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Abstract

Performance is one of the key quality attributes of a software system and is crucial for its
success. Software performance engineering (SPE) supports developers and architects in
building responsive and resource efficient applications. During early development stages,
performance predictions based on architecture models allow the evaluation of design al-
ternatives, capacity planning, and the identification of potential bottlenecks. To provide
accurate performance predictions, such models have to include low-level details, for exam-
ple, about the underlying middleware or design patterns used. Including such low-level
details conflicts with the abstract architecture paradigm. It leads to significant modelling
effort for software architects and requires detailed knowledge about the modelled system.

Model-Driven Software Development (MDSD) can solve this conflict and include the nec-
essary details using model transformations. However, such transformations have to cope
with the complexity of today’s architecture models. Additionally, lower levels (infras-
tructure or implementation) are variable in many cases. The effect of such variability on
performance must be captured in the transformations. Current MDSD technologies can
support variability of transformations only to a limited extend.

In literature, completions allow the inclusion of low-level details into high level predic-
tion models. However, they are not fully automated, are not variable and configurable,
and make limited use of MDSD technologies. Related solutions introducing variability in
MDSD typically deal with model instances only. As a consequence, model transforma-
tions become very complex and hard to understand, develop, and maintain. To overcome
this problem, we have to introduce variability to transformations themselves, which is not
supported by current transformation languages.

In this thesis, we propose an advanced concept for model transformations closing the gap
between abstract architecture models and low-level details. For this purpose, we extend ex-
isting MDSD techniques by variability of transformations. Our approach, called CHILIES,
moves the management of variability to a higher abstraction level. We enable variability
of transformations using generators based on the presented Higher-Order Transformation
(HOT) patterns. HOT patterns target different goals, such as template instantiation or
transformation fragment composition. We applied our approach to the domain of SPE to
complete prediction models. In this thesis, we developed a completion library that allows
to reuse expert knowledge and to improve the accuracy of performance predictions.

The validation of our approach addresses the improvement of prediction accuracy by com-
pletions and the complexity of their transformations. We evaluated the prediction accuracy
of the completions developed in the scope of this thesis in several case studies by compar-
ing performance prediction results to measurements on real implementations. Our results
imply that the prediction accuracy can be increased significantly when completions are
applied to a software performance model. Furthermore, we compared the complexity of
manually implemented transformations to transformations developed with our CHILIES
framework. The results suggest that transformations developed using CHILIES are less
complex and more focussed as they allow to manage variability more efficiently.
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Kurzfassung

Die Leistungsfähigkeit eines Software-Systems ist eines der zentralen Qualitätsmerkmale
und ausschlaggebend für dessen Erfolg. Das Software Performance Engineering (SPE)
unterstützt Entwickler und Architekten bei der Entwicklung reaktionsfähiger und res-
sourceneffizienter Anwendungen. Leistungsabschätzungen basierend auf Architekturmo-
dellen ermöglichen die Evaluation von Entwurfsalternativen, Kapazitätsplanung, sowie die
Identifikation potentieller Engpässe bereits in frühen Entwicklungsphasen. Um genaue
Leistungsabschätzungen erreichen zu können, müssen die genutzten Modelle systemnahe
Details, wie zum Beispiel Einflüsse der Plattform oder verwendeter Entwurfsmuster, be-
rücksichtigen. Die Einbeziehung solcher Details steht im Konflikt mit dem Paradigma
der abstrakten Architektur. Weiterhin führt sie zu signifikantem Mehraufwand für den
Software-Architekten und verlangt detailliertes Wissen über das zu modellierende System.

Modellgetriebene Software-Entwicklung (Model-driven Software Development, MDSD) kann
diesen Konflikt lösen indem notwendige Details mittels Modelltransformationen in die Vor-
hersage eingebunden werden. Allerdings müssen solche Transformationen mit der Kom-
plexität heutiger Architekturmodelle umgehen können. Desweiteren sind Plattform und
Implementierung in vielen Fällen variabel, so dass der Einfluss der Variabilität auf die
Leistungsfähigkeit erfasst werden muss. Aktuelle MDSD-Technologien unterstützen Va-
riabilität von Transformationen nur sehr eingeschränkt.

In der Literatur werden Vervollständigungen (Completions) genutzt, um die Einbindung
von systemnahen Details in abstrakte Vorhersagemodelle zu ermöglichen. Diese sind aller-
dings nicht vollständig automatisiert, nicht variabel und konfigurierbar und machen nur
eingeschränkt Gebrauch von MDSD Technologien. Verwandte Lösungen zur Einbindung
von Variabilität im Bereich der modellgetriebenen Software-Entwicklung konzentrieren sich
allein auf Modellinstanzen. Als Konsequenz werden Modelltransformationen sehr komplex
sowie schwer verständlich und wartbar. Um das Problem zu lösen, muss Variabilität von
Transformationen ermöglicht werden, was in aktuellen Transformationssprachen nur ein-
geschränkt der Fall ist.

In dieser Arbeit wird ein fortgeschrittenes Konzept für Modeltransformationen eingeführt,
welches die Lücke schließt zwischen abstrakten Architekturmodellen und systemnahen De-
tails. Zu diesem Zweck werden MDSD Techniken um Variabilität von Transformationen
erweitert. Der hier vorgestellte Ansatz (genannt CHILIES) bewegt die Handhabung von
Variabilität auf eine höhere Abstraktionsebene. Variabilität von Transformationen wird
ermöglicht durch Generatoren auf der Basis von Mustern für Transformationen höherer
Ordnung (Higher-order Transformations, HOTs). Diese Muster adressieren verschiedene
Ziele, wie zum Beispiel die Instanziierung von Schablonen oder die Komposition von Trans-
formationsfragmenten. Im Rahmen dieser Arbeit wurde der Ansatz auf die Domäne des
Software Performance Engineerings angewandt, um Vorhersagemodelle zu vervollständi-
gen. Weiterhin wurde eine Bibliothek von Vervollständigungen zur Leistungsbewertung
von Software-Systemen entwickelt, welche die Wiederverwendung von Expertenwissen er-
möglicht und so die Vorhersagegenauigkeit erhöht.
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Die Validierung des Ansatzes adressiert die Verbesserung der Leistungsbewertung durch
Vervollständigungen und die Komplexität der zugehörigen Transformationen. Es wurde
die Vorhersagegenauigkeit der im Rahmen dieser Arbeit entwickelten Vervollständigun-
gen in mehreren Fallstudien untersucht. Dabei wurden Vorsagen mit Messungen echter
Implementierungen verglich. Die Ergebnisse deuten darauf hin dass die Verwendung von
Vervollständigungen bei der Leistungsbewertung die Vorhersagegenauigkeit deutlich erhö-
hen kann. Desweiteren ergab ein Vergleich manuell implementierter Transformationen und
Transformationen entwickelt auf der Basis des CHILIES Ansatzes, dass letztere weniger
komplex sowie stärker fokussiert sind und damit Variabilität besser handhaben können.
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1. Introduction

For successful and effective software development, the ability to predict the impact of de-
sign decisions in early development stages is crucial. Design decision can influence quality
properties, e.g., performance, of software systems. Using predictions, potential problems,
such as bottlenecks and long delays, can be detected early avoiding costly redesigns or
re-implementations in later stages. Williams and Smith [170] estimated the financial ben-
efit of software performance prediction for medium sized project on several millions of US
dollars.

In model-driven software performance engineering [6], abstract design models are used
to predict and evaluate response time, throughput, and resource utilisation of the target
system during early development stages.In order to provide accurate predictions, the per-
formance models have to consider the influence of the underlying platform, of the operating
system, and even of used design patterns (e.g., concurrency design patterns). The low-level
details influence performance metrics and as such are essential for accurate predictions.
The problem of missing details was already identified by Woodside et al. [172]:

”Performance modelling is effective, but it is often costly; models are approximate,
they leave out detail that may be important, and are difficult to validate.”

Including low-level details in prediction models conflicts with the abstract architecture
paradigm and leads to a significant modelling effort for software architects. Moreover,
such models are very complex leading to a decreased understandability, reusability and
model credibility. For example, the middleware’s complexity and the specific knowledge
on the implementation, which is required to create the necessary models, would increase
the modelling effort dramatically. Since the low-level details can appear in different con-
figurations, it is hardly feasible to create such models manually. This leads to the well
known conflict between variability and automation [172]:

One of the obstacles to the adoption of performance tools is ”a conflict between
automation and adaptability in that systems which are highly automated but are

difficult to change, and vice versa. As a result no tool does the job the user needs, so the
user goes and invents one. Further, various tools all have different forms of output which

makes interoperability challenging at best.”
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8 1. Introduction

Woodside et al. in [172] point out the leading research question of this thesis that addresses
the problem of automated inclusion of variable low-level details into highly-abstract pre-
diction models. The conflict between the inclusion of low-level details into prediction
models and maintaining highly-abstract models can be addressed by Model-Driven Soft-
ware Development (MDSD). Because of the reconfigurability of the included details, the
used MDSD techniques must support variability as well.

However, MDSD approaches lack an applicable and suitable solution for managing vari-
ability. Existing variability approaches result in a growing complexity of transformations,
limited usage of configurations, and the maintainability of transformations quickly becomes
a huge problem. Completion-based approaches described in the literature allow inclusion
of low-level details, however, they are not automated, do not support variability of comple-
tions, or they are limited to the configuration of attributes only. These approaches suggest
only simple annotation models that extend prediction models through parametrization of
resource demands using measurements on real systems (e.g., in the case of performance
prediction, for example, number of processor cycles needed for particular activity). They
concentrate on the properties of the underlying platform and do not consider structural
changes in the architecture, such as inclusion of certain design pattern (e.g., Replication,
Barrier, Connector patterns etc.).

While most of the implementation details are not known in advance, a rough knowledge
about the design patterns that are to be used might be available already very early. This
knowledge can be exploited for further analysis, such as performance prediction. One
reason why such details are not considered is the high level of variability in the architecture
that would be required. It is not feasible to create such models manually. Therefore,
automated tool support is crucial to build such detailed models.

In this thesis, we propose a concept of configurable model transformations to close the
gap between an abstract model and low-level details required by the modelling purpose
(e.g. to provide accurate predictions of performance). The solution, presented in this
thesis, is based on the parametrized model completions that include the details of lower
levels into high-level architectures. Model completions are realised using and extending
existing model-driven technologies. They express low-level details as reconfigurable black-
box constructs and, thus, hide the model complexity from software architects. Software
architects only have to provide a configuration for the modelled detail. The integration of
the configured detail is fully automated.

MDSD allows to create software families specially tailored for a certain domain and sharing
common details. The existing techniques to support variability in the software families,
however, mostly focus on the variability of models. Hence, the transformations, from a
more general family member into a more detailed family member, define already how the
model variants look like. Thus, it is not necessary to actually create model variants, it
is enough to focus on the variants of transformations generating required models. We
take a step back and analyse broader variability scenarios in the MDSD. We shift our
attention from the variability of models to the variability of other artefacts, especially
transformations.

The model transformations, sharing common parts, need to be customised to integrate
different performance-relevant details. Moreover, these details may introduce optional ex-
tensions to metamodels. In such situation, we have to handle the variability of metamodels
as well. We created an automated support of variable transformations development using
pre-processors and generators based on, so called, Higher-Order Transformations (HOTs)
[167]. The proposed approach, called CHILIES, presents a set of HOT patterns for differ-
ent variability scenarios. We use these patterns to build a Software Product Line (SPL)
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[37] for completion transformations. The CHILIES approach does not require heavy devel-
opment effort and allows the light weight integration of low-level details into performance
prediction methods.

1.1. Research Questions

In the scope of this thesis, we address research challenges from two areas: (i) Model-Driven
Software Performance Engineering (MDSPE), and (ii) Model-Driven Software Develop-
ment (MDSD). More specifically, we work on answering the following research questions:

Q1: How to include purpose-specific aspects to models in an automated but adaptable
manner inheriting its standard mechanisms and facilities, including transformations and
tools?

The goal is to automate the integration of purpose-specific aspects into the models. The
model details increase the prediction accuracy as such more detailed models correspond
better to the reality. Each aspect is encapsulated in a completion and can be instantiated
in different variants added to the model. Potentially, we may use any of these completions
and then, using completed models, generate the implementation, e.g. code, or to run
analyses. To support, for example, the code generation from any of these models, we have
to maintain the same language as the generation chain requires as input. Moreover, the
variability of completions results in multiple implementations of transformations, which
consist in majority of common parts composed together with customisations based on the
configuration. Thus, the second question emerges.

Q2: How to support configuration-based variability in model transformations?

In other words, what methodology, technologies, model-driven structures of pre-processors
or generators are needed to support variability? The requirement for variability results
from different goals and different settings, which results in a different kinds of variabil-
ity. Some of the required variable artefacts have to be composed together, other are only
instantiated in form of templates or added as customisations of more general transforma-
tions. Our solution needs to support variability in transformations resulting from these
different requirements. The answer to this question overcomes the limitations of current
transformation approaches.

Q3: How to structure the Completion Library to reduce possible conflicts in an application
of multiple completions?

The previous question deals with the management of variability in general. In our appli-
cation domain, the Model-Driven Performance Engineering (MDSPE), additional factors
need to be considered. Especially, in this domain, conflicts in a sequence of completions has
an additional dimension, the dimension of quality attribute (i.e., performance). We discuss
the application of the proposed method and the structure of the completion library for
MDSPE. In this context, we have to consider multiple applications of completions and the
conflicts in their application. Furthermore, transformations have certain quality properties
themselves, which leads to the last question.

Q4: How to analyse maintainability of relational transformations?

The final question deals with the evaluation of quality properties, such as maintainability,
ease-of-use or understandability, of resulting transformations. We have to discuss the
complexity and understandability of resulting transformations. For this goal, we have to
evaluate the metrics to quantify quality properties of transformations.

These research questions resulted in the scientific contributions listed in the following
section.

9



10 1. Introduction

1.2. Scientific Contributions

The following gives details on the particular contributions. The main contributions of this
thesis are:

Generalised Model Completions

The separation of concerns is essential to avoid construction of large and monolithic models,
which are hard to maintain or reuse. Reusability of such models is limited especially
because such models are often designed for one purpose, as such they do not consider
possible enhancements when the purpose of the model changes and new domain-specific
details have to be introduced. For example, a component-based architecture model could
be used to predict performance. However, the same model could be used to analyse
reliability, as well. Both of these purposes require additional domain-specific details, i.e.
performance or reliability specific implementation details.

Existing approaches do not consider model completions in general. The idea of comple-
tions introduced by [174, 76], however, only in a form of performance-specific annotations.
These approaches do not discuss the role of model completions in MDSD, either provide
a support for completions. Especially, they do not discuss the variability of structural
changes resulting from completion integration.

In the model-driven world, models are understood as instances conforming to predefined
metamodels. Each model is created for certain purpose. Two models could have different
levels of detail although they are based on the same metamodel. Models may have even
different level of detail in the same domain. Increasing the level of detail of a metamodel
to the magnitude that each aspect of the real subject could be expressed by its model
would increase complexity of metamodel in a such way that metamodel would be unusable.
Additionally, such metamodel does not support separation of concerns by modelling only
one detail at the time. Having many metamodels on a different level of detail is also
infeasible. It is impossible to foresee all different purposes for which a model could be
created and related requirements on such models. This problem cannot be approached
on the metamodel level. It is necessary to come up with a solution on the model level
that would support the incremental completion of model instances that are in each step
conform to the one and the same metamodel. We consider this approach as indirect
extension of metamodel by introducing (mini-)domain specific languages for a sub-domain
of one completion. This way, we can define model pragmatics, similarly as it is possible
for programming languages. Furthermore, the proposed solution should provide support
for reuse and reconfiguration of such incremental completions.

We propose a concept of model completions to close the gap between an abstract model and
low-level details required by the model’s purpose (e.g. to provide accurate predictions of
performance). Completions do not change the metamodel, thus, all existing tools built for
this modelling-language could be reused. The core idea of this thesis is to introduce model
pragmatics that could be used on a model level to increase the level of detail in model
instances, without need to extend the metamodel directly. Moreover, the complexity of
model enhancements encapsulated in completions is hidden to the developers. They only
configure the variant of the completion on an abstract level and the integration of the
completion is a black-box operation for them. These completions are highly variable, thus
the integration of them is non-trivial task, a lot of effort is needed to implement and to
maintain any automated solution realizing them. We use an approach similar to model
weaving. Each completion has a DSL for its modelled sub-domain and can be maintained
individually. Together with the original metamodel, completions are interconnected into a
’lattice of metamodels’ that could be considered as a more complete metamodel. The idea
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1.2. Scientific Contributions 11

is to allow the use of this more complete metamodel to create model instances and later
transform instances to conforming to the original metamodel again, which allows reuse of
existing tools. Because, the necessary transformations inherit the high level of variability
from completions and the chosen variant is not known in advance, it is a higher-order
problem. This challenge is the target of the second contribution in this thesis.

CHILIES Variability Management Method

The main contribution of this thesis is a novel approach called CHILIES which automates
the management of variability in transformations. The support of variability in the defi-
nition of transformations is crucial to support completions. Although, we apply CHILIES
to support performance completions, our approach can be used in other domains, as well.

Typically, variability approaches focus on variability of models [154, 70, 89] or propose so-
lutions based on the model annotations [162, 12]. The main problem of such approaches is
the complexity of resulting transformations which have to consider each possible combina-
tion of configuration options. The main advantage of our variability approach is provided
by performing the model transformation configuration automatically based on configu-
ration instead of models. This separation of concerns can achieve high variability and
flexibility in the development of software applications.

In this thesis, we created a Software Product Line (SPL) for model transformations using
Higher-Order Transformations (HOTs). A HOT compiles a transformation model again
into a transformation model. We used these HOTs as pre-processors or generators, at load
time of the transformation (e.g. in MDSPE), executed before the actual transformation. In
our approach, we use chains of HOTs where each HOT represents a different pre-processing
step. We identified different scenarios where the variability of transformations has to be
handled and specified model-driven structures using HOTs (called HOT patterns), which
can be used to build SPLs for transformations. Based on these patterns, software engineers
can build pre-processor chains to generate transformations on demand and integrate them
into the existing model-driven process. By formalising these patterns, we build a framework
allowing the reuse of HOT specifications. The SPL designed to support completions is a
composition of three of such HOT patterns: Routine, Composite and Template pattern.

The first one is used for synthesis of a general transformation from a metamodel; the
second one for transformation composition based on the structure of the configuration
model; the third one for the instantiation of parametrized domain-specific templates as a
partial transformation synthesis.

Completion Library for Software Performance Engineering

The specification of completions requires a lot of domain-specific expert knowledge (e.g.
for performance prediction the knowledge about performance-relevant implementation de-
tails). Moreover, the same activities are often repeated, e.g. usage of the same design
pattern or integration of the same middleware platform. Therefore, we introduce a library
offering reusable completions to developers. This library is structured, as mapping sets of
completions to the roles in the development process. Thus, one development role can con-
figure only completions in its responsibility. Building on the separation of concerns among
the development roles is already reflected in the design of the metamodel (e.g. in PCM),
the responsibility domains of the roles can be mapped on disjunct sets of model elements.
Based on this principle, we can reduce conflicts in a sequence of multiple completions.

Moreover, using predefined quality heuristics, we can evaluate if all permutations of a
completion sequence are quality equivalent. We introduced a method to reduce and resolve
conflicts in the sequence of completions. Considering that a model could require more
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12 1. Introduction

than one completion to be integrated, our approach can deal with chains of completion
transformations. We formalise this problem and provide a solution based on a stepwise
conflict resolution. In the first step, the conflict domain is reduced based on the structure
of the underlying metamodel. In the next step, the quality heuristics are applied to resolve
the conflict.

In addition, we introduce an initial set of completions, validated for the Palladio Com-
ponent Model [18], that allow to reuse expert knowledge about modelling of concurrency
and serve as illustration of the application of completions. Each completion or combina-
tion of completions should increase the prediction accuracy, i.e. reduce the deviation of
prediction and observation, to correspond better the reality. Therefore, the creation of a
completion is a challenge itself and requires detailed research of the modelled aspect and
its validation by comparison to the measurements on a real system. The validation was
performed in an end-to-end manner, by using the PCM workbench extensions based on
CHILIES introduced in this thesis.

To support completions, CHILIES are integrated in the Palladio Component Model (PCM)
tools. The tool takes a complete PCM instance (i.e., a software architecture model includ-
ing performance specifications) as input and generates a new PCM instance by applying the
completions defined and configured in the source model. Such refined models are prepared
for further analyses of the performance, reliability, maintainability and cost properties.
Additionally, this thesis discusses the support for automated measurements and experi-
ments to collect possible configuration options that should be included in the configuration
model. These measurements and experiments are done on real systems [77].

Maintainability Metrics for Model Transformations

Furthermore, we discuss the quality of the HOTs and completion transformations. The
maintainability of transformations is influenced by various characteristics - as with every
programming language artifact. Code metrics are often used to estimate code maintainabil-
ity. However, most of the established metrics do not apply to declarative transformation
languages (such as QVT Relations) since they focus on imperative coding styles. Code
metrics are one way to characterize the maintainability of programs. However, the vast
majority of these metrics focus on imperative coding styles and thus cannot be reused as-is
for transformations written in declarative languages.

In this thesis, we propose a set of quality metrics to evaluate transformations written in
the declarative QVT Relations language. We evaluated the transformations’ maintain-
ability through this set of automated metrics for model-to-model transformations. In the
analysis, the classical parametrized model transformations are compared to the generated
transformations by HOTs.

Statefull Model-Driven Software Performance Engineering

Integrating rising variability of software systems in performance prediction models is cru-
cial to allow the widespread industrial use of performance prediction. One of such vari-
abilities is the dependency of system performance on the context and history-dependent
internal state of the system (or its components). The questions that rise for current pre-
diction models are (i) how to include the state properties in a prediction model, and (ii)
how to balance the expressiveness and complexity of created models.

Only a few performance prediction approaches deal with modelling states in component-
based systems. Currently, there is neither a consensus in the definition, nor in the method
to include the state in prediction models. For these reasons, we have conducted a state-
of-the-art survey of existing approaches addressing their expressiveness to model stateful
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components. Based on the results, we introduce a classification scheme and present the
state-defining and state-dependent model parameters. We extend the Palladio Component
Model (PCM), a model-based performance prediction approach, with state-modelling ca-
pabilities, and study the performance impact of modelled state.

1.3. Structure

After the introduction provided by this chapter, this thesis is structured in eight chapters:

• Chapter 2 describes the foundations necessary for this thesis. We discuss the basic
terms and gives a brief overview on the concepts from the two main areas: Section
2.1 introduces the foundations of MDSD and Section 2.2 the foundation of MDSPE
domain.

• Chapter 3 starts with a motivation and introduction of model completions in gen-
eral. We locate the model completion concepts in the MDSD and MDSPE domain.
After, discussing the consequences of model completions for the MDSD processes
(e.g. MDA), we introduce an completion-based MDSPE process in Section 3.3. It
provides a running example and illustrates the completion-based MDSPE process us-
ing this example. This chapter deals with the research question Q1: How to include
purpose-specific aspects to models in an automated but adaptable manner inheriting
its standard mechanisms and facilities, including transformations and tools?

• Chapter 4 introduces the CHILIES approach. We discuss the application of HOTs
for different goals in Section 4.3. Furthermore, each of the Sections 4.4, 4.5 and
4.6 gives, first, the specification of an one HOT pattern in general and, second,
the description of its implementation in the context of performance completions.
Furthermore, we introduce the composition of these three patterns providing support
for completions in the MDSPE process. The Chapter 4 presents the solution to
the research question Q2: How to support configuration-based variability in model
transformations?

• In Chapter 5 we apply model completions to the MDSPE approach ’Palladio Com-
ponent Model (PCM)’. At the beginning of this chapter (cf. Section 5.2.3), we discuss
the reduction and resolution of conflicts in the sequence of completion execution for
the PCM metamodel. Later, we introduce an initial library of performance com-
pletions for concurrency design patterns in Section 5.3. The chapter introduces the
results of the research question Q3: How to structure the Completion Library to
reduce possible conflicts in an application of multiple completions?

• Chapter 6 continues to evaluate the proposed variability mechanism for transforma-
tions. This chapter introduces a set of quality metrics that can be used to evaluate
the maintainability of transformations, especially their complexity, understandabil-
ity, extendibility and ease-of-use. This chapter answers the research question Q4:
How to analyse maintainability of relational transformations?

• Chapter 7 shows on several case studies the validity of the contributions presented
in this thesis. Two case studies in Section 7.2.1 demonstrate that predictions made
based on completed models reflect the reality in an appropriate and accurate way. In
addition, we present a case study based on the realistic Business Reporting Scenario
demonstrating the prediction accuracy in a composition of completions. Moreover,
we evaluate the method for the conflict resolution in Section 7.2.2. Section 7.2.3
discusses the complexity and maintainability of the HOTs and completion transfor-
mations using quality metrics for transformations introduced in the previous chapter.
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14 1. Introduction

• Chapter 8 discusses the current state-of-art in the related areas. The discussion
includes work from the areas of model transformation engineering and platform com-
pletions for software performance engineering. In addition, we summarize and com-
pare the related approaches to the contributions introduced by this thesis and discuss
the resulting deficiencies.

• Chapter 9 concludes this thesis. We summarize the most important contributions
presented in this thesis. Finally, we discuss the open questions and future directions
of our research.

The additional contributions of this thesis are discussed in more detail in the Appendix,
where we also introduce further HOT patterns. Moreover, we give examples on the imple-
mentation of two completion transformations, for the MOM and Procedure Call Connector
completion. The most important contribution presented in Appendix is the set of experi-
ments and heuristics building a foundations for stateful SPE.

Chapter 5:
Completion Library

Chapter 1:
Introduction

Chapter 2:
Foundations

Chapter 8:
Related Work

Chapter 3:
Model Completions

Chapter 4:
Variability Management

Chapter 6:
Transformation Analysis

Chapter 7:
Validation

Chapter 9:
Conclusion

Appendix A:
Further HOT Patterns

Appendix B:
Statefull SPE

<<optional>>

<<optional>>

<<optional>>

MDSD

<<optional>>

MDSD

MDSD

MDSD

MDSPE

MDSPE

MDSPE

Figure 1.1.: Chapter structure in this thesis.

The dependencies among the chapters are illustrated in Figure 1.1. The optional chap-
ters could be safely skipped, if the reader is familiar with the basic MDSD and MDSPE
concepts. The further chapters are divided between the two context domains in this thesis,
the MDSD and MDSPE domain. The reader interested in the MDSD contributions could
follow the reading plan marked by the MDSD tag, analogously for the MDSPE tag.
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2. Foundations

In this chapter, we introduce the concepts and terms from the three different research areas
on which this thesis is built on (cf. Figure 2.1). Software Performance Engineering(SPE)
supports developers to take the right decision about the developed software system to
fulfil their performance requirements. Performance prediction methods evaluate response
time, throughput, and resource utilisation of the developed systems in early development
phases. The application of SPE avoids cost, time and effort intensive redesigns of systems
later. In this work, we focus on the SPE for component-based architectures (CB-SPE).
In the component-based systems, the performance of a whole system is determined by
the performance characteristics of individual components and their composition. Com-
ponents and compositions are described by models specifying software system’s structure
and properties. These models serve as basis for further generation of implementation
skeletons (code), analysis models or simulation code. These different generation scenarios
are supported by Model-Driven Software Development (MDSD). Because design decisions
about the software systems can easily change during the development, model transforma-
tions automate creation of different model variants and avoid effort resulting from manual
implementation.

We structured this chapter as depicted in Figure 2.1. First, Section 2.1 introduces founda-
tions of MDSD necessary to understand concepts presented in this thesis. Second, Section
2.1.2.2 provides an overview of well-established Generative Programming, Model-Driven
Architecture (MDA) and Software Product Line (SPL) concepts and related terms. Third,
Section 2.2 discusses MDSPE methods for component-based architectures with special fo-
cus on approaches using model transformations to derive performance models. Finally, we
provide an overview of the used Software Performance Cockpit in Section 2.2.4.

2.1. Model-driven Software Development

Abstraction plays a central role in Model-Driven Software Development (MDSD): it allows
to separate the specification of a software system from its implementation. The ultimate
goal of the MDSD is to construct models of higher abstraction and to translate them step-
wise into models of lower abstraction until the implementation is generated. In doing so,
the implementation task (code writing) is replaced by modelling activities, such as creating
model instances, writing model transformations for different purposes, or specifying other
problem specific models. The following sections introduce several concepts central to the
MDSD. We discuss the main MDSD artefacts in Section 2.1.1. The first subsection shows
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Figure 2.1.: Research areas involved in this thesis.

the definitions of basic terms like model and metamodel. The focus of the following section
is on model transformation techniques including discussions on higher-order transforma-
tions. Special kinds of transformation methodologies, such as generative programming
and software product lines, play central role in later sections. Additionally, Section 2.1.2
discusses details of MDSD generations and their relation to Model-Driven Architecture
(MDA).

2.1.1. Basic Artefacts of MDSD

The most effective way how to understand complex real-world problems is to build a
model. Models are abstractions of the real-world problems or elements. Raising the level
of abstraction helps effectively addressing a specific purpose, such as answering a question
about the system or influencing its behaviour. We can achieve this by ignoring certain
details while focusing on the relevant ones. Models are the central artefact of Model-Driven
Software Development (MDSD). MDSD is responsible for defining the models. Moreover,
MDSD is bridging the gap between these software models on a high-level of abstraction and
program code, which contains implementation details on a very low-level of abstraction.
This gap is often very large. MDSD technologies try to automate the process of lowering
the abstraction levels. With MDSD, the ultimate aim of software engineers is to build
models on a high-level of abstraction and translate them fully automatically into models
of lower abstraction level (including program code). A key MDSD artefact to achieve
this are model transformations. Models are transformed using model transformations in
step-wise fashion, where each step lowers the level of abstraction.

2.1.1.1. Model and Metamodel

In software engineering, models are used in many ways: to predict system qualities, reason
about system properties and their changes, and traditionally for communication between
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2.1. Model-driven Software Development 17

different software developers. Models can be developed as a starting point to implement a
system, or they can be derived from an existing implementation. Despite the importance
of models, there is still no established definition. In the remainder of this thesis, we define
model as follows (based on [150, 136]):

Definition 1 Model
”A formal representation of entities and relationships in the real world (abstraction) with
a certain correspondence (isomorphism) for a certain purpose (pragmatics).”

Based on this definition, models have three main characteristics: abstraction, isomorphism,
and pragmatism. Models can be described as abstractions of modelled objects, that allow
engineers to reason about the object ignoring some details while focusing on relevant ones.
The selection of the modelled details is guided by a purpose. The model represents the
real world object with certain level of correspondence, called isomorphism. Isomorphism is
a projection of considered attributes of real-world object onto the attributes of its model,
or in other words, there is certain equivalence between the model and the real world
entity. Each model is created for some purpose. This model pragmatism determines
the level of abstraction and isomorphism. For example, we can create a software model
for the purpose of behaviour protocol interoperability checks and another one for the
purpose of performance prediction. Both of the models will include entities describing
used software components and their interfaces. But, because of the different aim of the
model, the behaviour of the components will be modelled with different level of detail. For
the interoperability checks we need to know exactly what is the functionality (behaviour
protocols) provided by the component. Compared to the performance prediction model,
is the first model very detailed model of a component behaviour. For the second purpose,
it is enough to abstract the component behaviour to time or resources needed to respond
to an user request.

A model is created conforming to one modelling language. A modelling language is de-
fined by its metamodel which specifies the ’grammar’ for each model (or the ’word’). A
metamodel defines constructs that can be used to build models and contains validity rules
associated with this constructs. Models conforming to a metamodel follow the structure
defined by the metamodel and do not violate its validity rules. Such models are called
instances of metamodel. The modelling community around the website metamodel.com
[117] defines metamodels as follows:

Definition 2 Metamodel (metamodel.com: [117])

”A metamodel is a precise definition of the constructs and rules needed for creating se-
mantic models.”

We understand a metamodel as a language that allows the formal representation (model)
of entities and relationships in the real world on the certain level of abstraction. In prin-
ciple, each metamodel is again a model created on a certain level of abstraction using
constructs are described by another meta-metamodel. Two metamodels, defining con-
structs that can be used to describe real world objects from the same domain, can have
different expressive power. The metamodel definition limits a level of detail allowed in
conform model instances, that is influenced by the level of isomorphism and abstraction
of metamodel towards the native language. For example, two metamodels can provide
constructs to describe a chair, the first allows to express that the chair has legs, second
allows to describe how many round or angled and polished or matt legs the chair has. We
can say that metamodel definition influences isomorphism and abstraction level of model
instances and therefore we extend the metamodel definition as follows:
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18 2. Foundations

Definition 3 Metamodel
”A metamodel is a precise definition of the constructs and rules within a certain domain
needed for creating semantic models on certain level of abstraction.”

A metamodel is defined by:

• Abstract syntax, which defines elements of models and the relations between them.
This definition is independent from actual representation of these elements. For
example, in programming languages, the abstract syntax is usually represented as
an abstract syntax tree.

• Static semantics, which describes properties of model elements and relations by which
the model can be validated. A common language to express static semantics is OCL
[127].

• Dynamic semantics, which describes the intention of the model concepts, how to
interpret valid model instances and meaning of their elements. In most cases, it is
written in prose.

• Concrete syntax, which defines the representation of abstract concepts, e.g. an UML
notation [124] or Java syntax. While metamodels always have exactly one abstract
syntax, multiple concrete syntaxes are possible.

Thus, metamodels define all information necessary to build a model. For example, the
UML2 meta-model [124] defines the set of valid UML models. It defines the elements
available in an UML model and their connections (syntax). Additionally, it contains the
Object Constraint Language (OCL), which allows the definition of semantic constraints.
Furthermore, each metamodel describes models from a certain problem domain. The
constructs introduced by a metamodel belong to the same domain and all instances of this
metamodel describe objects from this domain using the allowed constructs. A metamodel
is then understood as a specification language dedicated to a particular domain. We define
domain as follows:

Definition 4 Domain
”A domain is a field of study that is defined by common requirements, used modelling
constructs and rules.”

The Meta Object Facility (MOF) [126] is a meta-meta-model which is self describing and
defines the constructs and rules necessary to specify metamodels. Initially, was MOF
used to model UML. Therefore, its core concepts are similar to those available in UML
class diagrams, although they are on different meta-levels and the described concepts are
different. The MOF specification evolved to the ”essential” MOF (EMOF). The result-
ing implementation based on this standard (used in this thesis) is the Eclipse Modelling
Framework (EMF) and its meta-meta-model ECORE (see Figure 2.2). Furthermore, the
Object Constraint Language (OCL) [127] restricts valid MOF instances and expresses their
static semantics.

2.1.1.2. Transformations

Because many aspects of the modelled object might be of interest, model developers can use
various modelling concepts and notations to highlight the relevant details by the means
of different views or representations. Developers use transformations to move between
different representations, abstraction levels or specialisations of models. Transformations
can convert models from one abstraction level to another (usually a less abstract one) by
adding more detail to the model. Transformations are the second major concept of MDSD.
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Figure 2.2.: The Ecore metamodel.

Insight into the topic of model transformations, explored techniques, most common lan-
guages, and current research papers is collected in a literature study by Biehl [25]. Ac-
cording to his paper, typical usages of model transformations are synthesis, integration
(tool integration or model merging), analysis, simulation and optimization. He further
proposes a classification scheme for model transformation problems: change of abstrac-
tion or not (vertical and horizontal transformation), change of metamodels (endogenous
and exogenous transformation), translating between technological spaces (such working
contexts could be for example MOF, XML, DBML etc.), number of involved domains (in-
place transformation if only one domain is involved), target types used (model or text),
preservation of certain model properties (semantics, behaviour or syntax).

The commonly used transformations are classified into two types: Model-To-Model (M2M)
and Model-To-Text (M2T) transformations. Furthermore, transformations that take a
number of instances of different metamodels as input are called Y-transformations. If one
of these inputs configures the transformation itself, we call these Y-transformations mark
transformations [11]. Another special type of transformations are in-place transforma-
tions, which use equal source and target metamodels. Additionally, these transformations
operate on one model. Thus, the result of the transformation is directly stored in the
model as used as input.

The source and target of a M2M transformation are models. M2M transformations trans-
form an instance of one metamodel into an instance of another metamodel. These meta-
models are usually instances of the same meta-metamodel and they can be equal. A
transformation is defined by a set of transformation rules on a metamodel elements. Each
rule defines its effect using the concepts from source (or input) and target (or output)
metamodel. Thus, transformations are specific to the used metamodels. Transformation
rules are specified in special languages and are interpreted by a transformation engine for
execution. There is a wide range of different transformation engines available, support-
ing different approaches such as graph-transformations, relational, operational or hybrid
transformations.

A special type of M2M transformations are such transformations where the target model of
a transformation is an extension of the source model. Such transformations preserve large
parts of the source model and adds additional information. They are called refinement
transformations [63] and are very similar to completion transformations.
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Graph-transformation approaches have the theoretical foundations in graph grammars
and as such are applied to models interpreted as graphs of objects. The principle of such
transformations is based on mapping between left-hand-side and right-hand-side patterns.
When the sub-graph in the input model matches the left-hand-side pattern the sub-graph
is replaced in the output model by the right-hand-side pattern. This process is finished
when no further left-hand-side pattern can be matched. Similar principle is realised by re-
lational approaches which specify transformation rules in form of formal relations between
two domain patterns [45]. The relational transformation engine tests all available relations
and updates the output model to fulfil all the relations. The OMG Standard Query/View/-
Transformation (QVT) [72] specifies a QVT Relational and QVT Core languages, both
with relational semantics. In this thesis we use the QVT Relational transformation lan-
guage to implement our transformations. Furthermore, the QVT standard introduces an
operational language (QVT Operational), whose main difference is the explicit definition
of execution sequences by a main method from which all mapping operations are called. In
contrast, relational transformation languages only describe the relations between input and
output of a transformation in a relational (i.e., declarative) manner (non-determinism).
Finally, hybrid approaches such as the Atlas Transformation Language (ATL) [90] combine
relational and operational approaches.

M2T transformations generate structured text (e.g., executable code) from their input
models. These transformations can be visitor- or template-based. Using one of these
approaches, M2T transformation engines create for elements of the input model new code
snippets.

QVT Relational Transformation Language

1 top relation ClassToTable {
2 cn : String ;
3 prefix : String ;
4 checkonly domain uml c : SimpleUML: :UmlClass {
5 umlNamespace = p : SimpleUML: :UmlPackage {} ,
6 umlKind = ’Persistent ’ ,
7 umlName = cn
8 } ;
9 enforce domain rdbms t : SimpleRDBMS: :RdbmsTable {

10 rdbmsSchema = s : SimpleRDBMS: :RdbmsSchema { } ,
11 rdbmsName = cn ,
12 rdbmsColumn = cl : SimpleRDBMS: :RdbmsColumn {
13 rdbmsName = cn + ’ tid ’ ,
14 rdbmsType = ’NUMBER’ } ,
15 rdbmsKey = k : SimpleRDBMS: :RdbmsKey {
16 rdbmsColumn = cl : SimpleRDBMS: :RdbmsColumn{}}
17 } ;
18 when {
19 PackageToSchema(p, s ) ;
20 }
21 where {
22 ClassToPkey(c , k) ;
23 prefix = cn ;
24 AttributeToColumn(c , t , prefix ) ;
25 }
26 }

Listing 2.1: Example of QVT Relational.

QVT Relational is part of the QVT standard [72] and describes model transformations in
a declarative manner. This means the transformation itself is written as a set of relations
that must be satisfied during the transformation process. As QVT Relational is multi-
directional, there is no single source and target model but a list of so called candidate
models. Each of these candidate models can be chosen as a target of the transformation,
identifying the execution direction. When the transformation is invoked in a selected
execution direction only the target model is modified so that all relations hold.
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An example QVT-R relation, which matches UML class (SimpleUML::UmlClass) to rela-
tional database table (SimpleRDBMS::RdbmsTable), is given in Listing 2.1. Before we map
the class to table, we have to map the UML package to an RDBMS schema. Additionally,
after the class is mapped to the table, we have to call the relation AttributeToColumn.
A relation has two or more domains, that are given as patterns on the candidate models.
The pattern usually includes an object graph pattern, properties and associations between
objects and defines a variable binding for each pattern match. By using the same variables
in different domain patterns, we can define the relation between candidate models. In con-
sequence, the target model is modified for each found pattern binding not being fulfiled to
the extent that the relation holds.

Each relation can be marked as top-level. This means that the relation has to hold in any
case for a successful transformation, while any non-top-level relation only has to be satisfied
when directly or transitively referenced from a where clause. A top-level relation must hold
for every possible combination of elements in the candidate models. The transformation
engine starts with the execution of the top-level relations and continues with the relations
demanded by the pre- and post conditions of the top-level relations. Thus, non-top-level
relations that are never demanded by other relations won’t be executed at all. A relation
can have when and where clauses that specify its pre- and post-conditions. A relation
only has to be satisfied when all pre-condition relations contained in the when clause are
satisfied. In a similar manner, each relation contained in the where clause has to be fulfiled
when the relation containing the clause is fulfiled. Hence, the when and where clauses allow
for the introduction of further constraints on the match patterns. Such constraint can be
fulfilment of either a query, an OCL-Statement or another relation.

Beyond that, a target domain can be marked as checkonly, i.e. the target domain model
is only checked for consistency and not modified. Besides this, relations are marked as
enforce by default, thus insisting on the application of model changes for relations that do
not hold.

<<domain>>

c : UmlClass

umlKind = ´Persistent´
umlName = name

<<domain>>

t : RdbmsTable

p : UmlPackage

ClassToTable

col : RdbmsColumn

rdbmsSchema = s
rdbmsName = name

k : RdbmsKey

C E

uml : SimpleUML rdbms: SimpleRDBMS

when
PackageToSchema(p, s)

ClassToPKey(c, k)

where

Figure 2.3.: Graphical representation of a QVT relation.

To visualize QVT transformations the QVT specification defines a graphical representation
for a relation. This should make it more intuitive to see and understand a transformation.
To make the diagrams more readable, when objects are typed, only the actual name of the
type is written. The complete package name would be very long in most cases. In Figure
2.3 one can see the ClassToTable relation from the last example in graphical notation.

Transformation diagrams are mainly based on standard UML class diagrams. At some
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points they extend the class diagrams with new symbols. One new key symbol is the
hexagon with the two arrows at the left and at the right. On each limb you can find
the name of the models involved in this relation and their corresponding metamodels.
Below the arrow a ”C” or ”E” symbolizes if a model is only checked or if the relation is
enforced. Domains or objects are pictured as rectangles, domain are labeled with the
keyword domain. This rest of the symbol is the same as in a class diagram. In the upper
part of the rectangle there is the name of the object and its type. In the lower part
attributes or constraints that the object has to fulfil can be specified. If an object contains
other objects they are not written as attributes. They are pictured below in their own
rectangle, and are connected to the containing element with a line. At the bottom of a
relation optional boxes for the when or the where clause can be attached.

2.1.2. Evolution of model transformation processes

The crucial role of transformations for the MDSD is visible on the evolution of transfor-
mation processes, which shows that only through extended usage of transformations it was
possible for model-driven techniques to become an integral part of software development.
The evolution of model-driven technologies and architectures can be summarized in three
generations.

2.1.2.1. First Generation of MDSD Technologies

This generation is the beginning of modelling, where programming abstractions (e.g., pack-
ages, interfaces) are embedded in the code and provided in a form of, for example, pro-
gramming libraries. A software architecture design exists only in the heads of developers.
This situation is, however, inadequate for large, changing teams and for management of
software evolution. Therefore, models were used as a mean to communicate ideas about an
architecture. In the first generation, models are used in the role of program documentation
or code visualization (e.g., UML class diagrams) but are difficult to maintain. However,
they helped to increase software quality. These models are essentially diagrams, because of
their low-level of abstraction. These diagrams are tightly coupled with code and provide
additional means to view and edit at code level. In this generation, MDSD tools were
mostly graphical environments helping to draw diagrams. Some of the tools were capable
of reverse-engineering code to diagrams, or of creating code skeletons from class diagrams
and other implementation-level diagrams (e.g. IBM Rational Software Architect).

2.1.2.2. Second Generation of MDSD Technologies

In the second generation, the automation of forward engineering is the main goal. This
generation introduces standard and process guidelines under the name of Model-Driven
Architecture (MDA) [125]. MDSD Tools made significant step to generate code comparable
to hand-crafted implementation. Models include sufficient detail to enable the generation
of an implementation. Most of the model-to-code transformations are template-based, they
apply a series of templates on models and map them to code. Many tools also support
round-trip engineering and allow synchronising models and implementations during the
software evolution. With the second generation of MDSD technologies, the use of models
in software development became much wider accepted. Models are an integral part of the
software engineering process. This led to the development of libraries of transformations to
accomplish several activities automatically, similar to the first generation of documentation
[167].

Generative programming

The idea of generative techniques has already been applied in compiler construction where
programs written in a programming language are transformed by compilers into executable
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code. The main difference is that compilers usually process a fixed set of programming
languages and generate code for fixed amount of processors. Model-driven techniques allow
to specify custom metamodels and transformations. Thus, on the model level, it is possible
to have any number of metamodels and transformations.

Czarnecki and Eisenecker [46] introduced generator options in their book on Generative
Programming which is a predecessor of today’s MDA paradigm. They used so called feature
diagrams to capture different variants in the possible output of code generators. Feature
diagrams model all valid combinations of a set of features called (feature) configuration
where a single feature stands for a certain option in the respective input domain. Their
work is applied in area of product line engineering [109] especially for domain modelling
and domain variance analysis using feature diagrams.

Legend
or
exclusive or
mandatory
optional

Feature
Diagram

Mandatory
Feature

Option 1 Option 2

Optional
Feature

Feature 1 Feature 2 Feature 3

Figure 2.4.: Example of a feature diagram.

Feature diagrams are used to formally capture variabilities of a target domain. Each feature
represents an aspect of the target domain. The relationships between features capture
additional constraints limiting combinations of features. Some features may require other
features as prerequisites or be mutually exclusive with other features. An example of
feature diagram is illustrated in Figure 2.4. An instance of feature diagram is called a
feature configuration and represents choices of active features. Czarnecki and Eisenecker
use feature diagrams to parametrise generators. In this thesis, we use feature diagrams
to parametrise model transformations. Simple and intuitive structure of feature diagrams
bears the advantage of having a model for the possible transformation parameters which
introduces the configuration options in terms easily understandable by software architects
and captures the variability in the transformation mapping in a focused way.

Model-Driven Architecture

Model-driven software development processes like the OMG’s Model-Driven Architecture
(MDA) [125] leverage the role of models in software development. In MDA, models serve
as input for a series of transformations which at the end generate the system’s implementa-
tion. Each of these transformations maps models of higher abstraction to models of lower
abstraction. The system’s implementation represents the lowest level of abstraction.

According to the MDA process, the first model to create is an abstract model of the busi-
ness domain, the computation independent model (CIM). Based on this model, developers
create a model of the system under development without using any details of the technical
platform. This model is called platform independent model (PIM) (cf. Figure 2.5). Auto-
matic model-2-model (M2M) transformations refine this model by adding implementation
details of particular platforms. The term platform is a broad concept in this context. For
example, it can define the type of the realisation (database application, workflow man-
agement, etc.) or a specific implementation of a technical concept like different industrial
component models (.NET, CORBA, Java EE). Furthermore, a platform can refer to im-
plementation dependent details like different types of configuration files depending on a
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particular middleware selection. A model which depends on such details is a platform
specific model (PSM, cf. Figure 2.5) with respect to a particular platform. The amount of
additional platform-dependent information may vary depending on the purpose of trans-
formation step. There are many such transformation steps possible, each adding certain
aspects of the target platform.

PIM PSM PSM’ Code

Mark Model 1

M2M M2M M2T

Mark Model 2 Mark Model 3

Figure 2.5.: MDA models and transformations.

In Figure 2.5, the refinement process is distributed among a number of transformations
forming a transformation chain. Each transformation takes the output of the previous one
and adds its own specific details. When refining high-level concepts of transformations into
concepts on lower abstraction levels, different alternatives may be available. For example,
if different applications communicate via messaging, different patterns for realising the
message channels can be used, e.g., with or without guaranteed delivery. If developers want
their transformations to be flexible, they can parameterise them allowing transformation
users to decide on mapping alternatives themselves. The OMG’s MDA standard allows
transformation parametrisation by so called mark model instances.

In MDA terminology, mark models are input models which tell transformations where,
and how, platform-specific details should be added to computation-independent models.
Mark models are models dedicated to reference entities of input models and to decorate
these referenced entities with a platform description model, usually specifying configuration
options.

Mark models allow users of transformations to decide on mapping variations themselves by
choosing from different options. Thus, mark models encapsulate different variants of target
models. Depending on the mark model, the transformation generates the result model.
For example, a transformation from UML classes to database tables can depend on a
configuration of a mark model to generate different types of tables. Using UML stereotypes,
we can create marks on the transformed elements. The stereotypes �relational� or
�object� will result in different type of tables being generated.

In their book, Völter and Stahl [167] consider MDA application to be impractical, espe-
cially because of missing tool support. However, the work of Becker [11] demonstrates that
parametrisation of transformations can be applied successfully. The biggest disadvantage
of mark models and transformations parametrised by mark models is the maintainability
and very hard extendibility of such approach. To provide necessary flexibility the trans-
formation developer has to foresee all possible options in mark model and parametrise
the transformation accordingly (implement a structure similar switch statement from
JAVA). Moreover, when new feature is introduced transformation has to be adapted. We
demonstrate in this thesis transformation parametrisation approach which does not require
transformation adaptations and we compare our approach to the concept of mark models.

Software Product Lines

If there are commonalities between software systems, developers implement the same func-
tionality multiple times in different projects. Software Product Lines (SPLs) [37] standard-
ise such commonalities using domain models to capture the core concepts. SPLs promote
planned asset reuse, automation, and composition of large products from smaller parts.
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The reusable parts are called features in SPL terminology. Each feature represents an in-
crement in functionality. The implementation of a feature extends then the core software
system in one or more places.

The development process of an SPL consists of two phases: domain and software engi-
neering. The goal of the domain engineering phase is to describe and develop the common
and variable parts. During the software engineering phase, these parts are assembled to
build the final product. SPLs can be implemented using a compositional and annotative
approach [37]. In the compositional approach, developers implement each feature as in-
dependent module. These modules are then composed at compile- or deployment-time.
For the annotative approach, they implement features with some form of annotations of
the core common part (or source code). Which is very similar to the #ifdef and #endif

statements that surround feature code of C/C++ preprocessors. These two approaches are
the basic concepts of SPLs. More advanced approaches using generative, model-driven or
aspect-oriented techniques to support SPLs fall in one of these categories. Our approach
is compositional (from a transformation generation point of view) and annotative (from a
application model point of view).

2.1.2.3. Third Generation of MDSD Technologies

In the third generation of MDSD technologies, transformations are subject of manipulation
as well. This is summarized by the statement of Bézivin at al. [23]: ”In MDSD, everything
is a model”. Every artefact of the MDSD process can be interpreted (manually or auto-
matically) as a model. Models and transformations are still a central part of the software
development process. Furthermore, they start to become an integral part of the developed
system as first-class elements of the runtime architecture. As part of the developed system,
transformations can be themselves generated and handled by model-driven development,
like traditional programs. A wide set of applications for such technologies appeared involv-
ing transformations in the roles of both manipulation program and manipulated object.
Transformations are taking on different tasks in the development process, besides code
generation and documentation. Transformations can, for example, evaluate code quality
or generate test cases. A fourth generation of MDSD may involve transformations that
take over program logic at runtime.

The concepts introduced in this thesis contribute to the processes of the third MDSD
generation. In the following, we discuss the main tool to realize our goal, higher-order
model transformations.

Higher-Order Transformations

Transformations are very complex as they can form transformation chains, be highly con-
figurable or require additional inputs. A shift of knowledge is observable, as more and
more logic is implemented in transformations rather than platform-dependent code. With
larger projects, developers not only have to face larger models, but also transformations
of higher complexity. Transformations can be represented by a transformation models
conforming to a transformation metamodel. However, not all frameworks provide trans-
formation metamodels. In this work, we refer to the Medini QVT framework [88] which
contains an implementation of QVT Relational transformation language. While in most
languages, Higher-Order Rules are not supported as first class entities (rules cannot be
declared through expressions) in some languages, like ATL and QVT, transformations are
able to operate on transformations, which are represented as models. As such, transfor-
mations can be manipulated equally as any other model. Transformations can be created,
modified or analysed by transformations. The ability to treat transformations as sub-
jects of other transformations allows to fully exploit the power of transformation concept,
abstraction levels and complex model-driven structures.
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Transformations that operate on transformations are called Higher-Order Transformations
(HOTs). Tisi et al. [158] understand a HOT as a model transformation such that its
input and/or output models are again transformations. In their work, Tisi et al. describe
a typical schema of HOTs, which consists of three operations:

1. Transformation injection: The textual representation of the transformation rules is
read and translated into a model representation conforming to the transformation
metamodel.

2. Higher-order transformation: The transformation model is the input of a model
transformation that produces another transformation model. The input, output and
HOT transformation models are all instances of the same metamodel.

3. Transformation extraction: The serialization of the output transformation model
back to a textual transformation specification is performed.

In our work, the transformation injection (reading of textual syntax or parsing) and ex-
traction (model-to-text transformation or so called pretty-printer) are not considered as
a part of a HOT. These steps are only explicitly necessary when the framework does not
provide support for them. Note, that in our case, the framework provides injection itself.
However, since it does not provide extraction, we developed a pretty-printer as a last step
before executing a generated transformation. We consider the transformation extraction
as technical detail.

2.2. Model-driven Software Performance Engineering

During the last years, many approaches dealing with performance prediction and mea-
surement have been introduced [6, 98]. In the area of Component-Based Software Engi-
neering (CBSE), systems are build out of reusable black-box components (implementing
sets of services) interconnected to a component architecture. The modelling of the system
is done at a high level of abstraction. One idea behind CBSE is to increase component
re-use. Specialised component performance prediction and measurement approaches intro-
duce modelling languages with the aim to understand the performance (i.e. response time,
throughput, resource utilisation) of a full architecture based on code-specific performance
properties of individual components.

It is generally accepted that performance is a pervasive quality of software systems. Every-
thing affects it, from the software itself to all underlying layers, such as operating system,
middleware, hardware, communication networks, etc. [172]. The factors influencing the
performance of a software component are difficult to analyse because they depend not only
on the component implementation, but also on its usage, deployment and environmental
context of the component (see figure 2.6), and occur at different stages of component
and system life cycle. A design-time performance prediction requires plenty of details
about all influencing factors to be sufficiently accurate [172, 76]. The approach introduced
in this thesis is a contribution to ease development of accurate performance models of
component-based architectures.

In the following sections, we describe the CBSE development process and involved develop-
ment roles (see Section 2.2.1). We extend this development process in Section 3.3. Section
2.2.2 describes the Palladio Component Model (PCM), which is used in this thesis to ex-
press performance models and predict quality properties of component-based architectures
(especially performance). The initial approaches for platform completions are summarized
in Section 2.2.3. These approaches were inspiration for the first idea of model comple-
tions as introduced in this thesis. Finally, Section 2.2.4 presents basics of the Software
Performance Cockpit (SoPeCo) used to calibrate PCM models.
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Figure 2.6.: Performance-influencing factors.

2.2.1. CBSE Development Process

In the following, we give some details on CBSE development process and the partici-
pating roles [102]. The presented development process is based on the specification by
Cheesman and Daniels [31]. They introduced a process consisting of following steps: (1)
Requirements analysis, producing a business concept model and use cases; (2) Specifica-
tion, describing the overall architecture, business interfaces and components with their in-
terfaces; (3) Provisioning, creating component implementations or purchasing components
matching specification from third parties; (4) Assembly, creating deployable application
by wiring components according to the architecture description; (5) Test, testing applica-
tion according to use case models; and (6) Deployment, installing application in its target
environment.

The division of work targeted by CBSE is enforced by structuring the modelling task to
four independent languages reflecting the responsibilities of the four different developer
roles (cf. Figure 2.7). We can we distinguish following types of developer roles involved in
producing artefacts of a software system:

• Component developers are responsible for the specification of components, interfaces,
and data types. They implement and describe components and their behaviour in
abstract, parametrised way. Components are generally specified via provided (imple-
ment services by component) and required (used services by component) interfaces,
which describe the contract between a client requiring a service and a server provid-
ing the service. Interfaces consist of a list of signatures specifying services, which is
very similar to the Corba Interface Definition Language (IDL) [129].

• Software architects compose the component specifications into an architectural model.
They create assembly connectors, which connect required interfaces of components to
compatible provided interfaces of other components. They usually do not deal with
component internals, but instead fully rely on the specifications supplied by the com-
ponent developers. Furthermore, software architects define the system boundaries
and expose some of the provided interfaces to be accessible by users.

• System deployers model the resource environment (e.g., CPUs, network links) and
allocate the components in the architectural model to the resources. Resources have
different attributes, such as processing rates or scheduling policies.

• Finally, domain experts are familiar with the customers or users of the system. They
specify the system-level usage model describing critical usage scenarios as well as
typical parameter values.
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Figure 2.7.: Roles in CBSE development process [19].

The complete system model is then composed from these partial models specified by each
developer role. The field of study targeted by this thesis is defined by domain-specific
languages for component-based architectures (e.g. Palladio Component Model) that is
composed of specific sub-domains mapping described development roles. The specific
enhancing attributes of modelled architectures are described by orthogonal technical sub-
domains. We are interested in the technical sub-domains of particular quality attributes,
especially performance. Therefore, in the following we will describe specifics of PCM with
focus on performance.

2.2.2. Palladio Component Model (PCM)

In the following, we introduce the technologies and architectural languages for specifying
software architectures and their extra-functional properties. We apply our approach in
the domain of performance engineering. For this purpose, we use a performance predic-
tion approach called Palladio Component Model (PCM) [135, 100, 18]. The PCM is a
modelling language specifically designed for performance prediction of component-based
systems, with an automatic transformation into a discrete-event simulation of generalised
queuing networks. Its available tool support (PCM Bench) allows performance engineers
to predict various performance metrics, including the response time, throughput and re-
source utilization. All three properties are reported as random variables with probability
distribution over possible values together with their likelihood. The response time is ex-
pressed in given time units (e.g., seconds), throughput in number of service calls or data
amount per time unit (e.g., kilobytes per second), and resource utilization in the number
of jobs currently occupying the resource.

Figure 2.8 illustrates a system model with performance annotations in PCM. It consists of
four models created by four developer roles in a parametric way, which allows the models
to be updated independently of each other. Component developers specify the behaviour
and performance properties of components, software architects combine components into
component assembly with defined system interfaces, system deployers define execution
environment and allocation of software components to system resources, and domain ex-
perts specify the scenarios of system usage that drives system execution. Thanks to the
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Figure 2.8.: Illustration of a PCM model.

responsibility separation, roles responsible for the models of the architecture elements can
be easily identified in a PCM model.

Software components are the core entities of the PCM. Each component provides and re-
quires services defined by its interfaces. For each provided service, an abstract behavioural
specification called Resource Demanding-Service Effect Specification (RD-SEFF) is cre-
ated. RD-SEFFs model the usage of required services by a component (i.e., external
calls), and the consumption of resources during component-internal processing (i.e., in-
ternal actions). This description has the form of an annotated control flow graph. Basic
components can be composed to composite components, which add hierarchy to the com-
ponent models. Basic and composite components assembled to form a system by binding
required interfaces of one component to the provided interface of another component.
These bindings are specified by assembly connectors. Interfaces are first class entities in
the PCM, consist of multiple service signatures, and follow the CORBA IDL syntax.

Component specifications in the PCM are parametrised for their later environment. Com-
ponent developers can annotate external calls as well as control flow constructs with pa-
rameter dependencies. These dependencies cover influences of required services, different
soft- and hardware environments, as well as different input parameters of provided services.
This allows the model to be adjusted for different system-level usage profiles. Parameter
values can be of different type (e.g., string, int, real, composite) and can be characterised
with random values to express the uncertainty.

Similar to UML activities, RD-SEFFs consist of three types of actions: Internal actions,
external service calls, and control flow nodes.

Internal actions model resource demands and abstract from computations performed in-
side a component. For performance prediction, component developers need to specify
demands of internal actions to resources, like CPUs or hard disks. Demands can depend
on parameters passed to a service or return values of external service calls.

External service calls represent invocations by a component of the services of other com-
ponents. For each external service call, component developers can specify performance-
relevant information about the service’s parameters. For example, the size of a collection
passed to a service can significantly influences its execution time, while the actual values
have only little effect. Modelling only the size of the collection keeps the specification
understandable and the model analysable. Apart from input parameters, the PCM also
deals with return values of external service calls. Note that external service calls are al-
ways synchronous in the PCM, i.e., the execution is blocked until a call returns. This
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is necessary to consider the effect of return values on performance. A combination of
external service calls and fork actions (that allow the parallel execution) can introduce
asynchronous communication into the model. However, such models are too complex and
require high development effort. In such scenarios model-driven technologies can increase
effectiveness of development.

Control flow elements allow component developers to specify branches, loops, and forks of
the control flow.

Branches represent “exclusive or” splits of the control flow, where only one of the alterna-
tives can be taken. In the PCM, the choice can either be probabilistic or determined by a
guard. In the first case, each alternative has an associated probability giving the likelihood
of its execution. In the latter case, boolean expressions on the service’s input parameters
guard each alternative. With a stochastic specification of the input parameters, the guards
are evaluated to probabilities.

Loops model the repetitive execution of a part of the control flow. A probability mass
function specifies the number of loop iterations. For example, a loop might execute 5
times with a probability of 0.7 and 10 times with a probability of 0.3. The number of loop
iterations can depend on the service’s input parameters.

Forks split the control flow into multiple concurrently executing threads. The control flow
of each thread is modelled by a so-called forked behaviour. The main control flow only
waits for forked behaviours that are marked as synchronised. Its execution continues as
soon as all synchronised forked behaviours finished their execution. The asynchronous fork
action spawns a new thread and immediately continues the execution of the main control
flow. This models an asynchronous service call in the PCM.

In the PCM, parameter characterisations [100] abstractly specify input and output param-
eters of component services with a focus on performance-relevant aspects. For example,
the PCM allows to define the VALUE, BYTESIZE, NUMBER_OF_ELEMENTS, or TYPE of a pa-
rameter. The characterisations can be stochastic, e.g., the byte size of a data container
can be specified by a probability mass function:

data.BYTESIZE = IntPMF[(1000;0.8) (2000;0.2)]

where IntPMF is a probability mass function over the domain of integers. The example
specifies that data has a size of 1000 bytes with probability 0.8 and a size of 2000 with
probability 0.2.

Stochastic expressions model data flow based on parameter characterisations. For example,
the stochastic expression

result.BYTESIZE = data.BYTESIZE * 0.6

specifies that a compression algorithm reduces the size of data to 60%. Stochastic expres-
sions support arithmetic operations (∗,−,+,/,...) as well as logical operations for boolean
expressions (==,>,<,AND,OR,...) on random variables.

Finally, resource containers model the hardware environment in the PCM. They represent
nodes, e.g., servers or client computers, on which components can be allocated. They
provide a set of processing resources, such as CPUs and hard disks, that can be used by
the hosted components. Processing resources can employ scheduling disciplines such as
processor sharing or first-come-first-served.

Valid PCM models are input, for example, for a model-to-text transformation that maps
the architectural model into a discrete-event simulation or other analysis. The PCM could
be used to predicts various performance metrics and it supports further analysis of design
decisions or trade-off analysis, using automated optimisation approach PerOpteryx [96],
which can be used to improve the architecture considering even multiple quality attributes.
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2.2.3. Platform Completions

When doing performance predictions in early development stages, the software model has
to be kept on a high level of abstraction. Moreover, during early development stages,
most implementation details are not yet known. By contrast, detailed information on the
system is necessary to determine the performance of the modelled architecture correctly.
The complexity and the specific knowledge about the implementation required to create
the necessary models would dramatically increase the modelling effort. The complexity of
such models reduces the variability of the design models and, thus, increase the effort to
evaluate and compare design alternatives. However, detailed information about the system
is necessary to determine the performance of the modelled architecture correctly.

Software
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Figure 2.9.: Transformation integrating performance completions.

Performance completions, as envisioned by Woodside [173, 174], are one possibility to close
this gap. They are components added to the prediction model that add performance-
relevant details to a performance prediction model, but which are not of interest when
designing the system’s application logic. For example, details about the design patterns
or platform are not included within the design model and therefore should be added by
completions. These performance completions extend the software model with annotations
(or rules) whose extensions (such as additional components, execution environments, or
communication design patterns) are added to the original software architecture.

Figure 2.9 shows how performance completions can be realized using the MDA concepts.
Elements of a software architecture model, such as components or connectors, are anno-
tated by elements of a mark model using, for example, feature diagrams. Mark models
annotate elements in the architecture which are to be completed and provide the necessary
configuration options. For example, if a connector is to be replaced by message-passing the
mark model can provide information about the type of the messaging channel, e.g., using
guaranteed delivery. Model-to-model transformations take the necessary components from
the completion library, adjust them to the configuration, and insert them in the software
architecture prediction model. The result of the transformation is an architecture model
whose annotated elements have been expanded to its detailed performance specifications.
This step of model completion has to be automated.

2.2.4. Software Performance Cockpit

The Software Performance Cockpit is an extensible framework to ease, systemize and
automate the tasks required to evaluate a software-system’s performance. A performance
analyst simply specifies the desired measurement scenario and the Software Performance
Cockpit then runs these measurements automatically using automated orchestration of
analysed software. It enables experts of different aspects of performance evaluation (i.e.
setting up the test-environment, measure data, analyse data, and export performance
models) to model their requirements at one single point of configuration. When started,
the framework executes a series of performance-tests, collects measurement data, analyses
the collected data, and exports analysed functional dependencies as performance-models.
The Figure 2.10 illustrates the Software Performance Cockpit approach, where:
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• Software Experts provide domain-specific knowledge for the software used in the
evaluation-process (based on a GQM plan). For each software, they know its re-
quirements, its functionality and its configurable and measurable parameters. They
additionally provide knowledge about how to use the software. They specify how it
must be configured and how it can be controlled.

• System Administrators set up the test-environment and deploy the software re-
quired for the system under test’s performance-evaluation.

• Performance Analysts are experts in the process of performance-evaluation. They
determine strategies to efficiently configure a series of experiments in such a way as
to gain meaningful measurement-data within as few experiments as possible. Once
the measured data has been analysed, Performance Analysts know how to interpret
and present the analysis-results with respect to the tested system’s performance.

• Analysis Experts provide knowledge in the area of data-analysis. They specify
the algorithms to calculate possible dependencies between the system’s parameter-
configuration and its performance.

Figure 2.10.: The Software Performance Cockpit approach.

In this thesis, we use this approach to calibrate performance models, hence, the per-
formance evaluation requires a large effort to set up systems and knowledge required to
conduct performance evaluations is in many cases very system specific. We ease the process
of completion development by utilisation of automated performance evaluation methods.

The Goal/Question/Metric Approach:

When measurements are to be conducted in order to evaluate the performance of a system,
they must follow a certain strategy to minimize the required number of performed exper-
iments and to provide meaningful results. Goal/Question/Metric (GQM) was introduced
by Basili et al. [7] as an approach to allow systematic measurements. They emphasise the
importance of measurements to be goal-oriented in order to be efficient.

A GQM-instance is a hierarchically structured model consisting of three levels:

• On the - conceptional - first level, a set of Goals is defined. Goals are specified in a
certain context, which is determined by an issue, a purpose, an object to measure,
and the viewpoint from which the goal is defined. The objects of measurement can
be products (e.g. documents or programs), processes (i.e. software-related processes
like testing or programming), or resources (e.g. hardware-resources or personnel)
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Figure 2.11.: Hierarchy of a GQM-Model [7].

