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Chapter 1

Introduction

The look at the night sky deeply fascinates me. The idea of perceiving light from stars that
may have ceased to exist thousands of years ago is baffling.

Light has always been a source of wonder and a fundamental driving force for mankind’s
development. Alongside the industrial development of modern times, scientists and engineers
have gained a deep understanding of the creation, manipulation and utilization of light. By
the end of the 20th century, highly developed light sources such as lasers and light emitting
diodes had reached everyday life.

This advancement was helped along by the continued miniaturization in the field of computer
technology which offered techniques to fabricate smaller and smaller structures. Eventually,
the nano-scale was reached and the interaction of light and matter on the length scale of
optical wavelengths could be studied. In this context, the so-called metamaterials gained a
tremendous amount of interest among scientists [1]. These materials consist of periodically
arranged micro- or nanostructuredmeta-atoms whose characteristic structure sizes are smaller
than the wavelength of the incident light. Usually, they are composed of dielectric materials
and metals. Due to their small size, these meta-atoms are not individually perceived by
the incident electro-magnetic waves. They rather act as effective material whose properties
can be tailored by a suitable choice of the meta-atom’s geometry. By doing so, remarkable
physical effects can be observed such as a negative refractive index [2, 3] with the intriguing
application of a perfect lens [4].

Parallel to the field of metamaterials the concept of photonic crystals emerged. A photonic
crystal is composed of periodically arranged, dielectric materials. Again, the structure size
is below the wavelength of the incident light. The groundbreaking discovery of this field
was the insight of Yablonovitch [5] and John [6] that even though the dielectric materials
themselves are transparent for the incident light, the light’s propagation within the crystal
may be suppressed in all directions for a suitable geometry. In this case, the crystal features a
photonic band gab. Thus, a suitably constructed crystal can serve as insulator for light which
opens the route to the vision of integrated photonic crystal circuitry. Recently, a woodpile
photonic crystal structure has been fabricated with a band gap in the visible regime of
light [7].

Even though the experimental expertise for fabricating metamaterials and photonic crystals
drastically increased during the last decade [8], the manufacturing remains a costly and time-
consuming process. Thus, numerical modeling is necessary both for a deeper understanding
as well as for finding optimized and/or robust designs. This means that efficient and precise
methods to numerically solve Maxwell’s equations, which govern the propagation of light, are
needed.
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Chapter 1 Introduction

In general, we can distinguish between two types of methods for solving these equations—the
time-domain simulations, which evolute the light’s propagation in a system in time, and the
frequency-domain methods, that solve Maxwell’s equations for time-harmonic fields. Popular
methods in the time-domain are the Finite-Difference Time-Domain Method [9] and the
Discontinuous Galerkin Method [10]. In the frequency domain, the Finite Element Method
is widely used [11].

One of the methods used to predict the transmission properties of periodic photonic sys-
tems (both dielectric and metallic) in the frequency-domain is the Fourier Modal Method
(FMM) [12, 13, 14]. Since the investigated systems are periodic, all quantities of the system
are expressed as Fourier transforms, i.e., in a plane wave basis. Maxwell’s equations are
reformulated into an eigenvalue problem the solutions of which are the eigenmodes of the
considered system. Particular problems arise at material boundaries which are represented
as jumps in the permittivity. Here, two interrelated concepts emerged to substantially im-
prove the method’s performance: adaptive coordinates (AC) [15, 16] and adaptive spatial
resolution (ASR) [17]. Both change the investigated permittivity and permeability by means
of a coordinate transformation. However, there remain questions: a general principle for the
construction of the transformations and a proper parameter choice for the transformations
are unknown. A large part of this thesis deals with the question of how these problems can be
solved. For that, we study the eigenmodes of a fiber and an array of metallic cylinders. Since
only two-dimensional AC and ASR transformations have been discussed in literature, we in-
vestigate how the advancement of the coordinate transformations towards three dimensions
can be accomplished.

Yet even the most advanced numerical methods need modern computational infrastructure
and enough time and memory to solve Maxwell’s equations with the necessary accuracy.
Thus, finding optimized designs, though easier than by experimental means, is still hard due
to the large number of geometrical degrees of freedom for a structure. Therefore, it is desirable
to have an analytical model at hand which enables fast parameter scans and allows for a deep
physical insight. In this thesis, several models describing the transmission of light through
slabs of periodic, metallic nanostructures consisting of rods and crosses are presented. They
describe the considered nanostructures as superposition of interacting dipoles and, thereby,
provide a physical picture how light is transmitted through these structures.

Outline of the thesis

This thesis is structured in the following way: In the second chapter we review the funda-
mentals of electrodynamics needed for this thesis. This includes Maxwell’s equations and the
basic description of phenomena occurring in periodic materials.

The third chapter introduces the numerical method of choice, namely the Fourier Modal
Method. Besides the solution of Maxwell’s equations by means of an eigenvalue problem,
it also comprises the use of a scattering matrix algorithm which is particularly helpful for
systems with repeating structural patterns in propagation direction. Since one of the two
main topics of this thesis is coordinate transformations in the context of the FMM, we use the
covariant formulation of Maxwell’s equations to change from Cartesian to curvilinear coordi-
nates. In particular, we introduce the concept of the effective permittivity and permeability
which contain all information about the coordinate transformations.

In Chapter 4, the FMM is utilized to investigate opal photonic crystals which are dielectric
spheres stacked in a face-centered cubic lattice. Here, we analyze certain thickness-dependent
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properties of these photonic crystals and compare the numerical solutions of Maxwell’s equa-
tions to experimental results.

The realization of two-dimensional AC and ASR coordinate transformations for the FMM is
discussed in Chapter 5. The chapter contains the analytical construction of several classes of
transformations, the visualization of the corresponding transformed permittivities and, most
importantly, a study on how the parameters of the transformations have to be chosen in order
to obtain accurate results. The chapter is concluded by the formulation of a modularity con-
cept which allows for the construction of transformations for structures with several complex
sub-structures.

The subsequent Chapter 6 deals with the generalization of the two-dimensional coordinate
transformations to three dimensions. The particular example used is two layers of mutually
rotated crosses. For this system, a three-dimensional coordinate transformation is developed
and numerically analyzed.

Beyond the numerical solution of Maxwell’s equations, Chapter 7 contains several analytical
models based on coupled dipoles to describe how light is transmitted through slabs of metallic
nanostructures. This is the second main topic of this thesis. Firstly, we review previous work
and discuss the investigated physical systems. Secondly, the simple dipole model is presented.
It is demonstrated that the model yields good results, particularly for large distances between
the slabs. Also, we show that lattice resonances can be incorporated into the model. However,
it proves to be insufficient for certain structures, which is why we extend the dipole model to
the twin model. At the end of the chapter, several improvements—like near-field coupling and
an even further extended model based on a continuous charge distribution—are presented.

The thesis is concluded in Chapter 8, where we summarize the progress in the development
of the thesis’ two major topics, namely the coordinate transformations for the FMM and the
analytical dipole models. Finally, we outline possible future work.
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Chapter 2

Fundamentals of Classical Electrodynamics

In this chapter, we discuss the fundamentals of electrodynamics needed in the remainder of
this thesis. Naturally, the starting point are the underlying equations, namely Maxwell’s
equations. Secondly, we introduce two important models which describe dispersive materi-
als. In Section 2.3, the fundamentals of electromagnetic waves are studied. This includes
the discussion of plane waves, polarization and polarization-dependent effects in media. In
Section 2.5, we examine the continuity conditions that are demanded by Maxwell’s equations.
Subsequently, we discuss the energy transport of electromagnetic fields. In Section 2.6, the
mathematical tools to rewrite Maxwell’s equations in curvilinear coordinates are presented.
This is followed by the fundamentals of optics in periodic systems in Section 2.7, which
comprises the reciprocal lattice, Bloch’s theorem and diffraction.

2.1 Maxwell’s equations

The equations which describe the phenomena of electrodynamics are Maxwell’s equations. In
materials, their differential form in SI units is [18]

∇ ·D = ρ, (2.1a)

∇×E = −∂B
∂t
, (2.1b)

∇ ·B = 0, (2.1c)

∇×H = j + ∂D
∂t

, (2.1d)

with E denoting the electric field and B the magnetic induction. In general, all fields and
sources can be complex and depend on time and space. The source terms ρ and j are called
free charge density and free current density, respectively. The magnetic field H and the
electric displacement D are defined as

D = ε0 E + P, (2.2a)

H = 1
µ0

B−M, (2.2b)

with P and M being the average electric and magnetic dipole moment per unit volume,
respectively. The parameters ε0 and µ0 denote the permittivity and permeability in free
space. Included in Eqs. (2.2) is the assumption that higher order moments can be neglected
compared to the dipole moment.
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Chapter 2 Fundamentals of Classical Electrodynamics

In this thesis, we aim at solving Maxwell’s equations in the frequency domain. Therefore, we
assume a time dependence e−iωt for all fields. Furthermore, we restrict ourselves to systems
without free charges or currents. With these assumptions, Eqs. (2.1) take the form

∇ ·D = 0, (2.3a)
∇×E = iωB, (2.3b)
∇ ·B = 0, (2.3c)
∇×H = −iωD, (2.3d)

where all fields depend on the spatial coordinate r and the frequency ω. So far, the set of
equations is incomplete, since we have not linked the electric and magnetic dipole moments
to the fields yet. Here, we consider materials that can be described by

P (r, ω) = ε0 χ
(1)
e (r, ω) E (r, ω) , (2.4a)

M (r, ω) = µ0 χ
(1)
m (r, ω) H (r, ω) , (2.4b)

where we introduced the electric susceptibility χ(1)
e and magnetic susceptibility χ(1)

m . Entering
those in Eqs. (2.2) yields

D (r, ω) = ε0 ε (r, ω) E (r, ω) , (2.5a)
B (r, ω) = µ0 µ (r, ω) H (r, ω) , (2.5b)

which we call the constitutive relations in the following. The permittivity ε = 1 + χ(1)
e and

the permeability µ = 1 + χ(1)
m are tensorial quantities. They describe anisotropic materials,

which are dispersive, i.e., frequency-dependent. The constitutive relations are linear, which
means that the equations above do not describe phenomena of non-linear optics, such as
second-harmonic generation. The set of equations formed by Eqs. (2.3) and (2.5) does in fact
contain more equations than unknowns. Upon careful inspection, we find that the divergence
equations are always fulfilled if ω 6= 0:

B (2.3b)= 1
iω
∇×E ⇒ ∇ ·B = 1

iω
∇ · (∇×E) = 0. (2.6)

The other divergence equation follows analogously. Therefore, we only need to solve the curl
equations

∇×E (r, ω) = +iω µ0 µ (r, ω) H (r, ω) , (2.7a)
∇×H (r, ω) = −iω ε0 ε (r, ω) E (r, ω) . (2.7b)

A remarkable property of these equations (and Maxwell’s equations in general) is that they do
not contain a fundamental length scale. Therefore, we can define all quantities with respect
to a length scale a. In particular, we choose the lattice constant of the systems that we
investigate in the subsequent chapters. Furthermore, the fields need an additional scaling
factor H0. Thus, we introduce the dimensionless quantities in Tab. 2.1, where we use the
speed of light c.

The additional term ω′ in the electric field is entered here since we also use this term in our
implementation of the Fourier Modal Method introduced in Chapter 3. From a conceptual
point of view, it is not needed for transforming to dimensionless units. The wave vector k is
introduced in Section 2.3.1. To improve the readability, we omit the prime in the following.
Thereby, we arrive at the dimensionless curl equations:

∇×E (r, ω) = +iω2 µ (r, ω) H (r, ω) , (2.8a)
∇×H (r, ω) = −i ε (r, ω) E (r, ω) . (2.8b)
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2.2 Material models

dimensionless quantity relation to quantitiy in SI units
frequency ω′ ω′ = ω ac

time t′ t′ = t ca
wave vector k′ k′ = k a
position r′ r′ = r

a

wavelength λ′ λ′ = λ
a

diff. operator ∇′ ∇′ = ∇ a
magnetic field H′ H′ = H 1

H0
electric field E′ E′ = E ω′ c ε0

1
H0

Table 2.1: Dimensionless quantities used to rewrite Maxwell’s equations.

2.2 Material models

In this section, we discuss two models for dispersive materials. Firstly, we examine the
Lorentz oscillator model since we design similar models in Chapter 7. Secondly, the Drude
model, which describes the permittivity of metals, is reviewed. We use this model in the
investigation of metallic test systems.

2.2.1 Lorentz oscillator model

In the early 20th century, H. A. Lorentz developed a classical theory which treats electrons
and ions like harmonic oscillators in order to describe optical properties1 (see Chapter 4 in
Ref. [19]). This model gives a good perception of the underlying physics and, moreover, the
results are formally identical to results from quantum-mechanical treatment, though some
quantities may be interpreted differently (see Ref. [18]). This classical model can be found
in various books, e.g., Refs. [20, 21, 22].

First of all, we deduce the equation of motion for a bound electron. This electron shall face
a force proportional to the displacement from equilibrium and since we are looking for a
realistic model, the electron motion is damped because the electron radiates. In addition, an
electromagnetic wave acts on the electron - yet we expect the electron to be non-relativistic
(v � c), so we can focus only on the electric field and neglect the magnetic field. The
electric field shall be polarized in x-direction. The result is a linear inhomogeneous differential
equation of second order in time

m ẍ(t) +m Γ ẋ(t) +mω2
0 x(t) = −e E0,local e

−iωt, (2.9)

where Γ denotes the damping constant and ω0 the resonance frequency. m and −e denote the
electron’s mass and charge. Note that, in general, the local field acting on the oscillator can
be different from the macroscopic electric field. However, we consider them to be identical
since the difference does not affect this simple model of optical properties [18].

As we are interested in the oscillating system, we do not add initial values. Note that the
field in Eq. (2.9) is complex - we keep on using complex expressions because it simplifies
the analysis. This is possible due to the linearity of Maxwell’s equations and the chosen

1The optical property we are interested in is how a metallic structure scatters.
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Chapter 2 Fundamentals of Classical Electrodynamics

constitutive relations. Only the real part of E corresponds to the physical field. To solve
Eq. (2.9), we use a complex and time-harmonic ansatz

x(t) = a e−iωt, (2.10)

with a ∈ C. By entering Eq. (2.10) in Eq. (2.9) we obtain the oscillating solution to the
equation of motion

x(t) = − e

m

1
ω2

0 − ω2 − iωΓ
E0 e

−iωt. (2.11)

Next, we deduce the permittivity for a system of many bound electrons, i.e., for a medium.
Since the dipole moment p of a single electron at r(t) is [20]

p = −e r(t), (2.12)

we obtain the polarization P known from Eq. (2.2a) by multiplying with the number of
oscillators per unit volume N

P = e2

m

N
ω2

0 − ω2 − iωΓ
E. (2.13)

This is one particular example of a constitutive relation. The isotropic permittivity of this
harmonic oscillator system is therefore

ε(ω) = 1 + χ(ω) = 1 + e2

m

N
ω2

0 − ω2 − iωΓ
, (2.14)

which can be split up into real (ε′) and imaginary (ε′′) parts

ε′(ω) = 1 + e2

m

N (ω2
0 − ω2)(

ω2
0 − ω2)2 + ω2Γ2

, (2.15a)

ε′′(ω) = e2

m

N ωΓ(
ω2

0 − ω2)2 + ω2Γ2
. (2.15b)

Qualitatively, the permittivity is shown in Fig. 2.1.

Figure 2.1: Visualization of the Lorentz model’s permittivity in Eqs. (2.15) with ω0 = 5.

As one might expect, both real and imaginary part are connected via a Kramers-Kronig
relation. Therefore, the following equations hold (see Chapter 2 of Ref. [23]):

ε′(ω) = 1 + 2
π
P

∫ ∞
0

ω′ ε′′(ω′)
ω′2 − ω2 dω′, (2.16)

ε′′(ω) = −2ω
π
P

∫ ∞
0

ε′(ω′)− 1
ω′2 − ω2 dω′, (2.17)

8



2.2 Material models

where P
∫

denotes the principle value of the integral. Thus, dispersion always leads to
absorption since real and imaginary part of the permittivity are connected.

Normal dispersion (∂ωε′ > 0) can be found in all areas except for a narrow interval around
the resonance where we find anomalous dispersion (see Fig. 2.1). In the area close to the
resonance, the imaginary part of the dielectric function has large values and, therefore, we
find strong absorption in this frequency range.

2.2.2 Drude model

The essential ingredient of the Drude model is that parts of the electrons are considered to be
free in the ion crystal. These electrons are considered a free electron gas. An external field
accelerates the charges; however, their mean velocity reaches an equilibrium. This means
that the velocity is proportional to the external field strength. The reason why the electrons
are not accelerated more and more and that an equilibrium is reached are collisions of the
electrons with the crystal’s ions.

Mathematically, the equation of motion has the same structure as Eq. (2.9) without a restor-
ing force. The permittivity is found to be

εD(ω) = ε∞ −
ω2
p

ω(ω + iγD) , (2.18)

where ωp is the plasma frequency and γD is the damping coefficient. ε∞ comprises the
contribution of the bound electrons [20]. An example for this permittivity is depicted in
Fig. 2.2.

Figure 2.2: Visualization of the real (ε′) and imaginary (ε′′) part of the Drude model’s
permittivity in Eq. (2.18). Here, we used γD = 0.2ωp and ε∞ = 2.

For small frequencies, the real part of the permittivity is negative. The imaginary part is large
and only little light enters the metal. Thus, metals have a high reflectivity in this frequency
range. Above a certain frequency, the real part is positive and the metal becomes transparent.
In practice, the free parameters of this model are fit to experimental data [24]. The values
we use for the computations in this thesis are found in Ref. [25]. The Drude model yields
good results up to the optical regime of light. For small wavelengths in the visible regime of
light, however, it has to be extended, e.g., to the Drude-Lorentz model [25].

9



Chapter 2 Fundamentals of Classical Electrodynamics

2.3 Electromagnetic waves

In this section, we first introduce plane waves. Secondly, we visualize the polarization of an
electromagnetic wave. Thirdly, we state the Stokes parameters and show how they can be
used to visualize a polarization state on the Poincaré sphere. Finally, we discuss polarization-
dependent effects.

