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Conventions and Abbreviations

We work throughout in units implying ~ = c = 1, where ~ is the reduced Planck

constant and c is the speed of light in vacuum.

In what follows, we consider that spacetime is a four-dimensional, globally hyperbolic

manifold M with a metric g. We specify every point on M as x ≡ xµ = (x0, x1, x2, x3),

where x0 is time and xi, where i = 1, 2, 3 are spatial coordinates. Greek indices always

run over 0, 1, 2, 3, while roman ones denote only spatial components.

We designate the metric components by gµν , i.e. g = gµν dxµ⊗dxν , with the signature

(+,−,−,−). At certain points in this work, we will use two special configurations of

gµν , namely δµν and ηµν . The former represents the metric of the four-dimensional

Euclidean space E4, and the latter is the metric of Minkowski spacetime M4
1,3.

The affine connection ∇ is assumed to be the Levi-Civita connection. Thus the

connection coefficients Γλ
µν are given by the Christoffel symbols:

Γλ
µν =

1

2
gλρ

(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
,

where ∂µ is the partial derivative with respect to xµ, i.e. ∂/∂xµ. We will frequently use

shorthand notations (...); µ and (...),µ for denoting the covariant and partial derivatives,

respectively.

The components of the Riemannian curvature tensor Rµ
νλρ are given by

Rµ
νλρ ≡ ∂λΓ

µ
νρ − ∂ρΓ

µ
νλ + Γµ

σλΓ
σ
νρ − Γµ

σρΓ
σ
νλ .

The Ricci tensor and scalar are defined as Rµν ≡ Rλ
µλν and R ≡ gµνRµν , respectively.
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Chapter 1

Introduction

Recent observations of type Ia supernovae have shown that the expansion of the universe

is accelerating [1]. This phase has started at redshift z ∼ 1, that corresponds to the

epoch of galaxy formation. These facts were later confirmed by other experiments [2, 3].

This phenomenon goes under the name “dark energy”. The outstanding question is to

discover the physics of it.

The up-to-date experimental data show that its energy density ρde is approximately

equal to 72.8% of the critical mass density:

ρde ≈ 2.9× 10−47 (GeV)4 ,

the pressure Pde of it is negative, with the absolute value roughly equaling its energy

density, i.e. Pde ≈ −ρde.

Many proposals have been suggested in an attempt to uncover its nature, among

which is the cosmological constant associated with the lowest-energy state of quantum

fields. The fact is that quantum theory implies that the normal or ground state of

a certain field is endowed with the zero-point or vacuum energy density ρV, which

vanishes in the classical limit ~ → 0. Vacuum also possesses the pressure PV, that is

related to its energy density as PV = −ρV.

Naive theoretical estimates give an unacceptably large value of the zero-point energy

density ρV, that strongly contradicts the observations. In addition, the nonzero Higgs

condensate in the standard electroweak theory and the quark and gluon condensates in

quantum chromodynamics make enormous contributions to the total vacuum energy as

well. This is the essence of the cosmological constant problem (CCP).

In addition to this puzzle, there are two related cosmological problems. Specifically,

it is asked why ρde is not precisely zero, but of the order of the matter energy density

ρm of the universe, taking into account that ρde and ρm depend differently on cosmic

time. The latter is the so-called cosmic coincidence problem.

In the present research, we address the question of how to dynamically get rid of the

4



large value of the total vacuum energy produced by quantum fields.

This thesis is arranged as follows: in Chapter 2, we will briefly describe our the-

oretical framework that will be used throughout this work. Then, in Chapter 3, we

will talk over the first cosmological constant problem in detail. In Chapter 4, particu-

lar approaches to the problem are briefly discussed. These are fine-tuning, dynamical

adjustment and q-theory [4]. Motivated by q-theory and its special realization [5, 6],

we will treat in Chapter 5 vector-tensor model giving a dynamical cancellation of the

total vacuum energy appearing in the Einstein equations. We will also discuss a serious

obstacle inherent in it. In Chapter 6, we will considerably modify this model in order

to overcome that flaw. And, finally, in Chapters 7 and 8, we will discuss our results

and conclude.
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Chapter 2

Theoretical framework

According to contemporary physics, there exist four fundamental interactions in nature.

These are the electromagnetic, weak, strong and gravitational forces.

The first three interactions are well-described by gauge vector bosons according to

the standard model of particle physics based on quantum field theory with the local

symmetry group U(1)Y × SU(2)L × SU(3)C [7, 8].

General relativity (GR) is a classical theory of gravity. This theory is invariant under

Diff(M) group and based on geometrical and dynamical (equivalence) principles [9].

The geometrical idea implies spacetime is a torsion-free manifold that locally looks as

M4
1,3. Thus the metric g contains all information about the gravity. The equivalence

principle means that inertial mass coincides with the gravitational one.

The weak and strong interactions are short-range, while the electromagnetism and

gravity are long-range. However, matter is electrically neutral on average, so that

gravity governs the evolution of the universe on large scales.

2.1 Einstein-Hilbert action

The dynamics of the metric in general relativity is determined by

SEH[g] = − 1

16πG

∫
d4x

√−g R , (2.1)

where the integration is performed over the manifold M with ∂M = 0. This action was

proposed by Hilbert in 1915 and is known as the Einstein-Hilbert action functional,

where G is the gravitational constant [9].

The Einstein field equations are derived by setting the functional derivative of (2.1)

over gµν to zero. Thus one has

Gµν ≡ Rµν − 1

2
R gµν = 8πGTm

µν , (2.2)
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where we have also added a matter action Sm[g, ψ] to (2.1) with an energy-momentum

tensor (EMT) defined in the usual manner:

Tm
µν(x) ≡ 2√−g

δSm[g, ψ]

δgµν(x)
, (2.3)

and Gµν in (2.2) is the Einstein tensor.

2.2 Robertson-Walker metric

Observational data show that the universe is homogeneous and isotropic on scales larger

than 100 Mpc. The metric tensor g of such the universe is

dt⊗ dt− a2(t)

(
dr ⊗ dr

1− kr2
+ r2

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

))
(2.4)

and known as the Robertson-Walker metric, where a(t) is a scale factor and the curva-

ture constant k ∈ {−1, 0, +1}. These values of k correspond to open, flat and closed

universes, respectively. Observations indicate that our universe is roughly flat, therefore

we set k = 0 in what follows.

Having used (2.4) with k = 0, one finds the nonzero components of Gµν :

G00 = 3H2 and Gij =
(
2Ḣ + 3H2

)
gij , (2.5)

where dot stands for a differentiation over t and H ≡ ȧ/a is the Hubble parameter.

Note, the symmetries of M encoded in (2.4) imply Tm
0i = 0 and Tm

ij ∝ gij as these

directly follow from (2.2) and (2.5).

2.3 Matter composition of the universe

Cosmic microwave background radiation The cosmic microwave background (CMB)

comprises primordial photons that decoupled from matter after the recombination epoch

zrec ≈ 1100. The CMB has the Planck spectrum with a temperature T ≈ 2.725 K and

anisotropies at the level of 10−5 [10].

The electromagnetic field is mathematically described by a one-form A = Aµdxµ,

the dynamics of which is governed by LEM = −1
4
FµνF

µν , where Fµν = 2∇[µ Aν] [11].

Hence its energy-momentum tensor is in components

T rad
00 =

1

2a2

(
|E|2 +

|B|2
a2

)
, (2.6)

T rad
0i =

1

a2

(
E×B

)
i
, (2.7)

T rad
ij = −

(
EiEj +

BiBj

a2
+

1

2a2

(
|E|2 +

|B|2
a2

)
gij

)
, (2.8)
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where by definition Ei ≡ F0i and Bi ≡ εijkFjk are electric and magnetic fields, εijk is

the three-dimensional Levi-Civita symbol and |E|2 ≡ δijEiEj, |B|2 ≡ δijBiBj.

Taking into account the isotropy of the CMB, we average T rad
µν over the solid angle.

This implies 〈(E×B)i〉 = 0, 〈EiEj〉 = 1
3
|E|2δij and 〈BiBj〉 = 1

3
|B|2δij, where the angle

brackets denote the average over the angles. We have

〈T rad
00 〉 =

1

2a2

(
|E|2 +

|B|2
a2

)
and 〈T rad

ij 〉 = − 1

6a2

(
|E|2 +

|B|2
a2

)
gij . (2.9)

Since 〈T rad
00 〉 = ρrad and 〈T rad

ij 〉 = −Pradgij, we find Prad = ρrad/3.

Baryonic and dark matter Baryonic matter is a matter composed of the standard

model particles. This is seen in the sky in the form of planets, stars, galaxies and large

scale structures.

Dark matter is an unknown component of the universe, that was originally introduced

in order to explain a large value of the mass-to-light ratio in galaxies and clusters of

galaxies [12, 13]. Observations indicate that dark matter energy density is roughly

22.7% of the critical mass density and has negligible pressure. There are currently

several dark matter candidates, such those weakly interacting massive particles, sterile

neutrinos, axions and others [14].(1)

On sufficiently large scales, matter can be roughly regarded as a perfect fluid [9, 10]

characterized by its energy density ρ, pressure P and four-velocity uµ with

Tµν =
(
ρ + P

)
uµuν − Pgµν . (2.10)

For a non-relativistic, dust-like perfect fluid (u0 ≈ 1, |u| ¿ 1, Pdust ¿ ρdust), one has

T dust
00 ≈ ρdust , T dust

ij ≈ −Pdustgij . (2.11)

In what follows, the baryonic and dark matters are considered as such kind of the fluid

with the zero pressure.

Dark energy As mentioned above, observations indicate Pde ≈ −ρde. From now on we

also assume that this is the exact equality. Substituting this in (2.10), we obtain

T de
00 = ρde , T de

ij = ρdegij . (2.12)

2.4 Cosmological evolution of the universe

Taking (2.2) with (2.5) and (2.9), (2.11) as well as (2.12), we obtain one of the Fried-

mann equations describing the evolution of the universe:

ȧ2 =
8π

3
Ga2

(
ρde + ρrad + ρdust

)
. (2.13)

(1)As an alternative, Milgrom suggested to modify the Newtonian dynamics in order to resolve this missing mass

problem. See the original paper [15] for details.
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It follows from the Bianchi identities that∇µGµν = 0. On the other hand, ∇µTm
µν = 0

holds along the matter field equations. These are

ρ̇rad = −4Hρrad , ρ̇dust = −3Hρdust , ρ̇de = 0 . (2.14)

Since H = ȧ/a, we find

ρrad = ρrad0

(a0

a

)4

, ρdust = ρdust0

(a0

a

)3

, ρde = ρde0 , (2.15)

where the subscript 0 near ρ and a denotes their values at the present day t0 ∼ H−1
0 .

After the possible epoch of inflation [16, 17], when the universe was small and hot,

matter was ultra-relativistic. This is the so-called radiation-dominated phase. Setting

ρde and ρdust to zero, the Friedmann equation gives a(t) ∝ t1/2 (ȧ > 0, ä < 0).

Then the universe cooled down due to its expansion and massive matter became

non-relativistic with an energy density larger than that of radiation – a dust-dominated

phase which took place after roughly 1011 sec after big bang. Taking into account only

ρdust and neglecting others in (2.13), one deduces a(t) ∝ t2/3 (ȧ > 0, ä < 0).

At redshift z ∼ 1 corresponding to the epoch of galaxy formation, dark energy has

started to dominate at large scales. Neglecting ρrad and ρdust in comparison with ρde,

one obtains from (2.13) that a(t) ∝ exp(Ht) (ȧ > 0, ä > 0), where H = (8πGρde/3)1/2.

2.5 Newton’s law of gravity

General relativity reduces to Newtonian gravity in the limit of a weak gravitational

field and small velocities corresponding to c →∞.

The weak gravitational field means the metric tensor is close to Minkowski one:

gµν(x) = ηµν + hµν(x) , where |hµν(x)| ¿ 1 . (2.16)

This can always be achieved by using the Riemannian normal coordinates x̄µ, in which

gµν(x̄) roughly becomes ηµν + 1
3
Rµλρν x̄

λx̄ρ [9].

Einstein’s equations linearized with respect to the metric perturbations hµν(x) are

∂2hµν − ∂µ∂
λhνλ − ∂ν∂

λhµλ + ηλρ∂µ∂νhλρ + 2κ2

(
δTm

µν −
1

2
ηµνδT

m

)
= 0 , (2.17)

where by definition δTm ≡ ηλρδTm
λρ and κ2 ≡ 8πG is the Einstein gravitational constant

introduced here for the sake of convenience.

Since GR is Diff(M) invariant, (2.17) must be invariant under a coordinate trans-

formation xµ → x̃µ = xµ − ξµ, where ξµ is an infinitesimally small function of a given

spacetime point. It is straightforward to show that (2.17) is invariant under the re-

placement hµν → hµν + Lξηµν , where Lξ is the Lie derivative along ξ = ξµ∂µ. This

transformation enables to fix 4 functions.
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In the harmonic gauge [9], (2.17) becomes

∂2hµν = −2κ2

(
δTm

µν −
1

2
ηµνδT

m

)
, ∂2 ≡ ηµν∂µ∂ν . (2.18)

A general solution of this equation with the omitted source term (∂2hµν = 0) describes

a propagation of gravitational waves in empty space.

As noticed above, Newton’s law of gravity corresponds to the case of the weak

gravitational field with non-relativistic bodies. The energy-momentum tensor of such

a body with a mass M at a given point x0 is δTm
µν = Mδ0

µδ
0
νδ(x − x0), so that we

immediately find from (2.18)

hµν(r) = −2GM

|r| δµν , where r ≡ x− x0 . (2.19)

Let us consider a freely-falling body m influenced by the gravitational field of M .

According to general relativity, it moves along its geodesic ∇uu = 0, where u = uµ∂µ

is its four-velocity. Taking into account uµ ≈ (1,u) and |u| ¿ 1, one has

mr̈ ≈ −GmM

|r|2 · r

|r| . (2.20)

This is Newton’s famous law of gravity. Hence, G can be identified with Newton’s

gravitational constant GN ≈ 6.67× 10−11 m3 kg−1s−2 [18] in general relativity.

The Newton gravitational law is experimentally verified from 10−4 m [19] up to the

size of solar system 1012 m.
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Chapter 3

Cosmological constant problem

In 1917 Einstein introduced an extra constant term Λ into LEH, i.e.

S[g] = − 1

16πGN

∫
d4x

√−g
(
R + 2Λ

)
, (3.1)

which is known as the cosmological constant [20, 21]. His original goal was to have a

static universe, however it turned out that the cosmological constant Λ does not provide

a stable stationary solution. In addition, it was later discovered by Hubble that our

universe is actually expanding [22].

The Einstein equations with the cosmological term read

Rµν − 1

2
R gµν − Λ gµν = 8πGNTm

µν , (3.2)

where we have also added the matter field with the energy-momentum tensor Tm
µν .

One can associate an energy-momentum tensor TΛ
µν with the cosmological constant:

TΛ
µν = ρΛgµν , where by definition ρΛ ≡ Λ/8πGN and, hence, PΛ = −ρΛ. Thus, Λ can

be regarded as one of the candidates for the explanation of the accelerated expansion

of our universe.(1) Henceforth, we assume that this is the case, and the phrases dark

energy and cosmological constant will be used interchangeably throughout our work.

We note that Λ can have any value from the point of view of general relativity.

3.1 Zero-point energy of quantum fields

In 1967 Zel’dovich pointed out that the energy density of a quantum field in its ground

state could be related with the cosmological constant [26].

Let us consider φ : M4
1,3 → R with an action functional

S[φ] =

∫
d4x

(
1

2
ηµν∂µφ∂νφ− 1

2
m2φ2

)
. (3.3)

(1)There have also been proposed alternative ideas of how to explain the late accelerated expansion of the universe in

the literature: quintessence [23], k-essence [24], f(R) theories [25] and others.
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where m > 0 is a constant standing for the mass of the field.

The dynamical variables are φ(x) and π(x) ≡ δL/δφ̇(x) = φ̇(x) (L[φ] =
∫

d3xL is the

Lagrangian), which satisfy the well-known Hamilton equations. After quantization [8],

they become operators defined on the Hilbert space. For instance, φ̂(x) is given by

φ̂(x) =

∫
d3k

(2π)3

1√
2ωk

(
âke

−ikx + â†ke
+ikx

)
, (3.4)

where kµ ≡ (ωk, k) with ωk ≡
√
|k|2 + m2 and

[
âk, â

†
k′

]
= (2π)3δ

(
k− k′

)
,

[
âk, âk′

]
=

[
â†k, â

†
k′

]
= 0 . (3.5)

A state |0〉 is defined as the vacuum state, such that âk|0〉 = 0 ∀k. A state â†k|0〉 rep-

resents a state with one excited k-mode and so on. The vacuum state |0〉 is interpreted

as a no-particle state, while
√

2ωkâ
†
k|0〉 represents a particle with a four-momentum kµ.

The vacuum expectation value of the Hamiltonian operator Ĥ =
∫

d3x T̂00 is known

as the zero-point energy E0, i.e. E0 ≡ 〈0|Ĥ|0〉. This energy is divergent, at the very

least, because of the infinite volume of the three-dimensional space. If we consider a

zero-point energy density, then this divergence is eliminated:

ρV ≡ lim
V→∞

(
E0

V

)
=

1

2

∫
d3k

(2π)3
ωk . (3.6)

The vacuum expectation value of the momentum operator −〈0| ∫ d3x T̂0i|0〉 is precisely

zero, but the vacuum expectation value of the pressure operator is given by(2)

PV =
1

6

∫
d3k

(2π)3

|k|2
ωk

. (3.7)

Both integrals (3.6) and (3.7) are ultraviolet divergent. To prove PV = −ρV, let us

regularize PV in the following way

P ε
V =

1

3

+∞∫

0

k4 exp(−εk)√
k2 + m2

dk , (3.8)

where ε > 0, so that PV = lim
ε→0

P ε
V. Integrating P ε

V by parts, and then considering

the limit ε → 0, one finds that ρV and PV are similarly related as the corresponding

quantities of the cosmological constant.(3)

In quantum field theories of particle physics, the zero-point energy does not play

a significant role, since only energy differences have a physical meaning in scattering

processes. Therefore, it is simply removed there by a normal ordering [8, 28]. It should

be mentioned, however, that the elimination of the zero-point energy by this prescription

(2)By this we mean a quantity PVηij = − lim
V→∞

(
V −1〈0| ∫

d3x T̂ij |0〉
)
.

(3)The regularization procedure presented here differs from that that Zel’dovich used, namely he suggested a Pauli-

Villars regularization [27] of all divergences by introducing a spectrum of massive regulator fields [26].
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does not imply that vacuum fields has no physical consequences and, moreover, it is

needed there for a formal mathematical consistency of the theory [29].

The QED effects such as the spontaneous emission [29], the Lamb shift [30, 31], the

anomalous moment [32, 33] and the Casimir force [34, 35, 36, 37] are experimentally

observed and, hence, serve as evidences for the reality of vacuum fluctuations. However,

there are no laboratory evidences that the zero-point energy is real [38].(4)

3.2 Semi-classical Einstein equations

Quantum field theories are formulated in Minkowski spacetime M4
1,3. Although the

universe can always be locally regarded as M4
1,3, this is not the case globally due to

the curvature of the universe and its possible nontrivial topology. As a consequence,

there is not, in general, a decomposition of the field φ(x) into positive- and negative-

frequency modes as in (3.4) and the concept of physical vacuum, as defined above, loses

its unambiguous meaning as well as the concept of particle [40].

However, the energy-momentum tensor Tµν(x) of a quantum field appearing in the

Einstein equations are defined locally and can be found by using the path integral

method proposed by Feynman, while gravity is regarded as a classical field [40, 41].

Let us consider the free, real scalar field φ in a curved spacetime. Its action functional

is given in (3.3) up to the replacement of d4x and ηµν by d4x
√−g and gµν , respectively.

The vacuum expectation value of its energy-momentum tensor is

〈T̂µν〉 ≡
∫ Dφ Tµν(φ) exp(iS[φ, g])∫ Dφ exp(iS[φ, g])

=
2√−g

δΓ[g]

δgµν
, (3.9)

where Γ[g] is the effective action defined as −i 〈0out|0in〉 = −i ln
∫ Dφ exp (iS[φ, g]).(5)

This integral is taken over φ satisfying certain boundary or periodicity conditions.

After variation an effective action of the whole system, i.e. the metric plus scalar

fields, we obtain the semi-classical Einstein equations

Rµν − 1

2
R gµν = Λ0 gµν + 8πG0 〈T̂µν〉 , (3.10)

which take into account the backreaction of quantum fluctuations of φ on the metric.

It is shown in Appendix A by following well-known methods, that 〈T̂µν〉 can be

written in the weak-field limit as

〈T̂µν〉 = A(µ̃, d) gµν − 2B(µ̃, d) Gµν + O(g2) , (3.11)

where A(µ̃, d) and B(µ̃, d) are given in (A8), d is the dimension of spacetime and µ̃ is

the t’ Hooft scale.
(4)By saying zero-point or vacuum energy we mean vacuum bubbles which have no external legs (as in Figure 3.1 on

page 16) in contrast to vacuum fluctuations (see [39]).
(5)We note that 〈0out|0in〉 is related to both 〈0in|0in〉 and 〈0out|0out〉 [40]. See also discussion of this issue in [41].
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Substituting (3.11) in (3.10), one sees that Λ0 and G0 become Λ and G according to

Λ ≡ Λ0 + 8πG0A(µ̃, d) , G ≡ G0

1 + 16πG0B(µ̃, d)
, (3.12)

and since, for instance, A(µ̃, d) → ∞ when d approaches 4, Λ0 must also be divergent

in the same manner as A(µ̃, d) in order for Λ appearing in the semi-classical Einstein

equations (3.10) to be finite.

Applying dimensional regularization to the integral (3.6) ((3.7)), one obtains ρV =

A(µ̃, d) (PV = −A(µ̃, d)), i.e. Λ = Λ0 + 8πG0ρV. Note, after renormalization, Λ and G

correspond to the observed values of the cosmological constant and Newton’s constant,

respectively [40, 41].

The conclusion is that the zero-point energy of quantum fields gravitates in general

relativity. Thus we cannot simply get rid of this as it is the case in quantum field

theories in Minkwoski spacetime.

3.3 Cosmological constant problem

As mentioned in the Introduction, the problem comes from a comparison of the observed

energy density of the cosmological constant with its theoretical estimates. These esti-

mates contradict observations.

