

 Karlsruhe Reports in Informatics 2012,24
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Using JOANA for Information Flow
Control in Java Programs –
A Practical Guide

 Jürgen Graf, Martin Hecker, Martin Mohr

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Using JOANA for Information Flow Control in Java
Programs — A Practical Guide

Jürgen Graf, Martin Hecker, Martin Mohr

Programming Paradigms Group
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe

{graf,martin.hecker,martin.mohr}@kit.edu

Abstract: We present the JOANA (Java Object-sensitive ANAlysis) framework
for information flow control (IFC) of Java programs. JOANA can analyze a
given Java program and guarantee the absence of security leaks, e.g. that a
online banking application does not send sensitive information to third parties.
It applies a wide range of program analysis techniques such as dependence
graph computation, slicing and chopping of sequential as well as concurrent
programs. We introduce the Java Web Start application IFC Console and show
how it can be used to apply JOANA to arbitrary programs in order to specify
and verify security properties.

1 Introduction

Conventional access control mechanism control what data a program may access,
but what happens with this data inside the program, once access has been granted?
Information flow control (IFC) aims to answer this question. For example, an email
application shall both read data from an address book and send other data to the
network, but it should not send address book data over the network. With IFC one
can check if the email program may conduct such forbidden behaviour or not.

Much work in the area of IFC has focused on building theoretical foundations with
only little focus on practical implementations and tools. We present a static IFC
analysis framework named JOANA. In contrast to other IFC tools that are often only
proof-of-concept implementations for a tiny while-language, JOANA is the first to
support full Java bytecode, including exceptions, dynamic dispatch and inheritance.
It can deal with sequential [HS09] as well as multi-threaded [GS12, GHMN13]
programs and applies to medium sized programs with around 30-50kLoC and in
some cases up to 100kLoC [Gra09, Gra10].

Our analysis is based on dependence graphs, which capture dependencies between
program statements in form of a graph. Those graphs are called program dependence
graphs (PDG) or, to be more precise, system dependence graphs (SDG). Previous work

already showed that PDG-based IFC [Ham10] can be useful in practice and has
the great advantage that only minimal user effort is needed. This work focuses
even more on practicability. We introduce a UI for our IFC framework named
IFC Console and explain how it can be used to analyze information flow. The
source code of the JOANA framework, including IFC Console, is available at
http://joana.ipd.kit.edu and may be used freely for research purposes.

The major contributions of this paper are:

• We introduce the Web Start application IFC Console that enables developers
to check information flow properties of their own programs with little effort.

• We discuss the benefits of using system dependence graphs for IFC analysis
in terms of precision and ease of use.

• We discuss the relevant properties for IFC in a concurrent setup.

• Two case studies show how IFC Console can be applied to a single- and a
multi-threaded program.

We start with a more detailed introduction to information flow control and show
how it can be achieved with the help of dependence graphs in section 2. Then we
introduce IFC Console in section 3 and show how it can be applied to sequential and
concurrent programs in section 4. Section 5 discusses related work and section 6
concludes the presented work and provides an outlook for future work.

2 Information flow control

Information flow control is concerned with the flow of information inside a program.
It is used to prevent leakage of secret information to public output channels, thus to
ensure confidentiality and it is also used to verify the integrity of a program, which
is the dual property to confidentiality: It ensures that no unverified input may
influence critical computation or secret values. In order to verify these properties,
it does not suffice to check where secret or public data is copied from or moved to.
In addition, the effects that the value of the data may have on the execution of the
program need to be tracked.

For example in figure 1 we do not want an attacker to gain any information about
the secret input value by observing the program output. This program contains
three print statements that produce output. While the statement in line 7 does
not reveal any information about the input, the other two statements do. Line 3
directly prints the value of the input and is therefore called a direct leak. The effect
of the output in line 5 is more subtle, as it does not print anything related to the
input value. However it is only executed if the input is an even number. Hence,
the attacker is able to infer that the input is even if he sees the output produced by
line 5. These kind of information leaks are called indirect leaks.

http://joana.ipd.kit.edu

1 void main():
2 int secret = input();
3 print(secret); // direct leak
4 if (secret % 2 == 0) {
5 print("secret is even"); // indirect leak
6 }
7 print("Hello World."); // no leak

Figure 1: A program fragment with a direct and an indirect information leak.