• The second level is considered as the operational level. A set of Questions is defined
to refine the goals and to qualify the objects of measurement with respect to a certain
issue of quality.

• On the - qualitative - third level, Metrics are specified to allow a quantitative way of
answering the questions. Metrics are considered to either be objective or subjective.
Objective metrics are independent from the Goals’ viewpoint (e.g. LOC of a .class
file), where subjective metrics do depend on the goal’s viewpoint (e.g. the readability
of a text).

The structure of a GQM-plan is shown in Figure 2.11. In order to achieve a Goal, it is
associated to a set of Questions. Each Question itself is associated to a set of Metrics. As
the graphic shows, a Question does not have to be associated to every specified Metric;
however, one Metric can be associated to multiple Questions. The relations between Goals
and Questions are analogue. With respect to the approach’s goal-orientation, building a
GQM-model follows a top-down fashion. The interpretation of measurement-data is done
in the opposite direction.
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3. Model Completions

In the previous chapter, we summarized the foundations of this work. These foundations
are the starting point we build on to support completions of models in the Model-Driven
Software Performance Engineering (MDSPE).

The leading challenge this chapter is dealing with is: How to include purpose-specific as-
pects to models in an automated but adaptable manner inheriting its standard mechanisms
and facilities, including transformations and tools?

With this objective, we have to consider the well known conflict between automation and
adaptability of systems [172]. The systems which are highly automated are difficult to
change, and vice versa. We introduce a solution based on an automated and configurable
model completions. We embed completions to the classical Model-Driven Software Devel-
opment (MDSD) process and discuss their relationship to the well-known model refinement
principle. The following sections describe the particular concepts needed for model comple-
tions and apply automated completions to enhance the MDSPE. We illustrate the creation
process of completion and its usage on the running example. To automate completions
we build on advanced model-driven techniques, such as Higher-Order Transformations
(HOTs), which in our approach adapt transformations realising completions. Then we
introduce the realisation of completions using HOTs in Chapter 4. Going on with the run-
ning example, we incrementally build a first completion, which is also part of a completion
library, introduced in Chapter 5.

The remainder of this chapter will be organized as follows. Section 3.1 introduces the
main contribution of this chapter: the generalised Model Completion concept covering the
integration of purpose-specific aspects as a part of the MDSD processes. As we introduce
Model Completion concept, we discuss and complete the view on the MDSD processes
and their applications. Moreover, in the section 3.2 we discuss completion-based extension
of the MDSPE process for component-based architectures. This section is followed by
a description of completion-based development process for component-based models for
MDSPE.

3.1. Model Completions and MDSD

In model-driven software development (MDSD), we can distinguish two directions of soft-
ware development. First - vertical direction, the models of systems are built on different
levels of abstraction. Abstraction involves the extraction of system properties according to

35



36 3. Model Completions

some purpose. Thus, abstraction filters and reduces the initial amount of information that
is not needed with respect to the model purpose. Refinement is the inverse operation to
abstraction ([46], page 734). Refinement adds more details to abstract models, for example
towards the implementation.

Second - horizontal direction, which is specializing general models towards a more domain-
specific model (e.g., software architecture model for performance prediction) by adding
more domain-specific details to the model. A typical example for specialization is adding
concrete values to parametrized model elements. Every model is created with a specific
purpose in mind. Typically, one writes a model to either document an existing system,
specify a system to be implemented, analyse quality properties of the system, execute
simulations or to provide predictions. The purpose of the model determines the domain
to specialize for. With the purpose of quality prediction, the domain we have to orient on
is a domain of the particular quality attribute (e.g., performance or reliability). Within
the process of purpose model specialization, domain specific aspects of the model have to
be included.

Because models are often abstract and general at the same time, specialization and refine-
ment might be combined. Typically, specialization and refinement activities are realized
by domain experts manually. In this thesis, we use model transformations to refine and
specialise models. For each model these transformations could be executed on the way to
the purpose-specific model either in horizontal (specialization) or in vertical (refinement)
manner (cf. Figure 3.1). A related concept was introduced in [137].

These orthogonal software development activities, as described above, are basic building
blocks of MDSD. Both types of activities are in this thesis understood as series of trans-
formations with a goal to automate as much of them as possible. The transformations
executed in a direction of more concrete model, so called vertical transformations ([46],
page 335), represent software implementation. The transformations executed on the same
abstraction level, so called horizontal transformations ([46], page 335), represent purpose-
specific completion of models. In this thesis, we focus on the horizontal direction. An
example of vertical transformation is the model-to-text transformation in the ProtoCom
Project, transforming a PCM model to a Java Prototype [15]. An example of horizontal
transformation is the model-to-model transformation adding performance annotations to
a general model.
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Figure 3.1.: Transformations in the Model-Driven Software Development (MDSD)[46].

Using these basic building blocks, we can build more complex MDSD processes. The
vertical direction of development (left hand side of Figure 3.2) is best illustrated by well-
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known levels of Model-Driven Architecture (MDA), which builds on the chain of refine-
ments starting from requirements on a software product and targeting implementation of a
final software product. First, MDA refines the requirements model towards Computation-
Independent Model (CIM), then from CIM to a Platform-Independent Model (PIM) and
further to a Platform-Specific Model (PSM). These levels define software implementation
process. Finally, the last refinement step maps the PSM to an implementation (code),
model-driven tests and to a deployment of the final software product [134]. In MDA, the
chain of transformations is executed completely from the top-level (CIM) to the bottom
(Code). Whenever the requirements change, only the top-level model is adjusted and all
subsequent models and artefacts are newly generated. In the theory (cf. Figure 3.2), we
design an abstract model Abs that captures requirements on the system and we refine
it to a more concrete models until implementation Conc. However, there are aspects of
the real world activities that conflict with the idea of step-wise model refinement towards
implementation.

In the contrary to the theory, model development is an incremental process in practice
(right hand side of Figure 3.2). Since requirements on the system are evolving over time
or new requirements are introduced, new purpose-specific aspects need to be included in
different purpose-specific models. For different purpose different purpose-specific models
on the same abstraction level are created. Orthogonally to the refinement, the developers
introduce horizontal activities to perform refactorings, to execute migrations, to apply
domain-specific optimizations, and to weave new purpose-specific aspects into the model.
Today, developers must rely on their instinct and experience to decide how detailed models
are needed. They perform manual adjustments of their models to fit required purpose.
This ad-hoc model development may result in models that are either too abstract or
too detailed for their purpose. Consequently, the models grow more complex because
of the mix of low-level details and high-level abstractions. Often metamodels do not
have enough expressive power to allow modelling of required aspects directly and new
metamodel elements have to be introduced. When the metamodel changes, the chain
of vertical refinements is not reusable or, in contrary, when the metamodel is fixed, the
domain-specific development decisions towards model purpose could be limited. In the
first case, the vertical transformations realizing the refinement chain need to be adapted
after each metamodel change. Furthermore, with growing complexity of metamodels more
and more development effort is needed to adapt existing transformations. Therefore, any
change of metamodel is expensive and developers try to avoid it through introducing model
”hacks” and manual designing of very complex models. The effort to avoid metamodel
extension often leads to lost of traceability in design decisions, poorly understandable and
maintainable models.

In any case, it is hard to follow the relationship of created abstract model (Abs) to the
desired specialised model (Abs′, Figure 3.2). Having a detailed look on the (typically
manual) activities developers realize towards purpose-specific model (Abs′) shows that
models specialized for certain purpose are obtained by specializing general abstractions
that were designed to be used in more than one domain. For example, a general connector
abstraction is specialized as remote procedure call connector, further specialising steps
could be adding middleware abstraction and identifying platform dependency (using .Net
or J2EE middleware). Such specialized model is needed to solve particular problem, e.g.
predicting performance characteristics of a system using modelled connector.

We had a closer look at such processes (right hand side of Figure 3.2) in development
of PCM models and we can distinguish independent and focused development activities
towards an abstract model (Abs′). The resulting model, Abs′, is specified to the necessary
detail and specialized for a particular problem domain. Such model is typically created
manually. The goal of this thesis is to provide structured and automated approach to sup-
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Figure 3.2.: Software development using MDSD.

port developers to create purpose-specific models. We implement these activities as the
vertical transformations resulting in the purpose-specific model. These purpose-specific
transformations are called completion transformations. Completions increase the special-
isation of the model to the required level. Additionally, the completions open a way to
decrease development effort through automation and manageability of model complex-
ity. Moreover, development effort is decreased by reusable nature of completions. The
complexity of models is encapsulated in and hidden by abstract definition of completions.
In the following sections, we discuss purpose-specific completions and related scientific
challenges.

3.1.1. Model Completion Concept

We understand purpose-specific model as a model on a such level of specialisation that
it includes enough detailed information to serve its purpose. For example, a performance
prediction model should include performance-relevant details of a middleware platform to
provide accurate predictions. The goal is to arrive at the sweet-point, where the model
is as abstract as possible and as specialized as necessary. We define the suitability of the
model to fulfil its purpose by the level of model completeness. One model can target more
than one purpose. For each model purpose different level of model completeness can be
necessary.

Definition 5 Completeness

Model completeness is a quality criterion for models specified by the particular level of
detail and correspondence to the modelled entity. Moreover, the level of detail and corre-
spondence are highly dependent on intended purpose of the model.

Initially, it is not possible to quantify model completeness, because it is a purpose-specific
quality. The completeness of the model can be evaluated only in the context of the model
purpose and its application domain. Considering models for performance prediction, the
prediction accuracy can be used as a metric to evaluate model completeness. The model
providing more accurate prediction is in MDSPE domain considered as more complete
as a model resulting in less accurate predictions. Dependent on the application domain
the completeness metric changes. For example, models used as documentation could be
evaluated based on their understandability, or models used for code generation could be
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evaluated based on the additional development effort after code generation needed towards
executable code. In this thesis, we discuss the completeness of performance prediction
models, therefore, we adapt the definition of completeness for the domain of performance
prediction.

Definition 6 Completeness of Performance Prediction Models

Model completeness is a quality criterion for performance prediction models specified by
the particular level of implementation detail and correspondence to the real software sys-
tem. Moreover, the level of detail and correspondence determine the accuracy of the
performance prediction.

As mentioned before, the model-driven software development consists of a number of
activities, some of vertical (towards implementation), some horizontal (improvement of
completeness) nature. For simplicity, let us assume that vertical activities decrease/in-
crease the level of abstraction, but that horizontal maintain the level of abstraction, being
concerned mostly with activities such as weaving new purpose-specific aspects into the
model. The motivation to maintain the level of abstraction is twofold: (i) separation of
concerns: to maintain the models in the responsibility of the same development role on
the same abstract level and develop complex domain-specific completions in isolation by
a special development role on the level of lower abstraction; and (ii) maintainability: to
avoid adaptations of transformations resulting from metamodel extensions to by able to
model domain-specific aspects.

We can extract a pattern in these development activities, with implementation activities
going vertically and purpose-specific completion going horizontally, as illustrated on Figure
3.3. This incremental pattern is a typical scenario for application of model completions.
In this structure the model Abs′′ is considered as the most complete one. Considering this
pattern, when the purpose of model creation was, for example, performance prediction the
Abs′′ on Figure 3.3 would provide the most accurate predictions and the Conc′′ would be
closest to real implementation.
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Figure 3.3.: Model Completion concept.

In the following, we will focus on the horizontal activities, or so called completions, of this
concept. As illustrated on the Figure 3.3 these activities have very interesting properties
when the input model, Abs or Abs′, and output models, Abs′ or Abs′′, of transformations
are conform to the same metamodel. The metamodel is a language that allows a formal
representation (model) of entities and relationships in the real world on the certain level of
abstraction. Initially, the level of correspondence and abstraction in the description of real-
world entities is given by completeness or expressive power of the metamodel specification.
The need for adjustment and customization is not only reserved for models. It also arises
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for metamodels. Metamodels often do not fulfil requirements for special purpose and it
is desirable to use a specifically tailored metamodel language. Developers have to extend
metamodel by an embedding of required purpose-specific elements. As mentioned before
this approach has its disadvantages. The special properties of completions open a way to
increase the expressive power of the metamodels indirectly on the model instance level.
With the help of completions it is possible to extend the model with purpose-specific
aspects, that metamodel does not support directly. Completions add new aspects into the
model instance using the language of the meta-(or abstract-)level recursively. Then, we
define completions as follows:

Definition 7 Model Completion

A model completion is a configurable purpose-specific transformation increasing model
completeness while maintaining the language of the abstract level.

This is an informal definition of completion necessary to discuss the MDSPE process stud-
ied in this chapter. Completions are formally defined and described in more detail later in
Section 4.2.4. With this definition of completions it is possible to reuse the existing trans-
formation chain towards implementation even for the purpose-specific completed model as
its input. Additionally, completions hide the complexity of the purpose-specific extension,
allow configuration of aspect variants and encapsulate domain-specific expert knowledge.
As a consequence completion-based evolution of models following the design decisions
about implementation on the level of abstract models allows to create purpose-specific
models in a traceable way even without the need of domain-specific expert knowledge.
Furthermore, the completions that are focusing on their own aspect can be individually
maintained, and at the same time interconnected, building an enriched metamodel. In
other words, each metamodel could be enriched by a domain-specific language dealing
with a particular aspect (or view) of a system. The introduced completions have special
properties that are very interesting for our application domain. In Section 3.2, we apply
the model completions in the MDSPE domain.

3.1.2. Scientific Challenges in the MDSD context

In this chapter, we summarize scientific challenges related to MDSD, which are as follows:

• Closing the semantic gap between an abstract model and low-level details:
The conflict between the level of abstraction required from a high-level abstract
model and a level of detail required to fit the purpose of the model (e.g., performance
prediction) makes it hard for developers to create models they need. Additionally, the
required details are often very complex and variable. Inclusion of all required details
is in many cases not feasible. The necessary details increase the model complexity in
a such way that the model is not usable, understandable, and trustworthy anymore.
We deal with this challenge in Section 3.1.1, where we propose the idea of completions
on the abstract metamodel level. The realisation of this approach is described in
Section 4.7 and formalised in Section 4.2.4.

• Hiding complexity and reusing expert knowledge: The completions are used
on the abstract level although they encapsulate and hide the complexity of low-level
details requiring expert-knowledge. As such they can be used by developers without
the required expert knowledge. Therefore, a suitable specification of completions on
the abstract level that allows their reuse is very important. Additionally, we have to
allow different completions to be used independently, so that the developer or user
of one completion does not have to know all other completions that may be used
on the models. We discuss this challenge further and create a reusable completion
library in Chapter 5.
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• Reusing existing transformation chains: Automation of model completions al-
lows reusing existing refinement chains in model-driven development process, e.g.
generative transformation chains towards implementation (Conc in Figure 3.3), at
any point of the incremental completion. This requires that all the completions
transform their input model towards the input model of the refinement chain with-
out changing or extending modelling language defined by metamodel. The com-
pletion concept (Section 3.1.1) addresses this challenge, this pattern uses the same
metamodel language for the extensions given by completions as for the input model.
Thus, the target model is conform to the same metamodel. By this approach, the
metamodel language is maintained unchanged and refinement chain can be reused.
The realisation of completions is discussed in Section 4.7.

• Support of variability: By their nature completions are very variable and as such
a lot of effort is needed to implement and to maintain any automation solution re-
alizing them. The support of variability in the definition of completions and their
transformations is crucial for this approach. Because the variability of completions
mirrors in the variability of their transformations, this challenge is actually address-
ing issue of transformation variability. This is the most challenging issue identified in
this chapter that the implementation of completions has to deal with. The support
for variability in the transformations definition is discussed in a separate Chapter 4.

In the following section, we will introduce MDSPE application domain for completions
and summarize challenges related to this domain.

3.2. Model Completions and MDSPE

Model-Driven Software Performance Engineering (MDSPE) supports software developers
to identify potential performance problems, such as bottlenecks, in their software systems
within the design phase. The concepts of MDSPE (surveyed in [6]) are based on the
core idea of Software Performance Engineering (SPE) introduced by Connie Smith [147].
SPE enables the early performance evaluation of software systems. For this purpose, SPE
integrates performance predictions directly in the software development process. It bridges
the gap between architecture centric models used by developers and formal performance
models. In SPE, performance evaluation of software systems is achieved on the basis of
simple models [147] that are mapped to well-established performance modelling techniques
and thus are made easily accessible for software architects and developers.

In such early stages of the software life-cycle, only little information is available about the
system’s implementation and execution environment. However, these details are crucial
for accurate predictions. Often, detailed information on the execution environment (e.g.,
design patterns, middleware, database, operating system, processor architecture) is re-
quired to get meaningful predictions. The previously introduced completions close the gap
between available high-level models and required low-level details. Model-driven technolo-
gies can be exploited to add such performance-relevant details to high-level architectural
specifications. Using model-driven technologies, completions can include details of the im-
plementation and execution environment into abstract performance prediction models. In
the following section, we discuss the integration of completions into the classical MDSPE
process.

3.2.1. MDSPE Application Scenario

As mentioned before, the classical MDSPE uses model-driven techniques to close the gap
between architecture centric models used by software architects and formal performance
models. For this purpose, existing approaches provide transformations from architecture
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centric models, used by developers, to formal performance models (overview in [20]), such
as Layered Queueing Networks (LQN), Stochastic Petri Nets (SPN), or Stochastic Process
Algebras (SPA)(c.f. Figure 3.4).
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Figure 3.4.: Model-driven Software Performance Engineering (MDSPE).

In this thesis, we extend the classical SPE process by introducing completions. Figure 3.5
illustrates the extended process of MDSPE with completions. In this process, software
architects describe their system in a language specific to their domain (such as UML [124],
UML-SPT profile [124] or MARTE [128]). Alternatively, they can use architecture de-
scription languages specialised for performance evaluation, like the Palladio Component
Model (PCM) [18].

We extend existing SPE process and provide tool support allowing software architects and
developers to annotate their models with completions, more exactly with chosen variant
of completion. Thus, in the first step, they annotate software models with configura-
tions of performance-relevant aspects using completions. These annotations encapsulate
performance-relevant details, which are necessary for the model to provide more accurate
performance predictions. They can decide, where to apply certain completion and with
which particular configuration.

Because of high-variability of completions and requirement for support for rapid evolution
of prediction models, the integration of completions and evolution of models is automated
by transformations. The goal is to diminish manual effort, during the development phase,
in the highest possible extent; therefore, the transformations integrating completions have
to be automatically generated based on the actual configuration. This transformation
generation phase is further discussed in Chapter 4. Using resulting transformation is
then software model transformed into completed software model. Completions hide the
complexity of the full model from software architects when showing only the abstract
annotations. They support reusing performance-related expert knowledge. This firts step
can be repeated until all required aspects are included.

In the second step, other performance-relevant quantitative information can be included,
such as model calibration based on the measurements. This step serves developers to
include additional details about implementation or details that should be considered only
when other model representation is generated, such us executable code, simulation code or
performance models. To derive performance metrics from software models, the software
model is transformed into a performance model as shown in Figure 3.5. The annotated
software models are transformed to analytical performance models with resource demands
based on model calibration and solved parametric resource demands.

Finally, the solution of the performance models by analytical or simulation-based methods
yields various performance metrics for the system under study, such as response times,
throughput, and resource utilisation. The biggest advantage of completions application
in this context is that the specialized models are conform to the same metamodel, or, in
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Figure 3.5.: MDSPE with completions.

the terminology of MDSPE, use the same architecture description language. As such, the
transformation to the performance model does not need to know about the changes, or
completions, realised on its input model and can be reused completely.

At last, the results are fed back into the initial software model. This enables software ar-
chitects to reconfigure implementation details and interpret the effect of different design or
allocation decisions on the system’s performance and to plan capacities of the application’s
hardware and software environment. In practice, tools encapsulate the transformation and
solution of the models and hide their complexity (cf. Figure 3.5).

3.2.2. Performance Completions

In this section, we discuss necessary parts of performance completions. Figure 3.6 sketches
the idea of performance completions. The core concept of completions is the separation of
structural and quantitative information. The first part is an architecture-specific part that
is newly generated for each completion configuration and the second part is an architecture-
independent part that models the consumption of resources and is newly measured for each
platform. The architecture-specific part consists of components and subsystems. The
architecture-independent part are resource demands for specific platform for which the
completion was created.

The architecture-specific part is defined in Completion Structural Skeleton that reflects, for
example the Thread Pool’s general (performance-relevant) behaviour. The skeletons are
structurally similar for different platforms, but their resource demands may vary. However,
the skeleton defines the common structure of the performance completion, it depends on
the actual configuration and it has to be newly generated for each configuration. Important
part of structural information is the configuration itself. It specifies possible options and
their impact on the performance. The completion developer has to identify effect of each
configuration on the completions structure and express the model change in a form of
structural skeleton.

The architecture-independent part is expressed in a form of Parametric Resource Demands.
Completions are parametric with respect to resource demands of the platform. Therefore,
completions are adjusted for each platform. To capture the quantitative information for
particular platform, software architects execute Test Drivers that take necessary measure-
ments. Based on Measurement Results, software architects can determine realistic resource
demands for complex platforms, such as Thread Pool implementation in .Net or J2EE ap-
plication servers on Windows or Linux platform. The software architects then analyse
the measurement results and derive platform-specific Parametric Resource Demands. For
example, software architects can capture the effect of number of threads on resource de-
mands for a specific Thread Pool implementation. They perform data analyses that result
the approximated functional dependency of resource demands on the number of threads.
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Figure 3.6.: Concept overview of performance completions.

The integration of the Completion Model Skeletons and Parametric Resource Demands
yields the Platform-specific Completion. The platform specific resource demands are at-
tached to their corresponding actions of the model skeletons that structurally model the
completion’s behaviour. The combination of parametric resource demands and model
skeletons yields a complete performance model for the specific target platform. Because,
extraction of quantitative and structural information for completion is non-trivial task and
requires a lot of expert knowledge, the best way is to systematize and to automate the
completion design and development process. Ideally, the analyses during this process are
performed fully automatically. In the following, we describe the design and development
process for performance completions in greater detail.

3.2.3. Scientific Challenges in the MDSPE context

The application of completions, in the domain of MDSPE, bears particular domain specific
challenges:

• Accuracy of performance prediction: Each completion or combination of com-
pletions should increase prediction accuracy, i.e. reduce the deviation of prediction
and observation, corresponding better the reality. Therefore, the creation of a com-
pletion is challenge itself and requires detailed research of the modelled aspect. The
application of completions can increase/decrease resulting performance metrics and
influence visible dependencies in resulting performance metrics. The impact of a
completion on the performance has to be formalized and clearly stated. We will for-
malize completions in Chapter 5 and discuss the performance impact of introduced
completions in Chapter 7.

• Completion calibration: The automated measurements and analysis that are
needed to calibrate the completions is a research field on its own. We do not con-
tribute in this thesis to this research field. Completion approach, however, shows
the integration of automated measurements and analysis into the overall MDSPE
process. The completion developers use existing measurement frameworks (e.g., the
Software Performance Cockpit [169]) to calibrate their models. The resulting chal-
lenge is then reduced to the integration of performance results into the completions
and architecture-centric models. We discuss integration of automated measurements
and parametrisation of performance models in the completion-based development
process in Section 3.3.2.

• Composition of performance abstractions: The composition of completions
is a challenging question, especially because of the application domain, where the
performance quality attribute can be influenced by completion composition. We
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have to analyse if application of completions in different order results in models
equal considering their performance. We discuss this topic in Chapter 5.

3.3. Completions in CBSE Development process

In Chapter 2, we discussed the CBSE Development process. Based on this process, we
introduce two additional development roles. The role of completion developer, who creates
the completions and registers them with the library, and the role of completion user,
who actually uses completions and integrates them into architecture models. Any of the
classical CBSE roles can take the position of completion user during the whole CBSE
development process.

Generally, the presented completion-based development process is very similar to those
with the common goal of reusability and customizability. Our process is focused on reuse
of process artefacts, especially those specifying configuration models of completions. The
goal of the process is to provide necessary artefacts to automatically generate completion
transformations. The overview of this process is illustrated in Figure 3.7 with the most
important automated step pointed out by the stripes.
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Figure 3.7.: Completion-based development process overview.

We can separate the completion-based process into two phases, first the domain engineer-
ing, where the tasks of completion developer are located, and second software engineering,
which is specified by tasks of completion user. In the domain engineering phase the reusable
and configurable completions are specified. The initial part is domain analysis consisting
of the extraction and analysis of possible features and their combinations in the comple-
tion. Completions encapsulate possible design decisions that result from requirements on
the software. Typically at the beginning of development, there is only an abstract idea
about these requirements. Towards later development phases, these incomplete, variable
and contradictory requirements could change. The domain analysis task has the main
goal to recognize and analyse possible requirements on the software and to define allowed
combinations among them. This analysis defines the first step attempting to design a
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new reconfigurable construct that could be used in software design. This helps to reduce
the risk of a complete redesign of software models in the case of major changes in require-
ments. Once the possible requirements are determined they should by analysed and clearly
stated. For this purpose, the configuration model is used, where the possible requirements
are specified as configurations of features belonging to a completion.

The next step, the completion design defines how configuration options, so called features,
and their combinations affect the final software model. Here it is necessary to determine
the dependency among different configuration properties, the model structure and the
model elements’ attribute values. The result of the completion design step is an extension
of the pre-defined configuration model by feature interdependencies and documentation
how the features map to the software model changes.

After identifying possible completion features, feature interdependencies and resulting
changes of software model based on these features, we validate the initial configuration
model by comparison with the real world implementation. This step is called completion
validation and consists of a set of experiments and measurements on the prediction model
and corresponding implementation. When the results of measurements and prediction
correspond with required accuracy the implementation of completion can start. In other
case, we have to look for and analyse missing assumptions and influences.

Step completion implementation represents the activity of developing actual reusable com-
pletion. Therefore, it is necessary to formalise the model changes resulting from feature
choice and create the final configuration model. Followed by registration into the library
and offering it to the actual users.

The phase of the software engineering includes actual software model development and
requirements analysis. The task model annotation and completion configuration benefits
of reusable constructs defined by completion developer. The completion users can annotate
their models by completion instances and attach particular configurations to them. The
main goal of this step is to make sure that the software model will meet the requirements
defined for the product, as well as ensuring that future requirements can be addressed.

The most important step included in the process is the completion transformation genera-
tion. Here, we apply the approach presented in Chapter 4. The generated transformation
is then applied (completion execution) to the input software model resulting in the com-
pleted software model. In the following, we discuss the completion-based development
process in detail and illustrate each step on a running example.

3.3.1. Running Example

This section introduces our running example, that is used throughout this thesis. Moreover,
we motivate the choice of the running example.

Today, many applications (e.g., Web servers, Database servers) are designed to process
a large number of short tasks that arrive from some remote source (using for example
messaging, HTTP, FTP). In the case of server applications, processing of each task is
short-lived and the amount of requests is large. The Thread Pool design pattern offers a
solution to the thread management and is widely used by many multi-threaded applica-
tions. The point of the Thread Pool is to avoid a creation of a lot of threads for short
tasks. The Thread Pool pattern reuses each thread for multiple tasks. The main advan-
tages are in allowing of the process to continue while waiting for slow operations such as
I/O-intensive tasks, and exploiting the availability of multiple processors. In the running
example, we focus on the Thread Pool model since most of server applications are built
around processing large number of short requests, which require low-overhead mechanism

46



3.3. Completions in CBSE Development process 47

with resource management and timing predictability. Additionally, the Thread Pool de-
sign pattern promises performance increase and realistic optimization of resource usage.
Especially, the importance of this pattern for performance prediction motivated our choice
to use it as a running example.

In the following, we go through the steps of the completion-based development process
and incrementally develop a completion for the Thread Pool design pattern. First, we
analyse the structure of the Thread Pool design pattern and discuss performance-related
characteristics of this pattern. Second, a brief discussion about the variety of Thread
Pool implementations and their characteristics takes place. Afterwards, we discuss the
performance measurements of Thread Pool from the literature showing importance of this
pattern. Finally, we present the Thread Pool configuration model that will serve further
as running example to illustrate the process of automated completion integration. The
running example itself results in the definition of a reusable completion for the Thread
Pool design pattern. This completion will be included in the completion library and is one
of the contributions of this thesis.

3.3.2. Completion-based Domain Engineering

At the beginning of Chapter 3.3, we gave an overview of the completion-based development
process. The detailed description of the tasks included in this process is goal of this section
(cf., Figure 3.8). We give overview on the usage of model-driven techniques in combination
with performance analysis and prediction methods.

3.3.2.1. Domain Analysis

The goal of domain analysis (cf., Figure 3.8a) is to understand the performance of software
systems. In the analysis, we focus on a particular implementation detail and its perfor-
mance properties. The detail that is object of the study in this step is an implementation
of particular performance-relevant aspect, such as a design pattern (e.g., Thread Pool)
or middleware platform. However, modelling performance-relevant aspects is not always
possible when dealing with used third-party- and legacy-software. Such software is used
as a black-box component in implementations of complex systems. The necessary amount
of time to model this software may outweigh the advantage of performance prediction at
design time. Additionally, required information about the system’s structure and other
properties might not be easily to gather. A way to integrate such kind of software into
performance-model is the path of documentation recherché, trying to find out about its
properties by testing and analysing its performance in a controlled environment. We sys-
tematically evaluate the studied system’s performance in relation to its configuration and
usage. Such process requires a lot of experience and detailed expertise in the field of
benchmarking, data aggregation and analysis methods. In this initial step of completion
development, we assume that we have a framework supporting systematic performance
evaluation available. In our approach, we use the Software Performance Cockpit [169],
that is a framework to systemize and automate the tasks required to evaluate performance
of software systems.

First, we identify the performance-relevant features of studied aspect, based on documen-
tation and other functional or parameter descriptions. This domain-specific knowledge
is used in evaluation process. For each detail, we have to identify its configurable and
measurable parameters and their dependencies. Additionally, to start experiments and
measurements knowledge about the testing environment is needed. We have to specify the
platform for the completion. The resulting completions are then platform-dependent and
we can provide number of versions of one completion for different platforms.

For chosen system setting, based on the documentation recherché and/or resulting assump-
tions we create GQM plan for the systematic experiments. At this point, the measurement
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frameworks, like the Software Performance Cockpit, take over and drive performance eval-
uation based on the GQM plan. The Software Performance Cockpit provides a language to
describe experiment design based on the GQM plan. It is able to determine efficient series
of experiments to get the most meaningful measurement-data within as few experiments
as possible. The measured data are later used to refine and to focus the experiment design
on the most promising configurations. The data analysis algorithms are used to calculate
possible dependencies between parameter configurations and performance of the system
under the test. The Software Performance Cockpit executes following steps: it runs the
actual experiment, collects) and (aggregates data). We described the integration of the
Software Performance Cockpit into the completion development process in [77]. During
the data collection step, we measure the influence of performance-relevant parameters for
the studied system in its target execution environment. The collected data is used to infer
(parameters of) a prediction model.

We use statistical inference techniques [79] and genetic optimization, to derive the influence
of a studied aspect’s usage on its performance. Statistical inference of performance metrics
does not require specific knowledge of the internal structure of the system under study.
However, statistical inference can require assumptions on the kind of functional dependency
of input (independent) and output (dependent) variables. The inference approaches mainly
differ in their degree of model assumptions. For example, linear regression makes rather
strong assumptions on the model underlying the observations (they are linear) while the
nearest neighbour estimator makes no assumptions at all. Most other statistical estimators
lie between both extremes. Methods with stronger assumptions, in general, need less data
to provide reliable estimates, if the assumptions are correct. Methods with less assumptions
are more flexible, but require more data. These analysis methods are supported by the
Software Performance Cockpit. The task of completion developer is to extract enough
variables and needed assumptions about their dependences (when available) to realise the
analysis.

The last step of domain analysis is the data analysis. In this step, we formalize the
quantitative information needed for completion as described in Figure 3.7. The aspect
models inferred in the previous step are later by completion design integrated into software
performance models to predict their effect on the overall performance of the system. We
use the Palladio Component Model (PCM) in combination with performance completions
to evaluate the performance of the system under study. The PCM is well suited for our
purposes since it captures the effect of different input parameters on software performance.
Stochastic expressions of the PCM can be used to directly include the functions resulting
from the statistical analysis into the components of a performance completion. In the
data analysis step, we select data necessary for later completion design and express them
in the understandable form. In our case, we use the form of stochastic expressions for
resource demands in the PCM. The resource demands are platform-specific and have to be
determined for each platform and for each execution environment. Determined resource
demands are used to parametrise and calibrate the completions in the later steps.
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3.3.2.2. Running Example: Thread Pool Domain Analysis

Thread Pool: Structure

The Thread Pool design pattern belongs to the group of resource management patterns
and is used to increase performance of the application. The implementation of Thread Pool
pattern can be illustrated on an example of simple e-Commerce-Application, where cus-
tomers shop in a product catalogue. The application is implemented with EJB-Technology
as client-server application. Clients use Web-Browsers to communicate with Java-Servlet-
Engine in parallel. The business logic of the application is implemented in the server
component. The server component is connected via Java Database Connection (JDBS)
with the database. The product catalogue mirrors current state of the database. The
server component connects with the database for each client request and executes nec-
essary SQL request. The results of the SQL request are then propagated to the client’s
Web-Browser. The Thread Pool is implemented to manage many instances of the same
resource, in this case the managed resources are JDBS connections to the database. The
pooling concept allows usage (acquire) of the resource instance and their reuse when the
instance was set free (release). The Thread Pool creates number of resource instances
(threads) in advance and manages a waiting queue for incoming requests that have not
assigned free thread yet. A typical usage scenario for Thread Pool is when there are many
more tasks than threads and the Thread Pool mostly executes on a single computer. As
soon as a thread completes its task (or number of tasks, dependent on Thread Pool capac-
ity) it will accept the next task from the queue of waiting tasks until all tasks have been
completed. The thread is then returned to the pool until there are new tasks available.
The behaviour of a Thread Pool (with capacity of 3 threads) is illustrated by the Petri net
in Figure 3.9.

Figure 3.9.: A sample Thread Pool of capacity = 3 with waiting tasks and completed tasks.

Thread Pool: Performance-relevant influences and assumptions

Within this step we study other research works with focus on Thread Pool performance and
analyse implementations of Thread Pool. This recherché provides excessive data, which
are basis for the later experiment design. In the following, we provide short exemplary
related work analysis.

In the literature, there are works analysing the influence of Thread Pool on performance.
Shiping Chen and Ian Gorton [32] have identified Thread Pool size as one of the con-
figurable system parameters that are important for achieving maximal throughput. The
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implementation of a Thread Pool has a prominent impact on the performance due to its
ability to limit the level of concurrency in the system [33]. The most important parameter
that can be tuned to provide the best performance is the capacity of the Thread Pool.
An excessive number of threads leads to waste of memory and needed context-switching
among the threads also decreases performance. Therefore, in some Thread Pool variants
the number of threads can be dynamic, based on the number of waiting tasks. Some
software providers decided about static size of a Thread Pool in their products, for exam-
ple in .Net framework by default the Thread Pool has 25 threads per processor. Such a
static Thread Pool with fixed pool size, is supported by latest version of Java JDK 7 [131].
This Thread Pool variant always has a specified number of threads available. Tasks, from
an internal queue that holds waiting tasks, are appointed to the threads from the pool,
whenever there are more active tasks than active threads.

Thread Pool: GQM plan

In order to conduct systematic evaluation of the studied aspect, goals, questions and met-
rics must be defined to allow a quantification of the system’s performance. Using perfor-
mance metrics (e.g., response time, throughput, utilisation) and configuration parameters
(e.g., arrival-rate, number of threads), we can formulate the experiment questions, scenar-
ios and hypotheses. In the following, we give an example of a question in the GQM plan
with the observed metrics identification:

Question Q: Does a greater number of threads in a Thread Pool imply an increased
performance? The focus of question Q lies in the evaluation of a possible correlation
between the number of used threads and the Thread Pool’s performance.

Scenario S: In Scenario S, we use simple Thread Pool variant with variable number of
threads in a pool. The total workload is set to reach a Thread Pool utilisation of 80%,
which we choose to maximize the representativeness of collected results. The advantage
of using Thread Pool could be observed at high loads, when we can study the effects of
thread concurrency and scheduling. Therefore, we hold during the experiments a constant
utilisation of the Thread Pool at 80% at least.

Hypothesis H: The Thread Pool performance is expected to grow until the number of
threads is higher as number of CPUs in the system. Hypothesis H1 is based on the as-
sumption that, for a constant workload, an increased number of threads implies increased
performance until the increased number of resource-conflicts appears. For example, the
resource-conflicts appear in a case of CPU-intensive requests, when the number of threads
is higher as number of CPUs. However, this is more complex for I/O-intensive requests,
which compete for other resource (HDD) that can be a bottleneck even before a CPU. in
this case additional experiment is needed.

Metrics M: Response time, Throughput

Thread Pool: Results from measurements and experiments:

To illustrate results of the measurement of such experiments, we use the results of a
study thesis by Achraf El Ghazi [62]. He analysed and measured the performance of the
Thread Pool pattern. His performance experiment evaluated CPU- and I/O intensive
requests. His experiments for I/O and CPU intensive requests resulted in a dependency
specification of request execution time on different parameters. For example, in the case
of CPU-intensive requests, the execution time depends on: thread service time, request
arrival rate, the number of requests in system, maximal size of the Thread Pool, and
size of time slice in the OS scheduler configuration. To collect the necessary data for
calibration of models he measured EJB 3.0 application using GlassFish V2 B41 application
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server, thus his measurements are specific for this platform. Figure 3.10 represents the
measurement results of request execution time relative to the first point in time when the
request execution started. The request arrival time in this experiment was 1100 ms and
maximal Thread Pool size was 1000 threads. The graph shows a monotone increase of
the execution time for the first 36% of the requests. The following requests yield a stable
execution time of 30 to 40 seconds.
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Figure 3.10.: Example of experiment results [62].

Thread Pool: Platform-specific Completion Data

The results of experiments are then input for specification of platform-specific completion
data as used in this thesis. The analysis of the data yields functional dependences between
different Thread Pool parameters, workload, and other system settings. In our example,
the request execution time depends on the request arrival rate (Workflow:ArrivalRate.VALUE),
the thread execution time (ThreadExecutionTime.VALUE), the maximal Thread Pool size
(PoolSize.VALUE), the number of requests in the system (defined for a closed workflow as
Workflow:PopulationSize.VALUE) and the configuration of OS scheduler (TimeSlice-
Size.VALUE). Based on this observation, we can define resource demand on CPU as:

1/

[(
ThreadExecutionTime.VALUE

TimeSliceSize.VALUE

)

∗min (Workflow:PopulationSize.VALUE, PoolSize.VALUE) + 1] ∗ TimeSliceSize.VALUE

Moreover, based on the previous studies we can identify default or even close to optimal
Thread Pool configurations, for example:

PoolSize.Size = ReplicaCount.VALUE+ 1,

that defines an optimal number of threads parametrised by number of CPU replicas for
CPU-intensive requests.

3.3.2.3. Completion Design

In this section, we introduce details of the completion design (cf., Figure 3.8b). We de-
scribe the structural part of completion and its development. The concept of quantitative
and structural information separation in the completion design was introduced in Section
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3.2.2. Moreover, completion design step integrates the quantitative information needed for
completion resulting from previous domain analysis step.

As first to design a completion, we have to create the configuration model and the structural
skeleton. For this purpose, we use feature diagrams (see Section 4.5.2.1). We extract
performance-relevant attributes of the studied aspect as features in a feature diagram.

Configuration Model:

Feature diagrams define all valid combinations of application property values, or features.
One feature defines a certain option in the considered domain. Actual chosen combina-
tions of features are called configurations (feature configurations). Feature diagrams are
hierarchical decomposition of features including information if a feature is mandatory, al-
ternative or optional. We use extended feature diagram, that is discussed in detail in
Section 4.5.2.1.

Using feature diagrams as configuration models brings the advantage of having a focused
and less-complex configuration method understandable by all of the roles in development
process. Such feature-based configuration method can be mapped to individual model
changes and allows generation of completion transformations. The concept of generation
of completion transformations is discussed in Chapter 4. In the following section, we will
illustrate the step of feature model specification on the running example.

Completion Structural Skeleton:

The separation of concerns in software modelling avoids the construction of large and
monolithic models, which could be difficult to handle, maintain and reuse. However, hav-
ing different models describing different aspects requires their integration into a final model
that represents the entire domain. In previous steps, we already identified one part of mod-
elled domain, the quantitative information about the completion. To complete the design
of completion we have to specify required information about the structure. The design
phase yields completion model skeletons that capture the structure of the completion. The
completion model skeleton specifies a set of necessary components, and their behaviour,
building the structure of completion. The skeletons only abstractly model the structure
and behaviour without any resource demands. All possible variants of completion are
captured by its structural skeleton.

We use model weaving to select a subset of the components needed for a particular comple-
tion variant based on the current configuration. There is no accepted definition of model
weaving, we consider it as the fine-grained relationships between completion configuration
and skeleton models. Based on these relationships and correspondences between the con-
sidered model parts, we avoid to have large skeleton models for capturing all the variants of
the aspect. The completion developer has to have a clear overview about these mappings,
that represent model changes required towards completed software model.

3.3.2.4. Running Example: Thread Pool Completion Design

Thread Pool: Configuration Model

Based on the previous discussion, we extracted important performance-relevant features
of Thread Pool pattern in a form of feature diagram. These features summarize different
configuration options of the thread management implementation based on this pattern.
The resulting feature diagram is illustrated in Figure 3.11
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Figure 3.11.: The configuration model of Thread Pool design pattern (used for the running
example).

Java-specific Thread Pool feature diagram:

For the purpose of the running example, we simplified the feature model for Thread Pool
design pattern. The simplified version is based on the features supported by the last
Java JDK (1.6). The Java platform is designed to support concurrent programming and
includes high-level concurrency APIs. The concurrency support is implemented in the
java.util.concurrent packages. The feature model in Figure 3.11, that will be used
as a running example, collects Thread Pool implementation options supported by Java
platform. To validate this model, we will compare the prediction results with the measured
results later in the thesis.

The valid Thread Pool configuration includes the mandatory feature Optimization Prop-
erties. This feature may define either a static or a dynamic Thread Pool variant. The
exclusive selection is indicated by the excludes constraints between both features. Each
of these features have to have a number of threads specified. This is either a static pool
size or, for the dynamic feature, a core and a maximum number of threads. Addition-
ally, software architect has a possibility to specify the time after which an idle thread in
a static pool should be returned to the pool (or ”sleep”), avoiding waste of resources by
busy waiting. Similarly, for a dynamic Thread Pool he can specify, by KeepAliveTime,
when an idle thread should be destructed. This provides a means of reducing resource
consumption when the pool is not being actively used. If the pool becomes more active
later, new threads will be constructed.

Lastly, an important attribute is the queueing strategy in a waiting queue, because use
of this queue interacts with pool sizing. There are three different strategies for queueing.
Direct handoffs is a default choice for a work queue that hands off tasks to threads without
otherwise holding them. Here, an attempt to queue a task will fail if no threads are
immediately available to run it, so a new thread is required to be constructed. Unbounded
queue will cause new tasks to wait in the queue when all threads are busy. Bounded
queue helps prevent resource exhaustion when used with finite maximum pool sizes, but
can be more difficult to tune and control. Queue sizes and maximum pool sizes may be
traded off for each other: Using large queues and small pools minimizes CPU usage, OS
resources, and context-switching overhead, but can lead to artificially low throughput. If
tasks frequently block (for example if they are I/O-intensive), a system may be able to
schedule time for more threads than you otherwise allow. Use of small queues generally
requires larger pool sizes, which keeps CPUs busier, but may encounter unacceptable
scheduling overhead, which also decreases throughput.
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Figure 3.12.: The structural completion skeleton of Thread Pool design pattern.

Thread Pool: Structural Completion Skeleton

We designed an abstraction of the Thread Pool pattern (cf., Figure 3.12) for the purpose of
performance prediction. The pattern abstraction is a version of a Leader-Follower pattern,
where one particular thread takes the role of the leader and waits for the next request.
All other threads are either followers (i.e., queued) or leaders (i.e. processing requests).
To model this pattern we can easily use one Thread Pool component with a size equal the
capacity of the system. The overview about the required changes (e.g., adding/removing
components) of the model helps completion developer with later implementation. There-
fore, he is required to first model per hand a completion skeleton for each feature and
validate them. Based on these analysis he can choose appropriate abstraction and imple-
ment the change mappings. In Figure 5.21 the mappings, for one simplified variant, are
illustrated by arrows. The semantic of these arrows is addition of the selected components,
interfaces, methods or values to the model. To integrate a Thread Pool abstraction into
the model we have to add the Wrapper and the Thread Pool components to the model.
This basic structure of the skeleton is created from the root feature. The child features
then add the behaviour specifications (e.g., SEFFs) and parameters to the components
(e.g., PoolSize).

3.3.2.5. Completion Validation

To validate the initial completion (cf., Figure 3.8d), we create a test model and corre-
spondent implementation of modelled aspect in a real system. Using the test model we
realize a set of simulations (e.g., using PCM simulation framework) to predict system’s
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performance. Furthermore, by measuring the implementation we get a real performance
data about the system. The measurements are again executed automatically taking an
advantage of support provided by the Software Performance Cockpit (see the domain anal-
ysis step). In order to ensure that the completion model captures and correctly models
all relevant parameters, developers compare predictions and measurements. Based on the
outcome of the comparison, it might be necessary to execute further experiments to eval-
uate observed deviations of predictions and measurements. In such case, the developers
extend the domain analysis and the completion design to the required level. When the de-
sired degree of accuracy is reached, developer can start to implement generic and reusable
completion.

3.3.2.6. Running Example: Thread Pool Completion Validation

To validate the Thread Pool completion, developers need to compare different predictions
and measurements of execution times for different configurations. Additionally, they can
compare different Thread Pool variants even when available other thread management
strategies, such as Thread Pool versus the Thread-Per-Request model.

In the Thread Pool example, we discussed measurement results for request execution time
depending on the start time a request is initially executed. In this experiment the request
arrival time was 1100 ms and maximal Thread Pool size was 1000 threads. Using our
Thread Pool model, we can execute simulations with the same system settings. The
prediction results can be then compared to the measurements as illustrated in Figure 3.13.
It is visible from these graphs that the model allows to predict the behaviour of Thread
Pool with very good accuracy (see Table 3.1). For the first 49,6% of the requests, before
the Thread Pool stabilised, the prediction error is highest. For later requests, the predicted
execution time (30,00 s) is very close to the mean value of the measurement results (27,77
s). The mean value of execution time was predicted with the prediction error smaller than
10%. The prediction results promise more accurate predictions when the additional effects
on Thread Pool performance are considered (see Section 5.3.5).

� � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
��

��
�

��
��

�
��

��
�

��
��

�

������������������������������������������������������ ���!������"�#$������%����������&�
'�����(����'���(�)�����(�)�*��������+��,�-�.�(��/0��,)�.�

(��/*��������+��,�-�����(��/*����1��2	����('�����(��('��*�

3��4�����
"
����3��4�����"��
���5!4������"�	������3�����4������"����674������"�
����	�
	��5��4����������"������

�
��

��
��

��
���

��
��

��
��

��
��

8-
19

:
�/

��
1�

��
��

'�
��

��
��-

��
8-

19

(a) Measurement results

����� ����� ����� ����� 	���� �����

�
��
��

��
��
�

��
��
�

��
��
�

��
��
�

	�
��
�

	�
��
�

��
�������
�����������������
���������
�����������������������������
��	������������ !��������"��#���������� $��"�%�#�������

�%����������%��!��

&���������
�������'�������'�������
�����������(��)
��*+�	��,�-����+�����-��./+�	�����,�-���
���+�	��,�-�$0+�	�,����	�	�		���

�
�

��
�
��

��

��

��
��
��
��

�(�
�)

1
� 

��
��

�2
*�
%�

���
��
#�
�
��
(�
�)

(b) Prediction results

Figure 3.13.: Example of Thread Pool model validation [62].

Mean [ms] Max [ms] Min [ms]

Prediction 30004.72 36170.00 1140.00

Measurement 27776.78 43449.92 1206.15

Error [%] 7.42 16.75 5.48

Table 3.1.: Example of the evaluation of prediction accuracy [62].
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3.3.2.7. Completion Implementation

The goal of this step (cf., Figure 3.8e) is to implement generic and reusable completion,
that can be registered into the completion library and used by the performance analysts.
Each of the introduced completion features could have additional information attached
as, for example, fragments of code. In the completion design step, we define how features
and their combinations affect the software model. We defined mappings specifying the
dependences among different feature configurations, the model structure and the elements’
attribute values. The result of this step is an extension of the pre-defined feature diagram
by dependences and documentation how the features map to the software model changes.
We call these extension feature effects, they make clear which feature triggers which change.

Definition 8 Feature Effect
Feature effect is a formal representation of a isolated model change resulting from feature
selection.

To formalise and implement feature effect, we have to develop actual transformation frag-
ments, which encode the change to the software model. The result of this activity is a
feature model, that is extended by the annotations in a form of model-to-model transfor-
mation fragments. In this work, we use to implement transformation fragments the OMG
QVT-Relations transformation language.

When the completion is validated and the feature effects are developed, the developers can
parametrise the performance completion. Therefore, they derive the parametric resource
(e.g., dependency of default number of threads on the number of CPUs, etc.) demands for
the completion components and adjust the feature effects to integrate into the completed
model these demands or static calibrations (e.g., measured platform-specific network over-
head) , if necessary. The parametrisations and calibrations are integrated into the model
by the feature effects.

3.3.2.8. Running Example: Thread Pool Completion Implementation

As presented in previous section, the nodes of the feature diagram are annotated with
feature effects, implemented as transformation fragments. We illustrate the feature effects
implementation on the running example (cf., Figure 3.14). The effect of Thread Pool
feature is depict by the relation TP and creates necessary components (simplified in
Figure 3.14). The result of this feature effect is the creation of component TP. The effect
of Static feature TP_Static has a when-dependency to the parent effect TP. When the
component TP exists, the TP_Static feature can be used to statically configure the size of
the Thread Pool and set the default value. Hence, the transformation fragment belonging
to the the feature Pool size refers to the free variable declared in the TP_Static fragment
of feature Static and overrides the default value. Additionally, transformation fragments
can integrate quantitative information into the completion transformation, which addition
is straightforward in the fragment implementation. We will discuss the transformation
fragments in a more detail in Chapter 4.5.

3.3.3. Completion-based Software Engineering

In this section, we discuss the role of completion user and how he/she can take advantage
of the developed completion from completion library. The phases of the software engineer-
ing include actual software model development and requirements analysis. Starting with
the requirements on the software system, the model developers create a software model
and meet correspondent design decisions. The task model annotation benefits from the
reusable completion defined by domain engineering. When model developers find a suitable
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  }; 
}

top relation TP_Static {
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  checkonly domain in p : 
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  };
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  where {
    varSize = 100;--default
  }
}
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Figure 3.14.: Example of feature effects implemented as fragments of transformations.

model completion supporting their design decision, the model can be annotated with the
configuration of this completion. Model developers attach required configurations to the
model elements where they plan to apply chosen completion. The main goal of this step is
to make sure the software application will meet the requirements defined for the product,
as well as ensuring that future requirements and design decisions can be addressed.
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Completion
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Figure 3.15.: Tasks of the completion user.

The most important step is the completion transformation generation. Realisation of this
step is a topic of the whole following Chapter 4. The generated transformation is then
applied (completion execution) to the input software model and results in the completed
software model. The completed model is then directly passed to the existing simulation
or analysis frameworks and provides more accurate and more complete predictions.

Running Example: Using Thread Pool Completion

The software deployer role from the CBSE development process can use the Thread Pool
completion as annotation to the resource container. Each user of the completion has to
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create a correspondent feature configuration. The actual feature configuration based on the
Thread Pool feature diagram is illustrated by check(selected feature) and cross(eliminated
feature) -marks. For such Figure 3.16 additionally depicts one possible configuration of a
Thread Pool. This feature configuration defines a simple static implementation of Thread
Pool with the size of 32 threads treating all incoming tasks with the same priority.
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Figure 3.16.: Thread Pool feature configuration.

3.4. Summary

The main contribution of this chapter is the generalisation of the Model Completion con-
cept and its integration into the MDSPE process. In this chapter, we discussed relationship
of model completions to MDSD and MDSPE processes. To put model completions into
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Figure 3.17.: Pointers to the detailed description of particular development steps.

practice, we introduced a general process to design and apply performance completions
in the MDSPE. The design of completion-based development process for MDSPE was
presented in the invited talk on the EPEW 2010 and published in [93].
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The completion developers define completions based on abstract specifications and design
patterns and, thus, parametrise over the platform and vendor-specific properties of differ-
ent platforms. In our development process, we automate the measurement data collection
using Software Performance Cockpit. The resulting parametrised completions allow soft-
ware architects to instantiate the completion for their target platform and annotate their
models. The performance completions represent powerful tool to analyse performance of
software using complex design patterns and platforms (e.g., application servers). We de-
scribe details of the particular steps during the completion development process in separate
sections later within this thesis.

Figure 3.17 gives an overview about the structure of this thesis and pointers to the chapters
where details to the particular steps of the completion-based development process can be
found. In the following chapter, we deal with the automated integration of completions
and management of their variability using Higher-Order Transformations (HOTs).
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4. Variability Management using
Higher-Order Transformations

In the previous chapter, we introduced the concept of Model Completions and its appli-
cation in MDSPE. We discussed the main challenge related to completions in the MDSD
context, which is the variability support. The requirement for variability results from the
reconfigurability of completions. The model elements to be completed are determined by
this configuration. The completions are implemented as model-to-model transformations.
Because, it is not feasible to implement a transformation for each combination of configu-
ration options, the variability of completions should be mirrored in the variability of their
transformations.

The leading challenge of this chapter is:

How to support configuration-based variability in model transformations?

The remainder of this chapter will be organized as follows. Section 4.1 introduces the
problem domain. The main contribution of this chapter, CHILIES approach, is discussed in
Section 4.2. Section 4.3 introduces the principle of Higher-Order Transformations (HOTs)
and the idea of HOT patterns definition. The patterns used to support completions are
described in Sections 4.4, 4.5 and 4.6. The composition of these patterns is discussed in
Section 4.7. At last, we summarize the assumptions and limitations in Section 4.8, and
conclude this chapter in Section 4.9.

4.1. Problem Domain

In this chapter, we deal with the problem of variability management in transformations
given a fixed input model. The variability of transformation results from two sources: First,
the requirement to increase expressive power of metamodels through particular model
elements originating from domain-specific languages. Second, the requirement to include
variable parts into the transformations and adapt their functionality. In the both cases,
the changes of requirements on the software product (e.g. changed application domain,
or required more detailed model) result in the changes of the transformations. In the
following, we discuss both of the cases in more detail.

4.1.1. Increasing Expressive Power of Metamodels

The language features, such as programming language pragmatics [145], have clearly a huge
impact on the developers ability to write clear, concise and maintainable code. A typical
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example of language pragmatics is the foreach statement in Java [131]. Analogous aspects
apply to modelling languages, especially in the case of very large and complex systems. To
increase usability of model-driven techniques we need modelling pragmatics that support
efficient model design, too. Often developers claim that the metamodel is not suitable for
the purpose of a particular model, that some other metamodel is more powerful. Although,
in a sense of expressiveness two metamodel-based languages can be equivalent, both can
be used for the same goal, even if it is not straightforward and the models would be too
complex, and can be suitable to express anything written in the other. The most important
factor contributing to the expressive power of the metamodel are features of abstraction.
The modelling pragmatics support the developer to overcome the complexity of the model
by abstraction.

As discussed in the previous chapter, in some scenarios, metamodels do not have enough
expressive power to allow modelling of all required details. For this purpose new meta-
model elements have to be introduced which requires adapting all transformations based
on the metamodel. The required development effort for these adaptations depends on the
complexity of the metamodel changes and the transformations. MDSD focuses on the
reuse of existing models and supports different transformation chains and tooling working
on the same model. Changes of the modelling language with each new purpose of models
and related adaptation of their transformations is against this reuse principle. Our goal
is to avoid or minimize these adaptations and support extension of metamodels through
introduction of modelling pragmatics in a form of completions.

Metamodel

Source Model Target Model

«conforms-to» «conforms-to»

Extended Metamodel

Metamodel Domain-
specific
aspect

Figure 4.1.: Introduction of new domain-specific aspects to the metamodel by a completion
transformation.

Completions increase the expressive power of metamodels indirectly on the model instance
level, thus on the metamodel level the same language is maintained (cf., Figure 4.1).
They add new domain-specific aspects into the model instance using the same language
of the meta-(or abstract-)level, thus they allow an incremental and indirect extension of
metamodel through the completion transformations. Such domain-specific aspects can
be described by suitable domain-specific languages that introduce new elements into the
host language and could be later transformed to subsystems conform to the original host
metamodel.

We express these domain-specific languages in a form of a feature diagram. Based on
the choice of features from the feature diagram the completion transformation extends
the model instance with new aspects from the domain described by the feature diagram.
Each completion extends the model by a new concept, that is constructed using existing
elements of the host metamodel. This way, we can bridge different domains. Variability,
in this case, means that transformation generates different output models, based on the
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application domain. Because of the aspect’s configurability, the transformations realising
these extensions should be derived automatically. We call these transformations completion
transformations. The result is that the applicability of the metamodel increases, using the
new metamodel language features supporting abstractions it is easier to create models and
the creation of completion transformations is automated.

4.1.2. Supporting Transformation Variability

Classical MDSD approaches face the non-trivial task how to implement transformations
creating target models sharing common core, but differentiating by variable parts. Typi-
cally, given a fixed source model, there would be one possible target model. In practice,
however, different features can be required. For instance, the design decision whether
or not to integrate a certain design pattern (e.g., Thread Pool), could change. Variabil-
ity, in this case, means that transformations generate different output models, based on
additional annotation and/or configuration models passed to the transformation. The con-
figuration of the transformation or the transformation itself has to be adapted to integrate
different design decisions.

Thus, the main challenge to support model completions in MDSD is their high degree
of variability. Each implementation detail can have many configuration options which
may change the structure and behaviour of related abstractions. For example, Message-
Oriented Middleware (MOM) platforms are highly configurable to meet customer needs.
The MOM configuration includes, for instance, durable subscription or guaranteed delivery.
These configuration options influence performance and, thus, have to be mirrored by the
transformation that realizes the completion.

One solution would be to implement one transformation for each combination of config-
uration options. Another solution would be to attach one additional input model to the
transformation. The most commonly used way to configure model transformations is by
means of external annotations to a source model. So called mark models [11] are used to
provide configuration details that are specific to the source model. This mark model is
considered as an additional input for the transformation on the model level.

However, this way of transformation configuration is not always preferable. Both solutions
have to deal with the problem that a high effort is needed to implement and to maintain
their transformations. Regarding the first option, it is straightforward that it is not feasible
to implement a transformation for each combination of configuration options. Already
with 12 binary configuration options, (with only boolean value possible) we would have
to implement 4096 (or 212) transformation variants. However, even the second solution
has to deal with many problems. In the case of mark model usage, the transformation is
tightly-coupled to the configuration. Thus, when we want to change configuration options,
remove them or to introduce a new ones, we have to change the transformation itself. The
developer of such a transformation has to consider dependencies between configuration
options, which can become very complex.

There are cases where this configuration mostly depends on externally defined properties
(i.e., source model independent) and is not specific to special model elements. In this case
the configuration happens on a higher level of abstraction. Thus, the decision about used
variability is made in later stages (e.g. when transformation is applied) and requires late
variability binding, during so called load time of transformation. Moreover, used elements
(ie. configuration models, transformations, etc.) should support software developers (i.e.,
completion users) managing variability. Therefore, it is much more appropriate to decouple
the configuration and the actual model. Starting with the same source model, we can get
different target models depending on the configuration. Additionally, there is a need to
define the configuration model as reusable construct. The configuration model encapsulates
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domain-specific expert knowledge and as such it would be beneficial to support its reuse
in different contexts. For example, the configuration could be read by other development
tools and used independently from the original software model. Thus, the configuration
model should be specified on a more generic metamodel-independent level.

Additionally, the code of the mark transformation is polluted with code reading and han-
dling the configuration. The configuration management code grows with the complexity of
configuration into complex decision trees. Consequently, using mark models the maintain-
ability of the transformations decreases when the configuration model’s complexity grows.
Transformations with such complex constructs are not only very hard to maintain and
to understand, but moreover writing a transformation that considers all possible combi-
nations of selected configuration options or introducing new configuration option, is very
tedious and error-prone. Thus, the maintainability of transformations is one more reason
to decouple configuration model and transformation. In our application domain, the ex-
plicit support of variability in the definition of completions and their transformations is
crucial for their application in software performance engineering.

4.2. Introduction of the CHILIES Approach

In this thesis, we focus on variability management in transformations based on configu-
ration models. We use feature diagrams to express configurations. Transformations can
then be based on the very same feature diagram to apply the appropriate changes to a
model according to currently selected features. For this purpose, specific parts of a trans-
formation are activated depending on the selected features. However, transformations
parametrized by configuration require substantial development effort. In our approach, we
allow transformation developers to focus on the actual transformation logic. They specify
transformation fragments for each feature in the configuration model separately. Thus,
the development effort is decreased through separation of concerns. Based on the selected
combination of features, a Higher Order Transformation (HOT) generates the specific com-
pletion transformation. The direct manipulation of transformations depending on a given
configuration makes the relation between configuration and transformation explicit.

In the proposed approach, we lift the configuration model to a higher abstraction level.
Therefore, the transformation fragments do not get polluted with code that is only re-
sponsible for checking the actual feature configuration. Furthermore, as the binding of
fragments and features is more explicit, this alleviates the complexity of transformation
evolution as every feature has a clear mapping to the parts of the transformation, which
are related to it. We generate an executable completion transformation from a configura-
tion defined by a feature diagram in a number of steps. Each of these pre-processing steps
has a specific goal.

CHILIES approach defines the pre-processing steps necessary to generate transformations
as general patterns that can be composed together to build an SPL for transformations.
These patterns describe the necessary elements, such as models and transformations, to
achieve particular goals. Composing these patterns, in this work we focus on the Routine,
the Composite and the Template pattern, we can create an SPL with more complex goals.
Completion transformations are generated based on these patterns. However, we used the
CHILIES approach to systematically support variability of completion transformations,
completions are only one application domain and the presented approach could be applied
in other contexts as well. The CHILIES approach will be further discussed in the following
sections. We start with summarizing the main contributions in more detail.

4.2.1. Scientific Contributions of this Chapter

The main contribution of this chapter is located in the MDSD context and can be sum-
marised as follows:
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CHILIES Transformation Variability Management method: SPLs are used to
build a family of products, which are subject to variability. Variability should be
managed, that is specified, modelled and implemented in amaintainable and effective
way. For model-transformations, variability is defined by a varying set of features
integrated in the final transformation. Various approaches [71, 167] show that SPLs
can be implemented using MDSD techniques. In this thesis, we created a SPL for
model transformations using Higher-Order Transformations (HOTs). Based on the
different usage scenarios, where HOTs with different goals could be applied, we iden-
tified building blocks, which can be used to build SPLs for transformations. The SPL
for transformations works in combination with feature diagram and transformation
fragments. The transformation fragments are selected mirroring the corresponding
configuration. The specific sub-contributions are:

Higher-order transformation patterns: The used transformation generators
are written as HOTs that are building blocks of the SPL for transformations.
A HOT compiles the transformation model again into a transformation model.
We used these HOTs as pre-processors, at load time of the transformation
(e.g. in MDSPE), executed before the actual transformation. In our approach,
we use chains of HOTs where each HOT represents a different pre-processing
step. We identified a set of higher-order transformation patterns formalizing
different goals for the application of HOTs. Based on these patterns, software
engineers can build pre-processor chains to generate transformations on demand
and integrate them into the existing model-driven process. By formalising these
patterns, we build a framework allowing the reuse of HOT specifications. The
main objective of our solution is to manage variability efficiently. Composing the
HOT patterns, we developed an advanced MDSD infrastructure. Our approach
can also be applied to other MDSD infrastructures with a need to manage vari-
ability. We defined a set of usage guidelines and Higher-Order Transformation
patterns, that are recipes and building blocks for using and building a similar
infrastructure. Further, we present three patterns as an example illustrating
our approach. The whole set of HOT patterns is described in Appendix B. In
this chapter, we introduce only the HOT patterns used to support completions
in more detail:

1. Routine pattern: Our experience with development of complex transforma-
tions shows that a lot of routine work is needed to specify usable transfor-
mations. To decrease development effort, we propose a generative method
to take the routine work from developers. We automate generation of rou-
tine activities as copying, multiplying elements or flattening of the models.
Using Routine pattern we can generate a frame, which in the most cases,
only copies model elements. The frame can be then a basis for integrating
customisations and creating transformation variants.

2. Composite pattern: Today’s transformation languages do not support the
composition and reuse of transformations sufficiently. To create a trans-
formation from fragments we have to compose the relevant fragments and
resolve their dependencies. In this thesis, we introduce an approach for
transformation composition using additional information provided by fea-
ture diagrams. This approach defines and implements a set of constraints to
compose transformation fragments based on their position in a tree struc-
ture of feature diagrams.

3. Template pattern: Transformations often have a similar structure differing
only in parameter values and application context. To achieve this, our so-

65



66 4. Variability Management using Higher-Order Transformations

lution supports modularity by using modular constructs (e.g. templates)
as much as possible. Furthermore, modularity can improve reusability of
transformations. In this thesis, we introduce a method for the automated
instantiation of transformation templates. Additionally, we provide an ini-
tial set of transformation templates for common transformation parts in
the domain of CBSE.

4.2.2. Software Product Lines for Transformations

A Software Product Line (SPL) is a set of systems with well-defined commonalities and
variabilities [37]. The most important aspect of an SPL is the management of variability.
Using the concepts of SPLs, software developers and architects can build a family of
products which are subject to variability. In this thesis, we apply SPLs for transformations
to completions in the domain of component-based software software engineering. Although
the injection of completions into the model is straightforward, the development of the
completion transformation is an non-trivial task. The transformations depend on the
configurations and, therefore, are subject to the variability themselves.

To provide variability support in transformation definitions, we studied the design of SPLs.
In our approach, we introduce a variability modelling concept for model transformations.
We create an SPL for transformations that generates variants of model transformations, for
example, completion transformations as illustrated in Figure 4.2. The SPL for transforma-
tions is used to generate completion transformations executed in the horizontal direction
of the Model Completion concept. The goal is to fully automate the transformation gen-
eration. The SPL reads configurations (Config1, ..., ConfigN ) and generates the required
transformations. The configuration of the variable parts determines the transformation
to be generated and, thus, the product. The illustrated approach provides methodologies
to capture and reuse the common parts of transformations and also provide techniques to
manage the variable parts of a transformation.

The process of building an SPL consists of two phases: domain engineering and software
engineering [37]. These phases can be mapped to the tasks of the roles Completion Devel-
oper and Completion User introduced in Chapter 3.3. In the domain engineering phase,
all the common parts of a transformation are identified and implemented. Additionally,
models that describe the variable parts (in our approach feature models and feature effects)
and their relations are created. These models represent the variable parts of a (comple-
tion) transformation. The development of transformations has to be done systematically,
with the focus on their reusability. In the case of completion transformations encapsu-
late domain knowledge that can be (re)used in different contexts. This means that the
developed transformations have to be generic and independent from an input model. In
the software engineering phase, the transformations (which have been created during the
domain engineering phase) are selected, configured and applied to a software system.

The CHILIES approach realises an SPL for model transformations using MDSD technolo-
gies. MDSD is one approach to cope with the challenges of product line engineering [123].
We propose HOTs as generally applicable variability modelling concept for transforma-
tions. The combined concepts of SPL and MDSD enable the automated generation of
customizable transformations. Our SPL built with MDSD technologies is a sequence of
HOTs each of which addresses a different part of the transformation generation process
(e.g., generating a copy transformation that is extended by other HOTs). The transfor-
mation sequence, and its elements (ie. models and meta models) can be regarded as a
software platform. A family of products can be automatically generated using different
customizations. In this scenario, the product of our SPL is again a transformation. The
Higher-Order Transformation Patterns (described in Section 4.3) give further insights into
the implementation of our SPL for transformation development.

