

INSTITUT FÜR WISSENSCHAFTLICHES RECHNEN
UND MATHEMATISCHE MODELLBILDUNG

Residual, Restarting and Richardson Iteration
for the Matrix Exponential

M. A. Botchev

 V. Grimm

 M. Hochbruck

Preprint Nr. 12/10

Anschriften der Verfasser:

Dr. Mike A. Botchev
Department of Applied Mathematics and
MESA+ Institute for Nanotechnology
University of Twente
NL-7500 AE Enschede
The Netherlands

PD Dr. Volker Grimm
Institut für Angewandte und Numerische Mathematik
Karlsruher Institut für Technologie (KIT)
D-76128 Karlsruhe

Prof. Dr. Marlis Hochbruck
Institut für Angewandte und Numerische Mathematik
Karlsruher Institut für Technologie (KIT)
D-76128 Karlsruhe

RESIDUAL, RESTARTING AND RICHARDSON ITERATION FOR
THE MATRIX EXPONENTIAL

MIKE A. BOTCHEV∗, VOLKER GRIMM† , AND MARLIS HOCHBRUCK†

Abstract. A well-known problem in computing some matrix functions iteratively is the lack of
a clear, commonly accepted residual notion. An important matrix function for which this is the case
is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector
has to be computed. We develop the approach of Druskin, Greenbaum and Knizhnerman (1998)
and interpret the sought-after vector as the value of a vector function satisfying the linear system of
ordinary differential equations (ODE) whose coefficients form the given matrix. The residual is then
defined with respect to the initial-value problem for this ODE system. The residual introduced in this
way can be seen as a backward error. We show how the residual can be computed efficiently within
several iterative methods for the matrix exponential. This resolves the question of reliable stopping
criteria for these methods. Further, we show that the residual concept can be used to construct
new residual-based iterative methods. In particular, a variant of the Richardson method for the new
residual appears to provide an efficient way to restart Krylov subspace methods for evaluating the
matrix exponential.

Key words. matrix exponential, residual, Krylov subspace methods, restarting, Chebyshev
polynomials, stopping criterion, Richardson iteration, backward stability, matrix cosine

AMS subject classifications. 65F60, 65F10, 65F30, 65N22, 65L05

1. Introduction. Matrix functions, and particularly the matrix exponential,
have been an important tool in scientific computations for decades (see e.g. [14, 15,
16, 17, 21, 22, 23]). The lack of a clear notion for a residual for many matrix functions
has been a known problem in the iterative computation of matrix functions [3, 14, 44].
Although it is possible to define a residual for some matrix functions such as the
inverse or the square root, for many important matrix functions including the matrix
exponential, sine and cosine, no natural notion for residuals seems to exist.

We consider the computation of

y = exp(−A)v (1.1)

for a given matrix A ∈ Cn×n, such that A+ A∗ is positive semidefinite and a vector
v ∈ Cn. The question is how to evaluate the quality of an approximate solution

yk ≈ exp(−A)v, (1.2)

where k refers to the number of steps (iterations) needed to construct yk. We interpret
the vector y as the value of a vector function y(t) at t = 1 such that

y′(t) = −Ay(t), y(0) = v. (1.3)

The exact solution of this initial-value problem is given by

y(t) = exp(−tA)v.

∗Corresponding author. This author devotes this work to the memory of his father. Department
of Applied Mathematics and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box
217, NL-7500 AE Enschede, the Netherlands, mbotchev@na-net.ornl.gov.

†Institute for Applied and Numerical Analysis, Karlsruhe Institute of Technology, Kaiserstr. 89–
93, D-76133 Karlsruhe, Germany [volker.grimm, marlis.hochbruck]@kit.edu.

1

Table 1.1

The linear system and matrix exponential residuals. In both cases the sought-after vector is
f(A)v, with either f(x) = 1/x or f(x) = exp(−x).

f(x) 1/x exp(−x)

exact solution y y = A−1v
define y(t) = exp(−tA)v,

set y := y(1)

residual equation Ay = v

{
y′(t) = −Ay(t)

y(0) = v

residual for yk ≈ y rk = v −Ayk rk(t) = −Ayk(t)− y′k(t)
error ǫk ǫk = y − yk ǫk(t) = y(t)− yk(t)

mapping
error ǫk → residual rk

rk = Aǫk

{
rk(t) = ǫ′k(t) +Aǫk(t)

ǫk(0) = 0

perturbed problem
(backward stability)

Ayk = v − rk

{
y′k(t) = −Ayk(t)− rk(t)

yk(0) = v

Assuming now that there is a differentiable vector function yk(t) such that yk(1) = yk,
we define the residual for yk(t) ≈ y(t) as

rk(t) ≡ −Ayk(t)− y′k(t) (1.4)

and the error as

ǫk(t) ≡ y(t)− yk(t). (1.5)

Obviously, ǫk satisfies the initial-value problem

ǫ′k(t) = −Aǫk(t) + rk(t), ǫk(0) = 0. (1.6)

The key point in this residual concept is that y = exp(−A)v is seen not as a
problem on its own but rather as the exact solution formula for the problem (1.3).
The latter provides the equation where the approximate solution is substituted to yield
the residual. We illustrate this in Table 1.1, where the introduced matrix exponential
residual is compared against the conventional residual for a linear system Ay = v. As
can be seen in Table 1.1, the approximate solution satisfies a perturbed initial-value
problem, where the perturbation is the residual. Thus, the introduced residual can
be seen as a backward error (see Section 4 for residual-based error estimates). If one
is interested in computing the matrix exponential exp(−A) itself, then the residual
can be defined with respect to the matrix initial-value problem

X ′(t) = −AX(t), X(0) = I, (1.7)

with the exact solution X(t) = exp(−tA). Checking the norm of rk(t) in (1.4) is
proposed as a possible stopping criterion of Krylov subspace iterations first in [5, 8]
and more recently for a similar matrix function in [28].

The contribution of this paper is twofold. First, it turns out that the residual (1.4)
can be efficiently computed within several iterative methods for matrix exponential
evaluation. We show how this can be done for some popular Krylov subspace and for
Chebyshev polynomial methods for computing exp(−A)v.

2

Second, we show how the residual notion leads to new algorithms to compute the
matrix exponential. The key idea here is to use different approximations to the error
ǫk by approximating the error equation (1.5) in a suitable way. This either allows us
to compute reliable error estimates or to improve the accuracy of the solution.

Two basic Richardson-like iterations are proposed and discussed. When combined
with Krylov subspace methods, one of them can be seen as an efficient way to restart
the Krylov subspace methods.

The equivalence between problems (1.2) and (1.3) has been widely used in nu-
merical literature and computations. In addition to already cited work [5, 8, 28] see
e.g. the very first formula in [34] or [21, Section 10.1]. Moreover, methods for solv-
ing (1.2) are applied to (1.3) (for instance, exponential time integrators [24, 25]) and
vice versa [34, Section 4]. In [44], van den Eshof and Hochbruck represent the er-
ror ǫk as the solution of (1.6) and obtain an explicit, non-computable expression for
ǫk(t). This allows them to justify a relative error estimator for their shift-and-invert
Lanczos algorithm [44, formula (4.9)]. Although being used, especially in the field of
numerical ODEs (see e.g. [2, 13, 27, 31, 40]), the exponential residual (1.4) does seem
to have a potential which has not been fully exploited yet, in particular in matrix
computations. Our paper aims at filling this gap.

The paper is organized as follows. Section 2 is devoted to the matrix exponential
residual within Krylov subspace methods. In Section 3 we show how the Chebyshev
iterations can be modified to adopt the residual control. Section 4 presents some
simple residual-based error estimates. Richardson iteration for the matrix exponential
is the topic of Section 5. Numerical experiments are discussed in Section 6, and
conclusions are drawn in the last section.

Throughout the paper, unless noted otherwise, ‖ · ‖ denotes the Euclidean vector
2-norm or the corresponding induced matrix norm.