An IFC analysis has to detect direct as well as indirect information flow and it
needs to know which information is considered secret and what is considered a
public output in order to check for confidentiality. In JOANA this is achieved by
annotating variables or statements with a security label. For the example above we
need two different labels: high (secret) and low (public). Statement 2 is labeled as
high input and statements 3, 5 and 7 are labeled as low output. The IFC analysis
then checks if any information flow from high input to low output is possible. In
contrast to other IFC analysis that are often based on type systems, only statements
corresponding to input or output need to be labeled. JOANA propagates the labels
for other statements automatically.

This approach is not restricted to only two security labels. For more complex IFC
analyses, it supports an arbitrary number of labels. They have to be specified in
form of a security lattice that defines a partial order on the labels. Any flow from a
statement labeled l1 to a statement labeled l2 is considered legal iff l1 ≤ l2. In the
remainder of this work we will use the standard two-valued lattice low ≤ high.

2.1 Sequential IFC with dependency graphs

Our IFC analysis[HS09] uses SDGs to conservatively approximate all possible
information flow inside a program. A SDG is a language-independent represen-
tation of dependencies between statements of a program. It contains nodes for
each statement of the program and edges between them if one statement depends
on the other one. In sequential programs these dependencies are either direct
or indirect dependencies. Direct dependencies, also called data dependencies,
occur whenever a statement produces a value, e.g. writes a variable, that the other
statement potentially may read. Indirect dependencies between statements occur if
the outcome of the execution of one statement decides if the other is executed, e.g.
the condition of an if-clause decides if the statements in the body of the if-clause
are executed. A machine-checked proof [WL10, WLS09] shows that the SDG is a
conservative approximation of the effects of sequential programs and that our IFC
algorithm is sound.

Figure 2 shows a simplified version of the SDG for the program in figure 1. It

2: secret = input() 3: print(secret) 4: if (secret % 2 == 0)

5: print("secret is even")

7: print("Hello World")

1: main()

Control dependence

Data dependence

in: high

out: low

out: low

out: low

Figure 2: The dependence graph for figure 1 with annotated security labels.

contains data dependencies between statement 2, where the input is written to
variable secret, and statements 3 and 4, that read the value of secret. Control
dependencies between the method entry point and statements 2, 3, 4 and 7 signal
that those statements are only executed when main is called. Statement 5 however
is control dependent on the if-clause in statement 4, because its execution depends
on the evaluation of this statement. The input and output statements are annotated
with security labels high and low as described in the previous section.

The SDG based IFC analysis then checks if the graph contains a path from a
statement labeled high to a statement labeled low. To achieve this, we use a special
form of conditional reachability analysis that applies slicing and chopping techniques.
This enables us to restrict the set of possible paths in the graph to a subset of valid
paths, which helps to significantly reduce the number of false alarms. A valid path
is a path in the SDG that respects additional conditions, like e.g. context-sensitivity.
The example contains two valid paths that correspond to illegal flow: 2→ 3 and
2→ 4→ 5. Thus our analysis reports two potential security violations.

In case no violations are found, the program is considered safe. Hence our
analysis can guarantee the absence of security violations, but it can only detect the
potential presence of leaks, because false alarms are possible due to conservative
approximations in our analysis algorithms.

JOANA contains many optimizations that improve analysis precision and thus
help to reduce the number of false alarms:

points-to information We use point-to analysis to compute side-effects across
method boundaries. The precision can be chosen.

exception analysis We include an analysis that detects exceptions that never occur.

context-sensitive We distinguish between different calls to the same method.

object-sensitive We distinguish different instances of the same class.

field-sensitive We distinguish different fields of an object instance.

flow-sensitive The dependencies inside an SDG respect the execution order. It
contains only dependencies between two statements s1 → s2 if s2 may be
executed after s1.

2.2 IFC for concurrent programs

Concurrent Java programs consist of multiple threads that execute in parallel.
Threads can communicate through shared variables. In addition to the previously
mentioned direct and indirect leaks, these so-called interferences between threads
introduce two new kinds of information leaks: possibilistic and probabilistic leaks.