3.3.1 Cosmological constant and zero-point energy

As already noted, ρV given by (3.6) diverges in the ultraviolet: ρV behaves as k4 for

k →∞. However, there is the expectation that quantum field theory as well as general

relativity break down at certain high-energy scale, perhaps, of the order of the reduced

Planck energy MPlanck = 1018 GeV, above which they must be replaced by a more

fundamental theory (MFT, for short) being still unknown.

This situation resembles classical electrodynamics that suffers from the ultraviolet

catastrophe (see, for instance, [29]). The resolution of this problem eventually resulted

in a development of quantum electrodynamics.

Analogously, it is usually presumed that quantum field theory arises as an effective

low-energy theory from MFT. This may legitimate the cutoff of the integration in (3.6)

at certain |k| = MUV, so that it becomes finite(6)

ρUV
V =

M4
UV

16π2

[(
1 +

m2

2M2
UV

) √
1 +

m2

M2
UV

− m4

2M4
UV

ln

(
MUV +

√
M2

UV + m2

m

)]
.(3.13)

(6)It seems that Nernst (1916) and Pauli (1920s) were the first who estimated this integral by making this cutoff (see

[21, 48] and references therein). However, as it is argued in [49], a truncation of the high-energy modes at some finite

physical energy scale is actually illegitimate.
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Assuming MUV À m, one immediately obtains ρV ≈ M4
UV/16π2. If we take that

MUV = MPlanck, then we roughly have

ρPlanck
V /ρde ≈ 10121 , (3.14)

i.e. an enormous discrepancy between this theoretical estimate and observations.

According to supersymmetric theory (SUSY) [50, 51], each boson has a fermionic su-

perpartner with the same physical parameters and vice versa. The sum of the zero-point

energies of such a pair turns out to be precisely zero. However, since the superpartners

of the standard model particles have not been detected, supersymmetry must be broken

to avoid conflict with observations. The energy scale MSUSY below which the symmetry

is definitely unobserved is of the order of 103 GeV – energy scale that is available in

modern accelerators. Taking MUV = MSUSY, one still obtains unacceptable result:

ρSUSY
V /ρde ≈ 1061 . (3.15)

The three-dimensional cutoff regularization, however, does not respect the local

Lorentz invariance [52, 53, 54].(7) The violation of a symmetry by a regularization

can lead to unphysical consequences. For instance, in QED, the order-α vacuum po-

larization diagram is also ultraviolet divergent. A regularization by imposing a four-

dimensional Euclidean cutoff (see below) results in a nonzero photon mass proportional

to the cutoff. This obviously contradicts reality. The reason is that this regularization

violates the Ward identities and, hence, the gauge symmetry [8]. Another examples are

mentioned in [53, 54].

To preserve the local Lorentz invariance, one may make the four-dimensional cutoff.

This can be done by noting that ρV given in (3.6) can be rewritten as

ρV =
m2

4

∫
d4k

(2π)4

i

k2 −m2 + iε
=

m2

4
DF(0) (3.16)

(see Appendix B for details), where DF(0) is the Feynman propagator [8] evaluated at

x = 0, explicitly telling us that this is a one-loop vacuum energy (see Figure 3.1 (a)).

Then performing a Wick rotation in (3.16) and imposing the four-momentum Euclidean

cutoff (k0 → ikE0 and −k2 → k2
E = k2

E0 + |k|2 = M2
UV [8, 45]), we obtain

ρV =
m2

4

∫
d4kE

(2π)4

1

k2
E + m2

=
m2

64π2

[
M2

UV −m2 ln

(
M2

UV + m2

m2

)]
, (3.17)

i.e. the one-loop vacuum energy diverges as M2
UV [52, 53].

If we switch on non-gravitational interactions among the quantum fields, then mul-

tiple loops produce a more dramatic divergence when the cutoff MUV goes to infinity.

(7)For experimental tests of the local Lorentz invariance, see a review [55].
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(c) (d)

(b)(a)

Figure 3.1: Vacuum diagrams up to the order-λ2 in λφ4-theory.

Indeed, applying the path integral formalism for obtaining vacuum Feynman diagrams

in the case of λφ4-theory, we easily derive

E0 =
Zm2

0

4

∫
d4xDF(x− x) +

Z2λ0

8

∫
d4xD2

F(x− x) (3.18)

−iZ4λ2
0

48

∫
d4xd4y

(
3DF(x− x)DF(y − y)D2

F(x− y) + D4
F(x− y)

)
+ O(Z6λ3

0) ,

where the second and third terms are due to the self-interaction of the scalar field

and are diagrammatically presented in Figure 3.1 (b) and (c) with (d). The Feynman

propagator in (3.18) is given by

DF(x− y) =

∫
d4k

(2π)4

ie−ik(x−y)

Zk2 − Zm2
0 + iε

, (3.19)

where m0, λ0 and Z are bare mass, coupling constant and field-strength renormalization:

Z ≡ 1 + δ
(2)
Z λ2 + O(λ3) ,

Zm2
0 ≡ m2 + δ

(1)
m λ + δ

(2)
m λ2 + O(λ3) ,

Z2λ0 ≡ λ + δ
(2)
λ λ2 + O(λ3) .

(3.20)

Here, m and λ are the physical mass and coupling constant, respectively, fixed by the

renormalization conditions [8, 28, 56].

Expanding E0 as a series in λ and dividing the result by the volume of the four-

dimensional manifold, we obtain its energy density in the following form

ρV =
m2

4
J1,4 +

m2λ

8
J1,4J2,4 +

λ2

48

(
6 δ

(2)
λ J2

1,4 − I

+12
(
δ(2)
m −m2δ

(2)
Z

)(
J1,4 −m2J2,4

)
+ 3m2J2

1,4J3,4

)
+ O(λ3) , (3.21)
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where Jα,4 is given in (A6) and I is defined as(8)

I =

∫
d4kE

(2π)4

d4pE

(2π)4

d4qE

(2π)4

1

k2
E + m2

1

p2
E + m2

1

q2
E + m2

1

(kE + pE + qE)2 + m2
.(3.22)

In deriving (3.21), we have used an equality δ
(1)
m = −1

2
J1,4 calculated in [8].

Taking into account that J1,4 ∼ M2
UV, J2,4 ∼ ln(MUV/m), J3,4 ∼ M−2

UV as well as

from dimensional considerations δ
(2)
Z ∼ ln(MUV/m), δ

(2)
m ∼ M2

UV ln(MUV/m), δ
(2)
λ ∼

ln(MUV/m) [8, 58], and I ∼ M4
UV ln(MUV/m), one obtains

ρV ∼ λ2M4
UV ln(MUV/m) . (3.23)

Note that the order-λ vacuum energy diverges “merely” as λM2
UV ln(MUV/m) [53].

Since M2
UV is defined as k2

E = k2
E0 + |k|2 = −ηµνkµkν , we are not allowed to ascribe

physical meaning to MUV as a finite energy scale below which the theory is reliable.

Moreover, the first term in (3.18) up to the volume of the manifold comes from

1

2

∫
d4kE

(2π)4
ln

(
k2

E + m2
0

µ2

)
(3.24)

(see Appendix B for details). It is quite obvious that if we regularize this integral by im-

posing the four-dimensional Euclidean cutoff, we find that it diverges as M4
UV ln(MUV/µ).

This does not coincide with (3.17).

Dimensional regularization, as noted in the previous section, gives the same results

for both integrals and introduces the mass scale µ after MS renormalization [8, 45] (see

also Appendix A).

To our knowledge, the latest naive estimate of the zero-point energy density con-

tributing to the cosmological constant we could find in the literature is made in [54]

and equals ρV ≈ −109 GeV4 in the one-loop approximation. This vacuum energy is

related to the heaviest standard model particles, where µ is taken to be the geometric

mean of photon (λ ≈ 500 nm) and graviton (λ ≈ 1026 m) energies. This value is still

physically unacceptable.

Before we proceed, we note that it is inconsistent not to take into account the bare

cosmological constant Λ0 in (3.12) which value is dictated by MFT. As mentioned above,

the vacuum energy density ρV appearing in (3.12) is not observable, but Λ is. Thus,

one may consider the large theoretical values of ρV as an evidence that we actually need

to develop MFT.

3.3.2 Cosmological constant and spontaneous symmetry breaking

There are other sources of vacuum energy contributing to the cosmological constant.

These are associated with spontaneous symmetry breaking (SSB) and results from

nonzero vacuum expectation values of certain fields.
(8)For an analytic expression of this integral, see an article [57].
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Specifically, in the SU(5) theory [59], being the most simple grand unified theory,

after the first phase transition associated with the spontaneous symmetry breaking

SU(5) → SU(3)C×SU(2)L×U(1)Y at energy scale MGUT = 1016 GeV, the second one

SU(3)C×SU(2)L×U(1)Y → SU(3)C×U(1)EM occurs at MEW = 102 GeV followed by

a spontaneous breaking of chiral symmetry at MQCD = 0.3 GeV: U(Nf )R × U(Nf )L →
SU(Nf )V, where Nf is the number of light quark flavors [60, 61, 62]. Let us consider

the last two SSBs in more detail.

Electroweak symmetry breaking According to the electroweak theory proposed by

Glashow, Weinberg and Salam that is based on a semisimple gauge group SU(2)L ×
U(1)Y (each group has its own coupling constant, see below), there is a fundamental

scalar ϕ that is a doublet with respect to SU(2) and possesses a weak hypercharge

Yϕ = +1/2.

The part of the Lagrangian depending only on ϕ is

Lϕ =
1

2
(Dµϕ)†(Dµϕ)− V (ϕ†ϕ) , (3.25)

where Dµ = ∂µ− i
2
gAa

µσ
a− i

2
g′Bµ is the gauge covariant derivative, σa (a = 1, 2, 3) are

the three Pauli matrices that are the generators of SU(2), Aa
µ are the three gauge fields

corresponding to SU(2) and Bµ is the gauge field associated with U(1).

The potential V (ϕ†ϕ) is given by

V (ϕ†ϕ) = V0 − µ2

2
(ϕ†ϕ) +

λ

4
(ϕ†ϕ)2 , (3.26)

where µ2 > 0 and λ > 0. For this particular potential a state with ϕ = 0 is not stable

(because it is a local maximum of V ), but ϕ†ϕ = µ2/λ ≡ v2/2 is.

Now let us choose Aa
µ = 0, Bµ = 0 and 〈ϕ〉 = (0, v)T/

√
2 as a vacuum state and

consider (in the unitary gauge)

ϕT =
(
0 , v + H

)
/
√

2 , (3.27)

where H is a Hermitian field known as the Higgs boson. The Lagrangian rewritten via

H is still invariant under the whole gauge group SU(2)L × U(1)Y, but the nontrivial

vacuum state chosen above is invariant under U(1)EM (3 exp(iα(x)(σ3 + 1)/2)). In

other words, SU(2)L × U(1)Y is spontaneously broken down to U(1)EM [7, 8, 63].

Let us discuss the vacuum energy density resulting from 〈ϕ〉 6= 0. It is straight-

forward to derive, that for this particular configuration of the scalar field, its energy-

momentum tensor takes the form

Tµν(〈ϕ〉) = V (〈ϕ〉)gµν =

(
V0 − m2

H

8
√

2GF

)
gµν , (3.28)
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where m2
H ≡ µ2 is the mass of the Higgs boson and GF = 1/

√
2v2 is the Fermi constant

equaling 1.16637(1)× 10−5 GeV−2 [18].

According to preliminary results from CMS [64] and ATLAS [65], if the Higgs boson

exists, then mH ≈ 125 GeV, so that we find

m2
H

8
√

2GF

≈ M4
EW = 108 GeV4 . (3.29)

If one puts V0 = 0 in (3.26), then the Higgs condensate 〈ϕ〉 contributes a negative

vacuum energy of the order of M4
EW to the cosmological constant. However, one may

equally put V (〈ϕ〉) = 0, so that, after the electroweak SSB, there is no contribution of

the Higgs condensate to the total vacuum energy, but then we must admit enormous

fine-tuning [66, 67, 68].

We merely note that the cosmological constant problem is accompanied by a similar

puzzle in the standard model of particle physics, that is known as the hierarchy prob-

lem [69, 70]. Its essence consists in that any field, which is coupled to the Higgs boson,

makes a contribution to m2
H that diverges as M2

UV.

Chiral symmetry breaking and QCD condensates The chiral symmetry breaking is

an example of SSB of a global symmetry U(Nf )R × U(Nf )L, where Nf is the number

of light flavors.

Let us consider the light fermionic part of the QCD Lagrangian(9)

L = ū
(
iγµDµ −mu

)
u + d̄

(
iγµDµ −md

)
d , (3.30)

where γµ are the four Dirac gamma matrices. The covariant derivative is given by

Dµ = ∂µ − i
2
gsG

a
µλ

a, where λa (a = 1, . . . , 8) are the Gell-Mann matrices being the

generators of SU(3), gs is a coupling constant associated with the local SU(3)C and

Ga
µν are its eight gauge fields known as gluons.

If we put mu = md = 0, then this Lagrangian is invariant under U(2)R × U(2)L.

However, mu and md are small, but nonzero in reality. It was hypothesized that the

chiral symmetry is spontaneously broken by a quark condensate 〈q̄q〉 down to the di-

agonal SU(2) part of the chiral group U(2)R×U(2)L, where pions π± and π0 (as being

light) correspond to three pseudo-Goldstone bosons [8, 71, 72].

The quark condensate 〈q̄q〉 = 〈ūu+d̄d〉 together with the gluon condensate 〈Ga
µνG

µνa〉
are constituents of the QCD vacuum that is non-perturbative, since gs becomes larger

at low energies, however smaller at high energies – a phenomenon known as asymptotic

freedom [73]. This makes a discussion of the QCD vacuum to be a complicated issue.

One usually identifies 〈q̄q〉 ∼ −M3
QCD and 〈Ga

µνG
µνa〉 ∼ M4

QCD at energy scale cor-

responding to gs ∼ 1 [72, 74]. These condensates are conventionally considered to be

(9)The s-quark is also light with respect to the QCD energy scale MQCD, but we do not consider it here for the sake

of making our discussion as transparent as possible.

19



properties of the QCD vacuum and to be constant throughout spacetime,(10) thus they

contribute an energy density of roughly 10−2 GeV4 to the cosmological constant, which

is approximately 1045 orders of magnitude larger than ρde ≈ 2.9× 10−47 GeV4.

(10)Note, there exists another viewpoint on it, namely that the QCD condensates are localized within hadrons only, so

that the contribution of the QCD vacuum is already taken into account in the hadrons masses. For more details, see

[75] and references therein as well as [62]. For criticism of this statement, see [76].
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Chapter 4

Particular approaches to CCP

Many approaches of how to solve the cosmological constant problem have been sug-

gested in the literature. A survey of these different proposals can be found in [14, 21,

62, 68, 77, 78] as well as [79], where they are classified into five classes: fine-tuning,

approaches based on a certain symmetry, backreaction mechanisms, violation of the

equivalence principle and statistical approaches. However, the problem remains un-

solved.

In the present chapter, we shall briefly discuss some of the ideas being relevant for

our further discussions and introduce so-called q-theory [4, 80, 81].

4.1 Fine-tuning adjustment

Let us consider a real scalar field φ governed by the following Lagrangian

Lφ = −∇µφ∇µφ + V (φ) . (4.1)

Setting the variation of Lφ over φ to zero yields

∇2φ + V ′(φ) = 0 , (4.2)

where V ′ ≡ dV/dφ. The scalar energy-momentum tensor Tµν(φ) is

Tµν(φ) = 2∇µφ∇νφ− gµν

(∇λφ∇λφ− V (φ)
)
. (4.3)

A constant configuration φ = φ0 6= 0, such that

V ′|φ=φ0
= 0 (4.4)

reduces Tµν(φ) to V (φ0)gµν . In other words, ρφ = −Pφ = V (φ0). Therefore, taking a

proper potential V (φ), one can always bring the total vacuum energy in the Einstein

equations into the physically acceptable level.

This approach implies an artificial choice of the potential V (φ), such as the observed

value of dark energy ρde equals V (φ0) plus large negative number coming from quantum

fields. This makes it unattractive.
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4.2 Dynamical adjustment

Dolgov in 1983 [77] and Ford in 1987 [82] proposed a model that provides a dynamical

cancellation of a cosmological constant by a massless scalar field non-minimally coupled

with gravity.

This model is determined by the following Lagrangian density

Lφ = −∇µφ∇µφ + ζRR φ2 . (4.5)

The scalar field equation is given by
(
∇2 + ζRR

)
φ = 0 , (4.6)

while its energy-momentum tensor is found to be

Tµν(φ) = 2∇µφ∇νφ− gµν∇λφ∇λφ

+ ζR

(
Rφ2gµν − 2Rµνφ

2 + 2∇µ∇νφ
2 − 2gµν∇2φ2

)
. (4.7)

It is straightforward to show that there exist at least two cosmological solutions

of the scalar and Einstein field equations. The first solution corresponds to de Sitter

spacetime

φ(t) = 0, H(t) =
√

Λ/3 , ρm(t) = 0 , (4.8)

where ρm(t) is the energy density of the matter field. The second solution is

φ(t) = ±
(

8ζRρΛ

3 + 28ζR + 60ζ2
R

)1/2

× t , H(t) =
1

2t

(
1 +

1

2ζR

)
(4.9)

with

ρm(t) =
3

32πG t2

(
1 +

1

2ζR

)2

. (4.10)

Considering small homogeneous perturbations around these solutions and linearizing

the scalar, Einstein and matter field equations with respect to them, one easily finds

that (4.8) is asymptotically stable only if ζR < 0 and Pm/ρm ≡ wm > −1, while φ(t)

and H(t) given in (4.9) are asymptotically stable only if

ζR ∈ D, where D =
(−∞,−1/2

) ∪ (
0, +∞)

, (4.11)

but t2ρm(t) approaches a constant for large time, which depends on the initial conditions

imposed. Thus the cosmological constant Λ for ζR ∈ D is dynamically compensated by

the scalar field subject to the condition that

ζRΛ
(
3 + 28ζR + 60ζ2

R

)
> 0 (4.12)

is satisfied for φ to be real.
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However, this model is unrealistic [77, 82]. Indeed, considering the weak-field limit,

one finds that the effective gravitational constant is

Geff =
G

1 + 16πGζRφ2
∼ 1/t2 (4.13)

at large time. As a consequence, Ġeff/Geff ≈ −2H0 ≈ −10−10 yr−1. This contradicts

observations [83, 84] (see also [55]).

4.3 Q-theory

As already mentioned, there is the expectation that general relativity and quantum

field theory are low-energy effective theories. This means that they must be replaced

by a more fundamental theory that works even at high-energy scales and simplifies to

general relativity and quantum field theory in the limits ~→ 0 and G → 0, respectively.

Quantum gravity is, however, not yet established. Q-theory is a phenomenological

approach to the quantum vacuum [4].

According to q-theory, the vacuum is a Lorentz invariant self-sustained medium,

that is characterized by a conserved relativistic scalar q. This parameter describes

microscopic, high-energy degrees of freedom. On the other hand, the q-variable allows

to discuss macroscopic, low-energy physics, because it obeys the conservation law (see

below). Condensed-matter analog of the q-variable is the particle density n in liquids.

The microscopic vacuum energy εmicro(q) could be of the order of M4
UV. The macro-

scopic vacuum energy εmacro(q), that appears in the equations of the low-energy effective

theories, can be of the order of the observed cosmological constant. However, since vac-

uum is self-sustained, εmacro(q0) = 0, where q0 6= 0 is a value of q in the equilibrium

state. Thus, the small value of ρde is due to the fact that qtoday ≈ q0.

Let us consider several examples of the q-variable which will clarify what was just

said.

First example The q-variable can be realized by a tensor of the third rank Aµνλ, namely

q ∝ eµνλρ∇µAνλρ , (4.14)

where eµνλρ is the absolutely antisymmetric tensor: eµνλρ ≡ √−g εµνλρ, where εµνλρ is

the Levi-Civita symbol [4, 85, 86, 87, 88].

Let us suppose the dynamics of the q-variable is governed by

S[g, A] = −
∫

d4x
√−g εmicro(q) , (4.15)

where εmicro(q) is a generic function of its variable. The q-variable depends on both

Aµνλ and gµν . The variation of (4.15) with respect to Aµνλ gives

∇µ (ε′micro) = 0 ⇒ ε′micro = µ = const , (4.16)
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where prime stands for derivation with respect to the q-variable. This equation rep-

resents the conservation law of q. The variation of S[g, A] with respect to the metric

gives us its energy-momentum tensor

Tµν(q) = εmacro(q)gµν , where εmacro(q) ≡ εmicro(q)− q ε′micro(q) . (4.17)

Thus, the vacuum energy density that enters the Einstein field equations is given by

εmacro(q), rather than εmicro(q).

As just mentioned, qtoday ≈ q0 and, hence,

ρde = εmacro(q)|qtoday
=

(
εmicro(q)− q ε′micro(q)

)∣∣∣
qtoday

¿ M4
UV, (4.18)

while both εmicro(q0) and q0 ε′micro(q0) could be of the order of M4
UV.(1)

Note that a fundamental scalar field cannot be regarded as the q-variable. The

fact is that for the scalar field µ is identically zero as it follows from (4.4), while µ is

determined by the equilibrium state of the vacuum and, generally speaking, nonzero

[6]. Consequently, q is not a fundamental scalar, i.e. it must be built out of some

fundamental tensor fields and their covariant derivatives for having dynamics.

Second example The second example of such kind of the variable can be realized by

the following pseudoscalar

q ∝ FµνF̃
µν , (4.19)

where Fµν ≡ ∇µAν − ∇νAµ is the field strength tensor, F̃µν is a dual tensor. Indeed,

one has a sequence of equalities

FµνF̃
µν =

1

2
eµνλρFµνFλρ = eµνλρFµν∇λAρ = eµνλρ∇λ

(
FµνAρ

)
. (4.20)

Since FµνAρ does not depend on the metric field, it can be associated with Aµνρ from

the previous example. It is also worth mentioning that a vector dual to FµνAρ is

proportional to the topological or Chern-Simons current [89].

For a gauge SU(N) vector field, one can define the q-variable in a completely anal-

ogous manner:

q ∝ tr
(
FµνF̃

µν
)
, where Fµν ∝ [Dµ, Dν ] . (4.21)

Here Dµ is the covariant derivative associated with the local SU(N). We note that the

q-variable related with the gluonic vacuum was discussed in [90].

