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Introduction

Neutrinos are part of the standard model of particle physics, but their nature may
go beyond the scope of this model. Originally, they were supposed to have vanishing
mass, but in fact they do have a small mass. And neutrinos may be Majorana par-
ticles that means their own antiparticles. They play an important role in cosmology
since they are assumed to have contributed to the formation of our universe and –
as weakly interacting particles – they are messengers from astrophysical processes.
This versatility makes neutrinos interesting in many areas of physics.

Postulated in 1930 by Pauli to save spin, energy and momentum conservation in
recently discovered β-decays, it took 26 more years until the neutrino was finally
detected by Cowan and Reines. The reason is that neutrinos only interact weakly
with ordinary matter. They pass easily through almost everything and therefore
are hard to detect. Even today, large neutrino fluxes and sophisticated methods are
required to measure at least some interactions of neutrinos within a detector.

On the other hand, this weak interaction can be regarded as an advantage in as-
troparticle physics since the universe is full of neutrinos (≈ 340/cm3) and they carry
information from distant objects of the universe to the earth without being disturbed
on their way. For example, neutrinos are emitted in fusion processes of the sun and
help to investigate its interior. Cosmic events like supernova explosions are accom-
panied by neutrinos that act as messengers and help to understand the underlying
processes.

But the neutrino itself has to be understood first, since neutrino experiments discov-
ered a mysterious nature during the recent decades: Neutrinos seemed to disappear
since one measured fewer neutrinos than expected when investigating solar and at-
mospheric neutrino fluxes. After thorough investigations and several generations
of experiments, the solution was found to be neutrino oscillations: A neutrino can
change its flavour and become ’invisible’ for certain types of experiments. One im-
portant implication of the evidence of neutrino oscillations is that neutrinos have
mass although they were expected to be massless in the standard model. The oscilla-
tion experiments are sensitive to determine small mass differences between different
neutrino mass eigenstates, but the absolute mass scale remains inaccessible.

Therefore, other approaches were focused to determine the mass of the neutrino.
These experiments were able to set upper limits, for example on the effective mass
of the electron antineutrino

mν̄e < 2 eV/c2 (95% C.L.). (1)

In this context, the KArlsruhe TRItium Neutrino experiment KATRIN (see chapter
2) will determine the mass mν̄e of the electron antineutrino in a direct, model-



independent measurement. The tritium β-decay spectrum will be measured close
to the spectral endpoint energy where a non-vanishing neutrino mass influences the
spectral shape. For that purpose, KATRIN will use a windowless gaseous tritium
source WGTS (see chapter 3) to produce β-electrons. The WGTS is a large, com-
plex cryostat operated at 30 K. Strict requirements on the WGTS parameters are
necessary to achieve low systematic effects on the neutrino mass. The retarding
spectrometer of KATRIN will analyse the electrons’ energies with an energy reso-
lution of ∆E < 0.93 eV. Only electrons with energies above the analysing retarding
energy can pass in this integral spectrum measurement. A silicon detector will al-
low detecting the high energy part of the electron spectrum and determining the
rate depending on the set retarding energy of the spectrometer. Within three years
measurement time KATRIN will reach a sensitivity of mν < 200 meV/c2 (90% C.L.).

For this ambitious goal it is important to increase the statistics of the experiment, to
understand the whole experimental system and to identify and quantify systematic
uncertainties. These tasks immediately put the focus on the WGTS of KATRIN,
since on the one hand it provides the high β-electron flux and on the other hand
induces systematic effects. To investigate these implications of the source, dedi-
cated simulations of the WGTS are presented in chapter 4. They comprise detailed
descriptions of the physical processes in the source like the density and tempera-
ture distributions, the tritium β-decay spectrum and scattering processes. Special
emphasis is given to gas dynamics simulations (see chapter 5) that consider the ge-
ometry and the tritium circulation to describe the velocity distribution function of
the system.

Then, in chapter 6, developed analysis routines are presented to determine the sta-
tistical uncertainty of KATRIN and to investigate the influence of several source
parameters on the analysed neutrino mass. These methods use the previously ex-
plained spectrum calculation to generate KATRIN-like measurements and statistical
methods based on Monte-Carlo simulations and maximum likelihood estimation for
their evaluation.

The results of statistical analyses respectively sensitivity studies at KATRIN are
presented in chapter 7. This comprises results of ensemble (Monte-Carlo) methods
and the concept of profile likelihood to estimate the variance on the neutrino mass of
KATRIN. Feldman-Cousins unified approach is then used to translate the statistical
uncertainty into upper limits or claims.

The influence of various source parameters on the neutrino mass measurement at
KATRIN is evaluated and discussed in chapter 8. Again, ensemble methods and the
concept of profile likelihood with constraints on parameters is used to quantitatively
determine the effect of systematic uncertainties of key parameters on the analysed
neutrino mass.

The concluding part of this thesis, chapter 9, explains the measurements at the
’demonstrator’, a test experiment of the WGTS. There, a temperature profile has
been measured and has been used as realistic input for the source simulations. All
results of the test measurement were investigated with respect to their implications
on KATRIN.



1. Neutrino physics

1.1 Neutrinos: Historical

In 1930, Wolfgang Pauli postulated a new particle to explain the measured β-
spectrum [1]. At that time, the decay of a nucleus with mass A and charge number
Z under emission of an electron was observed

(A,Z) −→ (A,Z + 1) + e−. (1.1)

Without a third particle, the spectrum would be a monoenergetic line at the decay
energy Q. The new particle, Pauli called it “neutron” first, was supposed to be neu-
tral, have spin 1/2 and carry away energy and momentum to explain the continuous
electron spectrum. This new particle was hard to detect due to its electrical neutral-
ity and since it interacts only very weakly with matter. In 1956, Cowan and Reines
[2] discovered the new particle – the electron antineutrino ν̄e – by inverse β-decay

ν̄e + p −→ e+ + n. (1.2)

In this type of experiment, the positron annihilates with an electron and creates two
photons that are recorded immediately by scintillators. The neutron is captured by
a Cadmium nucleus that emits a photon during de-excitation after a characteristic
time delay. The coincidence of these two photon signals proves the reaction of ν̄e

with the target. The determined cross-section of the inverse β-decay was published
as σ = (1.2+0.7

−0.4) ·10−43cm2 [2], a typical cross-section for weakly interacting particles.

1.2 Neutrino properties

Today, in the Standard Model (SM) (see figure 1.1), neutrinos belong to the three
generations: νe that was discovered as described above by Cowan and Reines, νµ
that was shown to be different from νe in 1962 [3] and ντ discovered in 2000 [4].
Neutrinos are weakly interacting particles and are treated massless in the SM (see
section 1.4). This makes them excellent messengers in astroparticle physics, for
example for observations of the sun. Only the surface of the sun can be observed by
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Figure 1.1: The Standard Model of particle physics. The quarks (up, down,
charm, strange, top, bottom) and leptons (electron, electron neutrino, muon, muon
neutrino, tau and tau neutrino) have a spin of 1/2 and belong to 3 generations. The
gauge bosons, photon γ as mediator of the electromagnetic force, gluon g for the
strong force and Z0 and W-Bosons for the weak interaction carry spin 1. The Higgs
boson H as part of the Standard Model generates the masses of particles.

photons, since the interior is so dense that photons scatter permanently. But during
fusion processes, neutrinos are also created (see section 1.3). Due to their weak
interaction, they can leave the sun undisturbed. A measurement of solar neutrinos
therefore offers information on the interior of the sun.

Another messenger function of neutrinos happens during supernova (type II) explo-
sions. This brief description follows [5]: If a heavy star passes the Chandrasekhar
limit, the gravitational attraction is so strong that the star collapses. The density
at the centre increases drastically and neutronisation e− + p → n + νe happens; a
neutron star is created. Additionally, neutrinos are created by e+ + e− → ν + ν̄.
The core of the supernova is too dense, so it is opaque for neutrinos; they “diffuse”
to outer regions and leave the supernova earlier than photons, before a shock wave
causes the big supernova explosion. Therefore, neutrinos are the first message from a
supernova and could be used to understand early phases of the supernova explosion
mechanism and to adjust telescopes for the observation of photons.

1.3 Neutrino oscillations

In the previous section, three types of neutrinos νe, νµ and ντ (and their antiparticles)
have been discussed. These flavours are eigenstates of the weak interaction that
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means a neutrino (antineutrino), which is produced by a W-boson together with
an electron (positron) is a νe (ν̄e), together with a muon (antimuon) is a νµ (ν̄µ),
etc. [6]. But these flavour states are no eigenstates of the mass operator M. Instead,
each flavour eigenstate |να〉 with α = e, µ, τ is composed of a superposition of the
mass eigenstates |νj〉 with j = 1, 2, 3

|να〉 =
3∑
j=1

Uαj|νj〉 (1.3)

with the elements Uαj of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
A typical representation is given in [6]

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 · diag(1, ei
α21

2 , ei
α31

2 ),

(1.4)

where cij (sij) denote cos θij (sin θij) of the mixing angles θij with i, j = 1, 2, 3 and
δ denotes the Dirac CP violation phase, αn1 the possible Majorana CP violating
phases.

This neutrino mixing has the following implications: A neutrino with energy E is
produced in initial flavour state |νl〉 and is travelling along distance L within time
t from the source to the detector. Since E2

j = p2
jc

2 + m2
jc

4 and the masses mj are
assumed to be different, the different states |νj〉 propagate with different momen-
tum pj. In quantum mechanics, a propagation is written as exp (−i(Et− pjL)/h̄).
Therefore, after time t at the detector the initial state has changed to

|ν(t)〉 =
∑
i

Uαj · e−i(Et−pjL)/h̄|νj〉 (1.5)

If one asks for the probability P to measure a flavour |νβ〉 after propagation time t
of neutrinos in state |να〉, one calculates (with h̄ = c = 1) [5, 6]

P (α −→ β) = |〈νβ|ν(t)〉|2 =
∑
j

|UβjU∗αj|2+2
∑
j>k

UβjU
∗
αjUαkU

∗
βk cos

(
∆m2

jk

2p
L+ φ

)
.

(1.6)
with the squared mass differences

∆m2
jk = m2

j −m2
k (1.7)

and phase φ. The cosine term causes oscillatory behaviour in the probability to
measure different states |νβ〉 after propagation length L ≈ c · t with energy E ≈ pc
for relativistic neutrinos. For example, after

L =
2Eh̄

∆m2
jkc

3
· 2πk, with k ∈ N (1.8)

a measurement of a pure beam of νe would yield only νe again. At other distances,
also νµ or ντ could occur. Their individual contributions are determined by the
matrix elements Uej respectively by the mixing angles θij, often stated as sin2(2θij).
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Eq. (1.6) shows that observations of neutrino oscillations can only deduce ∆m2
jk; the

absolute mass scale remains unknown.

In the history of neutrino oscillation experiments, different lengths L and energies E
were required to test for unknown ∆m2

jk. Therefore, various neutrino sources have
been used and appropriate detector concepts have been developed. Some major
results are presented in the following.

1.3.1 Solar neutrinos

The fusion reactions in the sun create electron neutrinos within the net equation of
the proton-proton cycle [6]

4p+ 2e− −→ 4He + 2νe + 26.73MeV − Eν (1.9)

with released thermal energy of 26.73 MeV minus the energy Eν that the neutrino
carries away. In various steps of the CNO-cycle additional νe are produced. Their
energies are below 2 MeV for most processes of the cycles (below 18.8 MeV for the
8B-neutrinos and neutrinos the hep-cycle) [5]. These cycles are described by the
standard solar model (SSM) e.g. [7] that predicts fluxes of solar electron neutrinos
from the various reactions, which reach the earth.

Early neutrino experiments like the Homestake experiment [8] measured only fluxes
of about one third of the theoretical prediction of the SSM. This was called the
“solar neutrino problem”. It could be solved by the theory of neutrino oscillations,
namely by νe −→ νµ disappearance where νµ was not able to be detected.

Further experiments followed, for example the“Sudbury Neutrino observatory SNO”
[9]. It consisted of 1000 tons of ultra pure heavy water D2O 1. Electron neutrinos
can scatter on deuterium by charged current weak interaction

νe + d −→ e− + p+ p (1.10)

whereas neutral current interaction

να + d −→ να + p+ n. (1.11)

and elastic scattering

να + e −→ να + e (1.12)

are possible for every neutrino flavour α. Therefore, the experiment was sensitive to
all neutrinos and was able to show that the total flux of measured solar 8B neutrinos
is in good agreement with predictions of the SSM.

In combination with other solar neutrino experiments and results from reactor ex-
periments (see below), a global analysis of the particle data group in [6] results
in

∆mS = 7.58+0.22
−0.26 · 10−5 eV2. (1.13)

1In later phases of the experiment NaCl respectively neutron counters were added to increase
its sensitivity [10, 11].
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1.3.2 Atmospheric neutrinos

Interactions of cosmic rays with molecules of the atmosphere create pions and muons
that decay into electrons and (anti-)neutrinos

π± −→ µ± + νµ(ν̄µ) (1.14)

µ± −→ e± + νe(ν̄e) + ν̄µ(νµ). (1.15)

It is expected to measure twice as many muon neutrinos as electron neutrinos.

The Super-Kamiokande experiment [12], a 50kt water Cherenkov detector detected
and discriminated electron and muon neutrinos by scattering with nuclei producing
leptons that then emit Cherenkov light. It measured an asymmetry between the
number of neutrinos from top with a distance of only few km from the atmosphere
and from the bottom where the neutrinos have travelled 10000 km through the earth.
This asymmetry can be explained by neutrino oscillations because neutrinos from
top have no time to oscillate, to disappear whereas neutrinos that travelled through
the earth oscillate into τ neutrinos that were not detectable. A global analysis of
various experiments [6] yields

|∆mA| = 2.35+0.12
−0.09 · 10−3 eV2. (1.16)

1.3.3 Accelerator neutrinos

With eq. (1.8) and expected mass splittings of eq. (1.13) or eq. (1.16), accelerator
experiments can be designed with appropriate energy E and baseline length L, for
example the MINOS long-baseline neutrino experiment [13]. In this experiment, a
disappearance of a muon neutrino beam from Fermilab was detected in an under-
ground detector at the Soudan mine in a distance of 735 km. Its results are

|∆m2
A| = 2.32+0.12

−0.08 · 10−3 eV2 (1.17)

sin2(2θA) > 0.90 (90% C.L.). (1.18)

The mixing angle is accessible, since a near detector at the accelerator measured the
initial flux of muon neutrinos that can be compared with the detected muon flux.

1.3.4 Reactor neutrinos and determination of θ13

Similar to accelerator neutrinos, ν̄e from nuclear power plants can be used to study
neutrino oscillations. In recent years, a tandem detector setup proved to be suc-
cessful. One detector is placed close to the reactor core where no oscillations have
happened yet to determine the initial flux of neutrinos. A second detector is placed
under consideration of eq. (1.8) in distance L from the reactor to determine the
disappearance ν̄e−→ ν̄µ. The Daya Bay experiment [14] is mentioned here as repre-
sentative for many successful reactor neutrino experiments. With 4 near and 2 far
detectors it was able to detect neutrino disappearance from 6 nuclear power plants
and measure the last unknown mixing angle θ13 as

sin2(2θ13) = 0.092± 0.016 (stat.)± 0.005 (syst.) (1.19)

Other experiments [15, 16] with similar setup achieved compatible results.
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Table 1.1: Best fit values for neutrino oscillation parameters from [6].

parameter best-fit (±1σ)

∆m2
S 7.58+0.22

−0.26 · 10−5 eV2

|∆m2
A| 2.35+0.12

−0.09 · 10−3 eV2

sin2 θ12 0.306+0.018
−0.015

sin2 θ23 0.42+0.08
−0.03

sin2 θ13 0.0251± 0.0034

Summary neutrino oscillations

The neutrino oscillation experiments were very successful in recent years and com-
pleted the mixing matrix with the measurement of θ13 in 2012. A summary of the
determined parameters is given in table 1.1.

Although the oscillation data only allows for determination of the mass splittings,
not for the absolute scale of the neutrino masses, two cases of neutrino mass ordering
are possible [6]:

• Normal hierarchical ordering m1 < m2 < m3. This means one can connect
∆m2

A = ∆m2
31 > 0 and ∆m2

S = ∆m2
21 > 0.

• Inverted hierarchical ordering m3 < m1 < m2 with ∆m2
A = ∆m2

32 < 0 and
∆m2

S = ∆m2
21 > 0.

• Quasi-degenerate case m1 ≈ m2 ≈ m3 where all masses mj are larger than the
splittings: m2

j � |∆m2
A|.

1.4 Neutrino masses

1.4.1 Particle physics

In the Standard Model SM (see figure 1.1), neutrinos are massless like photons. But
the observation of neutrino oscillations (section 1.3) shows that at least 2 neutrino
mass eigenstates have non-zero masses. On the other hand, the masses are very
small, in the sub-eV range, at least 5-6 orders of magnitude smaller than the lightest
particle of the SM, the electron [6]. Besides other theories based on supersymmetry
or Grand Unified Theories GUT, the seesaw mechanism can explain why the mass
of the neutrinos is small but nonzero and is presented briefly in the following.

The seesaw mechanism requires a heavy right-handed Majorana-Neutrino2 NR and
a left-handed light neutrino νL [5]. The mass term of the Lagrangian is then

− LDM =
1

2

(
ν̄L N̄ c

L

)( 0 mD

mD mR

)(
νcR
NR

)
+ h.c. (1.20)

2A Majorana particle is its own antiparticle.
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with a Dirac mass mD and Majorana mass mR.

Diagonalizing the matrix yields eigenvalues for the mass of the light neutrino mν

and the heavy neutrino mN

mν =
m2
D

mR

� mD (1.21)

mN ≈ mR (1.22)

The mass mν depends on the values for mD and mR that are used in the specific
model. Typically mD is a fermion mass (lepton or quark) and mR is on the GUT
scale (1016 GeV) what results in small mν [5].

1.4.2 Cosmology

Cosmic microwave background

After the Big Bang, the temperature was so high that the particles of the standard
model were in thermal equilibrium [17, 18]. For example, pair annihilation and pair
production e++e− ⇀↽ γ+γ happened as well as Thomson scattering e−+γ → e−+γ.
The universe was opaque for photons. Then, the universe expanded and cooled.
About 380,000 years after the Big Bang, the temperature was low enough that
electrons and protons were able to build neutral hydrogen and the photons had
insufficient energies to break it up again. This process is called recombination.
The photons decoupled from the interactions and were able to stream freely. They
kept their original spectrum, a black-body spectrum. During the expansion of the
universe, the wavelength was redshifted, so that we expect a temperature of T ≈ 3 K
of this so called cosmic microwave background (CMB) from all directions of space
today.

Modern experiments like the “Cosmic Microwave Background Explorer” (COBE)
determined T = 2.72548± 0.00057 K [19] and discovered small anisotropies. Today,
these anisotropies have been measured with highest precision by the “Wilkinson
Microwave Anisotropy Probe” (WMAP) [20] and are shown in figure 1.2a. A mul-
tipole analysis of the autocorrelation function that compares the temperature from
different directions of the sky is a main result and is shown in figure 1.2b.

The anisotropy occurs due to several effects:

• Baryonic acoustic oscillations (BAO): Primordial density fluctuations attract
more matter. An overdense region grows, compresses and heats up until the
photon pressure dominates and drives the baryons apart again. This proce-
dure repeats itself. This is called BAO. When the photons finally decouple
after 380,000 years, they carry information about the primordial density fluc-
tuations [17].

• Sachs-Wolfe effect: Photons that escaped from denser regions during recombi-
nation have to overcome a stronger gravitational potential and are redshifted
compared to photons from regions with low density that are blueshifted [17].

• Silk damping: Photons from hotter, denser regions of the early universe stream
to colder regions and equalize the differences, reducing the anisotropy [18].
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a) b)

Figure 1.2: a) Seven-year sky map of the CMB anisotropy from [21].
b) Power spectrum of the CMB anisotropies from [20]. The multipole
analysis results in the black dots, the best fit to the ΛCDM model is drawn as red
line.

These effects can be treated in physical models and simulations. The resulting CMB
pattern depends on the different contributions of baryons Ωb, dark matter ΩDM

and dark energy ΩΛ within the concordance model ΛCDM. Various cosmological
parameters can be varied so that the power spectrum matches the measured one [20].

Analogous to the CMB, relic neutrinos are expected. The mechanisms are similar:
“As the universe cools, the weak interaction rate Γν falls below the expansion rate
given by the Hubble parameter H and one says that neutrinos decouple from the
rest of the plasma” [22]. Since then, the neutrinos stream freely and are redshifted
due to the expansion of the universe.

Relic neutrinos have not been measured so far, but there is a close correlation

nν =
3

11
nγ (1.23)

between the relic neutrino density nν and the CMB photon density nγ. This results
in “113 neutrinos and antineutrinos of each flavour per cm3” [22]. The contribution
of the neutrino energy density ρν to the critical energy density ρcrit constrains the
sum of all neutrino masses

∑
mν to

Ων =
ρν
ρcrit

=

∑
mν

93.14 · h2 eV
(1.24)

with the Hubble parameter h in 100 km s−1 Mpc−1. Analyses from WMAP [20]
within the ΛCDM model result in∑

mν < 1.3 eV (95% C.L.). (1.25)

Structure formation

Observations of the structure of the universe also constrain the neutrino mass. As
an example, the “Sloan Digital Sky Survey (SDSS-III)” [23] observed structures
of galaxies showing the filament structure of the universe. These structures can be
reproduced by extensive simulations (e.g. [24]) for example within the ΛCDM model.
Therein, one of the parameters is the sum of the neutrino masses, since neutrinos
can stream freely in the early universe and erase primordial density fluctuations.
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The heavier neutrinos are, the better they were able to equalize fluctuations on
small scales. Comparing simulations with measured structures of the universe allows
constraining the neutrino masses, for example in [24]∑

mν < 0.61 eV (95% C.L.). (1.26)

In combination with results from WMAP (see above) this has been reduced in [25]
to ∑

mν < 0.58 eV (95% C.L.). (1.27)

1.5 Neutrinoless double β-decay

Next to the single β-decay that will be explained in the final section 1.6 of this
chapter, the observation of neutrinoless double β-decay is an approach to determine
the absolute mass scale of neutrinos. This approach is promising on the one hand,
because if successful, it would prove that neutrinos are Majorana particles that
means their own antiparticle ν̄e = νe = νM. On the other hand, this approach
is model-dependent, since the calculation of nuclear matrix elements depends on
underlying models.

First of all, a double β-decay (2νββ-decay) is a simultaneous decay of two neutrons

2n −→ 2p+ 2e− + 2ν̄e. (1.28)

It is accompanied by two electrons and two electron antineutrinos ν̄e. The sum of
the electron energies is a continuous spectrum below two times the decay energy Q,
since the two ν̄e carry away kinetic energy.

Double β-decays can happen in every β-emitter, but are rare compared to single
β-decays. Electrons from single β-decays conceal any signal from 2νββ-decay in
a typical measurement. Therefore, material is chosen where single β-decays are
energetically forbidden, but a 2νββ-decay is possible3. Germanium-76 or Xenon-
136 are promising candidates for double β-decay experiments.

Instead of 2νββ-decay the neutrinoless double β-decay (0νββ-decay)

2n −→ 2p+ 2e− (1.29)

is investigated to determine the neutrino mass. No neutrinos are emitted, since it is
assumed that a common virtual neutrino is exchanged between both β-decays (see
figure 1.3a). This is a process beyond the standard model, since it requires:

• Lepton number violation: There are no antineutrinos emitted, but two
electrons. That violates the lepton number L by ∆L = 2.

3The energy state of a nucleus with even number of protons Z and neutrons A−Z is energetically
lower than the state of the daughter nucleus in a β−-decay with Z − 1 and A− Z + 1, both odd.
Therefore, the single β-decay is forbidden. Instead, a double β-decay is possible, since it reaches
Z − 2 protons and A − Z + 2 neutrons, that is even-even again and energetically lower than the
initial state.
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Figure 1.3: a) Feynman diagram of a neutrinoless double β-decay. Two
neutrons decay simultaneously into two protons and two electrons. They exchange
a Majorana neutrino νM.
b) “Illustration of the spectra of the sum of the electron kinetic energies
Ke (Q is the endpoint) for the ββ(2ν) normalized to 1 (dotted curve) and ββ(0ν)
decays (solid curve). The ββ(0ν) spectrum is normalized to 10−2 (10−6 in the inset).
All spectra are convolved with an energy resolution of 5%, representative of several
experiments.” [26].

• Helicity flip: The emitted neutrino at the first β-decay is – as usual in
weak interactions – a right-handed (anti)neutrino with helicity4 H = +1 if
mν = 0 and absorbed as left-handed neutrino with H = −1 if mν = 0. This
is not possible. If mν > 0, the helicity is not fixed [5], so that there is a
probability to emit left-handed antineutrinos respectively absorb right-handed
neutrinos. Another possibility is right-handed currents that would allow the
same behaviour.

The neutrino mass that is connected to the 0νββ-decay is an effective mass, the
coherent sum

〈mν〉 =

∣∣∣∣∣∑
i

U2
ejmj

∣∣∣∣∣ . (1.30)

Since the Uej of eq. (1.4) contain Majorana phases αi, this can cause 〈mν〉 to be
smaller than the contributing mj; even a vanishing 〈mν〉 is possible. To obtain 〈mν〉
from 0νββ-decay, the half-life T 0ν

1/2 is measured with the relation

(T 0ν
1/2)−1 = G0ν(Q,Z) · |M0ν |2

(
〈mν〉
me

)2

(1.31)

with phase space integral G0ν(Q,Z) depending on decay energy Q and charge num-
ber Z, nuclear transition matrix elements M0ν and the electron mass me [5]. The
matrix elements can be calculated, but they depend on the underlying calculation
model and carry uncertainties of up to a factor of 10 [26].

The 0νββ-decay experiments share a common strategy: They have a well-known
target mass of suited 0νββ-material and measure the sum spectrum of both emitted

4The helicity H is the projection of the spin ~s on the (unit) momentum vector ~p: H = ~s · ~p|~p| .
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a) b)

Figure 1.4: a) Measured GERDA spectrum from [29]. The count rates are
shown for detectors with natural Ge and enriched Ge. The region where the 0νββ-
peak is expected E = 2 ·Q is blinded for blind analysis.
b) Measured EXO-200 spectrum from [30]. The measured counts are drawn as
black dots, the best-fit as blue line with the fits to various background components
(dashed coloured lines). The vertical red lines (1 and 2σ) show the expected region
of a 0νββ-peak.

electrons (see figure 1.3b). The 0νββ signal is a peak above the endpoint of the
2νββ-spectrum at an energy of 2 · Q. Since very low count rates are expected, a
major effort of these experiments is the reduction of background events.

The experiments on double β-decay have long-term goals to measure with detector
material on the ton-scale. With this statistical power, determining neutrino masses
down to 50 meV is feasible. The status of two of many experiments on their way to
the ton-scale is presented in the following.

GERDA

The “Germanium Detector Array (GERDA)” [27] consists of 76Ge detectors. It is
located in the underground laboratory of Gran Sasso to reduce background events
from cosmic rays. Surrounding copper and a water tank with photomultipliers shield
respectively monitor background from natural radiation. The aim of GERDA in
a first phase with a detector mass of 18 kg of 76Ge and an expected background
rate of 0.01 counts/(keV·kg·yr) is to confirm or disprove the measurements of the
Heidelberg-Moscow experiment [28]. A measured spectrum is shown in figure 1.4a.
In a second phase, enriched detector material (+20 kg) will be installed and the
background will be reduced further to 0.001 counts/(keV·kg·yr) [29].

EXO

The“Enriched Xenon Observatory (EXO)”uses enriched liquid Xenon 136Xe as 0νββ
material. It is planned to run with 1t Xenon; currently EXO-200 with 200 kg is
measuring as a prototype [30]. Xenon is used as source and detector of the created β-
electrons simultaneously: The energy of the two β-electrons creates an ionisation and
scintillation signal whose characteristics are used to discriminate background events.
EXO-200 achieved a background rate of 0.0015 counts/(keV·kg·yr), published the
spectrum in figure 1.4b and was able to state a lower limit

T 0ν
1/2(136Xe) > 1.6 · 1025 (90% C.L.) (1.32)
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that can be translated to

〈mν〉 < (140− 380) meV, (1.33)

depending on the used matrix elements.

1.6 Beta-decay

In a β-decay, the charge Z of a nucleus with mass A changes by 1:

β− : (A,Z) −→ (A,Z + 1) + e− + ν̄e

β+ : (A,Z) −→ (A,Z − 1) + e+ + νe (1.34)

EC : (A,Z) + e− −→ (A,Z − 1) + νe.

(1.35)

In a β− (β+)-decay, the released energy is shared by electron (positron) and neu-
trino. The electron capture EC causes an excited daughter molecule and emitted
neutrino. Restricting to the β− decay in the following, the electron energy spectrum
is continuous up to the maximal possible energy, the endpoint energy E0, since the
electron and neutrino share the available decay energy Q. The shape of the spec-
trum dN/dE is described by Fermi’s β-decay theory [31] that considers the available
phase space for the electron as well as energy and momentum conservation [32]:

dN

dE
= C · F (Z,E) · pe(E +mec

2)(E0 −E)
√

(E0 − E)2 −m2
νc

4 ·Θ(E0 −E −mνc
2).

(1.36)
The Fermi function F (Z,E) considers the interaction between emitted lepton and
nucleus with charge +Z. Here E denotes the kinetic energy of the electron, pe the
momentum and the neutrino mass squaredm2

ν . The Heaviside function Θ ensures en-
ergy conservation. The energy independent constant C = (G2

F cos2 θC |M |2)/(2π3h̄7c5)
consists of Fermi’s coupling constant GF , the Cabibbo angle θC and the nuclear
matrix element M . In contrast to double beta decay matrix elements, M for single
β-decays especially for tritium (see section 1.6.2), a superallowed decay with M inde-
pendent of E, is well known. So the description of the process is model-independent
from the viewpoint of nuclear matrix element calculation. The resulting β-spectrum
is shown in figure 1.5.

The influence of m2
ν on the spectrum is only significant close to E0 and causes an

earlier end of the spectrum due to energy conservation, but more importantly a
different spectral shape in this region (figure 1.5b). A precise measurement of the
spectrum at the endpoint region allows comparing the expected spectral shape with
it and extract a best-fit m2

ν .

Although an electron antineutrino ν̄e is created in every β−-decay, three neutrino
mass eigenstates |mj〉 contribute to the spectrum, since neutrino oscillations (section
1.3) showed that neutrinos mix. Then the phase space of eq. (1.36) results in

dN

dE
∝
∑
j

|Uej|2
√

(E0 − E)2 −m2
jc

4Θ(E0 − E −mj), (1.37)
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Figure 1.5: Differential β-spectrum. Full range (left) and zoom to the region
below the endpoint energy E0 (right) where the influence of non-vanishing m2

ν is
evident.

a superposition of β-spectra weighted according to the contribution |Uej|2 of νj to
ν̄e. Since the mass differences ∆m2

jk are small (see table 1.1), one can define the
effective mass of the electron antineutrino ν̄e, the incoherent sum

m2
ν̄e = m2

ν =
∑
j

|Uej|2m2
j (1.38)

to quantify the influence of a neutrino mass on the shape of the β-spectrum and
use eq. (1.36). In contrast to double β-decay where possible Majorana phases could
reduce the observable 〈mν〉 of eq. (1.30), m2

ν is equal or larger than a single mj and
accessible in a direct β-decay experiment in a model-independent approach.

1.6.1 Rhenium and Holmium experiments

As in the search for 0νββ one of the first tasks is to choose an appropriate β-emitter
for a direct neutrino mass measurement and to develop a suitable experimental setup.
A promising candidate is Rhenium 187Re due to its low endpoint energy of E0 =
2.47 keV that is a benefit for the measurement (see discussion in section 1.6.2). 187Re
can be used as a crystal and acts as β-electron source and detector at the same time:
A β-electron created in the material transfers its energy E to phonons of the crystal.
These can be measured calorimetrically as a small temperature increase proportional
to E. The MILANO experiment [33] used an array of 10 microcalorimeters operated
between 5 and 65 mK [34] where each contained 250-300µg of AgReO4 and published
an upper limit

mν̄e < 15 eV (90% C.L.). (1.39)

The power of a calorimetric approach is its scalability. The Rhenium source-detector
arrays can be extended by further microcalorimeters to increase the mass and im-
prove the sensitivity. This extension is proposed by the “Microcalorimeter Arrays
for a Rhenium Experiment (MARE)” [35]. It is planned to improve the calorimetric
technique and the number of the calorimeters to 104 to reach a statistical sensitivity
on mν of 0.2 eV.
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Figure 1.6: Spectrum of 163Ho from [38]. It is a “sum of Lorentzian peaks,
centred at the binding energy EH of the captured electron, where H represents the
hole left in the orbitals” [37]. On the right, the endpoint region is shown where a
non-vanishing neutrino mass reduces the maximal possible energy.