1 void thread_1():
2 x = 0;
3 print(x);

4 void thread_2():
5 secret = input();
6 x = secret;

Figure 3: Two threads with a shared variable x that contain a possibilistic leak.

A possibilistic leak results in illegal flow depending on the order in which statements
of different threads are executed. The example in figure 3 has a possibilistic leak.
The program consists of two threads that communicate through a shared variable
x. The print statement in line 3 does leak the value of the secret input in line 5 if
line 6 is executed after line 2 and before line 3.

1 void thread_1():
2 x = 0;
3 print(x);

4 void thread_2():
5 secret = input();
6 while (secret != 0)
7 secret--;
8 x = 1;

Figure 4: Two threads with a shared variable x that contain a probabilistic leak.

Probabilistic leaks are even trickier. A secret value can potentially influence the
probability of the order in which statements that influence public outputs are
executed. An attacker that can run the program with the same secret input multiple
times is able to infer information about the secret value through a statistical analysis
of observable outputs. Figure 4 illustrates this problem. The statement in line 3
prints the value of variable x. Depending on the execution order of the statements
in line 2 and 8 it prints either 0 or 1. However the probability that line 8 is executed
before the print statement depends on the value of secret. The bigger the value of
secret is, the more time is spent executing the while loop in lines 6-7 and thus the
less likely it is that line 8 is executed before the print statement. So if the attacker
observes a huge number of program runs and keeps track of ratio between output
0 and 1 he can infer if the value of secret is a large number.

Albeit probabilistic leaks seem to pose more of a theoretical than an actual security
thread, this is far from true. With additional knowledge about the scheduling
algorithm the attacker is in some cases able to infer concrete values. These leaks have
already been successfully used to break well known encryption algorithms [Koc96].

JOANA is able to detect possiblistic as well as probabilistic leaks[Gif12]. It computes
possible interferences between threads with the help of points-to and may-happen-
in parallel (MHP) analyses. We apply a special version of slicing and chopping
algorithms optimized for concurrent IFC. This allows us to achieve precise results
that are time-, join- and in future versions even lock-sensitive.

3 IFC Console

IFC Console is a graphical user interface which hides most of JOANA’s internals. It
simplifies SDG construction and the annotation of SDG nodes with security labels.
Instead the user can annotate program artifacts such as attributes, method parame-
ters or bytecode instructions and an integrated heuristic selects the appropriate
nodes.

3.1 A Quick tour through the interface

The graphical user interface in figure 5 is divided into two parts. The upper part
contains three tabs: SDG construction and general configuration (5a), security label
annotation (5b) and IFC analysis (5c). The lower part shows a console that displays
detailed output and can be used to enter advanced commands. Every action the
user performs is recorded as a command in the console. This allows the user to
save his actions to a script file, that can be loaded and automatically replayed.

3.1.1 Configuration Tab

The configuration tab (5a) is used to select the program to analyze (1.), build or
load a SDG for the program (2.), select the security lattice (3.) and save or replay
scripts of previous actions (4.).

In order to select a program, the user sets the class path to a directory or .jar file
that contains the compiled .class files. Then he hits “update” and selects the main

method he wishes to analyze in the drop down list.

In the next step the user selects the desired SDG computation options. He can
choose how the analysis should handle the effects of exceptions and the treatment
of multi-threaded programs. The exception analysis options are:

integrate exceptions without optimization No additional exception analysis is

(a) configuration tab including console

(b) annotation tab

(c) analysis tab

Figure 5: The various parts of the IFC Console

performed. This is the least precise option that does not detect any impossible
exceptions. For example every field access is treated as it may or may not
cause a NullPointerException, even subsequent accesses to the same field or
references to the this pointer.

integrate exceptions, optimize intra-/interprocedurally An exception analysis is
performed that detects impossible and also guaranteed exceptions. For
example, JOANA identifies field reading accesses where the field can never
be null. The interprocedural analysis is more precise but also more time-
consuming.