(1)A particular model with the q-variable was proposed in [85]. Two extra equations, so-called equilibrium conditions,

were used there for getting Minkowski spacetime (H = ȧ/a = 0) in the equilibrium state of vacuum (see Eq. (3.4) in

[85]). However, at it is argued in [81], this corresponds to a fine-tuning of the integration constant µ in (4.16). So instead

of the fine-tuning of the action, there must be done the fine-tuning of initial conditions. We will see below, that, in

principle, this particular problem can be overcome.
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Third example Another comparatively simple example of the q-variable is given by

q ∝ ∇µAµ , (4.22)

with the Lagrangian density as in (4.15).

If one adds extra terms depending on the vector field Aµ to this Lagrangian, then

the simple form of both the conservation law (4.16) and the energy-momentum tensor

(4.17) are spoiled. Nevertheless, it can be that the q-variable appears asymptotically,

i.e. in the limit t →∞.

Long ago Dolgov proposed a vector model with the dynamical compensation of a

cosmological constant [5]. This model is governed by the following Lagrangian density

LA = ζ1

(∇µAν

)(∇µAν
)
. (4.23)

Taking Aµ = A0(t)δ
0
µ, he found a solution behaving as

A0(t) = ±
√

ρΛ/4ζ1 × t , H(t) = 1/t . (4.24)

This solution is asymptotically stable, i.e. does not depend on initial conditions im-

posed on dynamical variables and provides with the exact dynamical cancellation of

the vacuum energy in the Einstein equations. The q-variable appears here as [6]

Aµ;ν(t) =
(
δ0
µ∂ν − Γ0

µν

)
A0(t) → qgµν , when t → ∞ , (4.25)

where q ≡ ±
√

ρΛ/4ζ1.

However, Dolgov’s model has at least two obstacles making it unrealistic. First, the

Hubble parameter H = 1/t implies a(t) ∼ t. This formally corresponds to the string-

dominated universe and is in an obvious contradiction with the observational data.

Second, Newton’s law of gravity is violated as well as the properties of gravitational

waves in comparison with them in general relativity [91].

Inspired by q-theory approach and Dolgov’s model, we will generalize (4.23) in the

next chapter by adding extra terms quadratically depending on the vector field. We

will, however, refrain from the reference to q-theory in the next two chapters. The

reason for that is that our further analysis is independent of it and may be regarded as

a search of a realistic model with a dynamical cancellation of the total vacuum energy.
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Chapter 5

Vector-tensor model I

Let us consider a hypothetical universe governed by the following effective action

S[g, ψ, A] = −
∫

d4x
√−g

(
1

2
M2

Planck

(
R + 2Λ

)
+ LA + Lm

)
, (5.1)

where MPlanck is the reduced Planck mass defined in terms of the gravitational constant

G, Lm is the Lagrangian of matter field ψ and LA is the Lagrangian of a vector field

Aµ non-minimally coupled with gravity

LA = ζ1

(∇µAν

)(∇µAν
)

+ ζ2

(∇νAµ

)(∇µAν
)

+ ζ3(∇µAµ)2 + ζ4RAµA
µ . (5.2)

This vector Lagrangian (5.2) was proposed long ago as one of the alternative metric

theories of gravity [92, 93, 94]. In general, vector-tensor theories may be divided into

two subclasses [55]: Einstein-aether theories in which Aµ is the unit timelike four-vector

[95] and unconstrained vector-tensor theories corresponding to (5.2). The purpose of

the former models is to introduce a dynamical violation of the local Lorentz invariance

by means of the appearance of a preferred rest frame. This is motivated by purely

theoretical evidences that this symmetry might be broken at high-energy scales [96].

As concerns the latter, a model with (5.1) and (5.2), where Λ is precisely zero, has

been recently considered in [97]. The vector field is invoked there to describe both dark

matter and dark energy in our universe.

However, the nonzero cosmological constant influences a behavior of the vector

field Aµ, such that Λ is compensated by Aµ at late times for certain choices of the

ζ-coefficients in (5.2) [5, 98]. It will be proven that independent of how large Λ is, the

vector field does the job for a large domain of initial conditions imposed on dynamical

variables. In addition, it will be shown that short-wavelength perturbation of the vec-

tor and metric fields gives an unacceptable modification of the Newton gravity law in a

linear approximation. Thus, this hypothetical universe has nothing to do with our own

universe. In the next chapter, we will consider much more sophisticated vector-tensor

model in order to avoid this difficulty. The analysis made below will be helpful there.
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For the sake of convenience, we rewrite (5.2) via symmetric and skew-symmetric

tensors built out of the first covariant derivative of the vector field ∇µAν , namely

Sµν ≡ ∇µAν +∇νAµ , Fµν ≡ ∇µAν −∇νAµ . (5.3)

The half sum of Sµν and Fµν gives us the first term in (5.2) and the half difference of

them gives the second term of the Lagrangian LA, so that we can rewrite (5.2) as

LA =
1

4
ζS SµνS

µν +
1

4
ζF FµνF

µν +
1

4
ζQ (Sµ

µ)2 + ζRRAµA
µ , (5.4)

where we have used the equality Sµ
µ = 2∇µAµ resulting from (5.3) and defined new

coefficients as

ζS ≡ ζ1 + ζ2 , ζF ≡ ζ1 − ζ2 , ζQ ≡ ζ3 , ζR ≡ ζ4 (5.5)

which will be used in the following.

In principle, we could also add to the vector Lagrangian a quadratic term in the

vector field Aµ, constructed from the contraction of the vector field with the Ricci

tensor Rµν . However, this term does not give a new contribution to the model, because

of the following correspondence

RµνA
µAν ←→ −1

4
SµνS

µν +
1

4
FµνF

µν +
1

4
(Sµ

µ)2 , (5.6)

which can be straightforwardly verified. Note, this correspondence (5.6) enables us to

eliminate SµνS
µν from the Lagrangian, i.e. we can also write

LA =
1

2
(ζS + ζF )FµνF

µν +
1

4
(ζS + ζQ)(Sµ

µ)2 − ζSRµνA
µAν + ζRRAµA

µ , (5.7)

so that in the case of Minkowski spacetime gµν = ηµν , the last two terms vanish and we

arrive to the well-known vector model with a term fixing a gauge.

5.1 Vector and Einstein field equations

The vector field equation can be derived by calculating the functional derivative of the

action (5.1) with respect to the field Aµ and setting it equal to zero. This yields

ζS Sλ
µ;λ + ζF F λ

µ;λ + ζQ Sλ
λ;µ = 2ζR RAµ . (5.8)

Varying the action (5.1) with respect to the metric field gµν , we obtain the Einstein

field equations

Rµν − 1

2
Rgµν = M−2

Planck

(
ρΛgµν + TA

µν + Tm
µν

)
, (5.9)
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where Tm
µν is the energy-momentum tensor of the matter field ψ which is assumed to

have the form (2.10), TA
µν is the energy-momentum tensor of the vector field which we

split into four terms

TA
µν = T S

µν + T F
µν + TQ

µν + TR
µν , (5.10)

where each of T f
µν , f ∈ {S, F,Q, R} are presented in Appendix C.

5.2 Flat, homogeneous and isotropic universe

The flat, homogeneous and isotropic universe is described by the Friedmann-Robertson-

Walker metric (2.4) with the zero curvature constant (k = 0), namely

ds2 = gµνdxµdxν = dt2 − a2(t)dr2 . (5.11)

The vector field must be homogeneous as well, i.e.

Aµ(x) =
(
A0(t), Ai(t)

)
. (5.12)

Generally speaking, (5.12) does not imply that the vector EMT is compatible with the

isotropic universe. For that to be, TA
µν must take the following form: TA

0i = 0 and

TA
ij ∝ gij (see Section 2.2). However, it turns out that TA

0i always vanish, but non-

diagonal elements of TA
ij definitely disappear only if Ai(t) = 0. This does not mean that

there is no nontrivial Ai(t), such that TA
ij ∝ gij as we will show below.

In the present section, we will proceed as follows: firstly, we consider the case Aµ =

(A0, 0), then we will move on Aµ = (0, Ai), where Ai(t) is a particular function of

cosmic time t, such that non-diagonal elements of the energy-momentum tensor TA
µν

vanish and, finally, we will treat Aµ = (A0, Ai).

5.2.1 Case: Aµ = (A0, 0)

Taking into account (5.11) and (5.12) with Ai(t) = 0, one derives from (5.8) and (5.9)

together with (5.10) that

v̈ + 3hv̇ + 3

(
ḣ + ζ−1

[(
2ζR − ζS

)
ḣ +

(
4ζR − ζS

)
h2

])
v = 0 , (5.13a)

3h2 − λ− rv − rm = 0 , (5.13b)

2ḣ + 3h2 − λ + pv + wmrm = 0 , (5.13c)

ṙm + 3h
(
1 + wm

)
rm = 0 , (5.13d)

where by definition

ζ ≡ ζQ + ζS 6= 0 (5.14)
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and, for the sake of clarity, dimensionless variables have been introduced by rescaling

the original ones with appropriate powers of the reduced Planck mass, namely

v ≡ M−1
Planck A0 , h ≡ M−1

Planck H , τ ≡ MPlanck t ,

λ ≡ M−4
Planck Λ , rm ≡ M−4

Planck ρm , pm ≡ M−4
Planck Pm .

(5.15)

Thus, dot stands for a differentiation with respect to rescaled cosmic time τ throughout

this section, rather than t. The rescaled energy density rv ≡ M−4
PlanckρA0 and pressure

pv ≡ M−4
PlanckPA0 of the vector field are

rv(τ) = −ζ
((

v̇ + 3hv
)2 − 2v

(
v̈ + 3hv̇0 + 3ḣv

))

+6
(
2ζR − ζS

) (
ḣv2 − hvv̇

)
+ 18ζRh2v2 , (5.16a)

pv(τ) = +ζ

((
v̇ + 3hv

)2
+ 2v

(
v̈ + 3hv̇ + 3ḣv

))

+2
(
ζR − ζS

) (
(2ḣ + 3h2)v2 + 4hvv̇

)
+ 2

(
2ζR − ζS

) (
v̇2 + vv̈

)
. (5.16b)

Equation (5.13d) represents an evolution of the matter energy density with time, where

we have taken pm = wmrm.

As mentioned in Section 2.4, ∇µGµν = 0 due to the Bianchi identities. In the flat,

homogeneous and isotropic universe it is equivalent to

Ġ00 + 3hG00 − hgijGij = 0 , (5.17)

where Gij ∝ gij (see (2.5)). Hence, (5.13c) can be obtained by use of (5.13a) and

(5.13b) as well as (5.13d) with an assumption h 6= 0. However, we do not leave it out

from the equations (5.13), since it will be useful at certain places of our analysis below.

There are three separate subcases depending on a choice of the coefficients (5.5),

namely: 1) ζS = ζR = 0; 2) |ζR|+ |ζS| 6= 0 and 2ζR− ζS = 0; 3) the rest of possibilities:

|ζR|+ |ζS| 6= 0 and 2ζR − ζS 6= 0. Let us consider each of them in order.

First subcase: ζS = ζR = 0

Setting ζS = 0 and ζR = 0 in (5.13), these equations reduce to

v̈ + 3hv̇ + 3ḣv = 0 , (5.18a)

3h2 − λ + ζ
(
v̇ + 3hv

)2 − rm = 0 , (5.18b)

ṙm + 3h
(
1 + wm

)
rm = 0 , (5.18c)

where we have substituted rv(τ) and omitted (5.13c) as needless.

The left-hand side of (5.18a) is a total derivative of v̇+3hv. Consequently, this must

be a constant. Taking (5.18b) and (5.18c) into account, one concludes that either both
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v(τ) and h(τ) are constant or v(τ) ∼ τ and h(τ) ∼ 1/τ . Specifically, we find two exact

solutions:

v(τ) = v̄0 , h(τ) =

√
λ

3
(
1 + 3ζv̄2

0

) and rm(τ) = 0 , (5.19)

where v̄0 is a constant depending on initial conditions, and

v(τ) = v0τ , h(τ) =
2

3(1 + wm)τ
and rm(τ) =

4

3(1 + wm)2τ 2
, (5.20)

where v0 have been defined as

v0 ≡ ±1 + wm

3 + wm

√
λ/ζ (5.21)

for wm 6= −3, otherwise there is no such solution.

Stability analysis In order to specify a solution of (5.18), one has to impose three

initial conditions. For example, we can set the values of v(τ), v̇(τ) and rm(τ) at some

initial moment of time τin. However, (5.19) has only one arbitrary constant, but (5.20)

is determined merely by the model parameters. It means that we have actually found

particular exact solutions. It can be that a full solution of (5.18) behaves itself differ-

ently from the found ones at large time, so that the rest of independent solutions of

(5.18) can manifest themselves in a way that (5.19) and (5.20) are spoilt at such time.

To make a stability analysis of both (5.19) and (5.20), we have to consider homoge-

neous perturbations around them, namely

v → v + δv(τ) , h → h + δh(τ) , rm → rm + δrm(τ) , (5.22)

where δv(τ), δh(τ) and δrm(τ) are unknown functions. Then one needs to substitute

(5.22) in (5.18) and linearize equations (5.18) with respect to the perturbations and look

for their full solution. Depending on how δv(τ), δh(τ) and δrm(τ) behave themselves

at large time τ , one can conclude whether the particular exact solutions found above

are asymptotically stable or not.

First critical point Having linearized (5.18) with respect to δv(τ), δh(τ) and δrm(τ)

around (5.19), one has

δv̈ + 3hδv̇ + 3v̄0δḣ = 0 , (5.23a)

6hδh− δrm + 6ζ hv̄0

(
δv̇ + 3hδv + 3v̄0δh

)
= 0 , (5.23b)

δṙm + 3h
(
1 + wm

)
δrm = 0 . (5.23c)

It is not hard to see that a solution of the last equation (5.23c) is

δrm(τ) = 6
h2wm

v̄0

C3 exp
(− 3(1 + wm)hτ

)
, (5.24)
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where C3 is a constant of integration, while (5.23a) and (5.23b) give

δv(τ) = C1 + C2 exp
(− 3hτ

)
+ C3 exp

(− 3(1 + wm)hτ
)
, (5.25)

δh(τ) = − 3ζ hv̄0

1 + 3ζv̄2
0

C1 +
hwm

v̄0

C3 exp
(− 3(1 + wm)hτ

)
, (5.26)

C1,2 are arbitrary constants. Since the number of integration constants coincides with

the number of initial conditions which must be imposed, we arrive at the conclusion

that (5.24), (5.25) and (5.26) give a complete solution of (5.23).

For sufficiently large time 3(1 + wm)hτ À 1 subject to wm > −1, one has

δv(τ) ≈ C1 , δh(τ) ≈ − 3ζ hv̄0

1 + 3ζv̄2
0

C1 , (5.27)

i.e. δv(τ) and δh(τ) are comparable with the background solutions v(τ) and h(τ),

but δrm(τ) tends to zero. Moreover, it is straightforward to show that changing v̄0 into

v̄0+δv(τ) in h(τ) of (5.19), and then linearizing h(τ) with respect to δv(τ), we find that

δh(τ) is exactly given by (5.27). It means, as already mentioned, the actual value of v̄0

as well as the value of h(τ) as a function of v̄0 are determined by the initial conditions.

In other words, there exists a nonempty set of initial conditions, such that the solution

of (5.18) approaches a curve in the three-dimensional phase space (v, h, rm), with an

equation that is given by (5.19).

Second critical point Now let us take (5.20) as a background solution. The lin-

earized equations (5.18) around (5.20) read

δv̈ +
2

(1 + wm)τ
δv̇ − 2

(1 + wm)τ 2
δv + 3v0

(
τδḣ + δh

)
= 0 , (5.28a)

4

(1 + wm)τ
δh− δrv − δrm = 0 , (5.28b)

δṙm +
2

τ
δrm +

4

(1 + wm)τ 2
δh = 0 , (5.28c)

where δrv(τ) is the rescaled energy density of the vector field linearized with respect to

the homogeneous perturbations,

δrv(τ) = −2ζv0
3 + wm

1 + wm

(
δv̇ +

2

(1 + wm)τ
δv + 3v0τδh

)
. (5.29)

Although the equations (5.28) look, perhaps, complicated, they can be easily solved.

Indeed, the first equation (5.28a) is a total time derivative of

δv̇ +
2

(1 + wm)τ
δv + 3v0τδh , (5.30)
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therefore this must be a constant, so that one obtains δh(τ) as a function of τ , δv(τ)

and δv̇(τ). Using this result, one gets from (5.28b) that δrm(τ) is also a function of

τ , δv(τ) and δv̇(τ). Thus, if we substitute δh(τ) and δrm(τ) in (5.28c), we derive a

homogeneous linear differential equation of the second order in δv(τ) with time-variable

coefficients. Having solved this equation, one has the following complete solution of the

linearized system (5.28):

δv(τ) = C1 + C2τ
−2/(1+wm) + C3

(
τ 2 +

5 + 3wm

ζ v2
0(3 + wm)2

)
τ , (5.31a)

δh(τ) = −2C1 + C3(5 + 3wm)τ 3

3v0(1 + wm)τ 2
, (5.31b)

δrm(τ) = −2
4C1 − C3(5 + 3wm)τ 3

3v0(1 + wm)2τ 3
, (5.31c)

where C1,2,3 are constants of integration. Hence, for sufficiently large time

δv(τ)/v(τ) ∼ δh(τ)/h(τ) ∼ δrm(τ)/rm(τ) ∼ C3τ
2 , (5.32)

i.e., generally speaking, the perturbations grow with time in comparison with (5.20).

This means that (5.20) is an unstable solution of (5.18).

Note that C1 can be interpreted as a shift of time. Indeed, it is straightforward to

show that (5.20) with τ replaced by τ + C1/v0 is also a solution of (5.18). So for large

time τ À |C1/v0|, one approximately has

δv(τ) ≈ C1 , δh(τ) ≈ − 2C1

3v0(1 + wm)τ 2
, δrm(τ) ≈ − 8C1

3v0(1 + wm)2τ 3
.(5.33)

This observation will be useful in the following.

Second subcase: |ζR|+ |ζS | 6= 0 and 2ζR − ζS = 0

Let us now treat the case where ζS = 2ζR 6= 0. Substituting this in (5.13), we have

v̈ + 3hv̇ + 3
(
ḣ + 2(ζR/ζ)h2

)
v = 0 , (5.34a)

3h2 − λ− rv − rm = 0 , (5.34b)

2ḣ + 3h2 − λ + pv + wmrm = 0 , (5.34c)

ṙm + 3h(1 + wm)rm = 0 , (5.34d)

where the rescaled energy density (5.16a) and pressure (5.16b) of the vector field are

rv(τ) = −ζ
(
v̇ + 3hv

)2
+ 6ζR(hv)2 , (5.35a)

pv(τ) = +ζ
(
v̇ + 3hv

)2 − 2ζR

((
2ḣ + 9h2

)
v2 + 4hvv̇

)
. (5.35b)
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Here we do not omit (5.13c) from a reason to be made clear shortly.

One can easily see that (5.34) has two particular exact solutions corresponding to

de Sitter spacetime

v(τ) = 0 , h(τ) =
√

λ/3 and rm(τ) = 0 , (5.36)

and Minkowski spacetime

v(τ) = v0τ , h(τ) = 0 and rm(τ) = 0 , (5.37)

where by definition v0 ≡ ±
√

λ/ζ.

Stability analysis As in the previous subcase, we consider homogeneous perturbations

around both (5.36) and (5.37) in order to analyze their stability.

de Sitter spacetime Considering the homogeneous perturbations of the variables

around (5.36) and linearizing (5.34) with respect to them, we obtain

δv̈ + 3hδv̇ + 6(ζR/ζ)h2δv = 0 , (5.38a)

6hδh− δrm = 0 , (5.38b)

δṙm + 3h(1 + wm)δrm = 0 . (5.38c)

The complete solution of these equations is almost obvious, so we easily find

δv(τ) = C1,2 exp

(
−3hτ

2

(
1±

√
1− 8(ζR/3ζ)

))
, (5.39a)

δh(τ) = C3 exp (−3(1 + wm)hτ) , (5.39b)

δrm(τ) = 6hC3 exp (−3(1 + wm)hτ) , (5.39c)

where C1,2,3 are arbitrary constants. We see that all of them approaches zero with

growing time only if wm > −1 and

ζζR > 0 (5.40)

is satisfied. If otherwise, the de Sitter spacetime solution is unstable.

Minkowski spacetime Analogously, linearizing (5.34) about the Minkowski space-

time solution (5.37) yields

δv̈ + 3v0

(
τδḣ + δh

)
= 0 , (5.41a)

2ζv0 (δv̇ + 3v0τδh)− δrm = 0 , (5.41b)

2δḣ + 2ζv0 (δv̇ + 3v0τδh)− 4ζRv2
0τ

2
(
δḣ +

2

τ
δh

)
+ wmδrm = 0 , (5.41c)

δṙm = 0 . (5.41d)
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Firstly, it directly follows from (5.41d) that δrm(τ) = const. Secondly, (5.41a) is

encoded in (5.41b) and (5.41d), therefore we can omit this. Then using (5.41b) and

(5.41c), we obtain an equation in δh(τ) only. Specifically, one has

δḣ− 4ζRv2
0τ

1− 2ζRv2
0τ

2
δh =

C2

1− 2ζRv2
0τ

2
⇒ δh(τ) =

C1 + C2τ

1− 2ζRv2
0τ

2
, (5.42)

where we have taken

δrm(τ) = − 2C2

1 + wm

. (5.43)

Substituting δh(τ) and δrm(τ) in (5.41b), we find

δv(τ) =
3ζ(1 + wm)− 2ζR

2ζζRv0(1 + wm)
C2τ (5.44)

+
3

4v2
0ζ

3/2
R

(
C1v0ζ

1/2
R ln

∣∣C3(1− 2ζRv2
0τ

2)
∣∣− 21/2C2Arctanh

(
v0τ

√
2ζR

))
.

Hence, Minkowski spacetime solution is unstable unless we remove the matter field from

the model (ψ = 0 ⇒ rm = pm = 0). If so, then C2 = 0 identically and, consequently,

δv(τ)/v(τ) ∼ ln(τ)/τ and δh(τ) ∼ 1/τ 2 for large time |ζR|v2
0τ

2 À 1.

