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Deutsche Zusammenfassung

Das Standardmodell der Teilchenphysik beschreibt die Eigenschaften und die Wechsel-
wirkungen zwischen den bekannten Elementarteilchen. Die aktuelle Formulierung des
Standardmodells, die fast alle heutigen Beobachtungen beschreiben und erkären kann,
entstand in jahrzehntelangen Zusammenarbeit von Theorie und Experiment. Die meisten
theoretischen Vorhersagen des Standardmodells sind von den experimentellen Messungen
im Rahmen deren Genauigkeit bestätigt worden.

Trotz des großen Erfolges des Standardmodells gibt es in der Teilchenphysik noch meh-
rere offene Fragen, die dieses Modell nicht beantworten kann. Wir wissen, dass unser
Universum aus Materie und nicht aus Antimaterie besteht. Die CP-Verletzung im Stan-
dardmodell ist nicht groß genug um die beobachtete Baryon-Antibaryon Asymmetrie zu
erklären. Gleichzeitig wissen wir aus den Rotationskurven der Galaxien, dass es eine be-
achtliche Masse an unsichtbarer dunkler Materie unbekannter Herkunft im Universum
gibt. Darüber hinaus werfen die beobachteten Neutrinooszillationen weitere neue Fragen
auf. Im Standardmodell sind Neutrinos masselos, die Oszillationen setzen jedoch eine nicht
verschwindende Masse voraus.

Diese noch unbeantworteten Fragen motivieren die Teilchenphysiker zur Suche nach Neu-
er Physik, um das Standardmodell zu erweitern und unser Verständis vom Universum zu
vervollständigen. Es gibt zahlreiche Theorien die über das Standardmodell hinaus gehen
und die ungeklärten Beobachtungen, die im letzen Absatz beschrieben wurden, zu er-
klären versuchen. Es ist eine herausfordernde und wichtige Aufgabe der experimentellen
Teilchenphysik, nach Neuer Physik außerhalb des Standardmodells zu suchen, um diese
Theorien zu bestätigen oder zu widerlegen. Eine der mächtigen Methoden, um dies zu
erreichen, ist die Suche nach seltenen Zerfällen.

Teilchenzerfälle werden als selten bezeichnet, wenn sie im Standardmodell stark unter-
drückt oder verboten sind. Neue schwere Teilchen können zu den Zerfallsamplituden durch
Schleifen beitragen und neue Kopplungen können die Zerfallsamplituden beeinflussen.
Bei seltenen Zerfällen können solche Beiträge die Gesamtzerfallsamplitude größtenteils
bestimmen. Die Beobachtung von seltenen Zerfällen kann also zu einer indirekten Ent-
deckung Neuer Physik außerhalb des Standardmodells führen.

Die Zerfälle, die in dieser Doktorarbeit analysiert wurden,B → h(∗)νν̄, sind solche seltenen
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B-Mesonen-Zerfälle. Die vom Standardmodell vorhergesagte Verzweigungsverhältnisse sind
sehr klein: eine bis zwei Größenordnungen kleiner als die aktuelle experimentelle Emp-
findlichkeit. Die Messung dieser Zerfälle wäre ein exzellenter Test der Neuen Physik.

Das dominierende experimentelle Werkzeug in der Hochenergieteilchenphysik sind Teil-
chenbeschleuniger, wo geladene Teilchen beschleunigt und zur Kollision gebracht werden.
Ein Detektor um den Wechselwirkungspunkt zeichnet die Signale der Zerfallsprodukte der
Wechselwirkung auf und erlaubt so die Rekonstruktion des Kollisionsereignisses.

Der KEKB-Beschleuniger, der sich in der High Energy Accelerator Research Organizati-
on (KEK) in Tsukuba (Japan) befindet, ist ein asymmetrischer e+e−-Beschleuniger. Die
Schwerpunktsenergie entspricht der Υ(4S) Resonanz, die direkt über der Produktions-
schwelle von BB̄ Paaren liegt und damit in über 96% der Fälle ein solches Paar erzeugt.
Da sonst keine weiteren Zerfallsprodukte entstehen, können die B-Mesonen-Zerfälle in
einer verhältnismässig untergrundarmen Umgebung untersucht werden. Da der KEKB-
Beschleuniger damit auf die Produktion von B-Mesonen ausgerichtet ist, wird er auch als
B-Fabrik bezeichnet. Belle ist der Name des Vielzweckdetektors am einzigen Wechselwir-
kungspunkt des KEKB-Beschleunigers.

Die Analyse, die im Rahmen dieser Doktorarbeit durchgeführt wurde, beruht auf dem
kompletten Datensatz von 711 fb−1 (≈ 771× 106 BB̄ Paare), aufgezeichet an der Υ(4S)
Resonanz bei Belle. In der Analyse wurde nach den Zerfällen B → h(∗)νν̄, wo h(∗) für K+,
K0
S, K∗+, K∗0, π+, π0, ρ+, ρ0 und φ steht, gesucht. Die Signalkandidaten wurden durch

eine vollständige Rekonstruktion des hadronisches Zerfalls des begleitenden B-Mesons
und die Forderung nach einem einzigen verbleibenden h(∗) Meson auf der Signalseite ge-
bildet. Die Auswahlschnitte wurden, um eine höhere Sensitivität für einen möglichen
Signalbeitrag zu erreichen, durch simulierte Experimente optimiert. Die Analyse wurde
blind durchgeführt: Die Auswahlschnitte wurden festgelegt bevor das Verfahren auf die
experimentellen Daten angewendet wurde. Um den Signalbeitrag zu bestimmen, wurde
die verbleibende Energie im elektromagnetischem Kalorimeter, EECL, verwendet. Da in
einem Signalereignis abgesehen von zwei Neutrinos alles rekonstruiert wird, sollte es im
Detektor keine weitere Aktivität geben und die Signalereignisse bei kleinen EECL Werten
einen Peak aufweisen.
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Abbildung 0.1.: Fit-Ergebnisse für die neun untersuchten B → h(∗)νν̄ Kanäle. Die Punkte mit
Fehlerbalken zeigen die experimentellen Datenpunkte, während die durchgezo-
gene schwarze Linie das Fit-Ergebnis zeigt. Der blaue kreuzschraffierte Bereich
entspricht dem Untergrundanteil und die rote gestrichelte Linie dem Signalan-
teil.
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Die Schaubilder der finalen Verteilungen mit den Fits an die Datenpunkte sind in Ab-
bildung 0.1 zu sehen. Die endgültige Anzahl an Signalereignissen mit den dazugehörigen
statistischen und systematischen Fehlern, sowie der Signifikanz des Signalbeitrags, sind
für jeden Zerfallskanal in der Tabelle 0.1 aufgelistet. Obwohl Signalereignisse beobach-
tet wurden, sind die Signalbeiträge aufgrund der hohen statistischen und systematischen
Unsicherheiten in keinem der Zerfallskanäle signifikant. Die Limits auf die Verzeiwegungs-
verhältnisse bei 90% Konfidenzniveau wurden bestimmt und sind in der Tabelle 0.2 auf-
geführt. Obowohl der Datensatz nur das anderthalbfache des Datensatzes der vorherigen
Belle Analyse betrug, konnten die meisten Limits durch das verfeinerte Analyseverfahren
deutlich verbessert werden. Für vier Kanäle sind die erzielten Limits aktuell die strengsten
der Welt.

Zerfallskanal Signal Signifikanz

B+ → K+νν̄ 13.3+7.4
−6.6(stat)± 2.5(syst) 2.0σ

B+ → K∗+νν̄ −1.7+1.7
−1.1(stat)± 1.5(syst) -

B+ → π+νν̄ 15.2+7.1
−6.2(stat)± 1.8(syst) 2.6σ

B+ → ρ+νν̄ 11.3+6.3
−5.4(stat)± 4.2(syst) 1.7σ

B0 → K0
sνν̄ 1.8+3.3

−2.4(stat)± 1.0(syst) 0.7σ

B0 → K∗0νν̄ −2.3+10.2
−3.5 (stat)± 0.9(syst) -

B0 → π0νν̄ 3.5+2.6
−1.9(stat)± 0.7(syst) 1.9σ

B0 → ρ0νν̄ 1.6+5.0
−4.1(stat)± 0.4(syst) 0.4σ

B0 → φνν̄ 1.4+2.9
−0.9(stat)± 0.8(syst) 0.5σ

Tabelle 0.1.: Anzahl der Signalereignisse erhalten aus dem Fit an die Daten mit den statisti-
schen (stat) und systematischen (syst) Unsicherheiten sowie der Signifikanz des
Signalbeitrags.

Die für die Verzweigungsverhältnisse bestimmten Limits können als Grenzen in der Ent-
wicklung von Theorien der Neuen Physik dienen. Generell sind sie jedoch weiterhin etwa
eine Größenordnung über den Vorhersagen des Standardmodells. Es gibt also nach wie vor
Freiraum für Beiträge der Neuen Physik, die in diesen Zerfallskanälen entdeckt werden
könnte. Die beobachtete Signifikanz von 2σ in K+ und π+ Kanälen verlangt nach weiteren
Untersuchungen in den zukünftigen Experimenten.
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Zerfallskanal Verzweigungs-
verhältnislimit bei
90% CL

Verzweigungs-
verhältnislimit
bei 90% CL
Vorgängeranalyse
bei Belle [1]

Weltbeste
Verzweigungs-
verhältnislimits bei
90% CL [2]

B+ → K+νν̄ 5.5× 10−5 1.4× 10−5 1.3× 10−5

B+ → K∗+νν̄ 4.0× 10−5 14× 10−5 8× 10−5

B+ → π+νν̄ 9.8× 10−5 17× 10−5 10× 10−5

B+ → ρ+νν̄ 21.4× 10−5 15× 10−5 15× 10−5

B0 → K0
sνν̄ 9.7× 10−5 16× 10−5 5.6× 10−5

B0 → K∗0νν̄ 34× 10−5 1.2× 10−5

B0 → π0νν̄ 6.9× 10−5 22× 22−5 22× 10−5

B0 → ρ0νν̄ 20.8× 10−5 44× 10−5 44× 10−5

B0 → φνν̄ 12.7× 10−5 5.8× 10−5 5.8× 10−5

Tabelle 0.2.: Verzweigungsverhältnisselimits bei 90% Konfidenzniveau (Confidence Level).

Für eine bessere statistische Empfindlichkeit ist ein größerer Datensatz mit mehr BB̄-
Paaren notwendig. Das kommende Belle-II-Experiment, mit einem erwarteten Datensatz
von 50 ab−1 und einer verbesserten Ereignisrekonstruktion, sollte es ermöglichen, in die
vom Standardmodell vorhergesagten Größenordnung für das Verzweigungsverhältnis vor-
zudringen und die Zerfälle zu beobachten.

Der Belle-II-Detektor wird sich am einzigen Wechselwirkungspunkt des neuen verbes-
serten SuperKEKB-Beschleunigers befinden und den Belle-Detektor ersetzen. Der neue
Detektor wird in der Lage sein, mit den höheren Ereignisraten und dem gestiegenen
Strahlungsuntergrund umzugehen und damit eine einzigartige Suche nach Neuer Physik
zu ermöglichen.

Um aus den Signalen der einzelnen Subdetektoren ein Kollisionsereignis rekonstruieren zu
können, wird eine durchdachte und aufwändige Rekonstruktionsoftware benötigt. Einer
der wichtigsten Schritte der Ereignisrekonstruktion ist das Tracking. Es beschreibt das
Verfahren, mit dem die Flugbahn eines geladenen Teilchens gefunden und sein Impuls
gemessen wird. Ein effizientes, genaues und schnelles Tracking über den gesamten Im-
pulsbereich ist entscheidend für die korrekte Rekonstruktion und damit die physikalische
Interpretation der Kollisionsereignisse.

Um den neuen Belle-II-Detektor optimal zu nutzen und mit dem höheren Strahlungs-
untergrund zurecht zu kommen, wird von der Belle-II-Kollaboration zur Zeit eine mehr-
stufige Trackingstrategie entwickelt. Im Rahmen dieser Doktorarbeit wurde ein Algorith-
mus, ConformalFinder, entwickelt, um hochenergetische Spuren in Detektorsignalen der
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Belle-II-Driftkammer zu finden. Der Algorithmus basiert auf der lokalen Spurfindung und
kombiniert mehrere Techniken, unter anderem den Zellulären Automat und die konforme
Tranformation. Während der Integration des Algorithmus in die Belle-II-Software wurden
außerdem technische Werkzeuge implementiert, die notwendig sind, um im Rahmen dieser
Software die Simulation und die Rekonstruktion der Ereignisse auszuführen.

Durch Monte-Carlo-Studien mit speziellen Spurverteilungen sowie mit den realistischen
B0 → D0(K+π−)π+ Ereignissen wurde gezeigt, dass der ConformalFinder effizient Spu-
ren mit p > 0.4 GeV in der simulierten Belle-II-Driftkammer finden kann (siehe Abbil-
dung 0.2a, 96% der Spuren konnten bei der erwarteten Durchschnittsanzahl der Spuren
von 9 gefunden wuerden). Ferner konnte gezeigt werden, dass die Leistung des Algorith-
mus auch mit bis zu 10% Belegung der Drähte durch Untergrundteilchen stabil bleibt
(siehe Abbildung 0.2b).
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Abbildung 0.2.: Die Leistung von ConformalFinder in Abhängigkeit von der Anzahl der Spuren
im Ereignis (a) und in Abhängigkeit vom Untergrund für Ereignisse mit 9 Spu-
ren (b). Der prozentuale Anteil der gefundenen Spuren (Effizienz), der Spuren
mit guter Parameterbestimmung (Gute Spuren) und der zusätzlich gefundenen
Spuren sind gezeigt.

Ein externes Softwarepaket GENFIT, welches die präzise Spurparameteranpassung durchführt,
wurde in die Belle-II-Software eingegliedert und mit den Spuren, die mit dem ConformalFinder

gefunden wurden, getestet. Es konnte gezeigt werden, dass der in GENFIT eingebundene
DeterministicAnnealingFilter in der Lage ist, Untergrundhits von den Signalhits zu
trennen. Die Parameterauflösung mit und ohne Undergrund ist in Abbildung 0.3 gezeigt:
Es ist nur eine minimale Verschlechterung der Auflösung von < 5% zu sehen.
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Abbildung 0.3.: Parameterauflösung der rekonstruierten Spuren nach dem Fitten mit und ohne
Untergrund. Die Auflösungen des Transversalimpulses pt und des Polarwinkels
φ sind gezeigt.

Da der ConformalFinder der erste Spurfindungsalgorithmus war, der in die Belle-II-
Software integriert wurde, hat seine Implementierung den Weg für die Entwicklung wei-
terer Rekonstruktionsschritte, wie zum Beispiel die Extrapolation der Spuren in die an-
deren Subdetektoren, geebnet. Überdies wurde damit ein Grundstein für die Entwicklung
von weiteren, verbesserten Spurfindungsalgorithmen gelegt. Zur Zeit werden zwei weitere
komplexe Algorithmen für die Spurfindung in Detektorsignalen der Driftkammer am KIT
entwickelt.
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1. Introduction

The Standard Model of particle physics describes properties and interactions between the
known elementary particles. After decades of cooperative work of theory and experiment
the current formulation of the Standard Model can describe and explain nearly all current
observations within the current experimental precision.

Despite the great success of the Standard Model there are several open questions, which
cannot be answered by it. We know that our universe consists of matter and not of
antimatter. The CP violation within the Standard Model cannot explain the observed
baryon-antibaryon asymmetry. At the same time we know from rotation curves of galax-
ies that there has to be more massive invisible dark matter of unknown origin in the
universe. The observed neutrino oscillations also evoked new questions. In the Standard
Model neutrinos are massless, the oscillations however imply that they have a non-zero
mass.

These unanswered questions motivate physicists to search for New Physics to extend
the Standard Model and to complete our understanding of the universe. There are many
theories beyond the Standard Model that try to explain the unpredicted observations
mentioned above. It is a challenging and important task for experimental particle physics
to probe for New Physics beyond the Standard Model to confirm or reject these theories.
One of the powerful methods to achieve this is the study of rare decays.

Decays are called rare when they are heavily suppressed or forbidden in the Standard
Model. New heavy particles can contribute to the decay amplitudes via virtual loops
and new couplings might affect the decay amplitude. For rare decays such a contribution
might change the decay amplitude significantly and thus notably increase the probability
of this decay. Observations of rare decays can therefore lead to an indirect discovery of
New Physics beyond the Standard Model.

The decays analysed in this thesis, B → h(∗)νν̄, are such rare B decays. The branching
fractions predicted by the Standard Model are very small, one to two orders of magnitude
smaller than the current experimental sensitivity. The contributions from New Physics
models can increase the branching fractions by an order of magnitude, the examination
of these decays is therefore an excellent probe for New Physics.
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1. Introduction

The main experimental devices in high energy particle physics are particle colliders, where
charged particles are accelerated and brought to a collision. A detector build around this
interaction point records signatures produced by decay products of the interaction and
allows for the reconstruction of the event.

The KEKB accelerator, which is located at the High Energy Accelerator Research Organi-
zation (KEK) in Tsukuba (Japan) is an asymmetric e+e− accelerator. Its main purpose is
the production of B mesons, and therefore it is called a B-factory. Belle is a multi-purpose
detector at the sole interaction point of the KEKB accelerator, designed to perform pre-
cise measurements of B meson decays.

The analysis performed within this thesis was done using the full data sample of 711
fb−1 (≈ 771 × 106 BB̄ pairs) collected on the Υ(4S) resonance at Belle. A search for
decays B → h(∗)νν̄, where h(∗) stands for K+, K0

S, K∗+, K∗0, π+, π0, ρ+, ρ0 and φ was
performed. Signal candidates were searched for by fully reconstructing a hadronic decay
of the accompanying B meson and requiring a single h(∗) meson to be left on the signal
side. To be sensitive to the possible signal contribution the signal extraction was opti-
mised using simulated experiments. The analysis was performed ’blind’: the procedure
was fixed before it was applied on experimental data.

As the expected sensitivity of this analysis is above the Standard Modell predictions
for the branching fractions, new experiments will be necessary to further investige these
rare decays. A higher sensitivity will be achieved in the new era of Super B factories,
when the KEKB accelerator will be upgraded to SuperKEKB. The target luminosity of
the new machine is 8×1035cm−2s−1, which will increase the luminosity achieved by KEKB
by a factor of 40. Important and unique measurements of New Physics processes will be
possible. To cope with the high event rate and increased radiation and to achieve the
physical goals, the Belle detector will be replaced by the new Belle II detector.

An elaborate reconstruction software is necessary to reconstruct a collision event from
the various subdetector signals. One important step of the event reconstruction is track-
ing. It describes the procedure of retrieving the trajectory of a charged particle and
measuring the direction and magnitude of its momentum. An efficient, precise and fast
tracking performance over the whole range of particle momenta is crucial for the correct
reconstruction and therefore the physical interpretation of the collision events.

A multi-stage tracking strategy to optimally use the improved Belle II detector and to cope
with the expected beam background is currently being developed by the Belle II collab-
oration. Within this thesis an algorithm which combines different established techniques
to find tracks in the central drift chamber, was developed, implemented and studied.
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In the following, an overview over the flavour structure of the Standard Model and a
theoretical motivation for the search for B → h(∗)νν̄ is given in chapter 2. The Belle
detector, which provides the data for the analysis, and the Belle II detector, for which
the tracking was developed, are describes in chapter 3. In chapter 4 a brief explanation of
the full reconstruction, which is an essential analysis technique to reconstruct decays with
undetectable neutrinos in the final state, is given. Chapter 5 contains the full description
of the B → h(∗)νν̄ analysis. The final results of the analysis are then presented in chapter
6. In chapter 7 the tracking algorithm is described and evaluated. Finally, in chapter 8
all results are summarised and discussed.
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2. Theoretical overview and motivation

In this chapter the basic concepts, such as flavour changing neutral currents, which are
related to the the given analysis, are explained and the theoretical motivation for the
search of the decays B → h(∗)νν̄ is given.

2.1. Flavour physics within the Standard Model

The Standard Model (SM) of particle physics describes properties and interactions be-
tween the known elementary particles. The basic principles are described in various
textbooks (e.g. [3]) and the current status and the latest measurements of all parameters
can be found at [2].

The elementary particles of the SM can be divided into two groups: matter particles,
which are fermions, with spin 1/2, and interaction particles, which are bosons, with spin
1. The Standard Model describes three known fundamental forces: strong, electromag-
netic and weak force. Weak and electromagnetic force are unified to a common description
as electroweak force. The governing symmetry of the SM is the SU(3)color ×SU(2)weak ×
U(1)hypercharge gauge symmetry. The SU(3) symmetry determines the interactions of the
strong force, while the SU(2) × U(1) controls the electroweak interactions which permit
flavour changing decays of quarks. The fourth fundamental force, gravity, is not included
in the Standard Model. A summary of all elementary particles is shown in fig. 2.1. The
elementary fermions are divided into quarks and leptons. All fermions can also be grouped
into three families or generations.

Flavour physics describes interactions that distinguish between the fermion generations.
The electroweak interaction can be written in three terms: one containing the electro-
magnetic current, one containing the weak charged current and one containing the weak
neutral current. The electromagnetic current is mediated through photons γ, while the
weak currents are mediated through massive W± and Z0 bosons. The weak charged
current is a flavour changing interaction, b quarks usually decay via such processes, an
example is shown in fig. 2.2(a). Neutral and electromagnetic currents do not change the
flavour of quarks in the leading order interaction, which is denoted as tree level interac-
tion. An example of neutral current is shown in fig. 2.2(b).
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Figure 2.1.: The elementary particles of the Standard Model.
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Figure 2.2.: Examples for charged and neutral currents in the Standard Model.

Another important concept in flavour physics is the helicity of a particle. It describes
the relation between the spin and the momentum of the particle. If both have the same
direction, the particle is denoted as left-handed. If the spin direction is opposite to the
momentum direction, the particle is referred to as right-handed. Only left-handed compo-
nents of particles and right-handed components of anti-particles can participate in charged
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2.1. Flavour physics within the Standard Model

current interaction.

