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Zusammenfassung 

 
 
Listeria monocytogenes, ein gram-positives Bakterium, verursacht die Krankheit 

Listeriose. Eine Möglichkeit, wie L.monocytogenes Wirbeltierzellen infizieren kann, ist 

das Binden des Bakteriums an die Rezeportyrosinkinase (RTK) Met auf der 

Wirtszelle durch das bakterielle Protein InlB. Dieses Binden führt zur Aktivierung von 

Met und schließlich zur Aufnahme in die Zelle. Der erste Teil meine Doktorarbeit 

zeigt, dass die Infektion von nicht-phagozytotischen Zellen mittels InlB zusätzlich 

vom Ko-Rezeptor CD44v6 abhängig ist. Desweiteren kann diese bakterielle Infektion 

mit einem CD44v6-Peptid blockiert werden. 

Zusätzlich zu der Ko-Rezeptorfunktion von CD44v6 für InlB und Met, die ich gezeigt 

habe, wurde CD44v6 bereits als Ko-Rezeptor für die Induktion von Met und VEGFR-

2 durch ihre authentischen Liganden HGF and VEGF-A identifiziert. Im zweiten und 

Hauptteil meiner Doktorarbeit habe ich untersucht, ob diese Ko-Rezeptorfunktion von 

CD44v6 spezifisch von den Liganden, den Rezeptoren oder beiden bestimmt wird. 

Dazu habe ich den ErbB1-Rezeptor verwendet, der von sieben strukturell völlig 

unterschiedlichen Wachstumsfaktoren angesprochen werden kann. 

Ich zeige, dass die Ko-Rezeptorfunktion von individuellen CD44-Isoformen Liganden-

spezifisch ist. Durch Peptidblockierung, siRNA- und Überexpressionsexperimente 

konnte ich demonstrieren, dass die Aktivierung von ErbB1 durch TGF-α völlig 

unabhängig von CD44 abläuft. EGF und ER benötigen CD44v6, wohingegen HB-

EGF von CD44v3 für eine ErbB1-Aktivierung abhängt. Die cytoplasmatische Domäne 

von CD44 bindet an ERM Proteine wie Ezrin, Radixin und Moesin. Ezrin-Hemmung 

oder Überexpression zeigte, dass die ErbB1-Liganden auf das ERM-Protein Ezrin 

angewiesen sind, um die Signaltransduktion vom aktivierten Rezeptor in das 

Zellinnere zu ermöglichen. 

Interessanterweise ist CD44v6 auch essentiell für die Aktivierung der ErbB-

Rezeptoren in Brustkrebszellen, in denen die Aktivierung der ErbB Rezeptoren den 

Transformationsprozess vermittelt. In diesen Zellen zeigte ein Ko-

Immunopräzipitationsexperiment, dass ErbB1 und CD44v6 nach Induktion durch 

EGF einen Komplex bilden. 

Zusammenfassend zeigen meine Ergebnisse, dass verschiedene CD44-Isoformen 

mit RTKs in liganden-spezifischer Art und Weise zusammenarbeiten. CD44-
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Isoformen müssen spezifische Funktionen zur Verfügung stellen, die nützlich für die 

Aktivierung von RTKs sind. Dies könnte die Vielfalt der CD44-Proteinfamilie erklären.
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Abstract 

 

 

Listeria monocytogenes, a gram positive bacterium, is the causative agent for the 

disease listeriosis. One way that L.monocytogenes uses to infect cells is the binding 

of the bacterium to the receptor tyrosine kinase (RTK) Met present on host cells 

through the bacterial protein InlB. This binding leads to activation of Met and finally to 

the uptake into the cell. The first part of my PhD work shows that the bacterial 

infection of non-phagocytic cells via InlB is in addition dependent on the co-receptor 

CD44v6. Furthermore, bacterial infection can be blocked by a CD44v6 peptide. 

In addition to the co-receptor function of CD44v6 for InlB and Met that I 

demonstrated, CD44v6 has been previously identified as the co-receptor for the 

induction of Met and VEGFR-2 by their authentic ligands HGF and VEGF-A. In the 

second and main part of my PhD I analysed whether this co-receptor function of 

CD44v6 is specifically determined by the ligands, the receptors or both. To this end, I 

have used the ErbB1 receptor that can be addressed by seven structurally different 

ligands. I showed that the co-receptor function of distinct CD44 isoforms for ErbB1 is 

ligand-specific. By means of blocking experiments using the CD44v6 peptide or 

siRNA and overexpression experiments I could demonstrate that the activation of 

ErbB1 by TGF-α is completely independent of CD44. EGF and ER require CD44v6, 

whereas HB-EGF relies on CD44v3 for the activation of ErbB1. The CD44 

cytoplasmic domain can bind to ERM proteins (the main representatives are Ezrin, 

Radixin and Moiesin). Ezrin downregulation and overexpression experiments 

revealed that all the ErbB1 ligands, including TGF-a which is independent of CD44 

isoforms, depend on the ERM-protein ezrin and its binding to the cytoskeleton for 

signal transduction. 

Interestingly, the co-receptor function of CD44v6 is also instrumental for the 

activation of the ErbB receptors in breast cancer cells, in which these receptors 

mediate the transformation process. In these cells, a co-immunoprecipitation 

revealed that upon EGF-induction, ErbB1 and CD44v6 are found in a complex 

together. 

Altogether, my results indicate that several CD44 isoforms collaborate with RTKs in a 

ligands specific fashion. They must be able to provide specific functions that are 
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useful for the activation of RTKs. This might explain the diversity the CD44 family of 

proteins. 
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1. Introduction 

 

1.1 Prologue 

 In order to communicate with their environment and to transfer signals to the 

intracellular machinery, cells are dependent on proteins such as receptor tyrosine 

kinases (RTKs), present on their cell surface (reviewed in Schlessinger, 2000). These 

proteins recognize signals that regulate differentiation, migration, proliferation or 

apoptosis, functions that are essential in almost all physiological processes a cell 

takes part in. The signal received by cell surface receptors is in most instances given 

by a ligand that binds to these receptors and activates them. For RTKs, ligand 

binding usually induces dimerization and trans-phosphorylation of the cytoplasmic 

part of the receptor. The tyrosine kinase of the RTK phosphorylates tyrosine residues 

in its cytoplasmic tail that can then serve as docking sites for numerous signaling 

molecules (reviewed in Schlessinger, 2000).  

 It has long been believed that for the activation of RTKs, only binding of their 

ligands is necessary. Yet this idea turned out to be too simplistic in most cases. In the 

activation process of a specific RTK, a co-receptor is often needed as an auxiliary 

molecule. Cell adhesion molecules (CAMs) provide diverse functions to the RTKs 

that span from ligand presentation to the induction or amplification of signaling. 

 The collaboration of RTKs with CAMs increases the diversity of responses that 

can be achieved by the receptors under physiological conditions. However, CAMs 

also have pathological functions as they are involved in a variety of cancers 

(reviewed in Cavallaro & Christofori, 2004). CAMs play a role in a wide variety of 

cellular functions such as signal transduction, intercellular adhesion and apoptosis 

(reviewed in Juliano, 2002) that are oftentimes deregulated in cancer. They are in 

particular involved in the metastatic process, the step responsible for the death of the 

cancer patients. One of the earliest successful screens for metastasis-associated 

genes has identified members of the CD44 family of proteins (Gunthert et al, 1991). 
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1.2 The CD44 family of proteins 

1.2.1 Introduction 

 

 Cell-cell as well as cell-matrix interactions play important roles in physiological 

processes like differentiation, migration and growth but also in pathological processes 

such as inflammation or metastasis. A group of proteins that play a key role in these 

instances is the CD44 family of cell adhesion molecules. CD44 was first discovered 

in 1980 as an antigen recognized by a monoclonal antibody that was raised against 

human leukocytes (Dalchau et al, 1980). It was then described as granulocyte-T 

lymphocyte antigen. Other members of the CD44 family with molecular weigths 

ranging from 80-200 kDa were independently described by different groups using 

methods such as cloning of CD44 cDNA and subsequent Northern hybridization or 

genomic Southern blot analyses. The different groups gave CD44 several names 

such as class III extracellular matrix receptor (ECM III) (Carter & Wayner, 1988), 

Hermes (Goldstein et al, 1989), HUTCH-1 (Gallatin et al, 1989), HCAM (Goldstein & 

Butcher, 1990) and phagocyte glycoprotein 1 (Pgp-1) (Hughes et al, 1983). 

 

1.2.2. The CD44 gene 

 
 All CD44 proteins are encoded by one single gene that consists of 20 exons 

(Screaton et al, 1993; Tolg et al, 1993). This gene codes for 3 regions corresponding 

to the extracellular part (exon 1-17), the hyprophobic transmembrane domain (exon 

18) and the intracellular domain (exon 19 and 20) of CD44. The exons 1-5 and 16-20 

are present in all isoforms of CD44 and are therefore called the constant exons. 

 In addition to exon 1 - 5, the DNA that encodes the extracellular domain of 

CD44 comprises 10 alternatively spliced exons (exons 6-15) that have been 

designated as variant exons v1 (exon 6) – v10 (exon 15) (Illustration 1). Due to a 

stop codon in the human v1 exon only the exons v2-10 are expressed in human cells. 

Additionally a second splice acceptor site is present in exon v3, that also allows the 

synthesis of two different v3 splice variants (Screaton et al, 1993; Screaton et al, 

1992; Tolg et al, 1993). 
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Illustration 1: Schematic representation of the CD44 gene. Exons 5-15 are subjected 
to alternative splicing and are also known as variant (v) exons v1-10 
 
 The differential splicing of the 10 variant exons in theory makes the expression 

of 768 different CD44 isoforms possible (van Weering et al, 1993). So far at least 20 

different CD44 transcripts have been identified (reviewed in Naor et al, 1997a). 

 

1.2.3 The expression of CD44 

 
 CD44 standard (CD44s) is the smallest isoform of CD44. It does not contain 

any variant exon and is ubiquitously expressed in vertebrates in developing and adult 

organisms (Brown et al, 1991; Stamenkovic et al, 1989). In contrast, the expression 

of CD44 variants is restricted to few cell types such as activated immune cells, 

monocytes, dendritic cells, proliferating epithelial cells and keratinocytes (Arch et al, 

1992; Lesley et al, 1993; Stamenkovic et al, 1991). An isoform of CD44 that includes 

the variant exons v8-10 (also designated as CD44E or epithelial CD44) for example 

is preferentially expressed on epithelial cells (Stamenkovic et al, 1991) whereas the 

largest isoform of CD44 containing the exons v2-10 is expressed on human 

keratinocytes (Bloor et al, 2001; Hofmann et al, 1991) (Illustration 2). 

 
Illustration 2: CD44 transcripts expressed in different cells. CD44s is ubiquitously 
expressed in vertebrates in developing and adult organisms. The expression of CD44 variants is 
restricted to a few cell types (Based on Ponta et al., 2003). 
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Variant isoforms of CD44 are also expressed in a huge variety of cancers. The 

expression of the CD44 proteins in cancer is extensively described in paragraph 

1.2.7 

 

1.2.4 Alternative splicing 

 
 The differential expression of the CD44 isoforms is achieved by means of 

alternative splicing. This process is regulated by tissue specific factors. While 

mesenchymal cells predominantly splice out variant exons by a process called exon 

skipping, differentiated epithelial cells like keratinocytes and cells of the apical 

ectodermal ridge express a CD44 protein that contains all variant exons of CD44 that 

are maintained by a mechanism called exon inclusion (Hudson et al, 1995; Sherman 

et al, 1998). Inactive lymphocytes on the other hand express the standard isoform of 

CD44 but upon activation start to transiently express isoforms of CD44 that contain 

the variant exon v6 (Arch et al, 1992; Koopman et al, 1993).  

 Alternative splicing is regulated by mitogenic signals. Indeed, proliferating cells 

tend to express variant isoforms of CD44. For example the activation of the Ras-Erk 

pathway triggers inclusion of variant exons into the mature RNA (Weg-Remers et al, 

2001).  

 Two types of cis-acting elements that control alternative splicing can be found 

in the variant exons. So-called splice enhancers are necessary to recognize a 

specific variant exon and are utilized in exon inclusions. Splice silencers on the other 

hand are used to prevent constitutive exon inclusion, a mechanism that is crucial for 

exon skipping (König et al, 1998). These elements differ at least to some extent 

between the variant exons (König et al, 1998; Matter et al, 2000). One trans-acting 

factor that regulates alternative splicing is the protein Sam68. It recognizes the 

silencer sequences in variant CD44 exons and can be directly phosphorylated by the 

Erk kinase. The phosphorylation of Sam68 presumably determines the assembly of 

spliceosomal complexes and auxilliary factors that recognize the so-called 

pyrimidine-rich stretch of introns (König et al, 1998; Matter et al, 2000). 
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1.2.5 The structure of CD44 

 

The extracellular domain 

 

 The extracellular part of CD44 is divided into an aminoterminal globular 

domain and a variable stem region. The first five constant exons of the CD44 gene 

code for the aminoterminal globular protein domain that contains 90 amino acids. 

This domain is conserved between different species (homology of 80-90%) 

(Goldstein et al, 1989). It contains four highly conserved cysteins that can form 

intramolecular disulfid bonds. This domain, that is a homologue of the cartilage link 

protein and the proteoglycan core protein is called the link domain (Deak et al, 1986; 

Doege et al, 1986; Neame et al, 1986; Stamenkovic et al, 1989). The link domain is 

flanked by two more cysteins on either side that are required for its proper folding and 

for binding of the glycosaminoclycan (GAG) hyaluronan (HA). HA is the main binding 

partner of CD44 (Banerji et al, 1998). Additionally to the HA binding, the link domain 

facilitates binding to chondroitin and keratin sulphate. Binding to other 

gylcosaminoglycanes (GAGs) is not achieved through the link domain but by other 

not yet defined regions of the extracellular part. Affinity to GAGs is primarily 

dependent on posttranslational modifications (reviewed in Day & Sheehan, 2001). 

 The aminoterminal domain of CD44 can be modified by glycosylations that are 

cell type specific (reviewed in Day & Sheehan, 2001). The location of most of the N-

glycosylated residues can be found here (reviewed in Day & Sheehan, 2001). One 

region of the aminoterminal domain that is adjacent to the membrane-proximal 

domain can also be modified by O-glycosylations. 

 The extracellular domain comprises binding sites for a variety of extracellular 

matrix (ECM) components such as HA, collagen, laminin and fibronectin. In the 

extracellular domain, four Ser-Gly motives can be modified by GAGs, one out of 

which can be used for binding to chondroitin sulphate (Goodfellow et al, 1982; 

Greenfield et al, 1999). These binding capabilities make CD44 a decisive factor for 

the matrix-dependent cell migration (Borland et al, 1998; Naor et al, 1997b). 
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The stem region 

 

 The stem region is a membrane-proximal part of the extracellular region of 

CD44 that has a minimal size of 46 amino acids (CD44s). Yet, by alternative splicing, 

the variable exons (v1-10) can be inserted between the amino acids 202 and 203 (in 

humans), expanding the stem region by up to 381 amino acids.  

 The sequences encoded by variant exons include several O- and N- 

glycosylation sites. For example CD44E (CD44v8-10) can be additionally modified by 

N- and O- linked glycosylation (Brown et al, 1991). The region encoded by the 

variable exon three includes a Ser-Gly-Ser-Gly GAG attachement site that enables 

modification by heparin sulphate or chondroitin sulphate (Bennett et al, 1995). 

Heparin-sulphated CD44 can bind to several heparin-binding growth factors, e.g. HB-

EGF (Bennett et al, 1995).  

 The stem region separates the amino-terminal globular domain from the 

transmembrane domain. It includes a proteolytic cleavage site through which it can 

be shed from cell surfaces. Soluble CD44 blocks the binding of HA to CD44 

molecules present on the cell surface (reviewed in Bazil & Strominger, 1994; Katoh et 

al, 1994). The shedding of CD44 can increase during tumor dissemination (Katoh et 

al, 1994). The proteases responsible for the cleavage of CD44 are serine proteases 

and metalloproteinases, such as the metalloproteinase Adam 10 (reviewed in Bazil & 

Strominger, 1994; Murai et al, 2006).  

 

The transmembrane- and cytoplasmic region 

 

 The transmembrane region of CD44 encompasses 23 hydrophobic amino 

acids and one cystein residue. The cystein residue might take part in the aggregation 

of CD44 molecules by creating disulfid bonds between different CD44 proteins (Liu & 

Sy, 1996). 

 The cytoplasmic domain of CD44 is 70 amino acids long. In some rare cases, 

the exons coding for the cytoplasmic domain, can be alternatively spliced resulting in 

a short version (three amino acids in human) (Goldstein & Butcher, 1990; Screaton et 

al, 1992). The cytoplasmic domain shows 80-90% sequence homology among 

species (Isacke, 1994). This implies that this domain mediates important functions. It 

contains four highly conserved serine residues (Ser 291, Ser 316, Ser 323 and Ser 
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325 in human). The phosphorylation of these residues influences their role in different 

cellular processes. For example, Ser 325 is phosphorylated in all resting cells where 

it is required for HA mediated cell migration (Peck & Isacke, 1998). Upon HA-binding 

this serine residue is dephosphorylated and Ser 291 gets phosphorylated by protein 

kinase C (PKC). These changes in phosphorylation impair binding of ERM (ezrin, 

radixin, moesin) proteins, cytoplasmic linkers of the cell membrane and the 

cytoskeleton, to CD44 (Legg et al, 2002). Inhibition of ERM-binding leads to a block 

in migration. Indeed, Ser 291 is part of a membrane-proximal basic stretch of amino 

acids that these ERM proteins can bind to (Legg & Isacke, 1998). 

 The cytoplasmic domain also serves as a docking site for the cytoplasmic 

protein ankyrin that mediates the contact of CD44 with the cytoskeletal component 

spectrin (Bourguignon et al, 1992). This binding is required for HA-dependent cell 

adhesion and motility. The interaction between CD44 and ankyrin can be enhanced 

by palmitoylation of the transmembrane domain (Bourguignon et al, 1991; Lokeshwar 

et al, 1994). 

 

1.2.6 CD44 and the ERM proteins 

 
 ERM proteins are members of the band 4.1 superfamily named after the 

erythrocyte membrane protein band 4.1 (reviewed in Niggli & Rossy, 2008). ERM 

proteins are involved in many cellular functions, including the control of cell shape, 

adhesion, motility, and the modulation of signaling pathways. Their main role is the 

connection of cell membrane proteins to the actin cytoskeleton. This connection is 

achieved either through their direct binding to single-pass proteins (proteins that pass 

the cell membrane one time) or indirectly by binding to adaptor proteins such as 

EBP50 and E3KARP that then bind multi-pass proteins (reviewed in Niggli & Rossy, 

2008).  

 ERM proteins that connect cell membrane proteins to the cytoskeleton can 

mediate signal transduction from RTKs to downstream targets. The ERM protein 

ezrin for example is involved in the signal transduction of the Met signaling pathway 

(Orian-Rousseau et al, 2007). It links the co-receptor CD44v6 for the RTK Met to the 

actin cytoskeleton and through this enables downstream signaling to Ras and the 

signal-related kinases 1,2 (Erk 1,2).  
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 Interestingly, a relative of the ERM proteins, merlin, can counteract the 

activation of signaling through these proteins. Merlin binds to CD44 but not to the 

cytoskeleton and thereby interferes with downstream signaling (Morrison et al, 2001). 