Another possibility to determine the neutrino mass in a direct kinematic approach
is the precise measurement of electron capture, for example of Holmium-163 [36]:

EC : 163Ho + e− −→163Dy∗ + νe (1.40)
163Dy∗ −→ 163Dy + EC.

(1.41)

The released energy Q = 2.56 keV [37] is split between emitted neutrino and the ex-
citation energy EC of Dysprosium. The following de-excitation happens by emission
of X-rays, Auger electrons or Coster-Kronig transitions and can be measured in a
calorimetric approach. The energy spectrum is shown in figure 1.6 and shows the
dependence on mν close to the endpoint energy.

An experimental approach is the “Electron Capture HOlmium experiment (ECHO)”
[38] that comprises two steps: On the one hand, calorimeters will measure the
holmium spectrum EC and deduce the endpoint E0. On the other hand, a Penning
trap [39] will be used to determine the Q-value, the mass difference between 163Ho
and 163Dy. Then, the difference Eν = Q−EC determines mν . It is planned to reach
a sensitivity of a few eV [37].

1.6.2 Tritium as β-emitter

Tritium is one of the most promising candidates in direct neutrino mass measure-
ments and has already been used for decades. Its advantages are:

• Low endpoint energy E0. The endpoint energy of tritium is E0 = 18.6 keV,
the second lowest of all β-emitters [32, 40]. The region of the β-spectrum that is
most sensitive to m2

ν is the endpoint region, typically a few tens of eV below E0.
There, the number of decays N is proportional to 1/E3

0 , favouring low E0 with
high N in the endpoint region at reasonable overall activity. Additionally, low
E0 only needs a low, technically achievable retarding potential U (see section
2.1) to measure the integrated spectrum.
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• Short half-life. The half-life of tritium with t1/2 = (4500±8) d (≈ 12.3 y) [41]
is short compared to many other β-emitters. To reach a high source activity,
i.e. adequate statistics, only small amounts of tritium are needed5.

• Superallowed decay. In case of tritium β-decay, parent atom 3H and daugh-
ter atom 3He have identical wave-functions. The calculation of the nuclear
matrix element |M | needed for the theoretical description of the decay simpli-
fies, since no intermediate states have to be included. |M | is independent of
the energy of the emitted electron.

• Low interaction between β-electron and nucleus. This interaction is
described by Fermi’s function [42]. In case of tritium β-decay the daughter
nucleus 3He only has two protons that attract the emitted β-electron. This
modification of the spectrum can be calculated or measured [43].

• Gaseous hydrogen isotope. As a hydrogen isotope many physical and
chemical properties of tritium are similar to the well-known hydrogen. This
simplifies the description of several processes, of course besides strict rules for
safety due to its radioactivity. Storage of tritium gas is feasible and adjusting
the pressure in a volume allows varying the activity of a gaseous tritium source.

Besides all the advantages, there is a disadvantage: Gaseous tritium is molecular
(T2) and its decay is

T2 → 3HeT+ + e− + ν̄e. (1.42)

The daughter ion 3HeT+ can be excited electronically as usual, but due to the
molecular structure also rotationally and vibrationally. These energies constitute
a final state distribution with energies between 0 and 4 eV for the ro-vibrational
excitations and energies above 20 eV for the first electronic excitation. The final
state energy remains at the daughter ion, thus modifies the spectrum of the β-
electrons and has to be considered for the neutrino mass analysis. Details on the
calculation of the theoretical spectrum like the final state distribution can be found
in section 4.2.3.

The Mainz experiment and the Troitsk experiment

Two recent tritium β-decay experiments are the “Mainz neutrino mass experiment”
[44] that was finished in 2001 and the still running “Troitsk neutrino mass expe-
riment” [45]. At both experiments, a spectrometer of MAC-E type (see section
2.1.1) was used to measure the β-electron spectrum, but the tritium source followed
different approaches.

At Mainz, a quench-condensed tritium source was used. This avoids the final state
distribution of gaseous molecular T2 (see above), but also has to deal with charging
of the substrate due to the remaining 3He+ ions. The final results of the Mainz
experiment are published in [46]

m2
ν̄e

= (−0.6± 2.2(stat)± 2.1(syst)) eV2

mν̄e < 2.3 eV (95%C.L.). (1.43)

5KATRIN uses 40 g tritium that cycles through the source.
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The Troitsk experiment used a windowless gaseous tritium source, a concept that
will also be used at KATRIN and will be explained in detail in chapter 3. The final
results published in [47] are

m2
ν̄e

= (−0.67± 1.89(stat)± 1.68(syst)) eV2

mν̄e < 2.05 eV (95%C.L.). (1.44)



2. The KATRIN experiment

The KArlsruhe TRItium Neutrino experiment KATRIN is designed to directly de-
termine the mass of the electron antineutrino ν̄e in a model-independent way. A
non-vanishing neutrino mass square m2

ν influences the spectral shape of a β-electron
spectrum (see section 1.6.2). KATRIN uses a high luminosity gaseous tritium source
to accumulate high statistics and a precise spectrometer to analyse the β-electron
energies from tritium decay. KATRIN is currently under construction at the Karl-
sruhe Institute of Technology (KIT), Germany. Within three years of measurement
time and envisaged low systematic uncertainties, KATRIN will reach a sensitivity
of mν < 200 meV @90%C.L. [48]. This will at least improve the upper limits on mν

of its predecessors [46, 47] by a factor of 10 or may allow claiming a non-vanishing
directly measured neutrino mass if mν > 350 meV1. The following chapter briefly
explains the measurement principle (section 2.1), as well as the different components
(sections 2.2-2.6) of the experimental setup (see figure 2.1).

2.1 Measurement principle

KATRIN uses an integrating measurement system, a so-called MAC-E filter (see be-
low) to measure the β-spectrum of tritium and thereby the influence of the neutrino
mass square m2

ν . At different retarding energies qU the integrated β-spectrum is

N(qU) ∝ tqU

E0∫
0

dN

dE
(E0,m

2
ν) ·R(E, qU)dE (2.1)

with measuring time tqU (see figure 2.2). The measurement reveals information
about the differential spectrum dN/dE (see section 1.6.2) that again depends on the
wanted m2

ν and the spectrum endpoint energy E0. Additionally, it is modified by
the influence of the whole experimental system, comprised in the response function
R(E, qU) (see section 4.2). For example, the transmission probability for electrons
with kinetic energies below qU is zero, so that only the high energetic part of the
spectrum is measured.

1Since the observable is m2
ν , the improvement will even be a factor of 100.
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Figure 2.1: The KATRIN experiment. Detailed explanation of sub-components
in main text.
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Figure 2.2: a) Integrated β-spectrum at KATRIN. The count rate Ṅ depends
on the retarding energy E = qU respectively the distance to the endpoint energy
E0. Here, a background rate of 10−2 s−1 is assumed. The influence of a neutrino
mass mν = 1 eV is shown as red dashed line compared to a spectrum with vanishing
mν in black.
b) Differential β-spectrum. Includes the final state distribution of tritium.
Again, the effect of a 1 eV neutrino mass is drawn in red, dashed compared to
vanishing mν in black.
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Figure 2.3: Principle of a MAC-E filter from [51], modified. Here, in case of
the KATRIN pre-spectrometer. Detailed explanation in main text.

The neutrino mass square m2
ν will then be obtained by adapting a theoretical, ex-

pected spectrum with fit parameter m2
ν to the measured integrated spectrum (see

section 6.2.5 and 6.2.6).

If an expected spectrum is fitted to the measurement, this expectation should be
as exact as possible. Therefore, eq. (2.1) shows that the description of dN/dE must
consider standard β-decay theory (see chapter 1.6) and various corrections from
experiment and theory like the Fermi function or radiative corrections. Additionally,
knowledge of the response function, that means the influence of the whole experiment
on the measurement, is mandatory to analyse the measured spectrum. Therefore,
great efforts are taken to control and monitor all important experimental parameters.
Important in this context means that they critically influence the measurement
at KATRIN respectively the neutrino mass determination as a systematic effect.
The work at hand is – amongst other subjects – responsible for investigating these
systematics.

2.1.1 MAC-E filter

MAC-E filter stands for Magnetic Adiabatic Collimation with an Electrostatic fil-
ter [45, 49, 50]. A scheme is shown in figure 2.3.

The principle is to probe the electrons’ kinetic energy by a retarding potential. Only
electrons with sufficient energy can overcome the potential; the system works as a
high-pass filter. A closer look shows that electrons in case of a β-decay, created
within the source field BS, are emitted isotropically with azimuthal angle θ to the
magnetic field line. Their kinetic energy E is composed of a longitudinal component
E‖, causing a translation along the field line, and a transversal component E⊥, creat-
ing the cyclotron motion around the field line. When applying an electric retarding
potential difference U along the field line, only E‖ can be analysed. Therefore, a
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mechanism is needed that converts E⊥ to E‖ adiabatically, without changing the
electrons’ total energy.

That is accomplished by the magnetic adiabatic collimation. It uses that the mag-
netic moment µ = E⊥

B
is constant in non-relativistic adiabatic approximation [32]. If

the magnetic field strength is lowered adiabatically from the source with BS = 3.6 T
to the analysing plane with BA = 3 · 10−4 T, E⊥ is reduced, E‖ is increased. This is
visualized by a turning momentum vector in figure 2.3. Vice versa, if B increases,
the momentum vector is erected again. The maximal magnetic field in the KATRIN
setup Bmax = 6.0 T is reached at the detector pinch magnet. This causes electrons
that are emitted in the source with an azimuthal angle θ larger than the maximal
opening angle θmax [48]

sin θmax =
√
BS/Bmax (2.2)

to be reflected magnetically. Electrons with starting angles between 0 and θmax can
be analysed due to the magnetic collimation and reach the detector afterwards, if
their kinetic energy is sufficient. But this is not working perfectly, since the ratio
BS/BA (or rather Bmax/BA) is finite; the maximal E⊥ that an electron can still
possess in the analysing plane defines the energy resolution ∆E of a MAC-E filter.
For the electromagnetic design of the KATRIN main spectrometer (section 2.4), for
electrons near the endpoint energy of 18.6 keV, it is [48]

∆E =
BA

Bmax

· E = 0.93 eV. (2.3)

2.2 Tritium source

As β-electron source, KATRIN uses a windowless gaseous tritium source WGTS, a
concept that has been developed at the Los Alamos experiment [52] and was also
successful in various other β-decay experiments for direct neutrino mass determi-
nation [45, 53]. The advantages of tritium have already been outlined in chapter
1.6.2. In the WGTS, gaseous molecular tritium T2 is injected at the center of a
beam tube and pumped out by turbomolecular pumps at both ends. The pumped-
out gas is collected and reinjected in a closed cycle. This pumping concept avoids
closing windows at the beam tube ends, so that β-electrons that are created inside
the source can leave it without losing energy besides scattering processes with the
low pressure gas. The WGTS in KATRIN has a beam tube length of 10 m and a
diameter of 90 mm. On each end, a pumping section with 12 turbomolecular pumps
in total is attached, increasing the length to 16 m. A gas flow reduction factor of
102 is estimated for this setup. The whole system is embedded in a cryostat, since it
will be operated at T = 30K, to achieve reasonable densities (ρ ≈ 5 ·1014 cm−3) and
thereby a high source activity (A ≈ 1011Bq) at reasonably low injection pressure
(pin ≈ 3µbar). Furthermore, low temperatures cause a low Doppler broadening of
the measured β-spectrum due to the low thermal movement of the β-emitting T2.

Inside the cryostat, superconducting solenoids provide a source magnetic field of
BS = 3.6 T to guide the created β-electrons out of the source towards the spectrom-
eters (see section 2.4) for energy analysis.

Various tests of WGTS sub-systems, for example the demonstrator tests (see section
3.4) or tests of the magnets are finished, so that the WGTS can be assembled.
Planned date of delivery and commissioning is 2015.
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A detailed discussion of the WGTS, its physical concepts, technical challenges and
its implications for KATRIN are presented in the dedicated chapter 3 due to its
importance for this work at hand.

2.3 Transport section

Since the WGTS has no terminating windows and the turbomolecular pumps in
the WGTS are not sufficient to capture all T2, further efforts are needed to collect
all neutral gas as well as unwanted ions. At the same time, the β-electrons should
be transported towards the spectrometers without altering the electrons’ energy,
otherwise the measured spectrum would be distorted.

The first module of the transport section is the Differential Pumping Section DPS2-
F. It is an almost 7 m long cryostat at 77 K, with 5 beam tube elements of 1 m length,
arranged in a chicanery and 4 turbomolecular pumps in between (see figure 2.4a).
The chicanery avoids that neutral T2 molecules would be able to pass the DPS2-F
without hitting the walls respectively the pumps at least once; the pumping is more
efficient. Commissioning measurements showed an extrapolated gas flow reduction
factor of 1.8·104 for gases of atomic mass 4 like tritium with the potential to improve
it to the requested 105 [54].

The β-electrons are not affected by the pumping. As charged particles they follow
the magnetic field lines through the whole chicanery – adiabatically due to the slowly
varying fields. This is also true for ions, so special electric dipole elements are used
to remove the heavy ions from the beam [55].

To monitor the flux of ions from the WGTS towards the spectrometers and the
performance of the electric dipoles to remove them, Fourier transform ion cyclotron
resonance (FT-ICR) is used. Ions are trapped inside the FT-ICR-modules (penning
traps) of the DPS2-F and their cyclotron frequency is analyzed to determine the ion
concentration in the system [56].

The second part of the transport section is the 7 m long Cryogenic Pumping Section
CPS. Almost all molecules that have overcome the previous pumps are adsorbed by
argon frost at 4 K on the inner surface of the CPS beam tube chicanery (see figure
2.4b). This concept yields an estimated reduction factor of 107 [48]. Together with
the pumps in the WGTS and the DPS2-F, a total reduction factor of 1014 will be
obtained, allowing for very low partial pressures of T2 at the end of the complete
source and transport section.

2.4 Spectrometers

KATRIN uses a tandem spectrometer setup, consisting of the pre-spectrometer and
the main spectrometer.

Pre-spectrometer

All β-electrons that have crossed the transport section reach the pre-spectrometer
(l = 3.4 m, d = 1.7 m). It is working as a MAC-E filter (see section 2.1.1) with its
retarding energy at a few 100 eV below the spectrum endpoint energy E0 [48]. This
prevents a large number of low-energetic electrons from entering the large volume
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Figure 2.4: a) Technical drawing of the DPS2-F. The gas flow q that leaves the
WGTS and arrives at the DPS2-F is the WGTS injection throughput qin reduced
by a factor 102 due to the DPS1-F. The turbomolecular pumps (TMP) in the DPS
reduce the gas flow further by 105.
b) Technical drawing of the CPS. Cryosorption allows for a final gas flow re-
duction of 107.

of the main spectrometer, causing background electrons (see below). This cut does
not disturb the high-energetic part of the spectrum – the last 50 eV below E0 – that
is used for the KATRIN analysis.

Main spectrometer

The KATRIN main spectrometer is responsible for the energy analysis of the β-
electrons. Technically, it is a vacuum tank of length l = 23.3 m and central diameter
d = 9.8 m. To compose a MAC-E filter two superconducting magnets on both sides
of the spectrometer create a strong magnetic field up to Bmax = 6.0 T. The field
strength drops towards the center of the spectrometer, the so-called analysing plane,
by a factor of 20000 to BA = 3·10−4 T. The dimensions and magnetic fields limit the
magnetic flux φ that is transported through the spectrometer. As a reference [48]

φ =

∫
B dA = BAAA = 192 Tcm−2 (2.4)

is chosen, with an effective area of the analysing plane AA = 63.6 m2.

Metal electrodes and a sophisticated inner wire electrode system provide the retard-
ing potential to analyse the energies of the β-electrons. The wires are mounted inside
the spectrometer in a distance of a few centimetres to the walls [57]. They are ar-
ranged in two layers and have a potential difference of ∆U ≈ −100 eV with respect
to the spectrometer walls. If cosmic rays hit the wall and create electrons, these
electrons cannot overcome the negative potential of the wires and will be reflected
towards the wall. This prevents additional background events at the detector.

The main spectrometer is operated at UHV conditions of p ≈ 10−11 mbar [48]. This is
necessary, since on the one hand, β-electrons can scatter on residual gas molecules in
the spectrometer vessel, lose energy and therefore influence the measured spectrum.
On the other hand, T2 molecules could decay directly inside the spectrometer and
create β-electrons that would not experience any retarding potential and that would
directly disturb the measurement as background electrons.
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2.5 Detector

The electrons that were able to pass the spectrometer are guided to the KATRIN
focal plane detector FPD. The detector is a silicon PIN-diode with a diameter of the
sensitive region d = 90 mm, segmented into 148 pixels [58]. This segmentation allows
distinguishing between electrons that were emitted in different parts of the source
and have passed the spectrometers on different radii and azimuthal angles. The mea-
sured energy resolution ∆E = 1.637± 0.004 keV [58] is sufficient for KATRIN, since
the energy of signal electrons is determined by the precise main spectrometer with
∆E = 0.93 eV; the detector just has to count the electrons and reject background
events.

A background contribution is caused by cosmic muons, passing the detector system.
Therefore, a veto system is used that rejects events when they coincide with a
cosmic muon. With this veto and other measures to suppress background from the
spectrometers it is intended to reach a total background rate of only 0.01 cps [48].

2.6 Monitoring systems

Next to the main components, several monitoring systems are used at KATRIN.
Their general task is to monitor crucial parameters of the source and spectrometers.
Uncertainties in these parameters cause systematic uncertainties on the analysed
neutrino mass and have to be minimized to reach KATRIN’s sensitivity (see section
3.2). The major monitoring systems are listed here:

• The Laser Raman System is used to monitor the tritium purity of the
source [59]. Its working principle as well as its importance for KATRIN are
discussed in detail in section 3.3.

• The rear section is connected to the WGTS on its rear end. Electrons that
are emitted towards the rear end or that are reflected by the spectrometer
retarding potential due to their insufficient kinetic energy, hit the rear wall.
This can possibly be used to monitor the overall activity of the WGTS by
a Faraday cup or β-induced X-ray spectroscopy. The studies are ongoing
and their status is summarized in [60]. Additionally, an electron gun will be
installed at the rear section. Sending a stable beam of electrons through the
whole WGTS and analysing the fraction of scattered to unscattered electrons
with the spectrometers and detector allows monitoring the column density (see
section 3.1 and 4.2.2).

• The Forward Beam Monitor was tested with a silicon PIN-diode [60]. It
is brought into the beam tube of the CPS (section 2.3) to monitor the source
activity outside the transported magnetic flux in eq. (2.4) without disturbing
the neutrino mass measurement.

• The monitor spectrometer is operated at the same retarding voltage as the
main spectrometer. Monitoring of the line width and position of the krypton
K-32-line (17.8 keV) determines fluctuations or drifts of the retarding poten-
tial [61].
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3. Windowless gaseous tritium
source

The windowless gaseous tritium source WGTS has already been outlined in the pre-
vious chapter in the context of the KATRIN experiment. This chapter will focus
on a detailed characterisation of the instrument in terms of its key parameters and
will highlight the importance of the WGTS with respect to systematic effects on
the determination of m2

ν . In section 3.1, the general physical concept of the source
is discussed together with the definition of the key parameters. Using sophisticated
gas dynamics models that are presented in detail later (see chapter 5), requirements
on the key parameters are inferred in section 3.2. The technical realisation in terms
of precise controlling and monitoring of the key parameters follows in section 3.3.
Since the temperature stability and homogeneity of the WGTS was known to be
challenging right from the beginning, the demonstrator experiment has been per-
formed with the aim to characterize the WGTS with regard to its thermal behaviour
before the full WGTS assembly. In preparation of the results of the demonstrator
experiment in chapter 9, the demonstrator is introduced here in section 3.4.

3.1 Key parameters

It has already been discussed in chapter 1.6, why experiments for direct neutrino
mass determination measure the tritium β-decay spectrum and why the approach
of a windowless gaseous tritium source has been used in the past and is the choice
at KATRIN. In the following, the key parameters of a gaseous tritium source are
discussed.

Column density

Describing a gaseous tritium source, the different molecule species i are distributed
according to density profiles

ρi(~r) = ρi(~r, pin, pex, T (~r)) (3.1)
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as a function of the injection pressure pin, the exit pressure pex and the beam tube
temperature T (~r) 1.

The most fundamental parameter of a gaseous tritium source is the column density

ρd = ρd(pin, pex, T (~r)) =
∑
i

+L/2∫
−L/2

ρi(~r, pin, pex, T (~r))dz. (3.2)

It is obtained by integrating the densities ρi(~r) along the beam axis z with a source
length L. ρd is also a function of pin, pex and T (~r) 2. The column density is directly
connected to the source activity S as

S ∝ ρd · AS · εT (3.3)

with source cross sectionAS and tritium purity εT that is explained below. Increasing
ρd obviously increases S in total. But there is a drawback: Increasing the amount
of molecules in the source increases the probabilities for inelastic scattering of the
β-electrons. Fewer electrons can leave the source unscattered; this increases the
systematic uncertainties connected with scattering (see section 4.2.2).

Tritium purity

When using molecular T2, the other hydrogen isotopologues DT, HT, D2, HD and
H2 in the source are inevitable due to exchange processes. The tritium purity εT is
defined as the fraction of tritium nuclei among all other constituents in the source.
If we denote the fraction of all isotopologues X as c(X) with

∑
X

c(X) = 1, then εT

will be
εT = c(T2) + 0.5 · c(DT) + 0.5 · c(HT). (3.4)

Obviously a high tritium purity is desirable to have a high activity; impurities only
contribute to ρd and increase the scattering probabilities of out-going electrons. This
demands for a system that provides highly pure T2 and removes impurities reliably.
Because such a system usually cannot remove all impurities perfectly, the remaining
contributions should be monitored. This is especially true for the tritiated hydrogen
isotopologues T2, DT and HT in a neutrino mass experiment: They contribute
differently to the measured β-spectrum as will be explained in section 4.2.3, causing
a systematic uncertainty.

Source temperature

Low temperature operation of a gaseous tritium source is advisable, since this allows
for a high density and therefore column density, respectively source activity, at a
reasonable injection pressure. In addition, the broadening of the β-spectrum due
to the Doppler effect is weaker for low temperatures, since the thermal movement
of the β-emitting T2 molecules is lower (see also section 4.2.5.4). In both cases,
very low temperatures might look promising, but below 27 K molecule clusters Tn

1In chapter 5, ρi(~r) is obtained by integrating the velocity distribution function over the velocity
space.

2In general, ρd depends on the coordinates x and y, but this is negligible in the case of the
WGTS at KATRIN as will be shown in section 5.4.
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emerge and tritium freezes on surfaces. Both effects lead to different spectra of the
β-electrons emitted from clusters or frozen T2 at walls, disturbing the measurement
of the free T2 β-spectrum. For a gaseous source, temperatures between 27 and 33 K
should be used [48]. The exact temperature can be chosen when fully operating the
source; in the following 30 K is used as reference temperature.

Additionally, a homogeneous source is required to ensure equal conditions for elec-
trons emitted at different parts of the source.

Source magnetic field

For the energy analysis in a MAC-E setup (see section 2.1.1), the β-electrons have to
be guided to the spectrometers. Therefore, the source needs a magnetic field BS; the
isotropically emitted electrons then follow the magnetic field lines out of the source
towards the spectrometers. A strong BS is practical in two ways: First, considering
eq. (2.2), a strong BS allows to analyse a large fraction of all electrons that have been
emitted in the source. Additionally, eq. (2.4) shows that a strong source magnetic
field allows for a reasonable area of the source AS that is seen by the spectrometer and
the detector. A homogeneous magnetic field is desirable, because it allows for equal
starting conditions for electrons that are created in different parts of the source. In
context of the magnetic field strength, this means that the maximal opening angle
of eq. (2.2) is constant for all electrons. This has an impact on the mean path length
of the electrons and the mean scattering probabilities (see eq. (4.8)) that are crucial
for the analysis of measured spectra at KATRIN.

Source electric potential

The electric potential difference between the point of electron creation and the
analysing plane in the spectrometer is used to determine the electrons’ kinetic en-
ergies. For that purpose, the WGTS can either be grounded and the potential of
the main spectrometer can be varied or the WGTS gets a bias potential up to -1 kV
that can be varied with respect to a fixed potential U = −18.6 keV of the spec-
trometers [48]. In both cases, if the electric potential of the source varied locally,
the energy measurement would be inaccurate. The aim is to have an equipotential
source.

The β-electrons, the remaining positively charged ions and secondary electron-ion
pairs due to ionisation constitute a plasma in the source [48]. The magnetic field
along the beam axis confines the charged particles in radial direction. “Therefore,
the plasma potential along any field line is set by the first conducting surface the
field line intersects” [62]. For that purpose, the so-called rear wall is placed between
the WGTS end and the rear section. It is required to have a stable, homogeneous
surface potential to generate a homogeneous WGTS potential.

3.2 Source-related systematic uncertainties

The physics of a tritium source has been defined above. Before constructing the
source, requirements on stability, homogeneity and the required accuracy of source
parameters and their monitoring have to be defined.
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Table 3.1: Identified systematic uncertainties connected with unaccounted
shifts of WGTS key parameters [48]. There, the requirements and systematic
influences on m2

ν were already reported. They are re-evaluated in chapter 8 with
more sophisticated models and methods that are explained in the chapters 4, 5,
6. The demonstrated achievements are reported in [60] with the exception of the
temperature stability reported in [63].

source of syst. syst. shift
uncertainty requirements ∆m2

ν (10−3 eV2) achievements

variations of
column density ∆ρd/ρd < 2 · 10−3 < 1.5

injection pressure ∆pin/pin < 2 · 10−3 1.3 · 10−4

exit pressure ∆pex/pex < 0.06 1 · 10−4

temperature ∆T/T < 2 · 10−3 5 · 10−5

tritium purity ∆εT/εT < 2 · 10−3 1 · 10−3

WGTS magnetic field ∆BS/BS < 2 · 10−3 < 2
WGTS potential ∆U < 10 mV < 1.2

Uncertainties in the description of the source lead to systematic uncertainties on the
analysed neutrino mass squared m2

ν ; they cause a systematic shift ∆m2
ν from the

unknown true m2
ν .

During the design phase of KATRIN, the most important systematic effects have
been identified in [48]. It is remarkable that 4 out of 5 major systematic uncertainties
are connected with the WGTS. Therefore, dedicated analyses and test experiments
presented in [60, 63] report the already achieved control and monitoring of source
parameters. They are shown in table 3.1.

One of the major contributions to the systematic uncertainty is the stability of the
column density ρd (see eq. (3.2)). Changes of ρd change the source activity. This
could lead to differences when scanning the integrated spectrum (see section 2.1),
imitating the effects of m2

ν , disturbing the measurement. This is true since changes
of ρd alter the scattering probabilities Pi (see section 4.2.2). If the ratio of the
probability P0 of unscattered electrons and the probability P1, that electrons have
scattered once, changes, the analysis of the measured spectrum will be executed with
wrong assumptions. The unaccounted shifts of ρd inevitably lead to shifts of m2

ν . In
other words, not knowing the changes of ρd results in a systematic uncertainty on
m2
ν .

According to [48], the influence of ρd on m2
ν is significant and therefore a strict

requirement on ρd-variations is demanded

∆ρd

ρd
< 2 · 10−3. (3.5)

Since ρd is determined by various parameters, the requirement in eq. (3.5) trans-
lates to the same requirements on variations of injection pressure ∆pin and tritium
purity ∆εT. The influence of the exit pressure of a windowless source pex on ρd is
weaker [64], so this requirement can be relaxed to ∆pex/pex < 0.06.
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Table 3.2: Requirements on parameter trueness. The trueness is the difference
between the expectation of a measured observable and the (unknown) true value [60].

source of syst.
uncertainty reference value required trueness

absolute temperature (27 - 30) K 0.5 K
tritium purity >0.95 10−2

Temperature variations ∆T of table 3.1 are also named ∆Tstab in the following to
distinguish temporal variations from temperature gradients along the source that
are named as ∆Thom. The requirement

∆Tstab

T
< 2 · 10−3, (3.6)

on the temperature stability within a KATRIN run of two hours [48] at 30 K oper-
ational temperature at KATRIN is then translated to

∆Tstab < 30 mK/h. (3.7)

The physical motivation for a desired temperature homogeneity of

∆Thom < 30 mK (3.8)

is different. A homogeneous temperature of the source ensures equal starting con-
ditions for all electrons. Especially the thermal movement of the β-emitting T2

molecules would vary, if the temperature distribution of the source were inhomo-
geneous. This would lead to position-dependent modifications of the spectrum due
to the Doppler effect. It would cause an uncertainty on the description of the
source. For KATRIN, the requirement in eq. (3.8) is asked for the inner 9.5 m of
the source [48]. The only heat influx is from the end of the source (see section 3.3),
increasing the temperature there. But since the densities there will be small, the ef-
fect of higher temperature near the ends will be small, too. A temperature gradient
can be accepted up to 3 K there, if the main part of the source obeys eq. (3.8).

The same reason as for the temperature homogeneity is also true for the magnetic
field variation and the source potential variation, shown in table 3.1. Variations
in these parameters would alter the starting conditions of electrons generated in
different parts of the source, influencing the spectrum measurement and thereby the
analysis of m2

ν .

Besides requirements on parameter stability, there are some requirements on the
trueness of parameters that means knowledge of absolute values is needed. One of
them is the tritium purity εT. Not knowing εT that means the fractions of tritiated
hydrogen isotopologues T2, DT and HT in the gas mixture results in an uncertainty
on the description of the final state distribution (FSD) of the measured β-spectrum.
It has already been explained in chapter 1.6.2 that the daughter molecule (3HeT)+

of a molecular decay of T2 retains energy due to rotational, vibrational or electronic
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excitations. The resulting FSD with probabilities for different excitation energies
has been calculated for different hydrogen isotopologues in [65–68]. But since these
calculations have no experimental verification, there is an uncertainty on m2

ν con-
nected with them. To parameterize its effect on m2

ν , in [48] a 1% broadening of the
typical first 4 eV peak of the FSD was examined (see section 4.2.5.3), resulting in
a systematic shift of ∆m2

ν = 6 · 10−3 eV2. This can only state qualitatively what
an uncertainty in the description of the final states means for KATRIN, but clearly
shows that the influence of the FSD should not be underestimated. A similar effect
is caused by an uncertainty of the absolute temperature T that determines the prob-
abilities of parent molecules to have initial angular momentum J . This distribution
influences the FSD similar to εT. This demands for requirements on the trueness
that are presented in table 3.2. Additionally, section 8.3 deals with various analyses
to further investigate the influence of the FSD on m2

ν .

To summarize, all mentioned uncertainties contribute considerably to the total sys-
tematic uncertainty in KATRIN. When designing the tritium source, special em-
phasis is given to the stability and homogeneity of the system. Reducing the uncer-
tainties by having a very stable, homogeneous source and accurately monitoring its
parameters is of utmost importance to reach the KATRIN design sensitivity on m2

ν .

3.3 Technical realisation

KATRIN uses a windowless gaseous tritium source WGTS, meeting the physical
concepts and requirements on systematics discussed above. A 10 m long tube with
diameter D = 90 mm made of stainless steel, the so-called beam tube, is the recipient
for gaseous tritium. To avoid energy losses of the generated β-electrons, there are
no windows at the exits of the beam tube. Tritium leaving the tube is captured
by in total twelve turbomolecular pumps distributed over four pumping chambers
at the beam tube ends, the DPS1-R and DPS1-F (see figure 3.1). The gas that
is not pumped out reaches further pumping sections adjacent to the WGTS (see
section 2.3). To maintain an adequate, time-independent tritium content inside
the windowless volume, a continuous gas injection at the center is needed. The
injection pressure pin and the gas throughput q, next to the exit pressure pex and the
temperature distribution T (~r) determine the amount of tritium in the source.

The inner tritium loop

The whole injection and part of the pumping system of KATRIN is called “inner
loop” system in figure 3.2a. It ensures a steady stable circulation of tritium gas
through the WGTS by injecting in the center and pumping at the ends of the
WGTS. This is essential to maintain a stable column density of ρd = 5 · 1017 cm2.
In the inner loop, more than 99% of all tritium that is pumped out in the DPS1-R
and DPS1-F is directly reinjected into a buffer vessel after passing a permeator.
It can then be reinserted into a pressure controlled buffer vessel and from there
into the WGTS. The missing 1% – together with the gas that is pumped out at
the DPS2-F – is transferred to an outer loop where the facilities of the Tritium
Laboratory Karlsruhe provide purification processes, which remove nearly all non-
hydrogen contributions. Reinserting the highly pure tritium gas into a buffer vessel
of the inner loop system ensures high tritium purity of the WGTS.
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Figure 3.1: CAD view of the WGTS and scheme of its main parts. The
16 m source cryostat consists of the WGTS-tube as central part and two differen-
tial pumping sections, DPS1-R and DPS1-F. The temperatures vary from 4 K at
the superconducting solenoids to 30 K at the beam tube and to 85 K at parts of the
DPS1-R and DPS1-F. The tritium gas is injected in the center and diffuses along the
beam tube to the turbomolecular pumps in the pumping chambers PP1 and PP2.
The magnetic field of BS = 3.6 T is provided by superconducting solenoids (seven
main magnets). It adiabatically guides the created β-electrons towards the spec-
trometers. In a special operation mode, the so-called krypton mode (see appendix
A), gaseous krypton will be added to the tritium gas for calibration purposes. This
requires a different temperature range of 120 K.