The description of the electroweak symmetry breaking via the Higgs mechanism can ex-
plain the heavy masses of W± and Z0 bosons compared to the massless γ. One of the
features of this mechanism is that it also gives masses to the fermions. However, the mass-
eigenstates of quarks are rotated with respect to the electroweak flavour-eigenstates. The
relation between these eigenstates and the flavour changing processes can be describes
with the Cabbibo-Kobayashi-Maskawa (CKM) matrix [4, 5]:

 d
s
b


weak

= VCKM

 d
s
b


mass

≡

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b


mass

. (2.1)

To convey the relative strength of the elements more intuitively, usually the Wolfenstein
parametrisation [6] is used, which expands the VCKM in powers of λ = sin θC ≈ 0.23,
where θC is the Cabbibo angle. Terms of O(λ4) are neglected.

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2)

Aλ3(1− ρ− iη) −Aλ2 1

 . (2.2)

The VCKM matrix is unitary, which allows us to set up additional constraints on the values
of the matrix elements. One of these constraints is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

O(λ3) O(λ3) O(λ3)
, (2.3)

which is relevant to B meson decays and is known as the CKM Unitarity Triangle when
represented in the complex plane.

Although the flavour changing neutral currents (FCNC) are not possible within the SM
on the tree level, they still can proceed via higher order processes. b → sνν̄ is such a
FCNC transition, the dominant first order diagrams are shown in fig. 2.3 (a) and (b).
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Figure 2.3.: The Feynman diagrams for the b→ sνν̄ transition in the Standard Model.

These higher order diagrams are even further suppressed through the GIM mechanism [7].
This mechanism was first described by Glashow, Iliopoulos and Mainani and is responsible
for the cancellation between different diagram contributions due to the CKM mixing. For
the b→ s transition mention above, the total matrix elementM of the FCNC process can
be obtained from the sum of the contributions from all three loops (one for each up-type
quark):

M∝ F (xu)V
∗
usVub + F (xc)V

∗
csVcb + F (xt)V

∗
tsVtb . (2.4)

The functions F (xi) depend on a single parameter xi ∝ m2
i , where mi are the masses of

the particles present in the loop. If we now consider one of the relations resulting from
the unitarity of the CKM matrix (see equation 2.1):

V ∗usVub + V ∗csVcb + V ∗tsVtb = 0 , (2.5)

we can see, that the matrix elementM for the FCNC process would vanish if the masses
of the u, c and t quarks were identical. It would also vanish if the energy at which
the process occurs is much greater than the masses of the quarks. GIM mechanism is
a manifestation of the underlying symmetry between the electroweak and the strong in-
teractions. However, as the quark family symmetry is broken through different quark
masses and because the quarks masses are often greater than the external momenta, the
cancellation between different contributions is not exact and the FCNC processes can be
observed experimentally. The circumstances to observe FCNC processes in b quark decays
are especially favourable, because these decays are dominated by the contribution from
the t quark which is much heavier than the u and d quarks. The suppression for up-type
quarks is more severe, as the mass differences between s, d and b quarks are not that large.

Although the CKM mechanism can describe the presently available data in a consistent
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2.2. B → h(∗)νν̄ decays

way, the flavour structure of the SM is not satisfactory clarified from the theoretical point
of view. The search for non-standard flavour dynamics provided by FCNC is especially
interesting, as their suppression ensures a large sensitivity to NP effects.

2.2. B → h(∗)νν̄ decays

The decays B → h(∗)νν̄ proceed through b → sνν̄ and b → dνν̄ higher order FCNC
transitions (see fig. 2.3) and are suppressed via the GIM mechanism. The resulting SM
branching fractions are very small, therefore these decays are denoted as ’rare’ and offer
an excellent opportunity to probe for New Physics beyond the SM. Especially the decays
B → Kνν̄ and B → K∗νν̄ were elaborately studied in several theory works [8–14], the
main ideas and conclusions will be presented in the following.

From the theory perspective the inclusive decay B → Xsνν̄ would be ideal to study
b→ s transitions, it is however very challenging experimentally. The exclusive decays like
B → Kνν̄ belong nevertheless to the theoretically cleanest decays in the field of FCNC
processes and can be studied experimentally. The advantage of the final state with νν̄
instead of l+l− is the absence of long-distance electromagnetic interactions and the en-
hancement of the branching fractions by the summation over the three neutrino flavours.
However, the study of exclusive decays requires the control of non-pertubative hadronic
form factors.

In the following the summary of current theoretical results within the SM will be given,
followed by the description of NP models which can contribute to the observables of the
B → h(∗)νν̄ decays and the current experimental status.

2.2.1. Standard Model predictions

The differential branching fraction of the B → Kνν̄ decay in the SM is given by

dB(B̄ → K̄νν̄)

ds
= τB

G2
Fα

2m5
B

256π5
|VtsVtb|2 · λ2/3(s)f 2

+(s)|a(Kνν)|2 , (2.6)

with s = q2/m2
B, q is the dilepton invariant mass, mB is the B meson mass, GF is the

Fermi coupling constant, α is the fine structure constant, rK = m2
K/m

2
B and λK(s) =

1 + r2
K + s2 − 2rK − 2s− 2rKs [14]. The coefficient a(Kνν) is given by a short-distance

Wilson coefficient at the weak scale and is precisely known. Wilson coefficients are widely
used in the theoretical flavour physics to parametrise weak interactions. The long-distance
hadronic dynamics is contained in the matrix elements, which are parametrised by the
form factors f+, f0, fT . f0 drops out for small lepton masses and the ratio fT/f+ is
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2. Theoretical overview and motivation

independent of unknown hadronic quantities in the limit of large kaon energy. Following
approximation, valid in the entire physical domain, can be formulated:

fT (s)

f+(s)
=
mB +mK

mB

+O(αs,Λ/mb) . (2.7)

The calculations lead to the following prediction for the branching fraction:

B(B− → K−νν̄) = (4.4+1.3
−1.1(f+(0))+0.8

−0.7(a0)+0.0
−0.03(µ))× 10−6 .

To reduce the error a combined analysis of B → Kνν̄ and B → Kl+l− was proposed in
[14]. Although the individual branching fraction suffer from large hadronic uncertainties,
their ratio R should have a significantly smaller theoretical error. Using the experimental
result for B → Kl+l− one can obtain the following branching fraction for B → Kνν̄:

B(B− → K−νν̄) = R · B(B− → K−l+l−)exp = (3.64± 0.47)× 10−6 .

As NP might also have a different impact on B → Kνν̄ and B → Kl+l−, a good theo-
retical determination of the ratio will help to reveal even moderate deviations from SM
expectations.

The observation of the decay including the excited kaon, B → K∗νν̄, would contribute to
the investigation of right-handed currents due to the additional angular observables, as
it is described in [10]. The angular distribution of the K∗ decay products can be used to
determine the polarisation of K∗. The dependence of the predicted branching fractions
on the normalised neutrino invariant mass squared is shown in fig. 2.4.
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2.2. B → h(∗)νν̄ decays

(a) B+ → K+νν̄ (b) B → K∗νν̄

Figure 2.4.: Dependence of the B+ → K+νν̄ and B → K∗νν̄ branching fractions on the nor-
malised neutrino invariant masses squared sB within the SM. The error bands reflect
the theoretical uncertainties. The black dashed lines and dotted red lines in (b) are
the results based on different sets of form factors. (Taken from [10]).

The branching fractions of b → sνν̄ decays are dependent on the two complex Wilson
coefficients Cν

L and Cν
R. However, only two combinations of these complex quantities are

observable:

ε =

√
|Cν

L|2 + |Cν
R|2

|(Cν
L)SM |

, η =
−Re(Cν

LC
ν∗
R )

|Cν
L|2 + |Cν

R|2
, (2.8)

such that η lies in the range [−1
2
, 1

2
]. The branching fractions can be expressed as follows

[10]:

B(B → K∗νν̄) = (6.8× 10−6) · (1 + 1.31η)ε2 ,

B(B → Kνν̄) = (4.5× 10−6) · (1− 2η)ε2 .

As η and ε can be calculated in any model, these equations can be used as fundamental
formulae for any phenomenological analysis of these decays. For SM these values would
be (ε, η) = (1, 0). The current constraints on the ε− η plane are shown in fig. 2.5
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Figure 2.5.: Existing experimental constraints on ε and η. Dashed line: constraint from B(B →
K∗νν̄), solid line: constraint from B(B → Kνν̄), dotted line: constraint from
B(B → Xsνν̄). The shaded area is ruled out experimentally at the 90% confidence
level. The blue circle represents the SM point. (Taken from [10]).

Another related study was performed in [12], where the tree level contributions to the
rare decays B → π+νν̄, B → K+νν̄ and B → K∗+νν̄ are analysed. For all rare charged
meson decays, there is a possible long-distance contribution arising at tree-level through an
intermediate lepton state. Such contributions are potentially large when the intermediate
lepton is kinematically allowed to be on-shell, as can be seen in the case of B → K+νν̄
by multiplying the measured branching ratios of B → τν and τ → Kν:

B(B+ → K+νν̄)Tree ≈ B(B+ → τ+ν)× B(τ+ → K+ν) = (1.0± 0.3)× 10−6 ,

which is, after a proper calculation, about 15% of the corresponding SM short-distance
FCNC contributions from which they cannot be disentangled. On the other hand, B(B →
π+νν̄) is dominated by the τ lepton transition, with the contribution of short distance
FCNC processes being of about 3%. The updated values which include these effects in
the SM predictions are given in table 2.1.
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Decay FCNC SM prediction Tree level τ contribution Full SM prediction

B(B+ → π+νlν̄l) ∼ 3× 10−7 (9.4± 2.1)× 10−6 (9.7± 2.1)× 10−6

B(B+ → K+νlν̄l) (4.5± 0.7)× 10−6 (6.1± 1.3)× 10−7 (5.1± 0.8)× 10−6

B(B+ → K∗+νlν̄l) (7.2± 1.1)× 10−6 (1.2± 3)× 10−6 (8.4± 1.4)× 10−6

Table 2.1.: Theoretical Standard Model predictions for some b→ sνν̄ and b→ dνν̄ decay modes
including tree level contributions. (Adapted from [12]).

2.2.2. Supersymmetry

Supersymmetry (SUSY) is an attractive and currently common NP model. In the min-
imal supersymmetric extension of the SM (MSSM) the superpartners of the electroweak
gauge and Higgs bosons (the gauginos and higgsinos) mix to form two electrically charged
and four electrically neutral mass eigenstates: charginos χ̃±1,2 and neutralinos χ̃0

1,2,3,4. In
many supersymmetric models, the neutralino plays a special role in phenomenology as the
lightest supersymmetric particle. Supersymmetry introduces a new symmetry described
by the R-parity. All supersymmetric particles have R-parity of −1 while all SM particles
have the R-parity of 1. In several models with conserved R-parity, the neutralino is stable
and provides a promising dark matter candidate.

In [10] it is discussed, that the MSSM should lead to various contributions to the b→ sνν̄
processes. However, when the existing costraints from other FCNC processes are applied,
the effects of the Wilson coefficients Cν

L and Cν
R turn out to be quite small. A sizeable

contribution can only be expected from Cν
L through chargino contributions, which are also

not strongly constrained by the existing data. Largest effects can be generated by a Z
penguin with a (δRLu )32 mass insertion. The mass insertion approximation is widely used
in theoretical descriptions of the supersymmetry. In this approximation a basis is chosen
where all gauge couplings are diagonal and the flavour violation sources are represented
via small off-diagonal mass insertion term. The Z penguin diagrams giving that contri-
bution are shown in fig. 2.6.

Within a certain setup following ranges for the branching fractions were obtained:

3.5× 10−6 .B(B → Kνν̄) . 5.8× 10−6 ,

5.3× 10−6 .B(B → K∗νν̄) . 8.7× 10−6 .
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Figure 2.6.: Dominant chargino contributions to the Wilson coefficient CνL in the mass insertion
approximation. (Taken from [10]).

Figure 2.7.: Branching ratios for and B− → π−χ̃0
1χ̃

0
1 as a function of the neutralino mass mχ̃0

1

and the mass insertion (δddb)LL (left-hand side) and (δddb)RR(right-hand side). The
branching ratio is normalised to the calculated BR for B− → π−νν̄ within the SM,
which is 2.2 × 10−7. We assume an average squark mass of m̃ = 500 GeV. The
dashed lines show upper bounds on the mass insertions (δddb)LL/RR mainly obtained
from Bd − B̄d mixing for different ratios of squark mass to gluino mass. (Taken
from [11]).

In [11] rare meson decays into very light neutralinos are analysed. Minimal flavour vio-
lation (MFV) models are defined by the requirement that all flavour violating and CP-
violating transitions are described by the CKM matrix of the SM. This means that the
decays like B− → K−χ̃0

1χ̃
0
1 only have leading contributions from one-loop diagrams. The

branching fraction for the decay B− → K−χ̃0
1χ̃

0
1 in the MSSM with MFV is several orders
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of magnitude smaller than the SM process.

However, considering a non-minimal flavour violation in the MSSM one can obtain larger
effects. Here also the mass insertion approximation was used to estimate the branching
ratio contribution. The results are shown in fig. 2.7 and fig. 2.8.

It can be concluded, that the branching ratios for decays B− → K−χ̃0
1χ̃

0
1 and B− →

π−χ̃0
1χ̃

0
1 may be significantly enhanced when one allows for non-minimal flavour violation.

Figure 2.8.: Branching ratios for and B− → K−χ̃0
1χ̃

0
1 as a function of the neutralino mass mχ̃0

1

and the mass insertion (δddb)LL (left-hand side) and (δddb)RR (right-hand side). The
branching ratio is normalised to the calculated BR for B− → K−νν̄ within the SM,
which is 4.5× 10−6. We assume an average squark mass of m̃ = 500 GeV. The solid
grey (turquoise) line corresponds to the experimental upper bound . The dashed
lines show upper bounds on the mass insertions (δddb)LL/RR mainly obtained from
Bd−B̄d mixing for different ratios of squark mass to gluino mass. (Taken from [11]).

2.2.3. Invisible scalars and dark matter

A transition b → sSS with an additional general gauge-singlet scalar S with mass
mS < mB/2 might contribute to the observables of b→ sνν̄ transitions, if S is stable and
sufficiently long-lived to escape the detector. Both final state have the same experimental
signature. However, one can analyse the resulting spectrum, as it was done in [10]. The
dependence of the branching fraction on the neutrino invariant mass squared is shown
in fig. 2.9. The overlap of the both distributions leads to a characteristic spectrum with
a kinematical edge at q2 = m2

S/4, which would point to an additional contribution from
b→ sSS decays.
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(a) B+ → K+νν̄ (b) B → K∗νν̄

Figure 2.9.: Dependence of the B+ → K+νν̄ and B→K∗νν̄ branching fractions on the nor-
malised neutrino invariant mass squared sB in a scenario in which SM-like b→ sνν̄
overlap with b → sSS decays. The chosen parameters are ms = 1.1 GeV, CSL = 0,
CSR = 2.8×10−8 GeV−2. The grey curves show the theoretical uncertainties, the red
dashed curves the pure b→ sSS contribution and the red solid curve the resulting
combination. (Taken from [10]).

Such considerations also find application in the models of dark matter. The decay B →
K+Emiss can directly be an efficient probe of dark matter models in the mass range of 1−2
GeV, as it is explained in [9]. Dedicated underground experiments have little sensitivity
to dark matter in the GeV and sub-GeV range. Following results were obtained:

B(B+ → K+SS) = 2.8× 10−4κ2F (mS) ,

B(B+ → K∗+SS) = 4.3× 10−4κ2F (mS) .

For light scalars mS ∼ 100 MeV and κ ∼ O(1) the decay rate rates with emission of dark
matter particles are ∼ 50 times larger than the decays with neutrinos in the final state.
The predicted branching ratio together with the experimental limits is shown in fig. 2.10.
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2.2. B → h(∗)νν̄ decays

Figure 2.10.: Predicted branching ratios for the decay B → K+Emiss, with limits from BaBar(I)
[15], CLEO(II) [16] and expected results from BaBar (III). Parameter space above
curves I and II is excluded. The solid horizontal line shows the SM B+ → K+νν̄
signal. Parameter space to the left of the vertical dashed line is also excluded by
K+ → π+ + Emiss. A and B show the upper and lower bounds of the allowed
parameter space. (Taken from [9]).

2.2.4. Non-standard Z couplings

In many models beyond SM, NP effects in Wilson coefficients Cν
L,R are dominated by Z

penguins. This can be analysed in a generic scenario with decays B → K(∗)l+l−, B →
K(∗)νν̄ and Bs → µ+µ−, as it was done in [8]. The s̄bZ vertex is particularly receptive
to non-standard dynamics and the s̄bZ coupling is also not strongly constraint by the
present data. In the generic extension of the SM with new particles MX > Mz, due to the
spontaneous breaking of SU(2)L×U(1)Y it is allowed, in the case of the Z boson, to build
an effective FCNC coupling of dimension four, without any explicit MX suppression. So
the ∆F = 1 FCNC couplings do not necessarily decouple by dimensional argument in the
limit MX/MZ >> 1, leading to an independent behaviour of these couplings with respect
to the other FCNC amplitudes. The resulting couplings are summarised in table 2.2.
Significantly larger couplings can be observed within this extended model.
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SM Extension

|ZL
sb| ∼ 0.04 |ZL

sb| ∼ 0.3
|ZL

db| ∼ 0.01 |ZL
db| ∼ 0.06

Table 2.2.: Theoretical predictions for b→ sνν̄ and b→ dνν̄ couplings in the SM and in a model
extended with non-standard Z coupling [8].

2.2.5. Further models

There are many other different NP models which could contribute to the observables of the
decays in question. A fourth generation of quarks and leptons could lead to a contribution
of a similar order of magnitude as the SM process [13,17]. There are also exotic scenarios
with FCNC couplings of the Z generated already at the tree level. This can be achieved
with non-sequential generations of quarks [18] (different number of up- and down-type
quarks) or with an extra U(1) symmetry [19]. Further possibility is the topcolor assisted
technicolor [20]. Within this model new strong dynamics and extra Z ′ bosons, which
distinguish the third generation from the remaining two, would lead to an enhancement
of transitions such as b → sντ ν̄τ . Other models, like littlest Higgst with T-Parity [21]
or Randall-Sundrum model with custodial protection of left-handed Z couplings to down
quarks [22], lead only to very small deviations from SM.

2.2.6. Experimental status

The search for B → h(∗)νν̄ decays was already performed by the CLEO, Belle and BaBar
collaborations. No signal evidence was observed. The experimental upper limits for
these branching fractions are summarised in table 2.3. For most channels the limits are
two orders, for some channels one order, of magnitude larger than the Standard Model
predictions. Higher statistics and better efficiency is necessary to observe a possible
deviation from the Standard Model.
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2.2. B → h(∗)νν̄ decays

Decay Branching ratio Experiment Source

B+ → K+νν̄ < 1.3 · 10−5 BaBar [23]
< 1.4 · 10−5 Belle [1]
< 2.4 · 10−4 Cleo [16]

B0 → K0νν̄ < 5.6 · 10−5 BaBar [23]
< 1.6 · 10−4 Belle [1]

B+ → K∗+νν̄ < 8 · 10−5 BaBar [24]
< 1.4 · 10−4 Belle [1]

B0 → K∗0νν̄ < 1.2 · 10−4 BaBar [24]
< 3.4 · 10−4 Belle [1]

B+ → π+νν̄ < 1.0 · 10−4 BaBar [15]
< 1.7 · 10−4 Belle [1]

B0 → π0νν̄ < 2.2 · 10−4 Belle [1]

B+ → ρ+νν̄ < 1.5 · 10−4 Belle [1]

B0 → ρ0νν̄ < 4.4 · 10−4 Belle [1]

B0 → φνν̄ < 5.8 · 10−4 Belle [1]

Table 2.3.: Current experimental limits at 90% CL on the B → h(∗)νν̄ branching fraction.
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3. Belle and BelleII experiments

The KEKB accelerator, which stands at the High Energy Accelerator Research Organiza-
tion (KEK) in Tsukuba (Japan) is a particle collider specialised in producing B-mesons,
a so called B-factory. Belle is a multi-purpose detector at the sole interaction point of the
KEKB accelerator. The full description of the detector can be found in [25]. Although the
large data sample, over 1 ab−1 in total, obtained during 10 years of data taking, allowed a
large number of precision studies and observations, and several analyses are still ongoing,
a step toward higher luminosity is necessary to solve various open questions.

Figure 3.1.: Cross sections of the Belle and Belle II detectors in comparison. (Taken from [26]).
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In the coming years the KEKB accelerator will be upgraded to the SuperKEKB acceler-
ator. The target luminosity of the new machine is 8 × 1035cm−2s−1, which will increase
the luminosity achieved by the KEKB accelerator by a factor of 40. An extensive moti-
vation with description of new physics processes which might be observed with the new
luminosity is given in [27]. The description of the new Belle II detector can be found in
the Belle II Technical Design Report [26]. It is important to mention, that the detector
design is not yet finalised and optimisation studies are ongoing. A comparison of Belle
and Belle II detectors can be seen in fig. 3.1.

In the following sections the functionality and main characteristics of the KEKB ac-
celerator and the Belle detector and their planned upgrades, SuperKEKB and Belle II,
are described.

3.1. The KEKB accelerator

Figure 3.2.: Schematic layout of the KEKB accelerator system. (Taken from [28]).

The KEKB is a two ring asymmetric e+e− accelerator (see fig 3.2). The circumference
of both rings is 3016 m. The electrons are filled in the high energy ring (HER) with an
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3.1. The KEKB accelerator

energy of 8 GeV, the positrons circulate in the low energy ring (LER) with an energy
of 3.5 GeV. This leads to a centre-of-mass energy of

√
s = 2

√
Ee+Ee+ = 10.58 GeV.

The asymmetry and the value of the centre-of-mass energy are two main features of the
accelerator.

The energy of 10.58 GeV corresponds to the Υ(4S) resonance, which is a bound bb̄ state
with a mass directly above the production threshold for a B meson pair (∼ 10.56 GeV), as
shown in fig. 3.3 . Thus this resonance decays to a B0B̄0 or B+B− pair with a probability
of ≈ 96%, which is the reason why such accelerators are also called B-factories. As apart
from the BB̄ pair nothing else is produced, the events create only 9 charged tracks in
average.