Third subcase: |ζS |+ |ζR| 6= 0 and 2ζR − ζS 6= 0

One can directly show that the equations (5.13) have the following classes of particular

exact solutions

v(τ) = 0 , h(τ) =
√

λ/3 and rm(τ) = 0 (5.45)

corresponding to de Sitter spacetime, and

v(τ) = v0τ , h(τ) =
2

3(1 + wm)τ
and rm(τ) =

4

3(1 + wm)2τ 2
, (5.46)

where v0 have been defined as(1)

v0 = ±
(

λ
(
4ζR − ζS

)2

2
(
5ζR − 2ζS

)(
3(2ζR − ζS)2 + 2ζ(5ζR − 2ζS)

)
)1/2

(5.47)

and the constant parameter of the equation of state is given by

wm =
1

3
+

2ζS

3
(
2ζR − ζS

) , (5.48)

i.e. wm is fixed by the ratio ζS/ζR.

Note that Dolgov’s model [5] corresponds to ζS = ζF 6= 0, ζQ = ζR = 0 and, hence,

wm = −1/3 as in a universe filled with a string gas. The model considered in [98]

corresponds to ζS = ζF = 0, ζQ 6= 0 and ζR 6= 0, such as wm = 1/3 as for radiation.

(1)We tacitly exclude values of the ζ-coefficients throughout our work which imply infinite or imaginary values of the

dynamical variables. In particular, the dominator in (5.47) is nonzero and v0 is assumed to be real.
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Stability analysis

First critical point The differential equations (5.13) linearized with respect to the

homogeneous perturbations δv(τ), δh(τ) and δrm(τ) around (5.45) are

δv̈ + 3hδv̇ − 9(β/α)h2δv = 0 , (5.49a)

6hδh− δrm = 0 , (5.49b)

δṙm + 3(1 + wm)hδrm = 0 , (5.49c)

where we have omitted (5.13c) as needless here and defined new parameters as follows

α ≡ −3
2ζR − ζS

4ζR − ζS

6= 0 , β ≡ ζ−1
(
2ζR − ζS

) 6= 0 , (5.50)

in order to make the further analysis more transparent.(2) It is straightforward to find

a complete solution of (5.49). Indeed, equation (5.49a) is satisfied by

δv(τ) = C1,2 exp

(
−3hτ

2

(
1±

√
1 + 4(β/α)

))
, (5.51)

while the other two (5.49b) and (5.49c) are solved by

δh(τ) = C3 exp (−3(1 + wm)hτ) , (5.52)

δrm(τ) = 6hC3 exp (−3(1 + wm)hτ) . (5.53)

We see that only if wm > −1 and β/α < 0 or, equivalently,

ζ
(
4ζR − ζS

)
> 0 , (5.54)

then the perturbations δv(τ), δh(τ) and δrm(τ) tend to zero when time approaches

infinity and this does not depend on the constants C1,2,3, so that we conclude that de

Sitter spacetime solution is asymptotically stable only if (5.54) holds and wm > −1.

Now let us assume β/α > 0 and |β/α| ¿ 1. Since
√

1− 4 |β/α| ≈ 1 + 2 |β/α| , (5.55)

we have for sufficiently large time

δv(τ) ≈ C2 exp (3 |β/α|hτ) . (5.56)

In other words, there exists a phase of de Sitter spacetime which lasts till τdS that is

approximately equal to

τdS ∼ 1

h
|α/β| =

1

h

∣∣∣∣
3ζ

4ζR − ζS

∣∣∣∣ . (5.57)

(2)Note, both α and β are nonzero, since 2ζR 6= ζS in the present subcase.
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After this moment of time, δv(τ) changes considerably as well as δh(τ) and δrm(τ),

so that the linearized equations (5.49) are not reliable anymore. The actual moment

of time, at which the homogeneous perturbations of the dynamical variables change

dramatically, however, strongly depends on the initial conditions, so that an actual

duration of this phase can be different from τdS, but if one keeps the initial conditions

unchanged and increases, for example, ζ, de Sitter phase becomes longer in accordance

with (5.57) [99].

Second critical point The differential equations (5.13) linearized with respect to the

perturbations δv(τ), δh(τ) and δrm(τ) around (5.46) read

δv̈ − α

τ
δv̇ +

α

τ 2
δv + 3v0

((
β + 1

)
τδḣ +

(
2β + 1

)
δh

)
= 0 , (5.58a)

6hδh− δrv − δrm = 0 , (5.58b)

2δḣ + 6hδh + δpv + wmδrm = 0 , (5.58c)

δṙm +
2

τ
δrm − 2α

τ 2
δh = 0 , (5.58d)

where the rescaled and linearized energy density and pressure of the vector field are

(ζ v0)
−1δrv(τ) = 2τδv̈ + 2(αβ − 1)δv̇ − 2α

τ
(αβ + α− 2)δv

+6v0

(
(β + 1)τ 2δḣ + (αβ + α + 2β)τδh

)
, (5.59)

(ζ v0)
−1δpv(τ) = 2(β + 1)δv̈ − 2(2αβ + 2α− 1)δv̇ +

2α

τ
(αβ + α + β)δv

+
6v0

α
(αβ + α + β)

(
τ 2δḣ− (α− 2)τδh

)
. (5.60)

From the system of equations (5.58), one can extract a differential equation in δv(τ)

only, such that the rest of unknown functions, i.e. δh(τ) and δrm(τ), are determined by

δv(τ) and its first and second derivatives. Specifically, from (5.58b) we obtain δrm(τ) as

a function of τ , δh(τ), δḣ(τ) and δv(τ), δv̇(τ), δv̈(τ). Now substituting this in (5.58c),

one gets δḣ(τ) as a function of τ , δh(τ), δv(τ) and its first and second derivatives.

Thus, we find δh(τ) as a function of τ and δv(τ), δv̇(τ), δv̈ and δ
...
v (τ) from (5.58d).

And, finally, with the help of (5.58a), we get

δ
...
v + a1(τ) δv̈ + a2(τ) δv̇ = 0 , (5.61)

where a1(τ) and a2(τ) have been defined as

a1(τ) ≡ −β(α− 2) + 2(α + 3β)(v0ητ)2 − (α− 4)(2 + β)(v0ητ)4

τ
(
β + 2(v0ητ)2 − (2 + β)(v0ητ)4

) , (5.62a)

a2(τ) ≡ 2(α− 1)(v0η)2
(
2 + 3β + (2 + β)(v0ητ)2

)
(
1− (v0ητ)2

)(
β + (2 + β)(v0ητ)2

) , (5.62b)
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where

η ≡ (
3α−1βζ(α + αβ − 1)

)1/2
. (5.63)

One can directly verify that both C1 and C2τ
α satisfy the equation (5.61). The third

independent solution can be found by using the well-known Liouville-Ostrogradsky

formula. Having applied that, we obtain the following exact solution of the linearized

system (5.58):

δv(τ) = C1 + C2τ
α + C3 Arctanh

(
v0ητ

)

− 2αη2C3

3ζβ(α− 1)

(
v0ητ

)
2F1

(
1,

1− α

2
;

3− α

2
;
(
v0ητ

)2
)

, (5.64)

where 2F1(a, b; c; z) is the hypergeometric series of variable z with parameters a, b and

c [100], where α 6= 3, and

δh(τ) =
α

3v0τ 2

(
C1 + C3

(
ln

(
1 + v0ητ

1− v0ητ

)
− 2v0ητ

1− (v0ητ)2

))
, (5.65)

δrm(τ) = − 2α2

3v0τ 3

(
C1 + C3

(
ln

(
1 + v0ητ

1− v0ητ

)
− 2v0ητ

))
. (5.66)

We are interested in the behavior of the perturbations when time is large |v0ητ | À 1.

Therefore, expanding them in a series, one obtains

δv(τ) = C̃1 + C̃2τ
α +

α(β + 2)

v0(α + 1)τ
C̃3 + O

(
1

τ 3

)
, (5.67a)

δh(τ) =
α

3v0τ 2

(
C̃1 +

2C̃3

3v0τ 2
+ O

(
1

τ 3

))
, (5.67b)

δrm(τ) =
2(αη)2

3τ 2

(
C̃3 − C̃1

v0η2τ
+ O

(
1

τ 2

))
, (5.67c)

where we have made redefinitions of the integration constants in such a way to have a

real solution for real integration constants.

Firstly, we see that C̃1 can be interpreted as a shift of time (see above). Secondly,

for δv(τ)/v(τ) to go to zero with growing time, the term C̃2τ
α in δv(τ) must be small

in comparison with C̃1. In other words, α must be negative.(3) This condition in terms

of ζS and ζR reads

ζS/ζR ∈ D, where D =
(−∞, 2

) ∪ (
4, +∞)

. (5.68)

(3)In principle, if 0 < α < 1, then δv(τ)/v(τ) still approaches zero, when time tends to infinity. However, the

perturbation of the vector energy density δrv(τ) decreases merely as τ2(α−1), i.e. it becomes dominant at large time in

comparison with h2 ∼ τ−2 and rm ∼ τ−2 in the “time-time” Einstein equation and eventually destroys the background

solution under consideration.
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Thirdly, the ratio δh(τ)/h(τ) approaches zero as 1/τ 3. Fourthly, δrm(τ)/rm(τ) → const.

Since the equations are linear with respect to rm(τ), such behavior for δrm(τ) does not

invalidate the solution. It just tells us that the final value of rm(τ) depends on the

initial conditions, while final values of v(τ) and h(τ) are entirely determined by the

parameters of the model.

It means there exists a domain of initial conditions in the phase space of the variables,

such that asymptotic behavior of both v(τ) and h(τ) are independent of which point

from this domain we take.

The physically relevant values of the constant parameter of state wm belongs to the

half-interval (−1, 1]. In terms of the ratio ζS/ζR according to (5.48), this becomes

ζS/ζR ∈ D̃, where D̃ =
(−∞, 1

] ∪ (
4, +∞)

. (5.69)

Clearly, D̃ ∈ D, so that for any physically relevant matter field, the cosmological

constant is compensated by the time component of the vector field.

5.2.2 Case: Aµ = (0, Ai)

Let us look for a particular exact solution of Ai(τ) = MPlanck ai(τ) in the following form

ai(τ) = a(τ)χ(τ)ξi, (5.70)

where, we recall, a(τ) is the scale factor, ξi is a unit constant three-dimensional vector,

and χ(τ) is a dimensionless function describing an evolution of the spatial component

of the vector field.

The vector field equation of Ai(τ) rewritten via the dimensionaless function χ(τ)

reads

χ̈ + 3hχ̇ +

(
ḣ + 2h2 + 2ζ̄−1

[(
6ζR − ζS

)
ḣ + 3

(
4ζR − ζS

)
h2

])
χ = 0 , (5.71)

where by definition

ζ̄ ≡ ζF + ζS . (5.72)

Note, we do not assume that ζ̄ cannot be zero.

The Einstein equations in components and the equation of the evolution of the

matter energy density are

3h2 − λ− rχ − rm = 0 , (5.73a)

2ḣ + 3h2 − λ + pχ + wmrm = 0 , (5.73b)

ṙm + 3h(1 + wm)rm = 0 , (5.73c)
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where rχ(τ) and pχ(τ) are parts of the rescaled energy density and pressure of Aµ

associated with its spatial components Ai(τ) expressed via χ(τ):

rχ =
ζ̄

2

(
χ̇ + hχ

)2
+ 2

(
6ζR − ζS

)
hχχ̇ + 6ζRh2χ2 , (5.74a)

pχ =
ζ̄

2

(
χ̇ + hχ

)2 − 2
(
4ζR + ζS

)
hχχ̇− 2ζR

((
2ḣ + 3h2

)
χ2 + 2χ̇2 + 2χχ̈

)
.(5.74b)

As mentioned, when Ai 6= 0, the non-diagonal elements of TA
µν do not vanish iden-

tically. This constrains the allowed time-dependence of Ai, namely we have an extra

equation resulting from TA
ij = 0 for i 6= j, which in terms of χ(τ) is given by

0 = ζS

(
χ̈ + hχ̇

)
χ

+

(
ζS − ζ̄

2

) (
χ̇ + hχ

)2
+

((
6ζR − ζS

)
ḣ + 4

(
3ζR − ζS

)
h2

)
χ2 (5.75)

(see Appendix C for more details).

If χ(τ) = 0, then (5.71) is clearly satisfied. In addition, rχ(τ) and pχ(τ) as well as

(5.75) are exactly zero. Hence, we arrive at a simple conclusion that

χ(τ) = 0, h(τ) =
√

λ/3 and rm(τ) = 0 (5.76)

satisfy simultaneously all equations we have. This particular exact solution corresponds

to de Sitter universe.

In order to cancel the cosmological constant λ in (5.73a) by the vector field only,

χ(τ) must linearly increase with time. Indeed, de Sitter spacetime is excluded, so that

assuming h(τ) ∼ 1/τ ,(4) one can see that rχ(τ) is a constant only if χ(τ) ∼ τ . It is

straightforward to verify that if

ζ̄ = ζS
4ζR − ζS

3ζR − ζS

(5.77)

holds, then

χ(τ) = χ0τ , h(τ) =
2

3(1 + wm)τ
and rm(τ) =

4

3(1 + wm)2τ 2
(5.78)

is one more exact particular solution of (5.71), (5.73a)–(5.73c) as well as (5.75), where

we have defined χ0 as

χ0 = ±
(

λ
(
4ζR − ζS

)2

8ζR

(
ζS − 3ζR

)(
5ζR − 2ζS

)
)1/2

(5.79)

and wm is determined by ζS and ζR in the same manner as in (5.48).

(4)This comes from a dimensional consideration of H(t).
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Stability analysis

First critical point The small perturbations δχ(τ), δh(τ) and δrm(τ) around (5.76)

evolve according to

δχ̈ + 3hδχ̇ + 2
(
1 + 3ζ̄−1

(
4ζR − ζS

))
h2δχ = 0 , (5.80a)

6hδh− δrm = 0 , (5.80b)

δṙm + 3(1 + wm)hδrm = 0 . (5.80c)

We have omitted here the linearized versions of (5.73b) and (5.75), since they are

automatically satisfied.

It is easy to show that

δχ(τ) = C1,2 exp

(
−3hτ

2

(
1± 1

3

√
1− 24ζ̄−1

(
4ζR − ζS

)))
, (5.81a)

δh(τ) = C3 exp
(−3

(
1 + wm

)
hτ

)
, (5.81b)

δrm(τ) = 6hC3 exp
(−3

(
1 + wm

)
hτ

)
(5.81c)

give a complete solution of (5.80). Consequently, de Sitter spacetime solution (5.76) is

asymptotically stable only if wm > −1 and

ζ̄
(
ζ̄ + 12ζR − 3ζS

)
> 0 (5.82)

are satisfied.

Second critical point Considering δχ(τ), δh(τ) and δrm(τ) around (5.78), we find

that they are governed by

δχ̈− α

τ
δχ̇ +

α

τ 2
δχ + χ0

27 + 3α− α2

3(2α + 3)

(
τδḣ +

27− 12α− 2α2

27 + 3α− α2
δh

)
= 0 , (5.83a)

2α

τ
δh + δrχ + δrM = 0 , (5.83b)

2δḣ− 2α

τ
δh + δpχ + wmδrm = 0 , (5.83c)

δṙm +
2

τ
δrm − 2α

τ 2
δh = 0 , (5.83d)

where the linearized quantities rχ(τ) and pχ(τ) are given by

γ−1δrχ(τ) =
4

3

(
α− 3

) (
δχ̇− α

τ
δχ + 3χ0τδh

)
, (5.84)

γ−1δpχ(τ) = 4τδχ̈− 4

3

(
4α− 3

)
δχ̇ +

4α2

3τ
δχ + 4χ0τ

(
τδḣ− (α− 2)δh

)
. (5.85)
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Here by definition

γ ≡ −χ0 ζR . (5.86)

By using (5.83b), we can find δrm(τ) as a function of τ , δh(τ), δχ(τ) and δχ̇(τ).

Then if we substitute this in (5.83c), we get δḣ(τ) as a function of τ , δh(τ), δχ(τ) and

its first and second derivatives. After that, we can find δh(τ) from (5.83a) as a function

of δχ(τ) and its derivatives only, so that δh(τ) and δrm(τ) can be entirely expressed

via δχ(τ), δχ̇(τ) and δχ̈(τ). Thus, if we now substitute δh(τ) and δrm(τ) in (5.83d),

we obtain

δ
...
χ + b1(τ) δχ̈ + b2(τ) δχ̇ = 0 . (5.87)

Here b1(τ) and b2(τ) are known functions of time τ . They are given by huge expressions,

therefore we do not write them down. Since we are interested in the asymptotic behavior

of the perturbations, we expand b1(τ) and b2(τ) in a series, where τ is large. So we

approximately obtain(5)

b1(τ) =
4− α

τ
+ O

(
1

τ 3

)
, (5.88a)

b2(τ) =
2(1− α)

τ 2
+ O

(
1

τ 4

)
. (5.88b)

Now substituting (5.88a) and (5.88b) in (5.87), one eventually finds

δχ(τ) = C1 + C2τ
α +

C3

τ
+ O

(
1

τ 3

)
, (5.89a)

δh(τ) =
α

3χ0τ 2

(
C1 + 2C3

(α + 1)(α + 9)(2α + 3)(
54 + 24α + α2

)
τ

+ O

(
1

τ 3

))
, (5.89b)

δrm(τ) = −4γα C3
(α + 1)(α + 6)(α− 3)(

54 + 24α + α2
)
τ 2

− 2α2C1

3χ0τ 3
+ O

(
1

τ 4

)
. (5.89c)

This is a complete solution of the system (5.83) in the limit of large time. However, we

have not taken into account (5.75). This is incorrect, because this additional equation

makes a constraint on the perturbations δχ(τ), δh(τ) and δrm(τ), so that it could be

that there does not exist a solution of all equations at all. However, this is not the case,

since linearizing (5.75) yields

δχ̈− α

τ
δχ̇ +

α

τ 2
δχ + χ0

6 + α

3 + 2α

(
τδḣ +

3− 4α

6 + α
δh

)
= 0 , (5.90)

(5)One could obtain an exact expression for δχ from (5.87) by taking into account that C1 and C2τα are two of

three independent exact solutions and then applying the Liouville-Ostrogradsky formula. Direct calculations show δχ̇

is expressed in terms of the hypergeometric function of two variables. This causes unnecessary difficulties, therefore we

consider the limit of large time before solving (5.87) for simplicity.
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which is satisfied by (5.89a), (5.89b) and (5.89c) if merely only one of the integration

constants is zero, namely C3. Therefore, omitting C3 in (5.89), we obtain now a full

exact(6) solution of (5.83) with (5.90).

As in Subsection 5.2.1, (5.78) is asymptotically stable only if (5.68) holds.

5.2.3 Case: Aµ = (A0, Ai)

De Sitter spacetime

Stability analysis made in Subsections 5.2.1 and 5.2.2 show that de Sitter spacetime

solution

v(τ) = χ(τ) = 0 , h(τ) =
√

λ/3 , rm(τ) = 0 (5.91)

is asymptotically stable only if both conditions (5.54) and (5.82) are satisfied, and

wm > −1.

Spacetime with compensated cosmological constant by vector field

We have seen that one is able to dynamically cancel the rescaled cosmological constant

λ by the vector field in both previous cases under certain conditions uncovered above.

It turned out that v(τ) or χ(τ) must linearly grow with time, while h(τ) ∼ 1/τ and

rm(τ) ∼ 1/τ 2. We have ignored the spatial components of the vector field in the first

case and its time component in the second case. This is inconsistent, therefore, let us

consider them simultaneously when |ζS|+ |ζR| 6= 0 and 2ζR − ζS 6= 0.(7)

At first, let us treat (5.46) with χ(τ) = 0. It follows from (5.71), that δχ(τ) evolves

according to

δχ̈− α

τ
δχ̇ +

α(2α + 3)

9τ 2

(
1 +

24ζR

ζ̄(α + 3)

)
δχ = 0 (5.92)

in the linear approximation. Looking for a solution in a form δχ(τ) ∼ τ z, we obtain

z± =
α + 1

2
± α + 3

6

(
1− 96

αζR

ζ̄

2α + 3

(α + 3)3

)1/2

. (5.93)

If Re(z±) < 0, then v(τ) ∼ τ , χ(τ) = 0, h(τ) ∼ 1/τ and rm(τ) ∼ 1/τ 2 is an asymptot-

ically stable solution. As an example, let us put ζS = ζF = 1 and ζQ = ζR = 0. This

set of the coefficients corresponds to Dolgov’s model. Substituting them in (5.93), one

calculates z± = −1 ± √2. Consequently, the Dolgov vector model is unstable. This

is actually the third flaw of the model discussed by Dolgov himself in [5]. If we set

(6)See previous footnote.
(7)Note, if ζS = ζR = 0, then (5.20) with χ(τ) ∝ τ−2/3(1+wm) is a particular exact solution. If ζS = 2ζR and ζR 6= 0,

then (5.37) with χ(τ) = const is a particular solution as well. We exclude both these cases in what follows, because

these solutions are not asymptotically stable.
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Figure 5.1: Numerical solutions of vector and Einstein field equations. The first column shows
−λ−1(rv(τ) + rχ(τ)) as a function of rescaled time τ for three different sets of initial conditions.
The second and third columns show 3

2τh(τ) and 3
4τ2rm(τ), respectively. The top and bottom lines

differ from each other by the initial conditions and the values of the model parameters, namely
the top line corresponds to (λ, ζ, ζ̄, ζS , ζR) = (−1, −1, −12/5, −2, +1), while the bottom line –
(λ, ζ, ζ̄, ζS , ζR) = (+1, −1, +12/5, +2, −1). For both lines wm equals 0. Our numerical calculations
are in complete agreement with (5.98) and (5.97), i.e. the value of τ2rm(τ) at τ →∞ does not depend
on the initial conditions.

ζS = −2ζR (this corresponds to wm = 0) and ζF /ζR ∈ (−∞, −22) ∪ (2, +∞), then

Re(z±) < 0.

As concerns (5.78) with v(τ) = 0, it is quite clear that its homogeneous perturbation

δv(τ) is a solution of the following equation

δv̈ − α

τ
δv̇ +

α

τ 2
δv = 0 ⇒ δv(τ) = C1τ + C2τ

α , (5.94)

where C1,2, are constants of integration. Since δv(τ) ∼ τ for large time, (5.78) with

v(τ) = 0 is unstable solution.