 

1.2.7 The role of CD44 in physiological and pathological processes 

 
 The different isoforms of CD44 trigger cellular processes such as adhesion, 

proliferation, migration and survival that are important in physiological processes 

such as development, haematopoiesis and lymphopoiesis. 

 

1.2.7.1 Physiological functions 
 

Haematopoiesis 

 

 CD44 proteins are involved in the differentiation of haematopoietc progenitor 

cells and in the formation of lymphoid and myeloid lineages. In long-term bone 

marrow cultures (LTBMCs), a CD44 pan antibody interfered with the development of 

progenitor cells as well as with their differentiation into lymphoid and myeloid 

lineages (Khaldoyanidi et al, 1996; Miyake et al, 1990). 

 Also, specific variant isoforms of CD44 are important for hematopoiesis. 

Antibody treatment of LTBMCs with monoclonal CD44v4 or CD44v6 antibodies 

stimulates myelopoiesis and induces the production of granulocyte-macrophage 

colony stimulating factor (GM-CSF). CD44v6 antibody treatment alone on the other 

hand stimulates lymphopoiesis and the production of interleukin 6 (IL-6) 

(Khaldoyanidi et al, 2002; Rossbach et al, 1996) demonstrating that different CD44 

variants play different roles in myelopoiesis and lymphopoiesis. 

 

Lymphocyte homing and activation 

 

 The binding of CD44 to HA plays a decisive role in lymphocyte homing to 

specific lymphoid organs such as the lymph nodes (Shimizu & Shaw, 1991). The 

homing of bone marrow cells to the thymus is also mediated by CD44. Indeed, bone 

marrow cells that were treated with CD44 antibodies were not able to reach the 
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thymus (O'Neill, 1989) whereas their homing to the lymph nodes was not influenced 

by such a treatment (Camp et al, 1993). 

 CD44 appears to be involved in the rolling of lymphocytes. In this process, 

lymphocytes that traverse the blood stream are slowed down by rolling along the 

blood vessel border prior to their extravasation into the surrounding tissue. This 

lymphocyte rolling can be blocked by antibodies directed against CD44 or by HA-

treatment of the lymphocytes (DeGrendele et al, 1996).  

 

CD44 co-receptor function 

 

 CD44 proteins are able to bind different enzymes or growth factors thereby 

modulating their action. The heparin-decorated isoform CD44v3 for example binds to 

the heparin binding growth factors b-FGF (FGF-R ligand) and HB-EGF (ErbB ligand) 

(Bennett et al, 1995; Sherman et al, 1998). Interestingly, another heparin-binding 

ErbB ligand, Amphiregulin, was shown not to interact with CD44v3 (Bennett et al, 

1995), showing that modifications other than heparin influences the binding. 

 Through its interaction with growth factors, CD44 can act as a co-receptor for 

different RTKs. This co-receptor can be mediated in different ways. CD44 can for 

example act as a docking platform for metalloproteinases that account for the 

activation of ligand proforms into their active form. CD44 can associate with the 

matrix metalloproteinase 7 (MMP-7) in the activation process of the ErbB4 receptor in 

the mammary gland. By recruiting the pro-form of HB-EGF and MMP-7, CD44 

enables the maturation of pro-HB-EGF into HB-EGF (see also chapter 1.3.8) (Yu et 

al, 2002). 

 Another molecular mechanisms through which CD44 can act as a co-receptor 

is ligand presentation. In the apical ectodermal ridge of the limb bud CD44v3 can 

bind FGF-ligands and present them to their authentic receptor FGF-R that is 

expressed in the cells of the underlying mesenchyme, a type of undifferentiated loose 

connective tissue. Activated FGF-R promotes proliferation and limb outgrowth 

(Sherman et al, 1998). 

 Another well characterized co-receptor function of CD44 variant isoforms for 

an RTK is the collaboration between Met and CD44v6 (Illustration 3). In presence of 

HGF a complex containing HGF, Met and CD44v6 has been identified (Orian-

Rousseau et al, 2002). CD44v6 is instrumental in the activation of Met, a process that 
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has been found to be important for proliferation and migration in primary as well as 

invasion and metastasis formation in several cancer cell lines. CD44v6 not only 

presents the ligand HGF to Met but features yet another molecular function, namely 

the mediation of downstream signaling by recruiting the ERM-protein ezrin. Since the 

co-receptor function of CD44v6 is specifically dependent on exon v6, the minimal v6 

amino acid sequence required for Met activation was identified using linker scan 

mutations of the v6 sequence, replacing three amino acids at a time by alanines or 

glycine (in place of alanine) (Matzke et al, 2005). This linker scan analysis identified a 

sequence of three amino acids that is essential for the co-receptor function of 

CD44v6. Peptides containing the amino acid sequences EWQ in rat, GWQ in mouse 

and RWH in human, that are at least 5 amino acids in length can block the co-

receptor function of CD44v6. This leads to an inhibition of Met-phosphorylation and 

signal transduction to its downstream targets Ras and Erk (Matzke et al, 2005). The 

CD44v6 peptide therefore inhibits the activation of Met with the same specificity as a 

CD44v6-antibody or a soluble ectodomain of CD44v6 (Matzke et al, 2005; Orian-

Rousseau et al, 2002). 

 
Illustration 3: CD44v6 is a co-receptor of Met. CD44v6 enables the activation of the Met 
RTK. It presents HGF to the receptor and mediates downstream signaling through the ERM protein 
ezrin (Based on Orian-Rousseau et al., 2002) 
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 While for the activation of Met the extracellular domain of CD44 including the 

exon v6 and its transmembrane domain are sufficient the downstream signal 

transduction to Ras and the Erk kinase is dependent on the binding of ERM proteins 

to the cytoplasmic domain of CD44. The transfection of a CD44v6 isoform lacking its 

cytplasmic tail still allowed HGF-induced Met-activation but inhibited downstream 

signaling to Ras and Erk. In addition, an intracellular competition experiment by 

overexpression of the cytoplasmic domain of CD44 allowed Met receptor activation 

but blocked signal transduction to Ras and to the Erk kinase (Orian-Rousseau et al, 

2002).  If the cytoplasmic part of CD44 was mutated in its ezrin binding site no 

inhibition of signal transduction was observed (Orian-Rousseau et al, 2002). These 

data show that the interaction between ERM-proteins and CD44v6 is necessary for 

Met signaling. The binding of ezrin to the cytoskeleton is an essential step in 

downstream signal facilitation as shown by means of an ezrin-construct deleted in the 

F-actin binding domain, drugs that disturbed the integrity of the actin cytoskeleton 

and by the association of components of the HGF-induced signaling pathway with F-

actin in Triton X-100 insolubility assays (Orian-Rousseau et al, 2007). 

 CD44v6 acts also as a co-receptor for the VEGFR-2 receptor, an RTK that 

promotes proliferation, angiogenesis and survival. A CD44v6 peptide, a CD44v6 

antibody and the soluble ectodomain of CD44v6 were able to interfere with VEGFR-2 

activation through its ligand VEGF-A and inhibit VEGF-A-induced migration, 

sprouting, tube formation and angiogenesis of endothelial cells (Tremmel et al, 2009). 

 CD44 has also been suggested to function as a co-receptor for the ErbB-

family of proteins. This is discussed in section 1.3.8. 

 

CD44 knockout 

 

 Mice with a gene knockout preventing expression of all CD44 isoforms that 

were generated by the deletion of the 3’ end of exon 2 and the entire exon 3 of the 

CD44 gene (Schmits et al, 1997) or by and insertion of a neomycin gene expression 

cassette into the reading frame of the leader peptide of the CD44 gene (Protin et al, 

1999) are viable. They only show a mild phenotype, namely a deficite in 

haematopoiesis, homing and migration of the lymphocytes to the lymph nodes and in 

settlement in the thymus. 
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 This is especially striking considering the role CD44 proteins seem to have in 

development. In addition to their involvement in limb outgrowth (see co-receptor 

section in this paragraph) (Sherman et al, 1998), CD44 also plays an important role 

in the migration of foetal liver cells and in their maturation in the thymus. During their 

maturation only CD44 expressing foetal liver cells and adult cells of the bone marrow 

are able to settle in the thymus and develop into mature T-cells (Kawakami et al, 

1999). Additionally, CD44s is expressed in epithelial cells of the thymus and in 

thymocytes eight weeks after fertilization. Two weeks later the expression pattern of 

these cells changes and they start expressing the CD44 variants v4, 6 and 9. 

Antibodies against these isoforms of CD44 are able to inhibit the development of 

thymocytes in early stages of foetal organ cultures (Mackay et al, 1994; Terpe et al, 

1994b). 

 The co-receptor function of CD44v6 for Met and VEGFR-2 should be 

physiologically indispensable. Met for example is an essential protein for 

development and mice bearing disruptions of the Met gene, the gene encoding its 

ligand HGF or of Met docking proteins such as Gab-1 are not viable (Bladt et al, 

1995; Sachs et al, 2000; Uehara et al, 1995). In absence of CD44, Met and VEGFR-2 

should not be able to function (Orian-Rousseau et al, 2002; Tremmel et al, 2009), 

which should also lead to lethality of the CD44 knockout mice. This however is not 

the case. 

 

Selective suppression of CD44 in mouse keratinocytes  

 

 If CD44 is switched off during late embryonic development, in contrast to the 

germline knockout, a drastic phenotype is observed. CD44 antisense sequences 

under the control of the keratin-5-promoter (K5) were used in this case. This 

promoter gets only activated in the skin of the mice at day 9,5 of the embryonic 

development. The inactivation of CD44 by these antisense sequences in the skin 

results in severe shortcomings in wound healing and hair development. Also, the skin 

of the animals shows a thickened and brittle consistency. Additionally, a change in 

the hyaluronic hayluronan metabolism was observed (Kaya et al, 1997).  

 These differences between the inactivation of CD44 in the classical knockout 

and the transgenic animals expressing antisense sequences in keratinocytes imply 

that the loss of function of CD44 at various times in development has different 
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consequences. An explanation might be that a substituting molecule is taking over 

the co-receptor function of CD44 at early stages of development before reaching 

critical steps of differentiation. This compensation does not occur at later 

developmental stages, e.g when the K5 promoter is inactive. 

 Further data indicate that CD44 plays a role in vivo and indicate that the 

potential substitute molecule in the cd44 germline knockout is not as efficient as 

CD44. Indeed, a crossing between cd44-/- and met+/- gave a striking result: 70% of 

cd44-/- met+/- mice died at birth due to breathing defects caused by impaired synaptic 

transmission in the respiratory rhythm-generating network and alterations in the 

phrenic nerve (Matzke et al, 2007). This haploinsufficiency of Met is only observed in 

a CD44 null background and therefore suggests that CD44 indeed cooperates with 

Met in vivo. Furthermore, in CD44 null mice the function of CD44 as a co-receptor for 

Met must be substituted by another protein that is not as effective as CD44. 

 In order to identify a co-receptor for Met activation in absence of CD44v6, the 

CD44-negative human hepatocelllular carcinoma cell line HepG2 was used. In this 

cell system, that does not express CD44v6 yet still allows Met-activation, a different 

transmembrane-molecule, ICAM-1, is able to enable Met-activation. Met-activation 

and signaling can be blocked by specifically addressing the ICAM-1 receptor and 

inhibiting its function (Olaku et al, 2011).  

 In order to evaluate whether ICAM-1 could substitute for CD44v6 in CD44-

knockout mice, a partial hepatectomy was performed in wild-type as well as in CD44-

knockout mice. The relevance of Met in adult animals is illustrated by its physiological 

role in liver regeneration (Borowiak et al., 2004). And indeed, in wild type mice, 

CD44v6-specific antibodies inhibited liver cell proliferation and Met activation, 

whereas ICAM-1-specific antibodies interfered with liver cell proliferation and Met 

activation in CD44 knockout mice (Olaku et al, 2011). These data show that CD44 

can be functionally substituted by a heterologous protein, ICAM-1. 
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1.2.7.2 Pathological functions 
 
Inflammation 

 

 CD44 and its ligand HA have been implicated to play a role in several 

inflammatory diseases  (reviewed in Pure & Cuff, 2001). In a rheumatoid arthritis 

mouse model, inflammation in the murine joints can be reduced by specifically 

blocking the interaction between CD44 and HA by means of a CD44 antibody. In 

contrast, the enhancement of this binding by means of a different CD44-specific 

antibody increases the inflammatory symptoms (Mikecz et al, 1999). Furthermore, 

under inflammatory conditions, CD44 expression and HA-production on endothelial 

cells is increased due to transcriptional activation by pro-inflammatory cytokines like 

TNFalpha and IL-1beta (Mohamadzadeh et al, 1998). On these cells, CD44 then 

interacts with HA which might lead to an extravasation of the cells (Mohamadzadeh 

et al, 1998). Additionally, at the site of an inflammation or injury, low molecular weight 

HA (sHA) is produced and its binding to CD44 can induce the expression of genes 

involved in inflammatory responses such as TGF-β1 (McKee et al, 1996; Ohkawara 

et al, 2000). 

 
Tumourigenesis 

 

 Animal experiments and observations in human cancers suggest that CD44 

proteins play important roles in the metastatic spreading of tumor cells. The most 

important evidence for the involvement of CD44 variants in metastasis was found by 

transfection of a CD44 variant protein (CD44 v4-7) into non-metastatic rat pancreatic 

cells. This CD44 variant conferred metastatic potential to the cells (Gunthert et al, 

1991). The metastatic abilities mediated by CD44 could be abolished by inhibiting its 

function. Treatment of colorectal tumor cells with different CD44-specific antibodies 

for example leads to a block in tumor progression as well as metastasis (Naor et al, 

1997b; Sleeman et al, 1995; Wielenga et al, 1998).   

 It seems that in some instances, the expression of CD44 variants is controlled 

by oncogenes like c-Ha-ras. In cloned rat embryonic fibroblasts (CREF) the activated 

ras oncogene induces CD44 promoter activity leading to the expression of CD44s as 

well as its metastatic variants (Hofmann et al, 1993). 



Introduction 

15 

 In many human cancers the expression of variant CD44 proteins can be used 

as diagnostic and prognostic markers (Kaufmann et al, 1995b; Pals et al, 1997; 

Wielenga et al, 1993). The expression of CD44v7 and v8 in cervical cancer (Kainz et 

al, 1995) or that of CD44v6 in colorectal carcinomas (Naor et al, 1997a; Sleeman et 

al, 1995; Wielenga et al, 1998) has been connected with the involvement of CD44 in 

metastasis formation. 

 In some instance however, it seems that not CD44 variants but CD44s is 

involved in tumor growth as for example the transfection with CD44s of a CD44-

negative Burkitt lymphoma line renders it metastatic (Sy et al, 1991). Additionally, 

CD44s enhances tumor growth of CD44-negative melanoma cells whereas in 

contrast transfection with the CD44 variant v8-10 inhibited tumor growth in these cells 

(Sy et al, 1991; Sy et al, 1992). 

 Suprisingly, in some cases, CD44s can also function as a tumor suppressor. 

The first evidence for this was found in neuroblastomas, where CD44s is 

downregulated (Shtivelman & Bishop, 1991). The absence of CD44s correlates with 

histological dedifferentiation, N-myc amplification and reduced survival probability 

(Terpe et al, 1994a). In prostate cancer, CD44s is not expressed and its 

overexpression represses tumor metastasis (Gao et al, 1997).  

 

Bacterial infection 

 

 CD44 facilitates direct interactions between bacteria and host cells and is also 

involved in signaling events that make these cells more susceptible to infection. 

Streptococcus pyogenes for example can attach to cells through its HA-rich cell wall. 

CD44 molecules on the target cell surface bind to this HA and trigger the tyrosine 

phosphorylation of several cytoplasmic proteins within the target cell. They also 

induce cytoskeletal rearrangements that cause ruffles and extension of lamellipodia. 

Through this rearrangement process, the connection of the affected cell to its 

neighbouring cells gets loosened due to reduced tight junction connections. The 

bacterium is then able to invade the subepithelial tissue (Cywes et al, 2000). 

Consequently, mice deficient in CD44 are resistant to oropharynx colonization by S. 

pyogenes (Cywes et al, 2000). 

 In order to be taken up and internalized by their host cells, bacteria like 

Shigella flexneri or Listeria monocytogenes also recruit CD44. S.flexneri, a bacterium 
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that causes bacillary dysentry in humans is the prototype of bacteria that enter cells 

via a so-called trigger mechanism (reviewed in Veiga & Cossart, 2006). S.flexneri 

secretes several proteins that are necessary for the infection process and one of 

them, lpaB, binds to CD44s (Skoudy et al, 2000). This binding is instrumental for its 

entry into host cells as blocking its function by means of CD44 specific antibodies 

inhibts bacterial entry. The entry process of S.flexneri is dependent on CD44 binding 

to the ERM protein ezrin (Skoudy et al, 1999). 

 The bacterium Listeria monocytogenes, is another pathogen that makes use of 

CD44 for its entry process. L. monocytogenes is a gram-positive, rod-shaped and 

food-borne bacterium that is the causative agent for the disease listeriosis(Newell et 

al, 2010). It can infect at least 37 different species of mammals and 17 different 

species of birds. The pathogen can also be found in the ground soil and on most 

plants (reviewed in Ivanek et al, 2006). Due to this fact, contact with the bacterium is 

almost unavoidable for humans. L. monocytogenes can thrive in the intestinal tract of 

animals or humans for extended periods of time without causing an infection and it is 

believed that at least 5% of the human population is a carrier of the bacterium without 

showing any symptoms (reviewed in Barbuddhe & Chakraborty, 2009). 

 The entry into the host organism of the bacterium is achieved primarily through 

the intestinal tract where L. monocytogenes is able to cross the intestinal barrier by 

active epithelial cell invasion or passively by phagocytosis through macrophages 

(reviewed in Barbuddhe & Chakraborty, 2009). Within the epithelium cells the 

bacterium is able to move freely from one cell to another due to a cytoskeleton-based 

translocation mechanism (Pizarro-Cerdá et al., 2004) and eventually enters the blood 

flow and the lymphatic system. After intestinal translocation the liver is the first organ 

that is infected by the pathogen (Scholing et al, 2007). Here it multiplies until the 

immune system of the host eliminates it. If such a response does not kill the 

bacterium, it can spread to other organs like for example the uterus and the brain. 

 L. monocytogenes very rarely infects healthy organisms, although pregnant 

women, unborn and new-born babies sometimes contract Listeriosis. Individuals with 

a deficit in the immune system like for example cancer, HIV or organ transplantation 

patients on the other hand are at a serious risk to be infected by L.monocytogenes 

(Patil et al, 2007; Rivero et al, 2003; Wiesmayr et al, 2005). The symptoms of an 

actual outbreak of Listeriosis last from 7 to 10 days, the most common of which are 

fever, muscle ache, vomiting or diarrhea. If the infection spreads to the nervous 
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system, it can also cause meningitis leading to headache, stiff neck, loss of balance 

or convulsions. Infection with L. monocytogenes can lead to death in one third of the 

patients, sometimes even after a treatment with antibiotics (Rivero et al., 2003). 