2. Matrix exponential residual in Krylov subspace methods. Krylov sub-
space methods have become an important tool for computing matrix functions (see
e.g. [9, 10, 11, 15, 23, 24, 29, 38, 45]). For A ∈ Cn×n and v ∈ Cn given, the Arnoldi
process yields, after k steps, vectors v1, . . . , vk+1 ∈ Cn that are orthonormal in ex-
act arithmetic and span the Krylov subspace Kk(A, v) = span{v,Av, . . . , Ak−1v) (see
e.g. [17, 39, 46]). If A = A∗, the symmetric Lanczos process is usually used instead
of the Arnoldi method. Together with the basis vectors vj , the Arnoldi or Lanczos
processes deliver an upper-Hessenberg matrix Hk ∈ C(k+1)×k, such that the following
relation holds:

AVk = Vk+1Hk = VkHk + hk+1,kvk+1e
T
k , V ∗

k Vk = Ik (2.1)

where Vk ∈ Cn×k has columns v1, . . . , vk, Hk ∈ Ck×k is the matrix Hk without the
last row (0, · · · , 0, hk+1,k), ek = (0, · · · , 0, 1)T ∈ Rk, and Ik denotes the k× k identity
matrix. The first basis vector v1 is the normalized vector v: v1 = v/‖v‖.

2.1. Ritz-Galerkin approximation. An approximation yk to the matrix ex-
ponential y = exp(−A)v is usually computed as yk(1), with

yk(t) = Vkuk(t), uk(t) ≡ exp(−tHk)(βe1), (2.2)

where β = ‖v‖ and e1 = (1, 0, . . . , 0)T ∈ Rk. An important property of the Krylov
subspace is its scaling invariance: application of the Arnoldi process to tA, t ∈ R,
results in the upper-Hessenberg matrix tHk, and the basis vectors v1, . . . , vk+1 are
independent of t.

3

The approximation yk can also be obtained via a variational approach, where
yk ∈ Kk(A, v) is determined from the condition that the residual rk defined in (1.4)
is orthogonal to Kk(A, v):

0 = V ∗

k rk(t) = V ∗

k

(
−y′k(t)−Ayk(t)

)
, yk(t) = Vkuk(t). (2.3)

Inserting (2.1) shows that uk(t) : R → Ck is the solution of the projected initial value
problem

u′

k(t) = −Hkuk(t), uk(0) = βe1. (2.4)

The following simple lemma (cf. [5, formula (4)], [8, formula (29)]) provides an explicit
expression for the residual.

Lemma 2.1. Let yk(t) ≈ y(t) = exp(−tA)v be the Krylov subspace approximation

given by (2.2). Then for any t > 0 the residual rk(t) for yk(t) ≈ y(t) satisfies

rk(t) = βk(t)vk+1, (2.5a)

where

βk(t) = −βhk+1,ke
T
k exp(−tHk)e1 = −hk+1,k[uk(t)]k. (2.5b)

Here, [uk(t)]k is the last entry of the vector function uk(t) defined in (2.2) and β =
‖v‖.

Proof. It follows from (2.2) that y′k(t) = −VkHk exp(−tHk)(βe1). From the
Arnoldi relation (2.1) we have

Ayk(t) = AVk exp(−tHk)(βe1) = (VkHk + hk+1,kvk+1e
T
k) exp(−tHk)(βe1),

which yields the result:

rk(t) = −Ayk(t)− y′k(t) = βk(t)vk+1

with βk defined in (2.5b).
An immediate conclusion from this lemma is that

‖rk(t)‖ = |βk(t)| = |hk+1,k[uk(t)]k|.

Note that the Krylov subspace approximation (2.2) satisfies the initial condition
yk(0) = v by construction:

yk(0) = Vk(βe1) = βv1 = v.

Thus, there is no danger that the residual rk(t) = −Ayk(t) − y′k(t) is small in norm
for some yk(t) approaching a solution of the ODE system y′ = Ay with other initial
data.

The residual rk(t) turns out to be closely related to the so-called generalized

residual ρk(t) defined in [24]. Following [24] (see also [38]), we can write

yk(t) = βVk exp(−tHk)e1 =
1

2πi

∮

Γ

eλVk(λI + tHk)
−1βe1dλ,

y(t) = exp(−tA)v =
1

2πi

∮

Γ

eλ(λI + tA)−1vdλ,

4

where Γ is a closed contour in C encircling the field of values of −tA. Thus, yk(t)
is an approximation to y(t) where the resolvent inverse x(λ, t) = (λI + tA)−1v is
approximated by k steps of the fully orthogonal method (FOM), which gives the
approximation

xk(λ, t) = Vk(λI + tHk)
−1βe1.

The error can be written as

ǫk(t) = y(t)− yk(t) =
1

2πi

∮

Γ

eλ
(
x(λ, t) − xk(λ, t)

)
dλ.

Since the FOM error x(λ, t) − xk(λ, t) is unknown, the authors of [24] replace it
by the known FOM residual corresponding to the family of shifted linear systems
(λI + tA)x(λ, t) = v, which is

rk(λ, t) = v − (λI + tA)x(λ, t) = βk(λ, t)vk+1,

where

βk(λ, t) = β(−thk+1,k)vk+1e
T
k (λI + tHk)

−1e1.

This leads to the generalized residual

ρk(t) ≡
1

2πi

∮

Γ

eλβk(λ, t)dλ. (2.6)

From (2.5), we obtain

ρk(t) = tβk(t)vk+1 = trk(t),

hence the generalized residual coincides, up to a factor t, with our matrix exponential
residual rk(t). For the generalized residual, this provides a justification which is
otherwise lacking: strictly speaking, there is no reason why the error in the integral
expression above can be replaced by the residual. In Section 6.4, a numerical test is
presented to compare stopping criteria based on rk(t) and ρk(t).

2.2. Shift-and-invert Arnoldi/Lanczos approximations. In the shift-and-
invert Arnoldi/Lanczos approximations [18, 19, 35, 44] the Krylov subspace is con-
structed with respect to the matrix (I + γA)−1, with γ > 0 being a parameter.
The Krylov relation for the basis Vk+1 ∈ Cn×(k+1) and the upper-Hessenberg matrix

H̃k ∈ C(k+1)×k then reads

(I + γA)−1Vk = Vk+1H̃k = VkH̃k + h̃k+1,kvk+1e
T
k , (2.7)

where H̃k ∈ Ck×k denotes the first k rows of H̃k. The approximation yk(t) ≈
exp(−tA)v is then computed as given by (2.2), with Hk defined as

Hk =
1

γ
(H̃−1

k − I), (2.8)

cf. [44]. Relation (2.7) can be rewritten as (cf. formula (4.1) in [44])

AVk = VkHk −
h̃k+1,k

γ
(I + γA)vk+1e

T
k H̃

−1
k , (2.9)

5

which leads to the following lemma.
Lemma 2.2. Let yk(t) ≈ y(t) = exp(−tA)v be the shift and invert Krylov subspace

approximation (2.2), with Hk defined in (2.8). Then for any t > 0 the residual rk(t)
for yk(t) ≈ y(t) satisfies

rk(t) = βk(t)wk+1, wk+1 = (I + γA)vk+1, (2.10a)

where

βk(t) = β
h̃k+1,k

γ
eTk H̃

−1
k exp(−tHk)e1. (2.10b)

Proof. The proof is very similar to that of Lemma 2.1. Instead of the conventional
Arnoldi relation (2.1), relation (2.9) should be used.

The residual norm for the shift and invert Krylov method then reads

‖rk(t)‖ = |βk(t)| ‖wk+1‖.

2.3. Error estimation in Krylov subspace methods. If yk(t) is the Krylov
subspace approximation (2.2) to y(t) = exp(−tA)v, then the error function ǫk(t)
defined in (1.5) satisfies the initial-value problem (1.6) with the residual rk(t) given
by (1.4).

The key idea is to estimate the error ǫk by solving (1.6) approximately by any
suitable time integration scheme; for example, by Krylov exponential schemes as
discussed e.g. in [15, Section 4] or [24]. The time integration process for solving (1.6)
can further be optimized, since by Lemma 2.1, the residual rk(t) = βk(t)vk+1 is a
scalar multiple of the (k + 1)st Arnoldi vector vk+1 for all t.