In order to analyze multi-threaded programs, the check box “compute interference
edges” has to be selected. Then the user can choose between various precision
options of the may-happen-in-parallel (MHP) analysis. The least precise option is
no MHP, whereas “precise may-happen-in parallel analysis” takes a closer look
at the control-flow of the program and in particular the life span of its threads.
For example, it detects that a thread cannot interfere with another thread before
it was started or after it has been joined. The user can also choose between stubs
for different Java runtime environments. Basically, these stubs include predefined

models of native methods deep down in the Java standard library. We strongly
suggest to analyze JRE 1.4 programs, as later versions of the JRE are far bigger,
which leads to an increased runtime of the analysis. When the configuration of
the SDG building options is finished, a click on “build” starts the SDG building
process.

There is also the possibility to save and load a previously built SDG. The option
“auto-save” stores the SDG directly after it has been built to a file with an auto-
generated name in the current working directory.

The IFC part of JOANA supports multiple security levels which are arranged in
a lattice. The graphical user interface offers three simple lattices, which should
suffice for simple cases, the default is the two-valued lattice low ≤ high.

3.1.2 Annotation Tab

The annotation tab (5b) provides a tree-like view of the program under analysis.
On the top-level the different packages of the program under analysis are shown.
Unfolding a package shows the classes it contains, unfolding a class shows the
attributes and methods it contains and unfolding a method shows its parameters
and instructions. Note that not the whole program is shown, but only those parts
which are reachable from the selected entry method. A node of the program tree
can be turned into an information source or an information sink and annotate it
with a selectable security level.

3.1.3 Analysis Tab

The analysis tab (5c) displays a summary of the analysis options: It shows the
size of the SDG, the selected lattice and all annotated sources and sinks. Also
it offers to choose between a “possibilistic” and a “probabilistic” IFC algorithm.
This is only relevant for multi-threaded programs, for single-threaded programs
the default option “possibilistic” is fine. The probabilistic algorithm detects the
same leaks as the possibilistic approach and it includes additional probabilistic
leaks, which can only occur in multi-threaded programs. Apart from selecting
the IFC type, the user can also choose to improve precision by disallowing time-
travels ([Kri03, Gif12]). This affects both the possibilistic and the probabilistic types.
Disallowing time-travels essentially means that the algorithm will discard security
leaks made possible only by inconsistent program runs.

When the user clicks the “run” button, the IFC algorithm is run. When it has
finished, a report is shown. A green light flashes up, if there are no security leaks, a
red light shows, that the analysis has found leaks. More detailed information can
be found in the console.

4 Examples

4.1 Sequential IFC - Praktomat

We use a simplified version of the Praktomat system to show how JOANA can
be applied to guarantee integrity. Praktomat is a browser based application that
allows students to submit their solutions to a given programming task. Then
Praktomat runs predefined checks on the submitted solution, e.g. it checks if the
code compiles or if the Java Code Conventions are violated. On the one hand this
information helps the student to improve his solution and on the other hand these
results are also used by the tutor that evaluates the solution later on.

For this example we focus on the way the predefined checks should operate. Their
results are often crucial for the evaluation of the submissions, as manual checks are
not feasible for large amounts of submissions and they can also not provide instant
feedback to the submitting student. As tutors rely on their results, these checks
need to produce fair and reproducible results. A malicious check for example may
treat submissions from a specific student in different way then all other submissions
- not showing detected failures of this special student.

1 public class Praktomat {
2 public static class Submission {
3

4 public int matrNr;
5 public String code;
6

7 public Submission(int matrNr,
8 String code) {
9 this.code= code;

10 this.matrNr = matrNr;
11 }
12 }
13

14 public static class Review {
15

16 public Submission sub;
17 public int failures;
18

19 public Review(Submission sub,
20 int failures) {
21 this.sub = sub;
22 this.failures = failures;
23 }
24 }

26 public static Review runChecks(Submission sub) {
27 int failures = 0;
28

29 if (sub.code.contains("System.err.println")) {
30 failures++;
31 }
32 if (sub.code.contains("catch IOException")) {
33 failures += 2;
34 }

35 if (sub.matrNr == 4711) {

36 failures = 0;

37 }

38

39 return new Review(sub, failures);
40 }
41

42 public static void main(String argv[]) {
43 Submission sub = new Submission(2331,
44 "System.out.println(\"Hello world.\");");
45 Review r = Praktomat.runChecks(sub);
46 System.out.println(r.failures);
47 }
48 }

Figure 6: A simplified version of the automated program submission system
Praktomat. It automatically checks submitted programs for predefined failures
and helps the tutor to review student submissions. The underlined code violates
the security property, as it hides detected failures for a specific student.