34 3. Windowless gaseous tritium source

Figure 3.2: a) Scheme of the inner loop from [60]. It shows the circulation
of tritium from the buffer vessel (upper left) through the Laser Raman cell where
the purity is determined to the pressure controlled buffer vessel (upper right). A
temperature stabilized transfer line is used to insert the tritium into the WGTS
beam tube. The tritium that is pumped out is collected and passes a permeator
that blocks impurities. b) Photo of the inner part of the tritium injection
chamber [70]. The 415 holes have a diameter of 2 mm and avoid turbulences when
injecting the tritium gas into the beam tube.

A major part of the inner loop system is the pressure controlled buffer vessel, op-
erated at up to 20 mbar. From this vessel, a temperature controlled transfer line
transports the tritium to the WGTS cryostat. The pipe enters the cryostat and is
guided along 5 m of the 30 K beam tube to adapt its temperature until the tritium
reaches the injection chamber. 415 holes with a diameter of 2 mm, arranged in 5
adjacent rings (see figure 3.2b) are used to insert the tritium to the beam tube.
This concept works at small pressure gradients with reasonable tritium throughput
without creating turbulences or severe density deviations [69]. In fact, due to the sta-
bilized connection tube from the buffer vessel to the injection chamber, the pressure
in the buffer vessel defines pin and keeps it stable. The success of the stabilization is
reported in [60]: Within 200 hours of operation the pressure inside the buffer vessel
is kept at pB = (15.024 ± 0.002) mbar. Together with the temperature stabilized
transfer line from the buffer vessel to the injection chamber, the performance of
stabilizing pin is better than the KATRIN requirements of 0.1%.

The pressure pex at the pumping chambers (figure 3.3) depends on the pumping effi-
ciency of the turbomolecular pumps. The pumping speed is expected to be constant
on the 10−4 level due to the constant rotation speed of the turbomolecular pump
that is monitored. This will ensure that pex will meet the stability requirement [60].

The Laser Raman system

The tritium purity εT (see eq. (3.4)) is monitored by the Laser Raman System LARA.
A cell between two buffer vessels of the inner loop system is passed by all tritium that
is injected into the WGTS later. A laser irradiates the molecules, also producing
Raman scattered light that is collected by an optical system and analysed by a
spectrometer and recorded by a CCD [59]. Since Raman scattering depends on the
molecule species due to their inherent ro-vibrational states, characteristic wavelength
shifts between laser light and scattered photons can be used to distinguish between
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Figure 3.3: Drawing of beam tube front end and CAD view of a pumping
chamber. A conical part connects the 10 m beam tube at 30 K and the pumping
chamber. The inner box of the chamber is cooled by gaseous helium at 30 K. Towards
the pump ports with turbomolecular pumps intermediate bellow coolers at liquid
nitrogen level and a radiation shield are installed. This cooling cascade is needed to
reduce the incoming thermal radiation from the pump ports that lasts on the beam
tube.

different hydrogen isotopologues. The intensity of the Raman scattered light can be
used to recognize changes in the tritium purity. In addition, absolute numbers for
the amount of different hydrogen isotopologues in a gas mixture at KATRIN can be
obtained with dedicated calibration efforts [71].

Intermediate results of the LARA performance are given in [60], stating a statistical
uncertainty on the tritium purity of ∆εT/εT = 0.3% within 250 s acquisition time for
a measurement with low pressures. Extrapolating to KATRIN conditions yields the
designated ∆εT/εT = 0.1% within 60 seconds. Additionally, the status of efforts to
determine absolute values of contributions from the different hydrogen isotopologues
is stated as trueness of εT of < 3% [72].

Cooling concept

To achieve and keep a low temperature, the WGTS is a cryostat with its central
part, the beam tube, operated at 30 K [73–75]. For this temperature range cryo-
genic helium is standard, but in section 3.2 it was shown that the system has to be
stable on the 10−3 level. This is not possible for a conventionally cooled cryogenic
system with dimensions of the WGTS. Therefore the two-phase neon system is used
for cooling: A two-phase mixture is ideal to compensate heat influxes. Any heat
entering the system is used to bring atoms from the liquid phase to the gaseous
phase, keeping the temperature constant. The same is true for the reverse process;
an external temperature drop leads to condensation instead of changing the temper-
ature. Neon fulfils the two-phase condition in a temperature range around 30 K and
a corresponding saturation pressure of psat ≈ 2 bar [76]. At the WGTS, two small
tubes with diameter d = 16 mm are brazed to the beam tube along the whole 10 m.
They are filled partially with liquid neon, establishing a gas phase with pressure psat
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Figure 3.4: The two-phase neon cooling principle of the WGTS. The system
works as a thermosiphon. If there is a heat influx, two-phase neon in the cooling
tubes, which are braced to the beam tube on both sides along the whole 10 meters,
will evaporate, but the temperature will remain constant. The gaseous neon then
flows to the condenser, is cooled by helium from the cryogenic facility of KATRIN,
is liquefied again and flows back to the neon tubes by gravity.

between 1 bar and 10 bar that can be adjusted to correspond to a temperature be-
tween 27 K and 33 K. The full system is shown in figure 3.4. It contains a condenser
as heat exchanger that is cooled by gaseous helium at 25 K to liquefy the gaseous
neon again and cool the beam tube.

The two-phase neon system is embedded into the overall cooling concept of the
WGTS, depicted in figure 3.5. For different domains in the source, shields in between
to separate them and different cooling liquids are used. The beam tube at 30 K,
cooled by the two-phase neon system, is shielded by the inner shield, which is cooled
by gaseous helium. This is necessary because the next layer are superconducting
magnets (see below) at liquid helium temperatures of 4.5 K. The cryostat vessel,
an insulating vacuum and an additional outer radiation shield at 77 K protect the
inner parts against thermal radiation from the outside at room temperature. For
the special cooling cascade of the pumping chambers please see figure 3.3. To avoid
heat conduction crucial parts of the WGTS are suspended. Thin stainless steel wires
hold the beam tube (see figure 3.6) and other parts of the source, completing the
sophisticated WGTS cooling concept.

Magnetic field

As shown in section 3.1, a magnetic field is needed to adiabatically guide the created
β-electrons along the magnetic field lines to the spectrometer for energy analysis.
The field should be homogeneous to ensure equal starting conditions for all electrons.

The choice at KATRIN is superconducting solenoids, which create a constant, ho-
mogeneous magnetic field of BS = 3.6 T. In the WGTS three main modules with a
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Figure 1: Overview of WGTS magnet system

The standard operation of the system is to act as the source of decay electrons inside the tem-
perature stabilised beam tube with a persistent magnetic field. This type of operation should be
stable over long periods of time. For tritium handling inside the system, calibration, system inher-
ent processes, and UHV cleaning, several other operation modes are required.

The precise stabilisation of the temperatures inside the system is based on the stable tempera-
ture of boiling cryogenic liquids and requires a reliable pressure regulation. The stability of the
magnetic fields is assured by a persistent mode operation of the superconducting solenoids. The
spatial homogeneity of the magnetic field is achieved by a sophisticated magnetic design optimi-
sation.

2.1.2 List of components
The following table lists components of the WGTS system and relates them to the design draw-
ings prepared for this Design Report:

Figure 3.5: Magnet layout and shielding concept of the WGTS [77]. The
central part of the WGTS contains three main solenoids with 3.3 m length each and
two smaller correction coils (not shown in the scheme) to avoid strongly reduced
fields at the gaps between the main modules. Each part of the DPS1-R and DPS1-F
has a 1 m solenoid, again with correction coils to transport the magnetic flux through
the pumping chambers. Superconductivity requires liquid helium temperature of 4 K
for the magnets. Therefore, the 30 K beam tube is separated from the magnets by
an inner radiation shield cooled by 30 K gaseous helium. 85 K are realized at the
last parts of the DPS1-R and DPS1-F, and 120 K would be needed for the special
calibration mode, the krypton mode (see appendix A). To the outside part of the
cryostat an outer radiation shield at 80 K cooled by gaseous and liquid nitrogen
and the cryostat vessel protect the magnets and the beam tube from the ambient
environment.

Beam tube

Stainless steel 
wire suspension

Neon condenser

End of 
Solenoid

Figure 3.6: Stainless steel wire suspension of the beam tube. Adjustable wires
(yellow, green, blue) hold the beam tube ends relative to the solenoids, minimizing
heat conduction. Additional suspensions near the beam tube center avoid significant
sagging.
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length of 3.3 m are used. Each main solenoid has one correction coil with increased
diameter at each end to compensate for the magnetic field drop at the gap between
different modules. The remaining drop between the main modules is <1.5%. This
concept is repeated at the DPS1-R and DPS1-F, which both have a 1 m solenoid and
correction coils. The DPS1-R solenoids are operated at 3.6 T like the central beam
tube magnets to form the magnetic field on its way to the rear section (see section
2.6), whereas the DPS1-F has a field of 5.0 T that then continues in the transport
section3 (see section 2.3).

Due to problems with the superconducting magnets of the DPS2-F, the operating
mode of the WGTS magnets was also changed: Instead of the foreseen persistent
mode, the magnets will be operated in driven-mode. “Air-cooled ultra stabilized
power supplies”’ [78] will be connected permanently to the magnets to ensure stable
currents and thereby magnetic field strengths. Additionally, the quench-detection
system will be improved [78].

3.4 The demonstrator test experiment

The demonstrator test experiment (figure 3.7) is performed to test crucial properties
of the WGTS. Its main goal is to test the beam tube cooling system, the two-phase
neon system (see section 3.3). This cooling technique has never been used before on
a large scale like the WGTS. Section 3.2 showed that there are strict requirements on
the temperature stability, so a dedicated test is appropriate to prove the functionality
or refine the design. In addition, the whole cooling concept is tested, including
the cooling of the pumping chambers, the shields and the cryostat itself. Since
the WGTS is one of the most important parts of KATRIN, the demonstrator test
reduces risks. It is an acceptance test of the mechanical and thermomechanical
integrity [79]. The demonstrator tests started in autumn 2010 and were finished in
December 2011.

Demonstrator components

An important feature of the demonstrator is its components: They are mainly orig-
inal components that are also used later, when converting the demonstrator to the
WGTS. The original central 10 m part of the WGTS beam tube and the first attached
pumping chambers are tested at the demonstrator. This defines the total length of
12 m of the test cryostat. The demonstrator vessel is also built from original parts,
namely the end parts of the WGTS vessel; the characteristic WGTS central dome
is not needed. All transfer lines that will enter the WGTS there temporarily enter
the demonstrator at unused pump ports.

To test the cooling principle at the demonstrator no magnets are needed. They
are replaced by an equivalent dummy cold mass, made of aluminium, cooled by
cryocoolers on the 4.5 K level. This mock-up simulates the thermal behaviour of the
superconducting solenoids in the LHe baths at the WGTS later. It allows to test the
functionality of the inner shield to protect the beam tube from the 4.5 K magnets
and vice versa.

3Original design value was 5.6 T. Due to insufficient performance of the DPS2-F solenoids,
the magnetic field in the DPS2-F will be reduced to 5.0 T. The DPS1-F will follow to match the
DPS2-F.
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Figure 3.7: The demonstrator test experiment. The tests are performed inside
the Tritium Laboratory Karlsruhe at KIT.

Since there is no need for gas circulation at the demonstrator, the whole test is
executed without any tritium. No turbomolecular pumps are installed at the pump
ports; only a few other pumps are needed to maintain the insulating vacuum. To
simulate the additional thermal radiation from the pumps that are operated later
in strong magnetic fields of the WGTS and reach temperatures more than 60◦C
due to eddy currents [80], electrical heaters are installed on top of the pump port
blank flanges. These heaters are only operated during dedicated measurements to
determine the effects of additional heat load on the stability of the system.

The cooling liquids and pipes that are used at the demonstrator will also be used
at the WGTS with slight modifications as well as the KATRIN refrigerating plant:
The beam tube is cooled by the 30 K two-phase neon system (see section 3.3). The
neon condenser and the inner shield are cooled by gaseous helium at around 30 K
as well as the inner part of the pumping chambers. The outer shield and the outer
parts of the pumping chamber including their radiation shields are cooled by liquid
and gaseous nitrogen (see figure B.1 in the appendix for details).

Temperature sensors

The sensors used to measure temperatures at the demonstrator are mostly origi-
nal sensors of the WGTS. On the beam tube 24 metallic resistance thermometers
(Pt500 sensors) are used to continuously measure the temperature. Their character-
istics and measurement uncertainties are discussed in [75] stating a total uncertainty
of 0.125 K @30 K. This mainly arises from the strong magnetic field dependence of a
resistance measurement. It prevents from reliable and precise temperature monitor-
ing on the 30 mK level that is required by KATRIN. Therefore, 24 vapour pressure
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sensors (VPS) are used additionally. Partially filled with neon, the measured satu-
ration pressure can be converted to temperatures using a vapour pressure chart [76].
In [75] is shown again that the uncertainty of such a VPS is only 4 mK @30 K, since
this measurement is insensitive to magnetic fields. A disadvantage of the VPS is
that it cannot be used continuously during several days of KATRIN measurements,
since the filling level of the sensors may vary [75]. Therefore the reliable, but im-
precise Pt500 sensors are calibrated in-situ (see appendix C) by an adjacent, very
precise VPS between KATRIN measurement intervals, reducing the uncertainty of
the temperature measurement to 4 mK. This is sufficient to continuously monitor
the temperature for its required stability of ∆Tstab < 30 mK (see section 3.2) until
the next calibration cycle.

To get a spatial temperature distribution of the source, the 24 sensor pairs – a
Pt500 sensor and a VPS – are distributed over the beam tube as shown in figure
3.8. The largest temperature fluctuations are expected near both beam tube exits,
so the sensors are concentrated on the last 0.5 m near each end; in the central part
only few sensors measure in larger distances. Most sensors pairs are mounted either
on top (90◦) or on bottom (270◦) of the beam tube – here again the sensors have
mirrored sensors with identical longitudinal positions – while the two-phase tubes
are brazed to the beam tube on 0◦ and 180◦ (see figure 3.9). It is expected to see the
largest temperature fluctuations on top and bottom of the beam tube, where the
sensors are located. To examine the azimuthal temperature distribution along the
beam tube wall, in total 4 sensor pairs are mounted at a 45◦ respectively 225◦ angle.

In the demonstrator as well as in the WGTS, the Pt500 sensors and the VPS are
controlled by a dedicated temperature acquisition system. It allows to read out all
beam tube Pt500 sensors in a 5 second cycle and to calibrate them with the VPS
(see appendix C).

Expectations on the demonstrator tests

Regarding important key characteristics, the demonstrator tests will determine, if
the requirements on the temperature stability of ∆Tstab < 30 mK/h and the tem-
perature homogeneity of ∆Thom < 30 mK (see section 3.2) can be achieved.

Simulations of the temperature stability in [74] examined the performance of the
neon condenser and the beam tube temperature behaviour. A result is shown in
figure 3.10a, expecting to meet the requirements.

Expectations on the temperature homogeneity are motivated by figure 3.10b. At the
demonstrator, the pump ports remain on room temperature first, causing thermal
radiation. Due to the special pumping chamber geometry, only the end parts of
the beam tube can be hit by photons, increasing the heat load there and creating
a longitudinal temperature profile. Dedicated heat load measurements with heated
pump ports have been performed during the demonstrator measurements to simu-
late turbomolecular pumps in strong magnetic fields. An increased heat influx is
expected that results in an intensified longitudinal temperature profile and possibly
larger temperature fluctuations. The results of the demonstrator measurements are
presented and discussed in detail in chapter 9.
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Figure 3.8: Positions of the temperature sensors at the demonstrator beam
tube (not to scale). The sensors are concentrated at the ends, to measure a
longitudinal temperature gradient. At each denoted position a pair of sensors is
measuring: A Pt500 sensor (RTP-3-5101 to 5124) and a vapour pressure sensor
(RTV-3-5131 to 5154, not shown). Odd numbered sensors measure at the bottom
except for sensor pairs 5103/5133 and 5121/5151 that are located on the side of the
beam tube. Even numbered sensors measure at the top with sensor pairs 5104/5134
and 5122/5152 again at a different azimuthal position (see also figure 3.9). The
positions are given relative to the origin of the CAD model that is shifted by 62.5 mm
from the geometrical center of the WGTS due to the dimensions of the injection
chamber.
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Figure 3.9: a) Azimuthal positioning of the beam tube temperature sensors
(not to scale). Looking from the rear end of the source, this sensor layout can be
observed. Twenty sensor pairs, mounted by a common sensor holder, measure on
top (even sensor numbers) or on the bottom (odd sensor numbers) of the tube. A
total of four sensor pairs measure at a 45◦ respectively 225◦ angle. The measurement
positions are highlighted by a blue cross, all other parts of the sensor holders are
not connected to the beam tube.
b) Sensor mounting. One of the sensor holders at 45◦, containing a Pt500 sensor
and a vapour pressure sensor, is brazed to the beam tube. Connection lines for
readout of the Pt500 and for pressure measurements of the VPS are also visible.
They are collimated at the top and guided out of the source at the front end.
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Figure 3.10: a) Simulations of the neon respectively the beam tube tem-
perature stability from [74]. The neon saturation temperature was simulated
using two different heat conduction models for the neon condenser with measured
fluctuations of 0.3 K of the helium to cool the condenser. The maximum deviations
in the model with transient conduction are ±2 mK.
b) Expected thermal radiation from the pump ports on the beam tube
from [74]. Warm pump ports at room temperature or above emit photons that
may hit the beam tube inner surface near its end. Requirements on this heat influx
are set by a requested temperature homogeneity of ±30 mK at the inner 9.5 m of the
beam tube. View-factor considerations yield a maximal heat influx of 0.1 W/m2 at
0.25 m distance from the beam tube end and a maximal overall thermal heat load
of 0.25 W [74].



4. Simulations of the tritium
source

Since many systematic uncertainties on the measured neutrino mass occur due to un-
certainties of source parameters (see section 3.2), understanding the tritium source
in all its aspects is necessary. For this reason, dedicated measurements and analyses
of source properties are performed in advance and during the KATRIN measure-
ments. This has to be supported by detailed simulations of the source, on the one
hand to understand the processes itself and on the other hand to determine their
influence on the neutrino mass analysis. These simulations must include the full de-
scription of hydrodynamical gas simulations, electro-magnetic particle tracking and
particle interactions within a detailed 3D-geometry.

For this purpose, the general KATRIN simulation package Kassiopeia is introduced
in section 4.1. This work at hand has significantly contributed to the source simula-
tions in section 4.2. The conceptual aspects like the voxelization and the spectrum
calculation are presented in sections 4.2.1-4.2.4. Finally, in section 4.2.5, the sig-
nificant improvement for the description of the crucial physical processes like the
Doppler effect and the final state distribution is presented.

4.1 Simulation framework Kassiopeia
The KATRIN experiment as a whole is a complex system with several subcom-
ponents (see chapter 2), each with different tasks and various physical processes
connected with it. For example, the key parameter column density of the WGTS
is described by macroscopic simulations of gas dynamics of injected and pumped
tritium molecules. On the other hand, a description of the tritium β-spectrum is
needed, since that is measured by KATRIN. These are completely different processes
and both are needed to describe the source. Going even further, the transport sec-
tion and the spectrometers deal with electron transport in electric and magnetic
fields. Finally, at the detector, interactions of electron with matter happen. Again,
these processes are versatile; there are different specialized models to describe them,
known from theory and experiments. Simulations at KATRIN reach from Monte-
Carlo simulations of single particles to macroscopic simulations for example of the
whole source system.
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Figure 4.1: The KATRIN Monte-Carlo simulation software Kassiopeia.
Kassiopeia can be divided into three main modules: The particle generation, the
particle tracking and the particle detection. The responsible module names are
given as well and are described in the text. Further components of Kassiopeia are
the Source Simulation and the Field Calculators, which are used in various parts. A
general part, the KSCore, is responsible for a unified program structure, connecting
all modules.

For a long time, specialized small program packages for the different processes in
KATRIN have been used, either available software adapted to KATRIN conditions
or newly developed, highly specialized code. In fact, this was successful and suf-
ficient for some time. But then, connections between the different programs were
requested. For example one wanted to execute a Monte-Carlo simulation: Gener-
ate a large number of particles in the source, follow their trajectory through the
whole experiment and investigate their events on the detector. This was possible
with some efforts to pass results from one simulation module to the other, but it
was very inconvenient and error-prone. Therefore, in spring 2010 the KATRIN soft-
ware developers decided to merge all existing (Monte-Carlo) simulation software to
the new package Kassiopeia [81]. Within this framework, the different modules can
communicate. The user of Kassiopeia can deal with a unified system to initialize
and execute the simulation as well as interpret the results. The code is written in
C++ and developed and supported for Linux and Mac OS. Kassiopeia is planned
to be accessible to people outside the KATRIN collaboration. Its dependencies are
only program libraries that can be used free of charge.

The structure of Kassiopeia and its modular design is shown in figure 4.1. The
various modules are briefly introduced in the following:
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Particle Generator KPAGE

The KATRIN Particle Generator KPAGE is responsible for the event generation of
Monte-Carlo simulations. The configuration of a generator is modular [82], the user
assembles different parts of the generator:

• The particles’ type and properties. Each generator typically generates
particles of a certain type, for examples electrons or ions. For the simulation,
the generated particles are defined by their charge and mass that are needed
to calculate the particles’ trajectories later.

• The starting positions. Particles can be emitted from a “point” source like
the tip of an electron gun, from a surface like background electrons generated
at the spectrometer walls or inside a volume like β-electrons in the WGTS. In
the latter case, the density distribution of molecules in the source, provided by
the module SSC (see section 4.2), is used to randomly start electrons according
to this distribution.

• The energy distribution. The user can define the energy spectrum of the
particles to be generated. For KATRIN, electrons from the tritium β-decay
are created according to the β-spectrum provided by SSC (see section 4.2).
Other tasks are to generate electrons from an electron gun with a Gaussian
energy distribution or fixed energies that can be used for test purposes.

• The angular distribution. The particles’ initial direction can be isotrop-
ically distributed like in a β-decay or can have a preferred direction like for
an electron gun that emits electrons in a very narrow solid angle. Arbitrary
angular distributions can be defined, even allowing for energy-direction depen-
dencies [82].

• The timing distribution. For special simulations, timing information can be
important. KPAGE allows the user to define life times of a decay or dedicated
time distributions.

Particle Tracking KTRACK

Having generated charged particles with KPAGE, these particles propagate due to
their initial conditions and present electric and magnetic fields in the experiment.
This is the task of the KATRIN Tracking module KTRACK. It numerically solves
the Lorentz equation of motion to describe the trajectories of a charged particle in
vacuum inside electric and magnetic fields. Details on these methods can be found
in [83]. Features during tracking that are important for this work on hand are the
description of scattering processes with elastic and inelastic cross sections from [84–
87] and synchrotron radiation as energy losses. The tracking can be executed with
different level of detail, for example tracking the particles adiabatically along the
magnetic field lines or using the most accurate tracking that considers the cyclotron
motion of the particle around the field lines.
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Particle Detection KESS

Particles entering the silicon of the detector (see section 2.5) switch the responsi-
ble simulation code from KTRACK that was used for tracking in vacuum to the
KATRIN Electron Scattering in Silicon KESS module [88]. This newly developed
simulation code tracks electrons in silicon simulating their energy deposition there.
It also considers effects of back-scattered electrons and the behaviour inside the
detector dead layer. The description of the required elastic and inelastic double
differential cross sections has been optimized for electrons from 1-30 keV.

Source Simulation SSC

The Source Spectrum Calculation SSC [82], [89] contains descriptions of all physical
processes of the source. Its features are explained in detail in section 4.2; here only
its contribution to the particle generation and tracking is highlighted: SSC provides
a detailed description of the β-spectrum, containing radiative corrections, the final
state distribution and the Doppler broadening (all in section 4.2.3). It can be used as
energy distribution to generate β-electrons with KPAGE (see above). In addition,
to randomly choose the starting positions of electrons in the WGTS, the density
profile can be used as input for a random number generator. The same information
on the density is also used during tracking with KTRACK (see above) to account
for scattering of electrons on T2 molecules in the source.

Field Calculators KAFCA and KEMFIELD

Kassiopeia includes two modules KAFCA [83] and KEMFIELD [90] that can both
calculate electric as well as magnetic fields. They provide various field calcula-
tion methods for different, specialized tasks, for example axially symmetric fields or
fields of complicated geometries like wire electrodes of the spectrometer. The user
can choose appropriate methods depending on his tasks and use them by a unified
interface, independent of the underlying field calculator.

Main package KSCore

The general part of the Kassiopeia code is called KSCore [81]. It contains classes
that are used by several other modules like common physical constants or random
number generators. It also provides routines to initialize the different modules in a
unified way by configuration text files. Other important parts are the sophisticated
geometry system for various tasks and a management system that connects the
different modules and allows to run them, communicating with each other.

4.2 Source Spectrum Calculations SSC

Simulations of the WGTS are needed for the Monte-Carlo simulation Kassiopeia
as described above to generate electrons according to the tritium β-spectrum and
according to a density distribution in the source. The developed Source Spectrum
Calculation SSC [82], [89] contains these features. In a unified program structure all
available models to describe the source from spectrum calculation to gas dynamics
are combined to give a complete, detailed simulation of the KATRIN WGTS.
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Although the focus is on the source, SSC allows going beyond the border of the
WGTS, including a spectrometer and detector response, finally calculating the in-
tegrated β-spectrum that KATRIN will be measuring. This is no Monte-Carlo
simulation, just numerical integration of the differential spectrum, considering the
detailed model of the WGTS and general models for other parts of KATRIN. To-
gether with analysis and fitting algorithms (see chapter 6) this allows investigating
the influence of parameters – especially source parameters – on the neutrino mass
determination. To do so, SSC with its components is explained in the following, in
sections 4.2.1-4.2.4 the status of the program at the end of the work [89] in 2009,
then its extensions and modifications in section 4.2.5.

4.2.1 Main concept: “Voxelization”

Previous simulations of the WGTS treated it as a totally homogeneous system. The
source indeed is homogeneous to a certain degree, but especially along the 10 m of
the beam tube small inhomogeneities are inevitable as can be seen in the discussion
of the magnetic field or the gas dynamics in the following. Therefore, in a detailed
model the source is divided into small volumes, so-called voxels. Local physical
properties like the density, temperature or magnetic field strength, provided by a
model for the specific source parameter, can then be assigned separately to each
voxel.

To do this “voxelization”, a division of the 10 m beam tube in small slices is useful
to account for longitudinal inhomogeneities. The degree of segmentation depends
on the parameter profile, but 1000 slices of equal length, that means 1 cm per slice,
seemed sufficient for most investigations so far. In general, the program is flexible to
allow for special segmentations with fine slices in regions of severe inhomogeneities,
for example near the pumping chambers, and large slices for homogeneous parts of
the source in the centre.

Each slice can then be divided in radial and azimuthal direction creating a ring
structure, each with several segments (see figure 4.2), the voxel structure. This
cylindrical division is based on the detector segmentation, so that the source vox-
els are mapped to specific detector pixels. During KATRIN measurements, the
measured spectra recorded by different detector pixels can be compared with rates
calculated by SSC. This is useful to understand radial inhomogeneities like the ad-
ditional gas flow bulk-velocity (see section 5.1) or azimuthal asymmetries like an
azimuthal temperature gradient of the beam tube (see temperature profile in the
following) and its implications on the density profile.

Classes implementing this voxelization concept in SSC are SSCSlice, SSCRing and
SSCSegment. The overall WGTS is described by a vector of objects of type SSCSlice.
For many simulations, this longitudinal division is sufficient to account for source
inhomogeneities. If further divisions are needed, each slice can be divided radially
due to the cylindrical structure into a vector of rings, objects of type SSCRing.
Finally, each ring can be divided in a vector of objects of type SSCSegment. These
segments have access to its dimensions and all physical properties like density and
field strengths stored individually, corresponding to the voxel structure described
above.
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Tritium injection
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90
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Figure 4.2: Schematic “voxelization” of the WGTS. The 10 m beam tube is
divided into longitudinal slices to account for inhomogeneities of the density, tem-
perature and magnetic field. Each slice can then be divided into rings and segments,
creating a “voxel” structure. The segmentation of the source is chosen here to fit
the detector with its 12 rings, each containing 12 coextensive segments. Electrons
emerging from certain parts of the source contribute to the events hitting a corre-
sponding segment of the detector.

Magnetic field

The magnetic field in the WGTS is needed to guide the produced β-electrons from
the source to the spectrometers. It has several influences on the measurement and
needs to be considered in SSC:

• The source field strength BS together with other magnetic fields in the spec-
trometer and at the detector determines which part of the source is mapped
to the detector. Using eq. (2.4) with nominal strength BS = 3.6 T, this results
in an effective source area AS,eff = 53.1 cm2 and a radius of rS,eff = 4.1 cm.

• Using a MAC-E filter, eq. (2.2) defines the maximal opening angle θmax. If
the magnetic field is axially symmetric, but longitudinally inhomogeneous (see
figure 4.3), θmax will depend on the longitudinal position z. Electrons from
different parts of the source experience different starting conditions, modify-
ing the total spectrum. Mean scattering probabilities Pi (eq. (4.8)) are also
influenced by θmax, since averaging over all electrons contributing to the signal
requires integration up to θmax.

• The amount of synchrotron radiation1 Esyn, that a charged particle emits, de-
pends on the magnetic field strength B, on the particle’s energy E⊥ transversal
to the field and also on the time t (respectively path length) it moves in the
field (non-relativistic approximation) [48]

Esyn = 0.4E⊥B
2t. (4.1)

The path length itself also depends on BS, since higher BS increases the cy-
clotron motion, creating longer path lengths. This effect again influences the
scattering probabilities Pi (see eq. (4.6)).

1Energy losses due to synchrotron radiation have not yet been included in calculations of SSC.
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Figure 4.3: Magnetic field strength in the WGTS. The field in the central
part is provided by three solenoids with a nominal strength of 3.6 T. The behaviour
shown in the inset is due to attached correction coils in between that avoid a severe
drop of the field strength. The large drop of the field at ±5 m and ±6.5 m is due to
the gap, where the pumping chambers are installed.

The magnetic field in SSC is provided by one of Kassiopeia’s field calculators, which
the user can choose. Then, for every source voxel j the magnetic field strength Bj

S

is calculated and stored, defining θjmax and P j
i .

Density profile

Injecting tritium gas in the WGTS centre and pumping at the beam tube ends will
create a density profile. For that purpose, dedicated gas dynamics simulations have
been developed and will be summarized in chapter 5. In general, any information
on the density distribution can be used with SSC. The density for each source voxel
can be set according to the underlying density calculator. Then the density can be
used to

• provide density information for the Monte-Carlo simulations when generat-
ing particles or when considering scattering of electrons on T2 molecules (see
section 4.1).

• correctly calculate scattering probabilities (see section 4.2.2).

• account for the number of molecules, respectively the activity of each voxel
and its contribution to the total KATRIN spectrum (see section 4.2.4).
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The present implementation in SSC consists of a base class SSCDensityBase with
a general method GetDensity(TVector3& r)2 to obtain the density at position
~r. Special derived classes provide access to existing gas dynamics simulations in
chapter 5, for example SSCDensityAsymmetric that uses a fit to a calculated one-
dimensional density profile (see eq. (5.13)) or SSCDensity3DSharipov that uses the
present pseudo-3D calculations described in section 5.3.

The velocity profile of molecules is closely connected to the density profile and will
be discussed in section 4.2.5.2 as an extension of SSC.

Temperature profile

The temperature of the beam tube directly influences the density distribution in
the WGTS (see chapter 5), thus considering the temperature in a source simulation
is inevitable. Since these density calculations usually are performed in dedicated
programs outside SSC, a detailed temperature model in SSC is not needed at first
sight. But there is another influence of the beam tube temperature: It defines
the thermal movement of the T2 molecules and therefore the Doppler broadening
of emitted β-electrons. Setting the temperature for each source voxel in SSC, the
Doppler effect can be handled correctly for electrons emerging from different parts
of the source (see section 4.2.5.4).