66



4.2. Introduction of the CHILIES Approach 67

Abs

Conc

Abs‘completion
transformation Abs‘‘completion

transformation

Conc‘ Conc‘‘
an

no
ta

te
 

Config1 Config2 ConfigN

re
fin

e 

re
fin

e 

re
fin

e 

Abs

Conc

Abs‘completion
transformation Abs‘‘completion

transformation

Conc‘ Conc‘‘

re
fin

e

re
fin

e

re
fin

e

SPL for transformations

an
no

ta
te

 

re
ad

re
ad

ge
ne

ra
te

ge
ne

ra
te

[...]

M
od

el
 C

om
pl

et
io

n 

re
ad

an
no

ta
te

 

Figure 4.2.: SPL for model transformations generating completion transformations.

4.2.3. Transformation Variability

Variability is one of the core aspects of Software Product Lines. In the context of SPLs
for transformations, we can distinguish different types of variability. In this section, we
discuss the relevant variability types and their manifestation in transformations.

Specifying variability

Transformations of one family of products usually have many common parts, although they
can carry significant differences. Typically, these differences define the variation points.
We understand variant and variation point as follows:

Definition 9 Variant and Variation Point
One variation choice, defined by one configuration instance, is called variant. A group of
all possible product variants defines a variation point.

In the running example described in Section 3.3.1, one variant is a static Thread pool with
a pool size of 32 threads, defined by the feature configuration shown in Figure 3.16. We use
the concept and notation of feature diagrams to model variation points and corresponding
feature configurations to specify variants. The resulting model can include more than
one variant that origin from the same (in different location in model) or different variation
points. The syntax and semantics of the used feature diagrams is specified by a metamodel
that is introduced in Section 4.5.2.1.

Feature diagrams allow an independent definition of variability. In large development
projects, the complexity of variability can easily overwhelm developers. The benefit of
using a separate definition of variability is clearly visible in such projects. A feature
diagram-based definition of variability in a form of a tree allows to, when necessary, hide
a variation point or dive in a variation point and implement it in separation. Thus,
developers can work on the system using different views on the system with the required
level of detail. The implementation of the selected feature configurations is then realized
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68 4. Variability Management using Higher-Order Transformations

automatically as a transformation or generator that expands all the required details and
their configurations in the target model.

Moreover, by using feature diagrams we allow easy configuration of variants, by choosing
from several configuration alternatives. Constraints between the alternatives limit the
choices to valid combinations. Such variability specification is simple and easy to use.
Transformation developers do not need to learn complex formalisms, they simply select a
set of options.

Characteristics of Variability

The type of variability considered in this thesis is source model independent and source
metamodel dependent. Source model independent means that the feature effects are only
defining mapping between the feature and the realisation of this feature by elements con-
form to the source metamodel. Thus, there is no mapping needed between the feature effect
and the source model. The realisation of feature effects is source model independent. How-
ever, feature effects are applied to and transform elements of the source metamodel. As
such, feature effects depend on the source metamodel.

Variability of Completions

In the previous chapter, we discussed performance completions. The variability of comple-
tion manifests as follows (cf., Figure 4.3): (i) in completions many configuration options
have parameters (P1, P2) that can be varied. Precisely, the parameters are stored in
feature effects of the feature diagram. One part variability implementation is resolving
these parametrisations. A variant is constructed by providing values (V 1) to these pa-
rameters (e.g., Pool:size=32). This variability is limited only on the locations where the
parameters are defined.

In the next step (ii) the annotated (or other relevant) model element (called pivot element)
from the source model is removed and on its place is the required detailed model subsystem
(e.g., completion instance) injected. The completion instance is composed from resolved
feature effects (black triangles in Figure 4.3), corresponding the feature configuration. The
feature effects are illustrated in Figure 4.3 by triangles with parameters (P1, P2) and as
composed triangles with resolved parameters (V 1) in the target model.

Feature
effects

pivot
element

Target Model

V1
annotates

Configuration

P2
P1

Source Model

Completion
Instance

Figure 4.3.: Variability implementation with configuration.

The feature effects correspond to the elements (e.g. component, connectors), that are
defined by the used metamodel and could be instantiated into a model. The implementa-
tion of the model-to-model transformation realizing this correspondence is implemented in
declarative transformation language QVT-Relations. A feature model defines the variation
point. A feature configuration is a driver of the transformation and defines one variant.
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4.2.4. Formalisation

This section captures the idea of variable transformations for model completions formally.
We formalize the essential terms of the completion concept beginning with definition of
models, transformations and transformation chains. Based on these initial definitions, we
introduce a formalisation of model completions and completion transformations.

4.2.4.1. Basic Terms

Models and Metamodels: Let MM be a metamodel, expressed as an instance of some
meta-metamodel MMM . For example, the PCM metamodel is an EMOF instance. An
instance of the metamodel is a model defined as M . Then the set of all valid model
instances that are conform to this metamodel MM is defined as follows:

conf(MM) = {M |M is conform to MM}

Applied to the PCM, this definition allows to specify a valid model conform to the PCM
metamodel as M ∈ conf(PCM), where PCM ∈ conf(EMOF ).

Model Transformations: Let t be a function, which maps an instance of a source
metamodel MMS to an instance of the target metamodel MMT :

t : conf(MMS) → conf(MMT ), where ∀MT ∈ conf(MMT ) ⇒ ∃MS ∈ conf(MMS)

t(MS) = MT

For example, consider a transformation:

tPCM2SOFA : conf(PCM) → conf(SOFA)

tPCM2SOFA maps instances of the PCM to instances of SOFA metamodel.

Model Completion: Let c be a function, which is a left-total relation, thus every source
model is associated with one or more target models. Thus, c maps instances of a source
metamodel MS ∈ conf(MMS) to a set of target models (P ), which are instances of the
target metamodel MT ∈ conf(MMT ):

c : conf(MMS) → P (conf(MMT ))

In the following, we specify the applied completion by the description c above the transition
arrow (

c→).

The exact target domain of the completion is defined by its purpose. In the following, we
understand source model MS as a set of model elements (i.e., links between elements and
attributes are transformed implicitly). The definition of completion does not force c to
map every element of MS to an element (or number of elements) of MT . Therefore, we
can define a source model M ′

S as a subset of MS that is mapped to MT .

Functions mapping only a subset of the source model are called partial functions, which
allow to specify relations between two domains. Moreover, starting with the same source
model and using two different completions (or only two different configurations of one
completion) the transformation can result in two different targets. However, such com-
pletion definition is not enough to support the implementation of our completion-based
processes. To support such processes, we it has to be possible to map every model MT to
at most one model MS . Thus, we need additional variability specification. Therefore in
the following, we define a suitable variation specification allowing unambiguous definition
of completions.
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70 4. Variability Management using Higher-Order Transformations

Completion Specifics: In case of completions, the source model MS and the target
model MT are instances of the same metamodel (MMS = MMT ):

MS ∈ conf(MM) ∧ MT ∈ conf(MM)

Thus, the relation between source and target model is (i) reflexive (MS
c→ MS), when for

c was any pivot element identified; (ii) asymmetric (MS
c→ MT � MT

c→ MS), for each c;

and (iii) transitive (MS
ci→ MT1 ∧MT1

cj→ MT2 ⇒ MS
cij→ MT2), for ci �= cj ∧ cij = ci ◦ cj

(where ’◦’ defines a composition of transformation in a sequence). Such a relation is called
partial order and formalizes the intuitive concept of ordering, sequencing, and arrangement
of the elements in a set of completions. We discuss sequences of completions in Chapter 5.

Further, we focus on the definition of the completions and the variability in the completion
transformation (”c”). The goal is to define completion transformations that associate one,
and only one, target to any particular input.

4.2.4.2. Variability Management

Variation Points and Variations: In this thesis, we deal with variability where, for
a given fixed source model MS and a transformation t, a finite set of possible variants v
should be derivable. A set of all possible variants P (V ) of one variation point V is defined
as:

V = {v|v ∈ conf(MMT )}

In the completion approach, one completion c defines at least one variation point (a com-
pletion can define multiple variation points in one software architecture). All possible
variation points are members of C = {ci|i ∈ I}. The set C denotes a finite set of available
completions, called completion library. Furthermore, the set Vi with i ∈ I:

Vi ⊆ {vji |j ∈ J}

denotes a countable set of possible variants for one completion ci. To continue with our
example, the variation point defined by completion cThreadManagement is

VThreadManagement = {vTPstatic
ThreadManagement, v

TPdynamic

ThreadManagement,

vThreadPerRequest
ThreadManagement, v

SingleBackgroundThread
ThreadManagement }

Variant Composition: In the following, we use an operator � to specify the variant
composition. The � operator introduces variants into any source model and weaves model
elements defined by the completion variant into the source model. The semantics of the
� operator are represented by the relationship that exists between the variant model and
the source model. More formally the semantics of � operator is defined as follows:

� : conf(MMS)× P (V ) ⇒ MT , whereMT ⊆ conf(MMT ).

Variation Implementation: Each vji can be implemented as a transformation that
realises the variant composition and constructs one variant of MS ∈ conf(MMS) by
weaving an instance (vji ) of variation point ci:

t : conf(MMS)
ci→ conf(MMT ) : conf(MMS) � v

j
i

Applying one variation of a completion, e.g. cThreadManagement, results in a composition
of the source model and the configured variant, e.g. vTPstatic

cThreadManagement
.
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Each variant of a completion could be applied to a number of elements in the source model.
The pivot element defines a type of model element the completion can be applied to.
Applied to the PCM, this definition allows to specify, for example, completions applicable
to connectors, components or resource containers (also called infrastructure).

Model Elements: As the application domain of our approach is CBSE, we identified
possible pivot elements. Let E = Ecomp ∪ Econn ∪ Einfra be the set of model elements
(identified in the source model) of three types: components, connectors and infrastructures,
respectively. Each of the sets is finite (possibly empty). Each ci can be applied to a model
element e ∈ Es, where s = comp, conn, infra, and realise necessary model changes until
variant vji reached. If vji is again a set of valid model elements (which does not need to be

the case), e is removed and replaced with vji in E.

Since t is a function, which has at most one corresponding result in the target domain
per element in the source domain, more parameters are needed to be able unambiguous
generation of the result. This yields an idea to extend the function t so that it would
accept an additional input of ,i.e., the configuration model. We use feature diagrams as
configuration model. Thus, the additional input is fd ∈ FD, where FD is a set of feature
diagrams. Each completion is then defined as a tuple of the metamodel element type e (so
called pivot element), and a feature diagram fd:

ci = (e, fdi)

A feature diagram defines a configuration metamodel, for example, fdThreadManagement

is a metamodel for the domain of cThreadManagement, its instance is a specific configu-
ration fc ∈ conf(fdThreadManagement) (e.g., which defines one variant vTPstatic). The
fdThreadManagement itself is an instance of a metamodel for feature diagrams MMFD,
fdThreadManagement ∈ conf(MMFD).

Variability management with a Mark Transformation: One option to support
variability, transformations can be parametrised by a configuration model. Such transfor-
mations are called mark transformations as explained in Chapter 2. We formalise mark
transformations as follows. Let tM be a transformation, which maps an instance of a source
metamodel MMS and an instance of a configuration metamodel MMCfg (e.g. metamodel
of feature diagrams) to an instance of the target metamodel MMT :

tM : conf(MMS)× conf(MMCfg) → conf(MMT )

Thus, for one source model MS ∈ conf(MMS) and one configuration instance MCfg ∈
conf(MMCfg) the transformation tM derives one target model MT ∈ conf(MMT ).

For example, consider a transformation:

tMPCM�ThreadMng : conf(PCM)× conf(fdThreadManagement) → conf(PCM)

mapping instances of the PCM and a Thread Pool configuration to new instances of the
PCM. The transformation takes ThreadManagement-specific aspects as configuration.

Because the mark transformations depend on the mark model and the source model, the
transformations have to implement a mapping for each possible configuration. To reduce
the complexity of mark transformations we use higher-order transformations introduced
in the following.

Higher-Order Transformation A higher-order transformation tHOT is a transformation
whose target and/or source model are again transformations. Thus, in general tHOT maps
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72 4. Variability Management using Higher-Order Transformations

an instance of a transformation metamodelMMTransf to an instance of the transformation
metamodel MMTransf :

tHOT
General : conf(MMTransf ) → conf(MMTransf )

This type of transformations is especially useful for transformation manipulations, such as
modification, insertion or merges. In the case of completions, we generate the completion
transformation from the configuration model. Thus, tHOT maps an instance of a configu-
ration metamodel MMCfg to an instance of the transformation metamodel MMTransf :

tHOT : conf(MMCfg) → conf(MMTransf )

Variability management with a Completion Transformation: Let tC be a com-
pletion transformation, which maps an instance of a source metamodel MMS and applies
completion c to it. The target model is an instance of the target metamodel MMT . The
tC transformation is created by a higher-order transformation tHOT . The transformation
tHOT maps an instance of a configuration metamodel MMCfg to an instance of the tar-
get metamodel, in this case it is a transformation metamodel MMTransf and generates
required completion transformation tC :

tHOT : conf(MMCfg) → tC , where tC ∈ conf(MMTransf )

tC : conf(MMS)
c→ conf(MMT )

Thus, for one configuration model MMCfg the higher-order transformation tHOT derives
one transformation variant tC .

For example, consider a transformation:

tHOT : fdThreadManagement → tcPCM�ThreadManagement

tcPCM�ThreadManagement : conf(PCM)
cPCM�ThreadManagement→ conf(PCM)

mapping instances of the PCM to instances of PCM metamodel. The transformation
tcPCM�ThreadManagement is generated already considering the fdThreadManagement and its con-
figuration. The transformation implements only chosen the ThreadManagement-specific
aspects and description how to instantiate these aspects in resulting PCM models. The
configuration instance of fdThreadManagement is used to generate tCThreadManagement.

Now, we can define a completion transformation as follows. Each variant vji ∈ Vi (defined
by an instance of a configuration metamodelMMCfg) can be implemented by a completion
transformation:

tci
vji

: conf(MMS)
vji→ conf(MMS)

constructing a one variant of MS (MS � vji ) using variation point ci.

4.2.4.3. Transformation Chains

In this section, we discuss sequences of transformations, that represent an ordered chain
of model-to-model transformations. We focus on sequences of higher-order transforma-
tions that build a software product line for transformations. Sequences of completion
transformations are discussed in Chapter 5.

Chains of Transformations: Are ordered set of transformations ti. The ti transforma-
tions are executed sequentially with t1 being the first and tn being the last transformation.
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The source model of transformation ti is MS = Mi ∈ conf(MMi) and the target model is
MT = Mi+1 ∈ conf(MMi+1):

ti : conf(MMi) → conf(MMi+1)

The chain of transformations t∗ is then executed as follows:

t∗ : conf(MMi)
ti→ conf(MMi+1)

ti+1→ · · · tn→ conf(MMn+1)

Chains of Higher-Order Transformations (HOTs) An example of a classical chain of
transformations is a chain of higher-order transformations t∗HOT . Let THOT be an ordered
set of HOTs. Similarly as chains of classical model transformations, the members of the
HOT chain generate a model, which is then input to the next HOT transformation. In
the case of completions, we express t∗HOT as follows:

t∗HOT : conf(MMTransfi) → conf(MMTransfi+1
) · · · → conf(MMTransfn+1),

In the completion approach HOTs take as an input model a configuration model conf(MMCfg)
or a transformation conf(MMTransf ), or even a metamodel MM ∈ conf(MMM) could
be an input for a HOT. These HOTs are then executed sequentially to derive the required
completion transformation. We introduce the HOT chain in the following sections.

4.3. CHILIES: Higher-Order Transformation Patterns

With the growing trust in MDSD, projects of greater complexity and size are developed
based on the model-driven paradigm. Since the technology for executing transformations,
especially written in high-level, declarative transformation languages, is of very recent
date, there is very little knowledge available on how to write such transformations (see
Chapter 8).

As mentioned above the goal of this chapter is to provide software developers with an auto-
mated method to manage variability in transformations. We assume that developers have
identified possible variation points relevant for their goal (e.g. performance prediction).
Starting with these variation points, we aim to generate the corresponding transforma-
tion variants realising the related design decisions. For this purpose, we build an SPL for
transformations from building blocks called HOT patterns. These patterns are reusable in
different contexts and for different MDSD projects. The HOT patterns define a body of
knowledge on transformation engineering and they introduce a number of useful guidelines
for generation of complex transformations.

4.3.1. Motivation

Principles for the development of model transformations are crucial for the success of
MDSD. The importance of model transformations is comparable to the importance of
compilers for high-level programming languages. The development of transformations
currently takes place on a low-level of abstraction, lacking appropriate reuse mechanisms.
The support of large transformation scenarios is still missing [171, 153], since the methods,
patterns, and building blocks for their development are not available.

The young field of transformation engineering needs principles for reuse and modularity
similar as for classical programming languages. Structured Programming was introduced
as a means to facilitate reuse, maintainability, and to ease understanding. Similarly, most
transformation languages provide language constructs to define modules, many of them
even support rule inheritance. Meta-programming is a programming paradigm with the
intend to write highly complex programs concisely by implementing software on a higher
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level of abstraction. Model-driven engineering is strongly related to meta-programming
[9]. Meta-programming is about writing programs operating on programs as first-class
entities, and model-driven engineering is about modelling transformations which operate
on models as first-class entities. The same fact accounts to Generative Programming, where
configurable generators are build capable of creating programs within one specific domain.
Today’s MDSD paradigm embodies many ideas of Generative Programming. Domain
Engineering, or Product Line Engineering is a process to systematically reuse domain
knowledge, with the objective of factoring out shared assets of a family of systems.

In more complex scenarios transformations can be specialized more than once, for instance
as more purpose-specific information becomes available. This specialization can happen at
different stages through the lifetime of a transformation. Subsequently, the transformation
should create a substantial part of the final software product. Often the parts of the
software are expressed in a domain-specific language (DSL) that is better suited to the
problem at hand than a general purpose programming language. The usage of DSL’s
promises a shorter time-to-market, higher quality, reusability, maintainability, portability,
and interoperability. The reason is especially the encapsulation of domain knowledge and
improved communication with domain experts through DSLs. A shift of knowledge is
observable, as more and more logic is implemented in transformations (Chapter 8). With
larger projects, developers not only have to face larger models, but also transformations
of higher complexity.

One way to cope with the aforementioned challenges is to apply the ideas of model-driven
engineering to its own artefacts again. This immediately leads us to raising the abstraction
level even further with Higher-Order-Transformations (HOTs), i.e. transformations which
operate on transformation(-model)s. The required transformations are generated and ma-
nipulated by a HOT. This generation results in a more efficient transformation code and
generation overhead is minimal. Generated code can be involved in further transformation
generation and can itself generate transformations, providing full multi stage capabilities.

4.3.2. Higher-Order Transformations

Transformations are an integral part of the developed system as first-class elements of the
model-driven architecture. As such, they can be themselves generated and handled by
MDSD, exactly like traditional programs. This allows reusing MDSD tools and methods
to generate new one (since transformations of transformations can be transformed them-
selves). A wide set of applications for such technologies appeared involving transformations
in the roles of both manipulating program and manipulated object. Such transformations
are called Higher-Order Transformations (HOTs). We define HOTs as follows:

Definition 10 Higher-Order Transformations

A Higher-Order Transformation is a model transformation manipulating or generating
transformation models. The input and/or output models of such transformation are again
transformations models.

In the recent past, a number of approaches appeared where HOTs are incorporated as a
means to solve various problems in the model-driven domain [161, 158, 68]. Many applica-
tion scenarios for HOTs explained in these papers are based on similar patterns. Classifying
all these scenarios in a precise manner can, first of all, help to find new patterns, for exam-
ple by improving, synthesising, abstracting or refining existing ones. Furthermore, it can
also help to detect shortcomings of transformation languages. Last but not least, a set of
scenarios can help designers incorporating HOT techniques in future MDE architectures.
Initial contributions [158] in this area classify HOTs according to different categories such
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as synthesis, analysis, etc. However, these patterns build only very low-level primitives and
a deeper insight into the area of application as well as practical experiences with complex
generator structures are not gathered, yet. Examples of such applications are synthe-
sis of transformations from a source other as transformation, as applied in [68]. Other
applications are analyses of transformations, as well as modification and composition of
transformation from a number of input transformations.

In this section, we present a set of Higher-Order Transformation Patterns (HOT patterns)
for transformation generation that allow manipulating and generating transformations on
lower levels of abstraction. These patterns realise more complex goals and are solutions to
reoccurring problems in transformation engineering. In our implementation, the transfor-
mation manipulation primitives are provided through a library of patterns rather than as
a language extension, allowing a more robust and maintainable approach than language
extensions. The HOT patterns foster reuse and abstraction allowing for larger transfor-
mation scenarios and better overview over complex model-driven systems. Moreover, we
provide an implementation of these patterns to realise Model Completions, which serve as
an application scenario for the HOT patterns. We realize the Model Completion approach
composing together three of the HOT patterns. Additional HOT patterns identified during
our work can be found in Appendix B. These patterns encapsulate our experience with
the application of HOTs.

4.3.3. Notation

In [158], Tisi et al. give a valuable overview on application scenarios for HOTs. Their
paper proposes a coarse classification of HOTs into what they call base patterns. Base
patterns make applications of HOTs distinguishable by the types and characteristics of
their input and output models. The four base patterns are synthesis, analysis, compo-
sition, and modification. At least one input model or one output model needs to be a
transformation model, otherwise we are dealing with ordinary transformations. We con-
sider these patterns as basic primitives and we classify our scenarios representing more
complex patterns according to these primitives.

3 ��� �

(a) Synthesis

�� ����

(b) Analysis

� ���� �

(c) Composition

� ���� �

(d) Modification

���	
 ������������ ������������ ���	
 ��������������

Figure 4.4.: Patterns of higher-order transformations (according to [158]).

Figure 4.4 illustrates all four patterns following Yourdon & Coad’s notation [38] of data flow
diagrams (DFDs), displaying models as external entities (rectangles) and transformations
as processes (circles). We use the same notation to illustrate HOT patterns. Thus, a
transformation model, being a model (rectangle) and a transformation/process (circle) at
the same time, is depicted as a circle surrounded by a rectangle.

To document the HOT patterns, we use a fixed notation inspired by Gamma et al. [59],
consisting of the following elements: the name of the pattern, motivation for the pattern
including the class of problems that the pattern solves, specification of the solution using
the QVT Relations language including implementation details and discussion of benefits
and drawbacks regarding the pattern’s applicability.
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4.4. Routine HOT Pattern

Transformation developers often have to implement repeatedly functionality, such as copy
routines, multiplying, referencing, mappings, markings or flattening of models. However,
many transformation languages (e.g., QVT-R, ATL) lack support for such default rules.
Thus, transformation developers need to define these rules explicitly. It is a significant
amount of work particularly for completion transformations which, for example, copy
large parts of a model. We propose a generator pattern to derive generic rules for given
metamodels.

4.4.1. Definition

Name: Routine HOT pattern

Motivation:

Writing a model-to-model transformation can be a tedious task. Our experience with
development of complex transformations shows that a lot of routine work is needed to
specify usable transformations. Most transformations contain certain routine principles
that frequently occur. Only after implementing these routine parts, it is possible to realise
the initial goal of the transformation. More specifically, to implement model customisation,
we first have to copy the necessary model elements before integrating customisations.
Although in-place transformations are useful to describe this type of model changes, there
are several reasons to prefer the creation of a new models. First, in some scenarios, the
source model needs to be preserved. For example, in MDSPE developers typically use
the source model for a wide range of purposes, this source model offers a highly-abstract
view on the system, which is crucial to allow experts from different domains to work with
this model. Moreover, the customisations of this model need to be propagated to the
different purpose-specific models. Thus, starting with the same source model we have
to create different purpose-specific and customised target models. As consequence, the
traces between source model and target model become more explicit. Finally, we are not
restricted to endogenous transformations (i.e., transformations with the source and target
model in the same language), as in-place transformation are. In such scenarios, we can
not avoid routine copies (or mappings) of model elements. To alleviate from this issue,
the Routine pattern takes advantage of the fact that the metamodel is also a model at the
same time. Thus, from the metamodel as input the HOT generates a transformation that
creates a required model, for example an exact copy of a given instance of that metamodel.

To decrease development effort, we propose a generative method to take away the routine
work from developers. We automate the generation of routine activities such as copying,
multiplying elements or flattening of models. Using the Routine pattern we can generate
a frame, which in most cases only copies model elements. This frame can then be used as
a basis to integrate customisations and create transformation variants.

Specification of the Routine pattern was motivated by the need to implement a set of fre-
quently occurring patterns in transformations. The basic transformation patterns (Map-
ping, Refinement, Abstraction, Duality and Flattening) that frequently occur in model-to-
model transformations were introduced by Iacob, Steen and Heerink in [87]. The patterns
Mapping, Abstraction, Flattening are typical applications for the HOT Routine pattern.
Model transformations realising these patterns do not introduce new semantic or duality
to the model instances and, therefore, they can be synthesised for any metamodel language
without any additional expert knowledge. Patterns such as Refinement or Duality require
additional information about the semantic of the target model and as such they can not be
generated simply from the metamodel. The additional patterns (identified by us), which
suit as very fortunate application scenarios, are Copying or Marking. For the creation
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of the transformation frame, that is basis for the customisation of transformations, the
last two patterns are especially important, therefore we focus on these patterns in a more
detail (see Section 4.4.2).

Mapping: The goal of this pattern is to establish a one-to-one relations between elements
from the source model and elements from the target model. Mapping is used when the
source and target models are conform to different metamodels. This pattern is the only
one assuming that the source and target metamodel are not equal. As such this pattern
as only one requires additional mapping model that specifies the mapping between two
metamodel languages. Because of the intuitive importance of this base pattern it is the
most implemented pattern in existing MDSD tools. Most of the tools, for example [111, 90],
require to specify the mapping model using a graphical user interface. Based on the
resulting mapping model a transformation is generated. This transformation then maps
any instance of the source metamodel to a corresponding instance of the target metamodel.
The generated mapping rules are specified as follows:

1 top relation XYMapping {
2 nm: String;
3 enforce domain source x: X {context= c1: XContext {}, name=nm};
4 enforce domain target y: Y {context= c2: YContext {}, name=nm};
5 when {ContextMapping(c1,c2);}
6 }

Listing 4.1: Mapping transformation rule (based on [87]).

This bidirectional mapping specifies that some element x of type X is related to some
element y of type Y, when their parent contexts are related as defined by another mapping
relation ContextMapping and their names are equal. For example, using this pattern we
can map a BasicComponent defined in the PCM metamodel to a Component defined in
the SOFA metamodel using this base pattern. Thus, we can translate any model in one
syntax (e.g., PCM) into another syntax (e.g., SOFA) using mapping transformations.

In the following, it is assumed that the source and target model are conform to the same
metamodel, i.e. we implement endogenous transformations. Thus, the generated transfor-
mations would be a modifier of the model instances to fulfil a particular goal.

Abstraction: This pattern abstracts from model elements in the source model while
keeping the incidence relations of its model elements [87] and, thus, from specific informa-
tion in the models. The abstraction pattern can, for example, be used to remove subtypes
that carry additional information from a model. In a meta-model for component-based
software architecture, we can, for example, remove the distinction between basic com-
ponents and composite components which both are specialisations of components. The
generalised abstraction rule, where X is a subtype of abstract type ModelElement, is spec-
ified as follows:

1 top relation XAbstraction {
2 checkonly domain source x: X {
3 inIncidence = in : Incidence { name= nm in: String, source = ss1:ModelElement{}},
4 outIncidence = out : Incidence { name= nm out: String, target = tt1:ModelElement{}}};
5 enforce domain target e: ModelElement {
6 name= nm in + nm out, source = ss2:ModelElement{}, target = tt2:ModelElement{}};
7 when {Mapping(ss1 ,ss2);Mapping(tt1 ,tt2)}
8 }

Listing 4.2: Abstraction transformation rule (based on [87]).

Flattening: This pattern removes the hierarchy from the source model. The reason
to create hierarchical models is usually the understandability of the models, however, in
order to generate code based on such models or formally analyse them it may be neces-
sary to flatten the model. For example, in component-based models ComposedComponents
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contain a set of BasicComponents. All the components are either BasicComponents or
ComposedComponents. The goal of the flattening pattern is to create models only contain-
ing BasicComponents, removing the model’s hierarchy. The generalised flattening rule is
specified as follows:

1 top relation XFlattening{
2 checkonly domain source c x: Composite X {context= c: Composite Context {}};
3 enforce domain target x: X {};
4 when {XMapping(c,x) or XFlattening(c,x);}
5 }
6

7 top relation XMapping{
8 nm:String;
9 checkonly domain source x1: X {name=nm, context= c1: Context {}};

10 enforce domain target x2: X {name=nm, context= c2: Context {}};
11 when {XMapping(c1,c2) or XFlattening(c1,c2);}
12 }

Listing 4.3: Flattening transformation rule (based on [87]).

The transformation strategy is to map all the Composite_X elements to the simple X

elements in the target model. The relation is created by XMapping or XFlattening when
the context was composite itself.

Copying and Marking: The Model Copier pattern introduces means to overcome the
lacking support for in-place transformation and a copy operator in QVT Relations (QVT-
R). Such transformations keep most model elements as they are while adding, removing
or modifying only specific entities. QVT-R does not support a way to easily create such
transformations as there is no in-place transformation or copy operator available.

QVT-R does not support default copies. In contrast to QVT-R, QVT Operational Map-
pings (QVT-O) provides a deep copy operation that can be used within imperative map-
ping rules. The Atlas Transformation Language (ATL) even supports a special mode that
allows the transformation programmer to specify that a transformation should be run as
a refinement transformation. This means that all elements are copied by default while
those elements that are matched by transformation rules within the actual transformation
are not. Triple Graph Grammars (TGG) [144] naturally support in-place transformations.
To be able to implement refinement scenarios with QVT-R more efficiently we introduced
the automated creation of a default copy transformation using the Routine pattern. The
generated copy and marker rules are specified as follows:

1 top relation XCopy{
2 checkonly domain source x: X {name=nm, context= c: Context {}};
3 enforce domain target copied x: X {name=nm, context= copied c: Context {}};
4 where {XMark(x,copied x);
5 ContextMark(c,copied c);}
6 }
7

8 relation XMark{
9 checkonly domain source x: X {};

10 checkonly domain target copied x: X {};
11 }

Listing 4.4: Copy and Marker transformation rules (based on [68]).

The first relation in the Listing 4.4 is a copy relation, which simply matches an instance of
required type in the source model and enforces (i.e., creates) a corresponding instance of
this type in the target model. It is a top relation and as such is applied to every instance of
this type in the source model. In the where clause of this relation, a so-called the marker
relation is called. A marker relation is a non-top relation that can only be called from
the where clause of a copy rule after the particular element was copied. By this principle,
marker relations indicates which elements have already been copied.
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Implementation:

The base patterns introduced above can be used to specify a routine transformation for an
arbitrary metamodel. The patterns are generic with respect to the metamodel and there-
fore they can be directly generated from a given metamodel. In this section, we investigate
the structure of the model-driven generator and its used elements (models, metamodels
and transformations). Figure 4.5 illustrates the implementation of the generator. Figure
4.5(a) shows the case where the source and the target metamodel are not equal. In this
case, we may need an additional mapping model Map to implement the mapping pat-
tern. Figure 4.5(b) shows the setting when the source and target metamodel are equal.
In this case, the only input for the HOT is the metamodel. Based on the metamodel,
we can generate a copy transformation that serves as a frame for later, more complex
transformations..
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Figure 4.5.: Routine HOT pattern.

To implement the copy and mark pattern, the HOT generates a copy transformation from
a metamodel as follows (cf. Figure 4.5): First, the HOT creates one rule for each metaclass
which copies the respective instance model element and another helper rule marking it as
copied. Copy rules use marker rules [88] to ensuring exactly one copy. Accordingly, the
HOT creates similar rules for attributes and relations.

Once the copy transformation exists, we need a mechanism to override rules for elements
which should be left out (i.e. deleted), added, or modified for the implementation of a
transformation. Transformation engineers can declare such rules separately or weave them
into the transformation defining the copy rules using another HOT. Alternatively, it is
possible to use QVT-R’s native rule overriding mechanism.

Benefits and Drawbacks:

The routine pattern takes the development effort from developers and automates the gen-
eration of frequently used transformation frames. By implementing the abstraction or
flattening patterns, we can provide model versions with different levels of abstraction.
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Developers can use these transformations to prepare their models for analysis or code
generation.

The most significant benefit is the incrementability. As the metamodel evolves and new
entities are introduced HOTs can incrementally add routine rules and, thus, keep trans-
formations up to date. If necessary, transformation engineers can adapt the generated
transformation in an iterative way. Traceability, originally provided by the underlying
language framework, can be utilised in a beneficial way to support any subsequent cus-
tomisation process: the trace model of the HOT is able to indicate those parts that did
change since the last run.

Although, throughout this thesis, we use routine pattern only to generate copy rules, this
pattern is applicable to derive other rule types too.

4.4.2. Completions Support: Generation of a Routine Transformation
Frame

The completion transformations copy large parts of a source model, this is a tremendous
task. Since QVT Relations does not support default copies, a completion definition needs
to specify copies explicitly. In this section, we investigate copies in QVT Relations. First,
we use the generic patterns for copy rules. Second, we provide a way to generate the
definition of a copy transformation for a given metamodel. The generation is specified as a
higher-order transformation. Finally, we explore several ways to derive a completion from
a generated copy transformation.

1 transformation Ecore2copyQVT (mm: ecore, oclstdlib : ecore, qvt: QVTRelation) {
2 top relation Package2Transformation {
3 n:String;
4 checkonly domainmmePackage: ecore : :EPackage {
5 name= n
6 };
7

8 enforce domain qvt t : QVTRelation: :RelationalTransformation {
9 name= ’Copy’ + n,

10 modelParameter = sourceMM: QVTBase: :TypedModel {
11 name= ’source ’ ,
12 usedPackage = uPackage: ecore : :EPackage{}
13 },
14 modelParameter = targetMM: QVTBase: :TypedModel {
15 name= ’target ’ ,
16 usedPackage = uPackage: ecore : :EPackage{}
17 }
18 };
19 when {
20 ePackage.eContainer().oclIsUndefined();
21 }
22 where {
23 uPackage = ePackage;
24 MarkTypedModel(sourceMM, targetMM);
25 MarkTransformation(t);
26 }
27 }
28

29 relation MarkTypedModel { . . . }
30 relation MarkTransformation { . . . }
31

32 top relation Class2CopyRelation { . . .}
33 top relation SubClass2MarkerCallInWhen { . . . }
34

35 top relation Class2MarkerRelation { . . . }
36 top relation Attribute2Relation { . . . }
37 top relation Reference2Relation { . . . }
38 top relation ExternalReference2Relation { . . . }
39 top relation MarkBooleanType { . . . }
40

41 relation Class2Domain { . . . }
42 relation Attribute2Template { . . . }
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43 relation Reference2Template { . . . }
44 relation Class2MarkerCall { . . . }
45 relation Class2MarkerCallInPattern { . . . }

Listing 4.5: Overall structure of the Routine HOT (based on [68]).

In the completion approach we embed a special DSL for completions into host language.
We exploit the fact that a large part of the completions could be expressed relying on
the facilities of the host language. In our scenario the host language is defined by the
PCM metamodel. Macros were often used for this purpose. Embedding a DSL into an
existing host language allows inheriting its standard mechanisms and facilities, including
transformations and tools. Each DSL is specified as an individual feature model.

To integrate model instances conform to the DSL defined for the particular completion, we
have to implement completion transformation. Using HOT patterns and chains built by
these patterns we generate completion transformations. The first step of this generation
is creation of a routine transformation frame providing a copier functionality.

The generator for a copier transformation was introduced in [68]. We discuss the imple-
mentation for the purpose of completion transformations. The Routine HOT is written
in QVT Relational and captures the patterns discussed in the previous section. The
source model of the Routine HOT can be any Ecore metamodel and the output model is
a QVT Relational transformation. For this purpose, the Routine HOT requires the Ecore
meta-metamodel, the OCL standard library, and the QVT Relational metamodel. After
executing the Routine HOT the model of the routine transformation is created. In our
case, it is the copy transformation, implementing the Copying and Marking pattern. The
resulting transformation model is expressed in its abstract syntax (of the QVT-R meta-
model) and can be used directly in this form for further manipulation. However, for the
execution we use a simple pretty printer to generate its textual syntax.

The overall Routine HOT works basically analogously to the patterns shown in the previous
section. The overview through the basic generator structure is shown in Listing 4.5. As
shown there, a copy transformation is generated (c.f. Package2Transformation) for each
package in the metamodel. The remaining relations of the Routine HOT generate relations
of the copy transformation.

In the following, we discuss the most important parts of the Routine HOT implementation.
The relation Class2CopyRelation generates a copy relation for each non-abstract meta-
class. For each subclass the relation SubClass2MarkerCallInWhen adds a negated call to
the corresponding marker relation to the when clause of the created copy relation. Then,
the marker relation for each metaclass is generated by the relation Class2MarkerRelation.
Additionally, we have to create a copy relation for each attribute and reference as well.
This is done by the relations Attribute2Relation and Reference2Relation. The details
of this generation are discussed in [68]. In the following, we focus on the implementation
of the relations Class2CopyRelation and Class2MarkerRelation and their mapping to
the base patterns from Section 4.4.1.

Figure 4.6 illustrates the generation of copy relations from metaclasses within one meta-
model package. For each relation, a where clause is created and the corresponding marker
relation is called. Furthermore, the necessary domain patterns to match the source and
target constructs are created by the Class2Domain relation.

Figure 4.7 shows relation generating the marker pattern that is created for all metaclasses
including abstract ones. That results in a call from the where clause to mark relation
of the superclass. Similarly, we can generate routine transformations based on the other
patterns introduced in the previous section. Figure 4.8 illustrates the generation of the
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Figure 4.6.: Generating a copy relation (based on [68]).
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Figure 4.7.: Generating a marker relation (based on [68]).
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abstraction rules for all classes in the metamodel. All subclasses will be replaced by their
corresponding superclass after executing generated relation.

4.4.3. Summary

Using the HOT Routine pattern, we can generate transformation frames necessary for the
integration of the customisations. In our case, the resulting transformation frame for a
completion is generated from the PCM metamodel. Listing 4.6 shows a fragment from
this transformation frame.

1 transformation CopyPCMFrame(source: pcm, target: pcm) {
2 relation MarkBasicComponent {
3 checkonly domain source sourceBasicComponent:pcm: : repository : :BasicComponent{};
4 checkonly domain target targetBasicComponent:pcm: : repository : :BasicComponent{};
5 where {
6 MarkImplementationComponentType(sourceBasicComponent, targetBasicComponent);
7 }
8 }
9

10 top relation CopyBasicComponent {
11 checkonly domain source sourceBasicComponent:pcm: : repository : :BasicComponent{};
12 enforce domain target targetBasicComponent:pcm: : repository : :BasicComponent{};
13 where {
14 MarkBasicComponent(sourceBasicComponent, targetBasicComponent);
15 }
16 }
17 . . .
18 . . .
19 . . .
20 }

Listing 4.6: The transformation frame for copying of PCM models

To generate more complex transformations, the next HOT in a chain can inject customisa-
tion (i.e., transformation fragments) in a transformation frame. The injection is controlled
by a configuration model that specifies the activated features as well as necessary input
parameters. Additionally, we have to define exception rules for the model elements that
must not be copied. For example, as explained above, the completions annotate so called
pivot elements. These elements are replaced by the customisations and on their place
we integrate more detailed subsystems. Thus, the next HOT could modify the generate
frame itself. For this purpose, the most natural possibility to introduce exception rules
is to manually introduce rules that are called instead of the overwritten ones. Another,
option is to create a set of exception rules and use a simple HOT to integrate these in the
generated frame.

In case of completions these exceptions are rather simple. The pivot elements that can be
annotated by completion are only of three types. Applied to the PCM, completions are
applicable to connectors, components or resource containers (also called infrastructure).
Thus, we have only three types of simple exception rules. For example, an exception rule
for a basic component would be an top-level relation that overrides the generated CopyBa-

sicComponent rule and marks the component with a tag isAnnotated = true as already
copied. After this step, would the exception rule calls the original CopyBasicComponent
rule to copy all other components.

The Routine pattern is used to generate completion transformation as a first pre-processing
step. Into the resulting transformation frame we integrate feature effects defined by the
completion configuration. The next pattern called Composite HOT is dealing with the
issue of customisation of transformations and follows the Routine HOT in the chain of
pre-processors.
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Figure 4.8.: Generating an abstraction relation.

85



86 4. Variability Management using Higher-Order Transformations

4.5. Composite HOT Pattern

Model-driven application engineering builds on the concept of model transformations that
have to be customised for different purposes. With existing MDSD tools, application
developers need to define customisation transformations manually, including all possible
configuration combinations. Due to the high number of possible initial requirements, such
a development method is costly and means significant effort. Currently, there is a lack
of automated support for integrating these configuration decisions into the development
process of transformations.

To address these issues, we introduce the Composite pattern that weaves additional cus-
tomisations into transformations. In many cases, these customisation are highly variable
and configurable.

In Chapter 3 we discussed the Model Completion concept. In the following, we introduce
a novel approach for automated feature-model-based generation of completion transfor-
mations. For this purpose, we introduce the Composite HOT pattern that can be used to
build generators composing transformation fragments depending on configuration.

4.5.1. Definition

Name: Composite HOT pattern

In many domains, requirements regarding the final software product are constantly evolv-
ing. Customisations that are based on these requirements are a foundation for the cre-
ation of product variations and have to be integrated in transformations. Requirement of
customisation introduces demands for highly efficient and low-complexity reconfiguration
methods.

In our application scenario, we use feature diagrams to express configurations. The comple-
tion transformation is based on this feature diagram. Using the completion configuration
on the abstract level we can generate transformations to complete the models with comple-
tions on the lower level of abstraction. Thus, we customise our models for the performance
prediction.

Although our proposed approach has a wide range of application domains, we further
investigate opportunities in the component-based applications domain (see Section 4.5.2).
To illustrate the application of the presented pattern, we use the Thread Pool running
example introduced in Chapter 3.3.1.

Motivation:

Required completions could occur in different configuration variants (e.g., middleware
configuration). The most frequent way to configure model transformations is by means
of external annotations to a source model, i.e., mark models. Mark models are used to
provide configuration details that are specific to the source model. However, this way of
transformation configuration is not preferable in our scenario. The details of the Model
Completion concept and its motivation are further discussed in Chapter 3.

In our scenario, configuration happens on a higher level of abstraction. In this case,
configuration itself is a definition (or model) of the transformation on the lower level of
abstraction. The Composite pattern decouples the source model and the configuration.
The configuration is then source metamodel-independent and can be reused in different
contexts. Such configuration allows to define independent completion transformations that
are building blocks used to realise the same completion activities in different contexts as
illustrated in Figure 4.9.
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Figure 4.9.: Overview of Model Completion concept.

Implementation:

The implementation of the Composite pattern consists of two steps: (i) first, we have to
implement a reusable and configurable construct encapsulating a required variation point,
which can be, for example, a completion registered in a completion library; (ii) second, we
need a HOT able to compose necessary transformation fragments (defined for the variation
point) and integrate them into one transformation (cf. Figure 4.9).

Figure 4.10 shows the structure of this pattern in more detail. On the metamodel level,
we define variation points V P in the form of configuration models (in our case, feature
diagrams) conform to the configuration metamodel MMV P (feature diagram metamodel).
Each configuration model encapsulates a set of transformation fragments TF mapping
the configuration options (features). These transformation fragments are transformations
themselves, as such they are conform to the transformation metamodel MMT and require
references to the source and target domain. The source and target domain are defined
by the source MM1 and target metamodel MM2. Similarly as the Routine pattern, the
Composite pattern has a variant with an equal source and target metamodel. In this case,
the source and target domain are defined by the same metamodel. On the model level of
this pattern, we can instantiate variants V ar conform to the variation point metamodel
V P . Starting with a variant V ar a HOT generates a completion transformation T . This
HOT merges transformation fragments to the resulting transformation.

Benefits and Drawbacks:

Performing the model transformation configuration automatically based on external con-
figurations instead of models separates the development of variable construct from the
actual model. This separation of concerns can achieve high variability and flexibility in
the development of software applications. The required transformation fragments do not
get polluted with code that is only responsible for checking the actual feature configura-
tion. Furthermore, as the binding of fragments and features is more explicit this alleviates
the complexity of transformation evolution.

The main advantage of using HOTs in this scenario is that developers can focus on the
impact of one selected feature on the model at a time and develop transformation rules
for this feature only, they are not concerned with all the feature combinations and their
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Figure 4.10.: Composite HOT pattern with non-equal source and target metamodel.

dependencies. Using conventional transformation development, the developer has to con-
sider all the possible configuration combinations and check the state of features (selected
or eliminated) by accessing the configuration model from the respective transformation
rules. Even later in development, the dependencies (where- and when-clause) between
the relations need to be resolved manually. Our approach solves these dependencies by
the transformation generation based on defined relations and constraints in the feature
model. Additionally, the generated transformations are more structured and therefore
better understandable.

Despite the advantages in simplifying the configuration of transformations with our feature
model based approach there are also some drawbacks that need to be discussed. One
problem arises when the feature configuration is changed and the target model needs to
be updated according to the newly woven transformation. The transformation traces that
were stored during the last transformation execution will potentially become invalid as
the structure of the transformation may have changed significantly. Incremental updates
(which are mostly based on the transformation’s trace links) then are impossible. However,
this problem only occurs if the transformation engine uses typed traces that are specific
to the transformation that created them. Generic trace links pose less problems to the
approach.

Another drawback of applying HOTs in this scenario is the debuggability of the trans-
formation. The debugger of the transformation engine will execute and observe only the
generated and woven transformation. Hence, a transformation developer will need to
understand the generated transformation in order to be able to debug it. A specialised
debugger would be needed if debugging should be possible on the configuration level.
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Figure 4.11.: Building elements of completion transformation using Routine and Compos-
ite pattern.

4.5.2. Completions Support: Generation of a Completion Transformation

The basis for a completion transformation is a copy transformation generated by the
Model Copier pattern. The parts of the model that are completed by the configured
transformation will then replace the standard copy rules for the corresponding metamodel
element. The composition process of the transformation fragments based on a feature
selection that follows here is realised using a HOT (cf. Figure 4.9). The integration
of completion transformation and the optional exception rules into the frame of copy
transformation is illustrated in Figure 4.11.

In the following, we discuss the used configuration model and its metamodel. Further,
we introduce the fragment composition principle and its implementation as a higher-order
transformation.

4.5.2.1. Metamodel of the Extended Feature Model

Feature models are hierarchical decomposition of features including information whether
a feature is mandatory, alternative or optional. The features could be user-visible charac-
teristics of the application, for example evolution of application variants in product lines
or more specific optimisations for better performance.

The metamodel of the used feature diagrams is illustrated in Figure 7.1. To be able
to use feature diagrams to configure transformations, we extended the feature diagrams
introduced in [46].

The extensions to the feature model metamodel make it possible to add transformation
rules as annotations to the features. These extensions to the used metamodel are depicted
in Figure 7.1. The most important, even quite non-intrusive extension, was the addition
of a reference from the Feature to the Relation class the QVT Relational metamodel.
This allows to annotate transformation fragments to features. As we also want to allow
the specification of variable values through feature configurations we additionally added
a reference to the OperationCallExp from the OCL metamodel. This allows features to
refer to the ’=’-operation from the OCL Standard Library and thus assigning values to
variables that are e.g., present in parent features. The third extension was the addition of
so called ’DisambiguationRules’ which are explained in Section 4.5.2.2.

Furthermore, the feature model could include feature composition constraints, that indi-
cate which feature combinations are valid and which are not. These constraints can either
be hard (depends or excludes constraints) or weak (default values or allowed override).
We will refer to this constraints further in Section 4.5.2.2.
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90 4. Variability Management using Higher-Order Transformations

Figure 4.12.: Extensions to the Feature Model Metamodel.

4.5.2.2. Feature-based Composition of Transformation Fragments

Transformation Fragments in the Feature Model Tree:

The divide-and-conquer paradigm is an essential strategy for the development of transfor-
mations with variability and in fact for the resolution of variability problems in general.
Dividing the variability domain in partial tasks focusing on an one aspect of the model
at a time decreases the complexity. As presented in Section 4.5.2.1, the nodes of the fea-
ture diagram are annotated with transformation fragments. The transformation fragments
implement always only one aspect of the variability. The ability of the compositional ap-
proach to produce complex transformations from smaller units allows to compose these
variability aspects and create different transformation variants.

There are two ways how to implement the transformation fragments. The language stan-
dards for model transformations offers two dialects: relational language and operational
language. Each one of these dialects can be used in isolation. Combining of these ap-
proaches results in a hybrid transformation approach. We can implement transformation
fragments in a strictly declarative or in a hybrid manner. The hybrid transformation
fragments can call black-box operations implemented in an operational language between
the rules in relations. This can be used, for example, to manipulate used variables more
directly, or to trace the execution flow in the relations. Thus, hybrid implementations are
defined externally as relational and internally use operational constructs.

For simplicity, we will consider only transformation fragments implemented in strictly
declarative manner. The important advantage of using these declarative features over
operational, is that they allow a high degree of decoupling between the different aspects
of variability. In a strictly declarative rule-based approach to model-transformation, the

90



4.5. Composite HOT Pattern 91

Legend
or
exclusive or
mandatory
optional

ThreadPool

Optimization
Properties

StaticThreadPool
Policy DispatcherDynamic

Initial TP 
Size

Priority
Lanes Parity

Thread
Borrowing Priority

Specified Native

Guard

Semaphore Condition

excludes

excludes

depends

Max TP
Size

top relation TP_Static {
varSize : Integer;
checkonly domain in p :

Component {};
enforce domain out s:TP {
size = varSize;

};
when {
TP(p,s);

}
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checkonly domain in p :
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};

}

TP_Static.varSize = size;
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Figure 4.13.: Simplified transformation fragments for the running example.

transformation is defined by a predicate, relating the models before and after the trans-
formation. For the composition paradigm, it is required to define the transformation
fragments TF as follows:

Definition 11 Relational Transformation Fragments

A transformation fragment TF is a non-empty set of relational rules RR that are defined
as tuple:

RR = (V ar,Map, Pre, Post),

where V ar is a set of local variables, Map a set of mappings, Pre a set of necessary
preconditions and Post postconditions. The preconditions and postconditions are rule
references and can refer to the rules that are defined in other fragments, this property
distinguishes a fragment from a transformation.

Furthermore, as we create a transformation by composing transformation fragments, for
such transformation should hold that all the references in preconditions and postcondi-
tions of a relation are resolved. Let res denote a function that resolves a reference in a
precondition or postcondition, i.e. that return the referenced model element for a given
precondition or postcondition (res(x) = RR ∈ T : x points to RR). Then, we define such
transformation as follows:

Definition 12 Fragment-based Transformation

A fragment-based transformation T is a non-empty set of transformation fragments TF ,
for which holds:

∀RRi ∈ T ∀pre ∈ RR.Pre ∃RRj ∈ T : res(pre) = RRj ∧

∀RRi ∈ T ∀post ∈ RR.Post ∃RRj ∈ T : res(post) = RRj
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Although the transformation fragments are implemented using declarative transformation
language, we support software engineers with a view on the transformation, its variants,
and its execution order at a highly abstract manner. The used feature diagrams allow
to control execution order through the structure of the feature tree. The tree structure
is used to compose fragments and resolve their dependencies, thus it defines the execu-
tion order. At this abstract level software engineers can influence the transformation
execution, without fighting with maintainability overhead resulting from a verbose declar-
ative transformation definition. The declarative structure of the targeted QVT Relations
transformation engine makes the composition possible without having to deal with issues
regarding the operational ordering of the rules. Moreover, studies in the area of program
comprehension [43] show that visualising the program structure in form of a tree helps the
understandability and developers can better focus on the development of isolated features.

We distinguish two types of transformation composition. External composition deals with
chaining separate model transformations together by passing models from one transfor-
mation to another; we discuss this type of composition more in Chapter 5. Internal
composition composes two model transformation definitions into one new model transfor-
mation, which typically requires knowledge of the transformation language. The latter
method requires the model transformations that will be composed to be expressed in the
same language. The Composite pattern focuses on internal composition of transformation
fragments into an one rule-based model transformation.

The composition of transformation fragments based on the feature diagram is language-
independent and can be used for any relational transformation specification (such as QVT
Relational or ATL). The feature trees capture the essence of a transformation’s modu-
lar structure. By its hierarchy, the feature model represents a general structure of the
transformation abstracting from language-specific details. For example, the hybrid im-
plementation of a transformation fragment using operational constructs internally would
not have influence on the composition. This composition technique can be used for other
languages than QVT, as long as the transformation language has the concepts of rules
and modules that contain those rules. QVT Relations is such a transformation language,
therefore we use this language to implement Composite pattern.

Since it has to be possible to compose those fragments together to a single transformation,
there are several constraints on the way the transformation fragments are specified. Those
constraints result mainly from the structure of the feature model and the patterns, which
can occur in such a structure. As the composition of transformation fragments follows
the structure of the feature tree, the HOT weaves the transformation fragments into the
final transformation based on the set of composition constraints considering position and
type (e.g., optional or mandatory) of the related feature in a tree. We discuss necessary
constraints in the following section.

Constraints for the Transformation Composition:

According to the different kinds of relations that can occur between features in a feature
model (cf., Figure 4.13, adapted and with feature Dispatcher added for the purposes
of constraints explanation), different constraints apply for the transformation fragments
that are annotated to the features. These constraints are guidelines for the composition.
Constraints Ci (C1 to C5) describe the rules that have to be obeyed when annotating
transformation fragments to a specific feature. Furthermore, these constraints serve as
basis for the generation of the resulting transformation. We use the running example to
explain the different constraints. Figure 4.13 illustrates the annotated feature diagram for
Thread Pool.
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Constraint C1: The basic shape of a feature model is that of a tree. Features can have
sub-features forming a parent-child relationship. A child-feature can only be activated,
if its parent feature is activated. For the scope of the transformation fragments that are
attached to the child node this means that the children’s rules may reference those of the
parent within it’s when- and where-clauses.

Definition 13 Ancestor Function
An ancestor function fA of transformation fragment TF is defined as follows:

f(n) =

{
TF, if TF belongs to the root feature,

TF ∪ fA(TFP ), otherwise, where TFP is parent of TF.

A parent TFP is a transformation fragment belonging to the parent feature FP of the
feature F holding TF (F ∈ FP .children).

Definition 14 C1: Relation access for child features
For each relation RR ∈ TF holds:

res(RR.Pre) ⊆ fA(TF ) ∧ res(RR.Post) ⊆ fA(TF )

Example: In the running example this pattern is depicted in Figure 4.13 this pattern
occurs between the ThreadPool and the Static feature. The transformation fragment of
the Static feature TP_Static has a when-dependency to the transformation fragment TP
of its transitive parent ThreadPool. Listings 4.7 and 4.8 show how the child feature can
call the relation defined by a transformation fragment of the parent feature (see relation
CreateThreadPoolComponent).

1 transformation ThreadPoolRoot (source: pcm, target: pcm) {
2

3 top relation CreateThreadPoolComponent {
4

5 checkonly domain source sourceRepository:pcm: : repository : :Repository{
6 };
7

8 enforce domain target targetBasicComponent:pcm: : repository : :BasicComponent{
9 entityName = ’ThreadPool’ ,

10 . . .
11 };
12 when {
13 CreateIThreadPoolInterface(sourceRepository, threadPoolInterface);
14 }
15 where {
16

17 }
18 }
19

20 top relation CreateIThreadPoolInterface {
21 . . .
22 }

Listing 4.7: Transformation fragment for the feature ThreadPool

1 transformation ThreadPoolRoot (source: pcm, target: pcm) {
2

3 top relation CreateThreadPoolComponent Static {
4

5 checkonly domain source sourceBasicComponent:pcm: : repository : :BasicComponent{
6 entityName = ’ThreadPool’
7 };
8
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9 enforce domain target targetBasicComponent:pcm: : repository : :BasicComponent{
10 entityName = ’ThreadPool’ ,
11 providedRoles InterfaceProvidingEntity = providedRole : pcm: : repository : :ProvidedRole {
12 . . . },
13 serviceEffectSpecifications BasicComponent = acquire : pcm: : seff : :ResourceDemandingSEFF {
14 . . . },
15 serviceEffectSpecifications BasicComponent = release : pcm: : seff : :ResourceDemandingSEFF {
16 . . . },
17 passiveResource BasicComponent = threadPoolResource : pcm: : repository : :PassiveResource {
18 entityName = ’ThreadPool’ ,
19 capacity PassiveResource = ThreadPoolSize : pcm: :core : :PCMRandomVariable {
20 specification = ’100’
21 }
22 }
23 };
24 when {
25 CreateThreadPoolComponent(sourceBasicComponent, targetBasicComponent);
26 CreateIThreadPoolInterfaceAcquire(sourceRepository, threadPoolInterfaceAcquire);
27 CreateIThreadPoolInterfaceRelease(sourceRepository, threadPoolInterfaceRelease);
28 }
29 where {
30

31 }
32 }
33

34 relation CreateIThreadPoolInterfaceAcquire {
35 . . .
36 }
37 relation CreateIThreadPoolInterfaceRelease {
38 . . .
39 }

Listing 4.8: Transformation fragment for the feature ThreadPool.Static

Constraint C2: Additionally to the access to when- and where-clauses it is possible for
transformation fragments of child rules to control the assignment of free variables of their
parents.

Definition 15 C2: Variable assignment for child features

For each relation RR ∈ TF holds:

RR.V ar ⊆ fA(TF )

Example: See figure 4.13 and listing 4.9 for an application of C1 and C2. Feature TP Size
can be used to statically configure the size of the thread pool. Hence, the transformation
fragment refers to the free variable declared in the TP_Static fragment of feature Static
(for the sake of simplicity a simple path notation with the fragment’s name as prefix is
used to denote the referred relation). This way the value specified in the feature config-
uration (size = 32) ends up in the assignment within the where-clause of the resulting
generated transformation. Listing 4.10 shows abnother value assignment for the variable
ThreadPoolSize.

1 −−Resulting composed transformation
2 top relation TP Static {
3 varSize : Integer;
4 checkonly domain in p : Component {};
5 enforce domain out s : TP {
6 size = varSize; };
7 when{ TP(p, s) };−− Application of C1
8 where { s = 32; }−− Application of C2
9 }

Listing 4.9: Example transformation fragments (C1,C2)
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1 transformation ThreadPoolRoot (source: pcm, target: pcm) {
2

3 top relation CreateThreadPoolComponent Static PoolSize {
4

5 checkonly domain source sourceBasicComponent:pcm: : repository : :BasicComponent{
6 entityName = ’ThreadPool’
7 };
8

9 enforce domain target targetPassiveResource:pcm: : repository : :PassiveResource{
10 capacity PassiveResource = ThreadPoolSize : pcm: :core : :PCMRandomVariable {
11 specification = ’32’
12 }
13 };
14

15 }

Listing 4.10: Transformation fragment for the feature ThreadPool.Static.PoolSize

Constraint C3: Feature models distinguish between mandatory and optional features.
As mandatory features are always activated it is possible to reference rules of mandatory
features of (transitive) parents within child rules. This means that even siblings can use
each other’s rules within their when- and where-clauses if both of them are mandatory
within their parent feature.

Definition 16 C3: Inheritance of mandatory features

For each relation RR ∈ TF ∪ TFS , where TFS is a fragment belonging to the sibling
feature, holds:

RR.V ar ⊆ fA(TF ) ∪ fA(TFS)

res(RR.Pre) ⊆ fA(TF ) ∪ fA(TFS) ∧ res(RR.Post) ⊆ fA(TF ) ∪ fA(TFS),

if both of the features F and FS are mandatory.

Example: The fragments of the Dispatcher feature presented in Thread Pool feature
model can reference fragments of the Optimization Properties feature.

Constraint C4: In addition to the parent-child relationship, a feature can depend on other
features within the feature tree. Such dependencies are modelled as depends-relationships.
For the scope of the transformation rules of the dependent feature this results in an import
of the rules of the required feature and its scope (that is computed using C1 to C3).
All imported rules may then again be used in when- and where-clauses of the current
transformation rules.

As counterpart to depends, excludes inhibits a concurrent activation of two features. As
both features can then never be activated at the same time an interference of their trans-
formation fragments is also impossible.

Definition 17 C4: Referencing through constraints - DEPENDS

For each relation RR ∈ TF and a fragment TFD related to the TF by depends-relationship,
holds:

RR.V ar ⊆ fA(TF ) ∪ fA(TFD)

res(RR.Pre) ⊆ fA(TF ) ∪ fA(TFD) ∧ res(RR.Post) ⊆ fA(TF ) ∪ fA(TFD)
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Definition 18 C4: Referencing through constraints - EXCLUDES

For each relation RR ∈ TF and a fragment TFE related to TF by excludes-relationship,
holds:

if TF ∈ T then TFE /∈ T

Example: In the thread pool example (Figure 4.13) this pattern would apply for fragments
of the Dispatcher feature referencing relations from the Thread Borrowing feature.

Constraint C5: An exclusive-or between sub-features poses no problem, as they may
never occur at the same time and thus their transformation rules can never interfere
which each other. A more challenging construct is the inclusive-or relationship. Features
connected within such a relationship may occur in an arbitrary combination.

To be able to specify this disambiguation, special disambiguation rules were introduced
into the feature metamodel (cf. Figure 7.1). The disambiguation is configured by defining
one DisambiguationRule for each combination of features that should be treated excep-
tionally. Within the DisambiguationRule the combination is specified by assigning the
features for which the rule applies to the selectedFeatures reference. In theory it would
be possible to make a transitive selection of inclusive-or-ed children. However, in the cur-
rent version of the approach this is not supported. Therefore, a constraint (see listing 4.11)
applies to the selection of features, restricting the possible selection to direct children of
the current feature.

1 self .selectedFeatures−>forAll( f |
2 if self .disambiguatedFeature.childRelation.
3 oclIsTypeOf(featuremodel: :FeatureGroup) then
4 self .childRelation.oclAsType(featureModel: :FeatureGroup).
5 children−>includes(f)
6 else−−then its a Simple relation
7 self .childRelation.oclAsType(featureModel: :Simple).
8 optionalChildren−>includes(f)
9 endif

10 )

Listing 4.11: Constraint on DisambiguationRule

Definition 19 C5: Disambiguation of inclusive-or

For each set of transformation fragments STF = TF1, TF2, . . . , TFN , where fragments are
in inclusive-or relationship, holds:

SD ⊆ STF ∧ SD ∈ T,

where SD is a disambiguation set specified by a disambiguation rule RD ∈ FP . Feature
FP is shared parent of TF1 ∧ TF2 ∧ · · · ∧ TFN

Example: In the thread pool example such different combination possibilities could occur
with the Optimization Properties feature: Either ThreadPool Policy, Static or Dynamic, a
combination of them (excluding Static or Dynamic selected at the same time, due to the
excludes relationship between them) or none of them could be selected. Each possibility
results in a different transformation rule in the generated transformation.

4.5.2.3. Implementation of HOT for Composition of Transformation Fragments

The first input for this HOT is a feature diagram with mapped transformation fragments,
these fragments are used by for the actual transformation generation. The second input
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is the actual feature configuration, which defines the selected features and values of at-
tributes. For composition of completion transformation T , is responsible HOT that merges
fragments so that composition holds previously introduced constraints on transformation
fragments.

1 transformation Ecore2copyQVT (feat : featureconfig , qvt: QVTRelation, pcm: ecore) {
2

3 top relation Config2Transformation {...}
4 relation MarkTypedModel {...}
5 relation MarkTransformation {...}
6

7 /∗
8 ∗ C1:
9 ∗ Copy the relations from each selected feature

10 ∗/
11 top relation SelectedFeatureRelation2Relation {
12 n : String;
13 checkonly domain feat selectedFeature: featureconfig : :ConfigNode {
14 configState = featureconfig : :ConfigState: :SELECTED,
15 origin = originFeature : featuremodel: :Feature {
16 name= n,
17 relations = featureRel : QVTRelation: :Relation {} }
18 };
19 enforce domain qvt targetRel: Relation {
20 transformation=transfo:QVTRelation: :RelationalTransformation {}
21 };
22 when { MarkTransformation(transfo); }
23 where { MarkFeatureRelation(originFeature, targetRel);
24 CopyRelation(featureRel, targetRel); }
25 }
26

27 /∗
28 ∗ C2:
29 ∗ Copy the assignments from each selected feature
30 ∗/
31 top relation SelectedFeatureVariableAssignment2VariableAssignment {
32 n : String;
33 checkonly domain feat selectedFeature: featureconfig : :ConfigNode {
34 configState = featureconfig : :ConfigState: :SELECTED,
35 origin = originFeature : featuremodel: :Feature {
36 name= n,
37 variableAssignments = assignment : OperationCallExp {},
38 parentRelation = parentRel : featuremodel: :ChildRelation {
39 parent = parentFeature : featuremodel: :Feature {} }
40 }
41 };
42 enforce domain qvt targetRel: Relation {
43 transformation=transfo:QVTRelation: :RelationalTransformation {},
44 where = whereClause : QVTBase: :Pattern {
45 predicate = pred : QVTBase: :Predicate {
46 conditionExpression =
47 copiedAssignment : ocl : : ecore : :OperationCallExp {}
48 }
49 }
50 };
51 when { MarkTransformation(transfo);
52 MarkFeatureRelation(parentFeature, targetRel); }
53 where { CopyAssignment(assignment, copiedAssignment); }
54 }
55 relation CopyRelation {...}
56 relation CopyAssignment {...}
57 relation MarkFeatureRelation {...}

Listing 4.12: HOT for transformation fragments composition (C1 and C2).

The HOT for composition of transformation fragments that follow constraints C1 and C2

is shown in listing 4.12. It weaves the transformation fragments of the selected features
into the final transformation. The transformation is based on a generated copy transfor-
mation for QVT Relational itself (see Routine pattern in Section 4.4). The copy rules
(such as CopyAssignment or CopyRelation) are used to copy the rules that are specified
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by the transformation fragments on the selected features. Relation SelectedFeatureRe-

lation2Relation is responsible for matching features that are optional from the feature
model and copying the annotated transformation relations to the final transformation.
A corresponding relation MandatoryFeatureRelation2Relation is provided to match all
mandatory features which do not need to be selected explicitly. Similar HOTs are provided
for the weaving process of constraints C3 to C5.

4.5.3. Summary

Using the introduced transformation generation technique based on the Composite HOT
pattern, we can generate a transformation variants that include selected customisations
into the transformations. The Composite pattern allows to generate completion transfor-
mations and decrease the development effort resulting as a consequence of the variability.
To fully automate generation of completion transformations we have to combine both of
the introduced patterns HOT Routine and HOT Composite. Moreover, we can automate
the development of the transformation fragments using the Template pattern introduced
in the following section.

Despite the advantages in simplifying the configuration of transformations with our ap-
proach based on feature model, there are also some drawbacks that need to be discussed.
One problem arises when the feature configuration is changed and the target model needs
to be updated according to the newly woven transformation. The transformation traces
that were stored during the last transformation execution will potentially become invalid
as the structure of the transformation may have changed significantly. Incremental up-
dates (which are mostly based on the transformation’s trace links) are then impossible.
However, this problem only occurs if the transformation engine uses typed traces that are
specific to the transformation that created them. Generic trace links pose no problem to
the approach.