Following an idea by van den Eshof and Hochbruck [44], we propose to approx-
imate ǫk by the Galerkin approximation ǫ̃k with respect to the (m + k)th Krylov
subspace:

ǫk(t) ≈ ǫ̃k(t) = Vk+mδk(t), (2.11)

where ǫ̃k satisfies the Galerkin condition

V ∗

k+m

(
ǫ̃′k(t) +Aǫ̃k(t)− rk(t)

)
= 0. (2.12)

From the Arnoldi relation (2.1) and by (2.5a), this yields the projected initial value
problem

δ′k(t) = −Hk+mδk(t) + βk(t)ek+1, δk(0) = 0. (2.13)

Lemma 2.3. Let yk and yk+m be the kth and the (k+m)th Krylov approximation

defined in (2.2), respectively. Then the approximated error ǫ̃k defined in (2.11) with

δk being the solution of (2.13) is given by

ǫ̃k(t) = ym+k(t)− yk(t). (2.14)

Proof. yk and yk+m satisfy the Galerkin condition (2.3) for k and k +m, respec-
tively. From (2.5a) we thus have

V ∗

k+m

(
y′k+m − y′k +A(yk+m − yk)

)
= −V ∗

k+m(rk+m − rk) = V ∗

k+mrk.

6

Using V ∗

k+mrk(t) = βk(t)ek+1 shows that ym+k − yk satisfies (2.12), which completes
the proof.

Note that (2.14) is just one of the estimates proposed in [44].
The analysis shows that error estimation by the same continued Krylov process

is a better option than solving the correction equation (1.6) by a new Krylov process:
the latter would mean that we neglect the built-up subspace. In fact, solving the
initial-value problem (1.6) by another process and then correcting the approximate
solution yk(t) can be seen as a restarting of the Krylov process. We explore this
approach further in Section 5.

3. Matrix exponential residual for Chebyshev approximations. A well-
known method to compute ym(t) ≈ exp(−tA)v is based on the Chebyshev polynomial
expansion (see for instance [37, 42]):

ym(t) = Pm(−tA)v =

[
m∑

k=1

ckTk(−tA) +
c0
2
I

]
v. (3.1)

Here we assume that the matrix tA can be transformed to have its eigenvalues within
the interval [−1, 1] ⊂ R (for example, A can be a Hermitian or a skew-Hermitian
matrix). Here, Tk is the kth Chebyshev polynomial of the first kind, whose actions
on the given vector v can be computed by the Chebyshev recursion

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, (3.2)

The coefficients ck can be computed, for a large M , as

ck =
2

M

M∑

j=1

exp(cos(θj)) cos(kθj), k = 0, 1, . . . ,M, θj =
π(j − 1

2)

M
, (3.3)

which means interpolating exp(x) at the Chebyshev polynomial roots (see e.g. [37,
Section 3.2.3]). This Chebyshev polynomial approximation is used for evaluating
different matrix functions in [3].

The well-known Clenshaw algorithm [6] to compute ym(t) can be modified to
provide, along with ym(t), vectors y′m(t) and Aym(t), so that the exponential residual
rm(t) ≡ −Aym(t)−y′m(t) can be controlled in the course of the iterations. To do this,
we use the well-known relations

T ′

k(x) = kUk−1(x), (3.4)

xTk(x) =
1

2
(Tk+1(x) + Tk−1(x)), (3.5)

xUk(x) =
1

2
(Uk+1(x) + Uk−1(x)), (3.6)

Tk(x) =
1

2
(Uk(x) − Uk−2(x)), (3.7)

where k = 1, 2, . . . and Uk is the kth Chebyshev polynomial of the second kind:

U0(x) = 1, U1(x) = 2x, Uk+1(x) = 2xUk(x)− Uk−1(x), k = 1, 2, (3.8)

For (3.7) to hold for k = 1 we denote U−1(x) = 0. From (3.1),(3.4) and (3.6) it follows

7

that

y′m(t) =

[
m∑

k=1

ck
t
(−tA)T ′

k(−tA)

]
v

=

[
m∑

k=1

ckk

2t
(Uk(−tA) + Uk−2(−tA))

]
v, m = 1, 2,

(3.9)

Similarly, from (3.1), (3.5) and (3.7), we obtain

−Aym(t) =

[
m∑

k=1

ck
2t
(Tk+1(−tA) + Tk−1(−tA))−

c0
2
A

]
v

=

[
m∑

k=1

ck
2t
(Uk+1(−tA)− Uk−3(−tA))−

c0
2
A

]
v, m = 1, 2, . . . ,

(3.10)

where we define U−2(x) = −1.
These recursions can be used to formulate an algorithm for computing ym(t) ≈

exp(−tA)v that controls the residual rm(t) = −Aym(t) − y′m(t), see Figure 3.1. Just
like the original Chebyshev recursion algorithm for the matrix exponential, it requires
one action of the matrix A per iteration. To be able to control the residual, more
vectors have to be stored than in the conventional algorithm: 8 instead of 4.

4. Residual-based error estimates. A different interpretation of the residual
rk(t) defined in (1.4) is to view it as the backward error for yk(t):

y′k(t) = −Ayk(t)− rk(t), y(0) = v, (4.1)

is a perturbation of the original problem (1.3). The forward error ǫk = y− yk solving
the initial-value problem (1.6) is given by

ǫk(t) =

∫ t

0

exp
(
−(t− s)A

)
rk(s)ds (4.2)

(variation-of-constants formula). This formula can be used to obtain error bounds in
terms of the norms of the matrix exponential and the residual, cf. [47].

In the following, we assume the existence of constants CA > 0 and ω > 0 such
that

‖ exp(−tA)‖ 6 CAe
−tω, t > 0. (4.3)

Remark. For the spectral norm, this bound is satisfied with CA = 1 if the field of
values of A is contained in the complex halfplane Cω := {z ∈ C : Re z > ω}. In this
case, ω = −µ(−A), where µ(B) = λmax

(
1
2 (B +B∗)

)
is the logarithmic norm of

matrix B, cf. [7, 21]. If A is diagonalizable, X−1AX = Λ, then (4.3) holds for an
arbitrary matrix norm induced by a vector norm with CA = κ(X) = ‖X‖ ‖X−1‖ if
the spectrum of A is contained in Cω .

Our analysis makes use of the so-called ϕ-functions defined as

ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1. (4.4)

8

u−2 := −v, u−1 := 0, u0 := v, u1 := −2t Av

compute c0

y := c0/2 u0, y′ := 0, minusAy := c0/(4t)u1

for k = 1, . . . , Nmax

u2 := −2t Au1 − u0

compute ck

y := y + ck/2 (u1 − u−1)

y′ := y′ + ckk/(2t) (u1 + u−1)

minusAy := minusAy+ ck/(4t) (u2 − u−2)

u−2 := u−1

u1 := u0

u0 := u1

u1 := u2

resnorm := ‖minusAy− y′‖

if resnorm < toler

break

end

end

Fig. 3.1. Chebyshev expansion algorithm to compute the vector yNmax
(t) ≈ exp(−tA)v. The

input parameters are A ∈ Cn×n, v ∈ Cn, t > 0 and toler > 0. It is assumed that the eigenvalues λ
of tA satisfy −1 6 λ 6 1.

These functions satisfy ϕk(0) = 1/k! and the recurrence relation

ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, ϕ0(z) = ez. (4.5)

Assumption (4.3) yields

‖ϕk(−tA)‖ ≤ CA

∫ 1

0

‖e−t(1−θ)A‖
θk−1

(k − 1)!
dθ 6 CA ϕk(−tω) 6 CA

1

k!
.

Lemma 4.1. Let A ∈ Cn×n satisfy (4.3). Then for all t > 0, the solution ǫk of

(1.6) is bounded by

‖ǫk(t)‖ 6 CA t ϕ1(−tω)µk, k = 0, 1, . . . , (4.6)

where

µk := max
06s6t

‖rk(s)‖. (4.7)

9

Proof. The variation-of-constants formula (4.2) yields

‖ǫk(t)‖ 6

∫ t

0

‖ exp(−(t− s)A)rk(s)‖ds

6 CAt

∫ 1

0

exp(−ωt(1− θ))‖rk(tθ)‖dθ

6 CA t ϕ1(−ωt) max
06s6t

‖rk(s)‖.

(4.8)

This proves the bound.

5. Richardson iteration for the matrix exponential. The notion of the
residual allows us to formulate a Richardson method for the matrix exponential.