2.3.1 Plane waves

In this section, we discuss some basics of electromagnetic waves. In particular, we investigate
plane waves, which are an elementary solution to Maxwell’s equations. More specifically,
they solve the wave equation in a linear and homogeneous medium which reads2

∇× (∇×E) (2.3b)= ∇× iωB = iωµ∇×H (2.3d)= ω2εµE. (2.19)

An analogous equation can be formulated for the magnetic field. As stated above, a basic
solution is the plane harmonic wave. A wave is called plane when it has a spatial dependence
in only one direction. The term harmonic refers to the time dependence of e−iωt with the
angular frequency ω. With the wave vector k, which may be complex, a plane harmonic wave
has the following appearance in a linear and homogeneous medium

E = E0 e
−iωt+ikr, (2.20a)

H = H0 e
−iωt+ikr, (2.20b)

where E0 and H0 are constant. Entering Eqs. (2.20) in Maxwell’s equations, we find that
E0 and H0 are restricted to be transverse, i.e., perpendicular to k. Furthermore, we find the
dispersion relation

k · k = ω2 ε µ. (2.21)

When introducing the refractive index n(ω) =
√
ε(ω)µ(ω), we can write the dispersion rela-

tion as
ω = k

n
. (2.22)

Due to the linearity of Maxwell’s equations and of the constitutive relations, we only consider
scattering by plane monochromatic waves. Any other incident field can be obtained by
superposition [18].

2.3.2 Polarization

A very important property of waves is the polarization. The polarization direction of an
electromagnetic wave is by definition given by the direction of E. In the following, we use
the complex representation of the fields but a real amplitude E0 because this is easier for
visualization. First of all, we point out two special cases and afterwards discuss the most
general form of polarization [26].

2Here, we use the dimensionless Maxwell equations without the additional scaling factor ω in the E field in
Tab. 2.1.
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2.3 Electromagnetic waves

Linear Polarization. Imagine a plane wave propagating in z-direction. If E0 in

E = E0 e
−iωt+ikz (2.23)

always points in the same direction perpendicular to êz, i.e., has the form

E0 = E0x êx + E0y êy, (2.24)

we call the wave linearly polarized. Both components of the wave

Ex = E0x e
−iωt+ikz, (2.25a)

Ey = E0y e
−iωt+ikz, (2.25b)

are in phase. We visualize the real part of the electric field at a fixed time in Fig. 2.3.

Figure 2.3: A snapshot of the electric field vector of a linearly polarized wave.

Circular Polarization. The next special case is circularly polarized light. In this case E0x
and E0y are equal (E0) but the x and y component of the field are dephased by π/2, i.e.,

Ex = E0 e
−iωt+ikz, (2.26a)

Ey = E0 (±i) e−iωt+ikz. (2.26b)

Figure 2.4: A snapshot of the electric field vector of a circularly polarized wave.

The real part of the electric field vector forms a circle in the xy-plane and a circular screw
around the z-axis (see Fig. 2.4). If we look alongside the direction of propagation, we see the
wave vector screwing clockwise for the case of +i in Eq. (2.26b). This is called σ+ polarization
or left-handed circular polarization. Note that we can express a linearly polarized field as a
superposition of a right and a left circularly polarized field.

11



Chapter 2 Fundamentals of Classical Electrodynamics

Elliptic Polarization. The most general polarization a wave can exhibit is the elliptic
polarization. In this case, the electric vector forms an elliptical spiral around the z-axis. This
is the case if E0x 6= E0y or the phase difference between the components is not exactly π/2.

Figure 2.5: Illustration of the azimuthal angle ψ and the ellipticity angle η for elliptic
polarization.

The shape of the ellipse in Fig. 2.5 is determined by the two angles ψ and η, the size is
dependent on the amplitude of the field. The angle ψ is called azimuthal angle and η is called
ellipticity angle. η is responsible for the sense of rotation. If η is positive, the polarization is
right-handed.

2.3.3 Stokes parameters and Poincaré sphere

The Stokes parameters are a tool for easy computation of the polarization state of a given
field [20]. Imagine an arbitrary plane wave

E(r, t) = (ê1 E1 + ê2 E2) eikr−iωt, (2.27)

with ê1 and ê2 being two orthogonal polarization vectors. E1 and E2 denote the amplitudes.
The Stokes parameters are defined as

s0 = |ê1 ·E|2 + |ê2 ·E|2, (2.28a)
s1 = |ê1 ·E|2 − |ê2 ·E|2, (2.28b)
s2 = 2 Re ((ê1 ·E)∗ (ê2 ·E)) , (2.28c)
s3 = 2 Im ((ê1 ·E)∗ (ê2 ·E)) , (2.28d)

where the asterisk ∗ denotes complex conjugation. The parameter s0 is proportional to the
wave’s intensity. We can determine the values of the azimuthal angle and the ellipticity angle
by the following representation in spherical coordinates [27]:

s1 = s0 cos 2η cos 2ψ, (2.29a)
s2 = s0 cos 2η sin 2ψ, (2.29b)
s3 = s0 sin 2η, (2.29c)

with −π
2 ≤ η < π

2 and −π
4 ≤ ψ ≤ π

4 . This can be visualized with the Poincaré sphere, see
Fig. 2.6.

Every state of polarization of a plane wave of a given intensity (s0=const.) corresponds to
one point on the Poincaré sphere and vice versa. We find linearly polarized waves in the

12



2.3 Electromagnetic waves

Figure 2.6: Visualization of the Stokes Parameters and of the azimuthal and ellipticity angle
on the Poincaré sphere.

equatorial plane where ψ gives the polarization rotation angle towards the x axis. The north-
pole of the Poincaré sphere corresponds to right-handed circular polarization. Thus, we only
need to know a form similar to Eq. (2.27) to obtain the parameters defining the polarization
state.

2.3.4 Polarization-dependent effects

As already pointed out, polarization is a very important concept for electromagnetic waves.
There are many effects connected to polarization. We briefly discuss the most important
terms. When we talk about linearly polarized waves here, we call the two linearly independent
polarization states x and y, which is no restriction, of course.

Linear Birefringence. We call a medium linear birefringent when x- and y-polarization
are exposed to different refractive indices. This means that the xx- and yy-component of the
permittivity tensor in Eq. (2.5a) are not identical.

Circular Birefringence. A material is called circularly birefringent when it exhibits two
different refractive indices for left- and right-handed circular polarization. In such a material,
σ+ and σ− travel with different velocities, i.e., they accumulate a phase difference.

This can be an explanation for the so-called optical activity when absorption is neglected. A
medium is called optically active when the polarization of a linearly polarized wave is rotated
while traveling through the medium. A well-known example for a medium showing this effect
is crystalline quartz. The effect can be explained in the following way: as stated before, a
linearly polarized wave can be decomposed into two circularly polarized waves:

E(0, t) =

 E0
0
0

 e−iωt = 1
2

 E0
iE0
0

 e−iωt
︸ ︷︷ ︸
σ+−polarization

+ 1
2

 E0
−iE0

0

 e−iωt
︸ ︷︷ ︸

σ−−polarization

. (2.30)

If the two refractive indices nr and nl for the circular polarizations are different then the field

13



Chapter 2 Fundamentals of Classical Electrodynamics

looks the following way after traveling a length of l into the medium:

E(l, t) = 1
2 E0

 1
i
0

 e−iωt+iknll + 1
2 E0

 1
−i
0

 e−iωt+iknrl

= 1
2 E0


 1

i
0

 e−ikl(nr−nl)/2 +

 1
−i
0

 eikl(nr−nl)/2

 e−iωt+iknl

= E0

 cosϕ
sinϕ

0

 e−iωt+iknl, (2.31)

with n = (nl + nr)/2 and ϕ = kl(nr − nl)/2. Thus, the polarization is rotated due to the
different refractive indices.

Linear Dichroism. The term linear dichroism stands for a different degree of absorption
of x and y polarized light by a medium. This can be used to polarize light: polyvinyl alcohol
films appropriately impregnated with iodine transmit up to 80 per cent of light polarized in
one plane and less than one per cent of light polarized perpendicularly [27].

Circular Dichroism. In analogy to birefringence, the term circular dichroism refers to an
absorption behaviour that is different for σ+ and σ− light. As we have stated, circular bire-
fringence rotates incident linearly polarized light. If the medium additionally shows circular
dichroism, the transmitted light is no longer linearly polarized but rotated and elliptically
polarized since the amplitudes of the left- and right-handed parts are no longer equal due to
the different absorption.

2.4 Continuity conditions

In this section, we examine certain restrictions at an interface between two materials which
follow directly from Maxwell’s equations. The discussion follows Ref. [20]. First, let us
assume two adjacent media 1 and 2. At the surface, there may be a surface charge density σ
and a surface current density K. This is depicted in Fig. 2.7.

Figure 2.7: Sketch of two materials with a common interface. Along this interface, we allow
a surface charge density σ and a surface current density K.

14



2.5 Energy transport

The sketch in Fig. 2.7 also contains a volume V which is a cylinder with face area ∆a and
infinitesimal height. In each medium, there is one face of the cylinder. Analogously, we define
a rectangle with infinitesimal height and length ∆l which is arranged so that its surface normal
t is a tangential vector of the interface. We start by investigating the cylinder volume. For
that, we use Eq. (2.1a) and integrate it over the volume V, see Eq. (2.32), step (a):

(D2 −D1) · n ∆a (d)=
∮
∂V

D · dA (c)=
∫
V
∇ ·D d3r

(a)=
∫
V
ρ d3r

(b)= σ ∆a. (2.32)

In step (b) we used the assumption that the free charge density ρ forms a surface charge
density σ which is homogeneous in the small face area ∆a. In step (c), we applied Gauss’
law which transforms the volume integral over the divergence into a surface integral. This
surface integral is evaluated in step (d), where we only find contributions of the cylinder’s
faces since the height is negligibly small. Here, n denotes the surface normal of the cylinder’s
face which corresponds to the normal of the interface. If the surface charge density vanishes,
we find

(D2 −D1) · n = 0, (2.33a)
(B2 −B1) · n = 0, (2.33b)

where we already entered that we can use the same argumentation for the magnetic induction
B using Eq. (2.1c). Therefore, the normal components of D and B have to be continuous
along an uncharged interface.

Similarly, we investigate the rectangular area C in Fig. 2.7. Here, we use the surface integral
over Eq. (2.1d) and obtain step (a) of

(t× n) · (H2 −H1) ∆l (d)=
∮
∂C

H ·ds (c)=
∫
C

(∇×H) ·dA (a)=
∫
C

(
j + ∂D

∂t

)
·dA (b)= K ·t ∆l

(2.34)
In step (b), we used that the temporal derivative of D has only a finite value and the height
of the rectangle C was assumed to be infinitesimal. Also, analogously to the surface charge
density in Eq. (2.32), we obtain the surface current density K on the right hand side of
step (b). In step (c), we use Stokes’ theorem, which converts the surface integral over the
rectangle C into a line integral along the boundary of C. Again, only the terms for the
height vanish and we obtain the relation in step (d). The result for the electric field is
deduced analogously. In the absence of a surface current density, we obtain

n× (H2 −H1) = 0, (2.35a)
n× (E2 −E1) = 0. (2.35b)

Thus, the parallel components of H and E are continuous along the interface.

2.5 Energy transport

Naturally, electromagnetic fields carry energy. The energy density u in a field is given
by [20]

u = 1
2 (E ·D + B ·H) , (2.36)
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Chapter 2 Fundamentals of Classical Electrodynamics

where the fields are the physical (real) parts of the complex fields. By defining the Poynting
vector S = E×H, we can formulate a continuity equation, which is also known as Poynting’s
theorem:

∂u

∂t
+∇ · S = −j ·E. (2.37)

It can be derived from Maxwell’s equations [27]. Without electric currents, the energy density
can only change by an energy flux density which one identifies as the Poynting vector S. If
there are currents in the system, the energy density may also change due to the work the
fields do on charged particles.

The Poynting vector can be used to deduce the electromagnetic energy that crosses the
boundary of a closed surface ∂V which encloses the volume V [18]. Then,

W =
∫
∂V

S · dA (2.38)

is the net rate of the energy flux, i.e., the amount of energy that flows through the surface
per unit time.

Since we consider time-harmonic fields throughout this thesis, we use the quantity

〈S〉 = 1
2Re (E×H∗) , (2.39)

which is the time-averaged Poynting vector, consisting of the complex-valued fields used in
the actual calculation.

2.6 Curvilinear coordinates

In the next chapter, we introduce the Fourier Modal Method in curvilinear coordinates.
Here, we discuss the fundamentals that are needed, in particular co- and contravariance.
In general, these terms describe how quantities change under coordinate transformations.
In principle, these transformations can be of arbitrary dimension, e.g., four-dimensional in
special relativity [20]. In this thesis, we only transform in space, i.e., in three dimensions.

In this introduction to curvilinear coordinates, we first examine how the basis vectors change
since this can easily be illustrated. Secondly, we transform the components of the vectors.
Thirdly, we introduce the metric tensor which relates the co- and contravariant components.

Assume a Cartesian coordinate system Ox̄1x̄2x̄3. The basis vectors of this system are denoted
by d̄i, i = 1, 2, 3. Any point in space is then given in the form

r = x̄1d̄1 + x̄2d̄2 + x̄3d̄3
(∗)= x̄id̄i, (2.40)

where the Einstein sum convention was applied in (∗), meaning that repeated indices are im-
plicitly summed over. Next, we want to switch to a three-dimensional curvilinear coordinate
system which is called Ox1x2x3 in the following. Every point has a unique representation in
both coordinate systems. They are linked by the mappings

x̄1 = x̄1
(
x1, x2, x3

)
, (2.41a)

x̄2 = x̄2
(
x1, x2, x3

)
, (2.41b)

x̄3 = x̄3
(
x1, x2, x3

)
. (2.41c)
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Since we want to be able to switch back and forth between Cartesian and curvilinear space, we
demand that the mappings are invertible. In essence, the task we deal with in the subsequent
two chapters is how to obtain the transformations in Eq. (2.41). Although we restrict ourselves
to certain special cases of Eq. (2.41) later, we continue here with this most general form.

As stated above, we want to derive two sets of basis vectors: the covariant basis vectors di
and the contravariant basis vectors di, i = 1, 2, 3. They are depicted in two dimensions in
Fig. 2.8.

Figure 2.8: Sketch of the covariant (red, di) and contravariant (green, di) basis vectors of
the curvilinear coordinate lines in Cartesian space.

As sketched, the covariant basis vectors are defined such that they are tangential to the
curvilinear coordinate lines in Cartesian space. In contrast, the contravariant basis vectors
are perpendicular to the coordinate lines. The two bases are dual. The direction of the
tangents to the coordinate lines is obtained via [28]

di = ∂x̄k

∂xi
d̄k, (2.42)

which is the covariant transformation. The contravariant (dual) basis vectors can then be
constructed from the covariant basis vectors in Eq. (2.42) by

di = 1
2

ξijk

det(J) dj × dk. (2.43)

Here, ξijk denotes the Levi-Civita symbol which is 1 for (ijk) = (123) and even permutations
thereof, -1 for odd permutations and 0 otherwise. The symbol ξ is used instead of the usual ε
to avoid confusion with the permittivity tensor. J denotes the Jacobian of the transformation
in Eq. (2.41). With the abbreviation ∂i = ∂/∂xi it reads

J =

∂1x̄
1 ∂2x̄

1 ∂3x̄
1

∂1x̄
2 ∂2x̄

2 ∂3x̄
2

∂1x̄
3 ∂2x̄

3 ∂3x̄
3

 . (2.44)

Naturally, the contravariant basis vectors can also be deduced directly from the transforma-
tion and the Cartesian basis d̄i = d̄i. They are given by

di = ∂xi

∂x̄k
d̄k, (2.45)

which is the contravariant transformation. After discussing the transformation of the basis
vectors, we next deal with the components. The components of any vector s with Cartesian
components s̄i = s̄i transform like

si = ∂x̄k

∂xi
s̄k, si = ∂xi

∂x̄k
s̄k. (2.46)
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Chapter 2 Fundamentals of Classical Electrodynamics

Thus, the vector can be written in both bases, i.e.,

s = sidi = sidi. (2.47)

The link between the covariant and contravariant basis is the metric tensor gij . It relates the
co- and contravariant components by

si = gijsj . (2.48)

Practically, this metric can be calculated from the coordinate transformation in Eqs. (2.41)
by

gij = ∂x̄k

∂xi
∂x̄l

∂xj
ḡkl, (2.49a)

gij = ∂xi

∂x̄k
∂xj

∂x̄l
ḡkl. (2.49b)

Here, ḡkl = ḡkl refers to the Cartesian metric which is the three-dimensional unit matrix.
For further use we define the determinant of the metric which can be written in terms of the
Jacobian determinant and reads

g = det(gij) = det(J)2. (2.50)

With these preparations at hand, we can formulate Maxwell’s equations in an arbitrary
coordinate system. They are stated and discussed in Chapter 3.

2.7 Fundamentals of periodic systems

Since we deal with periodic systems and, in particular, photonic crystals throughout this
thesis, some properties of such systems are discussed in this section. The physical quantity
that is periodic in our considered systems is the permittivity. Periodicity means that we can
move by some lattice vector

R = l1a1d1 + l2a2d2 + l3a3d3, li ∈ Z, i = 1, 2, 3, (2.51)

in space and still find the same permittivity, i.e.,

ε(r) = ε(r + R). (2.52)

The basis vectors di in Eq. (2.51) were introduced in the preceding section. The quantities
ai are the lattice constants in each direction i.

In this section, we first define the reciprocal lattice. Second, we state Bloch’s theorem which
has an important impact on the choice of our basis functions in the FMM. Finally, we discuss
diffraction.

2.7.1 Reciprocal lattice

The reciprocal lattice is defined by the reciprocal lattice vectors

G = m1
2π
a1

d1 +m2
2π
a2

d2 +m3
2π
a3

d3, mi ∈ Z, i = 1, 2, 3, (2.53)

where we used the contravariant basis vectors di. An example is depicted in Fig. 2.9.
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2.7 Fundamentals of periodic systems

Figure 2.9: The real space lattice in panel (a) is defined by the covariant basis vectors. The
reciprocal lattice, as shown in panel (b), is spanned by the contravariant basis
vectors di.

The real space and the reciprocal space are connected by a Fourier transformation. Thus, we
can expand the permittivity in a sum over reciprocal lattice points, i.e.,

ε(x1, x2, x3) =
∑

m={m1,m2,m3}
εm e

im1
2π
a1
x1+im2

2π
a2
x2+im3

2π
a3
x3
, (2.54)

where we introduced the multi-index m = {m1,m2,m3}. The coefficients of this expansion
can be deduced by

εm = 1
a1a2a3

∫ a1

0

∫ a2

0

∫ a3

0
ε(x1, x2, x3)e−im1

2π
a1
x1−im2

2π
a2
x2−im3

2π
a3
x3
dx1 dx2 dx3. (2.55)

2.7.2 Bloch’s theorem

Bloch’s theorem was originally a solution to the Schrödinger equation for electrons in periodic
potentials [29]. In mathematics, it is also known as Floquet theorem, a theorem for partial
differential equations with periodic coefficients. It states that the energy eigenfunctions of
the periodic system have to have the form

Ψk(r) = uk(r)eik·r, (2.56)

where the function uk(r) obeys the same periodicity as the underlying crystal, i.e., uk(r) =
uk(r + R). However, this wave description in periodic media also applies to other fields such
as electromagnetic waves in photonic crystals [30]. A reformulation of Eq. (2.56) gives

Ψk(r + R) = uk(r + R)eik·reik·R = Ψk(r) eik·R (2.57)

which states that the fields at two points, which are a lattice vector R apart, only differ by
a phase factor eik·R. When Maxwell’s equations are solved numerically, it is important to
choose basis functions which obey Bloch’s theorem. We keep this in mind when we discuss
the Fourier Modal Method in Chapter 3.