A base class SSCTemperatureBase has been implemented. In conformity with the
density profile, a method GetTemperature(TVector3& r) returns the temperature
at position ~r. Special temperature profiles are already predefined or can easily be
added by the user. At the moment, the most suitable one is SSCTemperatureAsym-
metric based on the demonstrator measurements (see section 9.4). By this kind of
implementation, it will be straight forward to obtain the temperature profile deter-
mined by the measuring sensors during WGTS measurements later.

4.2.2 Response function

The response function comprises effects of the experimental setup of KATRIN that
modify the measured integrated β-spectrum. It convolutes energy losses due to
inelastic scattering of β-electrons on tritium molecules in the source and the trans-
mission properties of the KATRIN main spectrometer.

Energy loss function

KATRIN is designed to avoid energy losses of signal β-electrons, using a windowless
source and adiabatic guidance of electrons. If any energy loss cannot be avoided,
these losses will have to be known precisely and will be included in the neutrino mass
analysis. Inelastic scattering of electrons on T2 molecules is one of these energy
losses. It depends on the inelastic scattering cross section σinel and the detailed
energy loss function f(ε), normalized and related to the differential cross section by

f(ε) =
1

σinel

dσ

dε
(4.2)

∞∫
0

f(ε)dε = 1 (4.3)

2TVector3 is a vector with three components, provided by ROOT [91].
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Figure 4.4: a) Energy loss function of electrons scattering on gaseous T2.
The distribution was measured in [92]. A prominent feature is that inelastic scat-
tering implies an energy loss of at least 10 eV.
b) KATRIN response function and spectrometer transmission function
(inset). The response function is drawn for a fixed electron energy of E = 18.6 eV,
varying the retarding potential energy qU . The other parameters here were chosen
for the WGTS that means P0 = 0.41 as can be seen from the plateau between 1 and
10 eV and a spectrometer energy resolution of 0.93 eV.

Both quantities have been determined in a measurement [92] for electrons scattering
on gaseous T2 with results

σinel = (3.40± 0.07) · 10−18 cm2 (4.4)

and

f(ε) =

A1 exp
(
−2(ε−ε1)2

ω2
1

)
for ε < εc

A2
ω2

2

ω2
2+4(ε−ε2)2 for ε ≥ εc

(4.5)

with fitted parameters A1 = 0.204± 0.001, ω1 = 1.85± 0.02, A2 = 0.0556± 0.0003,
ω2 = 12.5 ± 0.1 and ε2 = 14.30 ± 0.02, using a fixed ε1 = 12.6. Additionally,
εc = 14.09 was chosen to obtain a continuous function. The function is shown in
figure 4.4a. In this parameterisation, the Gaussian part describes the energy loss due
to excitation, the Lorentzian part accounts for ionisation [92]. To obtain the energy
loss of multiple inelastic scatterings, the function can be convoluted with itself, for
example (f ⊗ f)(ε) for a twofold scattering.

Eq. (4.4) states that the accuracy of σinel is only ≈ 2% and the description of f(ε) is
quite coarse. To reach the planned KATRIN sensitivity, both quantities have to be
known on the 10−3 level (see section 3.2), demanding for a new, dedicated measure-
ment of the energy loss function at KATRIN: For different column densities in the
WGTS, the response function (see below) is measured with the rear section electron
gun (see section 2.6). Together with the transmission function and scattering prob-
abilities (see the following sections), a deconvolution will give f(ε). Details on this
procedure can be found in [93–95].
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The implementation of f(ε) and σinel in SSC follows the usual way: A base class
SSCEloss provides a function to obtain the probability f for an energy loss ε. This
can then be specified by derived classes, at present the measured function of eq. (4.5)
or later by a measurement and deconvolution of the energy loss function at KATRIN.

Scattering probabilities

To describe the complete energy losses in the WGTS, probabilities Pi for i-times
inelastic scattering are needed next to the already discussed energy loss function.
For an electron emitted at longitudinal position z in the WGTS under an angle θ
relative to the magnetic field line, the Pi are Poisson-distributed [92]

Pi(z, θ) = exp (−λ(z, θ) · σinel)
(λ(z, θ) · σinel)

i

i!
. (4.6)

They are determined by the inelastic cross section σinel in eq. (4.4) and the number
of tritium molecules or effective column density λ(z, θ) that an electron passes when
leaving the source at +L/2 [92]

λ(z, θ) =
1

cos θ

+L/2∫
z

ρ(z)dz. (4.7)

The factor 1/ cos θ accounts for an increased path length of the electron due to its
helix cyclotron motion in the source magnetic field. Radial and azimuthal inhomo-
geneities can be considered by treating λ as a function of r and φ, respectively the
density as ρ(r, φ, z).

From eq. (4.6) and eq. (4.7) it is obvious that electrons from the rear side of the
WGTS scatter more often – P0 decreases – than electrons emitted from the front.
Therefore, if the electrons’ starting conditions differ throughout the WGTS, they
influence the spectrum differently: Electrons from the front side of the WGTS are
generally contributing stronger to the overall spectrum than those from the rear
side.

To encompass different effects in few numbers, mean scattering probabilities PWGTS
i

can be calculated [96]

PWGTS
i =

1

ρd(1− cos θmax)

+L/2∫
−L/2

dz

θmax∫
0

dθ ρ(z)Pi(z, θ) sin θ. (4.8)

This is an average of the Pi(z, θ) in eq. (4.6) weighted with the density distribution,
averaging over all possible emission angles3 between 0 and θmax. It should be noted
that this method does not account for changes in angle during scattering. Currently,
Monte-Carlo simulations that consider changes in angle are used to verify the Pi of
eq. (4.8) [95].

Nevertheless, SSC can calculate the PWGTS
i for given magnetic field and density

profile, but it can do more: Like for all other physical properties, SSC can calculate

3Isotropic emission, therefore sin θ enters the averaging.
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and store the local scattering probabilities. For each voxel the probabilities are de-
termined that electrons from this voxel scatter i-times when passing the molecules
between their starting position and the spectrometer. This can be done by con-
straining the z-average in eq. (4.8) to the dimensions of the specific voxel [z1, z2] and
by replacing the θ-integration limits by the local θmax. This procedure is more ac-
curate than eq. (4.8), because it considers local inhomogeneities. It is a further step
towards calculating the contribution of each voxel to the whole KATRIN spectrum.

Transmission function

The properties of a MAC-E filter (see section 2.4) can be summarized in a transmis-
sion function T (E, qU). It states the probability that an electron with energy E can
overcome the spectrometer retarding potential energy qU . An analytical formula for
an isotropic source in derived in [48]

T (E, qU) =


0 E − qU ≤ 0

1−
√

1−E−qU
E

BS
BA

1−
√

1−∆E
E

BS
BA

0 < E − qU ≤ ∆E

1 E − qU > ∆E,

(4.9)

where BS and BA are the magnetic field strengths of the source and of the analysis
plane of the main spectrometer. The energy resolution of the setup (see section 2.4) is
denoted as ∆E. The inset of figure 4.4b shows the analytical transmission function.
Strictly speaking, the transmission properties are not part of a source simulation.
Nevertheless, SSC in the present status contains the analytical shape to calculate the
response function that also contains inelastic scattering, clearly connected with the
source. This is required to obtain a calculated integrated spectrum. In the future,
the transmission function will be removed from the SSC package. It will remain
accessible by dedicated code that can calculate realistic transmission functions from
electric and magnetic fields [97] and that can actually use measured transmission
functions during main spectrometer commissioning [98].

Response function

The response R is the probability that an electron with starting energy E overcomes
the retarding potential energy qU when emitted in the WGTS, undergoing inelastic
scattering with specific probabilities Pi, losing energy according to the energy loss
function f(ε):

R(E, qU) =

∫ E

0

T (E − ε, qU) · (P0δ(ε) + P1f(ε) + P2(f ⊗ f)(ε) + · · · )dε. (4.10)

The shape for standard KATRIN parameters (ρd = 5 ·1017 cm−2 and ∆E = 0.93 eV)
is shown in figure 4.4b. Since the energy loss function, shown in figure 4.4a, is zero
below 10 eV, the response function is flat for the first 10 eV, except for the steep
rise of the transmission function within the first eV. The visible plateau corresponds
to the probability of unscattered electrons P0 = 0.41. Therefore, in the last 10 eV
below the endpoint – the region that is most sensitive to the neutrino mass – the
measured integrated spectrum of KATRIN is not influenced by scattering. Then
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consecutively, when further lowering qU , electrons that have scattered once, twice
and so on can pass and contribute to the spectrum.

Experimental influences on the spectrum, that means the response function, need to
be understood and monitored precisely to avoid systematic effects on the neutrino
mass analysis (see section 3.2). As said above, the energy loss function is determined
at KATRIN by a preceding measurement of the response function with an electron
gun (see section 2.6) and following deconvolution algorithms. Regarding monitoring,
it is planned to use the electron gun between neutrino mass measurements, typically
every two hours. Observed changes in the rates of inelastically scattered electrons
indicate changes in the column density and allow adjusting the response function
that is used for analysis of the following neutrino mass measurement.

In SSC, the voxelization concept provides all information to separately calculate the
response function for each voxel j: The specific P j

i , the magnetic field strengths Bj
S

4 and the universal energy loss function.

4.2.3 Differential β-spectrum

The differential β-spectrum has already been discussed in the chapter 1.6, focussing
on Fermi’s theoretical description in eq. (1.36). All ingredients of this equation are
implemented in SSC with free parameters endpoint energy E0 and the quantity to
measure, the neutrino mass squared m2

ν . This valid description is refined by sev-
eral modifications that are important to include, since the effect of a non-vanishing
neutrino mass is comparable to these small modifications.

Fermi function

The Fermi function F (Z,E) describes the interaction of the daughter nucleus in
a β-decay with charge Z and the emitted particle with kinetic energy E. In a
β−-decay, the outgoing electron is attracted by the positively charged nucleus; the
energy spectrum is shifted slightly towards lower energies. In a β+-decay, the emitted
positron is repelled, leading to increased energies in the spectrum.

For the tritium β−-decay with Z = 2, the modified non-relativistic Fermi function
can be considered according to [43] by

F (Z,E) =
x

1− exp (−x)

(
a0 + a1 ·

ve

c

)
; x =

2πZα

ve/c
(4.11)

with fine-structure constant α and electron velocity ve. a0 and a1 are empirical
values

a0 = 1.002037 (4.12)

a1 = −0.001427,

that are a “phenomenological modification which makes the non-relativistic expres-
sion yield the same values as the relativistic calculation [. . .] over the energy range
of interest.” [43].

4BjS is used for the transmission function and scattering probabilities. Other magnetic field
values like BA in the analysis plane and Bmax, the strongest field in the setup, can also be used in
a segmented way as BjA and Bjmax to consider inhomogeneities.
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Radiative corrections

The emitted β-decay electron experiences corrections due to interactions with virtual
and real photons, the radiative corrections. A calculation in [99] is used in SSC to
apply this correction, adding an energy dependent factor frad(E) to the spectrum
calculation, respectively eq. (1.36).

Nuclear recoil

In eq. (1.42), the parent molecule T2 is resting in the centre-of-momentum frame.
After the decay, the daughter molecule with mass M3HeT carries a small momentum
respectively kinetic energy, the nuclear recoil energy Erec. In [48], an equation for
Erec is derived. Since the nuclear recoil prec and the electron momentum pe are equal,

Erec =
p2

rec

2M3HeT

=
p2

e

2M3HeT

= E
me

M3HeT

+
E2

2M3HeT

≈ E
me

M3HeT

(4.13)

with kinetic energy E of the electron. The approximation in eq. (4.13) is valid,
since the first term containing me is larger by at least a factor of 50 in case of
tritium and its low endpoint energy E0 of 18.6 keV (see section 1.6.2). The energy
dependence is linear. Constraining the interesting part of the spectrum to a region
only a few eV below E0 yields a nearly constant Erec ≈ 1.7 eV. Erec does not enter
eq. (1.36) directly, because it is considered for practical reasons within the final
state distribution, described in the following and especially in section 4.2.5.3. Due
to its energy-independence, Erec can be absorbed in an effective endpoint energy
E ′0 = E0 − Erec, since the true value of E0 is of no interest for KATRIN.

Final State Distribution

When tritium is bound in a molecule like T2 and decays, the daughter molecule,
here (3HeT)+, can be excited. Since it is a molecule, rotational, vibrational and
electronic excitations are possible. These excitation states are represented by a final
state distribution (FSD) with excitation energies Ef and probabilities Pf , specific
for each molecule species. Ef is not available for the electron, thereby the FSD
modifies the spectrum5

dN

dE
= C · F (Z,E) · p · (E +mec

2) · frad(E) ·
∑
f

[Pf · (E0 − Ef − E) ·√
(E0 − Ef − E)2 −m2

νc
4 ·Θ(E0 − Ef − E −mνc

2) ].

(4.14)

The β-spectrum of a molecular decay is a summation over all final states with
index f . It adds single spectra with effective endpoint energies E0,f = E0 − Ef
weighted with probabilities Pf . In SSC, the differential spectrum is available as
SSCDifferentialSpectrumFSD with a detailed description of the FSD (see section
4.2.5.3).

5Radiative corrections frad are included here.
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4.2.4 Integrated β-spectrum

KATRIN measures the integrated β-spectrum (see section 2.1) to determine the
parameters of the differential spectrum dN/dE, especially the neutrino mass squared
m2
ν . The signal count rate ṄS at the detector depends on the applied retarding energy

qU

ṄS(qU) = NT(εT) · εdet ·
Ω

4π

E0∫
qU

dN

dE
(E0,m

2
ν) ·R(E, qU)dE (4.15)

accounting for the experimental effects combined in the response function R, the
total number of tritium nuclei NT as a function of the tritium purity εT and the
detector efficiency εdet = 0.9 [48]. The solid angle

Ω = 2π(1− cos θmax) (4.16)

accounts for the fact that electrons emitted with angles larger than θmax (see eq.(2.2))
will be reflected at the pinch magnet and cannot reach the detector. Eq. (4.15) is
equivalent to eq. (2.1) and already considers the information that electrons with
kinetic energies below qU will be reflected and electrons above E0 do not occur in
the spectrum.

The implementation in SSC is called SSCIntegratedSpectrum. It contains a user-
specified differential spectrum and response function as class members. A connection
with the voxelization approach allows to calculate the integrated spectrum Ṅ j

S for
each voxel j: In eq. (4.15), NT is replaced by the number of tritium nuclei N j

T in voxel
j and the correct solid angle Ωj with θjmax as well as the scattering probabilities P j

i are
used to obtain the voxel dependent response function Rj(E, qU). The contributions
of single voxels can be used individually to consider the rate at different detector
pixels or can be summed up again to obtain the total rate of the integrated spectrum

ṄS(qU) =
∑
j

N j
T · ε

j
det ·

Ωj

4π

E0∫
qU

dN

dE
(E0,m

2
ν) ·Rj(E, qU)dE. (4.17)

With this flexibility, on the one hand SSC allows investigating asymmetries in the
count rate, for example between top and bottom of the source. On the other hand,
the total rate of the integrated spectrum can be calculated accurately using the
detailed source model and its voxelization.

The obtained “total” spectrum can then be used in a next step to simulate a KA-
TRIN measurement including a measurement time distribution and background ef-
fects. Analysis routines then allow investigating the effects of (source) parameters
as systematic effects on m2

ν or to (re-)evaluate the sensitivity of KATRIN for specific
modifications. Details on these tools are presented in section 6.2 and results of these
investigations in chapters 7 and 8.

4.2.5 Extensions and modifications

4.2.5.1 General modifications

Since 2009, SSC as described in the previous section has been extended and has been
subject to considerable improvements. Kassiopeia was started in 2010 and SSC was
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decided to be part of it. Thus, SSC was adapted to the general structure that Kas-
siopeia offered (see section 4.1). This implementation into Kassiopeia was successful,
the interfaces were established and tested: On the one hand, SSC can use magnetic
fields from Kassiopeia’s field calculators, on the other hand Kassiopeia’s particle
generator KPAGE is able to ask SSC for the β-spectrum or density distribution in
the WGTS.

In addition, the connection of SSC to the KATRIN analysis tool KaFit (see section
6.2) was established that allows simulating the complete KATRIN experiment. It
considers detailed measuring plans, the measurement time distribution [48] as well
as background processes disturbing the measurement. With this connection it was
possible to generate KATRIN “measurements” with a detailed source model of SSC
and investigate the sensitivity onm2

ν as well as the systematic influence of experiment
parameters on the analysis respectively the m2

ν determination.

4.2.5.2 Velocity profile

An extension to the existing SSC code is the completed implementation of velocity
profiles. The velocities of the T2 molecules in the WGTS are governed by the thermal
movement with most probable speed [100]

vm =
√

2kBT/MT2 (4.18)

with Boltzmann constant kB, temperature T and molecule mass MT2 . Additionally,
a net gas flow with velocity ~u due to the injection and pumping at the tube ends has
to be considered. Calculations in [101], that are also presented in chapter 5, show
that the resulting velocity distribution is described well by a shifted Maxwellian

f(~r,~v)drdv ≈ ρ(~r)

(
√
πvm)3

exp

[
−
v2
r + v2

φ + (vz − uz(~r))2

v2
m

]
drdv, (4.19)

with velocity components vr, vφ and vz in cylindrical coordinates and density ρ(~r).
f(~r,~v)drdv is the probability of finding a molecule in volume [~r, ~r + d~r] within the
velocity interval [~v,~v+d~v]. Thereby, ~u has already been reduced to the z-component
uz(~r), the so-called bulk velocity, since the net gas flow through the source occurs
from the injection centre towards the tube ends. It should be emphasized that uz is
not constant; it depends on the position ~r in the source as shown in figure 5.2.

In SSC, a base class SSCVelocityBase handles the velocity distribution with the
typical method GetVelocity(TVector3& r). A derived class that considers results
of chapter 5 contains a detailed model of the velocities in the WGTS. Especially,
the obtained values of uz(~r) are stored in the voxel structure to use the local uz for
the description of the Doppler effect (see section 4.2.5.4).

4.2.5.3 Final State Distribution

As already explained in section 4.2.3, the decay of tritium bound in a molecule
causes a rotationally, vibrationally and possibly electronically excited final state of
the daughter molecule. Since the molecule masses influence the discrete energies of
these excitations, different parent molecules in the WGTS, the tritiated hydrogen
isotopologues T2, DT, HT, decay into the daughter molecules (3HeT)+, (3HeD)+ and
(3HeH)+ that have different final state distributions (FSD). Detailed calculations
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have been reported in [65–67] to obtain these FSD6. Two FSD are shown in figure
4.5a for (3HeT)+ and (3HeD)+, composed again by different distributions for different
initial states respectively initial angular momentum J with J = 0, 1, 2, . . . as reported
in [65]. The dependence on J is shown in figure 4.5b. The probability PJ to find a
molecule in state J is given by a Boltzmann distribution [102]

PJ(T ) =
gSgJ exp (−∆EJ/(kBT ))

QT

(4.20)

with nuclear spin-degeneracy factor gS, rotational degeneracy factor gJ = (2J + 1),
Boltzmann’s constant kB and temperature T ; ∆EJ is the distance to the ground
state. The level energies EJ can be found in table 4.1. QT is a normalizing sum

QT =
∑
J

gSgJ exp (−∆EJ/(kBT )). (4.21)

Dealing with T2 as homonuclear molecule, gS = 1 for even J and gS = 3 for odd J ;
the heteronuclear DT and HT have no spin-degeneracy, therefore gS = 1 [103].

To obtain the needed FSD for KATRIN, the simple FSD for different J have to be
weighted according to their probability PJ(T ) that depends on the source tempera-
ture T and according to the fraction of the specific hydrogen isotopologue, in a way
according to the tritium purity εT (see section 3.1). For that procedure SSC has
two implemented possibilities, similar but with different (dis-)advantages:

• Possibility 1 is the class SSCFinalStates. The FSD for (3HeT)+ and (3HeD)+

is combined from available distributions [65], [66] for different J with appropri-
ate weights (eq. (4.20)), resulting in an “effective” FSD. The FSD of (3HeH)+

is only available as a single effective distribution at T = 30K [67]. Then,
these three effective distributions are weighted according to the abundance of
their parent molecule T2, DT and HT in the WGTS, related to εT or later
in KATRIN the results from the LARA measurement (see section 3.3). The
resulting FSD is then used to calculate the differential β-spectrum. This ap-
proach is useful, when simulating a static source, fixing εT and T . When these
quantities are dynamic, possibility 2 is appropriate.

• Possibility 2 is to store all available FSD individually, that means every dis-
tribution for (3HeT)+, (3HeD)+ and (3HeH)+, for every J , and weight them
dynamically when calculating the β-spectrum. The class SSCFinalStatesNew
is responsible to store such a vector of single FSD for all isotopologues and
all J , together with appropriate weights. These weights can be adjusted for
all temperatures and arbitrary εT, providing the most accurate FSD for the
spectrum calculation. The disadvantage is that the calculation needs more
time when using many separate distributions, especially in case of the Doppler
effect (see section 4.2.5.4).

6All calculated FSD used in SSC and in this work are brought to the same energy scale, namely
the T2 scale. This means, the lower nuclear recoil energies (see section 4.2.3) of (3HeD)+ and
(3HeH)+ compared to the 1.7 eV of (3HeT)+ have been absorbed in the FSD. On that scale,
negative final state energies Ef can occur.
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Table 4.1: Non-adiabatic eigenvalues for levels J of the ground states (ν =
0) of T2, DT and HT from [104], also converted to eV.

T2 DT HT
J EJ (cm−1) EJ(eV) EJ (cm−1) EJ(eV) EJ (cm−1) EJ(eV)

0 -37028.481 -4.59095 -36881.271 -4.57269 -36512.166 -4.52693
1 -36988.418 -4.58598 -36831.336 -4.56650 -36432.713 -4.51708
2 -36908.415 -4.57606 -36731.657 -4.55414 -36274.295 -4.49744
3 -36788.716 -4.56122 -36582.614 -4.53567 -36037.874 -4.46813
4 -36629.686 -4.54150 -36384.771 -4.51114 -35724.869 -4.42932
5 -36431.803 -4.51697 -36138.869 -4.48065 -35337.128 -4.38125
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Figure 4.5: a) Final state distribution of (3HeT)+ and (3HeD)+ at T = 30K.
Due to the different masses, the final state distributions differ slightly. These “ef-
fective” FSD are composed of a temperature dependent mixture of different states
J (see figure b) and main text.)
b) Final state distribution of (3HeT)+ for different angular momentum J
of the T2 parent molecule. For clarity reasons, only J = 0 and J = 3 are plot-
ted. The initial angular momentum influences the final state distribution: Higher J
results in a slightly broadened peak. Considering this effect, to obtain the “effective”
FSD for a specific molecule, each distribution for different J has to be weighted by
its abundance according to a Boltzmann distribution.
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4.2.5.4 Doppler effect

If a β-emitting T2 molecule is moving, the β-electron energy in the laboratory frame
is increased or decreased due to the Doppler effect. A classical treatment, simply
adding the velocities of the electron ~ve and the T2 molecule ~vT2 , yields an energy
shift of

∆E = Ef − Ei =
1

2
me (~ve + ~vT2)2 − 1

2
me~v

2
e = me~ve~vT2 +

1

2
me~v

2
T2
. (4.22)

The last term in this equation is negligible for source temperatures of T = 30 K
because ~vT2 in the order of vm = 290 m/s in eq. (4.18) is small compared to ~ve in the
order of 107 m/s for tritium β-electrons near the endpoint energy. Assuming that
the direction of T2 movement and electron emission coincide (~ve||~vT2), this results
in an exemplary shift of

∆E ≈ 130 meV. (4.23)

This value is comparable to a neutrino mass that KATRIN wants to measure and
can even be higher for molecules that move faster. Thus, the Doppler effect has to
be considered when analysing a measured KATRIN spectrum.

The Doppler effect is described by a broadening of the emitted β-spectrum dN/dE.
It can be described mathematically by a convolution [105]

dN

dE

′
(Ef ) = (g ⊗ dN

dE
)(Ef ) =

∞∫
−∞

g(∆E) · dN

dE
(Ei)dEi (4.24)

with a broadening function g(∆E) and the initial and final kinetic energies of the
β-electron Ei and Ef . The energy shift is ∆E = Ef − Ei as before.

To obtain the broadening function, the T2 movement is considered as a Maxwellian
distribution (cf. eq. (4.19)). Therefore, each T2 molecule has a random velocity com-
ponent vs along the emission direction ~ve of the electron. This defines a Gaussian
distribution

g(vs) =
1

σv
√

2π
exp

(
−1

2

(
vs − uz
σv

)2
)

(4.25)

centred around the bulk velocity uz (see section 4.2.5.2) and width σv =
√
kBT/MT2 .

In a non-relativistic approach, eq. (4.22) yields

∆E = Ef − Ei = mevevs. (4.26)

Substituting vs in eq. (4.25) by eq. (4.26) and using ve =
√

2Ei/me leads to the
wanted broadening function

g(∆E) = N · exp

(
−1

2

(
∆E

σE

)2
)
. (4.27)

Again, this is a Gaussian distribution with width

σE =
√

2EikBTme/MT2 (4.28)

and N = 1
σE
√

2π
as normalization. Please note the energy dependence of σE.
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When describing the Doppler broadening relativistically, eq. (4.22) does not hold;
the correct relativistic addition of velocities obeys the Lorentz transformation [106]

ve,f =
ve,i + vs

1 +
ve,i·vs

c2

. (4.29)

Using the relativistic γ factor

γα =
1√

1− v2
e,α/c

2
with α = i, f (4.30)

γα =
Eα
mec2

+ 1 (4.31)

the Doppler energy shift can be written as

∆E = Ef − Ei = (γf − γi)mec
2. (4.32)

Replacing vs in eq. (4.25) by eq. (4.29) and using eq. (4.31) yields

g(Ef , Ei) = N · exp

(
−1

2

(
(ve,f − vei)

(1− ve,fve,i/c2)σv

)2
)

(4.33)

with ve,α = c ·
√

1− 1/γ2
α. This resembles a Gaussian, but it is not easy to read-off

the width σE or the normalization N of the broadening function.

In SSC, the routines to broaden the β-spectrum according to eq. (4.24) are imple-
mented as class SSCDifferentialSpectrumDoppler. The broadening function can
be defined by the user; in the following the non-relativistic function (eq. (4.27)) has
been used if not stated otherwise. In figure 4.6a, the small difference between original
β-spectrum and Doppler broadened spectrum is shown.

The described representation of the Doppler effect can get time consuming in a
program, when the spectral shape is changed frequently, for example when fitting
the spectrum parameters E0 and m2

ν to a measurement: The whole convolution of
eq. (4.24) has to be repeated for all needed energies Ef . Therefore, in the non-
relativistic case a further approximation can be used to speed up the calculations,
namely applying the Doppler broadening to the Final State Distribution (see section
4.2.5.3)

P ′(Ef ) =

∞∫
−∞

g(∆E) · P (Ei)dEi. (4.34)

P (Ei) is the usual FSD, g(∆E) the favoured broadening function with a small modi-
fication: σE from eq. (4.28) is fixed to the energy of the spectrum endpoint energy of
E0 = 18.6 keV, since the final state energies are on the eV-scale. The Doppler broad-

ened spectrum
(

dN
dE

)′
FSD

, implemented in SSC as SSCDifferentialSpectrumFSD-

Doppler, is the same as eq. (4.14), but uses P ′(Ef )(
dN

dE

′)
FSD

∝
∑
f

[P ′(Ef ) · (E0 − Ef − E) ·
√

(E0 − Ef − E)2 −m2
νc

4

·Θ(E0 − Ef − E −mνc
2) ].

(4.35)
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Figure 4.6: a) Influence of Doppler effect on spectrum. The blue, solid line
shows the relative difference 1−(dN/dE)/(dN/dE)′ between the tritium β-spectrum
(dN/dE)′ with applied Doppler broadening at 30 K to a spectrum (dN/dE) without
the Doppler effect. The broadened spectrum has clearly increased count rates, also
above the endpoint energy E0. The visible structure in this curve results from the
different final states contributing to the spectral shape. The red, dashed line shows
the relative difference 1 − (dN/dE)FSD/(dN/dE)′ between the Doppler broadened
spectrum using eq. (4.24) and the approximation (dN/dE)′FSD when smearing the
final state distribution with eq. (4.34) and (4.35). The agreement is very good; only
a few eV above the endpoint energy E0, the rates differ slightly.
b) Effect of Doppler broadening on final state distribution. The final state
distribution for a tritium purity of 95% is shown in blue, the Doppler broadened
distribution (black) at 30 K has lost all prominent peaks, resembling a Gaussian
distribution with width of eq. (4.28).

A comparison of this approximation and the Doppler broadened β-spectrum is shown
in figure 4.6a. The differences are marginal. The approximation is especially useful
and saves time, if an easy FSD comprised from already weighted different contri-
butions of T2, DT and HT is used, so that the Doppler broadening only has to be
applied once. This procedure is shown in figure 4.6b for a FSD of 90% T2 and 10%
DT. Otherwise, if the different contributions of the FSD are stored separately, the
smearing has to be applied to every distribution consecutively, annihilating the gain
in computation time.



5. Modelling of gas dynamics

The column density ρd was introduced in section 3.1 as a key parameter of a win-
dowless gaseous tritium source. Furthermore, its essential systematic influence on
the KATRIN measurements was explained in section 3.2, demanding for a detailed
understanding, control and monitoring of ρd.

For that purpose extensive gas dynamics simulations have been developed during the
past 10 years. These simulations comprise the experimental parameters of the source
that determine ρd: injection pressure pin, exit pressure pex, temperature distribution
T (~r) and the source geometry including the injection and pumping systems (see
section 3.3).

To determine the type of required simulations it is useful to calculate the free path
l [100] that is defined as

l =
µvm

p
(5.1)

with pressure p, viscosity of tritium µ and most probable speed vm (see eq. (4.18)).
The rarefaction parameter δ

δ =
a

l
(5.2)

is used to characterize the gas dynamics in the WGTS, where a denotes a character-
istic size of the system, in case of the WGTS the tube radius R. Then δ is defined
as in [107]

δ(z) =
R · p(z)

µvm
=
R · ρ(z)

µvm

· kBT (5.3)

with pressure p(z) respectively density ρ(z) at longitudinal coordinate z and constant
temperature T . Near the injection chamber pressures of several µbar are expected.
This allows using Navier-Stokes equations of continuum mechanics. Within this
hydrodynamical regime, collisions between gas molecules happen on scales that are
small compared to the dimensions R of the system: δ � 1. On the other hand,
near the pumping chambers the pressure is expected to be small, within only few
percent of the injection pressure. Here, in the free-molecular regime with δ � 1
intermolecular collisions are absent, the molecules only interact with the wall of the
tube. The difficulty arises from the transitional regime with δ ≈ 1 in between the
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hydrodynamical and free-molecular regime. To treat this problem in a unified way,
the Boltzmann equation

∂f

∂t
+ vi

∂f

∂ri
+
∂Fif

∂vi
= J(f, f) (5.4)

has to be solved. f is the velocity distribution function [100, 108]

f(~r,~v) =
dN

d3~r d3~v
(5.5)

with the number of molecules dN around ~r and ~v inside the phase space volume
d3~r d3~v. Furthermore, Fi denotes an external force on the molecules and J(f, f) is
the collision integral that considers intermolecular collisions of molecules and their
gains or losses in velocity space. The specific type of J(f, f) is determined by the
problem to be solved and is discussed in detail e.g. in [100, 108]. Determining f
solves the gas dynamics considerations for the WGTS; it defines the density profile
ρ(z) and the column density ρd. This can be used in a source simulation like
SSC (see section 4.2) to simulate the expected β-spectra at KATRIN. Considering
(density) inhomogeneities in the source, SSC can determine their influence on the
neutrino mass measurements in combination with the KaFit package (section 6.2).
Additionally, the gas dynamics simulations itself can determine the influence of
source parameters on ρd to specify requirements on stability and monitoring. And
when considering the Doppler effect, information on the gas velocities is needed that
can be obtained again by the velocity distribution function f .

The following chapter summarizes all efforts to model the WGTS gas dynamics.
It is based on various reports of Sharipov et al. [64, 69, 101, 107, 109–111] which
have been worked out in close cooperation with the KATRIN collaboration. Section
5.1 shows the general concepts towards the calculation of a one-dimensional density
profile and the column density of the source. In section 5.2 the velocity distribution
of the molecules in the WGTS is determined. Section 5.3 investigates the effects of
a radially/azimuthally non-uniform source. In section 5.4 these former approaches
are combined to obtain a preliminary pseudo-3D model and an outlook towards a
full 3D gas dynamics simulation is presented.

5.1 One-dimensional calculations

With a WGTS tube of length L = 10 m and a radius of only R = 0.045 m “the gas
flow can be considered as one-dimensional” from the injection at the tube centre
towards its ends and “no density variation in a given cross section of the source
is taken into account” [107]. In these first considerations, an isothermal source at
T = 30 K is assumed, so that the density profile and the column density ρd of the
WGTS are defined by the injection pressure pin at the source tube centre and the
exit pressure pex at the tube ends due to the pumping of turbomolecular pumps.