We can detect these kind of malicious checkers with the help of JOANA. To achieve
this, we specify the information flow property all checkers need to guarantee as
follows: The number of detected program failures must not depend on the identity

of the submitting student. The code in figure 6 shows a simplified version of the
Praktomat system. It contains a class Submission to model student submissions
and a class Review to model the result of the submission checker. The code of the
checker is in method runChecks in lines 26-40. It is called once from main method
to perform checks for a single submission. The attribute matrNr of class Submission

stores the identity of the submitting student. We classify this information as secret
and the failure counter in class Review as public. Then we can use JOANA to verify
if the given program is noninterferent and thus the number of detected failures
does not depend on the id of the submitting student. For the given program this is
not the case, as lines 35-37 contains a special treatment for the student with the id
4711. JOANA is able to detect this leak. Also when these lines are removed from
the program, the checker result no longer depends on the student id and JOANA
can verify noninterference for this example.

4.1.1 Using IFC Console

We now describe briefly the necessary steps to analyze this example. Specify the
appropriate class path, click on the “update” button and select the main method
of the class Praktomat as entry method. The SDG building options do not have
to be changed, so that you can directly build the SDG by clicking on the “build”
button. Switch to the annotation tab. Select the attribute matrNr of the inner class
Submission as high source and the attribute failures of the inner class Review as
low sink. In the analysis tab, nothing needs to be configured, since the given
program is not multi-threaded, so you can simply run the analysis. As explained
before, the analysis finds several leaks. If you remove lines 35-37, you should get
no leaks.

4.2 Concurrent IFC - EuroStoxx

Figure 7 shows a program that manages a stock portfolio of Euro Stoxx 50 entries1.
The program consists of four threads, coordinated by an additional main thread.
The program first starts the Portfolio and EuroStoxx50 threads concurrently, where
Portfolio reads the user’s stock portfolio from storage and EuroStoxx50 retrieves
the current stock rates. When these threads have finished, threads Statistics and
Output are run concurrently, where Statistics calculates the current profits and
Output incrementally prepares a statistics output. After these threads have finished,
the statistics are displayed, together with a pay-per-click commercial. An ID of
that commercial is sent back to the commercials provider to avoid receiving the
same commercial twice. The portfolio data, pfNames and pfNums, is secret, hence
the Euro Stoxx request by EuroStoxx50 and the message sent to the commercials
provider should not contain any information about the portfolio. As Portfolio

and EuroStoxx50 do not interfere, the Euro Stoxx request does not leak information
1The description of this program has been taken from [Gif12]

1 public class Mantel00Page10 {
2 static class Portfolio extends Thread {
3 int[] esOldPrices;
4 String[] pfNames;
5 int[] pfNums;
6 String pfTabPrint;
7

8 public void run() {
9 pfNames = getPFNames(); // high

10 pfNums = getPFNums(); // high
11 for (int i = 0; i < pfNames.length; i++) {
12 pfTabPrint += pfNames[i]+"|"+pfNums[i];
13 }
14 }
15

16 int locPF(String name) {
17 for (int i = 0; i < pfNames.length; i++) {
18 if (pfNames[i].equals(name)) {return i;}
19 }
20 return -1;
21 }
22 }
23

24 static class EuroStoxx50 extends Thread {
25 String[] esName = new String[50];
26 int[] esPrice = new int[50];
27 String coShort;
28 String coFull;
29 String coOld;
30