Furthermore, it is sufficient to consider waves with k vectors in the first Brillouin zone, since

Ψk+G(r) = Ψk(r) (2.58)

holds true for any reciprocal lattice vector G because eiG·R is unity for all vectors G and R.
Therefore, all possible k values can be constructed from the first Brillouin zone.
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2.7.3 Diffraction

The behavior of plane waves for systems as depicted in Fig. 2.10 is of particular importance in
this thesis. The system consists of an input layer, a structured layer with in-plane periodicity
and an output layer. If the periodicity in the structured layer is one-dimensional, i.e., invariant
in one in-plane direction, we call the layer a lamellar grating. If it is two-dimensional, it is
called a crossed grating.

Figure 2.10: We distinguish between the input, structured and output layer. The parallel
components of the plane waves has to be conserved across each interface. In
the transmitted and reflected fields we find several plane waves. Their wave
vector’s parallel components are the sum of kin,‖ and a reciprocal lattice vector
G. The transmitted and reflected orders all feature the same frequency as the
incident plane wave.

Without a structured layer, a plane wave propagating from the input into the output layer
obeys Snell’s law [27]. The component of the wave vector that is parallel to the interface in
the input layer has to be the same in the output layer. Together with the dispersion relation
of the two media, this yields a certain angular relation for the wave vectors of the incident
and the transmitted plane wave. In particular, the transmitted light consists only of one
plane wave. The same applies to the reflected light.

A fundamentally different behavior is found for the system containing the structured layer,
where we find several transmitted (and reflected) plane waves. In order to understand why,
we start out with an incident plane wave with wave vector

kin = α0 d1 + β0 d2 + γ0 d3. (2.59)

As in the case of Snell’s law, the parallel component of the wave vector has to be conserved
across the interface from input to structured layer. However, we have shown in Eq. (2.58)
that a reciprocal lattice vector added to the plane wave does not yield a different frequency
of the Bloch wave in the structured layer. At the second interface, from structured to output
region, the parallel components of the waves’ k vectors have to be conserved again. Thus,
we find transmitted plane waves with k vectors having the parallel components

k‖ = kin,‖ + G, G = m1
2π
a1

d1 +m2
2π
a2

d2, mi ∈ Z, i = 1, 2, (2.60)

where m = {m1,m2} is a multi-index like in Section 2.7.1 which defines the diffraction order.
The same argument applies to the reflected fields. The total reflected and transmitted field
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are then given by the so-called Rayleigh expansion [31]:

Etrans =
∑
m

Etrans,m eiαm1x
1+iβm2x

2+iγmx3
, (2.61a)

Erefl =
∑
m

Erefl,m eiαm1x
1+iβm2x

2−iγmx3
. (2.61b)

The sign of the x3-coordinate is already chosen in such a way that γm > 0 describes upwards
propagating, transmitted waves in Eq. (2.61a) and downward propagating, reflected waves in
Eq. (2.61b). The total field in the input layer is the sum of the incident plane wave and the
reflected fields. The components of transmitted plane waves’ k vectors have to obey both
Eq. (2.60) and the dispersion relations in the media. Thus, the components read

αm1 = α0 +m1
2π
a1
, (2.62)

βm2 = β0 +m2
2π
a2
, (2.63)

where the γm-component is derived by

k · k = n2ω2. (2.64)

Here, we also use that the frequency ω of the diffracted wave does not change. In Eq. (2.64),
n is the refractive index of either the input or the output region.

Although we can find many solutions of Eq. (2.64), only a finite number of them yield a prop-
agation constant γm that is real. The other solutions are imaginary and are called evanescent.
They decay exponentially and, thus, only contribute to the near-field. Furthermore, they do
not transport energy.

How many different real solutions of Eq. (2.64) exist strongly depends on the system’s
parameters—the refractive indices of the input and output region, the frequency and an-
gle of the incident plane waves, and the lattice constants ai. For wavelengths that are larger
than n · ai, only one transmitted and reflected wave exists (zeroth order). When the wave-
length is increased, there appear new solutions of Eq. (2.64) at certain wavelengths. Then,
an additional diffraction order appears. This results in a redistribution of energy between
the orders which is observable as features in the transmittance and reflectance spectra. They
are known as Rayleigh or Wood anomalies [32].
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Chapter 3

The Fourier Modal Method

In this chapter, we introduce the Fourier Modal Method for anisotropic materials in curvi-
linear coordinates [12, 33, 34]. For that, we first state Maxwell’s equations in arbitrary
coordinate systems in Section 3.1 and discuss how the transformation from Cartesian to
curvilinear coordinates changes the form of the permittivity and permeability. Secondly, we
introduce the considered systems and the slicing of the system into layers. Also, we discuss
the basic idea that the electromagnetic fields are expressed in terms of the structure’s eigen-
modes. In Section 3.3, we reformulate Maxwell’s equation into an eigenvalue problem which
yields the eigenmodes in each slice. The slices are then connected to ensure the continuity
conditions for the electromagnetic fields by a scattering matrix algorithm which is the content
of Section 3.4. The chapter is concluded with some practical remarks in Section 3.5.

3.1 Maxwell’s equations in curvilinear coordinates

3.1.1 Motivation

The Fourier Modal Method solves Maxwell’s equations by transforming them to Fourier space
and solving the resulting eigenvalue problem which yields the eigenmodes of the system. The
Fourier transformation is performed on a Cartesian grid. Naturally, this Cartesian grid does
not always fit to the investigated structures. Particular problems occur when the structures
are not grid-aligned, i.e., when their surface is not parallel to the coordinate lines of the grid.
Then, the Fourier transformation effectively perceives a stair-cased structure, see Fig. 3.1.

Figure 3.1: Due to the discretization on a Cartesian grid, the FMM perceives the stair-cased
structure in panel (b) instead of the round structure in panel (a).
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Chapter 3 The Fourier Modal Method

This problem is not exclusively found in the FMM since several other numerical methods rely
on a structured or even Cartesian grid. To tackle this problem, Ward and Pendry had an
important insight [35]: a coordinate transformation can be used in such a way that Maxwell’s
equations keep their form and the shapes of the structures of interest change beneficially. The
change in the structure is accounted for purely by changing the permittivity and permeability.
This procedure is of great help since “we need only write one computer code in a Cartesian
system” [35]. In the following years, their work was developed further [36, 37].

Only few years after the publication of Ref. [35], coordinate transformations were used in the
context of the Fourier Modal Method. Granet used them to increase the spatial resolution
near material boundaries [17] to tackle another specific problem of the FMM besides the
stair-casing, namely the Gibbs phenomenon which is described in App. A. Several other
publications followed—they are discussed in Chapter 5. There, we deal which the question
how suitable coordinate transformations can be obtained. However, before we deal with the
concrete transformations, we introduce the covariant Maxwell equations which allow the use
of an arbitrary coordinate system. We then present the Fourier Modal Method for this set
of equations.

3.1.2 Reformulation of Maxwell’s equations

In Section 2.6, we discussed how we can transform the coordinate system from Cartesian to
curvilinear by means of Eqs. (2.41). Here, we examine how this change transfers to Maxwell’s
equations. When changing from a Cartesian grid with coordinates x̄i to a curvilinear grid
with coordinates xi, the curl equations read [35, 36, 12]

ξijk∂jEk = iω µ0
√
g
∂xi

∂x̄k
∂xj

∂x̄l
µ̄kl Hj , (3.1a)

ξijk∂jHk = −iω ε0
√
g
∂xi

∂x̄k
∂xj

∂x̄l
ε̄kl Ej . (3.1b)

ξijk is the Levi-Cevita symbol. Also, we assume linear constitutive relations like before. The
term g is the metric determinant as introduced in Eq. (2.50). ε̄kl and µ̄kl are the permittivity
and permeability in the Cartesian space, respectively. The covariant Maxwell equations,
which are valid in any coordinate system, can be obtained by defining

εij = √
g
∂xi

∂x̄k
∂xj

∂x̄l
ε̄kl, (3.2a)

µij = √
g
∂xi

∂x̄k
∂xj

∂x̄l
µ̄kl, (3.2b)

which we call the effective permittivity1 and effective permeability. Having defined these
quantities, we rewrite Maxwell’s equations in the covariant, dimensionless form we use later
in the FMM.2 They read

ξρστ
∂σ
i
Eτ = ω2µρσHσ, (3.3a)

ξρστ
∂σ
i
Hτ = −ερσEσ. (3.3b)

1In the remainder of this thesis, we also use the synonymous term “transformed permittivity”.
2See Tab. 2.1 for the definition of the dimensionless and renormalized quantities.
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3.2 Considered systems and field expansion

It is important to realize that the coordinate transformation from Cartesian to curvilinear
grid solely enters the effective permittivity and permeability. This is the overall result of the
discussed publication of Ward and Pendry [35]. Two things should be mentioned regarding
the effective permittivity3: Firstly, the structure’s shape changes in general, i.e., the effective
permittivity looks different compared to the permittivity in the Cartesian space. This is
a desired effect since we use this to obtain a grid-aligned structure surface. Secondly, the
effective permittivity features drastically different material properties than the permittivity
in the Cartesian space. Upon inspecting Eq. (3.2a), we find that an isotropic permittivity in
the untransformed space is transformed into an anisotropic effective permittivity.

The formulation of the effective permittivity, which absorbs all details of the coordinate trans-
formation, is also of great help for introducing coordinate transformations into classical FMM
codes. The reason is that any FMM code that is able to handle anisotropic material tensors
can easily be changed such that it supports coordinate transformations: the only modifica-
tion that has to be done (once the coordinate transformation is known) is the derivation of
the effective permittivity. This is of particular interest since open source FMM codes are
published (see Refs. [38, 39]) that do not yet include coordinate transformations.

3.2 Considered systems and field expansion

Using the Fourier Modal Method, we analyze systems which are periodic in the one or two
directions and finite in the third direction. The plane featuring the periodicity defines the
x1- and x2-direction. The x3-direction is perpendicular to this plane. An example of such
a system is depicted in Fig. 3.2(a), together with the k-vector of the plane wave that we
assume to be incident on the structure. We distinguish between three different regions: The
input half space, the structured region containing the periodic structures, possible sub- and
superstrates, and the output half space. The regions are sketched in Fig. 3.2(b).

Figure 3.2: The Fourier Modal Method is suited for structures featuring a periodicity in one
or two directions. Panel (a) displays such a periodic arrangement. This plane of
periodicity defines the x1- and x2-direction. The x3 axis is perpendicular to this
plane. Panel (b) shows that we categorize the system into three regions: the
input half space, the structured region with an arbitrary number of structured
layers, possibly sub- and superstrate layers, and an output half space. The light
incident on the structure is a plane wave with wavevector kin.

3Whenever we transform the permittivity in the Cartesian space to the effective permittivity, we always
proceed analogously with the permeability. To increase the readability, we do not always explicitly mention
the permeability.
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In practice, we often deal with structures that are not piecewise homogeneous in x3 direction.
These structures are decomposed into several slices each of which is homogeneous in x3

direction. How many slices are needed to obtain convergence has to be tested for each new
structure. A sketch of the slicing procedure is depicted in Fig. 3.3.

Figure 3.3: A structure that is not piecewise homogeneous in x3-direction, e.g., a layer of
spheres, has to be approximated by slicing it such that each slice is homogeneous
is x3-direction.

The incident plane wave with wave vector kin = (α0, β0, γ0) is given by [40]

Eσ
(
x1, x2, x3

)
= E0,σ e

iα0x1+iβ0x2+iγ0x3
, (3.4a)

Hσ

(
x1, x2, x3

)
= H0,σ e

iα0x1+iβ0x2+iγ0x3
, (3.4b)

where σ = 1, 2, 3. Using the angles θ and φ as defined in Fig. 3.3, we find the components of
the wave vector to be

α0 = kin sin θ cosφ, β0 = kin sin θ sinφ, γ0 = kin cosφ, (3.5)

where kin is related to the wave vector in vacuum k0 by kin = √εink0.
√
εin is the permittivity

of the input half space and µin is assumed to be unity. Choosing a plane wave as incident
light is not a restriction since we can obtain other incident fields as superpositions of plane
waves. Also, the polarization of the wave can be arbitrary. For simplicity, we always calculate
two distinct polarizations: s-polarization (also referred to as TE) and p-polarization (TM).
s-polarization denotes the case where the electric field is perpendicular to the scattering plane
defined by the x3 axis and kin. In contrast, p polarization means that the electric field is
parallel to this plane. For both cases, the coefficients in Eqs. (3.4) read

s pol. : E0 =

 E0 sinφ
−E0 cosφ

0

 , H0 =

E0
√
εin cos θ cosφ

E0
√
εin cos θ sinφ

−E0
√
εin sin θ

 (3.6)

and

p pol. : E0 =

E0 cos θ cosφ
E0 cos θ sinφ
−E0 sin θ

 , H0 =

−E0
√
εin sinφ

E0
√
εin cosφ
0

 . (3.7)

In the Fourier Modal Method, Maxwell’s equations are solved in each of the slices depicted
in Fig. 3.3 separately. Thereafter, the slices are combined by the scattering matrix algorithm
we discuss in Section 3.4. The next step is to describe how we solve Maxwell’s equations in
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3.2 Considered systems and field expansion

the slices. The basic idea is that we express the electric and magnetic field as a superposition
of the slice’s eigenmodes. For that, we realize that the fields in the structured slices have
to obey Bloch’s theorem (see Section 2.7.2) due to the periodicity. Since this is the case, it
is a sensible approach to choose basis functions for the eigenmode expansion of the electric
and magnetic field that obey this periodicity and Bloch’s theorem automatically. Thus, we
expand the fields in plane waves obeying Bloch’s theorem, i.e., we make the ansatz of a
Fourier expansion. The electric field then reads

Eσ
(
x1, x2, x3

)
=

∑
m={m1,m2}

Ẽσm
(
x3
)
eiαm1x

1+iβm2x
2
, σ = 1, 2, 3. (3.8)

Here, αm1 and βm2 are given by

αm1 = α0 +m1
2π
a1
, βm2 = β0 +m2

2π
a2
, m1,m2 = 0, ±1, ±2, . . . (3.9)

The magnetic field is expanded analogously. In practice, the summation over m1 and m2 has
to be truncated. This raises the question which area in reciprocal space should be covered.
The two most general choices are a rectangular and a circular truncation. Both possibilities
are displayed in Fig. 3.4 and are used in the computations presented in this thesis.

Figure 3.4: Different truncation schemes in reciprocal space for the field expansion in
Eq. (3.8). Panels (a) and (b) display a rectangular and a circular truncation,
respectively.

Since we demanded that each slice is homogeneous in x3-direction, we can further specify the
form of the field in Eq. (3.8). Due to the homogeneity, we can assume that the dependence
in x3-direction is a plane wave eiγx3 . Thus, an eigenmode E′σ of the electric field has the
general form

E′σ

(
x1, x2, x3

)
=

∑
m={m1,m2}

Ẽσm eiγx
3
eiαm1x

1+iβm2x
2
, σ = 1, 2, 3. (3.10)

The total field is then given by a superposition of these eigenmodes. After having defined the
form of the electromagnetic fields, we can proceed to the reformulation of Maxwell’s equations
into the eigenvalue problem of the Fourier Modal Method.
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3.3 Derivation of the eigenvalue problem

We want to solve the set of equations (3.3). In these equations, derivatives of the fields occur.
As an example, we have a look at the derivative of an E field component Eσ with respect to
x1. For clarity, we use only the five Fourier coefficients closest to the origin. With the fields
in Eq. (3.10), the derivative becomes

∂1
i
Eσ =

∑
m={m1,m2}

Ẽσm eiγx
3
αm1 e

iαm1x
1+iβm2x

2

=


α−1 0 0 0 0

0 α0 0 0 0
0 0 α0 0 0
0 0 0 α0 0
0 0 0 0 α1


︸ ︷︷ ︸

=: α

·


Ẽσ,{−1,0}
Ẽσ,{0,−1}
Ẽσ,{0,0}
Ẽσ,{0,1}
Ẽσ,{1,0}


︸ ︷︷ ︸

=: Ẽσ

·


eiα−1x1+iβ0x2

eiα0x1+iβ−1x2

eiα0x1+iβ0x2

eiα0x1+iβ1x2

eiα1x1+iβ0x2

 eiγx
3
. (3.11)

Here, we first have a matrix-vector multiplication, followed by a scalar product. The vector
Ẽσ contains the Fourier coefficients of the electric field’s σ-component. Analogously, the
matrix β for the derivative with respect to x2 is defined. For that, it is important to retain
the order of the Fourier coefficients. Thus, we find

∂2
i
Eσ =

∑
m={m1,m2}

Ẽσm eiγx
3
βm1 e

iαm1x
1+iβm2x

2

=


β0 0 0 0 0
0 β−1 0 0 0
0 0 β0 0 0
0 0 0 β1 0
0 0 0 0 β0


︸ ︷︷ ︸

=: β

·


Ẽσ,{−1,0}
Ẽσ,{0,−1}
Ẽσ,{0,0}
Ẽσ,{0,1}
Ẽσ,{1,0}


︸ ︷︷ ︸

= Ẽσ

·


eiα−1x1+iβ0x2

eiα0x1+iβ−1x2

eiα0x1+iβ0x2

eiα0x1+iβ1x2

eiα1x1+iβ0x2

 eiγx
3
. (3.12)

Thereby, we know how to handle the derivatives in Eqs. (3.3)—they become matrix multipli-
cations of α and β with the fields’ coefficient vectors. In order to solve Maxwell’s equations
in Fourier space, the next step is Fourier transforming the right hand sides of Eqs. (3.3).
This is a complicated endeavor since particular care has to be taken due to the jumps in the
permittivity and the fields. The derivation of the Fourier transformed constitutive relations
can be found in App. A.