4.6. Template HOT Pattern

Model transformations are a major instrument of model-driven software development used
in various contexts. Especially in relational transformation approaches, the structuring of
transformations depends to a large extent on the structure of the source models and the
generated artefacts. In many cases, similar code is written for transformations that deal
with the same source or target metamodel. Writing such transformations can be simplified
significantly if re-occurring parts within the transformation rules can be specified in a
reusable way.

Current approaches to transformation development include means for transformation reuse
as well as inheritance. However, modularisation along the boundaries of different parts of
domain metamodels is still lacking. Furthermore, the possibilities to reuse transformation
fragments that re-occur in multiple transformations is limited. We introduce a Template
HOT pattern to support usage of domain-specific templates for transformations with well-
defined instantiation points, so called hooks. Transformation templates enable a modular
specification of transformations and thus yield a simpler definition of transformations that
can be grasped more easily and developed more efficiently.

In addition, we present a set of transformation templates in the context of the MDSPE
for component-based software architectures. The specified templates give insight into the
application of the presented pattern for different domains.
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4.6.1. Definition

Name: Template HOT pattern

Motivation:

Transformations are mainly determined by the source- and target-domains on which they
operate. The structure of a transformation depends to a large extent on the structure of
its source and target models. Furthermore, domain-specific patterns for the creation of a
target model may occur multiple times in a transformation leading to large parts of dupli-
cated transformation code. In many cases, transformations require annotations [63, 120]
which software engineers attach to individual elements of a model. Annotations specify
which elements are to be refined by subsequent transformations. Such annotations and
the underlying model are then transformed into a target model [63]. Writing such trans-
formations can be simplified significantly if re-occurring parts within the transformation
rules can be reused.

However, there is little experience available about how to design and implement trans-
formations using modern relational transformation languages. One reason for this is the
fact that model transformations are written in languages of very recent date (e.g. QVT
Version 1.0 was published in 2008) [72, 90]. Therefore, a basis of formalised knowledge
and experience with model transformation development is not yet available at a broad
basis. First initiatives for transformation design template specification focused on generic
patterns [87] for model transformations. Although these patterns define a ground to build
on, they do not exploit domain-specific knowledge of the transformation’s source and tar-
get models. For example, they do not make use of design patterns that are often part of
software models.

The Template pattern is based on our experience with the implementation of transforma-
tions used for customizing software architectures. We observed that configurable model
transformations follow certain patterns defined by the domain of their metamodels. The
approach introduced in this thesis allows reusing and customizing transformation parts.
Transformation templates are based on known design patterns and enable a modular spec-
ification of completion transformations. They yield simpler definitions of transformations
that can be grasped more easily and developed more efficiently. Thus, the Template pat-
tern can increase reuseability and modularization of transformations.

The Template pattern is an analogy to templates in established programming languages,
such as C++. For example, developers can can write meta-programs using C++ templates
that are executed during compilation. This technique can be used to perform code selection
and code generation at compile time. In the following, we describe the pattern in more
detail.

Implementation:

The Template pattern takes advantage of the possibility to reuse transformation parts to
further automate transformation development. Transformation templates are parametrised
and contain well-defined instantiation points. They are instantiated during load-time of a
transformation.

Figure 4.14 shows the structure of the pattern. Transformation templates (Tmp) are stored
in a template library. New customisation rules can be specified instantiating (TInst)
and composing the existing templates. Furthermore, templates are configurable by a
set of parameter values of their instantiation points. The template instantiation process
presented is realised using a HOT (cf. Figure 4.14). It creates template instances, merges
the transformation using the instances and creates a transformation based on the actual
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configuration given by the template configuration model. Further parts of the HOT are
responsible for binding the instantiation points of the templates to the elements from the
actual template configuration. The implementation of Template pattern is discussed in
Section 4.6.2.4 in more detail.
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Figure 4.14.: Template HOT pattern.

Benefits and Drawbacks:

This scenario allows to specify reusable transformation templates that occur in transfor-
mation development for specific metamodels. Based on these templates, model transfor-
mations can then be generated using HOTs. This results in a creation of a SPL for trans-
formations. Therefore, we also exploit the advantages of SPLs, i.e., improved reusability
and easier creation of new members of a SPL. Similarly as in the previous pattern, one
particular drawback of our approach is the debuggability of the transformation.

4.6.2. Completions Support: Generation of Transformation Fragments
using Templates

In this section, we describe the realisation of the Template pattern to support comple-
tions, furthermore, this solution was published in the MDI Models 2010 proceedings [92].
To support transformation developers, we provide a set of templates for reoccurring trans-
formation patterns. The instantiation of the templates is realised using a HOT (cf. Figure
4.15). In the following, we discuss the implementation of this pattern for the purpose of
completions.

4.6.2.1. Configuration-aware Transformation Templates

The automated generation of completion transformations presented by the Composite
pattern significantly reduces the effort needed to specify such transformations. However,
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Figure 4.15.: Building elements of completion transformation using Routine, Composite
and Template HOT pattern.

the customisation rules implemented as transformation fragments still tend to contain a
large set of similar elements, especially for architectural models. Therefore, we propose
transformation templates as an additional mean to ease the specification of completion
transformations.
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Figure 4.16.: Introduction of simple templates for component-based architectures based on
the running example.

Figure 4.16 illustrates the set of templates we have identified so far for the running exam-
ple. A Coupled Adaptor allows sender and receiver to adapt their interfaces to the same
standard and, for example, use the same middleware. This template can be used in the
case of completion by coupled actions, such as encryption and decryption, or composition
and decomposition. The Synchroniser is used when a component has to acquire a lock
before accessing a certain service and release a lock when finished. Same synchronisation
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pattern could be observed in the case of dependent actions. In the example, this template
is used for the wrapper component to acquire locks through the thread pool interface.
An Active Component template is used to model a component with a complex internal
behaviour. This template refines the model with an element introducing independent be-
haviour branch. An additional wrapper is provided for the functionality defined as an
internal action of the component behaviour. To provide, for example, a queue for compet-
ing consumers the Lock template is used. This template possesses a semaphore element
and can be used when introducing a state holding element to the model. The Monitor
template is applied to the component to provide a wrapper for simple monitor function-
ality, such as a timer. The last template introduces new functionality into the model and
could be independently required by already existing model elements.

In following section, we describe the adaptor template, as a representative, in more detail.
To document the transformation templates, we use a standard description schema for
templates defined in [59] and [87]. This includes the following information: the name of
the template, the goal of the template, the motivation for the template, the specification
of the template using the QVT-Relations language, applicability defines constraints for the
usage of a template and an example in which the template is applied.

4.6.2.2. The Adaptor template

In this section, we illustrate the concepts introduced above with the example of the adap-
tor pattern [59]. For the application within a completion transformation, further details
concerning the specific metamodel are necessary.

Name: Adaptor

Goal: Change the provided or required service interface.

Motivation: When new functionality is needed in an architecture (for example message
filtering), its implementation could result in a change of a service’s signature (or input or
return parameters). The adaptation of the interface is considered as a configurable change
and allows developers to define changed attributes without the need to reimplement the
whole transformation for the integration.

Specification: The adaptor template is specified by a relation that creates an Adaptor
component which requires the interface provided by the adapted component and provides
the interface required by the calling component. Additionally, based on a designer defined
method mapping, it requires or provides a modified interface to another component in the
system. As illustrated in Listing 4.13, an adaptorComponent is created with the modified
interface targetInterface in the target domain .

1 transformation CBSEAdaptor (source: CBSE, target: CBSE) {
2 top relation Adaptor template CreateAdaptor {
3 checkonly domain source sourceInterface:{ −−adapted interface
4 <fromInterface:TemplateInstantiationPoint>
5 };
6 checkonly domain source targetInterface:{
7 <toInterface:TemplateInstantiationPoint>
8 };
9 enforce domain target adaptorComponent:{

10 name=<adaptorName:LiteralExpInstantiationPoint>−−name
11 requiredRoles = reqRole:RequiredRole{
12 requiredInterface = sourceInterface }
13 providedRoles = provRole:ProvidedRole{ −−modified interface
14 providedInterface = targetInterface }
15 serviceEffectSpecifications = −−behavior specification
16 seff :ServiceEffectSpecification{ . . . }
17 }
18 };
19 }

Listing 4.13: Template Specification of the Adaptor template.
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Applicability: The applicability of templates defines constraints for the usage of a tem-
plate. For the Adaptor template such a constraint is defined by the requirement that a
instantiation point should be of type interface.

Example: An example of an Adaptor is shown in Figure 4.16. This Adaptor provides
an interface to the receiver and adapts its required interface to communicate with used
middleware (Active Component) and require a lock for each request. This lock models the
thread pool size used for the communication.

Template Goal Instantiation Point 
(Hook) 

Delegator  Provides a wrapper for a required or provided interface and 
delegates additional information without adjusting the signature.  

Interface 

Coupled 
Adaptor/Delegator 

Adapts two interfaces allowing their communication. Or in a case of 
delegation to allow them to use communication connection 
together without changing their signatures. 

Interface 

Synchroniser Provides an interface requiring a software resource (thread pool, 
queue or semaphore).  

Interface 

Lock  Models a component providing a passive software resource (thread 
pool, queue, semaphore).  

Passive Resource 

Active Provides a component with its own, independent control flow 
thread.  

Component 

Monitor Adds a controller or monitor (e.g., mutex to all method calls 
allowing only a single thread to access the component at one time.) 

Internal action 

Table 4.1.: CBSE Transformation Templates.

Additional examples illustrating the instantiation point approach for model transformation
templates are given in Table 4.1. The instantiation point types map known element types
for specification of component-based architectures (e.g. components, interfaces, signatures,
resources, etc.). A detailed description of these templates is provided in Section 4.6.2.5.

4.6.2.3. Metamodel for the Templates Definition

To define a framework supporting the definition and configuration of transformation tem-
plates, we need to describe them and their instantiation in a general way. This description
is provided by means of a metamodel introduced in this section and illustrated by Figure
4.17.

As a main element of the transformation templates metamodel, we introduce the Template
element. This element represents the concept of a transformation template in our termi-
nology and defines a reconfigurable and reusable transformation fragment for the model
transformation generation. The Description of a template contains a definition of the
Goal of the template as well as a textual Motivation for the Template definition. Each
Template defines the applicability, or usage scenarios, by specifying an OCL Constraint.
To be able to apply a template in a certain context, this constraint needs to evaluate
to true. The Template element refers to a set of Relations from the QVT Relational
metamodel. These relations form the basis of the template as they will be parametrised by
InstantiationPoints as defined below. Furthermore, the Template definition contains a
set of InstantiationPoints. These instantiation points define possibilities for variations
within the basic relations. A InstantiationPoint is defined by a reference to either a
template expression (TemplateExp) or relation domain (RelationDomain). These points
are defined by subclasses of InstantiationPoint named TemplateInstantiationPoint,
DomainInstantiationPoint, and LiteralInstantiationPoint (for the specification of
variable literals within a template).

The association dependencies of the Template class expresses dependencies between
transformation templates. Defined transformation templates depend on each other and
therefore these constructs need access to results of required transformation templates.
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Figure 4.17.: The metamodel for the transformation templates.

In complex cases, the dependencies on a design template definition or its instance could
mix. However this type of variations defines very complex transformation templates rela-
tions. The fine granular model provided by the introduced metamodel allows a low-effort
definition of such dependencies. This is possible by the fine granular InstantiationPoint
definitions and their sharing.

The binding of a template to an actual transformation fragment is done as soon as the tem-
plate is referenced within an actual transformation fragment that is defined for a concrete
feature model. The actual application of the transformation template is defined by the
TemplateConfig. For each defined InstantiationPoint the template configuration in-
cludes InstantiationPointInstances which bind the InstantiationPoint to actual templates
or relation domains specifications. InstantiationPointInstances can be assigned to multi-
ple InstantiationPoints stemming from different transformation templates. This yields the
possibility to combine transformation templates to build more complex model variations.

4.6.2.4. Implementation of HOT for Model Template Instantiation

The instantiation process presented in Listing 4.15 is realized using a HOT. It merges
the transformation using the templates and creates a transformation based on the actual
configuration given by the template configuration model.

1 transformation templateInstantiation(source:templateDefinition,
2 config:templateDefinition, target: QVTRelation)
3 extends CopyQVTRelation {
4 top relation Library2Transformation {
5 n:String;
6 checkonly domain source templateLib: templateLibrary {
7 domain = n };
8 enforce domain target t : QVTRelation: :RelationalTransformation {
9 name= n + ’ templateInstantiation ’ };

10 where { MarkTargetTransformation(t); }
11 }
12

13 relation MarkTargetTransformation {
14 checkonly domain target t :QVTRelation: :RelationalTransformation{};
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15 }
16

17 top relation AddTypedModels {
18 checkonly domain source templateRep: templateRepository {
19 modelParameter =mm: QVTBase: :TypedModel { } };
20 enforce domain target t : QVTRelation: :RelationalTransformation {
21 modelParameter =mmCopy: QVTBase: :TypedModel { } };
22 when { Repository2Transformation(templateRep, t);
23 MarkQVTBaseTypedModel(mm, mmCopy); }
24 }
25

26 top relation IntegrateRelations {
27 n:EString;
28 checkonly domain source templateConfig:
29 templateDefinition: :templateConfig {
30 instanceOf = template : templateDefinition: :template {
31 name= n,
32 templateRelations = templateRel : QVTRelation: :Relation {}
33 }
34 };
35 enforce domain target targetRelation: QVTRelation: :Relation {
36 name= n + ’ template ’ + templateRel.name ,
37 transformation = t : QVTBase: :Transformation {}
38 };
39 when { MarkTargetTransformation(t);
40 Mark QVTRelation Relation(templateRel, targetRelation); }
41 }
42 . . .
43 }

Listing 4.14: Higher-order transformation for instantiating templates.

The first step of the Template Instantiation is the creation of a copy of the relations that
were specified within the template. Therefore, we use a generated copy transformation for
the QVT-Relations metamodel. The Mark_QVTRelation_Relation relation that is used
here is a part of this generated transformation. Using this, it is possible to retrieve the
copied instance of a given original relation. For each class in the corresponding meta-
model such a relation exists. The template instantiation transformation extends this copy
transformation. Repository2Transformation creates a new transformation that will then
contain the configured templates. Furthermore, AddTypedModels adds the model param-
eter of the transformation to the transformation as they were specified in the template
repository. Each used and configured template is then added to the newly generated
transformation by the IntegrateRelations relation. All other template relations that
were copied from the template repository by the copy transformation will be ignored.

Further parts of the HOT are responsible for binding the instantiation points of the tem-
plates to the elements from the actual template configuration. Listing 4.15 shows the
necessary relations for binding a TemplateInstantiationPoint.

1 top relation BindTemplateInstantiationPoint {
2 n:EString;
3 instantiationPointBindings:OrderedSet(InstantiationPoint);
4 checkonly domain source instantiationPoint :
5 templateDefinition: :TemplateInstantiationPoint{
6 name= n,
7 relationTemplate = relationTemplate : QVTRelation: :Relation {},
8 template = instantiationTemplate : QVTTemplate: :TemplateExp {}
9 };

10 checkonly domain config instantiationPointInstance :
11 templateDefinition: :TemplateInstantiationPointInstance{
12 bindsTo = instantiationPointBindings,
13 template = instanceTemplate : QVTTemplate: :TemplateExp {}
14 };
15 enforce domain target targetTemplate: QVTTemplate: :TemplateExp { };
16 when { MarkQVTTemplate TemplateExp(instanceTemplate, targetTemplate);
17 instantiationPointBindings−>includes(instantiationPoint); }
18 where {
19 MarkQVTTemplate TemplateExp(instantiationTemplate, targetTemplate); }
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20 }
21 . . .

Listing 4.15: Binding of template variation points.

An extension to the generated QVT-R copy transformation is made by overriding the
generated copy relations for those elements that may be instantiation points in the tem-
plates. In the example above this would be all copy relations that inherit from Tem-

plateExp. Listing 4.16 shows how this is done for the ObjectTemplateExp. This ex-
tension will cause the copy transformation to omit all TemplateExp that are instanti-
ation points during the copy process. For each binding that is configured in the tem-
plate configuration the BindTemplateVariationPoint relation in Listing 4.15 will call
the Mark_QVTTemplate_TemplateExp relation. Due to the functionality of the copy trans-
formation this will cause the copy relations to treat the substituted template as the copy
of the original and will assign it to all points in the template’s copy where the original
template was used. The copy transformations are created applying the Routine pattern.

1 −−Override the Generated Copy Rule:
2 top relation Copy QVTTemplate ObjectTemplateExp
3 overrides Copy QVTTemplate ObjectTemplateExp{
4 checkonly domain source instantiationPoint:
5 templateDefinition: :TemplateInstantiationPoint{
6 template = instantiationTemplate : QVTTemplate: :TemplateExp {} };
7 checkonly domain source sourceObjectTemplateExp:
8 QVTTemplate: :ObjectTemplateExp{ };
9 enforce domain target targetObjectTemplateExp:

10 QVTTemplate: :ObjectTemplateExp{ };
11 when { not (sourceObjectTemplateExp = instantiationTemplate); }
12 where {
13 Mark QVTTemplate ObjectTemplateExp(
14 sourceObjectTemplateExp, targetObjectTemplateExp); }
15 }
16 [ . . . ]

Listing 4.16: Overriding Copy Rules.

4.6.2.5. Further Transformation Templates

The Delegator Template

Goal: Provide a wrapper for a required or provided interface and delegate its functionality
based on the unchanged signature.

Motivation: A delegator can be used for example, when for each request a semaphore
lock should be asked to allow access the semaphore provider service before allowing the
request to reach the interface.

Specification: This template is specified by a relation that creates a delegator component
that requires or provides delegated interface to other components in the system. Addi-
tionally a delegator could request services from other components. This template could
be used to generated the initial structures for this.

1 transformation CBSE Delegator (source: CBSE, target: CBSE) {
2

3 top relation Delegator template CreateDelegator {
4 checkonly domain source delegatedInterface:{
5 };
6 enforce domain target delegatorComponent:{
7 name=<delegatorName:LiteralExpVariationPoint>
8 requiredRoles = reqRole:RequiredRole{
9 requiredInterface = delegatedInterface }

10 providedRoles = provRole:ProvidedRole{
11 providedInterface = delegatedInterface }
12 serviceEffectSpecifications =
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13 seff :ServiceEffectSpecification{...}
14 }
15 };
16 }

Listing 4.17: Template Specification of the Delegator template.

Applicability: For the Delegator template it is required that a instantiation point is not
of type interface.

Example: The example of a Delegator is shown in Figure 4.16 as an additional template.
This Delegator provides interfaces to the request receiver with the same interface.

The Coupled Adaptor/Delegator template

Goal: To adapt two interfaces and to allow their communication. Or, in a case of dele-
gation, to allow them to use communication connection together without changing their
provided functionality.

Motivation: When it is needed to build a connector between two communicating compo-
nents or to build a chain of delegators to access certain external functionality in a certain
state of message delivery.

Specification: This template is specified by a relation that creates two Delegator or
Adaptor components that mirror their adapted or delegated interface.

Applicability: For the Adaptor/Delegator template is required that instantiation point
should/shouldn’t be of type interface.

Example: The example of a Coupled Adaptor is shown in Figure 4.16. This construct
allows sender and receiver to use the same active component.

The Synchroniser template

Goal: To provide an interface requiring a software resource (thread pool, queue or
semaphore).

Motivation: When component has to acquire a lock before accessing a certain service
and release a lock when finished.

Specification: This template is specified by a relation that extends in a model already
existing component with an interface requiring an external service providing acquire() and
release() on a lock resource holded be called component. This specification implies an
existence of an Lock manager in a system.

1 transformation CBSE Synchroniser(source: CBSE, target: CBSE) {
2

3 top relation Synchroniser template CreateSynchroniser {
4 checkonly domain source synchronizedInterface:{
5 };
6 enforce domain target synchroniserComponent:{
7 name=<synchroniserName:LiteralExpInstantiationPoint>
8 requiredRoles = reqRole:RequiredRole{
9 requiredInterface = synchronizedInterface,

10 requiredInterface =<lockName:TemplateInstantiationPoint> }
11 providedRoles = provRole:ProvidedRole{
12 providedInterface = synchronizedInterface }
13 serviceEffectSpecifications =
14 seff :ServiceEffectSpecification{ . . . }
15 }
16 };
17 }

Listing 4.18: Template Specification of Synchroniser template.
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Applicability: For the Synchroniser template is required that instantiation point should
be of type LockManagerReference.

Example: The example of a Synchroniser is shown in Figure 4.16 and illustrated by
extention to receiver adaptor component with an additional synchronisation interface.

The Active component template

Goal: To provide a wrapper for a functionality defined as internal action of a component
behaviour.

Motivation: When it is needed to model a component with a complex internal behaviour.

Specification: This template is specified by a relation that creates an Active component
that requires or provides a delegated interface to the another components, depending
on a developer specification. In case of this template is the template only a frame for
implementation, it is the most complex template with no restrictions on instantiation
points.

Applicability: There are no restrictions for this template. Consequently this template
requires higher user interaction to implement.

Example: The example of a Active component is shown in Figure 4.16 and illustrated by
a shared component, providing a common functionality (e.g. middleware).

The Lock manager template

Goal: To model a component providing a passive software resource (thread pool, queue,
semaphore).

Motivation: When a synchronization mechanism based on a lock strategy is used in a
system.

Specification: This template is specified by a relation that creates Lock component that
provides an interface with two signatures acquire() and release() on its internal passive
resource.

1 transformation CBSELockManager (source: CBSE, target: CBSE) {
2

3 top relation LockManager template CreateLock {
4 checkonly domain source appRepository:{
5 };
6 enforce domain target lockComponent:{
7 name=<lockName:LiteralExpInstantiationPoint>
8 requiredRoles = reqRole:RequiredRole{}
9 providedRoles = provRole:ProvidedRole{

10 providedInterface = lockInterface }
11 serviceEffectSpecifications = acquireLock
12 seff :ServiceEffectSpecification{ . . . }
13 serviceEffectSpecifications = releaseLock
14 seff :ServiceEffectSpecification{ . . . }
15 passiveResource = lock{
16 <lock:TemplateInstantiationPoint> }
17 };
18 }

Listing 4.19: Template Specification of Lock manager template.

Applicability: For the Lock manager template is required that the instantiation point is
of type passiveResource.

Example: The example of a Lock is shown in Figure 4.16. This lock manager provides,
for example, a queue for competing consumers.
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The Monitor template

Goal: To provide a wrapper for simple monitor functionality.

Motivation: When it is needed to model a component that only gains and stores data, or
provides some timing control. For example a clock component required by a connector or
accessing middleware, providing a control interface externally to set a clock and providing
an interface internally for other components in assembly to ask a clock.

Specification: This template is specified by a relation that creates a Monitor component
that requires or provides a delegated interface to the another component. This compo-
nent has only a simple internal action defined and is creating processing delay through
computation.

Applicability: For the Monitor template is required that variation point should be of
type internal action.

Example: The example of a Monitor is shown in Figure 4.16 as an additional template.
This monitor provides, for example, a clock for a connector.

4.6.3. Summary

The introduced HOT Template Instantiation pattern allows to build a classical SPL
for transformations using template-based approach. The Template Instantiation pat-
tern allows to automate development and supports reuse of transformation fragments in
completion-based approaches. In the following section, we will shortly discuss other HOT
patterns and later using here introduced patterns we will build a chain of HOT patterns
to fully support model completions.
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4.7. CHILIES: Chains of HOT patterns

In some complex scenarios, it is useful to compose multiple HOT patterns in a chain.
Figure 4.18 shows an example of such a composition where a transformation is generated
using all three introduced patterns: (i) HOT1 Routine generates a frame (copy rules),
(ii) HOT2 Composite overrides some of the copy rules and adds custom rules dependent
on configuration, (iii) HOT3 Template overrides some of the rules and adds template
instances.

Similarly, a deeper view on the process of completion generation (c.f. Figure 4.19) shows
the dependencies and connections between the concepts introduced above. The process
depends on the specification of several inputs for HOTs, which build the HOT Chain.

The transformation fragment composition is realized using a Model Completion HOT, il-
lustrated on a Figure 4.19. The first input is a Feature Model with attached Transformation
Fragments (Custom Rules). These fragments are used by a Composite HOT for the actual
transformation generation. It merges the transformation fragments that are annotated to
the feature model nodes together creating the final completion transformation. The second
input is the actual Feature Configuration, which defines which features are selected as well
as the values of feature attributes. In contrast to an in-place transformation, a completion
transformation may also be specified to create a new model where the completions are ap-
plied. In this case, the completion transformation extends a copy transformation (Frame)
generated by the Routine HOT. As we rely on QVT Relations for the implementation of
our transformations which does not provide native support for copy transformations, we
use the Routine HOT to automatically create a copy transformation from the metamodel
of the application model. The Composite HOT includes the Transformation Fragments
into the generated copy transformation. Custom rules will then replace the standard copy
rules for the corresponding metamodel element.

The goal of the templates is to ease the custom rules development. This is achieved
through instantiation of Transformation Templates from Template Library on a place of
transformation fragments in the feature model. Transformation templates are stored in a
Template Library (cf. Figure 4.19). New Custom Rules can be specified instantiating and
composing the existing Templates. Furthermore, templates are configurable by a set of
parameter values. Based on the template and its configuration, the Template HOT creates
Template Instances and adds the necessary rules to the completion transformation.

The result of the HOT Chain is a Completion Transformation that when applied to an
Architectural Model generates the corresponding Completed Architectural Model. The line
Meta-Level Boundary separates the generation of the transformation (domain engineering
phase) and its application (software engineering phase).
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4.8. Discussion

In the following, we discuss the assumptions and limitations of the contributions presented
in this chapter. The experience in the area of HOT applications is still missing since
transformations on higher abstraction levels are not extensively used so far. Despite the
advantages in simplifying the development of variable transformations with HOT patterns,
there are also some limitations that need to be discussed.

Complexity of HOTs

Creating a HOT is not an easy task. Especially as the HOT engineer has to think on
two different levels using probably the same language constructs. Developers need to
get accustomed to thinking on a meta-level, and write/modify abstract syntax. HOTs
naturally have a higher complexity coming along with power of abstraction. Therefore,
development of HOTs can be error prone and should only be conducted by experienced
transformation engineers.

Debuggability

This issue is not a new one, as it occurs whenever software language artefacts are subject
to automated modification. In these cases, debugging can be a problem. Developers work
and develop on a certain development version of an artefact (either also a transformation
or some other artefact, for example configuration, from which a transformation will be
derived). However, the debugger of the transformation engine will execute and observe
only the generated and woven transformation. Hence, a transformation developer will
need to understand the generated transformation in order to be able to debug it. This
can lead to confusion and additional effort for understanding these modifications when
the developer needs to debug the transformation. To alleviate this issue, a debugger that
is capable of mapping the debug information to the higher level artefact is required. A
specialised debugger would be needed if debugging should be possible on the meta level.

Routine HOT pattern

This pattern is currently only implemented for the Ecore metamodels. The Routine HOT
requires an Ecore metamodel on input and generates a QVT-R transformation on output.
However, the extension of this HOT for other relational transformation languages is only
a question of implementation.

Composite HOT pattern

The assumption, we took by this HOT pattern is that all transformation fragments are
composable. Although, the composability of relational transformations is straight-forward
in comparison to the operation languages, we require a valid design of feature model on
input. The valid design of feature model is described in the following section.

Valid design of feature model

The constraints for composition of transformation fragments in the Composite HOT pat-
tern require a valid feature model to function correctly. A valid feature model does not
include:

• Nested inclusive-OR structures – such structures increase the complexity of disam-
biguation rules exponentially, because the related fragments have to consider all
possible combinations of all nested features in the inclusive-OR sub-tree. Our as-
sumption is that such structures result from invalid identification of relations between
features by domain analyst during modelling of the domain.
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• Cyclic/Negated dependencies – the usage of the constraints in the feature model is
limited and does not allow to create cyclic or negated dependencies between two
features, thus, two DEPENDS-constraints in opposite direction or two constraints,
one EXCLUDE and one DEPENDS, between two features are not allowed.

• Incomplete relations in feature effects – the relations in feature effects are required
to be complete, thus, include everything (e.g., all opening and closing brackets)
needed for their valid execution in a transformation engine, only missing parts could
be pre/post-conditions or variables, which are parametrised and do not danger the
relations validity.

Usage of declarative transformations

The declarative transformation definition is easily extendible with additional features,
therefore, we limit our approach to this family of languages. This is achieved by sepa-
ration of concerns and usage of declarative code as much as possible (minimizing usage
of imperative code). Declarative code is very suitable for generative approaches. In our
approach, we follow the philosophy of modular and declarative transformation rules with
implicit execution order.

Template HOT pattern

The Template pattern builds on the existence of templates for certain domain, in our case
CBSE domain. The templates we introduced help to create parts of the models, but some
of them have to be completed manually, for example the internal behaviour of the Adaptor
template. We do not consider the templates applicable in general, they are dependent on
a domain and a purpose of the model. The generality of the templates is out of scope for
this thesis.

Composability of HOTs

The usage of QVT-R to implement HOTs and completion transformations is motivated
by the special properties of relational languages, especially composability. There are vari-
ous approaches to support model transformation composability, either they are based on
internal or external composition of transformations. An transformation implemented in
relational transformation language consists of a number of mapping rules. These mappings
may be combined by calling, or other facilities, such as inheritance, merge and disjunction.
These strategies are used for internal composition of transformations. The composition
of transformations as black-box artefacts is called external composition. We limit our ap-
proach to the external composition of HOTs to form a transformation chain. The internal
or rule-based composition was not considered in this work. In the case of transformation
chain, the composition is straight-forward with assumption that the interfaces fit. We as-
sume that the HOTs are implemented in a such way that they can be composed together
(i.e., output of previous HOT is of the same type as input of the next one). In addition, it
would be suitable to have possibility to to pass parameters to the transformations and the
possibility to retrieve the output of a transformation and to pass as input to the consequent
transformation.

4.9. Summary

In this chapter, we introduced a set of HOT patterns to solve different goals as a part
of complex model-driven processes. Despite their complexity, HOTs have the potential
of solving problems in an efficient way. Especially when a lot of variability needs to be
managed within a transformation project, lifting this variability to a higher level can ease
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the development of otherwise complex transformations (see patterns 4.5 and 4.6). HOTs
enable a better separation of concerns and therefore better maintainability of the employed
transformations. In scenarios where a large amount of manual effort for a relatively simple
task can be avoided, HOTs also unfold their potential (see Section 4.4). Here, otherwise
tedious and error prone tasks can be easily automated using a HOT-based approach.

Furthermore, we described the automated support of completion transformation develop-
ment using the presented HOT patterns. Using this approach the transformation gener-
ation phase in the Completion-based Software Engineering (see Chapter 3) is fully auto-
mated. In the next chapter, we focus on the realisation of the completion library. Addi-
tionally, we discuss the execution of completions in sequences.
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5. Completions for Software Performance
Engineering

In the previous two chapters, we discussed the Model Completion Concept and its real-
isation through composing HOT patterns for different goals. In this chapter, we discuss
integration of completions in the Completion Library. The structure and usage of this li-
brary is the main topic of this chapter. The structure of the Completion Library supports
reduction of application conflicts in the sequence of completions. Moreover, we introduce
a set of completions for MDSPE. This initial set of completions is focused on the con-
currency design patterns and targeted to support developers to create complex models of
concurrent systems.

The leading challenge of this chapter is:

How to structure the Completion Library to reduce possible conflicts in an application of
multiple completions?

The remainder of this chapter will be organized as follows. Section 5.1 introduces the
application context and motivates the structuring of the Completion Library. In Section
5.2.3 we describe the method for the reduction and resolution of conflicts in application
of multiple completions. In addition, Section 5.3 presents an initial set of completions for
concurrency design patterns. We discuss limitation of presented approach in Section 5.4
and, finally, we summarize the contributions in Section 5.5.

5.1. Motivation

Completions transparently integrate low-level details that affect a system’s quality (e.g.
performance impact of compression or encryption configuration) into component-based
architectural models, using model-to-model transformations. When multiple completions
are to be applied, the necessary completion transformations are executed in a chain. In
such scenarios, application conflicts (i.e., compression before encryption influences result-
ing data volume, and the other way around) between different completions are likely. The
dependencies among completions define where and when certain completions can be woven
into the model. The execution order of the completions may affect the target model in a
way that the following completions are not applicable any more or that the analysis results
are altered. Therefore, the application order of completions must be determined unam-
biguously in order to reduce such conflicts. Problems of conflicting transformations and
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their application order have already been addressed in the area of model-driven develop-
ment [82]. However, in the domain of software performance engineering, quality attributes
captured by the architectural models have to be considered as an additional dimension
of conflict. The execution order of a set of completions can affect the quality predictions
for the resulting architectural models. Thus, the knowledge about the quality impact of a
particular order of completions can be used to resolve conflicts and to identify the suitable
order in which completions have to be applied to achieve the best overall quality of the
system.

One approach to handle conflicts is that software architects decide on the suitable trans-
formation order manually. However, this approach is time-consuming, can be error-prone,
and is likely to result in suboptimal designs. Especially, with growing number of comple-
tions the complexity of this decision grows. Therefore, a semi-automated and structured
solution supporting software architects should reduce these conflicts in completion order
and help with their resolution.

We define a systematic approach to identify, reduce or avoid conflicts between comple-
tions that are applied to the same model. The technique reduces conflicts, based on the
development role separation and locally optimises the order of completions in a sequence.
For this purpose, we clarify the roles in the development process responsible for specific
completions, when additional information to reduce conflicts is necessary. The principle
of development role separation is mirrored in the structure of the completion library. Fur-
thermore, in Section 7 we validate this approach by applying it to an architecture model
of a component-based business information system and analyse the impact of different
sequences of completions.

The main scientific contribution of this chapter is located in the MDSPE context and can
be summarised as follows:

Structured Completion Library for Software Performance Engineering

• Reusing expert knowledge: The decisions about the required steps going
from an abstract model Abs (cf., Figure 3.2), based on a set of initial require-
ments, to an abstract model Abs′, suitable for required purpose (e.g. perfor-
mance prediction), requires a lot of domain-specific expert knowledge (e.g. for
performance prediction it is knowledge about performance-relevant implemen-
tation details). Additionally, the same activities are often repeated, e.g. usage
of the same design pattern or integration of the same middleware platform.
Standardization of possible design decisions in a form of reusable constructs
(e.g., completions) allows reusing and tracing design decisions. This allows to
build a ’Performance Knowledge Base’ as envisioned by Woodside et al. [172].
Design decision are explicitly modelled as a part of a development already on
the abstract level, and mapped to the requirements. Models with trace to de-
sign decisions considering even implementation details not only provide better
predictions, but can help to document managerial decisions (e.g. which mid-
dleware will be used) on the abstract level. Therefore, we provide a support
for completion library where completion encapsulating expert-knowledge can
be registered. In addition, we provide a initial set of completions, which allow
to reuse expert knowledge about modelling of the concurrency design patterns.

• Completion conflict reduction: Because multiple application of completions
on the same model could can lead to conflicts in their application, we developed
a completion reduction method. Completions are realised as model transforma-
tions. Completion transformations executed in a sequence may not permit or
require certain changes specified by a following transformation, in other words,
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the following transformation would not be applicable. We call such conflict a
validity conflict. In addition in the SPE domain, the order of completions in a
sequence can influence the results of predictions, thus, two permutations in a
sequence can provide different results. We call this kind of conflict a quality con-
flict. Therefore, we designed a structured library of completions that supports
reduction and resolution of these conflicts. Our method for conflict reduction
builds on the relation between the transformations and the metamodel. The
quality conflicts are resolved with the help of quality heuristics.

5.2. Structured Completion Library for Conflict Reduction

Model Completions are implemented as model-to-model transformations and as such they
inherit all their properties. One specific property of model transformations is their con-
nection to the metamodel they are developed for, the, so called, metamodel coverage (see
Section 6). By studying the metamodel coverage of transformations it is possible to identify
which model elements are modified by the transformations.

Our observation is that metamodels are often structured. It is a good practice to structure
metamodels into packages grouping together semantically-related elements. This package
structure often follows the separation of concerns principle, for example, the structure
of packages in the PCM metamodel follows the domains of the CBSE development roles
introduced in Section 2.2.1, where each development role has a separate package set. When
it is possible to identify such separation in a structure of metamodel, then it is possible to
identify transformations covering only these separate domains. For example, a completion
applied by a system architect can modify only instances of model elements belonging
to the domain of system architect and therefore such completion is not in conflict with
completion applied by a component developer. This simple idea could be applied to manage
any transformations developed for a structured metamodel. We apply this idea to reduce
conflicts of completions for performance engineering and we use the PCM metamodel for
this goal.

The introduced approach for reducing and resolving conflicts between executed perfor-
mance completions builds on a few systematic steps. First, we identify responsibility
domains for the CBSE development roles in PCM. Second, we minimize the conflicting
set and, third, we resolve remaining conflicts using quality-based heuristics. These heuris-
tics give an indication of most advantageous sequence, however, because we analyse the
sequences only locally and not in a context of whole system, the final resolution step
requires an interaction from user, who has to deal only with small reduced set of conflict-
ing completions. In the following, we describe the problem of conflicts between executed
performance completions on the model level formally.

5.2.1. Formalisation

In the previous chapter, we discussed formalisation of model completions, related trans-
formations and their variants. In this part of formalisation, we summarize necessary
definitions and focus on the chains of completions.

Before completing a model element, the completion is instantiated according to a se-
lected variant. Possible variants of a cThreadManagement completion can be for instance
vTPstatic
cThreadManagement

. The instantiation results into a completion transformation
tcPCM�ThreadManagement , which can finally be applied to a pivot element. After application
of a completion transformation we create a valid model element (or subsystem). Thus,
the next completion can be applied and multiple applications of different completions in
a completion chain is possible.
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Let now C = {ci|i ∈ I} be a finite set of available completions, that we call a completion
library. Then, Vi is a countable set of possible variants vji for one completion ci (Section
4.2.4). For example, the Vlocking of a completion clocking (enhancing a component A with a

critical section locking strategy) is Vlocking = {vscopedlocking, v
double−checked
locking , ..., vstrategizedlocking }. Each

variant is realised as a completion transformation tC that integrates chosen vji into the
source model. The transformation is generated based on a configuration and completion
definition including specification of pivot element and feature diagram (ci = (e, fdi), see
Section 4.2.4).

This section discusses a sequences of transformations, that represent an ordered chain of
completion transformations, as presented for model-to-model transformations in Section
4.2.4. As mentioned above, each model element e ∈ E (for the definition of E see Section
4.2.4) can be enhanced by multiple applications of (different) completions, i.e. a chain of
completion transformations.

Consistent Set of Completions: For the purpose of completion chain definition, we
define a set of possible completion variations (or completion instances) in a chain as

CI = {vji | i ∈ I, vji ∈ Vi},
and limit that a completion set CS ⊆ CI is consistent only if each completion in CS
occurs in at most one variation, thus

∀vji , vlk ∈ CS : i �= k ⇒ vji �= vlk

Chains of Completion Transformations: Thus, given a consistent completion set
CS ⊆ CI, a completion chain cc over CS is defined as

cc = ci1 ◦ ci2 ◦ ... ◦ cin , cij ∈ CS,

where ’◦’ defines an external composition of transformations in form of a chain of trans-
formations. The chain of transformations t∗cc is then executed as follows:

t∗cc : conf(MM)
tCi1→ conf(MM)

tCi2→ · · · t
C
in→ conf(MM), where tCij instantiates cij ∈ CS

Note that not all sequences of execution of a completion set CS on a given element e need
to be valid for the system model. Some of the completion chains cc over CS may result
in an invalid set of model elements cc(e), not satisfying a given set of validity constraints.
Such constraints can be specified in terms of rules or grammars, and can be verified on
both the resulting elements cc(e) and the completion order cc = ci1 ◦ ci2 ◦ ...◦ cin , cij ∈ CS,
since some of the orders can be a priori forbidden. In our formalization, we use CC(CS, e)
to denote the set of all valid completion chains over CS for element e.

For example, the set CI for the completion clocking is defined as CI = {vscopedlocking, v
double−checked
locking ,

vstrategizedlocking }, and a consistent completion set can be CS = ∅, CS = {vscopedlocking}, or others.
When we assume CS includes an additional completion configuration of the completion
cmessaging, e.g. CS = {vscopedlocking, v

conn 1:N
messaging}, we would identify two possible completion

chains cc1 = vconn 1:N
messaging ◦ vscopedlocking and cc2 = vscopedlocking ◦ vconn 1:N

messaging.

Completion Conflicts: Based on previous definitions, a completion chain cci is an or-
dered set of completion transformations < tC1 , t

C
2 , ..., t

C
N >, i ∈ I. The completion chain cci

is in conflict with ccj ; i, j ∈ I, when an order of completion execution in cci �= ccj and the
validity of the model structure (validity conflict) or the result of analysis (quality conflict)
is different for each of the chain definitions.
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Finally, we say that a set of all completion chains over CC is conflicting on the element
e ∈ E, if there are two completion chains cci, ccj ∈ CC such that

Q(cci(e)) �= Q(ccj(e)),

where Q is a quality function, e a pivot element, and cc(e) an element e completed by
a completion chain cc applied to the model. Here, Q specifies the quality semantics of
the set of model elements cci(e), resp. ccj(e), which result from e after applying all the
completion configurations in cci (resp. ccj) to it, in the left-to-right order. Note that, we
are interested to apply the definition only to the sets of valid completion chains CC(CS, e)
over a consistent completion set CS and model element e ∈ E, but for the reason of
generality, we define it for a wider domain (any set of completion chains).

5.2.2. Method for Reduction of Completion Validity Conflicts

This section introduces the method to minimize the conflicting set in a sequence of com-
pletions. To reduce possible conflict between completions, we have to investigate, for each
new completion, its dependencies to other completions already registered in the library.
We reflect the need for identification and reduction of conflicts by introducing three levels
of conflict reduction:

1. Roles and Responsibilities Separation: The first resolution question is ”Who is
able to provide all necessary information to use and configure the completion?”. The
selected role in the development process has to have all necessary input data to spec-
ify the completion’s configuration during software design. Furthermore, he/she has
to profit from completion usage. Ideally, the assignment of completions to roles will
lead to identification of disjointed sets of completions. Each role is only responsible
for the completions in one disjointed set.

Each time a new completion is introduced, we analyse its dependencies to other
already known completions. Therefore, we focus on a related group of completions
where conflicts are more likely. This way, possible conflicts are limited to the comple-
tions in responsibility of one role. Additionally, separation of concerns based on the
roles in the development process creates a hierarchy (identifying domains of concern)
in the metamodel of used architecture description language.

To focus our reasoning, we categorise completions based on the metamodel elements
they could be assigned to. This way we reduce possible conflicts on a metamodel
level. The proposed categorisation maps the roles in the CBSE development process
[102] to groups of completions. It is best practice in metamodel design to structure
the metamodel considering the development process the metamodel will used in and
the different subdomains or technology domains. This allows to identify independent
parts of the metamodel in competence of one development role. The metamodel
part that belongs to one development role is called cluster. This is illustrated by a
hierarchy of packages in the PCM metamodel in Figure 5.1.

The goal of this step is to identify sets of completions where conflicts are possible.
Based on the metamodel structure, we can identify completion transformations their
input and output model are created from instances of metamodel elements belonging
to two different clusters. Therefore, two such transformations could not result in
a validity conflict. In Figure 5.1 the transformations T3 and T4 are in conflict,
because they modify model elements from the same cluster. The transformation
T2 is an example of a limitation of the introduced resolution approach, we do not
allow completions to change a model in a responsibility of other role. This way,
we define disjunct sets of completions Ci. For each two completions ck ∈ Ci and
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cl ∈ Cj ;Ci �= Cj conflicts are not possible. Only in a case of completions located in
the same metamodel cluster, conflicts are possible. In this case, we have to proceed
to the next level and further specify affected elements.

System Deployer

Component Developer

Software Architect

Domain Analyst

<<ePackage>>
system

<<ePackage>>
core

<<ePackage>>
protocol

<<ePackage>>
connectors

<<ePackage>>
repository

<<ePackage>>
seff

<<ePackage>>
parameter

<<ePackage>>
resource type

<<ePackage>>
resource

environment

<<ePackage>>
allocation

<<ePackage>>
usagemodel

M MT3

M MT4

M MT1

M

M

T2

M MT5

TransformationsMetamodel

Figure 5.1.: A role hierarchy in the PCM metamodel.

2. Conflicting Model Elements Identification: If conflicts can occur, we further
analyse the question ”Which model elements are affected?”. For this purpose we have
to know how the completions are modelled and at which places of the architecture
they can be applied. We can identify affected elements as a difference between source
and target model. Identified elements specify more exact locations where conflicts
may occur.

The evaluation of completion chain cc for conflict-potential is a function

φ : T → S,

where domain S is the set of possible conflicting instances of metamodel elements.
For example, when evaluating order in a sequence of completions for locking and
stateful wrapper (both of them should be applied to the same component) we identify
on the model level the possible conflict set that includes all elements needed in
component and its behavior definition. This results in further separation of conflict
domains and decreasing the number of completions that could introduce conflict on
a model level. We define sets of potentially conflicting completions (conflict space):

ConflictSpace := {ti, ti}
where i �= j and ti potentially conflicts with tj on a model element e ∈ S, where S
is a set of conflicting elements orthogonal to the hierarchy from the previous level.

Since we apply completions to component-based software systems, we identify the
model elements of component-based architectures that can be refined, and discuss
the completions applied to them. We assume three types of model elements (the main
architectural elements of CBSE) that can be completed: components, connectors, and
the infrastructure. Thus, for our domain we can define S = {component, connector,
infrastructure}.
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While there may be many component and connector elements in the model, there is
always at most one infrastructure element to consider from a completions point of
view. All these model elements are assumed to be independent for the completions,
i.e. the order of completing two different elements within the model does not influence
the result. In the following, we describe the model settings, to which we frame our
problem.

Components are black-box (or sometimes grey-box) entities characterized by the ser-
vices they provide to others and the services they require from third parties. In our
approach, we can deal with components in two ways. In the first case, we assume
that components are entirely black-box. Thus, completion-based model refinements
are not allowed to change the internals of the components (or its services). Instead,
completions attach wrappers to the components that delegate the same interfaces
(require and provide the same services as the original component) and include ad-
ditional quality-relevant details to the service specification. In the second case, we
assume that components are grey-box and their behaviour is captured on an abstract
level by a behaviour specification. Completions must not change a component’s be-
haviour with respect to its functionality. However, they may extend the behaviour
specification so that only its non-functional properties are affected. For example,
a completion can add a particular locking strategy to a critical section around a
component’s behavioural specification.

Connectors define communication links among components and model interaction
of components along these links. Additionally, the communication between remote
components can be configured through connector properties. A connector can have
a complex internal structure and implement non-trivial interaction logic. Therefore,
the connector layer can be viewed as a net of independent connector subsystems
connecting the components. The connector completions integrate independent con-
nector subsystems into the architecture. These connector subsystems do not change
the connector model from the view of interacting components. As such connector
subsystem could be considered as independent.

The hardware environment forms the system’s infrastructure and is typically under-
stood as a separate layer of a component-based architecture, underlying the compo-
nent assembly. Thanks to this, infrastructure completions integrate usage of services
provided by lower-layers of software stack, and hence allow to adjust the environment
independently.

After this resolution step is the resulting set of completions is minimized on comple-
tions applied by the same role to the same model element. Thus, we proceed to the
last level of conflict resolution.

3. Completion Dependencies Identification: At the end, we need to answer the
question ”What are the dependencies to other completions from the same conflict
space?”. From the previous levels, that already identified the roles and model element
types the completions enhance, we get a reduced set of completions. Further, we
need to identify their intersections (affected model elements) on instance level. At
this point a interaction with user is required, hence, the application of completion
is system specific from this point on. Users can generalise dependencies between
completions by definition of mutual exclusion or require relationships in a completion
specification in the time of completion registration. Our assumption at this point is
that remaining set of completions applied by the same role to the same instance of
model element is so small that it is possible to resolve the validity conflicts manually.

The presented approach allows to reduce and avoid model completions conflicts on a
model-level (Conflicting Model Elements Identification) or meta-model level (Roles and
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Responsibilities Separation). Thus, the complexity of conflicts is decreased (avoiding non-
determinism of conflicts similar as in graph grammars). The effort for manual conflict
resolution is minimised on a small set of model elements and the number of cases when
the resolution of validity conflict cannot be automated.

5.2.3. Method for Resolution of Completion Quality Conflicts

To allow the reasoning about completion order, we need to decide on the abstraction filter
that allows us to identify the preferred completion order, based on the evaluation of the
architectures resulting from the application of the completions. In our case, we employ a
performance-driven view on the system model.

Performance is a pervasive quality of software systems, everything affects it [173], from
the software itself to all underlying layers, such as operating system, middleware, hard-
ware, communication networks, etc. Within the domain of performance engineering, we
focus on the response time, throughput and resource utilization as the main quality prop-
erties. These properties can be related to the identified architectural elements as follows.
Components are characterized by the response time and throughput of the services they
provide, and partially by the resource utilization during their execution. Connectors are
characterized by the response time of the communication over the connectors, and the
throughput and utilization of the link they employ. The infrastructure is characterized
by the utilization of the resources that form the infrastructure. The contribution of this
section is then the examination of the order of completions in a completion chain, which
could be optimised and used to improve the design of future system or for fine-tuning
quality attributes of the system during development.

For the domain of component-based performance models, this section defines the quality
function Q employed by the heuristics for the resolution of completion conflict, and justifies
the locally-oriented definition of a completion conflict. The justification is based on the
understanding of performance interdependence of completed model elements. Finally,
the observations are compiled into a method of completion order definition and conflict
resolution within this context.

5.2.3.1. Quality Heuristics

In the following, we study the performance semantics of completions based on the quality
heuristics for the completed elements. The performance semantics of a completion is
defined as the completion’s impact on the completed element’s performance (observation
of a decrease in response time or utilisation, and an increase in throughput has a positive
impact on a performance). To this end, we define quality functions used to evaluate
different completions. We specify three quality functions for the three model elements
that can be annotated with completions in component-based architectures. These quality
functions specify heuristics for identification of a completion’s performance impact, based
on local evaluation. The exact performance evaluation with a global quality function would
in large-scale systems be hardly feasible. For our problem, the locally defined functions
(dependent on a single element) provide already enough information to decide about the
performance semantic of the completion even for large-scale systems. The completions are
locally applied (to specific model element) therefore this assumption holds. However, the
optimisation of system-specific changes is the focus of multi-variant optimisation, such as
[113]. In this work, we do not consider such change scenarios.

As defined in Section 5.2.3, the quality function Q : E → R quantifies the quality of system
components, connectors and the infrastructure, based on their performance impact, which
is under our performance abstraction the primary metric for our architecture. Note that,
the conflict definition relies on two simplifications, which are worth to be discussed. First,
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it relies on purely quantitative characterization of system model, not taking the resulting
model structure into account. The reason for this lies in the employed abstraction of
viewing the system model through its performance properties. Our experience shows that
if the structural changes introduced to the model are significant, then they either result in
an invalid set of model elements (and hence are detected during constraint checking), or
influence the performance properties of the model, and hence are detected with Q anyway.
Second, it localizes the conflicts only among completion chains executed on the same
model element e ∈ E, disregarding from the dependencies on other elements in E. Thus,
it provides only an indication (the accuracy of the values is not guaranteed) of the most
suitable chain based on the direction of the heuristic. However, because of the locality
principle our method provides a user with a short localised tests, which do not require to
run overall system analysis.

Let E = Ecomp ∪ Econn ∪ Einfra be the set of model elements representing components,
connectors and infrastructures identified in system model. Then, the quality function
Q : E → R is based on the type of its argument. The positive semantic of this function is
in the direction of smaller values and is defined as follows.

Component Quality Function:

∀e ∈ Ecomp : Q(e) =
∑
si∈S

rt(si)

thp(si)
,

where S is the set of services provided by component e, rt(si) is the mean response time
of service si, and thp(si) is the mean throughput of service si. We do not include service
utilisation of underlying system resources in the component quality function, because it
is highly dependent on the infrastructure level. This way we hold the quality function
independent of the remaining elements, while still characterizing component quality from
the user point of view.

Connector Quality Function:

∀e ∈ Econn : Q(e) =
rt(e)

thp(link)
,

where link is a communication resource (network) used by connector e, thp(link) is the
mean throughput of the link, and rt(link) is the mean response time of the communication
over the connector (round-trip), dependent on the communicating components. Note that,
this definition is independent of the usage of the connector by the connected components.
The connector usage is defined by the communicating components. Therefore their quality
function has to be defined before.

Infrastructure Quality Function:

∀e ∈ Einfra : Q(e) =
∑
ri∈R

ut(ri),

where R is the set of available infrastructure resources, and ut(ri) the mean utilisation of
a given resource.
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5.2.3.2. Interdependence of Model Elements

The three types of model elements are in component-based performance models under-
stood as layers, with the infrastructure on the bottom, connectors in the middle, and
components on the top. Based on this layering, the accuracy of performance prediction
is determined by the depth of information inclusion, starting from the component layer,
possibly including the connector layer, and sometimes even the infrastructure layer. This
implies the interdependence among the layers, which is with respect to performance com-
pletion only bottom-up. In particular, the components are completed independently of
the connectors and the infrastructure, connectors completions may be dependent on com-
ponents, and the infrastructure completions can be dependent on both the connectors and
components.

Thanks to the nature of completions applied to the different types of model elements (com-
ponents, connectors and infrastructure), which concern only the internals of the elements,
we can claim the completion independence between elements of different types. In other
words, having two elements of different types, e.g. a component ecomp and a connector
econn, we can decide independently of the most suitable completion chain for ecomp and
for econn. The order of choosing the completion chains for the two elements does not
matter. Within each layer, we can see relative independence of the elements (of the same
type). Having two components ecomp1 and ecomp2, where ecomp1 requires a service provided
by ecomp2, we may first need to resolve completion conflicts in ecomp2 to have enough in-
formation to decide on the optimal completion order for ecomp1. This is implied by the

quality quantification Q(ecomp1) =
∑

si∈S
rt(si)
thp(si)

defined over the performance qualities of

component’s provided services si ∈ S, i.e. rt(si) and thp(si), which are in PCM defined in
a parametric way based on the resource demands of the services.

At the connector layer, the connector usage is defined by the communicating components.
Therefore, completions of connectors could influence the decision on the component layer.
However, it only changes the ratio not the performance semantic of the completion. The
completion independence of connectors (occupying the connector layer) is guaranteed sim-
ply from the non-existence of direct connections between connectors, and thanks to the
nature of connector completions, which touch only the internals of the connectors. The
same argument holds for the infrastructure layer that consists of a set of resource con-
tainers or nodes. Completions applied to one resource container cannot affect completions
applied to another resource container.

This is however the issue only for component elements, which are interconnected via their
interfaces. Having the idea of component reusability in mind, we consider components as
black-box elements. Throughout the completion process we can take advantage of these
component-based properties. Additionally, the components use the services (e.g., commu-
nication link) provided to them by connector. As such we first optimise the components
and only later connectors completion chain. Connector elements are independent due to
their nature of not relying on the rest of the architecture, and there is always only one
infrastructure element, hence having nothing to be in conflict with.

Based on the above, we adopt the following order of completing the elements in a system
model:

1. Component layer:

Components are independent of all elements in the remaining two layers of the system
model (connectors and the infrastructure), but are dependent on the components required
by their provided services. To evaluate the quality of the services, we first need to know the
quality of required services that hence need to be completed and evaluated first. For this
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reason, we first connect the components into a call tree (starting in the user interface), and
then complete the components in a bottom-up fashion, starting from leafs and finishing in
the root. If the call graph contains cycles, then the completion orders for the individual
components can be detected in an iterative way, starting with a seed of random (but
valid) completion chain for each component, and iteratively optimising the dependent
components, propagating the already computed performance values from the previous
iteration.

2. Connector layer:

Connectors can be completed independently of each other. They may however be influ-
enced by the component elements whose communication they mediate. Therefore, the
completions of connectors should follow after the completions of components.

3. Infrastructure layer:

Last, the infrastructure completes the target model. The infrastructure provides physical
services for connectors and components (such as middleware). So it represents the lowest-
level details that should be added to the model last. Therefore, we apply infrastructure
completions in the order from the highest to the lowest layer of software stack.

5.2.3.3. Conflict Resolution for an Individual Element

In the ideal case, the completion set CS intended to be applied on a model element e ∈ E
is not conflicting. Then, we can choose any valid completion chain (permutation order)
over CS, and apply the completions according to that order. If it is not the case, the idea
behind the method of conflict resolution (chain selection) is the following.

If a completion set CS is conflicting, then we select the completion chain cc over CS with
the minimal value of Q(cc(e)) (with the best performance) and return it as the result
to the software architect. This is a suggestion to the software architect. He/She can
choose between proposed completions chains with defined performance semantics (increas-
ing/decreasing performance), however, possibility to change the completion order depends
on the chains supported by the used platform. The completion-chain selection problem
can be understood as a single-criteria optimization of completion-configuration order with
constraints. The constraints define the architectural validity of the configuration order
(completion chain) for the given model element, and the objective function is given by
our quality function Q that is minimized. Existing algorithms can be employed to solve
this problem, including popular heuristic-search techniques, which traverse the space of
all candidates (permutations of the given completion set) taking the constraints into ac-
count (excluding invalid completion chains), and search for a (near-)optimal candidate to
minimize the quality-function value.

Pivot Element of a Transformation If vji yields not only a single model element but
a set of model elements, we identify the element that resembles the starting point of the
next transformation, i.e., the pivot element of a transformation. We assume that, for each
completion that is to be applied in a chain, its pivot element has been defined explicitly.
In the following, we describe the rule of thumb how the pivot element of a transformation
can be identified for component, connector, and infrastructure completions.

• Component Completions build a hierarchy of wrapped components. Thus, the next
completion is to be applied to the highest wrapper in this hierarchy. The pivot ele-
ment of a component completion is the outer wrapper introduced by the completion.
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• Connector Completions always consist of an operation and its inversion (e.g., mar-
shaling and demarshaling). Both operations are (or can be) represented by separate
components linked by a newly introduced connector. This connector is the pivot
element of the connector completion.

• Infrastructure Completions affect multiple connectors or components in one con-
tainer. The container itself is never changed and thus remains a constant pivot
element.

5.3. Completion Library: Concurrency design patterns

Predicting the performance of software systems is especially challenging if software com-
ponents communicate based on a complex interaction pattern. Such interaction is defined
by concurrency, message-based communication, and synchronisation patterns. In the fol-
lowing, we investigate some of these patterns. We discuss the integration of performance
abstractions in a form of completions on the place of connectors or to enhance components
or connectors. First, we discuss the group of concurency design patterns in general. Sec-
ond, we give examples of completions in each sub-group of patterns. We motivate each of
the introduced examples and further discuss its feature diagram and sketch the skeleton
design of the completion.

5.3.1. Motivation

Parallel programs are generally complex, hard to understand and rise implementation and
modelling effort. Lee [107] discussed the problems and complexity of parallel programs.
Despite all the difficulties, the deployment of concurrency concepts in software systems
is the most important possibility to increase performance. To simplify implementation
and modelling of parallel software is one of the most important questions of software
engineering.

Today, in the world of multicore processors, the development of parallel software is more
and more important. The threads and processes could be divided between available cores
and allow efficient usage of the underlying hardware [155]. Software developers and soft-
ware users get double (at least in theory) computation power by adding a second core.
Similarly, the performance should rise by processors with four or eight cores. However, this
promised performance increase it is not for free. Programs running on multicore processors
have to be specifically structured to use the promised advantages. The whole architecture
should allow for the computation or whole parts of architecture to run in parallel on the
available cores. So the software architectures should be designed using parallel structures.
Although, introduction of parallel execution promises increase in performance, the devel-
opment effort for this increase is high. Additionally, in some cases the performance increase
is not so big as expected. Therefore, it is important to test influence of concurrency on
performance in advance. Design-time prediction of performance with concurrency allows
software architects to make good decisions and identify where introduction of concurrency
is necessary to increase performance and where the increase of performance would be too
small in comparison to required development effort.

In the area of performance prediction the models of parallel software are very complex as
well. For accurate prediction detailed models are necessary. Such models include already
expert knowledge and low-level implementation details. Often creation of such models in
early design time is impossible or only realisable with a lot of effort. The main idea to
solve this problems is to simplify and refine performance predictions with help of model-
driven performance completions. Sutter and Larus [155] already identified the need for
higher abstractions for concurrency and in this way to simplify the development of parallel
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programs. This could be done with a help of model constructs, such as completions, that
encapsulate the knowledge about behaviour and performance parameters of concurrency
design patterns. The design patterns for concurrency reduce the complexity, make the
systems more understandable and modelling simpler. Hence, design patterns describe
generic solutions for known software design problems. This way they help developers to
design more effective and robust software.

Even though it might be known that a certain pattern influences the quality of a system
[143, 51], the extend of the effect in a certain scenario is unknown. Furthermore, a de-
sign pattern may affect several quality attributes. For example, replication increases the
availability of a service, but does not impact its performance directly. If multiple patterns
are combined to enhance quality, synchronise components, or ensure data consistency,
their overall effect cannot be assessed manually. Schmidt et al. [143] described the most
important design patterns for parallel software. They identified service configuration, ser-
vice call, event-management, concurrency and synchronisation as most important tasks
for design and implementation of parallel and distributed systems.

In this chapter we analyse concurrency design patterns based on their applicability in
component-based architectures. Furthermore, for some of them completion construct are
introduced and integrated in PCM. We use model-driven performance prediction tech-
niques to evaluate the influence of concurrency patterns on the quality of a software ar-
chitecture. Additionally, in the following section, we apply our approach for completion
conflict reduction to concurrency design patterns.

5.3.2. Categorisation of concurrency design patterns

In our approach, we simplify the design and the development of concurrent software
architectures by completions for concurrency design patterns. We provide predefined
parametrized performance completions based on a knowledge about concurrency design
patterns and their implementation details. In general, design patterns provide enough
information to allow accurate performance predictions. Patterns for concurrent and dis-
tributed systems address multiple aspects, such as synchronisation, communication, and
Quality of Service (QoS). For example, the patterns MonitorObject [143], Thread-Safe
Interface [143], Guarded Call [51], and Rendezvous [51] provide different means for syn-
chronisation and communication. Patterns like Half-Sync/Half-Async, Leader Followers,
Reactor, and Proactor as described Schmidt et. al. [143] are used in servers to efficiently
dispatch and process concurrent requests. Furthermore, Replication and Load Balancing
are employed to enhance different QoS attributes in distributed systems.

We apply the conflict reduction method to this group of design patterns. For this purpose,
we categorise the design patterns in the conflict groups using the levels of conflict reduction
introduced in Section 5.2.3. The categorisation of design patterns based on a development
roles and their responsibilities separation builds the basis for reduction and avoidance of
conflicts. Additionally, based on this categorisation software developers can select suitable
patterns for certain problem domain without detailed knowledge about their structure.
DWe categorised concurrency design patterns according to the development roles, that
most likely will use them (see Table 5.1).

Component Completions: The category Component Developer includes patterns used
for a definition of basic thread-safe components. These patterns solve the issues related to
parallel usage of the component provided service, for example, data inconsistency. Here,
the patterns supporting data concurrency so that task could be executed in parallel on all
elements of the same data structure. This type of concurrency is called data concurrency
and especially patterns for synchronisation deal with this type of concurrency.
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Event-based 
communication 

Synchronisation Concurrency Message-oriented 
communication 

Component Developer 

Scoped Locking 
 

Strategized Locking 
 

Thread-safe Interface 
 

Double-checked Locking 
Optimisation 

 
Rendezvous/Barrier 

Thread-specific  Storage 
 

Monitor Object 
 

Replication 

Messaging Endpoints 

Software Architect Asynchronous 
Completion Token Pipeline 

Message Channel 
 

Message Routing 
 

Message Endpoints 

System Deployer 

Reactor 
 

Proactor 
 

Acceptor-Connector 

Active Object 
 

Half-Sync/Half-Async 
 

Leaders Followers 
 

Thread Pool 

Message Bus 

Table 5.1.: Roles and Responsibilities Separation: Mapping design patterns to develop-
ment roles.

Connector Completions: The category Software Architect consists of patterns for spec-
ification of component interactions, such as coordination and optimisation of communi-
cation between components. It is so called pipeline concurrency, when data should be
handled one after other by a number of tasks, where parts of the data could be handled by
different tasks at the same time. We can distinguish linear (Pipe and Filter), non-linear
(Pipe and Filter Pattern with Distributors and Aggregators) or special (Producer/Con-
sumer Pattern with synchronisation) types of pipeline.

Infrastructure Completions: The category System Deployer subsumes patterns that
are used to build middleware platforms for concurrent software systems. For example, the
concurrent processing of requests by an application server can be realised by a Leader/-
Follower pattern. So called task concurrency patterns in this category are allowing that
some task could be executed in parallel, that mean the task will be executed in a number
of threads.

There exist many different parallel patterns, in this work, representants of these patterns
were chosen and completions were specified for them.

5.3.3. Component Completions

The first group of the completions is defined based on design patterns that affect model
elements describing component behaviour. These patterns complete behaviour by inte-
grating new actions (e.g. external call, acquire or release) into the component’s control
flow, or they create wrappers around the completed component and delegate its interfaces
so that the change of the component is externally invisible (e.g. Replication pattern or
State Manager). For example, all design patterns for synchronisation and thread-safety
belong to this group, e.g., Locks, Monitors, State Managers or the Barrier pattern. In the
following, we evaluate the Replication pattern and introduce completion for this pattern.

5.3.3.1. Replication Completion

We analysed replication completion in [34], where we created a model of this completion
and provided simulation experiments using different configuration options of replication.
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This section is based on results of these experiments.

Motivation

There are two purposes for replication, thus having multiple component instances of one
component: improving a software system’s performance and reliability. The goal of repli-
cation is, first, improving response times for incoming requests, as these can be assigned
to different replicas, in effect handling several requests in parallel, and second, improving
reliability, by assigning the tasks of failed replica to one of its identical copies.

Front-End
Managerclient

Server

Server

Figure 5.2.: Replication Pattern.

In Replication pattern (cf., Figure 5.2), the clients send their requests to, and also get their
responses returned from, the Front-End Manager only. How their requests are handled
by the Front-End Manager and the replicas is transparent to the clients. A Front-End
Manager can provide shorter response times for its clients by distributing the incoming
requests among the available replicas. When the Front-End Manager receives a request
from a client, it multicasts this request to all replicas. The replicas process the request,
and send a reply back to the Front-End Manager, which in turn gathers the replies and
selects a final response for the client.

There are two basic modes of request handling: active replication and passive replication.
When all redundant replicas process each request, we call it active replication, or the
requests are directed only to a single replica, and the other servers act as backup, then we
call it passive replication. The second mode is sometimes called primary-backup replication
[147]. In contrast to active replication, there is only one primary replica. It is the only
replica that gets the request from the Front-End Manager, and also the only replica that
sends a reply. This reply is sent back to the Front-End Manager and additionally to
the other replicas. The other replicas just update their state to keep the entire system
consistent. Replicas may be stateful or stateless. If stateful, after a change in one replica
has been detected, all other replicas must be updated to ensure consistency.

Replication Completion: Feature Diagram

Further, we studied quality effects of replication with the goal to extract feature diagram,
which builds a basis to implement replication completion. Replication intuitively improves
reliability. Additionally, load-balancing can improve performance between number of repli-
cas.

However, because of a huge amount of routine work (e.g., copying) when modelling replica-
tion the cost of the model may increase and maintainability may be decreased due to higher
complexity of the model. Therefore, is especially important to automate replication mech-
anism. However, while we identified that replication configuration (except replica count)
has very minimal impact on performance, there is still a lot of effort needed to create
models of replication, especially because of changes of topology and needed copies of a
large number of elements. Therefore, we created a completion that automates this effort.
Impact on performance of this completion is evaluated in following.
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Based on the domain analysis, we identified features influencing performance and created
feature diagram for replication completion. The feature diagram (cf., Figure 5.4) contains
all configuration options, which we assume to have an influence on the quality properties
of a system.