5.1. Preconditioned Richardson iteration. To motivate our approach, we
start by considering the preconditioned Richardson iterative method for solving the
linear system Ax = v. Given an initial guess x0 ∈ C

n and a preconditioner M ≈ A,
Richardson iteration reads

xk+1 = xk +M−1rk, rk = v −Axk, k = 0, 1, . . . (5.1)

Note that M−1rk is an approximation to the unknown error A−1v − xk = A−1rk.
The recursion (5.1) for the iterates yields

rk+1 = rk −AM−1rk = (I −AM−1)rk = (M −A)M−1rk. (5.2)

Hence, in general, the convergence will be linear:

‖rk‖ 6 ‖(M −A)M−1‖k ‖r0‖, (5.3)

if ‖(M −A)M−1‖ < 1.
Analogously to (5.1), one can formulate the Richardson method for the matrix

exponential by approximating the solution ǫk(t) of (1.6) by the solution ǫ̃k(t) of the
initial-value problem

ǫ̃′k(t) = −Mǫ̃k(t) + rk(t), ǫ̃k(0) = 0, (5.4)

where M ≈ A is a preconditioning matrix and where rk is defined in (1.4). Finally,
the update step of Richardson iteration is defined as

yk+1(t) = yk(t) + ǫ̃k(t), k = 0, 1, (5.5)

Just as for solving linear systems, M has to compromise between the approximation
quality M ≈ A and the ease of solving (5.4).

In fact, the exponential Richardson method can be seen as a special version of
waveform relaxation methods for solving ODEs, see e.g. [26, 32] and references given
there. This is easily seen from (5.4) and (5.5), which can be written in the equivalent
form

y′k+1(t) +Myk+1(t) = (M −A)yk(t), yk+1(0) = yk(0).

A possible choice is to use multigrid preconditioning, cf. [32].

10

From (5.5), (1.4), and (5.4) we have

rk+1 = −Ayk+1 − y′k+1

= −Ayk −Aǫ̃k − y′k − ǫ̃′k (5.6)

= (M −A)ǫ̃k.

Taking into account that

ǫ̃k(t) =

∫ t

0

exp
(
−(t− s)M

)
rk(s)ds,

we obtain the following recursion for the residuals (cf. [33])

rk+1(t) = (M −A)ǫ̃k(t) = (M −A)

∫ t

0

exp
(
−(t− s)M

)
rk(s)ds. (5.7)

This recurrence should be compared to the corresponding recurrence (5.2) for Richard-
son iteration for linear systems.

Since M ≈ A, we now assume that there are constants CM > 0 and ω̃ > 0 such
that preconditioning matrix M satisfies

‖ exp(−tM)‖ 6 CM e−tω̃, t > 0. (5.8)

It is reasonable to assume ω̃ ≈ ω, where ω is defined in (4.3).
Theorem 5.1. If (5.8) holds, then the residual (1.4) is bounded by

‖rk(t)‖ 6

(
CM‖M −A‖ t

)k

e−tω̃ϕk(tω̃)µ0, k = 0, 1, . . . ,

where µ0 is defined in (4.7).
Proof. Solving the recursion (5.7) yields

‖rk(t)‖ =

∥∥∥∥
∫ t

0

(M −A) exp
(
−(t− sk)M

) ∫ sk

0

(M −A) exp
(
−(sk − sk−1)M

)
· · ·

∫ s2

0

(M −A) exp
(
−(s2 − s1)M

)
r0(s)ds1 . . . dsk

∥∥∥∥ .

Using (5.8) and the definition of the ϕ-functions (4.4) shows

‖rk(t)‖ 6 µ0

(
CM‖M −A‖

)k

e−tω̃

∫ t

0

∫ sk

0

· · ·

∫ s2

0

es1ω̃ds1 . . . dsk

6 µ0

(
CM‖M −A‖ t

)k

e−tω̃ϕk(tω̃)

by using an induction argument and the relation
∫ s

0

tkϕk(tω̃) dt = sk+1ϕk+1(sω̃), k = 0, 1, 2,

Remark. Since ω̃ > 0 by assumption, we have

tk e−tω̃ϕk(tω̃) = e−tω̃

∫ t

0

e(t−s)ω̃ sk−1

(k − 1)!
ds 6

tk

k!
, t > 0,

11

showing that the convergence is superlinear. If ‖(M −A)M−1‖ < 1, then

‖rk(t)‖ 6 ‖(M −A)M−1‖k
(
CM‖M‖t

)k
e−tω̃ϕk(tω̃)µ0, k = 0, 1,

Hence, asymptotically, the iteration for the matrix exponential shows a favorable
convergence behavior compared to the linear convergence of Richardson iteration for
linear systems.

Remark. Note that it is crucial to consider t in a finite interval, t ∈ [0, T] with a
fixed T < ∞, to obtain the superlinear convergence. For instance, if ω̃ > 1, we have
the bound

tk e−tω̃ϕk(tω̃) 6

∫
∞

0

e−sω̃ sk−1

(k − 1)!
ds =

(
1

ω̃

)k

showing linear convergence uniformly in t ∈ [0,∞). This is in correspondence with
many theoretical results for waveform relaxation methods where the emphasis is often
on the convergence in the infinite interval [0,∞) in contrast to our application.

An important practical issue hindering the use of the exponential Richardson
iteration is the necessity to store the vectors rk(t) for different t. To achieve a good
accuracy, sufficiently many samples of rk(t) have to be stored. Our limited experience
indicates that the exponential Richardson iteration can be of interest if the accuracy
requirements are relatively low, say up to 10−5. In the experiments described in
Section 6.3 just 20 samples were sufficient to get the residual below tolerance 10−4

for a matrix of size n = 104.

5.2. Krylov restarting via Richardson iteration. The exponential Richard-
son iteration (5.5) allows for great flexibility in the choice of the approximated error
ǫ̃k(t) ≈ ǫk. For instance, solving (1.6) by yet another Krylov process is closely related
to restarting the matrix exponential, cf. [1, 5, 12, 36].

From Lemmas 2.1 and 2.2 we have

rk(t) = βk(t)wk+1,

where wk+1 = vk+1 for the standard Arnoldi process and wk+1 = (I + γA)vk+1 for
shift and invert Arnoldi method. We thus propose to approximate

ǫk(t) ≈ ǫ̃k,m(t) = V̂mδk,m(t), (5.9)

where the columns of V̂m are defined via an Arnoldi process for the Krylov subspace
Km(A,wk+1):

AV̂m = V̂m+1Ĥm = V̂mĤm + ĥm+1,mv̂m+1e
T
m, V̂ ∗

mV̂m = Im. (5.10)

ǫ̃k,m(t) is determined from the Galerkin condition

V̂ ∗

m

(
ǫ̃′k,m(t) +Aǫ̃k,m(t)− rk(t)

)
= 0. (5.11)

Similar to the presentation in Section 2.3, δk,m(t) satisfies

δ′k,m(t) = −Ĥmδk,m(t) + V̂ ∗

mrk(t)

= −Ĥmδk,m(t) + βk(t)‖wk+1‖e1, δk,m(0) = 0. (5.12)

12

Lemma 5.2. Let ǫ̃k,m(t) ≈ ǫk(t) be the Galerkin approximation (5.9) with δk,m(t)
being the solution of (5.12). Then the residual

r̃k,m(t) = −ǫ̃′k,m(t)−Aǫ̃k,m(t)

is given by

r̃k,m(t) = −rk(t) + β̂m(t)v̂m+1, (5.13)

where

β̂m(t) = −ĥm+1,meTmδk,m(t). (5.14)

Proof. Using the Arnoldi relation (5.10) yields

r̃k,m(t) = −V̂m

(
Ĥmδk,m(t) + V̂ ∗

mrk(t)
)
−AV̂mδk,m(t)

= −rk(t) + β̂m(t)v̂m+1

since rk(t) ∈ span{v̂1} and thus V̂mV̂ ∗

mrk(t) = rk(t).
Analogously, for the shift and invert Krylov process we obtain

r̃k,m(t) = −rk(t) + β̂m(t)ŵm+1, ŵm+1 = (I + γA)v̂m+1,

where

β̂m(t) =
̂̃
hm+1,mγ−1eTm

(̂̃
Hm

)
−1

δk,m(t),

by Lemma 2.2.
For the residual of the (k + 1)st Richardson iterate (5.5), we thus have

rk+1 = rk + r̃k,m = β̂m(t)ŵm+1, (5.15)

where ŵm+1 = v̂m+1 for the standard Krylov process and ŵm+1 = (I + γA)v̂m+1 for
the shift and invert method. Hence, the residual rk+1(t) is, just as in Lemmas 2.1
and 2.2, a scalar time-dependent function times a constant vector. Since this is true
for all iterations k = 0, 1, 2, . . ., the analysis holds for repeated restarts as well.

