 

determination of the organic source (LAMB et al. 2006). In contrast, small 

changes in TOC or N contents have the potential to strongly alter the C/N 

ratios, while fractionation processes may also influence δ15N values (GAYE-

HAAKE et al. 2005, MARCHAND et al. 2005). After early diagenetic 

modifications, C/N- and δ13C values of OM are retained for million-year time 

periods (MEYERS 1994, SARKA et al. 2009). 

Total organic carbon correlates well with TN (r: +0.75) as well as δ13C 

with δ15N values (r: +0.68), indicating that TN is primary organically derived 

(total N ≈ organic N) and that the original source signatures remained 

preserved. Only four samples from F2 constitute an exception (Figure 7.5 

and APPENDIX III, Figure A 3.3). These particular samples are depleted in 

N relative to TOC and in δ15N, indicating a fractioning loss of N. Contents of 

TOC and TN in the sand layers are generally similar to average values in 

present floodplains of Bangladesh (TOC: 0.05-0.63 wt.%, TN: 0.01-0.06 

wt.%; C/N: 5-11.4; DATTA et al. 1999), which indicates that only minor 

diagenetic alteration occurred in the remaining 23 samples. Results further 

coincide with the results from the JAM study site, where δ13C values 

decrease between 1.5 to 45.7 m bls from -22 ‰ to -28.5 ‰, and TOC from 

7.2 to 0.5 wt.% (MC ARTHUR et al. 2004, SARKA et al. 2009). 
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Figure 7.6: Comparison of measured and literature values in form of a δ13C - 

C/N plot and a δ15N – depth plot to distinguish different sources of OM (n: 27). 

*δ15N range for mangrove (C3 type) tissues (MUZUKA & SHUNULA 2006) 

**Sedimentary POM from Bay of Bengal (GAYE-HAAKE et al. 2005) 

***C4 plant pollen (DESCOLAS-GROS & SCHÖLZEL 2007)
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7.2.2 GROUNDWATER CHARACTERISATION 

7.2.2.1 Groundwater properties 

Hydrochemical baseline. Table 7.2 provides an overview of physico-

chemical parameters of groundwater sampled in December in 2009, two 

months after the monsoon season and right before the abstraction 

experiment was conducted. Except for one sample, ion balances remain 

below 7 %, which is an acceptable range. The results are considered as 

representative baseline values for the five monitoring wells. In order to 

identify outliers and confirm anomalies, results were compared to the 

regularly monitoring sampling.  

In December 2009, the hydrostatic head inside the wells was met at 

2.13 m bls. Water temperatures ranged from 26.0 to 27.2 °C and pH values 

were circum-neutral. The throughout anoxic groundwater belongs to the Ca-

Mg-HCO3-type and is characterised by a high alkalinity (Figure 7.7). Within 

groundwater from all five wells, noticeable concentrations of Fe, Mn, PO4
3- 

and As occur, while NO3
- concentrations are close to or below the limit of 

quantification (Table 7.2). Computed saturation indices (SI) indicate that 

groundwater is supersaturated regarding magnetite, hematite, siderite and 

slightly supersaturated regarding calcite and ordered dolomite, while 

disordered dolomite is partly under saturated (Table 7.3). In addition, 

magnetite and hematite are strongly supersaturated. Calculated aqueous to 

solid phase mol ratios revealed that As is much more enriched in ground-

water than any other element (Table 7.2 and APPENDIX III, Table A 3.4). 



7 THE HIGH ARSENIC STUDY SITE 

156 

Table 7.2: Selection of hydrochemical baseline values that are used in the 

following to interpret induced changes in the groundwater composition 

(complete results presented in APPENDIX III, Table A 3.3). Samples were taken 

immediately before the pumping experiment was conducted (on 03/12/09). 

Thermodynamically dominating species determined with PHREEQC.  

Well pH EC T 
TA 

HCO3
-

Na 

Na+ 

K 

K+ 

Ca 

Ca2+ 

Mg 

Mg2+ 
Cl - SiO2 δ2H δ18O 

(m bls) (µS/cm) (°C) (mg/L)  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (‰ VSMOW) 

A (12-21) 6.9 973 26.0 586 29.4 9.73 134 28.4 49.7 12.1 -23.3 -2.95 

B (22-25) 6.9 1040 26.6 610 27.8 9.70 140 27.7 66.1 11.2 -23.6 -3.07 

C (26-29) 7.2 718 27.2 482 18.3 2.73 93.9 23.3 18.6 12.2 -28.3 -3.92 

D (30-33) 7.1 781 26.9 500 19.9 2.72 109 24.7 19.5 13.6 -30.9 -4.17 

E (34-37) 7.0 745 26.9 513 14.1 2.88 92 22.7 20.3 13.1 -27.7 -3.81 

Aqueous/ 
solid 

phase 
ratios* 

 nd 

1.60 
to 

2.96 

x 10-3

1.09 
to 

7.01 

x10-4 

0.23  
to  

1.42 

x 10-2 

1.34     
to    

7.59 

x 10-3 

nd nd 

Well DOC NO3
- NH4

+ Mn 

Mn2+ 

Fe 

Fe2+ 
SO4

2- PO4
3- 

H2PO4
-

Ba 

Ba2+ 

As**
 

H3AsO3 

Mo 

MoO4
2-

U 

UO2 

(HPO4)2
2-

Ion 
balance 

(m  bls) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (µg/L) (µg/L) (%) 

A (12-21) 3.02 <0.88 0.65 0.92 7.77 7.78 2.53 0.33 98.0 1.21 0.08 -1.63 

B (22-25) 4.52 <0.88 1.06 0.74 8.96 10.7 2.90 0.43 100 0.86 0.08 -4.76 

C (26-29) 2.55 <0.88 0.99 0.85 1.09 <0.85 2.45 0.17 296 1.97 0.58 -6.32 

D (30-33) 1.53 0.97 1.18 0.37 4.76 <0.85 2.98 0.26 262 1.23 0.16 -1.59 

E (34-37) 1.32 <0.88 3.41 0.47 4.80 <0.85 2.76 0.23 158 1.57 0.16 -15.3 

Aqueous/ 
solid 

phase 
ratios* 

0.03  
to  

2.17   
x 10-2 

nd nd 

0.69 
to 

2.90  
x 10-3

0.73 
to 

8.67  
x 10-4

nd 

1.33  
to  

4.24    
x 10-3 

0.41 
to 

1.42   
x 10-3

0.16    
to   

1.21    
x 10-1 

<dl 

0.15     
to    

1.81     
x 10-4 

*Solid phase contents determined by acid microwave digestion 

**Average As(III) percentage: 94.7 % 

nd: not determined 
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Table 7.3: SI for potentially present mineral phases, calculated from data of 

samples taken on 03/12/09 (assumptions: O2 of 0.24 mg/L -1, EH of -59 mV). 

Well (m bls) Quartz Anorthite Calcite 
Dolomite 

ord. / disord.
Chlorite Phlogopite

A (12-21) 0.27 -3.92 0.27 0.23 -0.31 -8.03 -10.2 

B (22-25) 0.23 -3.07 0.30 0.27 -0.28 -7.27 -9.92 

C (26-29) 0.26 -4.41 0.42 0.61 0.07 -5.80 -9.06 

D (30-33) 0.31 -3.69 0.35 0.44 -0.11 -6.10 -9.37 

E (34-37) 0.29 -8.32 0.20 0.15 -0.40 -11.7 -12.4 

Well (m bls)
Fe(OH)3

amorph.
Magnetite Hematite Siderite Anhydrite Halite 

A (12-21) -2.44 10.8 8.99 1.12 -2.78 -7.44 

B (22-25) -2.40 11.0 9.10 1.18 -2.63 -7.34 

C (26-29) -2.24 11.2 9.47 0.57 -4.23 -8.06 

D (30-33) -2.00 12.0 9.93 1.08 -4.05 -8.01 

E (34-37) -2.30 11.2 9.34 1.00 -4.33 -8.14 

Figure 7.7: Piper diagram displaying major solutes in groundwater of the five 

monitoring wells (date: 03/12/09). 
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Hydrochemical stratification within the aquifer. The distribution of 

major solutes as well as stable isotopic values of groundwater samples 

taken in December 2009 reflect the presence of two distinctive, hydro-

chemical layers within the groundwater body. These layers are divided by a 

presumed boundary located in between the well screen positions of the two 

monitoring wells B and C in about 25 to 26 m bls. Corresponding to higher 

concentrations of major solutes (Ca, Mg, Na, K, HCO3
-, SO4

2-, and Cl-), the 

EC is in wells A and B pronounced higher than in the deeper monitoring 

wells. In addition, groundwater from this upper layer (entitled as layer I) 

includes higher δ18O and δ2H values than water from the layer below 

(entitled as layer II) (Figure 7.8). Stable isotopic values in all water samples 

plot below the LMWL, with a regression line that intersects the LMWL 

closely to the annual volume-weighted rainfall average. In addition, depth 

distributions of trace elements such as Fe, Mn, Ba, Sr, U, PO4
3-, and As 

superimpose these two layers (Table 7.2). 

Figure 7.8: Isotopic compositions of O and H in samples taken on 03/12/09 in 

comparison to the global meteoric water line (GMWL), the local meteoric water 

line (LMWL), and the volume-weighted average composition of rainfall 2004/05 

(SENGUPTA et al. 2008) for an area situated about 40 km south of the study site 

(JAM area). 
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Maximum As concentrations occur in groundwater from well C, where 

the groundwater chemistry significantly differs from the other four wells. 

Here, lowest concentrations of dissolved Fe meet highest concentrations of 

Mo, U and As. From this depth on, SO4
2- concentrations were close to the 

dl. Groundwater from the two wells D and E beneath is characterised by 

similar compositions regarding the major solutes. 

Comparison with adjacent wells, pond and rain water. Five tube 

wells with comparable depths (between 20 and 55 m) were sampled within 

500 m around the high As site (Table 7.4). Samples from four of these wells 

(including well 132, which was the reason to choose this area as high As 

site) are characterised by highly similar hydrochemical compositions. In 

contrast to the shallow monitoring wells A and B, none of the tube wells was 

found to deliver water from the upper layer I, where the salinity is increased. 

Hence, these two monitoring wells have to be considered with caution. 

To assess the possibility of surface recharge from the small pond 

located next to the monitoring wells, surface water was sampled, too (see 

Table 7.4). Stable isotopic values of the pond water are included in Figure 

7.8. Surprisingly, pond water contains 36.3 µg L-1 As, with an As(III) 

percentage of 27.4 %. 
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Table A 7.4: Comparison of relevant parameters in the monitoring wells (on 

03/12/09) with nearby wells that were sampled in 2007. Wells 132 formed the 

base of decision to choose the respective area as study site. 

Well Year Na K Ca Mg Cl - NO3
- SO4

2- PO4
3- Fe Mn As As/PO4

3- Na/Cl-

(m bls)  all (mg/L) (µg/L) (mol ratio) 

A (12-21) 2009 29.4 9.73 134 28.4 49.7 <0.88 7.78 2.53 7.77 0.92 98.0 0.05 0.91 

B (22-25) 2009 27.8 9.70 140 27.7 66.1 <0.88 10.7 2.90 8.96 0.74 100 0.04 0.65 

C (26-29) 2009 18.3 2.73 93.9 23.3 18.6 <0.88 <0.85 2.45 1.09 0.85 296 0.15 1.52 

D (30-33) 2009 19.9 2.72 109 24.7 19.5 0.97 <0.85 2.98 4.76 0.37 262 0.11 1.57 

E (34-37) 2009 14.1 2.88 92 22.7 20.3 <0.88 <0.85 2.76 4.80 0.47 158 0.07 1.08 

Pond 2009 12.4 15.8 30.7 8.52 25.0 <0.88 1.89 1.11 0.22 0.20 36.3 0.04 0.77 

132 (24) 2007 26.8 3.33 91.7 22.5 18.5 1.40 1.44 4.23 3.30 0.49 285 0.09 2.24 

131 (24) 2007 18.5 1.78 77.0 17.5 10.9 <0.88 <0.85 3.74 5.46 0.51 84.9 0.03 2.62 

179 (55) 2007 17.0 2.32 66.9 19.0 6.67 <0.88 3.99 0.70 0.03 0.16 120 0.22 3.92 

180 (24) 2007 25.8 1.63 74.3 19.8 7.04 1.60 <0.85 4.90 3.88 0.11 116 0.03 5.66 

181 (20) 2007 14.0 3.03 71.6 17.3 4.23 1.34 <0.85 4.77 3.65 0.21 124 0.03 5.11 

Rain water 2009 1.97 1.26 1.85 0.18 7.35 <0.88 2.62 0.03 0.01 0.06 0.16 0.01 0.41 

7.2.2.2 The groundwater abstraction experiment 

Hydrological characterisation of the aquifer. During each of the four 

pumping cycles, a rapid decline of the hydrostatic head was recorded in 

adjacent observation wells B to E, which was documented in detail for the 

first pumping cycle (Table 7.5). After five hours of continuously groundwater 

abstraction, declines in the respective hydrostatic heads had stopped, 

respectively increased by several centimetres. This indicated that the 

aquifer was in a confined condition.  

After 48 h of continuous pumping (end of the third pumping cycle), 

declines in hydrostatic heads were considered as nearly constant and 

resulted in a small depression cone (illustrated in Figure 7.9). Hydrostatic 
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heads remained throughout above the base of the surface aquitard located 

in about 3.35 m bls (lowest observed level: 2.92 m below top edge of tube, 

which is equal to 2.63 m bls). Hence, the virtue water table remained 

constantly uninfluenced. Based on the draw-downs presented in Figure 7.9, 

a K value of ~1.3 x 10-4 m sec-1 was estimated using the Dupuit-Thieme 

equation for confined aquifers (ENTENMANN 2006) (see APPENDIX III, 

Figure A 3.4). Some necessary assumptions for the use of this equation 

were not exactly met (the aquifer is inhomogeneous, screening lengths do 

not penetrate the complete aquifer and observation wells are too close), but 

this estimated K value is still in good agreement with the grain size based K 

estimations (included in Figure 7.9) and results of a pumping test conducted 

by NEUMANN et al. (2009) in Bangladesh, where the horizontal conductivity 

Kh was estimated as 3.3 x 10-4 m sec-1 and the vertical conductivity Kv as 

1.3 x 10-5 m sec-1 (for a depth of 15 to 120 m). 
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Figure 7.9: Schematic sketch of the abstraction experiment setup including 

subsequent declines of the hydraulic heads of the observation wells during the 

first pumping cycle (t0: 1015, 05/12/09).  
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Table 7.5, a: Hydrostatic heads during the abstraction experiment, recorded 

hourly until 1715, and again after 29 h (1515, 06/12/09). Decreases are given in 

centimetres relative to t0 before the pumping was started. No measurements 

could be done in the central well A while pumping was in progress.             

Table 7.5, b: Hydrostatic heads after 48 h of continuously pumping at the end of 

the third pumping cycle (13/12/09). Hydrostatic head in well A was measured 

immediately after pumping was stopped. 

a) b) 

Time of 
pumping 

(h) 

Well (well screen m bls) 

B  
(22-
25) 

C 
(26-
29) 

D 
(30-
33) 

E 
(34-
37) 

0 0 0 0 0 

1 16 9 7 7

2 24 10 7 9

3 25 16 13 13 

4 23 15 15 14 

5 25 17 17 17 

6 20 13 10 10 

7 18 10 7 8 

29 20 12 10 11 

Well 

(m bls)   

A 

(12-
21) 

B 

(22-
25) 

C 

(26-
29) 

D 

(30-
33) 

E 

(34-
37) 

Distance to 
well A (m) 

- 1.96 4.70 4.85 2.00

Baseline static 
head  

(03/12/09) 

(m below top 
edge tube)   

2.42 2.41 2.42 2.43 2.44

Static head 
after 48 h 
pumping  

(13/12/09) 

(m below top 
edge tube)   

2.92 2.69 2.63 2.63 2.65

Net drawdown 
(m) 

0.50 0.28 0.21 0.20 0.29

Changes in groundwater chemistry. Accompanying sampling during 

the abstraction experiment showed remarkable changes in the hydro-

chemistry of the groundwater, especially in case of the upper two wells A 

and B (Figure 7.10). Parameters that had initially differed developed partly 

pronounced decreases (e.g., Ca, Cl-, δ18O), respectively increases (As, Si). 

Importantly, most non-conservative elements like Ca and As behaved in this 

case similar to typically conservative tracers like Cl- and δ18O (SENGUPTA 

& SARKA 2006). 
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Figure 7.10, part I: Changes in the hydrochemistry of the monitoring wells 

during the abstraction experiment. Stated are thermodynamically prevailing 

species of the dissolved major and trace elements. All parameters show that 

wells A and B are initially located in a different hydrochemical layer compared 

to wells C, D and E. During pumping, the groundwater composition of the upper 

two wells adjusts toward the hydrochemistry of the deeper wells D and E. In 

brackets. thermodynamically prevailing species of dissolved major and trace 

elements are stated. Figure continued on next page. 
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Figure 7.10, part II: Included are trace elements that are relevant for As mobility. 

In brackets: thermodynamically prevailing species of dissolved major and trace 

elements are stated. 
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Assuming a conservative-like behaviour for K, respective concentration 

changes can be used to estimate the increasing ratio of water originating 

from layer II in range of layer I (Figure 7.11). The baseline concentrations of 

K in wells A and B (layer I) were 9.73 and 9.70 mg L-1, while initial 

concentrations in the other three wells (layer II) were 2.73 (well C), 2.72 

(well D) and 2.88 mg L-1 (well E), respectively. Following a continuously 

increase, more than 90 % of the groundwater met in well B originated from 

layer II at the end of the experiment, and approximately 75 % in well A 

(Figure 7.11). 

Figure 7.11: Increasing shares of groundwater originating from layer II in wells 

A and B. Calculations based on relative changes in concentrations of K. 

For further differentiations, compounds with initially deviant distribution 

patterns are useful. For example, Rb concentrations rapidly increased in 

well A and reflected thereby an influence of groundwater from the range of 

well B. In addition, major ions like Ca and Na reflected a subsequent 

increasing share of water from range of well D and E (Figure 7.10 and 

APPENDIX III, Table A 3.3). Increasing As concentrations demonstrated a 

strong potential influence of water from range of well C, where the 

maximum concentrations were initially located, assuming a conservative-

like behaviour of As for this time. After the last pumping cycle, As 



7.2 RESULTS AND INTERPRETATION 

167 

concentrations in wells A, B and C exceeded the baseline values. In 

addition, As(III) was constantly the dominating As species (average 

percentage: 96.2 ± 3.9 %, n: 29). 

The sample that was taken immediately after 48 h of continuously 

pumping (13/12/09) from well A further revealed that PO4
3- and Mo 

concentrations had much more increased than it was visible after the 

interception of 24 h (14/12/09). Despite this, only marginal changes 

occurred in well C, especially regarding trace elements with comparatively 

low (e.g., Fe), or high concentrations (Mn, Li, and U). The only parameters 

that reacted to pumping were Li and PO4
3-, and to a lesser extent As. The 

sample that was taken immediately after 48 h of pumping displayed in 

addition a significant shift in the δ18O and δ2H values. 

In the deepest wells D and E, most major and trace element 

concentrations remained nearly unaffected, except for PO4
3-. Phosphate 

concentrations had simultaneously increased in all five wells immediately 

after the first pumping interval was completed. At the end of the experiment 

(after four pumping and rest cycles), PO4
3- concentrations had increased by 

up to 192 % in comparison to the baseline values. The same applied to 

DOC concentrations, which increased by up to 359 % (Table 7.6).  

Pumping was further accompanied by a change in the odour of the 

extracted groundwater, which changed from odourless towards sulphidic, 

with an intensity ranging from weak (wells C and D), over medium (A and E) 

to strong (B). This experiment impressively demonstrated how groundwater 

extraction can affect the groundwater composition including the As 

concentrations in local shallow tube wells. 
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Table 7.6: Parameters characterised by net increases after the fourth and last 

pumping cycle.  

Well 

(m bls) 

Date PO4
3- 

(µM) 

DOC 

(mM) 

As 

(µM) 

Odour 

A 

(12-21) 

03/12/09 26.7 0.25 1.31 without 

17/12/09 77.9 0.69 4.58 medium (H2S) 

net change: +192 % +175 % +250 % 

B 

(22-25) 

03/12/09 30.6 0.38 1.34 without 

17/12/09 71.3 0.56 4.66 strong (H2S) 

net change (%) +133 % +47.7 % +249 % 

C 

(26-29) 

03/12/09 25.8 0.21 3.95 without 

17/12/09 66.1 0.47 4.46 weak (H2S) 

net change (%) +156 % +120 % +13.0 % 

D 

(30-33) 

03/12/09 31.4 0.13 3.49 without 

17/12/09 60.6 0.51 3.29 weak (H2S) 

net change (%) +93.0 % +303 % -5.98 % 

E 

(34-37) 

03/12/09 29.0 0.11 2.11 without 

17/12/09 57.3 0.50 2.18 medium (H2S) 

net change (%) +97.3 % +359 % +3.29 % 

7.2.2.3 Monitoring results 

In the following, results from the hydrochemical monitoring (December 

2008 to August 2010) are presented in context of temporary varying As 

concentrations and mid-term consequences related to the abstraction 

experiment (Figure 7.12). Results of the first year of monitoring were 

described by BISWAS et al. (2011). 

Time resolved variations in the hydrochemistry. In dependence of 

the prevailing climatic conditions, the hydrostatic head recorded inside 

monitoring well B showed pronounced annual oscillations that ranged from 

0.74 m bls in December 2009 (post-monsoon season) to 5.23 m bls in April 

2010 (end of the dry pre-monsoon season) (Figure 7.12). As a result, 
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conditions in the aquifer seasonally fluctuated between confined and 

unconfined. This was accompanied by changes in the hydrochemical 

composition of groundwater that occurred in monitoring samples of wells A, 

B and C. In the following, results from the dry pre-monsoon and rainy 

monsoon seasons are presented separately. 

Pre-monsoon seasons. The upper, saline layer I (indicated by a higher 

salinity and δ18O values) as well as the vertical stratification of redox 

sensitive elements (Fe, As and SO4
2-) were stable throughout the 

monitoring, except for both pre-monsoons seasons. To this time, highly 

similar trends arose in the hydrochemistry of the monitoring samples in 

2009 as well as after the abstraction experiment in 2010. Each time, 

compositions in wells A and B subsequently changed towards the typically 

saline, evaporation influenced water with lower As concentrations that is 

characteristic for layer I. During the dry seasons, hydraulic heads 

continuously declined until reaching low stands end of April.  