 The invasion and intracellular reproduction of L. monocytogenes is mediated 

by 2 gene clusters. The cluster that was first identified is called listeria pathogenicity 

island 1 (LIPI-1) and codes for a collection of proteins that mediate the escape of the 

pathogen from the phagocytotic vacuole, its cytosolic reproduction, actin-based 

motility and cell-cell spreading (Vazquez-Boland et al, 2001). The second gene 

cluster only incorporates two genes, that form a common operon: Internalin A (InlA) 

and internalin B (InlB). InlA and InlB code for invasion factors that are necessary for 

the attachement and invasion of non-phagocytic target cells (Cabanes et al, 2002; 

Glaser et al, 2001). 

 InlA mediates the recognition and invasion of epithelial cells through specific 

interaction with E-cadherin, a transmembrane adhesion protein that is involved in 

cell-cell adhesion complexes. The InlA-E-Cadherin interaction induces the interaction 

of E-cadherin with α-catenin that together with β-catenin achors E-cadherin to the 

actin cytoskeleton. The formation of this adhesion complex causes local cytoskeletal 

changes that mediate the uptake of the bacterium into its host cells (Hamon et al, 

2006). 

 InlB on the other hand mediates the recognition and invasion of epithelial and 

endothelial cells through binding to the RTK Met (Shen et al, 2000). Like its 

physiological ligand, HGF, InlB induction of Met leads to the activation of the RTK 

and the activation of the Erk-Ras and PI3K signaling pathway. HGF and InlB do not 

share any sequential or structural homologies (Machner et al., 2003). They bind to 

different regions in the extracellular domain of the Met RTK (Niemann et al., 2007). 

 The activation of Met through InlB leads to its clathrin-dependent endocytosis 

together with the InlB-bound bacterium. This process is triggered by a mono-

ubiquitination of Met through the ubiquitin ligase cbl (reviewed in Veiga & Cossart, 

2005). By local polymerisation of actin filaments that is mediated by the Arp2/3 

complex, pseudopodes are extended around the bacterium that is eventually 

completely covered by the cell membrane and transported into the cytoplasm where 

it is contained within a phagosome (reviewed in Ireton, 2007). 

 For the activation of Met, InlB is dependent on the variant CD44 isoform v6 as 

the inhibition of CD44v6 by a specific blocking peptide, a CD44v6 antibody or v6-
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specific siRNA blocks the activation of Met through InlB (Jung et al., 2009). 

Consequently, signaling, scattering and the entry of InlB-coated beads into host cells 

are also impaired. For this process, the ERM protein ezrin is required (Jung et al., 

2009).  

 CAMs like CD44 are often recruited as co-receptors by RTKs. They usually 

mediate the activation of these receptors or have additional functions like the 

recruitment of cytoplasmic proteins. The RTK Met for example can be activated by 

InlB and HGF. This activation is dependent on its cooperation with CD44v6 (Orian-

Rousseau et al., 2002; Jung et al., 2009). Thus two structurally different ligands can 

activate the Met receptor by cooperating with the same co-receptor. This suggests 

that for its activation, Met requires the co-receptor CD44v6 independently of the 

ligand it is addressed by. However, CD44v6 not only acts as a co-receptor for Met. It 

also cooperates with the VEGFR-2 receptor where it mediates receptor activation 

through the VEGFR-2 ligand VEGF-A (Tremmel et al., 2009). These data suggest 

that CD44v6 might not be recuited by the RTK it works together with but by the 

ligands that address these RTKs. Indeed, this seems also to be the case for the 

heparin sulphated isoform CD44v3. CD44v3 cooperates with the FGF-receptor in 

limb outgrowth. It presents FGF-4 and FGF-8 to underlying mesenchymal cells that 

express the FGF-receptor (Sherman et al., 1998). However during the maturation of 

the female breast CD44v3 is also recruited by the ErbB4 RTK (Yu et al., 1999). 

 In order to test whether the ligands that address specific RTKs are decisive 

factors that dictate the need for specific isoforms of CD44 as co-receptors or whether 

a specific RTK requires a specific CD44 isoform, the ErbB family of receptors is an 

optimal candidate. The ErbB family contains four different receptor proteins (ErbB1-4) 

that form different homo- and heterodimers in order to bind their different ligands. The 

ErbB4 receptor recruits CD44v3 as a co-receptor. Therefore, other ErbB receptor 

proteins might also be dependent on CD44 isoforms. The ErbB1 receptor alone can 

be addressed by seven different ligands, whereas some of these ligands can also 

bind to additional receptor proteins. Thus, it can be evaluated whether for its 

activation by these seven ligands, ErbB1 is always dependent on the same CD44 

isoform or whether the ligands determine which isoform is required.  
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1.3 The ErbB family of receptors 

1.3.1 Introduction 

 
 The ErbB-family is also designated the subclass I of the receptor tyrosine 

kinase superfamily. It contains four different receptor proteins: EGFR or ErB1, ErbB2, 

ErbB3 and ErbB4. In rodents the ErbB2 receptor is referred to as „Neu“. The human 

forms of the ErbBs are named Her 1-4 (reviewed Bublil & Yarden, 2007).  

In order to bind to their ligands, the ErbB receptor proteins form homo- and 

heterodimers. Due to the various homo- and heterodimers of the four ErbB receptors, 

a high degree of signal diversity is achieved. The ErbBs are expressed in various 

tissues throughout the development and in the adult organism where they control 

proliferation, differentiation and cell survival. The ErbBs also play a paramount role in 

human cancers (reviewed in Hynes & Stern, 1994; Salomon et al, 1995). 

 All ErbB receptors share an extracellular ligand-binding region, a single 

membrane spanning domain and a cytoplasmic domain that includes a tyrosine 

kinase domain (reviewed in Bublil & Yarden, 2007). Under physiological conditions, 

the activation of the receptors is controlled by several ligands that are expressed in a 

developmental stage- and tissue-specific manner (reviewed in Riese & Stern, 1998). 

The ligands of the ErbB receptors belong to the EGF-related family of growth factors. 

A ligand induction of the ErbB RTKs leads to activation of their intracellular kinase 

domain and subsequently to phosphorylation of specific tyrosine residues in their 

cytoplasmic domain. These modified residues can then serve as docking sites for a 

variety of signaling molecules whose recruitment leads to the activation of 

intracellular signaling pathways such as the Ras-Erk and the PI3K (Olayioye et al, 

1998; Yarden, 2001). 

 The ErbB signaling family has been highly conserved during evolution. In 

Nematodes like for example Caenorhabditis elegans one single receptor (LET-23) 

and one ligand (LIN-3) exists (reviewed in Chang & Sternberg, 1999). In insects, e.g. 

the fruitfly Drosophila melanogaster, one receptor (DER) exists that can be activated 

by four different ligands (reviewed in Reich & Shilo, 2002; Schweitzer & Shilo, 1997). 

Interestingly an additional ligand (Argos) can block receptor activation by competing 
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with the other ligands (reviewed in Reich & Shilo, 2002). Such a regulation by 

competition is not found in higher organisms. 

 In higher vertebrates four different ErbB receptors bind to a multitude of 

ligands. 

 

1.3.2 The EGF-related ligand family 

 

 In vertebrates, the „EGF-related ligand family“ constitutes the ligands of the 

ErbB receptors. All these growth factors are produced as transmembrane precursors. 

Their ectodomains are processed by proteolysis, a step that leads to the shedding of 

the mature soluble protein. Various studies have identified the ADAM 

metalloproteinases as being responsible for the cleavage of the ErbB pro-ligands. 

 The ErbB ligands differ in their ability to bind to the ErbB receptors. Based on 

this binding specificity they can be divided into three groups (reviewed in Olayioye et 

al., 2000) (Illustration 4): 

(1) Amphiregulin (AR), Epigen (EPG), Epidermal Growth Factor (EGF) and 

Transforming Growth Factor Alpha (TGF-α) that exclusively bind to 

ErbB1 

(2) Betacellulin (BC), Epiregulin (ER) and Heparin-binding EGF-like growth 

factor (HB-EGF) that show dual specificity. These growth factors can 

bind to either ErbB1 or ErbB4. 

(3) The third group is formed by the Neuregulins (NRGs) that can be 

seperated into two subgroups based on their receptor specificity: 

   (3.1) NRG-1 and NRG-2 bind to ErbB3 and ErbB4 while 

   (3.2) NRG-3 and NRG-4 can only bind to ErbB4 

   The group of the Neuregulins is further diversified by alternative 

   splicing. 
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Illustration 4: The binding specificity of the ErbB ligands. The ErbB ligands 
can bind to 11 different ligands by forming homo- and heterodimers (Based on Olayioye et al., 
2000) 

 

 No direct ligand has so far been found for the ErbB2 receptor. It is only 

adressed by heterodimerization with the other ErbB receptors. The ErbB2 receptor is 

often used as a signal enhancer for the other ErbBs (Beerli et al, 1995; Graus-Porta 

et al, 1995).  

 

1.3.3 Expression of the ErbB ligands 

 
 The ErbB ligands usually act over short distances as autocrine or paracrine 

factors. Some ligands like e.g. EGF that is found in all body fluids or Nrg-1 are widely 

expressed (Meyer & Birchmeier, 1995). Also Epiregulin, TGF-α and HB-EGF are 

expressed in many different cell types. ER is expressed in macrophages and in the 

placenta (Toyoda et al, 1997). TGF- α is produced for example in brain cells and 

keratinocytes (Partanen, 1990) whereas HB-EGF is for example produced by 

macophages and keratinocytes (Hashimoto et al, 1994; Higashiyama et al, 1991). 

Other ErbB ligands show a more restricted pattern. Nrg-4 expression for example is 

found in the pancreas (Harari et al, 1999) while Nrg-3 expression is restricted to the 

developing and adult nervous system (Zhang et al, 1997).  

 In order to investigate the role of ErbB-ligand function during development, 

different knockout mice for ErbB ligands were created. Suprisingly, HB-EGF was the 

only ErbB ligand whose absence during development resulted in the postnatal death 
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due to malformed heart valves, hypertrophic cardiomyocytes and hypoplastic lungs 

(Iwamoto et al, 2003; Jackson et al, 2003). Mice with disruptions in the genes 

encoding AR (Luetteke et al, 1999), BC (Jackson et al, 2003), EGF (Luetteke et al, 

1999), ER (Lee et al, 2004; Shirasawa et al, 2004), TGF-α (Luetteke et al, 1999; 

Mann et al, 1993) are viable. This is even the case in the triple-null mice (AR, EGF, 

TGF-α) (Luetteke et al, 1999). These experiments point to a high degree of functional 

redundancy within the ErbB ligand family since it is highly unlikely that they are 

physiologically dispensable. 

 Despite being viable, many of the knockout mice show phenotypes. If the mice 

were stressed they showed further homeostasis defects in previously apparently 

normal tissues. For AR-deficient mice for example only a defect in mammary gland 

development was reported initially (Luetteke et al, 1999). Further studies however 

revealed impaired liver regeneration (Berasain et al, 2005a; Berasain et al, 2005b) 

and significantly less growth of tibial trabecular bone than wild-type mice (Qin et al, 

2005). Notably, several of the phenotypes observed in mice lacking individual ErbB1 

ligands such as for example hair follicle and eye lid closure defects in TGF-α deficient 

mice (Luetteke et al, 1999; Mann et al, 1993) or heart-valve defects and lung 

immaturity in HB-EGF deficient mice (Iwamoto et al, 2003; Jackson et al, 2003) are 

found in mice with an ErbB1-receptor knockout (Chen et al, 2000; Miettinen et al, 

1995; Sibilia & Wagner, 1995; Threadgill et al, 1995) indicating that the ErbB1 

receptor primarily mediates the signaling of these ErbB ligands. 

 

1.3.4 The structure of the ErbB receptors, their ligand binding and dimerization 

 
 The crystal structure of ligand bound ErbB1 has been resolved. The 

extracellular domain of the ErbB receptors consists of 4 different regions. For the 

binding of EGF (Ogiso et al, 2002) and TGF-α (Garrett et al, 2002) the domains I and 

III play a decisive role as they contact the ligand from two opposite sites and form a 

kind of a binding pocket the ligand fits into. The domain II contains a loop-like motif 

that helps in the dimerization process of two ErbB receptors. The protruding arm on 

one ErbB1 molecule directly contacts domain II in a second ErbB1 receptor and vice 

versa. 

 The ErbB ligands themselves do not interact. In an ErbB-dimer they are kept 

apart and bind in monomeric form. Consequently they cannot mediate dimerization. 
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This finding is in clear contrast to the dimerization process of other RTKs (reviewed in 

Schlessinger, 2000). PDGF or VEGF for example form homodimers and by binding 

one receptor per each molecule help in the receptor dimer assembly. FGF on the 

other hand stays in monomeric form while binding but two FGF molecules are 

brought together by binding simultaneously to a heparinsulphate proteoglycan 

(HSPG). 

 Inactive ErbBs are kept in a so-called tethered conformation. In the ErbB1 

receptor, the domains II and IV interact intra-molecularly keeping the domains I and 

III that are involved in binding, apart (Ferguson et al, 2003). The ErbB3 and ErbB4 

receptors have a conformation similar to the one of ErbB1 (Bouyain et al, 2005; Cho 

& Leahy, 2002). Upon ligand binding the conformation of the receptors changes, they 

enter a so-called open conformation in which domain I and III are bound to the ligand 

and the dimerization arm is exposed (i.e. bound to another ErbB receptor) 

(Illustration 5). 

 
Illustration 5: The ligand binding process of the ErbB receptors. An ErbB ligand first 
interacts with region I of the ErbB receptor it interacts with. This interaction brings region I and III 
closer together until they finally both bind the ligand. Upon entering this binding pocket, the 
extracellular domain of the ErbB receptor undergoes a conformational change that extends it 
dimerization arm and allows dimerization (Based on Baselga & Swain, 2009). 
 
 Inactive ErbB2 receptors show a major structural difference in comparison to 

the other ErbBs (Cho et al, 2003; Garrett et al, 2003). They are found in a 

conformation, similar to that of ligand bound ErB1 and ErbB3. Their domains II and IV 

interact and the dimerization arm is extended.  In this conformation the domains I and 

III that are normally used for ligand binding are kept too close together and no ligand 

can „fit“ in between them (Garrett et al, 2003). 
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 Despite their extended dimerization arm, ErbB2 receptors do not form 

homodimers under physiological conditions because of an electrostatic repulsion 

between the two ErbB2 dimerization loops (Garrett et al, 2003). In contrast, when 

ErbB2 is overexpressed, which is the case in many human cancers, ErbB2 

homodimers can be formed and are constitutively activated (reviewed in Holbro et al., 

2003). Under physiological conditions however, the ErbB2 receptor needs to 

heterodimerise in order to mediate signaling (Klapper et al, 1999). 

 The ErbB3 receptor is also dependent on heterodimerization in order to signal. 

In contrast to ErbB2, ErbB3 can bind ligands but has substitutions of critical residues 

in the kinase domain (Guy et al, 1994). This domain is therefore called the „kinase 

dead domain“. Despite the substitutions in its kinase domain ErbB3 retains sufficients 

kinase activity to effectively trans-autophosphorylate its intracellular region (Shi et al, 

2010). 

 

1.3.5 The signaling pathways activated by the ErbBs 

 
 The binding of the ErbB ligands to the ErbB receptor proteins mediates their 

activation. The intrinsic tyrosine kinase activity leads to an autophosphorylation of C-

terminal tyrosine residues (reviewed in Heldin, 1995; Weiss & Schlessinger, 1998) 

that can then act as docking sites for proteins that contain Src homology 2 (SH2)- 

and phosphotyrosine binding (PTB) domains (reviewed in Shoelson, 1997; Sudol, 

1998). These domains mediate the docking of several downstream proteins such as 

the adaptor proteins Shc, Crk, Grb2, Grb7 and Gab1, the kinases Src, Chk, the PI3K 

via its regulatory subunit p85 and the tyrosine phosphatases SHP 1 and 2 (reviewed 

in Shoelson, 1997). For each ErbB protein a distinct C-terminal autophosphorylation 

pattern has been described that is recognized by specific effector proteins (reviewed 

in Shoelson, 1997). 

 The ErbB proteins show a large overlap in the signaling pathways they can 

activate. All of the ErbB receptors mediate the activation of the mitogen-activcated 

protein (MAP) kinase via Shc or Grb2 but each member of the ErbB family has 

preferences for specific downstream proteins. In heterodimers, the ErbB3 receptor for 

example is the most efficient activator of the PI3K because of its multiple binding 

sites for these proteins (Prigent & Gullick, 1994). ErbB1 is the only ErbB protein that 

can bind to Cbl and Eps15, both proteins that are involved in the downregulation of 
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the ErbB1 RTK (Fazioli et al, 1993; Levkowitz et al, 1996). Possibly due to its 

ubiquitination through Cbl, the ErbB1 receptor is the most efficiently internalized ErbB 

receptor and undergoes degradation more readily than the other ErbBs (Sorkin & 

Goh, 2009). 

 The heterodimerization of the ErbB receptors follows a hierarchical order, in 

which the ErbB2 receptor is the preferred dimerization partner of all other ErbB 

receptors (Graus-Porta et al, 1997; Tzahar et al, 1996). Heterodimers containing the 

ErbB2 receptor have an increased ligand affinity due to a slow ligand-disassociation 

rate (Karunagaran et al, 1996). This leads to an increased activation of the 

corresponding signaling pathways (Beerli et al, 1995; Graus-Porta et al, 1995). 

Additionally, biological responses that are mediated by all of the ErbB receptors, such 

as proliferation, morphological differentiation and migration/invasion are enhanced in 

cells expressing ErbB2 (Beerli et al, 1995; Spencer et al, 2000). 

 The heterodimerization of the ErbB receptors is not only used to amplify a 

signal, it also gives rise to signal diversification. The SH2- and PTB-binding proteins 

that are recruited to an activated ErbB receptor are defined by the specific pattern of 

phosphorylated tyrosine residues in the C-terminus of the protein. The 

phosphorylation pattern responsible for this specific binding capacity is modulated by 

heterodimerization of the ErbB receptors (reviewed in Olayioye et al, 1998). An 

ErbB1 homodimer for example can recruit Grb2 while an ErbB1/ErbB4 heterodimer is 

not able to do so (Olayioye et al, 1998). If ErbB2 homodimerises due to a mutation in 

the transmembrane domain on the other hand it is considerably more potent in 

binding Shc than an ErbB1/2 heterodimer (Olayioye et al, 1998). These data point to 

the fact that the signal given by a specific heterodimer of ErbBs is not simply the sum 

of their individual signaling properties but instead acts as a completely independent 

signaling unit with unique signaling properties.  

 

1.3.6 ErbB receptors in development 

 
 In development the involvement of the ErbB receptors has been shown by 

using genetically modified mice (Olayioye et al, 2000). Null mutations in individual 

ErbB loci are lethal. ErbB2 knockouts die during midgestation (day 10.5) due to 

trabeculae malformation in the heart (Lee et al, 1995). The same phenotype is 

observed in ErbB4 knockout mice (Gassmann et al, 1995). A further role for ErbB2 
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has been demonstrated in the development of the peripheral nervous system (Morris 

et al, 1999). ErbB3 knockout mice die by day 13.5 due to defective heart valve 

formation. Additionally, these animals have defects in neural crest cells and lack 

Schwann cell precursors (Erickson et al, 1997; Riethmacher et al, 1997). 