6. Numerical experiments. All our numerical experiments have been carried
out with Matlab on a Linux and Mac PC. Unless reported otherwise, the initial
vector v is taken to be the normalized vector with equal entries. Except for Section 6.1,
the error reported is the relative error norm with respect to a reference solution
computed by the EXPOKIT method [41]. The error reported for EXPOKIT is the
error estimate provided by this code.

6.1. Residual in Chebyshev iteration. The following test is carried out for
the Chebyshev iterative method with incorporated residual control (see algorithm in
Figure 3.1). We compute exp(−A)v, where v ∈ Rn is a random vector with mean
zero and standard deviation one. In the test, the matrix A ∈ R

n×n is diagonal with
diagonal entries evenly distributed between −1 and 1. Note that the corresponding
ODE is not stiff. The plots of the error and residual norms are presented in Figures 6.1.

13

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

n = 10 4

residual
error

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

n = 10 5

residual
error

Fig. 6.1. Residual and true error norms in the Chebyshev algorithm to compute ym ≈ exp(−A)v
against iteration number m for the example of Section 6.1 with n = 104 (top) and n = 105 (bottom).

6.2. A convection-diffusion problem. In the next several numerical experi-
ments the matrix A is taken to be the standard five-point central difference discretiza-
tion of the following convection-diffusion operator acting on functions defined on the
unite square (x, y) ∈ [0, 1]2:

L[u] = −(D1ux)x − (D2uy)y + Pe(v1ux + v2uy),

D1(x, y) =

{
103 (x, y) ∈ [0.25, 0.75]2,

1 otherwise,
D2(x, y) =

1

2
D1(x, y),

v1(x, y) = x+ y, v2(x, y) = x− y.

To guarantee that the convection terms yield an exactly skew-symmetric matrix, we
rewrite the convection terms in the form

v1ux + v2uy =
1

2
(v1ux + v2uy) +

1

2
((v1u)x + (v2u)y)

14

Table 6.1

Performance of the exponential Richardson method for the convection-diffusion test problem of
Section 6.3) with toler = 10−4, M = tridiag(A). The CPU times are measured on a 3GHz Linux
PC. We emphasize that the CPU time measurements are made in Matlab and thus are only an
approximate indication of the actual performance.

flops/n, matvecs LU solving error
CPU time, s A / steps I + αM I + αM

Pe = 0
EXPOKIT 4590, 2.6 918 matvecs — — 1.20e−11

exp. Richardson 2192, 1.7 8 steps 24 176 2.21e−04
Pe = 10

EXPOKIT 4590, 2.6 918 matvecs — — 1.20e−11
exp. Richardson 2202, 1.7 8 steps 29 176 2.25e−04

Pe = 100
EXPOKIT 4590, 2.6 918 matvecs — — 1.20e−11

exp. Richardson 2492, 1.9 9 steps 31 200 4.00e−04

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration #

re
si

du
al

 n
or

m
 r

ed
uc

tio
n

Pe = 0
Pe = 10
Pe = 100

Fig. 6.2. Convergence history of the exponential Richardson iteration for the numerical example
of Section 6.3.

before discretizing them, cf. [30]. This is possible because the velocity field (v1, v2) is
divergence free. The operator L is set to satisfy the homogeneous Dirichlet boundary
conditions. The discretization is done on a 102 × 102 or 402 × 402 uniform mesh,
producing an n×n matrix A of size n = 104 or n = 16× 104, respectively. The Peclet
number varies from Pe = 0 (no convection, A = AT) to Pe = 103, which on the finer
mesh means ‖A − AT ‖1/‖A + AT ‖1 ≈ 8 × 10−4. To get an impression on the field
of values of A, which might be instructive regarding the results of Sections 4 and 5,
we report that for the mesh 402× 402 and Pe = 103 the assumption (4.3) is satisfied
with CA = 1, ω = 0.

6.3. Exponential Richardson iteration. In this section we apply the expo-
nential Richardson iteration (5.4), (5.5) to compute the vector exp(−A)v for the
convection-diffusion matrices A described in Section 6.2. The mesh is taken to be
102 × 102. As discussed above, to be able to update the residual and to solve the

15

initial-value problem (5.4), we need to store the values of rk(t) for different t spanning
the time interval of interest. Too few samples may result in an accuracy loss in the
interpolation stage. On the other hand, it can be prohibitively expensive to store
many samples. Therefore, in its current form, the method does not seem practical if
a high accuracy is needed. On the other hand, it turns out that a moderate accuracy
up to 10−5 can be reached with relatively few samples (≈ 20).

We organize the computations in the method as follows. The residual vector
function rk(t) is stored as 20 samples. At each iteration, the initial-value problem (5.4)
is solved by the Matlab ode15s ODE solver, and the values of the right-hand side
function −Mǫ̃k(t) + rk(t) are interpolated using the stored samples. The ode15s

solver is run with tolerances determined by the final required accuracy and produces
the solution ǫ̃k(t) in the form of its twenty samples. Then, the solution and residual
are updated according to (5.5) and (5.7) respectively.

We have chosen M to be the tridiagonal part tridiag(A) of the matrix A. The
assumption (5.8) is satisfied with CM = 1, ω̃ = 0. Table 6.1 and Figure 6.2 contain
results of the test runs. Except for the Richardson method, as a reference we use the
EXPOKIT code [41] with the maximal Krylov dimension 100. Note that EXPOKIT
provides a much more accurate solution than requested by the tolerance toler = 10−4.
It is rather difficult to compare the total computational work of the EXPOKIT and
Richardson methods exactly. We restrict ourselves to the matrix-vector part of the
work. In the Richardson method this work consists of the matrix-vector multiplication
(matvec) with M −A in (5.7) and the work done by the ode15s solver. The matvec
with bidiagonal1 M − A costs about 3n flops times 20 samples, in total 60n flops2.
The linear algebra work in ode15s is essentially tridiagonal matvecs, LU factorizations
and back/forward substitutions with (possibly shifted and scaled) M . According
to [17, Section 4.3.1], tridiagonal LU factorization, back- and forward substitution
require about 2n flops each. A matvec with tridiagonal M is 5n flops. Thus, in total
exponential Richardson costs 60n flops times the number of iterations plus 2n flops
times the number of LU factorizations and back/forward substitutions plus 5n flops
times the total number of ODE solver steps. The matvec work in EXPOKIT consists
of matvecs with pentadiagonal A, which is about 9n flops.

From Table 6.1 we see that exponential Richardson is approximately twice as
cheap as EXPOKIT. As expected from the convergence estimates, the exponential Ri-
chardson iteration converges much faster than the conventional Richardson iteration
for solving a linear system Ax = v would do. For these A and v, 8–9 iterations of the
conventional Richardson would only give a residual reduction by a factor of ≈ 0.99.

6.4. Experiments with Krylov-Richardson iteration. In this section we
present some numerical experiments with the Krylov-Richardson method presented
in Section 5.2. We now briefly describe the other methods to which Krylov-Richardson
is compared.

Together with the classical Arnoldi/Lanczos method [10, 15, 23, 38], we have
tested the shift and invert method of Van den Eshof and Hochbruck [44]. We have
implemented the method exactly as described in their paper, with a single modifica-
tion. In particular, in all the tests the shift parameter γ is set to 0.1tend, as done in
the experiments of [44] (in general γ should to be chosen depending the accuracy pre-
scribed [44, Table 3.1]). Furthermore, the relaxed stopping criterion strategy for the

1Note M is the tridiagonal part of Awhich is the standard five-point finite difference discretization
of the convection-diffusion operator.

2We use definition of flop from [17, Section 1.2.4].