Now let us suppose v(τ) = v0τ , χ(τ) = χ0τ and h(τ) ∼ 1/τ , i.e. we assume that

(5.77) is satisfied. Before we start, let us figure out how many initial conditions we

have to impose in order to specify a solution. From the vector field equations (5.13a)

and (5.71), we have v̈ = fv

(
v, v̇, h, ḣ

)
and χ̈ = fχ

(
χ, χ̇, h, ḣ

)
subject to ζ̄ 6= 0. Whence

we can obtain ḣ = fḣ

(
χ, χ̇, h

)
from (5.75). So rm = frm

(
v, v̇, χ, χ̇, h

)
can be found

from the “time-time” Einstein equation and, consequently, h = fh

(
v, v̇, χ, χ̇

)
from the

“space-space” Einstein equation. Thus, we must impose 4 initial conditions, say, initial

values of v(τ), v̇(τ), χ(τ) and χ̇(τ) at certain initial moment of time τin.
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Figure 5.2: Numerical solutions of vector and Einstein field equations. The first column shows
−λ−1(rv(τ) + rχ(τ)) as a function of rescaled time τ for three different sets of initial conditions.
The second and third columns show 2τh(τ) and τ2rm(τ), respectively. The top and bottom lines
differ from each other only by the values of the model parameters, namely the top line corresponds to
(λ, ζ, ζ̄, ζS , ζR) = (−1, −1, 0, 0, +1), while the bottom line – (λ, ζ, ζ̄, ζS , ζR) = (+1, −1, 0, 0, −1).
For both lines wm equals 1/3. Our numerical calculations are in complete agreement with (5.98) and
(5.101), i.e. the value of τ2rm(τ) at τ →∞ depends on the initial conditions.

Subtracting (5.83a) from (5.90), one obtains

δḣ +
2

τ
δh = 0 ⇒ δh(τ) =

α C1

3τ 2
. (5.95)

Substituting this in (5.58a) and (5.83a), one has

δv(τ) = v0C1 + C2τ
α + C4β(α2 − 9)χ0τ , (5.96a)

δχ(τ) = χ0C1 + C3τ
α − 3C4α(αβ + α− 1)v0τ , (5.96b)

and the “time-time” linearized Einstein equation gives

δrm(τ) = −2α2C1

3τ 3
. (5.97)

This solution is complete, since the number of integration constants is four. The fourth

integration constant C4 implies δv(τ)/v(τ) and δχ(τ)/χ(τ) approach to nonzero con-

stants in the limit of large time. However, δh(τ)/h(τ) and δrm(τ)/rm(τ) tend to zero

as 1/τ , so that, in particular, the final value of τ 2rm(τ) is determined by the model

parameters, rather than initial conditions in contrast to the case when τχ(τ) → 0 for

τ → ∞. This all means that values of v0 and χ0 are dependent of initial conditions,
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while

λ = −rv(τ)− rχ(τ) = λ(v0) + λ(χ0) , (5.98)

where λ(v0) and λ(χ0) are given by (5.47) and (5.79), respectively, remains unchanged

if (5.68) is valid (see Figure 5.1).

If ζ̄ = 0, then ζS = 0 and ζF = 0 as these follow from (5.77), (5.72) and (5.69).

These values of the coefficients correspond to wm = 1/3.(8)

In this case (5.71) and (5.75) become

(ḣ + 2h2)χ = 0 . (5.99)

In order to specify a solution, we must impose 5 initial conditions. This occurs, because

(5.75) follows from (5.71), so that the constraint that the non-diagonal elements of the

EMT of the vector field vanish is automatically valid. The equation (5.96b) as well as

(5.96a) are still correct, where we should put α = −3/2 and β = 2ζR/ζ, but (5.96b)

and (5.97) become

δχ(τ) = χ0C1 +
C3

τ 3/2
− C5

3ζRχ0τ
− 9C4

4ζ
(5ζ + 6ζR)v0τ (5.100)

and

δrm(τ) =
C5

τ 2
− 3C1

2τ 3
. (5.101)

Thus, in this case h(τ) → 1/2τ when τ approaches infinity, the final value of τ 2rm(τ)

depends on the initial conditions, and (5.98) holds (see Figure 5.2).

5.3 General linear perturbations and Newton’s law of gravity

As it was pointed out by Rubakov and Tinyakov in [91], the Dolgov model violates,

in particular, the Newton gravitational law. The model under consideration, being a

generalization of Dologv’s one, suffers from the same malady.

To show this, let us consider general perturbations of both the vector and the metric

fields:

Aµ(t) → Aµ(x) = Aµ(t) + δAµ(x) ,

gµν(t) → gµν(x) = gµν(t) + δgµν(x) ,
(5.102)

where δAµ and δgµ are small inhomogeneous perturbations under the background so-

lution we have found above.

Our goal is to derive Newton’s law of gravity in the hypothetical universe governed

by (5.1). Therefore, we assume that timescales and wavelengths of the perturbations

(8)This vector model was considered in [98]. There was made Ansatz Ai = 0. However, it seems artificial, so that, in

what follows, we allow the differential equations to determine an evolution of χ(τ) themselves.
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are extremely small in comparison with the universe age H−1
0 ∼ 1010 yr and the universe

size c/H0 ∼ 1026 m, respectively. In this case, as mentioned in Section 2.5, one can

always consider a background that is roughly Minkowski, so that we take ηµν instead

of gµν(t) in (5.102).

Perturbation of vector field equation Linearizing the vector field equation (5.8) with

respect to both δAµ and δgµν , one has

ζ̄∂2δAµ + (2ζ − ζ̄)∂µ∂
λδAλ = 2ζRAµδR− 2ζSAλδRµλ + 2ζAση

λρδΓσ
λρ,µ , (5.103)

where we have neglected terms S∂δg, δg∂S and F∂δg, δg∂F , since they are much

smaller at late time than A∂2δg in the right-hand side (RHS) of (5.103).

Regarding the RHS of (5.103) as δJµ(x), a solution of this equation can be repre-

sented as

δAµ(x) =

∫
d4x′G ν

µ (x, x′)δJν(x
′) , (5.104)

where Gν
µ(x, x′) is the Green function,

(
ζ̄ηµλ∂

2 + (2ζ − ζ̄)∂µ∂λ

)
Gλν(x, x′) = δν

µ δ(x− x′) . (5.105)

A method of solving this equation is standard. Firstly, it is clear from (5.105) that

Gµν(x, x′) = Gµν(x− x′). Secondly, one has to make the Fourier transformation of the

Green function

Gµν(x− x′) =

∫
d4k

(2π)4
eik(x−x′) G̃µν(k) . (5.106)

Substituting this in (5.105), one obtains

− (
ζ̄k2ηµλ + (2ζ − ζ̄)kµkλ

)
G̃λν(k) = δν

µ , (5.107)

from which immediately follows

G̃µν(k) = − 1

ζ̄k2

(
ηµν +

ζ̄ − 2ζ

2ζ

kµkν

k2

)
, (5.108)

assuming ζ̄ 6= 0.(9) We have omitted a general solution of the homogeneous equation,

i.e. (5.103) with the RHS set to zero, since we are mainly interested in how the RHS

influences the evolution of δAµ. We finally have

δAµ(x) = −1

ζ̄

∫
d4k

(2π)4
eikx 1

k2

(
δν
µ +

ζ̄ − 2ζ

2ζ

kµk
ν

k2

)
δJ̃ν(k) . (5.109)

where δJ̃ν(k) is the Fourier transform of

δJµ(x) ≡ 2ζRAµδR− 2ζSAλδRµλ + 2ζAση
λρδΓσ

λρ,µ . (5.110)

(9)If ζ̄ = 0, then ζF and ζS must be zero as well. In this case, LA = ζQ(∇µAµ)2 + ζRRA2 and looks quite similar to

the scalar model considered in Section 4.2. Therefore, the effective gravitational constant Geff in this vector model has

an analogous form to (4.13), where we must replace φ2 by A2. Consequently, we can rule out this vector-tensor theory

(5.2) with ζF = ζS = 0 by applying the same argument as in Section 4.2.
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Perturbation of vector energy-momentum tensor The linear perturbation of the vector

energy-momentum tensor is

δTA
µν(x) = ζS

(
Aµ

[
∂2δAν + ∂ν∂

λδAλ − 2Aσ∂
λδΓσ

νλ

]
+ Aν

[
∂2δAµ + ∂µ∂

λδAλ

−2Aσ∂
λδΓσ

µλ

]
− Aλ

[
∂λ∂µδAν + ∂λ∂νδAµ − 2Aσ∂

λδΓσ
µν

])

+2ζQ (Aµ∂ν + Aν∂µ − ηµνA
κ∂κ)

(
∂λδAλ − Aση

λρδΓσ
λρ

)
(5.111)

+ζR

([
A2ηµν − 2AµAν

]
δR− 2A2δRµν + 2Lµν

[
2AλδAλ + AλAρδg

λρ
])

,

where Lµν = ∂µ∂ν − ηµν∂
2 (see Appendix D for details). We have taken into account

only terms which depend on the highest (second) derivative of the perturbations as the

most relevant for Newton’s gravity.

Making the Fourier transformation of δTµν(x), we obtain

δT̃A
µν(k) =

(
kσ

[
ζSMλρ

µνσ + ζQNλρ
µνσ + ζRKλρ

µνσ

]
+ 2ζR

[
k2ηµν − kµkν

]
AλAρ

)
δg̃λρ

−2kρη
σκ

(
ζSMλρ

µνσ + ζQNλρ
µνσ + ζRKλρ

µνσ

)
δg̃λκ , (5.112)

where Mλρ
µνσ, Nλρ

µνσ and Kλρ
µνσ can be found in Appendix D.

We see that there appear terms in the perturbed Einstein equations which depend

on the second derivative of the metric perturbation multiplied by t2. For example,

in a symbolic notation M ∼ A2k2 and the same for N and K, what results in δT ∼
A2∂2δg ∼ t2∂2δg. Clearly, these terms modify the Newton gravity law and the behavior

of gravitational waves in an unacceptable way.

Let us suppose one can choose the Lagrangian parameters ζf , f ∈ {S, F,Q, R} in

such a way, that these bad terms are canceled out. Excluding the trivial choice ζf = 0,

one can easily see that if we put ζSMλρ
µνσ + ζQNλρ

µνσ + ζRKλρ
µνσ = 0, then there still

remains a bad term in δT̃µν , namely 2ζR(k2ηµν − kµkν)A
λAρδg̃λρ. Therefore, one has to

set ζR = 0. Hence, one needs the following equation to be satisfied

ζSMλρ
µνσ + ζQNλρ

µνσ = 0 . (5.113)

Comparing terms in Mλρ
µνσ and Nλρ

µνσ with each other, one arrives at a conclusion that

this is possible only if both ζS and ζQ are zero. However, we have excluded this case.

Consequently, this vector model is in a contradiction with Newton’s gravity.
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Chapter 6

Vector-tensor model II

Let us consider a vector-tensor model with two vector fields, Aµ and Bµ, the dynamics

of which are determined by the following action functional [101, 102, 103]

S[g, A, B] = −
∫

d4x
√−g ε(LA,LB) , (6.1)

where ε(LA,LB) is given by

ε(LA,LB) = a
LA

LB

+ b
LB

LA

. (6.2)

Here a and b are real numbers (|a| + |b| 6= 0), which values we do not specify in order

to obtain a general result, LA is completely identical to (5.4) and LB is LA with Aµ

replaced by Bµ. Thus the coefficients (5.5) are assumed to be the same for both vector

fields.

The ε-function is taken to be (6.2), because then it possesses the following properties

LA
∂ε

∂LA

+ LB
∂ε

∂LB

= 0 , (6.3a)

L2
A

∂2ε

∂L2
A

+ 2LALB
∂2ε

∂LA∂LB

+ L2
B

∂2ε

∂L2
B

= 0 (6.3b)

and so on, which turn out to be crucial for the preservation of the Newton gravity law

as we will see shortly. In principle, there are infinitely many such functions.(1) However,

it seems (6.2) is the most simple one and this motivates our choice.

(1)In general, any function f(x, y) = f(x/y) satisfies (6.3). Indeed, firstly, if f(x, y) satisfies (6.3a), then (6.3b) is also

satisfied. Therefore, it is sufficient to find all functions which are solutions of the equation: x∂xf + y∂yf = 0, where

∂x ≡ ∂/∂x and ∂y ≡ ∂/∂y. Secondly, this equation can be rewritten as follows: (∂q −∂p)f(q, p) = 0, where q and p have

been defined as q = ln(x) and p = − ln(y), respectively. A solution of this equation can be straightforwardly found and

is f(q, p) = f(q + p), from which immediately follows f(x, y) = f(x/y) which was to be proved.
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6.1 Vector and Einstein field equations

The vector field equations for both Aµ and Bµ can be obtained from the model with

one vector field, which we have considered in the previous chapter, by simply making

a change

ζf → ∂ε

∂LV

ζf , for f ∈ {S, F,Q, R} , (6.4)

where Vµ ∈ {Aµ, Bµ}. This procedure gives

ζ̄ AF λ
µ;λ + ζ ASλ

λ;µ = 2ζRRAµ − 2ζSRµλA
λ

−(
ζS ASλ

µ + ζF AF λ
µ + ζQ ASρ

ρδ
λ
µ

)
∂λ ln

∣∣ ε′LA

∣∣ , (6.5a)

ζ̄ BF λ
µ;λ + ζ BSλ

λ;µ = 2ζRRBµ − 2ζSRµλB
λ

−(
ζS BSλ

µ + ζF BF λ
µ + ζQ BSρ

ρδ
λ
µ

)
∂λ ln

∣∣ ε′LB

∣∣ , (6.5b)

where by definition ε′LA
and ε′LB

are partial derivatives of ε(LA,LB) with respect to

LA and LB, respectively. As one can see there appear extra terms in the vector field

equations (6.5) in comparison with (5.8). It occurs due to a non-quadratic dependence

of (6.2) on its variables.

After variation of the action of the whole system with respect to the metric field gµν ,

we obtain the Einstein equations which read

Rµν − 1

2
R gµν = 8πG

(
ρΛgµν + T vec

µν + Tm
µν

)
, (6.6)

where Tm
µν is the energy-momentum tensor of the matter field ψ regarded as a perfect

fluid and, consequently, Tm
µν takes the form (2.10), T vec

µν is the energy-momentum tensor

of the vector fields coming from the variation of (6.1) over the metric

T vec
µν =

(
ε− LA

∂ε

∂LA

− LB
∂ε

∂LB

)
gµν

+
∑
V

∂ε

∂LV

(
T S

µν(V ) + T F
µν(V ) + TQ

µν(V ) + TR
µν(V ) + T∆

µν(V )
)

, (6.7)

where T f
µν , f ∈ {S, F, Q, R} as in (5.10), but the last term T∆

µν comes from the non-

quadratic dependence of the ε-function on its variables

T∆
µν(V ) =

(
ζS

[
2 VSλ

(µ Vν) − VSµνV
λ
]
+ ζQ VSρ

ρ

[
2V(µ δλ

ν) − gµνV
λ
])

∂λ ln
∣∣ ε′LV

∣∣

+ 2ζR

(
ε′LV

)−1
(
Lµν

(
ε′LV

V 2
)− ε′LV

Lµν(V
2)

)
(6.8)

(see Appendix E). Note, the EMT of the vector fields (6.7) is general, i.e. it has this

form for any ε-function. For example, if we take ε(LA,LB) = LA, we obtain (5.10). In

our special case of the ε-function, in particular, the second and third terms in the first

round brackets on the right-hand side of (6.7) cancel each other.
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6.2 Flat, homogeneous and isotropic universe

Vector and Einstein field equations

For the flat Friedmann-Robertson-Walker metric tensor (5.11) and homogeneous vector

fields, Aµ(x) = Aµ(t) and Bµ(x) = Bµ(t), the vector field equations (6.5a) and (6.5b)

become in components

v̈A + 3hv̇A + 3
(
ḣ + ζ−1

[(
2ζR − ζS

)
ḣ +

(
4ζR − ζS

)
h2

])
vA

+
(
v̇A + 3(ζQ/ζ)hvA

)
∂0 ln

∣∣ ε′LA

∣∣ = 0 , (6.9a)

v̈B + 3hv̇B + 3
(
ḣ + ζ−1

[(
2ζR − ζS

)
ḣ +

(
4ζR − ζS

)
h2

])
vB

+
(
v̇B + 3(ζQ/ζ)hvB

)
∂0 ln

∣∣ ε′LB

∣∣ = 0 , (6.9b)

where we have introduced the dimensional variables as in (5.15), and

χ̈A + 3hχ̇A +
(
ḣ + 2h2 + 2ζ̄−1

[(
6ζR − ζS

)
ḣ + 3

(
4ζR − ζS

)
h2

])
χA

+
(
χ̇A +

(
1− 2ζS/ζ̄

)
hχA

)
∂0 ln

∣∣ ε′LA

∣∣ = 0 , (6.10a)

χ̈B + 3hχ̇B +
(
ḣ + 2h2 + 2ζ̄−1

[(
6ζR − ζS

)
ḣ + 3

(
4ζR − ζS

)
h2

])
χB

+
(
χ̇B +

(
1− 2ζS/ζ̄

)
hχB

)
∂0 ln

∣∣ ε′LB

∣∣ = 0 . (6.10b)

Here we have assumed that Ai(t) and Bi(t) have the following structure

Ai(τ) ≡ MPlanck a(τ) χA(τ) ξA
i , Bi(τ) ≡ MPlanck a(τ) χB(τ) ξB

i , (6.11)

where a(τ) is the scale factor expressed via rescaled cosmic time τ , ξA
i and ξB

i are unit

constant three-dimensional vectors.

Equations (6.9) and (6.10) are supplemented by the Einstein equations

3h2 = λ + rvec + rm , (6.12a)

2ḣ + 3h2 = λ− pvec − wmrm (6.12b)

as well as the equation describing the evolution of the perfect fluid (5.13d), namely

ṙm + 3h(1 + wm)rm = 0 , (6.13)

and the condition that the non-diagonal elements of T vec
µν vanish. The explicit form for

the rescaled energy density rvec(τ) and pressure pvec(τ) and the non-diagonal elements

of T vec
µν can be found with the aid of Appendix C and Appendix E.
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A particular class of exact solutions

The vector and Einstein field equations are nonlinear, therefore it is hardly possible

to find their full exact solution. However, there exist the following particular exact

solution:

vA(τ) = C1

(
τ − τ0

)x
, χA(τ) = 0 , (6.14a)

vB(τ) = C2

(
τ − τ0

)x
, χB(τ) = 0 , (6.14b)

h(τ) =
y

τ − τ0

, (6.14c)

rm(τ) =
3y2

(τ − τ0)2
, (6.14d)

where C1, C2 and τ0 are some constants, x and y satisfy an equation

α
(
x− 1

)(
x + 3y

)
+ 3β

(
2
(
2α + 3

)
x + 3

(
y − α− 2

))
y = 0 (6.15)

depending on the parameters of the Lagrangian via α and β defined in (5.50). Moreover,

we must have

wm + 1− 2

3y
= 0 , (6.16a)

λ + a
C2

1

C2
2

+ b
C2

2

C2
1

= 0 . (6.16b)

We see that a ratio C1/C2 is fixed by the value of the rescaled cosmological constant

λ. In other words, (6.14) depends on two arbitrary constants: τ0 and C1C2, while,

generally speaking, there must be seven integration constants.(2) Actually, we have

to impose 7 + 2 + 2 initial conditions if we take into account χA(τ) and χB(τ). For

the moment, we do not consider the spatial components of the vector fields as being

dynamical, so that we talk only about seven initial conditions.

Note that y is fixed by the matter equation of state parameter wm. This situation is

contrary to that we had in Chapter 5. Here the evolution of the universe is determined

by the matter field, rather than by the ζ-coefficients. However, x still depends on them

and on wm as this follows from (6.15).

Stability analysis In order to analyze whether the found class of the exact solutions is

asymptotically stable or not, we consider homogeneous perturbations of the variables

around (6.14). In what follows, we omit τ0 in (6.14) for the sake of simplicity. It does

(2)For two specific choices of the ζ-coefficients, there are particular exact solutions with four arbitrary constants: 1)

ζS = 0: vA(τ) = C1(τ − τ0) + (C3/C2)(τ − τ0)−3y , vB(τ) = C2(τ − τ0) + (C4/C1)(τ − τ0)−3y and χA(τ) = χB(τ) = 0

with C4 = ±C3 as well as (6.14c), (6.14d), (6.16), where y = 1/2; 2) ζS = ζR = 0: vA(τ) = C1(τ − τ0) + C3(τ − τ0)−3y,

vB(τ) = C2(τ − τ0) + C4(τ − τ0)−3y , χA(τ) = χB(τ) = 0 with (6.14c), (6.14d) and (6.16).
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not make further treatment less general, since τ0 reveals itself in the perturbations as

we will see this shortly.

Since LA depends on χA(τ) quadratically, i.e. it is a function of χ2
A, χAχ̇A and

χ̇2
A, and we have taken χA(τ) = 0, there are no terms in the linearized (6.9) and

(6.12) depending on δχA(τ). Similarly, these equations do not have terms with δχB(τ).

Therefore, we are able to consider δχA(τ) and δχB(τ) separately.

Linearized (6.9), (6.12a) and (6.13) and their solution Keeping only terms linear with

respect to the homogeneous perturbations δvA(τ), δvB(τ) and δh(τ), we find

1

C1

(
πa

1 δv̈A +
πa

2

τ
δv̇A +

πa
3

τ 2
δvA

)
+

1

C2

(
πc

1 δv̈B +
πc

2

τ
δv̇B +

πc
3

τ 2
δvB

)

+ τx+1

(
πh

1 δḧ +
πh

2

τ
δḣ +

πh
3

τ 2
δh

)
= 0 ,(6.17a)

1

C2

(
πb

1 δv̈B +
πb

2

τ
δv̇B +

πb
3

τ 2
δvB

)
+

1

C1

(
πc

1 δv̈A +
πc

2

τ
δv̇A +

πc
3

τ 2
δvA

)

− τx+1

(
πh

1 δḧ +
πh

2

τ
δḣ +

πh
3

τ 2
δh

)
= 0 .(6.17b)

The coefficients πa
i , πb

i , πc
i and πh

i (i = 1, 2, 3) depend only on the constant parameters

of the Lagrangian density, namely ζf , f ∈ {S, F,Q, R} as well as wm and can be found

in Appendix F.