Figure 3.3.: The cross section of e+e− to hadrons. The red dashed line marks the threshold
for production of a BB̄ pair which is just below the Υ(4S) resonance. (Taken
from [29,30]).

circumference 3016 m
e− energy (HER) 8 GeV
e+ energy (LER) 3.5 GeV
crossing angle 22 mrad
number of bunches 1584
bunch crossing frequency 509 MHz

Table 3.1.: Technical specifications of the KEKB accelerator [31].
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The different energies of e+ and e− give the Υ(4S) a Lorentz boost of 0.425. Therefore
the created B mesons are also boosted, which leads to a measurable flight length in the
order of 100µm. This allows the study of B mesons decay time.

Further technical specifications of the KEKB accelerator are given in table 3.1 and more
information can be found in [28]. In 2009 the accelerator achieved a world record in lu-
minosity of 2.11× 1034cm−2s−1.

3.2. The SuperKEKB accelerator

The same tunnel will be used for the upgraded SuperKEKB accelerator. One of the ma-
jor changes compared to its predecessor will be the so called Nano-Beam scheme. In this
scheme the longitudinal size of the overlap region of the two beams at the interaction
point is minimised, as it is shown in fig. 3.4.

Figure 3.4.: Schematic view of beam collision in the Nano-Beam scheme. d illustrates the overlap
region between two beams, while φ is the half crossing angle of 41.5 mrad. (Taken
from [26]).

To realise this scheme a larger horizontal crossing angle and extremely small horizontal
emmitances and horizontal beta functions for both beams are required. The crossing
angle of the SuperKEKB will be roughly four times as large as the angle of the present
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3.3. The Belle detector

KEKB and will contribute to reducing the beam overlap region. The beam energies will
be less asymmetric after the upgrade, leading to a smaller Lorentz boost of 0.28.

The luminosity is mainly determined by the following three parameters: the beam current
I, the vertical beam-beam parameter ξy and the vertical beta function β∗y at the IP. To
achieve the target luminosity the current will be increased by a factor of 2 while the beta
function will be decreased by a factor of 20 according to the Nano-Beam scheme. The
essential parameters of the KEKB and the SuperKEKB accelerators are summarised and
compared in table 3.2.

KEKB achieved SuperKEKB

Energy (GeV) (LER/HER) 3.5/8.0 4.0/7.0
Crossing angle 22 mrad 83 mrad
ξy 0.129/0.090 0.090/0.088
β∗y (mm) 5.9/5.9 0.27/0.41
I (A) 1.64/1.19 2.60/2.62
Luminosity 1034cm−2s−1 2.11 80

Table 3.2.: Main parameters of the SuperKEKB and the present KEKB accelerator [26].

3.3. The Belle detector

The Belle detector is a multi-purpose particle detector around the sole interaction point
of the KEKB accelerator. It was designed to perform CP violation and rare B decay
measurements with high precision. It is a large solid-angle magnetic spectrometer and
its task is to detect the visible final state particles produced in the e+e− collisions at the
interaction point. These particles are:

Charged particles: K±, π±, e±, p±, µ±

Neutral particles: γ, KL
0

It is important to detect and identify these particles with high efficiency, since a B meson
will usually decay to some combination of these final state particles. The detector consists
of several subdetectors, the combination of the information obtained from them allows the
reconstruction of the whole collision event. A schematic view of the detector is shown in
fig. 3.5 and fig. 3.6. The detector components are described in more details in the following.
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Figure 3.5.: Overview of the Belle detector and its components. (Taken from [25]).

Figure 3.6.: Overview of the Belle detector and its components in a three dimensional perspec-
tive. (Taken from [25]).
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3.3.1. Beam pipe

A cylindrical dual layer beryllium beam pipe encloses the interaction region. It is the
first amount of material through which particles must go before reaching the detector.
To reduce Coulomb scattering which affects the particle trajectory, it is important to
choose a thin material with low atomic number. To prevent overheating induced by the
beam, Helium flows through the gap between the cylinders and acts as coolant. The total
thickness of the beam pipe corresponds to 0.9% of a radiation length. A schematic view
of the beam pipe is shown in fig. 3.7.

Figure 3.7.: Side view and the cross-section of the Belle beam pipe. (Taken from [25]).

3.3.2. Silicon Vertex Detector (SVD)

The Silicon Vertex Detector is the innermost detector in Belle and responsible for precise
measurements of B meson decay vertex position. This is crucial for observation of time-
dependent CP violation, which was one of the main objectives of the Belle experiment.
The SVD consists of three concentric layers of silicon sensors and covers a polar angle of
23◦ < θ < 139◦. The geometrical configuration is illustrated in fig. 3.8. On each layer lad-
ders consisting of double sided silicon strip detectors (DSSD) are mounted. Each ladder is
made of two half-ladders that are joined by a support structure, but are electrically inde-
pendent of each other. The DSDS‘s are 300µm thick and provide depleted pn-junctions.
When a charged particle passes the junction, it creates electron-hole pairs. The produced
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3. Belle and BelleII experiments

electrons and holes drift to the corresponding n+ or p+ strips on the surface of the DSSD.
The p+-stripes are aligned along the beam axis and allow the measurement of the z posi-
tion. The n+-stripes are aligned perpendicular to the beam axis, thus measuring the rφ
position.

CDC

23
o139

o

IP
Be beam pipe

30

45.5
60.5

unit:mm

SVD sideview

SVD endview

BN rib
 re

inforced by C
FRP

Figure 3.8.: Geometrical configuration of the SVD1. (Taken from [25]).

Figure 3.9.: Geometrical configuration of the SVD2. (Taken from [32]).
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The initial SVD, SVD1, operated from 1999 to 2003. After 152 × 106 BB̄ pairs were
accumulated, a redesigned improved SVD was installed: SVD2. During this upgrade the
innermost layer was moved 1.0 cm closer to the IP, a fourth layer was added and the
geometry acceptance was increased to 17◦ < θ < 150◦. A schematic view of SVD2 is
shown in fig. 3.9.

The performance of the SVD can be estimated through impact parameter resolution.
The impact parameter is the distance of closest approach to the IP. Usually two impact
parameters are quoted: one in the rφ plane (σrφ) and one in z direction (σz). The resolu-
tion of the impact parameters depends on track momentum (p) and polar angle (θ) and
can be expressed as:

SVD1: σrφ = 19.2⊕ 54

pβ sin3/2 θ
µm, σz = 42.2⊕ 44.3

pβ sin5/2 θ
µm ,

SVD2: σrφ = 21.9⊕ 35.5

pβ sin3/2 θ
µm, σz = 27.8⊕ 31.9

pβ sin5/2 θ
µm .

The term in the denominator is also denoted as pseudomomentum and ⊕ indicates a
quadratic sum. Fig. 3.10 shows the dependence of the impact parameters on pseudomo-
mentum.

Figure 3.10.: Impact parameter resolution of charged tracks with associated SVD hits from cos-
mic ray data for SVD1 and SVD2. In the left plot the σrφ parameter is shown and
in the right plot the σz parameter. (Taken from [32].)
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3.3.3. Central Drift Chamber (CDC)

The Belle Central Drift Chamber provides measurements of the trajectories of charged
particles. The track momenta are measured from their curvatures in the magnetic field in-
duced by the superconducting solenoid magnet around the drift chamber. The CDC also
measures dE/dx, specific energy loss by ionisation, of charged tracks, to provide particle
identification information. In a constant magnetic field the path of the charged particle
can be described by a helix which is defined by five parameters. This will be described in
more detail in section 7.5.

• Working principle

A charged particle travelling through matter interacts with electrons and nuclei
of the material. The fundamental effect for the function of a drift chamber is the
energy loss of charged particles in matter. During its passage the particle ionises
the atoms of the material and creates electron-ion pairs. In a static electric field
the electrons will drift to the positively charged anode, while the positive ions will
move to the negatively charged cathode. Because of different masses, electrons and
ions have a different drift velocity: electrons are lighter and thus faster than ions.
The value of the drift velocity depends on the field strength, the property of the
matter molecules, density and temperature. In a presence of a high electric field, the
electrons can be accelerated to have enough energy to cause a secondary ionisation
which can lead to a cascade of charge.

This ionisation effect is used to detect charged particles. The original principle
of a proportional counter consists of a wire under high voltage enclosed in a tube
filled with a certain gas mixture. The charged particle will ionise gas atoms while
passing through the tube. The created electrons and ions are accelerated by the
electric field around the wire, leading to an ionisation cascade which is collected on
the wire. The resulting current, which can be measured on the wire, is proportional
to the energy of the ionising particle.

By placing a number of anode wires between two cathode planes one can realise
a multi-wire proportional chamber, where each anode wire is acting as a propor-
tional counter described above. The spatial resolution of particle trajectories is
determined by the spacing of the anode wires. To increase the accuracy of the track
reconstruction one can measure the drift time of the electrons in the gas. To de-
termine the exact time at which the charged particle passes through, an external
timing signal from another subdetector is required. A schematic display of a track
trajectory and drift length circles is shown in fig. 3.11. A detailed explanation about
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working principles of drift chambers can be found in [33].

Figure 3.11.: A schematic view of a particle passing through a drift chamber. The dashed lines
show the drift length circles around the wires.

The Belle CDC consists of 50 layers of anode wires and 3 cathode strip layers, resulting
in 8400 drift cells. The CDC geometry is illustrated in fig. 3.12.

The gas mixture which is filling the CDC consists of 50% helium and 50% ethane. The
low-Z gas mixture was chosen to minimise multiple Coulomb scattering in order to ensure
a good momentum resolution, especially for low momentum tracks.

The pT resolution of the Belle CDC is given by:

σ(pT ) =

(
0.28pT ⊕

0.35

β

)
% .

If information of the SVD and the CDC is combined the pT resolution improves to:

σ(pT ) =

(
0.19pT ⊕

0.30

β

)
% .
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Figure 3.12.: Geometrical configuration of Belle CDC. (Taken from [25]).

Figure 3.13.: Truncated mean of dE/dx over particle momentum obtained from collision data.
(Taken from [25]).
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CDC signals are also used to determine the specific energy loss dE/dx of charged particles.
A plot of measured dE/dx values as a function of particle momentum is shown in fig. 3.13.
To estimate the most probable energy loss the truncated-mean method was used: the
largest 20% of measured dE/dx values for each track were discarded and the remaining
data was averaged. As the energy loss is dependent on the mass of the particles, the
characteristics of the dE/dx curve can be used to perform particle identification.

3.3.4. Aerogel C̆erenkov Counter system (ACC)

The purpose of the Aerogel C̆erenkov Counter is to provide particle identification infor-
mation in order to distinguish between K± and π± in the high momentum range of 1.0
to 4.0 GeV/c. In this way the particle identification is extended beyond the momentum
coverage of dE/dx measurements by CDC and time-of-flight measurements by the Time-
Of-Flight detector (TOF).

When the velocity of a charged particle in a medium exceeds speed of light, C̆erenkov
radiation is emitted. To emit C̆erenkov radiation the refractive index of the material has
to satisfy the following condition:

n >
1

β
=

√
1 +

(
m

p

)2

, (3.1)

where m and p are the mass and momentum of the particle, respectively. By selecting an
appropriate material in which pions will emit C̆erenkov light, but heavier kaons will not,
one can distinguish between them. The ACC is a threshold counter and cannot image
the C̆erenkov angle.

The Belle ACC is divided into a barrel region and a forward endcap. A geometrical
overview is shown in fig. 3.14. The barrel consists of 960 counter modules separated into
sets of 60 in the φ direction. 228 modules arranged in 5 concentric layers build the
forward endcap. Each counter is arranged in such a way that it points towards the inter-
action region. A counter module consists of silica aerogel encased in an aluminium box of
12× 12× 12 cm3 in size. The refractive indices of the silica aerogel blocks, which ensure
a good K±/π± separation, depend on the polar angle (1.010 < n < 1.030). The emitted
pulses of C̆erenkov light are detected with photomultiplier tubes.
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Figure 3.14.: The Belle ACC configuration. (Taken from [25]).

3.3.5. Time-Of-Flight counter (TOF)

The purpose of the Time of Flight Counter is to provide particle identification, especially
to distinguish between K± and π± in the low momentum region below 1.2 GeV/c. The
detector measures the time the particle travelled from the collision at the interaction
point. Using the track momentum p and the flight length L, the particle mass m can be
determined from the measured time-of-flight T :

m =
p

c

√(
cT

L

)2

− 1 . (3.2)

A TOF module consists of two TOF counters and one trigger scintillation counter (TSC)
counter, a schematic view is shown in fig. 3.15. 64 TOF modules are located in the barrel
region covering a polar angle of 34◦ < θ < 120◦. The separation between kaons, pions and
protons in the momentum region below 1.2 GeV/c provided by TOF is shown in fig. 3.16.
Assuming a time resolution of 100 ps the data points are consistent with the simulation.
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Figure 3.15.: The Configuration of a TOF module. (Taken from [25]).

Figure 3.16.: Mass distribution obtained from TOF measurements (data points) in comparison
with Monte Carlo simulation (yellow filled histogram). (Taken from [25]).
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3.3.6. Electromagnetic Calorimeter (ECL)

The Electromagnetic Calorimeter measures electromagnetic showers caused by electrons
and photons. The ECL consists of 8736 thallium-doped (Tl) CsI crystal counters. Each
CsI(Tl) crystal is arranged so that it points towards the IP. The barrel component has
6624 crystals divided into 46 sections in θ and 144 sections in φ. The forward (backward)
endcap has 1152 (960) crystals divided into 13 (10) sections in θ and 48− 144 (64− 144)
sections in φ depending on θ. The ECL covers a polar angle of 12◦ < θ < 155◦. The
geometry of the ECL is illustrated in fig. 3.17.

Figure 3.17.: The geometry of the Belle ECL. (Taken from [25]).

The energy resolution can be parametrised as:

σE
E

=

(
1.34⊕ 0.066

E
⊕ 0.81

E1/4

)
% ,

and the position resolution as

σPos =

(
0.27 +

3.4

E1/2
+

1.8

E1/4

)
mm ,

where E is in units of GeV.
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ECL can also perform electron identification. An electron deposits energy in ECL through
bremsstrahlung and pair production. Other charged particles, like K± or π±, deposit a
much smaller amount of energy by ionisation.

3.3.7. Extreme Forward Calorimeter (EFC)

To extend the polar coverage of the energy measurement, additional crystal calorimeters
are installed in the angular range of 6.4◦ < θ < 11.5◦ and 163.3◦ < θ < 171.2◦ to
cover the forward and backward regions, respectively. As in this region the radiation is
higher, another radiation hard crystal type, Bismuth Germanate (Bi4Ge3O12) was chosen.
Forward and backward part of the EFC are composed of 32 segments in the φ- and 5
segments in the θ-direction.

3.3.8. Detector solenoid

The superconducting solenoid provides a magnetic field of 1.5 T. It covers all detector
components except the KLM and bends the trajectories of charged particles, thus allow-
ing the track momentum measurement in the CDC. The superconducting coil consists
of a single layer niobium-titanium-copper alloy embedded in a high purity aluminium
stabiliser. The coil is wound around the inner surface of an aluminium support cylinder
of 3.4 m diameter and 4.4 m in length. Cooling is provided by circulating liquid helium
through a tube on the inner surface of the aluminium cylinder. Fig. 3.18 illustrates the
layout of the superconducting solenoid.

Pure Al strip

Superconductor

with Al Stabilizer

Support Cylinder

Cooling Tube

3

1
3

3
1

5

Chimney

Cryostat

Service port

(a) Outlook of the magnet (b) Cross sectional view of the coil

Figure 3.18.: The geometry of the superconducting solenoid. (Taken from [25]).
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3.3.9. KL and Muon detector system (KLM)

The K0
L and Muon Detector provides identification of long-living, highly penetrative par-

ticles, such as µ± and K0
L.
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Figure 3.19.: The cross section of a RPC superlayer. (Taken from [25]).

The KLM is build of alternating layers of charged particle detectors and 4.7 cm thick
iron plates. The polar region of 20◦ < θ < 155◦ is covered with 15 resistive plate counter
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(RPC) superlayers and 14 iron layers in the barrel region, and 14 RPC superlayers in each
endcap. The iron layers also serve as a return yoke for the magnetic flux provided by the
superconducting solenoid. The structure of a RPC superlayer is shown in fig. 3.19.

When hadrons interact with the iron plates, they produce a shower of ionising parti-
cles, that can be detected by the RPC layers. A K0

L candidate can be identified through
a KLM cluster without an associated track in the CDC. Muons can be identified through
the absence of strong interaction. Hadrons are rapidly absorbed by the iron layers, while
muons produce only thin clusters in the KLM and have a greater penetration depth.

3.4. The Belle II detector

electron  (7GeV)

positron (4GeV)

KL and muon detector:
Resistive Plate Counter (barrel outer layers)

Scintillator + WLSF + MPPC (end‐caps, inner 2 barrel layers)

Particle Identification 
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Figure 3.20.: A three dimensional layout of the BelleII detector with the description of the main
features of the subdetectors [34] .

43



3. Belle and BelleII experiments

During the transition from the Belle to the Belle II detector, new detector components
will be added and several subdetectors will be upgraded. An overview of the Belle II
detector is shown in fig. 3.20, the changes of the particular subdetectors compared to the
Belle experiment are described in the following sections.

3.4.1. Beam pipe

The Belle II beam pipe will be of a very similar design as the Belle beam pipe, but with
a smaller outer radius of about 10 mm. Due to increased beam-induced background the
cooling of the beam pipe gains on importance. A paraffin liquid C10H22 will be used as
coolant between the cylinders to keep the temperature below 10◦C.

3.4.2. Pixel Detector (PXD)

The pixel detector was not present in the Belle experiment, but will be an important
component of the Belle II detector. Due to a smaller beam pipe radius the vertex re-
construction can be improved by moving the innermost detector closer to the interaction
point. To operate a detector so close to the interaction point is however very challenging,
as the background increases strongly with smaller radius. The occupancy of a silicon strip
detector would be too high under these conditions. Pixel sensors have a larger number of
channels, and therefore a much smaller occupancy. To keep the material budget low the
innermost sensor layers should also be very thin.

The Belle II PXD will consist of two layers of DEPFET pixel sensors. A schematic
view is shown in fig. 3.21. The DEPFET (Depleted Field Effect Transistor) is a semi-
conductor based detector that combines detection and amplification within one device.
The working principle is illustrated in the sensor cross section shown in fig. 3.22. Incident
particles create electron-hole pairs in the fully depleted silicon bulk, and the resulting
electrons are accumulated at the internal gate. The current through the p-channel MOS-
FET integrated onto the silicon is modulated through the collected electrons. Due to this
monolithic structure the amplification of the charge occurs very close to its generation
without transfer losses. Another important feature of DEPFETs is a very low noise per-
formance even at room temperature due to the very small capacitance of the internal gate.

No support structure or cooling material within the active region of the detector will
be necessary for the operation of the PXD. The sensors will be only 75µm thick, while
retaining a high signal to noise ratio. The small pixel size should limit the background
occupancy to 1 − 2%. The resulting high data volume is addressed via several data re-
duction methods which are currently being studied.
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3.4. The Belle II detector

Figure 3.21.: Schematic view of the geometrical arrangement of the sensors for the PXD. The
light grey surfaces are the sensitive DEPFET pixels, which are thinned to 75 mi-
crons and cover the entire acceptance of the tracker system. (Taken from [26]).
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Figure 3.22.: Operating principle of a DEPFET. (Taken from [26]).
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Figure 3.23.: Belle over Belle II ratio of the z0 track impact parameter resolutions as function
of the pseudo-momentum, pβ sin5/2 θ. At low momenta, the impact parameter
resolution of Belle II is about twice as good as that of Belle. (Taken from [26]).

Simulation studies to evaluate the performance showed a resolution improvement of factor
2 compared to the Belle performance for low momentum tracks. Belle over Belle II ratio
of the z0 track impact parameter resolution is shown in fig. 3.23.

3.4.3. Silicon Vertex Detector (SVD)

Due to the pixel detector, the Belle II silicon strip detector will be moved further outside,
providing better reconstruction for particles with short flight length (K0

s , low momentum
tracks). Otherwise the design of the Belle II SVD follows in generally its predecessor, the
SVD2 of the Belle experiment.

The Belle II SVD consists of 4 layers, with the inner radius of 38 mm and the outer
radius of 140 mm. The polar angular acceptance ranges from 17◦ to 150◦. To increase
the radial coverage without significantly increasing the number of sensors, slanted sensors
are used in the forward region. The SVD layout is shown in fig. 3.24.

Similar technology as in the Belle detector is used for the double sided silicon strip sen-
sors building the detector layers. The mechanical structure and the cooling circuit are
optimised in order to reduce the material budget. The readout will have a much shorter
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3.4. The Belle II detector

shaping time compared to the Belle SVD due to APV25 chips, making the detector less
prone to the increasing background.
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Figure 3.24.: Configuration of the four SVD layers, with slanted sensors in the forward region,
and the two PXD layers. All dimensions are in mm. (Taken from [26]).
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(Taken from [26]).
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The expected performance was studied in simulations and the expected intrinsic SVD
resolutions in rφ and z directions are shown in fig. 3.25.

3.4.4. Central Drift Chamber (CDC)

As the Belle CDC has fulfilled all the expectations during the ten years of data taking,
the Belle II CDC will keep the same main structure.

Belle Belle II

Radius of inner cylinder (mm) 77 160
Radius of outer cylinder (mm) 880 1130
Radius of innermost sense wire (mm) 88 168
Radius of outermost sense wire (mm) 863 1111.4
Number of layers 50 56
Number of sense wires 8,400 14,336
Gas He–C2H6 He–C2H6

Diameter of sense wire (µm) 30 30

Table 3.3.: Main parameters of the Belle CDC and the CDC upgrade for Belle II [26].

A new readout electronics system with new ASIC chips will be updated to handle higher
trigger rates with less dead time. Due to increased number of layers in the inner detectors
the inner cylinder of the CDC is moved outwards. As the outer detectors will be more
compact than in the Belle experiment, the outer radius of the CDC will increase, thus
allowing a longer ladder arm for tracking. The drift chamber is build of 14336 wires which
are arranged in 56 layers. The same gas mixture as in the Belle detector (50% helium
and 50% ethane) is used. A summary of main parameters can be found in table 3.3 and
the layout of the CDC structure is shown in fig. 3.26.