In replication feature diagram the Replica Count property defines how many identical
copies of the component, which is to be replicated, should be created. The results of
the simulations reflect the benefit of balancing system load among replicas in real-world
systems. The system is able to generate answers faster, the more replicas are available,
which is shown by the averages and medians of the response times, as seen in Figure 5.3
(i.e., voting 1 to 5 active replicas).

The more stress the usage scenario puts the system under, the more clearly you can see
how the system scales. Considering the minimal usage scenario, the addition of a replica
to the system makes not much difference. For the balanced usage scenario, the advantage
of additional replicas begins to show. Compared to a system using a single replica, one
with five replicas can generate a reply in less than half the time. Eventually, the system
response time is noticeably reduced for the demanding usage scenario, demonstrated by
the system becoming almost 4 times as fast the more replicas it has available.
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Figure 5.3.: Random Load Balancing: Graphical comparison of the response time averages
for three differently demanding usage scenarios.

From the identified options, Load Balancing and Replica Count are straightforward addi-
tions. Which replica is chosen to process a request can be decided for every single request,
or for all requests per client. We model the per-request choice only. Different strate-
gies for the load balancing decision are available, namely ”Random”, ”Round Robin” and
”First Available”. A Front-End Manager using the ”Random” strategy chooses one replica
randomly for each received request, which will then process it. While not optimal, this
strategy offers a significant increase in performance. With the ”Round Robin” strategy, the
Front-End Manager defines an order on its available replicas. Following this order, every
request is forwarded to the currently selected replica, and the next replica is selected, one
after another. With the ”First Available” load balancing strategy, a Front-End Manager
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assigns each client to a randomly chosen replica. All requests received from an assigned
client are then always processed by the same replica. In the case of the last two strategies,
the Front-End Manager needs to keep track of the current state of its replicas.

Uniform

First
Availaible Round Robin Random

Voting
Strategy

Multicast
Type

Replication

Load
Balancing

Legend
or
exclusive or
mandatory
optional

Basic ReliableN of M Prioritised

Replica
Count

Figure 5.4.: Feature diagram for the replication design pattern.

In the distributed variant of replication, a new resource container is created for every
replica of the component. These resource containers get the same processing resource
specifications as the resource container that contains the original component. We replicate
homogeneously (i.e., together with all components on it, leading to identical server replicas)
to make the system more manageable and the overview easier. On the other hand, if local
replication is chosen, the already existing processing resources are multiplicated inside
the original resource container. This is done as many times as the replica count option
specifies, so that every local replica has its own exclusive set of resources.

We also added the Voting Strategy to our feature diagram. We think the voting strategy
is a major factor for reliability. This becomes important for safety-critical systems, which
we also want to allow to be simulated. A common application of the ”N of M” voting
strategy is absolute majority voting. Taking a system with five replicas as example, an
absolute majority is achieved when three identical responses are returned, and the Front-
End Manager may already send the response to the client without waiting for the remaining
two replicas. However, we can support an arbitrary number of required answers without
additional effort. This may be of use for a system architect who needs less certainty
than a total majority, or who needs an even higher certainty of the correctness of the
gathered answers. The basic idea behind the rules for N of M voting is using a counting
semaphore, stopping the main execution thread until enough replicas have finished and
replied. Additionally, we need to insert a mutex, so that each thread can use the semaphore
exclusively, undisturbed from other threads. Otherwise, it would be possible that race
conditions occur. When evaluating the N of M voting strategy, we determined that the
number of required answers influenced performance. Factoring the influence of the replica
count into the voting strategy, both N and M are important options.

The choice of the multicast type concerns data consistency among replicas. When basic
multicast is chosen, nothing needs to be changed in the models. In this mode, requests are
forwarded from the Front-End Manager to all replicas without taking any steps to ensure
data consistency.

Reliable multicast, however, is implemented using acknowledgements in actual systems.
A replica sends an acknowledgement back to the Front-End Manager when it received a
request. The Front-End Manager can thereby verify that all replicas received the request
successfully. Therefore, acknowledgements improve the reliability of the communication
between the Front-End Manager and its replicas, at the expense of increased network
traffic. We can model this by adding the usage of a network resource, while changes to
other models are not necessary.
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Replication Completion: Completion Design
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Figure 5.5.: Replication Completion Skeleton.

In PCM a component instance can be replicated in two ways: first, on the assembly layer,
i.e. a component instance in two different contexts is composed to build the system; sec-
ond, on the deployment layer, i.e. a component instance is mapped to several deployment
contexts. The replication on the deployment layer is invisible in the systems structure.
Therefore, software (e.g., parallelizable software) that could gain advantage from the repli-
cation can not be tested for it properly. Another point about deployment layer replication
is that all the replicas are actually copies, concerning the functionality, quality properties
and deployment environment. The replication on the assembly layer does not implicitly
mean this level of equality between replicas. In some scenarios where, for example, the
most performant replica has highest priority, it is appreciated when this information prop-
agates to the system architect as well. Therefore, we implemented only the replication
on assembly level, anyhow, it is conceptually very similar to realise replication on the
deployment level.

When a component should be replicated, first, a Front-End Manager component is inserted
into the system (cf. Figure 5.5). Second, the replicated component is copied a number
of times, as defined by the value of the replica count. Front-End Manager shall manage
the requests that formerly were sent to the replicated component directly, therefore, it
provides the same interface as the replicated component. Furthermore, the Front-End
Manager requires the same interface a number of times, determined by the value of the
replica count, so that it can forward the requests to the replicas.

In the system diagram, the replica count determines how many replicated components
and connectors to them are created. Furthermore, the replicated components can require
services from other components. We can deal with these required components twofold:
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first, all the required components as replicated too; second, only the selected component
is replicated. In our solution, all components that provide a service used by the replicated
components are replicated as well, such could become a bottleneck for the system, if they
resided on the original, local resource container. Without replicating these components
as well, each would be accessed by all replicas concurrently, provoking system overload.
However, we assume that there is small number of these required components (not more as
two) and we replicate only components originally located in the same resource container.
This approach, however, should be further evaluated, which is out of scope of this work.

Another important point is that we can replicate these additional components without
additional changes, because all components are originally stateless in the PCM. Would they
be stateful, we would have to ensure synchronisation and data consistency via additional
constructs. The stateful extension of this completion is required at this point, similarly
as it was done of the MOM completion in Section 7.2.1, this is part of the planned future
work.

Based on the option distributed or local for the replica location, a new resource container
is created for every replica of the component or the already existing processing resources
are multiplicated inside the original resource container. This is done as many times as
the replica count option specifies, so that every local replica has its own exclusive set of
resources. The created resource containers get the same processing resource specifications
as the resource container that contains the original component.

The voting strategy is simulated with the passive resource of capacity equal to the required
number of replies from replicas. Each replica releases the passive resource when finished.
The Front-End has to acquire the whole capacity of this resource before sending reply to
the client. Thus, the waiting for the replicas to finish is simulated.

The load balancing strategy is simulated by a probabilistic branch where number of
branches is determined by the value of the replica count. In each branch one replica
is called. The model of ”Random” strategy is straightforward, for example, when we have
2 replicas each of the branches gets the probability of 50%. The model of ”First available”
and ”Round robin” requires stateful extention. However, because experiments [55] showed
a little difference between these strategies we model these strategies with similar model
as for the ”Random” strategy. For exact model of these strategies we plan the stateful
extention in the future.

Replication Completion: Summary

We identified the features of replication that are included in the feature model and modelled
with the means the PCM provides. These features were evaluated on a relevant impact on
performance of a simulated architecture. Additionally, we implemented a completion in a
form of feature model with related transformation fragments.

The future work for the replication completion includes to evaluate the other alternatives
to active replication, such as passive replication with a primary replica or stateful replicas.
Another area for future work is modelling and evaluating local replication. This should be-
come possible once the implementation of multicore support in the PCM is completed, that
means utilising multiple processing resource definitions of the same type in one resource
container.

5.3.3.2. State Manager

We analysed the stateful components and implemented stateful extension to the MOM
completion, which is further explained and validated in Section 7.2.1. This completion
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was then implemented using the technique introduced in Section 7.2.1 and resulting trans-
formation is evaluated in Section 7.2.3. In this section, we introduce necessary changes
and extensions to the PCM allowing modelling of stateful components. In Appendix A, we
further discuss stateful performance engineering and related concepts. Because this com-
pletion is not an explicit construct available to the users, a State Manager is in current
PCM used only as extension of existing completion, we do not introduce a feature diagram.
The reason for this decision (in PCM) is the possible complexity of stateful models that
would be allowed, if the stateful concepts were available explicitly.

Motivation

In the following, we give an example for the influence of state on software performance
which is taken from the area of message based systems. In particular, we are interested
in the delivery time (time from sending a message until it is received) of messages send
within a transaction. Messaging systems, which implement the Java Message Service
standard [74], explicitly support transactions for messages. The transactions guarantee
that all messages are delivered to all receivers in the order they have been send. To
achieve such a behaviour, Sun’s JMS implementation MessageQueue 4.1 [1] waits for all
incoming messages of a transaction and, then, delivers them sequentially. Figure 5.6 shows
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Figure 5.6.: Time series of a transaction with 1000 messages per transaction set.

the measured delivery times for a series of transactions with 1000 messages each (the sender
initiates a new transaction (as part of a session), passes 1000 messages to the MOM, and
finally, commits the transaction). All messages arrive within the first 0.4 seconds and are
delivered sequentially within the next second. This behaviour leads to delivery times of 0.4
seconds at minimum. The delivery times grow linearly until the transaction is completed.
In this example, the position of a message in the transaction set determines its delivery
time. Thus, the measured delivery times are not independent and identically distributed
but strongly depend on the number (and size) of messages that have already been sent. As
a consequence, to predict performance accuratelly we need to keep track of the messages
that are part of a transaction. Additionally, the periodical utilisation of resources (e.g.,
CPU) influences performance. To model such a behaviour, we need a notion of state as
part of our performance model.
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State Manager: Completion Design

In the MOM Completion introduced in [76] the transactional delivery is not supported,
because of requirement on the PCM that prohibits to use stateful components because of
complexity issues. We decided to extend MOM Completion so that the usage of stateful
components will be hidden. The Statefull Manager will be inserted by the transformation
into the target model as an wrapper around previously stateless component. This wrapper
will then manage calls to the methods of the component based on the state value.
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Figure 5.7.: MOM Completion Skeleton for transactional delivery.

We extended the component behaviour model of the PCM (the SEFF) to allow the mod-
elling of component internal state. With this extension, also system specific global state
(cf. Appendix A) can be modelled by adding a blackboard component that makes its in-
ternal state available to other components in the system. Only two additions to the PCM
metamodel are required to model component internal state and global system state. First,
we declare a set of state variables for a component. Only a declared state variables can
be used within a SEFF. Second, we add a SetStateAction to the SEFF, which allows to
set the state variable to a given expression. Input data of the SEFF, other state variable
values and the previous state variable value can be used in the expression. Now, the state
variable can be used in branch conditions or resource demands as a parameter. The use
of PCM Stateful extension is illustrated in section 7.2.1.

Figure 5.8 illustrates the PCM extension. Assume a Component A processing data. It
performs clean-up task after each Megabyte of processed data. Thus, it keeps track of
the amount of data processed. In the model, we store the limit of 1 MB in a component
parameter named dataLimitInMB.VALUE, defining component configuration state. We
declare a state variable processData.VALUE and initialise it with the value 0, defining
component internal state. The SEFF of the component is shown in a state-chart-like
notation in the figure. First, we modelled a SetStateAction to add the currently processed
amount of data (available as inputData.BYTESIZE) to the processData.VALUE variable.
Then, the data is processed in the InternalAction process. We omitted the resource
demands for brevity. After processing the data, we check whether a clean-up is required in
the BranchAction. If processData.VALUE >= dataLimitInMB.VALUE, we do the clean-
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<<SetStateAction>>
processedData.VALUE = 
processedData.VALUE + 

inputDate.BYTESIZE / 10^6

<<GuardedBranchAction>>

processedData.VALUE >= 
dataLimitInMB.VALUE

processedData.VALUE < 
dataLimitInMB.VALUE

<<InternalAction>>
cleanUp

<<State>>
processedData.VALUE = 0

<< InternalAction >>
process

<<ComponentParam>>
dataLimitInMB.VALUE = 1

<<SetStateAction>>
processedData.VALUE = 
processedData.VALUE - 
dataLimitInMB.VALUE

Figure 5.8.: Example stateful SEFF.

up of 1 MB and set back the state to processData.VALUE - dataLimitInMB.VALUE. The
second branch is empty.

State Manager: Summary

An extended PCM model can be analysed with the extended version of the SimuCom
simulation presented in [18] to obtain the performance metrics. At simulation runtime,
each component is instantiated and holds its state variables. When a SetStateAction

is evaluated, its expression is evaluated and stored in the state variable. If BranchAc-

tions and InternalActions access state variables, the value is retrieved. The extension
increases the expression power of SEFFs and allows programming, although the language
does not become Turing complete (all loops are bounded). As multiple requests to the
system are analysed concurrently, we can encounter race conditions and resulting unex-
pected behaviour. In our example above, race conditions are excluded because the branch
condition and SetStateAction are evaluated in the same simulation event (no time passes
in simulation). However, in general, if a resource demand is executed between reading the
state in a BranchAction and setting the state in one of the branches, both actions are
executed in separate simulation events. Here, a second request to the component could
read or change the state in between, leading to race conditions.

With the extended state modelling, steady-state behaviour is not guaranteed any more.
While this limits analysability, it also can help to detect problems in a software design.
For example, assume a system service that becomes the more expensive the more requests
have been served. Then, the response time of the system will ever increase (’The Ramp’
antipattern [147]) and no steady state can be reached. With the extended state modelling,
this performance antipatterns can be detected in the simulation results.

5.3.4. Connector Completions

Assembly connectors [165, 12] are the most complex type of model elements that can be
enhanced by completions. For connectors, several performance completions can be applied
on one connector instance so that their order has to be determined.

The first kind of completion provides details about the type of the connector, i.e, whether
it is 1:1, 1:n, or n:1. Connectors of type 1:1 are typical message passing or RPC style
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Figure 5.9.: Connector Middleware Completion [76].

connectors which connect a single client component instance to a single server component
instance. In case of 1:n connectors, a single client component sends requests to a set of
server components which is semantically the case for server replication scenarios or voting
based server queries. Finally, n:1 connectors are the usual case of n clients instances talking
to a thread-safe server instance.

Orthogonal to the type of the connector, connector performance completions also include
details about the processing of the communication (synchronous or asynchronous) in the
participating middleware layers as illustrated in Figure 5.9 [76]. Here we find services for
message marshaling, message encryption, call authentication, message compression, etc.
For these types of message processing steps, existing performance completions insert a
completion component for each processing step. However, the order of these services is
important because of the differences in the data flow involved. For example, the size of the
message to be sent over the network is different if the message’s body is first encrypted and
then compressed versus an initial compression followed by a subsequent encryption step.
Hence, for the processing steps the order of application of a set of performance completions
does matter and needs clarification. We analyse this issue further in Section 7.2.2.

Connector completions rely on introduced components which reflect the performance re-
lated behaviour of the used middleware. As a consequence, these middleware components
implement both, the resource demand caused by the middleware’s processing but also the
data transformations they perform on the message to be sent over the network. Note, that
in some usecases the size of the message is not of major interest for the overall perfor-
mance of the network link. In such cases, the data transformations become neglectable
and consequently also the order of applying the corresponding performance completions
does not matter any more.

As a result of the discussion of connector completions, we can conclude that we need
at least two types of annotations. The first annotation class determines the connector
kind and defines the exact implementation semantics of 1:1, 1:n, and n:1 connectors, e.g.,
whether voting or replication is used for a 1:n connector. The second class of annotations
defines the pre- and post-processing details of the messages used by the connector for
remote communication. Here, the annotation gives details about marshaling, encryption,
compression, etc. A clear definition of the order in which such completions are added to the
performance model is necessary to get accurate performance predictions from the refined
performance model. This section gives details on how to build more complex connectors,
based on an abstraction inspired by Pipe&Filter pattern.

5.3.4.1. Pipe&Filter Connector

In this section, we present the architecture of performance abstractions for connectors, the
feature diagrams we developed and finally the architecture we implemented in transfor-
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mations for the PCM. This section is based on our work presented in [119].

Motivation

Because, we aim to model only performance abstractions of connectors we can abstract
from the functional details and concentrate on the performance-relevant dependencies. In
general, from a performance point of view connector is a chain of components producing
a load dependent on the size of data to send. The exact functionality of connectors is
not of the interest for the performance prediction. Therefore, it is possible to model
connector as a chain of activities whose performance determines the performance of the
whole connector. The performance of the connector then depends only on the properties of
transferred data (such as data bytesize). In such highly abstract connector model we can
simplify connector on two types of activities: buffering of transferred data and computation
or I/O activities with the data. Which is very similar to the Pipes & Filters pattern, which
is an architecture pattern for data stream processing systems. The connectors’s task is
then divided into several independent incremental processing steps (filters) connected by
pipes, altogether forming a pipeline.

Pipe Filter Pipe

Server RoleClient Role Processing Step

Figure 5.10.: Mapping the connectors on the abstractions in the performance model.

In our case the scope will be connectors and their tasks. We will use pipes and filters to
model connectors which in turn are assembled using basic constructs provided by PCM.
The main advantage would be high level of abstraction and low-complexity of the composi-
tion of independent tasks in connector. We build all the connector variants from the basic
constructs, e.g. pipes and (active/passive) filters. The connectors will be variable con-
sidering non-functional properties and other aspects of communication. The advantage of
our approach is that we need to compose multiple instances of two simple building blocks
(pipe and filters) and calibrate them with performance data. In addition, our approach to
build performance abstractions of connectors simplifies the generation technique because
it is enough to have a few of reusable fragments of transformations (in our case three: pipe,
active and passive filter) that could be composed to generate the connector (cf., Figure
5.10). The connectors we modelled within the PCM are based on [30].

The settings in which a particular connector can be used are determined by its topology.
Four different topology types can be distinguished [30] as shown in Figure 5.11.

The Procedure Call Connector features unidirectional communication from multiple client
components (c) to one server component (s). It operates in both a synchronous and
an asynchronous call mode. However, its influence on the performance is significant,
the communication of multiple client components with a single server component (n:1
relationship) can be modelled.
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Figure 5.11.: Connector Layout.

The Messaging Connector has a typical star layout. In the middle there is the distributor
unit (d). A component can be connected as sender, receiver or both. It operates only in
an asynchronous mode.

The Streaming Connector comes in two variants. The Full Duplex implementation features
bidirectional point to point communication for two coequal components. The Half Duplex
variant limits communication to one direction with one writer component (w) whilst en-
abling multiple receivers/readers (r). As is the nature of streaming transactions they are
processed in an asynchronous mode.

The Blackboard Connector has a star shaped layout similar to the messaging connector.
In the middle there is the black board storage (bb). Every component is attached to the
connector by a provided and a required interface. Through the required interface it can
send write and read requests to the storage. Write requests are processed asynchronously
while read requests operate synchronously.Through the provided interface the components
can be notified about changes to the blackboard.

Pipe&Filter Connector: Procedure Call Feature Diagram

In the following, we introduce in more detail the structure of Procedure Call Connector.
The architecture of this connector is shown in Figure 5.12. The connector is divided in
two deployment units, one for the client and one for the server side. They are allocated
to the resource containers of their respective component. The simplest form is the point
to point connection from one client to one server, thus also featuring only one client and
one server deployment unit. In general, multiple clients are possible.

When considering the individual elements from which the connector (cf., Figure 5.12) is
composed, many of them can be mapped directly to the abstractions based using simple
pipes and filter components.

The client adaptor maps to a single filter in our model. Its resource demands are config-
urable over a feature diagram. The Stub, the next element of the connector, is a composed
element consisting of smaller tasks, from them the distributor and encryptor/decryptor
are of interest to us. In our model the encryptor/decryptor is also realized by a filter. The
distributor is resembled by a filter with multiple required interfaces. Its SEFF does not
contain resource demands, but chooses which required interface or interfaces the outgoing
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Figure 5.12.: Procedure Call connector architecture [30].

call shall invoke. The first element in the server deployment unit is the skeleton, which
is again a composed element and the counterpart to the stub. From its subelements the
encryptor/decryptor define a coupled pair of filters in our model. The synchronizer is used
to establish the beginning of a critical section. Usually it is used to guard code which is not
thread safe. In these cases the capacity for the critical section will be set to one. It is also
possible to choose another value if the resource, the critical section guards, has a higher
capacity. The next element manages transactions. This functionality is already covered
by the Middleware completion. In our model there is a placeholder which is referenced
by the transaction feature in the feature diagram. The server adapter and interceptor
are analogous to their client counterparts. The Interceptor implements the Monitoring
feature, which allows to interrupt passing calls. In our model it resembles a special filter
component with an additional required interface through which it sends the call before
passing it along down the connector. Intended for profiling (creation of statistics) the
interceptor can be used very flexibly, making it an all-purpose processing step.

Our feature model is shown in Figure 5.13. The node labelled target connections resembles
a list of all assembly connectors which are to be merged into this connector. As it can be
annotated with multiple values, it is illustrated as multi node. Only assembly connectors
of the same interface are allowed. The other multi node labelled synch/asynch configures
if calls should be performed in the synchronous or asynchronous mode. It does that for
each method signature within the used interface. It does only make sense to activate the
asynchronous mode for a method with no return value or if the return value is not used by
the callee. As soon as there is at least one method, operating in the synchronous mode,
some subtrees have to be duplicated. This is because the synchronous calls travel through
the connector twice. By duplicating the trees resource demands, worker pools, data size
changes and buffering capacity can be configured two times. Whenever a node and all of
its child nodes have to be duplicated it is indicated by a (x2).
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Figure 5.13.: Procedure Call Feature Diagram.

The server worker management subtree configures the buffering capacity of the last pipe
and if the server should be connected to the connectors worker management. By enabling
it, a BoundedSinkAdapter is used instead of the normal SinkAdapter. When it is dis-
abled, the buffer capacity has no effect on calls travelling to the sink, because it accepts
all calls instantly. However the second buffering capacity very well has effect on returning
calls. This is not reflected in the feature diagram, because it would have made the dia-
gram even more confusing. The critical section feature adds the synchronizer component
to the connector. When selecting it, the number of calls which are allowed to enter the
section has to be chosen. The transaction feature is set in grey because it refers to another
completion as mentioned before.

Filter (x2)

WP Sizeper
Method

Manual Lib

Resource
Demand

Bytesize
Modification

Buffer
Size

Figure 5.14.: Filter Subtree.

The adaption feature can be enabled for either the client, server or both. Deploying
both adapters may be necessary due to communication methods or the use of middleware.
Because the adapters are implemented by simple filters, the filter subtree (cf. Figure 5.14)
is referenced for both adapters. The fact that a node represents a subtree is illustrated
through a thicker frame. Per filter the worker pool size and the buffer sizes of the pipe
in front of the adapter have to be set. Also per filter the resource demand and byte size
change has to be configured for every method. It is possible to choose these from a library
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with predefined formulas. However the library is not supported by our work, but can be
retrieved from the work of Becker et al. [10, 14].
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Server
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Figure 5.15.: Coupled Activity Subtree.

Compression is a feature a coupled feature in the feature diagram (cf., Figure 5.13). The
feature node references the subtree for coupled activities which can be found in Figure 5.15.
It merges two filter subtrees into one, because some values appear twice. For example if
the connector operates in synchronous mode, the values (resource demands and data size
change) for the compression would be configured once for the first filter and again for
the second filter (for returning calls). The feature is implemented by simple filters and
is intended to reduce the size of the calls data before sending it over the network. When
it is enabled, it adds one filter to the client and one to the server deployment unit of
the connector. The worker pool size of these filters and the capacity of their pipes can be
configured separately, as shown in the coupled activities subtree. The compression method
can be either set manually or retrieved out of a predefined library. It can be configured
individually for each method which the connector supports. However we cannot support
such a library in the scope of this work, so the node is set in gray. Note that it is possible
to add special parameters to the call (e.g. entropy). These can be used in the compression
formulas to achieve a more accurate prediction than solely though data size consideration.
Middleware completions may contain compression completions. This has to be considered
by the connector completion developer, so that no conflicts between these completions
arise. The encryption feature is also realized as a coupled activity. The configuration is
analogous to that of the compression feature.
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Figure 5.16.: Replication Subtree.
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The replication subtree references the replication completion, which was already intro-
duced in Section 5.3.3. The replication and connector completions should be linked in the
Completion Library, so that they can be applied together and do not conflict. Compres-
sion, encryption and replication only make sense, if the connector is not located within one
resource container, because this means that calls have to travel over a network connection.
The connection quality feature is not included in our feature model. This is because the
architecture of the connector does not influence the connection quality. In the PCM the
connection quality is defined by the resource environment.

Pipe&Filter Connector: Procedure Call Completion Design

In the following, we discuss the structural elements creating completion skeleton. These
structures map the features introduced by the feature diagram. The architecture of the
full featured client deployment unit is shown in Figure 5.18. For the sake of clarity we did
not include the worker management. Each pipe is configured over the feature of the filter
to its right. The client unit fans out at the distributor. Exemplarily it is illustrated with
three outgoing interfaces. It is only contained, if replication is enabled; i.e. there is more
than one server.

Pipe

Pipe

Distributor

Filter

Filter

Figure 5.17.: Distributor Worker Management.

A more detailed view of how the distributor is connected to the worker management of all
adjacent pipes can be found in Figure 5.17. We called the filter which handles encryption
and decryption cryptor. It is possible for the client unit to be completely empty, if none
of its features are selected.
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Figure 5.18.: Procedure Call Connector Client Unit.

Figure 5.19 shows a fully featured server deployment unit. Each connected client unit
gets its own pipe. This has to be considered because the first processing step can vary,
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dependent on the selected features. The syncher marks the beginning of the critical
section. It takes the place of a pipe and its buffering capacity is determined by the feature
configuration of the following processing step. When operating in the asynchronous mode,
the SEFFs of the pipes which follow the syncher must not fork the call. However it may
be possible to shift the syncher in the direction of the sink as long as the single processing
steps are thread safe. The minimal server unit consists only out of the sink and its pipe.

Pipe

Cryptor

Pipe

SyncherCompressor

Pipe

Transaction
Manager

Pipe

Adaptor Interceptor

Pipe
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Pipe

Pipe

Client
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Figure 5.19.: Procedure Call Connector Server Unit.

Pipe&Filter Connector: Summary

In this section a connector completion (Procedure Call Connector), its feature diagram and
architecture design, was discussed. The concept of Pipe&Filter abstractions for connectors
simplifies the design of models. It provides an overall concept for composition of connectors
from simple building blocks suitable for performance prediction. The resulting connectors
model very accurately blocking effects (limitation of concurrency) in connectors, simple
asynchronous communication and when they are calibrated the predictions using these
models are very accurate (cf., Section 7.2.2). In addition, the transformations integrating
these connectors could easily reuse transformations fragments (cf., Appendix C).

5.3.5. Infrastructure Completions

Today, many applications (e.g., Web servers, Database servers) are designed to process
a large number of short tasks that arrive from some remote source (using for example
messaging, HTTP, FTP). In the case of server applications, processing of each task is
short-lived and the amount of requests is large. The infrastructure completions introduce
possibilities how to manage incoming tasks based on different threading models. We discuss
the performance of these models.

Thread-Per-Request model

A simple model to deal with incoming tasks would be to create a new thread each time
a request arrives and process the request in this thread. The Thread-Per-Request model
has a significant disadvantage in producing overhead when creating a new thread for each
request. A server will spend more time and consume more system resources creating
and destroying threads than it would processing actual requests. As a consequence the
cost of creation could significantly hamper performance. Additionally, each active thread
consumes resources (CPU, Memory). Too many active threads (in one JVM or Application
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Figure 5.20.: The generic configuration model of thread management strategies.

Server) could result in excessive memory consumption and the system could run out of
memory. To prevent such problems, applications need some means to limit number of
requests processed at the same time. The Thread-Per-Request model is suitable when
the frequency of task creation is low and the mean task execution time is high. However,
there are other ways how to support use of multiple threads within a server application,
as described in the following.

Single-Background-Thread model

Another common threading model introduces a single background thread and request
queue for tasks of a certain type, which is not suitable for long-running tasks or for
high-priority tasks where predictability is important. With the Single-Background-Thread
model executing of asynchronous I/O-intensive operations is difficult. Additionally, this
model is not optimal on multi-core systems because of its limited parallelizability.

Thread Pool model

The Thread Pool design pattern offers a solution to the problem of thread creation, man-
agement and destruction overhead, and the problem of excessive resource usage. The point
of the Thread Pool is to avoid creating lots of threads for short tasks. The Thread Pool
pattern reuses each thread for multiple tasks. This way the overhead needed for thread
creation is spread over many tasks. Additionally, because thread already exists when a
request arrives, the delay introduced by thread creation is eliminated and request is ser-
viced immediately. Thread Pools are widely used by many multi-threaded applications.
The main advantages are allowing processing to continue while waiting for slow opera-
tions such as I/O-intensive tasks, and exploiting the availability of multiple processors.
However, usage of Thread Pool deals with certain risks.

Thread Management: Feature Diagram

Based on the previous discussion, we extracted important performance-relevant features
of thread management in a form of feature diagram. These features summarize different
configuration options of the thread management implementation. The resulting feature
diagram is illustrated in Figure 5.20

The software architect has a possibility to decide between Thread-Per-Request, Single-
Background-Thread or Thread Pool model. The features in the Thread Pool subtree are
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described already in Section 3.3.2.4. For the Single-Background-Thread model is an impor-
tant configuration attribute the size of the request queue. These patterns have a prominent
impact on the performance due to its ability to limit the level of concurrency in the sys-
tem. The Thread-Per-Request model separates the processing of incoming and outgoing
requests and for each direction we can define a maximal capacity of the system. This
completion belongs to the infrastructure completions, for which we allow only one of these
completions per resource container, consequently, no conflicts are possible.

Thread Management: Design
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Figure 5.21.: The structural completion skeleton of Thread Management.

Dispatching and the management of threads are addressed by a set of patterns deal-
ing with thread management and the infrastructure’s support for concurrency. There-
fore, completions for dispatching annotate resource containers to which necessary compo-
nents can be allocated. From the perspective of performance prediction, these patterns
can be abstracted as variations of the Thread Pool pattern. We designed performance
component-based abstractions for thread management patterns: (cf., Figure 5.21) i.)
Single-Background-Thread : The abstraction realises synchronous communication. This
pattern could be abstracted as Thread Pool with a size of one thread for a client; ii.)
Thread-Per-Request : The pattern separates the processing of incoming and outgoing re-
quests. For each type there is a distinct pool of worker threads. Therefore, we can abstract
the pattern as incoming and outgoing Thread Pool couple with a size equal the capacity
of the system; and iii.) Thread Pool : The pattern abstraction is a version of a Leader-
Follower pattern where one particular thread takes the role of the leader and waits for the
next request. All other threads are either queued (i.e., followers) or processing requests
(i.e. workers). To model this pattern we can easily use one Thread Pool component with
a size equal the capacity of the system. The overview about the required changes (e.g.,
adding/removing components) of the model helps completion developer with later imple-
mentation. Therefore, he is required to first model per hand a completion skeleton for
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each feature and validate them. Based on these analysis he can choose appropriate ab-
straction and implement the change mappings. In Figure 5.21 the mappings are illustrated
by arrows. The semantic of these arrows is addition of the selected components, interfaces,
methods or values to the model.

Thread Management: Summary

In this thesis, we focused on the Thread Pool completion, which is used as a running ex-
ample. The validation of Thread Pool completion is provided in Section 7.2.1. In addition,
different implementation of the transformations integrating Thread Pool completion are
discussed in Section 7.2.3.

5.4. Discussion

In the following, we discuss the assumptions and limitations of the contributions presented
in this chapter.

Structured Metamodel

The strongest assumption of the introduced approach is that we expect the metamodel to
be designed with a certain structure in mind. However, the current state-of-art in MDSD
does not provide a standard set of best practices for metamodel design. Metamodels are
mostly designed on demand, without clear guidelines for design and in ad-hoc manner.
We showed that structured design of metamodel can support other engineering processes
using this metamodel language. Thus, we see here a great potential for future research.

Size of the conflicting set

We assume that the conflicting set after the conflict reduction is so small that it is possible
to resolve remaining conflicts manually. As the principle of separation of concerns already
divides different completions in a responsibility of different roles, thus, completions in one
group are semantically very similar, we do not expect a huge number of choices from a
number of completions for one role and one element. For example, it is not reasonable to
deploy one component using two different messaging middleware completions. Thus, it is
very likely that the remaining group of completions would be rather small.

Independence of model elements

We assume that independent enhancement of three element types (i.e., components, con-
nectors, infrastructure) in CBSE is possible. In particular, the components are refinable
independently of the connectors and the infrastructure, connectors refinement may be
dependent on components, and the infrastructure refinement can be dependent on both
the connectors and components. This assumption has to be further investigated. Con-
sequently, we have to investigate the sequences of the connectors and components, and
cyclic component interdependencies, which make the problem even more challenging.

The applicability of quality heuristics

The introduced heuristics quantify the quality of system components, connectors and the
infrastructure, based on their performance impact, which is under our performance abstrac-
tion the primary metric for our architecture. These heuristics give indications of resulting
performance increase or decrease in dependency on some attributes (e.g., bytesize). The
indications are results of local analysis of completion subsystems using standard tests.
Thus, the exact values would change for a different system or a different usage profile.
However, we assume that the performance semantic of the completion remains unchanged
and the local heuristics can provide enough information to build learned knowledge about
completions and support software developer’s decision about the order in completion se-
quence. To automate this decision further we need to employ automated optimisation
techniques, such as the PerOpteryx approach [113].
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5.5. Summary

In this chapter, we introduced a method to handle conflicts in a sequence of completions
and help software architects to decide on a suitable transformation order. The core of this
method is the structure of the completion library, where completion encapsulating expert-
knowledge can be registered. The completion library allows archivation and reuse of expert-
knowledge. In addition, the initial completions for concurrency design patterns build
guidelines that help software architects to create models of parallel architectures. These
design patterns are already important and very complex part of parallel programming
techniques and as such they are suitable as application domain for completion approach.

In the next chapter, we discuss the quality properties of model transformations integrating
introduced model abstractions.
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6. Model Transformation Analysis:
Evaluating Maintainability

In the previous chapter, we introduced the CHILIES approach based on HOTs. We used a
chain of HOTs to process and generate completion transformations. For the success of this
approach is critical that the elements (i.e. models, metamodels and transformations) have
certain quality characteristics. The main artefacts of MDSD are domain-specific languages
(e.g. specified by metamodels) allowing modelling on a higher-level of abstraction and
transformations supporting automated generation of different target models. The promi-
nent role of model transformations in MDSD requires that they are treated as traditional
software artefacts. The maintainability and ease-of-use of transformations is influenced
by various characteristics – as with every programming language artefact. Code metrics
are often used to estimate code maintainability, because, transformations, similarly as
traditional software artefacts, should be used by different development roles and reused
in different contexts, the understandability of transformations is of our concern. In this
chapter, we focus on the maintainability and understandability of M2M transformations.
We published the work about code metrics for M2M transformations and their evaluation
in the proceedings of QoSA 2010 Conference: Research into Practice - Reality and Gaps
[91]. This chapter discusses these metrics in the context of this thesis.

The leading challenge of this chapter is:

How to analyse maintainability of relational transformations?

Most of the established metrics do not apply to relational transformation languages (such
as QVT Relational) since they focus on imperative (e.g. object-oriented) coding styles. In
this chapter, we define quality metrics for relational transformations, which can be used to
analyse the structure of HOTs and completion transformations. Furthermore, we discuss
the connection between the transformation and the metamodel. The connection between
the transformation and the metamodel is called metamodel coverage and is specific for
transformations only, no similar property for traditional software artefacts exists.

The remainder of this chapter is organized as follows. Section 6.1 motivates our work
and introduces the context of metrics application. Section 6.2 discusses the problem and
general observations about the maintainability of transformations. Section 6.3 introduces
the maintainability metrics for M2M transformations and specifies the metrics using QVT
relational metamodel. Our approach uses the Analysis HOT pattern (see Appendix B)
to automatically compute the metrics for M2M transformations implemented in QVT
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Relational. The automated metrics collection is described in Section 6.4. Finally, Sections
6.5 and 6.6 discuss limitations and summarize the contributions of this chapter.

6.1. Motivation

Model transformations are often used to transform software architectures into code or
analysis models. Ideally, these transformations are written in special transformation lan-
guages like QVT [72]. With an observable increase in the application of Model-Driven
Software Development (MDSD) in industry and research, more and more transformations
are written by transformation engineers. Thus, an increasing set of transformation scripts
have to be maintained in the near future, i.e., they demand to be understood by other
developers, bugs need to be tracked down and removed, and enhancements need to be
implemented because of evolving source or target metamodels.

Today there are two main streams of model-to-model transformation languages: oper-
ational (i.e. imperative) and relational (i.e. declarative) languages. For operational
languages like QVT Operational, we can reuse existing literature about software code
metrics for imperative, e.g. object-oriented, languages. However, for relational model-
transformation languages like QVT Relational there is not even a comparable amount of
literature.

In traditional object-oriented software development, software metrics are used as a mean
to estimate the maintainability of code [17]. The estimated maintainability then indicates
when the code base becomes too hard to maintain. Software developers take corrective
actions like refactorings [58] or code reviews to keep the code in a maintainable state.
However, these metrics do not yet exist for relational model transformation languages.
Nevertheless, some initial research targets metrics for functional programming languages
in general like Lisp or Haskell. Being part of the same language family, some metrics
for functional programming languages can serve as a starting point for the definition of
metrics for relational model-transformation languages. In this work we draw upon their
ideas in defining our own set of metrics for model-transformation languages.

As an initial step towards estimating the maintainability of relational model transformation
languages, we present a set of metrics usable to get insight into the maintainability of
QVT Relations transformations. For this, we analysed existing metrics for functional
programming languages and combined them with general code metrics (e.g. Lines of Code
(LOC)) and complemented them with our own experiences from applying QVT Relations.
This set of developed metrics shall finally serve as a basis to judge internal transformation
quality and to guide the development of transformation refactorings or review checklists
(i.e., a list of bad smells to look for). The metrics are described in detail and their ranges of
’bad’ values are characterized including a rationale explaining which type of maintainability
problem the metric detects.

In CHILIES approach, we used QVT Relational to implement HOTs and completion
transformation (i.e., feature effects). Hence, we studied the metrics’ applicability and
evaluated QVT Relational transformations implementing model completions. This study
shows that understanding of relational transformations quickly turns out to be a difficult
task. The difficulties increase faster than linearly when transformation sizes increase and
single relations become more complex. As an reference example, we evaluated our metrics
on the standard model transformation example given by the QVT standard specification
[72]: the transformation from UML models to entity-relationship models to show that the
metrics (a) are computable and (b) give insight into the transformation’s internal quality.
The evaluation of the completions transformations and HOTs is described in more detail
in Section 7.2.3.
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6.2. Problem Domain

The goal of our work is to quantify the maintainability of model transformations. There-
fore, we start by defining suitable metrics in this context. We identified a lack of quality
metric definitions for relational transformation languages in the literature. Hence, we fo-
cus on model transformations created using QVT Relational (QVT-R), but we assume
that our metrics can be applied to model transformations created using other relational
transformation languages as well. The main observed difference between relational and
operational languages is the fact, that operational transformation languages describe a
sequence of statements to create certain output. In contrast, relational transformation
languages only describe the relations between input and output of a transformation in a
declarative manner, not the way how it is computed (non-determinism). This results in
special characteristics of relational transformation languages which have to be reflected by
the metrics to be defined.

General Observations on Maintainability of QVT-R Transformations:

QVT-R can be for example applied in e.g. transformations between languages, code gen-
eration and incremental or completion transformations. One main advantage of QVT-R
is its brevity and conciseness. In the QVT-R language, the structure of transformations is
mainly characterised by the interdependencies of its relations. On the other hand, relations
can be defined in a way so that they match overlapping sets of elements. Consequently,
this increases complexity in cases when a new relation is introduced and it is influenced
by other relations. For example, let transformation T be defined as a set of relations R,
R = {a, b, c, d}. Suppose we want to extend T with a relation e, but e depends on a result
of a and a depends on a result of both b and c, while c depends on d. Thus, we first need
to understand how relations a, b, c and d are related in order to correctly include e into the
transformation. In the case of more complex transformations, it is very hard to have all
dependencies in mind. Because of this net of dependencies, it is hard to say if a new intro-
duced relation conflicts with other relations or influences them in an undesired way. One
possible design of relational transformation could be clustering of relations that match or
create the same element (clustering of top-level relations). Furthermore, the identification
of possible execution paths, how long they usually are and what they depend on, is a very
complex task.

In following section, we discuss a collection of metrics for relational transformations. These
metrics give a quick insight in transformation quality. Additionally, because of the declar-
ative nature of the family of relational transformations we can define metrics to study
structure and dependencies between the fragments of the transformations. This tech-
nique can be easily built on the system of preconditions and postconditions defined for
each relation. The dependency data have various useful applications in the development
and maintenance of transformations. By identifying of dependencies between relations and
avoiding cyclic dependencies, the understandability of transformations may increase. Also,
undesired calls to relations or relations that are never called can be easily recognised.

6.3. Metrics Definition

This section introduces metrics for measuring the quality of model transformations cre-
ated using relational transformation language, such as QVT-R. For each metric, we give a
description, including a brief motivation. We also include the rationale behind the metric
giving insights in why we believe the metric indicates the maintainability of a transforma-
tion. Additionally, we include a way for the computation (if possible using QVT-R and
OCL) of the introduced metrics.
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6.3.1. Automated Metrics

In this section, we discuss the metrics derived for QVT-R that can be automatically
computed. We identified four categories: Transformation Size metrics, Relational metrics,
Consistency metrics and Inheritance metrics. In the following sections, we give the names,
descriptions and rationales of the automated metrics. Table 6.1 then gives the computation
directions using OCL for the presented automated metrics.

6.3.1.1. Transformation Size Metrics

The size of the transformation has an impact on the understandability of a transformation.
This metric for a whole transformation can be measured in several ways. The number of
lines of code, for instance, is a simple metric measuring the pure code size of a transforma-
tion. This is comparable to measuring lines of code in programming languages. Comments
and blank lines are also included in this metric. The number of code, comment and blank
lines can also be viewed separately. Used in conjunction with other metrics we can derive
valuable measures of a transformation, e.g. when compared to the number of top level
relations.

The number of relations is a metric that can be used to derive the degree of fragmentation
and modularisation of a transformation. Higher number of relations can be considered
better, as it is an indicator for a high degree of modularisation. A high degree of mod-
ularisation can support the maintainability of a transformation and also the reuse of a
transformation or parts of it. The number of top level relations gives a picture about the
independent parts of a transformation. A top level relation is a starting point for a transfor-
mation and can trigger the execution of other relations. An execution of a transformation
requires all top level relations to hold. The ratio of top level relations to non-top level
relations shows the rate between independent and dependent parts of a transformation.
An interesting metric is number of starts defined by the number of top relations without
when-clause. A higher number of starts increases the number of possible execution paths
and therefore makes the transformation less maintainable. The metric number of domains
expresses the complexity of a transformation dependent on the number of match patterns.
The number of domains predicates additionally gives information about the complexity of
these patterns. The number of when-predicates and the number of where-predicates defines
how complex the dependency graph between relations is.

The number of metamodels in a transformation has an impact on the complexity of the
transformation itself and its match patterns. The size of the metamodel (defined by a num-
ber of classes) on which the relations match elements might also have a great impact on
the structure and therefore on the understandability and modifiability of the transforma-
tion. The larger the metamodel the larger the set of possible instances of this metamodel.
Therefore, more combinations may have to be considered in the match patterns of the
relations.

6.3.1.2. Relational Metrics

The size of a transformation relation can be measured in different ways. The OMG spec-
ification of QVT states that a relation has one or more domains and that every domain
has a domain pattern that consists of a tree of template expressions. The size of a re-
lation can be expressed in terms of its number of domains or the depth of the domain
patterns. Additionally, relations can define when- and where- predicates giving pre- and
postconditions. This leads to three different metrics for measuring the size of a relation:
Number of domains , Number of when/where predicates, Size of domain pattern per do-
main. Another derived metric, the ratio between the size of the relations and the number of
relations might also give hints about the maintainability of the transformation itself and

152



6.3. Metrics Definition 153

shows the linear dependency of effort needed to modify the transformation on the number
of relations. However, the direction of the metric (e.g., for better maintainability) remains
to be evaluated. For example, having many but small relations helps to understand the
transformation punctually, for specific relations. However, grasping the interconnections of
many small relations is also a tedious and error-prone task, thus leading to the conclusion
that having larger but fewer relations may be also good for maintainability. Still, defining
a functional dependency between size and number of relations in a transformation might
give hints on the maintainability of the transformation.

The metric average number of local variables per relation additionally gives indications
on the dependencies within a relation that a developer needs to grasp when trying to
understand and modify the relation. A measurement for the complexity of the intercon-
nections between relations is the average number of arguments in the form of its domains
and the number of variables that are bound by calls to other relations in when- or where-
predicates. These metrics are denoted val-in and val-out. Note that in QVT-R val-in is
always the same as number of domains. A high number of val-out means that a relation
is strongly dependent on the context, which might decrease the reusability of a relation.

Relations generally depend on other relations to perform their task. The dependency of a
relation R on other relations can be measured by counting the number of times relation
R uses other relations or queries. These dependency metrics are denoted fan-in and fan-
out, where fan-in is the number of calls to R and fan-out is the number of relations that
are called by R. A high value of fan-in indicates that the relation is reused quite often
and therefore is highly reused or somehow more central to the overall transformation.
A high value of fan-out means that a relation uses a lot of other relations or functions
(maybe delegates functionality to library queries), again making the relation more central.
The metric number of enforce/checkonly domains expresses a rate of change between the
domains of the relation (e.g., source and target domain). The metric expresses the number
of possible match patterns by the number of checkonly domains and the level of change
provided by a relation (a number of diverse change patterns) by the number of enforce
domains. The complexity of a transformation may furthermore be affected by the number
of OCL helpers and number of lines/restricted elements per OCL query, which encapsulate
more complex behaviour.

6.3.1.3. Consistency Metrics

A high degree of inconsistency in the transformation is a reason for confusion during devel-
opment and may lead to reusability and transformation completeness problems. To detect
an inconsistency in a transformation we introduce a number of consistency metrics. An
example of inconsistency could be a relation that was not completed during development.
Such a relation could be identified as a relation without domains, with only one domain
or with domains without predicates. Therefore, we defined the metrics number of rela-
tions without domains, number of relations with singular domains and number of domains
without predicates. An additional metric for the detection of incomplete relations is the
number of unused variables. Unused variables pollute the code and complicate navigation
within the transformation.

The already introduced consistency metrics are easy to automate. Another quite generic
but still interesting metric is number of clones. However, the automation of this metric
is a research field by itself. This metric identifies code duplicates, which are, as in other
fields of code maintainability, candidates that impact maintainability of the code.

6.3.1.4. Inheritance Metrics

QVT-R transformations can extend each other and override relations from parents. Inher-
itance metrics measure the level of inheritance of the transformation and its complexity.
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The balance metric shows size and distribution of transformation functionality between
children. This metric is calculated as the ratio between a number of relations, domains
and equations per child transformation in comparison to the average.

In a similar way as in object-oriented programming the dependency of children on their
parents can be measured by counting the number of transitive parents per child and number
of direct/transitive children per parent. Based on these metrics and the fan-in and fan-out
metrics we can get a view of the dependencies between relations in the different transfor-
mations (create a dependency graph). The metric number of overrides gives information
on how many relations from a parent transformation were overridden by a child relations.
The larger this value gets, the more effort has to be invested into understanding which
parts of the transformation hierarchy are actually used (combination of non-overridden
(inherited), overridden and additional non-inherited parts).

6.3.2. Manually Gathered Metrics

In the following, we describe metrics that are not gathered fully automated, but require
manual or semi-automated analysis to determine the actual value of a metric.

6.3.2.1. Similarity of Relations (frequent patterns)

The Similarity of relations (frequent patterns) indicates how many similar patterns can
be found in a transformation. A large part of the complexity of a transformation and of
an abstract model of the transformation comes through the need to understand patterns
that occur within these models. The more complex a transformation is, the harder it is
to maintain it. Thus, to be able to grasp the complexity of transformations, we propose
to emulate human information processing through pattern mining on models. Human
analysis of software products is conducted either top-down or bottom-up according to
[116]. Using a top-down approach, the analyst tries to apply his/her knowledge about
design and domain to classify the software product under analysis. In order to do this
he/she tries to gain an overview of the whole application. Developers can then successively
pick selected software segments and determine their relevance for his current mental model
of the software. Using a bottom-up approach, the analyst will start reading comments of
source code or other software artifacts. The control flow of certain sections will then be
inspected sequentially and arbitrary selected variables will be traced throughout the flow.
Especially in declarative transformation languages, this is a difficult task as there is no
explicit control flow. The information gained will be integrated to a mental software model
which is the opposite to the top-down approach.

Masak [116] notes that top-down analysis is being conducted more often by experts whereas
bottom-up analysis is being used more often by novice analysts. These findings give strong
indication that experts may have abstract mental patterns at hand which are being used
for analysing the software product whereas novices must resort to documentation. If
analysability is measured in terms of time to analyse parts of a software product, the
required time will be low if the analysed parts dominantly adhere to the expert’s patterns.
On the other hand the time will be very high, if the expert can apply only a few of
his/her patterns or the software heavily differs from patterns known to him/her. These
general observations were also stated for visual patterns in [148] which is why we propose
to incorporate them into an analysability metric.

This metric can be computed by using the frequent pattern mining algorithm presented in
[105] to identify possible frequent patterns. From these candidates the relevant patterns
can be selected and their similarity can be estimated. However, the result of these pattern
mining is mostly a superset of frequent patterns as they would be found by a human.
Thus, manual selection needs to be performed to see whether each of the most frequent
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patterns is really a pattern that occurs as repeating structure in the transformation or if
it is just the result of constraints on e.g., the transformation metamodel. For example, in
QVT Relational a frequent pattern that is the result of the language concept would be that
each relation domain has a root variable which refers to a meta-class that is contained in
the package referred to by the domains typed model (see [72] for the QVT-R metamodel).
However, this construct in inherent to QVT relations and is not a frequent pattern that
would be relevant for the analysability of a transformation. Thus, this metric cannot be
computed fully automatically but needs an additional manual filter action. For example,
a result of this metric could be that 30% of all relations of a transformation employ a
pattern involving the matching or creation of a certain tree structure consisting of specific
types of model elements within the source or target model. As humans are pretty good in
pattern matching, a developer would then be able to recognise this combination over and
over again thus helping him/her to more easily understand these 30% of relations.

6.3.2.2. Number of Relations that Follow a Design Pattern

The Number of relations that follow a design pattern may be another important indicator
for transformation maintainability. The determination of this metric is a tedious manual
task as a design pattern is an abstract concept. It may occur in a form that can only
vaguely be identified.

The number of design patterns employed in the transformation may be a strong indicator
on how good a transformation can be understood by external readers. However, as the area
of transformation development is still quite immature, only few design patterns have been
identified yet. To determine this metric, we need to count the number of design patterns
and their occurrences within the transformation. For example, if a transformation uses the
Flattening Pattern from Section 4.4 throughout its whole implementation and a developer
knows what that pattern is used for he or she can grasp the meaning of the transformation
more easily.

6.3.2.3. Type Cut Through Source/Target Metamodel

As mentioned at the beginning of this chapter, the metamodel coverage is specific for model
transformations. The relation between the transformation and the metamodel is analysed
through studying metamodel coverage. Each model transformation transforms source
model which conform to a source metamodel to a target model which conform to a target
metamodel. Some transformations transform all elements defined by the metamodel (e.g.,
translation). Other transformations transform only a subset of the metamodel elements
(e.g., refinement or completion). We already used this analysis in Chapter 5 to minimize
conflicts between transformation in a sequence of completions.

To acquire insight about the parts of metamodel covered by a transformation we propose
to study a Type Cut Through Source/Target Metamodel. The metric Type Cut Through
Source/Target Metamodel represents the rate of overlapping rules with respect to the
transformation’s metamodels. The type cut concerning a metamodel is the set of patterns
that match instances of the same parts of a metamodel. In the UML to RDBMS example
from the QVT standard (from which an excerpt is shown in Listing 2.1) the type cut
concerning the meta-class UmlClass would be all those relations that contain a pattern
that matches any UMLClass. The greater this overlap is, the more attention has to be paid
when patterns of relations are modified in order to not lose coverage of possible instances
of the metamodel.

To compute this metric we need to count the number of relations that overlap over the
same part of a metamodel. For example, Relations a, b and c can all match instances of
the same meta-class m. Thus the overlap rate concerning class m would be 3. Finding
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type cuts that only refer to a certain element of the metamodel, such as one meta-class m
can be done straight-forward. However, it might be more interesting for more fine-grained
patterns that are matched using several different relations. How such a detailed type cut
can be identified remains subject of future research.

6.4. Computation of Metrics

We implemented a tool set to analyse the metrics presented in Section 6.3 automatically.
In the first step (cf. Figure 6.1), the transformation code (QV T ) is parsed which re-
sults in a transformation model (QV TModel). This model can be then analysed using
our maintainability metrics. The description of metrics is given by the metrics model
(MetricsQV T ) on the higher-level of abstraction. A HOT then generates transformations
for actual analysis based on this metrics description. Here, we implement the Analysis
HOT pattern introduced in Appendix B. The resulting metrics model gives information
about the quality properties of the analysed transformations. Using a pretty-printer, we
can extract an input to other analysis tools from the metrics model. Note that for some
metrics an additional input could be required, such as metamodels for Type Cut Through
Source/Target Metamodel or models of transformation design patterns for Number of re-
lations that follow a design pattern.

Figure 6.1.: Workflow for omputation of metrics.

The automated metrics described in section 6.3.1 can mostly be expressed as OCL ex-
pressions on the QVT-R meta-model. These OCL expressions can be used to count the
number of elements of a specific type, for instance the number of relations a transformation
has. The expressions have to be evaluated in the context of a transformation or a relation
depending on whether a transformation local or relation-local metric is calculated. Ta-
ble 6.1 shows the OCL expressions used for calculating the metrics. To bring these metrics
together, relation local metrics can be aggregated by calculating an average.

1 query countSubExps(templ:QVTRelation: :TemplateExp) : Integer
2 {
3 i f (templ.oclIsTypeOf (QVTTemplate: :ObjectTemplateExp))
4 then templ.oclAsType(QVTTemplate: :ObjectTemplateExp).part−>iterate(p:QVTRelation:
5 :PropertyTemplateItem; acc:Integer = 1|
6 acc + countSubExps(p.value.oclAsType(QVTRelation: :TemplateExp)))
7 else
8 i f (templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp))
9 then countSubExps(templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp).member.oclAsType(QVTRelation:

10 :TemplateExp)))
11 else
12 1
13 endif
14 endif
15 }

Listing 6.1: Query function for calculating the domain predicate count.
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For more complex metrics like the domain pattern tree depth it was necessary to write more
complex OCL query functions. Listing 6.1 shows an OCL query function for recursively
counting the nodes of a domain pattern tree. To easily apply all metric expressions and
query functions, we developed a QVT-R transformation that transforms a QVT transfor-
mation to a special metrics model. The metrics metamodel allows for compact storage of
metrics for every relation in a transformation and for the transformation itself. Moreover,
it is possible to store the aggregated values that are also calculated by our metrics trans-
formation. Furthermore, for measuring the lines of code, we utilised common methods
used for programming languages. We distinguished whitespace, pure comment and code
lines. Figure 6.1 shows the workflow for retrieving the metrics.

6.5. Discussion

The definition of metrics with the goal to estimate quality attributes, such as maintainabil-
ity, always comes with the wish to indicate whether a lower or a higher value of a metric
is better or worse. However, this decision cannot be made without a sound validation of
the ’meaning’ of a metric. For example, having a low number of relations, at first glance,
seems to be good for maintainability whereas a high number seems to be bad. On the other
hand, if these few relations are very long they may be harder to maintain that more but
smaller relations. Thus, in this chapter we only identified what could be possible indicators
that may resemble maintainability of transformations. We intentionally did not decide, for
most of our metrics, which ’direction’ of a metric is good or bad concerning maintainabil-
ity. We leave it to future work to determine and evaluate this meaning. Through empirical
evaluations need to be performed in order identify how meaningful each metric is.

Furthermore, the implementation of the metrics extracting limits our approach to the
transformations implemented in QVT-R. Despite, this limitation is motivated by the ap-
plication of these metrics to evaluate completion transformations which are implemented
in QVT-R, it is obvious that for their application in other contexts we have to generalise
these metrics further. We expect that presented metrics can be applied to other model
transformation language, however it has to by further investigated.

6.6. Summary

In this chapter, we presented an initial set of quality metrics to evaluate the maintainability
of QVT Relational transformations. However, such metrics could be applied to different
relational transformations, they play important role when considering completion transfor-
mations. We apply proposed metrics in Chapter 7 to compare different implementations
of the completion transformations. Moreover, we demonstrate the use of these metrics on
a reference transformation and HOTs implementations to show their application in real
world settings.

The presented metrics help software architects to judge the maintainability of their model
transformations. Based on these judgements, software architects can take corrective ac-
tions (like refactorings or code-reviews) whenever they identify a decay in maintainability
of their transformations. This results in higher agility when changing metamodels of
software architectures or their platforms, which together with metamodel build basis for
transformation definition.
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This chapter presents the validation of the contributions presented in this thesis. We
identified two main goals for the validation: (i) to asses the validity of the model completion
as an artefact in the MDSPE process and (ii) to evaluate the quality properties of used
MDSD artefacts. We structure the validation based on these goals.

Our hypotheses are evaluated based on different levels of validation for prediction models
as introduced by [27]. For the first goal, we validate several aspects: we evaluate the
accuracy of model-driven quality prediction using performance completions introduced in
Section 5.3. Furthermore, we evaluate the compositionality and the ordering in a sequence
of completions. For the second goal, we evaluate the understandability and maintainability
of the completion transformations quantitatively. In particular, we study the maintain-
ability of the completions and necessary HOT transformations. For this purpose, we use
the approach and metrics for evaluating maintainability of model-to-model transforma-
tions presented in Chapter 6. Moreover, we sketch further validation studies for empirical
evaluation.

This chapter is structured as follows. In Section 7.1, we discuss the validation goals.
In Section 7.2.1, we study the validity of model completions presented in Section 5.3.
Furthermore, Section 7.2.2 discusses the composition of completions. In Section 7.2.3, we
evaluate the maintainability of used transformations. Section 7.3 summarizes and discusses
the validation goals.

7.1. Validation Goals

Within the validation of our approach, we study the validity of model completions and the
quality properties of used MDSD artefacts. The validation goals and derived validation
questions for these two aspects are presented below in Section 7.1.1 and Section 7.1.2
respectively. As introduced by [27], we can validate model-driven prediction approaches
on several levels. We discuss these validation levels in the following and apply them to
validate our goals.

Levels of validating model-based prediction approaches

In the work of Böhme and Reussner [27], several levels for validating model-based pre-
diction approaches are introduced. These levels characterise validations of model-based
prediction approaches. The automated completion-based enhancements of MDSPE intro-
duce variability and incremental completion concepts to the models. Thus, we extend the
description of validation levels below to explicitly cover the model completion step as well.
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7.1.1. Validation Type I: Accuracy Validation

The first level of validation (metric validation [27]) compares the prediction results (e.g.,
response time) of the model-driven prediction approach to the measured properties of
the real-world subject (e.g., measured response time of an implementation). The studied
property of the prediction approach is the accuracy of the prediction.

In the case of completion support, additional aspects are important. The prediction ap-
proach is required to: (i) deliver more accurate predictions using models with completions
as without and it should deliver accurate predictions for each variant of a completion that
is derived based on a feature model. Moreover, when multiple completions are used, (ii)
their valid compositions should provide accurate predictions, as well.

Type I: Prediction Accuracy

The accuracy of performance prediction approaches has been studied in several case stud-
ies, c.f. [98]. In this work, we focus on performance and assume that the quality prediction
approaches used are valid. Thus, the goal of the validation is to evaluate individual com-
pletions, assuming a perfect underlying prediction model. The completion developer is
responsible for the validation task during the completion development process. Each com-
pletion has to be validated before it is registered in the completion library. We give an
example how this completion validation task can be realised and validate the completions
introduced in this thesis. The first question we need to answer for this purpose is:

Q1: Can completed model provide more accurate performance predictions?

To validate the accuracy of the completion in this study, we compare the results of per-
formance prediction based on the completed model and the performance measurements
on the real implementation. Additionally, we study real-system properties (such as state
dependency) which can be modelled in PCM using completions. We validate three com-
pletions in this work: (i) Statefull ’Message Oriented Middleware’ (MOM), (ii) ’Thread
Pool’, and (iii) ’Procedure Call Connector’.

The detailed description and results of the validation can be found in Section 7.2. We
validate platform-specific completions for particular software platforms (using particular
version of middleware). In our studies, we can demonstrate that it is possible to create
meaningful completions that yield accurate predictions. However, we do not claim that our
observations are transferable to all other platforms and software systems, due to further
developments of platforms and related complex effects on performance. Certainly, this
validation can be repeated for new platforms and completions can be recalibrated.

Type I: Completion Composition and Ordering

In this validation step, we evaluate the compositionality and the ordering in a sequence of
completions and their accuracy in composition. We pose the second evaluation question:

Q2: Can models be automatically completed using a multiple completions to provide more
accurate performance predictions?

For this goal, we validate the composition and ordering of three completions in the Proce-
dure Call Connector, i.e. its abstraction using Pipe&Filter pattern. The detailed descrip-
tion and results of the validation can be found in Section 7.2.
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7.1.2. Validation Type II: Applicability Validation

The second level of validation addresses the applicability of model-driven prediction ap-
proaches. The validation of applicability assesses the information that has to be obtained
to apply the approach, the creation of prediction models, the execution of the prediction
or analysis, and the interpretation of the results.

The completion-based approach inherits the applicability properties from the used pre-
diction methods, or the MDSPE process integrating the completion step. Therefore, the
applicability regarding required information, model creation and results interpretation is
mainly a property of the used prediction model. However, we study the applicability of
completion-related method enhancements. We can distinguish two different levels at which
the applicability of completions has to be discussed.

Completion users have to understand the feature models to be able to apply them to the
CBA model. The questioned is, if is the specification of configuration models using feature
diagrams is appropriate. The instantiation of completions happens automatically and as
such is not in concern of completion user. The completions and their feature models are
created once by experts for a specific prediction metamodel (i.e., PCM in this thesis).
Feature models are a well known and intuitive method to illustrate decision trees. Their
applicability properties are inherited from the definition of feature model metamodel and
its syntax and semantics.Feature diagram have been used in the domain of generative
programming and SPLs for more than a decade. They have been introduced by Czarnecki
et al. in [46] in 2000. The completion-related extensions of the feature model are not
visible to the completion user and are necessary only for the implementation of automated
transformation generation. As such, the feature models are considered as well-known and
applicable for a completion-based approach.

The completion developer, however, has more complex task to create a completion and
register it with the completion library. Here, we build on the very important prerequisite
that the task of domain engineering is supported by automated benchmarking approaches,
such as Software Performance Cockpit [169]. Having this prerequisite in mind, the collec-
tion and analysis of measurement data is of no major concern for completion developer.
Using such automated measurement approaches, it is possible to validate all configuration
combinations, which would be a huge effort to do manually. Since the actual domain engi-
neering step and the completion validation is automated, it requires no additional manual
effort and inherits its applicability properties from the measurement approach.

Instead of validating the applicability of our method in isolation, it seems more promising
and to result in more insight to conduct an empirical study of model-based prediction
method with completions and comparing it to model-based prediction method without
completion mechanism as a whole. However, such empirical study is out of scope for
this thesis and brings no added value at this point, therefore we use established evaluation
techniques using code metrics indicating the applicability of our approach. We focus in this
evaluation on the complexity of the completion implementation. Especially, the complexity
of completion transformations gives indicators on applicability of CHILIES for completion
development.

Thus, the remaining applicability aspect for the completion developer is the ability to iden-
tify necessary model changes and implement transformation fragments. The identification
of model changes is dependent on the developer’s domain specific knowledge and as such
is hard to measure or quantify. In this validation, we focus on the understandability and
complexity of transformations and transformation fragments. The development effort nec-
essary to implement required transformations and transformation fragments is discussed in
the second goal of this validation. The complexity and maintainability of transformations
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is evaluated using the metrics introduced in Chapter 6. We present the validation plan
and the results for this goal in Section 7.2.

Type II: Complexity Comparison

This part of the validation discusses maintainability and applicability properties of com-
pletions, related models and transformations. Based on code metrics and their results
collected for the evaluated transformations, we discuss and assess the development ef-
fort necessary to create and maintain completions. In the following, we pose the third
evaluation question:

Q3: What are the quality, especially maintainability, properties of used transformations?

Furthermore, we have to discuss the fragmentation of transformations and its complexity.
Therefore, we pose a forth evaluation question:

Q4: Is the complexity of transformations decreased by separation of concerns in feature-
related transformation fragments?

We use the maintainability metrics for transformations introduced in Section 6 to evaluate
these goals.

Type II: Empirical Study

As mentioned before, an empirical study of model-based prediction method with comple-
tions as a whole is out of scope for this thesis. We inherit the applicability properties of
the used PCM approach. A initial validation of the understandability and applicability
of the PCM approach was conducted in two empirical studies [140, 112]. The additional
validation of the remaining aspects related to completions applicability can be derived
from these studies. In both studies, participants, with background software engineering
knowledge, were trained in making quality prediction with PCM. The participants were
asked to create models, execute the prediction method and analyse results of the predic-
tion. Using PCM tools, they had to create performance abstractions, now encapsulated
in completions, by hand without any automated support. Thus, these case studies indi-
cate that abstractions encapsulated in completions can be understood and parametrised,
reusable models can be created by a trained user. The most significant advantage of com-
pletions is separation of concerns, reuse and automation. Completions decrease manual
development effort previously need to create the performance abstractions of performance-
related aspects. However, to quantify the decrease of development effort using completions
we have to conduct more focused studies comparing groups of trained users building their
models with and without completions. More details on the conducted studies can be found
in [140, 112], including the posed questions, a detailed discussion of the results, and the
threats to validity. Further validation studies for applicability evaluation are part of the
future work.

7.1.3. Validation Type III: Cost/Benefit Validation

The third level is called ”benefit validation” and is concerned with the cost/benefit eval-
uation of a prediction method. In this type of validation, the costs, resulting from usage
of the method, are compared to the expected benefit, which can be an improvement of
the modelled subject, an evaluation of planned alternatives, and the recognition of not
favourable design decisions. The common benefit of all prediction approaches is the re-
duction of effort in later development phases of the software life-cycle, such as correction
of wrong design decisions or performance problems.

To validate approaches on this level, a controlled experiment is needed during which whole
software projects have to be executed with and without using the presented approach.
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After the development projects finish, we can evaluate benefits resulting from completion
usage. Such validation is the most expensive level of validation (with respect to time and
effort) and, thus, is rarely executed in practice. Due to the high effort, we cannot conduct
this type of validation in the scope of this thesis.

7.2. Improving Prediction Accuracy using Performance Com-
pletions

We claim that our approach supports developers in improving the accuracy of quality
predictions using the completed models. In this step, we assume that developers have
a software architecture model with quality annotations (e.g., PCM) and an automated
measurement framework (e.g., Software Performance Cockpit) available. In this section,
we present the validation settings and results for the validation goals specified in the
previous section.

7.2.1. Type I: Prediction Accuracy

First, we address question Q1 regarding the prediction accuracy:

Q1: Can completed model provide more accurate performance predictions?