Hydraulic conditions changed from confined to unconfined between 

January and February, as soon as the hydrostatic head and therefore the 

water table fell below the aquitard layers reaching down to 3.35 m bls. 

Despite the pronounced changes caused by the abstraction experiment, 

groundwater in well A rapidly returned to the initial baseline after two weeks 

in January 2010, as indicated by declining As concentrations, increasing 

δ18O values and rising K, Cl-, SO4
2- and Fe concentrations (Figure 7.12). 

With a lag of 4-6 weeks, similar trends formed in well B between March and 

May. Here, trends in major ions were negatively correlated to the 

development of the hydrostatic head, too. The shape of these trends was 

further mirror-inverted compared to those that had developed during the 

pumping experiment. When the baseline values were met end of April 2010, 

the unconfined groundwater table was met in 5.25 m bls. In 2009, the same 

pronounced trends appeared, especially in well B. 
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Figure 7.12, part I: Summary of hydrochemical parameters that display 

characteristic vertical differences concerning δ18O, Cl-, K, SO4
2- and NO3

- 

concentrations. In addition, temporal trends occurred in wells A, B and C in 

dependence of seasonal variations of the hydrostatic head. Monthly average 

precipitation for the Nadia district provided by the India Meteorological Service. 

Figure continued on next page. 

*lq for SO4
2-: 0.085 mM

**lq NO3
-: 0.014 mM 
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Figure 7.12, part II: Summary of hydrochemical parameters relevant for As 

mobility that display characteristic vertical differences concerning As, As(III), 

PO4
3-, and Fe. In addition, temporal trends in wells A, B and C manifested in 

dependence of seasonal variations of the hydrostatic head. 

Monsoon seasons. With onset of the monsoon season in 2009, 

temporarily slight declines in δ18O values, K, Cl- and SO4
2- concentrations 

occurred in wells A and B, before values returned to the initial situation in 

May. Despite this, pronounced trends occurred in the upper wells soon after 

the monsoon rains began in 2010 (Figure 7.12). Most obvious changes 

manifested again in water from well B, where As concentrations rose while 

δ18O and major element concentrations decreased at the same time. These 

trends formed between June and end of July alongside the increasing 

hydrostatic head, which rose by 1.55 m to that time. Finally, all 

characteristic hydrochemical parameters in groundwater of well B had 

gradually adapted to values comparable to those of the layer II. 
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In groundwater of monitoring well A, Cl-, K, SO4
2- and Fe concentrations 

first declined until June 2010, before values stabilised or increased again. 

Meanwhile, compositions in wells C, D and E had remained predominantly 

constant, except for Cl-.  

Concentrations of NO3
- surprisingly increased short termed in ground-

water of all wells and peaked in June 2010 (max. of 7.67 mg L-1 in well A), 

before they fell again below the limit of quantification (except for well C, 

whereas contents continuously increased until July). A similar situation 

appeared during the pre-monsoon season 2009, when scattered NO3
- 

peaks appeared in some of the groundwater samples. 

Average Fe(II) percentages exceeded 90 % in groundwater between 

15/03/09 to 29/05/09, except for well C, where a significant lower average 

ratio of 67 % occurred. 

Behaviour of arsenic. Plots of As, Fe and PO4
3- concentrations 

revealed a close relation between these elements. Distinctive and relatively 

stable mol ratios adjusted, characteristic for each well and therefore depth 

range (Figure 7.13).  

Arsenic concentrations in wells D and E remained at nearly constant 

levels compared to the hydrochemical baseline (03/12/09). In contrast, As 

concentrations showed temporarily deviant concentrations in the three other 

wells A, B and C: 

 In well B, eye-catching trends in As concentrations arose during

both pre-monsoon seasons and the monsoon season 2010 (Figure

7.12). The highest absolute amount of As at the high As site (387

µg L-1) was determined from the first sample taken from this well

(December 2008). During the following pre-monsoon season, As

values gradually declined until a stable level adjusted with an

average concentration of 90.5 ± 9.3 µg L-1 (n: 16). Values heavily

increased again during the abstraction experiment in December

2009, and rapidly declined afterwards during the pre-monsoon

season. Surprisingly, concentrations rose again with beginning of
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the monsoon season in 2010 (up to 315 µg As L-1), which had not 

occurred in 2009 to the same time, when As concentrations had 

constantly remained <100 µg L-1. During the complete monitoring 

period, As concentrations shifted between those of well A (~100 µg 

L-1) and well C (>300 µg L-1). Furthermore, As concentrations 

correlated negatively with conservative tracers like δ18O and Cl-, but 

positively with PO4
3- and the hydrostatic head. The trends that 

formed during the monsoon season 2010 exactly traced that of the 

pumping experiment and were additionally mirror-inverted 

compared to the trends of the two pre-monsoon seasons (Figure 

7.14). These pronounced concentration changes did not affect the 

As speciation as indicated by constantly high As(III) percentages of 

93.4 ± 5.8 % (n: 36). 

Figure 7.13: Plots of As, Fe and PO4
3- mol ratios for all monitoring samples 

show close and stable relationships between these three solutes for each of 

the five wells, except for well B, where respective solutes are influenced by 

temporary fluctuations. 
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Figure 7.14: Trends in As, indicator parameters and the hydrostatic head of well 

B during 2009 and 2010 in comparison to the abstraction experiment. 

Surprisingly, a pronounced shift appeared during the monsoon season in 2010, 

which was not visible during 2009. 
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 Despite all other parameters, As concentrations strongly varied in

well C during 2010, too (Figure 7.15). Absolute As concentrations

halved from 334 µg L-1 at the end of pumping experiment to 169 µg

L-1, when the lowstand of the hydrostatic head was reached end of

April. At the same time, the As(III) percentage strongly declined

from 98.0 % down to 12.1 %, which was accompanied by a

decrease of Fe concentrations from 1.50 to 0.07 mg L-1. During

monsoon (May to July), As concentrations subsequently rose again

to 321 µg L-1, which was close to the maximum at the end of the

experiment (334 µg L-1). To this time, Fe and As(III) concentrations

also climbed back to previous values.

Figure 7.15: Comparison of As trends in well C during 2009 and 2010 together 

with other relevant parameters.  
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 During the pre-monsoon season in 2010, As concentrations in

groundwater of the central well A rapidly returned to the baseline

that was recorded before the experiment. Considering the complete

monitoring period, the As level subsequently increased (Dec. 2008:

52.0 µg L-1; Nov. 2009: 82.8 µg L-1; Jul. 2010: 88.3 µg L-1, Figure

7.16). This increase was also apparent in δ18O values and PO4
3-,

causing near-constant As to PO4
3- mol ratios of between 1:18 and

1:25. The reduced form As(III) permanently remained the prevailing

As species.

Spatiotemporal differences of As and other redox sensitive solutes as 

well as conservative tracers are summarised in Figure 7.17. Here, the 

attempt is made to interpret temporal changes that occurred between end of 

April and July 2010 as vertically differing hydrochemical layers. 

Figure 7.16, part I: Development of As and other important characteristic 

parameters in well A during the complete monitoring period. R2: coefficient of 

determination. Figure continued on next page. 
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Figure 7.16, part II. 

Figure 7.17: In order to display the complex spatiotemporal situation, 

measuring results from April to July 2010 are combined with interpretations of 

the vertical solute distribution patterns and redox state classifications. A 

redox-anomaly was observed in well C, when the water table reached its lowest 

level end of April. Figure caption continued on next page. 
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Figure 7.17, continued: Later on, the water table increased by ~1.55 m until July 

(monsoon season), but remained unconfined. To this time, water from layer II 

became visible in well B and As concentrations close to the maximum 

appeared in well C. Data from wells A, D and E are average values (April-July 

2010), while results for wells B and C are the exact values from 26/04/10 and 

30/07/10. All concentrations in mg L-1, except for δ18O values (‰ VSMOW), the 

As(III) percentage (%), and As and U concentrations (µg L-1). 

7.3 DISCUSSION 

7.3.1 SEDIMENT STRATIGRAPHY 

Sequence stratigraphic interpretations based on the characterisation of 

OM, as well as on geochemical and lithological results, lead to similar 

conclusions as for the low As site (see APPENDIX II, Table A 2.6) and 

results of SARKA et al. (2009). An important difference is that the lithology 

includes here an additional facies F1, a clayey layer met in 39.2 m bls (see 

Figure 7.1). Increased TOC contents in facies F2 (between 32.0 and 

39.2 m bls) provide additional information regarding the sedimentation 

environment of this depth range. Results allude to the conclusion that OM in 

sediments from F2 includes influences of terrestric matter that dates back to 

the early and middle Pleistocene. During this time, fluvial deposit filled the 

incised valleys that were eroded during the lowstand of the LGM at about 20 

ka BP (see chapter 3.2). Embedded intrusions of mixed and poorly ordered 

muddy and gravelly sediments indicate high transport energies allowing a 

rapid reallocation of older sediments. Gravel grains are poor to medium 

rounded and consist of secondary carbonate nodules, which have likely 

formed during previous weathering and soil genesis. Increased TOC and 

mixed signals of freshwater POM and C3 plants indicate that sediments of 

F2 originate from a freshwater swamp dominated environment. 
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Increased OM contents met in F2 and F4 result either from a high 

primary production and a following rapid burial, or from pronounced 

preservation effects within the sediments that prevented biodegradation 

(HOEFS 2009). Strongly biodegraded OM, which was reported from the 

Chakdah site, implies the former (ROWLAND et al. 2006). Another 

important question in this context is whether sedimentary OM is 

autochthonous (for example from marsh or swampland deposit) or 

allochthonous in nature. Poorly ordered sediments in F2 reflect pronounced 

relocation processes that suggest an allochthonous origin of the OM, 

whereas sediments in F3 and F4 are considered as undisturbed sequences 

with autochthonous OM. 

7.3.2 ROLE OF THE SURFACE AQUITARD 

Similar to the low site, the unconsolidated aquifer sediments are 

covered by 3.35 m thick clayey and silty layers of facies F4, which are 

interpreted as fluvial overbank deposits of the nearby Hooghly River. As 

discussed previously (chapter 6.3.2), these layers form an important surface 

aquitard, which prevents infiltration of oxygen- and nitrate-rich surface water 

and allows the establishment of moderate to strongly reducing conditions in 

the shallow aquifer below. Each time the water table reaches the clayey and 

silty aquitard in about 3.35 m bls (during the monsoon season), conditions 

change from unconfined to confined. Visible aggregations and mottles of 

secondary Mn- and Fe-(oxyhydr)oxides between 2.05 and 4.65 m 

bls are suitable markers for the position of the fluctuating unsaturated 

and oxic zone, while the permanently reducing zone is indicated by 

grey coloured sands that appear from 5.95 m bls on. 

The pronounced As enrichment in F4 of up to 122 mg As kg-1 indicates a 

high retention potential of the sediments in this part, which results from the 

presence of Mn- and Fe-(oxyhydr)oxides as well as high contents of 

smectite and kaolinite, which all can adsorb significant amounts of As(III) 

and As(V) (MOHAN & PITMAN 2007). Hence, As and other trace elements 

like Zn, Ni, Cu are supposed to be removed by clay minerals and secondary 
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formed Mn- and Fe-(oxyhydr)oxides as soon as anoxic groundwater rises 

into the aerobic vadose zone via capillary rise. In fact, sedimentary As is 

here predominantly associated with Fe-(oxyhydr)oxides according to SEP 

results. In previous studies, only little attention was paid to the surface near 

unsaturated zone. HARVEY et al. (2006) argue that these widespread, iron-

rich sediments are a potential source of As, but present results reveal that 

this part is highly dynamic and acts as more like an effective sink for As 

rather than a source. 

In addition, clinker fragments reaching up to a depth of two metres 

reflect a strong anthropogenic influence close to the surface. Hence, this 

part was artificially raised and/or reworked in the recent past, while 

sediments below are considered as undisturbed. 

7.3.3 ARSENIC IN SEDIMENTS 

Since geochemistry and mineralogy of the sediments are highly similar 

to the low As site, it is not surprising that Fe-(oxyhydr)oxides were identified 

as dominating host for As, too. In contrast to the As-enriched clayey and 

silty layers of facies F4, As contents in the sandy aquifer sediments (F3b, 

F3a and F2) are typically low. In contrast to the low As site, As contents are 

also accompanied by relatively increased TOC contents. The SEP further 

indicates that significant amounts of the sedimentary As are associated with 

OM, although this last extraction step also includes As-sulphides and 

recalcitrant As-minerals. This was previously suggested by AKAI et al. 

(2004) for sediments from Bangladesh, where As was found to be 

associated with OM besides Mn- and/or Fe-(oxyhydr)oxides and sulphides. 

A more precise characterisation was not possible since strong analytical 

limitations arose from the throughout low As contents. 
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7.3.4 GROUNDWATER PROPERTIES 

Hydrological context. In order to explain the pronounced As 

enrichment in local groundwater, it is mandatory to identify past and present 

processes on the hydrochemical composition of the groundwater, which are 

highly similar to the low As site (see 6.3.4). Results allude to the conclusion 

that the fate of As is here also closely linked to the biogeochemical cycling 

of OM and Fe-(oxyhydr)oxides. The predominance of As(III) further points at 

an influence of DARPs. Vertical distribution patterns of key parameters 

(major solutes and redox sensitive compounds) reflect that the groundwater 

body is highly differentiated and that the situation is much more complex 

than at the low as site. 

Hydrochemical stratification. The vertical distribution pattern of major 

solutes including conservative tracers Cl-, K, δ18O and δ2H reflects the 

presence of two distinctive hydrological layers within the monitored part of 

the groundwater body. The boundary is assumed to be located around 25-

26 m bls, in between the screening positions of wells B and C (see chapter 

7.2.2.3). Stable isotopic values constantly plot below the LMWL, which is 

characteristic for evaporative influences (GAT 1996). Increased salinity as 

well as higher δ18O and δ2H values indicate that water of layer I was more 

affected by evaporation than of layer II. Mol ratios for conservative Cl- and K 

in wells B and C were used to calculate enrichment factors for the two 

layers. Calculated ratios [Cl-well B / Cl-well C] and [Kwell B / Kwell C] are both 3.56, 

which further supports the presumed evaporative enrichment. Enrichment 

ratios of Ca, Mg and Na are pronounced lower in groundwater from layer I 

(1.19 – 1.51), expressing the non-conservative character of these elements. 

Redox zoning. Vertically deviant distributions of NH4
+, SO4

2-, Fe and 

Mn further display a decreasing redox potential with depth and the 

manifestation of deviant redox zones (BORCH et al. 2010). Such a redox 

zoning is considered as characteristic for arsenic-affected shallow aquifers 

in the BDP and other parts of Asia (VAN GEEN et al. 2008). Redox 

sensitive trace elements like U, Mo and As form characteristic distribution 
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patterns, too. These distinctive redox zones spatially superimpose both 

layers, which are supposed to have formed in the following. According to 

the detailed spatial characterisations done in Chakdah, these zones can be 

best described as plumes with vertical extensions of several hundred 

metres and thicknesses of a few decimetres (MÉTRAL et al. 2008). The 

development of such plumes requires intensive microbial redox activity and 

therefore degradable organic matter as well as an overlying clay aquitard 

layer, which prevents inflow of fresh surface water rich in O2 and NO3
-. 

According to the redox classification of JURGENS et al. (2009), 

groundwater in wells A and B is primarily in state of Fe(III)/SO4
2- reduction. 

A further distinction between Fe(III) and SO4
2- reduction was not possible, 

because no H2S determination was done. In the three wells below, SO4
2- is 

depleted and methanogenesis possibly the prevailing redox process. 

Despite this, the availability of weakly ordered Fe-minerals could basically 

support Fe(III) reduction. In addition, fresh groundwater smelled of H2S 

during the pumping experiment, clearly indicating SO4
2- reduction. 

Anomaly in well C. In well C, total Fe and Fe(II) concentrations are 

distinctively lower than in the other wells above and beneath. Since SO4
2- 

and Ba concentrations are lower, too, precipitation of Fe- and Ba-sulphides 

must be considered in this specific depth range. This anomaly is persistent 

according to results of the entire monitoring. Considering characteristic 

SO4
2- concentrations of layer I, the amount of possibly precipitated 

sulphides is in range of several milligrams per kilogram, which is too low 

neither to be visible in distribution of sedimentary TS contents, nor by 

respective XRD spectra. 

In well C, highest As concentrations occurred, which are clearly de-

coupled from dissolved Fe. As opposed to the well-known assumption that 

Fe-sulphides incorporate As (KIRK et al. 2010), O’DAY et al. (2004) 

reported that As(III) may not be incorporated in sulphate-low environments 

like redox transition zones when precipitation rates are fast. This results in 

an enrichment of As, if adsorption is inhibited, what could be related to high 

PO4
3- concentrations.  
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Additionally, formation of new As binding sites by precipitation and 

transformation of residual Fe-phases is suppressed when dissolved Fe is 

removed during Fe-sulphide formation (see chapter 6.3.6). 

Effects of lithology. Once different redox zones have established 

below the clayey and silty aquitard, the hydrochemically altered groundwa-

ter slowly drifts through the aquifer. Several lateral transitions in the grain 

size distribution are expected to cause a vertical anisotropy in groundwater 

flow, which is characteristic for the Bengal Basin and allows the preser-

vation of hydrochemical deviant layers within the groundwater body 

(MICHEAL & VOSS 2009a,b). By comparing the position of the five 

monitoring well screens to the lithology and estimated K values, ground-

water is considered to be drawn from three different parts of the aquifer 

during sampling (Figure 7.18). Wells A and B are expected to deliver from a 

medium sand rich strata located between 17 to 25 m bls, which is confined 

by silty fine sand. The well screen of well C is located in a medium sandy 

fine sand part, while wells D and E primarily deliver from between 32 and 38 

m bls. The delivery rate of the submersible sampling pump (2.4 L min-1) is 

expected to be low enough to prevent a disturbance of the deviant layers 

during sampling. An interpretation of the data is provided in Figure 7.19. 

Adjacent pond. The isotopic composition of sampled pond water 

reflects a strong influence of evaporation, which is dedicated to the on-going 

dry season. Since the last recharge during the monsoon season, two 

months had passed (December 2009). Relatively high Fe, As and As(III) 

concentrations and an absence of NO3
- surprisingly indicate anoxic and 

presumably reducing conditions in the pond water. Reducing conditions 

arising from a lack of O2 are attributed to the small pond size (approximately 

7 x 4 m with a depth of 2 m) and the water temperature of 24°C.  A refill of 

the pond with groundwater by local inhabitants could be ruled out. Results 

of NEUMANN et al. (2009) suggest that pore waters in pond sediments are 

highly reducing and that As is released either by reductive dissolution of Fe-

(oxyhydr)oxides and/or by DARPs. 
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Figure 7.17: Comparison of sedimentary Fe, As and TOC contents, facies 

boundaries, estimated hydraulic conductivities (BEYER 1964), grain size 

distribution, position of the well screens and hydrochemistry of the five 

monitoring wells (samples from 03/12/09). In the grain size distribution included 

are the lowest (April) and highest water level (December) and the visible redox 

boundary in the sediment colour. 
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7.3.5 INFLUENCES OF HYDROSTATIC HEAD OSCILLATIONS 

ON THE LOCAL DISTRIBUTION OF ARSENIC 

7.3.5.1 The groundwater extraction experiment 

Change of experimental focus. The abstraction experiment was 

originally performed to induce temporary oscillations of the water table in 

order to aerate reducing parts of the aquifer. It was the intention to check 

whether induced changes in the local redox conditions influence the mobility 

of As. Since the experiment was conducted in the post-monsoon season, 

the aquifer was recharged and confined. During pumping, hydrostatic heads 

in the monitoring wells subsequently decreased until a steady state had 

adjusted. However, the applied delivery rate of 9 m3 h-1 was not sufficient to 

create a virtue decrease of the water table and the intended temporary 

aeration of the saturated aquifer sediments was therefore not achievable. 

The experimental focus was therefore modified and the interpretation 

aims at assessing short- and medium-term influences on dissolved As 

concentrations by locally restricted groundwater abstraction. In the Nadia 

district, private irrigation wells are widespread and typically confined to a 

depth of 18 m (NATH et al. 2008), which is highly similar to the pumping 

well A (well screen in 12-21 m bls). Additionally, the submersible pump that 

was used during the experiment was a common type that is sold and used 

for irrigation in West Bengal. Thus, the experiment is in the following 

interpreted as a simulation of irrigation pumping during the dry post- and 

pre-monsoon seasons. 

Estimation of affected area. Groundwater was redirected from its 

preferred lateral flow paths towards pumping well A. Mixing of vertically and 

laterally drawn groundwater caused remarkable changes in the hydro-

chemistry of respective monitoring wells. The total volume of the extracted 

water was about 1,700 m3. Assuming a homogenous aquifer with a constant 

thickness of 36 m and an average pore volume of 30 %, each m2 at the 

surface is equivalent to an approximate storage volume of 10.8 m3 ground-
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water in the aquifer below. Hence, the extracted groundwater volume would 

be equivalent to an area of about 160 m2. However, the actual size of the 

delivery area can be considered as substantially larger, since the confined 

water storage around the study site was permanently recharged by 

inflowing water. In addition, inhomogeneities in the virtue lithology cause 

spatially deviating storage capacities and hydraulic conductivities further 

enlarge the sphere of influence. 

Mixing effects in wells A and B. Pronounced changes manifested in 

the hydrochemical compositions of groundwater from pumping well A and 

the adjacent observation well B, which were previously situated in layer I 

and in a less reducing redox zone (see chapter 7.2.2.2). This was primarily 

related to physical mixing as indicated by pronounced decreases in 

conservative tracers Cl-, K, δ18O and δ2H. Most other major groundwater 

constituents (e.g., Mg, Ca and SO4
2-) acted very similar and are therefore 

considered as conservative-like in context of the experiment. This behaviour 

is attributed to the relatively short rest cycles of 24 h between two pumping 

cycles, but also from the homogenous geochemistry and mineralogy within 

the respective aquifer sediments. 