After dealing with the derivatives and the Fourier transformation of the constitutive relations,
we can present the covariant Maxwell equations in Fourier space. They read

βẼ3 − γẼ2 = ω2
([[
µ11
]]

H̃1 +
[[
µ12
]]

H̃2 +
[[
µ13
]]

H̃3
)
, (3.13a)

γẼ1 − αẼ3 = ω2
([[
µ21
]]

H̃1 +
[[
µ22
]]

H̃2 +
[[
µ23
]]

H̃3
)
, (3.13b)

αẼ2 − βẼ1 = ω2
([[
µ31
]]

H̃1 +
[[
µ32
]]

H̃2 +
[[
µ33
]]

H̃3
)
, (3.13c)

βH̃3 − γH̃2 = −
([[
ε11
]]

Ẽ1 +
[[
ε12
]]

Ẽ2 +
[[
ε13
]]

Ẽ3
)
, (3.13d)

γH̃1 − αH̃3 = −
([[
ε21
]]

Ẽ1 +
[[
ε22
]]

Ẽ2 +
[[
ε23
]]

Ẽ3
)
, (3.13e)

αH̃2 − βH̃1 = −
([[
ε31
]]

Ẽ1 +
[[
ε32
]]

Ẽ2 +
[[
ε33
]]

Ẽ3
)
. (3.13f)
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3.3 Derivation of the eigenvalue problem

The matrices
[[
εij
]]
and

[[
µij
]]
are defined in App. A. They contain Fourier coefficients of

the effective permittivity and permeability in a complex arrangement. When examining
Eqs. (3.13) one finds that we replaced the six Maxwell equations with 6 N equations, with
N being the number of Fourier coefficients. The reason is that we omitted the vector from
Eq. (3.11) that contains the plane wave basis functions. This is due to the fact that the
basis functions are linearly independent and, thus, we can directly equate the coefficients.
Consequently, the entire system of equations (3.13) only contains the coefficients.

To reformulate these equations into an eigenvalue problem, we first solve for the coefficients
of the electric and magnetic field’s x3 component. Eqs. (3.13c) and (3.13f) yield

H̃3 =
[[
µ33
]]−1

( 1
ω2αẼ2 −

1
ω2βẼ1 −

[[
µ31
]]

H̃1 −
[[
µ32
]]

H̃2

)
, (3.14a)

Ẽ3 =
[[
ε33
]]−1 (

−αH̃2 + βH̃1 −
[[
ε31
]]

Ẽ1 −
[[
ε32
]]

Ẽ2
)
. (3.14b)

Next, we enter

Eqs. (3.14a) and (3.14b) in

Eq. (3.13a)
Eq. (3.13b)
Eq. (3.13e)
Eq. (3.13d)

and solve for

γ
(
−Ẽ2

)
γẼ1
γH̃1
γH̃2

.

The electric and magnetic field are ordered like this due to historic reasons—this is the way
the eigenvalue problem is implemented in our code. Finally, the equations assume the form
of an eigenvalue problem to which we refer to as the large eigenproblem in the following. It
reads

γ


−Ẽ2
Ẽ1
H̃1
H̃2

 =
(

A11 F
G A22

)
−Ẽ2
Ẽ1
H̃1
H̃2

 (3.15)

with the matrices

A11 :=
(
−
[[
µ̆13]]α− β [[ε̆32]] β

[[
ε̆31]]− [[µ̆13]]β

α
[[
ε̆32]]− [[µ̆23]]α −α

[[
ε̆31]]− [[µ̆23]]β

)
, (3.16)

F :=
(
ω2 [[µ̆11]]− β [[ε̆23]]β ω2 [[µ̆12]]+ β

[[
ε̆33]]α

α
[[
ε̆33]]β + ω2 [[µ̆21]] −α [[ε̆33]]α+ ω2 [[µ̆22]]

)
, (3.17)

G :=
(
− 1
ω2α

[[
µ̆33]]α+

[[
ε̆22]] − 1

ω2α
[[
µ̆33]]β − [[ε̆21]]

− 1
ω2β

[[
µ̆33]]α− [[ε̆12]] − 1

ω2β
[[
µ̆33]]β +

[[
ε̆11]]

)
, (3.18)

A22 :=
(
−α

[[
µ̆31]]− [[ε̆23]]β −α

[[
µ̆32]]+

[[
ε̆23]]α

−β
[[
µ̆31]]+

[[
ε̆13]]β −β

[[
µ̆32]]− [[ε̆13]]α

)
. (3.19)
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In these definitions we introduced the matrices
[[
ε̆ij
]]
and

[[
µ̆ij
]]
which read[[

ε̆11
]]

=
[[
ε11
]]
−
[[
ε13
]] [[
ε33
]]−1 [[

ε31
]]
, (3.20a)[[

ε̆12
]]

=
[[
ε12
]]
−
[[
ε13
]] [[
ε33
]]−1 [[

ε32
]]
, (3.20b)[[

ε̆13
]]

=
[[
ε13
]] [[
ε33
]]−1

, (3.20c)[[
ε̆21
]]

=
[[
ε21
]]
−
[[
ε23
]] [[
ε33
]]−1 [[

ε31
]]
, (3.20d)[[

ε̆22
]]

=
[[
ε22
]]
−
[[
ε23
]] [[
ε33
]]−1 [[

ε32
]]
, (3.20e)[[

ε̆23
]]

=
[[
ε23
]] [[
ε33
]]−1

, (3.20f)[[
ε̆31
]]

=
[[
ε33
]]−1 [[

ε31
]]
, (3.20g)[[

ε̆32
]]

=
[[
ε33
]]−1 [[

ε32
]]
, (3.20h)[[

ε̆33
]]

=
[[
ε33
]]−1

. (3.20i)

For the definition of
[[
µ̆ij
]]
, ε is exchanged with µ. A short notation for these matrices can

be obtained with the operator l−3 defined in Eq. (A.20). With this operator, we can write
Eqs. (3.20) as

[[
ε̆ij
]]

= l−3
[[
εij
]]
.

A case that occurs often is an effective permittivity with only in-plane anisotropy, i.e.,

ε =

ε11 ε12 0
ε21 ε22 0
0 0 ε33

 , µ =

µ11 µ12 0
µ21 µ22 0
0 0 µ33

 . (3.21)

We find such an effective permittivity for example when we apply a two-dimensional coor-
dinate transformation in the x1x2-plane to an isotropic permittivity in the Cartesian space.
When the effective permittivity and permeability assume this form, the matrices A11 and
A22 are zero and the eigenproblem decomposes into the two equations

γ

(
−Ẽ2
Ẽ1

)
= F

(
H̃1
H̃2

)
, γ

(
H̃1
H̃2

)
= G

(
−Ẽ2
Ẽ1

)
, (3.22)

which we can insert into each other to gain the small eigenproblem, which reads

γ2
(
−Ẽ2
Ẽ1

)
= FG

(
−Ẽ2
Ẽ1

)
. (3.23)

Alternatively, we could solve an equivalent equation for the magnetic field. When the effective
permittivity has a form as in Eq. (3.21) or when it is even simpler, we use the small rather
than the large eigenproblem. The reason is simple: it is only half the size and, thus, the
time and memory needed for the solution reduce drastically. In our numerical framework,
the eigenproblems are solved using the LAPACK library [41] or the MKL library [42] on
Intel machines. Once the numerical eigenmodes, i.e., the propagation constants γj and the
field’s Fourier coefficients, are obtained, we can expand the electric and magnetic field in
each slice into the slice’s eigenmodes. For the small eigenproblem this is rather easy: for
every eigenmode with eigenvalue γj we find the corresponding eigenmode with propagation
constant -γj . We always choose the complex square root of

√
γ2 such that Im (γj) > 0.
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3.4 Scattering matrix algorithm

In principle, the large eigenvalue problem should also yield the same modes propagating in
positive and in negative x3 direction. However, this is numerically not always the case and,
thus, requires a distinction of the eigenmodes into two different sets of forward and backward
propagating eigenmodes. For further details we refer to [33].

Finally, the fields expanded in eigenmodes read

Eσ
(
x1, x2, x3

)
=

∑
m,j

Ẽσm,j ·
(
uj e

iγjx
3 + dje

−iγjx3)︸ ︷︷ ︸
=: Ẽσm,j(x3)

·eiαm1x
1+iβm2x

2
, (3.24a)

Hσ

(
x1, x2, x3

)
=

∑
m,j

H̃σm,j ·
(
uj e

iγjx
3 − dje−iγjx

3)︸ ︷︷ ︸
=: H̃σm,j(x3)

·eiαm1x
1+iβm2x

2
, (3.24b)

for σ = 1, 2. The field components in x3-direction can be derived using Eqs. (3.14). In
Eqs. (3.24), the scalar uj is the amplitude of the jth upward propagating mode and, corre-
spondingly, dj denotes the jth downward propagating mode’s amplitude.4 These quantities
are unknown so far—they depend on the light that is incident on the structure. Their values
are determined with the help of the scattering matrix algorithm, which we present in the
subsequent section.

3.4 Scattering matrix algorithm

So far, we sliced the system into several layers, including the incoming and output half space.
We obtained the field solutions in each layer in an eigenmode basis by solving the eigenproblem
of the system. The quantities that still have to be determined are the amplitudes that
describe how strongly each eigenmode is excited in each slice. The amplitude of the jth

upward propagating mode (positive x3 direction) was denoted by uj . Next, we combine these
amplitudes to a vector ul = ( . . . , ulj , . . . ) where we added the superscript l to mark that
these are the amplitudes in the lth layer.

The link between two layers is their common interface. Here, the continuity conditions for
Maxwell’s equations have to be fulfilled. By demanding that the parallel fields are continuous,
we obtain relations for the amplitudes. The general procedure is relating the amplitudes of
waves that are incident onto the interface with outgoing waves. Therefore, we define the
scattering matrix that connects the amplitudes of the eigenmodes in layers l and l + 1 (see
Fig. 3.5) like (

ul+1

dl

)
= S(l, l + 1) ·

(
ul

dl+1

)
. (3.25)

The whole derivation follows Refs. [13, 40]. Note that the amplitudes both on the left and on
the right hand side of Eq. (3.25) are defined in different layers. An alternative formulation
for scattering problems is the T matrix. In this approach, the amplitudes on the bottom side
of the interface are linked with the amplitudes on the top side. However, this can lead to
numerical instabilities where evanescent modes show exponential growth. The S matrix in
the formulation we present here avoids these issues.

4The terms upward and downward propagating refer to the positive and negative x3-direction, respectively.
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Figure 3.5: Sketch of the sliced system and of the amplitude vectors. The S matrix links
the amplitudes of the waves that are incident on the layers’ interface with the
amplitudes of the outgoing fields. The lth layer has the thickness tl.

As a first step, we rewrite parts of the fields in Eqs. (3.24) in a convenient form5 in each
layer l:

Ẽ1
(
x̂3)

Ẽ2
(
x̂3)

H̃1
(
x̂3)

H̃2
(
x̂3)

l

=


Ẽ1,j Ẽ1,j
Ẽ2,j Ẽ2,j
H̃1,j −H̃1,j
H̃2,j −H̃2,j


l︸ ︷︷ ︸

=: Ml

·
(

Φl

(
x̂3) 0

0 Φl

(
tl − x̂3)

)
·
(

ul
dl

)
, x̂3 ∈ [0, tl]. (3.26)

Here, we introduced the propagation matrix Φl

(
x̂3) which is diagonal and contains the

elements eiγ
l
j x̂

3
. The variable x̂3 is defined such that it is zero at the lower boundary of

the slice, i.e., at x3 = x3
l−1, and tl at the upper boundary, i.e., at x3 = x3

l . In this sense,
x̂3 is the x3 coordinate in the local coordinate system of the slice. The matrix Ml contains
the Fourier coefficients of all eigenmodes in slice l. The coefficient vectors of the eigenmodes
j are arranged column by column in Ml. With these preparations at hand, we can demand
the continuity for the electric and magnetic field’s in-plane components. Thus, we demand
that

Elσ(x3
l − 0) != El+1

σ (x3
l + 0), H l

σ(x3
l − 0) != H l+1

σ (x3
l + 0), σ = 1, 2. (3.27)

It is important to note that these conditions directly translate to the coefficients since we
use the same plane wave basis in every layer. Therefore, we can utilize the definitions in
Eq. (3.26) and reformulate the continuity conditions like

Ml ·
(

Φl(tl) ul
Φl(0) dl

)
= Ml+1 ·

(
Φl+1(0) ul+1

Φl+1(tl+1) dl+1

)
. (3.28)

Here, all phases are defined such that the modes are evaluated at the correct position, i.e.,
at the interface between layers l and l + 1. Next, we invert Ml in Eq. (3.28) and obtain(

Φl(tl) ul
dl

)
= M−1

l Ml+1︸ ︷︷ ︸
=: I(l,l+1)

·
(

ul+1
Φl+1(tl+1) dl+1

)
, (3.29)

5This particular form refers to the small eigenvalue problem. The equivalent form for the large eigenproblem
differs only little and can be found in Ref. [33].
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3.4 Scattering matrix algorithm

where we introduced the interface matrix I(l, l + 1). So far, we related the amplitudes of
different layers with each other. The next step is deriving the form of the scattering matrix.
In particular, we assume an existing S matrix S(l,m) and want to derive how the next slice
is added, i.e., how S(l,m + 1) can be obtained. The S(l,m) matrix relates the amplitudes
like6 (

um
dl

)
= S(l,m) ·

(
ul
dm

)
=:
(

S11 S12
S21 S22

)(
ul
dm

)
. (3.30)

The interface matrix between the layers l and l + 1 is obtained like in Eq. (3.29).(
Φ′mum

dm

)
= I(m,m+ 1) ·

(
um+1

Φ′m+1dm+1

)
=
(

I11 I12
I21 I22

)(
um+1

Φ′m+1dm+1

)
, (3.31)

where we defined Φ′m := Φm(tm). With the known matrices S(l,m) and I(m,m+ 1) we find
the system of equations:

um = S11 ul + S12 dm, (3.32a)
dl = S21 ul + S22 dm, (3.32b)

um =
(
Φ′m

)−1 (I11 um+1 + I12 Φ′m+1 dm+1
)
, (3.32c)

dm = I21 um+1 + I22 Φ′m+1 dm+1. (3.32d)

The scattering matrix S(l,m+ 1) is supposed to have the form(
um+1

dl

)
= S(l,m+ 1) ·

(
ul

dm+1

)
=:
(

Ŝ11 Ŝ12
Ŝ21 Ŝ22

)(
ul

dm+1

)
. (3.33)

By first entering Eqs. (3.32c) and (3.32d) in Eq. (3.32a) and second entering Eq. (3.32d) in
Eq. (3.32b), we obtain the recursion formula by which we connect the scattering matrices. It
reads

Ŝ11 =
(
I11 −Φ′m S12 I21

)−1 Φ′m S11 (3.34a)
Ŝ12 =

(
I11 −Φ′m S12 I21

)−1 (Φ′m S12 I22 Φ′m+1 − I12 Φ′m+1
)

(3.34b)
Ŝ21 = S21 + S22 I21 Ŝ11 (3.34c)
Ŝ22 = S22 Ŝ12 + S22 I22 Φ′m+1 (3.34d)

The derived recursion formula allows to build a scattering matrix for the entire structure.
The most important feature is that repeated structures have the same scattering matrices
and, thus, these matrices need only be calculated once and can be multiplied several times
with themselves [13]. This is highly efficient since this allows to numerically access very long
systems with very little computational effort. The final scattering matrix is S(0, L) which
connects the fields that are incident on the structure with the reflected and transmitted fields.
Since we normally illuminate the structure with a plane wave in positive x3 direction and no
light from above, we can write the transmitted amplitudes uL and the reflected amplitudes
d0 as

uL = S11(0, L) u0, (3.35)
d0 = S21(0, L) u0. (3.36)

Sometimes the calculation of field distributions somewhere in the crystal in a layer l is desired.
For that, two scattering matrices have to be derived, namely S(0, l) and S(l, L + 1). Since
they follow the same principles as the ones discussed above, we refer to Refs. [13, 40, 34, 33]
for more details.

6To avoid an overcrowded notation, we omit the nomenclature (l, m) of the scattering matrix in the following.
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Chapter 3 The Fourier Modal Method

3.5 Practical remarks

Important quantities in the investigation of structures are the transmittance and reflectance
which are given by the normalized time-averaged energy flux in x3 direction. Thus, we have
to calculate the x3 component of the Poynting vector, which reads

S3 = 1
2Re (E1 ·H∗2 − E2 ·H∗1 ) . (3.37)

Once this quantity is obtained, the transmittance and reflectance can be calculated with the
incident Poynting flux Sinc

3 via

T =
∣∣Strans

3
∣∣∣∣Sinc

3
∣∣ , R =

∣∣∣Srefl
3

∣∣∣∣∣Sinc
3
∣∣ . (3.38)

Due to the change to curvilinear coordinates we face peculiarities that should be discussed.
In general, it is important to distinguish between quantities in the transformed and in the
physical space. If one is given and the other is desired, they have to be properly translated
into each other. Mostly, this statement refers to the electric and magnetic fields. The question
is how the coefficients of the fields’ Fourier expansion alter upon coordinate system change.
For practical purposes, we have two choices [34]:

G Fields on the curvilinear grid.

In this case, the coefficients of any of the magnetic and electric field’s components
(represented by the coefficient vector Ψi) is transformed like

Ψ̄i =
[[
∂xk

∂x̄i

]]
·Ψk. (3.39)

Here, we entered the Toeplitz matrix of the coordinate transformation’s derivative.
Thus, we obtain the fields on the curvilinear mesh. This can be desired when we
increase the density of coordinate lines along a structure interface. Then, we can plot
the fields on this mesh, i.e., with an increased number of discretization points near the
surface. Such an approach can be of particular interest when the jump in the fields due
to the continuity conditions of Maxwell’s equations at material boundaries is supposed
to be studied.

G Fields on Cartesian grid.

Sometimes, we do not want the field values on the curvilinear grid, but instead on
a Cartesian grid. Naturally, this means that we need an additional change of the
coefficients since the basis changes from curvilinear to Cartesian. Thus, we enter an
additional transformation matrix to Eq. (3.39). The coefficients of the magnetic and
electric field are then obtained via

Ψ̄i = L ·
[[
∂xk

∂x̄i

]]
·Ψk, (3.40)

34



3.5 Practical remarks

with the transformation matrix [34]

Lmn =
∫ 1

0
dx̄1dx̄2 e−iαm1 x̄

1+iαn1x
1−iβm2 x̄

2+iβn2x
2

=
∫ 1

0
dx1dx2 det(J)e−iαm1 x̄

1+iαn1x
1−iβm2 x̄

2+iβn2x
2
, (3.41)

which describes the change from the plane wave basis in the transformed space to the
plane wave basis of the Cartesian space. The definitions for αi and βi are found in
Section 3.2. J is the Jacobian from Eq. (2.44).