 The only exceptions are ErbB1 knockout mice that (depending on the genetic 

background of the host) reveal an embryonic or perinatal lethality. The causes of 

death in all ErbB1 knockout mice are abnormalities in multiple organs amongst which 

the brain, skin and gastointestinal tract have been found (Miettinen et al, 1995; Sibilia 

et al, 1998; Sibilia & Wagner, 1995; Threadgill et al, 1995). 

 These data indicate that the ErbB receptors have essential roles in modulating 

certain aspects of vertebrate embryogenesis and postnatal development. They seem 

to play a particular important role in the development of the heart. 

 

1.3.6.1 Heart development 

 

 The heart is the first organ that forms during development and is needed to 

support the growth of the developing embryo. ErbB signaling has been shown to play 

an essential role in its development and function. In midgestation, the ErbB2/4 and 

ErbB2/3 heterodimers regulate the formation of the cardiac trabeculae and of the 

cardiac cushion. ErbB1 signaling on the other hand is involved in the regulation of the 

formation of the cardiac valves. On top of that, during and after the perinatal stages, 

ErbB2/4 signaling drives the maintenance of cardiomyocytes (reviewed in Olayioye et 

al., 2000). In addition to these signaling events crosstalks between the ErbB 

receptors and other signaling cascades have been implicated that further modulate 

heart development (reviewed in Iwamoto & Mekada, 2006). 

 
 The ErbB receptors also play essential roles in mammary gland development. 
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1.3.6.2 Mammary gland development 

 
 At birth, the mammary gland consists of a rudimentary system of ducts that 

undergoes extensive remodelling and extension at puberty. During pregnancy, the 

lobuloalveolar cells undergo proliferation and at parturition the mammary fat pad is 

completely filled with milk-producing lobules (reviewed in Weiss & Schlessinger, 

1998). The ErbB1 receptor works together with ErbB2 in the maturation of the breast. 

It has a modulatory effect on side branching and promotes alveolar development and 

differentiation. The ErbB1 receptor mediates ductal growth whereas the ErbB2/4 

heterodimer promotes lobuloalveolar differentiation and is involved in maintenance of 

lactation (Olayioye et al., 2000). In ErbB2 knockout mice, an impairment in duct 

formation has been found potentially due to structural defects in the terminal end 

buds of the growing ducts (Jackson-Fisher et al, 2004). The ErbB3/4 heterodimer is 

required for proliferation in pregancy and lactation. (Olayioye et al., 2000). 

 In summary, these data suggest that the main role of ErbB1 in mammary 

gland development is the promotion of ductal growth, while ErbB2-4 have essential 

roles in lobuloalveolar differentiation and lactation. 

 

 In addition to their physiological functions the ErbB receptors are also involved 

in several of human cancers. 

 

1.3.7 The ErbB receptors in cancer 

 

 The activation of the ErbB receptors, particularily ErbB1 and 2 is deregulated 

in many human cancers. This deregulation, caused by either overexpression or 

mutations of the ErbB encoded proteins or by autocrine ligand production, and is 

characterized by uncontrolled proliferation and migration of cancer cells. 

The most common type of ErbB1 mutations is the so-called type III mutation 

(Voldborg et al, 1997). In this case, a deletion of the extracellular domain of the 

protein leads to constitutive activation of the receptor. ErbB1 proteins carrying a type 

III mutation are involved in glioma, ovarian, as well as breast cancer (Ekstrand et al, 

1992; Moscatello et al, 1995). 

 Overexpression of ErbB1 on the other hand has been found in squamous-cell 

carcinomas of head and neck, non-small cell lung cancer, ovarian, lung and breast 
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cancer (Bartlett et al, 1996; Grandis & Tweardy, 1993; Klijn et al, 1994; Rusch et al, 

1997) where it is as a strong prognostic marker for reduced recurrence-free and 

overall survival (Nicholson et al, 2001). While overexpressed, the ErbB1 receptor is 

still dependent on induction through a ligand (Di Fiore et al, 1987) in order to signal. 

The ErbB1 receptor is co-expressed with several of its ligands. TGF-α for example is 

often found to form an autocrine loop that leads to the deregulated activation of 

ErbB1, for example in lung, colon and breast cancer (Salomon et al, 1995; Umekita 

et al, 2000).  

 In contrast to the ErbB1 receptor, no activating mutation has been found for 

ErbB2 so far. Its activation is mainly due to overexpression, often by means of gene 

amplification. The increased abundance of ErbB2 molecules in target cells leads to 

spontaneous dimerization of the ErbB2 proteins and constitutive activation. This kind 

of receptor activation is found for example in lung, ovarian and stomach cancer 

(Lemoine et al, 1991; Salomon et al, 1989; Tateishi et al, 1991) but is especially 

important in breast cancer where it has been linked to a poor clinical prognosis and 

resistance to therapy (Ross & Fletcher, 1998a). 

 The ErbB3 receptor has been connected with a resistance against therapies 

targeting the ErbB2 receptor. Upon blocking of the ErbB2 receptor for example by 

tyrosine kinase inhibitors (TKIs), the ErbB3 phosphorylation level is increased. This 

leads to an activation of ErbB3 signaling that promotes cell survival in absence of 

ErbB2 signaling (Sergina et al, 2007). In breast cancer, the ErbB3 receptor has been 

shown to work together with ErbB2, mediating tumor cell division (Holbro et al, 2003). 

Their co-expressed has been found in many human breast cancers (Sithanandam & 

Anderson, 2008). 

 The ErbB4 receptor seems to play no role in most human cancers. No 

activating mutations of ErbB 4 have been identified and no statistically relevant 

correlation with clinical prognosis was found. In breast cancer, however, the 

expression of the ErbB4 receptor seems to correlate with endocrine resistance 

(Sutherland, 2011). 
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1.3.8 The ErbB receptors and CD44 

 
 Interestingly, several crosspoints between CD44 proteins and ErbB receptors 

have been unraveled. One main role of the CD44 protein family is due to its binding 

to HA. This function of CD44s as a HA receptor has been shown to promote the 

activation of an oncogenic form of ErbB2 in ovarian carcinoma cell lines 

(Bourguignon et al, 1997). CD44s interacts with the neuronal Wiskott-Aldrich 

syndrome protein (N-WASP) upon HA-binding. By this interaction it stimulates the 

Arp2/3 complex that facilitates filamentous actin formation, ovarian cancer cell 

migration and the activation of the ErbB2 kinase, leading to the transcription of 

TCF/LEF regulated genes (Bourguignon et al, 2007c). 

 Another CD44 isoform, CD44v3, is involved in several ErbB-related processes. 

CD44v3 can bind to the guanine nucleotide exchange factor Vav2. These two 

proteins then interact with ErbB2-bound Grb2. Upon HA-binding of CD44v3, the 

complex of these 4 proteins facilitates the activation of Rac1 and Ras signaling that is 

required for human ovarian tumor progression (Bourguignon et al, 2001). 

The cooperation of CD44v3 with ErbBs is also involved in physiological processes 

like female reproductive organ remodeling. CD44v3 binds to the ErbB ligand HB-EGF 

(Bennett et al., 1995). CD44v3 recruits the matrix metalloproteinase 7 (MMP-7) and 

pro-HB-EGF to the cell surface of postpartum uterine and lactating mammary gland 

epithelium (Yu et al, 2002). After this recruitment, MMP-7 mediates the maturation of 

pro-HB-EGF into HB-EGF. CD44v3 might then bind to activated HB-EGF and present 

it to the ErbB4 RTK. This leads to increased phosphorylation of ErbB4. The 

interaction of MMP-7 with pro-HB-EGF has been shown to be instrumental in the 

tumorigenesis of cutaneous squamous cell carcinoma cell lines (Kivisaari et al, 2010) 

as well as in the tumorigenesis of mammary epithelial cell lines (Lynch et al, 2007). 

CD44 has also been found to colocalize and coimmunoprecipate together with ErbB1 

as well as with ErbB2 in several breast cancer cell lines (Wobus et al, 2001).  

 

 Altogether, the ErbB receptors are a family of RTKs that is expressed in many 

tissues throughout the body. Its 4 different receptor proteins can form homo- and 

heterodimers to bind to 11 different ligands. These ligand-dimer interactions account 

for its high degree of signal diversity. This signal diversity is one of the reasons that 

the ErbB family is involved in many different physiological and pathological 
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processes. ErbB receptors are for example involved in heart as well as in breast 

development, where their different receptor pairs and single ligands seem to have 

specific functions. ErbB signaling is also involved in pathologial situations. In many 

human cancers like lung, breast or stomach cancer, the activation of the ErbB family 

drives tumorigenesis and metastasis and its expression is connected with a bad 

clinical prognosis.  
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Aim of the PhD thesis 

 
 The first part of my PhD thesis is a continuation of my diploma work where I 

showed that the activation of the RTK Met, is dependent on CD44v6 for its activation 

by Inlb, a bacterial protein used for invasion of the bacteria Listeria monocytogenes.  

 

 Since these data suggested that the invasion of L.monocytogenes could also 

depend on CD44v6, the first aim of my PhD thesis was to test whether the entry of 

these bacteria into host cells requires CD44v6 (Jung et al., 2009).  

 

 CD44v6 had been previously identified as the co-receptor for the HGF-based 

induction of the RTK Met (Orian-Rousseau et al., 2002). Thus two structurally 

different ligands can activate the Met receptor by cooperating with the same co-

receptor. This suggests that for its activation, Met requires the co-receptor CD44v6 

independently of the ligand it is addressed by. However, CD44v6 not only acts as a 

co-receptor for Met. It also cooperates with the VEGFR-2 receptor where it mediates 

receptor activation through the VEGFR-2 ligand VEGF-A (Tremmel et al., 2009). The 

identification of CD44v6 as the co-receptor of three structurally unrelated growth 

factors and two structurally unrelated RTKs gave rise to the question whether 

CD44v6 was recruited by the RTKs themselves or the ligands that address these 

receptors. 

 The heparan-sulphated CD44v3 serves as a co-receptor for the growth factors 

FGF-2 in limb development (Sherman et al., 1998) and HB-EGF in mammary 

development (Yu et al., 1999) and therefore also cooperates with two structurally 

diverse ligands. 

 The aim of the main part of my PhD thesis was to test whether growth factor 

ligands dictate the need for specific CD44 isoforms in order to activate their 

respective RTKs or whether a specific RTK requires a specific CD44 isoform. 

Therefore I studied the EGFR family of RTKs where the ErbB1 receptor is addressed 

by seven different ligands. By means of downregulation and overexpression studies 

as well as blocking experiments, I set out to test whether the ligands that address the 

ErbB1 receptor protein are dependent on CD44v6, CD44v3 or other CD44 isoforms. 

If so I wanted to find out whether the ErbB ligands dictate the need for these variant 
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isoforms. In this case, the mechanism of CD44 co-receptor function was to be further 

evaluated in a physiological and pathological context. 
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2. Material & Methods 

 

 

2.1 Materials 

2.1.1 General chemicals 
 
Agarose    Peqlab, Erlangen 

 

APS (Ammonium persulfate) Sigma, Deisenhofen 

 

Aprotinin    Sigma, Deisenhofen 

 

Bromphenol blue   Serva, Heidelberg 

 

BSA (Bovine Serum Albumine) Serva, Heidelberg 

 

DMSO (Dimethyl sulfoxide) Fluka, Neu-Ulm 

 

DTT (Dithiothreitol)   Sigma, Deisenhofen 

 

EDTA     Merck, Darmstadt 

 

Ethanol    Roth, Karlsruhe 

 

Ethidium bromide   Sigma, Deisenhofen 

 

G418     GIBCO, Eggenstein 

 

Glycerol    Merck, Darmstadt 

 

HEPES    Roth, Karlsruhe 
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Isopropanol    Merck, Darmstadt 

 

Leupeptin    Sigma, Deisenhofen 

 

Methanol    Roth, Karlsruhe 

 

Nonidet P-40    Boehringer, Mannheim 

 

PMSF     Sigma, Deisenhofen 

 

Rotiphorese Gel 30: Acrylamide  

/ bis-acrylamide (30% / 0,8 %) Roth Karlsruhe 

 

SDS (Sodium lauryl sulfate) Roth, Karlsruhe 

 

TEMED    Sigma, Deisenhofen 

 

Tris Hydrochlorid   Roth, Karlsruhe 

 

Triton-X100    BioRad, München 

 

Tween-20    Serva, Heidelberg 

 

 

2.1.2 Enzymes 
 

Heparinase II   Sigma 

 

Taq DNA Polymerase  GIBCO 

 

Superscript II Rnase  

H- Reverse Transcriptase  GIBCO 
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2.1.3 Other materials 
 
3MM Whatman paper  Whatman, Maidstone 

 

Immobilon-P membrane  Millipore 

 

ECL western blotting 

detection reagents   Amersham Life Science 

 

Protein-A Agarose   Calbiochem 

 

Protein-G Agarose   Calbiochem 

 

2.1.4 Growth factors 
 
Amphiregulin    R&D Systems 

 

Betacellulin    R&D Systems 

 

Epidermal Growth Factor  R&D Systems 

 

Epiregulin    R&D Systems 

 

Hepatocyte Growth Factor  R&D Systems 

 

Heparin-binding EGF-like 

growth factor    R&D Systems 

 

Heregulin    R&D Systems 

 

Transforming Growth Factor 

Alpha     R&D Systems 
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2.1.5 Cell culture reagents 
 
Trypsin, 0.25% EDTA  GibcoBRL Life Technologies, Karlsruhe 

 

DMEM    GibcoBRL Life Technologies, Karlsruhe 

 

RPMI 1640    GibcoBRL Life Technologies, Karlsruhe 

 

Foetal calf serum gold  PAA Laboratories GmbH, linz Austria 

 

Penicillin-Streptomycin  Invitrogen 

 

Glutamin    GibcoBRL Life Technologies 

 

2.1.6 Cell lines 
 

Name Description 

HT 29 

Culture Medium 

human colon 

adenocarcinoma line 

DMEM, 10% FCS 

BSp73AS (AS10) Human pancreas 

carcinoma line 

RPMI1640, 10% FCS 

BSp73ASv6 (ASs6) AS10 cells transfected 

with CD44v6 

RPMI1640, 10% FCS, 0.3 

g/l G418 

HeLa Human caervix carcinoma 

line 

DMEM, 10% FCS 

MCF 7 Human mammary pleural 

effusion cell line 

DMEM, 10% FCS 

MCF 10A Human pre-neoplastic 

mammary cell line 

DMEM/F12, 5% horse 

serum, 20 ng/ml EGF, 0,5 

µg/ml Hydrocortisone, 100 

ng/ml cholera toxin, 10 

µg/ml insulin, 100 IU/ml 

Penicillin, 100 µg/ml 

streptomycin 
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Ecopack 2-293 Human embryonic kidney 

cell line used for 

production of high titer 

Moloney-based retroviral 

stocks by transient 

transfection 

DMEM, 10% FCS, 4mM L-

glutamine, 100 U/ml 

penicillin, 100 µg/ml 

streptomycin, 1mM 

sodium pyruvate 

 
2.1.7 Antibodies 
 

Antibodies Isotype Epitope Source 

α-ErbB1 Rabbit IgG1 Detects ErbB1 in 

H, M 

Millipore 

α-ErbB2 Rabbit IgG1 Detects ErbB2 in 

H, M, Mk, R 

Millipore 

α-Erk (K-23) Rabbit IgG1 Detects Erk1/2 in 

H,R,M 

Santa Cruz 

α-CD44var(v6) 

clone VFF18 

Mouse IgG1 Detects an epitope 

encoded by exon 

v6 on the variant 

portion of human 

CD44 

Bender 

MedSystems 

α-Phospho-ErbB1 Mouse IgG1 Detects 

phosphorylated 

ErbB1 in H, R, M, 

Ca 

Millipore 

α-Phospho-p44/42 

MAP kinase 

Rabbit IgG1 Detects 

phosphorylated 

Erk1/2 in H,R,M 

New England 

Biolabs 

α-CD44v3 Mouse IgG1 Detects an epitope 

encoded by exon 

v3 on the variant 

portion of human 

CD44 

 

R&D Systems 
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Hermes 3 Mouse IgG1 Detects all 

isoforms of CD44 

of human origin 

Gift of Sirpa 

Jalkanen, Turku, 

Finnland 

α-VSV-G Mouse IgG1 Detects the VSV-G 

tag 

Santa Cruz 

α-Ezrin Rabbit IgG1 Detects ezrin in H, 

M, R, Mk 

Cell Signalling 

 
2.1.8 Oligonucleotides 
 
α-CD44v6 siRNA-1: 5’ – AGU AGU ACA ACG GAA GAA ATT – 3’ 

α-CD44v6 siRNA-2: 5’ – GGA UAU CGC CAA ACA CCC ATT – 3’ 

α-CD44v3 siRNA-1: 5’ – AGG CAU UGA UGA UGA UGA AUU – 3’ 

α-CD44v3 siRNA-1: 5’ – UGA AGA UGA AAG AGA CAG AUU – 3’ 

 
2.1.9 Plasmid constructs 
 
DN ezrin 
The sequence of wt ezrin without the last 29 amino acids encoding for the actin 

binding site was cloned into pCB6 (Algrain et al, 1993) 

Gift from Monique Arpin, Institut Pasteur Paris, France 

 

Human ErbB1 pBabe puro 
The sequence of human ErbB1 was cloned into pBabe puro (Morgenstern & Land, 

1990) 

Gift from Nancy Hynes, Friedrich Miescher Institute For Biomedical Research, 

Switzerland 

 

Human ErbB3 pBabe puro 
The sequence of human ErbB3 was cloned into pBabe puro (Morgenstern & Land, 

1990)  

Gift from Nancy Hynes, Friedrich Miescher Institute For Biomedical Research, 

Switzerland 
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2.2 Methods 

2.2.1 Adherance and invasion assay (gentamicin protection assay) 
(The assay was performed as described in Jung et al., 2009) 

The adherence of L. monocytogenes (EGD or ΔInlA2, ΔInlB2 and ΔinlAB2) to and the 

invasion into HeLa cells were measured with a gentamicin protection assay. For 

adherence assays, the HeLa cells were infected with log phase bacteria and a 

multiplicity of infection (moi) of 5 (~5 x 106 bacteria /1 x 106 cells per well) in DMEM 

tissue culture medium supplemented with 1% heat-inactivated FCS for 1 h at 37°C in 

5% CO2. For the inhibition studies HeLa cells were pre-incubated with the CD44v6 

peptide and control peptide at a concentration of 100 ng/ml, Biwa (anti-CD44v6 

antibody) and control mouse IgG at a concentration of 100 µg/ml for 30 min. After 1 h 

of infection the HeLa cells were washed three times with DMEM and were 

subsequently lysed by adding 500 ml of 1% Triton X-100. The number of cell-

adherent bacteria was determined by plating appropriate dilutions of the lysate onto 

agar plates. Due to the lysis of the eukaryotic cells in this process, the calculation of 

cell-adherent bacteria also included bacteria that had invaded into HeLa cells. 