The comparison of samples taken immediately after 48 h of continuously 

pumping (13/12/09) with samples taken after the rest cycle (14/12/09) 

reflect slight influences of slowly and horizontally inflowing groundwater 

from layer I as indicated by changes in δ18O, δ2H and K values. Since the 

initial baseline values of K were characteristic for both layers, concentration 

changes were used to estimate the growing influence of groundwater from 

layer II in range of wells A and B (Figure 7.11). At the end of the 

experiment, water delivered from well B originated to more than >90 % from 

layer II, and about 75 % in pumping well A. Hence, pumping had 

pronounced effects on the vertically layered hydrochemistry of the upper 

two wells. 
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Influences on wells C, D and E. At a first glance, effects on ground-

water around the well screen of well C appeared to be surprisingly weak. In 

respective samples, only minor changes occurred in trace element 

concentrations with deviant distributions (like Fe, Mn, and U). Only Li and 

PO4
3- showed pronounced changes related to the excessive groundwater 

withdrawal. The composition of the sample taken directly after 48 h of 

pumping further revealed changes in several additional parameters (δ18O, 

δ2H, Ca and Mg). This is attributed to a rapid lateral inflow of uninfluenced 

groundwater in this specific part of the aquifer once pumping was stopped, 

although the lithology does not indicate an increased hydraulic permeability. 

The well screen is located close to those of wells B and D with distances 

of each 1.00 m in vertical and about 3.50 m in lateral direction. Hence, it 

remains unclear why the slightly increasing Fe concentrations remained at a 

comparatively low level, and increased Mn and Mo concentrations declined 

only marginal during the entire experiment. 

Within the deepest wells D and E, most major and trace elements 

remained unaffected or showed minor changes (e.g., Cl-, δ18O and δ2H). 

The underlying clay layer is expected to have prevented upstream of water 

from deeper parts and allowed only lateral inflow and mixing with ground-

water of a similar hydrochemical composition. 

Deviant behaviour of PO4
3-, MO and DOC. Phosphate concentrations 

increased as only parameter exponentially in all five monitored wells 

immediately after the first pumping interval. This was similar to the sucrose 

injection at the low As site, where PO4
3- increased as well after circular 

pumping. In addition, the sample taken directly after 48 h (13/12/09) of 

continuous pumping from well A revealed that PO4
3- and Mo were much 

higher than in the sample taken after the rest cycle (14/12/09). 

This behaviour clearly exceeded pure physical mixing, which is suitable 

to explain changes in conservative and most other solutes. Surface 

adsorption and desorption are the only potential processes that can explain 

these short-termed trends as described in the following.  
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As previously discussed for the low As site (chapter 6.3.5), increased PO4
3- 

concentrations in groundwater can originate from microbial decomposition 

of OM as well as from reductive dissolution of hosting Fe-(oxyhydr)oxides, 

which was previously reported from oxbow sediments (LEWANDOWSKI & 

NÜTZMANN 2010). According to thermodynamic calculations, H2PO4
- was 

the predominating species. In addition to strong adsorption via ligand 

exchange, negatively charged H2PO4
- can further bind electrostically to 

positively charged surfaces. During the pumping experiment, loosely bound 

autochthonous H2PO4
- became entrained by the strong artificial water flow 

created by pumping. Such short-termed mobilisation of PO4
3- was reported 

from streams during flood events, when the flow velocity rapidly increased 

(DORIOZ et al. 1989, REDDY et al. 1999). During the rest cycle, increased 

H2PO4
- concentrations decreased in pumping well A, which is attributed to a 

fast re-adsorption. The same applies to Mo (predominating: MoO4
2-), which 

also declined rapidly in the sample from well A after the rest cycle of 24 h. 

At the end of the experiment, DOC concentrations had manifold in all 

five wells, too (Table 7.6). Similar to PO4
3-, this increase is attributed to 

desorption of poorly adsorbed autochthonous and electrically charged 

organic molecules. Despite this, a potential import of DOC with vertically 

and horizontally attracted groundwater during pumping as it was argued in 

other studies (e.g., HARVEY et al. 2002, NEUMANN et al. 2009) is 

considered unlikely in this situation. 
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Behaviour of arsenic. Evolving As concentrations in groundwater of the 

upper wells A and B correlated negatively with conservative tracers like Cl- 

or δ18O. This conservative-like behaviour of As alludes to the conclusion 

that net increases originated from mixing with arsenic-enriched groundwater 

from layer II and not from an additional mobilisation. According to the 

comparison of samples taken before and after the rest cycle, neither short-

termed As adsorption nor desorption appeared within all five wells (see 

Figure 7.10). 

In wells D and E, As concentrations remained throughout stable. 

Despite this, As concentrations with As(III) as prevailing species had 

increased in groundwater from wells A, B and C to concentrations that were 

higher than the initial maximum of 296 µg L-1 (well C, 03/12/09). According 

to the vertical distribution pattern of As that superimposes layers I and II, the 

initial As maximum of approximately 335 µg L-1 was concealed between the 

well screens of wells C and D and was therefore not visible. This 

assumption is further supported by the following regular monitoring, which 

describes the mid-term effects of the experiment (chapter 7.3.5.2). 

Influences of the adjacent pond. There is an intense debate whether 

ponds contribute to As release in the BDP or not (e.g., SENGUPTA et al. 

2008 in contrast to NEUMANN et al. 2009). First, a potential influence 

requires a hydraulic connection between the pond and the aquifer below. 

During drilling of the monitoring wells in May 2008, the pond was completely 

dried out and it was noticed that the pond is sealed by clayey sediments. 

During the pumping experiment, there was no influence of pond water on 

the groundwater composition in the surface near filtered wells visible. 

Despite the extensive groundwater subtraction from the central well A, the 

water table fell by approximately 5 cm in 16 days. This is dedicated to 

evaporation during the throughout warm and dry weather, whereas a 

hydraulically connection between the pond and the aquifer below is 

therefore considered as unlikely. 
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7.3.5.2 Temporary changes during the monitoring 

The question arises, which mechanisms that have formed the distinctive 

distribution pattern of As are still active and what were the consequences of 

the pumping experiment. The pumping experiment is considered as the key 

for interpretation of temporary changes that occurred during the monitoring 

(see chapter 7.2.2.3). It is shown that trends in the groundwater composition 

of wells A, B and C were closely attributed to vertical and horizontal 

movement of the groundwater body. A brief summary of the processes 

following the pumping experiment is presented in form of a conceptual 

model in Figure 7.20. 

Return to hydrochemical baseline following the pumping 

experiment. During the dry pre-monsoon phase between January and April 

2010, groundwater compositions in the monitoring wells A and B 

subsequently returned to conditions similar to the initial situation before the 

abstraction experiment. Hence, the well screens were relocated into layer I, 

which caused a decline in As concentrations and an increase in 

conservative Cl- and δ18O. This is attributed to a slow lateral inflow of 

unperturbed groundwater. From January on, an additional vertical 

downward movement of the hydrochemically stratified water body appeared 

relative to the static well screen positions. As a result, the groundwater 

hydrochemistry within the monitoring wells gradually returned towards the 

initial composition that was observed before the pumping experiment 

(Figure 7.20). This process lasted, regarding As, between two (central 

pumping well A) and six weeks (well B). The temporal difference is 

attributed to differences in the lateral flow velocities and the heightened 

position of the well screen of well A. 
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Figure 7.20, part I: Schematic sketch illustrating the assumed position of the 

two layers (indicated in the depth profile by δ18O) and the As plume before (A) 

and in different seasons after the pumping experiment (B, C, D). During the 

following dry pre-monsoon season, the water table subsequently decreased, 

while the hydrochemistry returned to its initial situation (C). Increased 

evaporation induced capillary rise, which alluded to precipitation of secondary 

Fe-(oxyhydr)oxides within the surface aquitard. Figure continued on next page. 
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Figure 7.20, part II: During the monsoon rains, the aquifer was recharged via 

surface water inflow at adjacent sandy lenses in the surface aquitard, which 

resulted in displacement of groundwater at the high As site (D). The water table 

rose, and the As plume as well as layer I consequently moved upwards and the 

layer boundary successively passed the well screen of well B. 
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Hydrochemical compositions in groundwater of wells D and E primarily 

remained constant, only the strongly increased PO4
3- concentrations 

constituted an exception. Phosphate concentrations rapidly declined in all 

wells and stabilised at concentrations, which were slightly higher than the 

baseline. This is another evidence for the fast re-adsorption ability of PO4
3-, 

which did not cause any visible As release. At the end of the dry pre-

monsoon season, the groundwater table had reached the lowest level and 

the baseline values were restored in nearly all parameters and wells. 

Parallels to 2009. Although the installation of the monitoring wells was 

completed in June 2008, the central well A collapsed soon and was rebuilt 

until December 2008. Close before the first sampling, the well was 

developed according to common practice, comprising intensive flushing of 

the well screen. This is done by strong pumping for several hours, which is 

highly similar to the abstraction experiment. Even the point of time and 

therefore the hydrological conditions were nearly identical. Hence, it is not 

surprising that changes in hydrochemical parameters during the following 

weeks were highly similar (see figure 7.12). 

Trends in As during both pre-monsoon seasons are attributed to mixing 

of groundwater with deviant As concentrations, which originated from 

pumping. Interestingly, the initial As maximum that occurred directly at the 

beginning of the monitoring in well B (387 µg L-1) was not reached during 

the abstraction experiment in 2009 (349 µg L-1). 

Temporal trends arising during the monsoon season 2010. Trends 

in As and other characteristic parameters occurred in well B during the 

monsoon season in 2010, but not in 2009 (see Figures 7.12 and 7.14). 

Again, changes were obviously controlled by movement of the stratified 

groundwater body, which shifted about 1.55 m upwards during the monsoon 

season (Figure 7.20 D). As a result, reverse temporal trends manifested in 

As and other characteristic parameters in monitoring samples of well B, 

displaying the complete vertical layer boundary between end of April (layer I 

visible) and July (layer II visible). 
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Similar vertical movement of the water column appeared during the 

monsoon season in 2009, too, but hydrochemical parameters including As 

remained at constant levels. This decisive difference between 2009 and 

2010 is affiliated to consequences of the pumping experiment. The 

boundary between the saline and arsenic-low layer I and the less saline, but 

arsenic-rich layer II appeared to be coincidentally located around the well 

screen position of well B. The abstraction experiment than has caused a 

slight upward shift of the vertical layer boundary within the water column, 

which was obviously sufficient to relocate the screening of well B into the 

layer below during the following monsoon season. This local disturbance in 

the water body was most likely retained by the slow and lateral groundwater 

flow, which prevented a fast removal of the disturbed groundwater. 

The character of groundwater started to change at the end of April 

(hydrostatic head at 5.23 m bls, aquifer unconfined) before it reached a 

stable condition in July (hydrostatic head at 3.68 m bls, aquifer still 

unconfined). Hence, the approximate thickness of this layer boundary was 

to this time 1.55 m, assuming a stable boundary that moved parallel to the 

hydrostatic head. 

Arsenic behaviour in well C. Pronounced changes in the 

hydrochemistry of well C during 2010 can be similarly explained. During the 

monsoon season 2010, concentrations of As, As(III) and Fe strongly 

increased after they had reached a minimum at the end of the dry pre-

monsoon season (Figures 7.12 and 7.15). These temporary trends are 

considered as an expression of the distinctive vertical distribution patterns 

of these solutes, which generally superimpose layers II and I. As discussed 

previously, highest As concentrations occur in the depth range around the 

well screen of well C. In contrast, other parameters like δ18O, Cl- or K were 

characterised by invariant concentrations within layer II and in range of 

wells C, D and E, and behaved therefore indifferent towards the vertical 

upward shift of the water table. When the lowest level of the water table was 

reached at the end of the pre-monsoon season (April 2010), As(III) was not 

the predominating As species although As concentrations remained 

generally increased. In addition, nearly no Fe occurred in solution to this 
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time while dissolved U concentrations showed a maximum. This is 

surprising, since U mobility is sensitive to redox state changes and solubility 

normally decreases by reduction to U(IV) in reducing environments 

(BORCH et al. 2010). Additionally, the presumed zone of iron-sulphide 

precipitation is also located in this range. All this points at the presence of a 

thin layer where the redox state of Fe, As and U is obviously influenced by 

unknown processes. The reason for this “redox anomaly” remains obscure, 

but throughout stable δ18O values exclude a potential influence of oxygen-

rich recharge water. 

Arsenic increase in well A. Since the beginning of the regular 

monitoring, the comparatively low initial As level in groundwater from well A 

rose slightly, but continuously. The same applies to PO4
3-, whereas the 

As/PO4
3- mol ratio remained nearly constant. A release of additional As via 

PO4
3--As-exchange is therefore excluded. According to the strong 

correlation between As, Fe and conservative δ18O, this increase can be 

rather attributed to an enduring shift of the hydrochemical layers inside the 

water body than to active As release. The reason for this constant shift 

remains unclear, but clear pumping of the well after drilling in December 

2008 disturbed the local hydrological context. The same applies to the time 

after the pumping experiment in 2009, when concentrations of Cl-, SO4
2-, K, 

and Fe showed first decreasing, than increasing trends parallel to the 

oscillating water table. These fluctuations are again considered to result 

from deviant vertical distribution patterns of these elements, which hold 

maximum concentrations around the well screen of well B. 

A contrasting effect was reported by MC ARTHUR et al. (2010) from a 

monitoring well at the 40 km east located JAM study site. Here, As 

concentrations declined together with Fe, Cl-, Ca and SO4
2- (PO4

3- was not 

included). This was attributed to flushing with younger recharge water. 
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The arsenic – iron – phosphate - system. Throughout high positive 

correlations between As, PO4
3- and Fe appeared in the monitoring samples. 

As previously discussed for results of the field survey and the low As site, 

positive correlations between As and PO4
3- support the assumption that 

both are controlled by the same release mechanism, which was previously 

proposed by MC ARTHUR et al. (2001) and VAN GEEN et al. (2004). This 

further supports the hypothesis postulated in chapter 6.3.4 (f), whereas As 

and PO4
3- were previously released during reductive dissolution of Fe-

(oxyhydr)oxides and that all available binding sites are currently occupied in 

the meanwhile matured aquifer system. Specific mol ratios occurred in the 

monitoring wells between these three solutes, which only changed in well B 

during the layer shifts as previously discussed. The ratio of Fe to PO4
3- in 

well C additionally reflects a loss of Fe, since the regression line has a 

comparable slope than the other wells, but does not cross the zero point 

(see Figure 7.13). This loss of dissolved Fe supports the assumed 

precipitation of Fe-sulphides as discussed in chapter 7.3.4. 

Further hydrochemical processes affecting arsenic mobility. The 

pumping experiment has demonstrated that the prevailing hydrochemical 

system with its vertical stratified water column has a strong tendency to 

return to the previous, undisturbed condition. Temporal changes in the 

hydrochemical composition of the monitoring wells are either related to 

seasonal changes in the groundwater table, or to effects of pumping (2008: 

clear pumping of well A; 2009: pumping experiment). 

The hydrochemical situation is partly highly similar to the low As site, 

where As release is an active process. In contrast to the low As site, 

additional release of As into local groundwater did here not occur. As 

discussed in chapter 6.3.4, microbial processes are considered as key 

players in the genesis of arsenic-enriched groundwater in the investigation 

area. The situation at this site reflects that the aquifer is rather matured and 

near the state of equilibrium than a young and highly dynamic system. Once 

released, abiotic reactions (namely competitive adsorption) and prevailing 

hydrology (inducing vertical and lateral transport within the aquifer) 

determine the further fate of As. 





8. SYNTHESIS

- CONCEPT OF ARSENIC MOBILISATION AND 
DISTRIBUTION IN THE STUDY AREA 

8.1 COMPARISON OF THE TWO STUDY SITES 

Geomorphology and lithostratigraphy. Both study sites are situated in 

the floodplain area of the BDP in the Nadia District, only 3.1 km apart from 

each other. The sites are located in a distance of about 8.2 km (high As 

site) and 11.0 km (low As site) east of Chakdah city, which is situated at an 

elevated interfluve of the Hooghly River. The Hooghly River flows from north 

to south and represents the only active watercourse within the study area. 

Numerous abandoned river beds indicate frequent channel changes in the 

recent past (chapter 5, Figure 5.1). In accordance to the surface geo-

morphology, sediments at both sites draw a picture of a highly dynamic 

sedimentation history that tells about basin-wide and complex tectonic 

processes as well as past climatic changes (see chapter 3.2 and sequence 

stratigraphic interpretation summarised in Figure 8.1). Aquifer sediments 

are primarily composed of fine and medium sands with varying proportions 

of silt. Principal minerals are quartz, feldspars, carbonates and mica. In 

addition, clay minerals (smectite and potentially traces of kaolinite and illite) 

occur in the clayey and silty surface aquitard. Although As contents in the 

sandy aquifer are generally low at both sites, they are still capable to 

distinctively increase the groundwater concentration, even if released only 

in parts (Figure 8.1). This assumption is supported by the fact that Fe-

(oxyhydr)oxides (amorphous, weakly ordered as well as crystalline ones) 

represent the prevailing host for As in the sediments. In the surface 

aquitard, where secondary Fe-(oxyhydr)oxides are supposed to periodically 

precipitate together with associated trace elements during the dry season, a 

partly pronounced enrichment of As appears. 
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Groundwater evolution. Groundwater compositions reflect that 

microbially mediated As mobilisation by Fe(III) and As(V) reduction occurred 

at both sites, which is indicated by simultaneous enrichments of As(III), 

PO4
3- and Fe(II) (chapters 6.2.2.1 and 7.2.2.1). Active Fe(III) reduction and 

concomitant As(III) release was observable in well A of the low As site 

during the monitoring and in the course of the biostimulation experiment 

(chapters 6.2.2.2 and 6.2.2.3). Additionally, short- and mid-term 

concentration changes in dissolved As and PO4
3- following the 

biostimulation experiment support the assumption that As release was 

accompanied by competitive adsorption to residual Fe-(oxyhydr)oxides with 

empty binding sites (fast) and newly formed Fe-minerals that formed by 

transformation and precipitation (slow). Generally stable vertical hydro-

chemical layers observed during the first year of monitoring indicate that the 

local groundwater flow is slow and anisotropic as assumed by MICHAEL & 

VOSS (2009a,b). Subsequent changes in the local groundwater 

compositions that followed both in-situ experiments lasted several weeks, 

further supporting this assumption. Slow groundwater flow enables 

subsequent accumulation of As when release is an active process as 

described for well A at the low As site. 
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Figure 8.1, part II: Sequential extraction fractions and sequence stratigraphy. 

Differences between the two study sites. Despite the comparable 

geochemical compositions of the aquifer sediments (Figure 8.1), distinctive 

differences were noticeable regarding the spatiotemporal distribution of As 

in groundwater of the two sites: 

• The high As site comprises a more complex hydrochemically stratified

water column and pronounced higher dissolved As concentrations than the 

low As site. Since mineralogy and lithology of the aquifer sediments are 

highly similar, differences in the hydrochemistry are attributed to processes 

of groundwater evolution. However, differing As concentrations originate 

obviously not from Mn(IV) reduction, since Mn concentrations are similar in 

all 10 monitoring wells.  

Increased alkalinities and partly increased Fe concentrations in groundwater 

point at a more intensive microbial activity at the high As site, which is 

considered as major reason for the stronger accumulation of dissolved As, 

which is at both sites predominantly As(III). 
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 Furthermore, a redox anomaly was observed around the depth range of 

well C at the high site, where unexpected high As concentrations of up to 

296 µg L-1 occurred. 

• Although As concentrations have constantly increased in groundwater

at both study sites during the monitoring, the underlying mechanisms differ. 

In case of the low As site, increasing As concentrations in the shallowest 

well A are attributed to active mobilisation by microbial Fe(III) reduction (see 

chapter 6.3.6). Here, on-going As release was additionally superimposed by 

seasonal changes in concentrations of As in the groundwater, which 

induced pronounced increases during the dry seasons and decreases at the 

beginning of the monsoon rains. 

At the high As site, a constant increase in the As concentration occurred in 

the central well A, which was accompanied by changing δ18O values, while 

dissolved Fe remained nearly constant (see chapter 7.3.5.2). The ground-

water abstraction experiment further caused fluctuations in well B (high As 

site), which had obviously enduring influences on the position of the hydro-

chemical boundaries. Both temporal effects were obviously linked to an 

increasing hydrostatic head (net increase up to 2.10 m) and therefore to 

recharge of the aquifer during the monsoon rains. Hence, the conclusion is 

drawn that both increases in As concentrations were caused by shifts in the 

hydrochemically stratified water column and not by active As release. 
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8.2 IMPLICATION FOR ARSENIC MOBILISATION AND 

ACCUMULATION  

In the following, a concept is developed that describes the spatio-

temporal distribution of dissolved As in groundwater of the BDP. 

Groundwater evolution in the Bengal Delta Plain. The hydro-

chemistry in the investigation area generally reflects a pronounced influence 

of alteration of the groundwater chemistry through numerous biotic and 

abiotic processes and subsequent reactions. Although shallow groundwater 

in the BDP is in depths down to 100 m relatively young (<100 a, 

AGGARWAL et al. 2000, STUTE et al. 2007), hydrochemical parameters 

reflect intensive influences of recent groundwater evolution that is closely 

linked to microbially mediated decomposition of buried OM under anaerobic 

conditions (ROWLAND et al. 2006 & 2007). As a result of microbial Fe(III) 

reduction, the water-sediment system is not in equilibrium and the water is 

supersaturated in respect of Fe-(oxyhydr)oxides (e.g., hematite, magnetite, 

siderite and vivianite, depending on present EH, pH and hydrochemical 

composition). Compared to other reactions that influence the hydrochemical 

composition of groundwater, microbially mediated redox processes are 

comparatively fast, but require a continuous supply with OM. If no additional 

input of OM and TEA like O2 and NO3
- occurs, the redox potential in the 

local aquifers will gradually decrease with time (and depth), until the pool of 

degradable organic carbon is exhausted. Different redox zones with 

distinctive hydrochemical layers form with time, where the presence of a 

widespread surface aquitard prevents inflow of fresh and potentially oxygen- 

and nitrate-rich surface water (MÉTRAL et al. 2008). 

Arsenic release and enrichment. Microbially mediated redox reactions 

are the key mechanisms for As mobilisation, especially through Fe(III) 

reduction. This was demonstrated by the biostimulation experiment (see 

chapter 6.2.2.2) as well as by monitoring results of well A at the low As site 
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(chapter 6.2.2.3). The predominance of As(III) in all monitoring wells 

additionally raises the question if DARPs were involved in As mobilisation. 