As the prediction accuracy using completions depends on the accuracy of underlying per-
formance prediction method, we reviewed previous work discussing the accuracy of PCM
prediction method. In the context of the PCM, numerous case studies demonstrate that
accurate prediction models can be created [101, 103, 75, 100, 15, 18, 76, 80, 106, 86, 104].
In this work, we do not focus on the accuracy of PCM models, but on the prediction
accuracy of specific completions.

Additionally, some of the mentioned studies [101, 75, 80, 86] use PCM models that have
been created and calibrated using measurements of the studied system. Such models are
validated by the comparison between the predicted performance properties and measure-
ments of the system. The studies mentioned above assessed the accuracy of PCM models
at hand. They do not make a statement about the prediction accuracy of model variations
without recalibration . Some of the case studies [103, 15, 18, 104, 76, 77] also discussed the
issues of model variants, changed parametrisation, and calibration. Two studies [103, 15]
demonstrated that it is possible to vary parts of a model in isolation. In the case studies,
a component was added to the architecture of the initial system. The component was
measured, modelled and calibrated in isolation. The predictions for the resulting system
were successfully compared to measurements of an analogously changed implementation.

Other two studies [18, 76] evaluated the accuracy of systems using initial MOM completion
across different platforms. The effects of the messaging configurations such as message
size, messaging protocol, and use of encryption and authentication were studied. The
encryption and authentication were measured in isolation. The performance abstractions
were weaved into the initial models, exchanged or refined model elements and changed
the systems topology. The predictions using resulting models were successfully compared
to the with measurements of real systems. These studies demonstrate that completions
can be parametrised, can be calibrated using measurements, and are reusable in different
execution contexts.

In the following sections, we discuss two completions: (i) the stateful enhancements to
the ’Message Oriented Middleware’ and (ii) the infrastructure completion ’Thread Pool’.
For each completion we discuss the goal of the measurement, used metrics and assump-
tions, created models and corresponding implementation, and the results of the comparison
between measurements and prediction results.
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7.2.1.1. Validation: Connector Completion ’Statefull Message Oriented Con-
nector’

To provide accurate predictions, performance models have to include many low-level de-
tails. Reusable performance completions ease development of such models and are built
using the MDSPE process introduced in Section 3. In this section, we validate enhance-
ments to the ’Message Oriented Middleware’ (MOM) first introduced as manually (i.e.,
implemented in JAVA) created completion by Happe et al. in [76]. In their work, the
MOM Completion was validated in the context of real system, such validation here, there-
fore brings no added value, instead we focus on the specific aspects of this completion.
We introduced enhancements to MOM Completion allowing its automation in [93, 92].
Additionally, we introduced a State Manager (see Section 5.3.3.2) to the internal ’message
transfer’ component of the completion skeleton. Our extensions of MOM completion allow
to model transactional communication between components. From the performance pre-
diction point of view, we discuss especially the stateful properties of this completion. The
validation of these aspects is based on our work in [94]. The foundations of the stateful
performance engineering concept is discussed as additional contribution of this thesis in
Appendix A. Furthermore, we implemented this completion in three ways (i) manually in
JAVA, (ii) partially automated using mark model and (iii) fully automated using trans-
formation fragments. We discuss the advantages and complexity of such implementations
in Section 7.2.3.

Setting: Question, Metrics, Assumptions

The key challenge of performance completion design is to find the right performance ab-
straction for the system under study. To identify the performance-relevant behaviour and
factors, we employ a combination of goal-driven measurements and existing knowledge
about the functional system behaviour. The process to build feature diagram, identify
and implement feature effects is described in Section 3.3. In this validation case study,
we start with the basic structure of the completion for message-based systems which was
introduced in [76]. In Figure 7.1, a feature model describes the possible configurations of
the MOM Completion.
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Figure 7.1.: Feature Model for the MOM Completion [76].

The feature model captures possible configurations for a messaging system. The config-
uration includes the type of Messaging Channel as well as characteristics of the Sender
and Receiver. For example, a Messaging Channel can be configured as a Point-to-Point
Channel if only a single Receiver is needed. The Message Size is a property of the Sender
and expresses the amount of data transferred. Furthermore, the number of Competing
Consumers at the Receiver’s side can be specified. The choice of either of these features
results in a change of the architectural model. The complexity of these changes varies from
setting a parameter, through structural changes, to globally changing the deployment of
a whole system.
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In our case study, we consider a feature configuration with the selected features: Point-to-
Point Channel, Competing Consumers, Pool Size of 4, Transactional Client, Transaction-
Size of 1000 messages, and Message Size of 1 kilobyte.

The configuration of a message-oriented middleware (e.g., a size of a transaction) can affect
the delivery time of messages [94] as illustrated in Figure 7.2. Unfortunately, software
architects cannot include these details into their architectural models. The middleware’s
complexity and the specific knowledge on the implementation (that is required to create
the necessary models) would increase the modelling effort dramatically. While most of the
implementation details are not known in advance, a rough knowledge about the design
patterns that are to be used might be already available. This knowledge can be exploited
for further analysis, such as performance and reliability prediction, and for code generation.
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Figure 7.2.: The influence of message size on the delivery time [93, 76].

We extended the MOM Completion to include the state-dependent effects to the PCM
models and allow to study their properties too. In the following, we give an example for
the influence of state on software performance which is taken from the area of message
based systems. In particular, we are interested in the delivery time (time from sending a
message until it is received) of messages send within a transaction. Messaging systems,
which implement the Java Message Service standard [74], explicitly support transactions
for messages. The transactions guarantee that all messages are delivered to all receivers in
the order they have been send. To achieve such a behaviour, Sun’s JMS implementation
MessageQueue 4.1 [1] waits for all incoming messages of a transaction and, then, delivers
them sequentially.
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Figure 7.3.: Time series of a transaction with 1000 messages per transaction set.
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Figure 7.3 shows the measured delivery times for a series of transactions with 1000 messages
each (the sender initiates a new transaction (as part of a session), passes 1000 messages
to the MOM, and finally, commits the transaction). All messages arrive within the first
0.4 seconds and are delivered sequentially within the next second. This behaviour leads
to delivery times of 0.4 seconds at minimum. The delivery times grow linearly until the
transaction is completed. In this example, the position of a message in the transaction
set determines its delivery time. Thus, the measured delivery times are not independent
and identically distributed but strongly depend on the number (and size) of messages that
have already been sent. As a consequence, we need to keep track of the messages that
are part of a transaction. Additionally, the periodical utilisation of resources (e.g., CPU)
influences performance. To model such a behaviour, we need to extend our model and
introduce a notion of state as part of our model.

Implementation

Sender
Middleware

Receiver
MiddlewareMessaging System

Sender
Adapter

Receiver
Adaper

Messaging Completion

Marshalling DeMarshallingMOM
Adapter

IFoo IFoo’ IFoo’ IFoo’ IFoo’ IFoo

IMomIMarshalling IMarshallingISender IReceiver

Platform-specific Middleware Components

Figure 7.4.: Components of the MOM Completion [based on [77]].

Transactional messages are common in today’s enterprise applications, such as imple-
mented by SPECjms2007 Benchmark [152]. However, the transactions used in the supply
chain management supermarket of the benchmark are limited to small, predefined trans-
action sizes. To provide a better evaluation, we implemented an application that allows
to configure the number of messages send in one transaction following the philosophy of
SPECjms2007. We excluded external disturbances (such as database accesses) and fo-
cussed on the evaluation of the messaging system.

For performance prediction, we extended our performance completion for message-oriented
middleware called messaging completion in the following [76]. The messaging completion
subsumes several components that reflect the influence of different middleware configura-
tions such as guaranteed delivery, competing consumers, or selective consumers. In [76], it
was already demonstrated that the messaging completion can predict the performance of a
SPECjms2007 scenario with an accuracy of 5% to 10%. In the subsequent paragraphs, we
present an extension of our messaging completion that enables the prediction of influences
of transactions on the delivery time of a message.

Completion for Message-oriented Middleware: Figure 7.4 shows the components
and connections that are generated by the messaging completion (see [76] for details).
The completion consists of adapter components and middleware components. The first
forwards requests and calls the middleware components that issue platform-specific re-
source demands. The Marshalling component computes the message size based on the
method’s signature. The message size is passed to subsequent adapters as an additional
parameter, so that the original interface (IFoo) needs to be extended (IFoo’). The Sender
Adapter calls the Sender Middleware which loads the resources of the sender’s node and
forks the call to the MOM Adapter to reflect the asynchronous behaviour of the messaging
system. The MOM Adapter realises the transactional behaviour of the messaging system.
The Receiver Adapter calls the Receiver Middleware and, thus, loads the resources of
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Figure 7.5.: Starting a new transaction.

the receiver’s node. It forwards the requests to Demarshalling which maps the extended
interface (IFoo’) back to the original interface (IFoo).

Modelling transactional behaviour of the MOM Adapter: In order to start a transac-
tion, the sender has to explicitly call method startTransaction. Its behaviour (see fig-
ure 7.5) consists of a single SetStateAction, which resets the number of messages to zero
(numberOfMessages.VALUE = 0) and enables the transactional message transfer (isTran-
sactional.VALUE = true). When startTransaction has been called, all messages send
in the following will be part of the transaction until commitTransaction is executed. The
behaviour of the MOM Adapter varies for transactional and non-transactional messages (see
figure 7.6). The MOM Adapter behaviour is extended as it is illustrated by Figure 5.7.

If the message is not part of a transaction, the adapter simply calls the Messaging Sys-

tem, which loads its local resources with the service demands necessary for transferring the
message, and forwards the messages. Otherwise, if the message is part of a transaction,
then the MOM Adapter increases the current number of messages of the transaction (num-
berOfMessages.VALUE = numberOfMessage.VALUE + 1) and queues the message. The
queueing is modelled by two actions. The first external call action (IMOM.queueMessage)
loads the resources of the Messaging System. The second action acquires the passive re-
source transactionQueue, which blocks the message transfer until the transactionQueue
is released.

When the transaction is committed and the messages blocked at the transactionQueue are
released, the MOM Adapter processes the message transfer (IMOM.processMessageTrans-
fer). Furthermore, it notifies the behaviour of commitTransaction that the message has
been transfered (transferCompleted is released). Finally, the MOM Adapter forwards the
message to the Receiver Adapter. This behaviour ensures that all messages are delivered
in the same order as they have been send. Figure 7.7 shows the behaviour executed to
commit a transaction. The RD-SEFF reflects the successful execution of a transaction
and neglects possible rollbacks and re-executions. To commit a transaction and deliver all
messages to the receivers, a loop action iterates over all messages blocked during the trans-
action (numberOfMessages.VALUE). For each message, it unblocks its transfer (releases pas-
sive resource transactionQueue. To ensure the sequential delivery of messages, it waits for
the successful transfer of the message (aquires passive resource synchronisationPoint)
before it continues. Finally, the transaction is terminated (isTransactional.VALUE =

false) and the number of queued messages is reset (numberOfMessages.VALUE = 0).

Results

We used the PCM’s simulation environment SimuCom [18] to predict the performance for
three different configuration variants of message-oriented middleware. Basically, SimuCom
interprets PCM instances as a queuing network model with multiple G/G/1 queues. To
instantiate the parametric performance completions, we applied model-driven transforma-
tions mirroring chosen configuration for each of the alternatives.
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Figure 7.6.: MOM Adapter: Message Transfer.

startMsgTransfer

waitForTransferCompleted

Figure 7.7.: MOM Adapter: Commit Transaction.
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(a) Average of the delivery time.
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(b) 90% percentile of the delivery time.
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(c) CPU utilisation.

Figure 7.8.: Predictions and measurements of the three design alternatives [93, 77].

Figure 7.8 summarises the predictions and measurements for the three design alternatives.
These results were analysed by Happe et al. in [77]. In the following we summarize them,
as a proof that we started with accurate calibration of initial MOM completion. The
results show the average and 90% percentile of the delivery time as well as the CPU’s
utilisation. Measured values are printed in dark grey, predicted values in light grey. The
prediction error for the average delivery time and the 90% percentile is below 15% in all
cases. The CPU utilisation with an error below 3%. Among the considered alternatives
the third one, called ’small’ (with reduced data size), shows the best performance. The
considered scenario in this thesis is the usage of not-persistent message transfer, where
the measured and predicted average times for one message are 1,50 ms and 1,65 ms. The
stateless model predicted that 90% of all messages in transaction are delivered in less than
411 ms.

Figure 7.9 shows the prediction results for transactional messages with stateful model. The
corresponding real measurement is shown in figure 7.3. The predictions correctly reflect the
dependency of a message’s delivery time on its position in the transaction. This behaviour
was not visible in the prediction results using the stateless variant of MOM completion.
Furthermore, the predicted delivery times range from 400 ms to 1400 ms which corresponds
to the observed delivery times for the transaction size of 1000 messages. Moreover, Figure
7.10 illustrates the prediction results for the CPU utilisation using stateful model. The
prediction results illustrate delay in transfer of messages in transaction, the first message
in transaction is the fastest one and the last one is the slowest one. Thus, with the position
of the message in the transaction increases the time spent in the message channel too. In
Figure 7.9 is the delay in message transfer, the start and commit of one transaction clearly
visible. In stateless model, the distribution of the time for message transfer shows highest
probability between 1,6ms and 1,75ms (cf, Figure 7.11). However, the mean value for

169



170 7. Validation

Figure 7.9.: Predicted delivery times for messages.

the transfer of whole transaction shows very small difference (for correct mean value it is
enough to multiply transfer time of one message by the number of messages in transaction),
the error in median increases significantly with the size of the transaction. Additionally,
stateful model shows that the transfer time for one message is highly dependent on the
position in the transaction.

Figure 7.10.: Periodical CPU utilisation in stateful model.

Table 7.1 lists the predicted and measured median values for different transaction sizes.
Due to the high variance of the delivery times, the median serves as a representative
value for a specific transaction size. However, the median can only be considered as
an indicator for the prediction accuracy, it is very good indicator for the variance. In
table 7.1, predictions and measurements deviate less than 4%. These results indicate,
that the extension of our messaging completion can accurately predict the influence of
(successfully completed) transactions on the delivery time of a message.

Discussion

We discuss stateful performance engineering in more detail in Appendix B. Based on the
presented case study we can, however, already here make these conclusions. The increased
expressiveness of stateful models comes at a cost. Stateful models may have much higher
complexity and size, which may complicate their analysis. Even if the models are not
analysed fully, and are examined with simulation methods (like in the case of PCM), model
complexity may have an impact on the time needed for sufficiently accurate performance
prediction (duration of a simulation run). The time necessary to execute a simulation run
is further influenced by the variability of simulation results. The state-dependent system
variability mirrors in the variance of the results and consequently influences the number
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Table 7.1.: Measurement/Prediction Comparison.

of measurements necessary to achieve results with a high confidence. The cost of a single
simulation measurement depends on the length of the simulated trace. Explicitly modelled
states have only little effect on the length of simulation traces, which mainly depend on
the modelled software architecture (e.g., loops dependent on a state value).
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(b) No transaction.

Figure 7.11.: Message transfer time.

On the other hand, one should to keep in mind that the confidence about the correctness
of predicted values will be higher if a low-coverage simulation is run on a more accurate
(stateful) model, than if a high-coverage simulation is run on an unrealistic (stateless)
model. Moreover, as the stateful dependency was in our case encapsulated in completion
(invisible to the completion user) we can conclude that the complexity of the model from
the user point of view has not increased.

Modelling transactional messages probabilistically results in a comparable distribution of
response times. However, the model does not reflect the stochastic dependency of sequen-
tially arriving messages. Furthermore, it provides less flexibility since delays caused by
transactional behaviour have to be known in advance. In most cases, such information is
not available or the delays are changing constantly. In these cases, an explicit state model
eases the design of performance models and allows accurate predictions with the neces-
sary flexibility. Additionally, approximating state by a probabilistic abstraction results in
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decreased possibility of reuse of the component because the probabilities are specific for a
one system, a one allocation and one usage profile. More detailed discussion on this topic
can be found in Appendix B.

7.2.1.2. Validation: Infrastructure Completion ’Thread Pool’

Setting: Question, Metrics, Assumptions

Thread pools allow the asynchronous processing of jobs. They support the creation and
pooling of a number of threads to process these jobs. In Section 5.3.5, we presented an
analysis of thread management strategies and possible variations of them. In the domain
analysis, we identified that the most important parameter, that can be tuned to provide
the best performance is the capacity of the Thread Pool. Figure 3.11 shows the feature
diagram for Thread Pool design pattern based on the configuration options provided in
java.util.concurrent packages by the Java JDK (1.6). The two most important pa-
rameters influencing the choice of optimal pool size are the number of processors available
for the application and the nature of the incoming tjobs.

In the following, we describe the most important metrics we used to evaluate performance-
influences of different Thread Pool variants, as well as the parameters we used to configure
the experiments.

Create Job

Delay
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Figure 7.12.: The experiment setup.

Figure 7.12 illustrates the experiment setup. A workload generator creates new jobs
and inserts them in the queue of the ThreadPoolExecutor. The job itself consists of
a single processing job that consumes the specified CPU processing time. We use the
de.uka.ipd.sdq.resourcestrategies from PCM to generate the corresponding CPU
demand.

Let tc be the time a job is created and put into the ThreadPoolExecutor’s queue, ts the
time the a job is assigned to a thread (its processing starts), and tf the time the job is
finised, then we can observe the following metrics for each job:

• Response Time tr: The time passed from the moment a new job is put in the
ThreadPoolExecutor’s queue (tc until it processing is finished (tr): tr = tf − tc.

172



7.2. Improving Prediction Accuracy using Performance Completions 173

• Processing Time tp: The processing time is the time a request is being processed by
a thread, i.e. the time passed between the moment the job is assigned to a thread
(ts) until it is finished (tf ): tp = tf − ts.

• Waiting Time tw: The waiting time is the time the request resides in the Thread-

PoolExecutor’s queue. It is the time passed for a job’s creation (tc) until its pro-
cessing starts (ts): tw = tc − ts.

Based on the definition of the timing metrics we see that: tr = tw + tp.

Configuration Parameters: In the experiment, we vary following parameters:

• Arrival-Rate: The arrival-rate λi for a waiting jobs queue qi is defined as average
number of requests sent to the Thread Pool to be processed per second. For the
total number of requests Ai and a measurement-time T . The arrival-rate can be
calculated as:

λi =
Ai

T

. The time between two requests is called inter-arrival time.

• Number of Core Threads: The number of threads in the pool that are always kept.

• Maximal Number of Threads: The maximal number of threads in the pool.

• Request Size: The size of a request is defined by the average (i.e. specified) processing
time for this request.

• Queueing Strategy: Strategy to be used to queue jobs if more jobs arrive then can be
processed. Valid queueing strategies are unbounded (an unlimited queue), bounded
( a limited queue with a size defined by configuration parameter queue length), and
direct-handoff (no queue all jobs are processed immediately or rejected).

• Queue Length: In case of a bounded queue this parameter determines the number
of jobs that can be kept in the queue.

Observed Metrics: Furthermore, we observe the following metrics of the Thread Pool
itself:

• Rejection Rate: Percentage of jobs that is rejected by the ThreadPoolExecutor in
case of bounded queues or direct hand-offs.

• Number of Active Threads: Observed average number of threads that have been
active during an experiments.

• Number of Threads in Core Pool: Observed average number of threads in the core
pool during an experiment.

• Observed Queue Length: Observed average number of jobs in the queue during an
experiment.

• CPU-Utilisation: The Thread Pool average CPU-utilisation UCPU is the quotient of
the total time the CPU is busy (BCPU ) and the total measurement-time T:

UCPU =
BCPU

T

.

Using predefined metrics and configuration parameters, we can formulate the experiment
questions, scenarios and hypotheses (see Section 5.3.5). Moreover, based on the domain
analysis results we could identify default (close to optimal) Thread Pool configurations:
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Optimal number of threads parametrised by number of CPU replicas (n) for CPU-intensive
requests:

PoolSize = n+ 1

In our experiment, we use CPU-intensive requests, thus, we await results showing increase
of Thread Pool performance (decrease of contention) until the moment when the size of
Thread Pool is close to the n + 1 value. After this value we await that no increase of
performance would be observed.

Measurements

The implementation of the prediction model is based on the design of the Thread Pool
completion presented in Section 5.3.5. The completed model is illustrated in Figure 7.13.
We calibrated the completion skeleton using measured data illustrated in Figure 7.14.
These data are results of measurement experiments with the Thread Pool design pattern
implementation.

For the performance measurements, we used a computer with following settings: Windows
7 Enterprise (64Bit), Intel Core2 Duo T7300@2GHz, RAM 4GB, and CPU set to the
maximum performance. Each experiment used a workload generator for open workload
with an exponentially distributed inter-arrival time. The duration of measurement was 100
seconds for each experiment (i.e. parameter combination) and we computed the average
for the measured values.

ServerClient

ThreadPool

Wrapper

Pool:size=MaxSize
CorePool:size=
Round(CoreSize*1)

acquire release

acquire()
release()

CPU: Core2 Duo T7300@2GHz
schedulingPolicy="PROCESSOR_SHARING"
numberOfReplicas="2"

Usagemodel=OpenWorkload
interArrivalTime_OpenWorkload.Specification="Exp(1.0 / inter-ArrivalTime.VALUE)"

cpuDemand.VALUE=ProcessingTime
process

Figure 7.13.: Completed Thread Pool Model in PCM.

In Figures 7.14(a)(b) we can observe that with the length of the queue the processing
time increases. This is explained by the decrease in the number of active threads in the
second graph. In Figure 7.14(a), processing time first increases then decreases slightly.
This behaviour is also reflected in the number of active threads (Figure 7.14(b)) Figure
7.14(c) gives an explanation for this behaviour. It illustrate that the increased rejection
rate because of queue contention. For short queues, a larger number of jobs (more than
20%) is rejected by the threadpool. In total, less jobs have to be processed by the pool
resulting in less parallelization and shorter processing times. For longer queus, more jobs
are accepted, so that the total workload of the pool increases. This behaviour also affects
the average response time (Figure 7.14(d)) for each job.

In Figures 7.14(e)(f) the observed queue length and the waiting time explodes for process-
ing times larger than 250 ms. This is caused by an over-utilisation of the CPU – not all
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incoming jobs can be processed. As a result, the queue length and response times increase
as jobs pile up at the pool. We used the knowledge from the measurement experiments to
build the Thread Pool completion.

(a) Queue Length vs. Processing Time. (b) Queue Length vs. Number Of Active
Threads.

(c) Queue Length vs. Rejection Rate. (d) Queue Length vs. Response Time.

(e) Specified Processing Time vs. Observed
Queue Length.

(f) Specified Processing Time vs. Waiting
Time.

Figure 7.14.: Thread Pool completion: Calibration Data.

Results

The configuration of the experiments is summarized in Tables 7.2 and 7.3. For the Core
Pool Size experiment the pool is ’cold’ at the beginning meaning that it has not been used
before to process any jobs. Otherwise, we cannot observe the influence of the core pool
size as it has already been dynamically adjusted by the ThreadPoolExecutor.

The comparison (cf. Figure 7.15) between the measurement and prediction shows the
accuracy of the prediction. The model predicted the observed behaviour very accurately.
We observed that by maximal pool size of 4 the observed number of threads in pool was
in both of the experiments equal 3, thus n + 1 for the used dual-core processor. The
completed model manifested the same behaviour. Furthermore, the predicted processing
time before the queue overflow is very accurate by value of 3,444s which corresponds to
the observed processing time 3,763s in a first experiment. The predicted response time of
3,558s corresponds to the observed 3,975s, too. However, the completed model provided
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Experiment Processing Time Core Pool Size

Core Pool Size 4 0 to 10 in steps of 1

Maximum Pool Size 4 10

Pre-start all Core Threads true false

Keep Alive Time 10.000 seconds 100 ms

Queueing Strategy UNBOUNDED QUEUES UNBOUNDED QUEUES

Specified Processing Time 50 ms to 500 ms in steps of 50 ms 50 ms

Inter-arrival Time 180 ms (mean) 30 ms (mean)

Table 7.2.: Thread Pool experiment configuration.

prediction with the error less than 8% for our experiments, the results start to significantly
deviate after the queue overflow is observed. This deviation is visible on the right-hand side
graph in Figure 7.15. Moreover, the queue overflow is observed ≈ 100ms later as measured
in a real system. We discuss this observed effects further in the following section.

(a) Core Pool Size vs. Processing Time. (b) Processing Time vs. Waiting Time.

Figure 7.15.: Thread Pool completion: Comparison of prediction (BLUE) and measure-
ments (RED).

Discussion

The results of the previous experiments demonstrated that, after the queue overflow is
observed, the prediction is not accurate any more. The cause of the deviation is shown
in Figure 7.16(b) where the queue overflow in the simulation is depicted. Figure 7.16(a)
further illustrates this effect. The red curve shows the results of the same simulation only
left to run longer as the blue one. It is clear from this graphs that after the queue overflow,
results of the simulation are very sensitve to small changes. However, in this scenario, the
absolute values are of minor interest. The fact that the queue is growing constantly if the
processing time of a job exceeds 250 ms is predicted correctly.

The model presented here does currently not model bounded queues. However, a State
Manager for keeping track of the queue length could solve a part of this problem (similar
to the transactions in Section 7.2.1.1). Depending on the jobs currently waiting in the
queue and the maximal queue length, the simulation can reflect the actual behaviour of
the ThreadPoolExecutor. If the limit is reached further jobs can be rejected. However,
this behaviour requires a combination of realibility and state that is currently not available
in the PCM.

Figure 7.16(c) depicts additional difficulties for performance prediction using thread pools.
In this graph, the red dots represent prediction results, the blue is based on measurements
of a cold pool, and the green on measurements of a hot pool. Before the pool size reaches
2 (n for dual-core) the number of threads is smaller than number of CPUs, which results
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Experiment Queue Length

Core Pool Size 4

Maximum Pool Size 10

Pre-start all Core Threads false

Keep Alive Time 100 ms

Queueing Strategy BOUNDED QUEUES

Queue Length 1 to 50 in steps of 2

Specified Processing Time 50 ms

Inter-arrival Time 30 ms (mean)

Table 7.3.: Thread Pool experiment configuration for the Queue Length.

in resource contention. Thus, we can observe a decrease in the response time until n is
reached. After this point the resource contention is not observed any more, there are
enough threads created to process the requests. The prediction model manifests an utili-
sation of CPU ≈ 80%, which is in theory correct as the utilisation could be computed as
follows:

cpuDemand.V ALUE/numberOfReplicas/interArrivalT ime.V ALUE ∗ 100

This formuly yield a utilisation of 83% (= 50ms/2/30ms ∗ 100 for our third experiment.
However, we observed a CPU utilisation of ≈ 100% during the experiments. In the mea-
surement results (cf. Figure 7.16(c) blue and green curve), a delay of at least 3s is visible.
Most likely the arrival-rate and/or CPU demands are not close enough to the behviour of
the real system. These additional delays could come from the operating system overhead
(such as scheduling) or other services of the system. To provide more accurate predictions
in such situations completions rely on the more detailed resource models, which model
particular resources in more detail. Currently, this is a subject of research by Michael
Hauck [80] in his PhD thesis.

7.2.2. Type I: Completion Composition and Ordering

In this section, we address first the question Q2 regarding the prediction accuracy when
using multiple completions:

Q2: Can models be automatically completed using a multiple completions to provide more
accurate performance predictions?

In the following sections, we evaluate the composition of completions and their order. We
implement and validate all completions used in this case study in isolation. Resulting
completions are then composed to build more complex systems.

First, in this section, we introduce a scenario used to evaluate the basic concept of cutting
the task of the connector down to separate individual steps. Furthermore, the effects of the
composition of completions in connectors are explained. We demonstrate how completions
based on concurrency patterns can be used to efficiently model software systems and
evaluate performance. In a second step, we illustrate the applicability of our approach
for partial completion ordering and conflict resolution. For this purpose, we present a
case study of a Supply Chain Management (SCM) for supermarkets. In particular, we
are interested in the performance of a Business Reporting System (BRS) for a subset of
supermarkets. The BRS supports users by retrieving reports and statistical data about
running business processes from databases of different supermarkets. This scenario is
based on a real system by Wu and Woodside in [174].
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(a) Processing Time vs.Waiting Time - with
longer simulation.

(b) Queue overflow.

(c) Core Pool Size vs. Response Time.

Figure 7.16.: Observation of the queue overflow.

Figure 7.17.: Relevant part of the SCM architecture for BRS with annotations.
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Figure 7.17 shows the part of the system architecture relevant for business reporting. The
main part of the business reporting is running on the HQ’s server system. The data is
distributed among the company’s supermarkets and managed by Data Managers. In order
to generate a report for a particular set of supermarkets, the business reporting sends a
request to the supermarkets of interest. The data managers of each supermarket retrieve
the necessary data and send it back to the HQ, when data from all supermarkets are
collected. As soon as all data is available, the Business Reporting generates the report
and returns it to the client.

The presented case study consists of three levels:

1. In the first step of this case study, the HQ component is annotated with a Barrier
pattern and the connector to supermarkets is annotated with MOM configuration.
This case study demonstrates the application of completions and their effect on
performance.

2. To illustrate the compositionality of completions, we implemented and validated
Compression and Decompression completions in isolation. These completions are
then composed together to build a connector abstraction.

3. To illustrate our approach for conflict resolution, we add further annotations for
Encryption and Compression to the connector (see Figure 7.17). We apply our
approach for conflict resolution to identify a locally optimal execution order for the
completions applied to the connector.

7.2.2.1. Validation: Completion Composition

In the following, we describe a component completion applied on the Business Reporting
component. The application of the Barrier [51] completion is illustrated in Figure 7.18
that shows the behaviour of the methods generateReport and uploadData, which realise
a large part of the Business Reporting’s functionality. The Figure 7.18) contains two
extensions that describe how these patterns are to be integrated into the software system
in order to generate the business report from a number of supermarkets in a correct way.

HeadQuarters

Business
Reporting

Supermarket

Wrapper
Barrier:size=N
LocalTSS:size
GlobalTSS:size

acquire

<<InternalAction>>
addData

<<ExternalCallAction>>
sendMessages

<<InternalAction>>
processData

<<Barrier>>
ThreadsRequired = N

<<Critical Section>>
ThreadSpecificStorage

<<reset>>
<<registerBefore>>

generateReport() uploadData()

<<registerAfter>>

<<local>><<global>>

Client

uploadData

release

release

acquire

acquire

generateReport

release

Barrier

Barrier

Global

Global

Local

Local

uploadData()’

generateReport()’

Figure 7.18.: Behaviour of the Business Reporting including annotations.

Communication between HQ and the supermarkets is realised by messages, to simultane-
ously collect data from all supermarkets. This requires the Business Reporting to block
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until the results of all supermarkets arrived. A barrier, modelled by an annotation of
the outer scope of methods generateReport() and uploadData() including the actions
processData and addData, ensures that the generation of the business report is deferred
until all data is available. For report generation, this blocking is achieved by registering
at the barrier before processing the data (registerBefore). During the upload of data,
the supermarkets register at the barrier after they added the data (registerAfter). This
behaviour signals the barrier that new data is available now. The data itself must be pro-
tected by a critical section in order to avoid lost updates or race conditions. For this case
study, we used a thread-specific storage to reach this aim. We distinguish accesses to the
local data of a single thread and global data of all threads. In general, the annotation
critical section realises a strategized lock, i.e., the locking strategy can be exchanged
by whatever seems appropriate. The complexity of the barrier is hidden in an external
Wrapper component added to the system.
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Figure 7.19.: Distribution of the turn-around time and data collection time.

We implemented the business reporting scenario using JBOSS 6.1 and message-driven
beans for the message-based communication. For the measurements, we set up the system
in a distributed environment with one client, one HQ, and five supermarkets each running
on a separate machine. Figure 7.19 shows the probability distribution of the turn-around
time of a message (i.e., the time from when the message is send until an answer of a
supermarket arrives) and the data collection time (i.e., the total time from sending a
message to all supermarkets until all answers arrived). As to be expected, the distribution
of the data collection time represents a probabilistic lower bound of the turnaround time.
Mathematically, it is the maximum turnaround time of five messages send in parallel.
Sending a message to five supermarkets (publish-subscribe) took 16 ms only. The delivery
of the message return took 158 ms on average. This strong difference is mainly caused
by the different message sizes. The messages send back to HQ are much larger than the
messages send by HQ since they contain the data requested. Finally, the JNDI-look up of
the topic for sending the message took 116 ms and the report generation (after all messages
have been received) 260 ms. The total processing time to generate a report was 522 ms.

In the following, we extend this system and apply additional processing steps in the con-
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nector. Thus, we evaluate the composition of a multiple completions in one connector.

Setting: Question, Metrics, Assumptions

We identified three different dimensions in the configuration of the completions which
impact performance:

1. The use of asynchronous calls is introduced, which speeds up the simulation of
procedure calls, that can be processed asynchronously.

2. Due to the capacity restraints the capacity of concurrency can be configured. This
includes pile up effects in the connector and can be used to conduct bottleneck
analysis.

3. The resource demands (e.g. required number of CPU cycles) for each of the processing
steps can be specified.

In the remainder of this section, we deal with the issue of finding proper resource demands
and separating the individual processing steps in the connector correctly. The process of
finding proper (in some cases parametrised) resource demands is part of the completion
development and results in the platform-specific completion definition. The separating
of individual processing steps is the basis to support completion variability. We have to
evaluate if these steps can be composed correctly.

Implementation

The case study scenario consists of multiple Data Managers which generate great amounts
of data that are requested by the Business Reporting component. Each Data Manager

serves one supermarket. To preserve network bandwidth, the data is compressed before
network transfer and decompressed afterwards, this does already reflect the steps in which
the overall task of the connector is going to be cut down. The scenario is implemented
in Java using the GZIPStreams and Socket communication. In our scenario, we use two
machines, each with one core, similar processing rate and memory. All Data Managers

run on one machine, while the server runs on the other.

To adapt models corresponding to the real system, we implemented a transformation
realizing connector completions and composing them from basic elements. It is a model-to-
model transformation using QVT Relational [72]. The tool used to run the transformation
is Medini QVT Engine. As shown in Figure 7.20 the transformation can be divided into a
number of basic steps.

As a first step in the transformation, the source model has to be copied completely into
the target model, but without the annotated AssemblyConnectors (which are replaced
by the transformation). The transformation copying the model is generated using the
Routine HOT. Then the Connectors have to be created. The creation of a Connector
can be divided into the following steps: (a) find elements in the target model, (b) create
new elements, (c) connect elements, (d) allocate elements, and (e) place elements. First,
the location (pivot element) and the elements that are directly connected to this location,
where the Connector has to be inserted into the copied system, have to be identified. The
new elements and their interconnections are defined by the completion feature diagram and
its feature effects. For each completion, a completion transformation is generated. Second,
this transformation is executed and all the new elements that are part of the connector are
generated. Then all the elements get allocated to hardware resources depending on the
allocation in the source model. At the end all created elements have to be placed inside
the system or allocation element to be at the right place in the PCM model. Resulting
transformation completed prediction model in single steps integrating in each step an
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Copy the 
source model

Find elements
in the target model

Create new elements

Connect elements

Allocate elements

Place elements

Create Connector

Figure 7.20.: Approach for executing a transformation.

abstraction of single connector part (e.g., Compression/Decompression in a first step,
MOM in a second step, etc.). If the completion created a ’coupled’ sets of elements
(i.e. subsystems), such as Compression/Decompression, the elements get connected by ab
AssemblyConnector. This connector is then the pivot element for the next completion, in
our case the MOM completion. When the completions do not create ’coupled’ subsystems,
the next completion is applied on the first AssemblyConnector after location of the by
previous completion created subsystem. Thus, it is possible to compose a number of
processing steps in connectors.

Results
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Figure 7.21.: Measurement Results: Overview.

To create the prediction model and to configure the components for processing steps, the
response time of compression, socket transmission and decompression has been measured
independently. We focused on data sizes up to 0.5 MB and only a few concurrent threads
to minimize trashing, we expect the server to run at moderate utilisation. The data is
structured and thereby has a compression rate of 70%. We noticed, that the duration does
not only depend on data size but also on the compression rate achieved for that data, thus
we used only data with that constant compression rate.
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Figure 7.22.: Measurement Results: Compression.

The results for the duration of all three processing steps executed by one thread are shown
in Figure 7.21. The compression and decompression clearly adhere to a linear behaviour,
while the socket transmission show a periodically partial-linear nature. Please note, that
the values for decompression do not relate to the response time from the data size as
indicated by the x axis, but instead to the response time required to decompress to the
indicated data size. This is done for illustration purposes, so that one can read on hand of
one x value how long it takes to compress data, and for the same x value the decompression
graph shows how long it takes to decompress that same data, although the input data sizes
differ due to the compression.

Also, if there is more than one thread, the behavior scales additively as long as there
is no trashing. Meaning that the duration of 4 threads doing one package of work is
approximately the same, as one thread doing 4 packages of work. This is shown in Figure
7.22 in the case of compression. Note, that this only holds, if there is no blocking involved
like from file IO or excessive paging, which is not the case here. Within this case study, we
focused either on one or three Data Managers (i.e. threads). In case of Data Managers

sensors the level of concurrency is configured through the think time of the Data Managers.

Another effect we experienced in the measurement of the overall scenario was that it did
not relate to the sum of the individual measurements. This was caused by the fact that the
decompression could already start, before the transmission of the whole data was finished.
To simplify the scenario, we deployed a buffer in which the data is written and which is
not decompressed until all data has been received via the socket connection.

The capacity of the worker pool of the decompressor has to be set to one, because the socket
server accepts only one incoming connection at a time and accepts no new connection until
the current is done processing. The model uses synchronous call mode to enable predictions
of the overall response time. From the measurements of the processing steps we created
regression lines to use them for the resource demands of the component’s SEFFs.

The prediction achieved good results (<3% error) when only one Data Manager was
used.With three active supermarket sensors (Figure 7.23) the prediction error was less
than 3%, when the inter-arrival time was either very high or very low. The results devi-
ated more with the inter-arrival time in middle values (approximately half of the execution
time), although even for these cases the error went only up to 4%. What could be explained
by repeated garbage collection activity by higher utilisation.
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Figure 7.23.: Measurement vs. Prediction Results.

Discussion

This part of the case study showed that even a composition of multiple completions mea-
sured and calibrated in isolation provides accurate predictions. There are, however, still
open questions. In this case study, some factors were simplified. Those factors are predes-
tined to be focus of future studies. For example, streaming requires further investigation.
One possible solution to model this is to split up the data into several small packages af-
ter the compression and process them asynchronously. Furthermore, varying compression
rates should be supported. Together with varying degree of concurrency and data size,
this turns into a multidimensional problem. This can be mastered by utilising Software
Performance Cockpit [77], which had not suitable tool support at this point.

Additionally, the experiment can be also conducted on multi-core CPUs. The scenario can
be enhanced by passive resources (e.g. semaphores, locks for critical sections) to validate
the passive resource model and new features can be added.

7.2.2.2. Validation: Completion Ordering

Alternative [C,E,M]

MOM
Adapter

Alternative [E,C,M]

Encryption

496ms

653ms

Compression Encryption

Compression MOM
Adapter

Figure 7.24.: Completion Alternatives.

Figure 7.17 shows the part of the system’s architecture relevant for business reporting. In
this architecture, one component, the HQ Business Reporting, is annotated by a Barrier
pattern configuration. This is a completion annotating component, thus in a responsibility
of component developer. Because it is a single completion having impact on this compo-
nent, the conflict does not appear. More interesting is one connector (line connecting
required interface of a HQ to provided interfaces of supermarkets) annotated by three
completions: firstly, as Messaging connector, secondly, by Encryption, and thirdly, by
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Compression. All of these completion annotations refine the performance prediction model
with certain properties. The sequence of completion execution affects the model structure
and its validity. In the illustrated example, the completion execution order results in dif-
ferent semantic for the Barrier completion. Correctly is a barrier implemented as a part
of an intern functionality of a component, thus the ’Barrier component’ is located before
the beginning of the connector chain. However, when the ’Barrier component’ would be
applied at the end of this chain after the MOMAdapter the model would be semantically in-
valid. In a first case, the ’Barrier component’ waits for a number of replies from different
Data Managers. By changed order the ’Barrier component’ waits for replies from one
Data Manager. Additionally, the results of performance prediction could be influenced as
illustrated by our example (cf. Figure 7.24) for the connector chain. To identify a valid
completion execution order in such complex system is a non-trivial task.

In the following, we demonstrate how conflicts of multiple completions can be resolved.
It is possible that not all of the permutations in the completion sequence are valid, the
reasons for it are different: some of the sequences could be structurally or semantically
invalid, other one are not possible because of the middleware implementation that has a
fixed sequence of the services. We do not consider these cases, in this part of the case
study we focus only on the third dimension in completion conflict, thus, the performance
dimension. We analyse the impact of completion order on performance and ability of
our approach to help completion user identify suitable variants from performance point of
view.

For the sequence of Messaging,Encryption, and Compression are all the possible permu-
tations structurally valid. However, semantically does not make sense, for example, to both
compress and decompress before or after sending the message. In reality such possibilities
do not occur. For the purpose of this case study, we modelled all these permutations and
applied our quality heuristics for conflict resolution.

HeadQuarters

Sender Adapter

Receiver
Adapter

Message-
oriented

Middleware

Supermarket

Receiver
Adapter Supermarket

HeadQuarterClient Sender
Middleware

Receiver
Middleware

Receiver
Middleware

MOM Adapter

Barrier Critical
Section

Encryption

Compression

Decryption

Decompression

Decryption

Decompression

Figure 7.25.: Resulting Architecture.

In the presented example, the sequence of completion execution should result in the full
architecture model illustrated in Figure 7.25 (e.g., with applied [C,E,M ] completion se-
quence). Using the method introduced in Section 5.2.3 we illustrate the reduction of
conflicts in completion executions order. This way the sequence of completion execution
can be implicitly defined.

Results

As expected, the completion set applied to the connector is conflicting, producing signifi-
cantly different results for different completion chains. To resolve the conflict, we analysed
the application of all completion chains over the completion set CS = {M,E,C}. The set
of all valid completion chains is {[C,E,M ], [E,C,M ], [E,M,C], [C,M,E], [M,C,E], [M,E,C]}.
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[C,E,M ] [E,C,M ] [E,M,C] [C,M,E] [M,C,E] [M,E,C]

rt(link) 496 ms 653 ms 1137 ms 676 ms 1130 ms 1574 ms
thp(link) 115 msg/s 72.5 msg/s 39 msg/s 70 msg/s 39 msg/s 26 msg/s

Q(e) 4.3 9.0 29.1 9.6 28.9 60.5

Table 7.4.: Quality evaluation for all valid completion chains.

Based on the heuristics for order resolution we identified the most optimal completion or-
der as [C,E,M ]. The measured performance of E and M decreases with growing size of
input data. The C completion decreases the data size and therefore should be the first
in a sequence. The C is followed by E and by M as shown by quality function results.
We modelled all alternative architectures in the Palladio Component Model (PCM). To
validate our approach, we developed a semi-automatic extension of the PCM Bench [18]
that analyses the conflict location in isolation using our heuristics. The PCM Bench al-
lows the specification of component-based software architectures and the analysis of their
performance properties such as response time, throughput, and resource utilisation.

The order in which completions are applied heavily influences the response time and
throughput of the connector. Table 7.4 lists the response time, throughput, and the
computed results of local quality functions Q(e) for all different permutations. In addi-
tion, Figure 7.26 shows the cumulative distribution functions for the response time of all
permutations.

Figure 7.26.: Distribution of the response time for refined connector (based on all valid
completion chains).

For the best permutation, we get a mean response time of 496 ms and a maximal through-
put of 115 messages per second. This yields a value of 4.3 for our quality heuristics. By
contrast, the worst combination results in a mean response time of 1574 ms and a maximal
throughput of 26 messages per second. Consequently, the value of our quality heuristic is
much larger (60.5). The results demonstrate how the quality heuristics further emphasises
the differences between the permutations. While the response time of the best and worst
permutation differs ”only” by a factory of three, the results of the quality function differ
by a factor of 14. Thus, the quality heuristic clearly select the permutation [C,E,M ] as
the best alternative (cf. Figure 7.27).
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Figure 7.27.: Comparison of the overall response time distribution for the [C,E,M](RED)
and [E,C,M](BLUE) alternatives.

Discussion

We shown that the proposed method for reduction and resolution of conflicts can give the
completion user an indication of the best alternative. The exact results for the subsystems
tested by this method in isolation do not correspond the exact values for the subsystem
used as a part of a complex system with other usage profile, the pattern in results is,
however, an indicator that remains. As such could be used to build a knowledge about
the completions registered in library and give recommendations for best practices for the
developers.

7.2.3. Type II Validation: Applicability Evaluation

In this section, we demonstrate how the introduced metrics give insight into the quality of
transformations. We illustrate the applicability of our approach and discuss the results.
For this purpose, we present a case study based on an evaluation of different types of
transformations.

7.2.3.1. Maintainability Comparison

We address first the question Q3 regarding the maintainability of completion transforma-
tions:

Q3: What are the quality, especially maintainability, properties of used transformations?

Settings

In our case study, we evaluate following transformations:

MOM (Message-oriented-Middleware) Completion Transformation

This transformation integrates performance-relevant details into software architectural
models, it is a completion transformation. This type of transformations is a special type of
customisation. The details are woven as additional subsystems into the model of architec-
ture, thus the source model has to be copied first. The MOM completion transformation is
dependent on the input from a configuration model that configures how the actual archi-
tecture model should be refined. Thus for each variant of this transformation the copier
part is the same. The difference is in actual description of completed subsystem. We
evaluate two different implementation of this transformation:
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• MARK_MOM - MOM mark transformation: The configuration, defined by the mark
model, provides the variability to the transformation. For example, if a connector is
to be completed by message-passing, the mark model can provide information about
the type of messaging channel, e.g., using guaranteed delivery. The disadvantage
of such implementation is that the completion developer has to develop a overall
transformation that produces a valid result for each combination of configuration
options. Thus, such transformation has to read directly the configuration model and
implement a huge ’switch’-like constructs to react on the read configuration correctly.

• COMP_MOM - MOM completion transformation: This transformation does not
know about the configuration at all. It is generated using a composition (by the
Composite HOT) of feature effects developed in isolation for each feature. More-
over, this transformation includes copy relations for all metamodel elements, these
relations are generated by the Routine HOT.

We analyse both of these variants to get a feeling for the complexity of these transfor-
mation types. The source and target model of these transformations are based on an
underlying component-based metamodel of ’core’ PCM with the size of 290 classes. As
such, these transformations are representatives of the group of quite complex and variable
transformations.

R_HOT - Routine HOT Transformation

This transformation is a Higher-Order Transformation (HOT), as it generates another
transformation. This specific HOT is used to generate a default copy transformation
for a given metamodel by producing a copy relation for each class and each property
of the given metamodel. This is required because there is no copy operator in QVT
Relational. The source model of this transformation is the Ecore metamodel having 31
classes and target metamodel is the QVT Relations metamodel itself with the size of 110
classes. This transformation is used as a representative of the group of medium-complex
transformations.

TRAN_T - Translation Transformation

This transformation is presented in the QVT specification as an example relational trans-
formation [72]. In this case study, it serves as a reference example. The translation trans-
formation only translate model instances of one metamodel language to another metamodel
language. This translation transformation maps UML class models to RDBMS tables. The
minimum UML source metamodel contains 6 classes and the target RDBMS metamodel
has a size of 18 classes. This transformation is used as a representative of the group of
simple transformations.

We applied the maintainability metrics introduced in Chapter 6 to evaluate maintainability
of these transformations. The results were collected automatically using the Analysis HOT
pattern. In the following section, we discuss the results of this evaluation.

Results

The results (cf. Table 7.5) of this case study have shown that the completion transforma-
tion (COMP_MOM) in contrast to the transformation without the generated parts (MARK_MOM)
has a higher number of smaller relations. The relations in COMP_MOM are in average less
complex. The decrease in complexity originates in the less complex match patterns, be-
cause the complexity of pattern matching is distributed on a number of relations.
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Completion transformations show that usually the number of domains used is two, one
for target and one for the source. In manually programmed transformations it can be ob-
served, that more complex matching pattern are used and include several domains. Thus,
the relations are bigger, but the number of relations is smaller comparing to generated
transformation. This is visible on the graph ’Pattern Node Complexity’ in Figure 7.29,
where we see how the rate of domain pattern nodes per relation decreases significantly if
the simple copy rules are added. Moreover, no additional local variables are necessary.
In this graph is visible that the MARK_MOM transformation consists of the most complex
relations.

The transformation COMP_MOM, intuitively categorised as a complex transformation, shows
much higher values in average domain pattern tree depth as well as the average number
of domains and when-predicates per relation (cf., Figure 7.29). Interestingly, the num-
ber of where-predicates increases diametrically opposed. This may indicate that different
approaches for defining the overall transformation have been employed. Moreover, where-
predicates indicate a somehow “forward” (thus also more imperative) executed transfor-
mation whereas more when- predicates indicates a more declarative way of the whole
transformation design. The tendency to use more declarative constructs instead of im-
perative once is even visible by per-hand developed MARK_MOM, which was implemented
by developers used to the concepts of functional programming. Which of these designs is
more maintainable remains to be evaluated. However, using these metrics a connection
between these findings could be underlined.

Moreover, on the last two graphs in Figure 7.29 we can observe that in a simple transfor-
mations such as TRAN_T usually one predicate depends on one variable only. However, in
more complex transformations the number of variables in predicates grows. The most com-
plex variable dependencies could be observed for the MARK_MOM transformation. Similarly,
in the case of R_HOT the complexity of predicates is high, this transformation is an gener-
ator that is not variable and is implemented only once. As such, the higher complexity is
reasonable.

Furthermore, generated transformations show an equal ratio of when- to where-predicates
(cf. Figure 7.29). This means that a fulfilment of every relation is a precondition of as
many relations as it depends on. This tendency is not visible in a manually programmed
transformations. On the other hand, an increase in the usage of where- clauses is visible,
because it is easier to think in the forward transformation direction. However, the tendency
to use more when- predicates increases with the complexity of the transformation as shown
for the MARK_MOM.

The ratio between the number of top level relations and non-top level relations (cf. Figure
7.28) is the smallest in case of the generated transformation (1:1). This means a higher
utilisation of top level relations. The generated transformation takes an advantage from a
higher number of execution paths possible in the transformation and is not tuned to limit
the number of starts in order to support maintainability. This also makes sense as the
parts generated for the copy transformations are not intended to be maintained manually
anyway.

In general, our observation is that in a manually developed transformations roughly half
of the relations are top-level relations. We can distinguish a pattern showing that a
transformation was written manually by a human based on the number of starts as it
seems natural for a human mind to consider only one execution path.

Additionally, the difference between the number of relations and number of predicates is
negative for simple transformations, it is an indicator of average complexity of relations
(cf. Figure 7.28). It indicates that in one relation developers used higher number of pred-
icates. Together with the knowledge about the overall number of relations it shows that
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COMP_MOM MARK_MOM R_HOT TRAN_T

Lines of Code 7582 6875 473 239

Clean code 5789 6074 416 181

Comments 220 165 13 4

Number of relations 488 313 17 8

Number of top level relations 330 22 8 3

Number of starts 99 1 1 1

Number of OCL queries 20 21 1 1

Number of when-predicates 233 113 9 5

Number of where-predicates 221 90 12 13

Number of metamodels in transformation 2 3 3 2

Average number of domains per relation 2 4.65 2.76 2.5

Average number of domain pattern nodes per relation 2 14.78 11.53 2

Average number of when-predicates per relation 0.9 1.78 1 0.63

Average number of where-predicates per relation 0.49 0.87 1.82 1.63

Average number of local variables per relation 0.001 0.48 1.05 2.38

Val-in per relation 2.63 14.78 11.53 2

Val-out per relation 2.3 4.45 3.66 3.12

Fan-in per relation 1.12 1.67 1.34 0.78

Fan-out per relation 1.02 1.34 1.2 0.7

Average number of checkonly domains per relation 1.04 2.09 0.71 1

Average number of enforce domains per relation 1.08 2.57 2.47 1

Table 7.5.: Automatically calculated metrics.
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Figure 7.28.: Results: Transformation Complexity.
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Figure 7.29.: Results: Relations Dependencies.

developer can do this only because they still have a quite good overview about the whole
transformation in this cases. On the other hand, for complex transformations this indica-
tor is positive, the higher the value of this indicator is, the more complex the relations are.
The high average number of domain patterns and domain pattern nodes in the MARK_MOM
shows that some the relations have to be even more complex (have more predicates) and
some do not have predicates at all. The relations without predicates are so called ’helper’
relations that are used to ensure validity of the target model or read configuration models.
The MARK_MOM transformations has the highest number of these ’helper’ relations. Which
is an indicator that it was difficult for the developer to get an overview about the overall
functionality of transformation. This could originate in complex dependencies between
relations that are visible on results for the fan-in/fan-out metrics.

The R_HOT manifest very interesting ration between the checkonly and enforce domains.
The number of enforce domains is significantly higher as the number of checkonly domains.
This ratio shows that it is a generator type of transformation. Similarly, the 1:1 ratio in
the case of TRAN_T indicates the translational type of transformation.

Discussion

The presented results illustrate how software architects can evaluate the maintainability
of their model transformations. Our experience shows that the developers implementing
one feature at the time focus on one aspect and thus the relations are less complex and
focused, too. To generate or compose transformations from parts it is the best approach
to implement a lot of small and focused relations. On the other hand, the implementation
of mark transformation manifested increase in the relation size, especially in the domain
pattern complexity. Moreover, the code was polluted with the ’helper’ relations used to
read the configuration model.

7.2.3.2. Complexity Comparison

In this section, we address the last validation question Q4 regarding the complexity of
feature effects development:

Q4: Is the complexity of transformations decreased by separation of concerns in feature-
related transformation fragments?
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Settings

To give an indicator of the transformation complexity decreased by our approach, we pro-
vide an experiment based on comparison between a generated completion and a manually
written mark transformation. This illustrates that the separation of concerns decreases
the transformation complexity and that mark transformations include a lot of infrastruc-
ture code (e.g., helpers). This infrastructure code is could be avoided or generated as
well. Additionally, as we shown in previous section, generated transformations are more
structured and therefore better understandable.

In this experiment, we evaluate the Thread Pool completion which integrates performance-
relevant details about the Thread Pool design pattern into software architectural models.
We compare following two implementation of this transformations:

• MARK_TP - Thread Pool mark transformation

• COMP_TP - Thread Pool completion transformation

We analyse both of these variants, MARK TP implemented manually and COMP TP
generated (i.e., composed from transformation fragments), considering the extendibility
and ability to debug the resulting transformation. Both of these transformations were
developed for the PCM metamodel with the size of 290 classes.

Results

The main advantage of our approach is that developers can focus on effect of one selected
feature at time and develop relations for this feature only, they are not concerned with all
feature combinations and their dependencies. In the mark transformation, the developer
has to consider all the possible configuration combinations and check the state of features
(selected or eliminated) by accessing additional model (e.g., feature model) from relations
in the mark transformation. Even later in development, the dependencies (where- and
when- predicates) between the relations need to be resolved manually. These dependencies
are solved in our approach by the Composite HOT using the constraints for the transfor-
mation composition. Table 7.6 gives numbers of generated lines of transformation code in
comparison to lines of manually written mark transformation code. The transformation
frame consists of a generated copy transformation (using Routine HOT), which is used by
both manual and automatic fragment integration. We extracted this part of both trans-
formations and focused comparison only on the customisation relations implementing the
functionality presented in the running example 3.3.1 and the configuration presented in
Section 3.3.3. The input model to be completed is a simple client-server application and
the completion skeleton that is injected into the model is described in Section 3.3.2.4.

As shown in this comparison, the generated customisation part of the transformation
consist of 7 relations in 3 fragments, these fragments could be reused in a case of an
another feature combination. In a case of the mark implementation without reusable
fragments, we have to implement a new transformation for each feature combination. For
the chosen feature configuration, the transformation consists of 8 relations.

The results (cf., Table 7.6) show that, to realise feature effects for the 4 chosen features,
we have to implement:

• ThreadPool feature effect: one fragment for the root feature ThreadPool consisting
of one top-level relation and two normal relations.

• Static feature effect: one fragment for the Static feature consisting of three rela-
tions. The feature OptimisationProperties does not have feature effect, because
of the mandatory choice of one of the child features.
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Complexity of the model

290 metamodel elements

11 model elements

21 to be added/completed elements in the model

18 features in the feature model

4 chosen features in the feature configuration

1008 possible feature combinations

Generated transformation frame

450 copy relations in the transformation

5850 lines of code implementing the copy relations

COMP_TP - Thread Pool completion transformation

3 transformation reusable fragments

7 relations in the transformation fragments

195 lines of code implementing the relations

MARK_TP - Thread Pool mark transformation

8 relations for one combination

250 lines of code implementing the relations

Table 7.6.: Comparison of completion versus mark transformation for one feature
combination.

• PoolSize feature effect: one fragment for the leaf feature PoolSize consisting of one
relation.

For the mark transformation, we implemented 8 relations to achieve the same function-
ality. Each relation has to implement two input domains (i.e., source and configuration
model) and one target domain. The additional relation is a ’helper’ relation. Moreover,
this simple mark transformation has already 55 lines of code more as the fragment-based
implementation. This is an indication that the size and complexity of this transformation
will grow significantly if the other valid configuration options would be considered (i.e.,
1008 valid options).
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Figure 7.30.: Dependencies to other features for the Feature 3.

Furthermore, the separation of concerns based on feature diagrams (cf., Figure 7.30) helps
even by extending of the configuration by a new feature or debugging the transformation.
When adding a new feature in the mark transformation, we have to check the dependencies
to the each relation having or calling a relation that has the configuration model as its
input domain. In such cases, the structure of feature model gives an navigation to the
feature effects that have to be updated. That are, for example, for each leaf feature all
the feature effects on the direct path to the root feature and all mandatory features in the
feature tree. Additionally, all the features possibly referenced by depends constraint have
to by considered.
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Discussion

The presented experiment shown that focused development using feature model is an ad-
vantage. Especially, the additional information about the dependencies between feature
effects intuitively hidden into the structure of the feature tree supports completion devel-
opers. However, further empirical evaluation of the usability properties would be necessary
to get quantifiable results.

7.3. Summary

This chapter presented the validation of completion-based improvement method for the
accuracy of performance prediction. We structured the validation according to two main
goals: First, we studied the accuracy of the completions them self. Second, we evaluated
the quality characteristics of the main elements supporting the automated completion-
based MDSPE: the model transformations.

With respect to the first goal, we found that:

• Completed models correspond better to the reality and can predict systems be-
haviour with a very high accuracy. The accuracy of prediction depends strongly on
the modelled completion. In complex cases some influences (e.g., Virtual Machine
optimisations) could not be modelled with 100% accuracy to the reality, what could
result in a strong deviation. However, in other cases the calibrated model for a
platform can provide predictions with an error of less than 3%.

• Using completion-based models we can predict not only the response time or through-
put with high accuracy, but even the complex effects resulting from state-dependency.

• Even multiple completions used on one model element provide accurate predictions
in the composition. Moreover, the order of completion execution in a sequence could
be evaluated using performance prediction with our quality heuristics and help to
identify the most advantageous sequence.

• The quality heuristics are suitable to provide indications about an order in a sequence
of completions .

With respect to the second goal, we found that:

• The evaluation results show that completion transformations are more focused and
consist of smaller relations mapping mostly only one model element at time. Thus,
transformation developers could easily identify relations impacting one model ele-
ment type. This gives an indication that completion transformations are better read-
able and understandable, because of lower complexity of domain patterns, stronger
modularisation and less complex interdependencies between relations in transforma-
tions. We use established evaluation techniques using code metrics indicating the
applicability of our approach.

• The feature model structure supports developers when introducing new features and
extending completion transformation. It focuses the development effort through
separation of concerns.

In addition, the possible topics for future work are mentioned throughout this chapter.
The most important of them is the empirical validation of the used techniques, especially
the evaluation of the ability of developers to take advantage of declarative constructs and
implement transformations more in relational as operational way.
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8. Related Work

In this chapter, we summarise the state-of-art of model-driven software development and
performance evaluation both with respect to variability of models. There are other ap-
proaches dealing with similar challenges as this thesis, even though in different contexts
and for different application domains. In this chapter, we compare the solution introduced
by this thesis to some of these approaches. With this objective, we divide and list them in
different groups discussed in separate subsections. Some of the approaches are, however,
not dealing with the core problem that we want to solve, but they analyse and propose
solutions for other related or partial goals of our approach. Numerous approaches could
be discussed here, however, to focus our discussion we analyse methods that are applica-
ble at the abstraction level of software architecture, and thus we exclude more low-level
approaches that deal with variability and refinement of code.

The approaches related to the results of in this thesis can be classified into two main
areas. The first area, discussed in Section 8.1, consists of MDSD approaches dealing with
management of variability in transformations and quality metrics for transformations.
The second area, discussed in Section 8.2, covers approaches that explicitly utilise model-
driven software development techniques, similar to completions, for software performance
predictions. The last Section 8.3 summarizes and compares the most important of the
discussed approaches to the results of this thesis.

8.1. Model Transformation Engineering

The first area of the related work compares approaches that are similar to the main con-
tributions of this thesis: (i) model completions and their realisation as an SPL for trans-
formations built by HOT patterns; and (ii) quality metrics for transformations. To reduce
development effort and to increase the maintainability of transformations, the transforma-
tion languages and tools have to support mechanisms for creating as well as integrating
reusable transformation artefacts. Thus, the related work for the first contribution can
be divided into two subgroups. The first group (see Section 8.1.1) includes methods for
development of transformations for reuse and the second group (see Section 8.1.2) contains
methods for development transformations with reuse.

8.1.1. Development of Transformations for Reuse

To create reusable transformation artefacts, the level of abstraction is essential. Current
approaches are focused on reusing single rules of transformations or on reusing whole pat-
terns or transformation fragments. Transformation reuse at rule-level has been addressed
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by several transformation language specifications, such as ATL [90], QVT [72] or VIATRA
[5]. This kind of reuse is very fine-grained and focused on the reuse of separate mapping
rules. QVT, which is used to implement our approach and as such we inherit its reuse
mechanism, provides reuse mechanism at rule-level based on rule inheritance [72]. The
oAW’s Xtend language [166] is an imperative transformation language, which includes ex-
plicit code-level support for transformation aspects. This mechanism is effective to avoid
common parts in code and structure the implementation, however, for the coarse-grained
reuse using patterns and templates it is not suitable.

Typically, model transformation languages, e.g., ATL [90] and QVT [72], allow to define
transformation rules based on types of the corresponding metamodels. However, such
model transformations are not reusable for different metamodels and must be defined from
scratch again and again. Such language definitions do not allow metamodel variation. For
example, ATL requires to specify the metamodel package name as part of the mapping
classifier. One exception is the approach of Varró et al. [5] who define a notion of generic
transformations within their VIATRA2 framework. This framework in fact resembles the
concept of templates in C++ or generics in Java. Therefore, VIATRA2 provides a way
to implement reusable model transformations and could be principally used to implement
our templates or feature effects in a metamodel-independent way. Metamodel-independent
definition of feature effects is mentioned as one of the possible future work directions in
Chapter 9. Nevertheless, they do not foster a general template instantiation technique as
it is proposed in our approach based on HOTs in Section 4.6.

The coarse-grained reuse based on transformation patterns and parametrised templates,
which is supported by our approach as described in Sections 4.4 and 4.6, has not been
extensively treated yet. We can distinguish to types of approaches for coarse-grained
reuse: (i) template-based and (ii) pattern-based approaches.

Template-based approaches:

Czarnecki and Antkiewicz [44] propose a template-based approach for mapping feature
models to concise representations of model variabilities. Allowed configuration combi-
nations depend on the existence of suitable model templates that are bases for model
instantiation. Our approach is not template-based in the sense that templates and feature
models are an additional input for the transformation. We rather lift the template instan-
tiation up to the transformation creation itself. We configure templates and instantiate
them into the final product, which is again a transformation defined by feature model and a
set of instantiated templates. The templates define independent transformation primitives.
Because templates are used to implement feature effects in our approach, the complexity
of handling all possible feature combinations within the transformations is decreased and
is made explicit through the structure of the feature model. Furthermore, we define a
general template instantiation mechanism and use templates to implement parametrised
artefacts instead of reusing them directly.

Pattern-based approaches:

The reuse of transformations in the form of transformation patterns is still in its infancy.
A first list of patterns in the context of graph transformations has been proposed by
Agrawal et al. [2]. Moreover, they introduce a graph transformation language named
GREAT and a set of patterns for graph transformations. The introduced patterns are
structurally similarly complex than the patterns used for definition of CBSE templates in
Section 4.6. The difference to our approach is that these patterns are defined for graph
transformations and a general instantiation mechanism is missing. Another initial list
of patterns originating from QVT Relations specifications has been collected by Iacob
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et al. [87]. Iacob et al. introduced an initial set of design patterns for transformation
specification. This set of patterns act as an input of the Routine HOT pattern in Section
4.4 that generates transformations implementing the chosen pattern.

In our approach, we provide support for both fine-grained (inherited from QVT and using
Composition HOT pattern) and coarse-grained (using Routine and Template Instantiation
HOT pattern) reuse. The focus of our work is not on a definition of new patterns, but more
on the general MDSD structures used to instantiate, integrate, and resolve parametrisa-
tions and to compose existing patterns or templates that are specific for handling of design
decisions integrating domain-specific aspects. We identified a general MDSD patterns in
Chapter 4, so called HOT patterns, used to instantiate transformation templates and
design patterns and we automatically generate transformations realising these patterns.

8.1.2. Development of Transformations with Reuse

In the MDSD context the reuse of transformations is one of the principal software quality
factors and a key to achieve higher productivity. In the domains of model transformation
languages, however, transformation generation, transformation composition, template def-
inition for model transformations, and application of HOTs for the reusability goals are
relatively new. In the following, we discuss the most important approaches in this area
with special focus on the applications of HOTs.

8.1.2.1. Generative Approaches for Transformations

A very important answer to the demand of automated model refinement is Model-Driven
Development (MDD), which employs model-to-model transformations to refine system
models. Czarnecki and Eisenecker introduced generator options in their book on Gen-
erative Programming [46] which is a predecessor of today’s MDD paradigm. They used
feature diagrams to capture different variants in the possible output of code generators.
Feature diagrams model all valid combinations of a set of features called (feature) config-
uration where a single feature stands for a certain option in the respective input domain.
Similarly, MDD employs feature diagrams as an additional input into the transformations
to mark activation of transformation parts for a particular input model. Such transforma-
tions are so called mark transformations [11]. In our case, the choice of active features is
woven into the transformation by a HOT. Thus, the concept of mark transformations is
the same as ours, but we raise the level of abstraction a bit further.

Another generative approach, an automated framework DUALLY [111], aims to answer the
issues concerning the interoperability of tools and languages. This approach introduces the
concept of transformation generation with the purpose of translating model specifications
from one language to another. The transformation generation is based on a mapping
between these languages. The resulting transformation is generated based on the mapping
model. The generated transformations serve as translation mechanism for models from one
metamodel language to other. In current state it is not possible to generate customisation
(or completion) transformations that introduce new domain-specific model elements.

The most related approach is the ATLAS Model Weaver (AMW) [47, 48] that offers
abstraction mechanisms for definition of simple weaving operators (mappings) describing
correspondence between two metamodels. This process can be done manually or semi-
automatically. The result is called a weaving model. The weaving model is an input for
the higher-order transformation (HOT) that generates model transformations. The AMW
approach is implemented using Atlas Transformation Language (ATL), which is a mixture
of declarative and imperative constructs. Because of the imperative constructs, the traces
between the weaving operators and resulting transformation are hard to follow in AMW
and for each new operator the whole HOT has to be adapted. Thus, the HOT is not
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general for all the operators, as in our approach, and the separation of concerns between
the implementation of HOT and weaving operators is unclear. Finally, a weaving operator
always connects source metamodel elements to target metamodel elements, so it is not
possible to realize complex transformation logic or introduction of new domain-specific
elements as by completions.