Each six layers with the same orientation are grouped into superlayers. The innermost
superlayer has two additional layers to cope with high occupancy from beam induced
backgrounds. The layers which are parallel to the z axis are denoted as axial (A) layers,
while the layers arranged under a small angle to the z axis are referred to as stereo layers
(U or V). So in total the 56 layers are grouped into 9 superlayers with a configuration
AUAVAUAVA. The wire configurations and the stereo angles are summarised in table 3.4.
The comparison of the wire spacing and cell size between the Belle and Belle II drift
chambers can be seen in fig. 3.27.

48



3.4. The Belle II detector

(a) rφ view (b) rz view

Figure 3.26.: Layout of the Belle II drift chamber.

superlayer No. of Signal cells radius Stereo angle
type and No. layers per layer (mm) (mrad)

Axial 1 8 160 168.0 – 238.0 0.
Stereo U 2 6 160 257.0 – 348.0 45.4 – 45.8
Axial 3 6 192 365.2 – 455.7 0.
Stereo V 4 6 224 476.9 – 566.9 -55.3 – -64.3
Axial 5 6 256 584.1 – 674.1 0.
Stereo U 6 6 288 695.3 – 785.3 63.1 – 70.0
Axial 7 6 320 802.5 – 892.5 0.
Stereo V 8 6 352 913.7 – 1003.7 -68.5 – -74.0
Axial 9 6 384 1020.9 – 1111.4 0.

Table 3.4.: Configuration of the Belle II CDC sense wires [26].

The expected performance without background was studied in beam tests, the obtained
position and energy loss resolutions are similar to or better than those achieved with the
Belle CDC. As the larger beam background in Belle II might degrade the CDC tracking
performance, the simulations including background are necessary and are ongoing.
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Figure 3.27.: Wire configuration of the Belle II CDC compared to the Belle CDC. (Taken from
[26]).

3.4.5. Time-Of-Propagation counter (TOP)

The particle identification in the barrel region of the Belle II detector will be provided
by a Time-Of-Propagation (TOP) counter, which will replace the TOF and the ACC
subdetectors of the Belle experiment. TOP measures the time of propagation of the
C̆erenkov photons reflected inside a quartz radiator. Two coordinates (x, y) and a precise
timing allow the reconstruction of the C̆erenkov image. A schematic overview is shown
in fig. 3.28.

K
quartz radiator

charged particle

π

Cherenkov angle θc

photons


photon detectors

Figure 3.28.: Conceptual overview and schematic side-view of TOP counter and internal reflect-
ing C̆erenkov photons. (Taken from [26]).
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The array of quartz bars will surround the outer wall of the CDC. As the existing Belle
barrel ECL structure will be kept, the outer envelope of the TOP counter is fixed by
the existing barrel ECL. A conceptual design is shown in fig 3.29. The TOP counter
will have very fast readout electronics and will extend the range of a very good K±/π±

separation to the kinematical limits of the experiment. Several simulation studies using
different setups were performed and lead to consistent results. An example of the K/±π±

separation is shown in fig. 3.30.

Figure 3.29.: A 3D conceptual rendering of the TOP detector integrated together with the CDC.
f-ECL/b-ECL flange shows the structure of ECL conical part. f-CDC/b-CDC
flange is the support of CDC from ECL flanges. (Taken from [26]).
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Figure 3.30.: (Left) Sample distributions for an ensemble of 500 tracks of detected photon po-
sitions, x, and times, t, for a 2-bar counter with 3 GeV/c pions (red) and kaons
(blue) at normal incidence on the quartz bar. (Right) Distributions of ∆log(L)
for pions (red) and kaons (blue), corresponding to the distributions on the left.
(Taken from [26]).
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3.4.6. Aerogel Ring-Imaging C̆erenkov detector (ARICH)

The proximity-focusing Aerogel Ring-Imaging C̆erenkov detector (ARICH) will provide
particle identification in the forward endcap of the Belle II detector. It has been designed
to separate kaons from pions over most of their momentum spectrum and to provide the
discrimination between pions, muons and electrons below 1 GeV/c. The detector consist
of an aerogel radiator, where C̆erenkov photons are produced by charged particles and an
array of sensitive photon detectors capable of detecting single photons with good resolu-
tion in two dimensions. The ARICH principle is schematically illustrated in fig. 3.31. The
ARICH container consists of two cylinders, the tentative mechanical structure is shown
in fig. 3.32.

     aerogel photon detector

charged particle

Cherenkov photons

2 cm 20 cm

Figure 3.31.: Proximity focusing ARICH-principle [26].

The expected average number of detected C̆erenkov photons is 20 and the resolution of
the C̆erenkov angle was found to be 3.1 mrad. This would lead to a better than 5σ π±/K±

separation at the kinematic limit of 4 GeV/c and a 4σ π±/e± separation up to 1 GeV.
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3.4. The Belle II detector

Figure 3.32.: Schematic drawing of the ARICH mechanical structure. (Taken from [26]).

3.4.7. Electromagnetic Calorimeter (ECL)

The Belle ECL has demonstrated high resolution and good performance, therefore the
same crystals and mechanical structure will be reused in the Belle II experiment. To cope
with the higher background rate and the pile-up noise, the calorimeter electronics will
be modified. The shaping time will be reduced and a pipelined readout with waveform
processing will be used. Applying an energy-dependent in-time cut can suppress the
number of fake photons by a factor of 7, while keeping the efficiency for true photons at
more than 93% for photons with an energy above 30 MeV.

3.4.8. Detector solenoid

The superconducting solenoid providing a magnetic field of 1.5 T for the Belle experiment
will be reused for the Belle II detector.
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3.4.9. KL and Muon detector system (KLM)

The barrel part of the KLM from the Belle detector will be kept in the Belle II experiment,
as the barrel RPCs can be operated successfully even with the higher beam background.
Due to the limited shielding in the endcap regions the background rate in the KLM end-
caps might degrade the RPC efficiency below 50%. Therefore the endcap RPCs will be
replaced with scintillators.

The scintillator strips have a cross section of (7 − 10) × 40 mm and a length of up to
∼ 2.8 m. 16 800 scintillator strips are arranged in two orthogonal planes to form a
superlayer within each gap in the magnet yoke. A scintillation light is trapped in em-
bedded wavelength-shifting fibers and delivered to photodetectors. Due to limited space
and strong magnetic field in Belle II, photomultipiers cannot be used, so multiplex silicon
photodiodes operating in the Geiger mode will serve as photodetectors. The layer layout
and the light detection principle are shown in fig. 3.33.
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Figure 3.33.: (Left) One layer formed by scintillator strips. (Right) Scintillator light detection
in the strip. (Taken from [26]).
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4.1. Introduction

As already mentioned in chapter 3, the e+e− centre-of-mass energy at the KEKB accel-
erator corresponds to the Υ(4S) resonance (10.58 GeV). This resonance lies just above
the threshold of producing a BB̄ pair (10.56 GeV). The e+e− spectrum of this region was
shown in fig. 3.3. In over 96% of the cases Υ(4S) decays into a BB̄ pair and nothing else.
This very specific feature of B-factories allows usage of new reconstruction techniques,
not common at hadron colliders.

The knowledge, that all signals observed in the detector originate from the two B mesons,
makes it possible to setup a unique constraint on the reconstruction of the events. As
the initial state is known, not all final state particles have to be detected in order to get
reconstructed. The most prominent examples for decays which become accessible using
this constraint are decays which include neutrinos in the final state. By fully reconstruct-
ing one B meson, we can conclude that everything else left in the detector must originate
from the other B meson. This is illustrated in fig. 4.1 with an exemplary signal decay
of B → τν . We refer to the fully reconstructed B meson as Btag and the remaining B
meson as Bsig.

tag side signal side

t

t

1

2

t3

t4

t 5

Figure 4.1.: An example of a fully reconstructed Btag (left side) and signal Bsig containing neu-
trinos in the final state (right side). (Taken from [30]).

55



4. Full reconstruction

4.2. NeuroBayes-based full reconstruction

For the analysis performed in this thesis the new probabilistic full reconstruction algo-
rithm was used. A detailed description of this method can be found in [30] and [35]. In
the following a short explanation of the main principles will be given.

The main goal of the full reconstruction is to reconstruct the Btag meson in one of many
different decay channels with highest possible efficiency and purity. To reconstruct as
many Btag mesons as possible, the reconstruction efficiency εtot has to be maximised:

εtot =
N∑
i

εiBi , (4.1)

where εi and Bi are the efficiency and the branching fraction of the decay channel i, re-
spectively, and N is the total number of the decay channels. As the branching fractions
are fixed by nature, we can maximise εtot by increasing the individual efficiencies εi or the
number or reconstructed decay channels N .

There are several aspects to be considered in the implementation of this idea. There
are many hundreds of known B decay channels and most of these channels include D
and D∗ mesons, which also decay in a large spectrum of decay channels that have to
be reconstructed. Most of the channels have small branching fractions of an order of
10−3−10−5. In addition, only decay channels where all final state particles are detectable
(e.g. no neutrinos) can be used for the full reconstruction of the Btag. There are also a
lot of possible wrong combinations of the final state particles, which have to be rejected
by the reconstruction framework. By just doing naively each possible combination, the
event processing will take an unacceptably long time.

The purity of the found Btag candidates is very important for many analyses. In other
analyses however to achieve the highest possible efficiency is more important. This full
reconstruction framework allows user to choose the efficiency and purity appropriate for
his analysis.
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4.2. NeuroBayes-based full reconstruction

4.2.1. Multivariate approach

Figure 4.2.: Left side a: the distribution of the NeuroBayes output for signal (red) and back-
ground (black) for an exemplary classification task. Right side b: purity as a func-
tion of the NeuroBayes output. (Taken from [35]).

Multivariate approach means combining all significant variables into one single scalar
variable. For the new probabilistic full reconstruction the package NeuroBayes [36] was
used. The idea of this package is to pass all of the relevant variables, through a sophisti-
cated preprocessing algorithm, to a neural network. The task of the network is to classify
each event as signal or background, an example of a resulting classification is shown in
fig. 4.2a. To achieve this the network maps all the input variables to a signal output vari-
able while taking into account the correlations between the variables. The output variable
of NeuroBayes, in the following referred to as NeuroBayes output, can be interpreted as
a Bayesian probability for signal. In fig. 4.2b the purity is plotted a function of the Neu-
roBayes output. A linear dependence can be observed, which indicates that the output
is a good measure of probability for the candidate to be signal. If a NeuroBayes training
is performed with the same signal to background ratio as found in data, the output can
be directly interpreted as the signal probability. In other cases a correction has to be
calculated.

4.2.2. Hierarchical reconstruction

As already mentioned before, the calculation of all possible combinations for high mul-
tiplicity channels will consume too much time and computing power. To achieve a high
reconstruction efficiency nevertheless, a hierarchical approach was chosen. The recon-
struction is divided in four stages, as shown in table 4.1 and illustrated in fig. 4.3. At each
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stage the signal probabilities are calculated. Cuts on these probabilities are dependent on
the channel which is reconstructed and are applied only in the next stage.

The channels were added to the framework according to their expected gain in efficiency.
In total 1104 exclusive decay channels were used.

Stage Reconstructed particles

1 Charged tracks, Ks, γ, π0

2 D±(s). D
0, J/Ψ

3 D∗±(s) , D
∗0

4 B±,B0

Table 4.1.: Particles reconstructed during the 4 stages of the full reconstruction [35].

Figure 4.3.: The 4 stages of the full reconstruction. (Taken from [30]).

4.2.3. Continuum suppression

Apart from the combinatorial background there is also the background from non-BB̄
events. These events are originating from e+e− → qq̄ events and have a jet-like structure.
The different event shape allows a separation between qq̄ events and the spherical BB̄
events. Usage of the shape event variables might introduce a bias in certain analyses, so

58



4.2. NeuroBayes-based full reconstruction

the continuum suppression is outsourced in an optional module which can be used after
the execution of the full reconstruction.

4.2.4. Performance

Figure 4.4.: Mbc plots for different selections: The dashed blue line is a fit to the new full
reconstruction distribution, the solid red line to the classical one. The network cuts
are chosen to have (a) roughly equal purity (B+), (b) roughly equal background level
(B+), (c) roughly equal efficiency (B+), (d) roughly equal efficiency (B0) compared
to the classical reconstruction. (Taken from [35]).

To evaluate the performance of the new full reconstruction we compare its performance
with the classical, cut-based reconstruction method previously used in the Belle collab-
oration (e.g. [1]). Performance can be compared by estimating the numbers of correctly
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reconstructed Btag candidates with both methods. These numbers are estimated using
the distribution of the beam-constraint mass Mbc, which is defined as follows:

Mbc =
√
E2

beam − p2
B , (4.2)

where Ebeam is the beam energy and pB is the momentum of the reconstructed Btag.

To compare the results between the two methods we select a NeuroBayes output cuts
which lead to a similar efficiency or purity as the previous method had. The resulting
fits to the Mbc distributions are shown in fig. 4.4. Over 2 million neutral B mesons and
over 3 million charged B mesons could be reconstructed, which is considerably above the
numbers achieved by the previous method. We compare purity and efficiency for different
NeuroBayes output cuts with the purity and efficiency point of the cut-based reconstruc-
tion for B+ mesons in fig. 4.5. We can observe twice as higher efficiency for the same
purity. For the same efficiency the purity rises from 25% to over 80%.
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Figure 4.5.: Purity-efficiency points for different NeuroBayes output cuts compared to the point
of the cut-based method. (Taken from [30]).
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5.1. Overview of the analysis strategy

First the Btag candidate is reconstructed using the new full reconstruction method (see
chapter 4). The signal side is then reconstructed in the following modes:

• B+ → K+νν̄

• B+ → K∗+νν̄

K∗+ → K+π0

K∗+ → K0
sπ

+

• B+ → π+νν̄

• B+ → ρ+νν̄

• B0 → K0
sνν̄

• B0 → K∗0νν̄

K∗0 → K+π−

• B0 → π0νν̄

• B0 → ρ0νν̄

• B0 → φνν̄

To reduce the background several selection criteria are applied. Simulated experiments
based on Monte Carlo are used to estimate the signal efficiency of the selection and the
expected background.

The remaining energy in the electromagnetic calorimeter, EECL, is used to estimate the
number of signal events. As in a signal event everything apart from two neutrinos is
reconstructed, no activity should be left in the detector and thus we expect the signal
events to peak at low EECL values. The signal yield is extracted by a binned fit to the
EECL. The procedure to estimate the significance of observed signal as well as to set up a
limit on the branching fraction are prepared. The analysis is performed ’blind’: the data
sample in the signal region was opened after the whole analysis procedure was fixed.

These channels were already analysed within the Belle collaboration using a data sample
of 492fb−1 in [1]. After the implementation of the new full reconstruction, the analysis
of the K(∗) channels was performed using the full Belle data sample in [30]. Compared
to this former analysis, the study within this thesis was again extended by including the
decays to the lighter mesons. Furthermore, the cuts applied in the selection were studied
and a new continuum suppression cut was introduced, leading to a higher signal sensitiv-
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ity. Moreover, the counting procedure used for the signal yield estimation was replaced
by a fit, ensuring the consideration of the signal shape.

5.2. Used data samples

The complete Belle data sample of 711 fb−1 (≈ 771×106 BB̄ pairs) collected on the Υ(4S)
resonance was analysed within this thesis. To study and validate the analysis procedure
official Belle Monte Carlo samples with simulated experiments were used. These samples
are organised according to the simulated physics processes. As not every e+e− collision
leads to a creation of the Υ(4S) resonance, non-resonant events e+e− → qq̄, denoted
as continuum events, compose an important background. Generic decays of the Υ(4S)
resonance via the dominating b→ c transition are simulated in the charged Monte Carlo
samples for B± and mixed Monte Carlo samples for B0/B̄0. The branching fractions of
the decays are fixed to their world averaged values [2]. These samples are combined to
the generic Monte Carlo, which is supposed to reproduce the realistic mixture of events
recorded by Belle. The composition of the combined sample is shown in table 5.1. To
study the background generic Monte Carlo corresponding to 5 times the data luminosity
was used. The rare decays occurring via b → s and b → d transitions, are simulated in
the rare Monte Carlo. Despite the low branching fractions this component might be an
important background for this analysis. A sample corresponding to 50 times the data
luminosity was used to study it.

Generic Monte Carlo
component

Description Relative
amount

charged Υ(4S) decays into generically decaying
charged B mesons

12%

mixed Υ(4S) decays into generically decaying
neutral B mesons

12%

charm continuum e+e− → cc̄ decays 30%
uds continuum e+e− → uū, dd̄, ss̄ decays 46%

Table 5.1.: Composition of the generic Monte Carlo.

For each of the 9 considered modes a signal Monte Carlo sample was produced. The
used EvtGen model includes form factors calculated by [37], [38] and [39]. This model
was implemented and tested by Kai-Feng Chen [1] and was also used in the predecessor
analysis [30].
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5.3. Candidate selection

Important measure to estimate the quality of the reconstructed tracks are impact parame-
ters, which denote the distance from the point of closest approach to the interaction point.
Tracks have to fulfil the following quality criteria to be used in the further reconstruction:

• The impact parameter in the rφ plane should pass the cut: |dr| < 2.

• The impact parameter in the z/beam direction should pass the cut: |dz| < 2.

• The transverse momentum pt should be above 0.1 GeV .

Following reconstruction criteria were used for each type of light meson candidates:

• K±

Candidates have to pass the cut on the particle identification likelihood ratio:
LK

(LK+Lπ)
> 0.6.

• π±

Candidates have to pass the cut on the particle identification likelihood ratio:
LK

(LK+Lπ)
< 0.4.

• π0

Candidates are formed from two photon candidates with an energy of at least 50
MeV. The invariant mass of the π0 candidate, obtained from the energy of the
two photons, has to satisfy 117.8 MeV/c2 < mπ0 < 150.2 MeV/c2. The energy

asymmetry between the two photos aγ = |Eγ1−Eγ2|
|Eγ1+Eγ2| should be smaller then 0.9.

• K0
s

The GoodKS selection criteria, developed and validated within the Belle collabo-
ration, are required. The invariant mass of the candidate has to be within ±15
MeV/c2 of the nominal K0 mass.

• K∗0

One charged pion and one charged kaon with opposite charge are combined to form
K∗0 candidates. The invariant mass has to be within ±75 MeV/c2 of the nominal
K∗0 mass.

• K∗+

Candidates are reconstructed in two different decay modes: K∗+ → K+π0 and
K∗+ → K0

sπ
+. The invariant mass has to within ±75 MeV/c2 of the nominal K∗+

mass.
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5. Analysis

• ρ+

One charged and one neutral pion are combined to form ρ+ candidates. The invari-
ant mass has to within ±150 MeV/c2 of the nominal ρ+ mass.

• ρ0

Two charged pions with opposite charge are combined to form ρ0 candidates. The
invariant mass has to within ±150 MeV/c2 of the nominal ρ0 mass.

• φ
Two charged kaons with opposite charge are combined to form φ candidates. The
invariant mass has to within ±10 MeV/c2 of the nominal φ mass.

5.4. Signal selection

The variable used for the final signal extraction is the extra energy in the calorimeter EECL,
which is not assigned to any of the reconstructed particles. The clusters are required to
exceed the following energy thresholds:

• Forward endcap: 100 MeV

• Barrel: 50 MeV

• Backward Endcap: 150 MeV

An upper cut of 1.2 GeV on the summed extra energy is applied.

To be sensitive to a signal contribution, the number of candidates has to be considerably
reduced. We apply several selection criteria to remove as much background as possi-
ble while avoiding to loose too much signal. The variables and the cut values used for
the signal selection are summarised in the following. Only a few exemplary distributions
of the variables are shown, distributions for all channels can be found in the appendix A.1.

• Btag

During the full reconstruction the best Btag candidate is selected. We use the
calculated NBout as well as the mass and the energy of the Btag to reduce the
background. Following criteria are applied:

· Correct charge combination with the signal-side candidate

· Beam constraint mass
Beam constraint mass Mbc is defined as follows:

Mbc =
√
E2

beam − p2
B ,
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5.4. Signal selection

where Ebeam is the half of the total beam energy and pB is the momentum of the
reconstructed Btag. The nominal value for Mbc is 5.2795 GeV. The following
cut is applied:

Mbc > 5.27GeV .

The Mbc distributions for two exemplary channels, with all other cuts applied,
are shown in fig. 5.1.

· Energy difference
∆E is the difference between the nominal and the measured energy of the B
meson:

∆E = EB − Ebeam ,

where Ebeam is the half of the total beam energy and EB is the reconstructed
energy of the B meson. The nominal value for ∆E is 0 GeV. We apply the
following cut:

−0.08GeV < ∆E < 0.06GeV .

The ∆E distribution for two exemplary channels, with all other cuts applied,
is shown in fig. 5.2.

· NeuroBayes output of the Btag

To further enhance the signal content a cut on the NeuroBayes output of the
Btag is applied

NBout > 0.02 .

The distribution of NBout, with all other cuts applied, is shown in fig. 5.3.
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Figure 5.1.: The Mbc distribution for background (filled histogram) and signal (red line) Monte
Carlo, with all other cuts applied. The signal distribution is normalised to an
arbitrary value to illustrate the shape. The dashed line marks the cut value.
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Figure 5.2.: The ∆E distribution for background (filled histogram) and signal (red line) Monte
Carlo, with all other cuts applied. The signal distribution is normalised to an
arbitrary value to illustrate the shape. The dashed lines mark the cut values.
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Figure 5.3.: TheNBout distribution for background (filled histogram) and signal (red line) Monte
Carlo, with all other cuts applied. The signal distribution is normalised to an
arbitrary value to illustrate the shape. The dashed line marks the cut value.
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Figure 5.4.: The distribution of number of remaining tracks in the events for background (filled
histogram) and signal (red line) Monte Carlo, with all other cuts applied. The signal
distribution is normalised to an arbitrary value to illustrate the shape. The dashed
line marks the cut value.
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5. Analysis

• No remaining π0 candidates or charged tracks
No additional π0 or track candidates should be left in the event. All detected tracks
are vetoed, without any quality cuts. The distributions are shown in fig 5.4 and
fig. 5.5.

• Missing momentum
To avoid events with particles escaping through the beam pipe, a following require-
ment of the angle between the missing momentum and the beam pipe is applied:

−0.86 < cos θmiss < 0.95 .