31 public void run() {
32 try {
33 nwOutBuf.append("getES50");
34 nwOutBuf.flush(); // low
35 String nwIn = nwInBuf.readLine();
36 String[] strArr = nwIn.split(":");
37 for (int j = 0; j < 50; j++) {
38 esName[j] = strArr[2 * j];
39 esPrice[j] =
40 Integer.parseInt(strArr[2 * j + 1]);
41 }
42 // commercials
43 coShort = strArr[100];
44 coFull = strArr[101];
45 coOld = strArr[102];
46 } catch (IOException ex) {}
47 }
48 }
49

50 static class Output extends Thread {
51 public void run() {
52 for (int m = 0; m < 50; m++) {
53 while (s.k <= m); // busy-wait sync
54 output[m] = m + "|" + e.esName[m] + "|"
55 + e.esPrice[m] + "|" + s.get(m);
56 }
57 }
58 }

59 static class Statistics extends Thread {
60 int[] st = new int[50];
61 volatile int k = 0;
62

63 public void run() {
64 k = 0;
65 while (k < 50) {
66 int ipf = p.locPF(e.esName[k]);
67 if (ipf > 0) {
68 set(k, (p.esOldPrices[k] - e.esPrice[k])
69 * p.pfNums[ipf]);
70 } else {
71 set(k, 0);
72 }
73 k++;
74 }
75 }
76 synchronized void set(int k, int value) {
77 st[k] = value;
78 }
79 synchronized int get(int k) {
80 return st[k];
81 }
82 }
83

84 static Portfolio p = new Portfolio();
85 static EuroStoxx50 e = new EuroStoxx50();
86 static Statistics s = new Statistics();
87 static Output o = new Output();
88 static String[] output = new String[50];
89 static BufferedWriter nwOutBuf = new BufferedWriter(
90 new OutputStreamWriter(System.out));
91 static BufferedReader nwInBuf = new BufferedReader(
92 new InputStreamReader(System.in));
93

94 public static void main(String[] args)
95 throws Exception {
96 // get portfolio and eurostoxx50
97 p.start(); e.start();
98 p.join(); e.join();
99 // compute statistics and generate output

100 s.start(); o.start();
101 s.join(); o.join();
102 // display output
103 stTabPrint("No.\t | Name\t | Price\t | Profit");
104 for (int n = 0; n < 50; n++) {
105 stTabPrint(output[n]);
106 }
107 // show commercials
108 stTabPrint(e.coShort + "Press # to get info");
109 char key = (char) System.in.read();
110 if (key == ’#’) {
111 System.out.println(e.coFull);
112 nwOutBuf.append("shownComm:" + e.coOld);
113 nwOutBuf.flush(); // low
114 }
115 }
116 }

Figure 7: A possibilistic and probabilisitic noninterferent program from Mantel et
al. [MSK07], adapted to Java in [Gif12]. JOANA is the first tool able to automatically
proof noninterference for this example.

about the portfolio. The message sent to the commercials provider is not influenced

by the values of the portfolio, too, because there is no explicit or implicit flow from
the secret portfolio values to the sent message. Furthermore, the two outputs have
a fixed relative ordering, as EuroStoxx50 is joined before Output is started. Hence,
the program is considered secure.

4.2.1 Using IFC Console

Analyzing the concurrent example introduced in 4.2 requires different options
because it is multi-threaded. After selecting the appropriate class path and entry
method, you have to check “compute interference edges” and choose a MHP
analysis. Use the precise MHP analysis, otherwise you will get many false alarms
simply because joins are not taken into account.

As mentioned in the example, the portfolio data is secret, so calls to getPFNames()

and getPFNums() in the run method of the class Mantel00Page10$Portfolio have to
be annotated as high sources. To verify that the secret data cannot influence the
commercial messages, which are written into the output referenced by the attribute
Mantel00Page10.nwOutBuf, it suffices to annotate the calls to its flush methods. These
are located in the run method of the class Mantel00Page10$EuroStoxx50 and in the
main method of the class Mantel00Page10, respectively.

In the analysis tab, choose “probabilistic (with precise mhp)” as analysis type.
Running the IFC checker yields no violations.

Note, that it is crucial to select “probabilistic (with precise mhp)” as analysis type.
If you select “probabilistic (with simple mhp)”, lots of leaks will be found due to
many spurious interference edges. Since direct and indirect leaks are included in
the probabilistic IFC checker, possibilistic IFC also accepts the program.