The following steps allow determining the density profile: For a tube of length L
and radius R the reduced flow rate G can be connected to the constant mass flow
rate Ṁ through a source cross section as

G =
vm

πR3

(L/2)

pin

Ṁ (5.6)
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with the most probable speed vm of eq. (4.18). The molecule movement is driven by
the pressure difference between injection and tube end. The local pressure drop ξp
is defined as

ξp(z) =
R

p(z)

dp(z)

dz
. (5.7)

This results in the local reduced flow rate Gp

Gp = − 1

πR2

vm

p · ξp(z)
Ṁ, (5.8)

where Gp depends on the local conditions, which mean the pressure or equivalently
the rarefaction parameter δ(z) of eq. (5.3). Since the mass flow rate Ṁ is constant,
equations (5.6) and (5.8) can be combined to

Gp
(L/2)

δin

dδ

dz
= −G. (5.9)

Separation of variables and integration from the centre of the tube with rarefaction
parameter δin to a position z yields

1

δin

δ∫
δin

Gp(δ)dδ = − z

(L/2)
G. (5.10)

Gp(δ) can be obtained by solving the kinetic Boltzmann equation, as well as G
can be related to Gp(δ) again (for details see [107, 112, 113]). In fact, eq. (5.10) is a
function z(δ) that can be inverted to obtain δ(z) or with eq. (5.3) the desired density
profile ρ(z).

The final step is to calculate the column density ρd by the usual integration over
the whole source length as in eq. (3.2).

Further investigations account for a longitudinal temperature profile T (z). Eq. (5.3)
becomes

δ(z) =
R · p(z)

µ(T )vm(T )

T0

T (z)
(5.11)

with nominal temperature T0 = 30 K, temperature dependent viscosity µ(T ) and
most probable speed vm(T ). Additional to the previously described problem with
the pressure gradient as driving force, now the temperature gradient causes molecule
movement. This extends the contributions to the mass flow rate Ṁ in eq. (5.8) by a
term proportional to

GT (δ)
p(z)

T (z)

dT (z)

dz
(5.12)

with the reduced flow rate GT (δ) due to the temperature gradient, but the general
concepts remain the same (see [114] for details). The results are numerical values
δ(z).

5.1.1 Density interpolation formula

In [101] a phenomenological interpolation formula for the expected density profile
in the WGTS is stated

δ(z)

δin

=
ρ(z)

ρin

=
[
B0 +B1(1− z′) +B2(1− z′)2

]
[1− exp(5z′)]

+
[
1 +B3z

′2 +B4z
′4] cos(πz′/2)

(5.13)
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with injection rarefaction δin respectively density ρin and z′ = z/(L/2). The co-
efficients Bi can be obtained by adapting the interpolation formula to numerical
data obtained by eq. (5.10) for specific boundary conditions pin, pex and T (z). The
coefficient B0 has been introduced later to account for non-vanishing pex [115]. The
agreement of eq. (5.13) with the numerical values is good (see also figure 5.1), “the
uncertainty [...] does not exceed 0.5%” [101] and the influence on ρd is even weaker.

Further refinements of the simulations were obtained in [111] where a slight asym-
metry of the injection chamber and therefore different lengths Lfront = 5.0075 m and
Lrear = 5.0745 m of the front and rear side of the tube were considered1. Addition-
ally, the exit pressures on both sides as well as the temperature profile can differ.
The routines to calculate the density profile for both sides of the tube are executed
simultaneously. Finally, the interpolation formula in eq. (5.13) can be used again
with different coefficients for front and rear side and with z′ = z/Lfront respectively
z′ = z/Lrear. Figure 5.1 shows the numerical results of the gas dynamics calculations
with an asymmetric WGTS as well as the used interpolation formula.

5.1.2 Discussion of systematic uncertainties

The following list summarizes systematic uncertainties on the column density cal-
culation that arise from the discussed methods [107]:

• The use of a one-dimensional calculation neglects the non-zero radius-to-length
ratio R/(L/2). This means that the influence of end effects is neglected.

• Using coefficients Gp and GT from a linearized kinetic Boltzmann equation
induces small uncertainties for the transitional regime of the source.

• The viscosity of tritium µ at T = 30 K is unknown. An extrapolation from
measured viscosities of deuterium (and hydrogen) is used to get

µ = 0.95
√

3/2µD = 2.425 · 10−6 Pa s. (5.14)

• The accommodation coefficient α with (0 ≤ α ≤ 1) describes the boundary
condition of the gas, in case of the WGTS tube the interaction of the tritium
molecules with the wall. “The case α = 1 is called the diffuse-reflection condi-
tion, and α = 0 the specular-reflection condition.” [108]. In case of tritium at
low temperatures α is unknown.

All uncertainties are in the order of 1% and sum up to a total uncertainty of
4.6% [107]. Possibilities to reduce this uncertainty are measurements of the vis-
cosity and the accommodation coefficient at 30 K and considerations of the end
effects (see section 5.4).

5.1.3 Influence of source parameters on the column density

In section 3.2 was discussed that unrecognized changes in the WGTS column density
ρd of only 0.2% cause intolerably high systematic shifts on the analysed neutrino
mass squared. The report [64] investigates the influence of source parameters on
ρd and therefore sets requirements for a KATRIN measurement. Its results are
summarized in table 5.1.

1These lengths arise from technical drawings of the WGTS in 2008 and do not consider the
planned inversion of the beam tube and modifications of the design within this context.
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Figure 5.1: Calculated density profile ρ(z) of the WGTS, relative to the
injection density ρin. In this case a homogeneous temperature of T = 30K
was assumed. The profile for both sides of the tube is calculated in a combined
approach, since the two parts are slightly asymmetric due to the injection chamber
that is shifted from the geometrical centre of the tube by 67 mm towards the front
end within a total tube length of 10.082 m. Additionally, two different exit pressures
have been assumed for both ends, pex,rear = 0.10 · pin and pex,front = 0.05 · pin. The
interpolation formula of eq. (5.13), drawn as red line, can be applied to both sides
separately and is in good agreement with the numerical results.

Table 5.1: Systematic influence of source parameters X on ρd and re-
quirements on parameter stability. The numbers αX denote the propor-
tionality constants between changes of the parameter X and the column density:
∆ρd/ρd = αX ·∆X/X.

parameter X αX stability requirement

temperature T -1.2 ∆T/T ≤ ±0.2%
injection pressure pin 1.1 ∆pin/pin ≤ ±0.2%
exit pressure pex 0.03 -
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Figure 5.2: Bulk velocities in the WGTS. The bulk velocity decreases from the
beam tube centre towards the wall at r = 0.045 m. The velocity increases with
increasing z from the injection chamber at z = 0 m towards the pumping chambers
at z = 5 m.

5.2 The velocity distribution function

The calculations so far were responsible to determine ρ(z) as a part of the velocity
distribution function f(~r,~v) of eq. (5.5). To obtain the full velocity distribution
function, the approach of a linearized kinetic equation is used again in [101] with

f(~r,~v) =
ρ(z)

(
√
πvm)3

exp

(
− v

2

v2
m

)[
1 + 2ξp(z)

vz
vm

Φ(x, y, vx, vy)

]
(5.15)

with the local pressure gradient ξp(z) as in eq. (5.7). The perturbation function
Φ(x, y, vx, vy) is obtained by the discrete velocity method (see [116] for details). The
results can be approximated by local Maxwellians

f(~r,~v) ≈ ρ(z)

(
√
πvm)3

exp

[
−
v2
x + v2

y + (vz − uz(~r))2

v2
m

]
. (5.16)

The problem reduces to the determination of the bulk velocity uz(~r). It describes
the net movement of molecules from the injection towards the pumping chamber.
The bulk velocity profile is shown in figure 5.2.

The dependence of uz on the longitudinal position z along the beam axis and the
radial distance r to the axis can be parameterized as

uz(r, z) = −vmξp(z)

[
a(δ)− c(δ)

( r
R

)2
]

(5.17)
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with pressure gradient ξp(z) accessible by differentiating eq. (5.13) and with coeffi-
cients a(δ) and c(δ). These coefficients have been calculated numerically and can be
interpolated2 by

a(δ) =

[
0.894− 0.1048 · δ(1− ln δ

4
)

]
1 + δ

1 + 1.963 · δ
+
δ(δ + 2.036)

2.593 + 4 · δ
(5.18)

c(δ) =

[
0.295− 0.0536 · δ(1− ln δ

4
)

]
1 + δ

1 + 0.7599 · δ
+

δ2

0.07788 + 4 · δ
. (5.19)

At the end of this procedure, the position dependent bulk velocities together with
the obtained density distribution ρ(z) yield eq. (5.16) that completely describes the
source gas dynamics at every position in the source.

5.3 Two-dimensional calculations

The one-dimensional calculations of the density profile seem appropriate for KA-
TRIN due to the very long tube with small cross section. But it is worthwhile to
check for density variations within a cross section that means inhomogeneities in
radial (r) and azimuthal (φ) direction. This is important at KATRIN, since the
segmented focal plane detector (see section 2.5) can resolve r and ϕ of electrons
that were emitted in the WGTS.

5.3.1 Injection and pumping chambers

Responsible for small deviations of the density distribution are the injection as well
as the pumping chambers of KATRIN (see figure 3.2). In [69], these end effects were
studied in a 2D axisymmetric numerical approach. The kinetic Boltzmann equation
was solved on a 2D grid near the injection chamber. The result is shown in figure
5.3. Since the sensitive part of the WGTS – the part that is mapped through the
spectrometer onto the detector – is specified as the inner part with r < 0.041 m,
the expected local density variations are < 5%. The region of higher density does
not extend beyond 2 cm around the injection chamber; this is only 0.2% of the total
length. This means that ρd at large radii differs by at most 0.01% from ρd on the
beam axis. This small deviation can be considered when using a pseudo-3D model
for the WGTS, but is too small to influence the KATRIN measurement. Similar
to the injection region, the simulations of the pumping chamber were executed in
2D with a simplified geometry: a tube entering an unlimited volume, neglecting
the walls of the pumping chamber and the continuation of the beam tube on the
opposite side. The results in figure 5.4 indicate the behaviour of the gas at the
pumping chamber, but further simulations (see section 5.4) will be performed to
clarify the situation at the WGTS pump ports.

5.3.2 Influence of an azimuthal temperature gradient

The two-phase neon system (see section 3.3) that is responsible for the homogeneous
cooling to 30 K along the whole length of the beam tube is brazed to the beam tube
at ϕ = 0◦ and ϕ = 180◦ (see figure 3.9). The temperature of the beam tube

2Here, the results for an accommodation coefficient α = 1 are presented.
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Figure 5.3: Influence of the WGTS gas injection on the density profile
from [69]. Two scenarios are shown to estimate the influence at KATRIN: The left
figure shows a central slit injection with small density deviations 10 cm towards the
centre and within the dimensions of the slit along the beam axis. Using two slits as
in the right figure yields a similar behaviour. At KATRIN, small holes instead of
slits are used, arranged in 5 rings (see figure 3.2). The “active” part of the source
within the flux tube (see section 4.2.1) is the part below the black dashed line. These
results indicate that density perturbations due to the injection are weak and limited
to the outermost parts of the beam tube.

Figure 5.4: a) Density profile at the WGTS pumping chamber from [69].
In this 2D approach, the general density drop towards the beginning of the pump-
ing chamber is visible. When entering the large pumping chamber the gas stream
expands. This can also be seen in b) Streamlines in the pumping chamber
from [69].
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there is fixed to the defining neon temperature. Towards top (ϕ = 90◦) and bottom
(ϕ = 270◦) of the beam tube, an azimuthal temperature gradient establishes, caused
by heat radiation through the pumping chambers onto the inner surface of the beam
tube. Since the heat radiation varies for different longitudinal positions z in the
source, the strength of an azimuthal temperature profile also depends on z. Due to
this temperature profile, it is expected to have gas circulation and inhomogeneities
of the density distribution within a cross section of the WGTS.

“Since we consider a weakly disturbed state of the gas, then the longitudinal flow
and the circulation of the gas in a cross section can be considered separately.” [101].
Then, the problem is simplified to two-dimensional cross sections of the source, and
due to symmetry to a quarter of it. An azimuthal temperature profile of the beam
tube wall

T (ϕ) = T0 + ∆T sin2 ϕ (5.20)

with equilibrium temperature T0 and maximal temperature difference ∆T between
T0 and the top/bottom of the beam tube was assumed. At different rarefaction
parameters δ with 0 < δ < 22 for the WGTS, the discrete velocity method is
used to solve the linearized Boltzmann equation, e.g. [117]. Figure 5.5 shows the
results. With expected relative temperature differences ∆T/T = 10−3 maximal
density variations of ∆ρ/ρ0 = 4 · 10−4 compared to the local density ρ0 can be
expected. The influence on ρd will be discussed in the following section when a
pseudo-3D model is created.

5.4 Extension to a pseudo-3D density profile

The final step for the WGTS gas dynamics simulations would be a full three-
dimensional modelling of the density profile. Solving the Boltzmann equation in
3D numerically is a difficult task and has not yet been achieved for the WGTS. This
is a future task that will be discussed at the end of this section.

But the results that have been obtained so far from the one-dimensional density
profile in section 5.1 and the two-dimensional simulations in 5.3 can be combined
to an intermediate description of the WGTS gas dynamics: a pseudo-3D density
profile. This is allowed since the dominant process is the longitudinal movement of
the molecules according to the one-dimensional density profile. The two-dimensional
gas circulation and the radial and azimuthal density deviations are small corrections;
“both motions of the gas, namely, longitudinal and circulation, can be considered
together by a linear superposition.” [101]. Technically, this happens as follows:

1. The one-dimensional density profile ρ(z) is calculated according to pin, pex and
T (z) (section 5.1).

2. A series of two-dimensional density profiles for various δ in the range of 0 < δ <
22 as expected in the WGTS is calculated (section 5.3). They are calculated
with the azimuthal temperature difference ∆T as a free parameter and can be
saved and used for other calculations.

3. The obtained two-dimensional density profiles are arranged as shown in figure
5.6 where the inverted ρ(z) yields the required z(ρ) or z(δ) and determines
where to place the profiles. The central density ρ0 for each 2D profile is
determined by δ.
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Figure 5.5: Two-dimensional density profiles. Numerical data from [101].
Shown is the relative density deviation n for different δ respectively density regimes
in the WGTS. The underlying temperature distribution of the wall is given by
eq. (5.20) with T0 = 30 K and variable ∆T . The position dependent n can be con-

verted to real densities ρ by n(x, y) = ρ(x,y)−ρ0

ρ0

T0

∆T
with ρ0 defined by δ. This means,

the relative deviations up to ±40% have to be scaled with ∆T
T0

that is expected to

be < 10−3. In the centre, where larger 2D density deviations occur, ∆T is expected
to be even smaller. Therefore, maximal density variations to 4 · 10−4 are possible.



5.4. Extension to a pseudo-3D density profile 73

4. ∆T is now related to T (z); each density profile can be weighted by the local
azimuthal temperature gradient.

5. Between two adjacent 2D density profiles at zi and zi+1 a linear interpolation
allows calculating densities for zi < z < zi+1. This procedure allows obtaining
the density ρ(~r) at every position ~r = (r, ϕ, z) in the WGTS.

Furthermore, this pseudo-3D model can be used to calculate the column density as a
function of r, ϕ to check for inhomogeneities. This means integrating ρ(~r) along z for
every (r, ϕ) with help of the arrangement in figure 5.6: Each two-dimensional profile
i is weighted with the length ∆zi where it is valid. The result of this summation is
shown in figure 5.7. It can be seen that the inhomogeneities of ρd are on the 10−5

level. These deviations are too small to be resolved in KATRIN.

To conclude this chapter, an outlook towards a complete reliable gas dynamics
simulation is given. In [69], the most efficient way to do this is shown: The parts of
the WGTS between the injection and the pumping chambers (almost 5 m) do not
need a sophisticated three-dimensional simulation. The one-dimensional calculations
are sufficient to describe the gas flow along the thin beam tube. Radial and azimuthal
deviations there can be superimposed by independently determined two-dimensional
density profiles, resulting in the presented pseudo-3D density profile. The results of
the 2D simulation of the injection through slits (see figure 5.3) may be satisfactory
or might be extended to a 3D simulation in the future. A full 3D simulation of
the pumping chambers is proposed by F. Sharipov [118], since the gas flow is not
guaranteed to be axisymmetric and the temperature distribution of the pumping
chamber is complicated. This simulation will be “based on both kinetic equation
and direct simulation Monte Carlo”. The combination of these approaches will then
provide the most accurate description of the gas dynamics in the WGTS.
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Figure 5.6: Pseudo-3D density profile. The 2D density profiles of section 5.3
are positioned along the z-axis according to the inverted 1D density profile z(δ) of
section 5.1.
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Figure 5.7: Column density inhomogeneities obtained by integrating the
pseudo-3D density profile. A longitudinal temperature profile T (z) with ∆T =
30 mK was assumed that is translated to ∆T (z), the maximal azimuthal temperature
deviation along the wall of the beam tube. Each 2D profile in figure 5.6 was weighted
by ∆T (z) and assumed to be valid between half the distance to its neighbours
on both sides. Summing up over all 2D profiles yields the shown column density
deviations.



6. Spectrum analysis

The measured integrated β-spectrum at KATRIN has to be analysed carefully to
detect small distortions of its shape due to a non-vanishing neutrino mass m2

ν (see
section 2.1). This will be done by fitting an expected spectral shape with m2

ν as
a free parameter next to endpoint energy, signal and background strength to the
measured spectrum.

Before analysing a real measured spectrum, simulated spectra, for example from
the simulation software SSC (see section 4.2), can be used to validate the analysis
software and to study the statistical and systematic uncertainties in determining
m2
ν .

For both purposes, the KASPER analysis toolkit, outlined in section 6.1, was devel-
oped. KASPER contains the package KaFit (section 6.2), a newly developed tool to
analyse (simulated) measurements of KATRIN and to study the influence of (source)
parameters in the analysis of m2

ν . In the following, it is described how to get from
the expected tritium β-spectrum (obtained e.g. by SSC) to a simulated KATRIN
measurement. Then, the basic analysis strategy is presented to fit the theoretical
expectation to the simulated measurement and deduce m2

ν and its uncertainties.
Section 6.3 shows more advanced methods that have been implemented into KaFit
and are used in this work to determine statistical and systematic uncertainties at
KATRIN.

6.1 Analysis toolkit KASPER

The KATRIN analysis software is available in the toolkit KASPER [119], which con-
sists of several tools for simulation, data access and analysis as shown in figure 6.1.
The idea is to provide these tools for various types of analysis that any collaboration
member of KATRIN may want to do without requiring extensive knowledge of C++
programming or every detail of each KASPER tool. Users are able to use the pro-
vided classes and functions in their private analyses, and may add them to KASPER
later if they are useful for others. So KASPER that was started in 2011 will grow
over the next years when more and more KATRIN analyses will be implemented.
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Common Detector
Analysis

Kassiopeia KaLi KaFit New module

The analysis toolkit KASPER

Your analysis code
Optionally:
make your code available

Figure 6.1: The KATRIN analysis toolkit KASPER (simplified,
from [120]). KASPER consists of simulation and analysis software that is used
by the KATRIN collaboration. Any analysis code can refer to the tools provided by
KASPER. So far, next to a general package Common with utility functions, the
KATRIN Monte-Carlo simulation Kassiopeia is included (see also figure 4.1). The
module KaLi is a data access and processing module. KaFit is the analysis tool
that is presented in this chapter in detail. The module Detector Analysis stands
for all other developed analysis code that is already available or may be added in
the future.

A main feature of KASPER is that simulation results and real data can be treated in
a unified way. The Monte-Carlo simulation software Kassiopeia (see section 4.1) that
also contains the spectrum calculation SSC is part of KASPER. The same is true
for the KATRIN Library KaLi [97, 121], which is used to access different databases
where all the measurement data and other parameters, such as the geometric pa-
rameters of the KATRIN setup, are stored [122]. These tools allow comparing
measurements with expectations from simulations.

During the development and construction of KATRIN, KASPER can be used to
guide the refinement of the hardware design by studying the effects of the design
changes to the physics sensitivity. This is accomplished by the tool KaFit and will
be explained in detail in the following section.

6.2 A tool to study statistical and systematic un-

certainties: KaFit
By simulating the integrated spectrum at KATRIN that considers the WGTS and
spectrometer properties like SSC (see section 4.2), dedicated analyses can determine
the sensitivity of KATRIN and investigate the systematic effects on m2

ν .

For that purpose, the KaFit package has been developed in 2012 in collaboration
with M. Haag [121]. It is based on a program package already described in [82]. It
uses the following steps:

• The rates of the integrated β-spectrum, provided by SSC, can be combined
with a measurement time distribution (section 6.2.1) – how long KATRIN will
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measure at which retarding energy – and background events (section 6.2.2) to
simulate a KATRIN “measurement” (section 6.2.3).

• The analysis on m2
ν can be performed by fitting an expected β-spectrum with

m2
ν as one of the fit parameters to the simulated KATRIN measurement, tak-

ing into account the effects introduced by the instrument (see sections 4.2)
with likelihood/χ2 fits and adjustable minimization routines (sections 6.2.5
and 6.2.6).

• The errors of the fit parameters in an ensemble of simulated measurements
determine the sensitivity and discovery potential of the KATRIN experiment
(sections 6.2.7, 6.3.1, 6.3.4 and 6.3.5).

• Systematic effects can be investigated by various methods, explained in sec-
tions 6.3.1, 6.3.3 and 6.3.5.

6.2.1 Measurement time distribution

The measurement time distribution defines fractions of measurement time tqU at
different spectrometer retarding energies qUi. The preliminary planned distribu-
tion [48] is shown in figure 6.2. It was determined in [123] that by distributing the
fixed total measurement time of three years to different voltages around the endpoint
energy E0 the physics reach of KATRIN can be optimized. The distribution shows
three prominent regions: The region few eV below E0 is the most sensitive to the
neutrino mass1, therefore most of the measurement time is spent there. Far below E0

the signal rate is high due to the steeply rising spectrum, allowing to collect many
electrons, accumulating statistics, that helps to constrain E0 during the analysis.
Even above E0, where no signal events are expected, measurement time is spent
to determine the background rate (section 6.2.2). The existing measurement time
distribution is included in KaFit as class KFRuntimeSchedule. The distribution can
easily be scaled or modified by adding or removing measurement points or time.

6.2.2 Background

Background events disturb the measurement of the signal spectrum at KATRIN.
Expecting signal count rates of only a few counts per minute near E0, the background
rate is required to be smaller than 0.01 counts per second [48]. Several processes
contribute to background at the detector and are presented in [48]. Investigations
on active and passive suppression of the backgrounds can be found in [124, 125].

In KaFit, an arbitrary number of different backgrounds, managed by the class KF-

Background can be added. A typical background is an energy independent, Pois-
sonian background. It is used throughout this work with Ṅb = 10−2 cps by the
derived class KFBackgroundPoisson. More complicated backgrounds can be added,
like energy dependent ones, or non-Poissonian effects like the background cascade
from a single nuclear decay in the spectrometer [83], resulting in large fluctuations
of the background rate.

1In [32] is shown that an optimal sensitivity is given for a signal to background ratio of 2:1.
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Figure 6.2: Planned measurement time distribution at KATRIN. The mea-
surement time is distributed on 41 points with an interval of 1 eV respectively 0.5 eV
in the sensitive region on m2

ν below the endpoint energy that was set to 18575 eV
here.

6.2.3 Generating a KATRIN measurement

At KATRIN, the expected number of events Ñ during measurement time tqU is a
function of the retarding energy qU

Ñ(qU) =
(
Ṅs(qU,E0,m

2
ν) + Ṅb

)
· tqU . (6.1)

It is composed of signal rate Ṅs of eq. (4.15) with parameters E0 and m2
ν and the

background rate Ṅb. In KaFit, the task of the class KFRunGenerator is to im-
plement eq. (6.1), to connect the SSC-simulated spectrum ṄS with the background
classes to obtain Ṅb and with the measurement time distribution to get tqU for each
measurement point. In addition, to simulate a measurement, the number of counts
N exp(qU) is obtained by drawing from a Poisson distribution with expectation value
Ñ(qU)

N exp(qU) = Poisson(Ñ(qU)), (6.2)

implicitly assuming a statistical uncertainty of σ =
√
Ñ(qU). A simulated KATRIN

“measurement” is shown in figure 6.3.

In the program, each adjustment of qU is called a KFSubrun. It stores qU , N exp

and tqU . All sub-runs together form a KFRun. The program structure of KaFit is
intended to process simulated runs the same way as real data later.

6.2.4 Simulation of the theoretical rate

Again, the simulation of the theoretical spectrum is provided by SSC with the class
KFSpectrumSimulator. In principle, any other spectrum simulation can be used to
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Figure 6.3: A KATRIN “measurement”, simulated by KaFit. The measure-
ment time distribution of figure 6.2 was used for a 2-hours run, creating the general
rising shape of an integrated spectrum with a small peak slightly above 18570 eV
due to increased measurement time there.

obtain a theoretical signal rate ṄS of an integrated β-spectrum. The expected counts
N theo are the same as in eq. (6.1), with two additional parameters, signal strength Rs

and background strengthRb that are treated as unknown amplitudes [48]. Therefore,
N theo is expressed as

N theo(qU) =
(
Rs · Ṅs(qU,E0,m

2
ν) +Rb · Ṅb

)
· tqU . (6.3)

Together with the important parameters E0 and m2
ν , four parameters are adapted

to fit a measured spectrum.

6.2.5 Parameter estimation

The process of obtaining the value of a desired quantity based on a set of experi-
mental observations is called parameter estimation or point estimation [126, 127]. A
typical method for parameter estimation is the maximum likelihood method. The
likelihood function is defined as

L(~θ| ~X) =
∏
i

p(Xi|~θ), (6.4)

where p(Xi|~θ) is the probability density function (p.d.f.) that a measurement Xi

will occur, if the underlying parameters ~θ are realised. A fitting routine can adapt

~θ to obtain a maximal L, resulting in the best-fit values ~̂θ, the maximum-likelihood
estimator. The likelihood function can be written as negative log-likelihood

− logL(~θ| ~X) = −
∑
i

log p(Xi|~θ), (6.5)
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since the logarithm is a monotonic function and a summation of log p(Xi|~θ) is easier
than a multiplication. The minus sign is introduced to minimize − logL. This is not
different from finding the maximum, but numerical algorithms are well established
to find minima of functions (see e.g. [128]).

At this point, a special type of − logL is introduced, the Chi-square function

χ2(~θ| ~X) =
∑
i

(Xi −Xtheo
i (~θ))2

σ2
i

(6.6)

with measurements Xi, uncertainties σi and theoretically expected values Xtheo
i (~θ).

χ2 is obtained by putting a Gaussian distribution

p(Xi|~θ) =
1√

2πσi
exp

(
(Xi −Xtheo

i (~θ))2

2σ2
i

)
(6.7)

into eq. (6.5), multiplying by a factor of 2 and neglecting additional constant sum-
mands. Again, χ2 can be minimized numerically, in some cases analytically, to get

~̂θ.

In KaFit, several estimation methods are predefined, all deriving from a base class
KFLogLikelihoodKATRIN. It contains a measurement run, simulated by the KFRun-

Generator with user-defined, fixed values Esim
0 and m2,sim

ν and a KFSpectrumSimu-

lator with the theoretical description of the spectrum. The χ2-function in case of
a standard KATRIN fit2 is

χ2(E0,m
2
ν , Rs, Rb| ~N) =

∑
i

(N exp
i (qUi)−N theo

i (qUi, E0,m
2
ν , Rs, Rb))2

σ2
i

. (6.8)

Numerically minimizing χ2 (section 6.2.6) for all measurements3 results in the four
fitted parameters introduced in eq. (6.3), including the best-fit estimator m̂2

ν .

6.2.6 Minimization

After all the preparations in the previous sections, KaFit comprises several classes
derived from the base class KFCurveFitter that are responsible for minimizing
− logL or χ2 and obtaining the point estimation. The implemented derived classes
give access to special minimization packages like KFMinuit2, which is an interface to
the widely-used Minuit2 in ROOT [91], or a standalone Markov-Chain-Monte-Carlo
simulation KFMCMC [121]. KaFit can be extended to other user-specified minimiza-
tion routines with a common interface. All routines are initialized and called in a
unified way, and the results are stored in the standard ROOT structure TTree [91].
This allows comparing results from different minimization methods with each other.

2In the following sections, extensions of this analysis are discussed, where further parameters
can be added to the fit.

3The index i stands for all measurements in ~N . It does not necessarily stand for only 41 different
retarding energies qUi but also for different measurement periods, or the measured rates at different
detector pixels.
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In general, the user can define any function with an arbitrary number of parameters 4

to be minimized. For KATRIN, the KFLogLikelihoodKATRIN described above is to
be minimized when fitting the parameters of eq. (6.3) to a KATRIN measurement.

Another function of the fit is to provide an estimate on the parameter uncertainties.
As an example, Minuit2 provides the routine MINOS that investigates the be-
haviour of the likelihood function in a multi-parameter space around the minimum
to set asymmetric errors on the best fit parameters. Further details on error analysis
are described in section 6.3.

6.2.7 Confidence intervals

The frequentist approach, sometimes called classical approach [126], treats proba-
bility P (A) as the frequency ratio of an outcome A after N experiments

P (A) = lim
N→∞

nA
N
. (6.9)

Classical confidence intervals of α confidence level (C.L.) claim that in an ensemble
of measurements each reporting a confidence interval the true unknown value µt will
be contained in α of these intervals5 [126].

To determine the classical confidence interval, Neyman’s construction of a confidence
belt (see figure 6.4) is used [130]. For every possible value µ, an interval [x1, x2] is
selected, so that

P (x ∈ [x1, x2]|µ) = α (6.10)

is fulfilled.6 This construction creates horizontal line segments. The confidence belt
is the union of these line segments. A measurement x0 then allows reading off the
confidence interval [µ1, µ2] at the intersections of a vertical line at x0 with the belt
borders.

Some important terms that should be clarified here are under- and overcoverage. If a
confidence interval of α C.L. contains less than the stated probability α, that means
P (µ ∈ [µ1, µ2]) < α, it is called “undercoverage”. An undercovering interval does not
hold its promise of a classical confidence interval (see above). Vice versa, an interval
overcovers, if the probability P (µ ∈ [µ1, µ2]) > α. A reported overcovering interval
is a classical confidence interval, but it is chosen too wide to optimally constrain the
measured quantity.

All plots in figure 6.4 are given in units of the standard deviation σ. If the probability
distribution function is Gaussian, the area of a Gaussian distribution can be used
to calculate the confidence intervals. Typical values that are used in the following
are shown in table 6.1.

Several methods that are explained in the following try to determine confidence
intervals for KATRIN measurements.

4The number of possible fit parameters may be constrained by the used minimization routines.
5This is in contrast to the Bayesian, subjective interpretation, where a confidence interval, rather

called “credibility interval”, of α C.L. is supposed to contain the true value µt with probability
α [129].

6One can choose to state upper limits (x1 = −∞), central limits (P (x < x1|µ) = P (x > x2|µ) =
(1− α)/2) or any other interval that respects eq. (6.10).
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x0

µ2

µ1

Figure 6.4: a) Generic confidence belt from [129]. Construct horizontally, read
vertically. See text for details.
b) Confidence belt for 90% C.L. for a Gaussian distribution in units of the
standard deviation from [129], modified. A measurement x0 allows drawing a
vertical line. The intersections with the borders of the confidence belt define [µ1, µ2].

Table 6.1: a) Integrals α and β of a normal distribution N(µ = 0, σ = 1) for a
central interval [−n · σ, n · σ] and a one-sided interval [−∞,m · σ] respectively.
b) Central interval respectively one-sided interval that contains α,β probability of
a normal distribution.

n, m α β

1 0.6827 0.8413
2 0.9544 0.9772
3 0.9973 0.9987

α, β n m

0.90 1.645 1.282
0.95 1.960 1.645
0.99 2.576 2.326
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6.3 Implemented methods

6.3.1 Ensemble simulations

A method to investigate the KATRIN sensitivity and the influence of several nui-
sance parameters (systematic effects) on m2

ν is to simulate an ensemble of complete
KATRIN experiments. This Monte-Carlo approach allows estimating the variance
of the maximum likelihood estimator m̂2

ν [126]. For example 4000 full KATRIN mea-
surements with 3 years measurement time for a fixed, known m2,sim

ν are simulated,
where statistical variations (and possible systematic effects) are included to pretend
a measurement (section 6.2.3). The free parameters of the theoretical expectation
(section 6.2.4) are adapted to each “measurement” by fitting routines (section 6.2.6)
to obtain the best-fit value m̂2

ν . The ensemble of m̂2
ν is filled into a histogram (figure

6.5). The mean m2
ν and variance σ2

stat respectively standard deviation σstat of the
resulting distribution can be used to project the physics sensitivity of KATRIN.
In [48], the standard deviation of such a distribution was found to be

σstat = 0.018 eV2. (6.11)

Variations of experimental parameters, measurement time or backgrounds affect the
sensitivity and can be investigated with the combination of SSC and KaFit. Results
on the sensitivity analyses are shown in chapter 7.