Since many FeRB carry the arrA-gene (OREMLAND & STOLZ 2005, 

ZOBRIST et al. 2000), it is not possible to distinguish between As release 

via reductive dissolution of hosting Fe-(oxyhydr)oxides and As(V) reduction 

(KAPPLER 2011). It is important to note that no high initial sedimentary As 

contents are required to create problematic As concentrations in ground-

water (see calculation in chapter 2.2.2). 

The characteristically slow and preferred vertical groundwater flow 

entails in the following an enrichment of As(III) and other compounds that 

are released into groundwater like HCO3
-, PO4

3-, Fe(II) and Mn(II), while a 

flush-out of arsenic-enriched groundwater into the Bay of Bengal is 

extremely delayed. Arsenic release via oxidative weathering of arsenic-

bearing sulphides (HARVEY et al. 2002) during aeration of primarily 

submerged reduced sediments was not observed during the monitoring and 

field experiments. Sedimentary As is primarily associated with Fe-

(oxyhydr)oxides and monitoring results showed no significant impact of 

groundwater oscillations on As release. 

Shallow wells of the investigation area. In order to compare 

outcomes of the monitoring to those of the field survey, average values 

obtained during the monsoon season 2009 are used to exclude the 

previously described seasonal changes. During this time, As concentrations 

in shallowest monitoring wells (wells A and B high As site, well A low As 

site) were elevated, but still pronounced lower than in the deeper monitoring 

wells (Table 8.1). 

The same is true for shallow tube wells of the investigation area with 

depths below 20 m. In about 20 m depth, the redox boundary between NO3
-

/Mn(IV) and Fe(III)/As(V) reduction manifests in a sharp increase of As and 

Fe concentrations in groundwater. Shallow wells still contain SO4
2- and are 

considered to be primarily dominated by Fe(III) reduction and concomitant 

As release as observed in well A of the low As site. Some samples from 

shallow tube wells with depths <20 m are enriched in principal solutes, 
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especially Cl-, while Na/Cl ratios are lower compared to deeper wells. The 

increased salinity is expected to originate from mixing with evaporation 

influenced water. This assumption is supported by δ18O and δ2H values of 

wells A and B at the high As site. 

Obviously, Mn(IV) reduction has occurred and created problematic Mn 

concentrations in groundwater, which are in excess of the Indian drinking 

water threshold value of 0.30 mg L-1 (if no other drinking water source is 

available, otherwise: 0.10 mg L-1; IS 10500) in all monitoring wells and in 

45.4 % of the local tube wells. Only five shallow survey samples were found 

to be in state of Mn(IV) reduction, which means Fe(III) reduction was not 

reached (see Figure 5.3 in chapter 5.2). Manganese-oxides are important 

potential hosts for As, too (BORCH et al. 2010), but their abundance in the 

sediments is pronounced lower compared to Fe-(oxyhydr)oxides. Indeed, 

As concentrations in samples that are in state of Mn(IV) reduction are 

clearly lower (<10 µg L-1) than in samples reflecting Fe(III)/SO4
2- reduction 

or methanogenesis. This strengthens the assumption that Mn(IV) reduction 

plays a minor role in As release, which was previously concluded from the 

biostimulation experiment and from the hydrochemistry of the study sites. 
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Table 8.1, part I: Average concentrations and standard deviations in 

groundwater of the two study sites (between May to November 2009). Table 

continued on next page. 

Well TA Cl- SO4
2- PO4

3- Fe Mn As* As/PO4
3- Na/Cl δ18O 

(m bls) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (mol ratio) (‰)** 

High As site (n: 12) 

A  

(12-21) 

545 

(± 25) 

58.7 

(± 6.5) 

10.5 

(± 1.44)

2.20 

(± 0.24)

3.43 

(± 0.46)

0.75 

(± 0.06) 

75.3 

(± 5.7) 

0.04 

(± 0.00) 

0.63 

(± 0.07) 

-3.21 

(± 0.36) 

B 

 (22-25) 

551 

(± 37) 

58.6 

(± 7.2) 

10.3 

(± 2.71)

2.43 

(± 0.23)

7.31 

(± 0.74)

0.52 

(± 0.10) 

90.4 

(± 9.4) 

0.05 

(± 0.01) 

0.63 

(± 0.05) 

-3.33 

(± 0.50) 

C  

(26-29) 

490 

(± 24) 

22.9 

(± 3.3) 
<0.85 

2.69 

(± 0.28)

1.38 

(± 0.26)

0.80 

(± 0.07) 

281 

(± 14) 

0.14 

(± 0.01) 

1.35 

(± 0.15) 

-3.90 

(± 0.15) 

D  

(30-33) 

514 

(± 10) 

19.1 

(± 1.1) 
<0.85 

2.67 

(± 0.28)

4.01 

(± 0.36)

0.29 

(± 0.02) 

214 

(± 8) 

0.11 

(± 0.01) 

1.50 

(± 0.13) 

-4.15 

(± 0.30) 

E  

(34-37) 

473 

(± 18) 

20.6 

(± 1.6) 
<0.85 

2.70 

(± 0.20)

4.39 

(± 0.32)

0.57 

(± 0.02) 

134 

(± 5) 

0.07 

(± 0.01) 

1.07 

(± 0.11) 

-3.86 

(± 0.17) 

Low As site (n: 11) 

A  

(12-21) 

445 

(± 24) 

7.59 

(± 0.78)
<0.85 

1.68 

(± 0.25)

3.05 

(± 0.33)

0.60 

(± 0.08) 

36.1 

(± 3.8) 

0.03 

(± 0.00) 

3.53 

(± 0.34) 

-4.42 

(± 0.17) 

B  

(24-27) 

443 

(± 5) 

2.43 

(± 0.28)
<0.85 

2.65 

(± 0.24)

3.18 

(± 0.14)

0.43 

(± 0.03) 

127 

(± 8) 

0.06 

(± 0.00) 

7.95 

(± 1.02) 

-4.43 

(± 0.23) 

C  

(30-33) 

445 

(± 17) 

2.42 

(± 0.26)
<0.85 

2.21 

(± 0.23)

3.31 

(± 0.45)

0.42 

(± 0.26) 

112 

(± 10) 

0.07 

(± 0.00) 

7.85 

(± 0.90) 

-4.38 

(± 0.12) 

D 

 (36-39) 

436 

(± 10) 

2.47 

(± 0.26)
<0.85 

1.97 

(± 0.09)

2.78 

(± 0.16)

0.42 

(± 0.04) 

108 

(± 4) 

0.07 

(± 0.00) 

7.53 

(± 0.93) 

-4.41 

(± 0.13) 

E 

 (42-45) 

441 

(± 1) 

2.36 

(± 0.25)
<0.85 

1.82 

(± 0.10)

2.26 

(± 0.14)

0.60 

(± 0.04) 

106 

(± 6) 

0.08 

(± 0.00) 

7.76 

(± 0.77) 

-4.56 

(± 0.11) 

*As(III) percentage for the monitoring wells between 91.3 and 97.2 % 

**VSMOW 
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Table 8.1, part II: Results of the field survey. Results are divided into three 

classes based on the tube well depth. To provide an overview of the large data 

set of the field survey, median values and quartiles (25 % and 75 %, in brackets) 

are given. 

Well TA Cl- SO4
2- PO4

3- Fe Mn As* As/PO4
3- Na/Cl δ18O 

(m bls) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (µg/L) (mol ratio) (‰)** 

Field survey (n: 165) 

<20 m 

(n: 37) 
nd 

19.3 

(10.7 to 
33.7) 

6.83 

(<0.85 
to 13.4)

0.43 

(0.11 to 
1.74) 

1.71 

(0.18 to 
3.39) 

0.33 

(0.21 to 
0.48) 

17.0 

(3.1 to 
38.4) 

0.03 

(0.01 to 
0.06) 

1.35 

(1.01 to 
2.28) 

nd 

20–40 m 

(n: 90) 
nd 

15.8  

(7.8 to 
32.3) 

5.09 

(<0.85 
to 6.14)

3.06 

(1.21 to 
4.23) 

3.81 

(2.25 to 
6.24) 

0.31 

(0.20 to 
0.39) 

70.6 

(42.6 to 
88.6) 

0.02 

(0.01 to 
0.04) 

1.66  

(1.12 to 
2.91) 

nd 

>40 m 

(n: 36) 
nd 

3.78 

(2.52 to 
5.39) 

<0.85 

(<0.85)

0.14 

(0.06 to 
0.46) 

0.46 

(0.05 to 
1.52) 

0.14 

(0.08 to 
0.28) 

14.9 

(1.50 to 
82.2 

0.15 

(0.02 to 
0.26) 

7.36 

(4.77 to 
11.4) 

nd 

*As(III) percentage not determined for tube well samples 

**VSMOW 

The zone of highest arsenic concentrations. According to the field 

survey, As accumulation is highest in depths of about 20 to 40 m, where 

moderate to strong reducing conditions prevail (see chapter 5.3.1). The 

same distribution pattern was reported from the neighbouring country 

Bangladesh, where the British Geological Survey (BGS) and the 

Department of Public Health Engineering (DPHE) analysed 3,534 wells 

local wells during a comprehensive field survey (published in 2001, see 

Figure 8.2). Monitoring wells of the high and low As study sites located in 

this depth range (wells B to E) showed throughout constant As 

concentrations. Hence, the conclusion may be drawn that As release into 

groundwater is completed in this part of the aquifer, is in equilibrium with re-

adsorption, or is extremely slowed down so that increases are not visible 

within the one year of monitoring.  
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Wherever As concentrations in groundwater are increased, PO4
3- 

concentrations are high (>1.00 mg L-1), too. They are both primarily 

released during microbial Fe(III) reduction and accumulate where the 

groundwater flow is slow and anisotropic. The behaviour of dissolved As 

and PO4
3- following the two in-situ experiments demonstrated that an 

increase in the PO4
3- concentrations could not induce an additional release 

of As into groundwater via PO4
3--As-exchange as proposed by ACHARYYA 

et al. (1999). 

Affected depth ranges and intensities of As release generally depend on 

the quantity as well as the quality of available OM, since As mobilisation is 

primarily influenced by metabolic activities of anaerobic microbes capable of 

Mn(IV), Fe(III), As(V), and SO4
2- reduction. Based on the biostimulation 

experiment, the hypothesis was postulated that an increase in the PO4
3- 

concentrations increases in turn the enrichment of As in groundwater by 

reducing the availability of adsorption sites. This mechanism was entitled as 

“competitive adsorption” (see chapter 6.3.4, f). 
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Figure 8.2: Depth plots of As, PO4
3- and Fe concentrations in samples from the 

field survey in comparison to results of the BGS and DPHE* survey in 

Bangladesh. In Bangladesh, concentrations peak in similar depths as in the 

field survey, supporting the assumed position of the redox boundary in about 

20 m and the zone of highest As enrichment in about 20 to 40 m depth. In 

Bangladesh, no explanation for the PO4
3- increases in wells deeper than 250 m 

was found, but due to the high groundwater ages, fertilisers were excluded as 

potential source (BGS & DPHE 2001).  

*One outlier removed (24 μM As)
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Deep wells. In wells deeper than ~40 m, concentrations of Fe, Mn, As, 

and PO4
3- are lower than in the active redox zone located above. This 

means arsenic was not released or concentrations of arsenic slowly 

declined after release. A decline can be the result of a flush-out into the Bay 

of Bengal after As release stopped. An interruption of As release occurs as 

soon as the pool of mobilizable sedimentary As is exhausted, or available 

organic matter that fuels microbially mediated As release is depleted. 

The mechanism of competitive adsorption offers a new alternative 

explanation. Groundwater dating and hydrochemical flow models have 

demonstrated that groundwater age in the BDP generally increases with 

depth (MICHAEL & VOSS 2009a, MUKHERJEE et al. 2011, STUTE et al. 

2007). In addition, Na/Cl ratios in the survey samples demonstrate that 

processes of groundwater evolution continue with time. This ratio can be 

considered as a suitable indicator to assess the intensity of water-rock 

interactions that shaped present groundwater and is therefore a useful tool 

to estimate the degree of groundwater maturity in the BDP. Furthermore, 

long residence times facilitate the kinetically slow precipitation of super-

saturated mineral phases (e.g., siderite, vivianite) and/or transformation 

reactions of present Fe(III) oxides through dissolved Fe(II) (e.g., formation 

of magnetite). Hence, As and PO4
3- can be retained by newly formed 

binding sites (see chapter 6.3.4 for underlying hypothesis) and their 

concentrations will slowly decrease when the maturity of the groundwater 

increases over time and/or with depth. Indeed, absolute concentrations of 

As and PO4
3- are highest in a range of about 20 to 40 m bls and decrease in 

deeper wells (Table 8.1 and Figure 8.2).  

The same applies to the BGS & DPHE data set. Here, a flush-out of 

dissolved solutes in these deeper aquifer parts can also not be excluded, 

but groundwater ages of up to 3 ka in 200 to 300 m depth support the 

hypothesis of mineral precipitation (AGGARWAL et al. 2000). 
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The higher the concentrations of competing PO4
3-, the more As should 

remain in groundwater since PO4
3- exhibits higher binding affinities under 

neutral pH values (DIXIT & HERING 2003). Other than expected, As/PO4
3- 

mol ratios do not clearly increase with depth (Figure 8.2). This deviant 

behaviour is attributed to the existence of other binding mechanisms for 

PO4
3- that do not compete with As(III) and/or As(V) adsorption. For 

example, the pumping experiment revealed that PO4
3- anions can also be 

weakly bound by electrostatic adsorption. 

The presumed removal of dissolved Fe with time further explains why 

some of the field survey samples (12 out of 16) were found to be in a mixed 

redox state (chapter 5, Figure 5.3). In these samples, Fe concentrations 

subsequently fell below the threshold value (0.10 mg L-1, JURGENS et al. 

2009). By contrast, field survey samples without SO4
2-, but significant 

amounts of NO3
- further indicate mixing with percolating groundwater in a 

less reducing redox state. This is attributed to extensive groundwater 

abstraction (see chapter 5.3.1). In addition, the abstraction experiment 

performed at the high As site demonstrated that mixing can also cause 

strong increases of As concentrations in low-arsenic groundwater. 

Thus, groundwater of the investigation area was and is controlled by 

various, interconnected biotic and abiotic processes (see Table 8.2) that 

create and preserve the characteristic bell-shaped depth profile of dissolved 

As (HARVEY et al. 2002). However, anthropogenic pumping can change 

this specific distribution pattern. The hydrochemical architecture of aquifers 

with arsenic-enriched groundwater in the floodplain of the BDP is illustrated 

in Figures 8.3 and 8.4. 
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Table 8.2: Summary of partly counteracting processes that have influenced the 

groundwater chemistry in the investigation area.

Process: Detectable in: Impact on groundwater chemistry: 

Mixing with evaporation 
influenced water 

Wells A and B at the high 
As site 

Increase in heavier 18O and 2H isotopes,  
increased salinity. 

Carbonate weathering 
All groundwater data, 

biostimulation experiment 

Increased alkalinity and Ca, Mg, Ba and Sr 
concentrations; 

Circum-neutral pH. 

Ion exchange All groundwater data 
Na-Ca-exchange causes the increase of Na/Cl 

ratios with depth and time. 

Microbial redox reactions: 

NO3
- reduction 

Mn(IV) reduction 

Fe(III) reduction 

As(V) reduction 

SO4
2- reduction 

All groundwater data, 

biostimulation experiment 

Increased alkalinity, intensification of carbonate 
weathering; 

Establishment of specific redox zones with 
respective decrease in OM, NO3

- and SO4
2-and 

increases of Mn(II), Fe(II), As(III) and PO4
3- 

concentrations. 

Precipitation of supersaturated  

transformation of weakly 
ordered Fe-phases by Fe(II) 

All groundwater data, 

biostimulation experiment 
Decreasing Fe(II) concentrations with depth / time. 

Competitive (re-)adsorption 
All groundwater data, 

biostimulation experiment 

Depletion of available binding sites; 

Simultaneous increase of the dissolved As and 
PO4

3- concentrations, followed by a decrease of As 
and PO4

3- concentrations with depth and time. 

Anthropogenic influences: 

Mixing caused by pumping 

and/or input of OM 

Field survey data, 

abstraction experiment, 

biostimulation experiment 

Pumping causes disturbances of the naturally 
occurring stable hydrochemical layers and As 

distributions; 

Inflow of OM into reducing zones may trigger fast 
microbially mediated As release. 

 Fe-mineral phases and 
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Conditions causing arsenic enrichment in groundwater.  

The following specific local conditions need to be fulfilled that As can be 

released / accumulated in shallow groundwater: 

 Permanently low redox conditions in the range of Fe(III) and As(V)

reduction, which requires in turn:

○ Availability of degradable OM that controls the intensity and

duration of  microbial metabolic reactions; 

○ Limited amounts of dissolved O2 and NO3
- that allow decline of the

redox potential; 

○ A protective surface aquitard that prevents inflow of TEA and

oxygen-rich water; 

○ Presence of arsenic-bearing Fe-(oxyhydr)oxides in the sediments;

○ Increased water temperatures to accelerate active microbial

metabolic reactions; 

 Slow horizontal groundwater flow that entails subsequent

enrichment of dissolved As;

 High concentrations of PO4
3- to inhibit or slow down the adsorption

of dissolved As.

Due to the highly variable sediment morphology of the floodplain 

system, most of these parameters are not homogenously distributed in 

groundwater and the aquifer sediments. Hence, the intensity of microbial 

activity and the concomitant As release differs from site to site, resulting in a 

heterogeneous distribution (both horizontally and vertically) of the As 

concentrations in the groundwater. This became evident at the two study 

sites, where the groundwater chemistry was shaped by similar processes, 

but the concentrations of As in groundwater strongly differed in certain 

depth intervals. 
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Temporal changes in arsenic concentrations. In addition to the 

spatial heterogeneity of As enrichments in groundwater, monitoring results 

from two wells (well B at the high As site and well A from the low As site) 

further revealed pronounced temporary changes in As concentrations. 

Temporary changing dissolved As concentrations were previously reported 

from the BDP (MC ARTHUR et al. 2010), but never with such a high 

temporal resolution. These changes arose from mixing and/or vertical 

movement of the groundwater body and embedded hydrochemical layers 

that are controlled by seasonal oscillations of the hydrostatic head. In well A 

of the low As site, these seasonal changes superimpose a constant 

increase in As concentrations arising from active Fe(III) reduction. Since the 

average depth of private tube wells is around 24 m in the area (see chapter 

5.2), many wells are considered to tap water from vertically layered redox 

zones, where As concentrations can seasonally vary. 

Anthropogenic effects. Distribution patterns of dissolved As in local 

tube wells indicate intensive groundwater abstraction via deep 

governmental wells causing drawdown of younger, less mature and often 

arsenic-enriched groundwater. This explains why increasing As 

concentrations were observed in previously low-arsenic deep wells (e.g., 

FENDORF et al. 2010, WINKEL et al. 2011) and also why 34 field survey 

samples were classified as a mixture of deviant redox states, holding 

moderate amounts of NO3
- as well as high concentrations of Fe and As 

(chapter 5.3.1). 

The pumping experiment proved that this mechanism works in the 

opposite direction, too. Here, simulation of extensive abstraction of shallow 

groundwater demonstrated a high vulnerability of groundwater towards 

mixing with arsenic-enriched groundwater. 

Irrigation with shallow groundwater in times of the dry season is 

common practice in the fertile floodplain east of Chakdah. In 1998/1999, 

about 60 % of the 8,450 ha fields have been irrigated with shallow ground-

water (NATH et al. 2008).  
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Together with numerous private and governmental tube wells for drinking 

water gain, a significant disturbance of the local complex hydrochemistry 

can be expected by re-directing the natural groundwater flow in the 

respective area. Induced effects on the composition of water delivered by 

local tube wells can be short-termed, but the abstraction experiment 

demonstrated that also long-lasting shifts of the layer boundaries can occur, 

alluding to an increase in As concentrations in the respective wells. 

Although water abrasion by itself does not cause release of additional 

amounts of arsenic, suction of DOC (e.g., derived from infiltrating sewage) 

into reducing aquifer zones may potentially induce a rapid stimulation of 

indigenous microbes and a concomitant mobilisation of As. Microorganisms 

can overcome periods of carbon absence by reducing the metabolic activity 

or by formation of endospores, until fresh OM (re-)activates their 

metabolism (KIEFT et al. 2007). This was previously discussed by several 

authors (e.g., HARVEY et al. 2002, NEUMANN et al. 2009 and POLYA & 

CHARLET 2009) and was also proved by the sucrose field experiment. 

Hence, it could be shown that pumping may trigger unpredictable effects 

on the local groundwater properties and must be therefore recognized as an 

additional important factor that may influence the distribution of As in 

groundwater of the BDP. 



9. CONCLUSIONS

Here, answers to the key questions raised in chapter 1 are provided: 

1. How is As release linked to the availability of OM in the aquifer?

The As release itself is the result of naturally occurring and widespread 

microbially mediated decomposition of OM, which leads to the development 

of reducing conditions in the aquifer sediments. The hydrochemical 

monitoring documented (for the first time) an active mobilisation of As(III) by 

Fe(III) reduction in one of the monitoring wells. Results of the sucrose 

biostimulation experiment further support this assumption, but demonstrate 

that microbial mobilisation of As is accompanied by a concomitant im-

mobilisation brought about the adsorption to residual and/or newly formed 

Fe-(oxyhydr)oxide phases.  

Below the zone of As accumulation in about 20 to 40 m depth, groundwater 

is more evolved as compared to younger water from above. Due to 

exhaustion of OM, microbial processes slow down. As a result, the ground-

water chemistry is strongly disturbed here and the water-sediment system is 

not in equilibrium as indicated by the prevailing SI at the two study sites. 

Long groundwater residence times generally foster the progress of 

kinetically slow processes like the precipitation of supersaturated Fe-

minerals or Na-Ca-exchange, which increase with depth and time. As a 

result of Fe-mineral precipitation and transformation, new binding sites are 

formed, inducing the immobilisation of As- and PO4
3--oxyanions. Hence, 

concentrations of As slowly decline when the maturity of the groundwater 

further increases with time. 
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2. Which biogeochemical reactions are induced by indigenous microbial

communities that control the mobilisation of As into local groundwater? 