The “time-time” Einstein equation (6.12a) and the equation describing the evolution

of the perfect fluid (6.13) linearized with respect to δvA(τ), δvB(τ), δh(τ) and δrm(τ)

are

6y

τ
δh− δrvec − δrm = 0 , (6.18a)

δṙm +
2

τ
δrm +

6y

τ 2
δh = 0 , (6.18b)

where the linearized energy density of the vector fields is given by

δrvec =
τ 2−x

C1

(
πr

1δv̈A +
πr

2

τ
δv̇A +

πr
3

τ 2
δvA

)
− τ 2−x

C2

(
πr

1δv̈B +
πr

2

τ
δv̇B +

πr
3

τ 2
δvB

)
(6.19)

with coefficients πr
i (i = 1, 2, 3) depending only on ζf , f ∈ {S, F, Q, R} and wm. They

can be found in Appendix F as well.

It is straightforward to show that δrvec(τ) can be expressed only in terms of the

following combination of δvA(τ) and δvB(τ):

δvC(τ) ≡ 1

C1

δvA(τ)− 1

C2

δvB(τ) . (6.20)
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Moreover, it turns out one can obtain a differential equation only on δvC(τ) from (6.17a)

and (6.17b).(3) This is achieved by subtracting (6.17b) from (6.17a) and taking into

account that equalities πa
i + πb

i + 2πc
i = 0 for i = 1, 2, 3 hold. So we have

(
πa

1 + πc
1

)
δv̈C +

πa
2 + πc

2

τ
δv̇C +

πa
3 + πc

3

τ 2
δvC = 0 . (6.21)

Assuming πa
1 + πc

1 6= 0 (otherwise (6.21) becomes a trivial identity: 0 = 0), it is easy

to show that

δvC(τ) = C̃1τ
x + C̃2τ

x−3y−1 (6.22)

is an exact full solution of (6.21). C̃1,2 are integration constants. Now substituting δvC

in δrvec(τ), we obtain

δrvec(τ) = 2C̃1

(
a
C2

1

C2
2

− b
C2

2

C2
1

)
, (6.23)

i.e. δrvec(τ) is a constant specified by imposing initial conditions. Consequently, in order

to satisfy the linearized “time-time” Einstein equation (6.18a), h(τ)δh(τ) and δrm(τ)

must be constant as well. In other words, δh(τ) ∼ τδrvec(τ) and δrm(τ) ∼ δrvec(τ), i.e.

δh(τ)/h(τ) ∼ C̃1τ
2 , δrm(τ)/rm(τ) ∼ C̃1τ

2 (6.24)

for large time. This situation is quite similar to that we encountered in Subsection

5.2.1. It means the background solution (6.14) is unstable, unless one imposes initial

conditions in a suitable manner, namely such that C̃1 = 0. In other words, one has to

remove a solution which makes instability. If so, then we are left with the second inde-

pendent solution of δvC(τ) that has no contribution to the homogeneous perturbation

of the energy density δrvec(τ). Solving (6.18a) and (6.18b), we obtain

δh(τ) = −yC̃3

xτ 2
, δrm(τ) = −6y2C̃3

xτ 3
. (6.25)

Adding (6.17b) to (6.17a) and using explicit expressions of δvC(τ) and δh(τ), one finds

(πa
1 − πb

1) δv̈D +
πa

2 − πb
2

τ
δv̇D +

πa
3 − πb

3

τ 2
δvD =

4yC̃3

xτ 3−x

(
6πh

1 − 2πh
2 + πh

3

)
, (6.26)

where by definition

δvD(τ) ≡ 1

C1

δvA(τ) +
1

C2

δvB(τ) . (6.27)

The equation (6.26) has two independent solutions or, in other words, two arbitrary

constants of integration. As mentioned above, τ0 must reveal itself in the homogeneous

(3)Shortly we will see that it occurs due to the special properties of the ε-function (6.3) as well as absence of the time

derivatives of δh in (6.19).
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perturbations. In order to see how this occurs, consider (6.14) at τ À τ0. Then we

are allowed to expand (6.14) in terms of τ0/τ in this limit: vA(τ) = C1(τ − τ0)
x ≈

C1τ
x − xτ0C1τ

x−1 and the same for vB(τ) with C2 instead of C1. Besides, since h(τ) =

y/(τ − τ0) ≈ y/τ + yτ0/τ
2, we find τ0 = −C̃3/x. Hence, there must be a solution of

(6.26) such as δvD(τ) = 2C̃3τ
x−1. Direct calculation shows that is indeed so. This is

simply a particular solution of inhomogeneous differential equation (6.26). We are left

to find two independent solutions of the homogeneous (6.26), i.e. (6.26) with omitted

right-hand side. Having solved this, we obtain

C−1
1 δvA(τ) = C̃3τ

x−1 + C̃4τ
x +

(
C̃5 +

1

2
C̃2

)
τx−3y−1 , (6.28a)

C−1
2 δvB(τ) = C̃3τ

x−1 + C̃4τ
x +

(
C̃5 − 1

2
C̃2

)
τx−3y−1 . (6.28b)

The number of integration constants is 5, i.e. C̃1 = 0 and C̃2,...,5, this coincides with

the number of integration constants of the linearized vector and Einstein equations,(4)

i.e. (6.25) and (6.28) give a full solution of (6.17a), (6.17b), (6.18a) and (6.18b).

If x− 3y− 1 is less than x− 1 or if y is positive, then (6.14) is asymptotically stable

subject to the exclusion of the solution with nonzero C̃1 by imposing initial conditions

in the proper way. The question is now how δχA(τ) and δχB(τ) evolve with time around

χA(τ) = χB(τ) = 0.

Linearized (6.10a), (6.10b) and their solution Since both δχA(τ) and δχB(τ) satisfy

the same differential equation, it is sufficient to consider one of them only, say, δχA(τ).

Linearizing (6.10a) with respect to δχA(τ), one obtains

δχ̈A +
πχ

1

τ
δχ̇A +

πχ
2

τ 2
δχA = 0 , (6.29)

where πχ
1,2 do not depend on rescaled cosmic time τ and can be found in Appendix F.

Looking for a solution in a form δχA(τ) ∼ τ z, we find

z± =
1

2

(
1− πχ

1 ±
√(

1− πχ
1

)2 − 4πχ
2

)
. (6.30)

If both z+ and z− are negative, then δχA(τ) and δχB(τ) decrease sufficiently fast with

growing time, i.e. they do not spoil the background solution.(5)

(4)Indeed, if we set δvA(τ), δv̇A(τ), δvB(τ) and δv̇B(τ) at certain initial moment of time, say, τin(τ), then we know

δvC(τ), δv̇C(τ) and δv̈C(τ) at that time as it follows from (6.21), provided C1,2 are known. Now if we also set δrm(τ) at

τin, then we are able to find δh(τ), δḣ(τ) and δḧ(τ) at this time by use of (6.18a) and (6.18b). So that we need only to

fix 5 integration constants. Note, this occurs due to the fact that (6.3) and vA/C1 − vB/C2 = 0. If, in general, we could

find another class of exact solutions, such that vA/C1 − vB/C2 6= 0, then there would be terms in (6.19) with δh(τ) and

its first and second derivatives. As a consequence, we would have to impose initial values of δh(τ) and δḣ(τ) at τin as

well.
(5)See discussion in Subsection 5.2.3.
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6.3 General linear perturbations and Newton’s law of gravity

Let us consider general perturbations of the fields under consideration:

Aµ(t) → Aµ(x) = Aµ(t) + δAµ(x) ,

Bµ(t) → Bµ(x) = Bµ(t) + δBµ(x) ,

gµν(t) → gµν(x) = gµν(t) + δgµν(x) ,

(6.31)

where Aµ(t), Bµ(t) and gµν(t) on the right-hand side of (6.31) are the background

solution found above. In what follows, we assume |δA(x)| ¿ |A(t)|, |δB(x)| ¿ |B(t)|
and |δg(x)| ¿ |g(t)|, so that we will take into account in the vector and Einstein field

equations only terms depending linearly on the perturbations.

Perturbation of the vector field equations

Linearizing vector field equations (6.5a) and (6.5b) around the background solution, we

obtain

ζ̄δ
(

AF λ
µ;λ

)
+ ζδ

(
ASλ

λ;µ

)
+ 2ζS

(
RµλδA

λ + AλδRµλ

)− 2ζR

(
RδAµ + AµδR

)

+
(
ζSδ

(
ASλ

µ

)
+ ζF δ

(
AF λ

µ

)
+ ζQδ

(
ASρ

ρ

)
δλ
µ

)
∂λ ln

∣∣ ε′LA

∣∣ (6.32a)

+
(
ζS ASλ

µ + ζF AF λ
µ + ζQ ASρ

ρδ
λ
µ

)
∂λ

(
ε′′LALA

ε′LA

δLA +
ε′′LALB

ε′LA

δLB

)
= 0 ,

ζ̄δ
(

BF λ
µ;λ

)
+ ζδ

(
BSλ

λ;µ

)
+ 2ζS

(
RµλδB

λ + BλδRµλ

)− 2ζR

(
RδBµ + BµδR

)

+
(
ζSδ

(
BSλ

µ

)
+ ζF δ

(
BF λ

µ

)
+ ζQδ

(
BSρ

ρ

)
δλ
µ

)
∂λ ln

∣∣ ε′LB

∣∣ (6.32b)

+
(
ζS BSλ

µ + ζF BF λ
µ + ζQ BSρ

ρδ
λ
µ

)
∂λ

(
ε′′LALB

ε′LB

δLA +
ε′′LBLB

ε′LB

δLB

)
= 0 .

We will see shortly that general linear perturbation of ρΛgµν+T vec
µν around the particular

exact solution (6.14) contains only a specific combination of δAµ(x) and δBµ(x) like

(6.20), namely

δCµ(x) =
1

C1

δAµ(x)− 1

C2

δBµ(x) . (6.33)

To derive an equation on δCµ and show that δCµ does not depend on δgµν as δvC(τ),

given in (6.20), does not depend on δh(τ) (see (6.21)), one needs to divide (6.32a) and

(6.32b) by C1 and C2, respectively, and then subtract them. Using (6.3) and (6.14), we
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obtain

0 = ζ̄Fλ
µ;λ + ζSλ

λ;µ + 2ζSRλ
µδCλ − 2ζRRδCµ − ∂λτ

2(x−1)

τ 2(x−1)

(
ζSSλ

µ + ζFFλ
µ + ζQSρ

ρδλ
µ

)

−
(
ζSsλ

µ + ζF fλ
µ + ζQsρ

ρδ
λ
µ

)
∂λ

((
ζSsµν + ζQsλ

λg
µν

)Sµν + ζF fµνFµν

2C3τ 2(x−1)

)
(6.34)

(derivation of this equation is presented in Appendix G), where

Sλρ ≡ ∇λδCρ +∇ρδCλ , Fλρ ≡ ∇λδCρ −∇ρδCλ ,

sµν ≡ ASµν/C1 = BSµν/C2 , fµν ≡ AFµν/C1 = BFµν/C2 .
(6.35)

and

C3 ≡ ζ(x + 3y)2 − 6ζS(x + y)y + 6ζR(1− 2y)y . (6.36)

We see that (6.34) does not contain terms depending on δgµν , so that δCµ does not

depend on the metric perturbation. We stress that this result is a consequence of (6.3)

and the particular background solution (6.14).(6)

Perturbation of vector energy-momentum tensor

The general linear perturbation of the energy-momentum tensor of the vector fields is

given by

δT vec
µν =

(
ε− LAε′LA

− LBε′LB

)
δgµν + LAε′LA

δTA
µν

LA

+ LBε′LB

δTB
µν

LB

(6.37)

−
((L2

Aε′′LALA
+ LALBε′′LALB

)δLA

LA

+
(L2

Bε′′LBLB
+ LALBε′′LALB

)δLB

LB

)
gµν

+
(LAε′′LALA

TA
µν + LAε′′LALB

TB
µν

) δLA

LA

+
(LBε′′LBLB

TB
µν + LBε′′LALB

TA
µν

) δLB

LB

,

where

TV
µν = T S

µν(V ) + T F
µν(V ) + TQ

µν(V ) + TR
µν(V ) + T∆

µν(V ) . (6.38)

In the case when the background solution is given by (6.14), one has LBTA
µν = LATB

µν .

Then using (6.3), (6.37) becomes

δT vec
µν = ε(LA,LB)δgµν + LAε′LA

(
δTA

µν

LA

− δTB
µν

LB

)

+L−1
A

(L2
Aε′′LALA

+ LALBε′′LALB

) (
TA

µν − LAgµν

) (
δLA

LA

− δLB

LB

)
. (6.39)

(6)Note, for ζS = ζF = 0, ζQ = 1 and ζR = −1/2 with x = 1 and y = 1/2, (6.34) reduces to ∇µ∇λδCλ = 0, and this

coincides with the equation (5.12) in [103].
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We show in Appendix G that δTA
µν/LA− δTB

µν/LB and δLA/LA− δLB/LB are functions

of δCµ only. Thus we conclude that ρΛδgµν + δT vec
µν does not depend on δgµν . In other

words, in the right-hand side of the linearized Einstein equations

δGµν = 8πG
(
ρΛδgµν + δT vec

µν + δTm
µν

)
, (6.40)

there are no terms depending on δgµν . Hence, in particular, the Newton gravity law

is valid at small spacetime scales, so that we can identify the gravitational constant G

with the Newton constant GN as in [103].

In deriving this result, we have used (6.3) and (6.14) resulting in

Cµ(t) ≡ 1

C1

Aµ(t)− 1

C2

Bµ(t) = 0 . (6.41)

However, we have found by considering the homogeneous perturbations around (6.14)

that, generally speaking, Cµ(t) 6= 0, namely

Cµ(t) ∼ C̃2 MPlanck (t/tPlanck)
x−3y−1 (6.42)

subject to C̃1 = 0. If we take this into account, then we find δT vec
µν depends on δgµν .

Specifically, if ζR 6= 0, one can show that at small spacetime scales, δT vec
µν acquires an

additional term like

ζR C̃2 (t/tPlanck)
3−3y∂4δg (6.43)

in a symbolic notation.(7) Assuming ζRC̃2 ∼ 1, the Newtonian gravity law is not violated

at scales L only if

L À LPlanck

(
t/tPlanck

) 3
2
(1−y)

. (6.44)

Taking t = t0 ≡ 1/H0 ≈ 1018 sec, one calculates L(t0) À 10−5 m for the dust-dominated

universe (y = 2/3). Recently a planetary system around the metal-poor star HIP

11952 has been observed [104]. This star has two planets with semi major axes roughly

equaling 1011 and 1010 meters. The star age tstar is approximately 12.8 Gyr or 1016 sec,

so we have L(tstar) À 10−6 m.

However, if we set ζR = 0, then at small spacetime scales, this additional term

approximately equals

ζSC̃2 M2
Planck (t/tPlanck)

1−3y∂2δg (6.45)

and, consequently, since 1 À (tstar/tPlanck)
1−3y ≈ 10−59 for y = 2/3, we are allowed

to neglect a dependence of δT vec
µν on the metric perturbation δgµν in comparison with

terms in the left-hand side of (6.40).

The conclusion is that we can still have, in particular, the Newton gravity law, even

though taking into account the homogeneous corrections to the background solution

(6.14) subject to C̃1 = 0.
(7)Note that we have omitted MPlanck (t/tPlanck)2−3y∂3δg, M2

Planck (t/tPlanck)1−3y∂2δg, M3
Planck (t/tPlanck)−3y∂δg

and M4
Planck (t/tPlanck)−1−3yδg there as less significant with respect to (6.43).
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Chapter 7

Discussion

In Chapter 5, we have dealt with the four-parameter vector model as a generalization

of the one-parameter Dolgov model. We have found that it is possible to dynamically

cancel the cosmological constant for a broad range of the constant model parameters,

even if its value is large. Afterwards the universe expansion is caused only by ordi-

nary matter with the equation of state given in (5.48). The expansion then becomes

decelerated.

The solution corresponding to the compensation of the cosmological constant turns

out to be attractor. In other words, the late-time evolution of the universe is insensi-

tive to the initial conditions taken from a large phase space domain of the dynamical

variables. This proves the cosmological stability of the evolution of such the universe

at the classical level. However, this model has no physical relevance, because it does

not respect Newton’s law of gravity which is well-established at scales from 10−4 m [19]

up to the size of solar system, i.e. 1012 m.

In order to solve the main cosmological constant problem in our own universe, rather

than in some hypothetical world, we have to develop a model which does not contradict

known experimental facts, such as Newton’s law. With this goal in mind, a pair of the

vector fields has been considered in Chapter 6 by following the ideas presented in [101].

Strictly speaking, we have found that the particular exact solution (6.14) is unstable

with respect to small homogeneous perturbations, unless we choose the initial values of

the dynamical variables in a proper way, i.e. C̃1 = 0. This means that for the vector

fields to cancel the cosmological constant Λ, one has to find a basin of attraction B,

such that the vector fields asymptotically behave as (6.14) for any initial values of the

dynamical variables taken from B.

At the present stage, we can only say that B must be a hypersurface in the eleven-

dimensional phase space spanned by

(vA,B, v̇A,B, χA,B, χ̇A,B, h, ḣ, rm) ,
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with points corresponding to C̃1 = 0. Any other initial conditions definitely lead to the

classical instability of (6.14).

This situation principally differs from that of the case of a scalar model considered

by Dolgov and Kawasaki in [107, 108], which is classically unstable as well and, actually,

requires fine-tuning. Indeed, they found an asymptotic solution corresponding to φ =

φ0 = const and H = 1/2t, where the scalar field plays the role of the Λ-compensator.

However, it is clear from equations (2) and (4) in [108] that φ0 is a solution of U ′(φ0) =

U(φ0) + ρΛ = 0. This, generally speaking, implies a particular choice of the potential.
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Chapter 8

Concluding remarks

The main goal of this work is to study the dynamical cancellation of the large cosmo-

logical constant. This approach implies an introduction of a field Ψ or a set of fields

Ψa, such that Λ-term in the Einstein equations is dynamically compensated by Ψ or

Ψa at late times of the evolution of the universe.

Violation of Newton’s gravity is a very general feature of these kinds of models.

Indeed, to dynamically compensate a cosmological constant with an arbitrary value,

we have to introduce a massless field Ψ with a field equation depending linearly on

the field and with no derivatives of the field higher than the second order, otherwise

there may be the Ostrogradsky instability [105, 106]. Then, to obtain an asymptotically

stable solution, we have to non-minimally couple Ψ to gravity. Its energy density has

then terms like Ψ̇2, H2Ψ2, ḢΨ2 and HΨΨ̇ in the homogeneous case. Note that if Ψ is a

vector or higher-spin field, then its energy density automatically has terms H2Ψ2 due to

the covariant derivative. Hence, the compensation of Λ by Ψ implies that H ∼ 1/t and

Ψ ∼ t. In the weak-field limit, these give terms on the right-hand side of the Einstein

equations like t2∂2δg and t∂δg which do not respect Newton’s gravity. It seems that

there is only one way out of this difficulty, if one wants the dynamical compensation of

the Λ-term, specifically to construct a field model with a rather nonstandard form like

that considered in Chapter 6.

A model with a pair of scalar fields with the ε-function satisfying (6.3), where the

vector Lagrangian (5.2) replaced by (4.5) can be expected to have the same qualitative

behavior. Therefore, henceforth, we will talk about Ψa (a = 1, 2) without specifying

their spin.

The two crucial features of the model with Ψa considered in Chapter 6 are that the

ε-function satisfies (6.3) and that L(Ψa) depends only quadratically on Ψa. Indeed,

since this function is symmetric with respect to the replacement Ψ1 by Ψ2 and vice

versa, their cosmological solutions Ψa, if these exist, differ from each other up to the

constant which is actually fixed by Λ as in (6.16b). In the homogeneous case, one has
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in Tµν(Ψa), for instance, a term like

H2

(
Ψ2

1

∂ε

∂L(Ψ1)
+ Ψ2

2

∂ε

∂L(Ψ2)

)
, (8.1)

which vanishes when Ψa = Ψa as a consequence of (6.3), because Ψa is proportional

to L(Ψa) and a coefficient of the proportionality is independent of Ψa. Hence, one has

Tµν(Ψa) = ε(Ψa)gµν (cf. (6.2) for (6.14) with (6.16b)).

This result is general, since it does not rely on a specific form of the ε-function.

Therefore, there is little hope that one may find an ε-function (see footnote on page 48)

such that Ψ1 and Ψ2 are asymptotically stable with respect to the small homogeneous

perturbations.

If so, then the Einstein equations linearized with respect to the general field pertur-

bations take the standard form as that in general relativity. If we take, however, into

account small homogeneous deviations δΨa from Ψa, then, most probably, it will be

not the case. Since δΨa decrease with time in comparison with Ψa (otherwise Ψa would

be unstable), then for sufficiently large time ts that must be much less than t0, we can,

nevertheless, have Newton’s law of gravity.

A possible experimental indication that there might be such a cosmic pair Ψa would

be if the gravitational Newton law was violated at early times in the evolution of the

universe. The primordial gravitational waves would also behave themselves differently

from those predicted by general relativity. These issues require, however, further inves-

tigations.

In conclusion, it should be emphasized that the analysis made in this work concerns

only the classical stability of the cosmological solution uncovered above and the consis-

tency of the model with the Newton gravitational law. Another important issues, for

instance, quantum stability of the vacuum in the model against spontaneous particle

creation [109, 110, 111, 112], must be further investigated as well.
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Appendices

Appendix A Backreaction of quantum scalar field on metric

The effective action of the scalar field Γ[g] can be written as

exp
(
iΓ[g]

)
=

∫
Dφ exp

(
− i

2

∫
d4x

√−g φ
(
¤ + m2

)
φ

)
, (A1)

where we have omitted the surface term assuming that φ goes to zero sufficiently rapidly

as x → 0, and ¤ is the d’Alembert operator with respect to gµν . Following the effective

action recipe outlined in [41], we make the Wick rotation: t → −iτ . Then the metric

becomes Euclidean: g̃µν(τ, x) ≡ −gµν(t, x)|t=−iτ , i.e. real and positive definite, and

the differential operator ¤ + m2 turns to −¤E + m2 which is real, elliptic and self-

adjoint, and, as a consequence, has a complete spectrum of eigenfunctions φn(x) with

eigenvalues λn [42]. The eigenfunctions φn are normalized in the usual sense with the

covariant measure dx4g̃1/2.