In addition, figure 6.5 that uses a Gaussian fitted to the distribution shows another
effect: a shift

∆m2
ν = m2

ν −m2,sim
ν (6.12)

of mean m2
ν from the input value m2,sim

ν = 0.0 eV2 to m2
ν = −0.0075 eV2. This was

obtained exemplarily here, by using a different source parameter for the analysis
than for the underlying measurement simulation. In this case the column density
ρdfit for the analysis was chosen to be ρdfit = 1.02 · ρdsim, causing a shift on m2

ν as
a systematic effect. This investigation can be repeated for different combinations of
experimental parameters and variations to determine their impact on m2

ν . It allows
KATRIN to define the required stability or control on these parameters.

The envisaged systematic uncertainty on m2
ν at KATRIN is

σsyst ≤ 0.017 eV2 (6.13)

that means equal contribution of statistical and systematic uncertainties. In [48], the
total systematic uncertainty has been divided into five major individual systematic
uncertainties, added quadratically with each causing

∆m2
ν = 0.0075 eV2. (6.14)

This is a reference for investigations on systematic effects connected with the WGTS
that are presented and discussed in chapter 8.

The statistical (eq. (6.11)) and systematic uncertainties (eq. (6.13)) can be added
quadratically and used for example to state an upper limit (see section 6.2.7) of
mν < 0.2 eV (90% C.L.) if m̂2

ν = 0.0 eV2 is measured.
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Figure 6.5: Exemplary distribution of best-fit values m̂2
ν in 4000 KATRIN

simulations. Input value was m2,sim
ν = 0.0 eV, the simulated measurement time

was 3 years. The fit results m̂2
ν are Gaussian distributed with mean m2

ν and width
σstat. The systematic shift is obtained by the difference between mean and input
∆m2

ν = m2
ν − m2,sim

ν . Here, the shift was induced on purpose by using a different
column density ρd for the spectrum generation than for the analysis.
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6.3.2 “Graphical methods”

The behaviour of the negative log-likelihood function − logL around the minimum
at the maximum likelihood estimator θ̂ can be used to determine the statistical
uncertainty of the experiment. To do so, − logL is written as a Taylor series around
θ̂ [126]

−logL(θ) = − logL(θ̂)−
[
∂ logL

∂θ

]
θ=θ̂

(θ− θ̂)− 1

2!

[
∂2 logL

∂θ2

]
θ=θ̂

(θ− θ̂)2−. . . (6.15)

with − logL(θ̂) = − logLmax, the minimal value of the negative log-likelihood. The
term with the first derivative is zero, since the function is expanded around an
extremum. Connecting the second derivatives with the estimated standard deviation
σ̂θ̂ (see [126] for details), one obtains

− logL(θ) = − logLmax +
(θ − θ̂)2

2(σ̂θ̂)
2

(6.16)

− logL(θ̂ ± σ̂θ̂) = − logLmax +
1

2
. (6.17)

This means that σ̂θ̂ can be obtained by following the function − logL(θ) away from
the minimum to the point, where it has increased by 1/2. This method can be
used to determine the confidence interval (see section 6.2.7), e.g. the 68.3% central

confidence interval
[
θ̂ − σ̂θ̂, θ̂ + σ̂θ̂

]
. In case of an asymmetric − logL, σ̂θ̂ can be

determined to the lower side as σ̂θ̂− and to the upper side as σ̂θ̂+, again checking
for an increase of − logL by 1/2, although there are some technical subtleties as
discussed in [131].

KaFit allows plotting the negative log-likelihood function for KATRIN and graphi-
cally determining statistical uncertainties.

6.3.3 Systematic effects as nuisance parameters

Another method to include systematic effects of some experiment parameters into
the analysis is to treat them as additional free fit parameters. As an example, the
tritium purity εT is regarded here, since an uncertainty in εT leads to a systematic
shift of m2

ν (see section 3.2). To avoid that, εT is added to the set of fit parameters
of eq. (6.3). Now

~θ = {E0,m
2
ν , Rs, Rb, εT} (6.18)

needs to be adjusted to fit the model to the measured data. The fitting routines
remain unchanged, they just have to consider additional parameters. The fit with
additional nuisance parameters usually takes longer to converge and more evalu-
ations of the spectrum calculation are needed. The results of the fit are best-fit
values for all parameters, especially m̂2

ν and ε̂T with uncertainties determined by
responsible methods as before. An additional uncertainty in the tritium purity as
a free parameter instead of using a fixed value will increase the uncertainty on m2

ν

compared to the 4 parameter fit (see chapter 8).

This concept of adding systematic effects as nuisance parameters in the likelihood
function is scalable; further parameters can be added to ~θ. The procedure is limited
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by the number of fit parameters that the minimization routine can deal with and by
the number of required steps for convergence that may need too many evaluations
of the function to minimize.

A further step is to extend the likelihood function to include external measurements
into the analysis what is also called “pull method”. In the example of εT, a LARA
measurement (see section 3.3) will give a measured εT with an uncertainty σεT . This
can be added to eq. (6.5)

− logL(~θ| ~X) = −
∑
i

log p(Xi|~θ) − log p(εT|εT) (6.19)

with ~θ as in eq. (6.18). In case of a Gaussian distributed measurement of εT this
reduces to

− logL(~θ| ~X) = −
∑
i

log p(Xi|~θ) +
(εT − εT)2

2σ2
εT

. (6.20)

The last terms of eq. (6.19) and eq. (6.20) are called constraints in the following.

During the fit, εT is varied to fit to the measurements ~X on the one hand, but also to
account for the external measurement εT. Adding more constraints allows including
other parameters that systematically influence m2

ν and their external measurements
into the analysis.

6.3.4 Unified approach

The motivation for a unified approach is to avoid the situation of deciding how to
report the result of a measurement, when the result has already been determined.
This is especially important when dealing with low signal rates or near a physical
boundary and the experimenter has to decide, if he wants to report an upper (or
lower) limit or even claim a discovery. This behaviour is called “flip-flopping” and is
shown and explained in figure 6.6a.

To avoid that behaviour and problems with empty confidence intervals, Feldman and
Cousins (F.C.) proposed to use a unified approach [129] and showed applications for
neutrino oscillation experiments. Their concept is summarized in the following and
highlighted in the context of KATRIN.

6.3.4.1 Ordering principle

The idea of the F.C. unified approach is to use an ordering principle on the likelihood
ratio

R =
p(x|µ)

p(x|µbest)
. (6.21)

It is the ratio of the usual probability p(x|µ) of obtaining the measurement x when
µ is the true value and p(x|µbest) that chooses µ = µbest to obtain a maximal proba-
bility. As an example, in case of a quantity that is physically constrained to positive
values [129], µbest is chosen as

µbest = max(0, x), (6.22)

since p(x|µ) is maximal for the smallest possible µ, that means µ = 0, if x is negative;
or µ = x for any positive x. The construction of a confidence belt (see section 6.2.7)
of α confidence level (C.L.) makes use of R.
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85%

x0 x0'

Figure 6.6: a) Composed 90% “flip-flopping” confidence belt [129], mod-
ified. The underlying probability distribution is a normal distribution around µ,
“where only non-negative values for µ are physically allowed” [129]. An experimenter
who measures an unphysical value x < 0 (region I) can only state an upper limit.
The same is true for the attitude that a measurement less than 3σ away from 0.0
cannot rule out a vanishing µ. Therefore, if the measurement falls into region II,
an upper limit is stated. But, if the measurement is further than 3σ away from
0.0, the experimenter wants to state a central confidence interval, switching to the
confidence belt of region III. This behaviour undermines the concept of a confidence
belt, since some intervals show undercoverage (see section 6.2.7). For example, at
µ = 2, the belt contains only 85% probability.
b) Confidence belt obtained by the unified approach for Gaussian proba-
bility distribution with constraint on non-negative values only [129]. There
is a smooth transition between stating an upper limit or a central confidence interval,
avoiding undercoverage as in the flip-flopping behaviour.
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In case of a discrete p.d.f., for a value µ, R is calculated for all discrete xi and written
in increasing order. Then the probabilities p(xi|µ) with highest R are summed up,
until the required α is reached. All xi that have been included in the summation
define a horizontal line segment for this specific µ. Repeating this procedure for all
µ with reasonable step width yields a confidence belt.

In case of a continuous p.d.f. p(x|µ), for each µ, the horizontal line segment [xL, xU]
is obtained by solving

R(xL) = R(xU) (6.23)
xU∫
xL

p(x|µ)dx = α (6.24)

numerically [129]. Again, combining these line segments yields a confidence belt
that is shown in figure 6.6b for a normal p.d.f.

Comparing this confidence belt constructed according to F.C. unified approach with
figure 6.6a shows that the transitions between the different regions I-III are smooth.
This belt can be determined before a measurement or at latest when the statistical
uncertainty of the experiment has been evaluated. It allows a consistent reporting
of the confidence interval without flip-flopping. By construction, no undercoverage
is possible. As usual, a measurement x0 (x′0) is represented by a vertical line inter-
secting the belt and allows reading off an upper limit (a central confidence interval).
Results of applying F.C. unified approach to KATRIN are shown in section 7.4.

6.3.4.2 Monte-Carlo method to construct F.C. confidence belts

To implement the unified approach into the analysis software KaFit, the methods
described in [132] have been realized. There, the logarithm of eq. (6.21) is used

− 2 logR = ∆χ2 = χ2 − χ2
best = χ2(x, µ)− χ2(x, µbest) (6.25)

with an assumed Gaussian probability distribution p(x|µ) and χ2 as in eq. (6.6).
µbest remains as in eq. (6.22) when dealing with a quantity that is constrained to
non-negative values only. The general algorithm to obtain a confidence belt of α
C.L. by a Monte-Carlo simulation in [132] is:

1. Draw a measurement value xtoy from a Gaussian distribution with expectation
value µ and width σ (measurement uncertainty).

2. Compute ∆χ2 of eq. (6.25) and arrange the pairs (x0,∆χ
2) according to in-

creasing ∆χ2.

3. Cut the ordered pairs (xtoy,∆χ
2) at ∆χ2

c , such that α of the pairs have ∆χ2 <
∆χ2

c .

4. All xtoy with ∆χ2 < ∆χ2
c then belong to the confidence interval of α C.L.

Repeat this procedure for all µ. This method allows easy construction of confidence
belts, since it only relies on drawing random numbers and calculating χ2-terms.
Again, the results of this Monte-Carlo approach in KaFit are presented and discussed
in chapter 7.4.
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Table 6.2: ∆χ2 for confidence level α and number of parameters of interest
ν from [128]. Typical values for α that are related to the standard deviation σ of
a Gaussian distribution.

ν
α 1 2 3 4 5

1σ = 68.27% 1.00 2.30 3.53 4.72 5.89
2σ = 95.45% 4.00 6.18 8.02 9.72 11.3
3σ = 99.73% 9.00 11.8 14.2 16.3 18.2

6.3.5 Profile likelihood

The concept of profile likelihood [133] is useful to determine uncertainties, both
statistical and systematic. It divides the set of fit parameters into parameters of
interest

~π = {π1, . . . , πk} (6.26)

and nuisance parameters
~φ = {φ1, . . . , φl}. (6.27)

These nuisance parameters have to be included into the analysis, but are of no
real interest for the experimenter. The likelihood function for measurements ~X =
{X1, . . . , Xn} is the same as eq. (6.4)

L(~π, ~φ| ~X) =
∏
i

p(Xi|~π, ~φ), (6.28)

just distinguishing between parameters of interest and nuisance parameters. The
so-called profile likelihood λ is then defined as [133]

λ(~π0| ~X) =
sup{L(~π0, ~φ| ~X); ~φ}

sup{L(~π, ~φ| ~X);~π, ~φ}
. (6.29)

λ is a function of the still free parameters of interest of subspace ~π0. The numerator
for a given, fixed ~π0 is the maximum likelihood with respect to optimized nuisance
parameters ~φ. The denominator is a normalizing constant, the maximum likelihood,
where all parameters ~π and ~φ are optimized. Ref. [133] states that “−2 log λ con-
verges in distribution to a χ2 random variable with k (cf. eq. (6.26)) degrees of
freedom”. This means, a profile likelihood as shown in figure 6.7 allows the investi-
gation of the behaviour of the likelihood function in the vicinity of the optimum and
allows reading off uncertainties by following the standard rules for a χ2 method (see
table 6.2). In contrast to a simple error analysis, for example by gradient methods
like MIGRAD in the Minuit package that usually use the parabolic approximation
around the optimum to state symmetric uncertainties, the profile likelihood analy-
sis is more sophisticated. The concept of profile likelihood is also implemented in
Minuit, when using MINOS for error analysis that reports asymmetric errors by
investigating the behaviour of the likelihood function around the optimum [134].
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Figure 6.7: Example profile likelihood from [133]. The parameter of interest is
the signal rate. Shown is the 95% C.L., obtained by an increase of −2 log λ by 3.84
(see table 6.2).

Table 6.3: ∆χ2 for confidence level α and number of parameters of interest
ν from [126, 128].

ν
α 1 2 3 4 5

90% = 1.645σ 2.71 4.61 6.25 7.78 9.24
95% = 1.960σ 3.84 5.99 7.82 9.49 11.1
99% = 2.576σ 6.63 9.21 11.3 13.3 15.1

99.99% = 3.291σ 15.1 18.4 21.1 23.5 25.7
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When applying the profile likelihood approach to KATRIN analyses, m2
ν is the

only parameter of interest, all other parameters count as nuisance parameters ~φ =
{E0, Rs, Rb}. The profile likelihood is

λ(m2
ν,0| ~X) =

sup{L(m2
ν,0, E0, Rs, Rb| ~X);E0, Rs, Rb}

sup{L(m2
ν , E0, Rs, Rb| ~X);m2

ν , E0, Rs, Rb}
. (6.30)

An additional promising possibility of the profile likelihood method is to extend
the set of nuisance parameters by (source) parameters that might have systematic
influences on m2

ν (see section 6.3.3). Furthermore, this can be combined with the
use of constraints to the likelihood in eq. (6.19). If an uncertainty on a (source)
parameter influences m2

ν , the profile likelihood will reveal it, creating a broader
distribution around the best-fit value of m̂2

ν .

In KaFit, the profile likelihood approach has been implemented preliminarily to
examine its use for KATRIN. The needed likelihood functions in classes KFLog-

LikelihoodKATRIN are already available, since they are generally used for fitting
KATRIN measurements. The same is true for required numerical minimization rou-
tines. Section 8.4 shows applications of the profile likelihood method in KATRIN.
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7. Statistical analysis and
sensitivity studies

With the available analysis tools it is possible to determine the statistical uncertainty
of KATRIN by various methods that have been explained in the previous chapter.
Together with the systematic uncertainty (see chapter 8) the total uncertainty is
determined and statements on KATRIN’s sensitivity on m2

ν are thus possible. In
section 7.1, the new simulation and analysis software is applied to conditions of older
simulations of the KATRIN Design report. This comparison is performed to check
and verify the results of the new code. The results of new and old simulations re-
garding the statistical uncertainty of KATRIN are compared and discussed. Section
7.2 evaluates the influence of background on the KATRIN measurement, first the
impact of the overall background rate and then fluctuations in time. The power
of the full source simulation is used in section 7.3 to determine the physics sensi-
tivity of KATRIN with a detailed, realistic model that for the first time considers
inhomogeneities of the source. This approach can be regarded as the state of the
art KATRIN model. The chapter concludes in section 7.4 with the applications of
Feldman and Cousins unified approach to KATRIN.

7.1 Re-evaluation of the design sensitivity

The spectrum simulation SSC (section 4.2) and the analysis package KaFit (section
6.2) are used to re-evaluate the design sensitivity of KATRIN. Comparing results
from the present software with results from the KATRIN Design Report [48] al-
lows one to crosscheck the new routines and to detect the effects of the new, more
sophisticated approaches, for example of the minimization routines, the spectrum
calculation itself or the treatment of fit values m̂2

ν < 0 in the unphysical region.

The KATRIN Design Report (TDR) defined the default KATRIN simulation param-
eters for the WGTS and other system, shown in table 7.1. A total measurement time
of 3 years within a measurement interval of 30 eV below and 5 eV above the endpoint
energy E0 was chosen. The measurement time distribution was optimized for a neu-
trino mass in the (sub-)eV range (see also section 6.2.1). An ensemble approach “by
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Table 7.1: Parameters for a KATRIN simulation in [48, 135].

parameter setting

column density ρd = 5 · 1017 cm−2

scattering probabilities P0 = 0.413339
P1 = 0.292658
P2 = 0.167331
P3 = 0.079129
P4 = 0.031776

“active” source cross-section AS = 53.3 cm2

magnetic field strengths BS = 3.6 T
BA = 3 · 10−4 T
Bmax = 6.0 T

tritium purity εT = 0.95

background rate Ṅb = 0.01 cps
detection efficiency εdet = 0.9
measurement time distribution t = 3 y; optimized
measurement interval [E0 − 30 eV, E0 + 5 eV]
Doppler effect neglected
differential spectrum calculation includes Fermi function

includes radiative corrections
includes extension to negative m2

ν

tritium endpoint energy E0 = 18575 eV

repeating large samples of simulated experiment-like integral β-spectra” [48] yielded
a statistical uncertainty of

σstat = 0.018 eV2 (7.1)

for KATRIN. Together with an assumed systematic uncertainties of in total

σsyst = 0.017 eV2, (7.2)

this results in a total uncertainty

σtot =
√
σ2

stat + σ2
syst = 0.025 eV2. (7.3)

By mν <
√

1.645 · σtot (see table 6.1) it can be converted to a 90% C.L. upper limit
of mν < 200 meV in the null measurement.

The former calculations of the spectrum are replaced within this work by SSC and
the analysis routines by the package KaFit. Both parts are configured to have the
same parameters as the default KATRIN simulation in table 7.1. To be as close as
possible to the former calculations, SSC does not make use of its ability to treat the
WGTS as union of many small voxels with local physical properties. Instead, the
WGTS is described as “one volume” by integral quantities only to reproduce former
results. In the following, two approaches are presented to determine the statistical
uncertainty of KATRIN and deduce the sensitivity on m2

ν .
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Figure 7.1: KATRIN ensemble simulation. 10000 full KATRIN experiments are
simulated with simulation input m2,sim

ν = 0.0 eV2 and analysed. Each time, the best-
fit m̂2

ν is filled into the histogram. The width of the distribution σstat = 0.0161 eV2

is interpreted as statistical uncertainty of the KATRIN experiment.

7.1.1 Ensemble simulations

The simulation of a large sample of KATRIN experiments and their analysis as
described in section 6.3.1 allows the determination of the statistical uncertainty of
KATRIN. Figure 7.1 shows the result of these ensemble simulations with

σstat = (0.0161± 0.0001) eV2. (7.4)

7.1.2 Profile likelihood

The profile likelihood approach as discussed in section 6.3.5 allows investigating
the curvature of the likelihood function and deducing the statistical uncertainty of a
measurement. At KATRIN, eq. (6.30) is used withm2

ν as single parameter of interest.
In figure 7.2, m2

ν is varied, and the nuisance parameters of the spectrum are fitted
to minimize the profile likelihood −2 log λ. For standard KATRIN conditions (see
table 7.1) and an assumed true neutrino mass of m2

ν = 0.0 eV2, the profile likelihood
is slightly asymmetric and yields

σ−stat = (0.0175± 0.0005) eV2

σ+
stat = (0.0165± 0.0005) eV2 (7.5)

by determining the function increase by 1.0 of −2 log λ around the minimum.
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Figure 7.2: Profile likelihood of KATRIN. For different values of the parameter
of interest m2

ν , the negative log-likelihood function is minimized with respect to all
nuisance parameters. An increase of the function by 1 determines the statistical
uncertainty stated in eq. (7.5).
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7.1.3 Comparison of statistical uncertainties

The statistical uncertainty obtained in this work in eq. (7.4) and (7.5) are up to
10% smaller that the value of eq. (7.1) from the KATRIN Design Report. Part
of the difference can be attributed to the difference in the size of the ensemble
used in the respective studies. It can cause fluctuations that are not stated in [48].
Analysing a single raw data file of [135] with an ensemble of only 100 spectra yields
σstat = (0.0165± 0.0017) eV2, that is compatible with eq. (7.4) and (7.5).

Furthermore, the two analyses used different spectrum calculations. Although the
new source simulation SSC is adapted to be as close as possible to the experimental
configuration that was used before, there are up to 5% differences in the calculated
rate of the integrated spectrum. The differences were traced back to the description
of the differential β-spectrum. The Fermi function, radiative corrections and calcu-
lation of the phase space are identical, so the only remaining difference is the final
state distribution (FSD). The FSD is treated differently in the two approaches. It
was not possible to use the same description of the FSD that has been used in former
calculations within SSC, so small differences in the spectrum calculation have to be
accepted. The current calculation uses a more detailed FSD (see section 4.2.5.3).

In addition, differences may be introduced by the respective minimization algorithms
in the analyses. The new code KaFit uses TMinuit to minimize χ2 (or − logL) to
determine m2

ν whereas the old code calculated χ2 on a parameter grid, choosing the
lowest occurring χ2-value as minimum. This could lead to a different estimation of
σstat as well.

In summary, the agreement of the statistical uncertainty obtained by different meth-
ods with KaFit and of former simulations in [48] is sufficient to investigate new effects
on the sensitivity of KATRIN.

7.2 Influence of background

In [136], the influence of the background rate Ṅb on the neutrino mass determi-
nation within an integrating measurement is derived analytically. The statistical
uncertainty σstat is related to Ṅb as

σstat ∝ Ṅ
1/6
b . (7.6)

This is derived by simplifying the measurement to one single hypothetical measure-
ment point (see also eq. (7.7)). In reality, several measurement points are required
to use the information on the spectral shape to determine all the fit parameters of
eq. (6.3). In fact, eq. (7.6) “underestimates the necessary measurement time about
an order of magnitude” [32], but the functional dependence remains.

With the described ensemble methods of KaFit, σstat on m2
ν of a full KATRIN

measurement (TDR conditions, see table 7.1) has been determined for various Ṅb.
The results are presented in table 7.2.

In general, the simulated values of σstat are higher than those expected by eq. (7.6)
when fixing σstat at Ṅb = 10−2 cps as the reference value. This is caused by using the
measurement time distribution that was optimized for exactly that reference case.
For other background rates, the measurement time would have to be adapted, since
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Table 7.2: Statistical uncertainty σstat of KATRIN for different background
rates Ṅb. In the second column, σstat is obtained by KaFit. The third column σexp

stat

shows the expectation of eq. (7.6).

Ṅb (10−3cps) σstat (eV)2 σexp
stat (eV)2

1 0.0113± 0.0002 0.0109
3 0.0124± 0.0002 0.0131
10 0.0160± 0.0002 0.0160
30 0.0221± 0.0003 0.0192
100 0.0345± 0.0004 0.0235

KATRIN is most sensitive to m2
ν at a retarding energy qUopt where the rate of the

integrated spectrum Ṅs(qUopt) is twice the background rate Ṅb [32]

Ṅs(qUopt) = 2 · Ṅb. (7.7)

This shows that it is important on the one hand to keep the background rate low.
On the other hand, Ṅb should be estimated and measured early during the neutrino
mass measurement to adapt the measurement time distribution right from the start
to be as sensitive as possible on m2

ν .

Additional effects like an energy dependent background rate, that means a slope in
the analysed part of the spectrum below the endpoint energy, were already inves-
tigated in [48]. Motivated by the time-dependent backgrounds which are discussed
in detail in [83, 125], KaFit is used to determine the sensitivity of KATRIN, if the
expectation of Ṅb is not constant. For that purpose, a Gaussian distribution around
mean Ṅb and width σ = (1%, 5%, 10%) · Ṅb is assumed as the fluctuating back-
ground rate. Ensemble simulations of full 3-year KATRIN experiments1 result in
figure 7.3. The larger Ṅb and the larger the fluctuation σ, the larger the statistical
uncertainty σstat gets. This indicates the strong impact of background fluctuations
on the m2

ν determination.

In [83], the impact on m2
ν from more complicated time-dependent backgrounds,

namely electron cascades from single radon decays in the spectrometer volume, was
investigated with the developed analysis tools presented in this work at hand. Events
that increase the background rate during a specific time are especially critical for
KATRIN. Then, the order of measurement points (retarding energies qU) and the
specific length of measurement intervals even influence the sensitivity.

7.3 Sensitivities when using a detailed source model

With the presented spectrum calculation SSC it is now possible to simulate the
expected spectra for KATRIN with a detailed source model, which is referred to as
the “full source model” in the following. This model is close to the KATRIN model
in table 7.1, but makes use of SSC’s ability to divide the WGTS into small volumes,

1In this case, the measurement is not broken down to several single measurements of few hours,
but treated “integrally” as time spend at each retarding voltage U of the spectrometer.
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Figure 7.3: Dependence of the statistical uncertainty of KATRIN on the
background rate. The y-error bars are increased by a factor of 10 for visibility.
The Poissonian case stands for a “usual” KATRIN measurement with background
events with a constant expectation value Ṅb. The fluctuations of 1, 5 and 10% stand
for a varying Gaussian background rate around the mean Ṅb during a full KATRIN
measurement. On the right axis, σstat is directly converted to a 90% upper limit for
KATRIN assuming a systematic uncertainty of σsyst = 0.017 eV2.
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so that effects from changes in the local physical properties and source parameters
can be studied. The following parameters are used in simulations with the “full
source model”:

• Voxelization: This is the main difference to former simulations of KATRIN.
Source inhomogeneities can be studied by dividing the source volume into
small “voxels” (see section 4.2.1). Since most source parameters only have a
longitudinal dependency, azimuthal and radial inhomogeneities are neglected
for the moment. Therefore, the source is divided longitudinally into 1000
slices, each with a width of 1 cm. This allows for detailed profiles of the
different source parameters. To reduce the necessary calculations later, every
100 bins are then rebinned, weighting the local physical properties. This is
more accurate than starting with only 10 slices as was shown in [89], and
has the advantage of fast calculations that are required for large ensemble
simulations.

• Density profile and column density: The routines that were explained in chap-
ter 5 are used in SSC to set the density profile of the WGTS. The column
density (with the default value of ρd = 5 · 1017 cm−2) is specified by the user
and the program calculates the necessary injection pressure and the resulting
density distribution along the source.

• Temperature profile: In contrast to the TDR KATRIN model that used a
fixed and homogeneous temperature of T = 30 K, a temperature profile T (z)
is incorporated into SSC. For the following simulations, the profile is flat in the
center with T = 30 K and rises quadratically towards the pumping chambers
by ∆T = 30 mK.

• Velocity profile: The gas dynamics simulations in chapter 5 also provide a ve-
locity distribution for T2 molecules in the source, which describes their thermal
movement at T = 30 K and the bulk velocity uz due to injection and pumping.

• Scattering probability: Instead of fixing the scattering probabilities to the
mean values of the whole source, each voxel in SSC can have its specific scat-
tering probabilities for electrons emitted within its boundaries. For instance,
electrons from the rear side of the source at z = −5 m have a probability
P0 of only 15.3% to cross the source without scattering inelastically, whereas
P0 = 33.8% for electrons from the center at z = 0 m and P0 > 99% for electrons
that are emitted right at the front end of the source at z = +5 m.

• Magnetic field: SSC uses the field calculation methods provided by Kassiopeia
(section 4.1). The calculated magnetic field strength in the WGTS is shown
in figure 4.3. In general, the field strength is lower than the previously used
standard value BS = 3.6 T. This means the active source area AS is increased,
since the transported magnetic flux Φ = BS ·AS remains constant. Then, for a
constant column density ρd and tritium purity εT, the number of signal counts

N ∝ ρd · AS · εT · Ω · P0 (7.8)

is increased at first sight. But on the other hand, the maximal opening angle
θmax of eq. (2.2) decreases, since more electrons are reflected at the high mag-
netic field of the pinch magnet Bmax = 6.0 T. This reduces the solid angle Ω
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of eq. (4.16) and thereby the number of electrons that can reach the detector.
Additionally, a lower θmax increases the mean scattering probabilities Pi of
eq. (4.8) for low i. Combining all the effects leads to a smaller count rate for
the full source model as can be seen in the first and second column of table
7.3.

• Differential β-spectrum and final state distribution: The calculation of the dif-
ferential spectrum according to eq. (4.14) remains nearly unchanged. The cor-
rections due to Fermi function and radiative corrections are the same functions
that have been used for the simulations in the TDR. The final state distribu-
tion is used in an updated version (see section 4.2.3). In the full source model
it is possible to (de-)activate the Doppler effect that broadens the β-spectrum
due to the thermal movement of molecules at T = 30 K and the additional
bulk velocity uz (see above).

• Integrated β-spectrum: In the full source model, the expected integrated spec-
trum is calculated as in eq. (4.17) by summing up the contributions from all
source voxels.

• Other parameters: All other parameters are kept at their value/setting of table
7.1.

The “ensemble method” (see section 6.3.1) with 4000 simulations within the KaFit
package allows the evaluation of the statistical uncertainty of KATRIN with the full
source model. In the case of neglecting the Doppler effect, the statistical uncertainty
was found to be

σ
w/o
stat = (0.0160± 0.0002) eV2, (7.9)

while that evaluated with the Doppler effect yielded

σw
stat = (0.0153± 0.0002) eV2. (7.10)

First of all, the obtained σ
w/o
stat is very close to eq. (7.4), since the expected signal rates

shown in table 7.3 are very similar in both models. Applying the Doppler effect to
the spectrum increases the count rate around the endpoint by shifting lower energy
electrons to higher energies2. This results in higher count rates and thus a lower
statistical uncertainty. In a way, this seems counter-intuitive, since one would expect
that the Doppler effect as an energy uncertainty decreases the power of KATRIN to
measure a neutrino mass. To check this, a typical energy shift of the Doppler effect
of 130 meV (eq. (4.23)) is added to the energy resolution of the main spectrometer to
have a slightly worse energy resolution of ∆E = 1.06 eV. This results in a statistical
uncertainty of

σ∆E
stat = (0.0161± 0.0002) eV2 (7.11)

that is increased marginally – only within the stated uncertainty – compared to
eq. (7.9). This indicates that an additional energy uncertainty like the Doppler
effect has no drastic influence on the statistical uncertainty. Nevertheless, further

2Although the molecule movement is omnidirectional with a small addition in positive respec-
tively negative z-direction due to the bulk velocity uz, the steep dropping spectrum near the
endpoint energy causes a net effect of shifting the spectrum towards higher energies.
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Table 7.3: Comparison of rates of the integrated spectrum Ṅs(qU) in case
of vanishing neutrino mass with different simulation models. The count
rates ṄTDR

s of a WGTS model of [48], presented in table 7.1, are given in the first
column. The full source model is described in the main text. Here, the Doppler
effect has been switched on (Ṅw

s ) and off (Ṅ
w/o
s ) for comparison.

qU (eV) ṄTDR
s (s−1) Ṅ

w/o
s (s−1) Ṅw

s (s−1)

E0 − 30 23.5 23.4 24.6
E0 − 20 5.83 5.77 6.08
E0 − 10 0.486 0.474 0.500
E0 − 5 0.0236 0.0222 0.0235

investigations regarding systematic shifts due to the Doppler effect are addressed in
section 8.2.

The studies in this chapter demonstrated the reliability of the new SSC and KaFit
software, which have additional features, such as the treatment of source inhomo-
geneities and Doppler effect, over the previous codes. The obtained uncertainties
are consistent with those of a simplified KATRIN simulation as done in [48]. In view
of the required systematic studies following in the next chapter, the WGTS model
as presented in this work should be regarded in the future as “standard” KATRIN
model.

7.4 Unified approach
Since m2

ν is expected to be close to zero (see section 1), negative values are physically
forbidden and the effect of non-vanishing m2

ν on the β-spectrum is small, it is not
guaranteed that KATRIN will be sensitive enough to claim a measurement or that it
will only be able to state an improved upper limit. Therefore, the Feldman-Cousins
unified approach (see section 6.3.4) is suitable for KATRIN to consistently report
its results later.

If the measurement of m2
ν is supposed to be obtained with a Gaussian resolution

function with the constraint m2
ν ≥ 0, the typical Feldman-Cousins confidence belt in

figure 6.6b can be used. It has to be adapted to KATRIN conditions by considering
the statistical uncertainty σstat: Since figure 6.6b was produced with σ = 1.0, both
axes can be scaled by σstat, resulting in figure 7.4a. As usual, a measurement result
m2
ν,0 of KATRIN can be converted consistently to a 90% confidence interval, inde-

pendent of a positive or negative value, by reading off the intersections of a vertical
line at m2

ν,0 with the belt borders.