5 Related work

Tools for language based IFC and dependence analysis Several other tools for
information flow control and dependence analysis of Java programs are available.
These tools differ in how much user guidance they require, and which language
features they support. Tools like Jif[Mye99, MZZ+] extend Java with security types.
In addition to their standard Java type such as int, the user annotates variables,
fields and method signatures with labels that restrict how information may flow.
Jif then checks if these security type annotations are valid and hence if the program
is secure. Since Jif supports security type inference only for local variables, in order
to check any information flow property, the user is usually required to annotate the
whole program with security types. It is not enough to only mark those program
points where information is read in / written out. For this reason, and since Jif
does not support Java features such as concurrency, it is impractical to use Jif or
approaches based on Jif[CVM07] with existing code bases.

To alleviate the effort of manually annotating large parts of the program with
security type annotations, more elaborate type inference algorithms have been
proposed[ST07], but as of yet, there is no practical implementation for full Java.

Similarly to JOANA, the Indus[RH07] tool utilizes several auxiliary analyses to
provide SDGs for concurrent Java. These can be used for slicing[Wei81], which
in turn is used in order to reduce the state space in model checking applications.
Unlike JOANA, no explicit support for IFC is provided.

Aside from type-system and SDG based IFC analyses, in [GS05] an abstract
interpretation approach to information flow analysis for Java bytecode is proposed.
Each bytecode instruction is abstractly interpreted by its direct information flow.
Together with the instruction’s scope (which is similar control dependencies in
SDGs), this is sufficient to obtain a program’s information flow. The proposed
analysis is not object sensitive and does not handle concurrency.

1 if (secret % 2 == 0) {
2 public = 42;
3 } else {
4 public = 42;
5 }

(a)

1 secret = Math.abs(...);
2 if (secret % 2 == 0) {
3 public = (secret % 2);
4 } else {
5 public = (secret % 2) - 1;
6 }

(b)

1 if (secret > 17 && secret < 17) {
2 public = 42;
3 }

(c)

Figure 8: Semantically secure program fragments

Non-interference and verification of semantic properties Just like JOANA, the
tools mentioned so far are imprecise in the sense that they employ a syntactic
approximation of information flow. Specifically, they will all deem the programs
in figure 8 insecure since syntactically the assignments to public are dependent
on secret. Semantically, however, these program are secure since the value of
public will not change for different values of secret, and thus an attacker who
can only observe the value of public variables at the end of the program cannot
infer anything about of initial value of secret variables. This base-line notion of
security, called noninterference[GM82], applies only to non-interactive, terminating
programs, covers no kind of declassification and is overly restrictive for concurrent
programs. Hence, a wide variety of security notions have been proposed (cf. e.g.
[HS11]).

The analyses described here can be enhanced to infer semantic properties and
use these to remove spurious information leak warnings. Such techniques may,
however, be computationally expensive and can, in principle, not detect all such
properties. The KeY[ABB+05] tool allows the user to manually specify and verify
arbitrary semantic properties of sequential Java programs and use them to verify
information flow security[BBK+12]. This generally requires a considerable amount
of manually provided JML[BCC+05] annotations in the program’s source code.

6 Conclusion and future work

We have shown how to conduct information flow analyses on Java bytecode
programs using the JOANA IFC Console. To specify an analysis goal, only
a minimum of user interaction and no knowledge about the structure of the
underlying SDG is required. In the future, we will improve on and streamline the
IFC Console usability based on user feedback and experience gathered in the RS3
as well as the KASTEL research program. We will make available an API that will
allow tools such as KeY to employ JOANA as back end for IFC queries that can be
answered automatically. In order to deal with large programs, we have developed
a method for modular SDG computation which we will improve further and make
available to API- and IFC Console users. Within the RS3 priority program, we
collaborate with the Software Construction and Verification Group at the WWU
Münster in order to improve precision for concurrent programs with synchronized

methods, e.g. using lock-sensitive interference detection with dynamic pushdown
networks[GHMN13].

Acknowledgments.

This work was funded by the DFG under the project in the priority program RS3
(SPP 1496) and by the BMBF under the KASTEL competence center for applied IT
security technology.