The distribution of the cosine is shown in fig 5.6.
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Figure 5.5.: The distribution of number of remaining π0 in the events for background (filled
histogram) and signal (red line) Monte Carlo, with all other cuts applied. The
signal distribution is normalised to an arbitrary value to illustrate the shape. The
dashed line marks the cut value.
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Figure 5.6.: The distribution of the angle between the missing momentum and the beam pipe
for background (filled histogram) and signal (red line) Monte Carlo, with all other
cuts applied. The signal distribution is normalised to an arbitrary value to illustrate
the shape. The dashed lines mark the cut values.

• Continuum suppression
In this analysis the continuum is already suppressed during the full reconstruction.
The ekpcontsuppress module [30] is executed after the full reconstruction. Using
event shape variables (super-Fox Wolfram moments [40]), which can separate con-
tinuum from BB̄ events, the NBout and NBRank are recalculated and used during
the further analysis.

However, a considerable amount of continuum background is still in the signal box
after all other selection cuts are applied. The relative amount of different background
components is shown in fig. 5.7. The fraction of continuum varies between 15% and
30% depending on the channel. To suppress this component further discriminating
variables were investigated. A good discriminator was found in the angle between
the thrust axis of the Bsig and the rest of the charged tracks, evaluated in the Υ(4S)
rest frame (cosTOB). Since jet-like continuum events are strongly directional, the
cosine of this angle is close to −1/1, whether for spherical BB̄ events this angle is
uniformly distributed. In general we would expect a symmetric distribution. How-
ever, as the Fox Wolfram moments are correlated to the cosTOB, the distribution
can look differently after the use of ekpcontsuppress. This is illustrated in fig. 5.8 on
example of two of the considered channels.
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Figure 5.7.: The EECL distributions of the different types of Monte Carlo generated events. All
other selection criteria except the discussed continuum suppression are applied. The
continuum background component (second from below) is marked yellow.
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Figure 5.8.: The distribution of the cosine between the thrust axis of the Bsig and the rest
of the charged tracks. All other selection criteria except the discussed continuum
suppression are applied. The continuum background component is marked yellow.
The dashed lines mark the chosen cut values.

Channel Rejected continuum
background [%]

Rejected background
[%]

Signal efficiency
[%]

B+ → K+νν̄ 89.5 39.4 78.1
B+ → K∗+νν̄

K∗+ → K+π0

88.1 41.2 80.9

B+ → K∗+νν̄
K∗+ → K0

sπ
+

100 41.6 78.0

B+ → π+νν̄ 89.1 34.4 79.0
B+ → ρ+νν̄ 88.7 32.5 77.4
B0 → K0

sνν̄ 83.3 32.8 77.4
B0 → K∗0νν̄

K∗0 → K+π−
88.6 43.8 77.8

B0 → π0νν̄ 87.5 42.6 80.4
B0 → ρ0νν̄ 90.9 39.8 76.7
B0 → φνν̄ 100 50 77.3

Table 5.2.: The effect of the cut on the cosine between the thrust axis of the Bsig and the rest
of the charged tracks: −0.8 < cosTBO < 0.7.
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5. Analysis

The following cut is used for the signal selection:

−0.8 < cosTBO < 0.7 .

The impact of this cut on signal efficiency and background suppression is sum-
marised in table 5.2.

• Momentum of the light meson
The distribution of the momentum of the light meson from the signal events is
strongly model dependent and therefore not exactly known.
We apply a generalised cut of

1.6 GeV < p < 2.5 GeV

for all channels, except for the φ channel, where no momentum cut was applied,
as the momentum distribution of the φ meson is unknown. At low momenta we
expect a high amount of background from b →c decays, whether the higher cut of
2.5 GeV is introduced to reject the background from two body charmless decays like
B → K∗γ [1].

Nevertheless a study of the meson momentum distribution was performed, as this
variable can be used to extract signal in the later analyses. Several peaks can be
observed in the remaining p background distribution, as is shown in fig. 5.9. These
peaks are corresponding to specific miss-reconstructed two body decays. In the
expected K-momentum distribution of B+ → K+νν̄, with all other selection cuts
applied, a broad peak around 1.7 GeV can be observed. These events correspond
to miss-reconstructed decays to charmonium like B+ → J/ΨK+ and B+ → ηcK

+.
The smaller peaks around 2.3 GeV are coming from B+ → ¯D0(∗)x decays (x stands
here for e±ν,µ±ν, K±,π±,ρ±). For the B+ → π+νν̄ channel this peak is especially
dominant, which can be explained with a higher branching fractions for B+ → D0π+

and for B+ → D∗0π+. Further discussion of the background composition can be
found in section 5.7.
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Figure 5.9.: The distribution of the momentum of the light meson. On the left side the whole
momentum region is shown, the dashed lines mark the cut values. On the right
side a zoom into the relevant momentum region is plotted, with contributions from
different decays.

5.5. Correction of Btag efficiency

The efficiency of the new NeuroBayes based full reconstruction shows some differences
between Monte Carlo and data. The data/Monte Carlo ratio depending on the tag de-
cay mode was studied in another analysis [41] with various charm semileptonic signal sides.
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Figure 5.10.: The distribution of the Btag channels for the remaining background in the signal
box for K+ and K∗0 channels. One can observe that different Btag candidates
contributed to different EECL regions.
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Figure 5.11.: The distribution of the Btag channels for the remaining background in the Mbc

sideband and the signal box for the B+ → K+νν̄ channel. One can observe that
the composition of Btag candidate reconstruction channels differs in the signal and
sideband region.
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5.5. Correction of Btag efficiency

We apply this correction on all Btag candidates, which were matched to be correct
(BTagMCInfo > 0). This is true for in average ∼ 50% of the background events re-
maining in the signal box after the selection. As shown in fig. 5.10 different Btag channels
contribute to different EECL regions.
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Figure 5.12.: The Monte Carlo background distribution in the signal box before and after the
reweighting of the correct Btag events.
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5. Analysis

An alternative possibility to correct for this would be to consider data and Monte Carlo
efficiency in the sideband, as it was performed in the predecessor analysis [30]. However,
different Btag channels contribute to the signal and sideband regions in this analysis, as
is shown in fig. 5.11. In these plots we do not apply the BTagMCInfo > 0 condition, as
in the sideband nearly no Btag candidates were matched as correctly reconstructed.

We apply the Btag correction weights on the correctly matched candidates. Thus, this
correction not only rescales the expected number of events, but also slightly changes the
shape of the expected background. Fig. 5.12 shows the effect of the reweighting on two of
the channels, plots for all channels can be found in the appendix A.9.

5.6. Comparison between Monte Carlo simulation and
data

We use the events from Mbc sideband (Mbc < 5.27 GeV), where no signal events are ex-
pected, to verify data and Monte Carlo agreement. We also want to mention that no Btag

correction is applied on these Monte Carlo samples, as there are no fully matched correct
Btag candidates in this samples. The EECL distributions for the Mbc sideband sample,
with all other signal selection cuts applied and normalised to the same total number of
events, are shown in fig. 5.13. In generally data and Monte Carlo agree well. In fig. 5.14
the same histograms without the normalisation are shown to compare the absolute num-
bers of expected and observed events.

We calculate the probability values to check if the two histograms are compatible. We
perform a Kolmogorov test [42], which compares the shapes of both histograms and is
also assumed to give better results for histograms with low statistics then a usual χ2 test.
The obtained probability values are summarised in table 5.3. No significant deviation can
be observed. Nevertheless, we want to mention some possible discrepancies. In some
channels (K+, K∗0, π0) a deficiency in data in the upper EECL region (EECL > 0.7 GeV)
can be observed. Especially for the K+ channel the shape of data point seems to differ
from the shape from Monte Carlo. However, with such high statistical uncertainties it
is not possible to conclude if we see a hint for a discrepancy or just statistical fluctuations.

To achieve higher statistics for a better comparison we release some cuts and perform
another comparison between data and Monte Carlo. Following two setups were used:

• Release the cut on the light meson momentum: results are shown in table 5.4 and
fig. 5.15.

• Release the π0 veto, remaining tracks veto, angle of missing momentum and ∆E
cut: results are shown in table 5.4 and fig. 5.16.
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5.6. Comparison between Monte Carlo simulation and data

Channel p-Value Kolmogorov test

B+ → K+νν̄ 0.533
B+ → K∗+νν̄

combined
0.983

B+ → π+νν̄ 0.993
B+ → ρ+νν̄ 0.781
B0 → K0

sνν̄ 0.975
B0 → K∗0νν̄

K∗0 → K+π−
0.359

B0 → π0νν̄ 0.871
B0 → ρ0νν̄ 0.971
B0 → φνν̄ 0.444

Table 5.3.: Probability values of the compatibility of data and Monte Carlo background in the
Mbc sideband.

Channel p-Value Kolmogorov test (a) p-Value Kolmogorov test (b)

B+ → K+νν̄ 0.836 0.661
B+ → K∗+νν̄

combined
0.328 0.184

B+ → π+νν̄ 0.941 0.9996
B+ → ρ+νν̄ 0.590 0.998
B0 → K0

sνν̄ 0.321 0.830
B0 → K∗0νν̄

K∗0 → K+π−
0.810 0.152

B0 → π0νν̄ 0.974 0.9994
B0 → ρ0νν̄ 0.999 0.355
B0 → φνν̄ 0.444 0.610

Table 5.4.: Probability values of the compatibility of data and Monte Carlo background in the
Mbc sideband with (a) no cut on the momentum of the light meson applied and (b)
with following cuts released: missing momentum angle, π0 veto, remaining tracks
veto, ∆E.

Although fluctuations in some bins can be observed, in general the shapes of data and
Monte Carlo distributions agree. In the plots presented here both distributions are nor-
malised to the same total number of events. The plots where also the absolute numbers
of events can be compared can be found in the appendix (fig. A.11 and fig. A.12).
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Figure 5.13.: The EECL distributions in the Mbc sideband. The blacks dots show the data distri-
bution, while the filled histogram shows a stack plot of the background components.
Both histograms are normalised to the same total number of events.
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5.6. Comparison between Monte Carlo simulation and data
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(f) B0 → K∗0νν̄
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Figure 5.14.: The EECL distributions in the Mbc sideband. The blacks dots show the data distri-
bution, while the filled histogram shows a stack plot of the background components.
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(b) B+ → K∗+νν̄
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(c) B+ → π+νν̄
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(f) B0 → K∗0νν̄
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Figure 5.15.: The EECL distributions in the Mbc sideband with no cut on the momentum of the
light meson applied. The blacks dots show the data distribution, while the filled
histogram shows a stack plot of the background components. Both histograms are
normalised to the same total number of events.
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(d) B+ → ρ+νν̄
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(f) B0 → K∗0νν̄
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Figure 5.16.: The EECL distributions in the Mbc sideband with following cuts released: missing
momentum angle, π0 veto, remaining tracks veto, ∆E.. The blacks dots show the
data distribution, while the filled histogram shows a stack plot of the background
components. Both histograms are normalised to the same total number of events.
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5. Analysis

5.7. Background estimation and composition

In fig. 5.17 the expected background distributions for all channels are shown. The biggest
contribution for the charged modes comes from the generic charged B decays. For the
neutral modes the largest contribution arises from the generic neutral B decays. The
contributions from continuum and rare decays are relatively small in all channels. The
only exception is the φ channel, where the rare decays compose most of the background.
In table 5.5 the numbers of expected background events in the EECL signal box (0 <
EECL < 1.2 GeV) are summarised. Although we intend to let the total yield free in the
final it, we use these event numbers to study the signal yield extraction procedure and
estimate the expected limits in section 7.5. The main background for charged modes
are decays B+ → D(∗)0 + (e±ν, µ±ν), K(∗)±, π±, for the neutral modes decays B0 →
D(∗)± + (e±ν, µ±ν,K∗±, K±K0). There are also contributions from decays to J/Ψ or ηc.
The relative amount and the distribution of those components is shown in fig. 5.18.

Channel Number of expected background events

B+ → K+νν̄ 36.8± 2.8
B+ → K∗+νν̄

K∗+ → K+π0

17.2± 1.9

B+ → K∗+νν̄
K∗+ → K0

sπ
+

2.4± 0.7

B+ → K∗+νν̄
combined

19.6± 2.1

B+ → π+νν̄ 101.4± 4.7
B+ → ρ+νν̄ 117.0± 5.1
B0 → K0

sνν̄ 3.4± 0.9
B0 → K∗0νν̄

K∗0 → K+π−
13.8± 1.7

B0 → π0νν̄ 7.3± 1.3
B0 → ρ0νν̄ 33.7± 2.7
B0 → φνν̄ 2.1± 0.6

Table 5.5.: Expected numbers of background events.
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Figure 5.17.: The EECL distributions of the expected background after the complete signal side
selection and Btag correction.
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Figure 5.18.: The EECL distributions of the expected background. Different background com-
ponents are shown.
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5.8. Signal efficiency

5.8. Signal efficiency

Using the signal Monte Carlo we can estimate the signal efficiencies in the signal box
(0 < EECL < 1.2GeV) after the selection:

εsig =
Nsig

Ngen

. (5.1)

For each channel a sample with 10 million signal events was generated. We apply the
same Btag correction weights on correctly reconstructed Btag candidates as we did for
the generic Monte Carlo samples (see section 5.5). One also has to take into account
all intermediate branching fractions. The resulting efficiencies and the corrections are
summarised in table 5.6. The signal shapes for all channels are shown in fig. 5.19.

Channel Branching
fraction factor

εsig[10−5]
raw

Averaged
Btag correc-
tion

εsig[10−5] final

B+ → K+νν̄ - 71.6 0.79 56.76± 0.67
B+ → K∗+νν̄

K∗+ → K+π0

0.33 22.5 0.80 17.89± 0.66

B+ → K∗+νν̄
K∗+ → K0

sπ
+

0.692×0.666
×0.5

12.9 0.79 10.20± 0.60

B+ → K∗+νν̄
combined

14.73± 0.64

B+ → π+νν̄ - 42.3 0.80 33.8± 0.52
B+ → ρ+νν̄ - 17.1 0.78 13.47± 0.32
B0 → K0

sνν̄ 0.692 11.93 0.70 8.36± 0.29
B0 → K∗0νν̄

K∗0 → K+π−
0.66 18.5 0.74 14.4± 0.40

B0 → π0νν̄ - 23.4 0.71 16.6± 0.34
B0 → ρ0νν̄ - 8.8 0.72 6.34± 0.21
B0 → φνν̄ 0.492 7.9 0.73 5.77± 0.15

Table 5.6.: Signal efficiencies obtained from signal Monte Carlo samples with 10M events each
and the corresponding corrections.
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Figure 5.19.: The normalised EECL distributions of the signal Monte Carlo.

86



5.9. Signal yield extraction

5.9. Signal yield extraction

In the previous analysis of these decays within the Belle collaboration [1] [30] the signal
yield was extracted by counting. The goal in this analysis is to investigate the option of
signal yield estimation through a fit to the EECL distribution. The signal shape shows a
very characteristic shape, especially in the first 3 EECL bins (EECL < 0.3GeV), which is
not taken into account by the counting method. So we expect this approach to lead to
better results compared to the counting method. However, we want to use the counting
method as a benchmark and compare the expected results between the two approaches.

5.9.1. Counting procedure

For the counting procedure we define new signal and sideband windows for the EECL.
The signal box is between 0 and 0.3 GeV, while the sideband box is between 0.5 and 1.2
GeV. This is illustrated in fig. 5.20 along with an exemplary signal distribution. We use
the EECL sideband to normalise the Monte Carlo expectation to the signal region. In this
way we obtain a modified background expectation in the signal window:

N corrected
MC,signalbox = NMC,signalbox

Ndata,sideband

NMC,sideband

The number of observed signal events can then be obtained:

Nsignal = Ndata,signalbox −N corrected
MC,signalbox

The statistical error of this procedure is determined from the uncertainties of the ex-
pected and observed event numbers. The errors on the background numbers are taken
from table 5.5 and the errors on the observed data events are assumed to be Poisson errors.

A study using simulated Monte Carlo experiments was performed to validate this proce-
dure. 10000 Monte Carlo samples with 0 signal and the expected number of background
events were simulated and the resulting signal yield calculated. The results are shown in
appendix fig. A.13. We can observe small biases in some channels, but in general the input
number of events is well reproduced. The strongest bias can be observed in the φ and
K0
s channels, which are the channels with the lowest statistics in the background sample.

We summarise the results, bias on the mean values and the RMS of the distribution, in
table 5.7.
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Figure 5.20.: The definitions of the signal and sideband regions for the counting procedure. The
signal region is between 0 and 0.3 GeV and the sideband region is between 0.5 and
1.2 GeV.

Now we want to test the procedure for the case, that we observe a signal contribution.
We generate the same numbers for background events as before and add 15 signal events
to the simulated experiments. The results are shown in appendix fig. A.14. We observe
a significant bias in the signal yield distribution, in all channels the reconstructed signal
yield is underestimated and below the input value of 15. The results are summarised in
table 5.8.

We can conclude that the counting procedure works well in case of 0 signal events and
thus can be used to setup a limit on the branching fractions. However, if we would expect
a noticeable amount of signal, this procedure would lead to a considerable bias. The
reason is, that the signal events are not restricted to the the EECL region < 0.3GeV, but
are also populating the EECL sideband. In this way the signal events contribute to the
excess in the sideband and cause a lower signal excess in the signal region. As we want
the procedure to be valid for both cases, signal or no signal observation, the counting
method is not an optimal approach.
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5.9. Signal yield extraction

Channel Bias of the signal yield RMS

B+ → K+νν̄ −0.029± 0.043 4.24± 0.03
B+ → K∗+νν̄

combined
−0.061± 0.025 2.48± 0.02

B+ → π+νν̄ −0.175± 0.046 4.63± 0.03
B+ → ρ+νν̄ 0.044± 0.047 4.69± 0.03
B0 → K0

sνν̄ −0.543± 0.021 2.19± 0.02
B0 → K∗0νν̄

K∗0 → K+π−
0.153± 0.023 2.33± 0.02

B0 → π0νν̄ 0.045± 0.017 1.67± 0.01
B0 → ρ0νν̄ 0.054± 0.038 3.76± 0.03
B0 → φνν̄ −0.624± 0.015 1.47± 0.01

Table 5.7.: Results of the simulated Monte Carlo experiments counting study with expected
background and 0 signal events.

Channel Bias of the signal yield RMS

B+ → K+νν̄ −3.76± 0.06 5.39± 0.04
B+ → K∗+νν̄

combined
−3.76± 0.04 4.32± 0.03

B+ → π+νν̄ −3.59± 0.06 5.75± 0.04
B+ → ρ+νν̄ −3.61± 0.006 5.80± 0.04
B0 → K0

sνν̄ −6.63± 0.05 4.86± 0.04
B0 → K∗0νν̄

K∗0 → K+π−
−3.97± 0.04 4.16± 0.03

B0 → π0νν̄ −3.65± 0.04 3.90± 0.03
B0 → ρ0νν̄ −4.52± 0.05 5.09± 0.04
B0 → φνν̄ −5.67± 0.04 4.16± 0.03

Table 5.8.: Results of the simulated Monte Carlo experiments counting study with expected
background and 15 signal events.

5.9.2. Fitting procedure

To estimate the signal yield an extended binned maximum likelihood fit is performed to
the EECL distribution. We model the PDF shapes for signal and background components
with histograms obtained from Monte Carlo and already shown in 5.7 and 5.8. Although
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5. Analysis

the statistical uncertainty of the background shape is quite high, we consider the continuos
histogram PDF obtained from Monte Carlo as the most adequate background model. The
uncertainty on this model is however expected to be the largest source of the systematic
uncertainty. The way of include this error in the calculation of the systematic error in
described in section 6.2. The fit has two free parameters: signal and background yields.
The total likelihood is then:

L =
(
∑

j Nj)
N e−

∑
j Nj

N !

N∏
i=1

∑
j

NjPj , (5.2)

with N : total number of observed events, j: iterator over fit components (signal and
background), Nj: yields (free parameters), i: iterator over events and Pj: PDF of fit
components.

One difficulty of this approach is the low statistics in the relevant background Monte
Carlo samples. Another related issue is that in some channels we expect only a small
number of events, which might lead to instabilities during the fit.

To validate the fitting procedure four different Monte Carlo studies were performed. In
the first study we simulated 10000 experiments with 150 background + 50 signal events
for each channel. We consider the distributions for the fitted signal yield, error and the
pull. The mean value of the signal distribution should reproduce the input value and the
pull distribution should have a mean at 0 and a width of 1. The results of this study
for three channels are shown in fig. 5.21, the plots for other channels can be found in the
appendix fig. A.15. The input values are reproduced correctly and the pulls are normally
distributed.

In the next step we want to check the fit performance for 0 signal yield, as this is also
our expectation in data. We expect an asymmetrical distribution around 0 for the signal
yield, thus we compute asymmetric errors with Minos and we fit the resulting distribu-
tion with a bifurcated Gaussian for a better visualisation. The results of the simulated
experiments study with 150 background events and 0 signal events are shown in fig. A.16
in the appendix. In general the distributions look as expected.
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Figure 5.21.: The mean, fitting error and pull distributions of the simulated Monte Carlo ex-
periments study with 150 background and 50 signal events. Here the results for
the channels (from up to down) B+ → K+νν̄, B+ → π+νν̄ and B0 → K∗0νν̄ are
shown.
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5. Analysis

In the next step we want to check the fit performance for 0 signal yield and the expected
number of background events (see table 5.5). The expected numbers of events is quite
low, so we have to check the effect of the low statistics on the fit. At first we consider
the results for the channels with number of events larger than 30 (K+, π+, ρ+, ρ0). The
results of these fits are shown in fig. 5.22. The distributions are similar to ones from the
previous simulation study, we observe asymmetric Gaussian distributions and no large
bias.
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Figure 5.22.: The mean and pull distributions of the simulated Monte Carlo experiments study
with expected background and 0 signal events. Here the results for the channels
(from left to right, from up to down) with simulated number of background events
: B+ → ρ+νν̄ (117), B+ → π+νν̄ (102), B+ → K+νν̄ (37) and B0 → ρ0νν̄ (34)
are shown.

The expected event numbers for the other 5 channels (K∗+, K∗0, K0
s , π0 and φ) are small

(2 < n < 20), thus fitting the realistic experiments for these channels is more problem-
atic. However, also for these channels more than 95% of the fits converge successfully and
we obtain mostly reasonable results. The distributions for these channels are shown in
fig. 5.23.
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Figure 5.23.: The mean and pull distributions of the simulated Monte Carlo experiments study
with expected background and 0 signal events. Here the results for the channels
(from left to right, from up to down) with simulated number of background events
:B+ → K∗+νν̄ (20), B0 → K∗0νν̄ (14), B0 → π0νν̄ (7), B0 → K0sνν̄ (4) and
B0 → φνν̄ (2) are shown.