16

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

10
2

matvecs

residual new method
error new method
error estimate Arnoldi
error Arnoldi

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

10
2

matvecs

residual new method
error new method
gen.residual Arnoldi
error Arnoldi

Fig. 6.3. First numerical example of Section 6.4. Convergence of the conventional Arnoldi
method with two existing stopping criteria and Krylov-Richardson with the residual-based stopping
criterion for tolerance toler = 10−5. Left: stopping criterion [44, formula (4.9)], Arnoldi stops too
early (201 matvecs, 2.6 s CPU time, error 1.0e−03). Right: generalized residual criterion, Arnoldi
stops too late (487 matvecs, 139 s CPU time, error 4.9e−08). Parameters of the Krylov-Richardson
run for both plots: 434 matvecs, 11 s CPU time, error 2.2e−06). The CPU measurements (on a
3GHz Linux PC) are made in Matlab and thus are only an indication of the actual performance.

0 50 100 150 200 250
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

matvecs

residual new method
error new method
residual Arnoldi
error Arnoldi

0 200 400 600 800 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

matvecs

residual new method
error new method
residual Arnoldi
error Arnoldi

Fig. 6.4. Second numerical example of Section 6.4 with Pe = 100. Convergence plots of the
Arnoldi/Lanczos and the new Krylov-Richardson methods on a 102× 102 mesh. Left: restart every
15 steps, right: shift and invert strategy with GMRES. The peaks in the residual plots on the left
correspond to the restarts.

inner iterative shift and invert solvers is employed. The only thing we have changed
is the stopping criterion of the outer Krylov process. To be able to exactly compare
the computational work, we can switch from the stopping criterion of Van den Eshof
and Hochbruck [44, formula (4.9)] to the residual stopping criterion (see Lemma 2.2).
Note that the relaxed strategy for the inner shift and invert solver is then also based
on the residual norm and not on the error estimate.

Since the Krylov-Richardson method is essentially a restarting technique, it has
to be compared with other existing restarting techniques. Note that a number of
restarting strategies have recently been developed [1, 12, 20, 36, 43]. We have used
the restarting method described in [36]. This choice is motivated by the fact that the
method from [36] turns out to be algorithmically very close to our Krylov-Richardson

17

method. In fact, the only essential difference is handling of the projected problem. In
the method [36] the projected matrix Hk built up at every restart is appended to a

larger matrix H̃∗+k. There, the projected matrices from each restart are accumulated.
Thus, if 10 restarts of 20 steps are done, we have to compute the matrix exponential
of a 200 × 200 matrix. In our method, the projected matrices are not accumulated,
so at every restart we deal with a 20 × 20 matrix. The price to pay, however, is the
solution of the small initial-value problem (5.12).

In our implementation, at each Krylov-Richardson iteration the initial-value prob-
lem (5.12) is solved by the ode15s ODE solver from Matlab. To save computational
work, it is essential that the solver be called most of the time with a relaxed toler-
ance (in our code we set the tolerance to 1% of the current residual norm). This is
sufficient to estimate the residual accurately. Only when the actual solution update
takes place (see formula (5.5)) do we solve the projected initial-value problem to very
high accuracy.

Since the residual time dependence in Krylov-Richardson is given by a scalar func-
tion, little storage is needed for the look-up table. Based on the required accuracy, the
ode15s solver automatically determines how many samples need to be stored (in our
experiments this usually did not exceed 300). This happens at the end of each restart
or when the stopping criterion is satisfied. Further savings in computational work
can be achieved by a polynomial fitting: at each restart the newly computed values of
the function βk (see (2.5a)) are approximated by a best-fit polynomial of a moderate
degree (in all experiments the degree was set to 6). If the fitting error is too large
(this depends on the required tolerance), the algorithm proceeds as before. Otherwise,
the βk function is replaced by its best-fit polynomial. This allows a faster solution of
the projected initial-value problem (5.12) through an explicit formula containing the
ϕ-functions defined in (4.4).

We now present an experiment showing the importance of a proper stopping crite-
rion. We compute exp(−5A)v forA being the convection-diffusion operator discretized
on a uniform mesh 102 × 102 with Pe = 100. The tolerance is set to toler = 10−5.
We let the usual Arnoldi method, restarted every 100 steps, run with the stopping
criterion of [44, formula (4.9)] and with the stopping criterion of [24] based on the
generalized residual (2.6). We emphasize that the stopping criterion given by [44,
formula (4.9)] is proposed for the Arnoldi method with the shift and invert strat-
egy and it works, in our limited experience, very well as soon as shift and invert is
employed. However, the stopping criteria based on the difference of two consecutive
approximations are used in Krylov methods not only with shift and invert (see e.g. [4])
and it is instructive to see possible implications of this. Together with Arnoldi, the
Krylov-Richardson method is run with the residual-based stopping criterion. The
convergence plots are shown in Figure 6.3. As we see, both existing stopping criteria
turn out to be far from optimal in this test. With the residual-based stopping cri-
terion, the Arnoldi method required 438 matvecs and 78 s CPU time to obtain an
adequate accuracy of 4.5e−7.

To facilitate a fair comparison between the conventional Arnoldi and the Krylov-
Richardson methods, in all the other tests we use the residual-based stopping criterion
for both methods. Table 6.2 and Figures 6.4 contain the results of the test runs to
compute exp(−A)v for tolerance toler = 10−8. We show the results on two meshes
for two different Peclet numbers only, the results for other Peclet numbers are quite
similar.

The first observation we make is that the CPU times measured in Matlab seem

18

Table 6.2

Second numerical example of Section 6.4. Results of the test runs of the Krylov-Richardson
and Arnoldi with the residual-based stopping criterion. The CPU times are measured on a 2GHz
Mac PC (mesh 102×102) and on a 3GHz Linux PC (mesh 402×402). We emphasize that the CPU
time measurements are made in Matlab and thus are only an approximate indication of the actual
performance.

restart / shift and invert total matvecs CPU error
or LU actions time

mesh 102× 102, Pe = 100
EXPOKIT restart 15 1343 2.2 3.61e−09
Arnoldi restart 15 250 26.4 1.45e−10

new method restart 15 240 6.7 1.94e−09
EXPOKIT restart 100 1020 7.6 1.33e−11
Arnoldi restart 100 167 7.9 1.21e−10

new method restart 100 168 11.8 1.14e−10
Arnoldi SaI/GMRESa 980 (11 steps) 17.8 3.29e−08

new method SaI/GMRESa 60 (10 steps) 1.7 1.67e−08
Arnoldi SaI/sparse LU “11” (10 steps) 1.7 3.62e−09

new method SaI/sparse LU “11” (10 steps) 1.8 1.61e−10
mesh 402× 402, Pe = 1000

EXPOKIT restart 15 1445 21 4.36e−09
Arnoldi restart 15 244 11 1.13e−10

new method restart 15 254 15 2.62e−09
EXPOKIT restart 100 1020 69 1.33e−11
Arnoldi restart 100 202 34 1.06e−10

new method restart 100 200 35 3.62e−10
Arnoldi SaI/GMRESa 1147 (15 steps) 80 5.68e−08

new method SaI/GMRESa 97 (12 steps) 6.2 1.28e−08
Arnoldi SaI/sparse LU “12” (11 steps) 46 3.06e−08

new method SaI/sparse LU “13” (12 steps) 50 2.07e−10
a GMRES(100) with SSOR preconditioner

to favor the EXPOKIT code, disregarding the actual matvec values. We emphasize
that when the shift and invert strategy is not used, the main computational cost in
the three methods, EXPOKIT, Arnoldi and Krylov-Richardson, are k steps of the
Arnoldi/Lanczos process. The differences among the three methods correspond to
the rest of the computational work, which is O(k3), at least if not too many restarts
are made.

The second observation is that the convergence of the Krylov-Richardson itera-
tion is essentially the same as of the classical Arnoldi/Lanczos method. This is not
influenced by the restart value or by the shift and invert strategy. Theoretically, this
is to be expected: the former method applies Krylov for the ϕ1 function, the latter for
the exponential; for both functions similar convergence estimates hold true, though
they are slightly more favorable for the ϕ1 function, cf. [23].