References

[ABB+05] W. Ahrendt, T. Baar, B. Beckert, Richard Bubel, Peter H. Schmitt, et al. The KeY
Tool. Software and System Modeling, 2005.

[BBK+12] B. Beckert, D. Bruns, R. Küsters, et al. The KeY Approach for the Crypto-
graphic Verification of Java Programs: A Case Study. Technical Report 2012-8,
Department of Informatics, Karlsruhe Institute of Technology, 2012.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, et al. An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer, 2005.

[CVM07] S. Chong, K. Vikram, and A. Myers. SIF: enforcing confidentiality and integrity
in web applications. In Proceedings of 16th USENIX Security Symposium, 2007.

[GHMN13] J. Graf, M. Hecker, M. Mohr, and B. Nordhoff. Lock-sensitive Interference Analy-
sis for Java: Combining Program Dependence Graphs with Dynamic Pushdown
Networks. 1st International Workshop on Interference and Dependence, 2013.

[Gif12] Dennis Giffhorn. Slicing of Concurrent Programs and its Application to Information
Flow Control. PhD thesis, Karlsruher Institut für Technologie, 2012.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. Security
and Privacy, IEEE Symposium on, 1982.

[Gra09] J. Graf. Improving and Evaluating the Scalability of Precise System Dependence
Graphs for Objectoriented Languages. Technical report, Universität Karlsruhe
(TH), 2009.

[Gra10] J. Graf. Speeding up context-, object- and field-sensitive SDG generation. In 9th
IEEE Working Conference on Source Code Analysis and Manipulation, 2010.

[GS05] S. Genaim and F. Spoto. Information flow analysis for java bytecode. VMCAI’05.
Springer-Verlag, 2005.

[GS12] D. Giffhorn and G. Snelting. Probabilistic Noninterference Based on Program
Dependence Graphs. Technical report, Karlsruhe Institute of Technology, 2012.

[Ham10] C. Hammer. Experiences with PDG-based IFC. In International Symposium on
Engineering Secure Software and Systems (ESSoS’10). Springer-Verlag, 2010.

[HS09] C. Hammer and G. Snelting. Flow-Sensitive, Context-Sensitive, and Object-
sensitive Information Flow Control Based on Program Dependence Graphs.
International Journal of Information Security, 2009.

[HS11] D. Hedin and A. Sabelfeld. A Perspective on Information-Flow Control. In
Proceedings of the 2011 Marktoberdorf Summer School. IOS Press, 2011.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO, LNCS. Springer, 1996.

[Kri03] Jens Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD thesis,
Universität Passau, April 2003.

[MSK07] H. Mantel, H. Sudbrock, and T. Kraußer. Combining different proof techniques
for verifying information flow security. LOPSTR’06. Springer-Verlag, 2007.

[Mye99] Andrew C. Myers. JFlow: practical mostly-static information flow control.
POPL ’99. ACM, 1999.

[MZZ+] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif: Java information flow, July 2001 –.

[RH07] V. Ranganath and J. Hatcliff. Slicing concurrent Java programs using Indus and
Kaveri. International Journal on Software Tools for Technology Transfer, 2007.

[ST07] S. Smith and M. Thober. Improving usability of information flow security in
java. PLAS ’07. ACM, 2007.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81. IEEE Press, 1981.

[WL10] D. Wasserrab and D. Lohner. Proving Information Flow Noninterference by
Reusing a Machine-Checked Correctness Proof for Slicing. In VERIFY, 2010.

[WLS09] D. Wasserrab, D. Lohner, and G. Snelting. On PDG-Based Noninterference and
its Modular Proof. In PLAS. ACM, June 2009.

	2012,24_Titelbl.pdf
	tr_joana_tool
	Introduction
	Information flow control
	Sequential IFC with dependency graphs
	IFC for concurrent programs

	IFC Console
	A Quick tour through the interface
	Configuration Tab
	Annotation Tab
	Analysis Tab

	Examples
	Sequential IFC - Praktomat
	Using IFC Console

	Concurrent IFC - EuroStoxx
	Using IFC Console

	Related work
	Conclusion and future work