The in-situ biostimulation experiment demonstrated at the low As site the 

important role of geomicrobiological processes in water-sediment inter-

actions. Results of this experiment were combined with outcomes of the 

hydrochemical monitoring and results of the high As site as well as the field 

survey to develop a concept that explains the spatial distribution pattern of 

dissolved As visible in groundwater of the investigation area. The As/Fe, 

As/PO4
3- and Fe/PO4

3- mol ratios have been proved to be helpful indicators 

to identify processes influencing the mobility of As in aquifers of the BDP. 

The highly similar behaviour of As- and PO4
3--oxyanions and the enrichment 

in groundwater indicates that both are mainly controlled by the same 

mechanism, which was identified as the reductive dissolution of Fe-

(oxyhydr)oxides. Additionally, temporal changes induced by the 

biostimulation experiment point at the competitive adsorption of As and 

PO4
3- to available binding sites of old and newly formed Fe-minerals. This 

process occurs parallel to mobilisation and outlasts the release. Hence, a 

long-lasting net increase of As concentrations in groundwater occurs only, 

when the available binding sites are already occupied either by As or PO4
3-. 

These results further confirm laboratory findings that demonstrated 

competing As release and retention via microbial degradation of OM. 

3. What are the specific local conditions that determine As mobilisation, and

how do such conditions arise? 

The fate of As in aquifers of the BDP was and still is controlled by multiple 

and superimposed processes and factors (summarised in Figure 9.1), which 

have created distinctive spatiotemporal distribution patterns of dissolved 

inorganic As in the groundwater.  
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Figure 9.1: Complex interconnections between different factors that influence 

the As distribution and finally lead to As enrichment in shallow groundwater. 

An important prerequisite for the mobilisation of As is a moderate to strongly 

reducing redox potential, which requires in turn degradable organic matter 

and a protective surface aquitard that prevents infiltration of oxygen- and 

nitrate-rich surface water. Another important aspect is the slow and 

preferentially horizontal groundwater flow, which enables subsequent 

enrichment of dissolved As after its mobilisation. High concentrations of 

dissolved PO4
3-, which is also released during Fe(III) reduction, will further 

reduce As immobilisation by competitive adsorption. The availability of 

organic matter and the presence of sandy gaps in the surface aquitard are 

directly influenced by sedimentation processes and are inhomogeneously 

distributed within the BDP. As a result, vertical and horizontal distributions 

of As in groundwater may strongly vary within narrow margins. 
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4. How is the response of dissolved As to interfering abiotic processes like

temporal changes in the groundwater level? 

Generally, the subsequent accumulation of As in groundwater following 

microbial controlled mobilisation is, in turn, controlled by abiotic hydrological 

processes and hydrochemical equilibrium reactions (e.g., precipitation of 

oversaturated Fe-minerals and competitive adsorption of As and PO4
3-). 

Since the hydrochemical equilibrium reactions are strongly influenced by 

prior microbial processes like the reductive dissolution of Fe-

(oxyhydr)oxides, they are inextricably linked with each other. Hence, a clear 

separation of As release and accumulation into biotic and abiotic processes 

is not possible. It was further shown that pronounced temporal changes in 

As concentrations can occur, which were directly linked to seasonal 

fluctuations of the hydrostatic head. 

Another important and new outcome is that the surface aquitard can act as 

an important sink for dissolved As, which is attributed to capillary rise and 

precipitation of Fe-(oxyhdr)oxides under oxic conditions. 

Anthropogenic activities can locally interfere with and/or overprint the 

established distribution patterns of dissolved As. In the near future, the fast 

growing population will increase the demand for drinking water and 

irrigation. Due to the easy accessibility of shallow groundwater, groundwater 

abstraction will further increase the pressure on the groundwater resources 

of the BDP as well as of many other Asian floodplain and deltaic areas. 

Hence, mitigation strategies need urgently to be reappraised to provide 

drinking and irrigation water to the local population without endangering the 

strongly limited low arsenic water reserves. 



OUTLOOK 

In order to transfer the outcomes of this study to the whole BDP and 

other arsenic-affected Asian regions, it is necessary to investigate more 

than two single spots. This is important, since the controlling parameters of 

As mobility may often act in opposing directions. To get a more 

comprehensive picture, more investigations are necessary that focus on the 

new aspects described in this thesis. In order to save time and money, it 

would be convenient to apply the new concepts to already existing study 

sites like that of CHARLET and co-workers (Chakdah area), MC ARTHUR 

and his group (JAM area), or the areas in Bangladesh investigated by VAN 

GEEN and many others. 

More attention needs to be paid on the following aspects related to ground-

water As enrichment and mobility: 

• Determination of the influence of the surface aquitard. The role of

the overlying surface aquitards in the BDP as well as in other arsenic 

affected floodplain and deltaic areas of Asia remains unclear. More 

information is necessary on the distribution and spatial extent of the clayey 

and silty deposits and on the occurrence of reducing conditions in sub-

surface aquitards (MÉTRAL et al. 2008). This could be a helpful tool to 

constrain and predict the occurrence of arsenic-enriched groundwaters. 

Another important aspect to be closer investigated is the role of these 

compact sediments as sink for dissolved As, when arsenic- and iron-rich 

groundwater enters the unsaturated zone via capillary rise and Fe-

(oxyhydr)oxides precipitate.  

Similar processes can be expected in the widespread rice paddies, where 

strongly reducing conditions may develop in the soil. 
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• Monitoring of redox transition zones. Monitoring results from the

high As site demonstrate how dynamic and small scaled differences in local 

redox conditions can be. As a result, dissolved As, but also Mn, reach 

concentrations in reducing aquifers of the BDP that give reason to concern. 

Forthcoming studies, notably such related to risk assessment, should be 

aware and take into account that strong spatiotemporal variations in As 

concentrations may occur over time. 

• Characterisation of microbial communities and mineral inter-

actions.  It is necessary to better investigate interactions between the input 

of reactive OM into reducing parts of the aquifer, the provoked activity of 

microbial communities, available Fe-minerals and the concomitant trans-

formations of these minerals in assessing the mobilisation of As in natural 

aquifer systems. The identification of microbial strains in different redox 

zones and determination of active metabolic pathways by cutting-edge 

molecular-biologic methods in different redox zones is one of the most 

stringent and still pending issues, allowing to find out the common features 

of the arsenic-mobilising microbial communities.  

A newly developed method is the use of biofilm in-situ microcosms, 

which can be directly introduced into groundwater (e.g., GILHAM et al. 

1990). This provides the opportunity to incubate and trap microbes directly 

in their natural habitat. By varying the available growth medium, for 

example, different kinds of Fe-minerals, such microcosms could be used to 

trap and identify those FeRB that respire the respective mineral phases, 

and to observe the biogeochemical mediated transformation of Fe-minerals 

at the same time (CUMMINGS & MAGNUSON 2007). 

• Groundwater abstraction. The groundwater abstraction experiment

demonstrated that intensive abstraction from presumably arsenic-free 

groundwater bears the risk of attracting arsenic-enriched groundwater in 

direction of the pumping well. There is a pressing need to find alternative 

ways to provide safe drinking water before the last reserves of low-arsenic 

water are contaminated. 
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• Arsenic - iron - phosphate interactions. The hypothesis of As and

PO4
3- adsorption offers explanations why As remains in solution, and why 

dissolved As concentrations slowly decline with increasing depth. This 

concept requires further validation by laboratory column and batch 

experiments as well as by evaluation of previously published monitoring 

data from other affected areas (e.g., the Red River Delta in Vietnam). 

Furthermore, if more detailed information was available regarding the 

sorption behaviour of As, interactions occurring during transport of arsenic- 

and phosphate-rich groundwater induced by anthropogenic pumping could 

be used to model reactive transport of As. This would allow to estimate the 

local vulnerability of low arsenic water reserves towards inflowing arsenic-

increased groundwater. 
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Table A 1.1, part I: Average EDX measuring results of reference materials 

(recommended value, proposed value, information value; GLADNEY & 

ROELANDTS 1990, GOVINDARAJU 1994). Sample contents were divided by the 

correction value, which represents the average recovery rate (rec.) of the 

reference materials. Outliers (*) were excluded from the correction factor 

calculation. Table continued on next page. 

Std. K2O CaO TiO2 MnO Fe2O3 Ni Cu Zn As 

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 

Soil V 

n: 10 

Avg.  

± 
2.07 
0.11 

3.44 
0.05 

0.79 
0.01 

0.12 
0.00 

6.40 
0.16 

21.6 
0.55 

83.3 
2.2 

378 11 
98.0 
2.8 

Ref. 2.24 3.10 0.78 0.11 6.36 13.0 77.0 370 94.0 

Rec. 0.92 1.11 1.02 1.06 1.01 1.66* 1.08 1.02 1.04 

Soil VII 

n: 10 

Avg.  

± 

1.67 

  0.01 
30.2 
0.09 

0.65 
0.00 

0.11 
0.00 

4.86 
0.02 

30.5 
0.98 

17.7 
0.6 

124 1 
17.7 
0.4 

Ref. - - - 0.08 - - 11.0 104 13.4 

Rec.  1.33 1.61* 1.19 1.32 

GXR-2  

n: 11 

Avg.  

± 

1.49 

0.01 

1.40 

0.01 

0.61 

0.00 

0.15 

0.00 

3.13 

0.01 

29.3 

0.4 

88.5 

0.9 

595 

2 

24.9 

0.8 

Ref. 1.65 1.30 0.50 0.13 2.66 21.0 76.0 530 25.0 

Rec. 0.90 1.08 1.22 1.14 1.18 1.40* 1.16 1.12 1.00 

GXR-5  

n: 10 

Avg.  

± 

0.79 

0.01 

1.23 

0.01 

0.49 

0.00 

0.04 

0.00 

5.26 

0.01 

64.5 

0.6 

369 

1 

48.2 

0.8 

12.2 

0.3 

Ref. 1.06 1.17 0.37 0.04 4.84 75.0 354 49.0 11.2 

Rec. 0.75* 1.05 1.33 1.04 1.09 0.86 1.04 0.98 1.09 

Sco-
1  

n: 7 

Avg.  

± 

2.59 

0.02 

3.07 

0.01 

0.58 

0.00 

0.05 

0.00 

5.32 

0.01 

33.1 

0.9 

29.7 

0.6 

102 

1 

13.0 

0.3 

Ref. 
value 

2.77 2.62 0.63 0.05 5.14 27.0 28.7 103 12.4 

Rec. 0.93 1.17 0.92 0.97 1.03 1.23 1.03 0.99 1.04 

SDO-1  

n: 7 

Avg.  

± 

3.09 

0.16 

1.16 

0.03 

0.65 

0.02 

0.04 

0.00 

8.73 

0.27 

75.7 

2.6 

52.4 

1.5 

54.3 

1.6 

58.7 

2.4 

Ref. 3.35 1.05 0.71 0.04 9.34 99.5 60.2 64.1 68.5 

Rec. 0.92 1.11 0.91 0.96 0.93 0.76 0.87 0.85 0.86 

Correction 
value 

0.88 1.10 1.08 1.08 1.05 0.95 1.04 1.03 1.01 

Value 



A.1 MATERIALS AND METHODS 

257 

Table A 1.1, part II. 

Std. Rb Sr Y Zr Nb Mo Ba La Ce Pb 

all (mg/kg) 

Soil V 

n: 10 

Avg. 

± 

124 

5 

322 

11 

22.5 

1.3 

210 

11 

9.81 

0.56 

2.31 

0.39 

593 

10 

31.2 

1.3 

56.9 

1.5 

134 

5 

Ref.  140 330 21.0 220 9.00 2.00 560 28.0 60.0 130 

Rec. 0.89 0.98 1.07 0.95 1.09 1.15 1.06 1.11 0.95 1.03 

Soil VII 

n: 10 

Avg. 

± 

59.6 

0.9 

27.4 

1.2 

126 

1 

212 

2 

12.4 

0.7 

1.62 

0.50 

163 

2 

32.3 

0.9 

57.2 

1.4 

67.3 

1.0 

Ref.  51.0 21.0 108 185 - - - 28.0 61.0 60.0 

Rec. 1.17 1.31 1.17 1.14 1.15 0.94 1.12 

GXR-2  

n: 11 

Avg. 

± 

84.1 

1.3 

164 

1 

21.0 

0.5 

282 

2 

13.5 

0.6 

1.79 

1.16 

1990 

20 

24.7 

1.3 

47.5 

1.5 

716 

11 

Ref.  78.0 160 17.0 269 11.0 2.10 2240 25.6 51.4 690 

Rec. 1.08 1.02 1.23 1.05 1.23 0.85 0.89 0.97 0.92 1.04 

GXR-5  

n: 10 

Avg. 

± 

37.2 

0.7 

115 

1 

16.4 

0.2 

171 

1 

7.25 

0.32 

37.0 

0.8 

2190 

20 

18.3 

1.2 

34.0 

1.4 

15.0 

1.3 

Ref.  41.0 110 16.0 140 6.70 31.0 2000 18.9 39.0 21.0 

Rec. 0.91 1.05 1.02 1.22 1.08 1.19 1.09 0.97 0.87 0.72* 

Sco-1  

n: 7 

Avg. 

± 

115 

1 

168 

2 

25.1 

0.5 

173 

2 

12.7 

0.3 

1.27 

0.46 

588 

8 

31.5 

0.9 

55.1 

0.8 

28.1 

1.3 

Ref.  112 174 26.0 160 11.0 1.37 570 29.5 62.0 31.0 

Rec. 1.03 0.96 0.96 1.08 1.15 0.93 1.03 1.07 0.89 0.91 

SDO-1  

n: 7 

Avg. 

± 

114 

8 

68.3 

3.8 

38.1 

2.3 

144 

11 

12.7 

1.3 

161 

2 

381 

11 

38.6 

1.4 

68.2 

2.7 

22.6 

2.6 

Ref.  126 75.1 40.6 165 11.4 134 397 38.5 79.3 27.9 

Rec. 0.90 0.91 0.94 0.87 1.11 1.20 0.96 1.00 0.86 0.81 

Correction value 1.00 1.01 1.09 1.05 1.13 1.07 1.01 1.05 0.91 0.98 

Value
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Table A 1.2, part I: Comparison of an in-house quartz reference material with 

literature values of principal peaks with relative intensities (RI) >5% between 3 

and 63° 2θ and comparison of duplicate measurements for sediment samples 

(RI >1.50 %) to prove the reliability of XRD analysis. Continued on next page. 

Quartz  Sample High As site, 4.60 m bls 

LEVIEN et al. (1980) In-house reference 1 2 

d (Ǻ) 
RI 

(%) 
d (Ǻ) 

RI 

(%) 
Peak d (Ǻ) 

RI 

(%) 
d (Ǻ) 

RI 

(%) 

3.3446 100 3.3457 100 1 3.3414 100 3.3415 100 

4.2574 28.5 4.2614 11.6 2 1.8175 20.4 1.8175 20.5 

1.8184 18.0 1.8189 15.6 3 1.5413 16.0 1.5413 16.0 

1.5423 13.0 1.5420 14.1 4 3.1844 15.2 3.1852 15.0 

2.4580 10.2 2.4584 7.89 5 4.2543 13.8 4.2544 14.1 

2.2818 8.84 2.2827 8.81 6 2.4560 9.83 2.4562 9.78 

2.1287 7.51 2.1288 7.98 7 2.1273 9.64 2.1270 9.70 

8 2.2811 8.25 2.2806 8.53 

9 3.0267 7.68 3.0251 8.30 

10 1.6713 6.28 1.6713 6.74 

11 1.9925 6.19 1.9923 6.28 

12 2.8842 6.13 2.8841 6.08 

13 1.9797 5.20 1.9797 5.31 

14 2.2360 5.02 2.2362 4.84 

15 9.9878 4.51 9.9815 4.55 

16 3.2419 4.51 3.2411 4.60 

17 3.5339 2.67 3.5337 2.75 

18 1.6593 2.54 1.6591 2.86 

19 4.9791 2.52 4.9801 2.57 

20 2.5641 2.50 2.5641 2.65 

21 3.4835 2.40 3.4951 2.35 

22 1.7838 2.33 1.7838 2.02 

23 2.9905 2.22 2.9874 2.16 

24 2.4906 2.04 2.4903 1.89 

25 1.8040 2.02 1.8027 2.18 

26 7.0800 1.79 7.0742 1.78 

27 3.7698 1.78 3.7689 1.87 

28 2.8591 1.70 

29 1.9097 1.68 1.9092 1.63 

30 4.0323 1.65 4.0313 1.67 
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Table A 1.2, part II. 

Sample High As site, 10.5 m bls Low As site, 11.4 m bls 

 1 2 1 2 

Peak d (Ǻ) 
RI 

(%) 
d (Ǻ) 

RI 

(%) 
d (Ǻ) 

RI 

(%) 
d (Ǻ) 

RI 

(%) 

1 3.3397 100 3.3410 100 3.3395 100 3.3407 100 

2 1.8169 20.3 1.8174 19.5 1.8170 17.7 1.8170 16.8 

3 1.5407 15.9 1.5411 17.1 1.5409 15.4 1.5411 13.5 

4 3.1861 14.5 3.1823 16.8 4.2511 12.9 4.2514 14.7 

5 4.2513 13.0 4.2522 15.1 3.1854 11.7 3.1874 14.2 

6 2.4545 10.3 2.4561 8.82 2.4550 9.31 2.4556 6.53 

7 2.8842 10.9 2.8852 3.89 2.2799 8.90 2.2796 7.67 

8 2.2793 8.43 2.2807 7.45 2.1264 8.45 2.1262 9.78 

9 3.2418 7.73 3.2397 9.40 1.9786 6.74 1.9789 5.03 

10 2.1259 7.64 2.1263 13.2 1.6711 5.59 1.6710 6.65 

11 1.6706 6.74 1.6712 7.25 2.2352 4.82 

12 1.9785 5.85 1.9797 5.85 3.2402 4.68 3.2308 7.08 

13 1.9917 4.66 1.9928 5.65 3.0274 4.09 3.0258 5.18 

14 3.0239 4.12 3.0240 9.36 2.8859 4.06 2.8818 5.05 

15 2.2351 3.98 2.2361 3.53 1.9911 3.17 1.9922 5.31 

16 9.9873 3.41 9.9887 4.89 9.9694 3.00 9.9968 3.70 

17 1.6582 2.18 1.6590 2.78 1.6586 2.68 1.6587 2.41 

18 3.7650 2.05 3.7679 1.68 3.7660 2.19 

19 3.4799 1.95 3.4869 1.85 1.8004 2.09 1.7986 2.02 

20 4.9727 1.71 4.9804 2.20 3.4794 1.81 3.4803 1.98 

21 3.5288 1.69 3.5325 1.84 1.7841 1.76 

22 1.8013 1.58 1.8007 1.61 2.9886 1.62 
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Table A 1.3: Magnetic separation settings and characteristic minerals in 

respective fractions (according to instruction manual). 

Fraction Inclination - 
front 

(°) 

Inclination - 
lateral 

(°) 

Magnetic 
field current 

(A) 

Characteristic minerals 

0 Bar magnet - - Magnetite 

1 30 20 0.4 Garnet, ilmenite, olivine, 
chromite, chloritoid 

2 30 20 0.8 Hornblende, hypersthene, augite, 
actinolite, staurolite, epidote, biotite, 

chlorite, tourmaline (dark) 

3 30 20 1.2 Tremolite, enstatite, spinel, staurolite 
(light), muscovite, zoisite, clinozoisite, 

tourmaline (light) 

4 30 5 1.2 Apatite, andalusite, monazite, 
xenotine 

5 Residuum - - Zircon, rutile, anatase, pyrite, 
corundum, topaz, fluorite, silimanite, 

anhydrite, beryl 
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Table A 1.4: Sequential extraction procedure scheme proposed by EICHE et al. 

(2008). Although being semi-quantitative, this procedure provides a reliable 

estimation of the sedimentary As distribution among different potential host 

phases. After completion of each fraction, a wash step with Milli-Q water was 

done (volume similar to extractant; fraction VI: hot wash) and included in the 

respective extraction solutions. Solutions were centrifuged (15 min at 4500 

rpm), decanted and stored in a refrigerator at 4°C until analysis by HR-ICP-MS. 

Step Target phase Extractant Conditions 

I Weakly (electro-statically)
bound As 

0.05 M (NH4)2SO4 

(p.a., Merck) 

Volume: 25 mL 

Leaching duration: 4 h 

Temperature: 25°C 

Repetition: 1 

II Strongly adsorbed (ligand 
exchange) As 

0.5 M NaH2PO4 (p.a., Merck) Volume: 40 mL 

Leaching duration: 16 & 24 h 

Temperature: 25°C 

Repetition: 1 (each) 

III Arsenic incorporated in acid 
volatile sulphides (AVS), 

carbonates, Mn-oxides, very 
amorphous Fe-
(oxyhydr)oxides 

1 M HCl (p.a., Merck) Volume: 40 mL 

Leaching duration: 1 h 

Temperature: 25°C 

Repetition: 1 

IV Arsenic incorporated in 
amorphous Fe-
(oxyhydr)oxides 

AOD: 

0.2 M NH4-oxalate (p.a., 
Merck) 

+ 0.2 M oxalic acid (p.a., 
ROTH) 

→ Forms complexes with Fe 
that are sensitive to light 

Volume: 40 mL 

Leaching duration: 2 h 

Temperature: 25°C 

Repetition: 1 

Solutions and extractions kept 
in dark 

V Arsenic incorporated in 
crystalline Fe-(oxyhydr)oxides 

DCB:  

0.5 M Na-citrate (p.a., Merck) 

+ 1 M NaHCO3 (p.a., Merck) 

after heating to 85°C: + 0.5 g 
Na2S2O4 x H2O (p.a., Merck) 

Volume: 35 mL (Na-citrate) 

+ 2.5 ml (NaHCO3)  

+ 0.5 g (Na2S2O4 x H2O)  

Leaching duration: 15 min 

Temperature: 85°C 

Repetition: 1 

VI Arsenic associated with 
silicates 

10 M HF (suprapure, Merck) 

after 16 h: + 5 g boric acid 
(p.a., Merck) 

Volume: 40 mL 

Leaching duration: 1 & 24 h 

Temperature: 25°C 

Repetition: 1 (each) 

VII Arsenic-bearing sulphides, 
refractory minerals, OM 

16 M HNO3 (sub-boiled, 
Merck)  

+ H2O2 (30% p.a., ROTH) 

According to EPA 3050B 
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Table A 1.5: Reference materials used for sedimentary organic matter 

characterisations (*reference values cited from IAEA 1993, **SCHOELL et al. 