There are cases where a valid minimum is found, but the error cannot be properly cal-
culated. In these cases we want to use the width of the mean value distribution from
the simulated experiments as the error. If the fit procedure should fail, we will perform
a likelihood scan to get the minimum manually (the error will be taken from the mean
distribution of the simulated experiments as well). The description of this procedure to-
gether with examples to validate it are shown in section 5.9.3.
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The results for the expected number of background events and no signal contribution
are summarised in table 5.9.

Channel Bias of the signal
yield

RMS Lower error
from Gaussian

Upper error
from Gaussian

B+ → K+νν̄ 0.150± 0.048 4.80± 0.04 3.99± 0.08 5.55± 0.08
B+ → K∗+νν̄

combined
0.083± 0.024 2.36± 0.02 1.61± 0.03 2.98± 0.04

B+ → π+νν̄ 0.019± 0.048 4.75± 0.03 3.85± 0.07 5.59± 0.08
B+ → ρ+νν̄ −0.011± 0.048 4.76± 0.04 3.89± 0.07 5.57± 0.08
B0 → K0

sνν̄ 0.048± 0.022 1.99± 0.02 1.05± 0.02 2.73± 0.03
B0 → K∗0νν̄

K∗0 → K+π−
−0.083± 0.023 2.26± 0.02 1.18± 0.02 3.04± 0.03

B0 → π0νν̄ −0.030± 0.017 1.62± 0.01 0.53± 0.01 2.33± 0.02
B0 → ρ0νν̄ 0.054± 0.045 4.48± 0.03 4.33± 0.07 4.62± 0.07
B0 → φνν̄ 0.886± 0.009 0.93± 0.01 0.51± 0.01 1.11± 0.01

Table 5.9.: Results of the simulated Monte Carlo experiments fitting study with expected back-
ground and 0 signal events.

Channel Bias of the signal
yield

RMS Lower error
from Gaussian

Upper error
from Gaussian

B+ → K+νν̄ 0.04± 0.07 6.78± 0.05 6.21± 0.11 7.36± 0.12
B+ → K∗+νν̄

combined
0.05± 0.05 5.34± 0.04 4.66± 0.09 5.99± 0.09

B+ → π+νν̄ 0.05± 0.07 6.82± 0.05 5.99± 0.11 7.64± 0.12
B+ → ρ+νν̄ −0.11± 0.07 6.73± 0.05 6.12± 0.11 7.33± 0.12
B0 → K0

sνν̄ −0.57± 0.07 6.12± 0.05 6.24± 0.09 6.00± 0.09
B0 → K∗0νν̄

K∗0 → K+π−
−0.09± 0.06 5.48± 0.04 4.74± 0.09 6.18± 0.09

B0 → π0νν̄ −0.15± 0.05 5.02± 0.04 4.79± 0.08 5.25± 0.08
B0 → ρ0νν̄ −0.13± 0.07 6.60± 0.05 5.97± 0.11 7.22± 0.11
B0 → φνν̄ −0.15± 0.06 5.30± 0.04 4.92± 0.09 5.66± 0.09

Table 5.10.: Results of the simulated Monte Carlo experiments fitting study with expected back-
ground and 15 signal events.
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5.9. Signal yield extraction

We also want to know if the fit will give us a correct result in case of signal observation.
We generate the same numbers for background events as before and add 15 signal events
to the simulated experiments. The distributions are shown in fig. A.17 and the results are
summarised in table 5.10.

5.9.3. Recovery of a failed fit
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Figure 5.24.: Likelihood scans for two simulated experiments to illustrate how the minimum can
be found manually.

Example Fit result Minimum of
the scan

RMS from
the toy MC

B0 → ρ0νν̄ 6.82+5.89
−5.06 6.85 ±5.40

B+ → K∗+νν̄ −0.08+2.58
−1.48 −0.08 ±2.13

Table 5.11.: Comparison of direct fit results and the results from manual recovery procedure.

For the case of a failed fit or failed error calculation during the fit, an alternative procedure
to obtain a valid result was studied. Simulated experiments to compare the results of
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both approaches were used: the result obtained directly from the fit and the result of the
likelihood scan. The errors can be obtained from a simulated Monte Carlo experiments
with the observed number of signal and background events. We quote here the RMS of the
distribution, but the asymmetric error determination would be possible too. However, for
the calculation of the limit and of the significance we will use the likelihood scan and thus
the quoted errors on the signal yield wont be used directly. The results of two examples
are shown in fig. 5.24 and table 5.11. The procedure can reproduce the fit results within
a satisfactory precision.

5.9.4. Comparison of counting and fitting

The results already presented in the previous subsection are now again summarised in
tables 5.12 and 5.13 for a better comparison. The statistical errors and thus the sensitivity
of both approaches, counting and fitting, are in average quite similar. However, with the
counting method we observed a large bias in case of a noticeable signal amount. The bias
is much smaller in case of the fitting. As we want the procedure to be valid for both cases,
signal or no signal observation, the fitting method is preferable. We also have to consider,
that the lowe efficiency in the counting case will lead to a worse limit. It was shown with
simulated Monte Carlo experiments that the fitting approach works well, even for low
statistic cases, so we will apply this method on the final data.

Channel Bias of the signal
yield (counting)

RMS
(counting)

Bias of the signal
yield (fitting)

RMS
(fitting)

B+ → K+νν̄ −0.029± 0.043 4.24± 0.03 0.150± 0.048 4.80± 0.04
B+ → K∗+νν̄

combined
−0.061± 0.025 2.48± 0.02 0.083± 0.024 2.36± 0.02

B+ → π+νν̄ −0.175± 0.046 4.63± 0.03 0.019± 0.048 4.75± 0.03
B+ → ρ+νν̄ 0.044± 0.047 4.69± 0.03 −0.011± 0.048 4.76± 0.04
B0 → K0

sνν̄ −0.543± 0.021 2.19± 0.02 0.048± 0.022 1.99± 0.02
B0 → K∗0νν̄

K∗0 → K+π−
0.153± 0.023 2.33± 0.02 −0.083± 0.023 2.26± 0.02

B0 → π0νν̄ 0.045± 0.017 1.67± 0.01 −0.030± 0.017 1.62± 0.01
B0 → ρ0νν̄ 0.054± 0.038 3.76± 0.03 0.054± 0.045 4.48± 0.03
B0 → φνν̄ −0.624± 0.015 1.47± 0.01 0.886± 0.009 0.93± 0.01

Table 5.12.: Results of the simulated Monte Carlo experiments study with expected background
and 0 signal events with counting and fitting approach in comparison.
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Channel Bias of the signal
yield (counting)

RMS
(counting)

Bias of the signal
yield (fitting)

RMS
(fitting)

B+ → K+νν̄ −3.76± 0.06 5.39± 0.04 0.04± 0.07 6.78± 0.05
B+ → K∗+νν̄

combined
−3.76± 0.04 4.32± 0.03 0.05± 0.05 5.34± 0.04

B+ → π+νν̄ −3.59± 0.06 5.75± 0.04 0.05± 0.07 6.82± 0.05
B+ → ρ+νν̄ −3.61± 0.006 5.80± 0.04 −0.11± 0.07 6.73± 0.05
B0 → K0

sνν̄ −6.63± 0.05 4.86± 0.04 −0.57± 0.07 6.12± 0.05
B0 → K∗0νν̄

K∗0 → K+π−
−3.97± 0.04 4.16± 0.03 −0.09± 0.06 5.48± 0.04

B0 → π0νν̄ −3.65± 0.04 3.90± 0.03 −0.15± 0.05 5.02± 0.04
B0 → ρ0νν̄ −4.52± 0.05 5.09± 0.04 −0.13± 0.07 6.60± 0.05
B0 → φνν̄ −5.67± 0.04 4.16± 0.03 −0.15± 0.06 5.30± 0.04

Table 5.13.: Results of the simulated Monte Carlo experiments study with expected background
and 15 signal events with counting and fitting approach in comparison.

5.10. Limit and significance estimation

5.10.1. Expected limits

As we expect no significant signal, we prepare the procedure to set up an upper limit on
each branching fraction. This upper limit for number of signal events at 90% confidence
limit will be obtained by integrating the likelihood function L(n):∫ N

0

L(n)dn = 0.9

∫ ∞
0

L(n)dn . (5.3)

With Nsig = upper limit for number of signal events, NBB̄ = number of BB̄ pairs and
εsig = signal efficiency, we can obtain the limit on the branching fraction:

B =
Nsig

NBB̄ × εsig
(5.4)

Using simulated experiments we can estimate the expected branching fraction limit. We
use the simulated sample with expected numbers of background events and no signal
events and calculate the branching fraction limit for each experiment. In fig. 5.25 the dis-
tributions of the limits for 1000 experiments for each channel are shown. We summarise
the best obtained limits as well as the mean values of the distributions in table 5.14. The
systematics are not included in this calculation. We also cite the expected limits of the
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previous analysis [1] for comparison. The limits in the previous analysis were determined
in a different way: it was a counting experiment and the expected limit was determined
in case exactly the expected number of background events was observed in the signal box.

The limit depends very strongly on the total number of background events. For some
channels the expected event numbers are similar compared to the previous analysis, thus
we get similar expected limits. For other channels the expected event numbers could be
reduced significantly, thus leading to much better expected limits.

Channel Best expected
branching ratio
limit at 90% CL

Average expected
branching ratio
limit at 90% CL

Expected branch-
ing ratio limit at
90% CL previ-
ous Belle analysis
(492fb−1)

B+ → K+νν̄ 1.0× 10−5 2.2× 10−5 10× 10−5

B+ → K∗+νν̄
combined

2.8× 10−5 5.3× 10−5 22× 10−5

B+ → π+νν̄ 1.9× 10−5 3.9× 10−5 10× 10−5

B+ → ρ+νν̄ 4.2× 10−5 9.7× 10−5 19× 10−5

B0 → K0
sνν̄ 4.0× 10−5 7.3× 10−5 16× 10−5

B0 → K∗0νν̄
K∗0 → K+π−

2.3× 10−5 4.9× 10−5 20× 10−5

B0 → π0νν̄ 2.1× 10−5 3.6× 10−5 10× 10−5

B0 → ρ0νν̄ 8.5× 10−5 16.5× 10−5 16× 10−5

B0 → φνν̄ 5.4× 10−5 9.1× 10−5 13× 10−5

Table 5.14.: Expected limits on branching fractions obtained from simulated experiments.

5.10.2. Significance

For the case of a signal contribution we prepare the procedure to estimate the significance
of this observation. The significance is calculated by comparing the likelihood values at
maximum and at 0:

S =

√
2 log

(
Lmax
L0

)
. (5.5)
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Figure 5.25.: Branching fraction limits obtained from 1000 simulated Monte Carlo experiments.
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5.11. Systematic errors

There are several sources of systematic uncertainties, those of them which can be deter-
mined before looking into data are listed below:

• The number of BB̄ pairs
The number of BB̄ pairs used in this analysis is 771× 106 with an error of 1.4%.

• Track reconstruction efficiency
The systematic uncertainty on each single charged track is 0.35% [43].

• K0
s reconstruction efficiency The systematic uncertainty on the reconstruction

efficiency is 2.23% [44].

• π0 reconstruction efficiency
The systematic error on the π0 reconstruction efficiency is estimated to be 4% [45].

• K/π particle identification
As this error will be negligible compared to the dominant errors, we renounce the
exact determination of this error for each channel and assume a tolerant 2% error
for each K or π track.

• Btag efficiency
As described in section 5.5, we apply a Btag correction to compensate for the dif-
ference in the Btag efficiency between data and Monte Carlo. The errors of these
correction factors were determined in [41] to be 4.2% for charged B and 4.5% for
neutral B.

• Veto efficiency
The difference in the charged track an π0 veto efficiency was studied in [30] using
a D(∗)lν sample. We include the obtained 8.3% as a systematic error on the signal
efficiency.

Following two errors will be determined after obtaining the fit results on data:

• Fit bias
Simulated Monte Carlo experiments with observed event numbers will be performed
and if there is a bias, it will be included as systematic error.

• Background model
We will replace the nominal background model (histogram obtained from MC) with
other models. We will fit each default background model with two different appro-
priate functions (Chebyshev polynomials), and use the resulting model to repeat the
main fit. The largest deviation from the nominal fit will be assigned as systematic
uncertainty.
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At first we compare the total numbers of observed events in the signal box EECL < 1.2
GeV with our expectations from simulated Monte Carlo experiments. The results are
shown in table 6.1. Except for the ρ+ channel and the K∗+(K0

sπ
+) subchannel, where

we observe less events than expected, the observed event numbers are in good agreement
with the expectations.

Channel MC expectation Data

B+ → K+νν̄ 36.8± 2.8 43± 6.6
B+ → K∗+νν̄

K∗+ → K+π0

17.2± 1.9 21± 4.6

B+ → K∗+νν̄
K∗+ → K0

sπ
+

2.4± 0.7 0

B+ → K∗+νν̄
combined

19.6± 2.1 21± 4.6

B+ → π+νν̄ 101.4± 4.7 107± 10.4
B+ → ρ+νν̄ 117.0± 5.1 90± 9.5
B0 → K0

sνν̄ 3.4± 0.9 4± 2
B0 → K∗0νν̄

K∗0 → K+π−
13.8± 1.7 10± 3.2

B0 → π0νν̄ 7.3± 1.3 6± 2.5
B0 → ρ0νν̄ 33.7± 2.7 31± 5.6
B0 → φνν̄ 2.1± 0.6 3± 1.7

Table 6.1.: Comparison of the event numbers observed in data with the expected numbers from
simulated Monte Carlo experiments.

6.1. Fit results

In fig. 6.1 the final fit results are shown. In table 6.2 the resulting signal yields are sum-
marised.
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Figure 6.1.: Fit results to the EECL distributions. Points with error bars are data and the
black solid line is the total result. The blue cross-hatched region is the background
component and the red dashed line shows the signal contribution.
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Channel Signal yield

B+ → K+νν̄ 13.3+7.4
−6.6

B+ → K∗+νν̄
combined

−1.7+1.7
−1.1

B+ → π+νν̄ 15.2+7.1
−6.2

B+ → ρ+νν̄ 11.3+6.3
−5.4

B0 → K0
sνν̄ 1.8+3.3

−2.4

B0 → K∗0νν̄
K∗0 → K+π−

−2.3+10.2
−3.5

B0 → π0νν̄ 3.5+2.6
−1.9

B0 → ρ0νν̄ 1.6+5.0
−4.1

B0 → φνν̄ 1.4+2.9
−0.9

Table 6.2.: Signal yields and statistical errors obtained from the fit to data.

6.2. Systematic errors

Apart from the systematics determined in section 5.11, we determine the two remaining
errors.

Fit bias
To determine the fit bias we perform simulated Monte Carlo experiments using the
event numbers observed in data as input. Then we perform the fit procedure and
check if the signal yield is correctly reproduced. In case the deviation between the
central value of the number of signal events and the input value is larger than the
error on that value, we include the deviation as systematic error. The results are
shown in table 6.3.

Background shape
To evaluate uncertainty on the background shape, we fit our nominal background
model, a histogram PDF, with two functions. We select two functions which describe
the background shape in the most adequate way. The main fit is repeated using the

103



6. Results

new background model and the deviation from the nominal fit is calculated. The
results are summarised in table 6.4. We include the largest deviation as a systematic
error.

To get the total error all individual errors are added in quadrature. All systematic errors
are summarised in table 6.5.

Channel Fit bias [number of events]

B+ → K+νν̄ -
B+ → K∗+νν̄

combined
0.14

B+ → π+νν̄ -
B+ → ρ+νν̄ -
B0 → K0

sνν̄ -
B0 → K∗0νν̄

K∗0 → K+π−
0.64

B0 → π0νν̄ 0.41
B0 → ρ0νν̄ 0.12
B0 → φνν̄ 0.63

Table 6.3.: Fit bias from the simulated experiments.

Channel 0 order Cheby-
shev polynomial

1st order Cheby-
shev polynomial

2nd order
Chebyshev
polynomial

B+ → K+νν̄ 15.7% 3% -
B+ → K∗+νν̄

combined
74% 89% -

B+ → π+νν̄ - 6.0% 6.1%
B+ → ρ+νν̄ - 35.4% 26.7%
B0 → K0

sνν̄ 53% 53% -
B0 → K∗0νν̄

K∗0 → K+π−
10% 23.8% -

B0 → π0νν̄ 1.2% 10.6% -
B0 → ρ0νν̄ - 22.7% 18.6%
B0 → φνν̄ 32.8% 5.6% -

Table 6.4.: Deviations from the nominal fit for alternative background models.
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Channel NBB̄ Track/π0/K0
s

reconstruc-
tion
efficiency

PID Signal re-
construction
efficiency

Btag
correc-
tion

Vetoes Fit bias Background
model

total

B+ → K+νν̄ 1.4 0.25 2 1.2 4.2 8.3 - 15.7 18.5
B+ → K∗+νν̄

combined
1.4 4.1 4 3.7 4.2 8.3 7.9 89 90.2

B+ → π+νν̄ 1.4 0.35 2 1.5 4.2 8.3 - 6.1 11.5
B+ → ρ+νν̄ 1.4 4.2 2 2.3 4.2 8.3 - 35.4 37.2
B0 → K0

sνν̄ 1.4 2.33 2 3.5 4.5 8.3 - 53 54.0
B0 → K∗0νν̄

K∗0 → K+π−
1.4 0.35 4 2.8 4.5 8.3 28 24 38.4

B0 → π0νν̄ 1.4 4.0 - 2.1 4.5 8.3 11.7 10.6 19.0
B0 → ρ0νν̄ 1.4 0.7 4 3.3 4.5 8.3 7.3 22.7 26.2
B0 → φνν̄ 1.4 1.4 4 2.6 4.5 8.3 44.0 32.8 55.9

Table 6.5.: Summary of all systematic errors in %.

6.3. Final results

We perform a likelihood scan to determine the significance of the result according to 5.5
and the branching fraction limit, as expained in 5.10.1. To include the systematics we
convolute the likelihood curve numerically with a Gaussian, where the systematic error is
taken as the width of the Gaussian. The scans are shown in fig. 6.2.

The final signal yields with corresponding statistical and systematical errors are shown
together with the significance of the observed signal contribution in table 6.6. The sys-
tematical errors are in general smaller than statistical errors. We observe no significant
signal, although we obtain values larger then 2σ for two channels (K+ and π+).

In table 6.7 we summarise the final limits obtained from the scans shown in fig. 6.2 and
compare them to the results from the previous Belle analysis as well as with the current
world best limits collected by the Particle Data Group (PDG). Most of the limits could be
improved compared to the previous Belle analysis. The limits which are better compared
to current PDG values are marked in bold.
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Figure 6.2.: Likelihood distributions and the according significance and branching fraction limit
at 90% CL. The dotted lines show the distribution and the limit without the sys-
tematics, while the solid lines show the total result.
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Channel Signal yield Significance

B+ → K+νν̄ 13.3+7.4
−6.6(stat)± 2.5(syst) 2.0σ

B+ → K∗+νν̄
combined

−1.7+1.7
−1.1(stat)± 1.5(syst) -

B+ → π+νν̄ 15.2+7.1
−6.2(stat)± 1.8(syst) 2.6σ

B+ → ρ+νν̄ 11.3+6.3
−5.4(stat)± 4.2(syst) 1.7σ

B0 → K0
sνν̄ 1.8+3.3

−2.4(stat)± 1.0(syst) 0.7σ

B0 → K∗0νν̄
K∗0 → K+π−

−2.3+10.2
−3.5 (stat)± 0.9(syst) -

B0 → π0νν̄ 3.5+2.6
−1.9(stat)± 0.7(syst) 1.9σ

B0 → ρ0νν̄ 1.6+5.0
−4.1(stat)± 0.4(syst) 0.4σ

B0 → φνν̄ 1.4+2.9
−0.9(stat)± 0.8(syst) 0.5σ

Table 6.6.: Signal yields obtained from the fit to data with statistical and systematic errors and
the significance of the signal contribution.

Channel Branching ratio
limit at 90% CL

Branching ratio
limit at 90% CL
previous Belle
analysis [1]

PDG limit at
90% CL [2]

B+ → K+νν̄ 5.5× 10−5 1.4× 10−5 1.3× 10−5

B+ → K∗+νν̄
combined

4.0× 10−5 14× 10−5 8× 10−5

B+ → π+νν̄ 9.8× 10−5 17× 10−5 10× 10−5

B+ → ρ+νν̄ 21.4× 10−5 15× 10−5 15× 10−5

B0 → K0
sνν̄ 9.7× 10−5 16× 10−5 5.6× 10−5

B0 → K∗0νν̄
K∗0 → K+π−

5.5× 10−5 34× 10−5 1.2× 10−5

B0 → π0νν̄ 6.9× 10−5 22× 22−5 22× 10−5

B0 → ρ0νν̄ 20.8× 10−5 44× 10−5 44× 10−5

B0 → φνν̄ 12.7× 10−5 5.8× 10−5 5.8× 10−5

Table 6.7.: Branching fraction limits at 90% CL.
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6. Results

6.3.1. Investigation of the signal contribution

Although we do not observe significant signal contributions, we do observe a considerable
amount of signal events with a significance of around 2σ in two channels, K+ and π+.
We want to investigate these events by looking at the missing mass and the missing
momentum direction distributions for these two channels. We compare the prediction
from Monte Carlo and data to check for inconsistencies.

• Missing mass
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(e) B+ → π+νν̄: EECL < 0.3 GeV
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(f) B+ → π+νν̄: EECL > 0.3 GeV

Figure 6.3.: Missing mass distributions for K+ and π+ channels with data and Monte Carlo
normalised to the same number of entries. From left to right the whole EECL

region, EECL < 0.3 GeV, and EECL > 0.3 GeV are shown.

In fig. 6.3 the missing mass distributions for the whole EECL region, for EECL < 0.3
GeV ,and EECL > 0.3 GeV are shown. These histograms are normalised to the same
number of entries. Not normalised histograms can be found in appendix fig. A.18.
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6.3. Final results

We can see, that we have have more events in data than expected from Monte
Carlo in the signal region EECL < 0.3 GeV. However, we cannot observe any signifi-
cant deviation from the expected shape or any specific structure that would explain
the excess.