Lately, Herrmannsdoerfer et al. introduced a language for Coupled Evolution of Meta-
models and Models COPE [84]. COPE is proposed as a solution to the problems that
arise due to metamodel evolution and the resulting necessary model migration to a corre-
sponding newer version of the metamodel. This approach is based on a reusable migration
transaction library that is used for migration transformation generation. Although, it pro-
vides advanced means for reuse of migration transactions and migration transformations,
it is not suitable to express the variabilities of application families based on metamodel-
independent feature configurations.

Transformation Composition approaches:

The composition of transformations causes additional problems and is subject to many
currently running research initiatives. We can distinguish two types of transformation
composition: internal and external. Internal composition consists of rule-based analysis,
location of rule conflicts and scheduling of transformation rules, with the goal to merge
two transformations into one.

One internal composition approaches is [168] which proposes a superimposition composi-
tion technique for ATL and QVT Relations. Superimposition is a white-box mechanism
that allows to merge several transformations in a final transformation containing union of
all transformation rules and helpers. Other works [130] and [114] investigate possibilities of
composing complex transformations from atomic transformation definitions. Our approach
is different to these composition methods, because it is based on a predefined structure (i.e.
the feature model) that guides the transformation composition. Furthermore, our focus is
on metamodel-specific transformation generation and not generic composition techniques.
Therefore, many problems that arise when trying to compose arbitrary atomic transfor-
mation parts are avoided.

An intuitive example for external transformation composition is MDD, the transformations
are applied in layers, in an a-priori defined order, hence not addressing possible conflicts
in execution order. This is natural due to the nature of MDD refinements, which are very
general constructs. The information that could lead an automatic conflict identification
and resolution is hardly generalizable under their setting. This type of composition is called
external composition where a sequence of transformation is created, thus the output of
one transformation is an input for the next one in a sequence.

Among the external transformation composition approaches, feature-oriented program-
ming approaches like AHEAD [8] allow only sequences of independent transformations
and do not consider any feature dependencies. In our work, we compose externally a
number of completions applied to the same model. Our approach is using the package
structure of the metamodel to identify independent transformations which are easily com-
posed externally. However, as discussed in Chapter 5, not all completions are independent
and require further conflict resolution mechanism. A related approach of model-driven
development for non-functional properties based on transformations [142] also does not
consider transformation sequences. Some prior work has been done in the area of transfor-
mation sequences by Cooper et al. [39] with focus on searching for sequences of compiler
optimisation transformations using random sampling. A line of related research can be
identified in design-pattern integration [54] where the conflicts in integration order are also
very likely. However, the studied integration processes are not quality-driven, and hence

198



8.1. Model Transformation Engineering 199

have different criteria that drive the decision on the optimal execution order. Approaches
trying to identify an valid order of transformation in a sequence deal mostly with the
structural conflict and do not consider the quality conflict as our approach does.

Other Transformation Variability approaches:

Vara et al. [162] propose a method for model configuration by annotations. The annota-
tions are drivers that specify the configuration of variable model elements. This process
is manual and the method targets the context of databases and schema transformations.
The usage of annotations is, however, very similar to our approach.

8.1.2.2. Software Product Lines for Transformations

In the area of product lines, several works [154, 70, 89] propose a mapping between features
and model structure elements. These works proposed support for automated derivation of
product line members based on a feature-driven development method. The expressiveness
of these methods depends on composability of the mapped structural model fragments.

In the work of Garces et al. [60] an approach for variability management in model-driven
SPL (MD-SPL) was introduced. The advantage of this approach is that it offers a pos-
sibility to introduce custom rules, implemented in ATL, to handle feature model-based
variability. The rules then define a specific pattern in ATL language itself, however, the
transformation definition becomes more complex and more imperative. This approach
does not separate between variability definition and transformation definition. Our ap-
proach is different in this point, we reuse variability definition and provide more declarative
transformation definition with better quality properties.

Voelter and Grober [71] combine the practices of model-driven and aspect-oriented soft-
ware development (AOP-MD-SPL) to manage variability in a whole development cycle.
The approach uses aspect weaving to integrate feature-model based variability into the
target models. This approach allows to have a separate feature model, specifying cross-
cutting variability, to configure the input model. The developers have the possibility to
implement variability as aspects on multiple levels of the transformation sequence (i.e. in
models, model-to-model, or model-to-text transformations). Variants are described on the
model-level. A disadvantage of this approach is a limited support of weaving, which allows
only additive weaving without updates or overrides of model elements. Moreover, this
approach does not propose solution for transformation languages such as ATL or QVT.
The aspect-orientation can be not only used to generate products, but even transformers
and generators. However, our approach does not use aspect orientation, it provides map-
ping mechanism between feature diagram and its realisation using elements of the target
metamodel. Our approach defines variability on a level of higher abstraction, as we do not
define aspects on the code level but on the metamodel level, so that our approach lowers
the learning curve for developers. Additionally, the distinctive feature of our approach
is parametrisation of features with the goal to systematically improve the purpose com-
pleteness of the models (i.e. performance prediction). To allow reuse of existing tools, our
approach transforms into the same metamodel, which is not the goal of aspect orientation.

Another very interesting approach by Morin et al. [121] develops product lines for Domain-
Specific Modelling Languages (DSMLs) (DSML-SPL). This approach generates a mod-
elling language with variability management capabilities. Similar to our approach, the
variability aspects are woven into the domain metamodel at the level of higher abstraction
and extend metamodel language. The significant difference is, however, that the resulting
metamodel is not the same language as the input; moreover, it is a composition of two
metamodels. Therefore, the tools implemented for the original metamodel are not reusable
anymore. Additionally, their introduced approach does not provide any description of au-
tomated support, using HOTs or other generative approach.
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8.1.2.3. Applications of Higher-Order Transformations

The continuous growth of complexity, which can be noticed for transformations, and which
has only recently been addressed by researchers, is already being investigated for models
for several years. In his report [153] on industrial experiences with structuring large scale
domain models, Störrle strongly suggests to reconsider the notions and experiences from
the era of structured analysis, as many model types and disciplines developed in the past
are a perfect match for the architectural abstraction level of very large-scale modelling
(VLSM) projects. Czarnecki’s well-known paper [45] surveys transformation languages
and presents a classification scheme for transformation language properties supported by
feature diagrams. He describes higher-order rules as rules taking other rules as parameters.
Higher-order rules are mentioned as one of three techniques which allow transformations
to be parametrisable, the others being control parameters and generics.

Bézivin et al. [24] differentiate between two views on transformations: the textual con-
crete syntax of some transformation language (implementation view), and a semantically
equivalent representation as a model (specification view). According to the authors, HOTs
provide the following benefits: Abstraction from concrete implementations, languages, and
their constraints (synthesis), refinement and refactoring (rewriting/modification), valida-
tion and formal reasoning, e. g. compatibility checks (analysis), and formal description
of syntax and semantics of modelling languages through transformation models. Further
use cases of HOTs are not discussed. In this work, we provide a set of solutions using
HOTs for more complex goals and investigate the applicability of HOTs for product line
variability.

Varró and Pataricza [163] point out the importance of non-functional properties of trans-
formation languages, like compactness, reusability, and maintainability. By allowing trans-
formation languages to compute on models of their own language, generic transformations
(parametrisable transformations in our terminology), as well asmeta-transformations (pre-
dominantly called HOTs by now) are specifiable. In analogy to higher-order-logics, generic
transformations have decidability and performance problems. These problems may be
overcome by using meta-transformations to reduce generic transformations to non-generic
transformations.

Tisi et al. [158] provide a survey of different approaches using HOTs and propose a coarse
classification of HOTs, called base patterns. These patterns are primitives consisting of
analysis, synthesis, modification and (de)composition. Subsequently, they try to give an
overview on existing HOTs. The overview is not intended to be complete, it merely lists
publications known to the authors where HOTs written in the widespread ATL have been
used in various areas. These HOTs are studied to support the proposed finer-grained clas-
sification. Further classification attempts or surveys are not known as the field of transfor-
mations and HOTs in particular is still immature. However, approaches implemented in
QVT are not surveyed, and the need for improvement of current transformation languages
for higher-order implementations is not pointed out. The difference between base patterns
and our HOT patterns is that we propose generic patterns to solve particular problems,
such as feature model-based transformation composition or template instantiation. HOT
patterns are composite patterns which employ base patterns for partial task to achieve
their overall goal. We define HOT patterns as building blocks that support generic model-
driven transformation generation architecture, where each of the patterns encapsulates
specific concern (e.g. weaving, model-to-model transformation, template instantiation or
model-to-text transformation).

Furthermore, an example of HOT is synthesis of transformation from a source other as
transformation, as applied by Goldschmidt et al. in [68]. He creates a HOT to generate
transformation rules to copy model elements. Input for the HOT in solution of Goldchmidt
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et al. is the QVT metamodel. However, he does not generalise the HOT definition and
only describes initial implementation. His implementation was inspiration for the HOT
Routine pattern introduced in Section 4.4 and is an example of Copying and Marking
version of this pattern.

8.1.3. Quality Metrics for Model Transformations

Quality metrics have been studied already to measure quality (software quality was de-
fined by [26]) of object-oriented software [56, 83, 141] and software architectures [13, 151].
Metrics to estimate the maintainability of software are mostly based on measuring the
size and complexity of code. Depending on the employed programming languages (func-
tional, imperative, etc.) different metrics need to be employed for this task. Numerous
analysis techniques exist to assess quality (e.g. maintainability) of traditional software
artefacts. However, this is not the case towards analysing model transformations. The
work of Anastasakis et al. [3] recognised that quality, especially maintainability, of model
transformations is crucial for the success of MDSD. In their approach a transformation is
considered to be a model and as such existing model analysis techniques for maintainabil-
ity can be applied (i.e., transforming transformations into the Alloy models and simulating
using existing tools).

The most relevant group of metrics for our approach is derived from related work in the area
of functional languages, such as the metrics defined by Harrison et al. in [78]. The group
of relational transformation languages is related to functional programming languages,
therefore we can reuse the existing functional metrics, similar to [160], in combination
with some metrics used for object-oriented languages. However, Amstel et al. [160] focuses
on model transformations created using the ASF+SDF transformation language. Most
of these metrics are, however, quite generic and could be applied to nearly arbitrary
functional programming languages. Nevertheless they do not take into account the special
character of relational transformations, such as their strong alignment to the source and
target metamodels. Still, some of these metrics can be used to measure certain aspects
of model transformations written in QVT Relations. We adapted some of the metrics
to the special requirements of the QVT Relations transformation language and extended
them by the addition of more specific metrics (especially the group of manual metrics).
Furthermore, we automated the gathering of the majority of the metrics presented in this
paper.

In [66] initial considerations for transformation metrics based on a classification of trans-
formation features [46] and a goal-question-metric plan were presented. However, these
ideas were still in a very early stage and were not elaborated down to the special needs of
different groups of transformation, such as relational transformations.

Reynoso et al. [139] analysed how the complexity of OCL expressions impacts the analysabil-
ity and understandability of UML models. As OCL is also part of QVT-R these findings
are relevant for our approach. However, the remaining part of relational transformations,
apart from OCL expressions, cannot be analysed using this approach.

A special way of gathering a maintainability metric based on the occurrence of frequent
patterns within a model or transformation was presented in [105]. The presented metric is
based on a pattern mining approach that detects the most frequently occurring constructs.
The assumption made in that paper is based on cognitive psychology, which says that the
human brain works like a giant pattern matching machine and therefore can process things
that re-occur often more easily. Thus, we incorporated this metric into our suite.

Using OCL for the definition of metrics was introduced by Abreu in [52]. However, the
approach presented there did not cope with metrics concerning the maintainability of
transformations at all.
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8.2. Platform Completions for Software Performance Engi-
neering

The second area of the related work compares related approaches to the completions
for SPE, as described in Chapter 5. The problem of adding performance abstractions
of domain-specific aspects into the models (i.e., performance models) has been handled
by using annotations only, or by injecting substructures depicting missing aspect. The
majority of the approaches use only annotations to complete the model, for example to
add measured overheads, etc. As we show for completions in Chapter 3, the injected
aspects and their structure may be very variable. However, the common deficiency of
existing approaches is no (or only partial) support for configurability of modelled aspects.
Moreover, most of the approaches completely lack tool-supported automation. In the
following, we discuss related approaches in more detail.

Woodside et al.: Performance-related Completions
for Software Specifications [173]

The initial work on completions is based on a simplistic definition of a completion as a
quality-related annotation of a system model (e.g., with results of performance measure-
ments). Woodside et al. [173] envisioned the concept of completions in order to supply
additional information not needed for functional specification but required for performance
prediction. They proposed performance-related completions to close the gap between ab-
stract architectural models and required low-level details. The previously calibrated sub-
models (or completions) are then added into to system models. The use of completions
adds performance influences of a system’s infrastructure to prediction models and, thus,
increase prediction accuracy. In the original approach of Woodside et al. [174], perfor-
mance completions have to be added manually to the prediction model. In [174] they
planned a library of components for example database, middleware, or file system. Using
a set of rules, completions build by these components should be added into the models.
They point out that this should be done automatically.

The difficulty of automation is a result of the flexibility and variability required for perfor-
mance completions. This difficulty was identified later by Woodside in [172] as a practical
obstacle which kept off wider acceptance of completions. Since the completions, as viewed
by initial simplistic definition, are not expected to introduce variable structural changes
to the model and the conflicts of different execution orders is not of high interest, there is
a little research on how the initial completion idea should be realised and supported. In
order to provide tool support and to apply performance completions, we have to address
the problem of variability. Model-driven development can provide the needed automation
by means of model transformations, as we introduced in this work.

In the work of Woodside, completions are injected as a part of transformations transform-
ing directly into the prediction model (e.g., Layered Queueing Networks). Thus, target
models are on a less abstract level. In a case when we would have to transform into
more than one prediction model (e.g., Layered Queueing Networks, Coloured Petri Nets)
we would have to adapt all these transformations to know each possible completion. In
our approach, we use model-to-model transformations that maintain the level of abstrac-
tion. As such, the transformation from the component-based model (e.g., PCM) into the
prediction model (e.g., Layered Queueing Networks) does not know about the comple-
tion and, thus, it is a simple translation that can be fully reused. Completions are then
applied before the translation and result of completion transformation is an input for a
transformation into the prediction model.

Another important difference is the understanding of completions. Woodside et al. un-
derstands completions as sub-models that are not part of the product, but represent parts
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of its environment, such as middleware, file systems, databases or web services used by
the product. We consider completions as a mean to include environment details but also
design decisions that are a part of the product, such as design patterns or parallelisation
of different application parts. Moreover, we do not use completions to include hardware
related aspects such as storage models or virtualisation infrastructure, for this purpose we
use special approaches, for example [81]. Moreover, we propose in Chapter 3 a structured
process how to develop completions; in particular we introduce an application of automated
measurements and experiments with the goal to calibrate resulting completions.

Happe et al.: A Pattern-Based Performance Completion
for Message-Oriented Middleware [76]

The authors of [76] analyse completion for Message-Oriented Middleware (MOM). The
resulting MOM completion was implemented a number of times, first, using classical Java
implementation, second, using mark transformation where configuration served as addi-
tional input for transformation, and third, using model-driven techniques introduced in
this thesis . The MOM completion was additionally extended in this thesis, see Section
7.2.1.1. In this section, we discuss the deficiencies of integration approach used for MOM
completion in work of Happe et al. [76].

Figure 8.1 illustrates the overview of completion concept used in [76]. They present an
approach focused on the parametrisation of completions. The performance measurements
using suitable test-drivers determine realistic resource demands for different platforms,
like Java EE application servers. Moreover, test-drivers evaluate quantitative effects of
different configuration combinations. In our approach, this evaluation is encapsulated in
the domain analysis step (see Section 3.3.2) and automated using Software Performance
Cockpit. In their approach, Happe et al. do not consider variability of the Completion
Model Skeleton. Actually, their transformation integrates always the same subsystem with
different calibration. However, this is not suitable when the subsystem should be variable
too, for example because certain middleware services are not supported by a particular
platform. Thus, the approach presented by Happe et al. does not consider variability of
completions and do not provide an automated solution for their integration.

Performance
Measurements

Platform-Specific Completion

Regression
Analysis Parametric

Resource
Demands

Completion Model
Skeletons

Test-Driver

Benchmarking
Integration

Figure 8.1.: Overview of the concept of parametric performance completions used in [76]

In our work, we focus on the creation of variable completion skeleton. Happe et al. use the
selected combination of messaging patterns as configuration (mark model) for model-to-
model transformations. We generate a completion transformation from the configuration
for one variant only.

S. Becker: Coupled Model Transformations for QoS Enabled Component-
Based Software Design [12]

The coupled transformation concept is the inspiration for the HOT pattern described in
Section B.1. In this section, we discuss coupled transformations [12] as a realisation of

203



204 8. Related Work

completion resulting in two different target models. Often starting with the same source
model we generate not only prediction models, but even the implementation (or code).

Coupled transformations are actually mark transformations, which make the relation-
ship between generated code and completion explicit. The implementation code in this
approach is generated automatically using a model-to-text transformation. Injecting a
completion into the model using mark transformation afterwards requires an adaptation
of the code generation transformation, too. Coupled transformations, in this case, are
two transformations, namely a model-to-model transformation (e.g., PCM to LQN) and a
model-to-text transformation (e.g., PCM to EJB). Mark models then configure both trans-
formations, the transformation to code as well as transformation to performance model.
The models then consider the same information for prediction as used for generating code.

However, because the completion concept introduced in this thesis maintains the level of
abstraction, we can simply execute in a sequence first the completion transformation and
afterwards any other model-to-model or model-to-text transformation requiring the source
model conform to the language on the same abstraction level as completion applied. This
is possible, because the target model of completion is conform to the same metamodel
as the source model. As such, all transformations applied after all necessary completions
consider the same information, without necessity of their adaptation.

Furthermore, existing solutions [174, 76, 12] focus on the integration of only one completion
with one configuration at a time. If more than one completion is applied to model element,
conflicts between different completions are likely and have to be resolved. These scenarios
are not discussed in any of the approaches [174, 76, 12].

Related Approaches employing Model-Driven Techniques

In software performance engineering, several approaches use model transformations to
derive prediction models (e.g., [115, 132, 49, 12]). Cortellessa et al. surveyed a number of
performance meta-models in [40] leading to a general model-driven framework for analysis
of extra-functional properties [42, 41]. In [42] they propose usage of reusable (but static)
building blocks for platform models.

Other approaches (e.g., [69, 165]) extend this framework. Verdickt et al. [165] developed
a framework to automatically inject a construct very similar to completion (but with-
out configuration possibility) into the models. Their focus is on the impact of CORBA
middleware on the performance of distributed systems. The provided vertical transforma-
tions decrease the level of abstraction, as they map high-level platform-independent UML
models to other platform-specific UML models.

Grassi et al. provided a model-based approach for prediction model refinement using
intermediate language KLAPER [69]. The transformations implemented in QVT Relations
integrate the overhead caused by communication links into the models. They follow the
same idea of using classical vertical refinements from model-driven technologies to integrate
aspects of performance and reliability into the models. Although the approach uses model
transformations, it does not support their configurability.

These approaches still neglect crucial issues that are an obstacle to their application in
practice. First, support for structured increase of model completeness for the analysis of
extra-functional properties is not considered. Thus, purpose-specific aspects cannot be
integrated by configurable transformations and the model cannot be extended to fit par-
ticular purpose. Second, maintainability of the used model-driven framework and reusable
configuration models is not discussed.
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Related Design Pattern-based Performance Abstractions

The idea of using pattern-based model enhancements for improving quality-prediction ac-
curacy of component-based models has been discussed in the context of connectors between
components [149] and component adaptors, used to bridge interoperability problems when
composing components. Initial work has been done by compiling a classification of adap-
tation patterns by Becker et al. [14]. Additionally, Becker et al. sketch initial process to
incorporate the patterns in a prediction process for extra-functional properties. Besides
performance, we can analyse patterns for other quality properties, for example, there is also
work looking at reliability prediction in the context of adaptation patterns by Reussner et
al. [138].

Spitznagel et al. investigated the relationship of architectural connectors and common
dependability techniques [149]. A special focus of their work was the composition of more
than a single connector to combined connectors. However, their main interest has been
to guarantee properties of systems like deadlock-freedom and not in the prediction of the
extra-functional impact. Similarly, the work of T. Bures [28] analysed extra-functional
properties of connectors, however, he does not provide calibrated models suitable for per-
formance prediction and he does not use model-driven techniques. His work provides an
initial input for domain analysis of connector completions in Section 5.3.4.

Performance Abstractions of Concurrency Design Patterns

In the literature numerous approaches exist analysing parallel systems and the problems
by design of parallel software. However, in case of concurrency, pattern modelling fo-
cuses mostly on functional properties or only make limited use of configuration options.
Additionally, existing prediction approaches only provide basic modelling constructs for
concurrency patterns modelling, leaving the creation of complex structures to software
architects. Concurrent software systems are especially complex, hard to model and im-
plement. Therefore, goal-oriented abstractions are desirable for such systems. Several
approaches exist addressing these issues partially and we discuss these in more detail.

E. Lee proposed to use modelling constructs for concurrency patterns [107] to increase
understandability of concurrency, communication, and synchronisation within a software
architecture. He identified the thread-based models as a source for the difficult under-
standability of parallel software. As a solution to these problems he proposes language
pragmatics that extend existing programming languages. The language pragmatics are
defined in a form of a coordination language targeted to support developers when design-
ing constructs for communication and synchronisation of components. He provesa major
improvement of understandability of parallel software by using coordination pragmatics.

In the Ptolemy project [108], the same author proposed using reusable building blocks
for communication composites based on the concurrency design patterns. Thus, using
these abstractions they can introduce multi-threading in communication that is not al-
ready multi-threaded. Although it is a very promising approach, it neglects qualitative
aspects, such as performance and reliability. Similarly, Spitznagel and Garlan [149] used
connectors to extract communication aspects from components. However, both approaches
focus on hard attributes, like deadlock-freedom , neglecting qualitative attributes, such as
performance and reliability.

The performance engineering methods model concurrency, communication and synchroni-
sation on very low abstraction level. A first step to model distributed systems on a higher
level of abstraction is made Smith and Williams in [147]. They provide four communica-
tion and synchronisation patterns in a form of UML sequence diagrams. These patterns
can be used to model interaction of components. In the area of performance prediction
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for component-based systems, Liu et al. [110] model architecture patterns for application
servers. In the first step of their approach, developers have to create a general model of
a component container for the application server. The second step is analysis and design
of architecture patterns in a form of activity diagrams. In the third step, a parametrised
performance model is created correspondingly to the previous general model. To provide
accurate performance prediction, developers have to integrate the characteristics and de-
mands of the platform. Therefore, in the last step, they use a test application to create
a profile of the platform. All steps, integration of the platform profile and architecture
patterns are manual, thus the development effort does not decrease.

8.3. Summary

The previous sections give an overview on the approaches closely related to this thesis.
We have addressed approaches from two research areas, MDSD in Section 8.1 and CB-
SPE in Section 8.2. The surveyed methods vary in scope and focus. In the following, we
summarize the main findings and resulting deficiencies, which provide motivation for a
more comprehensive approach. We provide two comparison studies of the most important
approaches from both of the research areas: From MDSD approaches, we compare related
approaches generating variable transformations and, from CB-SPE approaches, we discuss
the scope of supported features of completions by the closest methods.

The first category of methods dealing with variability in the MDSD context provides spe-
cialised solutions to support model variability (cf. Table 8.1). In the comparison, we focus
on comparing the generated artefacts and deficiencies. The approach DUALLY actually
implements similar solution as is introduced by Routine HOT pattern for mappings. The
AMW and AOP/MD-SPL employ mark transformations to support variability. The COPE
approach supports external merge of transformations. The DSML-SPL merges two model
instances into the target model that is conform to the merge of two source metamodels.
The deficiencies of these approaches are summarized in Table 8.1.

Generated Deficiencies 

DUALLY Mapping rules used for translation 
between different metamodels. 

Missing support for customisations and 
complex transformation logic. 

AMW Mapping rules between source 
model and target model. These rules 
are specified by an active weaving 
operator. 

Mixture of imperative and declarative 
constructs.  The HOT definition is not 
general, depends on existing weaving 
operators. Missing support for complex 
transformation logic and customisations.  

COPE Migration transformation which is an 
external composition of transactions 
from a library. 

No support for variabilities, e.g. in 
application families or based on feature 
configurations. 

DSML-SPL: 
Morin et al. 

Transformation merging several 
metamodels.  

Target metamodel changes, thus when 
the product is used for further analysis 
the tools are not reusable. 

AOP-MD-SPL: 
Garces et al. 
Grober et al. 

Variants of models based on feature-
model-based variability definition.  

No separation of concerns between 
variability definition and transformation 
definition. Variability definition is an 
input into the SPL. Only additive 
weaving no updates or overrides. 

Table 8.1.: Comparison of related approaches from MDSD context.

In our approach, completions are realized by configurable model-to-model transformations.
We present an approach to define domain-specific languages that capture the performance-
relevant configurations of different implementation details. The configuration provides the
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necessary variability. The transformations are applied to model elements specified by the
software architect. We realise the completions by means of model-to-model transforma-
tions. Depending on a given configuration, these transformations inject the completion’s
behaviour into performance models. Thus in our approach the transformation is specified
by the configuration itself.

In the case of SPLs, the configuration happens on the lower level of abstraction, thus
the variability is bound to model instance more tightly and can not be reused on the
metamodel level. Furthermore, the changes of transformation in our solution can be both
fine-grained and coarse-grained. Many SPLs support coarse-grained variability, where the
whole methods are added. These methods encapsulating consistent fragment of functional-
ity. Fine-grained extensions, where a parameter is updated, domain pattern of a mapping
relation changed or a statement added in the middle of method, either require intricate
workarounds or obfuscate the base code with annotations [95]. In our scenario, such fine-
grained updates happen often. The classical SPL-based approach is limited to support
such scenarios and produces often results of worse quality. Our approach reduces code
replication and improves readability.

Moreover, in our solution the coupling between the features and the transformation frag-
ments is more explicit than in classical SPLs. In many other SPL-based approaches the
configuration describes the product itself not a way to the product as it is in our case.
We rather lift the configuration up to the transformation creation itself. The configura-
tion describes the transformation and thus we have described the product, too. This way
the complexity of handling all possible feature combinations within the transformations is
decreased and is made explicit through the structure of the configuration model.

The second category of methods deals with support for model completions in a context of
MDSPE for component-based systems (cf. Table 8.2). In the comparison we focused on
three closest approaches. First, we describe the criteria to compare these approaches: (i)
the level of abstraction (“Is the abstraction level maintained?”) , (ii) supported variability
(“Are completions configurable?”), and (iii) automation (“Is the integration of completions
automated?”). The first criterion is crucial for reuse of existing tools and transformations,
because any change of target metamodel language limits the reusability of tools using the
target model. The second and third criterion discuss the scope of variability support.

Is the abstraction level 
maintained? 

Are completions 
configurable? 

Is the integration of 
variable completions 
automated? 

Platform 
Completions: 
Woodside et al. 

Annotations are on a 
higher-level of abstraction 
than the target model. 

No support. No automation. 

MOM 
Completion: 
Happe et al. 

Abstraction level is 
maintained. 

Partially, only the resource 
demands, changes of the 
skeleton will result in highly-
complex and un-maintainable 
transformations. 

Mark transformation.  
Only single completion. 

Coupled 
Transformations: 
S. Becker 

Annotations are on a 
higher-level of abstraction 
than the target model. 

Partially,  the complexity of  
implementation  allowed only 
partial variability support. 

Mark transformation. 
Only single completion. 
 

Figure 8.2.: Comparison of related approaches from MDSPE context.

In case of platform completions and coupled transformation the annotation (or configu-
ration) of models happens on higher level of abstraction as the resulting target model is
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located . In both cases the transformation decreasing level of abstraction (e.g. trans-
formation from PCM to LQN) has to be adapted to handle the annotations and create
the target model variant. Moreover, both approaches are realised by mark transformations
However, usage of mark transformation has a clear disadvantage. It is a Y-transformation,
which takes two input models, in this case model instance and annotation, and creates
one output model. Thus, such transformation has to be adapted for each new annotation.
Other previously discussed approaches by Grassi et al. and Verdickt et al. [69, 165]
have further a disadvantage, they do not support flexible control of completions. This
approaches provide an all-or-nothing method where for example all connectors in model
are replaced by the same completion with the same configuration.

In this thesis, we have addressed the shortcomings of existing approaches and have pro-
posed a method supporting variability of transformations by employing and composing
HOT patterns (see Section 4) into the SPL for model-to-model transformations. The
proposed method was applied to support model completions in MDSPE in Section 3. In
addition, we have developed a structure completion library to reduce conflicts in appli-
cation of multiple completions. At last, we introduced an initial set of completions that
allow software architects to integrate different performance influences into the models. The
creation of each completion is a research task on its own and includes discussion of related
work for the particular modelled aspect. The discussion of related approaches for each
completion is out of scope for this section, but it is a part of research in domain analysis
by completion developer.
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In this chapter, we summarize the contributions presented in this thesis (Section 9.1).
Furthermore, we discuss achievements and current limitations of our main contribution,
the CHILIES approach, and our additional contributions, the completion-based MDSPE,
the structured completion library, and the maintainability metrics for transformations
(Section 9.2). Section 9.3 presents open questions and visions for future research.

9.1. Summary

The presented approach is motivated by the requirement to improve the accuracy of per-
formance prediction in MDSPE approaches, e.g. the PCM, through automated support
of performance completions. However, we observed that model-driven approaches lack
an applicable and suitable solution for managing variability, which is necessary to sup-
port completions. We had to deal with this challenge, thus, the main contribution of
this thesis is located in the MDSD area. We introduced generalised concept of model
completions and created automated support for them, which is based on HOT patterns.
HOT patterns (CHILIES) are building blocks that can be composed together to form more
complex model-driven architectures. In the next step, we applied our approach in the MD-
SPE domain to automate performance completions. For the PCM, a metamodel specially
designed to support CBSE development and design-time performance prediction, we intro-
duced a structured completion library with an initial set of performance completions for
concurrency design patterns. Furthermore, to evaluate resulting model transformations,
we created a set of maintainability metrics for relational transformations. To automati-
cally collect the results of these metrics, we applied one of the presented HOT patterns,
the Analysis HOT pattern.

In the following, we look back at the leading research questions and discuss how they are
answered by this thesis. The research questions address limitations of existing approaches
and were kept as general as possible. Thus, they lead to results applicable in other contexts
as well.

Q1: How to include purpose-specific aspects to models in an automated but adaptable
manner inheriting its standard mechanisms and facilities, including transformations and
tools?

This question introduces three requirements on the resulting solution: automation, adapt-
ability, and reuse of existing software artefacts, such as M2M/M2T transformations, EMF
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editors etc. We answered this question by introducing generalised model completions,
which are (i) automated by generated completion (i.e. M2M) transformations, (ii) adapt-
able by the management of variability in completion transformations using feature dia-
grams, and (iii) allow reuse of existing tools due the maintained level of abstraction (i.e.
metamodel language).

In our approach, we define model completions as horizontal specialisations of models for
a certain domain to achieve a higher level of purpose-specific completeness. Completeness
quantifies the level of model detail on which the ability of a model to serve its purpose
depends. Each model is created to serve a certain purpose, in our application scenario
it is performance prediction. As such, we can quantify the completeness for models as
the ability to evaluate the performance of the modelled system with the desired accuracy.
Because these necessary details (e.g. design patterns, middleware) are very variable, we
defined model completions as configurable purpose-specific transformations. These trans-
formations increase the level of model completeness while maintaining the language of the
abstract level. This property of completions allows fully reusing existing MDSD tools,
such as model transformations, without the need of any adaptations. Using completions,
we maintain not only the original model language, but even the models are remaining in
the responsibility of the same development role on the abstract level. In our application
scenario, the performance knowledge is inherently fragmented. Not every role involved in
the performance modelling process has the full knowledge of all performance properties
of each aspect. Furthermore, these aspects appear in different contexts, applications or
variants. The concept of model completions supports specification of reusable constructs
that can be applied in different contexts. Thus, performance completions could be used
to support a Performance Knowledge Base, as envisioned by Woodside et al. in [172]. In
comparison to the Woodside’s idea, the Completion Library is not only organised around
results of analyses but even parametrised model fragments, expressed as completions, that
are calibrated using measurement data.

Each completion is defined by two parts: quantitative and structural specification. The
quantitative part require calibrations using results of measurements on real systems. The
structural part is defined by a configuration model, i.e. a feature diagram, and structural
skeletons that are expressed as a composition of feature effects (i.e., transformation frag-
ments). As such, completions help to consolidate approaches based only on measurements,
with those that exploit model-driven prediction techniques. Using completions a partial
views on the black-box systems through measurement data such systems can be integrated
into the models. The requirement to converge these two domains was identified already by
Woodside et al. [172]. In this thesis, we contributed to the solution of challenges identified
by Woodside et al. in his visionary big picture of SPE domain.

Moreover, we introduced an enhanced MDSPE process, where we illustrated the usage
of completions to increase the effectiveness of model development. This process supports
software architects in development of more accurate models that are so complex that it is
not feasible to create them manually. Completion-based models are less complex and more
understandable because of the encapsulation of the aspect’s complexity in a form of simple
configuration model. The completions decrease development efforts through automation
and manageability of model complexity. Furthermore, completion-based development

• closes the semantic gap between an abstract model and low-level details (Chapter 3)
that are in some cases necessary to fit the purpose of the model (e.g., performance
prediction).

• hides the complexity of the purpose-specific aspect, allowing configuration of aspect
variants and encapsulating domain-specific expert knowledge (Section 5.3).
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• when applied to the MDSPE, increases the accuracy of performance predictions
(Section 7.2.1).

Q2: How to support configuration-based variability in model transformations?

The answer to this question is the main contribution of this thesis. We created an auto-
mated support of completion transformations development using pre-processors and gen-
erators based on HOTs. Typically, variability solutions for MDSD or SPL deal with the
variability of model instances. In our work, we recognized that dealing with the variability
of models only, would not do the trick. The problem is that when going the classical
way and using known MDSD and SPL paradigms, the transformations are growing in
complexity, extensions of configurations are not feasible, and the maintainability of trans-
formations quickly becomes a huge problem. Therefore, we decided to take an advantage
of the abstraction levels in MDSD and move the management of variability to an higher
abstraction level. In our approach, metamodels and transformations are subject to vari-
ability. Raising the level of abstraction enables to focus on individual aspects separately.
Thus, the productivity of development is increased by modularisation and MDSD struc-
tures are more flexible. We introduced the CHILIES approach that builds on the definition
of goal-specific MDSD building blocks which could be combined to chains of transforma-
tions with more complex goals. In our work, we identified a set of such building blocks
using HOTs and targeting different goals, such as template instantiation or fragment com-
position. We compose these HOT patterns into the chains of HOTs to build complex
MDSD structures.

In this thesis, we applied three HOT patterns to create an SPL for completion transfor-
mations. Using this approach completion developers can focus on one feature at time and
do not need to implement an overall transformation that can handle all possible feature
combinations. The resulting completion transformation is generated for one configuration
instance only. We composed in an one SPL following HOT patterns:

• Routine HOT pattern generates frequently occurring patterns (e.g. copier) in
transformations. The routine relation (e.g. copy relation) is generated for each
metamodel element and can be used as a basis for more complex transformations
(e.g. model customisations).

• Composite HOT pattern allows configuration-dependent transformation gener-
ation. The configuration happens on a higher level of abstraction. Thus, the con-
figuration itself defines the transformation. The transformation is a composition of
transformation fragments, which define the effects of configuration choices.

• Template HOT pattern uses parametrised transformation templates (as reusable
transformation parts) and instantiates them into the transformation. Transformation
templates allow modular definition of transformation which yields a simpler definition
of transformation.

Using our approach, the completion transformation phase in the completion-based MDSPE
is fully automated. The transformation definition is easily extendible with additional
features. Moreover, the transformation and the configuration are loosely-coupled and the
development of the configuration is separated from the transformation. Such separation of
concerns allows reuse of completion definition, even easier implementation of completion in
different language (e.g. ATL). Furthermore, we identified additional HOT patterns which
are described in Appendix B.

Q3: How to structure the Completion Library to reduce possible conflicts in an application
of multiple completions?

To answer this question, we created a library of completions structured according the
development process and the roles appearing in this process. Our hypothesis is that the
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metamodel used to expressed models in this process maps the separation of responsibilities
to different roles. Thus, it is possible to distinguish sets of elements in a responsibility
of one development role. As such, completions working with these elements only impact
elements in an independent cluster of the metamodel which contains all elements possi-
bly adapted by the one development role. Thus, it is possible to identify sub-domains
(i.e., independent metamodel clusters) which are solely affected by a change induced by a
particular completion transformation and applied by a particular role. Based on this prin-
ciple, we identified transformations which are independent and reduced potential conflicts
of completions. Each role has only a small set of completions and can resolve remaining
conflicts manually.

Additionally, the introduction of a new completion should be easily possible and conflict-
free. Therefore, each new completion is registered with the Completion Library and cat-
egorised in three levels, which include its associated development role, the metamodel
element type to which it can be applied, and the identification of dependencies to other
completions of the same category.

Furthermore, we created a set of completions for concurrency design patterns. These
completions are categorised in three groups: Component, Connector and Infrastructure
completion. We introduced completions in each group:

• Component Completion: State Manager, Replication

• Connector Completion: Pipe&Filter Connector

• Infrastructure Completion: Thread Management

We analysed these completions and evaluated the prediction results using completed mod-
els. The resulting models reflect the real system behaviour more precisely leading to more
accurate predictions. Therefore, performance completions allow a more realistic evaluation
of different design decisions. Moreover, we observed a dependency of performance on the
state of a component or a system. We analysed the impact of state on the performance
and created a set of experiments that are summarized in Appendix A.

Q4: How to analyse maintainability of relational transformations?

In the development of HOTs and different versions of completion transformations, we
identified a lack of metrics to evaluate the quality properties of relational transformations.
We presented a set of code metrics to evaluate the maintainability of QVT Relational
transformations. Such metrics can be applied to different relational transformations and
they play important role when analysing completion transformations. We demonstrated
the use of these metrics on a set of reference transformations.

The presented metrics help software architects to judge the maintainability of their model
transformations. Based on these judgements, software architects can take corrective ac-
tions (like refactorings or code-reviews) whenever they identify a decay in maintainability
of their transformations. This results in higher agility when changing metamodels of
software architectures or their platforms, which together with metamodel build basis for
transformation definition.

Validation

We validate our contributions on two levels: A Type I validation shows that when comple-
tions are applied to a software performance model, the prediction accuracy can be increased
significantly. We validate the prediction results by comparing them to measurements on
a real implementation of the system. The prediction accuracy of a single completion is
validated for two completions: the stateful case of Message-oriented Middleware (MOM)
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(an extension of MOM completion in [76]), and the Thread Pool completion. Additionally,
we evaluate prediction accuracy in a composition of a multiple completions in a Business
Reporting System scenario (based on [174]). For this scenario, we discuss different permu-
tations in sequences of completions and evaluated the best possible completion order. In
the investigated cases, a significant correspondence with reality is achieved.

A Type II validation analyses the applicability of the model-driven approach using CHILIES.
The main focus of this evaluation lies on the maintainability and complexity of used trans-
formations. We evaluated the complexity of a number of completion transformations and
HOT implementations. Furthermore, we compare the complexity between two different
implementations of one completion, once implementing a mark transformation and once
implementing a completion in a form of feature model with corresponding feature effects.
This experiment discusses the advantages of separation of concerns using the feature ef-
fects.

9.2. Limitations

Limitations are discussed in particular chapters at the end of each contribution of this
thesis. This section gives reference to the respective sections and summarizes the most
important assumptions and limitations of our approach. Section 4.8 discusses various
limitations and assumptions of CHILIES approach. Section 5.4 presents limitations and
assumptions of completion library. Besides the overall limitation of completion library,
each of the presented completions has its own assumptions and limitations that should be
evaluated by completion developer in the domain analysis. Section 6.5 summarizes the
limitations and assumptions of the introduced quality metrics for M2M transformations.

9.3. Open Questions and Future Work

This section gives an overview of open questions and possible areas of future research based
on the results of this thesis. First, we discuss the open questions in the MDSPE domain.
Second, we further evolve the usage of advanced model-driven techniques and discuss the
open questions in the MDSD domain.

9.3.1. Future work in the MDSPE context

Automated Calibration of Completions

Many completions are dependent on the deployment environment where they are applied,
they are platform specific. The high complexity and diversity of middleware platforms
make the design of completions cumbersome. The high effort for their development may
void the benefit. Especially, the calibration of completions should happen automatically
and the completion models should be able to be recalibrated for any platform. This
calibration should be a black-box operation for the user. The idea is that the user chooses
a platform and previously measured profile for this platform is loaded. Other possibility
would be that user could chose his own computer as a platform to calibrate for, thus this
platform should be automatically measured by previously defined experiment. At the time
of writing, support for such operations is being developed for the Software Performance
Cockpit [169]. The resulting tool will provide different adaptors for different platform
and experiments. This tool than should be fully integrated into the tool support for
completions.
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Additional Concurrency Completions

For the future, an extension of the approach to support a boarder set of concurrency
patterns would be a natural endeavour. Here, one could focus especially on the accurate
behaviour of these patterns, not the accurate calibration of them. Thus, the calibration
should happen automatically the effort to get the accurate measurements manually would
not be well spent. One may focus on the patterns in measurement and simulation results
manifesting effects as state-dependency, usage of asynchronous calls, capacity restraints
that restrain the level of concurrency, etc. Moreover, the clear separation of concurrency
patterns as a processing steps is a question to research, as well.

Performance Tuning through Concurrency

Today’s trend of multi-core processors poses new challenges to software development. As
the only reason to introduce concurrency is the performance, the natural idea for the future
work is to use completions as automated tuning steps to find out if concurrency introduc-
tion would be of an advantage for a given system. These predefined completions should
be automatically applied to a given system in different configurations, combinations and
using different workloads. Such analysis will help the developers to decide about the most
effective concurrency solution. Based on provided results the unsuccessful development
branches, where a high effort was spend to paralelise a system without awaited result,
could be avoided.

Optimisation of Completion Configuration

Optimisation approaches, such as PerOpteryx [113], could be used to automatically op-
timise the configuration of completions and the order in a sequence of completions for a
better performance. The result of such automated optimisation would be a proposition of
the most performant system configuration. For this goal, one would have to introduce the
completion configuration as an additional degree of freedom in the PerOpteryx approach.

Completions for other Quality Attributes

Furthermore, completions for other quality properties such as reliability or security could
be introduced. Having such completions will not only extend the completion library, but
it would allow to reason about trade-off decisions between a number of quality attributes
on a level of complex solutions for different, e.g. security vs. performance, problems.

9.3.2. Future work in the MDSD context

Necessity of Empirical Studies

It is required to further evaluate empirically different aspects of MDSD. First, one would
have to conduct an empirical study to explore the effects of modularisation on the system
and transformation comprehension. It is accepted that reuse and automation is always for
the better. However, to support this claim we have to use empirical methods. Especially,
the usage of modularisation in a collaborative design and development is a challenging
task. The ability of the developer to modularise and map partial changes to the features
is a related aspect to the applicability of model completions. The participants of such
empirical study would have to implement a transformation generating a completed model
by two different approaches (i) once as a coherent transformation and (ii) once as a set of
modules. The development effort, ability to modularise and transformation comprehension
in both cases should be studied.

Second, the advantages of using relational instead of operational transformations have to
be evaluated. There are many arguments in favour of both. Thus, we argue that empirical
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studies that incorporate developers using both of the language families are key to decide
the fight. The quality metrics introduced in Chapter 6 could be used to evaluate the
complexity of transformations developed by the participants. In addition, we think that
the advantages (e.g. modularity and compositionality) of relational transformations have
to be considered. The compositionality aspect could be studied by quantifying the amount
of helper or service code needed.

Compositionality of Transformations

The composition of transformations is a research field for itself. There are different ap-
proaches discussing this topic. To perform the composition of model transformations,
which is needed after selecting required configuration in feature model, internal composi-
tion is used. Internal composition composes two model transformation definitions into one
new model transformation, with a typically complex merge of the transformation rules.
Internal composition, when performed by a model transformation, is a higher-order prob-
lem. We use internal composition to compose fragments of transformations. External
composition consists of chaining separate model transformations and passing models from
one transformation to another. We use external composition to create sequences of com-
pletions. In our approach the external composition of transformations could be abstracted
as a composition of feature models. The composition of transformations on the level of
feature models promises decrease of composition complexity, we plan to investigate this
idea further in future.

Composition of model-to-model transformation should be guided by the purpose of the
resulting transformation. In our approach, some parts of transformations provide a frame
where customisations are injected. Thus, we think the transformation pattern-based
frames composition with customisations should be analysed further.

Automated Extraction of Transformation Templates

The automatic derivation of templates from example transformation models as it was pro-
posed in [164] is interesting topic for future research. An automated extraction of templates
could use pattern matching to identify common patterns in a set of transformation models.
From the identified patterns one could derive templates with ’hooks’ for parametrisation
and register them in the template library. This would greatly ease the development of
templates as the manual extraction from an instance model to the transformation can be
shortened significantly.

General definition of HOTs and Transformation Templates

Metamodel-independent definition of HOTs will ease their reuse to generate transforma-
tions in other transformation languages, not only QVT Relational. Moreover, the feature
effects could be specified in metamodel-independent way to allow reuse of completions in
other contexts, e.g. PCM, SOFA, etc. As a suitable language for metamodel-independent
transformation specification we propose to use VIATRA [5].

View-based Model Development

The completions allow to hide model details. With suitable tool support allowing to
encapsulate and roll off chosen completions we can build a collaborative environment
allowing developers to work on the same model, but with different level of detail. Moreover,
purpose-specific views could be supported. Thus, developers could browse the model
details and choose the level of completeness they need.
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Model-driven Architecture Patterns

The HOT patterns introduce complex structures in a model-driven architecture. We
consider this group of patterns as ’model-driven architecture patterns’, because they are
reusable and goal-specific building blocks composed from different artefacts (such as mod-
els, metamodels, transformations). The introduced and upcoming HOT patterns need to
be further formalised. HOTs, especially HOTs of multiple order are rare, the useful sce-
narios are still to be explored. Moreover, an experimental evaluation and efficiency study
of some of the HOT application scenarios described in this work is planned for the future.

With the growing set of reusable building blocks in the model-driven world, it is more
and more important to discuss the terms ’component’ and ’architecture’ in this context.
We propose creation of component-based architecture models for MDSD. An architectural
model will provide an appropriate mechanism to enable the modular and compositional
specification of complex model transformation chains. Such models could support ver-
ification of complex MDSD systems and, moreover, allow to define a relation or their
composition as an part of classical component-based software architectures.

Hots and Transformation Languages

From our point of view the following topics could be addressed by HOTs in order to
improve the applicability model transformations in general:

• Providing parametrization mechanisms directly, for example by providing new lan-
guage constructs. This can be done using HOTs or language extensions.

• Supporting techniques to ensure the correctness of transformations. Design-by-
Contract methods could be brought to the module-level, for example as OCL an-
notations. Heuristics to check such annotations formally or logic to generate test
cases could be implemented as a HOT. Further, error-handling possibilities can be
provided by transformation languages. Syriani et. al. are considering exception han-
dling [156], these language constructs can only be provided by the transformation
engine, whereas the higher-order level is insufficient.

• Hybrid transformation implementations, i.e., composition techniques, which permit
mixing declarative (QVT Relational) and imperative (QVT Operational) code as
tackled by approach [133]. Such mixing of declarative with operational code is al-
ready possible in ATL. Composition of rules or modules of operational or functional
style can be implemented as a HOT.

• Supplying developers with better tooling is crucial for more complex implementa-
tions. Additionally, conformance to standards is still not guaranteed, e. g. full sup-
port of QVT Relational.

Best-Practices for Metamodel Evolution

We showed that the structure of the metamodel could be a source of certain advantages
for the future usage of metamodels in model-driven systems. In the PCM metamodel, we
can distinguish disjunct clusters of metamodel elements. This metamodel clustering maps
the separation of concerns between the roles in the development process. Intuitively, we
propose to introduce an metamodel specification process, which considers the structure
and roles in development process it will be used in. We think that the introduction of
best practices for metamodel design considering future development of transformations will
contribute significantly to the correctness of transformations and decrease their complexity.
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Metamodel Coverage of Transformations

The dependency between transformation and metamodel is very promising target for fur-
ther analysis. Analysis of the metamodel coverage by a set of transformations helps to
resolve conflicts in transformation execution. Additionally, debugging tools visualising this
dependency and illustrating when the borders of a cluster in metamodel were crossed by
a transformation could support composition and chaining of transformations. It will help
to identify and reduce conflicts in transformation execution. This way developers could
identify parts of functionality that could be developed in separation or that have to be
merged. This will increase the productivity in development of complex MDSD architec-
tures. Moreover, it will open possibilities to optimise execution in transformation chains
through identification of transformations that are independent already on metamodel level
so they can be executed in parallel.

Quality Metrics for Transformations

The necessity of empirical studies for MDSD and any metrics for transformations is a
clear issue. Additionally, the techniques evaluating presented metrics should be embedded
in model transformation tools. The conducted studies showed that the metrics proved
as useful for increasing the understanding of model transformations. This is a promising
perspective, however, experiments should be conducted to empirically validate the benefits
of the proposed techniques. Furthermore, the performance of transformations is an another
quality attribute that should be further investigated.

An obvious point for future work is generalisation of the presented techniques for quality
metrics, transformation composition from fragments, template instantiation or routine
pre processors even further. All techniques introduced in this thesis were implemented
in QVT Relational, as they use concept of relations and as such are suitable for any
relational language, the extension of these techniques for other relational language (e.g.
ATL) is simple implementation task. However, the extension of these techniques for other
language families (imperative, QVT Operational) has to be further investigated.

Final Remark

The work presented in this thesis is a step towards further automation of software engineer-
ing processes. It helps software developers (i) by reducing development efforts for manually
implementing transformations, especially when variability of transformations is required,
(ii) by defining a structured process for purpose-specific model completion, and (iii) by pro-
viding an automated transformation generation framework, called CHILIES, applicable in
different practical contexts. In this thesis, we applied the CHILIES framework to the area
of CB-SPE developing an extensible support for performance engineers. Our Performance
Knowledge Base (i.e., Completion Library) enables reuse of expert knowledge to improve
the accuracy of performance predictions. In addition, our approach contributes to the
state-of-art in model-driven software development. (i) It is the first approach introducing
enhanced scenarios and patterns for transformation generation. (ii) It clarifies the require-
ments for transformation variability and provides a flexible solution for transformation
variability. (iii) It is the first method demonstrating how purpose-specific completeness
can be increased in a systematic, incremental and traceable way.
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A. State Dependence in Software
Performance Evaluation

In this chapter, we discuss effective state abstraction in component-based performance
models. Our previous work on this topic was published in [94]. In addition, this discussion
is an extension and motivation of the domain analysis for the State Manager completion
introduced in Section 5.3.3.2.

During the last years, many approaches dealing with performance prediction and mea-
surement have been introduced. In the area of Component-Based Software Engineering
(CBSE), systems are build out of reusable black-box components (implementing sets of
services) interconnected to a component architecture. Specialised component performance
prediction and measurement approaches introduce modelling languages with the aim to
understand the performance (i.e., response time, throughput, resource utilisation) of a full
architecture based on code-specific performance properties of individual components.

It is generally accepted that performance is a pervasive quality of software systems. Every-
thing affects it, from the software itself to all underlying layers, such as operating system,
middleware, hardware, communication networks, etc. [172]. The factors influencing the
performance of a software component are difficult to analyse because they depend not only
on the component implementation, but also on its usage, deployment and environmental
context of the component (see Figure A.1), and occur at different stages of component and
system life cycle.

Component
Implementation

Internal State

Required
Services

Deployment Platform
( Resource Contention )

Usage
Profile

Figure A.1.: Performance-influencing factors.

Moreover, the difficulty of understanding system performance comes from the propagation
of the effects of these factors throughout system control flow, including the influence of
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the usage profile and history-dependent information defining system state. Besides these
influential forces on their own, the difficulty of understanding system performance comes
from the variability introduced by the factors and propagated throughout the system. This
includes the variability in system control flow due to the propagation of system usage profile
and influence of system internal states, and subsequent variability in resource demands
awakened by the control flow, which results in complex sequences of resource requests and
potential resource deadlocks. While the influence of usage profile on system control flow
and subsequent performance has been studied and is commonly understood [97], not much
attention has been paid to the influence of system stateful information.

When speaking about a state, we mean a context or history-dependent information remem-
bered inside a component, system, or associate with a user, and employed to coordinate
system behaviour. The state of a component or system can originate from its initialisa-
tion or previous executions, and can be changed at different stages of system life cycle,
including system initialization, deployment or runtime. The state associated with a user
uses to be quite stable along system execution and is typically used to customize system
behaviour for a particular user type (i.e., standard or premium customer). Only a few
performance prediction approaches deal with the modelling of states in component-based
systems. Currently, there is no consensus in the definition and method to model stateful
information in component-based systems and its performance impact, which limits the
accuracy of existing performance models [99, 98].

A.0.3. Challenges of Stateful Analysis

The question that rises for current performance models is how to include the stateful
software application properties in a performance model, and how to build more accurate
and expressive models of stateful component-based systems. In this respect, we can identify
four main issues.

• State definition: The property of statefulness can be identified in various arti-
facts of component-based systems, varying over several system life-cycle stages. Ex-
isting literature lacks the localization of state-holding information identifiable in
component-based systems [16, 98, 172], and their classification into a transparent set
of categories. Available surveys consider the capability to model state only partially
or not at all. In this work introduced evaluation focuses especially on this property
of performance prediction models (see section A.2.1).

• Performance impact: The benefits of state modelling include increased expres-
sive power of the models and higher accuracy of predictions. It is however not well
studied, as observed by a number of authors [98, 18, 172], what is the increase of
prediction accuracy achieved by state modelling, especially in comparison to the in-
creased effort for modelling and analysis. More important there is no consensus in
understanding of the state definition and its impact on performance at all [98]. A dis-
cussion on how the existing performance-driven models deal with the interpretation
and analysis of stateful prediction models is elaborated in section A.2.1.

• Prediction difficulty: The balance between expressiveness (state modelling) and
complexity (model size increase) is a challenging research question. Only when it
is understood what costs need to be paid for the increase in prediction accuracy,
we can competently decide on the suitable abstraction of state modelling (to what
extent we aim to include stateful information present in the analysed system).

• State support in component models: The lack of work addressing the discussed
issues can be explained by insufficient support of stateful information in existing
performance-prediction models. Industrial models (like EJB, CCM or Corba) have
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been designed to support internal state, since it is one of the crucial implementation
details, but lack the support of broad analysis capabilities with respect to system
properties. Academic research-oriented stateful component models (like SOFA [29])
are often accompanied with a special analysis method for a set of functional sys-
tem properties (model checking), but not for performance, which is of our interest.
The performance-driven research-oriented component models (see detailed survey in
section A.2.1) either lack support for state modelling or model state only partially
(see Table A.2). Additionally when they support state modelling the performance
impact of the state is unclear, as shown in the Table A.2. Consequently, because of
missing support for state modelling in the existing prediction methods the analysis
of state dependency and related costs is not provided.

It is important to understand the state definition and its impact on the performance
predictions. As mentioned by many works from performance prediction community, for
example [98, 18, 172], there is a need for deeper analysis of component/system state, its
impact on performance and situations when is needed to model the component state for
accurate predictions. The purpose of this work is to address some of the challenges of state
modelling in performance prediction models.

Missing research on performance influence of stateful information in component-based
systems makes performance prediction for the majority of industrial component models
(e.g., EJB) difficult and limited. In the component models, such as EJB, CCM, and
COM, components are similar to object-oriented classes in the sense that they can be
instantiated and that their instances can be stateful. Existing component models oriented
on functionality and model checking (e.g., FRACTAL, SOFA) have support to model
component internal state. However, the impact of component internal state on performance
(or reliability) is not evaluated. Component models oriented on performance prediction
have no notion of internal state, or they support internal state modelling and analysis only
partially [98]. To build better models and their solvers, we need to think about component
state introduction [172]. To reach this goal in the existing performance prediction models,
we deal with two kinds of problems. Firstly, these models depend in many cases on
assumptions, e.g. with the assumption of exponential service demand we need a significant
effort to find a probability of timeout [172] (as such the probabilistic approximation of
internal state is very difficult). Secondly, analytic performance models based directly
on states and transitions deal with state space explosion problem [172]. To overcome
this issues we propose performance-model-suitable state approximations and guidelines
for their introduction in the architecture model.

This thesis addresses the challenges via three main contributions: (i) identification of state-
ful information in component-based systems and their classification into a set of categories,
(ii) critical evaluation of state modelling in current performance prediction models, and an
extension of a chosen performance-prediction language to provide sufficient state-modelling
capability, and (iii) state-dependency analysis evaluating the performance impact of the
identified state classes together with the discussion of the increase in the prediction diffi-
culty introduced by state modelling.

The chapter is organized as follows. Section A.0.4 realizes the first contribution. It iden-
tifies and discusses state-specific properties of component-based systems, localizes stateful
information, and classifies it along two dimensions into a categorization. Section A.2 re-
alizes the second contribution. It surveys existing performance-driven component-based
models with respect to state support, and extends one of the models, Palladio Component
Model (PCM), to sufficiently support the identified state categories, as already discussed
in Section 5.3.3.2. Sections A.3 and A.4 elaborate the third contribution by introducing an
approach supporting software engineers with the information about performance impact
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and model-size costs of the individual state categories. In particular, Section A.3 outlines
the approach and discusses its foundations, while Section A.4 presents the concrete obser-
vations from a set of experiments performed on both stateful and stateless PCM models
for individual state categories, and formulates them into a set of heuristics navigating
software engineers in the decisions on an appropriate state abstraction in their models.

A.0.4. Stateful Component-Based Systems (SCBSs)

In this work, we understand the state as an information remembered inside the system. A
state is typically context or history-dependent, and is used to navigate system behaviour
depending on the current state value. Therefore, a state influences system control flow,
which propagates into resource-demand sequences, and finally to performance properties
(such as response time, throughput, and resource utilisation). A typical example of a
state is an attribute of an object in object-oriented programming, which is used to store
information (updated by methods of the object) and which is employed for customizing
object’s response to incoming calls.

In literature, two main streams of understanding a state can be found. In the first one [98,
73, 85], the authors attach a state as an additional information to behavioural models.
A state can be used in behavioural decisions. The behavioural models set and read state
explicitly. In the second one [29], a state is encoded implicitly in the current position in
system execution (behaviour). The main difference between the two is that in the first
case, an update of a state is possible, and can be used to adapt the behaviour of the
element. In the second case, the state cannot be changed explicitly. When we assume
that a system comprises of interacting components, the impact of the state rises in the
case of parallel usage of components, when all users share the same stateful information
coordinating their behaviour.

A.0.5. Specifics of CBSs with Respect to a State

The state-relevant information influencing system performance can be found at different
stages of system life cycle. As distinct to classic software systems, the life cycle of a
component-based system constitutes of two separate abstraction lines—life cycle of a com-
ponent and life cycle of a composite system [31, 157]. Moreover, components can be of
two types: primitive and composite. Primitive components directly encapsulate imple-
mented functionality, and are typically viewed as black boxes. Composite components
are constituted by a composition of existing components, and are often viewed as grey
boxes. In a similar fashion, we assume that the state of a composite component is simply
a composition (an ordered n-tuple) of the states of its sub-components. In this sense, a
complete composite system has two kinds of states: (i) the implicit state inherited from
the (primitive) components in the system, and (ii) an explicit state containing additional
information specific to the full system.

Life-cycle stages of a component:

• Specified component: represents a component frame with known provided or
required interfaces. The performance model of a specified component may include
performance requirements, e.g. maximum response time is 15 ms.

• Implemented component: defines how the provided services of the implementa-
tion call the required services. Including the definition of performance model con-
sisting of behaviour performance abstraction and resource demands, e.g. amount of
requested CPU, hard disk or memory. Here defined resource demand could depend
on input values from usage profile or deployment platform.
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• Instantiated component: is an identifiable component instance derived from the
implemented component, and ready to be executed (in its initial configuration).
In some component models, all components are instantiated before launching the
system, in others, components can be instantiated at run-time.

• Deployed component: is a component instance allocated on a hardware. The
performance model can now include resource demands of required services and prop-
erties of the component container, operating system and hardware.

• Running component: is an actually executed component that serves client re-
quests (not necessarily in its initial configuration). At run time, components can
have a state used in current models for checking the violations of valid protocol
states. In the performance model, at this stage the workload (i.e. the number of
clients calling the component), the input parameters and information about concur-
rently running processes are known.

Life-cycle stages of a composite system

• Specified system: is a frame of the system with known access points and services
required from the environment.

• Assembled system: is an executable system assembled from implemented (instan-
tiated) components, and ready to be launched (in its initial configuration).

• Deployed system: is an assembled system deployed on underlying software and
hardware.

• Running system: is a system at any moment of its execution.

The responsibility to model stateful information and initialise suitable state abstraction
is based on CBSE development process. We divide the responsibility to model the state
between development roles considering the moment in the development when certain role
has enough information to refine the model with required state definition. The overall de-
velopment process, integrating the evolution on both component and system level can be
understood in terms of involved developer roles, which are component developers, software
architects, system deployers, and domain experts [102]. Component developers (CD) code
the components, and annotate their interfaces with abstract behavioural specifications, to
facilitate the usage by third parties. Software architects (SA) assemble selected compo-
nents into architectures forming the system. System deployers (SD) design the resource
environment (e.g. CPUs, network links), and allocate the components in the architecture
to the resources. Finally, domain analysts (DA) communicate and specify the system-level
usage profiles (call frequencies and expected input parameter values), which then can be
employed in formal reasoning about system properties.

A.1. State Categorisation for CBSs

To find a definition of a state in the context of CBSs and performance predictions, we
studied different categories of states in existing component-based systems and compo-
nent models (see section A.2.1). We observed that the notion of component/system state
involves various properties and is dependent on different execution processes in the sys-
tem. With respect to these, we have identified two dimensions, along which we categorise
observed state types.

(i) Place dimension answers the question: Is the state proprietary to a componen-
t/system/user?

(ii) Time dimension answers the question: Is the state initialised or changed at run/de-
ployment/instantiation time?
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Table A.1 outlines the identified state categories. Along the place dimension, it distin-
guishes component-, system- and user-specific states, all defined below. With respect to
the time dimension, we studied all stages of component/system life cycle, and observed
that a state is by nature a dynamic information that evolves independently for individual
elements in the system. If it is fixed along a life cycle, it is not set before the element
gains its identity (instantiation stage in case of a component, assembly stage in case of
a system). We refer to this moment as instantiation time. The following moments are
the deployment time, which corresponds to the deployment stage of the life cycle, and run
time, which belongs to the run-time stage.

The rest of this section presents the identified state categories, structured to three sections
along the place dimension, and for each category, it outlines a demonstrating example,
and comments on its modelling.

Table A.1.: Identified state categories.

A.1.1. Component-Specific State

Component-specific state is an information remembered for each component, and used
inside the component to adjust component’s behaviour to incoming requests. Component
state can be modified only by the services of the component, not by other components.

(a) Protocol State: This state holds an information about currently acceptable service
calls of a component. It is typically part of an interface contract between service provider
and its client [157].

• Example: Consider a component managing a file, which can be opened, modified
and closed. The component is initially in the state when it accepts only the request
for opening the file. After that, it moves to the state, where the file can be either
modified or closed. Closing takes the component again to the initial state. The
indication for a protocol state performance impact is, for example, rate of rejected
requests (contenting the communication link). Analogically, the protocol state uses
to be employed also for modelling component life cycle, including stages like inactive,
initialised, replicated, or migrated component.

• Modelling: The protocol state uses to be identified by component developer, and
attached to a component via a proxy, filtering the calls on component interfaces.
Illegal calls are either dropped or returned to the caller with an exception.

(b) Internal State: This state holds an internal information set by the services of the
component (at run time), and used to coordinate the behaviour of the component with
respect to the current value of the state. Internal state is externally invisible, and externally
unchangeable.
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• Example: Consider a component that can be in either full or compressed mode,
based on the remaining capacity of its database. If it is in the compressed mode, all
insert queries on the database are additionally compressed.

• Modelling: The internal state is defined by component developer, and stored in-
ternally as a local variable of each component instance. To reflect the state in a
component model, there must be a possibility to define such a local variable, set its
value at run time, and query its current value.

(c) Allocation State: This state holds component properties specified at deployment
time, based on the allocation environment of the component.

• Example: An example of a performance-relevant deployment property is for instance
the maximal length of a queue used by the component. Such a property is set at
deployment time, and remains fixed along the execution of a component.

• Modelling: The component-specific allocation state can be modelled with a static
component parameter, and is identified and set by the system deployer role.

(d) Configuration State: This state holds instance-specific component properties, fixed
during instantiation of the component.

• Example: The configuration state may specify a selected parallel-usage strategy
(like rendezvous or barrier synchronization), which may differ for each component
instance.

• Modelling: Similarly to the component allocation state, the configuration state can
be modelled with a static component parameter. In this case, it is typically set by
a software architect, who decides on the configuration of the primitive components
forming the assembled architecture.

A.1.2. System-Specific State

System-specific state is an information remembered in one copy for the whole system, and
used to customize or coordinate joint behaviour of individual components. This state
abstraction gains on importance with analysing the state of virtualised systems, cloud
computing or systems sharing deployment environment.

(e) Global State: This (run-time) state holds a global information shared and accessed
by all components.

• Example: A typical example of this kind of state is a global counter, remembering
for instance the number of service calls executed in the system since the last back-up
of the system, and triggering the back-up process after a certain number is reached.

• Modelling: Global state is specified by a software architect during system assembly,
in terms of a modifiable system attribute (global variable). It can be either managed
directly by the execution environment, or be encapsulated within a component that
manages it as its internal state, update its value on request, and answers the questions
on its current value.

(f) Allocation State: This state holds deployment-specific information shared by all
components in the system.

• Example: The examples include the availability of supportive services of the un-
derlying infrastructure (e.g., middleware), parameters of employed thread pool, or
selected communication or replication strategies.

• Modelling: The system-specific allocation state can be modelled with a static system
parameter, and is identified and set by a system deployer.
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(g) Configuration State: This state defines system configuration properties specified
before launching the system.

• Example: This may be for example an upper bound on the number of component
instances that may resist in the system at the same time. This is an information of a
configuration character, and utilized by all components whenever a new component
instance is to be created.

• Modelling: The system-specific configuration state can be modelled analogically to
the configuration state, and is identified and set by a software architect.

A.1.3. User-Specific State

User-specific state is an information remembered for each user, and used to customize
system behaviour to the user.

(h) Session State: This state holds a user-specific information for a single session. The
information defining the state is forgotten when the session terminates.

• Example: A session can represent one sale performed in a supermarket system.
Each sale may start with scanning a customer card, which then customizes system
processing of the sale. The system may for instance dynamically recompute during
the shopping process the prices of some products or their combination, which may
be time consuming and can influence the system response time for a user.

• Modelling: This kind of state is derived from the information given by a domain
analyst, and could be modelled by additional input parameter in usage model or by
more specific component state parameters. The behaviour in system per user/session
could depend on the history of actions in the session, this history information could
be traced in component internal parameters, what builds together with the persistent
state an overlap with component state definition.

(i) Persistent State: This state holds a user-specific information throughout the whole
existence of user in the system, independently on an existence of a session belonging to
the user.

• Example: Each user of an online Media Store has a different limit on data for down-
load under full downloading speed. The system needs to remember this information
to control the attempts of users to download data over the limit, and regulate down-
loading speed accordingly.