1983, otherwise cited from respective manufacturer certificates). 

Instrument Parameter Ref. material Ref. value Measured average n 

CSA TOC / TIC 
/ TS 

ELTRA Steel 
standard 
92000-27 

C: 0.154 ± 0.003 (wt.%) 

S: 0.026 ± 0.0001 (wt.%) 

C: 0.155 ± 0.002 wt.% 

S: 0.028 ± 0.002 wt.% 

30 

ELTRA Steel 
standard 
92000-26 

C: 3.21 ± 0.02 (wt.%) 

S: 0.127 ± 0.004 (wt.%) 

C: 3.296 ± 0.015 wt.% 

S: 0.124 ± 0.002 wt.% 

3 

EA TN Heka Tech
Soil 5 

0.021 (wt.%) 0.025 ± 0.003 wt.% 15 

NCS DC 
73326 

0.037 ± 0.001 (wt.%) 0.038 ± 0.003 wt.% 24 

EA-IRMS δ15N IAEA-N1* 0.43 ± 0.07 (‰ air) 0.40 ± 0.13 (‰ air) 69 

IAEA-N2* 20.32 ± 0.09 (‰ air) 20.31 ± 0.14 (‰ air) 26 

25-USGS* -30.25 ± 0.38 (‰ air) -30.38 ± 0.23 (‰ air) 29 

EA-IRMS δ13C NBS-21** -28.16 ± 0.01 (‰ VPDB) -28.23 ± 0.13 (‰ VPDB) 38 

USGS 24* -15.994 ± 0.105 (‰ VPDB) -15.96 ± 0.05 (‰ VPDB) 12 

NBS-18* -5.029 ± 0.049 (‰ VPDB) -5.09 ± 0.08 (‰ VPDB) 11 

Table A 1.6: Determined elements by HR-ICP-MS measured at given masses 

and average ld (3*σ, in µg L-1) from all monitoring and in-situ experiment 

analyses (n: 13). 

23Na 26Mg 39K 42Ca 43Ca 7Li 27Al 

22.6 

± 9.5 

6.62 

± 3.45 

22.7 

± 10.6 

27.1 

± 14.1 

25.3 

± 14.1 

0.15 

± 0.06 

0.43 

± 0.20 

31P 47Ti 51V 52Cr 55Mn 56Fe 59Co 

0.81 

± 0.38 

0.07 

± 0.07 

0.01 

± 0.01 

0.02 

± 0.02 

0.22 

± 0.09 

1.55 

± 0.72 

0.03 

± 0.01 

60Ni 65Cu 66Zn 75As 75As(III) 85Rb 88Sr 

0.17 

± 0.19 

0.23 

± 0.24 

0.72 

± 0.40 

0.25 

± 0.08 

0.39 

± 0.22 

0.03 

± 0.02 

0.12 

± 0.06 

98Mo 111Cd 133Cs 137Ba 205Tl 207Pb 238U 

0.13 

± 0.08 

0.02 

± 0.03 

0.02 

± 0.01 

0.08 

± 0.05 

0.03 

± 0.01 

0.04 

± 0.02 

0.00 

± 0.01 
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Table A 1.7: Certified reference solutions used for HR-ICP-MS measurements of 

all monitoring and in-situ experiment samples (A: Trace Metals In Drinking 

Water, HPS; B: Trace Metals ICP QCP 050-1, Promochem GmbH). 

Element As* (µg/L) Na (mg/L) Mg (mg/L) K (mg/L) Ca (mg/L) Li (µg/L) 

A 11.0 0.50 1.60 0.50 6.20 3.00

Analysis 

(n: 29) 

11.2 

± 0.3 

0.46 

± 0.03 

1.59 

± 0.07 

0.50 

± 0.03 

6.18 

± 0.20 

3.11 

± 0.23 

B 0.16 0.02 0.78 0.02 12.6

Analysis 

(n: 7) 

0.17 

± 0.02 

0.02 

± 0.00 

0.73 

± 0.05 

0.03 

± 0.01 

12.7 

± 1.2 

Element Al (µg/L) Ti (µg/L) V (µg/L) Cr (µg/L) Mn (µg/L) Fe (µg/L) 

A 25.0 - 7.00 4.00 8.00 18.0

Analysis 

(n: 29) 

24.8 

± 1.2 
- 

7.10 

± 0.28 

4.06 

± 0.14 

8.14 

± 0.31 

19.2 

± 1.6 

B 116 14.7 18.9 8.40 8.40 6.30

Analysis 

(n: 7) 

113 

± 3 

14.8 

± 0.5 

19.0 

± 0.7 

8.41 

± 0.1 

8.40 

± 0.19 

6.88 

± 0.61 

Element Co (µg/L) Ni (µg/L) Cu (µg/L) Zn (µg/L) Sr (µg/L) Mo (µg/L) 

A 5.00 12.0 4.00 15.0 60.0 22.0

Analysis 

(n: 29) 

4.96 

± 0.19 

12.1 

± 0.5 

4.12 

± 0.30 

15.3 

± 0.5 

60.2 

± 1.7 

21.9 

± 0.8 

B 12.6 14.7 14.7 6.30 29.4 18.9

Analysis 

(n: 7) 

12.2 

± 0.4 

14.6 

± 0.3 

14.5 

± 0.4 

6.51 

± 0.32 

30.3 

± 0.9 

19.2 

± 0.5 

Element Cd (µg/L) Ba (µg/L) TI (µg/L) Pb (µg/L) 

A 2.00 100 2.00 4.00

Analysis 

(n: 29) 

2.00 

± 0.07 

100 

± 3 

2.00 

± 0.04 

3.90 

± 0.15 

B 21.0 137 27.3 14.7

Analysis 

(n: 7) 

21.4 

± 0.8 

139 

± 4 

27.7 

± 0.7 

15.0 

± 0.7 

*As(III) determination: 11.5 ± 0.5, n: 11 (determined from reference solution A) 
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Table A 1.8: Quantification limits (confidence interval: 0.99) for anions 

determined in all monitoring and in-situ experiment samples by IC (column 1: 

DIONEX AS 4 SC; column 2: DIONEX AS14). In brackets: ranges of five point 

calibration (SPEC PURETM Multi Ion IC Standard Solution, Alfa-Aesar). 

Column n 
Cl- 

(mg/L) 

NO3
- 

(mg/L) 

SO4
2- 

(mg/L) 

Column 1 (used until February 2010) 28 
0.26 

(0.4 to 20.0) 

0.88 

(0.8 to 40.0) 

0.85 

(0.8 to 40.0) 

Column 2 (used after February 2010) 9 
0.36 

(1.0 to 40.0) 

0.28 

(2.0 to 80.0) 

0.37 

(2.0 to 80.0) 

# Reference solutions 4 8 8

Table A 1.9: Precision for isotopic reference materials, measured by IRMS 

against VSMOW (Vienna Standard Mean Ocean Water) during in-situ 

experiment sample analyses (reference values by IAEA 1993). 

Parameter Reference material n Reference value Analysis 

δ18O GISP* 3 -24.78 -24.72 ± 0.08 

SLAP** 3 -55.50 -55.53± 0.03

VSMOW*** 3 0 -0.04 ± 0.04 

δ2H GISP 7 -189.73 -189.9 ± 1.2 

Slap 7 -428.00 -427.80 ± 0.54 

VSMOW 7 0 0.23 ± 0.68 

*GISP: Greenland Ice Sheet Precipitation 

**SLAP: Standard Light Antarctic Precipitation

***VSMOW: Vienna Standard Mean Ocean Water 
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Table A 2.1: Summary of sediment analysis, comprising all samples down to a 

depth of 45.5 m bls (n: 70). 

K2O CaO TiO2 MnO Fe2O3 

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) 

As Ni  Cu  Zn  

 

Minimum 1.37 0.97 0.20 0.02 1.40 1.8 21.2 8.73 19.0 

25 % Q. 1.87 2.60 0.26 0.03 2.09 2.8 23.3 9.76 27.2 

Median 2.31 2.98 0.34 0.04 2.37 2.9 24.2 10.4 30.3 

75 % Q. 2.76 3.80 0.48 0.05 3.24 3.6 29.2 13.6 45.2 

Maximum 4.00 5.33 0.83 0.09 8.06 12.6 59.1 59.9 109 

Average 2.35 3.16 0.39 0.04 2.88 3.7 27.1 14.0 37.6 

r As- 0.64 -0.11 0.75 0.67 0.86 0.89 0.92 0.87 

r Fe- 0.78 0.07 0.93 0.78 0.86 0.97 0.94 0.99 

Fine 
fraction* 

TS  TOC  TIC 

(wt.%) (wt.%) (wt.%) (wt.%) 

Minimum 243 75.1 38.1 11.7 18.0 0.19 <0.003 0.02 0.02 

25 % Q. 310 85.9 49.6 15.3 25.4 2.82 0.005 0.02 0.31 

Median 325 92.5 58.0 17.9 29.5 10.6 0.006 0.03 0.38 

75 % Q. 367 99.9 78.4 24.1 37.7 18.9 0.009 0.07 0.52 

Maximum 581 109 98.6 34.6 47.3 94.2 0.064 1.67 1.33 

Average 345 92.2 63.7 19.8 31.1 19.2 0.008 0.09 0.44 

r As- 0.83 0.07 0.29 0.50 0.27 0.76 0.53 0.75 0.24 

r Fe- 0.93 0.22 0.48 0.66 0.48 0.88 0.40 0.51 0.36 

*Fraction <0.063 mm, comprising silt and clay 

Value 
range

Value 
range

(mg/kg) (mg/kg) (mg/kg) (mg/kg)

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Ba Sr Ce  Y  La  
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Table A 2.2: Distribution of As, Fe and Mn in SEP fractions I-VII of 

representative samples (fractions described in Table A 1.4). GXR-2 reference 

values (mg/kg): As: 25.0; Fe: 19,000; Mn: 1,007. 

Depth 

(m bls) 

As (mg/kg) 

I II III IV V VI VII Σ 

2.55 0.16 4.94 0.55 0.60 1.07 1.67 0.06 9.05 

3.20 0.06 1.73 0.38 0.20 0.03 0.00 0.23 2.62 

13.0 0.05 1.67 0.19 0.19 0.04 0.00 0.62 2.76 

20.2 A 0.05 0.68 0.23 0.16 0.36 0.00 0.00 1.49 

20.2 B 0.02 1.09 0.33 0.06 0.14 0.00 0.00 1.63 

25.3 0.01 0.50 0.29 0.11 0.27 0.00 0.00 1.18 

30.5 0.01 2.53 0.30 0.13 0.00 0.00 0.00 2.99 

38.3 0.00 1.54 0.29 0.06 0.00 0.00 0.00 1.88 

45.5 0.01 0.96 0.23 0.04 0.10 0.00 0.00 1.34 

GXR-2 1.21 21.4 2.34 2.11 1.38 0.00 0.35 28.8 

Depth 

(m bls) 

Fe (mg/kg) 

I II III IV V VI VII Σ 

2.55 558 647 1914 1409 12469 29885 38.8 46919 

3.20 155 3276 6579 1058 3522 17425 119 32134 

13.0 17.4 2774 2973 1106 889 9895 432 18086 

20.2 A 7.44 782 972 150 561 6051 170 8695 

20.2 B 3.41 594 910 197 699 8014 96.4 10513 

25.3 7.67 455 899 229 4560 7698 0.00 13849 

30.5 4.09 1406 2182 402 1046 6901 45.1 11986 

38.3 23.4 1364 1702 250 574 5021 2.05 8936 

45.5 5.81 465 1837 247 2079 8108 0.00 12742 

GXR-2 169 3175 6362 1698 6043 5043 95.5 22586 

Depth 

(m bls) 

Mn (mg/kg) 

I II III IV V VI VII Σ 

2.55 2.56 135 119 506 89.8 211 1.00 1065 

3.20 28.1 167 73.7 174 19.4 182 4.71 649 

13.0 17.6 52.3 46.9 1.87 3.98 174 33.3 330 

20.2 A 20.3 35.2 23.5 57.2 2.82 110 10.9 260 

20.2 B 13.7 31.6 27.5 46.2 3.17 142 6.36 270 

25.3 9.25 27.3 32.4 120 34.6 117 7.66 348 

30.5 25.1 50.1 37.6 147 9.13 110 3.65 383 

38.3 14.9 46.2 29.6 143 4.35 68.3 1.99 309 

45.5 12.5 30.1 43.3 105 13.8 121 10.2 336 

GXR-2 149 886 72.1 36.6 28.8 76.2 1.55 1250 
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Figure A 2.1: Interpretation of XRD spectra from different depths and litho-

facies. Reference spectra of identified mineral peaks include anorthite (ANGEL 

1988), calcite (GRAF 1961), clinochlore (PHILIPS et al. 1980), dolomite 

(STEINFINK & SANS 1959), muscovite (RICHARDSON & RICHARDSON 1982) 

and quartz (LEVIEN et al. 1980). 
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Figure A 2.2, part I: Interpretation of XRD sample spectra for clay mineral 

identification comprising dry, heat-treated and glycol-solvated fractions of two 

representative samples. Reference spectra are included for mineral 

identification: clinochlore (PHILIPS et al. 1980), illite (DRITS et al. 2010), 

kaolinite (BISH & VON DREELE 1989), muscovite (RICHARD-SON & 

RICHARDSON 1982). Figure continued on next page. 
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Peak: Position (2 to 22° 2Θ): 

(heat-treated / glycol / dry) 

Interpretation: 

A - / 5.2 /- Glycol-solvated smectite 

B 6.3 / 6.3 / 6.3 
Chlorite (clinochlore) 

+ smectite 

C 8.7 / 8.8 / 8.8 
Muscovite / illite 

+ heat-treated smectite 

D 12.5/ 12.4 / 12.4 
Chlorite (clinochlore) 

+ kaolinite (?) 

E 17.6 / 17.7 / 17.0 Muscovite / illite 

F - / 18.8 / 18.7 
Chlorite (clinochlore) 

+ chlorite heat-treated 

G 19.8 / 19.8 / 18.9 Muscovite / illite 

H 20.8 / 20.8 / 20.9 Quartz 

Figure A 2.2, part II: The presence of smectite is indicated by a shift of the 

generally broad peak B (located at ~6.3° 2Θ) to position A (~5.23° 2Θ) in the 

glycol-solvated spectra, and the increase of peak C (8.78° 2Θ) after heat-

treatment (MOORE & REY-NOLDS 1989). Peaks B and F (6.3 and 18.8° 2Θ) 

indicate clinochlore (chlorite) (MOORE & REYNOLDS 1989). Another typical 

clay mineral is kaolinite, which is difficult to identify in presence of chlorite. 

Heat treatment (550°C; 1h) causes de-hydroxylation and weakening of chlorite 

peaks similar to kaolinite. Hence, presence of kaolinite can in this case neither 

be excluded nor proved (MOORE & REYNOLDS 1989). The same problem arises 

in case of illite, which shares most of the peak positions with muscovite. While 

large plates of muscovite are directly visible in the sample material, the first 

order peak of illite at 19.8° 2Θ is barely visible. 
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Figure A 2.3: Spectra of magnetic separated fractions for a sample from 41.6 m 

bls. Included are the fractions wt.% and the Fe content determined by EDX. 

Figure caption continued on next page. 
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Figure A 2.3, continued: Loss during fractionation: 4.37 wt.%; sample grain size 

comprised to 100 % the fraction <0.2 mm and >0.063mm. Dominating mineral 

phases were identified for each fraction. Reference spectra: actinolite (EVANS 

& YANG 1998), almandine (NOVAK & GIBBS 1971), anorthite (ANGEL 1988), 

calcite (GRAF 1961), chloritoid (HANSCOM 1980), clinochlore (PHILIPS et al. 

1980), dolomite (STEINFINK & SANS 1959), epidote (DOLLASE 1971), hematite 

(BLAKE et al. 1966), muscovite (RICHARDSON & RICHARDSON 1982), 

phlogopite (STEINFINK 1962) and quartz (LEVIEN et al. 1980). 
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Figure A 2.4: Spectra for magnetic separated fractions for a sample from 39.0 m 

bls including respective Fe contents, which were determined by EDX. Grain 

size comprises to 100 % the fraction <0.2 mm and >0.063mm. For reference 

spectra, see Figure A 2.3. 
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Table A 2.3, part I: Literature values for OM characterisation (δ13C measured 

against VPDB, δ15N measured against air), based on different sample sources 

like mangrove trees and plant tissues. POM: particulate organic matter, M: 

marine, F: freshwater. Table continued on next page. 

Ref. Sample type δ13C (‰) δ15N (‰) C/N (wt.%-ratio) 

C4 C3 POM C3 C4 C3 POM 

1 Summary -15 to  
-10 

-35 to  
-21 

M: -20.3 
to -22.4 

2 Plant tissues 
(marsh + bog), 

temperate 
zone 

-25.0 to   
-31.3 

3 Summary M: -19.0 
to -24.5 

F: -25  
to -33 

M,F:  
4 to 10 

4 Mangrove 
tissues 

-27 to  
-30 

 18 to
>50 

5 Summary -10.8 
to  

-14.1 

-24.8 to 
-27.9 

M: -19   
to -25 

F: -26.8 
to -28.8 

>20 >20 M,F:  
3 to 10 

6 Mangrove 
tissues 

 -25.9 to 
-29.1 

-1.5
to 

+3.2 

 30 to 
60 

7 Mangrove 
leaves and 

POM 

 -24.5 to 
-28.5 

M: -20.5 
to -21.5 

8 Summary M: -20   
to -24.5 

F.: -24.5 
to -29.0 

 5 to 
70 

20 to 
78 

M,F:  
2 to 17 

9 Summary M:  
4 to 18 

10 Marsh 
vegetation 

-12.3 
to  

-12.8 

1HOEFS 2009, 2HORNIBROOK et al. 2000, 3LAMB et al. 2006, 4MARCHAND et al. 2005, 
5MEYERS 1994, 6MUZUKA & SHUNULA 2006,  7RODELLI et al. 1984, 8SARKA et al. 2009, 
9SHARP 2006, 10STRIBLING & CORNWELL 1997. 
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Table A 2.3, part II: Additional literature values for OM characterisation 

including δ15N values for C4 plants and POM material. Sample sources 

comprise pollen and marine organic matter, including samples from the Bay of 

Bengal. POM: particulate organic matter, M: marine, F: freshwater. 

Ref. Sample type δ13C (‰) δ15N (‰) C/N (wt.%-ratio) 

C4 C3 POM C4 C3 POM C4 C3 POM 

11 Pollen, 
temperate 

zone 

-16  
to  

-10 

-21.5 
to  

-29.5 

 +6.0 
to 

+7.5 

-3.8 to 
+13.8 

 13 5 
to 
55 

12 POM from 

Bay of 
Bengal 

M: 

+3.43 
to 

+4.29 

13 Marine 
TOC in 

sediment 

M: 

-18.5 
to  

-19.5 

11DESCOLAS-GROS & SCHÖLZEL 2007, 12GAYE-HAAKE et al. 2005, 13BLAIR & CARTER 
1991. 
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Table A 2.4: Comparison of solid (s) and aqueous (a) phase compositions 

determined from groundwater (03/12/09) and corresponding sediments. 

Well / 
sample 
depth 

Ca  Mg Na K Mn Fe PO4
3- As Zn Co Ni V 

(m bls) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppb) (ppb) (ppb) (ppb) (ppb) 

A  

(12-21 / 
13.0) 

a* 86.5 20.6 18.6 2.49 0.77 4.34 2.38 49.1 7.48 4.33 0.52 0.08 

s** 17000 5480 9970 14400 409 15800 1320 2400 36800 4580 8180 33600

r*** 
5.08 x 
10-3 

3.77 x 
10-3

1.86 x 
10-3

1.73 x 
10-4

1.88 x 
10-3

2.75 x 
10-4

1.80 x 
10-3

2.03 x 
10-2

2.04 x 
10-4

9.45 x 
10-4

6.37 x 
10-5

2.48 x 
10-6

B 

(24-27 / 
25.3) 

a* 79.3 17.3 12.5 3.79 0.47 3.76 3.39 155 3.05 0.41 0.51 0.12 

s** 12700 2910 10100 13200 295 14200 1070 1800 25100 5180 10100 28400

r*** 
6.23 x 
10-3 

5.94 x 
10-3

1.24 x 
10-3

2.88 x 
10-4

1.61 x 
10-3

2.64 x 
10-4

3.18 x 
10-3

8.67 x 
10-2

1.22 x 
10-4

7.93 x 
10-4

5.00 x 
10-5

4.11 x 
10-6

C 

(30-33 / 
30.5) 

a* 69.5 17.4 11.4 6.82 0.41 5.57 1.12 135 4.50 0.29 0.36 0.02 

s** 20300 4720 10500 14200 212 10400 740 1500 22400 3270 6780 23700

r*** 
3.43 x 
10-3 

3.69 x 
10-3

1.09 x 
10-3

4.80 x 
10-4

1.92 x 
10-3

5.34 x 
10-4

1.51 x 
10-3

9.12 x 
10-2

2.01 x 
10-4

8.84 x 
10-4

5.26 x 
10-5

0.96 x 
10-6

D 

(36-39 / 
38.3) 

a* 67.6 15.8 10.8 3.72 0.42 2.86 2.18 132 5.79 0.37 0.37 0.08 

s** 13700 3040 9630 14600 473 17000 1220 2400 29800 6040 10600 34200

r*** 
4.95 x 
10-3 

5.20 x 
10-3

1.13 x 
10-3

2.55 x 
10-4

0.88 x 
10-3

1.68 x 
10-4

1.78 x 
10-3

5.61 x 
10-2

1.95 x 
10-4

6.04 x 
10-4

3.55 x 
10-5

2.20 x 
10-6

E 

(42-45 / 
45.5) 

a* 68.0 15.1 11.1 3.18 0.60 2.15 1.93 92.4 5.35 0.41 0.37 0.06 

s** 15100 4540 9460 14000 398 14700 1170 1900 27300 4910 9070 28600

r*** 
4.50 x 
10-3 

3.32 x 
10-3

1.18 x 
10-3

2.27 x 
10-4

1.50 x 
10-3

1.46 x 
10-4

1.65 x 
10-3

4.85 x 
10-2

1.96 x 
10-4

8.29 x 
10-4

4.13 x 
10-5

2.25 x 
10-6

*Groundwater concentration, representative results from 03/12/09 

**Sediment content, determined from microwave acid digestions of representative samples that 
originate from the respective depth intervals of the well screenings 

***Element ratio (aqueous phase / solid phase)
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Table A 2.5, part I: Summary of sucrose experiment results, including initial 

baseline values. Results include concentrations of sucrose (sucr.), acetate 

(acet.), propionate (prop.) and butyrate (but.). Table continued on next page. 