• Angle between missing momentum and beam

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

2

4

6

8

10

12

14
data
charged
mixed
continuum
rare

 normalised+K

(a) B+ → K+νν̄

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

2

4

6

8

10 data
charged
mixed
continuum
rare

<0.3GeV normalisedECL E+K

(b) B+ → K+νν̄: EECL < 0.3 GeV

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

2

4

6

8

10

12

14
data
charged
mixed
continuum
rare

>0.3GeV normalisedECL E+K

(c) B+ → K+νν̄:EECL > 0.3 GeV

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

5

10

15

20

25

30 data
charged
mixed
continuum
rare

 normalised+π

(d) B+ → π+νν̄

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

2

4

6

8

10 data
charged
mixed
continuum
rare

<0.3GeV normalisedECL E+π

(e) B+ → π+νν̄: EECL < 0.3 GeV

missθcos
-1.0 -0.5 0.0 0.5 1.0

E
ve

nt
s/

0.
1

0

5

10

15

20

25

30 data
charged
mixed
continuum
rare

>0.3GeV normalisedECL E+π

(f) B+ → π+νν̄: EECL > 0.3 GeV

Figure 6.4.: Missing momentum to beam angle distributions for K+ and π+ channels with data
and Monte Carlo normalised to the same number of entries. From left to right the
whole EECL region, EECL < 0.3 GeV, and EECL > 0.3 GeV are shown.

In fig. 6.4 the missing momentum to beam angle distributions for the whole EECL

region, for EECL < 0.3 GeV, and EECL > 0.3 GeV are shown. These histograms are
normalised to the same number of entries. Not normalised histograms can be found
in appendix fig. A.19.
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6. Results

We can see, that in π+ case the excess events originate mostly from the central
region. Otherwise we cannot observe any significant deviation from the expected
shape. It can be concluded, that we could not gain additional information concern-
ing the 2σ signal excess through the investigation of these additional variables.

6.4. Conclusion and outlook

A search for nine rare decays with b→ s and b→ d transitions was performed. The full
Belle data set of 711 fb−1, the new NeuroBayes based full reconstruction, an additional
continuum suppression and a new signal extraction procedure via a binned fit were used
to improve the sensitivity of the measurement compared to the previous Belle analysis.
No significant signal was observed in any of the channels, although a 2.0σ and 2.6σ hints
were found in K+ and π+ channels, respectively. Branching fraction limits at 90% CL
were evaluated (see table 6.7), most of the limits could be notably improved compared to
the previous Belle analysis and for four channels the worlds most stringent limit could be
obtained.

We cannot draw evident conclusions concerning the NP models presented in chapter 2,
as no significant signal was observed. The obtained limits however can be used to restrict
the parameter space of these models. To achieve a more stringent statement, a higher
experimental sensitivity is required.

The main key to a higher statistical sensitivity is a larger data sample containing more
BB̄ pairs. If the observed excess in the signal region for the π+(K+) channel is indeed
coming from the signal contribution, we can very roughly estimate how much luminosity
would be necessary to make a signal observation. Assuming the same detector perfor-
mance and reconstruction method and the scaling of the measurement error of 1/

√
x with

x as luminosity scaling factor, we should be able to make a 5σ signal observation already
with ∼ 3.3 ab−1 (5.1 ab−1).

The improvement of the detector performance and the reconstruction efficiency will also
contribute to a better sensitivity. The usage of the semileptonic tagging, instead of the
hadronic tagging used in this analysis, could lead to a 4− 5 times better efficiency, while
worsening the signal to background ratio by a factor of 2 [46].

The upcoming Belle II experiment, with the expected data sample of 50 ab−1 and an
improved reconstruction should allow us to measure branching fractions of B → h(∗)νν̄
in the same order of magnitude as the SM predictions and thus enable a potential NP
observation.
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7. Tracking for Belle II

This chapter describes the tracking studies performed within this thesis. First a basic
introduction to tracking is given, followed by an explanation of pattern recognition prin-
ciples. In section 7.3 the track finding algorithm developed within this thesis is described.
The performance evaluation is summarised in the subsequent section. The results of the
track finding algorithm are used in the track fitting for the precise determination of the
track parameters, as is explained in section 7.5. In the conecutive section the results of
the track fitting are presented and finally a summary of this chapter is given.

7.1. Introduction

To reconstruct a collision event from various signals provided by different detector compo-
nents an elaborate reconstruction software is necessary. Tracking denotes the procedure
of retrieving the trajectories of charged particles.

In a homogeneous magnetic field a moving charged particle is deflected by the Lorentz
force and its trajectory follows a helix. In a plane orthogonal to the ~B field, the track
trajectory can be described by a circle.The momentum component in this plane, denoted
as transverse momentum pt in the following, can be obtained from the circle radius r:

pt[GeV/c] = 0.3 ·B[T] · r[m]

The longitudinal momentum component is not affected by the ~B field, so the 3 dimen-
sional trajectory follows a helix, as is illustrated in fig. 7.1.

A precise determination of direction and magnitude of particle momentum is essential
for further event reconstruction. Found trajectories are extrapolated to other detector
components, for example calorimeters or imaging C̆erenkov devices. The signals found at
the extrapolated positions in these detectors provide the information required for particle
identification. Extrapolation of particle trajectories to a common vertex allows the recon-
struction of decaying mother particles, which do not reach the detector (e. g. B mesons).
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7. Tracking for Belle II

r
B

(a)

B

(b)

Figure 7.1.: Charged particle trajectory orthogonal (a) and parallel (b) to the magnetic field.

Due to energy loss while passing through material, the momentum of the particle and thus
the curvature of its trajectory decreases, so a helix description is only an approximation
for a realistic trajectory.

The pt resolution is dominated by the measurement error and multiple scattering con-
tributions. The measurement error depends on the intrinsic detector resolution, while the
multiple scattering depends on the amount of material the particle is traversing.

The determination of track parameters can be divided into two steps: track finding or pat-
tern recognition and track parameter fitting. The main goal of the pattern recognition is
to find hits which belong to the same track. The created track candidates contain the hit
collection, as well as the preliminary track parameters estimated from these hits. Track
parameters are used to fully describe the particle trajectory and are described in detail in
section 7.5. Different approaches can be used in track finding, more details will be given
in the following section. The task of the track fitting is to obtain the best estimate of
track parameters and their covariance matrix using the information provided by the track
candidates. The correct estimation of multiple scattering and other physical effects dur-
ing track extrapolation through the material is one of the challenging tasks of track fitting.

An average Belle II event will contain 9 charged tracks on average, which is a mod-
erate amount compared to other high energy physics experiments at hadron colliders.
However, the beam induced background at Belle II will strongly increase compared to the
Belle case. Depending on the amount and spectrum of the background particles, they
might contaminate the signals from BB̄ events and deteriorate the tracking performance.
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7.2. Pattern recognition

7.2. Pattern recognition

Pattern recognition is an assignment or association of one specific object, for example a
detector hit, to one of several classes of objects, for example track candidates. In high
energy physics there are two major approaches for pattern recognition: global and local
methods.

Global methods treat all detector hits simultaneously and in a similar way. One advantage
of this approach is therefore the absence of any seeding bias. The main disadvantage is
high computing time which slows down the track finding. A widely used example of this
method is the Hough transformation [47].

Local methods use a seed, a minimal set of hits as a starting point, and follow the track
trajectory through the detector, connecting the found hits. Such track following meth-
ods are more efficient in terms of speed than global methods. The main problem of this
approach shows itself in a high occupancy environment, where several continuations are
possible for a track candidate. In that case a sophisticated selection between the possible
paths is needed.

Although a large number of already existing particle physics experiments did accomplish
the task of track finding and event reconstruction, no generally accepted optimal method
exist. Different experimental setups lead to the development of diverse pattern recog-
nition methods. The best track finding strategy for a certain setup depends on various
condition (involved subdetector technology and material budget, momentum spectrum of
the particles, expected backgrounds etc.) and is not easy to predict beforehand. Tracking
studies including the detector simulation are required to find the optimal method. An
overview of different pattern recognition and event reconstruction strategies can be found
in [48].

The Central Drift Chamber (CDC) is the main tracking device of the Belle II detec-
tor. The 56 CDC layers provide nearly continuous measurements to determine the track
trajectory. The spatial resolution of the drift chamber is however not good enough not
measure the vertices with the precision required for physics analyses. The silicon detec-
tors SVD and PXD provide better resolutions and will be used for tracking and vertexing
close to the interaction point.

The following multi-stage track finding procedure is planned for the Belle II experi-
ment [26]. First pattern recognition is performed in the CDC to find all tracks with
transverse momentum high enough to cross most of the CDC. These tracks are then
extrapolated to the SVD/PXD, the corresponding hits are assigned to the tracks and
removed from the hit collections. In the next step a challenging silicon stand-alone track
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7. Tracking for Belle II

finding is performed to find low momentum tracks. In the last step these tracks are ex-
trapolated back to the CDC to collect the corresponding hits possibly produced there and
missed during the first step.

7.3. ConformalFinder

An algorithm to perform the first pattern recognition step, denoted as the
ConformalFinder in the following, was developed in the scope of this thesis. We expect
the algorithm to find all relatively clean non-curling tracks which are crossing the majority
of the CDC layers. The performance should be efficient and stable against the assumed
background. The preliminary occupancy estimation for the CDC is 10% in the worst case.
The algorithm is based on the local track following approach.

Furthermore, as it was the first tracking algorithm implemented in the new Belle II
software framework, its implementation contributed to the development of the simulation
and reconstruction chain. The simulated geometry, hit dataobjects and physics processes
were tested, several flaws were identified and corrected. The necessary data objects and
tools to perform track finding and fitting within the framework were implemented and
tested using the ConformalFinder.

7.3.1. Main principle

Hits

Axial Track Candidates Track Candidates

Axial Segments

Stereo Segments

SegmentFinder
AxialTrackFinder

StereoFinder

Figure 7.2.: Schematic view of the principle of the ConformalFinder
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7.3. ConformalFinder

The ConformalFinder consists of several steps executed consecutively. The general pro-
cedure is similar to one already used at Belle (trasan).
In the first step hits from the same superlayer are combined to small track sections, de-
notes as segments in the following. These segments are used for the track following in the
further reconstruction. Track candidates are created by a combination of axial segments
in two dimensions. In the last step stereo segments are assigned to already created track
candidates, thus adding a z coordinate measurement. The general procedure is illustrated
in fig. 7.2.

7.3.2. SegmentFinder

The function of the SegmentFinder is to find the track sections within one superlayer.
Except the innermost superlayer, which has 8 layers, all superlayers consist of 6 layers. As
the algorithm is meant to find tracks with a momentum high enough to cross the whole
drift chamber, we are looking for tracklets crossing the superlayer from the innermost to
the outermost layer, as illustrated in fig. 7.3. For this purpose a cellular automaton is used.

Cellular Automaton
A cellular automaton is a dynamical system with discrete space and time evolution.
Discrete space means that the system consists of concrete cells. A discrete state
is assigned to each cell and these states are evaluated during the execution of the
algorithm. The states are evaluated on the basis of certain rules and conditions
in discrete time steps. Thus the rules are applied and all cell states are updated
simultaneously. This continues until the states do not change anymore during the
update step.

In the SegmentFinder all hits are considered as such cells. The original states of all hits
are set to 0. The only rule is the check if two hits from consecutive layers can be neigh-
bours. This is achieved by comparing the wire Ids of the two hits, only hits with directly
adjacent wire Ids are considered neighbours. The search is performed in the rφ plane.

Starting with the outermost layer it is checked if this hit has a neighbour in the sub-
sequent layer. If this is true the state of the hit is set to the state of the neighbour + 1.
The procedure is repeated for all layers and at the end all states are updated simultane-
ously. This process is repeated until the cells have reached their final states.
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Signal hits

Noise hits

Figure 7.3.: Schematic view of one superlayer to illustrate the function of the SegmentFinder

In the next step the segments are created using the state information of the hits. An
ideal segment starts in the outermost layer with a hit at state 5, continues in the adjacent
layer with a hit at state 4 and finishes in the innermost layer at state 0. After such
segments are found, shorter segments with missing hits at either end of the segment are
created. After such single hit chains are found, a check for possible neighbours in each
layer is performed, as a track might pass between two wires and create a signal in both of
them (see fig. 3.11). If there is another hit in the neighbouring wire, it is checked if their
drift times are compatible with the hypothesis of a track passing between them. This
is accomplished by comparing the sum of the drift lengths to the distance between the
wires. If these two numbers are close, it is likely that both hits were created by the same
particle passing between them. In this case the second hit is assigned to the given segment.

The advantage of this method is its efficiency in finding approximately straight segments
with 1-2 hits per layer. Such segments are created by high momentum tracks coming from
the interaction point, which are constituting a large part of the tracks we are interested
in. The algorithm is also able to resolve track crossings.
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7.3. ConformalFinder

The SegmentFinder is however not able to find segments from low momentum curling
tracks, which may create more than two hits per layer.

7.3.3. AxialTrackFinder

After all segments are found, the segments from the five axial superlayers are combined to
track candidates by the AxialTrackFinder. The search is performed in two dimensions,
as axial wires do not contain any z information.

Conformal Transformation
To simplify this step, the x and y hit coordinates are transformed by a conformal
transformation. The following equations are used to transform the coordinates:

X =
2x

x2 + y2
Y =

2y

x2 + y2
. (7.1)

In the rφ projection the track trajectory in the CDC is a circle starting from the
origin. The conformal transformation maps these circles to straight lines. All in-
formation is preserved, the curvature or the transverse momentum of the track
can be retrieved from the point of closest approach of the track line to the origin.
The transformation is illustrated in fig. 7.4. The outermost hits are transformed to
points close to the origin of the conformal plane, while the innermost hits are on
the outside.

To find the track candidates we now search for segments which lie on the same straight
line in the conformal plane. The segments in the outermost layer are used as seeds, each
of them starts a potential track candidate. In the following step it is checked if there is
a compatible segment in the adjacent axial layer. The variables used to decide if the two
segments belong to one track are as follows:

• Distance between the two segments in the rφ plane

• Angle between the lines constructed with the inner- and outermost hits of the seg-
ments in the conformal plane

• Shortest distance between the centre of one segment to the line of the other segment
in the conformal plane

117



7. Tracking for Belle II

(a) rφ projection (b) Conformal plane

Figure 7.4.: Schematic view of the conformal transformation. On the left side the rφ projection
of track trajectories is shown. On the right side these trajectories are transformed
onto the conformal plane.

These criteria are illustrated in fig. 7.5. When a compatible segment is found, it is as-
signed to the track candidate and the search continues in the next superlayer. When two
or more compatible segments are found, the track candidate is split and each possible
candidate is propagated on its own.

To account for tracks which do no cross the whole drift chamber, the same procedure
is repeated using the segments from the other axial superlayers, except the innermost
one, as seeds. After all track candidates are found, a linear fit to all the hits in the
conformal plane is performed. Track candidates which are not mapped to a line in the
conformal plane, and thus have a bad χ2 after the fit, are discarded.

During the last step of axial track finding the redundant tracks are removed. Only track
candidates which share less than 60% of hits with any of the other track candidates are
allowed. Out of track candidates sharing more than 60% of hits, the candidate with the
largest number of segments and the lowest χ2 value is selected, the others are discarded.
In an additional extension it is checked if some of the short track candidates (two or
three axial segments) can be combined to one track. An example of what the output
of the AxialTrackFinder looks like can be seen in fig. 7.6. The algorithm has a good
performance for tracks which are well separable in the rφ plane.
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angle

angle

 shortest
 distance

 shortest
 distance

distance

distance

Figure 7.5.: Illustration of the variables used in the AxialTrackFinder. For the blue segment
we are searching for the matching adjacent segment from the next layer. On the
left side it is shown how the distance between the two segments in the rφ plane is
calculated. On the right side the variables used in the conformal plane are shown:
the angle between the lines through the segments and the shortest distance between
the segment lines.

Figure 7.6.: Illustration of an event with 7 tracks after the execution of the AxialTrackFinder.
Black points mark the centres of the hit wires and different colours show the found
track candidates. The criteria two hits from the same layer have to fulfil to get
assigned to the same track are quite strict, so sometimes only one hit per layer is
assigned. The missed hits are visible as black dots.

119



7. Tracking for Belle II

7.3.4. StereoFinder

Figure 7.7.: Illustration of an event with 7 tracks after the execution of AxialTrackFinder and
before the execution of StereoFinder. Black points mark the centres of the hit
wires, the stereo angle is visible in a shift compared to the trajectory following the
axial wires.

In the last step of the ConformalFinder the segments from stereo superlayers are assigned
to track candidates consisting of axial segments. The stereo wires are installed with a
small angle to the z axis and are not parallel to the axial wires. After the correct hits are
found this information can be used to reconstruct the z component of the track trajectory.
In this stage of the track finding this component is however still unknown. So the search
for suitable stereo segments also starts in the rφ plane, similar to axial segments. If we
project the middle point of stereo wires on the rφ plane, their stereo angle manifests itself
in a shift compared to a trajectory following the axial wires, as shown in fig. 7.7. The shift
is small for tracks passing the wire close to the wire centre and large for tracks passing
the wire near one of its ends. For each axial track candidate we search for compatible
segments using two of the criteria already used in the AxialTrackFinder:
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7.3. ConformalFinder

• Distance between the two segments in the rφ plane

• Distance between the centre of one segment to the line of the other segment in the
conformal plane

The applied cuts are however much looser cuts to take into account the already mentioned
shift. After this first selection, the stereo segment is moved in the rφ plane along the z
coordinates of the wires to find the best matching z coordinate, which would align with
the axial track candidate in the conformal plane. An illustration is given in fig. 7.8. When
the best matching coordinate is found, the following criteria with strict cuts are used:

• Angle between the lines constructed with the inner- and outermost hits of the seg-
ments in the conformal plane

• Distance between the centre of one segment to the line of the other segment in the
conformal plane

Axial segments

Stereo wire ends

Best matching z coordinate

Movement along the stereo wire

Figure 7.8.: rφ projection of stereo wires. Stereo segments are moved in the rφ plane along the z
coordinates of the wires to find the best matching z coordinates, which would align
them with the axial track candidate.

Only stereo segments fulfilling these strict cuts are kept, others are discarded. However,
for tracks close to each other a track candidate still might have several matching stereo
segments from the same superlayer. We create stereo track candidates, composed only
of stereo segments which were assigned to the same track candidate, and check if the
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determined z coordinates of these segments are indeed compatible with each other. This
is performed through a linear fit in the rz plane, where a correct track candidate should
form a straight line. The superfluous segments are removed and the fit is repeated, until
the best matching combination with no more than one segment per superlayer is found.
At the end the stereo candidate is merged with the axial track candidate and we obtain
the final track candidates. An exemplary result is shown in fig. 7.9.

Figure 7.9.: Illustration of an 7 tracks event after the execution of all steps of ConformalFinder.
Black points mark the centres of the hit wires and different colours show the found
track candidates. The projection of the stereo wires assigned to track candidates is
shifted compared to the wire centre to match the track trajectory.

7.4. Track finding results

To evaluate the results of the track finding we use two different simulation setups. In the
first case we use a particle gun to shoot a certain amount of particles with fixed properties
into the detector. In the second case we use a realistic physics case, with one B decaying
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to D0(K+π−)π+ and the other B decaying generically.

7.4.1. Particle gun

To evaluate the performance we define Nnorm, the maximum number of tracks we could
reconstruct, which we use for normalisation of the results. This number differs slightly
from the number of simulated tracks, as we cannot reconstruct certain tracks which left
the acceptance of the detector or produced too few hits in the drift chamber. Following
quantities are used:

• Efficiency: number of found tracks relatively to Nnorm. We define a track as ’found’
when we have a track candidate with the majority of its hits originating from the
correct track. This was the main figure of merit which was maximised during the
development of the algorithm.

• Good tracks: number of found tracks fulfilling the following criteria: purity of
the candidate > 60%, estimated pt within 15% of truth, estimated φ within 5.7◦

of truth and estimated θ within 34◦ of truth. The track parameter estimation is
relatively rough and is used as a starting point for the following track fitting step.
A fitting study showed that tracks fulfilling these criteria will be fitted with a good
resolution. For tracks with lower purity, and thus falsified starting values, we might
obtain biased track parameters, so more care during the fitting procedure might be
necessary.

• Ghost tracks: number of additional track candidates, relatively to the total num-
ber of found tracks. One track candidate per simulated track is allowed, all other
candidates are counted as ghost tracks.

To simulate only particles which are intended to be found by the ConformalFinder, we
fix the particle properties for this benchmark study as follows:

particle type: π+, π−

momentum: 0.4 GeV < p < 1.6 GeV
polar angle: 50◦ < θ < 120◦

azimuthal angle: 0◦ < φ < 360φ

The resulting performance of the ConformalFinder, depending on the number of tracks
per event, is shown in fig. 7.10. We can observe a good track finding efficiency, even for
high track multiplicities. For the expected average of 9 tracks per event 96% of all tracks
are found.
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We can also see how the higher track multiplicity affects the ghost track rate, which
increases significantly. This can be explained by looking at an exemplary event with 9
tracks in fig. 7.11. When two tracks are close to each other in the rφ plane, there are
several possible candidates created from neighbouring segments. To distinguish between
these candidates and to reject the ghost tracks is the task of the track fitting (see next
section 7.5). It is however important to have only a moderate amount of ghost tracks after
the track finding to reduce the computing time for the track fitting step. Such tracks,
which are lying adjacent to each other in the rφ plane, also have a major probability
of having wrong hit or segment assignments. These tracks then do not fulfil the ’good
tracks’ criteria, thus this number decreases with increasing ghost track rate.

tracks per event
0 2 4 6 8 10 12 14 16

[%
]

0

20

40

60

80

100

Efficiency

Good tracks
Ghost tracks

Track finding performance

Figure 7.10.: Performance of the ConformalFinder depending on the number of tracks per event.
The percentages of found tracks (efficiency), of tracks with good parameter esti-
mation (good tracks) and of additional candidates (ghost tracks) are shown.