A last important remark has to be made on the determination of the Poynting flux. One
possible solution is the classical way of calculating the magnetic and electric field in the
Cartesian coordinate system (see Eq. (3.40)) and determining the Poynting vector as their
cross product like in Eq. (3.38). An alternative formulation, that we use in Chapter 6 for
three-dimensional coordinate transformations, is given in Section 6.6 of Ref. [33]. Since the
derivation is lengthy we do not present it here. The essence is that the transmitted power is
determined by calculating the sum over the transmitted power of each normalized eigenmode
which is given by the square root of the eigenmode’s amplitude u. For this procedure, the
modes have to be orthonormal [33].
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Chapter 4

Opal Photonic Crystals

In this chapter, the classical Fourier Modal Method without coordinate transformations and
with an isotropic permittivity is used for the simulation of opal photonic crystals. By com-
puting the optical response of this periodic arrangement of dielectric spheres, the numerical
method demonstrates its great advantages.

In Section 4.1, we discuss the basics of opals, especially their composition and fabrication.
In Section 4.2, a study on the polarization behavior of the transmitted light in opal photonic
crystals is presented. We analyze polarization effects for different crystal thicknesses. Effec-
tively, this is the topic of our submitted manuscript Ref. [43]. The chapter is concluded with
Section 4.3, where axial anisotropy is examined. The results shown here are also found in
our manuscript Ref. [44].

The projects described in this chapter were conducted in collaboration with Prof. Sergei G.
Romanov from the University of Erlangen-Nuremberg, who performed the experimental parts
of the analysis. Furthermore, Christian Wolff from our group contributed valuable insights
with band-structure calculations (using MPB [45]) and Bloch mode studies. I performed
the computations with the Fourier Modal Method using a code that was mainly written by
Sabine Essig and participated in the theoretical analysis.

4.1 Introduction

Opals consist of small dielectric spheres stacked in an either hexagonal close packed (hcp) or
face centered cubic (fcc) arrangement [46, 1]. The hcp arrangement corresponds to sphere
layers that are stacked in ABABAB order. The fcc ordered crystal describes an ABCABC
stacking, cf. Figs. 4.1(b) and (c). Which form is assumed depends on the conditions during
the self-organized fabrication. The samples that we discuss here take the ABCABC form.
For this, a hydrophilic glass slide with a meniscus is dipped into a suspension containing the
dielectric spheres. By applying an acoustic-noise-agitation technique and by pulling the glass
slide up and off the suspension, samples of size 25×75 mm2 can easily be fabricated [47].
A scanning electron micrograph (SEM) of an actual experimental realization is depicted in
Fig. 4.1(a). Naturally, the crystal does not possess a perfect fcc structure. In the course of
this chapter we will comment on imperfections in the crystal and their role in the transmission
behavior.

Opals exhibit rich physical features - especially their transmittance and reflectance spectra
are interesting due to photonic stop bands, see Refs. [48, 49]. Also, these spectra feature
interesting effects when the incident light is polarized, see Ref. [47]. This is the field that we
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Figure 4.1: Opal photonic crystals in fcc arrangement. An experimental realization is im-
aged in panel (a). The picture is taken from Ref. [47]. The fcc lattice with its
stacking order ABCABC is depicted in panels (b) and (c).

perform our investigations in—we impinge polarized light onto the crystal and analyze the
angle- and polarization-resolved spectra.

In our investigations, we consider PMMA (poly-methyl methacrylate) spheres. The material’s
permittivity is εPMMA = 1.4892 ≈ 2.217. The spheres in our first investigation have a
diameter of D = 558 nm. Due to the fcc arrangement displayed in Fig. 4.1(c), the lattice
constant is a = 2D = 1116 nm. The space between the spheres is filled with air, i.e., εbg = 1
is used as background material. The layers of spheres are deposited on a glass substrate with
εglass = 2.25, which is included in the numerical computations.

The geometry of the lattice is incorporated in the FMM computations by using a hexagonal
unit cell with lattice vectors (a, 0) and a · (1/2,

√
3/2). Since the structure is repeated in x3

direction after 3 layers (ABCABC), the unit cell in x3 direction consists of three layers of
spheres.

4.2 Thickness-dependent polarization dynamics

In a first study, we investigate a sample of 23 layers arranged in ABCABC stacking, cf.
Fig. 4.1(b) and (c). Thus, the sample has a total height of about 13 µm. The angle of
incidence θ is defined as sketched in Fig. 4.1(b). θ and the wavelength of the incident light
were varied and the obtained transmittance in zeroth order is color-coded in Fig. 4.2. The
angle ϕ is zero for all calculations in this section. The incident light is s-polarized, i.e., the
electric field vector is perpendicular to the plane of incidence. In Fig. 4.2, the zeroth order
transmittance into s-polarization (from now on called Tss) is depicted in the left column, i.e.,
panels (a) and (c), and the zeroth order transmittance in p-polarization (from now on called
Tsp) is depicted in the right column, i.e., panels (b) and (c). The numerical results obtained
with the FMM are depicted in panels (c) and (d) and the measured spectra are shown in
panels (a) and (b). The FMM computations were performed with 97 plane waves in the
lateral direction. Since the jump in the permittivity between air and PMMA is rather small,
this number is sufficient [34]. Also, we used 20 slices in x3 direction to resolve one layer of
spheres.
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4.2 Thickness-dependent polarization dynamics

Figure 4.2: Experimental and numerical transmittance spectra. The incident plane wave
is s-polarized. The zeroth order transmittance in s-polarization (left column)
and p-polarization (right column) is color-coded. Panels (a) and (b) depict the
experimental results, while panels (c) and (d) show the results of the FMM
computations. We sampled the wavelength in steps of 1 nm and θ in steps of
0.5◦. The white, dashed line in panels (a) and (b) indicates a change in the
used spectrometer. The plots are taken from our manuscript Ref. [43].

The comparison between numerical and physical data is very interesting: The first, striking
observation is the very good qualitative agreement. Especially the measured transmittance
minima in Tss are very well reproduced by the numerical simulations. In fact, it is stunning
that the various fine features measured for small values of theta (0◦ to 20◦) and for high fre-
quencies (500 nm to 700 nm) are reproduced this well. After all, the numerical transmittance
is the result of an ab-initio computation—no fit parameter of any sort has been incorporated
in the simulation.

The second striking behavior is that Tss has stop bands where values of effectively zero are
reached. Also, there are parameter regions where almost all the transmitted light has changed
its polarization from s- to p-polarization. The corresponding transmittance Tsp from s- into
p-polarization is depicted in Fig. 4.2(d).

The third property of the results in Fig. 4.2 that stands out is the difference in magnitude of
the experimental and the numerical cross transmittance Tsp (compare the color bars in panels
(b) and (d)). Although the features match well, the values of the measurements are about a
factor of three lower than their numerical counterpart. The reason was found to be a different
stacking orientation in distinct regions of the opal photonic crystal. Since a rotation by 60◦
corresponds to a reversal of the stacking order (cf. Fig. 4.1(c)), two areas with different crystal
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orientation next to each other lead to a cancellation of the cross polarized transmittance in
the far field. Therefore, an imperfectly stacked opal photonic crystal does not exhibit the
same high Tsp values which are predicted by ab-initio numerics of the perfectly periodic
crystal. To show that this really is the source of the problem, Christian Wolff suggested
an analysis of the used opal sample with a polarized microscope. The results are shown in
Fig. 4.3. Here, photos of the sample are shown where the incident light is both unpolarized
(panel (a)) and polarized (panel (b)). In the unpolarized case, the sample has the same color
in all regions. This means that the opal is stacked in an fcc arrangement everywhere and
does not show areas with, e.g., hcp arrangement. In the polarized case, the picture displays
different colors—therefore, the polarized light is transmitted differently in particular parts
of the sample. Thus, Fig. 4.3 strongly suggests that the stacking order is the reason for the
discrepancy between the results in Figs. 4.2(b) and (d). In fact, the measured values of Tsp
depend on the concrete area of the sample that is illuminated. A different area would yield a
different ratio of ABC and ACB stacked layers and, thus, the values of Tsp would change.

Figure 4.3: Unpolarized (panel (a)) and polarized (panel (b)) micrograph of the opal pho-
tonic crystal. Different stacking orders manifest themselves in different trans-
mission of polarized light. Since the sample shows different colors in panel (b),
the sample cannot be an ideal and perfectly periodic photonic crystal. This
explains the difference in the strength of the Tsp measurement to the numerical
data (cf. Figs. 4.2(b) and (d)). The vertical stripes occur since the sample
‘grows’ in vertical direction. Images are courtesy of Prof. Sergei G. Romanov.

As stated above, both numerical and experimental spectra reach high values for the cross
transmittance. This is a remarkable property and the apparent question is whether this
is a bulk or a surface effect. A surface effect would change if the surface was terminated
differently. On the other hand, a bulk effect would leave a clear finger print upon changing
the thickness of the sample. Here, we apply one of the great strengths of the FMM and
the scattering matrix algorithm. Above we discussed that we set up a scattering matrix
for a unit cell in x3 direction consisting of three layers of spheres. Since the arrangement is
repeated several times, we can just multiply the matrices an appropriate number of times and
obtain the corresponding scattering matrix for the entire system. Naturally, such a matrix
multiplication is not very costly. Hence, we can easily obtain the transmittance for very thick
samples by just multiplying the corresponding scattering matrix with itself often enough.

In order to test whether the high cross transmittance values are dominated by surface or bulk
effects, we performed computations for an incident wavelength of 900 nm and angles around
θ = 45◦. These parameters correspond to a region where Tsp is very high in Figs. 4.2(b)
and (d). The investigated systems contain up to 140 crystal planes. Since we multiply the
scattering matrices several times, it is important to make sure that the error for one layer of
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spheres is as small as possible in order to avoid an exponentiation of the error. Therefore,
we use 349 plane waves in the lateral plane for the field expansion and dissect each layer of
spheres into 40 slices.
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Figure 4.4: Panel (a) displays Tss (red) and Tsp (blue) for a varying number of crystal planes.
The data is computed with the FMM for θ = 45◦ and a wavelength of 900 nm.
The solid lines are sinusoidal fits to the numerical data. We performed several
studies like in panel (a) for different values of θ. For each θ a sinusoidal curve is
fitted to the data and the period is extracted. Panel (b) displays these results
together with their prediction from a band structure analysis, see Refs. [43, 50]
for details. The plots are taken from Ref. [43]

In Fig. 4.4(a), the transmittance from s-polarization into s-polarization (red crosses) and into
p-polarization (blue crosses) for an incidence angle of θ = 45◦ at 900 nm is depicted as a
function of the number of opal layers. Besides minor deviations, the data shows a sinusoidal
behavior, both for Tss and Tsp. Also, both functions reach effectively zero. This shows that
the polarization conversion has to be a bulk effect—not only does it vary periodically with the
number of opal layers but also vanishes for certain thicknesses. This implies that it cannot
be a surface effect since a surface effect would be present for all sample thicknesses.

The next step is that we can perform a calculation like in 4.4(a) for several angles of incidence.
So for θ = 42◦ to θ = 50◦ we performed FMM computations for a varying number of opal
planes and fitted sinusoidal curves to the data. As a result, Fig. 4.4(b) displays the period
length of the sinusoidal fits as a function of θ. They are all on one curve and, excitingly, this
curve can be predicted. Christian Wolff showed in a very elaborate study that the period
lengths can directly be related to certain features in the band structure and the corresponding
Bloch modes. The interested reader can find this analysis in Refs. [43, 50].

Finally, it is instructive to have a look at the polarization state of the transmitted light in
terms of Stokes parameters. Figure 4.5 depicts the Stokes parameters for 4 to 76 opal planes
for an incident plane wave of wavelength 900 nm and θ = 45◦. The numbers in the central plot
are the numbers of layers. The red circle sketches the projection of the Poincaré sphere, see
Section 2.3.3. Its north pole is marked with a red diamond. Upon transmission through the
opal layers, the polarization state changes from linearly s-polarized to circular polarization
after about 20 layers. Thereafter, it changes to linearly p-polarized after about 40 layers and
changes back to s-polarized via the opposite circular polarization. A stacking of the sphere
layers in ACB order would result in the opposite path around the Poincaré sphere.
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Figure 4.5: The Stokes parameters depict how the polarization state of the transmitted
light changes with increasing number of opal layers. It changes from linearly
s-polarized to circular polarization, then to p-polarization and then back to s-
polarization via the counter-rotating circular polarization. The red diamond
indicates the north pole of the Poincaré sphere. The plots are taken from
Ref. [43]

4.3 Axial anisotropy in opal photonic crystals

So far, we varied the angle of incidence θ. Naturally, we can also choose a specific value of
θ and vary the angle ϕ as sketched in Fig. 4.1(c). The investigated experimental sample is
different than in the previous section. It consists of 25 layers of spheres with a diameter of
D = 368 nm. In the following, we choose two different angles θ and vary ϕ.

A sketch of the symmetry properties of the opal photonic crystal slab is depicted in Fig. 4.1(c),
where the 120◦ symmetry and the reflection axis of the system are depicted. Due to this sym-
metry we only investigate the angular range of [0◦, 120◦]. To show that this suffices, Fig. 4.6(a)
depicts the total transmittance for θ = 65◦, all angles ϕ and incoming p-polarization. The
minima for small wavelengths show a three-fold, i.e., 120◦, symmetry. Figure 4.6(b) shows a
close-up of panel (a) where the effect of the reflection axis sketched in Fig. 4.1(c) is observ-
able. For large wavelengths an effective six-fold symmetry shows. A possible explanation is
that the wavelength is so large that the wave perceives the crystal as an effective medium.
Then, the surface termination, which is one layer of spheres with a six-fold symmetry, would
explain the six-fold symmetry in the transmittance spectra.

Figure 4.6: Total transmittance (all orders and polarizations) for θ = 65◦ and incoming
p-polarized light. The spectra show the symmetries sketched in Fig. 4.1(c),
namely the 120◦ symmetry with a reflection axis.
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In the following, transmittance plots for the zeroth Bragg order are shown which were ob-
tained with 97 plane waves. For instance, Tsp denotes the zeroth order transmittance in
p-polarization for incoming light with s-polarization. The transmittance data is plotted in a
logarithmic gray-scale plot. For pseudo-color plots on a linear scale, see App. B. There, the
transmittances in all orders and for all polarizations are shown.

In the case of θ = 30◦, we find light transmitted into the 0th and the 1st order. The exper-
imental transmittance is shown in Fig. 4.7, whereas the numerically calculated spectra are
depicted in Fig. 4.8.

Figure 4.7: Experimental data for the transmittances Tss (incoming s-polarization, zeroth
order transmittance in s-polarization), Tpp (incoming p-polarization, zeroth or-
der transmittance in p-polarization) and Tsp (incoming s-polarization, zeroth
order transmittance in p-polarization) with an angle of incidence θ = 30◦. The
white, dashed lines indicate the resonances of scattering at lattice planes (hkl)
described by a Bragg model. The plots are taken from Ref. [44].

Figure 4.8: Numerical data obtained with the FMM corresponding to Fig. 4.7. The plots
are taken from Ref. [44].

As in the previous section, the magnitudes of the transmitted light in numerics and exper-
iment differ. However, the overall agreement of experiment and simulation is qualitatively
good. In both plots, dashed white lines indicate the position of diffraction resonances. They
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are retrieved by superimposing Bragg resonances obtained by applying a one-dimensional
Bragg model to the opal lattice. Then, the resonance condition is given by [44]

λ = 2dhklneff

√
1− sin2 (^rϕ, n̂hkl) (4.1)

where dhkl is the inter-plane spacing between (hkl)-planes, (hkl) being the Miller indices of
the crystal planes. Further, rϕ is given by

rϕ = rθ cosϕ+ n̂111(n̂111rθ)(1− cosϕ) + n̂111 × rθ sinϕ (4.2)

where rθ is the unit vector along the propagation direction of the incident light field. n̂111 is
the normal vector of the (111) plane which is the layer of close-packed spheres as shown in
Figs. 4.1(b) and (c). A sketch is also provided in Fig. 4.9. The effective index of refraction
neff is obtained by fitting to the angle dispersion of the (111) resonances, with a result of
neff = 1.387 which effectively corresponds to the filling fraction of the unit cell.1

Figure 4.9: Sketch for the quantities used to calculate the lattice resonances via the Bragg
model, taken from Ref. [44].

Similar to θ = 30◦, spectra for θ = 65◦ were measured and calculated. The results are
depicted in Figs. 4.10 and 4.11 for experiment and numerics, respectively.

1Since the filling fraction of the opal fcc structure is about 74%, the theoretical effective refractive index
would be neff =

√
0.74n2

PMMA + 0.26n2
air = 1.379.
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4.3 Axial anisotropy in opal photonic crystals

Figure 4.10: Experimental data for Tss, Tpp and Tsp with an angle of incidence θ = 65◦.
The plots are taken from Ref. [44].

Figure 4.11: Numerical data corresponding to Fig. 4.10. The plots are taken from Ref. [44].

In general, the Bragg model describes the resonances very well. This is not a priori clear
since the Bragg model assumes an infinite crystal while the investigated sample is finite in
x3 direction. For θ = 65◦, light is transmitted into orders higher than the first, while θ = 30◦
yields only scattering into zeroth and first order, cf. Appendix B. Certain further symmetry
considerations and the effects of stacking faults regarding symmetries in the transmittance
are discussed in Ref. [44].
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Chapter 5

Two-Dimensional Coordinate
Transformations

In the previous chapter, we discussed the fundamentals of coordinate transformations and
argued that such transformations change the shape of the permittivity and permeability. In
this chapter, we investigate how suitable coordinate transformations are obtained for a given
problem or structure. The transformations constructed and analyzed in this chapter are of
the form

x̄1 = x̄1
(
x1, x2

)
, (5.1a)

x̄2 = x̄2
(
x1, x2

)
, (5.1b)

x̄3 = x3. (5.1c)

This means we transform the permittivity and the permeability only in the lateral plane
which is perpendicular to the slicing direction of the FMM.

The chapter is structured in the following way: Firstly, we discuss how the restriction to the
lateral plane affects the transformed permittivity. Secondly, we review work that has been
published on the topic of the construction of one- and two-dimensional meshes1. In Section 5.3
we discuss analytical mesh generation in great detail: Three different types of analytical
meshes are introduced, namely nondifferentiable, smoothed and differentiable meshes. We
also examine important technical aspects like transformations for coordinate line compression,
the enforcement of periodic boundary conditions, and treatment of nonrectangular unit cells.
In Section 5.4, we have a close look at how the different types of meshes and different sets
of mesh parameters influence the performance of the method. This is done by studying a
waveguide and a metallic cylinder array as test systems. The chapter is concluded by the
formulation of a modularity concept for analytical mesh construction.