Therefore, the number of invaded bacteria was subtracted from the numbers of 

celladherent bacteria to calculate the actual number of adherent bacteria. For 

invasion assays, the HeLa cells were also infected with log phase L. monocytogenes 

and an moi of 5. Bacteria were incubated for 1 h at 37°C in 5% CO2, and 

washed three times with DMEM. Subsequently, the infected cells were incubated for 

2 h in tissue culture medium supplemented with gentamicin (50 µg/ml) to kill 

extracellular bacteria. After three washes with DMEM, the HeLa cells again were 

lysed by adding 500 ml of 1% Triton X-100. The number of invasive bacteria was 

quantified by plating serial dilutions of the lysate onto agar plates. 

 

2.2.2 General cell culture 
 

Cells were cultivated in a humid (95%) atmosphere with 5% CO2 at 37°C. All handling 

of the cells was performed under sterile conditions. The cultivated cells were 

passaged as soon as the reached a level of 80% confluency. 
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2.2.3 Passaging of cells 
 

After the removal of the growth medium the cells were treated with 0,25% 

Trypsin/EDTA and incubated for 5 mins at 37°C. The disassociated cells were then 

taken up in growth medium and spun down at 1200rpm for 3 mins. The supernatant 

was removed, the cell pellet resuspended in growth medium and plated in new 

culture plates in the desired dilution. 

 

2.2.4 Freezing down and thawing of cells 
 

Cells were frozen down in special freezing medium (10% DMSO in FCS). The cell 

suspension was transferred into a pre-chilled cryo tube, kept on ice for a short while 

and then frozen down at -80 °C. 

Frozen cells were thawed rapidly at 37°C in the waterbath and transferred into a new 

50 ml falcon with pre-warmed growth medium. The cells were spun down, 

resuspended in new growth medium and plated on a petri dish. 

 

2.2.5 Blocking with the CD44v6-specific peptide  
 

3 x 105 were seeded per well of a 6-well plate and serum-starved for 24 hours. 

Afterwards the medium inside of each well was reduced to 1 ml and the respective 

peptide (v6 or ctl peptide) was added at a concentration of 100 ng/ml. The cells then 

were incubated together with the peptide at 37°C for 5 mins. Ligand concentration for 

all peptide blocking experiments was 20 ng/ml. 

 

2.2.6 Induction of cells with growth factors 
 

The cells were incubated with the growth factors specified in the particular 

experiment. Except for the peptide blocking and migration assays, ligand 

concentration was 5 ng/ml at all times. Prior to induction the cells were treated as 

indicated in the results section. 

 

2.2.7 Cell lysate preparation 
 

To assay protein expression via Western blot cells were washed 1x with PBS and 

afterwards lysed in 2x Laemmli sample buffer (160mM Tris-HCl pH 6.8, 4% SDS, 
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16% glycerol, 0.1M DTT, 0.01% bromphenol blue). The sample was sheared through 

a 26 gauge needle. In succession the lysates were boiled for 5 mins at 99°C in order 

to denature the proteins in the sample and then spun down at 10 000 rmp for 1 min. 

Eventually the samples were loaded onto an SDS-PAGE gel. 

 

2.2.8 SDS-polyacrylamide gel electrophoresis (PAGE) 
 

Proteins were separated electrophoretically based on their size through the Laemmli 

method (1970). The stacking- (5% acrylamide) and the separating gel (10% and 7.5& 

respectively acrylamide) were cast after (Maniatis et al, 1989). Samples were run at a 

voltage of 100V in the stacking and a voltage of 140V in the separating gel. The gel 

running buffer contained 30.3 g/l tris-base, 144 g/l glycin and 1% SDS. 

 

2.2.9 Western blotting and antibody incubation 
 

After separation by SDS-PAGE the proteins were transferred electronically onto an 

immobilon membrane (Millipore, type PVDF, pre-incubated in methanol). The transfer 

took place at a voltage of 20V for 1,5 hours and was buffered with semi-dry transfer 

buffer (20mM Tris, 192mM glycin, 10% methanol). After successful transfer the 

membrane was incubated with TBS-0.2 % Tween + 5 % BSA for one hour at room 

temperature under constant shaking in order to block any unspecific binding of the 

antibodies. 

To detect the proteins of interest the membrane was incubated with the specific 

antibody in the dilution and conditions specified by the manufacturer (Most of the time 

this was over night, in TBS-T-0.2% tween + 5 % BSA at a dilution of 1:1000). In 

succession the membrane was washed 3 times with TBS-T and the membrane was 

incubated with the secondary HRP-conjugated antibody (at a dilution of 1:2000 in the 

appropriate blocking solution, see manufacturers specifications). 

Detection of the proteins was done by enhanced chemiluminescence. 

 

2.2.10 Co-Immunoprecipitation of ErbB1 and CD44v6 
 

5 x 106 cells were seeded in 15 cm plates, serum starved for 24 hours and induced 

with EGF (5 ng/ml) or left untreated respectively in succession. Afterwards the cells 

were washed with ice-cold PBS and incubated with low salt RIPA buffer (10mM Trips 
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pH 7.4, 10mM NaCl, 3mM EDTA, 1% Triton X-100, 1% sodium desoxycholate, 0.1% 

SDS) on ice for 30 mins. The cells were then scraped off of the plates and transferred 

into 1,5 ml eppendorf tubes. The samples were spun down for 20 mins at 4°C and 12 

000 rpm and the supernatant was transferred to a new tube afterwards. 5 µg of 

antibody for each ml of cell lysate were added and incubated with the lysates for 1,5 

hours at 4°C under constant shaking. 25 µl of each protein-A and protein-G agarose 

beads were then added to the samples and incubated for 2 more hours at 4°C under 

constant shaking. 

The immuno-complexes were then isolated by centrifugation at 12 000 rpm and 4°C 

and washed 3x with ice-cold lysis buffer.  

The supernatant was then removed and the immuno-complexes were resuspended 

in 25 µl 2x Laemmli buffer + 1M DTT and boiled at 99°C for 5 mins. Afterwards the 

supernatant was ready to be loaded onto an SDS-PAGE gel. 

 

2.2.11 Transfection of target cells with siRNA 
 

The particular cells were transfected transiently with Lipofectamin 2000 (Invitrogen) 

according to the manufacturers instructions.: 

3 x 105 cells were seeded per well of a 6-well plate, cultivated for 24 hours and then 

transfected. 

For each transfection seperate mixes were prepared:  

 

1. 200 pmol siRNA in 250 µl of serum-free medium 

2. 5 µl Lipofectamin 2000 in 250 µl serum free medium 

 

The mixes were incubated for 5 mins at room temperature and afterwards transferred 

into one common eppendorf tube. After a further incubation period of 20 mins at room 

temperature the target cells were transfected with the complete mix. 

The medium of the transfected cells was changed 6 hours after transfection and 

substituted with fresh medium. After 24 to 48 hours the cells were serum-starved and 

afterwards used for the successive experiments. 
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2.2.12 Transfection of HT29 cells with dominant-negative Ezrin 
 

HT29 cells were transfected with Promofectin (Promocell) according to the 

manufacturers instructions: 

3 x 105 cells were seeded per well of a 6-well plate, cultivated for 24 hours and then 

transfected. 

For each transfection seperate mixes were prepared:  

 

1. 4 µg DNA in 250 µl of serum-free medium 

2. 10 µl Promofectin in 250 µl serum free medium 

 

The mixes were incubated for 5 mins at room temperature and afterwards transferred 

into one common eppendorf tube. After a further incubation period of 20 mins at room 

temperature the target cells were transfected with the full 500 µl of the complete mix. 

The medium of the transfected cells was changed 6 hours after transfection and 

substituted with new one. After 24 to 48 hours the cells were serum-starved and 

afterwards used for the successive experiments. 

 

2.2.13 Heparinase II treatment of HT29 cells 
 

HT29 cells were seeded at a concentration of 3 x 105 per well of a 6-well plate and 

serum starved 24 hours later. After starvation the medium in the treated 6-wells was 

reduced to 1 ml and heparinase II at a concentration of 6 U/ml was added. The 

treated cells were incubated together with the enzyme for 3 hours and afterwards 

treated directly with the indicated growth factors. Cells were then washed with cold 

PBS and lysed in 2x Laemmli buffer in order to examine them further. 

 

2.2.14 Migration assay with HeLa cells 
 

2 x 105 HeLa cells were seeded in the upper part (insert) of a Boyden chamber (6-

well) and serum-starved after 24 hours. 20 ng/ml growth factor were then added to 

the lower part of the boyden chamber. Afterwards the cells were allowed to migrate 

over night. 

On the following day the cells on the inside of the Boyden chamber insert were 

removed with a cotton swap (while the cells on the outside of the membrane of the 
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Boyden chamber insert were left alone). The cells on the membrane of the insert 

were then washed 3 times with PBS and fixed in 10% Formalin for 10 mins at room 

temperature. After 3 more washing steps the cells were stained for 15 mins at room 

temperature with 0.5% crystal violet. After having washed them for 3 more times, the 

cells were then incubated with 10% acetic acid for aproximately 2 minutes at room 

temperature and the optical density of the obtained solution was measured at a 

photometer at OD 600. 

 

2.2.15 Transfection of BSp73AS cells with ErbB1 
 

24 hours prior to transfection the packaging cell line Ecopack-2-293 was seeded in a 

6-well plate at a concentration of 2 x 105 cells per well.  

1,5 hours before transfection, the growth medium was replaced with growth medium 

containing 25 µM chloroquine. 

Each 6-well was then transfected with 4 µg of the ErbB1 or the ErbB3 plasmid DNA 

by using the CalPhos Mammalian Transfection kit (Clontech). The transfection was 

done according to the manufacturer’s instructions. 

After 48 hours, the medium containing the virus was collected and filtered through a 

0.45-µm cellulose acetate filter. The virus containing medium was then added to 

BSp73AS cells that had been seeded at a concentration of 0.5 x 105 cells per well 24 

hours earlier at a concentration of 1:2 to normal growth medium. Polybrene to a final 

concentration of 8 µg/ml was added and the cells were incubated for 6-8 hours 

together with the virus. The virus containing medium was then replaced by normal 

growth medium and the cells were further incubated over night. Afterwards the cells 

were serum-starved and treated with the indicated growth factors. 

 

2.2.16 CD44-variant-exon-specific RT-PCR analysis in MCF7 and MCF10A cells 
 

The exon specific RT-PCR was performed as described previously (Orian-Rousseau 

et al. 2002, König et al. 1996). All primers, but the v8 forward primer (5’-CGC TTC 

AGC CTA CTG CAA AT-3’) were identical to those used by König et al. (1996). 
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2.2.17 In vivo metastasis assay 
 

All animals were handled according to German regulations for animal 

experimentation. The animal experiments were approved by the 

Regierungspräsidium Karlsruhe (35-9185.81/G-83/04). All mice were obtained from 

Harlan. 

1 x 106 murine 4T1 cells (diluted in either 20 µg of control peptide or 20 µg of CD44v6 

peptide in PBS) were orthotopically injected into the mammary fat pad of female 

BALB/c mice. In succession, 5 of the mice were injected intraperitoneally with a 

CD44v6-peptide (20 µg per mouse) and 5 of the mice were injected with an 

unspecific control peptide (20 µg per mouse) three times a week. After four weeks, 

the mice were sacrificed and the tumors as well as the lung and lymph nodes of the 

animals were extracted. These organs were then fixed in 4% Formalin, processed 

and embedded in paraffin. 
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3. Results 

In my diploma work I showed that the activation of the receptor tyrosine kinase (RTK) 

Met is dependent on CD44v6 for its activation by Inlb, a bacterial protein used in the 

invasion process of the bacteria Listeria monocytogenes. CD44v6 and its link to the 

actin cytoskeleton through the ERM protein ezrin are also instrumental for the 

internalisation of InlB-coated beads into mammalian cells, a system that mimics the 

host cell invasion by L.monocytogenes. 

 

 The data collected during my diploma thesis suggested that CD44v6 might 

also be required for the invasion of host cells through L. monocytogenes. 

 

3.1. The invasion of L. monocytogenes into host cells is dependent on CD44v6 

 To test whether this was the case, I measured the adherence of 

L.monocytogenes to and the invasion into HeLa cells in the presence of CD44v6 

blocking reagents. This experiment, like all other experiments in this PhD thesis were 

repeated at least three times and gave similar results.  

 HeLa cells were pre-incubated with either a CD44v6 peptide or a CD44v6 

antibody, an unspecific control peptide or an unspecific mouse control IgG. The cells 

were then incubated with bacteria in their log phase of growth for one hour. After 

infection, the HeLa cells were washed and either incubated with gentamicin 

containing culture medium to kill any extracellular bacterium or directly lysed. To 

determine the number of bacteria that had invaded, the gentamicin treated cells were 

lysed and serial dilutions of the lysates were plated on agar plates. The bacterial 

colonies on the plates were counted. The number of bacteria adherent to the cells 

was determined by substracting the bacteria that had invaded from the number of 

bacteria in the cell lysates that were not treated with gentamicin. 
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Figure.1: The invasion of HeLa cells through L. monocytogenes is dependent 
on CD44v6 
The adherence to and the invasion into HeLa cells of L. monocytogenes were evaluated by means of a 
gentamicin protection assay. The HeLa cells were pre-incubated with the indicated CD44v6 blocking 
reagents (100 µg/ml for antibodies and 100 ng/ml for peptides). The cells were subsequently infected 
with log phase L.monocytogenes ΔinlA2 at a moi of 5. After 1 h of infection the cells were lysed and 
dilutions of the internalised or adhered bacteria were plated onto agar plates. The bacterial colonies 
were counted to determine the number of invasive and adherent bacteria. Where indicated by an 
asterix, the inhibition was significant. 
 
 Under physiological conditions, L.monocytogenes invades its host cells using 

both, the InlA as well as the InlB surface protein. To make sure that the infection of 

the bacteria was exclusively mediated by the Met receptor, a mutant strain with a 

chromosomal in-frame deletion in InlA (ΔinlA2) (Lingnau et al, 1995) was used. The 

invasion of HeLa cells using this strain was still about 60% as compared to wild type 

bacteria (data not shown). The invasion of a bacterial strain with a chromosomal in-

frame deletion in InlB (ΔinlB2) (Lingnau et al., 1995) on the other hand was reduced 

to 20% of the wild type invasion rate (data not shown). This shows that InlB primarily 

mediates HeLa cell invasion whereas InlA only plays a marginal role. A double 

mutant (InlAB2) (Parida et al, 1998) almost did not invaded at all (data not shown).  

 

 A 60% reduction of invasion of the ΔinlA bacteria strain into HeLa cells was 

observed whereas a control peptide showed only a marginal effect (Figure. 1). Also 

in the case of the CD44v6 antibody an inhibition of approximately 70% of the 
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bacterial invasion could be measured in contrast to the control IgG antibody (Figure. 
1). An invasion into HeLa cells of the ΔinlB2 mutant strain that lacks InlB was not 

affected by the v6 blocking reagents (data not shown) indicating that these reagents 

indeed specifically block the InlB-dependent L. monocytogenes invasion of HeLa 

cells. 

 In contrast to the drastic inhibition of invasion, the adherence of the ΔinlA 

bacteria was not significantly influenced by the CD44v6 peptide or the CD44v6 

antibody (Figure. 1 inset). This indicates that the InlB-dependent invasion process of 

L. monocytogenes itself is dependent on CD44v6 and not the adherence of the 

bacteria to the cells. 

 In conclusion, the co-receptor function of CD44v6 is not only required for the 

activation of the Met RTK by InlB and its downstream signaling but is essential for the 

InlB-dependent entry process of L. monocytogenes into host cells. 

  

 These data and other results by our group indicate that two different isoforms 

of CD44, namely CD44v6 and CD44v3, collaborate with several RTKs activated by 

distinct ligands, such as HGF, InlB, VEGF-A, FGF and HB-EGF. The recruitment of 

CD44 isoforms for such a variety of RTKs and ligands might be due to two reasons. 

The recruitment of CD44 isoforms might be RTK-specific. Another possibility is that 

CD44 isoforms might act in a ligand-specific manner. In order to discriminate 

between these two possibilities I studied the EGFR family of RTKs where one 

receptor, namely ErbB1, is addressed by several different ligands. 

 

3.2. EGF-induced activation of the ErbB receptors is dependent on CD44v6 

 In order to test whether CD44v6 plays a role in the activation of the ErbB 

family of receptors a peptide blocking experiment was performed in HT29 cells. The 

fact that this cell line expresses all ErbB receptors (Wu et al, 2009) and several CD44 

variants including also exon v3 and v6 (Orian-Rousseau et al., 2002) makes it a 

perfect tool to evaluate the co-receptor function of CD44 proteins for the ErbB family. 

 The first ErbB1-ligand that I evaluated was EGF. To test whether the activation 

of the ErbB receptors by EGF was dependent on CD44v6, HT29 cells were pre-

incubated with a v6-peptide that specifically inhibits the co-receptor function of 

CD44v6 (see chapter 1.2.7.1) or an unspecific control peptide. The cells were serum 

starved for 24 hours and induced with EGF. Phosphorylation of the Erk-Kinase, a 
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downstream target of the ErbB receptor family, was used as a read-out for ErbB-

receptor activation. HGF was used as a control to test the blocking efficiency of the 

CD44v6 peptide since the induction of the Erk kinase through Met is dependent on 

CD44v6 (Orian-Rousseau et al., 2002).  

 

         
Figure.2:  EGF-dependent induction of the ErbB receptors can be blocked by a 
CD44v6 specific peptide. 
Serum-starved HT29 cells were pre-incubated for 5 min with 100 ng/ml of a CD44v6-specific peptide 
or a control peptide. Afterwards the cells were induced with 20 ng/ml of EGF and lysed. The cell 
lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- and HGF-induced 
Erk-kinase phopshorylation. 
 
 EGF or HGF-induction of the HT29 cells lead to the phosphorylation of the 

Erk-kinase. The EGF- as well as HGF-dependent Erk- phosphorylation could be 

inhibited by pre-incubation with the CD44v6 peptide whereas a control peptide 

showed no effect. This suggests that EGF, is dependent on CD44v6 in order to 

activate the ErbB receptors (Figure. 2). This is similar to the situation observed in the 

case of Met and its ligand HGF. 

 

3.3 The requirement for CD44 is receptor-independent 

 Besides EGF, five other ligands, namely AR, BC, ER, HB-EGF, and TGF-α, 

can activate the ErbB1 receptor. EGF, AR and TGF-α bind to either an ErbB1-homo- 

or an ErbB1/2-heterodimer. In addition to these dimers, BC, ER and HB-EGF can 

also bind to an Erb4/4 homo- or an ErbB2/4 heterodimer. In this section I investigated 

whether the activation of the ErbB receptors by the indicated ligands is also 

dependent on CD44v6. 

 To this end, the same blocking reagent and similar conditions as in section 2.2 

were used. HT29 cells were serum-starved for 24 hours and pre-treated with the v6-

specific or a control peptide. They were then induced with the indicated ErbB ligands. 