In a realistic environment we expect beam induced background which might complicate
the track finding. The exact amount and properties of the particles reaching the drift
chamber are the subject of ongoing studies. The rough worst case estimation states that
10% of all wires will be hit by background particles. As no realistic background simulation
was available, a simplified simulation was used. The additional background wire hits are
distributed following a 1/r distribution over the whole CDC. To illustrate the distribution
of the background as well as the algorithm performance, the same event as already shown
in fig. 7.11 is shown in fig. 7.12 with 10% background occupancy. The results for events
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with 9 tracks depending on the background occupancy are shown in fig. 7.13. We observe
the tracking efficiency to be nearly independent of the background level and the amount
of ghost tracks to slightly increase with higher background. This encouraging result
indicates that the track finding performance is stable against the expected background.
More realistic background simulation is however necessary to make final conclusions.

Figure 7.11.: An example of a particle gun event with 9 tracks. Black points mark the centres
of the hit wires and different colours illustrate the found track candidates. In the
right part of the plot two tracks are lying too close to each other in the rφ plane to
be properly reconstructed. Both tracks are found, but with some wrong segment
assignments and an additional ghost track candidate.
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Figure 7.12.: An example of a particle gun event with 9 tracks and 10% background occupancy.
Black points mark the centres of the hit wires and different colours illustrate the
found track candidates. The results are similar to those without background shown
in fig. 7.11.
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Figure 7.13.: Performance of the ConformalFinder for 9 track events depending on background
amount. The percentages of found tracks (efficiency), of tracks with good pa-
rameter estimation (good tracks) and of additional candidates (ghost tracks) are
shown.

7.4.2. B0 → D0(K+π−)π+

In this setup we simulate two neutral B mesons, one of them decays to D0(K+π−)π+

while the other decays generically corresponding to the current experimental branching
fractions. An exemplary decay is shown in fig. 7.14. As is illustrated there, these decays
might have low momentum curling tracks, which can be only partially reconstructed with
the ConformalFinder. So in this setup we are only interested in the reconstruction of our
signal decay, B0 → D0(K+π−)π+, and do not evaluate the reconstruction of the other B
meson. We use the following quantity to estimate the performance:

• Bsig efficiency: number of found B0
sig → D0(K+π−)π+ decays compared to the

maximum number of B0
sig → D0(K+π−)π+ decays we could reconstruct. The Bsig

decay is considered as reconstructed if all three final state tracks were found. All
simulated Bsig decays where all three final state tracks produced hits in the CDC
are used as reference.

We obtain a Bsig efficiency of 86.4%, which is a encouraging result, as the algorithm was
only optimised using particle gun events.
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Figure 7.14.: An example of an event with one B meson decaying to D0(K+π−)π+ while the
other decays generically. Black points mark the centres of the hit wires and different
colours illustrate the found track candidates. All 6 tracks could be found, although
only part of the trajectories of curling tracks could be reconstructed.

7.5. Track fitting

In this section the basic concepts of track fitting with regard to its application in the
Belle II experiment are explained.
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7.5.1. Track parametrisation

The trajectory of a charged particle in a uniform magnetic field, disregarding the energy
loss, can be represented by a helix. The helix can be described by 5 independent param-
eters, defined at the point of closest approach of the helix to a reference point (origin),
called perigee. In Belle II we intend to use the following parametrisation for the trajectory
~τ :

~τ = (d0, φ0, ω, z0, cot θ)

The parameters are defined as follows:

• d0 [cm]: signed distance from perigee to the origin in the xy-plane. Negative if the
projection of the momentum on this distance points to the origin.

• φ0: track direction angle at the perigee in the xy-plane [−π; π]

• ω [1/cm]: signed curvature q/R, with q: charge of the particle and R: the radius of
the track circle in the xy-plane

• z0 [cm]: z value at the point of closest approach to the beam line

• cot θ: inverse slope of the track in the rz-plane (dz/ds)

The parameters are visualised in fig 7.15. d0 and z0 are also denoted as impact parame-
ters. The particle momentum (in GeV/c) at any point of the trajectory described by its
azimuthal angle φ can be calculated as follows:

pxpy
pz

 =
1

|ω · α|

− sin(φ0 + φ)
cos(φ0 + φ)

cot θ

 , (7.2)

with α = 1/(1.5 · 0.00299792458), obtained from c and the magnetic field strength of 1.5
T.
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Figure 7.15.: Illustration of the used helix parameters in the xy-plane (left side) and rz-plane
(right side).

The coordinates of the perigee can be expressed using the helix parameters:xpyp
zp

 =

d0 cosφ0

d0 sinφ0

z0

 . (7.3)

The trajectory of the track close to the origin can be parametrised as a function of φ:xy
z

 '
d0 cosφ0

d0 sinφ0

z0

+
1

ω · α

cosφ0 + cos(φ0 + φ)
sinφ0 + sin(φ0 + φ)

cot θ · φ

 . (7.4)

7.5.2. Kalman filter

The basic principle of most track fitting approaches used in high energy physics is the
Kalman filter. It was first described by R.E. Kalman [49] to provide a signal filter-
ing method in electrical engineering and later its application was introduced to particle
physics [50].
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The main idea is the use of measurements containing noise and other inaccuracies and
obtaining values closer to the true values of the measurements. The Kalman filter assumes
a linear projection between the measurements. For curved trajectories the transformation
of the local parameters of one measurement at radius r1 to the parameters of the next
measurement at radius r2 is non-linear. To linearise the transformation Taylor series ex-
pansions are used, this approach is denoted as extended Kalman filter.

An extended Kalman filter used in particle physics is an recursive iterative algorithm,
which collects and directly combines the information from the measurements and their
errors. As we have five track parameters with considerable correlations, the measurement
errors are describes by a five dimensional covariance matrix. The first step is the pre-
diction of the state vector and the covariance matrix of the next measurement through
the extrapolation using the preceding measurements. In the next step the measurement
itself is taken into account, a weighted average of the predicted and measured value is
calculated and the state vector is updated. This workflow is illustrated in fig. 7.16. The
Kalman filter and its variations are widely used for tracking applications in particle physics
experiments.

Prediction of the next state
and its covariance matrix

Measurement

Update of the state
and its covariance matrix

State estimate

Compute Kalman gain

Figure 7.16.: Workflow of the Kalman filter.

7.5.3. Deterministic Annealing Filter (DAF)

In the presence of ambiguous measurements and noise the Kalman filter might not be
the optimal solution to determine the correct track parameters. The application of the
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Kalman filter requires the hit assignment problem to be resolved by the preceding track
finding, wrongly assigned noise hits would lead to biased fit results. One of the algorithms
suggested to improve the track fitting is the Deterministic Annealing Filter (DAF) [51].
This algorithm is based on a Kalman filter with an additional reweighting of the observed
measurements. DAF determines assignment probabilities for all competing hits, in this
way the outlier hits, which are not well compatible with the track parameters, are down-
weighted. The filter is run in several iterations, if the hit probability falls below a certain
threshold, it is suppressed during the next iteration. The threshold is decreased from
iteration to iteration, following a specific annealing scheme. The number of iterations and
the annealing scheme can be optimised depending on the noise level and the quality of
the starting values.

7.5.4. GENFIT

To perform track fitting within the Belle II framework, we intend to use GENFIT, a generic
track fitting framework described in [52]. The concept of GENFIT divides the track fitting
problem into three main parts, which are separated from each other: reconstruction hits,
track representations and track fitting algorithms.

• Reconstruction hit is an object which represents a position measurement from
a detector. The raw hit information as well as the coordinate system where it
is defined differ between the different subdetector technologies. Different kinds of
reconstruction hits can be accessed via a common interface and can be fitted at
once.

• Track representation is a combination of the track parametrisation and the track
extrapolation functionality. A track representation holds the information about
the state vector and the covariance matrix. It provides extrapolation functions
to extrapolate the track parameters to different places in the detector. Currently
the track representation RKTrackRep is used within the Belle II framework, but
other track representations with possibly better performances are currently under
investigation.

• Track fitting algorithm: the task of the fitting algorithm was already explained
in previous subsections. Two algorithms are currently implemented within GENFIT:
extended Kalman filter and DAF.

The GENFIT framework is currently included in the Belle II framework. In the scope
of this thesis the modules necessary to use GENFIT to fit the tracks produced by the
Belle II simulation were implemented. The GENFIT performance itself was examined
and the detector simulation was tested. Several improvements to the simulation and
reconstruction chain were introduced and the implementation of further analysis modules
was enabled.
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7.6. Track fitting results

To have a reference for the evaluation of the results of the ConformalFinder after track
fitting, we establish a Monte Carlo based track finding. Monte Carlo track candidates are
created using the truth information: all hits created by a particle are collected and the
simulated parameters assigned to the candidate, thus creating a ’perfect’ track candidate.
These track candidates are then fitted with GENFIT to obtain Monte Carlo tracks. The
parameter resolution depends on the resolution of the single CDC wires and the proper
propagation of the tracks through the detector volume during the simulation and the
track fitting. We test the Monte Carlo based fitting by looking at the relative resolution
of the transverse momentum, which we define as follows:

σpt
pt

=
ptREC − ptMC

ptMC

, (7.5)

with ptMC being the true transverse momentum from the MC simulation and ptREC the
transverse momentum resulting from the fit. We use the sample with 9 pion tracks as
already presented in section 7.4.1 for this study. The transverse momentum resolution is
shown in fig. 7.17.
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Figure 7.17.: The transverse momentum resolution for Monte Carlo tracks.

We obtain a Gaussian resolution curve with a width of (0.195 ± 0.003)%, which is com-
patible with the expectations derived from the performance of Belle CDC. We can also
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observe the dependency of the resolution over pt: the resolution becomes worse for higher
pt due to the smaller curvature. Tracks with pt > 1.5 GeV are nearly straight within
the drift chamber dimensions. The resolution also increases slightly for low momentum
tracks because of the growing material interactions, where the track extrapolation looses
accuracy.

As we now have an established benchmark reference using Monte Carlo tracks, we can
evaluate the fitting of the tracks found by the ConformalFinder. We use the DAF fit-
ting algorithm with the default annealing scheme. We look at the resolutions of three
parameters:

• Transverse momentum:
σpt
pt

= ptREC−ptMC

ptMC

• Azimuthal angle: σφ = φREC − φMC

• Polar angle: σθ = θREC − θMC

The resolutions of these parameters, compared to resolutions of Monte Carlo tracks, are
shown in fig. 7.18. We can observe, that the resolution for reconstructed tracks is nearly
as good as for Monte Carlo tracks, the differences are below ∼ 10%. Furthermore, it can
be noted that the deterioration of the pt resolution arises mostly from tracks with low
pt < 0.6 GeV.

Nearly 75% of all reconstructed tracks lie within the central peak. The parameters of
the remaining track candidates lie further away from the true values, another fitting step
might be necessary to obtain more precise parameters.

We evaluate the performance with additional 10% occupancy background in the same
manner and compare them with the results without background. The comparison s shown
in fig. 7.19. We observe only a slight deterioration < 5% of parameter resolution, which
shows that the background hits can be successfully down-weighted by the DAF algorithm.

134



7.6. Track fitting results

]° [φσ
-1 -0.5 0 0.5 1

0

50

100

150

200

250

300 ° = 0.087MCσ
° = 0.088recσ

Monte Carlo tracks

Reconstructed tracks

φσ

(a) φ resolution

]° [θσ
-1 -0.5 0 0.5 1

0

20

40

60

80

100

120

140

160

180

200

220

240
° = 0.106MCσ
° = 0.115recσ

Monte Carlo tracks

Reconstructed tracks

θσ

(b) θ resolution

t
/p

t
pσ

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

120

140

160

180

200

220  = 0.195 %MCσ
 = 0.209 %Recσ

Monte Carlo tracks

Reconstructed tracks

t
/p

t
pσ

(c) pt resolution

 [GeV]
t

p
0.4 0.6 0.8 1 1.2 1.4 1.6

[%
]

t
/p t

pσ

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Monte Carlo tracks

Reconstructed tracks

t
 over p

t
/p

t
pσ

(d) pt resolution

Figure 7.18.: Parameter resolution of reconstructed tracks compared to the Monte Carlo tracks
after fitting. Resolutions of transverse momentum, azimuthal and polar angles are
shown.
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Figure 7.19.: Parameter resolution of reconstructed tracks after fitting with and without back-
ground. Resolutions of transverse momentum, azimuthal and polar angles are
shown.
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7.7. Conclusion

An algorithm to find high momentum tracks in the central drift chamber, denoted as
ConformalFinder, was developed and implemented in the Belle II software framework.
The algorithm is based on local track following consisting of several steps and combines
several techniques like cellular automaton and conformal transformation. Along with the
algorithm itself several tools necessary for the execution of the simulation and reconstruc-
tion chain were implemented in the Belle II software framework. Track fitting using the
external generic framework GENFIT was enabled and tested within the framework using
Monte Carlo based track finding and the ConformalFinder.

Using particle gun events and theB0 → D0(K+π−)π+ decay it was shown that ConformalFinder
is efficient in finding tracks with p > 0.4 GeV in the simulated Belle II drift chamber.
Moreover, the track finding performance is stable up to 10% occupancy, which was deter-
mined using a simplified background simulation.
The track parameter resolution obtained from the track fitting is, for a majority of the
found tracks, only slightly above the Monte Carlo track resolution. Merely a minor dete-
rioration of the resolution is observed in case of 10% occupancy.

The implementation of the ConformalFinder as the first track finding alrogithm in the
Belle II software framework enabled the development of further steps of the event recon-
struction, for example extrapolation of the found tracks to other subdetectors or vertexing.
It also laid the foundation for development of improved track finding algorithms and a
benchmark for their performance. Currently two different elaborate track finding algo-
rithms, one using a local whereas the other one is using a global approach, which includes
the drift time information of the hits, are in development.
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8. Summary

A search for decays B → h(∗)νν̄, where h(∗) stands for K+, K0
S, K∗+, K∗0, π+, π0, ρ+, ρ0

and φ was performed within this thesis. The full data sample of 711 fb−1 (≈ 771×106 BB̄
pairs) collected on the Υ(4S) resonance at Belle and the probabilistic full reconstruction
method were used. The signal extraction was optimised to increase the signal sensitivity
compared to the previous analysis of these decays. The procedure was studied using sim-
ulated experiments and fixed before it was applied on the experimental data.

No significant signal was observed in any of the channels. Signal significances and branch-
ing fraction limits at 90% CL were evaluated and are shown in table 8.1. With the data
set only 1.5 times larger than the one used in the previous Belle analysis, most of the
limits could be considerably improved due to the refined analysis procedure. For four
channels the worlds most stringent limit could be obtained.

Channel Signal
signifi-
cance

Branching ratio
limit at 90% CL

Branching ratio
limit at 90% CL
previous Belle
analysis [1]

Current most
stringent limit
at 90% CL [2]

B+ → K+νν̄ 2.0σ 5.5× 10−5 1.4× 10−5 1.3× 10−5

B+ → K∗+νν̄ - 4.0× 10−5 14× 10−5 8× 10−5

B+ → π+νν̄ 2.6σ 9.8× 10−5 17× 10−5 10× 10−5

B+ → ρ+νν̄ 1.7σ 21.4× 10−5 15× 10−5 15× 10−5

B0 → K0
sνν̄ 0.7σ 9.7× 10−5 16× 10−5 5.6× 10−5

B0 → K∗0νν̄ - 5.5× 10−5 34× 10−5 1.2× 10−5

B0 → π0νν̄ 1.9σ 6.9× 10−5 22× 22−5 22× 10−5

B0 → ρ0νν̄ 0.4σ 20.8× 10−5 44× 10−5 44× 10−5

B0 → φνν̄ 0.5σ 12.7× 10−5 5.8× 10−5 5.8× 10−5

Table 8.1.: Signal significances and branching fraction limits at 90% CL.

As no significant signal was observed, we cannot draw obvious conclusions concerning the
NP models presented in chapter 2, although the improved limits can now be used as con-
straints for these models. As the new limits are still roughly one order of magnitude above
the SM predictions, there is a large parameter space left for various NP contributions.
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8. Summary

The intriguing hint for NP in a signal significance of over 2σ in K+ and π+ channels calls
for further investigations in future experiments.

To achieve a higher signal sensitivity a larger data sample containing more BB̄ pairs
is necessary. In the coming years the KEKB accelerator will be upgraded to SuperKEKB.
The target luminosity of the new machine is 8 × 1035cm−2s−1, which will increase the
luminosity achieved by KEKB by a factor of 40. The expected data sample of 50 ab−1

and an improved reconstruction should allow the branching fractions measurements of
B → h(∗)νν̄ in the same order of magnitude as the SM predictions and thus enable a po-
tential NP observation. The Belle detector will be replaced by the new Belle II detector.

The second part of this thesis contributed to the tracking development for the Belle II
experiment. An efficient and precise tracking performance is essential for the correct re-
construction and therefore the physical interpretation of the events. An algorithm to find
high momentum tracks in the central drift chamber, denoted as ConformalFinder, was
developed and implemented in the Belle II software framework in the scope of this thesis.
During the integration of the algorithm in the framework the tools necessary for the ex-
ecution of the simulation and reconstruction chain were established. Furthermore, track
fitting using the external generic framework GENFIT was included and tested within the
framework using track finding based on the truth information and the ConformalFinder.

Using different simulation setups it was shown that ConformalFinder is efficient in find-
ing tracks with p > 0.4 GeV in the simulated Belle II drift chamber (96% of tracks can be
found in events with 9 charged tracks) and has a stable performance in a presence of up
to 10% background occupancy. The track parameter resolution, obtained from the track
fitting, is for the majority of the found tracks only slightly deteriorated (< 5%) compared
to the resolution of tracks reconstructed using the truth information.

As the ConformalFinder was the first track finding algorithm implemented in the Belle II
software framework, its implementation paved the way for the development of improved
track finding algorithms and represents a benchmark for their performance. Moreover,
the implementation of further steps of the event reconstruction was enabled.
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A.1. N-1 plots
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(f) B0 → K∗0νν̄
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Figure A.1.: The Mbc distribution for background (filled histogram) and signal (red line) Monte
Carlo, with all other cuts applied. The signal distribution is normalised to an
arbitrary value to illustrate the shape. The dashed line marks the cut value.
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Figure A.2.: The ∆E distribution for background (filled histogram) and signal (red line) Monte
Carlo, with all other cuts applied. The signal distribution is normalised to an
arbitrary value to illustrate the shape. The dashed lines mark the cut values.
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Figure A.3.: The NBout distribution for background (filled histogram) and signal (red line)
Monte Carlo, with all other cuts applied. The signal distribution is normalised to
an arbitrary value to illustrate the shape. The dashed line marks the cut value.
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Figure A.4.: The distribution of number of remaining tracks for background (filled histogram)
and signal (red line) Monte Carlo, with all other cuts applied. The signal distri-
bution is normalised to an arbitrary value to illustrate the shape. The dashed line
marks the cut value.
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Figure A.5.: The distribution of number of remaining π0 for background (filled histogram) and
signal (red line) Monte Carlo, with all other cuts applied. The signal distribution
is normalised to an arbitrary value to illustrate the shape. The dashed line marks
the cut value.
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Figure A.6.: The distribution of the angle between the missing momentum and the beam pipe
for background (filled histogram) and signal (red line) Monte Carlo, with all other
cuts applied. The signal distribution is normalised to an arbitrary value to illustrate
the shape. The dashed lines mark the cut values.
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Figure A.7.: The distribution of the cosine between the thrust axis of the Bsig and the rest of
the charged tracks. The continuum background component (second from below) is
marked yellow. The dashed lines mark the cut values.
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Figure A.8.: The distribution of the light meson momentum for background (filled histogram)
and signal (red line) Monte Carlo, with all other cuts applied. The signal distribu-
tion is normalised to an arbitrary value to illustrate the shape. The dashed lines
mark the cut values.
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A.2. Btag efficiency
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Figure A.9.: The Monte Carlo background distribution in the signal box before and after the
reweighting of the correct Btag events.
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Figure A.10.: The Monte Carlo background distribution in the signal box before and after the
reweighting of the correct Btag events.

151



A. Appendix

152



A.3. Comparison between Monte Carlo and data

A.3. Comparison between Monte Carlo and data
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Figure A.11.: The EECL distributions in the Mbc sideband with no cut on the momentum of
the light meson applied. The blacks dots show the data distribution, whether the
filled histogram show a stack plot of the background components.
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Figure A.12.: The EECL distributions in the Mbc sideband withfollowing cuts released: missing
momentum angle, π0 veto, remaining tracks veto, ∆E.. The blacks dots show the
data distribution, whether the filled histogram show a stack plot of the background
components.
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A.4. Fitting procedure applied on simulated experiments

A.4.1. Counting
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Figure A.13.: The mean of the signal yield of the simulated Monte Carlo experiments counting
study with expected background and 0 signal events. Here the results for the
channels (from left to right, from up to down) are sorted according to the number
of expected background events.
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Figure A.14.: The mean of the signal yield of the simulated Monte Carlo counting study with
expected background and 15 signal events. Here the results for the channels (from
left to right, from up to down) are sorted according to the number of expected
background events.
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A.4.2. Fitting
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Figure A.15.: The mean, fitting error and pull distributions of the simulated Monte Carlo ex-
periments study study with 150 background and 50 signal events.
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Figure A.16.: The mean, fitting error and pull distributions of the simulated Monte Carlo ex-
periments study with 150 background and 0 signal events.
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Figure A.17.: The mean, fitting error and pull distributions of the simulated Monte Carlo ex-
periments study with expected background and 15 signal events. Number of sim-
ulated background events (from up to down): B+ → ρ+νν̄ (117), B+ → π+νν̄
(102), B+ → K+νν̄ (37), B0 → ρ0νν̄ (34),B+ → K∗+νν̄ (20), B0 → K∗0νν̄ (14),
B0 → π0νν̄ (7), B0 → K0sνν̄ (4) and B0 → φνν̄ (2).
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(f) B+ → π+νν̄: EECL > 0.3 GeV

Figure A.18.: Missing mass distributions for K+ and π+ channels without normalisation between
data and Monte Carlo. From left to right the whole EECL region, EECL < 0.3
GeV and EECL > 0.3 GeV are shown.
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Figure A.19.: Missing momentum to beam angle distributions for K+ and π+ channels without
normalisation between data and Monte Carlo. From left to right the whole EECL
region, EECL < 0.3 GeV and EECL > 0.3 GeV are shown.
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