When no shift and invert strategy is applied, the gain we have with Krylov-
Richardson is twofold. First, a projected problem of much smaller size has to be
solved. This is reflected by the difference in the CPU times of Arnoldi and Krylov-
Richardson with restart 15 in lines 2 and 3 of the Table: 26.4 s and 6.7 s. Of course,
this effect can be less pronounced for larger problems or on faster computers—see

19

the corresponding lines for Arnoldi and Krylov-Richardson with restart 15 on a finer
mesh. Second, we have some freedom in choosing the initial vector (in standard
Arnoldi/Lanczos we must always start with v). This freedom is restricted to the fact
that the residual of the initial guess has to have scalar dependence on time. Several
variants for choosing the initial vector exist, and we will explore these possibilities in
the future.

A significant reduction in total computational work can be achieved when Kry-
lov-Richardson is combined with the shift and invert strategy. The gain is then due
to the reduction in the number of the inner iterations (the number of outer iterative
steps is approximately the same). In our limited experience, this is not always the
case but typically takes place when, for instance, v and A represent discretizations of
a smooth function and a partial differential operator, respectively. Currently, we do
not completely understand this behavior. Apparently, the Krylov subspace vectors
built in the Krylov-Richardson method constitute more favorable right-hand sides for
the inner shift and invert solvers to converge. It is rather difficult to analyze this
phenomenon, but we will try to do this in the near future.

6.5. Initial vector and Krylov subspace convergence. It is instructive to
study the dependence of the Krylov subspace methods on the initial vector v. In par-
ticular, if (1.3) stems from an initial-boundary-value problem and A is a discretized
partial differential operator, a faster convergence may take place for v satisfying the
boundary conditions of the operator. Note that for the convection-diffusion test prob-
lem from the previous section this effect is not pronounced (v did not satisfy bound-
ary conditions), probably due to the jump in the diffusion coefficients. We therefore
demonstrate this effect on a simple initial-boundary-value problem

ut = ∆u, u(x, y, z, 0) = u0(x, y, z), (6.1)

posed for (x, y, z) ∈ [0, 1]3 for the unknown function u(x, y, z, t) obeying periodic
boundary conditions. We use a fourth-order finite volume discretization in space
from [48] on a regular mesh 40× 40× 40 and arrive at an initial-value problem (1.3)
which we solve for t = 1000 by computing exp(−tA)v. In Figure 6.5 convergence of
the Krylov-Richardson and Arnoldi/Lanczos methods is illustrated for the starting
vector v corresponding to

u0(x, y, z) = sin(2πx) sin(2πy) sin(2πz) + x(a− x)y(a− y)z(a− z),

with a = 2 or a = 1. In both cases the restart value is set to 100. The second
choice a = 1 (right plot) agrees with boundary conditions in the sense that u0 can be
periodically extended and leads to a faster convergence. The same effect is observed
for the Krylov-Richardson and Arnoldi/Lanczos methods with the shift and invert
strategy, with a reduction in the number of steps from 12 to 8 or 9. Remarkably,
EXPOKIT(100) converges for both choices of v within the same number of steps, 306.
Apparently, this is because EXPOKIT splits the given time interval [0, tend], building
a new Krylov subspace for each subinterval.

7. Concluding remarks and an outlook to further research. The proposed
residual notion appears to provide a reliable stopping criterion in the iterative methods
for computing the matrix exponential. This is confirmed by the numerical tests and
the analysis. Furthermore, the residual concept seems to set up a whole framework
for a new class of methods for evaluating the matrix exponential. Some basic methods
of this class are proposed in this paper. Many new research questions arise. One of

20

0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

matvecs

residual new method
error new method
residual Arnoldi
error Arnoldi

0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

matvecs

residual new method
error new method
residual Arnoldi
error Arnoldi

Fig. 6.5. Convergence plots of the Arnoldi/Lanczos and the new Krylov-Richardson methods
for the fourth-order finite volume discretization of the three-dimensional Laplacian with periodic
boundary conditions (see Section 6.5). Left: the starting vector v does not satisfy the boundary
conditions, right: v is consistent with the boundary conditions.

them is a comprehensive convergence analysis of the exponential Richardson and the
Krylov-Richardson methods. Another interesting research direction is development
of other residual-based iterative methods. In particular, one may ask whether the
exponential Richardson method (5.4), (5.5) might be used as a preconditioner for the
Krylov-Richardson method (5.5). We plan to address this question in future.

Finally, an interesting question is whether the proposed residual notion can be
extended to other matrix functions such as trigonometric functions arising in highly
oscillatory problems.

Acknowledgments. The first author would like to thank anonymous referees
and a number of colleagues, in particular, Michael Saunders, Jan Verwer and Julien
Langou for valuable comments on an earlier version of this paper.

This work was supported by Russian federal program “Scientific and scientific-
pedagogical personnel of innovative Russia”, grant 8500 and the Deutsche Forschungs-
gemeinschaft (DFG) via RTG 1294.

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel. Implementation of a restarted Krylov
subspace method for the evaluation of matrix functions. Linear Algebra Appl., 429:2293–
2314, 2008.

[2] G. Akrivis, C. Makridakis, and R. H. Nochetto. Galerkin and Runge-Kutta methods: uni-
fied formulation, a posteriori error estimates and nodal superconvergence. Numer. Math.,
118(3):429–456, 2011.

[3] M. Benzi and N. Razouk. Decay bounds and O(n) algorithms for approximating functions of
sparse matrices. Electron. Trans. Numer. Anal., 28:16–39, 2007.

[4] M. A. Botchev, D. Harutyunyan, and J. J. W. van der Vegt. The Gautschi time stepping
scheme for edge finite element discretizations of the Maxwell equations. J. Comput. Phys.,
216:654–686, 2006.

[5] E. Celledoni and I. Moret. A Krylov projection method for systems of ODEs. Appl. Numer.
Math., 24(2-3):365–378, 1997.

[6] C. W. Clenshaw. Chebyshev Series for Mathematical Functions, volume 5 of Mathematical
Tables. Her Majesty’s Stationary Office, London, 1962.

[7] K. Dekker and J. G. Verwer. Stability of Runge-Kutta methods for stiff non-linear differential
equations. North-Holland Elsevier Science Publishers, 1984.

21

[8] V. Druskin, A. Greenbaum, and L. Knizhnerman. Using nonorthogonal Lanczos vectors in the
computation of matrix functions. SIAM J. Sci. Comput., 19(1):38–54, 1998.

[9] V. L. Druskin and L. A. Knizhnerman. Two polynomial methods of calculating functions of
symmetric matrices. U.S.S.R. Comput. Maths. Math. Phys., 29(6):112–121, 1989.

[10] V. L. Druskin and L. A. Knizhnerman. Krylov subspace approximations of eigenpairs and
matrix functions in exact and computer arithmetic. Numer. Lin. Alg. Appl., 2:205–217,
1995.

[11] V. L. Druskin and L. A. Knizhnerman. Extended Krylov subspaces: approximation of the
matrix square root and related functions. SIAM J. Matrix Anal. Appl., 19(3):755–771,
1998.

[12] M. Eiermann, O. G. Ernst, and S. Güttel. Deflated restarting for matrix functions. SIAM J.
Matrix Anal. Appl., 32(2):621–641, 2011.

[13] W. H. Enright. Continuous numerical methods for ODEs with defect control. J. Comput. Appl.
Math., 125(1-2):159–170, 2000. Numerical analysis 2000, Vol. VI, Ordinary differential
equations and integral equations.

[14] A. Frommer and V. Simoncini. Matrix functions. In W. H. A. Schilders, H. A. van der Vorst, and
J. Rommes, editors, Model Order Reduction: Theory, Research Aspects and Applications,
pages 275–304. Springer, 2008.

[15] E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by Krylov approximation
methods. SIAM J. Sci. Statist. Comput., 13(5):1236–1264, 1992.

[16] F. R. Gantmacher. The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, Providence, RI,
1998. Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore and London, third edition, 1996.

[18] V. Grimm. Resolvent Krylov subspace approximation to operator functions. BIT, 52(3):639–
659, 2012.

[19] V. Grimm and M. Hochbruck. Rational approximation to trigonometric operators. BIT,
48(2):215–229, 2008.

[20] S. Güttel. Rational Krylov Methods for Operator Functions. PhD thesis, Technischen Univer-
sität Bergakademie Freiberg, March 2010.