Erk-kinase phosphorylation was used as a read-out for receptor activation. 
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Figure.3: In contrast to EGF and ER, induction of the ErbB-receptors via TGF-α, 
BC, Her, HB-EGF or AR is completely independent of CD44v6 
Serum-starved HT29 cells were pre-incubated for 5 min with 100ng/ml of a CD44v6-specific peptide or 
a control peptide. Afterwards the cells were induced with 20 ng/ml of various ErbB ligands as 
indicated. The cell lysates were resolved by SDS-PAGE.  Western-blotting was used to detect ErbB-
ligands-induced Erk-kinase phopshorylation. 
 
 All ligands could activate the Erk-kinase. EGF- as well as ER-dependent Erk- 

phosphorylation was inhibited by pre-incubation of HT29 cells with the CD44v6 

peptide whereas a control peptide showed no effect (Figure. 3). This shows that, 

besides EGF, ER is another ErbB1 ligand that is dependent on CD44v6 as a co-

receptor. In contrast, AR, BC, HB-EGF and TGF-α-induced activation of the ErbB 

receptors could not be inhibited by blocking CD44v6 (Figure. 3). These ligands are 

independent of CD44v6 for their induction of the ErbB receptors. This is especially 

striking, since EGF and TGF-α address the same receptor pairs (ErbB1/1 or 

ErbB1/2). These data suggest that the specific CD44 isoform used as a co-receptor 

for ErbB-activation is determined by the ligand that activates the ErbB receptors and 

not by the receptor proteins themselves. 
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 Using the CD44v6 peptide as a blocking reagent, EGF- as well as ER-

dependent activation of the ErbB family was shown to be inhibited. To further confirm 

that EGF and ER require CD44v6 as a co-receptor the effect of the downregulation of 

CD44v6 expression was evaluated. HT29 cells were transfected with either CD44v6-

specific siRNA or an unspecific control siRNA. HeLa cells were used in addition and 

treated in a similar way to rule out that our findings are cell type specific. Then the 

cells were serum-starved for 24 hours followed by induction with either EGF or ER.  

   

 In addition to Erk- phosphorylation, ErbB1 receptor phosphorylation was used 

as a read-out for the receptor activation. By probing for the ErbB1-phosphorylation 

status it was possible to determine whether a block in ErbB signaling was only 

affecting downstream targets like the Erk-kinase or also the ErbB1 receptor itself. 

 
Figure.4: EGF- and ER-dependent induction of the ErbB receptors can be 
abolished by abrogating the expression of CD44v6 by means of siRNA 
HT29 cells were transfected with CD44v6-specific siRNA or control siRNA as indicated. After 
transfection, the cells were serum starved for 24h. They were then induced with 5 ng/ml of EGF or ER 
as indicated. The cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- 
and ER and -induced ErbB1 and Erk phopshorylation. 
 
 EGF and ER induction of the cells lead to ErbB1 and Erk phosphorylation. 

Upon transfection of CD44v6 specific siRNA into HT29 cells, the expression of 

CD44v6 was reduced as indicated by the western blot probed with a CD44v6 specific 

antibody (αCD44v6). This lead to an inhibition of EGF- as well as ER-induced 

signaling on the ErbB1- as well as on the Erk-level. A control-siRNA showed no effect 

on CD44 expression or ErbB signaling (Figure. 4). The downregulation of CD44v6 in 

HeLa cells also lead to an inhibition of EGF- as well as ER-induced ErbB signaling 

showing that the requirement for CD44v6 is not cell type specific (Figure. 4). 

 

 Using the CD44v6 peptide as a blocking reagent TGF-α induced 

phosphorylation of the Erk kinase could not be inhibited. To confirm that TGF-α does 
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not require CD44v6 as a co-receptor for its induction of the ErbB receptor family and 

to test whether TGF-α might possibly be completely independent of CD44, the effect 

of the downregulation of CD44v6 and the downregulation of all CD44 isoforms in 

HT29 cells was tested in the same experiment. Different HT29 cells were transfected 

either with CD44v6 specific siRNA, siRNA against all CD44 proteins (CD44pan), or 

an unspecific control siRNA. The cells were then serum-starved and induced with 

TGF-α or EGF. EGF was used as a control for the inhibiting effect of the CD44 

downregulation. After growth factor induction, the activation of the ErbB family was 

measured on the level of ErbB1 and Erk. 

 
Figure.5: Induction of the ErbB-receptors via TGF-α is independent of CD44 
HT29 cells were transfected with CD44v6-specific siRNA or control siRNA as indicated. After 
transfection, the cells were starved for 24h. They were then induced with 5 ng/ml of EGF or TGF-α as 
indicated. The cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- 
and ER and -induced ErbB1 and Erk phopshorylation. 
 
 EGF as well as TGF-α induction of the HT29 cells lead to ErbB1- as well as 

Erk-phosphorylation. Upon down-regulation of CD44v6 a block in EGF signaling on 

the ErbB1 as well as on the Erk-level could be observed (Figure. 5). TGF-α-

dependent signaling was not inhibited by a down-regulation of CD44v6. Even the 

transfection of CD44 pan siRNA did not lead to a block of TGF-α-dependent signaling 

although the expression of all CD44 isoforms was inhibited. As expected, EGF-

dependent signaling could be abolished by down-regulation of all CD44 isoforms. An 

unspecific siRNA did not show any effect on either CD44 expression or ErbB receptor 

activation (Figure. 5).  

 Consistent with my previous data, induction of the ErbB receptors through 

TGF-α is not dependent on CD44v6. Moreover, activation of the ErbB receptors 

through TGF-α is independent of CD44, as even a complete down-regulation of all 

CD44 proteins does not abolish its ErbB activation. 
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3.4 HB-EGF-induced activation of the ErbB receptors is dependent on CD44v3 

 TGF-α is not the only ErbB1 ligand that is independent of CD44v6 for its 

induction of the ErbB receptors. Using the CD44v6 peptide I was not able to block 

BC, AR or HB-EGF-dependent activation of the Erk-kinase. HB-EGF and AR are 

heparan-binding growth factors (Cook et al, 1991; Higashiyama et al, 1992). Their 

binding to heparan might be instrumental for their activation of the ErbB receptors. 

 In order to test whether heparan sulphation is involved in the process of AR- 

and HB-EGF induced ErbB receptor activation, serum-starved HT29 cells were 

treated with heparinase, an enzyme that cleaves off heparin-sulphate of the surface 

of target cells. The cells were then induced with HB-EGF or AR. HGF was used as a 

control since for its activation of Met it is dependent on CD44v6, an isoform that is not 

heparin-sulphated (Orian-Rousseau et al., 2002). Therefore, removal of heparan 

sulphate should have no effect. The Erk-kinase was used as a read-out for receptor-

activation since it is activated by Met- as well as by the ErbB receptors. 

 
Figure.6: Induction of the ErbB-receptors via HB-EGF but not AR is dependent 
on heparin-sulphation 
Serum-starved HT29 cells were pre-treated with heparinase at a concentration of 6U/ml  for 3h and 
then induced with 5 ng/ml of HB-EGF or AR (HGF was used as a control). The cell lysates were 
resolved by SDS-PAGE. Western-blotting was used to detect the ErbB-ligands-induced Erk 
phopshorylation. 
 
 Induction of HT29 cells with HGF, HB-EGF or AR lead to Erk-phosphorylation. 

Upon Heparinase treatment, the activation of the ErbB-receptors through HB-EGF 

but not AR was abrogated (Figure. 6). This shows that for its induction of the ErbB 

receptors, HB-EGF is dependent on heparan-sulphation whereas AR is not.  

 In the CD44 protein family, CD44v3 is the only variant of CD44 that carries 

heparan-sulphate side chains. HB-EGF might bind to these heparan-sulphate side 

chains in order to activate the ErbB-receptors. And indeed, such a binding has 

already been shown (Bennett et al., 1995). In order to test whether CD44v3 mediates 

HB-EGF-dependent activation of the ErbB receptors, CD44v3 was down-regulated by 

RNAi technology. 
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 HT29 cells were transfected with CD44v3-specific siRNA or an unspecific 

control siRNA. Then the cells were serum-starved for 24 hours followed by their 

induction with HB-EGF. EGF was used as a control since it is dependent on CD44v6 

and its activation of the ErbB receptors should not be affected by the down-regulation 

of CD44v3. ErbB1- and Erk-phosphorylation was used as read-out for receptor 

activation. 

 
Figure.7: Induction of the ErbB-receptors via HB-EGF is dependent on CD44v3 
HT29 cells were transfected with CD44v3-specific siRNA or control siRNA as indicated. After 
transfection, the cells were starved for 24h. They were then induced with 5 ng/ml of EGF or HB-EGF 
as indicated. The cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- 
and HB-EGF and -induced ErbB1 and Erk phopshorylation. 
 
 Induction of the HT29 cells with EGF or HB-EGF lead to phosphorylation of the 

ErbB1 receptor and of the Erk-kinase. Upon downregulation of CD44v3 by means of 

siRNA the induction of the ErbB receptors through HB-EGF was blocked, whereas a 

control siRNA had no effect (Figure. 7). This suggests that HB-EGF is dependent on 

CD44v3 for its ErbB1-stimulating activity. In contrast, EGF is independent of CD44v3 

(Figure. 7). In conclusion, depending on the ligand, specific CD44 variant isoforms 

can act as co-receptors for the same ErbB-receptor.  

 

 

3.5 Evaluation of ErbB1-homodimer signaling 

 In order to activate the ErbB1 receptor, EGF, ER, HB-EGF and TGF-α bind to 

ErbB1 homodimers or ErbB1/2 heterodimers. ER and HB-EGF can additionally bind 

to an ErbB 4/4 homo- or an ErbB2/4 heterodimer. The cell lines that were used for 

my experiments (HeLa and HT29 cells) express all ErbB receptors. Under these 
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conditions the activation of the ErbB1 receptors through the indicated ligands might 

be mediated by ErbB homodimers as well as heterodimers. To undoubtedly study the 

effect of ligand induction on an ErbB1 homodimer, I changed to the BSp73AS 

pancreatic cell system. In these cells none of the four ErbB family members and only 

the standard isoform of CD44 (which includes no variant exon) are expressed. I 

introduced either the ErbB1 or the ErbB3 receptor into several transfected BSp73AS 

cell lines expressing specific CD44 variants (Rudy et al, 1993; Seiter et al, 1993; 

Sleeman et al, 1997; Sleeman et al, 1996b). ErbB3 is not able to bind to any of the 

ligands tested here and therefore was used as a control for infection. 

 Due to the very low transfection efficiency of the BSp73AS, I used a retroviral 

infection system. The ErbB1 and ErbB3 gene sequences were inserted into a 

lentiviral expression vector that was then introduced into the packaging cell line 

Ecopack 2-293. Ecopack 2-293 cells stably expresses the viral gag, pol, and env 

genes that are necessary for virus particle formation and replication. The retroviral 

expression vector provides the packaging signal, transcription and processing 

elements, and the target gene (ErbB1 or ErbB3). After the transfection of the 

retroviral vector into the ecopack 2 cells, they produce high-titer, replication-

incompetent virus containing the gene of interest. This virus is then collected and can 

infect target cells and transmit target genes; however, it cannot replicate within the 

infected cells because the viral structural genes are missing. 

 After 48 hours, the cell medium containing the virus was collected and added 

to either BSp73AS cells that only express CD44s (AS cells) or to cells that express 

CD44s together with CD44v6 (ASs6 cells). These cells were serum-starved followed 

by their induction with either EGF or TGF-α. The expression of the ErbB1 receptor 

was detected by means of an ErbB1-specific antibody. ErbB1- and Erk-

phosphorylation was then analyzed in ErbB1- and control-transfected cells in the 

presence or absence of EGF or TGF- α. 
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Figure.8: EGF can induce ErbB1 homodimers only in cells expressing CD44v6 
whereas TGF-α can do so independently of CD44v6 expression 
AS cells and the ASs6 cells were transfected with the ErbB1 expression vector receptor or a control 
vector by means of the retroviral ecopack 2-293 system as described in Material and Methods. 
Afterwards the transfected cells were starved and induced with 5 ng/ml of EGF or TGF-α. The cell 
lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- and TGFa and -
induced ErbB1 and Erk phopshorylation. 
 
 In AS- as well as in ASs6 cells expression of ErbB1 was detected. In both 

ErbB1-expressing cell lines TGF-α induced the activation of the ErbB1 receptor and 

of the Erk kinase. EGF on the other hand was only able to activate ErbB1 in ASs6 

cells where CD44v6 is present. EGF is dependent on CD44v6 for the induction of 

ErbB1 homodimers. In the control cells no receptor activation could be measured 

(Figure. 8).  

 To test the requirement of CD44v6 for ER-based ErbB1-homodimer-activation, 

similar procedures as described above were performed. Cells were also induced with 

TGF-α as a control for an ErbB1 activation that is independent of CD44.  

 

 
Figure.9: ER can only induce ErbB1 homodimers in cells expressing CD44v6 
AS and ASs6 cells were transfected with the ErbB1 expression vector receptor or a control vector by 
means of the retroviral ecopack 2-293 system as described in Material and Methods. Afterwards the 
transfected cells were starved and induced with 5 ng/ml of ER or TGF-α. The cell lysates were 
resolved by SDS-PAGE. Western-blotting was used to detect ER- and TGFa and -induced ErbB1 and 
Erk phopshorylation. 
 

 Similar to EGF, ER could only induce ErbB1 activation in cells that express 

CD44v6, whereas TGF-α was able to activate the ErbB1 receptor independently of 

CD44v6 expression (Figure. 9). ER is dependent on CD44v6 for the induction of 

ErbB1 homodimers. Control cells showed no receptor-activation. 

  

 To test whether HB-EGF can activate ErbB1-homodimers in the presence of 

CD44v3, ASs6 cells that express CD44s together with CD44v6 and cells that express 
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CD44s together with one isoform of CD44 that includes the sequences of all of its 

variant exons (ASv1-10) were infected with the ErbB1 receptor protein. The cells 

were then serum-starved and induced with either HB-EGF or EGF (as a control for 

CD44v6-dependent ErbB1 activation). The expression of the ErbB1-receptor was 

then detected and its activation evaluated by measuring ErbB1- or Erk-

phosphorylation. 

 

 
Figure.10: HB-EGF can induce ErbB1 homodimers only in cells expressing 
CD44v3 
Ass6 cells and ASv1-v10 cells were transfected with the ErbB1 expression vector receptor or a control 
vector by means of the retroviral ecopack 2-293 system as described in Material and Methods. 
Afterwards the transfected cells were starved and induced with 5 ng/ml of EGF or HB-EGF. The cell 
lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- and HB-EGF and -
induced ErbB1 and Erk phopshorylation. 
 
 In cells that express CD44v1-10, HB-EGF could induce the ErbB1 receptor 

while it could not do so in the ASs6 cells where CD44v3 is absent. EGF was able to 

induce ErbB1 in ASs6 cells as well as in ASv1-10 cells since the v6 sequence is 

present in both transfectants. The control cells showed no receptor activation 

(Figure. 10). To directly address the CD44v3 isoforms, a CD44v3 expression vector 

has been cloned and will further be tested in similar experiments. 

  

 In summary, my data so far clearly indicate that ligands of the ErbB receptor 

family make use of specific variant isoforms of CD44 in order to induce their cognate 

receptors. While TGF-α appears to be independent of the CD44 family, EGF and ER 

depend on CD44v6 for their induction of the ErbB receptors. HB-EGF is dependent 

on CD44v3. The function of CD44 as a co-receptor is therefore strictly dependent on 

the ligand that induce the RTK and not on the RTK itself. 
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3.6 Blocking the activation of the ErbB family by inhibiting Ezrin 

 For the activation of the RTKs Met and VEGFR-2, CD44v6 has a two-fold 

function. First the extracellular domain of CD44v6 is involved in the presentation 

process of the authentic ligands of these RTKs (Orian-Rousseau et al., 2002; 

Tremmel et al., 2009). Secondly, the intracellular part of CD44v6 is used to enable 

downstream signaling. CD44v6 binds to the ERM protein ezrin that in addition binds 

to the actin cytoskeleton (Orian-Rousseau et al., 2002; Tremmel et al., 2009). 

 Does the intracellular domain of CD44 also mediate downstream signaling 

from the ErbB receptor family? If so, does the downstream signaling depend on ERM 

proteins and the cytoskeleton? In order to test this assumption, an RNAi experiment 

was performed in HT29 cells. Amongst the ERM proteins, ezrin is the most 

abundantly expressed one in these cells (Orian-Rousseau et al., 2007). Specific 

siRNA against ezrin was transfected into the HT29 cells in order to repress the 

expression of this ERM-protein whereas an unspecific siRNA was used as a control. 

The cells were then starved for 24 hours and induced with EGF, ER, TGF-α or HB-

EGF in order to test whether an activation of the ErbB-downstream target Erk was 

still possible. HGF induction was used as a control.   

 

 

 

 
Figure.11: The downstream signaling of the ErbB receptors is dependent on 
Ezrin 
HT29 cells were transfected with Ezrin-specific siRNA or control siRNA as indicated. After transfection, 
the cells were starved for 24h. They were then induced with 5 ng/ml of ErbB ligands as indicated. The 
cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect ErbB ligands-induced 
ErbB1 and Erk phopshorylation. 
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 Upon downregulation of ezrin, EGF, ER, and HB-EGF-induced downstream 

signaling to the Erk kinase was inhibited, while there was no effect on the activation 

of the ErbB1 receptor itself (Figure. 11). In the cells transfected with a control siRNA, 

no inhibition of Erk was observed. Strikingly, even though CD44-independent TGF-α-

induced signaling was blocked after downregulation of ezrin whereas ErbB1 

activation was not inhibited (Figure. 11). This suggests that although TGF-α can 

induce the ErbB-receptors independently of CD44 its signal transduction to 

downstream targets like the Erk kinase depends on ezrin. 

Altogether, the downstream signaling of all tested ErbB ligands is dependent on this 

ERM-protein.  

 For the Met and VEGFR-2 receptor (Orian-Rousseau et al., 2007; Tremmel et 

al., 2009), the link between ezrin and actin is required for downstream signaling. To 

evaluate whether this was also the case for the ErbB receptors, an ezrin-construct 

truncated in the last 29 aminoacids, was used. The protein encoded by this construct 

is unable to bind to the actin cytoskeleton and its dominant-negative function would 

suggest that a link between ezrin and actin is indeed required for ErbB signaling. 

 HT29 cells were transfected with the truncated ezrin construct or with the 

empty vector as an unspecific control. These cells were serum-starved and then 

induced with the ErbB1-ligands EGF, ER, TGF-α and HB-EGF. HGF was used as a 

control. The phosphorylation of the ErbB1 receptor and the Erk kinase was 

measured.  

 
Figure.12: The downstream signaling of the ErbB receptors is dependent on 
Ezrin binding to the actin cytoskeleton 
HT29 cells were transfected with an Ezrin-dominant negative construct or a control empty vector as 
indicated. After transfection, the cells were starved for 24h. They were then induced with 5 ng/ml of 
ErbB ligands as indicated. The cell lysates were resolved by SDS-PAGE. Western-blotting was used 
to detect ErbB ligands-induced ErbB1 and Erk phopshorylation. 
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 Upon transfection of a truncated ezrin construct the downstream signaling 

induced by EGF, ER, HB-EGF and TGF-α was blocked whereas the ErbB1 activation 

itself was not abolished. In contrast, transfection with the empty vector did not have 

any effect (Figure. 12). This suggests that, EGF, ER, HB-EGF and TGF-α require the 

binding of ezrin to the actin cytoskeleton for signal transduction. 