1The terms “coordinate transformation” and “mesh” are used synonymously in the remainder of this thesis.
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Chapter 5 Two-Dimensional Coordinate Transformations

5.1 Transformed permittivity

Since the coordinate transformations we examine in this chapter are not fully three-dimen-
sional, the tensors of the effective permittivity and permeability are not fully anisotropic.
Assuming an isotropic permittivity ε̄ in the Cartesian space, see Eq. (3.2a), the form of the
effective permittivity is

ε11 = √
g ε̄

(
∂x1

∂x̄1
∂x1

∂x̄1 + ∂x1

∂x̄2
∂x1

∂x̄2

)
, (5.2a)

ε12 = √
g ε̄

(
∂x1

∂x̄1
∂x2

∂x̄1 + ∂x1

∂x̄2
∂x2

∂x̄2

)
, (5.2b)

ε21 = √
g ε̄

(
∂x2

∂x̄1
∂x1

∂x̄1 + ∂x2

∂x̄2
∂x1

∂x̄2

)
= ε12, (5.2c)

ε22 = √
g ε̄

(
∂x2

∂x̄1
∂x2

∂x̄1 + ∂x2

∂x̄2
∂x2

∂x̄2

)
, (5.2d)

ε33 = √
g ε̄. (5.2e)

The other entries of the effective permittivity tensor are zero. The effective permeability looks
analogously. Since the effective permittivity tensor is anisotropic in the transverse plane but
not fully anisotropic, we can still use the small eigenvalue problem of the FMM.

Upon inspecting Eq. (5.2) one finds that the derivatives ∂xi/∂x̄j are needed. This means
that we need the transformations xi(x̄j , x̄k) instead of the ones in Eq. (5.1). We obtain them
using the relation

∂x1

∂x̄1
∂x1

∂x̄2 0
∂x2

∂x̄1
∂x2

∂x̄2 0
0 0 1

 = J̄
(i)= J−1 =


∂x̄1

∂x1
∂x̄1

∂x2 0
∂x̄2

∂x1
∂x̄2

∂x2 0
0 0 1


−1

(ii)= 1
det(J)


∂x̄2

∂x2 −∂x̄1

∂x2 0

−∂x̄2

∂x1
∂x̄1

∂x1 0
0 0 1

 (5.3)

This statement for the Jacobian J uses (i) the inverse function theorem and (ii) Cramer’s
rule. Thereby, the general procedure to obtain the transformed permittivity is to first set up
the transformations like in Eq. (5.1). Then, we retrieve the derivatives necessary for Eq. (5.2)
by means of Eq. (5.3).

Although it may seem like a technicality at this point, it is worth to have a closer look at the
numerical differentiation rule we use in our numerical framework. It reads

∂x̄1

∂x1

(
x1
i , x

2
j

)
≈
−x̄1

(
x1
i+2, x

2
j

)
+ 8x̄1

(
x1
i+1, x

2
j

)
− 8x̄1

(
x1
i−1, x

2
j

)
+ x̄1

(
x1
i−2, x

2
j

)
12∆x1 . (5.4)

Here, ∆x1 is the step size of the discretization in x1 direction. At the edges of the computa-
tional domain, i.e., the unit cell, the derivatives are calculated using periodic boundaries. It
is important to realize that the rule used for numerical differentiation directly influences the
structures we investigate: using a different rule results in different derivatives in Eq. (5.2).
Thereby, the numerical differentiation rule changes the appearance of the permittivity and
permeability in the transformed space.

The question answered in the following is how the transformations in Eq. (5.1) can be
constructed. Before constructing them, we briefly review other works on this topic.
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5.2 Review of related work

5.2 Review of related work

In recent years, different approaches emerged to construct two-dimensional meshes for the
Fourier Modal Method. Conceptually, we can distinguish two avenues: analytical and numer-
ical mesh generation. While the former tries to implement general rules to construct a mesh
by setting up functions by hand, the latter tries to implement a general procedure that is
able to cope with arbitrary permittivity profiles. Both methods feature specific advantages.
The strength of the automated, numerical mesh generation is that it offers a highly versatile
tool since any given permittivity can be treated. Analytical coordinate transformations, on
the other hand, offer a lot of freedom in terms of selective and systematic change in the mesh
properties. They can also be very time efficient: when a large parameter scan is required in
which the geometrical parameters of the structure are varied, analytical transformations are
easily adjusted. The work presented in this thesis concentrates on analytical mesh genera-
tion.

The first coordinate transformations were published for lamellar grating structures [17, 51],
i.e., structures where each slice in z direction is effectively one-dimensional. An adaptive
mesh is then constructed by a suitable function x̄1 = x̄1(x1). The aim is to increase the
density of discretization points at certain specific points, namely at the jumps in the per-
mittivity between different materials. We refer to this concept of manipulating the density
of coordinate lines as adaptive spatial resolution (ASR). The ASR transformation we use
in our computations is based on the one presented in Ref. [51]. It is described in detail in
Section 5.3.7.

An important step towards two-dimensional, analytic mesh generation in the context of the
FMM was published by Granet et al. [52]. They extended the method to crossed gratings.
However, the mesh consisted of two superimposed one-dimensional transformations, each in
one direction. Therefore, the applicability was limited to rectangular structures. The first
true two-dimensional mesh was published by Weiss et al. [15]. The authors obtain a mesh for
a cylindrical structure, see Fig. 5.1(a). The coordinate lines follow the surface of the structure
under investigation—we refer to this principle from now on as adaptive coordinates (AC). In
addition, the authors apply an ASR function which is observable by the high coordinate
line density along the surface in Fig. 5.1(a). The effect of applying this two-dimensional
transformation is investigated for a dielectric and a metallic test system. While it was an
excellent first attempt to use analytical ASR and AC in the FMM, it still lacked both a
general construction principle and a motivation or guide on how to obtain proper parameters
for the transformations.

Automated, numerical mesh generation in the context of the FMM has recently been pro-
posed by Essig et al. [16]. Here, the underlying idea is to set up an energy functional which
is minimized to obtain a suitable mesh. An example is depicted in Fig. 5.1(b). The en-
ergy functional contains different terms for various purposes. First, it contains the so-called
gradient energy the effect of which is to increase the density of coordinate lines along the
structure’s surface. It is called gradient energy since it is constructed such that the gradient
of the given permittivity distribution enters the calculation—a large gradient represents a
sudden change in the permittivity, e.g., a material boundary. The second term is called tan-
gential energy and is designed in a way that the coordinate lines are aligned parallel to the
structure’s surface. Again, the gradient of the permittivity is used. The third and final term
is called compression energy. Its purpose is to restore the Cartesian mesh such that the mesh
is distorted only as much as necessary. The authors of Ref. [16] demonstrate the strength
of the automated, numerical mesh generator by applying it to several different structures.
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Chapter 5 Two-Dimensional Coordinate Transformations

Figure 5.1: Published work on analytical and numerical mesh generation in the context of
the FMM. Panel (a) displays an analytical mesh for a cylindrical structure. The
figure is taken from Ref. [15]. Panel (b) shows a mesh obtained by applying an
automated mesh generator to a cylinder. The figure is taken from Ref. [16].

Unfortunately, like in the case of Ref. [15], no guidelines are formulated how an optimal mesh
can be obtained. Moreover, the transformed permittivity is not necessarily grid-aligned, see
Ref. [33].

5.3 Mesh construction
In the previous section, we briefly reviewed work that has been published on the topic of
two-dimensional mesh generation for the Fourier Modal Method. Both analytical and nu-
merical approaches show improved performance compared to the classic FMM formulation.
On the other hand, no guidelines or general principles were formulated on how a mesh has
to be constructed and which parameters are optimal. In fact, up to this point it remained
unclear whether there existed an optimal choice or sweet spots for the mesh parameters. This
changed by the publication of Ref. [53]. In this work, Thomas Zebrowski, Kurt Busch and I
first showed the peculiarities occurring when using the mesh by Weiss et al. in Fig. 5.1(a).
Then, we presented different types of meshes and investigated their influence on the conver-
gence behavior. This Section 5.3 and Section 5.4 are effectively taken from Ref. [53], with
some supplemental information added. This work arose from close cooperation with Thomas
Zebrowski and Kurt Busch who participated in the conceptional development. I designed the
coordinate transformations, constructed the mappings and performed the convergence and
performance studies. The FMM code used was written mainly by Thomas Zebrowski and
Sabine Essig, minor parts were contributed by myself.

5.3.1 Motivation

Before we present different approaches to the actual construction of coordinate transforma-
tions in the subsequent sections, we describe the general idea of adaptive coordinates in
more detail by way of an example. Without coordinate transformation, the permittivity
distribution within a unit cell of a cylindrical fiber array may look like the one depicted in
Fig. 5.2(a). Here, we display the material matrix of a fiber with εfib = 2 in a background
material with εbg = 1 on a grid with 1024× 1024 points. This is the same discretization we
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5.3 Mesh construction

use in our computations in Section 5.4. We discussed above that an analytical coordinate
transformation for a cylinder is given in Ref. [15], see Fig. 5.1(a). An enlarged sector of the
mesh is shown in Fig. 5.2(b). The mesh has two important properties. Firstly, there are many
points where the mesh is not differentiable—some of them are marked with green, dashed
circles. Secondly, there is one point (marked with a red circle) where the coordinate lines
in x̄1- and in x̄2-direction are parallel. In the following, we show how this transformation
affects the eigenvalue problem of the FMM. As we have argued in Chapter 3, the matrix
that is Fourier transformed when using FMM with AC and/or ASR is not the permittivity
itself but rather the effective permittivity defined in Eq. (3.2a). For our present example, we
depict the ε11-component of the tensor in Fig. 5.2(c). Several features are worth pointing
out: Firstly, the structure is now grid-aligned, i.e., the coordinate transformation maps the
circular fiber cross section onto a squarish geometry for which the Fourier factorization rules
are much more effective. Secondly, depending on the tensor component under investigation
the nondifferentiable points in the mesh lead to discontinuities in the effective permittivity.
The third feature is actually not visible here since the color scale is saturated at 4: In the
corners of the material square, values in excess of 5000 are reached. In order to understand
why, we investigate the derivative ∂x1/∂x̄1. We have shown in Eq. (5.3) that it is given by

∂x1

∂x̄1 =
(
∂x̄1

∂x1
∂x̄2

∂x2 −
∂x̄1

∂x2
∂x̄2

∂x1

)−1

︸ ︷︷ ︸
= |J |−1

∂x̄2

∂x2 . (5.5)

If the coordinate lines of the mesh are parallel in x̄1- and x̄2-direction at one point, the
determinant of the Jacobian J of the coordinate transformation will become zero at this
point. This leads to a diverging derivative ∂x1/∂x̄1 and, thereby, to a diverging effective
permittivity, see Eq. (3.2a).

Figure 5.2: Illustration of the effect of adaptive coordinates. Panel (a) depicts the permit-
tivity distribution for a fiber with radius 0.3 centered in a square unit cell within
a Cartesian coordinate system. Panel (b) displays a section of the nondifferen-
tiable fiber mesh from Ref. [15]. Some points where the mesh is nondifferen-
tiable are marked with green, dashed circles. The point where the coordinate
lines of the mesh are parallel in x̄1- and x̄2-direction is marked with a red circle.
Panel (c) displays the ε11-component of the effective permittivity tensor that
is obtained when the adaptive coordinates from (b) are applied to (a). In the
transformed space, the effective permittivity tensor is fully grid-aligned but the
numerical values at the rectangle edges are several orders of magnitude larger
than 4. The color scale has been saturated at 4 in order to show more features.
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In the following sections, we show how to construct various classes of meshes. The first class
is very similar to the one just discussed—in the transformed space, the material distribution
assumes a rectangular form. As hinted to above, this means that the material surface is
enclosed by four specific coordinate lines and no specific attention to smoothness is paid.
We delineate how to construct such nondifferentiable meshes even for complex structures in
section 5.3.2. The second class of meshes, called smoothed meshes, is built in such a way
that the four specific coordinate lines are smooth. In section 5.3.3, we discuss that this does
not yet lead to fully differentiable meshes. However, smoothed meshes deform the shape
of the structure in the transformed space away from the advantageous rectangular forms.
Finally, we construct a third class of meshes for which all coordinate lines are differentiable
everywhere in the unit cell. This differentiable meshing is discussed in Section 5.3.4.

At the end of this section, I would like to point out the two distinct interpretations that may be
associated with the coordinate transformations discussed here. The first interpretation is that
we map a given permittivity distribution onto a new distribution according to a given mesh.
This means that we go from bent coordinate lines to straight coordinate lines (or material
surfaces) as shown in Fig. 5.2. This interpretation is particularly useful when we discuss
the shape of the effective permittivity in the FMM. The second interpretation is used for
constructing the meshes. Then we talk about how to map straight coordinate lines onto bent
lines that match the surface given by the material distribution. Both these interpretations
are valid—which one to use depends on whether the construction or the application of the
meshes is emphasized.

5.3.2 Construction of nondifferentiable meshes

In this section, we show how to construct nondifferentiable meshes associated with com-
plex structures by way of a particular example, the crescent-shaped structure depicted in
Fig. 5.3(a). Its tips are rounded so that it is defined by six quantities: the radius r1 and the
center (M1, N1) of the large (outer) circle, the radius r2 and the center (M2, N2) of the small
(inner) circle, and the radii r3 and r4 of the tiny circles that form the tips (see Fig. 5.3(b)).
We assume that these quantities are given and, furthermore, that the crescent is symmetric
(i.e., r4 = r3) and not rotated in the unit cell, i.e., M1 = M2. While this makes the following
example simpler, it does in no way restrict the method. Henceforth, all geometric quantities
such as radii, side lengths, etc., are given in units of the lattice constant.

The crescent is composed of four circle arcs described by(
x1 −Mi

)2
+
(
x2 −Ni

)2
= r2

i , i = 1, ..., 4, (5.6)

where the circles are labeled by their numbers 1 to 4. After some geometric considerations
(see Fig. 5.3(b)), we find the center of circle 3 at

N3 = (r2 + r3)2 − (r1 − r3)2 +N2
1 −N2

2
2N1 − 2N2

, M3 = M1 −
√

(r1 − r3)2 − (N3 −N1)2. (5.7)

The point P = (x1
P , x

2
P ) where the tip circle 3 meets the outer circle 1 is given by

x1
P = M3 − r3 cos

(
arctan

(
N3 −N1
M1 −M3

))
, x2

P = N3 +
√
r2

3 − (x1
P −M3)2, (5.8)
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5.3 Mesh construction

Figure 5.3: Layout of a complex unit cell for the illustration of mesh construction. A cres-
cent with rounded tips is described by four circles—a large, outer circle (blue,
radius r1), a small, inner circle (red, radius r2), and two tiny circles at the
crescent tips (radii r3 and r4). To define the orientation of the crescent within
the unit cell, the centers (M1, N1) and (M2, N2) of the inner and outer circles
need to be specified. The centers (M3, N3) and (M4, N4) of the tiny circles are
uniquely determined once the centers of the inner and outer circles and the radii
of all four circles are specified.

while the intersection point D = (x1
D, x

2
D) of circle 3 and 2 is

x1
D = M3 + r3 cos

(
arctan

(
N2 −N3
M2 −M3

))
, x2

D = N3 +
√
r2

3 − (x1
D −M3)2. (5.9)

We now proceed with the actual meshing procedure. Firstly, as many coordinate lines as
necessary are selected so that their mapping to the structure’s surface leads to its complete
coverage. Secondly, the surface is parametrized so as to obtain an analytical expression for
the mapping of the coordinate lines from step one. Thirdly, the mappings for the remaining
coordinate lines are obtained by linear interpolation between the selected coordinate lines.

For the linear transition we define the useful function

LT (c, c̄, d, d̄, x) = d̄− c̄
d− c

x+ c̄− c d̄− c̄
d− c

(5.10)

which, as a function of x ∈ [c, d], defines a straight line through the points (c, c̄) and (d, d̄).
Moreover, we can enter entire coordinate lines in LT (i.e., c = c(y), etc.) such that LT
describes the linear transition between these coordinate lines. Therefore, when a coordinate
line c(y) is mapped on a new coordinate line c̄(y) and a coordinate line d(y) is mapped
on a new coordinate line d̄(y) then the mapping of the coordinate line x is given by LT .
In Fig. 5.4, we provide an illustration of such a mapping where the left and right vertical
coordinate lines are mapped onto curved lines (green and blue). The coordinate lines in
between (marked with crosses) are given by a linear transition from the left to the right
curved line, i.e., the distances on the horizontal axis are equal between the coordinate lines.
As in any linear function, it does not matter in which sequence the points (or coordinate
lines) are arranged—i.e., LT (c, c̄, d, d̄, e) ≡ LT (d, d̄, c, c̄, e).

Based on this, we illustrate in Figs. 5.5(a) and 5.5(b) the meshing of the crescent-shaped
structure introduced in Fig. 5.3. First, the four characteristic points P,Q,R and S are found.
Point P is given by Eq. (5.8) and point R = (x1

R, x
2
R) is given by the intersection of the
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Chapter 5 Two-Dimensional Coordinate Transformations

Figure 5.4: Illustration of a linear transition from Cartesian coordinate lines to curved co-
ordinate lines via the linear transition function LT . The straight coordinate
lines a and b are, respectively, mapped to the green and blue bent coordinate
lines. The mapped lines in between (marked with crosses) are given by the
linear transition between the bent outer lines.

Figure 5.5: Illustration of how to mesh complex structures. Specific coordinate lines that
pass through the structure’s characteristic points are selected (panel (a)) and
subsequently mapped to the structure’s surface.

(Cartesian) coordinate line x1
P with the structure surface. Then, points Q and R follow from

the structure’s symmetry.

R =
(
x1
P , N1 −

√
r2

1 − (x1
R −M1)2

)
, Q = (2M1 − x1

P , x
2
P ), S = (x1

Q, x
2
R). (5.11)

The (Cartesian) coordinate lines passing through any two of these characteristic points divide
the unit cell into the zones 1© to 9©. Secondly, the so selected (Cartesian) coordinate lines have
to be deformed in order to follow the crescent’s surface and this surface has to be parametrized
(see Eq. (5.6)). Third and final, we have to find the two-dimensional transformation function(
x̄1 (x1, x2) , x̄2 (x1, x2)) that maps the unit cell to itself by a linear transition between these
deformed coordinate lines. This is done separately for all nine zones in the unit cell and
we will discuss only zone 4© (see Figs. 5.5(a) and 5.5(b)). The red (horizontal) coordinate
lines in zone 4© in Fig. 5.5(a) are not affected by the mapping (i.e. they are in the same
position in Figs. 5.5(a) and 5.5(b)). This means that the mapping for x̄2 (corresponding to
the horizontal red lines) is the identity mapping

x̄2
(
x1, x2

)
= x2,

(
x1, x2

)
∈ 4©. (5.12)

The same applies to the leftmost coordinate line. The rightmost coordinate line experiences

54



5.3 Mesh construction

a deformation from a straight line to the arc given in Eq. (5.6). Explicitly, this reads

x̄1
(
x1, x2

)
= LT ( 0 , 0︸ ︷︷ ︸

map left edge onto itself

, x1
P , M1 −

√
r2

1 − (x2 −N1)2︸ ︷︷ ︸
map PR coordinate line on circle arc

, x1)

Eq. (5.10)=
(
M1 −

√
r2

1 − (x2 −N1)2
)
x1

x1
P

,
(
x1, x2

)
∈ 4©. (5.13)

The interior coordinate lines have thus been mapped with the help of the linear transition
LT as described above. Analogous mappings can be constructed for all other zones in the
unit cell [0, 1]× [0, L].