Additionally, the question remains, how to include systematics into this method. A
simple approach is to add statistical and systematic uncertainties quadratically to
obtain σtot. If this is allowed, remains topic for further investigations. As a first
test, this has been done in the following.

To check the consistency of this method, figure 7.4b shows the 5σ-confidence belt
with σtot = 0.025 eV2 that represents a 99.99994267% confidence level. For a mea-
surement of m2

ν < 0.125 eV2, which corresponds to a neutrino mass of mν < 0.35 eV
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Figure 7.4: a) Confidence belt of 90% C.L. for KATRIN with σstat =
0.018 eV2. It can either be obtained by scaling the standard Feldman-Cousins con-
fidence belt for a Gaussian p.d.f. of [129] with σstat or by using the recipe that has
been explained in section 6.3.4.1 and implemented into KaFit.
b) 5σ-confidence belt of KATRIN with σtot = 0.018 eV2. For orientation, the
90% confidence belt also obtained with σtot has been drawn as well.

KATRIN can only state an upper limit on m2
ν , but if the measured value were

higher, then KATRIN could claim a detection of m2
ν . These results are consistent

with previous results in [48].

The problem of this method is that m2
ν is treated as a single parameter, like a

directly measured quantity. Instead, KATRIN measures a spectrum and fits several
parameters to it, one of them is m2

ν . The influence of m2
ν on the spectrum and

correlations between these parameters and m2
ν are not considered immediately by

the unified approach, they have to be handled within the general analysis strategy.
In addition, further difficulties will occur, if the measured m2

ν is not distributed
according to a Gaussian. The numerical procedures get more complicated, so that
the following method may be favoured.

The Monte-Carlo method described in section 6.3.4.2 is independent of the under-
lying p.d.f. For each possible true value µ of the neutrino mass squared an expected
3y-KATRIN spectrum is calculated. Following the presented recipe, the confidence
belt is constructed by repeated drawing of m2

ν from the p.d.f. and by calculating
the differences ∆χ2 of eq. (6.25).

Since m2
ν is drawn and kept fixed at that value, the other correlated fit parameters

E0, Rs and Rb (see eq. (6.3)) have to be fitted each time to still minimize χ2 between
the calculated KATRIN spectrum (“measurement”) and the theoretical expectation.
The difference ∆χ2 is then used in the ordering principle to obtain figure 7.5.

Both presented methods produce KATRIN confidence belts that allow reporting the
result of the neutrino mass measurement. The advantage of the original approach is
that the confidence belt can be calculated by easy numerical methods. But it is only
applicable in easy cases like a Gaussian p.d.f. In contrast to that the Monte-Carlo
approach can deal with any given p.d.f., but needs extensive simulations to obtain
a smooth confidence belt.
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Figure 7.5: 90% confidence belt for KATRIN obtained by the Monte-Carlo
construction method of [132]. A Gaussian p.d.f. with total uncertainty σtot =
0.025 eV2 resulting in the red dots is used to compare it with the original Feldman-
Cousins confidence belt (solid line). The agreement between Monte-Carlo method
and numerical construction is good. The fluctuations of the belt borders occur due
to the underlying statistical nature of the Monte-Carlo method. They could be
reduced to some extent by increasing the numbers of simulated toy experiments.



8. Analysis of systematic
uncertainty

The methods in chapter 6 are also applicable to determine the systematic effects on
m2
ν at KATRIN. Section 8.1 is treated as test scenario where the systematic effect of

column density variations is re-evaluated. Section 8.2 considers the uncertainty of
the beam tube temperature on m2

ν since that is of special relevance for the demon-
strator tests in the final chapter of this work. The influence of the tritium purity on
m2
ν in section 8.3 completes the investigations of source parameters and is handled

as a representative showcase for considering systematics in the KATRIN analysis as
shown in section 8.4.

8.1 Re-evaluation of column density variations

Shifts of the column density ρd change the source activity (see eq. (3.3)) and modify
the scattering probabilities (see section 4.2.2). If these shifts to lower (higher) ρd
remained unaccounted for in the KATRIN analysis, the lower (higher) activity would
result in lower (higher) count rates of the integrated spectrum. Since this is exactly
the effect of a non-vanishing neutrino mass squared m2

ν , shifts of ρd cause a shift in
m2
ν .

To quantify this systematic effect, the ensemble method (see section 6.3.1) with the
generation of individual trial runs by a combination of SSC and KaFit can be used.
As source model, the same detailed description of the source as for sensitivity studies
in section 7.3 is used, but without considering the Doppler effect for simplification.
Then, 4000 full KATRIN spectra are simulated with the nominal column density
ρdsim = 5 · 1017 cm−2. The analysis then assumes ρdfit = (1 + ε) · ρdsim with ε =
{1, 2, 5, 10} · 10−3. The resulting distributions of best-fit values m̂2

ν are similar to
that in figure 6.5 with ∆m2

ν for different unaccounted for shifts of ρd. Additionally,
∆m2

ν is shown in figure 8.1 in comparison to values stated in the KATRIN Design
report [48]. The new results show that the influence of ρd is less severe than the
old simulations proposed. But this does not change the statement of eq. (3.5) that
maximal variations of ∆ρd/ρd of 2 · 10−3 are allowed.
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Figure 8.1: Systematic shift ∆m2
ν due to unaccounted for shifts ∆ρd/ρd

of the column density. The solid lines show the results from simulations with
SSC and KaFit, the dashed lines are from [48]. Two different analysis windows are
considered: 30 eV and 50 eV below the spectrum endpoint energy E0. The dotted
black line at ∆m2

ν = −0.0075 eV2 shows the maximum allowable systematic shift of
eq. (6.14).
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Figure 8.2: Systematic shift ∆m2
ν due to unaccounted for shifts. Either

injection pressure shifts ∆pin/pin or column density shifts ∆ρd/ρd (see also figure
8.1) for a KATRIN analysis interval of 30 eV below E0.

To show the power of the new code, the influence of the injection pressure pin is
examined as an example for various parameters that influence ρd (see table 5.1) and
therefore the KATRIN measurement. In SSC and KaFit, the gas dynamics routines
generate a KATRIN spectrum with a detailed WGTS and nominal psim

in , and analyse
this spectrum with an increased (decreased) pfit

in . Using an ensemble method, the
resulting ∆m2

ν of 4000 simulations for different shifts ∆pin/pin is shown in figure
8.2. It confirms the expectation that changes in pin directly translate to changes on
ρd. But it also shows that the influence of experimental observables on m2

ν can be
determined directly instead of using derived entities like ρd.

8.2 Influence of the beam tube temperature

The absolute temperature T0 of the beam tube is a systematic effect in the deter-
mination of m2

ν , since it influences the column density in the WGTS. In addition,
the temperature influences the final state distribution of the β-decay of molecular
tritium and defines the strength of the Doppler effect that broadens the β-spectrum.

Influence on the column density

Similar to the ensemble simulations in section 8.1 that considered changes of the
column density or the injection pressure, the beam tube temperature can be shifted
in an analysis with respect to the Monte-Carlo truth of T0 = 30 K. Figure 8.3 shows
the resulting systematic shifts ∆m2

ν .
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Figure 8.3: Systematic shift ∆m2
ν due to an unaccounted for shift of the

beam tube temperature T . The measurements within the typical interval [E0−
30 eV, E0 + 5 eV] are simulated with a nominal temperature of T0 = 30 K, the
analysis is performed with slightly higher temperatures T . The dotted line marks
the maximal allowed systematic shift |∆m2

ν | = 0.0075 eV2.
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An unaccounted for shift of T0 by ≈ 0.6% or 180 mK would cause an unacceptable
shift of ∆m2

ν . This confirms the impact of changes of T on ρd in table 5.1. For the
knowledge of the absolute temperature, this limit can be weakened. If one relied
completely on gas dynamics calculations to determine ρd, a very good knowledge of
T0 would be required. Instead, ρd respectively the required scattering probabilities
for the analysis will be measured separately with an electron gun (see section 2.6.
This avoids a strict requirement on the knowledge of the absolute temperature.

Influence on the final state distribution

The absolute temperature T0 of the beam tube influences the final state distribution
(FSD) as explained in section 4.2.5.3, since T0 determines the relative population
of rotational states J of the tritium parent molecules; if the temperature increases,
the contributions from larger J will increase. The FSD of molecules decaying from
different states J are different [65]; in general the distributions get broader for higher
J .

The influence of an uncertainty in T0 can be evaluated with ensemble simulations.
Since the effect is expected to be small, a temperature of 30 K is used for the simu-
lation of the KATRIN experiments, and a “wrong” temperature of 33 K is used for
the analysis. The resulting distribution is shown in figure 8.4. The systematic shift

∆m2
ν = (6.8± 2.8) · 10−4 eV2 (8.1)

is rather small and is compatible with results in [65]. It can be concluded that the
knowledge of the absolute temperature due to its small influence on the FSD is not
critical, a trueness of ±3 K is sufficient.

Influence due to the Doppler effect

The absolute temperature T0 determines the strength of the Doppler effect (see
section 4.2.5.4). First of all, one can ask what systematic effect would occur, if the
KATRIN analysis neglected the Doppler broadening of the β-spectrum? Figure 8.5
can give a hint on that. To quantify the effect, the usual ensemble simulations with
the detailed source model, including the Doppler effect at 30 K were made. The
analysis assumed no Doppler effect what resulted in a systematic shift of

∆m2
ν = (−0.0172± 0.00026) eV2. (8.2)

As absolute value this is clearly above the allowed 0.0075 eV2 of eq. (6.14) for a single
systematic effect. Therefore, the Doppler effect cannot be neglected in the KATRIN
analysis.

The next step is to investigate the effect of a wrong assumption on the absolute
temperature T0 in terms of the Doppler broadening. If the simulated measurements
in an ensemble method used T sim

0 = 30 K as truth and the analysis assumed T fit
0 =

27 K, the systematic shift would be

∆m2
ν = (−0.00158± 0.00026) eV2. (8.3)

This is still within the requirements of eq. (6.14), so again a trueness of ±3 K is
sufficient.
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Figure 8.4: Ensemble simulation with varying the absolute temperature to
calculate the FSD. The Monte-Carlo truth is T sim

0 = 30 K; the analysis assumed
T fit

0 = 33 K. The shift of the resulting distribution from input neutrino mass m2,sim
ν =

0.0 eV2 is barely visible.

To conclude this section, the implementation of the Doppler effect in SSC should
be verified. It was explained in section 4.2.5.4 that two different approaches are
implemented: A slow, accurate algorithm that directly broadens the differential
β-spectrum and a fast, approximative approach that broadens the final state dis-
tribution that is then used to calculate the differential β-spectrum. The resulting
spectra of these two approaches differed only marginally as was shown in figure 4.6,
but nevertheless it needs to be known if a systematic shift is introduced by using the
approximation. Ensemble simulations with the accurate description of the Doppler
effect as Monte-Carlo truth and analysis with the approximation show no significant
influence; the shift was found to be

∆m2
ν = (2.4± 2.3) · 10−4 eV2, (8.4)

which is consistent with zero. The approximation of the Doppler effect, the broad-
ening of the FSD, can be used in future analyses.

8.3 Influence of tritium purity

So far, only changes of the column density ρd have been considered as systematic
effect on m2

ν . But since the activity S of the source (see eq. (3.3)) is also determined
by the tritium purity εT, an uncertainty on εT should influence the determination of
m2
ν as well. To investigate the effect of unaccounted shifts of εT ensemble simulations

with results in figure 8.6 are carried out. The effect is compatible with investigations
published in [65]. Please note that the influence of εT is smaller by approximately
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Figure 8.5: Modification of the integrated spectrum of a non-vanishing
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ν on the
integrated β-spectrum at KATRIN (red dashed line) is most prominent in the region
a few eV below the endpoint energy that was set to 18,575 eV here. Very close to
E0 the background rate of 10−2 cps conceals the effect of m2

ν . The blue solid line
shows the ratio between a spectrum that considers the Doppler effect at T = 30 K
and a spectrum that neglects the effect. The influence is similar to a non-vanishing
neutrino mass, clearly explaining the systematic influence of the Doppler effect on
m2
ν .
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Figure 8.6: Systematic shift ∆m2
ν due to an unaccounted for shift of the

tritium purity εT. The effect is smaller by more than 1 order of magnitude than
for shifts ∆ρd/ρd of figure 8.1.

one order of magnitude than an uncertainty of ρd. The reason is that ρd does not
only change the activity, it also changes the scattering probabilities that have an
impact on the shape of the spectrum - like m2

ν . In the case of εT, to first order
only the activity is changed. This causes an overall increase/decrease of the whole
spectrum without influencing its shape. This scaling is absorbed during the analysis
by a free fit parameter, the signal strength Rs of eq. (6.3), so that unaccounted for
shifts of εT have no significant effect on the spectrum measurement.

Nevertheless, the small observable systematic shift in figure 8.6 occurs due to changes
in the mixture of the different final state distributions of the daughter molecules of
T2, DT and HT. If a wrong εT is assumed for the analysis, the resulting FSD
does not match the one that was used for the spectrum simulation and causes a
small systematic shift ∆m2

ν . Further investigations on the trueness of εT and the
connections to the calibration of the Laser Raman System to determine εT are
already reported in [137] and will be discussed in detail in [71].

The knowledge of ∆εT/εT on the 10−3 level together with an activity monitoring (see
section 2.6) of the source allows determining changes in the column density ρd. This
is an independent measurement of ∆ρd/ρd next to the calibration measurements
with an electron beam (see section 2.6) and is discussed in detail in [60].

8.4 Profile likelihood

The method of profile likelihood (see section 6.3.5) can be used to consider additional
nuisance parameters that influence the spectrum measurement at KATRIN and
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Figure 8.7: Profile likelihood with constraint on εT. In this case, a LARA
measurement of εT = 0.90 · εsim

T ± 0.2% is assumed. The minimum is shifted by
∆m2

ν = 1.0·10−3 eV2. The statistical uncertainty determined by the function increase
of 1 is unchanged compared to figure 7.2.

allows quantifying their systematic influence on m2
ν . To present a prime example,

the influence of εT is investigated in the following and can be compared to results
obtained by ensemble simulations (see section 8.3).

First, eq. (6.30) is amended by εT as additional nuisance parameter. It is treated as
a usual fit parameter with a lower limit of 0.5 that corresponds to pure DT in the
source and an upper limit of 1.0 that stands for pure T2

1. The profile likelihood of
m2
ν is shown in figure 7.2; it is not broadened significantly. The influence of εT on

the statistical uncertainty of m2
ν is small.

In a second step, external measurements of εT provided by the Laser Raman system
(LARA, see section 3.3) can be included in the analysis by adding constraint terms
as in eq. (6.19) to the likelihood function respectively to the profile likelihood. In
this test scenario, it is assumed that LARA reaches a precision on εT of 0.2%, but
there is an uncertainty in the trueness of εT of -2%, -5% or -10%. This means that
LARA would report εT = (0.931/0.905/0.855) ± 0.2%, although the truth for the
simulations was set to εsim

T = 0.95. The resulting systematic shifts are summarized
in table 8.1.

This shows that if a wrong measurement of LARA was considered during the analysis
by constraints to the likelihood, m2

ν would be shifted, but still within the allowed

1Other impurities like HT or non-tritiated impurities like H2 are not considered in this first
approach. Their fractions are expected to be very low due to the good purification processes of
the Tritium Laboratory Karlsruhe (see section 3.3).
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Table 8.1: Systematic shifts ∆m2
ν obtained by the profile likelihood method

with shifted tritium purities εT with simulation truth of εsim
T = 0.95. εT is

assumed to be reported by a LARA measurement with an uncertainty of 0.2%.

εT ∆m2
ν(10−3 eV2)

0.98 · εsim
T 0.2

0.95 · εsim
T 0.5

0.90 · εsim
T 1.0

7.5 · 10−3 eV2. In the presented case, the LARA measurement was set intentionally
far off the true value what will not happen in the real experiment later due to
calibration efforts of the LARA group [72].

The method of profile likelihood is suitable for KATRIN and can be used for var-
ious other parameters that systematically influence the measurement of KATRIN.
A further example is an uncertainty of the retarding voltage of the KATRIN spec-
trometers as discussed in [121].



9. Measurements at the
demonstrator

The aim of the demonstrator measurements is to prove the functionality of the
WGTS cooling system by using original components (chapter 3), the original sensor
system and the cryogenic facility of KATRIN. These tests provide first results of the
source behaviour and allow for analyses regarding stability and homogeneity.

The demonstrator tests started at KIT in autumn 2010 with the first cool-down
of the system and first heat load measurements [138]. During 2011, several dedi-
cated tests were performed, starting with stability measurements in February and a
long-term measurement at the end of April (section 9.1). In this work, additional
analyses concerning Fourier transforms (section 9.2) and correlations (section 9.3)
are presented. In section 9.4 results of the temperature homogeneity measurements
are shown. This chapter ends with analysis and discussion of the implications of the
demonstrator measurements in section 9.5. The demonstrator tests were completed
in December 2012. Their results will also be published in [63].

During the demonstrator measurements two systems are responsible for taking data:

• The process control system PCS7 [139] for all processes, including the cryosys-
tem, pressure measurements – especially the saturation pressure of neon – and
some general temperature measurements. Measurements are typically recorded
every second.

• The dedicated temperature measurement system TES [140] for all beam tube
temperature sensors. The readout cycle of all Pt500 temperature sensors is
adjustable and is set to 5 seconds if not stated otherwise. Measurements of the
vapour pressure sensors are also managed by the TES, internally converting
measured pressure values to temperatures. During the analysis this conversion
is done by Mathematica [141] with an extension GASPAK [76].

9.1 Temperature stability
As shown in section 3.1 the requirements on the WGTS operating parameters are
very strict and only allow temperature variations of the beam tube of ∆Tstab <
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Figure 9.1: Temperature of the demonstrator beam tube. Shown is the
measurement of a central Pt500 sensor (RTP-3-5111) in 24 hours. The standard
deviation σT from the mean temperature T = 30.191 K is only 3 mK. The dotted
lines show the requirements, a stability of ±30 mK within one hour. Here, the
cooling system of the beam tube is better than the requirement/specification by a
factor of 10.

30 mK/h, corresponding to a 10−3 level. The required stability cannot be met by
conventional cooling techniques for a system with dimensions of the WGTS. For
the refrigerating plant used at KATRIN, fluctuations of ±0.3 K have been measured
during commissioning of the KATRIN cryogenic helium transfer line and infrastruc-
ture [74]. Together with the excellent shielding concept of the beam tube (see figure
3.5), the developed two-phase neon system with its improved condenser design (see
section 3.3) allows to keep the temperature stable at 30 K.

The measured temperature of the demonstrator beam tube during 24 hours of
undisturbed operation is shown in figure 9.1. The measuring points of one exem-
plary Pt500 sensor are shown for every second and represent the whole beam tube,
since the behaviour of all sensors including the measured saturation pressure of the
neon system is similar. The temperature fluctuations have a standard deviation
of σT = 3 mK during one day. During one hour of operation they do not exceed
1.5 mK. This proves the successful operation of the two-phase cooling system and
its condenser. The beam tube temperature of the WGTS can be kept stable at the
10−4 level improving the required temperature stability by a factor of 10− 20 [63].

Further measurements characterize the long-term behaviour of the system (figure
9.2). On the scale of days larger variations – better called drifts – are visible in
the whole system. Temperature changes of the cryogenic helium from the refriger-
ating plant are responsible for this behaviour. Its temperature depends on various
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Figure 9.2: Long-term measurement of the beam tube temperature. During
eight days of undisturbed operation of the demonstrator the temperature has been
recorded and as an example a central Pt500 sensor (RTP-3-5111) is shown here.
On that time scale slow global drifts are visible and low frequency oscillations might
occur in the second part of this measuring period. The different average temperature
compared to figure 9.1 is caused by a different operation of the refrigerating plant
and a different set point of the neon system.

parameters, e.g. on the ambient temperature and results in changes of the mean
temperature up to 0.3 K. The condenser reduces rapid temperature fluctuations of
the refrigerating plant [74], but it follows the average temperature of the helium,
which is used for its cooling. This causes slow drifts and is likely to be responsible
for suspicious patterns in the temperature distribution during the last days of the
shown long-term measurement. This motivates a dedicated search for periodicities
in the system, a Fourier analysis of the temperature data in the following section.
Nevertheless, long-term changes in the temperature are rather uncritical when look-
ing at the planned measurement cycles at KATRIN: In [48], the measurement time
is divided into several 2 hour intervals where the source has to be stable. Between
these intervals, calibration measurements are foreseen, e.g. measurements with the
electron gun of the rear-section (see section 2.6) to determine the column density
of the source and detect changes. Long-term changes in temperature respectively
column density can be resolved and considered when analysing the measured data.

9.2 Fourier analysis

Fourier analysis is a well-known method to check measurements on oscillatory be-
haviour and determine characteristic frequencies. The temperature at the demon-
strator and later at the WGTS is an important parameter. It is monitored contin-
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uously, 24 hours, all days. It is advisable to use the demonstrator measurements
to investigate the behaviour of the cooling system and the beam tube temperature.
This section will briefly explain the theory of Fourier analysis and apply it to mea-
sured temperatures at the demonstrator. The results of these analyses have already
been reported in [142].

9.2.1 Theory

A physical process of a quantity h can be described in the time domain by values h(t)
for each time t, but it can also be represented in the frequency domain by amplitudes
H(f) for frequencies f [128]. A transformation rule called Fourier transformation
exists between the two representations of the same process:

h(t) =

+∞∫
−∞

H(f)e−2πiftdf (9.1)

H(f) =

+∞∫
−∞

h(t)e2πiftdf. (9.2)

Taking measurements often moves away from continuous functions as in eq. (9.2) to
discrete measurement points, so special emphasis should be given to Discrete Fourier
transformations (DFT). If data is sampled every ∆t seconds what corresponds to a
sampling rate of 1/∆t, the N discrete data points can be written as

hk = h(k ·∆t), k = 0, 1, . . . N − 1. (9.3)

We can define frequencies

fn =
n

N ·∆t
, n = −N

2
, . . . ,

N

2
(9.4)

and use transformation rules for the DFT

hk =
1

N

N−1∑
n=0

Hne
−2πikn/N (9.5)

Hn =
N−1∑
k=0

hke
2πikn/N . (9.6)

For eq. (9.6) the handling of the frequency range has been simplified. The numbering
from −N/2 to +N/2 as in eq. (9.4) can be moved to 0 to N − 1 because of the
periodicity of the problem. The negative frequencies between −1/2∆t and 0 are then
represented by the fn with N/2 + 1 ≤ n ≤ N − 1, the positive frequencies between
0 and 1/2∆t by the usual numbers 1 ≤ n ≤ N/2 − 1. Special cases are n = 0 that
describes no frequency, i.e. a constant amplitude of the signal and n = N/2 that
belongs to both frequency intervals as f−N/2 = − 1

2∆t
and f+N/2 = + 1

2∆t
(notation

as in [128]).
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In general, the transforms Hn are complex numbers. To present them, it is conve-
nient to plot amplitudes A(fn)

A(fn) =
2|Hn|
N

. (9.7)

Each data point hk can be composed as a Fourier series by a superposition of cosine
oscillations with discrete frequencies fn and appropriate amplitudes A(fn)

hk =
H0

N
+

N/2∑
n=1

A(fn) cos(2πfnk∆t+ ϕ). (9.8)

Dedicated computer programs calculate Fourier transforms within split second. Nev-
ertheless for large data samples or repeated transformations optimization of the rou-
tines are useful and save calculation time. Therefore algorithms called Fast Fourier
Transformations (FFT) have been developed (e.g. [143]). “Normal” Fourier trans-
formations for N discrete data points need O(N2) operations, but the FFT yields
the transforms with O(N log2N) operations. That is remarkably faster for large
samples. Since these methods are treated only as algorithms used to obtain the
DFT, they will not be explained here. Details can be found in [128],[144] and [145].
The algorithms used for the following analyses are from the C library FFTW [146].

9.2.2 Analysis of temperature data

The demonstrator data used for the following Fourier analyses was taken during
several measurement periods in 2011, especially during stability and the long-term
measurements (see section 9.1). Motivated by visible temperature oscillations (figure
9.2) with periods of 1 day on the neon temperature, one should check the helium
that is used for its cooling.

The helium from the KATRIN transfer line also cools the whole system, its shields
and the pump ports. The helium temperatures shown in figure 9.3a show large fluc-
tuation and expected oscillatory behaviour. A DFT of this data is shown right next
to it. It reveals a broad band of frequencies with significant amplitudes up to 10 mK.
These fluctuations also influence the neon condenser, and if they weren’t dampened
by some means, the beam tube temperature fluctuations would be impermissibly
high. For this purpose, the neon condenser is equipped with a 3.7 kg lead core to
increase its heat capacity and to smooth fluctuations of its temperature caused by
varying helium temperature and throughput [74]. That this design is working has
already been shown in figure 9.1 and can also be deduced from the comparison of
the Fourier transforms of helium and neon in figure 9.4.

Actually, for this measurement period, there are some characteristic frequencies vis-
ible1. These frequencies and the broad band of amplitudes for low frequencies are
strongly dampened by the condenser and are not visible in the DFT of neon. All
amplitudes are significantly reduced as shown in figure 9.5, in case of the charac-
teristic frequencies by 4 orders of magnitude, otherwise for frequencies f > 0.3 mHz
by typically 1-3 orders to amplitudes < 0.1 mK [142]. Only the lowest frequencies
corresponding to periodic times of several hours up to two days remain visible. This
is consistent with the general temperature development shown before in figure 9.2.
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Figure 9.3: a) Temperature of the gaseous helium entering the demonstra-
tor. The helium is provided by a refrigerating plant and does not meet the stability
requirements ±30 mK drawn as red lines.
b) Discrete Fourier transform of the helium temperature. A broad band
of low frequencies with non-negligible amplitudes (see eq. (9.7)) is visible. These
oscillations add up to the temperature variations shown left.
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Figure 9.4: a) Discrete Fourier transform of the helium temperature,
February 26th and 27th 2011. Besides the typical broad band of frequencies,
several characteristic frequencies corresponding to periods between 10 and 60 sec-
onds show up in this spectrum. b) Discrete Fourier transforms of the neon
respectively beam tube temperature. The spectrum is strongly suppressed
with low amplitudes only at very low frequencies (see inset) representing slow tem-
perature drifts over days. Clearly no characteristic frequencies that are visible on the
Fourier transform of the helium temperature in a) appear on the Fourier transform
of the neon temperature. The condenser in the demonstrator, which is responsible
for the heat transfer between helium and neon, dampens these frequencies (see figure
9.5).
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Figure 9.5: Reduction factor in Fourier space between helium temperature
and neon temperature. Nearly all coefficients above 0.3 mHz are reduced by
factors between 2 and 104. In particular, the peaks of the DFT of the helium
temperature at characteristic frequencies are reduced by 4 orders of magnitude. For
lower frequencies what corresponds to periods of 3 hours up to 2 days the reduction
is weak.

To further investigate the correlation between helium and neon temperatures, the
lowest frequencies are compared in figure 9.6, this time for the long-term measure-
ment. Obviously, the amplitudes are similar and the expected daily variations show
up in the frequency domain as well. The long-term drifts cannot be smoothed com-
pletely by the condenser, but variations on timescales larger than a data taking
period in between column density calibration measurements (every 2 hours) are
uncritical (see section 9.1).

9.3 Correlations

Checking for correlations between different measurements at the same time may give
insight in the overall behaviour of the system. At the demonstrator, it is expected
that the measured temperatures from different sensors are strongly correlated. Due
to the defining temperature of the two-phase neon cooling system along its whole
10 m, overall temperature changes should occur at all sensors with strong correla-
tions.

For these investigations the correlation coefficient %xy is useful e.g. [126]. It is defined
as

%xy =
σxy

σx · σy
(9.9)

1Characteristic frequencies are only visible in some measuring periods. They correspond to
periodic times between 10 and 60 seconds. They can be caused by automatically controlled valves
or other regulating devices.
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Figure 9.6: a) Discrete Fourier transform of helium and beam tube tem-
perature (RTP-3-5106). Twenty lowest frequencies. The dataset is a 4 day
measurement from April 28th to May 2nd 2011. The first coefficient for a period
of 4 days is not shown, but is around 20 mK for both series. b) Same as a),
but a linear trend of the temperature signal has been subtracted before
calculating the Fourier transforms. This mainly reduces the amplitudes of the
first few frequencies and focuses on oscillations instead of long-term drifts. Then it
is even more evident that the beam tube temperature follows the behaviour of the
defining helium temperature.

with standard deviations σx and σy of two random variables (here: two temperature
measurements with values x and y) and the covariance

σxy = 〈(x− 〈x〉)(y − 〈y〉)〉 (9.10)

with expectation values 〈x〉 and 〈y〉 respectively. A coefficient of -1 shows a perfect
anti-correlation, 0 states uncorrelated measurements, whereas +1 stands for a total
correlation. Values in between show the extent of (anti-) correlation.

Another nice way to check for correlations are scatter plots x over y. In case of
a correlation between those two variables, these scatter plots have tilted elliptical
shape. Narrower ellipses imply stronger correlation.

In this section, only major results of the correlation analysis are presented. For a
complete list of all correlation coefficients, please see [142]. Table 9.1 shows cor-
relation coefficients between temperature measurements of the saturated neon, the
beam tube at selected positions2 and the helium (RTT-2-3107) used to cool the sys-
tem. As expected, there is a very strong correlation between opposed Pt500 sensors
(%xy is very close to +1) and also between sensors and the neon temperature. The
neon temperature that governs the beam tube temperature on both sides along the
whole 10 m is not perfectly stable as shown in section 9.1 due to external influences.
The temperatures on top and bottom of the beam tube follow these changes of the
neon temperature.

2Pt500 Sensor RTP-3-5101 is at the rear end at z = −4.76 m, at the bottom of the beam tube
Φ = 270◦, RTP-3-5102 is at the top Φ = 90◦. RTP-3-5123 and RTP-3-5124 are at the front side
(z = +4.64 m,Φ = 270◦ respectively Φ = 90◦ (cf. figures 3.8 and 3.9)).
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Table 9.1: Matrix of correlation coefficients between selected temperature
measurements. The sensors are Pt500 sensors on the rear side of the tube (RTP-
3-5101 and RTP-3-5102), on the front side (RTP-3-5123 and RTP-3-5124), the neon
temperature (converted from pressure measurements of RPI-2-5135) and the temper-
ature of helium (RTT-2-3107) that is used to cool the system. Here, the correlation
coefficients have been calculated for a 24 hour measurement on February 19th 2011,
but they do not change significantly over time [142]. A strong correlation between
the beam tube temperature measured by the Pt500-sensors and the defining neon
temperature is obvious. The (anti-) correlation to the helium temperature is weak,
since the condenser dampens strong fluctuations of the helium temperature leaving a
slowly moving independent neon temperature and therefore beam tube temperature
(see section 9.1).

KATRIN no. RTP-3-5101 RTP-3-5102 RTP-3-5123 RTP-3-5124 RPI-2-5135

RTP-3-5102 0.9961

RTP-3-5123 0.9712 0.9746

RTP-3-5124 0.9906 0.9907 0.9874

RPI-2-5135 0.9850 0.9828 0.9313 0.9672

RTT-2-3107 −0.0600 −0.0610 −0.0403 −0.0442 −0.0933

This behaviour is also true for Pt500 sensors at the front side, but their correlation
coefficients with the neon temperature are slightly smaller than for the rear side (0.93
and 0.96 compared to 0.98). This also stands for a strongly correlated behaviour,
but shows differences between front and rear side.

This becomes obvious when looking at the scatter plots in figure 9.7. The left plot
shows what is expected: An increase of the neon temperature causes an increase
of the beam tube temperature at the rear side of the source. The Pt500 sensors
there quickly follow the temperature changes; the result of a 24 hour measurement
is a small tilted elliptical band. This is not the case for a sensor at the front
side as shown on the right. There is a general tendency that an increase in the
neon temperature also causes an increase of the front beam tube temperature. But
there is some additional behaviour visible: Starting at t = 0 both temperatures
increase and decrease simultaneously for some time, until the scatter points show
some one-sided movement. They “leave” the former ellipse and settle inside a new
ellipse around lower temperatures. This behaviour repeats itself during the whole
measurement period. This means that generally the beam tube temperature at the
front side follows the defining neon temperature, but there is a varying heat influx to
the vicinity of the sensors, breaking the exact correlation. This behaviour can also be
observed during other measurement periods, and during the long-term measurement
[142]. How this time-dependent heat influx might occur will be discussed in the
following section, where the difference between rear and front side of the source is
investigated closely, when determining a temperature profile of the WGTS.
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Figure 9.7: a) Scatter plot of Pt500 temperature measurements at the
beam tube rear side and the neon saturation temperature on February
19th 2011. The neon defines the temperature of the beam tube on both sides.
Changes in its temperature also show up at sensor positions on the rear end as
strongly correlated measurements.
b) Scatter plot of Pt500 temperature measurements at the beam tube
front side and the neon saturation temperature on February 19th 2011.
There is also an evident correlation between the two measurements, but some ex-
ternal heat influences the Pt500 measurement, so that a “walk” of the scatter points
during the 24 hours is visible. The difference on the x-axis of both plots will be
explained in section 9.4.
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9.4 Temperature homogeneity

Besides strict requirements on the temperature stability discussed in the previous
sections, there are also specifications for the allowed temperature variations along
the beam tube of ∆Thom < 30 mK for the inner 9.5 m, demanding a homogeneous
temperature profile (see section 3.2). Regarding the physics of the source, a tem-
perature profile directly influences the density profile [64], [116]. But in fact, if
the profile is stable, this is no problem as will be shown in section 9.5. On the
other hand, different temperatures in different parts of the source impose a different
Doppler broadening on the emitted electrons (see section 4.2.5.4). Discussions on
these effects will close this chapter.