Expanding φ(x) as a linear combination of φn(x) with coefficients cn and taking the

measure on the field space as a product of (µ/
√

2π)dcn with µ being a normalization

constant with mass dimension, one obtains

ΓE[g̃] =
1

2
ln det

(− µ−2(¤E −m2)
)
, (A2)

where the Euclidean effective action ΓE[g̃] ≡ −iΓ[g]|t=−iτ .

Then, let us introduce a Hermitian operator M̂ defined on some Hilbert space

spanned by vectors |ψ〉, such that its determinant coincides with that of −¤E + m2.

This is the case, when the matrix elements of M̂ in the coordinate basis |x〉 are

〈x|M̂ |x′〉 =
(
g̃(x)

)1/4 (−¤E + m2
) (

g̃(x)
)−1/4

δ
(
x− x′

)
(A3)

(see [41] for more details). Then (A2) can be rewritten as

ΓE[g̃] = −1

2
lim
s→0

(
ζ ′
M̂

(s) + ζM̂(s) ln(µ2)
)

, where ζM̂(s) ≡ Tr
(
M̂−s

)
(A4)

is the so-called zeta function of the operator M̂ [42, 43].
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Considering g̃µν(x) = δµν +hµν(x), where |hµν(x)| ¿ 1, and applying the heat kernel

approach [42], after calculations which are quite analogous to those in [41], but without

the assumption that m is small, one obtains

ζM̂(s) =

∫
d4x

√
g̃

(
J(s, 4) +

s

6
J(s + 1, 4)R + O(h2)

)
, (A5)

where g̃1/2 = 1− 1
2
δµνh

µν(x), R(x) = δµν∂
2hµν(x)− ∂µ∂νh

µν(x) and

Jα,4 ≡
∫

d4kE

(2π)4

1

(k2
E + m2)α

. (A6)

Here, the number 4 indicates the dimension of spacetime.

If we substitute (A5) in (A4) without evaluating the integral in (A6), we find that

J(s, 4), J(s + 1, 4) and their first derivatives with respect to s are ultraviolet divergent

for s = 0. In order to regularize these divergences, one can consider a spacetime of the

dimension d instead of 4 for which they are finite – this corresponds to dimensional

regularization by ’t Hooft and Veltman. After we have done this, we go back to the

real time and then vary the Lorentzian effective action Γ[g] over the metric gµν , where

we eventually obtain

〈T̂µν〉 = A(µ̃, d) gµν(x)− 2B(µ̃, d) Gµν(x) + O(g2) . (A7)

By definition

A(µ̃, d) ≡ −1

2

m4

(4π)d/2
Γ(−d/2)

(
m

µ̃

)d−4

, (A8a)

B(µ̃, d) ≡ +
1

12

m2

(4π)d/2
Γ(1− d/2)

(
m

µ̃

)d−4

, (A8b)

cf. [40]. There µ̃ is the ’t Hooft scale which gives the correct dimensions for A(µ̃, d)

and B(µ̃, d).(1)

Direct calculations show that O(g2) term appearing in the effective action Γ[g] is

composed of R2 and RµνR
µν , and factors in front of them are ultraviolet divergent as

well. Therefore, after regularization they must be renormalized (the following terms

O(gn), n ≥ 3 are finite). We note that these terms are a source of the trace anomaly

and their explicit expressions can be found in [40, 41].

As mentioned above, in particular, J(s, 4) and J ′(s, 4) tend to infinity when s →
0 if we do not evaluate integrals corresponding to them before we take the limit in

accordance with the zeta regularization. If we do that, as should be done, then we

(1)Note, that A(µ̃, d) does depend on µ appearing in (A5) as a consequence of a property of dimensional regularization

giving zero for integrals of the type
∫

ddkE k−2α
E . But B(µ̃, d) is also independent of it on account of sJ(s + 1, 4) = 0

for s = 0.
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obtain

A(µ, 4) ≡ − m4

64π2

(
ln

( µ2

m2

)
+

3

2

)
, (A9a)

B(µ, 4) ≡ − m2

192π2

(
ln

( µ2

m2

)
+ 1

)
. (A9b)

Obviously, one does not need to renormalize both A(µ, 4) and B(µ, 4), since they are

already finite.

It is straightforward to show that in the renormalization scheme known as MS [45]

both A(µ̃, 4) and B(µ̃, 4) given in (A8) are equal to A(µ, 4) and B(µ, 4), respectively,

if we set µ̃/µ = exp(γ/2)/
√

4π, where γ ≈ 0.577216 is the Euler-Mascheroni constant.

In conclusion, note that the one-loop effective action Γ[g] contains terms proportional

to the Einstein-Hilbert and the curvature-squared.(2)

(2)In principle, if one puts Einstein’s cosmological constant to zero as well as the Einstein-Hilbert action, then, after a

consideration of the one-loop quantum theory on a manifold with a metric gµν(x), one arrives at the Einstein-Hilbert

action with the cosmological and curvature-squared terms. This observation resulted in the idea of Sakharov’s induced

gravity [46, 47].
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Appendix B One-loop vacuum energy

We have found in Section 3.2 that the term in the effective action Γ[g] corresponding

to the vacuum energy density of the scalar field is given by

−1

2

∫
d4x

√−g

∫
d4kE

(2π)4
ln

(
k2

E + m2
0

µ2

)
. (B1)

Varying this with respect to the metric field gµν , we find a part of 〈T̂µν〉 related to the

contribution of the scalar field to the cosmological constant, namely ρVgµν , where by

definition

ρV ≡ 1

2

∫
d4kE

(2π)4
ln

(
k2

E + m2
0

µ2

)
. (B2)

Let us show that this integral can be expressed as (3.6) and (3.16).

Firstly, since ln x = lim
s→0

(dxs/ds), one has

ρV = −1

2
lim
s→0

∂

∂s

∫
d4kE

(2π)4

µ2s

(k2
E + m2

0)
s

= −1

2
lim
s→0

∂

∂s

∫
d3k

(2π)3

+∞∫

−∞

dkE0

2π

µ2s

(k2
E0 + ω2

k)
s

= − 1

4π1/2
lim
s→0

∂

∂s

∫
d3k

(2π)3
µ2sω1−2s

k

Γ(s− 1/2)

Γ(s)
=

1

2

∫
d3k

(2π)3
ωk , (B3)

where ωk ≡
√

k2 + m2
0. Thus, we have shown that (B2) and (3.6) are equal.

Secondly, since

1

2ωk

=

+∞∫

−∞

dk0 δ(k2 −m2
0) θ(k0) , (B4)

one derives from (B3) that

ρV =

∫
d4k

(2π)3
ω2

k δ(k2 −m2
0) θ(k0) =

∫
d4k

(2π)3
k2

0 δ(k2 −m2
0) θ(k0) . (B5)

Taking into account
∫

kµkνf(k2) d4k =
1

4
ηµν

∫
k2f(k2) d4k , (B6)

where k2 = kµk
µ, one obtains

ρV =
m2

0

8

∫
d4k

(2π)3
δ(k2 −m2

0) , (B7)

and then using the Sokhotsky formula, we find

ρV =
m2

0

4

∫
d4k

(2π)4

i

k2 −m2
0 + iε

=
Zm2

0

4

∫
d4k

(2π)4

i

Zk2 − Zm2
0 + iε

, (B8)
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where we have taken into account that the principal value integral

P
+∞∫

−∞

dk0

k2
0 − ω2

k

(B9)

vanishes. Thus, we have that (B2) and (3.16) equal each other.
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Appendix C Vector energy-momentum tensor

Let us consider the following action

SA = −
∫

d4x
√−g

(
1

4
ζS SµνS

µν +
1

4
ζF FµνF

µν +
1

4
ζQ (Sµ

µ)2 + ζR RAµA
µ

)
. (C1)

Variation of this action with respect to the metric field gµν gives the energy-momentum

of the vector field TA
µν which turns out to be a sum of the following terms

TA
µν = T S

µν + T F
µν + TQ

µν + TR
µν , (C2)

where

ζ−1
S T S

µν = 1
4
SλρS

λρgµν − Sλ
(µ Fν)λ − 1

2
Sλ

λSµν + 2A(µ Sλ
ν);λ − AλSµν;λ ,

ζ−1
F T F

µν = −1
4

(
4gλρFµλFνρ − gµνF

λρFλρ

)
,

ζ−1
Q TQ

µν = −1
4

(
(Sλ

λ)2 + 4Aρ∇ρS
λ
λ

)
gµν + 2A(µ∇ν)S

λ
λ ,

ζ−1
R TR

µν = RA2gµν − 2RµνA
2 − 2RAµAν + 2LµνA

2 ,

(C3)

where Lµν has been defined as ∇µ∇ν − gµν∇2. In the case of FRW metric (5.11) and

homogeneous configuration of the vector field (5.12), we find

ζ−1
S T S

00 = −(
Ȧ0 + 3HA0

)2
+ 2A0

(
Ä0 + 6HȦ0

)

+ 1
2a2

(
Ȧm − 2HAm

)(
Ȧn − 2HAn

)
δmn ,

ζ−1
S T S

0i = +2
(
Ä0 + 3HȦ0 − 3H2A0

)
Ai ,

ζ−1
S T S

ij = −
(
Ȧ2

0 + 3H2A2
0 + 2

(
ḢA2

0 + 2HA0Ȧ0 − Ȧ2
0

))
gij

− 1
2a2

(
Ȧm − 2HAm

)(
Ȧn − 2HAn

)
δmngij

+Ȧ(i

(
Ȧ j) − 2HA j)

)
+ 2A(i

(
Ä j) − 2

(
Ḣ + 2H2

)
A j)

)
,

(C4)

ζ−1
F T F

00 = + 1
2a2 ȦmȦnδmn ,

ζ−1
F T F

0i = 0 ,

ζ−1
F T F

ij = −ȦiȦj − 1
2a2 ȦmȦnδmngij ,

(C5)

ζ−1
Q TQ

00 = −(
Ȧ0 + 3HA0

)2
+ 2A0

(
Ä0 + 3HȦ0 + 3ḢA0

)
,

ζ−1
Q TQ

0i = +2
(
Ä0 + 3HȦ0 + 3ḢA0

)
Ai ,

ζ−1
Q TQ

ij = −
((

Ȧ0 + 3HA0

)2
+ 2A0

(
Ä0 + 3HȦ0 + 3ḢA0

))
gij

(C6)
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and

ζ−1
R TR

00 = 12
(
Ḣ + 2H2

)
A2

0 − 6H2A2 − 6H∂0A
2 ,

ζ−1
R TR

0i = 12
(
Ḣ + 2H2

)
A0 Ai ,

ζ−1
R TR

ij = −2gij

(
2Ḣ + 3H2 + ∂2

0 + 2H∂0

)
A2 + 12

(
Ḣ + 2H2

)
AiAj .

(C7)

According to the definitions of the energy density and pressure, we have

ρA = ρA0 + ρAi
, PA = PA0 + PAi

, (C8)

where

ρA0(t) = − ζ
((

Ȧ0 + 3HA0

)2 − 2A0

(
Ä0 + 3HȦ0 + 3ḢA0

))

+6
(
2ζR − ζS

)(
ḢA2

0 −HA0Ȧ0

)
+ 18ζRH2A2

0 , (C9)

ρAi
(t) = +

ζS

2a2

(
Ȧm − 2HAm

)(
Ȧn − 2HAn

)
δmn +

ζF

2a2
ȦmȦnδmn

+
6ζR

a2
H2AmAnδ

mn + 6ζRH∂0

( 1

a2
AmAn

)
δmn , (C10)

PA0(t) = + ζ
((

Ȧ0 + 3HA0

)2
+ 2A0

(
Ä0 + 3HȦ0 + 3ḢA0

))
(C11)

+2
(
ζR − ζS

) ((
2Ḣ + 3H2

)
A2

0 + 4HA0Ȧ0

)
+ 2

(
2ζR − ζS

) (
Ȧ2

0 + A0Ä0

)
,

PAi
(t) = +

ζS

2a2

(
Ȧm − 2HAm

)(
Ȧn − 2HAn

)
δmn +

ζF

2a2
ȦmȦnδmn

−2ζR

(
2Ḣ + 3H2 + ∂2

0 + 2H∂0

)( 1

a2
AmAn

)
δmn . (C12)

The non-diagonal elements of the vector energy-momentum tensor are given by

TA
0i = 2

(
ζ

d

dt

(
Ȧ0 + 3HA0

)
+ 3

((
2ζR − ζS

)
Ḣ +

(
4ζR − ζS

)
H2

)
A0

)
Ai (C13)

and

TA,nd
ij = 2ζSA(i

(
Ä j) −HȦ j)

)

+
(
ζS − ζF

)
ȦiȦj + 4

(
3ζR − ζS

)(
Ḣ + 2H2

)
AiAj , i 6= j . (C14)
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Appendix D General linear perturbation of vector field equa-

tion and energy-momentum tensor

Let us consider small inhomogeneous perturbations of the vector and metric fields

around a given background solution

Aµ(t) → Aµ(x) = Aµ(t) + δAµ(x) ,

gµν(t) → gµν(x) = gµν(t) + δgµν(x) .
(D1)

Perturbation of the metric tensor

The general form of the metric perturbation δgµν can be written down as follows

ds2 =
(
1 + 2φ

)
dt2 + 2aSidtdxi − a2

(
(1− 2ψ)δij − hij

)
dxidxj , (D2)

where Si
,i = 0 and hi

i = 0, hi
j,i = 0, so that

δg00 = 2φ , δg0i = aSi , δgij = a2
(
2ψδij + hij

)
(D3)

(see [10] for more details). The general linear perturbation of the Levi-Civita connection

is

δΓλ
µν =

1

2
gλρ

(
δgρµ,ν + δgρν,µ − δgµν,ρ

)
+ gρσΓσ

µνδg
λρ , (D4)

where we have used an equality

δgµν = −gµρgνλδgλρ. (D5)

resulting from the variation of gµλgνλ = δµ
ν . We will need the general linear perturbation

of the Ricci tensor Rµν and scalar R:

δRµν =
1

2

(∇λ∇νδgµλ +∇λ∇µδgνλ −∇2δgµν − gλρ∇µ∇νδgλρ

)
, (D6)

δR = Rµνδg
µν + gµνδRµν , (D7)

where the covariant derivative ∇µ is defined with respect to the background metric.

General linear perturbation of vector field equation

The vector field equation of the general vector perturbation δAµ is

ζ̄∇2δAµ + (2ζ − ζ̄)∇µ∇λδAλ = 2ζRAµδR− 2ζSAλδRµλ + 2ζ∇µ

(
gλρAσδΓ

σ
λρ

)

+ζ̄
(
gλρ

[
FσµδΓ

σ
λρ + FλσδΓ

σ
µρ

]− Fλµ;ρδg
λρ

)

+ζ
(
gλρ

[
SσρδΓ

σ
λµ + SλσδΓ

σ
ρµ

]− Sλρ;µδg
λρ

)
(D8)

−2ζSRµλAρδg
λρ + (ζ̄ − 2ζS)Rλ

µδAλ + 2ζRRδAµ.
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General linear perturbation of vector energy-momentum tensor

The perturbation of TA
µν is given by

δTA
µν = δT S

µν + δT F
µν + δTQ

µν + δTR
µν , (D9)

where

ζ−1
S δT S

µν =
1

4
SλρS

λρδgµν +
1

2
SλρδSλρgµν

+

(
1

2
Sσ

λSρσgµν − Sλ(µ Fν)ρ − 1

2
SµνSλρ + 2A(µ Sν)λ;ρ − AλSµν;ρ

)
δgλρ

−
(

δSλ(µ Fν)ρ + Sλ(µ δFν)ρ +
1

2

[
δSµνSλρ + SµνδSλρ

]

−2
[
δA(µ Sν)λ;ρ + A(µ δ

(
Sν)λ;ρ

)]
+ δAλSµν;ρ + Aλδ

(
Sµν;ρ

))
gλρ , (D10)

ζ−1
F δT F

µν =
1

4
F λρFλρδgµν +

(1

2
FσλF

σ
ρ − FµλFνρ

)
δgλρ +

1

2
F λρδFλρgµν

−(
δFµλFνρ + FµλδFνρ

)
gλρ , (D11)

ζ−1
Q δTQ

µν = −1

4

((
Sλ

λ

)2
+ 4AρSλ

λ;ρ

)
δgµν + 2δA(µ∇ν)S

λ
λ

+

(
2A(µ∇ν)Sλρ − 1

2
gµν

(
Sσ

σSλρ + 2AλS
σ
σ;ρ + 2AσSλρ;σ

))
δgλρ (D12)

+
(
2A(µ δ

(∇ν)Sλρ

)− 1

2
gµν

(
Sσ

σδSλρ + 2δAλS
σ
σ;ρ + 2AσδSλρ;σ

) )
gλρ ,

ζ−1
R δTR

µν = RA2δgµν +
(
A2gµν − 2AµAν

)
δR− 2A2δRµν − 2R

(
AµδAν + AνδAµ

)

+
(
Rgµν − 2Rµν + 2Lµν

)(
2AλδAλ + AλAρδg

λρ
)

−2
(
A2

)
,σ

(
δΓσ

µν − gµνg
λρδΓσ

λρ

)− 2
(
A2

)
;λρ

δ
(
gµνg

λρ
)
. (D13)

Newtonian limit

The equation (D8) becomes

ζ̄∂2δAµ + (2ζ − ζ̄)∂µ∂
λδAλ = δJµ (D14)

in the Newtonian limit, where by definition

δJµ ≡ 2ζRAµδR− 2ζSAλδRµλ + 2ζAση
λρδΓσ

λρ,µ . (D15)
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Its Fourier transform is

δJ̃µ = 2ζRAµδR̃− 2ζSAλδR̃µλ + 2iζAσkµη
λρδΓ̃σ

λρ , (D16)

where

δΓ̃λ
µν = i

2
ηλρ

(
kµδg̃νρ + kνδg̃µρ − kρδg̃µν

)
,

δR̃µν = ikλδΓ̃
λ
µν − ikνδΓ̃

λ
µλ ,

δR̃ = ikλη
µνδΓ̃λ

µν − ikµδΓ̃ν
µν .

(D17)

Substituting these in δJ̃µ, one has

δJ̃µ = 2iζRAµ

[
kση

λρδΓ̃σ
λρ − kλδΓ̃σ

λσ

]− 2iζSAκ
[
kσδΓ̃

σ
µκ − kκδΓ̃

σ
µσ

]
+ 2iζAσkµη

λρδΓ̃σ
λρ

= 2i

(
ζRAµ

[
kση

λρ − kλδρ
σ

]
− ζSAκδλ

µ

[
kσδ

ρ
κ − kκδ

ρ
σ

]
+ ζAσkµη

λρ

)
δΓ̃σ

λρ . (D18)

In a case when ζ 6= 0 and ζ̄ 6= 0, we have

δÃµ = − 1

ζ̄k2

(
δν
µ +

ζ̄ − 2ζ

2ζ

kµk
ν

k2

)
δJ̃ν(k) ≡ 2iΣ(λρ)

µσ δΓ̃σ
λρ , (D19)

where Σλρ
µσ has been defined as

Σλρ
µσ ≡ − 1

ζ̄k2

(
δν
µ +

ζ̄ − 2ζ

2ζ

kµk
ν

k2

)

×
(

ζRAν

[
kση

λρ − kλδρ
σ

]
− ζSAκδλ

ν

[
kσδ

ρ
κ − kκδ

ρ
σ

]
+ ζAσkνη

λρ

)
. (D20)

The Fourier transform of the energy-momentum tensor is given by

δT̃µν(k) = ζS

(
− Aµ

[
k2δÃν + kνk

λδÃλ + 2iAσk
λδΓ̃σ

νλ

]
− Aν

[
k2δÃµ + kµk

λδÃλ

+2iAσk
λδΓ̃σ

µλ

]
+ Aκk

κ
[
kµδÃν + kνδÃµ + 2iAσδΓ̃

σ
µν

])

−2ζQ (Aµkν + Aνkµ − ηµνA
κkκ)

(
kλδÃλ + iAση

λρδΓ̃σ
λρ

)
(D21)

+ζR

([
A2ηµν − 2AµAν

]
δR̃− 2A2δR̃µν + 2lµν

[
2AλδÃλ + AλAρδg̃λρ

])
,

where by definition lµν ≡ k2ηµν − kµkν . Substituting δÃµ expressed via δΓ̃µ
λρ in δT̃µν ,

one finds

δT̃µν(k) =
(
ζSMλρ

µνσ + ζQNλρ
µνσ + ζRKλρ

µνσ

)
ησκ (kκδg̃λρ − kλδg̃ρκ − κρδg̃λκ)

+2ζR

(
k2ηµν − kµkν

)
AλAρδg̃λρ , (D22)
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where

Mλρ
µνσ ≡ Aκk

κ
(
kµΣ(λρ)

νσ + kνΣ
(λρ)
µσ − Aσδ

(λ
µ δ ρ)

ν

)
− Aµ

(
k2Σ(λρ)

νσ + kνk
κΣ(λρ)

κσ + Aσk
(λ δ ρ)

ν

)

−Aν

(
k2Σ(λρ)

µσ + kµk
κΣ(λρ)

κσ + Aσk
(λ δ ρ)

µ

)
, (D23a)

Nλρ
µνσ ≡ − (Aµkν + Aνkµ − ηµνAκk

κ)
(
2kαΣ(λρ)

ασ + Aση
λρ

)
, (D23b)

Kλρ
µνσ ≡ 1

2

(
A2ηµν − 2AµAν

) (
kση

λρ − k(λ δ ρ)
σ

)− A2
(
kσδ

(λ
µ δ ρ)

ν − kνδ
(λ
µ δ ρ)

σ

)

+4
(
k2ηµν − kµkν

)
AκΣ(λρ)

κσ . (D23c)

It can also be rewritten as

δT̃µν(k) =

(
kσ

[
ζSMλρ

µνσ + ζQNλρ
µνσ + ζRKλρ

µνσ

]
+ 2ζR

[
k2ηµν − kµkν

]
AλAρ

)
δg̃λρ

−2κρη
σκ

(
ζSMλρ

µνσ + ζQNλρ
µνσ + ζRKλρ

µνσ

)
δg̃λκ , (D24)

where we have taken into account that Mλρ
µνσ, Nλρ

µνσ and Kλρ
µνσ are symmetric with respect

to λ and ρ.
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Appendix E Energy-momentum tensor of vector fields