A compact representation of the complete coordinate transformation is facilitated by defining
circle arc (CA) functions for either the left, right, top, or bottom side of the crescent. Their
form is derived from Eq. (5.6) by choosing the correct sign of the square root

CAL/R
(
i, x2) = Mi ∓

√
r2
i − (x2 −Ni)2,

CAT/B
(
i, x1) = Ni ±

√
r2
i − (x1 −Mi)2,

i = 1, ..., 4. (5.14)

Here, the subscripts L,R,T , and B refer to left, right, top, and bottom, respectively.

Finally, upon introducing the point E = (x1
E , x

2
E) = (2M1−x1

D, x
2
D), we arrive at the complete

coordinate transformation as

x̄1
(
x1, x2

)
=



x1 (
x1, x2) ∈ 1©, 2©,

3©, 7©, 8©, 9©
LT

(
0, 0, x1

P , CAL
(
1, x2) , x1) (

x1, x2) ∈ 4©
LT

(
x1
P , CAL

(
1, x2) , x1

Q, CAR
(
1, x2) , x1

) (
x1, x2) ∈ 5©

LT
(
x1
Q, CAR

(
1, x2) , 1, 1, x1

) (
x1, x2) ∈ 6©.

(5.15)

The x̄2 mapping is more complex but the construction follows the same principles. It reads

x̄2(x1, x2) =



x2 (
x1, x2) ∈ 1©,

3©, 4©, 6©, 7©, 9©
LT

(
L,L, x2

P , CAT
(
3, x1) , x2) x1 ≤ x1

D

LT
(
L,L, x2

P , CAB
(
2, x1) , x2) x1 ∈ (x1

D, x
1
E)

LT
(
L,L, x2

P , CAT
(
4, x1) , x2) x1

E ≤ x1

 (
x1, x2) ∈ 2©

LT
(
x2
P , CAT

(
3, x1) , x2

R, CAB
(
1, x1) , x2) x1 ≤ x1

D

LT
(
x2
P , CAB

(
2, x1) , x2

R, CAB
(
1, x1) , x2) x1 ∈ (x1

D, x
1
E)

LT
(
x2
P , CAT

(
4, x1) , x2

R, CAB
(
1, x1) , x2) x1

E ≤ x1

 (
x1, x2) ∈ 5©

LT
(
x2
R, CAB

(
1, x1) , 0, 0, x2) (

x1, x2) ∈ 8©.
(5.16)

We shortly discuss the x̄2 mapping in zone 2©. The upper edge of zone 2© is mapped to itself
(L). The upper red (horizontal) line in Fig. 5.5(a) is mapped on the line between P and Q
consisting of the three circles 3, 2 and 4. The parts in between are again given by the linear
transition function LT .
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In Fig. 5.6(a), we display the resulting mesh. In addition, we may compress the coordinate
lines towards the crescent’s surface as depicted in Fig. 5.6(b). However, we postpone a
discussion of coordinate line compression to Section 5.3.7.

The construction principle described above represents a very general procedure and can be
applied to a great variety of structures. For instance, Fig. 5.7 displays characteristic points,
selected coordinate lines and the resulting mesh for a step-index fiber.

Figure 5.6: Nondifferentiable meshes for a crescent with parameters r1 = 0.25, r2 =
0.2, r3 = r4 = 0.02, M1 = 0.45, N1 = 0.38, M2 = M1, N2 = 0.5884, L = 0.8.
Panel (a) displays the basic analytical mesh. Panel (b) depicts a mesh where an
additional coordinate line compression using the parameters G = 0.05, ∆x1 =
0.4, x̄1

1 = x1
P , x̄

1
2 = x1

Q, ∆x2 = 0.4, x̄2
1 = x2

R, x̄
2
2 = x2

P has been applied (see
Section 5.3.7 for details). Panel (c) features a close-up of (a) of the left crescent
tip.

Figure 5.7: Characteristic points, selected coordinate lines, and nondifferentiable mesh for
a step-index fiber. The outer radius is 0.3 and the inner radius is 0.1. The
circles are centered in (0.45,0.4) and the unit cell is [0, 1]× [0, 0.8].

It is worth pointing out that the general construction principle described here reproduces the
cylinder mesh byWeiss et al. [15] (see also Figs. 5.1(a) and 5.2(b)). In the subsequent sections,
we will use this simple structure in order to illustrate the construction of smoothed and fully
differentiable meshes and to compare their performance in actual FMM computations.
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5.3.3 Construction of smoothed meshes

The construction principle for the above meshes has two key properties. Firstly, at the
characteristic points the meshes are typically nondifferentiable. Secondly, at some points the
coordinate lines are parallel in x̄1- and in x̄2-direction (see Fig. 5.2(b)). The latter causes
a divergent effective permittivity (see Eq. (3.2a)). Therefore, we describe a way to design
smoothed meshes that avoid these singularities in the following. In this context, smoothed
means that the characteristic coordinate lines are mapped to smooth curves. This results
in meshes the partial derivatives of which are still discontinuous at several points. In this
sense, the present section represents an intermediate step from nondifferentiable to fully
differentiable meshes which are discussed in the subsequent section.

Figure 5.8: Illustration of the construction principle for smoothed meshes. Panel (a) de-
picts how the nondifferentiable transition from (Cartesian) characteristic line
to a circle arc (as described in Section 5.3.2) is smoothed by a (differentiable)
parabola. The parabola and the circle arc meet at the point ū = x− + τ with
smoothing parameter τ . Straight line and parabola meet at a which also de-
pends on τ . Panels (b) and (c) show how the characteristic coordinate lines
passing through P,Q,R and S are mapped.

For illustrative purposes, we consider a square unit cell [0, 1]× [0, 1] with a circle of radius r
located in the center. Just as in the previous section, we choose characteristic points, namely
the four points R = (x−, x−), S = (x+, x−), P = (x−, x+) and Q = (x+, x+), where we have
introduced the abbreviations x± = 0.5± r√

2 .

In order to obtain partial differentiability for the characteristic coordinate lines, we smooth
the transition from straight line to circle arc with a parabola (see Fig. 5.8(a)). The parabola
is adjusted such that it is differentiable both at point a and at point ū. We determine ū
by choosing a smoothing parameter τ , i.e., ū = x− + τ . Apparently, this adjustment of
the transition function is not unique and one could use functions other than parabolas. By
assuming a general form of

g(x1, a, b, x−) = b(x1 − a)2 + x− (5.17)
for the parabola g we assure continuity and differentiability at a. Demanding continuity and
differentiability at ū determines the parameters a and b.

a = − 2
ū− 0.5

(
−
√
r2 − (ū− 0.5)2 + 0.5− x−

)√
r2 − (ū− 0.5)2 + ū, (5.18a)

b = 1
4 (ū− 0.5)2

[(
−
√
r2 − (ū− 0.5)2 + 0.5− x−

)(
r2 − (ū− 0.5)2

)]−1
. (5.18b)
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The mapping itself is performed with the same methods as described in the preceding section.
The coordinate lines that pass through any pair of characteristic points P,Q,R, S are mapped
onto the smoothed curves as depicted in Fig. 5.8. The other coordinate lines follow by a
linear transition. The functions needed are given in Eq. (5.10), Eq. (5.17) and by CA±(x1) =
±
√
r2 − (x1 − 0.5)2 + 0.5.

The mapping for the horizontal lines, i.e., the component x̄2 then reads

x̄2
(
x1, x2

)
=

x2, x1 ∈ [0, a) ∪ (1− a, 1], x2 ∈ [0, 1]

LT
(
0, 0, x−, g(x1, a, b, x−), x2) , x1 ∈ [a, ū]

LT
(
0, 0, x−, CA−

(
x1) , x2) , x1 ∈ (ū, 1− ū)

LT
(
0, 0, x−, g(x1, 1− a, b, x−), x2) , x1 ∈ [1− ū, 1− a]

 x2 ∈ [0, x−]

LT
(
x−, g(x1, a, b, x−), x+, g(x1, a,−b, x+), x2) , x1 ∈ [a, ū]

LT
(
x−, CA−

(
x1) , x+, CA+

(
x1) , x2) , x1 ∈ (ū, 1− ū)

LT
(
x−, g(x1, 1− a, b, x−), x+, g(x1, 1− a,−b, x+), x2) , x1 ∈ [1− ū, 1− a]

x2 ∈ (x−, x+)

LT
(
x+, g(x1, a,−b, x+), 1, 1, x2) , x1 ∈ [a, ū]

LT
(
x+, CA+

(
x1) , 1, 1, x2) , x1 ∈ (ū, 1− ū)

LT
(
x+, g(x1, 1− a,−b, x+), 1, 1, x2) , x1 ∈ [1− ū, 1− a]

 x2 ∈ [x+, 1]

(5.19)

The mapping for the vertical lines, i.e., the component x̄1 can be found in an analogous
manner. For our simple system, symmetry mandates that the coordinate x̄1 is constructed
from the horizontal line mapping, Eq. (5.19), by interchanging x1 and x2. In Fig. 5.9, we
depict the final results of this mapping (cf. Fig. 5.2(b) for a corresponding ‘unsmoothed’
mesh). An important effect of this smoothing procedure is that the structure’s surface is
no longer grid-aligned in the undistorted, Cartesian space described by Eq. (3.2a). This is
visualized in the subsequent section.

Figure 5.9: Smoothed meshes for a circular structure (radius r = 0.3) centered in a square
unit cell. Panels (a) and (b) depict meshes with smoothing parameters τ = 0.07
and τ = 0.035, respectively. Panel (c) shows a close-up of the mesh in (b).

Nevertheless, upon inspecting the above expressions we find that the mesh is nondifferentiable
at points x1 ∈ (a, 1 − a), x2 = x± and x1 = x±, x

2 ∈ (a, 1 − a). The effect of this
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nondifferentiability manifests itself in a sudden change of the density of coordinate lines
between outside and within the circular structure (see Fig. 5.9). As mentioned above, without
any smoothing (i.e., Eq. (5.19) with τ = 0) we obtain the expressions for the circle mesh as
described in Ref. [15]. In the remainder, we refer to this mesh as the nondifferentiable circle
mesh.

Before we design differentiable meshes, we demonstrate that we can construct a different
smoothed mesh with different properties: Instead of making the specific coordinate lines of
the nondifferentiable mesh smooth, we construct new specific coordinate lines which are also
smooth but enclose the entire surface of the cylinder. However, this procedure again leads to
a diverging effective permittivity.

In Fig. 5.10 we depict the construction principle for this alternative smoothed mesh.

Figure 5.10: Illustration of the construction principle for the alternative smoothed mesh.
Panel (a) depicts how the nondifferentiable transition from (Cartesian) char-
acteristic line to the circle arc is smoothed by a (differentiable) parabola. In
contrast to the smoothed mesh described above, the parabola and the circle
arc meet at the point x−. Thus, the entire surface of the cylinder is enclosed by
characteristic lines. Straight line and parabola meet at a which also depends
on τ . Panels (b) and (c) show how the characteristic coordinate lines (solid)
passing through P,Q,R and S are mapped. The dashed lines in panel (b) are
the characteristic lines of the smoothed mesh in Fig. 5.8.

The basic idea is that the parabola transition has its starting point at a point on the circle,
compare Figs. 5.8(a) and 5.10(a). The free parameter used is again called τ—only this time
it has a different meaning: it directly defines the new characteristic lines. In each direction,
they are given by x− + τ and x+ − τ , with x± = 0.5 ± r/

√
2. The points P,Q,R, S are

identical to the ones in Fig. 5.8. As before, we have to obey continuity and differentiability
conditions. The result is a parabola of the form

g
(
x1, a, b, τ

)
= b

(
x1 − a

)2
+ x− + τ, (5.20)

with parameters

a(τ) = 2τ
√
r2 − (x− − 0.5)2

x− − 0.5 + x−, b = −1
4

(x− − 0.5)2

τ (r2 − (x− − 0.5)2) . (5.21)

Thereby, we essentially constructed the characteristic lines—the entire mapping is obtained
using the LT -function and the methodology described in Section 5.3.2. However, the effective
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permittivity diverges due to the way we constructed the mesh: In P,Q,R, S the vertical and
horizontal coordinate lines are parallel, see Fig. 5.10(c). As we argued in Section 5.3.1, this
immediately leads to a diverging transformed permittivity.

The idea of discussing this alternative mesh is to show that a smoothed mesh is still able to
enclose the entire surface. This means that smoothness (or differentiability) and an entirely
enclosed surface do not form an irreconcilable conflict. On the other hand, we argued that
this is not a way to get rid of the dilemma of the diverging effective permittivity. Therefore,
we do not include performance calculations of this mesh in Section 5.4.

Next, we improve the smoothed meshes and illustrate how to construct fully two-dimensional
differentiable meshes, i.e., meshes for which all partial derivatives exist and are continuous
at all points throughout the unit cell.

5.3.4 Construction of differentiable meshes

In the case of smoothed meshes we performed the “parabola construction” only for the co-
ordinate lines passing through the characteristic points. The coordinate lines in between
were obtained by linear interpolation and it is this linear interpolation that eventually leads
to discontinuous partial derivatives. Therefore, we can obtain fully differentiable meshes
by applying the “parabola-construction” to all coordinate lines. We reuse the illustrative
example of the previous section: a circle with radius r which is centered in a square unit
cell [0, 1] × [0, 1]. The intersection of parabola and straight line is given by a just like in
Eq. (5.18a). Also, we use the same definition of x± and of ū = x− + τ . Again, τ is the
only free parameter and determines to what extent the mesh is smoothed. In Fig. 5.11(a),
we display how the unit cell is divided for the construction of the mapping. We restrict our
discussion to the mapping in the zones 1© to 6©—the other regions may be treated in an
analogous fashion or follow directly from symmetry considerations.

Figure 5.11: Illustration of the construction principle for differentiable meshes. Panel (a)
shows the partitioning of the unit cell and panel (b) depicts the resulting
differentiable mapping.
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Zones 1©, 2©, 3©: In these regions, we choose the mappings exactly as in the case of the
nondifferentiable circle mesh (see Ref. [15] or Section 5.3.3); the mappings read

x̄1
(
x1, x2

)
= x1, x̄2

(
x1, x2

)
= x2,

(
x1, x2

)
∈ 1©, (5.22)

x̄1
(
x1, x2

)
= x1

x−

(
0.5−

√
r2 − (x2 − 0.5)2

)
, x̄2

(
x1, x2

)
= x2,

(
x1, x2

)
∈ 2©, (5.23)

x̄1
(
x1, x2

)
= 2x1 − 1
x+ − x−

√
r2 − (x2 − 0.5)2 + 1

2 , x̄
2
(
x1, x2

)
= x̄1(x2, x1),

(
x1, x2

)
∈ 3©. (5.24)

Zone 4©: To construct the mapping in this zone we have to deal with transitions from
straight lines (zone 1©) to ellipse arcs (zone 2©). The general form of the ellipse arcs is given
by

r2 =
(
x̄1 − x1

0

)2
δ +

(
x̄2 − x2

0

)2
γ (5.25)

with the parameters x1
0, x

2
0, δ and γ. From this, we can infer the ellipse parameters in zone

2© by comparing with the mapping in Eq. (5.23): x1
0 = 1

2
x1

x−
, x2

0 = 0.5, δ =
(
x−
x1

)2
, γ = 1.

We aim to connect the straight lines (i.e., the identity mapping) in zone 1© with the ellipse
arcs by a family of parabolas of the form

x̄1
(
x1, x2

)
= b

(
x1
) (
x2 − a

)2
+ x1, x̄2

(
x1, x2

)
= x2,

(
x1, x2

)
∈ 4©. (5.26)

Note that even though a is still given by Eq. (5.18a), b is not a constant anymore as it
has been in Eq. (5.18b)—thus b(x1) parametrizes the family of parabolas. Continuity and
differentiability at x̄2 = ū require that

b
(
x1
)

=
1
4
(
ū− x2

0
)2

δ
γ2

(
r2 − γ

(
ū− x2

0
)2)(−√1

δ

(
r2 − γ

(
ū− x2

0
)2)+ x1

0 − x1
) . (5.27)

Zone 5©: To find suitable differentiable mappings in the zones 5© and 6© we will utilize an
alternative approach: We formulate the requirements in terms of continuity and differentia-
bility and then make an ansatz to find appropriate functions. We start by considering the
boundary conditions for the x̄1(x1, x2) component in zone 5© which follow directly from the
transformations in the neighboring zones 2© and 3©. Continuity requires

x̄1(a, x2) (5.23)= a
x−

(
0.5−

√
r2 − (x2 − 0.5)2

)
,

x̄1(ū, x2) (5.24)= 2ū−1
x+−x−

√
r2 − (x2 − 0.5)2 + 0.5,

(5.28)

whereas differentiability requires

∂x̄1

∂x1

∣∣∣
(a,x2)

(5.23)= 1
x−

(
0.5−

√
r2 − (x2 − 0.5)2

)
, ∂x̄1

∂x1

∣∣∣
(ū,x2)

(5.24)= 2
√
r2−(x2−0.5)2

x+−x− ,

∂x̄1

∂x2

∣∣∣
(a,x2)

(5.23)= a
x−

x2−0.5√
r2−(x2−0.5)2 ,

∂x̄1

∂x2

∣∣∣
(ū,x2)

(5.24)= − 2ū−1
x+−x−

x2−0.5√
r2−(x2−0.5)2 .

(5.29)

Next, we make an ansatz for the mapping inside zone 5© using a function f which is assumed
to be differentiable but otherwise still unknown. The ansatz reads

x̄1
(
x1, x2

)
= x̄1

(
a, x2

) x1 − ū
a− ū

+ x̄1
(
ū, x2

) x1 − a
ū− a

+ f
(
x1, x2

) (
x1 − ū

) (
x1 − a

)
. (5.30)
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This ansatz fulfills the continuity requirements of Eq. (5.28) provided f does not exhibit a
pole at x1 = a or x1 = ū. Furthermore, the ansatz ensures that the derivative with respect
to x2 fulfills Eq. (5.29) provided (∂f/∂x2) does not exhibit poles at x1 = a or x1 = ū. The
remaining requirements refer to the derivative of Eq. (5.30) with respect to x1 which reads

∂x̄1

∂x1

(
x1, x2

)
= x̄1(a, x2)

a− ū
+ x̄1(ū, x2)

ū− a
+ ∂f

∂x1

(
x1, x2

) (
x1 − ū

) (
x1 − a

)
+f
(
x1, x2

) (
x1 − a

)
+ f
(
x1, x2

) (
x1 − ū

)
. (5.31)

Evaluating Eq. (5.31) at ū and a and comparing with Eq. (5.29) results in

f
(
ū, x2) = 1

ū−a

(
− x̄1(a,x2)

a−ū − x̄1(ū,x2)
ū−a + ∂x̄1

∂x1

∣∣∣
(ū,x2)

)
,

f
(
a, x2) = 1

a−ū

(
− x̄1(a,x2)

a−ū − x̄1(ū,x2)
ū−a + ∂x̄1

∂x1

∣∣∣
(a,x2)

)
.