 

 

 

 The ErbB receptors have been postulated to play an important role in 

proliferation and migration (Normanno et al, 2005). By means of the CD44v6 peptide, 

I tested whether migration of HeLa cells induced by the ErbB ligands EGF and ER 

was dependent on CD44v6. TGF-α was used as a control as this ligand is not 

dependent on CD44 isoforms and TGF-α -induced migration should not be blocked. 

The experiment was performed in a Boyden chamber containing two chambers (an 

upper and a lower chamber) that are separated by a membrane. This membrane 

contains 8µm pores. Target cells were seeded into the upper chamber, whereas the 

lower chamber contained the chemoattractants, i.e. the ErbB ligands. In order to 

reach the chemoattractants in the lower chamber, the cells had to cross the 

membrane. Cells that were still present on the top of the membrane were wiped off 

using a cotton swab. Target cells that adhered to the lower side of the membrane 

were stained by crystal violet. They were then lysed and the staining was measured 

with a photometer. 

3.7 The role of CD44v6 in migration 

 

 HeLa cells were seeded in the upper compartment of the Boyden chamber, 

serum-starved, treated with the CD44v6 peptide and were then allowed to migrate 

through the pores of the membrane into the lower compartment, in which the ErbB 

ligands were present. The cells on the lower side of the membrane between the two 

compartments were fixed after their migration and stained with crystal violet. The 

number of cells that had migrated to the lower side of the membrane was determined 

after lysis of the cells using in a photometer. Statistical analysis was performed and 

presented as a diagram. 
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Figure.13: Migration induced through EGF is blocked by application of the v6-
peptide 
Hela cells were seeded in a Boyden chamber. The cells were serum-starved, pre-incubated with 
100ng/ml of a CD44v6-specific peptide or a control peptide and afterwards treated with 20 ng/ml of 
EGF. After 24h , the migration of the treated cells was measured by means of a crystal violet staining. 
The cells were fixed, stained and lysed. The absorbance was measured at 600nm. Each determination 
represents the average of three individual wells. Error bars represent standard deviation (s.d.).  
Data presented are representative of at least three separate experiments. 
  
 The HeLa cells responded to EGF and migration was observed. Control-

peptide treated cells behaved like untreated cells. The v6-peptide treated cells 

showed a 60% reduction in migration . Thus, EGF-induced migration of HeLa cells 

can be significantly blocked by inhibiting CD44v6 (Figure. 13).  

 

 In the case of ER, a similar experiment was performed. The results were 

comparable to that obtained in the case of EGF (Figure. 14). 

 

 
Figure.14: Migration induced through ER is blocked by application of the v6-
peptide 
Hela cells were seeded in a Boyden chamber. The cells were serum-starved, pre-incubated with 
100ng/ml of a CD44v6-specific peptide or a control peptide and afterwards treated with 20 ng/ml of 
EGF. After 24h , the migration of the treated cells was measured by means of a crystal violet staining. 
The cells were fixed, stained and lysed. The absorbance was measured at 600nm. Each determination 
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represents the average of three individual wells. Error bars represent standard deviation (s.d.). 
Data presented are representative of at least three separate experiments. 
 

 Then the experiment was repeated using TGF-α as a chemoattractant. No 

inhibition of migration was observed upon treatment with the CD44v6 peptide 

(Figure. 15) as expected. 

 
Figure.15: Migration induced through TGF-α is independent of CD44v6 
Hela cells were seeded in a boyden chamber. The cells were serum-starved, pre-incubated with 
100ng/ml of a CD44v6-specific peptide or a control peptide and afterwards treated with 20 ng/ml of 
EGF. After 24h , the migration of the treated cells was measured by means of a crystal violet staining. 
The cells were fixed, stained and lysed. The absorbance was measured at 600nm. Each determination 
represents the average of three individual wells and error bars represent standard deviation (s.d.). 
Data presented are representative of at least three separate experiments. 
 

 Altogether, these results show that the migration induced by EGF and ER but 

not TGF-α is dependent on CD44v6. 

 

 

3.8 The role of CD44v6 in breast cancer 

 The ErbB receptors play a paramount role in human breast cancer where the 

activation of the ErbB receptors, particularly ErbB1 and 2 have been shown to be 

deregulated (Hynes & MacDonald, 2009). The cells used in my experiments so far 

were colon- or cervix-carcinoma lines. In order to address the role of CD44v6 in 

breast cancer, MCF7 and MCF10A cells were used. MCF7 cells are pleural effusion 

cells from an invasive breast ductal carcinoma whereas MCF10A cells are pre-

neoplastic mammary epithelial cells.  
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 The expression of CD44 in these cell lines was examined by a run-off PCR 

analysis. MCF7 and MCF10A cells were lysed, the total RNA was isolated from the 

lysates and converted into cDNA via reverse transcription. Then PCR reactions were 

performed with specific forward primers for each variable exon of CD44 and one 

common backward primer in the constant region of CD44 (see illustration 6).  

 

 
Illustration 6: Scheme of the primer pairs used for the detection of of CD44 
mRNA by PCR 
 

 A run-off PCR permits the determination of both structure and approximate 

abundance of CD44 isoforms in the cells. The size of a specific band corresponds to 

the exons that are expressed between the two respective primers. Consequently, if 

the bands corresponding to adjacent exons form a ladder it indicates that they are 

expressed together in a larger isoform. A ladder formed for example by v2 to v10 

suggests that the CD44 variants v2-10 are expressed as one transcript. 

 

 
 

Figure.16: Detection of CD44 by PCR. MCF7 as well as MCF10A cells 
predominantly express CD44v2-v10 in one long isoform 
The expression of CD44 transcripts was tested by run-off PCR. The total RNA of the target cells was 
isolated, transcribed into cDNA and the expression of CD44 variant transcripts was detected by PCR 
via different variant-exon specific forward primers and one common backward primer specific for a 
region in the constant part of CD44. 
 
 MCF7 as well as MCF10A cells express CD44v2-10 predominantly in one 

large transcript as well as several other smaller transcripts (Figure. 16). Thus, these 

V2 V3 V4 V6 V8 V9 V10 V5 V7 Rev Primer 
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cells not only express the ErbB1 receptor (Gramlich et al, 1993; Rodriguez-Fragoso 

et al, 2009) but also CD44 variants that could act as co-receptors for the ErbB 

receptors.  

 

 To test whether CD44v6 acts as a co-receptor in MCF7 or MCF10A cells, I 

performed a peptide blocking experiment similar to those described in section 2.2. 

The cells were serum-starved for 24h and then pre-incubated with a v6 peptide or an 

unspecific control peptide. Then, the cells were induced with EGF or HGF as a 

control. As a read-out for ErbB-activation, the phosphorylation of the Erk-kinase was 

used. 

 

 

 

 

 

     
Figure. 17: CD44v6 acts as a co-receptor for EGF-dependent ErbB induction in 
breast cancer cells. 
Serum-starved MCF7 and MCF10 cells were pre-incubated for 5 min with 100ng/ml of a CD44v6-
specific peptide or a control peptide. Afterwards the cells were induced with 20 ng/ml of EGF.   
The cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF- induced Erk-
kinase phopshorylation. 
 
 In MCF7 as well as in MCF10 cells, the activation of the ErbB receptors by 

EGF could be blocked by a CD44v6-specific peptide, whereas an unspecific control 

peptide showed no effect. CD44v6 is required as a co-receptor for EGF-induced 

ErbB-activation in these breast cancer cells (Figure. 17). 

  

 To further confirm this result, the CD44v6 expression was downregulated in 

MCF7 cells by CD44v6-specific siRNA.  
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Figure. 18: CD44v6 acts as a co-receptor for EGF-dependent ErbB induction in 
breast cancer cells. 
Serum-starved MCF7 cells were treated with CD44v6-specific siRNA or control siRNA respectively. 
After transfection, the cells were starved for 24h. They were then induced with 5 ng/ml of EGF.  
The cell lysates were resolved by SDS-PAGE. Western-blotting was used to detect EGF -induced Erk 
phopshorylation. 
 
 SiRNA based downregulation of CD44v6 in MCF7 cells significantly reduced 

the activation of the ErbB receptors as deduced by the inhibition of the Erk signal. 

This confirms that the action of CD44v6 as a co-receptor for EGF-based ErbB 

activation is indeed required in breast cancer cells (Figure. 18).  

 

 

 

 

3.9. Complex formation between CD44v6 and the ErbB1 receptor protein 

 The collaboration between the ErbB1-receptor and CD44v6 for EGF-

dependent receptor activation in breast cancer cells suggests that these two proteins 

are located in close vicinity. In this final paragraph I tested whether ErbB1 and 

CD44v6 form a complex. To this end, a co-immunoprecipitation experiment was 

performed. Serum-starved MCF10 cells were treated with EGF (or left uninduced) 

and ErbB1 was subsequently immunoprecipitated with an ErbB1-specific rabbit 

antibody. The precipitates were then probed for the presence of CD44v6. As a 

control, a CD44v6 precipitate was loaded on the gel. The specificity of the IP was 

controlled using an unspecific rabbit IgG.  
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Figure.19: ErbB1 and CD44v6 are found in an inducible complex 
Serum-starved MCF10 cells were either induced with 5 ng/ml of EGF or left untreated. Afterwards an 
ErbB1-Immunoprecipitation (or CD44v6-Immunoprecipitation as a control) was performed. The cell 
lysates were resolved by SDS-PAGE. A Western-blot was performed to detect ErbB1 and CD44v6. 
 

 In MCF10 cells, CD44v6 could be immunoprecipitated together with ErbB1. 

Interestingly, this complex formation was inducible and could only be found in cells 

that were treated with EGF. CD44v6 is in a complex with ErbB1 when it acts as a co-

receptor for its EGF-based induction (Figure. 19). 

  

 In conclusion, my data show that in order to induce the ErbB receptors, 

several ErbB1 ligands are dependent on specific variant isoforms of CD44 

(Illustration 7). While activation by TGF-α is independent of CD44, EGF and ER 

require CD44v6, whereas HB-EGF relies on CD44v3. This suggests that the 

requirement for CD44-isoforms as a co-receptor is ligand dependent. 

 In addition, all of the ligands that I have tested are dependent on the ERM-

protein ezrin and its binding to the actin cytoskeleton for their downstream signaling 

to the Erk-kinase. Even TGF-α that does not depend on CD44, shares this 

requirement.  

 
Illustration 7: Model of ErbB signaling: In order to induce the ErbB receptors, different ErbB 
ligands require specific CD44 isoforms. EGF and ER are dependent on CD44v6, HB-EGF requires 
CD44v3 and TGF-α is independent of CD44. For their signaling all of the ErbB ligands are dependent 
on ezrin binding to the actin cytoskeleton. 
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 Furthermore, the EGF- and ER-dependent migration of HeLa cells was also 

dependent on the co-receptor function of CD44v6 whereas the TGF-α dependent 

migration of these cells was not. 

 Lastly, in breast cancer cells, CD44v6 also acts as a co-receptor for EGF and 

can be co-immunprecipitated together with the ErbB1 receptor upon EGF-induction.  
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4. Discussion 

 

4.1 CD44 in bacterial invasion 

 In my PhD thesis I have shown that the co-receptor function of CD44v6 for the 

activation of the RTK Met by InlB is required for the invasion of Listeria 

monocytogenes into host cells. The uptake of the bacteria into HeLa cells was 

significantly blocked by a CD44v6 peptide or a CD44v6-specific antibody. The 

adhesion of the bacteria to the HeLa cells however was not significantly reduced by 

the CD44v6 peptide. This is in agreement with the fact that InlB does not mediate the 

adhesion of L.monocytogenes to their target cells. Normally other proteins play a role 

in this process. The autolysin ami for example promotes attachement of the bacteria 

to mammalian cells by means of its GW domains (Milohanic et al, 2001). D-alanin 

including lipoteichoic acids (LTAs) also facilitate binding of the bacteria to its target 

cells (Abachin et al, 2002). The bacterial proteins dltA, dltB, dltC and dltD catalyze 

the incorporation of D-alanine residues into bacterial cell wall-associated LTAs.  

 One of the first organs that is infected by L.monocytogenes is the liver where 

the bacterium usually multiplies before infecting other organs (Vazquez-Boland et al, 

2001). Interestingly, the invasion of liver cells primarily depends on InlB (Vazquez-

Boland et al., 2001). The reason why infection of liver is mainly dependent on InlB 

could be due to the importance of Met and CD44 in the liver. The Met RTK has an 

essential role in liver development and liver regeneration (Borowiak et al, 2004; 

Schmidt et al, 1995). In wildtype mice, an inhibition of CD44v6 by means of blocking 

antibodies leads to a block of liver regeneration and a lack of Met phosphorylation 

indicating that Met and CD44v6 collaborate in this process (Olaku et al, 2011).  

 The finding that CD44v6 is involved in the invasion process of 

L.monocytogenes is only one of many evidence that links the CD44 family to 

bacterial infection. In fact, although they depend on different entry mechanisms in 

order to infect their host cells, several pathogens share a need for CD44 to invade:  

 Neisseria meningitidis, for example, a bacterium that can cause meningitis. 

Following its initial adhesion to the cell surface mediated by so called bacterial type 

IV pilus like structures, N.meningitidis recruits CD44 in order to induce structural 
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changes within the cytoskeleton of its host cells to mediate its internalisation (Eugène 

et al, 2002).   

 Shigella flexneri, the causative agent of bacillary dysentry in humans, secretes 

several proteins that are necessary for its infection process and one of them, lpaB, 

binds to CD44s (Skoudy et al, 2000). This binding triggers cytoskeletal 

rearrangements and its entry into host cells. 

 Streptococcus pyogenes, a bacterium that can cause group A streptococcal 

infections, has an HA-rich cell wall. CD44 molecules on host cells can bind to the HA 

present on the bacterial surface and trigger the tyrosine phosphorylation of several of 

the host cell cytoplasmic proteins. This leads to cytoskeletal rearrangements and 

eventually to the uptake of the bacterium (Cywes et al, 2000). All CD44 proteins are 

able to bind to HA through their extracellular domain. HA might be a common feature 

of bacterial cell walls mediating their attachement to host cells. Indeed, HA is also an 

integral molecule of the capsule of the pathogen group A streptococcus where it 

enables the attachement of the bacteria to human keratinocytes (Schrager et al, 

1998).  

 All CD44 isoforms share the ability to bind to ERM proteins through their 

cytoplasmic tail. This binding might be a general requirement for the bacterial entry 

into target cells. And indeed, the entry process of S. flexneri (Skoudy et al, 1999) as 

well as L.monocytogenes (Jung et al., 2009) into host cells is dependent on CD44 

binding to an ERM protein. N. meningitidis also interacts with micro-villi-like structures 

that are rich in CD44 and ezrin prior to infection (Eugène et al, 2002; Merz et al, 

1999).  

 The infection process of S. pyogenes (Cywes et al., 2000) and S. flexneri 

(Skoudy et al., 1999) as well as the invasion processes of L. monocytogenes (Jung et 

al., 2009) and N. meningitidis (Eugène et al., 2002) is mediated by cytoskeletal 

rearrengements. Ezrin binding to CD44 and the actin cytoskeleton might be required 

for signaling events that trigger these changes in the cytoskeleton. And indeed, the 

invasion process of L.monocytogenes depends on the activation of the Met RTK that 

is mediated by CD44v6 (Jung et al., 2009). Signal transduction via Met mediates 

actin remodeling (reviewed in Ivetic & Ridley, 2004) and ezrin binding to CD44v6 and 

Met is a requirement for signal transduction (Orian-Rousseau et al, 2007). 
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 L.monocytogenes can move within infected cells and can even infect new cells 

by transfer directly from one cell to another. It seems that also this movement and the 

direct transfer is dependent on CD44 and its interaction with ezrin (Pust et al, 2005).  

 

 Altogether, these data suggest that ezrin is a common intracellular binding 

partner of CD44 for bacterial infection.  

  

 One year after the release of my paper on the co-receptor function of CD44v6 

for Met induced by InB, a paper was published that challenged the need of CD44v6 

for Listeria invasion (Dortet et al, 2010). In this paper they used different HeLa cells 

as their cells do not express CD44v6 in contrast to the cells that we use. Also in the 

HT29 cells that they used they could not show a dependency of Met on CD44v6. At 

this point I cannot explain this contradiction. 

 

 

4.2 CD44 is a co-receptor for Receptor Tyrosine Kinases 

 Interestingly, CD44v6 not only mediates the activation of Met through InlB but 

is also involved in the activation of Met through its authentic ligand HGF. These two 

ligands share no structural homologies and bind to different regions of Met (Machner 

et al, 2003; Niemann et al, 2007). This suggests that for its activation, Met requires 

the co-receptor CD44v6 independently of the ligand it is addressed by. However, 

CD44v6 not only acts as a co-receptor for Met. It also cooperates with the VEGFR-2 

receptor where it mediates receptor activation through the VEGFR-2 ligand VEGF-A 

(Tremmel et al., 2009). These data suggest that CD44v6 might not be recuited by the 

RTK it works together with but by the ligands that address these RTKs.  

 In order to test whether this is the case, I studied the EGFR family of RTKs 

where one receptor pair is addressed by several ligands. In my PhD thesis, I have 

shown that there is indeed a ligand specificity in the recruitment of CD44 isoforms by 

means of downregulation and overexpression studies as well as peptide blocking 

experiments. Although, EGF, ER, HB-EGF and TGF-α can activate the same 

receptor pairs (either ErbB1-homo- or ErB1/2 heterodimers), they show a specific 

recruitment of CD44 isoforms. While EGF and ER are dependent on CD44v6 in order 
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to induce the ErbB receptors, HB-EGF is dependent on CD44v3. TGF-α on the other 

hand is completely independent of the CD44 family. 

 

 CD44v6 is not the only CAM that is recruited by several structurally different 

growth factor ligands. The α5β3 integrin for example is recruited by the growth factors 

FGF-1 (Mori et al, 2008), IGF-1 (Saegusa et al, 2009) and NRG-1 (Ieguchi et al, 

2010). It can bind to these growth factors, presents them to their RTKs and promotes 

signaling through their RTKs. The α9β1 integrin is also recruited by several ligands. It 

binds to Nerve GF (NGF), brainderived neurotrophic factor (BNF), and NT3 and 

presents them to the NGF receptor TrkA/NTRK1 (reviewed in Staniszewska et al, 

2008).  

 

  

4.3 CD44 as a mediator of ligand binding 

 Similar to the integrins, the contribution of CD44 isoforms in RTK activation 

could be direct binding of the ligands and presentation. Evidence suggests that CD44 

can directly bind to growth factors. Upon transfection with CD44v3, a heparin-

sulphated isoform of CD44, COS (CV-1 simian in origin carrying SV40 sequences) 

cells were able to bind to bFGF or HB-EGF whereas this was not the case in control 

cells (Bennett et al, 1995). The binding of these ligands was abolished by heparinase 

treatment. In Elisa studies with CD44v3-IgG constructs, a direct binding of bFGF and 

HB-EGF to CD44v3 was confirmed (Bennett et al., 1995).  