The variation of the action (6.1) with respect to the metric gµν is found to be

δgS[g, A,B] = −
∫

d4x
√−g

(
−1

2
ε gµνδg

µν +
∑
V

∂ε

∂LV

δgLV

)
(E1)

=

∫
d4x

√−g

(
1

2

(
ε−

∑
V

∂ε

∂LV

LV

)
gµν +

∑
V

∂ε

∂LV

(
1

2
LVgµν − δLV

δgµν

))
δgµν ,

Consequently, the energy-momentum tensor of the vector fields is

T vec
µν =

(
ε−

∑
V

LV ε′LV

)
gµν

+
∑
V

ε′LV

(
T S

µν(V ) + T F
µν(V ) + TQ

µν(V ) + TR
µν(V ) + T∆

µν(V )
)

, (E2)

where

T∆
µν(V ) =

(
ζS

(
2Sλ

(µ Vν) − SµνV
λ
)

+ ζQSρ
ρ

(
2V(µ δλ

ν) − gµνV
λ
) )

∂λ ln
∣∣ ε′LV

∣∣

+2ζR

(
ε′LV

)−1 (
Lµν

(
ε′LV

V 2
)− ε′LV

Lµν(V
2)

)
. (E3)

All terms in the energy-momentum tensor (E2) in the case of the flat Friedmann-

Robertson-Walker metric and the homogeneous configuration of the vector field are

known from Appendix C, except T∆
µν :

T∆
00(V ) = 2

(
ζ
(
V̇0 + 3HV0

)
V0 − 3ζSHV 2

0 − 3ζRHV 2
)

∂0 ln
∣∣ ε′LV

∣∣ , (E4a)

T∆
0i (V ) = 2

(
ζ
(
V̇0 + 3HV0

)− 3ζSHV0

)
Vi∂0 ln

∣∣ ε′LV

∣∣ , (E4b)

T∆
ij (V ) = 2ζSV(i

(
V̇ j) − 2HV j)

)
∂0 ln

∣∣ ε′LV

∣∣− 2gij

(
ζQ

(
V̇0 + 3HV0

)
V0 (E4c)

+ ζSHV 2
0 + ζRV 2

(
∂0 + ∂0 ln

∣∣ ε′LV

∣∣
)

+ 2ζR∂0V
2 + 2ζRHV 2

)
∂0 ln

∣∣ ε′LV

∣∣ .
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Appendix F Expansion coefficients

In Section 6.2, we have defined π-coefficients which are given here:

πa-coefficients

πa
1 = aα

(
1 + 3y

)(
xα + 3y

[
α + 3β + 2αβ

])
C4

1 + 3b

(
α2

[
1 + 3y

][
x + 3y

]

+ αβ
[
21 + 10α + y(51 + 42α)

]
y + 12β2

[
3 + 2α

]2
y2

)
C4

2 , (F1a)

πa
2 =

1

4

(
4aα

[
1 + 3y

][
α
(
1− x + 3y

)(
x + 3y

)
+ 3β

(
α + 6[2 + α]y

)
y
]
C4

1

+ b
[
α
(
x + 3y

)(
2α− 8αx2 − 9 + 3[3 + 2α][1− 2y]x + 6[3 + 2α(4 + 9y)]y

)

+ 3β
(
27[2x + y − 2][1− 2y] + 3α[3 + 4y(23 + 66y)]

+ 2α2[7 + 18y(5 + 14y)]
)
y + 144β2

(
3 + 2α

)(
α + 6[2 + α]y

)
y2

]
C4

2

)
, (F1b)

πa
3 =

1

16

(
a
[
1 + 3

][
α
(
x + 3y

)(
3[1− x][1− 2y] + 2α[4x2 − 3x− 1− 12(1 + x)y]

)

− 9β
(
6x[1− 2y] + [2 + α− y][6(1 + 4α)y + 2α− 3]

)
y
]
C4

1 + b
[
16α2x4 + 4α

× (
6[1 + α]y − 3− 4α

)
x3 − α

(
8α− 9 + 9[4 + 14α + (30α− 13

+ 6[3 + 4α]y)y]y
)
x + 54β

(
1 + [5− 14y]y

)
xy + x2

(
α[3 + 8α− 3(5 + 6α

− 6[1− 8α]y)y]− 216β[1− 2y]y
)− 3y

(
α + 3β(2− y + α)

)(
8α− 9

+ 3[15 + 50α + 16αβ + 6(20α− 3 + 8β(7 + 4α))y]y
)]

C4
2

)
. (F1c)

πb-coefficients

πb
1 = πa

1 + 2
(
aC4

1 − bC2
2

)
(F2a)

×
(
α2

[
1 + 3y

][
x + 3y

]
+ 3αβ

[
9 + 4α + 3(7 + 6α)y

]
y + 18β2

[
3 + 2α

]2
y2

)
,

πb
2 = πa

2 −
1

4

(
aC4

1 − bC4
2

)

×
(

α
[
x + 3y

][
9
(
1− x

)(
1− 2y

)
+ 2α

(
1− (5− 4x)x− 12[1 + 3y]y

)]

− 3β
[
27

(
2x + y − 2

)(
1− 2y

)
+ 3α

(
3 + 4[19 + 54y]y

)
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+ 2α2
(
5 + 72[1 + 3y]y

)]
y − 144β2

[
3 + 2α

][
α + 6(2 + α)y

]
y2

)
, (F2b)

πb
3 = πa

3 +
1

8

(
aC4

1 − bC4
2

)(
6α

[
2y − 1− 2α

]
x3 + 8α2x4 − 3α

[
α− 1 +

(
5 + 13α

+ 12[3y − 2 + α]y
)
y
]
x + 54β

[
1 + (3− 10y)y

]
xy + x2

[
α
(
3 + 7α− 6

× [1 + 12αy]y
)− 108β

(
1− 2y

)
y
]
− 9

[
α + 3β(2− y + α)

][
α− 1

+ 4
(
2 + 5α + 2αβ + 3[4α− 1 + 14β + 8αβ]y

)
y
]
y

)
. (F2c)

πc-coefficients

πc
1 = −2

(
αx + 3

[
α + 3β + 2αβ

]
y
)2(

aC4
1 + bC4

2

)
, (F3a)

πc
2 =

1

8

(
α
[
x + 3y

][
9
(
1− x

)(
1− 2y

)
+ 2α

(
4x2 − x− 3− 12[3− x]y − 72y2

)]

− 27β
[
3
(
2x + y − 2

)(
1− 2y

)
+ α

(
1 + 4[9 + 26y]y

)
+ 2α2

(
1 + 4y

)

× (
1 + 8y)

]
y − 144β2

[
3 + 2α

][
α + 6

(
2 + α

)
y
]
y2

)(
aC4

1 + bC4
2

)
, (F3b)

πc
3 = − 1

16

(
α
[
x + 3y

][
3
(
1− x

)(
1− 2y

)(
2 + 2x− 3y

)
+ α

(
8x3 − 4x2 + x− 5

− 6[15 + x]y − 72[3 + x]y2
)]

+ 9β
[
3
(
2 + 2x− 3y

)(
2− 2x− y

)(
1− 2y

)

− 4α
(
1 + [49 + 3(41− 18y)y]y

)− α2
(
1 + 4y

)(
5 + 78y

)]
y

− 216β2
[
2− y + α

][
α + 3

(
7 + 4α

)
y
]
y2

)(
aC4

1 + bC4
2

)
. (F3c)

πh-coefficients

πh
1 = −3β

(
3 + α

)(
αx + 3

[
α + 3β + 2αβ

]
y
)(

aC4
1 − bC4

2

)
, (F4a)

πh
2 = −3

8

(
α
[
x + 3y

][
7(1− x) + 2α(5− x + 12y)

]
+ β

[
8α

(
9 + 3x

+ 3α + 2αx
)
x− 9

(
7− 10α[7 + 4α]

)
y2 + 3

(
42− 42x + α[177 + 62α]

)
y
]

+ 24β2
[
3 + 2α

][
4
(
3 + α

)
+ 3

(
7 + 3α

)
y
]
y

)(
aC4

1 − bC4
2

)
, (F4b)
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πh
3 = − 3

16

(
α
[
x + 3y

][(
1− x

)(
19 + 18y

)
+ 2α

(
11 + [1− 4x]x + 24y

)]

+ β
[
9
(
2− 2x− y

)(
19 + 18y

)
y + 3α

(
32x2 + 3[95 + 4(43 + 12y)y]y

)

+ 2α2
(
32x2 + 3[49 + 120y]y

)]
+ 48β2

[
3 + 2α

][
2
(
3 + α

)
+ 3

(
8 + 3y

+ 3α
)
y
]
y

)(
aC4

1 − bC4
2

)
. (F4c)

πr-coefficients

πr
1 = Πr

(
α
[
x + 3y

][
2α(x− 12y − 5)− 3(1− x)

]− 3β
[
18− 18x + α(93 + 38α)

− 3(3− 78α− 56α2)y
]
y − 72β2

[
3 + 2α

][
9 + 5α

]
y2

)
, (F5a)

πr
2 =

Πr

2

(
α
[
x + 3y

][
3
(
1− x

)(
6 + 2x− 13y

)
+ α

(
19− 3[5− 4x]x + 48y

)]

− 3β
[
9
(
6 + 2x− 13y

)(
2x + y − 2

)− 6α
(
12− y(13 + 168y)

)

− α2
(
25− 432y2

)]
+ 144β2

[
9 + α

(
3− α

)− 3
(
27 + 26α + 6α2

)
y
])

,(F5b)

πr
3 =

Πr

4

(
6α

[
1− 2α

]
x4 + 6

[
α
(
1 + 2α

)(
1− y

)
+ 18βy

]
x3 −

[
α
(
13α− 3

+ 3[12 + 25α + 3(11 + 4α)y]y
)− 54β

(
2− 7y

)
y
]
x2 −

[
3α

(
5− [29

− 9(5 + 3y)y]y
)− α2

(
13 + 3[80 + 3(71 + 60y)y]y

)− 54β
(
1− [16 + 6β

+ (13− 12β)y]y
)
y
]
x− 3

[
9β

(
10− [57 + 12β − (8 + 9y − 6β[219 + 86y])

× y]y
)− α2

(
13 + 39β + 3[93 + 23β(13 + 4β) + 288(1 + 2β)2y2 + 12(27

+ β[109 + 100β])y]y
)− 3α

(
11β − 5 + [26 + 36β2(37 + 84β)y2

+ β(581 + 186β) + 3(3 + 8β[89 + 177β])y]y
)]

y

)
. (F5c)

where by definition

Πr ≡ aC4
1 − bC4

2

4
(
1 + 3y

)2(
αx + 3[α + 3β + 2αβ]y

)2
C2

1C
2
2

. (F6)
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πχ-coefficients

πχ
1 = 2− 2x + 3y , (F7a)

πχ
2 =

y

αζ̄

(
αζ̄

[
1− 2x + 2y

]− 2
[
2βζ(2α + 3)x + 9y − 5α− 15

])
. (F7b)
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Appendix G General linear perturbation of vector field equa-

tions and energy-momentum tensor of vector fields

General linear perturbation of vector field equations

The linearized vector field equations (6.5a) and (6.5b) are given in (6.32). Let us show

that if we divide (6.32a) and (6.32b) by C1 and C2, respectively, and then subtract

them, we obtain (6.34) by using (6.3) and (6.14).

Indeed, if we do that, we obtain a quite complicated equation which we call here

as the big-equation. This equation is rather huge, therefore we do not write it down

explicitly. Let us consider all of its terms separately. Begin with

1

C1

δ
(

ASλ
λ;µ

)− 1

C2

δ
(

BSλ
λ;µ

)
= ∇µ

([∇λδCρ +∇ρδCλ − 2CσδΓ
σ
λρ

]
gλρ + CSλρδg

λρ
)

,

where by definition

Cµ(t) ≡ 1

C1

Aµ(t)− 1

C2

Bµ(t) , (G1)

cf. (6.20). It immediately follows from (6.14) that Cµ(t) = 0. Thus we obtain

1

C1

δ
(

ASλ
λ;µ

)− 1

C2

δ
(

BSλ
λ;µ

)
= ∇µ

(Sλρg
λρ

)
, where (G2)

Sλρ ≡ ∇λδCρ +∇ρδCλ , (G3)

Analogously, one finds

1

C1

δ
(

AF µ
µ;λ

)− 1

C2

δ
(

BF µ
µ;λ

)
= ∇λFλµ , where (G4)

Fλµ ≡ ∇λδCµ −∇µδCλ . (G5)

We have omitted CFλµ;ρδg
λρ and −gλρ

(
CFσµδΓ

σ
λρ + CFλσδΓ

σ
µρ

)
there, since (G1) is zero.

Obviously, terms CλδRµλ and CµδR in the big-equation vanish as well. The next term

we are moving on is

ζS

C1

δ
(

ASλ
µ

)
∂λ ln

∣∣ ε′LA

∣∣− ζS

C2

δ
(

BSλ
µ

)
∂λ ln

∣∣ ε′LB

∣∣ . (G6)

Let us treat one of the derivative of the logarithms in detail, namely

∂λ ln
∣∣ ε′LA

∣∣ =
LAε′′LALA

ε′LA

∂λLA

LA

+
LBε′′LALB

ε′LA

∂λLB

LB

. (G7)

Substituting the background solution (6.14) in LA and LB, one has

LA,B = C3 C2
1,2 τ 2(x−1) ⇒ ∂λLA,B

LA,B

=
∂λτ

2(x−1)

τ 2(x−1)
, (G8)
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where C3 has been defined as

C3 ≡ ζ(x + 3y)2 − 6ζS(x + y)y + 6ζR(1− 2y)y , (G9)

so that it depends only on the ζ-coefficients and wm. Thus one has

∂λ ln
∣∣ ε′LA

∣∣ =

(LAε′′LALA

ε′LA

+
LBε′′LALB

ε′LA

)
∂λτ

2(x−1)

τ 2(x−1)
(G10)

and, consequently,

ζS

C1

δ
(

ASλ
µ

)
∂λ ln

∣∣ ε′LA

∣∣− ζS

C2

δ
(

BSλ
µ

)
∂λ ln

∣∣ ε′LB

∣∣ (G11)

=
ζS

C1

∂λτ
2(x−1)

τ 2(x−1)
(∆A + ∆B) δ

(
ASλ

µ

)
+ ζS

∂λτ
2(x−1)

τ 2(x−1)

(LAε′′LALB
+ LBε′′LBLB

ε′LB

) (
gλνSνµ

)
,

where for making formulas more transparent, we have defined ∆A and ∆B as

∆A ≡ LAε′′LALA

ε′LA

− LAε′′LALB

ε′LB

, ∆B ≡ LBε′′LALB

ε′LA

− LBε′′LBLB

ε′LB

. (G12)

We have omitted CSµνδg
νλ− 2gλνCρδΓ

ρ
µν in the last round brackets, because Cµ(t) = 0

in a case of our particular solution. The same sequence of steps gives similar results

of the rest of terms, i.e. δ
(

VF λ
µ

)
and δλ

µδ
(

VSρ
ρ

)
, multiplied by ∂λ ln

(
ε′LV

)
, but in-

stead of δ
(

VSλ
µ

)
and gλνSνµ, there must be δ

(
VF λ

µ

)
, gλνFνµ and δλ

µδ
(

VSρ
ρ

)
, δλ

µgνρSνρ,

respectively. Now we are left with one of the terms like

ζS

C1
ASλ

µ∂λ

(
ε′′LALA

ε′LA

δLA +
ε′′LALB

ε′LA

δLB

)
− ζS

C2
BSλ

µ∂λ

(
ε′′LALB

ε′LB

δLA +
ε′′LBLB

ε′LB

δLB

)
(G13)

in the big-equation. Since Cµ(t) = 0, one has C2 ASλ
µ = C1 BSλ

µ , therefore one can

rewrite the above expression as follows

ζS

C1
ASλ

µ∂λ

(
∆A

δLA

LA

+ ∆B
δLB

LB

)
. (G14)

Note, that ∆A and ∆B are constants. Indeed, for the background solution (6.14), one

has ε′LV
∼ τ 2(1−x) and ε′′LVLV

∼ τ 4(1−x), so that LVε′′LVLV
/ε′LV

∼ 1, consequently, ∆A,B

are constants. Hence, one can write

∂λ

(
∆A

δLA

LA

)
= ∆A∂λ

(
δLA

LA

)
(G15)

and taking into account

δLA

LA

− δLB

LB

=
τ 2(1−x)

C3

(
P µν

S Sµν + P µν
F Fµν + 2ζRRCµδCµ

)
, (G16)
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where P µν
S and P µν

F have been defined as

P µν
S ≡ ζS

2
sµν +

ζQ

2
sλ

λg
µν , P µν

F ≡ ζF

2
fµν , (G17)

where

sµν ≡ ASµν/C1 = BSµν/C2 , fµν ≡ AFµν/C1 = BFµν/C2 , (G18)

we obtain

ζS

C1
ASλ

µ∂λ

(
ε′′LALA

ε′LA

δLA +
ε′′LALB

ε′LA

δLB

)
− ζS

C2
BSλ

µ∂λ

(
ε′′LALB

ε′LB

δLA +
ε′′LBLB

ε′LB

δLB

)

=
ζS ASλ

µ

C1

(∆A + ∆B) ∂λ

(
δLA

LA

)
− ζS ASλ

µ

C1

(LBε′′LALB

ε′LA

− LBε′′LBLB

ε′LB

)

× ∂λ

(
P µν

S Sµν + P µν
F Fµν + 2ζRRCµδCµ

C3τ 2(x−1)

)
. (G19)

Making replacement ζS ASλ
µ by ζF AF λ

µ and ζQ ASρ
ρδ

λ
µ, we find the last two terms in

the big-equation. Now let us calculate a sum ∆A + ∆B. From the definitions of the

summands (G12) and the properties of the ε-function (6.3), we have

∆A + ∆B =
L2

Aε′′LALA
+ LALBε′′LALB

LAε′LA

− LALBε′′LALB
+ L2

Bε′′LBLB

LBε′LB

= 0 . (G20)

Thus, using (G20), the big-equation becomes

ζ̄Fλ
µ;λ + ζSλ

λ;µ + 2ζSRλ
µδCλ − 2ζRRδCµ − ∂λτ

2(x−1)

τ 2(x−1)

(
ζSSλ

µ + ζFFλ
µ + ζQSρ

ρδλ
µ

)
(G21)

−
(
ζSsλ

µ + ζF fλ
µ + ζQsρ

ρδ
λ
µ

)
∂λ

(
P µν

S Sµν + P µν
F Fµν

C3τ 2(x−1)

)
= 0

what was to be proved.

General linear perturbation of energy-momentum tensor

We have found in Chapter 6 that

δT vec
µν = ε(LA,LB)δgµν + LAε′LA

(
δTA

µν

LA

− δTB
µν

LB

)

+L−1
A

(L2
Aε′′LALA

+ LALBε′′LALB

) (
TA

µν − LAgµν

) (
δLA

LA

− δLB

LB

)
, (G22)

where δLA/LA − δLB/LB is given in (G16), so it does not depend on the metric per-

turbation, and

δTA
µν

LA

− δTB
µν

LB

= C−1
3 τ 2(1−x)

∑

f

ζ−1
f

(
1

C2
1

δT f
µν(A)− 1

C2
2

δT f
µν(B)

)
. (G23)
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Here now f runs over S, F, Q,R, ∆, where by definition ζ∆ ≡ 1. Terms in (G23) can be

found by use Appendices B and C:

δT S
µν(A)

C2
1

− δT S
µν(B)

C2
2

=
1

2
sλρSλρgµν −

(
Sλ(µ fν)ρ + sλ(µFν)ρ +

1

2

[Sµνsλρ + sµνSλρ

]

−2
[
δC(µ sν)λ;ρ + a(µSν)λ;ρ

]
+ δCλsµν;ρ + aλSµν;ρ

)
gλρ ,(G24a)

δT F
µν(A)

C2
1

− δT F
µν(B)

C2
2

=
1

2
fλρFλρgµν − f λ

ν Fµλ − f λ
µ Fνλ , (G24b)

δTQ
µν(A)

C2
1

− δTQ
µν(B)

C2
2

=
(
δCµ∇νsλρ + δCν∇µsλρ + aµSλρ;ν + aνSλρ;µ

−1

2
gµν

[
sσ

σSλρ + 2δCλs
σ
σ;ρ + 2aσSσλ;ρ

])
gλρ , (G24c)

δTR
µν(A)

C2
1

− δTR
µν(B)

C2
2

= −4Ra(µ δCν) + 2
(
Rgµν − 2Rµν + 2Lµν

)(
aλδCλ

)
, (G24d)

δT∆
µν(A)

C2
1

− δT∆
µν(B)

C2
2

= −2(x− 1)
∂λτ

τ

(
ζS

[
2Sλ(µ aν) + 2sλ(µ δCν) − aλSµν − sµνδCλ

]

+ ζQSσ
σ

[
2a(µ gν)λ − gµνaλ

]
+ ζQsσ

σ

[
2δC(µ gν)λ − gµνδCλ

])

+
(
ζS

[
2sλ

(µ aν) − sµνa
λ
]
+ ζQsρ

ρ

[
2a(µ δλ

ν) − gµνa
λ
])

∂λ

(
∆A

δLA

LA

+ ∆B
δLB

LB

)

− 4ζRLµν(a
λδCλ) + 4ζRτ 2(x−1)Lµν

(
τ 2(1−x)aλδCλ

)− 2ζRτ 2(x−1)Lµν(τ
2) (G24e)

×
(

∆A
δLA

LA

+ ∆B
δLB

LB

)
+ 2ζRτ 2(x−1)Lµν

(
τ 2(1−x)a2

(
∆A

δLA

LA

+ ∆B
δLB

LB

))
.

Using the fact that ∆A + ∆B is zero and (G16), one has

∆A
δLA

LA

+ ∆B
δLB

LB

= ∆A

(
δLA

LA

− δLB

LB

)

= ∆A
τ 2(1−x)

C3

(
P µν

S Sµν + P µν
F Fµν + 2ζRRCµδCµ

)
, (G25)

i.e. (G23) does not depend on the metric perturbation δgµν .
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