Date T EC pH TA O2 Sucr. Acet. Prop. But. TPC %-error 

(°C) (µS/cm) (mM) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (cfu/mL)** (%) 

Well A (12-21 m bls) 

03/12 27.0 647 7.1 6.80 error 0 x x x 6.3 x105 -1.17 

06/12 27.8 612 7.1 7.40 error 8.20 0 0 0 x -14.3 

08/12 26.9 598 7.1 7.10 error x x x x x -13.4 

10/12 27.2 638 7.1 7.50 error 3.30 0 0 0 2.9 x107 -16.8 

12/12 26.2 623 7.1 8.10 error x 0 0 0 x -14.2 

14/12 27.2 621 7.0 7.95 error 9.80 0 0 0 1.0 x108 -13.1 

16/12 26.9 596 7.1 7.50 0.60 x 0 0 0 x -13.5 

18/12 26.9 561 7.2 8.10 0.08 11.5 x x x 1.1 x108 -15.5 

Well B (24-27 m bls) 

03/12 27.0 623 7.2 7.90 0.53 0 x x x 4.1 x105 -15.0 

06/12 27.3 717 6.8 7.30 error 290 0 0 0 x +0.20 

08/12 27.0 1038 6.5 8.10 error x x x x x +23.4 

10/12 26.8 1013 6.5 11.4 0.25 126 210 22.2 33.7 1.9 x107 -4.93 

12/12 26.3 1093 6.5 14.5 error x 487 75.6 68.9 9.6 x107 -5.37 

14/12 28.2 1022 6.3 12.1 error 11.5 344 54.1 39.3 3.4 x1010 -0.62 

16/12 27.1 907 6.6 11.1 0.49 x 322 48.9 34.5 x +2.09 

18/12 27.4 777 6.6 11.9 0.08 13.1 x x x 6.5 x1010 -7.36 

Well C (30-33 m bls) 

03/12 26.8 624 7.2 7.40 0.33 0 x x x 4.0 x105 -16.3 

06/12 26.9 643 7.1 7.70 0.21 35.0 0 0 0 x -12.7 

08/12 27.0 652 7.1 6.70 0.18* x x x x x -3.85 

10/12 26.6 928 6.8 12.1 0.14 468 210 0 0 3.3 x107 -13.8 

12/12 27.0 1067 6.5 12.4 error x 431 25.2 27.2 6.0 x107 -5.06 

14/12 28.0 1052 6.5 11.6 error 67.0 295 15.6 12.8 1.9 x1010 -2.98 

16/12 27.2 819 6.3 10.1 0.15 x 205 0 0 x -7.51 

18/12 27.8 729 6.7 10.7 0.12 13.1 x x x 1.3 x1010 -10.1 

*Outlier, replaced by mean of sample value before and after 

**TPC: R2A-agar, 24 h, 37°C 

x: not determined 
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Table A 2.5, part II. Table continued on next page. 

Date T EC pH TA O2 Sucr. Acet. Prop. But. TPC %-error 

(°C) (µS/cm) (mM) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (cfu/mL)** (%) 

Well D (36-39 m bls) 

03/12 26.5 604 7.2 7.60 0.24 0 x x x 3.5 x 105 -20.2 

06/12 27.0 619 7.1 7.30 0.15 259 0 0 0 x -15.0 

08/12 26.9 669 7.1 7.50 0.13* x x x x x -11.4 

10/12 26.6 738 7.0 9.90 0.11 145 39.0 0 0 8.7 x 107 -19.5 

12/12 27.0 817 6.9 9.00 0.13* x 128 0 0 5.9 x 107 -9.63 

14/12 27.6 806 6.8 9.40 0.15 11.5 126 0 0 4.4 x 1010 -10.7 

16/12 27.4 791 6.9 9.50 0.14 x 153 0 0 x -10.6 

18/12 28.0 681 6.9 9.90 0.12 9.80 x x x 7.0 x 109 -12.9 

Well E (42-45 m bls) 

03/12 26.8 590 7.1 7.30 0.18 0 x x x 3.4 x 105 -18.5 

06/12 26.9 611 6.7 6.40 0.13 873 0 0 0 x +5.38 

08/12 26.7 788 5.0 6.65 error x x x x x +3.70 

10/12 27.0 1634 5.2 6.90 error 545 446 0 260 1.8 x 108 +41.4 

12/12 27.2 1705 6.2 16.0 error x 406 34.8 124 8.8 x 107 +9.31 

14/12 27.2 1214 6.2 13.4 error 175 452 17.1 35.3 2.2 x 1010 +1.43 

16/12 27.5 966 6.4 10.4 0.22 x 334 15.6 24.0 x -2.65 

18/12 28.0 700 6.5 9.50 0.17 34.0 x x x 8.6 x 1010 -11.0 

*Outlier, replaced by mean of sample value before and after 

**TPC: R2A-agar, 24 h, 37°C 

x: not determined 
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Table A 2.5, part III. Table continued on next page. 

Date Na K Ca Mg SIO2 Cl- NO3
- SO4

2- PO4
3- 

all (mg/L) 

Well A (12-21 m bls) 

03/12 18.6 2.49 86.5 20.6 34.8 7.85 <0.87 <0.85 2.38 

06/12 14.4 2.42 72.3 16.7 29.7 5.78 <0.87 <0.85 2.23 

08/12 14.1 2.18 71.0 16.6 29.3 6.18 <0.88 <0.85 5.42 

10/12 14.5 2.07 68.4 16.4 28.0 7.37 <0.88 <0.85 5.22 

12/12 17.1 2.21 78.6 18.6 31.4 7.67 <0.88 <0.85 5.60 

14/12 17.0 2.18 79.6 18.7 31.3 7.83 <0.88 <0.85 5.77 

16/12 16.2 2.15 73.8 17.8 29.0 7.91 <0.88 <0.85 5.33 

18/12 17.0 2.27 77.3 18.2 30.1 8.40 <0.88 <0.85 5.72 

Well B (24-27 m bls) 

03/12 12.5 3.79 79.3 17.3 31.5 2.65 <0.88 <0.85 3.39 

06/12 15.0 3.75 96.3 21.4 34.9 4.57 <0.88 <0.85 2.44 

08/12 16.2 4.24 179 31.1 41.3 3.23 <0.88 <0.85 8.60 

10/12 14.3 3.86 139 24.8 33.8 2.61 <0.88 <0.85 6.61 

12/12 15.0 4.56 183 31.4 38.6 2.99 <0.88 <0.85 7.21 

14/12 14.2 4.41 166 28.5 36.4 4.24 <0.88 <0.85 7.11 

16/12 13.9 4.41 162 27.9 35.4 2.75 <0.88 <0.85 6.95 

18/12 13.3 4.24 145 25.3 33.5 3.13 <0.88 <0.85 6.52 

Well C (30-33 m bls) 

03/12 11.4 6.82 69.5 17.4 28.5 2.43 <0.88 <0.85 1.12 

06/12 14.8 3.95 75.1 18.8 27.9 5.65 <0.88 <0.85 4.18 

08/12 14.8 4.01 78.7 19.4 30.3 5.40 <0.88 <0.85 8.48 

10/12 15.6 4.50 119 26.2 32.5 5.14 <0.88 <0.85 8.31 

12/12 15.7 5.38 151 31.0 34.6 5.00 <0.88 <0.85 7.02 

14/12 14.5 5.48 149 28.6 32.2 4.43 <0.88 <0.85 5.97 

16/12 13.1 4.89 117 21.7 29.1 3.69 <0.88 <0.85 5.54 

18/12 13.1 5.21 122 21.6 29.5 3.78 <0.88 <0.85 5.42 
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Table A 2.5, part IV. Table continued on next page. 

Date Na K Ca Mg SIO2 Cl- NO3
- SO4

2- PO4
3- 

all (mg/L) 

Well D (36-39 m bls) 

03/12 10.8 3.72 67.6 15.8 26.6 2.64 <0.88 <0.85 2.18 

06/12 13.8 3.05 69.0 16.8 23.6 5.41 <0.88 <0.85 2.24 

08/12 14.1 3.19 76.8 18.5 27.2 5.04 <0.88 <0.85 7.45 

10/12 14.5 3.22 84.5 20.4 28.1 4.76 <0.88 <0.85 7.24 

12/12 14.0 3.45 95.1 22.2 28.6 4.77 <0.88 <0.85 7.37 

14/12 14.2 3.49 99.7 23.1 29.4 5.00 <0.88 <0.85 7.17 

16/12 14.0 3.47 101 23.1 29.2 4.61 <0.88 <0.85 6.31 

18/12 13.7 3.55 101 23.1 30.1 4.64 <0.88 <0.85 6.13 

Well E (42-45 m bls) 

03/12 11.1 3.18 68.0 15.1 25.5 2.59 <0.88 <0.85 1.93 

06/12 14.3 3.09 93.3 21.2 27.7 3.60 <0.88 <0.85 5.30 

08/12 14.2 2.59 97.5 19.0 26.8 3.80 <0.88 4.08 4.94 

10/12 15.6 4.38 227 35.8 37.4 2.35 <0.88 5.32 8.17 

12/12 14.2 4.74 260 36.7 37.3 2.06 <0.88 <0.85 2.65 

14/12 12.6 4.21 194 25.4 33.6 2.49 <0.88 <0.85 5.13 

16/12 11.8 3.70 139 19.2 30.4 2.58 <0.88 <0.85 4.83 

18/12 11.3 3.29 108 15.6 28.2 2.41 <0.88 <0.85 4.48 
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Table A 2.5, part V. Table continued on next page. 

Date Fe Fe(II) Mn As As(III) Zn Ni Co V Sr Ba 

(mg/L)     (%) (mg/L) (µg/L) (%) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) 

Well A (12-21 m bls) 

03/12 4.34 error 0.77 49.1 93.9 7.48 0.52 4.33 0.08 259 150 

06/12 3.40 0.93 0.66 66.2 100 13.3 0.56 3.51 0.09 211 130 

08/12 3.31 0.97 0.58 51.9 102 6.53 0.52 3.12 0.08 221 141 

10/12 3.25 0.89 0.52 44.5 96.4 4.48 0.52 3.05 0.08 212 127 

12/12 4.19 0.97 0.60 48.7 96.3 3.56 0.55 3.56 0.10 239 148 

14/12 4.22 error 0.60 47.2 97.5 4.12 0.64 3.64 0.09 244 152 

16/12 3.89 0.96 0.57 45.0 99.6 3.54 0.58 3.40 0.09 235 142 

18/12 4.19 0.97 0.59 47.6 97.7 3.73 0.59 3.53 0.08 231 152 

Well B (24-27 m bls) 

03/12 3.76 error 0.47 155 95.8 3.05 0.51 0.41 0.12 267 140 

06/12 8.58 0.86 1.01 110 74.8 41.5 3.86 3.45 0.44* 311 224 

08/12 29.7 0.99 2.49 217 93.3 70.1 2.34 7.48 0.77 558 399 

10/12 20.2 0.97 1.67 159 100 28.8 1.56 3.25 0.39 439 332 

12/12 29.8 0.99 2.30 204 94.7 55.5 2.00 4.95 0.23 583 423 

14/12 28.0 error 2.15 199 97.3 42.0 1.87 4.60 0.16 507 389 

16/12 26.6 0.98 1.98 203 95.8 130 1.76 4.26 0.14 498 366 

18/12 24.2 0.96 1.77 190 96.0 28.8 1.58 3.82 0.13 445 345 

Well C (30-33 m bls) 

03/12 5.57 error 0.41 135 96.1 4.50 0.36 0.29 0.02 234 203 

06/12 6.04 0.96 0.69 131 98.5 24.3 0.82 2.01 0.18 267 163 

08/12 7.89 0.99 0.75 161 96.4 23.3 0.55 1.79 0.16 266 171 

10/12 14.9 1.00 1.30 158 89.2 37.9 1.10 3.22 0.14 370 269 

12/12 22.3 1.00 1.78 142 98.7 54.0 1.52 4.55 0.13 466 391 

14/12 24.5 error 1.72 126 96.2 52.1 1.81 4.63 0.12 440 389 

16/12 18.9 1.00 1.32 119 96.4 28.6 1.37 3.47 0.11 372 310 

18/12 20.2 1.00 1.32 123 97.3 26.1 1.60 3.52 0.11 395 313 

*Outlier, replaced by mean of value before and after 

Outlier, replaced by monitoring result (21/2/09) 
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Table A 2.5, part VI. 

Date Fe Fe(II) Mn As As(III) Zn Ni Co V Sr Ba 

(mg/L)     (%) (mg/L) (µg/L) (%) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) 

Well D (36-39 m bls) 

03/12 2.86 error 0.42 132 92.9 5.79 0.37 0.37 0.08 241 155 

06/12 2.86 0.94 0.66 92 92.0 21.9 0.71 1.96 0.22 238 142 

08/12 6.19 0.97 0.76 147 92.7 19.3 0.60 1.86 0.16 267 177 

10/12 7.70 0.98 0.89 158 96.0 20.2 0.71 2.10 0.15 301 158 

12/12 9.55 1.00 1.10 162 94.9 23.7 0.93 2.62 0.16 318 176 

14/12 11.3 error 1.25 156 96.7 25.2 1.12 3.05 0.13 341 216 

16/12 12.5 0.98 1.33 141 94.0 27.1 1.30 3.52 0.13 350 211 

18/12 12.8 0.98 1.32 134 94.5 23.4 1.34 3.58 0.12 354 195 

Well E (42-45 m bls) 

03/12 2.15 error 0.60 133 100 5.35 0.37 0.41 0.06 228 134 

06/12 6.92 0.93 1.24 130 77.2 88.6 1.48 4.82 0.44 326 223 

08/12 6.35 1.00 1.08 125 92.2 352 1.47 3.51 0.53 312 492 

10/12 36.3 0.99 3.34 198 94.3 417 8.98 15.47 2.13 710 700 

12/12 77.8 1.00 4.47 177 93.3 195 13.7 19.3 0.74 767 565 

14/12 43.4 error 2.66 154 95.5 135 9.92 13.8 0.24 531 450 

16/12 32.0 0.96 1.96 139 90.5 95.2 7.47 10.1 0.17 404 324 

18/12 23.3 0.96 1.48 133 91.9 62.3 5.04 7.45 0.14 315 257 

*Outlier, replaced by mean of value before and after 

Outlier, replaced by monitoring result (21/2/09) 
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Table A 2.6, part I: Biogeostratigraphic sediment interpretation for both study 

sites, which comprises lithology and chemistry of the sediment samples as 

well as isotopic values of embedded OM. HS: high As site, LS: low As site. 

Facies Depth 

(m bls) 
Lithology Sediment characterisation Sequence interpretation 

F1 HS: 

>39 

LS: 

- 

Clay • No sample material available Sequence boundary LGM (?): 

It is very difficult to interpret this layer 
without any sample material. 
Compared to the interpretation of 
SARKA et al. (2009), this clay can be 
considered as remains of top eroded 
marine shelf clay, which was surface 
exposed during the LGM (~20 ka BP). 
A significant sequence boundary 
developed to this time when the fluvial 
system eroded deep valleys into the 
clay (MC ARTHUR et al. 2008). 
Another possibility is that this layer 
consists of fluvial overbank clay and 
silt sediments, which were deposited 
after the LGM when the previously 
incised valleys were rapidly filled (see 
F3 below). This assumption is 
supported by analyses of drilling logs 
in the Nadia district done by 
MUKHERJEE et al. (2011) in order to 
model the local hydrological 
properties. 

Age: Late Pleistocene or early 
Holocene, maximum 20 ka bp 

F2 HS: 

~32 to  

 39.2 

LS: 

~29 to 
45.5 

Dark grey, 
weakly 
sorted 

sediments, 
dominated 

by fine 
sand 

medium 
sand with 

thin 
intrusion(s) 
of gravel, 
coarse 

sand and 
clay 

HS: 

• TOC contents reach up to 0.53 wt.% 
and peak in the same depths as most 
trace elements and Ca. 

• Results of δ13C, C/N and δ15N 
analysis indicate a mixed signal of 
freshwater POM and C3 plants, but 
interpretation of the data is difficult due 
to a potential loss of N. 

LS: 

• TOC too low (0.02-0.03 wt.%) for 
isotopic analysis, except for two 
samples from 31.8 and 33.1 m bls 
indicating marine POM signals, which 
are potentially influenced by terrestric 
plant matter. 

Lowstand system tract sequence 
following last glacial maximum (LGM): 

Sediments from above the bottom 
clay layer are interpreted to originate 
from the time after the LGM (~20 ka 
bp). 

During this time, fluvial deposit filled 
incised valleys (GOODBRED et al. 
2003). Embedded intrusions of mixed 
and poorly ordered muddy and 
gravelly (poor to medium rounded) 
sediments indicate high transport 
energies that allowed a rapid 
reallocation of older sediments. 
Gravels partly consist of secondary 
carbonate nodules, which have very 
likely developed during previous 
weathering. 

Increased TOC and mixed signals of 
freshwater POM and C3 plants 
indicate that sediments of F2 originate 
from a freshwater swamp dominated 
environment. 

Age: Late Pleistocene or early 
Holocene, <20 ka bp 
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Table A 2.6, part II: Biogeostratigraphic sediment interpretation for both study 

sites, which comprises lithology and chemistry of the sediment samples as 

well as isotopic values of embedded OM. HS: high As site, LS: low As site. 

Facies Depth 

(m bls) 
Lithology Sediment characterisation Sequence interpretation 

F3A HS: 

~17 to 
~32 

LS: 

~19 to 
~29 

Dark 
grey 

medium 
and fine 

sand 

HS: 

• Sandy sediments are dominated by 
quartz and are depleted in most major 
and trace element contents, which 
exhibit throughout low variations. 

• TOC contents are constantly low,
ranging between 0.02-0.03 wt.%. Only 
two samples hold enough TOC for 
isotopic analysis, which reflect a marine 
POM signal in 21.6 m bls and a 
freshwater POM signature in 24.2 m bls 

LS: 

• Sandy sediments are dominated by 
quartz and are depleted in most major 
and trace element contents, which 
exhibit throughout low variations. 

• TOC contents are too low (0.02-0.03
wt.%) for isotopic analysis. 

Transgressive system tract sequence: 

Eustatic sea-level rise and presumably 
tectonic basin subsidence caused 
inland movement of the active 
shoreline (approx. 100 km), which was 
followed by mangrove-forests and 
swamps (SARKA et al. 2009). Fluvial 
and estuarine channel fill sands 
covered the incised valley fills of F2 
allowing the development of a deltaic 
sedimentation environment with an 
upward increasing marine influence. 

A temperature increase beginning 
around ~9 ka BP intensified the 
seasonal monsoon precipitation, 
whereas sediment flux and 
sedimentation processes increased in 
the Bengal Basin (GOODBRED et al. 
2003). 

Age: Holocene 

F3B HS: 

3.35 to 
~17 

LS: 

3.85 to 
~19 

Olive to 
dark 
grey 

silty fine 
sand 

HS: 

• Fine grain content (<0.063 mm), TOC,
major (K, Ca, TIC) and trace (Fe, Zn) 
element contents subsequently 
increase upwards, forming a distinctive 
boundary in ~17 m bls. 

• Enrichment of trace elements (Zr and 
Ce), which are characteristic for heavy 
minerals in ~13 m bls. 

• Organic matter δ13C - C/N results plot 
in the field of marine POM, whereas 
eight δ15N values are in a typical range 
of marine POM and three in range of C3 
vegetation. 

LS: 

• Fine grain content (<0.063 mm), TOC,
main (K, Ca, TIC) and trace (Fe, Zn) 
element contents gradually increase 
upwards, forming a distinctive boundary 
in ~19 m bls. 

• Enrichment of trace elements (Zr and 
Ce), which are characteristic for heavy 
minerals. 

• Organic matter δ13C - C/N results plot 
in the field of marine POM, whereas 
δ15N values are in range of C3 
vegetation. 

Subsequent deposition of huge 
amounts of fluvial and estuarine 
channel-fill sands changed the 
previously estuary character toward a 
more fluviatile influenced environment. 
Continuously increasing silt contents in 
upward direction indicate a change 
from an aggregating fluviatile-estuarine 
environment toward a low-relief 
floodplain system. Presumably, tidal-
derived POM reflects a passing marine 
influence. 

Geochemical results reflect an 
increase in heavy minerals as 
indicated by Zr and Ce, which is 
decoupled from the silt content. This is 
likely linked to a temporary shift in the 
provenance. 

The redox boundaries located in about 
6 m bls reflect persistent reducing 
conditions in respective aquifer parts. 
Above, the actual water table oscillates 
between dry and monsoon season, 
allowing relocation of labile elements 
into F4. 

Age: Holocene, <9 ka bp (?) 
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Table A 2.6, part III: Biogeostratigraphic sediment interpretation for both study 

sites, which comprises lithology and chemistry of the sediment samples as 

well as isotopic values of embedded OM. HS: high As site, LS: low As site. 

Facies Depth 

(m bls) 
Lithology Sediment characterisation Sequence interpretation 

F4 HS: 

0 to 
3.35 

LS: 

0 to 
3.85 

Brown 
silt and 

clay 

HS: 

• Enrichment of Fe, Mn and typically co-
precipitating trace elements (As, Ni, Cu, 
Zn), while Ca and TIC are depleted. 
Maximum Fe (9.62 wt.% Fe2O3) and As 
(122 mg kg-1) contents appear between 
2.65 and 3.35 m bls. 

• TOC contents of up to 0.38 wt.% are 
clearly increased compared to 
sediments below. 

• δ13C - C/N and δ15N values indicate a 
shift from marine POM toward a mixture 
of POM with C4 vegetation. 

• Clay minerals are dominated by 
smectite and kaolinite.  

• Clinker fragments reflect an
anthropogenic influence down to ~2.00 
m bls. 

LS: 

• Between 1.90-3.20 m bls., enrichment 
of TOC, Fe, Mn and typically co-
precipitating trace elements (As, Ni, Cu, 
Zn), while Ca and TIC are depleted. 
Maximum Fe (8.06 wt.% Fe2O3) and Mn 
(0.09 wt.% MnO) contents appear 
around 2.55 m bls. 