• Modelling: The persistent state can be modelled analogical to the session state, with
a persistent data store involved.

A.2. Performance Model for SCBSs

This section surveys existing performance-prediction component models with respect to
their state-related capabilities, and summarizes their coverage of identified state categories
in table A.2.

A.2.1. State of the Art Evaluation

Existing performance-driven component models can be based on their analytical methods
classified into four main streams: design-time, formal-specification, measurement, and
simulation models.

In the group of design-time performance prediction methods these are few that partially
support state modelling. First of them is the CB-SPE approach by Bertolino and Miran-
dola [22] that uses UML extended with SPT annotations profile to model component state
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Table A.2.: Component Performance Models Comparison.

or configuration in a static way. The component model based on a proprietary metamodel
Palladio Component Model (PCM) [18] builds on statical state abstractions too. Addi-
tionally this model allows to model session state through additional input data in an usage
profile of a system. Despite of these state abstractions a need of further extensions for state
modelling was identified in PCM [99]. The PECT model [85] deals with state modelling in
a more detail and addresses the performance predictability properties of components with
runtime system assembly variability. Even though the notion of state is partially included
there is no full support for including of this state-based variability in performance pre-
dictions. This model builds on a Component Composition Language (CCL) that allows
to model component behaviour based on statecharts. The performance impact of state
is not further investigated, the focus of state modelling is directed on model checking of
functional properties. Additionally, based on statecharts and certain behaviour claims,
reliability of the system can be verified. Similarly, state is modelled in the Component-
Based Modeling Language (CBML) with the possibility to statically configure component
parameters. In the component model ProCom [146] designed for embedded systems, state
is modelled only statically by a set of component parameters. Further, the component
architecture of COMQUAD [118] is using Petri nets as a system behaviour model, how-
ever, the dependency of the service call on input data is ommited. A lot of other models
claim an ability to express state changes but in many cases they refer to the behaviour
protocol checking [85], state changes monitoring [122] or performance annotations based
on measurements [21].

The formal specification model for testing of performance and reliability HAMLET [73]
suggest to model state as an additional input (additional floating point external variables
loaded in the time of component execution) and provide tests showing functional aspects
of a state. The measurement approach called AQUA [50] inherently monitors state impact
(component description is given by the specification of EJBs) and showed how important
it is to understand how system state is interpreted. Another approach to measure EJB
applications NICTA [110] provides benchmarking methods to get platform-independent
information, such as thread pool size etc. The simulation-based approach MIDAS [4]
determines performance characteristics of the system through state estimation or compu-
tation during simulation, for example queueing characteristics.
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A.2.2. Palladio Component Model (PCM)

Based on the evaluation in section A.2.1 we decided to extend the Palladio Component
Model (PCM) [18] with further capabilities to model stateful information. This extension
is one of the contributions we introduce in Section 5.3.3.2. The advantage of this model
is its component-based nature, already partial support for state modelling and possibility
to model usage profile in detail.

In this section, we informally describe the features of the PCM meta-model and focus on
its capabilities for state modelling. The division of work targeted by CBSE is enforced by
the PCM, which structures the modelling task to four independent languages reflecting
the responsibilities of the four different developer roles outlined already in section A.0.5.
The PCM already provides certain abstractions or approximations to model state: (i)
static component parameters (or properties) characterize the state of a component in
an abstract and static way and hence offer a more flexible parameterization of the model.
These parameters are propagated through development process differently, they are defined
and initialized by a component developer and can not be changed at runtime. (ii) Limited
passive resources, such as semaphores, threads from a pool, or memory buffers result in
waiting delays and contentions due to concurrently executed services. (iii) Input data from
usage profile allows to express session state. Table A.2 illustrates the capabilities of PCM
to model identified state categories. In addition, the State Manager Completion extends
the capabilities of PCM to model state as described in Section 5.3.3.2.

A.3. Outline of the Approach

After identifying state types in component-based systems, and extending the PCM performance-
prediction model to support them, this section together with Section A.4 elaborates the
third contribution of the thesis—a study of the performance impact of the identified state
categories, and analysis of the influences that should drive the decision on the abstraction
level of state modelling.

In design-time performance prediction, this issue has already been addressed for various
different constructs, including service parameters, return values, or usage-profile propa-
gation. Our approach gives an insight into the issue of state modelling, which has not
been addressed so far, and tries to help the software engineers to find the balance between
accuracy and complexity of models more competently.

In particular, the approach aims to help software engineers to assess if the increase in the
prediction accuracy introduced by the state modelling outbalances the price that needs to
be paid for the increased model complexity. To compare the two metrics, we first discuss
the quantification of the performance impact (see Section A.3.1) and the model size cost
(see Section A.3.2). Second, we discuss the similarities among some of the state categories
(in Section A.3.3), and design four classes clustering the state categories that are similar
with respect to our goal. Each of the classes is later analysed in Section A.4. For each
class, we discuss the observations about its performance impact and model size cost and
design a number of heuristics condensing the advises for the software engineers. Each
heuristic is experimentally evaluated and the results of the evaluation summarized in the
text.

A.3.1. Quantification of Performance Impact

The adopted Palladio Component Model (PCM) allows software architects to quantify
three aspects of system performance: response time (of a component or system service),
throughput (of a service or communication link), and resource utilisation (of a hardware
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resource). All the three metrics are reported as random variables with probability distri-
bution over possible values together with their likelihood. The response time is expressed
in given time units (e.g., seconds), throughput in number of service calls or data amount
per time unit (e.g., kilobytes per second), and resource utilization in the number of jobs
currently occupying the resource.

The three performance metrics for all the individual model elements are at the end all
propagated to the system response time, which quantifies the response time of a given usage
profile. The system response time is dependent on the response times of the user-called
system services, which depend on the response times of component services included in
the triggered control flow, resource utilization of the system hardware resources employed
during service execution, and throughput of the utilized communication links (due to
contention and overloading effects).

In this thesis, we are hence primarily interested in the impact of state modelling on the
system response time, which can be additionally expressed with different abstractions,
including best/worse time, mean time, and others. Since for each of the abstractions, the
state-modelling advices could have different validity, we discuss all of them in Section A.4
although we focus primarily on the probability distribution, which is the default metric
used in the PCM.

The individual metrics of system response time discussed in this thesis are: mean value,
median value, best/worst case, variance, probability distribution, and time series. The
first two metrics, the mean and median values, approximate the expected system response
time. Although both are very popular in statistics, they use to be considered too coarse-
grained for performance engineering. To make the response-time characterization more
detailed, the best and worst case values use to be given. Together with the variance, these
metrics already characterize the possible response time values quite concisely. However, if
all these information is needed, the full probability distribution of the response-time values
is often required, alternatively formulated as a cumulative probability function. The most
detailed metric is the time series which reports possible response-time values of individual
system services in connection to the time when the service execution has been started.
The time series provides view of the evolution of the response-time over the time, which
is a basis for transient analysis of systems, however time series is the most difficult to
analyse.

A.3.2. Quantification of Model Complexity

The complexity of a model can be best understood when translated to a low-level formal
language with clearly definable size. One of the formalisms most commonly employed
for this purpose are labelled transition systems. In the case of component-based systems,
different kinds of interacting automata [176, 175] use to be employed, which allow us
to specify large labelled transition systems via composition of automata-based models of
individual components. In [175], the inclusion of a stateful information in a model is studied
in terms of Component-Interaction Automata. It is shown that a component/system state
can be encoded as an automaton interacting with the automata for component services—
answering their queries of its current value, and accepting their commands to change the
value. The model of a system is then a composition of not only the models of individual
services (implemented by the components), but includes also the models of all states (whose
size corresponds to the number of possible state values).

Since the size of a composite component-interaction automaton is defined over a Cartesian
product of the vertices of composed automata, the size of the composite model can be in
the worst case a multiplication of the initial stateless model with the size of the internal-
state model. However, our experience shows that not only that this case is very unlikely
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to occur, but the model that includes stateful information can be even smaller than the
initial stateless model, due to a higher certainty about the future behaviour of the system.
A more detailed discussion of this phenomenon can be found in the sub-sections of Section
A.4.

A.3.3. Diversity Among State Categories

In section A.1 we have identified nine state categories. Though they all embody the same
construct (defined in section A.0.4), their practically observed performance impact differs,
and is influenced by different criteria. At the same time, however, one can also observe
strong similarities among some of the categories.

• Allocation vs. Configuration state: Both the allocation and configuration state
(consider the component-specific case for now) are fixed before the actual system
execution. Thus from the performance point of view, both can be understood as
fixed component parameters, often usable in an interchangeable way.

• System vs. Component-specific state: Even if the component-based system
behaviour is encapsulated in components, and structured to architectures, its core is
in the interaction of system services. If we abstract from component boundaries, we
can find a strong analogy between component internal state and system global state,
and between component- and system-specific allocation and configuration state.

• Session vs. Persistent state: From the point of view of performance analysis, the
persistent state is analogical to a session state for one life-lasting session.

The identified similarities cluster the defined state categories into four classes: (1) protocol
state, (2) internal and global state, (3) allocation and configuration state, and (4) session
and persistent state.

A.4. State Dependency Analysis

For each of the four state classes identified in Section A.3.3, we performed a number
of experiments and drew observations on the performance impact and costs of the state
modelling, which we present in this section. For both the performance impact and the
cost, we compared the stateful model of a PCM instance to the stateless model of the same
example, where the state-dependent decisions are guarded by probabilities (estimated as
precisely as possible). The observations are discussed for all the response-time metrics
defined above, although the heuristics have been primarily defined for the probability
distribution of the response-time values, which is the most commonly employed response-
time metric.

A.4.1. Protocol State

The protocol state, which is the only state category included in this class, is used for a
very specific purpose. It holds an information about currently acceptable service calls of
a component.

Stateful vs. stateless model:

Recall the protocol-state example outlined in Section A.1. The protocol state in the
example can have two values: closed, when the only acceptable call is open(), and opened,
when the component can accept calls modify() and close(). Both the stateful and
probabilistic model of the example in PCM consist of three SEFF models and one usage
profile. Each SEFF starts with a branch condition deciding if the service is going to be
executed or rejected (see Figure A.2). While in the stateful version, the branch is guarded
by a current value of the protocol state, updated after executing open() and close(), the
probabilistic model fixes the probabilities of the branches based on expected likelihood of
the alternatives.
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<<GuardedBranchAction>>

State.VALUE == closed state.VALUE ==
opened

<<InternalAction>>
open

<<State>>

state = closed

<<SetStateAction>>
state.VALUE = opened

Figure A.2.: A SEFF of open().

Performance impact:

Observations:

A number of performed experiments with different variations of the probabilistic model
showed two main observations about the accuracy of the stateful model comparing to the
stateless model.

Observation 1: The performance impact of the protocol-state modelling highly depends
on the a-priori knowledge of the usage profile, which in general cannot be guaranteed since
component behaviour and usage profile are typically defined independently by different
developer roles.
Observation 2: Even if the usage profile is known, the actual probabilities of service
execution depend on component’s environment through which the usage profile is propa-
gated, and thus can be very hard to quantify.

Heuristics:

There are two heuristics that can be derived from the observations.
Heuristic 1: The importance of protocol-state modelling raises with the lower knowledge
of the usage profile.
Experimental evaluation: Our experiments show that already a very little inaccuracy
in the usage profile may lead to a very imprecise stateless (i.e. probabilistic-abstraction)
model, since the inaccuracies can be easily magnified by system control flow1. This is true
for all the response-time metrics. There are two important arguments that justify the
inclusion of the stateful information into the model in this case. First, significantly more
effort is required in the stateless model to update its transition probabilities to a more
accurate usage profile. Second, adaptation of the probabilities in the stateless model does
not need to be sufficient to reflect the usage-profile change. A structural change of the
model may be needed.

Heuristic 2: The importance of protocol-state modelling raises with higher complexity
of component’s environment.
Experimental evaluation: In some situations common in complex systems, it may be
very hard or even impossible to estimate probabilities for the stateless model precisely. A
simple exemplary model illustrating this phenomenon can be build on the fact that the
probabilistic abstraction can hardly be foreseen in the models where the same service is

1Note that the Palladio Component Model (PCM) supports value passing and value-guarded control-flow
constructs, which implies that already a minor modification of an input value in the usage profile may
influence system behaviour significantly.
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<<GuardedBranchAction>>

processed >= limit processed < limit

<<InternalAction>>
cleanUp

<<State>>

processed = 0

<<ComponentParam>>

limit = 10

<<SetStateAction>>
processed = 0

<<GuardedBranchAction>>

processed >=
limit processed < limit

<<InternalAction>>
processData

<<SetStateAction>>
processed = processed + 1

...
A B C D

Figure A.3.: A SEFF of processData().

called twice and each time behaves differently based on the actual protocol-state value
that may change in the meantime. In such a case, two models of the same service would
need to be present in the stateless system model to make it accurate. Otherwise, all the
response-time characteristics of the probabilistic model (even the mean value, which uses
to be very stable) may significantly deviate from the values of the more-precise stateful
model.

Model-size costs:

The stateful model of each service has a unified form, having two independent alternatives:
the first (complex one) if the service is executable, and the second (trivial one) if the call is
rejected (see Figure A.2). In a stateful model of such a service, two sources of model-size
increase can be observed.

Observation 1: An increase due to state update after service execution. The model-size
increases with the higher number of state updates after service execution. The increase in
this case is however negligible.

Observation 2: An increase due to remembering the actual state value, and accordingly
executing only the right alternative. If the size of the model is understood in terms of a
labelled transition system (a graph describing the paths of possible system behaviour),
then the size remains unchanged as far as there is always only one state value for which
each service can be executed. If a service can be executed in more than one values of the
protocol state, the number of vertices in the model can be multiplied with the number
of such state values. On the other hand, the complexity of the paths throughout the
transition system remains unchanged.

A.4.2. Internal/Global State

The internal state, as well as the global state, holds local (resp. global) information used
to coordinate the behaviour of the system or its components.

Stateful vs. stateless model:

Consider an example outlined in Figure A.3, with internal state processed remembering
the amount of processed data, and coordinating a component to either process additional
data or perform cleanup. A probabilistic model would be analogical, with the branches
guarded with the probabilities of state values.
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Performance impact:

Observations:

The example outlined above was selected to disclose an additional influencing factor (be-
sides the two identified for the protocol state), specific to this state category. It is connected
to a possible correlation of state values in subsequent branches guarded by an internal state
(typically with an additional execution in between of the branches).

Observation 1: Recall the example in Figure A.3 with strongly positively correlated
branches (let us denote the alternatives in the first branch A and B, and in the second
branch C and D). Note that while in the stateful model, there are only two possible service
executions (either A followed by C, or B followed by D), in the probabilistic model, four
alternatives are possible (both A and B can be followed by both C and D).

Heuristics:

The observation can be summarized with the following heuristic.

Heuristic 3: The importance of internal/global-state modelling raises with the higher
correlation of subsequent state-driven decisions.
Experimental evaluation: In the experimental evaluation, we used a number of mod-
els analogical to the example outlined above, with an internal action in between of the
branches. The experiments for more details) have shown that even if the probabilities
of the branches accurately reflect the usage profile, the results computed from the state-
less model can be very imprecise. We have observed, that already in very simple models
(one service with two or three branches), the probability distribution (mainly the variance
and best/worst case) of the stateless-model results deviates significantly from the stateful-
model distribution. The mean and median values tend to be quite stable for these simple
examples, and start to deviate when more complexity is introduced into the models.

Model-size costs:

The model of a service involving an internal/global state can have much more variability
than in the case of a protocol state, since the state-guarded branches and state updates
can be present anywhere in the model. This in the worst case implies multiplication of the
model size with the size of the state (number of its possible values). In practice however,
this case is very unlikely to occur. The likelihood is decreased by the factors summarized
by the following observations.

Observation 1: A high connection of component behaviour to a state value. The model
does not grow to the worst case if some of the behaviours are possible only under a
particular state value. Then the combinations of these behaviours with the infeasible
state values do not appear in the model and restrict the size increase (analogically to the
argument for the protocol state).

Observation 2: A low number of independent state-guarded branches. Recall the example
outlined above. While in the stateful model with dependent branches two behaviours were
possible (A;C and B;D), if the branch conditions were independent, four behaviours would
be possible (A;C, B;C, A;D and B;D). However, a high number of independent branches
does not increase the number of vertices in the model. It only increases the number of
transitions, and hence the number and complexity of behaviour-describing paths.
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Observation 3: A small number of state updates. A smaller number of state updates
implies a higher likelihood that some of the branch conditions will always (or at least
often) be evaluated as false and the behaviours that follow them will be removed from the
model.

A.4.3. Allocation/Configuration State

This class comprises of four state categories, in particular the component-specific and
system-specific allocation and configuration state, all coordinating system behaviour ac-
cording to a fixed (deployment or configuration) parameter.

Stateful vs. stateless model:

Recall the examples of these states outlined in Section A.1. The most important property
shared by all the four state categories is that they are fixed before the execution and hence
coordinate component or system behaviour in a unified way during system execution.
Again, while in the stateful model, branches may be guarded with state values, in the
stateless model, the same branches are guarded with probabilities (reflecting the likelihood
of possible parameter values). If we are uncertain about the actual value also in the stateful
model, we can include this uncertainty into the usage profile, which before triggering the
system execution configures the parameters with the corresponding probabilities of their
values and then uses them in a fixed way along system execution. On the other hand,
if we have an absolute certainty about the value of the parameter, we can reduce the
stateless model (and actually also the stateful model) to keep only the branch behaviours
conforming to the actual value of the parameter.

Performance impact:

Observations:

The above mentioned specifics imply two main observations influencing the effect of allo-
cation/configuration-state modelling.

Observation 1: As distinct to so far discussed categories, the general influence of the
allocation/configuration state to system performance is independent of the usage and the
environment. For each service, the state-guarded branches are evaluated in a fixed way,
irrespective of the service clients.
Observation 2: On the other hand, the prediction accuracy is highly dependent on the
knowledge of deployment/configuration parameters, which allows the architect to cut off
the behavioural branches in the stateless model that go against the expected value of the
parameter. When such an information is not available to the component developer (since
it is determined by a different role) and the uncertainty about the state value needs to be
expressed with probabilities, the probabilistic model exhibits high inaccuracies.

Heuristics:

The following heuristic can be derived from the observations.

Heuristic 4: The importance of allocation/configuration-state modelling raises with the
lower knowledge of deployment/configuration parameters.
Experimental evaluation: The experimental evaluation reveals that whenever there is
any uncertainty about the value of the parameters, which hence needs to be in the stateless
model modelled with probabilities, the model may become very imprecise. The reason for
this fact is that while in the stateful model, the parameter value for the whole system ex-
ecution remains the same (the uncertainty about the parameter value is included on only
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one place, in the usage profile before triggering system execution), the stateless model
includes also the behaviours reflecting the unrealistic cases of parameter changes during
system execution (similarly to the phenomenon observed in Section A.4.2). Interestingly,
the deviation of the stateless model from the stateful results tends to exhibit a common
phenomenon regarding the probability distribution of the reported values. In particular,
while the mean and the median of the results use to be the same (or very similar), the
variance of the stateless results tends to be significantly higher, with much smaller best
value (fastest response) and much higher worst value (slowest response) compared to the
accurate results of the stateful model.

Model-size costs:

The model-size costs are influenced by the following observations about the expected sizes
of the stateful and stateless model for the same system (or system element).

Observation 1: Stateful model of a single system element uses to be larger than the
stateless model of the same element. This is the case whenever the architect of the stateless
model cuts off those branch behaviours that go against the expected value of the parameter.

Observation 2: In the case of aimed model reuse, the stateful model of a single system
element uses to have the same size as the stateless model of the same element. If we do
not know the value of the deployment/configuration parameter in advance (typical in the
case of aimed model reuse in different contexts), the stateless (probabilistic abstraction)
model needs to include behaviours implied by all possible parameter values, and hence has
the same complexity as the stateful model.

Observation 3: System models resulting from the composition of individual stateful model
elements are never larger than the stateless composite system models. As the value of the
allocation/configuration state does not change along system execution, there is no increase
in model size, quite the contrary. Since all infeasible branches are never executed, the
reachable space of the stateful model can even be smaller than in its probabilistic variant.

A.4.4. Session/Persistent State

The session state, as well as the persistent state, holds an information remembered for
each individual user, and used to customize system behaviour accordingly.

Stateful vs. stateless model:

Consider the session-state example in Section A.1, with sessions connected to individual
sales, parameterized by an information about the customer. The PCM model can be
very simple, propagating the user-specific state in terms of an input value throughout
the whole session. The component realizing the state then only checks the value and
behaves accordingly. In the stateless model, the value-guarded decisions would again be
replaced with probabilistic decisions. Any uncertainty about the parameter value would
be expressed analogically to Section A.4.3.

Performance impact:

Observations:

The session/persistent state exhibits some similarities, but also differences to all the state
classes discussed above. It is very similar to the allocation/configuration state, but is not
fixed along the whole execution (differs for individual sessions). It changes very rarely, and
is updated only on a specific place (similarly to the protocol state). On the other hand,
it may guard behavioural branches anywhere in the execution, as distinct to the protocol
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state but similarly to the internal/global state. This implies the following two observations.

Observation 1: First, the impact is not very dependent on the usage profile and en-
vironment, but highly dependent on the knowledge of the distribution of the state values
(similarly to the knowledge of deployment parameters in case of the allocation/configura-
tion state).
Observation 2: Second, since the subsequent queries on the state value are highly corre-
lated, probabilistic models can hardly model session/persistent-state dependent behaviour
faithfully (similarly to the internal/global state). This state class hence plays a signifi-
cant role in the model, due to the implied strong correlation of subsequent state-guarded
branches, and changeability of the state value along system execution.

Heuristics:

There are two heuristics that can be derived from the observations.

Heuristic 5: The importance of session/persistent-state modelling raises with the lower
knowledge of the corresponding user-given parameter values.
Experimental evaluation: The validity of this heuristic can be explained with the same
reasoning that was used for Heuristic 4.

Heuristic 6: The importance of session/persistent-state modelling raises with the higher
correlation of subsequent state-driven decisions – which is typically very high.
Experimental evaluation: The evaluation is built on a set of examples analogical to
the set employed in the evaluation of Heuristic 3. Moreover, it demonstrates that the cor-
relation can be very high, since the state value (for both the session and persistent state)
is highly stable along system execution (i.e. also between the state-dependent decisions).

Model-size costs:

The experience learned about the size of the model can be summarized by the following
observations.

Observation 1: Connection of component behaviour to the state value. The increase due
to remembering the actual state value is similarly to the internal/global state dependent
on the connection of component behaviour to the state value. The weaker the connection
is, the closer the model can grow to the worst case.

Observation 2: Correlation of subsequent branches. Thanks to the correlation of sub-
sequent branches, there is basically no complexity increase in terms of the behavioural
paths.

Observation 3: State update. There is basically no size increase due to state update,
since the state is not updated inside the system, and occurs very rarely.

A.5. Discussion

The decision about an appropriate abstraction of state modelling in component-based soft-
ware systems is a very complex task. As we show, there are many aspects that influence
the decision significantly. We have identified many situations when the probabilistic ab-
straction introduces high prediction inaccuracies, even if the transition probabilities are
estimated as precisely as possible. At the same time, the expected increase in model size
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may anyway discourage software engineers from including the stateful information into
their models.

In the following, we discuss the impact of explicit state models on analytical and simulation-
based solution methods. Furthermore, we look at possibilities to approximate the influence
state probabilistically. From a theoretical point of view, our explicit state model increases
the state space of the underlying stochastic process. Consequently, the complexity grows
for all analytical methods.

Although we have identified a number of aspects that indicate a low model-size increase in
some situations, it is still very likely that stateful models have much higher complexity and
size, which may complicate their analysis. Even if the models are not analysed fully, and are
examined with simulation methods (like in the case of PCM), model complexity may have
an impact on the time needed for sufficiently accurate performance prediction (duration
of a simulation run). We have observed on many systems, that the results of stateful
analysis tends to have much smaller variance, which also influences the time necessary to
execute a simulation run. The higher variability of stateless models could be observed in
the variance of the results. As a consequence it influences the number of measurements
necessary to achieve results with a high confidence.However, explicit state models can, of
course, influence the variance of resulting response time distributions and, thus, increase
simulation time. But they enable the design of more realistic models that result in more
accurate predictions. The increased prediction accuracy justifies the additional simulation
effort. At the same time, even if the stateful model is significantly larger, the confidence
about the correctness of predicted values will be higher if a low-coverage simulation is
run on a more accurate (stateful) model, than if a high-coverage simulation is run on an
unrealistic (stateless) model.

When studying the performance impact of state modelling in Section A.4, we have com-
pared stateful models to their approximations with probabilistic models. As shown in the
text, even if the probabilities in the stateless models reflect system usage and environ-
ment, the results of the performance evaluation may deviate significantly from the stateful
models. The deviation is best visible on the probability distribution of the response-time
values and the time series, which are the most fine-grained metrics. Also the variance
and best/worse case are very different, with a higher variance of stateless models. On
the other hand, the median and mean values use to be quite stable, deviating often only
slightly from the stateful model.

There are many types of systems, where the probabilistic models can approximate the
stateful models very closely. For example, the influence of transactions (described in
Section 7.2.1.1) can be approximated probabilistically, if the waiting time of a message is
known and modelled as an explicit delay that depends on the number of messages sent
within the transaction. To achieve this, performance analysts have not only to know in
advance the number (which is static and can not change at runtime) of messages in a
transaction as well as the influence of a message on the transaction’s delay (which needs
to be adapted for each change in the transaction size to get accurate predictions).

A.6. Summary

This work addresses the challenges of performance prediction for stateful component-based
software systems. To achieve this aim, we have accomplished a number of tasks. We inves-
tigated the requirements and the offered expressiveness of prediction models for stateful
systems. We surveyed the state of the art and extracted a classification scheme of various
state-defining and state-dependent model parameters. After that, we critically evaluated
the possibility of modelling introduced categories using state abstractions in current per-
formance prediction models. As a result, we extended the Palladio Component Model
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to provide sufficient state-modelling capability, and evaluated the benefits and costs it
brings in a state-dependency analysis. In the state-dependency analysis, we further identi-
fied the similarities and differences of the individual state categories with respect to their
performance impact and model-size increase, and introduced and evaluated a number of
heuristics summarizing the advices to software engineers, and helping them to competently
decide on the appropriate state abstraction in their models.

The future work includes further analysis of the individual heuristics and methods for
their automatic evaluation on a system model. The first steps include decomposition of
the heuristics to more concrete ones that define exact conditions to be checked on the
analysed model. The automatization would also include employment of expert techniques
to determine an appropriate abstraction on the state values, to keep the model size and
model accuracy balanced. Another aim of our ongoing research is to examine the impact of
the hardware-specific state categories, which may reflect the availability and speed (based
on the actual workload) of system hardware resources. New challenges also rise from the
introduction of dynamic architectures and support of virtualisation scenarios and dynamic
allocation.
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B. Further HOT patterns

In the following sections, we discuss additional HOT patterns for further scenarios. During
our work, we developed an automated support for different goals and scenarios using
advanced MDSD techniques, such as HOTs. We structured and extracted additional HOT
patterns based on these scenarios. The extracted patterns provide support for Shared
Configurations, Retainment Policies, Model/View Synchronisation, and Transformation
Analysis.

B.1. Shared Configuration HOT Pattern

Shared Configuration pattern is based on the observation that transformations as a whole
are also entities of reuse. Becker [11] first introduced very similar concept, so called Coupled
Transformations, in order to factor out shared parts of transformations. This pattern try
to give an answer to how transformation knowledge can be reused, and can be considered
as an immediate application of Czarnecki’s [46] Generative Programming methodology to
the field of transformations.

B.1.1. Motivation:

In software development, refinement transformations are entities which encapsulate design
decisions to be applied to an architectural model. Applying design decisions is leading to
certain platform-dependencies, and finally results in an implementation model.

However, besides an implementation as one purpose, engineers could be interested in fur-
ther transformation objectives, for example the performance impact certain design deci-
sions introduced into the model. In this setting we have a number of existing transforma-
tions towards different objectives. However, often the initial design decisions change during
the development. After such a change, all existing transformations have to be adapted
to correspond this new design decision. Instead of manually adapting each transforma-
tion, it is recommended to keep code for one design decision and different transformation
objectives separated.

B.1.2. Implementation:

Figure B.1 depicts one HOT being able to automatically synchronise two transformations
for the same configuration options (a shared synchronisation point), one targeting code,
the other targeting for example performance aspects. As a result, the possible set of
configuration options can be described in a single model.
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Figure B.1.: Shared Configuration pattern.

Becker et al. originally implemented coupled transformations in Java, because no work-
ing implementation of a transformation engine was available back then. At that time,
variability in configuration options had been limited on simple Boolean constants for the
parameter values only.

B.1.3. Benefits and Drawbacks:

Shared Configuration pattern, implemented on the basis of HOTs, render code with higher
reusability and provide better support for variability. On the negative side, it should be
noted that transformation rules written on the meta-level, is harder to read and maintain
through the inherent indirection introduced. However, if models are expected to be used
for multiple purposes the increased effort should pay off.

B.2. Retainment Policies HOT pattern

The retainment policy approach introduced in [67] aims at the preservation of external
changes in target models of transformations. To achieve this [67] introduced an annotation
approach that allows transformation engineers to attach retainment policies to transforma-
tion rules. These policies then define how a re-executed transformation deals with external
changes in target models, i.e., overwriting the change and resynchronising the target model
according to the source model, or, keeping the external modification discarding updates
from the source model. The paper also presented patterns on how the policies can be ex-
pressed in terms of QVT Relations. A HOT is then responsible for weaving these patterns
into the annotated transformation, yielding a modified transformation that behaves like
the original transformation but with the desired behaviour w.r.t. external changes to the
target model.

B.2.1. Motivation:

For realising the retainment policy approach, two different possibilities exist. First, a
library-driven approach, meaning that a reusable set of rules exist that implement each re-
tainment policy. A transformation could use these generic rules to identify target changes
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Figure B.2.: Retainment policies.

and decide how to handle them. Second, the HOT approach which uses external annota-
tions to the developed transformation and generates a new version of the transformation
which incorporates the annotated retainment policies into the developed transformation.

We chose the latter option because we targeted QVT Relations as transformation language.
The retainment policy approach is based on the information provided by the trace of the
transformation. In the MediniQVT [88] implementation of QVT Relations the trace model
is strongly typed with the actual domains employed in the transformation. Therefore, also
the rules realising the retainment policies would have to be typed in that way. As we can
determine this only when the transformation under development is available this decision
needs to be deferred to a later point in time. Therefore, we used a HOT to weave in the
retainment policies at build time of the transformation under development.

B.2.2. Implementation:

We implemented the HOT approach so that it uses the model of the transformation under
development as well as the annotated retainment policies model as input as shown in
Figure B.2. The output is then a modified source transformation incorporating additional
parts and rules for handling the changes to the target model.

B.2.3. Benefits and Drawbacks:

Using the HOT approach in this scenario we did not only achieve the required later bind-
ing time of the retainment policies but also achieved a better separation of concerns. The
retainment policies are now completely external to the transformation under development.
Therefore, this transformation only contains domain-related information and is not pol-
luted with technical concerns, i.e., the rules implementing the retainment policies.

However, applying HOT in this scenario has drawbacks as well. The major drawback is that
debugging becomes more difficult. As the transformation that actually runs (the generated
one) is different to the transformation the transformation engineer actually developed
either he/she needs to have knowledge on how the code of retainment policies works or
the transformation debugger needs to be modified in order to make the transformation
modification transparent.

B.3. Model/View Synchronization HOT pattern

The synchronisation between model and views on that model has been investigated in sev-
eral view-based modelling publications (e.g., [57, 61]). A special kind of view-based mod-
elling is the area which merges textual modelling with the view-based modelling paradigm.
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242 B. Further HOT patterns

In [64] was presented an approach that allows to create textual views on models based on
a decorator approach comparable to the one used in graphical view-based modelling (see
e.g., [53]). This textual decorator model is called TextBlocks-Model.

As both the TextBlocks-Model as well as the underlying domain model are subject to
modifications, an incremental and bidirectional update approach is required. To achieve
this transformation was a synchronisation approach [65] written in Java created. This
approach works like an interpreter as it takes the view definition model into account when
performing any synchronisation. However, this approach has several drawbacks w.r.t.
debuggability and performance. Therefore, we investigated a HOT-based approach for
realising the model/view synchronisation.

B.3.1. Motivation:

Having access to the view definition model which defines the mapping between textual
view and the view’s underlying model in a declarative, template-based manner served as
an optimal starting point for employing a HOT based approach. The idea was to auto-
matically generate model transformations from these view definitions that bidirectionally
synchronise views and models. As both, the underlying model, as well as the textual
view, in form of the TextBlocks-Model are available on model level, they can easily be
accessed using model transformations. After having problems w.r.t. debuggability, due to
the interpreter-based approach we decided to employ a HOT-based approach.

B.3.2. Implementation:

In this scenario, the HOT is employed as a means to bring the declarative, non-executable
view definition to an executable level. If a declarative transformation language is used,
the transformation itself is declarative as well. Therefore, as shown in Figure B.3, the
input of the HOT is the view specification whereas the output is the synchronisation
transformation.
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Figure B.3.: Model/view synchronization.

B.3.3. Benefits and Drawbacks:

Using HOT-generated transformations in this scenario allows language developers to more
easily debug the synchronisation process. The interpreter in the previous synchronisation
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B.4. Analysis HOT pattern 243

approach required the developer to think on two parallel layers at the same time, i.e., the
code of the interpreter as well as the mapping model that is currently interpreted. Instead,
the developer can now focus on debugging a transformation. As the translation between a
mapping and a transformation is a one-to-one relationship, also a simple debugger interface
lifting debugging to the mapping level could be provided.

On the down side, using the HOT approach in this scenario adds complexity to the devel-
opment. An additional artefact, i.e., the HOT has to be maintained and tested.

B.4. Analysis HOT pattern

Along with the wide acceptance of the MDE paradigm in the industry, a high number
of transformation scripts need to be maintained in the foreseeable future. In order to
guarantee high code quality, we require metrics to evaluate the quality of transformation
scripts.

In [159], a collection of metrics has been elaborated and implemented as HOT in ATL.
Additionally, the authors applied these metrics in a case study to judge the quality of
example transformations bridging between technological spaces.

B.4.1. Motivation:

While metrics exist to judge about maintainability of imperative languages, there is a
shortcoming of metrics which are focusing on declarative languages like QVT-R. In Section
6, we propose a set of metrics w.r. t. transformation size, fulfillment of relational properties,
degree of consistency and level of inheritance.
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Figure B.4.: Transformation metrics.

B.4.2. Implementation:

As depicted in Figure B.4, we used OCL query functions, embedded into a HOT in QVT-R
that transforms a QVT-R transformation into a special metrics model.

B.4.3. Benefits and Drawbacks:

Automatically computable metrics help to make quality assurance of software engineering
ease-to-use. Although many metrics are easy to implement as a simple expression, some
metrics exist, for which no efficient straight-forward algorithm is available. Among them
are: the similarity of relations, the number of relations following a design pattern, or
the rate of overlapping rules w. r. t. a transformation’s source and target metamodels.
Further, a clear, formal definition of metrics and their computation make quality assurance
a reproducible process. Because transformations are also models, it is a straightforward
approach to analyse transformations based on their syntax tree. However, metrics based
on the real sources are easier to write using the textual representation rather than the
tree, for example the lines of code (LoC).
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244 B. Further HOT patterns

B.5. Future Scenarios

The open questions include of identification of further scenarios for application of HOTs.
For example, the co-evolution of metamodels and transformations (cf., Figure B.5) could be
one suitable scenario. The metamodels evolve over time, similarly as any other artefacts.
We can distinguish different operation in evolution of metamodels, such as refactorings,
construction or destruction of metamodel elements. These operations could be predefined
as allowed as change operators. Based on the activation and configuration of such change
scenarios could be metamodel and its transformations together updated to the required
state.
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Figure B.5.: Co-evolution of metamodels and transformations.

Further scenarios could include, model merging or composition. In [168], Wagelaar aug-
ments ATL as well as QVT-R with new syntactical elements for a modularization mech-
anism he calls module superimposition. He incorporates HOTs as a means for defining
semantics by reducing the widened syntax to already existing elements. [161] uses UML
profiles to introduce one standardized metamodel for modelling the core features of Graph
Transformations. Such core profile is extendable with new constructs. While new syntax
may be specified in additional profiles, semantics are defined using HOTs based on the core
metamodel of transformations normalizing added constructs back to core features. Such
an approach relieves tool builders from integrating new language features as well as exter-
nal language concepts. These scenarios could be basis to introduce further standardised
HOT patterns.

The optimisation of transformations could be of interest as well. HOT could optimize a
transformation by removing redundant code, replacing code with semantically identical
code but better performance, for example by reordering instructions or lowering abstrac-
tion (behavior-preserving). Heuristics may be used to create mark models from transfor-
mations, which annotate code parts of input transformations with various informations.
A HOT may analyse the performance of each rule for a rule-based transformation, and
indicate possible problems and bugs where they might occur.
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C. Examples of detailed QVT
transformations

In the following, we provide two examples of completion transformations in the QVT
graphical syntax. First, we describe relations of the MOM completion. Second, we illus-
trate the implementation of the Procedure Call connector.

C.1. Message Oriented Middleware Completion

when

where

CopyAssemblyConnector

C E

source : pcm,
annotation : 

MessagingAnnotation target:pcm

not FindAnnotatedAssemblyConnector(annotatedAssemblyConnector, sourceAssemblyConnector);

MarkAssemblyConnector(sourceAssemblyConnector, targetAssemblyConnector);

<<domain>>
targetAssemblyConnector :

AssemblyConnector

<<domain>>
sourceAssemblyConnector :

AssemblyConnector

<<domain>>
annotatedAssemblyConnector :
AnnotatedAssemblyConnector

(a) Relation to remove assembly connector.

where

FindAnnotatedAssemblyConnector

C C

Annotation
:Messaging
Annotation

Source:pcm

Id = AnnotatedAssemblyConnectorID

AnnotatedAssemblyConnector

Id = AnnotatedAssemblyConnectorID

AnnotatedAssemblyConnector

MarkAnnotatedAssemblyConnector(AnnotatedAssemblyConnector);

(b) Relation to identify the pivot element.
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246 C. Examples of detailed QVT transformations

when

where

FindCopiedSenderAndReceiverElements

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

receiverProvided
Role : 

ProvidedRole

receiverAssembly
Context : 

AssemblyContext

senderRequired
Role : 

RequiredRole

<<domain>>
copiedReceiver
ProvidedRole

<<domain>>
copiedSender
RequiredRole

<<domain>>
copiedSender

AssemblyContext

<<domain>
>

copiedReceiver
AssemblyContext

iFoo : Interface

copiedIFoo : 
Interface

C E

source : 
pcm

target : 
pcm

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
CopyProvidedRole(receiverProvidedRole, copiedReceiverProvidedRole);
CopyRequiredRole(SenderRequiredRole, copiedSenderRequiredRole);
CopyAssemblyContext(receiverAssemblyContext, copiedReceiverAssemblyContext);
CopyAssemblyContext(senderAssemblyContext, copiedSenderAssemblyContext);
CopyInterface(iFoo, copiedIFoo);

MarkOriginalIFoo(IFoo);
MarkIFoo(copiedIFoo);
MarkReceiverProvidedRole(copiedReceiverProvidedRole);
MarkReceiverAssemblyContext(copiedReceiverAssemblyContext);
MarkSenderRequiredRole(copiedSenderRequiredRole);
MarkSenderAssemblyContext(copiedSenderAssemblyContext);

senderAssembly
Context : 

AssemblyContext

(c) Relation to find Sender and Receiver interfaces.

when

where

id = knownRepositoryID

<<domain >>
originalMiddlewareRepository : 

Repository
id = knownRepositoryID

<<domain >>
copiedMiddlewareRepository : 

Repository

C C

source : 
pcm

target : 
pcm

consumerPool : 
BasicComponent

entityName = 
‚MessagingSystem’

messagingSystem : 
BasicComponent

senderMiddleware : 
BasicComponent

receiverMiddleware : 
BasicComponent

entityName = 
‚Provided_IMom_MessagingSystem’ 

messagingSystemProvidedIMom : 
ProvidedRole

copiedConsumer
Pool : 

BasicComponent

copiedMessagingSystem : 
BasicComponent

copiedMessagingSystemProvidedIMom : 
ProvidedRole

copiedSsenderMiddleware : 
BasicComponent

copiedReceiverMiddle
ware : 

BasicComponent

MarkRepository(originalMiddlewareRepository, copiedMiddlewareRepository);
MarkBasicComponent(senderMiddleware, copiedSenderMiddleware);
...

MarkMiddlewareComponents(copiedSenderMiddleware, copiedMessagingSystem,
copiedReceiverMiddleware);

MarkMiddlewareProvidedRoles(copiedSenderMiddlewareProvidingIMarshalling,
copiedSenderMiddlewareProvidingISender, ...);

FindCopiedMiddlewareComponents

(d) Relation to identify Middleware components.
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C.1. Message Oriented Middleware Completion 247

when

where

id = knownRepositoryID

<<domain >>
originalMiddlewareRepository : 

Repository
id = knownRepositoryID

<<domain >>
copiedMiddlewareRepository : 

Repository

C C

source : 
pcm

target : 
pcm

iConsumerPool : 
Interface

iSender : Interface

copiedIConsumer
Pool :

Interface

copiedIReceiver : 
Interface

copiedIMarshalling : 
Interface

copiedISender : 
Interface

MarkRepository(originalMiddlewareRepository, copiedMiddlewareRepository);
MarkBasicComponent(senderMiddleware, copiedSenderMiddleware);
...

MarkMiddlewareComponents(copiedSenderMiddleware, copiedMessagingSystem,
copiedReceiverMiddleware);

MarkMiddlewareProvidedRoles(copiedSenderMiddlewareProvidingIMarshalling,
copiedSenderMiddlewareProvidingISender, ...);

FindCopiedMiddlewareInterfaces

iReceiver : Interface

iMarshalling : 
Interface

(e) Relation to bind the Middleware interfaces.

when

where

channel = channelType;
deliveryType = delivery_Type;
durableSubscriber = durableSubscriberType;

annotationElemen : 
AnnotatedAssemblyConnector

<<domain>>

originalIMom : Interface

serviceName = 'processMessageTransfer' + channelType 
+ durableSubscriberType + delivery_Type

originalIMomSignature : Signature

middlewareRepository : Repository

<<domain>>

copiedIMom : Interface

<<domain>>

copiedIMomSignature : Signature

C E

annotation : 
MessagingAnnotation

source : pcm target : pcm

FindAnnotatedAssemblyConnector(annotationElement, annotatedAssemblyConnector);
MarkInterface(originalIMom, copiedIMom);
MarkSignature(originalIMomSignature, copiedIMomSignature);
MarkMiddlewareInterfaces(copiedIMarshalling, copiedISender, copiedIMom, 

copiedIReceiver);

MarkUsedIMomSignature(annotatedAssemblyConnector, copiedIMomSignature);

FindUsedMiddlewareInterfaceSignatures

(f) Relation to identify the Middleware signatures.
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248 C. Examples of detailed QVT transformations

when

where

C E

source : 
pcm

target : 
pcmsenderAllocationContext : 

AllocationContext

<<domain>>

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

senderResourceContainer : 
ResourceContainer

senderAssemblyContext : 
AssemblyContext

copiedSenderAllocationContext : 
AllocationContext

<<domain>>

copiedSenderResourceContainer : 
ResourceContainer

copiedSenderAssemblyContext 
: AssemblyContext

MarkAssemblyContext(senderAssemblyContext, senderAssemblyContext);
MarkResourceContainer(senderResourceContainer, senderResourceContainer);
MarkSenderAssemblyContext(annotatedAssemblyConnector, 

copiedSenderAssemblyContext);

MarkSenderResourceContainer(annotatedAssemblyConnector, 
senderResourceContainer);

FindSenderAndReceiverRessourceContainer 

(g) Relation to identify resource containers for Adaptors.

when

where

C E

source : 
pcm

target : 
pcm

messagingSystemAllocationContext : 
AllocationContext

<<domain>>

messagingSystemResource
Container : 

ResourceContainer

messagingSystemAssemblyContext : 
AssemblyContext

MarkMiddlewareComponents(..., messagingSystem, ...);
MarkAssemblyContext(messagingSystemAssemblyContext,

copiedMessagingSystemAssemblyContext);
MarkAllocationContext(messagingSystemAllocationContext, 

copiedMessagingSystemAllocationContext);
MarkResourceContainer(messagingSystemResourceContainer, 

copiedMessagingSystemRessourceContainer);
MarkBasicComponent(messagingSystem, copiedMessagingSystem);

FindMiddlewareDeploymentElements

messagingSystem : 
BasicComponent

copiedMessagingSystemAllocation
Context : AllocationContext

<<domain>>

copiedMessagingSystem
ResourceContainer : 
ResourceContainer

copiedMessagingSystemAssembly
Context : AssemblyContext

copiedMessagingSystem : 
BasicComponent

MarkMiddlewareAssemblyContexts(copiedMessagingSystemAssemblyContext);
MarkMiddlewareAllocationContexts(copiedMessagingSystemAllocationContext);
MarkMiddlewareResourceContainer(copiedMessagingSystemRessourceContainer);

(h) Relation to identify the Middleware deployment.
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C.1. Message Oriented Middleware Completion 249

when

entityName = ‚completionRepository___’ + 
annotatedAssemblyConnectorName

targetRepository : Repository

<<domain>>

entityName = 
annotatedAssemblyConnectorName

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

C E

source 
: pcm

target 
: pcm marshalling : 

BasicComponent

senderAdapter : 
BasicComponent

deMarshalling : 
BasicComponent

receiverAdapter : 
BasicComponent

momAdapter : 
BasicComponent

iMarshalledFoo : 
Interface

iConsumerPool : 
Interface

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
CreateAdapterComponents(annotatedAssemblyConnector, marshalling, 

senderAdapter, momAdapter, receiverAdapter, deMarshalling, 
consumerPool);

CreateConsumerPoolInterface(annotatedAssemblyConnector, iConsumerPool);
MarkIMarshalledFoo(annotatedAssemblyConnector, iMarshalledFoo);

consumerPool : 
BasicComponent

CreateCompletionRepository

(i) Relation to create the Repository for components.

when

where

C E

source : pcm target : pcm

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

entityName = ‚IConsumerPool’

consumerPoolInterface : Interface
<<domain>>

serviceName = 
‚getConsumer’

getConsumer : 
Signature

serviceName = 
‚returnConsumer’

returnConsumer : 
Signature

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);

MarkConsumerPoolSignatures(annotatedAssemblyConnector, getConsumer, 
returnConsumer);

CreateConsumerPoolInterface

(j) Relation to create the ConsumerPool interface.
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250 C. Examples of detailed QVT transformations

when

where

C E

source : 
pcm

target : 
pcm

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

entityName = IFooEntityName

originalIFoo : Interface
<<domain>>

originalIFooSignature : Signature

copiedIFoo : Interface

<<domain>>

entityName = ‚Marshalled’ + 
IFooEntityName

iMarshalledFoo : Interface

<<domain>>

iMarshalledFooSignature : Signature

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
MarkOriginalIFoo(annotatedAssemblyConnector, OriginalIFoo);
MarkIFoo(annotatedAssemblyConnector, copiedIFoo);

MarkIMarshalledFoo(annotatedAssemblyConnector, iMarshalledFoo);
CopyIFooSignature(annotatedAssemblyConnector, OriginalIFooSignature, 

iMarshalledFooSignature);

CreateIMarshalledFoo

(k) Relation to create the original service interface.

where

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

serviceName = signatureName

originalIFooSignature : Signature
<<domain>>

originalIFooSignatureParameter : 
Parameter

serviceName = signatureName

originalIFooSignature : Signature
<<domain>>

originalIFooSignatureParameter : 
Parameter

CopyIFooSignatureParameter(annotatedAssemblyConnector, 
originalIFooSignatureParameter, IMarshalledFooSignatureParameter);

CompleteIMarshalledFooSignature(annotatedAssemblyConnector, 
IMarshalledFooSignature);

C E

source : 
pcm

target : 
pcm

CopyIFooSignature

(l) Relation to complete the original service signature.

250



C.1. Message Oriented Middleware Completion 251

when

where

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

entityName = ‚marshalling '

marshalling : 
BasicComponent

<<domain>>

senderAdapter : 
BasicComponent

<<domain>>

deMarshalling : 
BasicComponent

<<domain>>

receiverAdapter : 
BasicComponent

<<domain>>

momAdapter : 
BasicComponent

<<domain>>

consumerPool : 
BasicComponent

<<domain>>

entityName = 
‚Provided_IFoo_Marshalling’

marshallingProvidedIFoo : 
ProvidedRole

entityName = 
‚Required_IMarshalledFoo_Marshalling’

marshallingRequiredIMarshalledFoo : 
RequiredRole

entityName = 
‚Required_IMarshalling_Marshalling’

marshallingRequiredIMarshalling : 
RequireddRole

C E

source : pcm target : pcm

iFoo : Interface iMarshalledFoo : Interface iMarshalling : Interface

CreateAdapterComponents

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
MarkIFoo(annotatedAssemblyConnector, iFoo);
MarkIMarshalledFoo(annotatedAssemblyConnector, iMarshalledFoo);
MarkMiddlewareInterfaces(iMarshalling, iSender, iMom, iReceiver);
CreateConsumerPoolInterface(annotatedAssemblyConnector, iConsumerPool);

MarkAdapterProvidedRoles(annotatedAssemblyConnector, marshallingProvidedIFoo, 
senderAdapterProvidedIMarshalledFoo, …);

MarkAdapterRequiredRoles(annotatedAssemblyConnector, 
marshallingRequiredIMarshalling, marshallingRequiredIMarshalledFoo, …);

(m) Relation to create the Adaptors.

when

id = annotatedAssemblyConnectorID

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

id = annotatedAssemblyConnectorID,
competingConsumers = ccNumber

assemblyConnector : 
AssemblyConnector

<<domain>>

consumerPool : 
BasicComponent

<<domain>>

pool : 
PassiveRessource

specification = ccNumber

capacity : 
PCMRandomVatiable

C E

source : 
pcm

target : 
pcm

annotation : 
MessagingAnnotation

MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
MarkConsumerPool ( annotatedAssemblyConnector, consumerPool);

CompleteConsumerPool

(n) Relation to create passive resources for the ConsumerPool.
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252 C. Examples of detailed QVT transformations

when

annotatedAssemblyConnector : 
AssemblyConnector

<<domain>>

sourceSystem : System

<<domain>>

C E

source : 
pcm

target : 
pcm

targetSystem : System

<<domain>>

marshallingAssemblyContext : 
AssemblyContext

marshallingToSenderAdapter : 
AssemblyConnector

... ...

MarkSystem(sourceSystem, targetSystem);
MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
CreateAdapterAssemblyContexts(annotatedAssemblyConnector,

marshallingAssemblyContext,...);
...
CreateAssemblyConnectors(annotatedAssemblyConnector, sourceSystem, 

marshalligToSenderAdapter, …);

CompleteSystem

(o) Relation to create system elements.

Figure C.1.: Message Oriented Middleware Completion [35].

C.2. Pipe & Filter Connector Completion

FindCopiedConnectorRepositoryInterfaces

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

when
Mark_repository_Repository
 (getConnectorRepository('ConnectorRepository'),copiedConnectorRepository);
Mark_repository_Interface(getConnectorInterface('unifiedCom'), copiedUnifiedCom);
Mark_repository_Interface(getConnectorInterface('workerManagement'), copiedWorker...);

<<domain>>

copiedConnectorRepository
: Repository

copiedUnifiedCom
: Interface

copiedWorkerManagement
: Interface

entityName = ´ConnectorRepository`

MarkConnectorInterfaces(copiedUnifiedCom, copiedWorkerManagement);

where

(a) Relation to mark all interfaces in the ConnectorRepository.
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C.2. Pipe & Filter Connector Completion 253

unifiedCom

Object call(Object Data)
void push(Object Data)

workerManagement

void rel()
void acq()

Filter

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

WorkerPool <Capacity: 5>

ComponentParameterCompartment

Pipe

SEFF <push>
SEFF <call>

PassiveResourceCompartment

Capacity <Capacity: 100>

ComponentParameterCompartment

SinkAdapter

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

ComponentParameterCompartment

Distributor

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

WorkerPool <Capacity: 6>

ComponentParameterCompartment

Terminator

SEFF <push>
SEFF <call>

PassiveResourceCompartment

ComponentParameterCompartment

Interceptor

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

WorkerPool <Capacity: 4>

ComponentParameterCompartment

SourceAdapter

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

ComponentParameterCompartment

Syncher

SEFF <push>
SEFF <call>

PassiveResourceCompartment

Capacity <Capacity: 200>
CS <Capacity: 1>

ComponentParameterCompartment

Forwarder

SEFF <push>
SEFF <call>

PassiveResourceCompartment

ComponentParameterCompartment

BlackBoardStorage

SEFF <push>
SEFF <call>
SEFF <acq>
SEFF <rel>

PassiveResourceCompartment

WorkerPool <Capacity: 8>

ComponentParameterCompartment

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Provides>>

<<Requires>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Provides>>

<<Requires>>

<<Requires>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Requires>>

<<Provides>>

(b) The ConnectorRepository.
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254 C. Examples of detailed QVT transformations

FindCopiedConnectorRepositoryComponents

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

when
Mark_repository_Repository
 (getConnectorRepository('ConnectorRepository'),copiedConnectorRepository);
Mark_repository_BasicComponent(getConnectorComponent('filter'), copiedFilter);
Mark_repository_BasicComponent(getConnectorComponent('pipe'), copiedPipe);
Mark_repository_ProvidedRole
 (getConnectorProvidedRole('filterProvidingWorker'), copiedFilterProvidingWorker);
Mark_repository_ProvidedRole
 (getConnectorProvidedRole('filterProvidingFilterIn'), copiedFilterProvidingFilterIn);
Mark_repository_RequiredRole
 (getConnectorRequiredRole('filterRequiringFilterOut'),copiedFilterRequiringFilterOut);
...

...

<<domain>>

copiedConnectorRepository
: Repository

copiedFilter
: BasicComponent

copiedFilterProvidingFilterIn
: ProvidedRole

copiedFilterRequiringFilterOut
: RequiredRole

copiedFilterProvidingWorker
: ProvidedRole

copiedPipe
: BasicComponent

copiedPipeProvidingPipeIn
: ProvidedRole

copiedPipeRequiringWorkerSucc
: RequiredRole

copiedPipeRequiringPipeOut
: RequiredRole

copiedPipeRequiringWorkerPred
: RequiredRole

MarkMessageConnectorComponents(copiedFilter, copiedPipe, ...);
MarkMessageConnectorProvidedRoles (copiedFilterProvidingWorker,
 copiedFilterProvidingFilterIn, copiedPipeProvidingPipeIn, ...);
MarkMessageConnectorRequiredRoles(copiedFilterRequiringFilterOut,
 copiedPipeRequiringPipeOut, copiedPipeRequiringWorkerPred,
 copiedPipeRequiringWorkerSucc, ...);

where

entityName = ´ConnectorRepository`

(c) Excerpt of the relation to mark all components in the ConnectorRepository.

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

...

<<domain>>

copiedSystem
: System

sourceAssemblyContext
: AssemblyContext

pipe01AssemblyContext
: AssemblyContext

sinkAssemblyContext
: AssemblyContext

<<domain>>

system 
: System

when
Mark_system_System(system, copiedSystem);
MarkMessageConnectorAssemblyContexts(annotatedAssemblyConnector, sourceAssemblyContext,
 pipe01AssemblyContext, sinkAssemblyContext, ...);

PutAssemblyContextsIntoSystem

(d) Relation to place all assemblyContexts inside the system element.
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C.2. Pipe & Filter Connector Completion 255

CreateConnectorAssemblyConnectors

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

...
when

MarkSenderRequiredRole(annotatedAssemblyConnector, senderRequiredRole);
MarkReceiverProvidedRole(annotatedAssemblyConnector, receiverProvidedRole);
MarkSenderAssemblyContext(annotatedAssemblyConnector, senderAssemblyContext);
MarkReceiverAssemblyContext(annotatedAssemblyConnector, receiverAssemblyContext);
MarkMessageConnectorAssemblyContexts(annotatedAssemblyConnector, sourceAssemblyContext,
 pipe01AssemblyContext, ...);
MarkMessageConnectorProvidedRoles(pipeProvidingPipeIn, sourceAdapterProvidingWorkerIn,
 sourceAdapterProvidingSourceIn, ...);
MarkMessageConnectorRequiredRoles(pipeRequiringPipeOut, pipeRequiringWorkerPred,
 pipeRequiringWorkerSucc, sourceAdapterRequiringSourceOut, ...);

senderAssemblyContext
: AssemblyContext

<<domain>>

senderToSource
: AssemblyConnector

entityName = 'AC__<Sender__Sender_Out> -> 
<Source__Source_In>'

sourceAssemblyContext
: AssemblyContext

senderRequiredRole
: RequiredRole

sourceAdapterProvidingSourceIn
: ProvidedRole

sourceAssemblyContext
: AssemblyContext

<<domain>>

sourceToPipe01
: AssemblyConnector

entityName = 'AC__<Source__Source_Out> -> 
<Pipe01__Pipe_In>'

pipe01AssemblyContext
: AssemblyContext

sourceAdapterRequiringSourceOut
: RequiredRole

pipeProvidingPipeIn
: ProvidedRole

MarkMessageConnectorAssemblyConnectors(annotatedAssemblyConnector, senderToSource,
 sourceToPipe01, ...);

where

(e) Relation to create all assemblyConnectors for the MessagingConnector.

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

...

<<domain>>

copiedAllocation
: Allocation

sourceAllocationContext
: AllocationContext

pipe01AllocationContext
: AllocationContext

sinkAllocationContext
: AllocationContext

<<domain>>

allocation 
: Allocation

when
Mark_allocation_Allocation(allocation, copiedAllocation);
MarkMessageConnectorAllocationContexts(annotatedAssemblyConnector,
 sourceAllocationContext, pipe01AllocationContext, sinkAllocationContext, ...);

PutAllocationContextsIntoAllocation

(f) Relation to place all allocationContexts inside the allocation element.
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CreateConnectorAssemblyContexts

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

sourceAdapterComponent
: BasicComponent

<<domain>>

sourceAssemblyContext
: AssemblyContext

entityName = 'AssemblyContext__<Source>'

filterComponent
: BasicComponent

<<domain>>

encryptorAssemblyContext
: AssemblyContext

entityName = 'AssemblyContext__<Encryptor>'

pipeComponent
: BasicComponent

<<domain>>

pipe01AssemblyContext
: AssemblyContext

entityName = 'AssemblyContext__<Pipe01>'

...

when
MarkAnnotatedAssemblyConnector(annotatedAssemblyConnector);
MarkMessageConnectorComponents
 (sourceAdapterComponent, filterComponent, pipeCompoment, ...);

MarkMessageConnectorAssemblyContexts(annotatedAssemblyConnector,sourceAssemblyContext,
 encryptorAssemblyContext, pipe01AssemblyContext, ...);

where

(g) Relation to create all assemblyContexts for the MessagingConnector.

AdoptSourceSinkInterfaces

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

when
MarkSenderInterface(annotatedAssemblyConnector, copiedSenderInterface); 
Mark_repository_ProvidedRole(getConnectorProvidedRole('sourceAdapterProvidingSourceIn')
 , copiedSourceAdapterProvidingSourceIn);
Mark_repository_RequiredRole(getConnectorRequiredRole('sinkAdapterRequiringSinkOut')
 , copiedSinkAdapterRequiringSinkOut);

<<domain>>

copiedSourceAdapterProvidingSourceIn
: ProvidedRole

copiedSenderInterface
: Interface

<<domain>>

copiedSinkAdapterRequiringSinkOut
: RequiredRole

copiedSenderInterface
: Interface

(h) Adoption of the interfaces of the Source- & SinkAdapter components.

256



C.2. Pipe & Filter Connector Completion 257

CreateConnectorAllocationContexts

<<domain>>

annotatedAssemblyConnector
: AssemblyConnector

C

source : pcm target : pcm

E

...
when

MarkSenderResourceContainer(annotatedAssemblyConnector, senderResourceContainer);
MarkReceiverResourceContainer(annotatedAssemblyConnector, receiverResourceContainer);
MarkMessageConnectorAssemblyContexts(annotatedAssemblyConnector,sourceAssemblyContext,
 pipe01AssemblyContext, sinkAssemblyContext...);

MarkMessageConnectorAllocationContexts(annotatedAssemblyConnector,
 sourceAllocationContext, pipe01AllocationContext, sinkAllocationContext, ...);

where

sourceAssemblyContext
: AssemblyContext

<<domain>>

sourceAllocationContext
: AllocationContext

entityName = 'AllocationContext__<Source>'

senderResourceContainer
: ResourceContainer

pipe01AssemblyContext
: AssemblyContext

<<domain>>

pipe01AllocationContext
: AllocationContext

entityName = 'AllocationContext__<Pipe01>'

senderResourceContainer
: ResourceContainer

sinkAssemblyContext
: AssemblyContext

<<domain>>

sinkAllocationContext
: AllocationContext

entityName = 'AllocationContext__<Sink>'

receiverResourceContainer
: ResourceContainer

(i) Relation to create all allocationContexts for the MessagingConnector.

Figure C.2.: Pipe & Filter Connector Completion [36].
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Engineering Component Models for Quality Predictions. In European Conference on Software
Maintenance and Reengineering, European Projects Track, 2010.

[18] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82(1):3 – 22, 2009. Special
Issue: Software Performance - Modeling and Analysis.

[19] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. Model-based Performance Prediction
with the Palladio Component Model. In WOSP ’07: Proceedings of the 6th International
Workshop on Software and performance, pages 54–65, New York, NY, USA, February 5–8
2007. ACM.

[20] M. Bernardo and J. Hillston, editors. Formal Methods for Performance Evaluation (7th
International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM2007), volume 4486. May 2007.

[21] Antonia Bertolino and Raffaela Mirandola. Modeling and analysis of non-functional prop-
erties in component-based systems. In Electronic Notes in Theoretical Computer Science.
Elsevier, 2003.

[22] Antonia Bertolino and Raffaela Mirandola. Cb-spe tool: Putting component-based perfor-
mance engineering into practice. In Proc. 7th International Symposium on Component-Based
Software Engineering (CBSE 2004, pages 233–248. Springer, 2004.
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[27] Rainer Böhme and Ralf Reussner. Dependability Metrics, volume 4909, chapter Validation
of Predictions with Measurements, pages 7–13. 2008.

[28] Tomas Bures. Generating Connectors for Homogeneous and Heterogeneous Deployment,.
PhD thesis, Charles University in Prague, 2006.

[29] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing advanced features in
a hierarchical component model. In Proc. of Conference on Software Engineering Research,
Management and Applications (SERA). IEEE, 2006.

[30] Tomas Bures, Michal Malohlava, and Petr Hnetynka. Using DSL for Automatic Generation
of Software Connectors. In In Proceedings of ICCBSS 2008, Madrid, Spain, pages 138–147,
February 2008.

[31] John Cheesman and John Daniels. UML Components: A Simple Process for Specifying
Component-based Software. 2000.

[32] Shiping Chen, Ian Gorton, Anna Liu, and Yan Liu. Performance prediction of cots
component-based enterprise applications. In Electronic proceedings of 5th ICSE Workshop
on Component-based Software Engineering Benchmarks, CBSE5, 2002.

260



Bibliography 261

[33] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance Prediction of Component-
based Applications. Journal of Systems and Software, 74:35–43, 2005.

[34] Lucia Kapova Christian Harnisch. Modelling parallel, component-based software architec-
tures with design patterns - replication pattern. Study thesis, University of Karlsruhe, 2010.

[35] Lucia Kapova Christian Heupel. Automatisierte integration nachrichtenbasierter kommu-
nikation in das pcm. Study thesis, University of Karlsruhe, 2010.

[36] Lucia Kapova ChristianVogel. Automated integration of connector abstractions in pcm.
Study thesis, University of Karlsruhe, 2010.

[37] P. Clements and L. Northrop. Software product lines. Addison-Wesley, 2001.

[38] P. Coad and E. Yourdon. Object oriented design. Prentice-Hall, 1991.

[39] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st
century. J. Supercomput., 23(1):7–22, 2002.

[40] Vittorio Cortellessa. How far are we from the definition of a common software performance
ontology? In WOSP ’05: Proceedings of the 5th International Workshop on Software and
Performance, pages 195–204, New York, NY, USA, 2005. ACM Press.

[41] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Integrating Performance
and Reliability Analysis in a Non-Functional MDA Framework. In Matthew B. Dwyer and
Antónia Lopes, editors, Fundamental Approaches to Software Engineering, 10th International
Conference, FASE 2007, Held as Part of the Joint European Conferences, on Theory and
Practice of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4422 of Lecture Notes in Computer Science, pages 57–71. Springer, 2007.

[42] Vittorio Cortellessa, Pierluigi Pierini, and Daniele Rossi. Integrating Software Models and
Platform Models for Performance Analysis. IEEE Transactions on Software Engineering,
33(6):385–401, June 2007.

[43] D. Cruz, R.P. Henriques, and J.M. Varanda. Constructing program animations using a
pattern based approach. Computer Science and Information Systems, 4(2):97–114, 2007.

[44] K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach based
on superimposed variants. In GPCE’05: Proceedings of the Fourth International Conference
on Generative Programming and Component Engineering. Springer-Verlag, 2005.

[45] K. Czarnecki and S. Helsen. Classification of model transformation approaches. In Proceedings
of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model Driven
Architecture, pages 1–17, 2003.

[46] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming – Methods, Tools,
and Applications. Addison-Wesley Professional, 2000.

[47] Marcos Didonet Del Fabro and Patrick Valduriez. Towards the efficient development of model
transformations using model weaving and matching transformations. Software and Systems
Modeling, 8:305–324, 2009.

[48] M.D. Del Fabro and P. Valduriez. Semi-automatic model integration using matching trans-
formations and weaving models. In Proceedings of the 2007 ACM symposium on Applied
computing, pages 963–970. ACM, 2007.

[49] Antinisca Di Marco and Paola Inveradi. Compositional Generation of Software Architecture
Performance QN Models. In Proceedings of WICSA 2004, pages 37–46, 2004.

[50] Ada Diaconescu and John Murphy. Automating the performance management of component-
based enterprise systems through the use of redundancy. In Proc. of Conference on Automated
software engineering (ASE). IEEE, 2005.

[51] Bruce Powel Douglass. Real-Time Design Patterns. Object Technology Series. Addison-
Wesley Professional, 2002.

[52] Fernando Brito e Abreu. Using ocl to formalize object oriented metrics definitions. Technical
report, FCT/UNL and INSC, 2001.

261



262 Bibliography

[53] Eclipse Foundation. Graphical Modeling Project Homepage. Web site: [Last accessed Feb.
11, 2011] http://www.eclipse.org/modeling/gmp/.

[54] A.H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application of design
patterns. Automated Software Engineering, International Conference on, 0:143, 1997.

[55] Ihssane El-Oudghiri. Evaluierung der leistungsfähigkeit von lastverteilern für java ee cluster.
Study thesis, University of Karlsruhe, 2008.

[56] Norman E. Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall, Ltd., London,
UK, UK, 1991.

[57] J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combinators for
bi-directional tree transformations: a linguistic approach to the view update problem. ACM
Transactions on Programming Languages and Systems, 40(1):233–246, 2007.

[58] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. 1999.

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[60] K. Garces, C. Parra, H. Arboleda, A. Yie, and R. Casallas. Variability management in a
Model-Driven software product line. Avances en Sistemas e Informática, 4(2):3–12, 2007.
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use of higher-order model transformations. In Model Driven Architecture - Foundations and
Applications, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009.
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