 Also, in the collaboration between CD44v6 and Met we have strong indications 

that CD44v6 is able to bind to HGF. In FACS analysis, rat pancreatic cancer cells 

that express Met but not CD44v6 are not able to bind to HGF unless transfected with 

a CD44v6 isoform. In addition, T47D cells that do not express Met but express 

CD44v6 are able to bind HGF. By means of a CD44v6 peptide, the binding of HGF to 

these cells can be blocked (Y.Volz and V.Orian-Rouseau, unpublished data). Elisa 

experiments performed with purified proteins as well as Biacore experiments show a  

binding of the CD44v6 ectodomain to HGF in the micromolar range (Y.Volz & 

V.Orian-Rousseau, unpublished data). FACS analysis and binding assays revealed 

that CD44v6 is also able to bind VEGF-A. Similar observations were made in my 

diploma thesis in the case of InlB. Indeed, in a FACS analysis, InlB was shown to 
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bind exclusively to cells expressing CD44v6 and CD44s as compared to cells that 

express CD44s alone (C.Jung & V.Orian-Rousseau, unpublished data). 

 Ligand presentation might be a common role of CAMs. Syndecan -1, -2 or -4 

for example, are required for the binding of FGF-2 to FGFR-1 and for its subsequent 

activation (Steinfeld et al, 1996). Similarly, binding of the CAM Neuropilin-2 to VEGF-

C and VEGF-D is required for the activation of the RTK VEGFR-3 (Staton et al, 

2007). 
 CD44 could have the same function for the ErbB receptors – binding of their 

ligands and presentation. This presentation could be a requirement for the 

subsequent binding of the ligand to the ErbB receptor. Several ErbB ligands like for 

example EGF and TGF-α can bind directly to the ErbB1 receptor in vitro (Burgess et 

al, 2003). This seems to contradict a role for CD44 proteins in the ligand binding 

process. However, in in vitro studies the concentration of the ErbB ligands is higher 

than under physiological conditions. While the affinity for their ligands might be high 

enough for the ErbB receptors to allow ligand binding in vitro, in vivo the ligand 

availability might be too low and below the requirements for a direct binding of the 

ErbB receptors. 

 A possible binding of CD44 isoforms to ErbB ligands might help to concentrate 

them in a close vicinity to the receptor. In fact, CD44 variant proteins are able to form 

dimers or oligomers. In rat pancreatic cancer cells, splice variants of CD44 but not 

CD44s form molecular aggregates in the plasma membrane (Sleeman et al, 1996a). 

In addition to dimers, larger aggregates of CD44 variants could also be stabilized by 

chemical crosslinking (Sleeman et al, 1996a). Large aggregates of CD44 could bind 

to ErbB ligands, e.g. HB-EGF, thereby creating an area of growth factor enrichment 

around the RTK. With the ligand concentrated in this manner, the ErbB receptor can 

then bind to it. 

  To find out whether the ErbB ligands directly bind to CD44 variant isoforms, in 

vitro analyses have to be performed with purified proteins. In Elisa and Biacore 

assays, a possible binding of CD44 proteins to the ErbB ligands could be 

investigated. In addition to this, it has to be determined whether other variant 

isoforms are able to act as co-receptors for ErbB ligands other than EGF, ER and 

HB-EGF and can possibly also bind to them. The assays described in my phD thesis 

like for example RNAi and peptide blocking could be used to this end in addition to 

binding assays like Elisa and Biacore.  
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 In addition to the ErbB ligands used in my phD thesis, several data suggest 

that CD44 isoforms are also involved in the activation of the ErbB receptors through 

additional growth factors. A blocking antibody addressing all isoforms of CD44 was 

able to inhibit NRG-1-induced activation of the ErbB receptors and NRG-1 was not 

able to activate the Erk-kinase in cells that express ErbB2, ErbB3 and CD44s 

whereas it could activate cells additionally expressing CD44v1-10 (L.Chen & V.Orian-

Rousseau, unpublished data). Furthermore, CD44 appears also to be required for 

NRG-1-induced ErbB-activation in Schwann cells (Sherman et al, 2000). 

 It is possible that in addition to the binding of their ligands, CD44 proteins 

might have additional functions for the activation of the ErbB receptors. 

 

 

4.4 Other possible functions of CD44 as a co-receptor 

 CD44 can form dimers and oligomers. This might correlate with their ability to 

support ErbB-signaling. In response to EGF and NRG-1, the heterodimerization of 

purified extracellular ErbB receptor domains could not be shown. This suggests that 

an auxiliary molecule might be required for heterodimerization in vivo (Ferguson et al, 

2000). In addition, the heterodimerization of ErbB2 and ErbB3 could not be triggered 

in vitro in response to NRG-1 (Horan et al, 1995). And in fact, CD44 catalyzes the 

heterodimerization of ErbB2 and ErbB3 in response to NRG-1 in Schwan cell 

differentiation (Sherman et al., 2000). 

  All CD44 isoforms can bind to HA and this binding might also play a role 

in ErbB activation. Indeed, the binding of CD44s to HA stimulates the activation of the 

ErbB2 receptor in ovarian cancer, leading to increased tumor cell proliferation 

(Bourguignon et al, 2007b; Bourguignon et al, 2007c; Bourguignon et al, 1997). Also, 

CD44v3 stimulates ErbB2-induced cell proliferation upon HA-binding in ovarian 

cancer cells (Bourguignon et al, 2003). In fibroma cells of the jaw bone, the binding of 

CD44 to HA leads to a phosphorylation of ErbB1 and increased cell proliferation 

(Hatano et al, 2011). In turn, the synthesis of HA can be influenced by ErbB 

signaling, as EGF or NRG-1 induces the upregulation of the HA synthases Has2 and 

Has3 in organotypic keratinocyte cultures (Bourguignon et al, 2007a; Pasonen-

Seppänen et al, 2003).  

 A binding of CD44 to HA seems to increase the phosphorylation of the ErbB 

receptors. The activation of ErbB receptors can lead to cell survival. This is especially 
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relevant in human cancers. Malignant cells are able to survive in conditions that 

would cause a growth arrest or apoptosis in normal cells (Hanahan & Weinberg, 

2000).  By cooperating with CD44, the ErbB receptors might mediate  survival in 

cooperation with CD44 proteins. And indeed, the binding of HA to CD44 stimulates 

cell survival in colon carcinoma cells (Misra et al, 2008). Upon binding of HA to 

CD44, ErbB2 activation triggers the induction of cycooxygenase-2 (COX-2) (Misra et 

al, 2008). Two of the  COX-2 metabolites, prostaglandin A2 and A1 can bind to p53 in 

the cytosol and inhibit its ability to cross into the nucleus, thereby blocking the 

apoptosis inducing function of this protein (Johnsen et al, 2004). 

 Our findings regarding Met activation revealed a different effect of HA. CD44 

binding to HA produced by confluently growing cells leads to a switch of the 

intracellular binding partners of CD44. Instead of binding to ERM proteins, CD44 

recruits merlin, a protein that can bind to CD44 but not to the actin cytoskeleton 

(Morrison et al, 2001). Merlin disrupts the link between CD44 and the cytoskeleton 

and thereby inhibits activation of Ras by growth factor receptors resulting in growth 

arrest (Morrison et al, 2007). The binding of HA to CD44 proteins cooperating with 

Met also inhibits the activation of the RTK itself (D.Koschut & V.Orian-Rousseau, 

unpublished data). According to these findings, binding of CD44 to HA could acts as 

a sensor of cell density and block RTK signaling. 

 Different sizes of HA seem to have different effects on cell proliferation. While 

in most situations, HA is found in high molecular form, at sites of inflammation low-

molecular-weigh HA is poduced (sHA) (reviewed in Stern et al, 2006). In contrast to 

high molecular HA, the binding of CD44 to sHA, induces upregulation and tyrosine 

phosphorylation of Met in human chondrosarcoma cells (Suzuki et al, 2002). 

  

 In summary, positive effects have been described in the case of CD44 binding 

to HA for the ErbB receptors whereas inhibiting effects of such a binding are 

observed in the case of Met. The role of HA seems to differ depending on the cell 

type and the microenvironmental context. The mechanisms involved in these findings 

have to be evaluated by further studies. 

 

 While CD44 can bind to HA with its extracellular domain, its cytoplasmic tail is 

able to bind to ERM-proteins. These ERM proteins link CD44 to the actin 

cytoskeleton.  
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4.5 Ezrin as a mediator of downstream signaling 

 In my PhD I showed that CD44 isoforms need ezrin to enable signaling of the 

ErbB receptors. In order to mediate this signaling, ezrin needs to bind to the actin 

cytoskeleton. However, I have not shown that the direct link between ezrin and CD44 

is required. By introduction of a CD44 construct mutated in the ezrin binding region 

into HT29 cells, it would be possible to test if this link is necessary for signaling. 

In addition to the ErbB receptors, Met and VEGFR-2 signaling is dependent on ERM 

proteins. Interestingly in cells that don’t express CD44v6, c-Met recruits a different 

co-receptor, ICAM-1, that also dependent on ezrin for signal transduction. 

Even in situations where a co-receptor has not been identified so far, for example in 

the case of the PDGF receptor, ezrin is required for signaling (Morrison et al., 2001). 

 The CD44 isoforms that I tested do not function as a co-receptor for TGF-α, 

yet for the TGF-α induced signal transduction, the ErbB receptors are still dependent 

on ezrin. A different co-receptor most likely mediates ezrin recruitment in this case. 

The CAM integrin αvβ3  is a likely candidate for such a function since integrins, can 

bind to ERM proteins with their cytoplasmic tail (reviewed in Plow et al, 2009) and 

this particular integrin was suggested to be involved in the activation of the ErbB 

family by TGF-α (Ellis et al, 2007).  

 These data suggest that ERM proteins, and especially ezrin, are required to 

enable signaling. Further evidence for such a function comes from the 

downregulation of ezrin by siRNA in osteosarcoma cells that led to a reduction of 

MAPK- and Akt-activation (Khanna et al, 2004). Also, as discussed in the first 

paragraph, ezrin might be required for signal transduction in bacterial invasion. 

Furthermore, in some cancers that are characterized by unregulated signaling such 

as gastric cancer, ezrin is overexpressed (Zhao et al, 2011). The role of ERM 

proteins in signal transduction could be the recruitment of the actin cytoskeleton. 

Once recruited by these proteins, actin might provide a network where the 

components of a signaling event are brought together and synchronized. Actin could 

function both as a mechanical scaffold, holding signaling molecules in place and as a 

signal transducer that can directly modify the activation state of signaling proteins. 

 One direct involvement of the actin cytoskeleton in signaling is for example the 

activation of the transcription factor SRF. SRF can address a subset of target genes 
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in complex with its co-activator MAL (Treisman et al, 1998). Free G-actin can inhibit 

SRF activity by desposing of this coactivator (Miralles et al, 2003).  

  However, other evidence showing a role of the actin cytoskeleton in signaling 

rather suggests that actin is recruited as a consequence of signaling and not as a 

prerequisit for it. Rho GTPases for example are well known to regulate actin 

dynamics (Ridley, 2006). They are involved in processes such as the formation of 

membrane protrusions and vesicle trafficking and can activate two types of actin 

nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which 

both mediate actin polymerization (reviewed in Ridley, 2006). Also, processes like 

cell migration are dependent on the signal induced reorganization of actin filaments 

(reviewed in Ridley et al, 2003). 
 

 

4.6 The significance of the CD44 co-receptor function in breast cancer 

 Different members of the ErbB family of RTKs are either overexpressed or 

mutated in a wide variety of cancers (reviewed in Hynes & MacDonald, 2009). For 

example, high ErbB1 expression was found in a majority of carcinomas including 

mammary carcinomas and amplification of the ErbB2 gene can be found in 20-30% 

of metastatic breast cancer lesions. The tumorigenicity of these breast cancer types 

depends on the constitutive activation of the ErbB receptors. 

 In my PhD, I showed that CD44v6 enables the activation of the ErbB receptors 

through EGF in several breast cancer cell lines. CD44v6 should therefore play a role 

in breast cancer types that are dependent on EGF-based ErbB activation for their 

tumorigenicity. And indeed, the evaluation of 100 primary invasive breast tumors and 

18 lymph node metastases connected the expression of CD44v6 with tumorigenity. 

The presence of these CD44 variants correlates with poor survival (Kaufmann et al, 

1995a). Two more recent studies came to similar results (Brown et al, 2011; Yu et al, 

2010). 

 However, there are conflicting data concerning the role of CD44v6 in breast 

cancer. A study, evaluating 109 patients with stage two breast neoplasia for example 

did not associate CD44v6 expression with disease free survival or overall survival at 

all (Morris et al., 2001). An explanation for the conflicting studies could be that 

CD44v6 does not act as a co-receptor for all breast cancer types. In cancer types 

where the activation of the ErbB-receptors is mediated by TGF-α for example, 
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CD44v6 would not be needed as a co-receptor since TGF-α is independent of CD44. 

Interestingly, a common type of breast cancer involves the expression of TGF-α in an 

autocrine loop in order to stimulate breast cancer cell growth (Scala et al, 1995; 

Umekita et al, 2000). In the case of constitutive ErbB2 activation, a common type of 

unregulated ErbB signaling in breast cancer, a ligand is not needed in order to 

activate the ErbB2 receptor (reviewed in Ross & Fletcher, 1998b). Since as 

discussed above, a likely role for CD44 action is ligand binding and presentation, it is 

questionable whether CD44 is needed at all to activate signaling in case of ErbB2 

ligand-independent activation.   

 The importance of CD44v6 in breast cancer will have to be tested in vivo. 

Accordingly, at the end of my PhD I started such an experiment in a syngeneic breast 

cancer model. Murine 4T1 cells that are highly metastatic were used. In these cells, 

similar to MCF10A cells, the ErbB receptors can be activated by EGF and this 

activation is dependent on CD44v6 (A. Sahadevan & V.Orian-Rousseau, unpublished 

data). 4T1 cells were originally derived from a spontaneously arising BALB/c 

mammary tumor (Aslakson & Miller, 1992). When introduced orthotopically,  4T1 cells 

grow rapidly at the primary site and form metastases in the lung and the lymphnodes 

over a period of 3-6 weeks. The tumor growth and metastatic spread of 4T1 cells in 

BALB/c mice very closely mimics human breast cancer and is an animal model for 

stage IV human breast cancer (Tao et al, 2008). I orthotopically injected 4T1 cells 

into the mammary fat pad of female BALB/c mice. The mice were injected i.p. with a 

CD44v6 peptide or a control peptide 3 times a week. This experiment was finished 

before the end of my phD and the tumor sizes between CD44v6 peptide treated and 

control animals did not differ significantly at the end of the experiments. After the 

mice were sacrificed,  the tumors as well as the lungs and lymph nodes of the mice 

were retrieved, fixed and embedded in paraffin. In order to test whether there was a 

difference in metastatic behaviour of the 4T1 cells between CD44v6 and control 

peptide treated animals, the paraffin blocks corresponding to lungs and lymph nodes 

are currently being analyzed by a pathologist. 

 Presently, breast cancer patients are treated with antibodies directed against 

the ErbB2 receptor like for example Trastuzumab or Pertuzumab to block aberrant 

ErbB2 signaling (reviewed in Baselga, 2010). Treatment of breast cancer patients 

with these antibodies oftentimes is not succesful however because the patients 

develop a resistance to the therapy. Interestingly, sometimes the Met RTK is 
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overexpressed and activated in cells that are blocked in ErbB2 signaling to 

compensate for the loss of ErbB2-activation (Mukohara, 2011; Shattuck et al, 2008). 

In these patients, a peptide blocking CD44v6 would be a useful tool since CD44v6 

does not only act as a co-receptor for EGF- and ER-based ErbB2-signaling but is 

also instrumental in Met activation. 

 In some cases, HB-EGF-based ErbB signaling promotes breast cancer cell 

survival. Its blocking is thought to be a promising target for breast cancer therapy 

(Yotsumoto et al, 2009). Peptides that inhibit the function of CD44v3 could 

specifically address those cases of breast cancer that rely on HB-EGF expression for 

their tumorigenesis.  

 Further experiments could also be done in Wap-T or MMTV-Neu mice. These 

mice (reviewed in Hutchinson & Muller, 2000) could be used to analyze the possibility 

of CD44v6 peptide blocking in a further in vivo mammary carcinoma system. In these 

systems specific promoters induce the expression of proteins that are involved in 

breast cancer formation (like for example Neu) in the mammary gland. In these mice 

the occurence of breast cancer goes through specific stages that can be isolated. 

 

  

4.7 Possible role of CD44 in mammary gland development 

 The mammary gland matures postnatally. Females are born with a 

rudimentary ductal tree. These breast ducts start to elongate at puberty and begin to 

grow into the mammary fat pad (reviewed in Zahnow, 2006). The ErbB receptors play 

a paramount role in the development and remodelling of the female breast  (Zahnow, 

2006). During breast development ErbB signaling regulates cell growth, 

differentiation and in particular lobuloalveolar growth. Therefore the role of the CD44 

co-receptor function in breast development should be analyzed. The first evidence 

that such a role exists is the observation that pregnant CD44 knockout mice are 

impaired in the maintenance of post-partum lactation (Yu et al, 2002). 

 The mammary gland comprises two main sections. The epithelium that is in a 

state of constant proliferation, differentiation or apoptosis and the underlying stroma 

that regulates these processes by signaling to the epithelium (Su et al, 2011). The 

signals from the stroma have a significant impact on the morphology of the breast. In 

3D culture systems, the contribution of the stroma that accounts for more than 80% 

of the female breast could be analyzed. When normal mammary epithelial cells are 
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cultured ex vivo in matrigel, a substance that mimicks the characteristics of the 

stroma, they form alveolar structures (so called mammospheres), that resemble their 

in vivo morphology. They become polarized, form spherical acini or branched 

tubules. In contrast, breast tumor cells form large, nonpolarized colonies without a 

lumen when grown in matrigel (Petersen et al, 1992). Blocking antibodies against 

ErbB1 reverse this change in morphology (Wang et al, 1998). In order to check if the 

co-receptor function of CD44 is needed to mediate the formation of defined 

morphological structures like mammospheres, mammary epithelial cells should be 

grown in matrigel in the presence of CD44 blocking reagents or after transfection with 

CD44-specific siRNA. The consequence of the CD44 inhibition on mammosphere 

morphology should then be analyzed.  

 A conditional inactivation of CD44 at specific stages in development and in 

specific tissues of the mammary gland will allow us to asses the co-receptor function 

of CD44 for the ErbB receptors in breast development. Our lab has produced a CD44 

floxed mouse that would allow to perfom such studies. If this mouse was crossed with 

MMTV-Cre mice (Wagner et al, 2001; Wagner et al, 1997) or WAP-Cre mice (Wagner 

et al, 1997), the Cre-recombinase would be specifically expressed in the mammary 

gland during different stages of development and would lead to a block of CD44 

expression. Eventually this could lead to phenotypic changes in mammary gland 

development. 
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