• δ13C - C/N and δ15N values indicate a 
shift from marine POM toward a mixture 
of POM with C4 vegetation. 

• Clay minerals are dominated by 
smectite and kaolinite.  

• Clinker fragments and compaction of
the sediments within top 0.60 cm 

Delta-floodplain progradation 
sequence: 

The top silty and clayey sediments 
originate from the present floodplain 
and are interpreted as latest fluvial 
channel-overbank deposit of the 
Hooghly River (MC ARTHUR et al. 
2008). 

OM signatures reflect an increasing 
influence of C4 plants, which are the 
principal type of today’s floodplain 
vegetation (SARKA et al. 2009). 

Capillary rise of reduced groundwater 
into the oxic unsaturated zone causes 
precipitation of Fe and other redox-
sensitive trace elements. Clinker 
fragments indicate that upper 
sediments have been disturbed during 
construction of the courtyard. 

Age: Late Holocene 
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A.3 THE HIGH ARSENIC STUDY SITE 

Table A 3.1: Summary of sediment compositions, comprising all samples from 

0 to 39.2 m bls (n: 61). 

Value K2O CaO TiO2 MnO Fe2O3 As Ni  Cu  Zn  

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 

Minimum 1.30 1.09 0.18 0.02 1.36 2.3 21.6 8.58 19.3 

25 % Q. 1.81 1.99 0.28 0.03 2.08 3.0 24.0 9.72 30.2 

Median 2.09 2.89 0.36 0.05 2.62 3.6 25.9 11.3 36.7 

75 % Q. 2.64 3.80 0.50 0.05 3.52 4.5 29.5 14.6 47.5 

Maximum 3.91 6.16 0.85 0.11 9.62 122 112 70.4 117 

Average 2.27 2.92 0.41 0.05 3.14 6.6 30.1 16.2 42.5 

rAs- 0.47 -0.20 0.46 0.52 0.63 - 0.48 0.70 0.62 

rFe- 0.83 0.13 0.91 0.86 - 0.63 0.85 0.96 0.99 

Value Ba Sr Ce Y La TS 
Fine 

fraction* 
TOC TIC 

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (wt.%) (wt.%) (wt.%) 

Minimum 245 76.7 31.3 10.2 16.2 <25 0.32 0.02 0.03 

25 % Q. 311 87.2 52.4 16.3 25.9 <25 4.46 0.03 0.26 

Median 337 101 66.8 20.5 31.3 <25 11.8 0.04 0.41 

75 % Q. 378 120 82.6 26.1 38.5 46.2 22.4 0.09 0.58 

Maximum 566 238 214 54.0 91.9 256 92.8 0.53 1.00 

Average 356 109 71.1 22.1 33.8 34.7 19.9 0.10 0.43 

rAs- 0.46 -0.16 0.06 0.23 0.05 0.02 0.52 0.38 -0.23 

rFe- 0.90 -0.13 0.30 0.57 0.29 0.40 0.87 0.67 0.10 

*Fraction <0.063 mm, comprising silt and clay 
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Figure A 3.1: Sample XRD spectra from different depths at the high As site. 

Reference spectra of identified mineral peaks see APPENDIX II, Figure A 2.1
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Figure A 3.2: Identification of clay minerals including dry, heat-treated and 

glycol-solvated subsamples. For interpretation of peak positions and reference 

spectra see APPENDIX II, Figure A 2.2. 
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Table A 3.2: Distribution of As, Fe and Mn in SEP fractions (I-VII) of 

representative samples (fractions described in Table A 1.4). GXR-2 reference 

values (mg/kg): As: 25.0; Fe: 19,000; Mn: 1,007. 

Depth 

(m bls) 

As (mg/kg) 

I II III IV V VI VII Σ 

2.65 0.00 0.19 0.30 0.77 1.87 0.00 0.57 3.70 

3.35 7.68 74.0 4.91 26.65 7.94 0.00 0.83 122 

12.4 A 0.00 2.54 0.20 0.77 0.68 0.00 0.70 4.89 

12.4 B 0.00 1.36 0.21 0.97 0.40 0.00 1.79 4.73 

23.5 0.00 0.00 0.10 0.07 0.22 0.00 0.28 0.67 

29.4 0.00 0.91 0.17 0.25 0.19 0.00 0.32 1.84 

30.7 0.00 1.77 0.12 0.36 0.25 0.00 0.27 2.77 

38.5 0.13 4.41 0.48 0.35 0.85 0.00 0.75 6.96 

GXR-2 1.21 21.4 2.34 2.11 1.38 0.00 0.35 28.8 

Depth 

(m bls) 

Fe (mg/kg) 

I II III IV V VI VII Σ 

2.65 421 5123 4745 3125 4587 26 162 132 44 296 

3.35 1853 4530 2990 6729 16 171 27 242 23.1 59 537 

12.4 A 35.9 1754 2887 1391 2536 11 204 385 20 191 

12.4 B 30.2 1187 2112 2479 1688 11 618 512 19 627 

23.5 19.2 1197 1658 820 975 4973 591 10 233 

29.4 13.4 1526 2434 1465 1829 7430 218 14 915 

30.7 16.3 1766 2153 1482 2256 8443 817 16 933 

38.5 155 4765 8776 1709 3035 14 805 157 33 402 

GXR-2 169 3175 6362 1698 6043 5043 95.5 22 586 

Depth 

(m bls) 

Mn (mg/kg) 

I II III IV V VI VII Σ 

2.65 26.3 281 58.9 40.8 27.0 293 6.15 733 

3.35 9.88 254 205 449 84.0 200 0.31 1202 

12.4 A 13.2 68.5 41.7 0.00 14.7 216 29.3 383 

12.4 B 13.6 63.2 33.7 11.9 7.73 269 40.1 440 

23.5 14.0 35.1 24.2 14.6 6.17 77.2 39.9 211 

29.4 12.9 78.1 71.8 95.8 14.9 112 15.7 402 

30.7 9.56 79.4 57.5 110 16.2 127 56.2 456 

38.5 80.4 272 126 22.9 12.0 157 5.63 676 

GXR-2 149 886 72.1 36.6 28.8 76.2 1.55 1250 

*SEP Fractions:

I: Weakly bound As;  II: Strongly adsorbed As;  III: Incorporated in AVS, carbonates, Mn-oxides, 
very amorphous Fe- (oxyhydr)oxides;  IV: Incorporated in amorphous Fe-(oxyhydr)oxides;
V: Incorporated in crystalline Fe-(oxyhydr)oxides;  VI: Associated with silicates. 
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Table A 3.3, part I: Summary of the groundwater abstraction experiment results, 

including initial baselines (03/12/09). No outliers were removed. Table 

continued on next page. 

Well Date T Odour* EC pH EH TA δ18O δ2H 

(°C) (µS/cm) (mV) (mM) (‰ VSMOW) 

A 03/12 26.0 none 973 6.9 x 9.60 -2.95 -23.3 

08/12 26.4 H2S (s)  896 7.1 x 8.30 -3.11 -24.1 

11/12 26.7 777 7.1 -52 9.40 -3.84 -26.6 

13/12 26.5 761 7.0 -52 9.80 -4.17 -26.6 

14/12 26.1 712 7.1 error 9.40 -3.79 -26.2 

17/12 26.6 683 7.2 x 9.20 -3.70 -25.3 

B 03/12 26.6 none 1040 6.9 x 10.0 -3.07 -23.6 

08/12 26.3 none 962 6.9 x 8.80 -3.12 -19.9 

11/12 26.0 796 7.0 -67 9.70 -4.06 -24.8 

13/12 26.5 679 7.1 -65 8.00 -4.01 -31.7 

14/12 26.4 676 7.1 -56 8.20 -4.28 -29.1 

17/12 26.6 630 7.2 x 8.50 -4.15 -27.8 

C 03/12 27.2 none 718 7.2 x 7.90 -3.92 -28.3 

08/12 26.3 none 670 7.3 x 7.20 -3.94 -27.1 

11/12 26.7 693 7.2 -43 8.80 -4.13 -25.4 

13/12 26.7 none 664 7.2 -44 8.30 -3.95 -28.2 

14/12 26.2 none 660 7.2 -42 7.80 -4.18 -28.7 

17/12 26.6 636 7.2 x 8.20 -4.17 -27.1 

D 03/12 26.9 none 781 7.1 x 8.20 -4.17 -30.9 

08/12 26.8 none 764 7.2 x 9.00 -4.12 -29.1 

11/12 26.9 787 7.1 -72 10.9 -4.42 -28.7 

13/12 26.8 758 7.1 -57 10.1 -4.00 -27.4 

14/12 26.3 737 7.2 -48 9.60 -4.29 -30.7 

17/12 26.9 704 7.2 x 9.60 -4.31 -28.0 

E 03/12 26.9 none 745 7.0 x 8.40 -3.81 -27.7 

08/12 26.9 none 715 7.1 x 7.80 -3.84 -27.5 

11/12 26.6 744 7.1 -58 9.70 -4.22 -27.2 

13/12 26.7 716 7.1 -45 9.00 -3.86 -26.9 

14/12 26.2 687 7.1 -47 9.50 -4.07 -29.3 

17/12 26.8 654 7.3 x 8.60 -4.24 -27.7 

*Odour intensity: weak (w), medium (m), strong (s) 

x: not determined 

H2S (w)  

H2S (m)  

H2S (w)  

H2S (m)  

H2S (w)  

H2S (m)  

H2S (w)  

H2S (s)  

H2S (w)  

H2S (w)  

H2S (w)  

H2S (m)  

H2S (w)  

H2S (w)  

H2S (m)  

H2S (w)  

H2S (m)  

H2S (m)  
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Table A 3.3, part II. Table continued on next page. 

Well Date Na Mg K Ca SIO2 Cl- NO3
- SO4

2- PO4
3- DOC 

all (mg/L) 

A 03/12 29.4 7.77 95.5 0.92 98.0 85.1 <0.88 7.78 2.61 3.02 

08/12 28.0 6.93 89.4 0.71 170 100 <0.88 8.34 6.54 x 

11/12 22.4 4.67 x 0.43 300 98.5 <0.88 1.72 7.16 x 

13/12 22.0 4.88 x 0.38 335 96.2 <0.88 1.51 11.8 x 

14/12 21.3 5.14 97.5 0.40 326 98.1 <0.88 1.63 8.05 x 

17/12 20.5 5.00 x 0.36 343 98.4 <0.88 1.34 7.63 8.31 

B 03/12 27.8 8.96 98.6 0.74 100 99.0 <0.88 10.7 2.99 4.52 

08/12 24.6 8.61 79.8 0.56 150 97.6 <0.88 9.51 6.83 x 

11/12 19.8 6.35 x 0.35 254 95.1 <0.88 3.51 6.97 x 

13/12 17.8 5.12 x 0.27 330 99.0 <0.88 1.32 7.76 x 

14/12 17.5 4.64 93.6 0.28 312 98.3 <0.88 1.43 7.25 x 

17/12 17.4 4.61 x 0.24 349 95.5 <0.88 <0.85 6.98 6.68 

C 03/12 18.3 1.09 89.8 0.85 296 94.4 <0.88 <0.85 2.53 2.55 

08/12 17.9 1.47 error 0.85 335 91.9 <0.88 <0.85 6.66 x 

11/12 17.6 1.09 x 0.80 301 82.7 <0.88 <0.85 6.26 x 

13/12 17.1 1.39 x 0.79 326 96.5 <0.88 <0.85 6.06 x 

14/12 16.6 1.48 100 0.77 325 97.1 <0.88 <0.85 5.95 x 

17/12 17.0 1.77 x 0.77 334 98.0 <0.88 <0.85 6.48 5.60 

D 03/12 19.9 4.76 99.1 0.37 262 95.9 0.97 <0.85 3.08 1.53 

08/12 21.9 4.43 81.4 0.43 245 97.0 <0.88 <0.85 6.54 x 

11/12 21.7 4.97 x 0.40 245 95.7 <0.88 <0.85 7.33 x 

13/12 21.0 4.78 x 0.38 251 97.7 <0.88 <0.85 5.76 x 

14/12 21.3 4.81 100 0.40 246 83.0 <0.88 <0.85 6.14 x 

17/12 20.8 5.04 x 0.38 246 96.1 <0.88 <0.85 5.94 6.17 

E 03/12 14.1 4.80 98.2 0.47 158 99.2 <0.88 <0.85 2.84 1.32 

08/12 15.5 4.65 85.2 0.52 158 97.8 <0.88 <0.85 5.84 x 

11/12 16.0 4.86 x 0.51 159 100 <0.88 1.07 6.20 x 

13/12 16.9 4.96 x 0.50 165 95.1 <0.88 1.62 5.73 x 

14/12 15.8 4.71 98.0 0.50 160 99.0 <0.88 1.25 5.82 x 

17/12 16.2 4.99 x 0.46 164 94.3 <0.88 1.75 5.61 6.04 

x: not determined 
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Table A 3.3, part III. 

Well Date Fe Fe(II) Mn As As(III) Rb Li U Mo  %-error 

(mg/L) (%) (mg/L) (µg/L) (%) (µg/L) (%) 

A 03/12 7.77 95.5 0.92 98.0 85.1 1.45 2.15 0.08 1.21 -1.63 

08/12 6.93 89.4 0.71 170 100 2.22 2.41 0.04 0.84 +1.23 

11/12 4.67 x 0.43 300 98.5 2.65 2.26 0.02 0.94 -8.42 

13/12 4.88 x 0.38 335 96.2 3.29 2.22 0.01 2.27 -12.0 

14/12 5.14 97.5 0.40 326 98.1 2.68 2.09 0.03 1.00 -10.8 

17/12 5.00 x 0.36 343 98.4 2.69 1.99 0.02 0.92 -11.2 

B 03/12 8.96 98.6 0.74 100 99.0 4.56 2.76 0.08 0.86 -4.76 

08/12 8.61 79.8 0.56 150 97.6 3.72 3.13 0.07 0.54 +1.07 

11/12 6.35 x 0.35 254 95.1 3.15 2.65 0.06 1.01 -9.08 

13/12 5.12 x 0.27 330 99.0 2.82 2.50 0.03 1.43 -3.50 

14/12 4.64 93.6 0.28 312 98.3 2.75 2.23 0.05 5.07 -6.37 

17/12 4.61 x 0.24 349 95.5 2.72 2.24 0.04 1.45 -9.66 

C 03/12 1.09 89.8 0.85 296 94.4 1.40 3.06 0.58 1.97 -6.32 

08/12 1.47 error 0.85 335 91.9 1.38 2.78 0.59 1.83 -2.41 

11/12 1.09 x 0.80 301 82.7 1.41 2.45 0.57 7.25 -13.3 

13/12 1.39 x 0.79 326 96.5 1.45 2.16 0.55 1.83 -9.79 

14/12 1.48 100 0.77 325 97.1 1.35 1.99 0.49 1.74 -9.02 

17/12 1.77 x 0.77 334 98.0 1.40 2.08 0.52 1.73 -10.6 

D 03/12 4.76 99.1 0.37 262 95.9 2.00 2.32 0.16 1.23 -1.59 

08/12 4.43 81.4 0.43 245 97.0 1.94 1.93 0.22 1.03 -5.50 

11/12 4.97 x 0.40 245 95.7 1.98 1.89 0.15 1.00 -14.1 

13/12 4.78 x 0.38 251 97.7 1.89 1.87 0.12 0.86 -12.7 

14/12 4.81 100 0.40 246 83.0 1.89 1.88 0.15 0.93 -9.47 

17/12 5.04 x 0.38 246 96.1 1.89 1.89 0.12 0.86 -11.4 

E 03/12 4.80 98.2 0.47 158 99.2 1.92 1.70 0.16 1.57 -15.2 

08/12 4.65 85.2 0.52 158 97.8 1.95 1.66 0.18 1.61 -6.87 

11/12 4.86 x 0.51 159 100 1.95 1.75 0.19 1.67 -14.6 

13/12 4.96 x 0.50 165 95.1 1.98 1.79 0.17 1.49 -10.4 

14/12 4.71 98.0 0.50 160 99.0 1.93 1.69 0.19 1.58 -14.1 

17/12 4.99 x 0.46 164 94.3 1.94 1.77 0.17 1.61 -10.0 

x: not determined 
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Table A 3.4: Comparison of solid phase compositions and aqueous phase 

concentrations in different depths. 

Well/ 
sample 
depth 

Source Ca  Mg Na K Mn Fe PO4
3- Ba As U 

TOC / 
DOC 

(m bls) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppb) (ppb) (ppm) 

A  

12-21 / 

12.4 

Water* 134 28.4 29.36 9.73 0.92 7.77 2.61 0.33 98.0 0.08 3.02 

Sediment** 22 000 5630 9920 13 900 490 20 000 2000 299 5600 5170 380 

Ratio*** 
6.09
x 10-3 

5.04    
x 10-3 

2.96    
x 10-3 

7.01   
x 10-4 

1.87   
x 10-3 

3.88   
x 10-4 

1.33    
x 10-3 

1.10  x 
10-3

1.75   
x 10-2

1.54   
x 10-5

7.97    
x 10-3 

B 

22-25 / 

23.5 

Water 140 27.7 27.8 9.70 0.74 8.96 2.99 0.43 100 0.08 4.52 

Sediment 10 100 3650 10 530 14 700 256 10 300 706 301 2000 1370 208 

Ratio 
14.2    
x 10-3 

7.59    
x 10-3 

2.64    
x 10-3 

6.60   
x 10-4 

2.90   
x 10-3 

8.67   
x 10-4 

4.24    
x 10-3 

1.42  x 
10-3

5.07   
x 10-2

5.95   
x 10-5

21.7    
x 10-3 

C 

26-29 / 

29.4 

Water 93.9 23.3 18.3 2.73 0.85 1.09 2.53 0.17 296 0.58 2.55 

Sediment 12 900 3900 10 100 14 700 388 14 600 961 310 2500 1520 333 

Ratio 
7.29   
x 10-3 

5.98    
x 10-3 

1.82    
x 10-3 

1.85   
x 10-4 

2.20   
x 10-3 

0.75   
x 10-4 

2.63    
x 10-3 

0.56  x 
10-3

12.1   
x 10-2

38.1   
x 10-5

7.64    
x 10-3 

D 

30-33 / 

30.6 

Water 109 24.7 19.9 2.72 0.37 4.76 3.07 0.26 262 0.16 1.53 

Sediment 13 100 4020 10 600 15 200 452 15 700 1150 330 3300 1910 286 

Ratio 
8.34   
x 10-3 

6.14    
x 10-3 

1.88    
x 10-3 

1.79   
x 10-4 

0.83   
x 10-3 

3.04   
x 10-4 

2.67    
x 10-3 

0.78  x 
10-3

7.93   
x 10-2

8.45   
x 10-5

5.35    
x 10-3 

E 

34-37 / 

38.5 

Water 92.0 22.7 14.1 2.88 0.47 4.80 2.84 0.23 158 0.16 1.32 

Sediment 41 200 16 900 8840 26 600 691 36 800 1600 555 9700 3160 5320 

Ratio 
2.23   
x 10-3 

1.34    
x 10-3 

1.60    
x 10-3 

1.09   
x 10-4 

0.69   
x 10-3 

1.31   
x 10-4 

1.77    
x 10-3 

0.41  x 
10-3

1.64   
x 10-2

5.18   
x 10-5

0.25    
x 10-3 

*Groundwater concentrations, representative results from 03/12/09 

**Sediment contents, determined by microwave acid digestion from representative samples 
according to the well’s screening positions 

***Element ratios aqueous phase / solid phase 
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Figure A 3.3: Comparison of TN and TOC contents of the sediments, which 

display a group of outliers that originate from facies F2. Regression line 

without highlighted outlier group (R2: 0.97, n: 27). This decoupling in the four 

samples is attributed to diagenetic alteration effects. 
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Figure A 3.4: Calculation of the K value with the Dupuit-Thieme equation and 

comparison to grain size estimated K values. Since most assumptions are not 

directly met, the calculated K is considered a rough estimate, but is in relatively 

good agreement with the grain size estimated K values and sufficient for 

considerations in the context of this study. 
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Calculation of hydraulic conductivity (K value) with the Dupuit-Thieme 

equation (ENTENMANN 2006): 

ܳ	 ൌ ܭ ൈ ܯ2 ൈ	ቌ
ሺ݄ଶ െ ݄ଵሻ

ln
ଶݎ
ଵݎ

ቍ			 	ሺ1ܣሻ 

Q: 9 m3 h-1 (delivery rate) 

M: 38.85 m (thickness of water column, 39.2 m - 3.35 m); 

h1: 38.92 m (distance hydrostatic head in well B to bottom aquitard   

      = 39.2 m – 0.28 m); 

h2: 39 m (distance hydrostatic head in well D to bottom aquitard  

      = 39.2 m – 0.20 m); 

r1: 1.96 m (distance well B to pumping well) 

r2: 4.85 m (distance well D to pumping well) 

→ K = 1.26 x 10-4 m sec-1  

Assumptions: 

1) Aquifer is confined;

2) Flow conditions are quasi-stationary (steady state conditions);

3) Aquifer is homogenous and has an unlimited extension;

4) The hydrostatic head has no gradients;

5) The well screens cover the full vertical extension of the aquifer;

6) Constant delivery rate.
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Naturally occurring arsenic-bearing groundwater threatens the health 
of millions of residents in the Bengal Delta Plain (BDP), which is amongst 
other Asian regions one of the most severe affected areas worldwide. 
For more than three decades, inhabitants have been exposed to arsenic-
enriched groundwater, which resulted in the widespread occurrence 
of chronic arsenic intoxications. After more than two decades of 
intensive research, the interactions of biogeochemical processes 
induced by metal-reducing microbes and hydrological conditions have 
been identified as cause of locally increased arsenic concentrations in 
groundwater. 
This publication presents recent results of an interdisciplinary field 
study that assessed the relative roles of biological and inorganic 
processes underlying the mobilisation and accumulation of arsenic in 
shallow groundwater of the Bengal Delta Plain in West Bengal. The 
scientific focus is defined by the description of two representative 
study sites, the characterisation of sediment samples, the conduction 
and interpretation of in-situ field experiments and the interpretation 
of hydrochemical monitoring data. All results are combined in an 
effort to develop a conceptual model explaining the distribution of 
arsenic in groundwater of West Bengal, which is transferable to other 
arsenic-affected regions in Asia as well.
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