Next to the physics, considerations on the temperature homogeneity arise from a
rather technical motivation: The main heat influx occurs due to thermal radiation
through the pumping chambers at the end of the beam tube. The photons hit the
inner surface and slightly increase the temperature while the whole tube is cooled
by the two-phase neon system. This setup will keep the temperature constant at
30 K at the connection of cooling tubes and beam tube (at 0◦and 180◦in figure 3.9),
but will create an azimuthal temperature gradient towards top (90◦) and bottom
(270◦) of the beam tube. These are the positions where most of the temperature
sensors are measuring. Because the effect of thermal radiation rapidly decreases from
the tube end to the center (view factor considerations), the magnitude of such an
azimuthal temperature gradient depends on the longitudinal position. Therefore,
it is also expected to obtain a temperature gradient from the ends of the beam
tube towards the center: a longitudinal temperature profile. To demand a small
longitudinal temperature gradient motivates a good shielding and cooling concept,
but is not mandatory for a successful run of KATRIN as will be shown at the end
of this section.

To determine the temperature profile, measurements in stand-alone operation of the
system were carried out on November, 23rd and 24th 2011. The precise vapour
pressure sensors were used. The resulting temperature profile is shown in figure 9.8.

On the rear side the temperature profile rises towards the end by up to 300 mK. On
the front side, a stronger temperature gradient is visible. The temperature measured
by sensors near the front end is higher by more than 850 mK than the neon saturation
temperature. Additionally, on the front side, the temperatures measured by sensors
at the top respectively at the bottom of the tube differ by up to 400 mK, although
they are located at the same longitudinal position. The temperatures of sensors at
45◦ and 185◦ are between the extrema. At the rear side, the sensors on top are also
slightly warmer than the sensors on the bottom.

To explain this effect, the pumping chamber geometries and its cooling are investi-
gated closely. During cool-down of the system, it was observed that not all parts
of the pumping chambers are cooled in full agreement with expectations. The flow
impedance in the intermediate bellow cooling circuits at the pump ports (see fig-
ure 3.3) was underestimated. This resulted in insufficient liquid nitrogen flow rates
through those circuits, which represented parallel branches in a common flow net-
work with the outer liquid nitrogen shield. Thus, the upper parts of the pumping
chambers nearly stayed at room temperature [74], so one expected an increased heat
influx towards the beam tube. This helped to explain the difference between sensors
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Figure 9.8: Temperature profile measured at the demonstrator in stand-
alone mode. Shown are the temperature differences ∆T between the defining
neon saturation temperature and the temperatures measured by the vapour pressure
sensors at different positions z along the beam tube. The error bars are smaller than
the used markers.
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on top and bottom of the tube. But since this effect was true for both pumping
chambers and no difference between front and rear chambers could be found, this
cannot be the reason for the stronger temperature profile on the front side. Never-
theless, during reconstructioning the WGTS, additional valves will be installed to
allow properly cooled pumping chambers, eliminating this additional unwanted heat
influx.

The reason for the observed temperature profile is the small asymmetry of the sys-
tem: At the front side, the neon condenser is located and most of the instrumentation
lines enter the system there. Especially the 24 connection pipes from the vapour
pressure sensors to the transducer outside of the source are guided inside the system
near the front end (see figure 3.9b). These pipes are not sufficiently thermally iso-
lated when entering the system and thus directly transfer heat to the measurement
positions. The pipes run along the whole beam tube and branch off at different
longitudinal positions. Their length varies from only 1 m for sensors at the front
side to more than 10 m for sensors at the rear side of the source. Due to their
different lengths, the effect is stronger at the front end, increasing the measured
temperature significantly. At the rear side, the effect is reduced since the pipe is
longer and it is guided along the beam tube inside the 30 K environment to adapt
its temperature. In some way, this theory can also help to explain the temperature
difference between sensors on top and bottom, since the heat incoming through dif-
ferent connection pipes might differ, additionally to the discussed thermal radiation
from different warm parts of the pumping chamber.

Again, counteractive measures will be taken during reworking to the full WGTS by
tying the vapour pressure pipes to a copper block kept slightly above 30 K before they
enter the system. This will prevent heat influx through the capillaries and reduce the
longitudinal temperature gradient considerably, leaving the aforementioned thermal
radiation from the pump ports as main source for a longitudinal temperature profile.

9.4.1 Operation with heated blind flanges

When operating the WGTS at KATRIN, there will be additional heat sources that
were not present at the demonstrator: The rotating turbomolecular pumps that are
located at the pump ports at each end of the beam tube reach temperatures of more
than 90◦C when used in magnetic fields above 4 mT [80]. This heat increases the
thermal radiation that reaches the beam tube through the pumping chambers. To
simulate this effect at the demonstrator, where no pumps are used in the pump
ports, electrical heaters have been installed at the eight blank flanges at the pump
ports, each representing one warm pump up to 100◦C.

The stability of the system is not influenced due to this additional heat influx as can
be seen from figure 9.9. An 8 hour temperature measurement with a Pt500 sensor at
the critical front end close to the pumping chamber shows variations on the mK-level
that are completely consistent with the measured stability in stand-alone mode (see
figure 9.1).

A measurement of the temperature homogeneity with heated blind flanges is shown
in figure 9.10. This time the absolute temperatures were measured by Pt500 sensors3

showing a strongly increased temperature gradient on the front side of more than 3 K.

3The sensors were uncalibrated during that measurement.
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Figure 9.9: Temperature stability when blind flanges were heated to 100◦C.
Although the heat influx on the beam tube near the measuring position of sensor
RTP-3-5123 (≈ 30 cm away from beam tube end) is strongly increased due to the
heated blind flanges, the temperature stability lies well inside the specification (dot-
ted lines).
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Figure 9.10: Measured temperature profile when blind flanges were heated
to 100◦C. Each Pt500 sensor distributed along the beam tube has a systematic
uncertainty of 125 mK denoted by the error bars on the uncalibrated profile. The
profile shows a strong rise towards the front side clearly exceeding the allowed ho-
mogeneity requirement of ±30 mK. In addition, there is a significant difference of
up to 1.5 K between sensors attached to top (black circles) and bottom (red squares)
of the beam tube at the front end.

The temperatures on the rear side of the beam tube are also increased by more than
0.5 K compared to the central part. Comparing this temperature profile with the
one in stand-alone mode of figure 9.8 clearly shows that the extra heat load from the
pump ports increases the temperature profile. Other features of the profile are visible
again, for example that the sensors on bottom measure higher temperatures than
those on top of the beam tube. At this point, one can conclude that it is necessary
to keep the heat influx from the pumping section as small as possible to achieve
a homogeneous temperature profile. As explained before, this will be improved in
the WGTS by properly working intermediate bellow coolers. Other possibilities are
a good magnetic shielding and dedicated cooling of the turbomolecular pumps to
avoid increased heat influx at all [63].

9.5 Implications for KATRIN

The temperature stability of the beam tube cooling system was better by a factor of
20 than specified [63]. This is excellent, since the impact of temperature variations
causing changes of the column density and thereby systematic shifts of the neutrino
mass m2

ν is reduced (see section 8.2). Furthermore, in [60] was also reported that the
injection pressure stabilization and tritium purity monitoring have met the require-
ments or the performance was even better. This means that the column density can



130 9. Measurements at the demonstrator

be stabilized and monitored at least on the required 0.2% level and allows for the
wanted small systematic effect on m2

ν with possibilities to further reduce it.

Regarding the measured temperature homogeneity, a longitudinal temperature pro-
file was expected due to incoming heat radiation at the beam tube ends. This
gradient was required to be < 30 mK (see eq. (3.8)). But the demonstrator tests
show gradients of up to 0.85 K in stand-alone mode respectively 3 K with increased
heat influx from the pumping chambers. Does this increased temperature profile
harm KATRIN, since electrons from different parts of the source experience differ-
ent Doppler broadenings, adding an uncertainty to the measurement?

This can be analysed by the methods similar to the analyses in chapters 7 and 8.
Again, ensemble simulations are made. In this special case, the column density
is fixed although the temperature is allowed to change. This allows observing the
influence of the Doppler effect instead of the well-understood influence of column
density changes. This approach corresponds to the case when the column density is
determined with sufficient precision by electron gun measurements (see section 2.6)
and does not rely on the information of the temperature profile. In this case, if one
completely neglected the temperature profile with ∆T = 3 K that was used for the
simulated measurement, assuming a flat distribution during the analysis, a shift of
only

∆m2
ν = (1.0 · 10−4 ± 2.3 · 10−4) eV2 (9.11)

would occur. This is not significant. The influence of shifts of the temperature
gradient below 3 K is even less significant. It can be concluded that an increased
temperature profile does not induce a significant systematic shift on the neutrino
mass.

After the demonstrator measurements it was decided to turn around the cryostat
and thus the beam tube. The main reason is a technical aspect, since turning
the beam tube also turns the connection where the tritium injection line enters
the WGTS. Thus, the length of the temperature stabilized transfer line from the
pressure controlled buffer vessel of the inner loop (see figure 3.2) to the cryostat
is nearly halved. This is easier to operate with the temperature stabilization and
reduces costs by about 10000e [147]. A shorter transfer line also reduces risks of
damage. This is especially important for safety reasons, since a shorter line contains
less tritium.

The inversion of the beam tube also shifts the strong temperature gradient from
the front to the rear side of the source, since the connection tubes for temperature
measurements that act as heat leaks into the system are also turned around (see
section 9.4). This expects a less severe influence of the locally increased Doppler
effect on the measurement, since electrons from the warmer rear side contribute
less to the measured spectrum. Their probability to scatter inelastically on their
way through the whole source is clearly increased compared to electrons emitted on
the front side. Ensemble simulations on this influence cannot support this expected
improvement when turning the WGTS. It doesn’t matter if the temperature gradient
is on the front or on the rear side4 or if there is an uncertainty on the strength of the
gradient. Each simulation was consistent with no systematic effect on m2

ν . In terms

4Again, a measurement of the column density independent of the knowledge of T (z) is assumed.
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of sensitivity, a temperature profile on the rear side has to be favoured slightly, since
it reduces the statistical uncertainty by

∆σstat

σstat

= 0.65%. (9.12)

This improvement in statistical sensitivity could also be reached by accumulating
more data, by extending the measurement time by roughly 2 weeks. Therefore,
turning the beam tube is not necessary from the physics point of view.
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10. Summary

The KATRIN experiment intends to measure the effective mass m2
ν of the electron

antineutrino with an unprecedented sensitivity of mν < 0.2 eV (90% C.L.). For
that purpose, a precise measurement of the tritium β-decay spectrum is intended.
Compared to preceding experiments, KATRIN is required to improve the statistical
accuracy on the observable m2

ν by two orders of magnitude and at the same time
has to minimize systematic uncertainties at least by one order of magnitude. Both
tasks immediately put the focus on the source of KATRIN, the windowless gaseous
tritium source WGTS, since it provides the high β-electron flux and is responsible
for systematic uncertainties. This also requires appropriate analysis tools to examine
systematic effects for such a high precision measurement.

To understand and quantify the systematic uncertainties of the source, the work at
hand presented the various models, simulations and measurements to describe the
WGTS:

• Extensive gas dynamics simulations consider the gas flow, in particular the
injection and pumping characteristics of the WGTS, and compute expected
density and velocity distributions of the source. State of the art is a combina-
tion of one-dimensional calculations due to the large aspect ratio (>2000) of the
source beam tube and small distortions that are considered by two-dimensional
simulations. The implications of these radial and azimuthal inhomogeneities
for the column density were found to be on the 10−5 level, i. e. too small to
influence the measurement at KATRIN.

• The thermal behaviour of the beam tube has been measured in the “demon-
strator experiment”, a test experiment of the WGTS. The stability of the
system was found to be on the 10−4 level, better by an order of magnitude
than the requirement. The homogeneity measurements of the temperature
along the 10 m of the beam tube showed an unexpected temperature gradient
of ∆T > 1K on the front part of the beam tube due to an increased heat load
on the system. Unaccounted for heat conduction through measuring capillaries
was identified as reason of the asymmetric temperature profile and counter-
measures have been identified to reduce the temperature gradient in the final



134 10. Summary

WGTS-assembly. Additionally, these measurements support the demand to
keep the thermal radiation on the system through the pumping chambers as
low as possible. In particular they demand a good magnetic shielding of the
turbomolecular pumps.

• The description of the differential β-spectrum of tritium has been refined.
Recently calculated final state distributions to consider rotational, vibrational
and electronic excitations of the daughter molecules of the β-decay of molecular
T2 were considered. The contribution from other hydrogen isotopologues DT
and HT to the measured spectrum has been taken into account according to
the tritium purity of the WGTS. Due to the thermal movement and additional
gas flow velocities due to the tritium circulation, the measured spectrum is
broadened by the Doppler effect that is now considered within the KATRIN
simulation in a consistent way.

• The calculation of expected integrated β-spectra at KATRIN has been im-
proved to consider local inhomogeneities of physical parameters of the WGTS.
In the simulation, the WGTS is divided into many small “voxels”, which con-
tain the local physical properties. The size of this partitioning can be chosen by
the user to account for specific parameter profiles and required accuracy. The
sum of the contributions of all these single voxels then results in the expected
integrated spectrum at KATRIN.

The presented calculations of the KATRIN spectrum were then used to determine
the statistical uncertainty of KATRIN. For that purpose, various analysis methods
have been implemented and tested within the KATRIN analysis toolkit KASPER.
Ensemble (Monte-Carlo) simulations and the method of profile likelihood were pre-
sented in this work. The obtained statistical uncertainty of KATRIN on m2

ν is con-
sistent between all these methods with σstat = (0.017± 0.001) eV2 and in agreement
with previous results from the KATRIN technical design report. The implementa-
tion of Feldman-Cousins Unified approach allowed converting the expected statistical
uncertainty of KATRIN into a confidence belt that will be used to interpret a mea-
surement later. The envisaged sensitivity of KATRIN of mν < 200 meV (90% C.L.)
was confirmed.

The influence of systematic uncertainties of various source parameters was deter-
mined again by ensemble methods. It allowed confirming the requirements on the
column density of the source that was known from former rudimentary analyses.
This time, it was possible to directly determine the influence of experimental ob-
servables like the injection pressure or the tritium purity and not only the influence
of a derived quantity, namely the column density. The results confirmed the required
stability of 2 · 10−3 on the named parameters. Systematic effects were also included
into the analysis by the profile likelihood method. It was demonstrated how exter-
nal measurements for example of the tritium purity can be added to the likelihood
as constraint terms. The analysis then treated the tritium purity as additional fit
parameter and evaluated its influence on the wanted neutrino mass. The method
was shown to be promising for other parameters of KATRIN.

With the developed simulation software it was possible for the first time to inves-
tigate the effect of the density or temperature profile in the source, to account for
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inhomogeneities in the source. This was especially important to evaluate the mea-
sured temperature profile at the demonstrator with a temperature spread ∆T > 1K
at the beam tube ends. The simulation and analysis showed that the measured tem-
perature profile does not spoil the sensitivity of KATRIN as long as it is stable and
monitored by the precise temperature sensors.

All software and routines of the simulation and analysis that have been used through-
out this work are provided within KASPER for members of the collaboration. The
analysis routines are ready and can be used in upcoming test and commissioning
measurements of the main spectrometer at the end of 2012. In the future, the anal-
ysis routines will be extended to include more systematic effects of the source into
the analysis.

On the simulation side, a full 3-dimensional simulation of the gas dynamics in the
WGTS is planned in collaboration with F. Sharipov. This is important to understand
the situation at the pumping chambers especially on the front side of the WGTS.
In fact, only < 1% of all T2-decays are expected within this region, but due to their
high probability to reach the detector without scattering their systematic influence
must be understood.

The demonstrator measurements showed the need for minimal thermal radiation
from the pumping chambers. Therefore, new efforts will improve the shielding of
the turbomolecular pumps from magnetic fields and will establish a cooling system
of the whole pumps to reduce the thermal radiation and improve the temperature
homogeneity of the WGTS.
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A. The krypton mode

The ’krypton mode’ is a special operation mode of the WGTS [48]. Gaseous krypton
83mKr is added to the usual tritium gas and injected into the WGTS. During de-
excitation, 83mKr emits conversion electrons with fixed energies [148]; the spectrum
is a line spectrum with lines close to the tritium β-spectrum endpoint energy and
above (see figure A.1a). These conversion electrons can be measured on top of the
tritium β-electrons and create a step in the integrated spectrum (see figure A.1b).

On the one hand, the position of the steps depends on the potential difference U
between point of emission in the source and the spectrometer. This allows comparing
the measured line positions with those of other experiments and theory (e.g. [149]).
On the other hand, a varying potential along the WGTS causes a broadening of the
line (see figure A.2a). The krypton mode is therefore used to determine the potential
distribution of the WGTS. To avoid freezing of 83mKr to the walls, the temperature
of the source is temporarily increased to T = 120 K.

The basis for the implementation of the krypton mode into the existing source sim-
ulations SSC was achieved in [150]. There, information on the description of the
krypton spectrum like line positions and natural widths was gathered, as well as
descriptions of secondary effects like shake off/shake up electrons [151]. Addition-
ally, the Doppler broadening due to the thermal motion of the 83mKr atoms was
considered by using Voigt profiles, the convolution of a Lorentzian with a Gaussian.
The work at hand unified these preliminary simulations to use the krypton spec-
trum in the same way as the tritium spectrum. The integrated spectrum is treated
as superposition of Kr and T2-spectrum. This is especially useful when considering
the Doppler effect as presented in section 4.2.5.4. Special focus has also been given
to simulations of the gas dynamics of the krypton mode. The higher temperature
requires recalculations of some results that were obtained for T = 30 K. On the other
hand, new calculations are needed to account for the large differences in the masses
of the particles T2 with 6 atomic units u respectively krypton with 83u. They move
with different mean speeds in the mixture and cause a separation effect respectively
different concentrations along the source tube (see figure A.2b) [109, 110, 152]. This
can be taken into account with the presented methods of SSC, i.e. the voxelization
and description of density profiles.
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Figure A.1: a) K-32 conversion line of 83mKr at 17.824 keV from [150]. The
main peak is the conversion line. Satellite lines occur, since the primary electron
may lose energy with a certain probability when exciting another electron from a
specific orbital to another (shake up) or even ionizing the atom (shake off).
b) Integrated K-32 conversion line of 83mKr from [150]. The lines of a) result
in expected number of counts on the y-axis in an integral method; the electrons from
higher lines as well as the existing tritium spectrum are neglected here. The K-32
line becomes a step in the integrated spectrum, the satellite lines cause a further
increase at lower retarding energies U .

Figure A.2: a) Broadened integrated krypton line at 30.474 keV from [150].
The plot shows the expected number of electrons on the y-axis for different retarding
potentials U . The line for zero potential in the WGTS is shown in red whereas
the blue line results from a linear potential from 0 V to 0.45 eV, rather large for
illustration purposes. First, a shift can be observed, since here the source potential
was chosen to be positive everywhere. Closer analysis shows that the line is also
broadened.
b) Concentration of gaseous 83mKr in a mixture with T2 (DT+T2) relative
to the concentration Cin at the injection from [110]. The molecules/atoms
separate when streaming along the beam tube due to their different masses and
therefore different mean speeds.



B. Cooling liquids at the
demonstrator

The various cooling liquids and different cooling cycles at the demonstrator are
shown in figure B.1. Please see caption for detailed description.

Of special importance for the demonstrator measurements is the two-phase neon
cooling of the beam tube, since it defines the temperature stability of the system.
It is cooled via the condenser by helium from the KATRIN refrigerating plant.

The measurements of the temperature homogeneity are influenced by thermal ra-
diation through the pumping chambers onto the inner surface of beam tube. To
minimize this effect, a cascade-like structure cools the pump ports: The outer parts
are cooled by liquid nitrogen as well as the intermediate bellow coolers. The inner-
most parts are cooled by gaseous helium. During the demonstrator measurements,
it was observed that the upper part of the nitrogen cooling is not working properly
since the nitrogen uses parallel pipes (not shown) with less resistance, so that the
upper part of the pumping chambers stayed at temperatures of about 230 K [63].
This means that the heat load on the gaseous helium at the pumping chamber and
also on the beam tube will be higher; a stronger temperature gradient of the beam
tube temperature from the center towards the pumping chambers is expected. This
is especially true when using external heaters at the ends of the pump ports to
simulate the effect of warm turbomolecular pumps that will be operated in strong
magnetic fields at the WGTS later. Due to the weak shielding ability of the inter-
mediate bellow coolers, the photons’ impact on the beam tube temperature gradient
is expected to be more severe than at the WGTS later where a proper cooling will
be established.
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Figure B.1: Scheme of cooling liquids in the demonstrator. From [153],
modified for presentation purposes. Neon (orange) is used to cool the beam
tube at 30 K. The inner shield and the inner parts of the pumping chambers are
cooled by gaseous helium (pink) also at 30 K, but with larger temperature fluc-
tuations than the very stable neon system. Liquid nitrogen (brown) cools the in-
termediate bellow coolers between the inner part of the pumping chamber and the
pump ports, whereas gaseous nitrogen (green) cools all outer parts of the pumping
chambers and the radiation shields.



C. Calibration procedure of Pt500
sensors with vapour pressure
sensors

The precision of the used Pt500 sensors with a total uncertainty of 0.125 mK [75]
is not sufficient to continuously monitor the WGTS beam tube temperature with
the requirements of ∆T < 30 mK on stability and homogeneity (see section 3.2). A
big contribution to the uncertainty originates from the magnetic field dependence of
the resistance measurement of the Pt500 sensors. The second type of used sensors,
the vapour pressure sensors VPS, is insensitive to magnetic fields, but cannot be
used continuously during KATRIN runs that will last up to 30 days. Therefore,
the VPS will be used to calibrate the Pt500 sensors in situ whenever a major run
of KATRIN starts or whenever the magnetic field changes. In the following, the
calibration procedure with help of the temperature acquisition system TES [140] is
explained:

1. The volumes (bulbs) of all VPS are filled simultaneously with gaseous neon,
until the pressure is about 100 mbar below the saturation pressure psat. This
turned out to be difficult at the demonstrator tests, where a large longitudinal
temperature gradient at the front side of the beam tube automatically implied
higher psat for those sensors. Thus, single sensor had to be adjusted manually.

2. Then, each sensor volume is filled individually with 350 mg of neon (measured
by a mass flow meter) to obtain a half-filled sensor bulb.

3. The TES is then used to measure simultaneously with Pt500 and VPS. A diffi-
culty of this calibration process is that there are only 3 pressure transducers for
a block of 8 VPS. This means one has to open valves to connect the individual
bulb volumes with the transducers. This causes a small pressure compensation
to psat and therefore condensation respectively evaporation of neon. This is
visible at the adjacent Pt500 sensors as a temperature increase/decrease. To
calibrate, one has to wait approximately 15 minutes until the Pt500 temper-
ature has stabilized again. Then, the saturation pressure of VPS number i
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can be converted to T isat and compared to the temperature T iPt500, measured
by Pt500 sensor with number i. The calibration coefficient is then calculated
and stored by the TES

∆T i = T iPt500 − T isat. (C.1)

4. The calibration coefficients are available in the TES or can be extracted from
the calibration data in an offline analysis using Mathematica [141] and GAS-
PAK [76]. This was done for analyses shown in this work (see section 9.4).



Deutsche Zusammenfassung

Das KATRIN Experiment hat das Ziel die effektive Masse des Elektron-Antineutrinos
mit bisher unerreichter Genauigkeit mν < 0, 2 eV (90% C.L.) zu bestimmen. In
einer modell-unabhängigen direkten Messung wird das Spektrum der Tritium-β-
Zerfallselektronen präzise vermessen um den Einfluss der Neutrinomasse auf die
spektrale Form und damit die Masse selbst zu bestimmen. Im Vergleich zu Vorgän-
gerexperimenten wird KATRIN die Sensitivität um einen Faktor 100 steigern, indem
mehr Ereignisse für verbesserte Statistik analysiert werden und systematische Ef-
fekte minimiert werden. Beide Ansätze betreffen die Tritiumquelle bei KATRIN, die
fensterlose gasförmige Tritiumquelle WGTS. Die WGTS stellt einerseits den hohen
Fluss an β-Elektronen bereit, ist andererseits aber auch für systematische Unsicher-
heiten auf die Neutrinomasse verantwortlich.

In der vorliegenden Arbeit wurden die Modelle, Simulationen und Messungen be-
schrieben, die es dann ermöglichen systematische Effekte der WGTS zu untersuchen.

• Fortgeschrittene Simulationen der Gasdynamik der WGTS beschreiben ei-
nerseits die thermische Bewegung der Tritiummoleküle bei T = 30 K, an-
dererseits die zusätzliche Geschwindigkeitskomponente aufgrund der Zirku-
lation zwischen Injektions- und Pumpkammern. Dies ergibt Dichte- und Ge-
schwindigkeitsprofile der Moleküle. Aufgrund der Dimensionen der Quelle (l =
10 m, d = 0, 09 m) ergeben ein-dimensionale Berechnungen das generelle Dich-
teprofil. Zwei-dimensionale Simulationen berücksichtigen den Einfluss radia-
ler/azimutaler Asymmetrien des Systems und die Störungen des Profils im
Bereich der Injektion und der Pumpkammern. Die dadurch verursachten In-
homogenitäten der Säulendichte der WGTS sind in der Größenordnung 10−5

und daher zu klein um die KATRIN Messung zu beeinflussen.

• Das Temperaturverhalten des WGST-Strahlrohrs wurde im sogenannten
”
De-

monstrator“-Experiment ermittelt. Dabei wurde eine Temperaturstabilität auf
dem 10−4 Niveau gemessen, was um eine Größenordnung besser als gefordert
ist. Die Messung der Temperaturhomogenität des 10 m Strahlrohrs ergab aller-
dings einen unerwartet starken Temperaturgradienten ∆T > 1 K im Strahlrohr
auf der dem Spektrometer zugewandten Seite der WGTS. Diese zusätzliche
Wärmelast ließ sich durch Wärmeleitung durch die Messkapillaren der Tem-
peratursensoren erklären, die das System nur einseitig belasten und ein asym-
metrisches Temperaturprofil erzeugen. Beim Umbau des Demonstrators zur
WGTS wird dieser Wärmeeintrag dann durch Anbindung an einen gekühlten
Kupferblock verhindert. Außerdem wurde durch die Messungen gezeigt, dass
die Wärmestrahlung durch die Pumpkammern auf das Strahlrohr minimiert



werden sollte. Deshalb werden weitere Anstrengungen unternommen, um die
Erwärmung der Turbomolekularpumpen im starken Magnetfeld zu verringern.

• Die Beschreibung des differentiellen Tritium-β-Spektrums wurde verbessert.
Dazu wurden aktuelle Berechnungen der Endzustandsverteilung der Tochter-
moleküle von T2, DT und HT verwendet, da Energie beim Zerfall in Rotations-,
Vibrations- und elektronischen Anregungen verbleibt und nicht für das Elek-
tron zur Verfügung steht. Desweiteren wurde der Dopplereffekt aufgrund der
thermischen Bewegung und der zusätzlichen Gasflusskomponente berücksich-
tigt, was eine Verbreiterung des gemessenen β-Spektrums bewirkt.

• Auch die Berechnung des integrierten Spektrums, der Messgröße von KATRIN,
wurde verbessert. Die neuen Berechnungen berücksichtigen lokale Inhomoge-
nitäten der Quellparameter. Dabei wird die Quelle in der Simulation in viele
kleine Volumina zerlegt, die die jeweils lokalen physikalischen Größen berück-
sichtigen. Je nach Parameterprofil kann die Unterteilung angepasst werden,
um dann das integrierte Spektrum zu berechnen, indem die Beiträge aller Vo-
lumina zum integrierten Spektrum addiert werden.

Mit Hilfe dieses Quellmodells und der berechneten Spektren lässt sich dann die statis-
tische Unsicherheit σstat von KATRIN bei der Bestimmung von m2

ν ermitteln. Dafür
wurden verschiedene Analysemethoden in die KATRIN-Analyse Software KASPER
implementiert. Durch

”
Ensemble Simulationen“, d.h. eine große Anzahl Monte-Carlo

Simulationen des gesamten KATRIN-Experiments, und durch
”
Profile Likelihood“

Analysen konnte σstat = (0.017 ± 0.001) eV2 ermittelt werden, was in Übereinstim-
mung mit früheren Simulationen ist. Außerdem wurden mittels Feldman Cousins
Unified Approach die Grundlagen geschaffen um σstat konsistent in eine Obergrenze
bzw. einen Nachweis der Neutrinomasse zu übersetzen. Dabei konnte die anvisierte
Sensitivität von KATRIN mν < 0, 2 eV (90% C.L.) erneut bestätigt werden.

Daraufhin wurde der systematische Einfluss von Unsicherheiten der Parameter zur
Quellbeschreibung auf die Analyse von m2

ν mittels genannter Ensemble Simulatio-
nen untersucht. Dadurch konnten die Anforderungen an die Säulendichtestabilität
von 2 · 10−3 bestätigt werden. Durch die neue Funktionalität der Quellsimulationen
konnten die Einflüsse weiterer Messobservablen, zum Beispiel des Einlassdrucks und
der Tritiumreinheit, bestimmt werden. Auch für diese Parameter wird eine Stabi-
lität von 2 · 10−3 gefordert. Im Rahmen der

”
Profile Likelihood“ Analysen wurde

als Fallbeispiel die Tritiumreinheit εT als externe Messung durch das Laser Raman
System (LARA) bei KATRIN in die Analysen mit einbezogen. Dadurch wurde εT

als zusätzlicher freier Parameter in der Analyse auf m2
ν behandelt, der durch die

LARA-Messung eingeschränkt (
”
constrained“) ist.

Erstmals war es auch möglich, den Einfluss von Parameter-Inhomogenitäten in der
Quelle, zum Beispiel des Dichte- oder Temperaturprofils, auf die Neutrinomassenana-
lyse zu ermitteln. Dies war besonders wichtig, um die Messungen am Demonstrator-
Experiment mit einem longitudinalen Temperaturgradienten ∆T > 1 K einzuordnen.
Die Simulationen und Analysen zeigten, dass ein solches Temperaturprofil die Sen-
sitivität der KATRIN Messung nicht verschlechtert, solange es stabil ist und durch
die präzisen Temperatursensoren genau bestimmt ist.

Die gesamten Simulations- und Analysemethoden sind im KATRIN-Analyse Pa-
ket KASPER zusammengefasst. Damit können die Routinen in den kommenden
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Hauptspektrometer-Abnahmetests verwendet werden, um Messresultate direkt an
Hand ihres Einflusses auf die Neutrinomassenanalyse bewerten zu können. Deswei-
teren werden die Analysen in der Zukunft um zusätzliche Fit-Parameter erweitert
um die Einflüsse weiterer Experimentparameter auf m2

ν zu untersuchen.

Im Rahmen der Gasdynamik Simulationen sind drei-dimensionale Simulationen für
die kritischen Pumpkammern geplant. Dort befinden sich zwar nur verhältnismäßig
wenige Tritiummoleküle, doch von der dem Spektrometer zugewandten Pumpkam-
mer erreichen die dort entstehenden β-Elektronen nahezu ungestört das Spektrome-
ter und den Detektor.

Als ein Ergebnis der Demonstrator-Messungen zeigten die Homogenitätsmessungen,
dass die identifizierten zusätzlichen Wärmeeinträge beim Umbau des Demonstra-
tors zur WGTS beseitigt werden sollten. Insbesondere werden zukünftig weitere An-
strengungen unternommen um die magnetische Abschirmung und die Kühlung der
Turbomolekularpumpen zu verbessern, um die Aufheizung im starken Magnetfeld
und damit das Temperaturprofil der WGTS zu minimieren.
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Mertens und Magnus Schlösser für die gute Zusammenarbeit bei vielen kleineren und
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Außerdem möchte ich mich bei den Kolleginnen und Kollegen des KATRIN-Experi-
ments für insgesamt über 4 Jahre gute Zusammenarbeit in angenehmer Arbeitsat-
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