[21] N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2008.

[22] N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numer., 19:159–208,
2010.

[23] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal., 34(5):1911–1925, Oct. 1997.

[24] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems of differ-
ential equations. SIAM J. Sci. Comput., 19(5):1552–1574, 1998.

[25] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer., 19:209–286, 2010.
[26] J. Janssen and S. Vandewalle. Multigrid waveform relaxation of spatial finite element meshes:

The continuous-time case. SIAM Journal on Numerical Analysis, 33(2):456–474, 1996.
[27] J. Kierzenka and L. F. Shampine. A BVP solver that controls residual and error. JNAIAM J.

Numer. Anal. Ind. Appl. Math., 3(1-2):27–41, 2008.
[28] L. Knizhnerman and V. Simoncini. A new investigation of the extended Krylov subspace

method for matrix function evaluations. Numer. Linear Algebra Appl., 17(4):615–638,
2010.

[29] L. A. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi’s method.
U.S.S.R. Comput. Maths. Math. Phys., 31(1):1–9, 1991.

[30] L. A. Krukier. Implicit difference schemes and an iterative method for solving them for a certain
class of systems of quasi-linear equations. Sov. Math., 23(7):43–55, 1979. Translation from
Izv. Vyssh. Uchebn. Zaved., Mat. 1979, No. 7(206), 41–52 (1979).

[31] C. Lubich. From quantum to classical molecular dynamics: reduced models and numerical anal-
ysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS),
Zürich, 2008.

[32] C. Lubich and A. Ostermann. Multi-grid dynamic iteration for parabolic equations. BIT
Numerical Mathematics, 27:216–234, 1987.

[33] A. Lumsdaine and D. Wu. Spectra and pseudospectra of waveform relaxation operators. SIAM
J. Sci. Comput., 18(1):286–304, 1997. Dedicated to C. William Gear on the occasion of
his 60th birthday.

[34] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[35] I. Moret and P. Novati. RD rational approximations of the matrix exponential. BIT, 44:595–

22

615, 2004.
[36] J. Niehoff. Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen

auf die Implementierung exponentieller Integratoren. PhD thesis, Mathematisch-Natur-
wissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf, December 2006.

[37] V. S. Ryaben′kii and S. V. Tsynkov. A Theoretical Introduction to Numerical Analysis. Chap-
man & Hall/CRC, Boca Raton, FL, 2007.

[38] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal., 29(1):209–228, 1992.

[39] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[40] L. F. Shampine. Solving ODEs and DDEs with residual control. Appl. Numer. Math.,

52(1):113–127, 2005.
[41] R. B. Sidje. Expokit. A software package for computing matrix exponentials. ACM Trans.

Math. Softw., 24(1):130–156, 1998.
[42] H. Tal-Ezer. Spectral methods in time for parabolic problems. SIAM J. Numer. Anal., 26(1):1–

11, 1989.
[43] H. Tal-Ezer. On restart and error estimation for Krylov approximation of w = f(A)v. SIAM

J. Sci. Comput., 29(6):2426–2441, 2007.
[44] J. van den Eshof and M. Hochbruck. Preconditioning Lanczos approximations to the matrix

exponential. SIAM J. Sci. Comput., 27(4):1438–1457, 2006.
[45] H. A. van der Vorst. An iterative solution method for solving f(A)x = b, using Krylov subspace

information obtained for the symmetric positive definite matrixA. J. Comput. Appl. Math.,
18:249–263, 1987.

[46] H. A. van der Vorst. Iterative Krylov methods for large linear systems. Cambridge University
Press, 2003.

[47] J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker. Linear stability analysis
in the numerical solution of initial value problems. Acta Numer., pages 199–237, 1993.

[48] R. W. C. P. Verstappen and A. E. P. Veldman. Symmetry-preserving discretization of turbulent
flow. J. Comput. Phys., 187(1):343–368, 2003.

23

IWRMM-Preprints seit 2010

Nr. 10/01 Ulrich Kulisch, Van Snyder : The Exact Dot Product As Basic Tool For Long Interval
Arithmetic

Nr. 10/02 Tobias Jahnke : An Adaptive Wavelet Method for The Chemical Master Equation
Nr. 10/03 Christof Schütte, Tobias Jahnke : Towards Effective Dynamics in Complex Systems

by Markov Kernel Approximation
Nr. 10/04 Tobias Jahnke, Tudor Udrescu : Solving chemical master equations by adaptive wa-

velet compression
Nr. 10/05 Christian Wieners, Barbara Wohlmuth : A Primal-Dual Finite Element Approximati-

on For A Nonlocal Model in Plasticity
Nr. 10/06 Markus Bürg, Willy Dörfler: Convergence of an adaptive hp finite element strategy

in higher space-dimensions
Nr. 10/07 Eric Todd Quinto, Andreas Rieder, Thomas Schuster: Local Inversion of the Sonar

Transform Regularized by the Approximate Inverse
Nr. 10/08 Marlis Hochbruck, Alexander Ostermann: Exponential integrators
Nr. 11/01 Tobias Jahnke, Derya Altintan : Efficient simulation of discret stochastic reaction

systems with a splitting method
Nr. 11/02 Tobias Jahnke : On Reduced Models for the Chemical Master Equation
Nr. 11/03 Martin Sauter, Christian Wieners : On the superconvergence in computational elasto-

plasticity
Nr. 11/04 B.D. Reddy, Christian Wieners, Barbara Wohlmuth : Finite Element Analysis and

Algorithms for Single-Crystal Strain-Gradient Plasticity
Nr. 11/05 Markus Bürg: An hp-Efficient Residual-Based A Posteriori Error Estimator for Max-

well’s Equations
Nr. 12/01 Branimir Anic, Christopher A. Beattie, Serkan Gugercin, Athanasios C. Antoulas:

Interpolatory Weighted-H2 Model Reduction
Nr. 12/02 Christian Wieners, Jiping Xin: Boundary Element Approximation for Maxwell’s Ei-

genvalue Problem
Nr. 12/03 Thomas Schuster, Andreas Rieder, Frank Schöpfer: The Approximate Inverse in Ac-

tion IV: Semi-Discrete Equations in a Banach Space Setting
Nr. 12/04 Markus Bürg: Convergence of an hp-Adaptive Finite Element Strategy for Maxwell’s

Equations
Nr. 12/05 David Cohen, Stig Larsson, Magdalena Sigg: A Trigonometric Method for the Linear

Stochastic Wave Equation
Nr. 12/06 Tim Kreutzmann, Andreas Rieder: Geometric Reconstruction in Bioluminescence

Tomography
Nr. 12/07 Tobias Jahnke, Michael Kreim: Error bound for piecewise deterministic processes

modeling stochastic reaction systems
Nr. 12/08 Haojun Li, Kirankumar Hiremath, Andreas Rieder, Wolfgang Freude: Adaptive Wa-

velet Collocation Method for Simulation of Time Dependent Maxwell’s Equations
Nr. 12/09 Andreas Arnold, Tobias Jahnke: On the approximation of high-dimensional differen-

tial equations in the hierarchical Tucker format
Nr. 12/10 Mike A. Botchev, Volker Grimm, Marlis Hochbruck: Residual, Restarting and Ri-

chardson Iteration for the Matrix Exponential

Eine aktuelle Liste aller IWRMM-Preprints finden Sie auf:

www.math.kit.edu/iwrmm/seite/preprints

Kontakt

Karlsruher Institut für Technologie (KIT)
Institut für Wissenschaftliches Rechnen
und Mathematische Modellbildung

Prof. Dr. Christian Wieners
Geschäftsführender Direktor

Campus Süd
Engesserstr. 6
76131 Karlsruhe

E-Mail:Bettina.Haindl@kit.edu

www.math.kit.edu/iwrmm/

Herausgeber

Karlsruher Institut für Technologie (KIT)
Kaiserstraße 12 | 76131 Karlsruhe

November 2012

www.kit.edu

	Preprint, Vorlage nur Deckblatt KIT, 12-10
	Anschrift 12-10,1
	matfun_resid_rev2, Hochbruck
	Preprintliste
	(Preprint, Vorlage Deckblatt KIT, Rückseite)