(5.32)

We would like to emphasize that every function f that fulfills Eq. (5.32) and does not have
poles at x1 = a or x1 = ū is a suitable function so that the ansatz made in Eq. (5.30) fulfills
all requirements in Eqs. (5.28) and (5.29). We choose a linear function which is given by

f
(
x1, x2

)
= f

(
ū, x2)− f(a, x2)

ū− a
x1 + f

(
ū, x2

)
− f

(
ū, x2)− f(a, x2)

ū− a
ū. (5.33)

Thereby, we acquired a differentiable mapping x̄1(x1, x2) in zone 5©—namely Eq. (5.30) with
f given by Eq. (5.33).

We obtain the remaining differentiable mapping x̄2(x1, x2) in this zone by a “parabola-
construction” as in the case of zone 4©, this time, however, in the x2-direction

x̄2
(
x1, x2

)
= b

(
x2
) (
x1 − a

)2
+ x2. (5.34)

Then, b
(
x2) is identical to Eq. (5.27) except that δ is interchanged with γ and x1

0 with x2
0.

The ellipse parameters taken from the x̄2 transformation in zone 3© (see Eq. (5.24)) are

x1
0 = 0.5, x2

0 = 0.5, γ =
(
x+ − x−
2x2 − 1

)2
, δ = 1. (5.35)

Zone 6©: In this zone we only need to find the mapping of one component because any point
in this area obeys the symmetry relation(

x̄1
(
x1, x2

)
, x̄2
(
x1, x2

))
=
(
x̄2
(
x2, x1

)
, x̄1
(
x2, x1

))
. (5.36)

The boundary conditions for this zone are derived from the mappings in zones 4© and 5©.
In particular, we use symmetry to connect the x̄2 mapping in zone 5© (Eq. (5.34)) to the x̄1

mapping in the area [ū, 1 − ū] × [a, ū]. With the abbreviations ∆ := x+ − x−, v̄ := ū − 0.5
and s :=

√
r2 − v̄2 the boundary conditions read

x̄1(a, x2) (5.26)= b′(a)
(
x2 − a

)2 + a, with b′(a) (5.27)= 1
4
a
x−

v̄2

(−s+0.5−x−) s2 ,

x̄1(ū, x2) (5.34)= b′′(ū)
(
x2 − a

)2 + ū, with b′′(ū) (5.35)= 1
2

v̄3

(s−0.5∆) ∆ s2 ,
(5.37)

∂x̄1

∂x2

∣∣∣
(a,x2)

(5.26)= 2b′(a)
(
x2 − a

)
, ∂x̄1

∂x1

∣∣∣
(a,x2)

(5.26)= 1
4

v̄2 (x2−a)2

(−s+0.5−x−) x− s2 + 1,

∂x̄1

∂x2

∣∣∣
(ū,x2)

(5.34)= 2b′′(ū)
(
x2 − a

)
, ∂x̄1

∂x1

∣∣∣
(ū,x2)

(5.34)= 1
2

v̄2 (x2−a)2

(s−0.5∆) ∆ s2 + 1.
(5.38)
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In order to find the desired mapping, we take advantage of the generality of our formalism
developed above—Eqs. (5.30) to (5.33) are all perfectly valid for the present considerations.
Upon inserting Eqs. (5.37) and (5.38) in Eqs. (5.30) to (5.33), we finish the construction
of a mesh that is differentiable everywhere in the unit cell. The mappings in the zones are
depicted separately in Fig. 5.11(b). The parabola transitions are recognizable very well at
the edges of the mapped zones 5© and 6©. The only free parameter used for the construction
of the differentiable mesh of the circle is the smoothing parameter τ . In Fig. 5.12 we depict
the resulting meshes for two different values of τ .

Figure 5.12: Differentiable meshes for a circular structure (radius r = 0.3) centered in a
square unit cell. Panels (a) and (b) depict meshes with smoothing parameters
τ = 0.07 and τ = 0.035, respectively. Panel (c) shows a close-up of the mesh
in (b).

Finally, it is very instructive to compare the transformed permittivities for the different
mesh types. In Fig. 5.13, we display the ε11-component of the effective permittivity for the
nondifferentiable (panel (a)), a smoothed (panel (b)), and a differentiable mesh (panel (c))
for a circular structure of radius 0.3 that is centered within a square [0, 1] × [0, 1] unit cell.
The corresponding meshes are displayed in Figs. 5.2(b), 5.9(b), and 5.12(b), respectively. In
all cases, only the area [0.2, 0.8] × [0.2, 0.8] is shown and the effective permittivity has been
sampled with 1024 × 1024 points (the same sampling is used for the numerical simulations
which we present in section 5.4). The circular structure is assumed to have a permittivity of
εcirc = 2 and εbg = 1 is used for the background. Figure 5.13(a) depicts the distribution we
have already shown in Fig. 5.2(c).

First, we observe that the different mappings indeed transform the circular structure into
a square-shaped object. For the above sampling, the effective permittivity values for the
nondifferentiable mesh exceed 5000 in the corners of the square, a clear sign of the unavoidable
singularities associated with applying a nondifferentiable mesh to a circular structure (see
Section 5.3.1). In addition, the circle is exactly mapped to the square. For the smoothed as
well as for the differentiable mesh the circle is mapped on a square with rounded corners and is,
thus, not fully grid-aligned. However, the values of the effective permittivity are considerably
lower in both cases. The difference between them is the slightly different behavior at the
structure’s boundaries. The effective permittivity of the differentiable mesh shows jumps
only at the surface of the transformed structure. In contrast, the effective permittivity of
the smoothed mesh features additional discontinuities since it is not differentiable everywhere
(see Section 5.3.3). We find qualitatively similar behavior for all non-zero components of the
effective permittivity tensor.
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Figure 5.13: ε11-component of the effective permittivity for different meshes for a circular
structure (radius r = 0.3) that is centered in a square unit cell. Panels (a),
(b), and (c) show the transformed permittivity for the nondifferentiable, the
smoothed, and the differentiable meshes of Figs. 5.2(b), 5.9(b), and 5.12(b),
respectively. For a sampling with 1024×1024 points, the values at the corners
of the rectangle for the nondifferentiable mesh exceed 5000. However, we have
saturated the color scale at 4 in order to be able to display more features. The
smoothed and differentiable meshes have been constructed with a smoothing
parameter τ = 0.035. All plots show the sector [0.2, 0.8] × [0.2, 0.8] of the
[0, 1]× [0, 1] unit cell.

Based on the above observations, it is an interesting question to ask which of the meshes
will exhibit the best convergence characteristics for FMM-computations. The strictly grid-
aligned effective permittivity for the nondifferentiable meshes is ideally suited for the Fourier
factorization rules but its rather high values are clearly detrimental. The situation is reversed
for the smoothed and the differentiable mesh.

However, before we address this question, we first complete the discussion of the mesh con-
struction in the following sections, where we provide guidelines for the realization of periodic
meshes for low-symmetry motifs in the unit cell (Section 5.3.5), the construction of meshes for
nonrectangular lattices (Section 5.3.6), and the implementation of adaptive spatial resolution
via coordinate line compression (Section 5.3.7).

In order to prepare for the latter, we note in the case of the nondifferentiable and the smoothed
mesh that the coordinate line which is mapped to the circle’s surface is given by x− (see
Fig. 5.8). In order to find the corresponding coordinate line α for the differentiable mesh, we
numerically compute the point that fulfills

0.5− r = x̄1(α, 0.5), (α, 0.5) ∈ 5©. (5.39)

5.3.5 Enforcing Periodicity

The meshes that we have constructed in the previous sections exhibit a mandatory require-
ment for being used with FMM computations: They are periodic, i.e., every coordinate line
enters and leaves the unit cell at opposing unit cell edges. Apparently, certain meshes that are
generated by our formalism described above do not exhibit this property (see, e.g., Fig. 5.14).
For instance, in order to construct a mesh for a square array of ellipses, the natural choice
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of characteristic points are those where the major and minor axes pierce the ellipse’s sur-
face. However, if the ellipse is rotated relative to the square lattice, our formalism leads to
nonperiodic meshes.

Figure 5.14: Construction points and mesh for an elliptical structure that is not aligned
with the axes of the square array associated with the unit cell. This example
further illustrates how our construction principle may lead to aperiodic meshes.

There are three ways to restore periodicity. Firstly, one could choose a different set of char-
acteristic points that does lead to periodic meshes. Secondly, one can change the way the
characteristic coordinate lines are mapped. We depict this approach in Figs. 5.15(a) and
5.15(b). Here, the characteristic coordinate lines were modified by additional straight line
segments (dashed) so that the coordinate lines leave the unit cell at the same point at which
they entered at the opposite face of the unit cell. The dashed part does not have to be
composed of straight lines—other functions such as higher order polynomials are conceivable
as well. Thirdly, one can use a mirror structure. We illustrate this approach in Fig. 5.15(c).
Here, a mesh for the cross section of a trapezoidal rib waveguide has been created. The
periodicity is assured by an additional structure in the unit cell which features similar geo-
metrical properties as the structure under investigation and, thus, periodicity is restored. As
this mirror structure has the same permittivity as the background medium it is physically
nonexistent and the numerical artifacts created by the distorted mesh are negligible.

Figure 5.15: Illustration of different approaches for enforcing periodicity of meshes. Panels
(a) and (b) depict the method of adding linear transitions to the outer edge of
the unit cell. Panel (c) illustrates the method of the mirror structure. Color
has been added to mark the actual structure.

In order to demonstrate that neither the mirror-structure approach nor the linear transitions
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to the unit cell edges lead to discernible errors, we investigate the rib waveguide sketched in
Fig. 5.16(a). To obtain a converged result we used 2601 Fourier coefficients with a real space
discretization of 1024×1024 points. The unit cell is 4µm ×4µm and the symmetric trapezoid
has a top length of 240 nm and a bottom length of 960 nm. Its height is 360 nm. This
trapezoid consists of silicon with a dielectric constant εs = 12.1 while the background medium
is air with εbg = 1. The incoming wavelength was chosen to be the telecom wavelength at
1550 nm.

Figure 5.16: Analysis of a square array of silicon waveguides with trapezoidal cross section
using the mirror-structure approach for periodic mesh construction. Panel (a)
depicts a schematic of the system. Panels (b) and (c) show the periodic mesh
for the trapezoidal structure and the absolute value of the transverse electric
field distribution of the fundamental mode on a logarithmic scale, respectively.
There are no discernible detrimental effects due to the mirror structure that
is used to ensure periodicity of the mesh. The yellow color in panel (b) and
the white trapezoid in panel (c) have been added to guide the eye.

Figure 5.16(c) shows the absolute value of the transverse electric field of the rib waveguide’s
fundamental mode2. Since the permittivity is transformed according to Eq. (3.2a), any
coordinate line other than the identity will result in a distortion of the effective permittivity.
Yet, Fig. 5.16(c) shows that the values of the numerical artifacts in the region of the mirror
structure are several orders of magnitude lower than the values of the physical fields at the
trapezoid.

5.3.6 Nonrectangular unit cells

So far, we have focused on rectangular unit cells. Apparently, for many systems more freedom
in the unit cell choice is highly desirable. In fact, treating nonrectangular unit cells in the
framework of FMM without adaptive meshing is well known [54]. In this section, we briefly
discuss how adaptive meshing for a nonrectangular unit cell can be realized and present an
array of circular rods in a hexagonal lattice as an example.

The basic idea is to map the hexagonal unit cell to a rectangular one (including the struc-
ture!), perform the mesh generation as discussed in the previous sections and map the rect-
angular unit cell (including the mesh) back to the hexagonal unit cell. A mapping between

2At this point I thank Benjamin Lutz for applying the trapezoidal mesh to this system and for providing the
field plot of this waveguide’s fundamental mode.
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a nonrectangular unit cell with lattice angle α and a rectangular unit cell is given by [54]
xα = xrec + yrec sinα ←→ xrec = xα − yα sinα

cosα ,
yα = yrec cosα ←→ yrec = yα

1
cosα .

(5.40)

Here, the coordinates xα, yα, and xrec, yrec refer to the coordinates in ordinary (Cartesian)
and transformed space, respectively. We illustrate this in Figs. 5.17(a) and 5.17(b), where,
in addition, we also depict a circle which we would like to mesh. Upon mapping the nonrect-
angular unit cell to a rectangular one, the circle that is centered in the unit cell turns into an
ellipse. We can mesh this ellipse by means of any of the methods discussed in Sections 5.3.2-
5.3.4 (where applicable together with the methods to recover periodic meshes introduced
in Section 5.3.5). Mapping back to ordinary (Cartesian) space then delivers the final mesh
as displayed in Fig. 5.17(c). Actually, we have obtained this mesh by first compressing the
coordinate lines (see Section 5.3.7) of the ellipse mesh displayed in Fig. 5.15(b) and mapping
back this mesh to ordinary (Cartesian) space.

Figure 5.17: Illustration of the meshing in nonrectangular unit cells. Panel (a) depicts the
structure in ordinary (Cartesian) space—a circular rod in a hexagonal lattice.
Panel (b) shows the transformed structure when the nonrectangular unit cell is
mapped to the rectangular unit cell—the circle turns into an ellipse. Panel (c)
shows the mesh in the original unit cell that is obtained by meshing the ellipse
and mapping this mesh back into ordinary (Cartesian) space. The parameters
are r = 0.2, α = 30◦ and a [0, 1]× [0, 1] unit cell.

It is important to realize that the nonrectangular unit cell given by Eq. (5.40) is still described
in a Cartesian coordinate system, i.e., we do not switch to an oblique-angled coordinate
system. Hence, the equation of a circle remains valid and we can perform the mapping to
the rectangular unit cell according to

Circleα =
{

(x, y) :
(
x− 1

2(1 + sinα)
)2

+
(
y − 1

2 cosα
)2

= r2
}
, (5.41)

Circlerec
(5.40)=

{(
x− y sinα

cosα, y
1

cosα

)
:
(
x− 1

2(1 + sinα)
)2

+
(
y − 1

2 cosα
)2

= r2
}
,

=
{

(x, y) :
(
x+ y sinα− 1

2(1 + sinα)
)2

+
(
y cosα− 1

2 cosα
)2

= r2
}
. (5.42)

In order to perform the mesh generation analytically, we have to extract the ellipse parameters
from Eq. (5.42). An ellipse with center (x0, y0) that is rotated by an angle φ with semi-axes
c and d is described by(

x− x0 y − y0
)(cosφ − sinφ

sinφ cosφ

)(
c−2 0
0 d−2

)(
cosφ sinφ
− sinφ cosφ

)(
x− x0
y − y0

)
= 1. (5.43)
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Comparing Eq. (5.42) with Eq. (5.43) yields

c = r (1− sinα)−1/2, d = r (1 + sinα)−1/2, φ = −45◦, (x0, y0) = (0.5, 0.5). (5.44)

By symmetry, another solution which yields the same ellipse is φ = 45◦ and c and d inter-
changed. The resulting ellipse is shown in Fig. 5.17(b). We have obtained the resulting mesh
displayed in Fig. 5.17(c) using the mapping in Eq. (5.40) with α = 30◦ (hexagonal lattice).

This procedure is not limited to unit cells with straight edges. In fact, unit cells of almost
arbitrary shape can be handled this way—as long as the unit cell can be described by a
mapping of the form of Eq. (5.40) . If such a mapping is known, we proceed as explained
above: the curvilinear unit cell and the structure inside are mapped to a Cartesian unit cell.
Then, we construct a mesh for the mapped structure. By mapping this mesh back we obtain
an adaptive mesh for the structure in the curvilinear unit cell.

5.3.7 Compression of coordinate lines - adaptive spatial resolution

As stated several times above, it is often very desirable to increase the density of coordi-
nate lines within a structure or at its surface in order to realize adaptive spatial resolution
(ASR). We have used such coordinate compressions for constructing the meshes depicted in
Fig. 5.6(b), Fig. 5.16(b), and Fig. 5.17(c). In this section, we provide the required details. In
essence, ASR and adaptive coordinates (AC) are performed sequentially—first, the coordi-
nate lines are compressed and then the mapping for the AC is applied. Technically, ASR is
just another coordinate transformation. A good proposal for a one-dimensional compression
function can be found in Ref. [51]. In general, we have to apply two-dimensional compressions
which we construct by two successive one-dimensional compressions after slightly modifying
the compression functions of Ref. [51]. In Fig. 5.18(a), we display an illustrative example of
such a one-dimensional compression.

The transformation function of Ref. [51] is

x̄(x) = α+ βx+ γ

2π sin
(

2π x− xl−1
xl − xl−1

)
, x ∈ [xl−1, xl], l = 2, ..., n (5.45)

with

α = xlx̄l−1 − xl−1x̄l
xl − xl−1

, β = x̄l − x̄l−1
xl − xl−1

, γ = (xl − xl−1)G− (x̄l − x̄l−1), (5.46)

where {xl : l = 1, ..., n} and {x̄l : l = 1, ..., n} denote two sets of points. By design, this
means that x̄(xl) = x̄l for l = 1, ..., n. Furthermore, G denotes the slope of the function at
all positions xl. The compressed coordinates are described by x̄(x)—the transformation is
a linear function superimposed with a sine. In the vicinity of the points x̄l the coordinate
line density is increased—for instance, these points could represent material interfaces along
the x-coordinate line. The interval [xl−1, xl] is mapped onto the interval [x̄l−1, x̄l]. In order
to maintain periodicity with period L, one chooses x̄1 = 0 and x̄n = L. This means that
the coordinate lines are compressed at the unit cell edges. For the structures considered in
Ref. [51] this is intended. We, on the other hand, would like to place the structures in the
center of the unit cell. This amounts to shifting the compression function and we show how
to accomplish this with two material interfaces. This is generalized straightforward to more
interfaces.
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Figure 5.18: Illustration of how to shift the compression function from Ref. [51]. In all
panels x is plotted on the horizontal axis and x̄ on the vertical axis. Panel (a)
depicts the original compression function. Panel (b) shows how the function
is shifted to larger values. The point of intersection where the transformed
coordinate leaves the unit cell is denoted by x̃. In panel (c) the compression
function is shifted by exactly this amount to the right. The piece that is
outside the unit cell in panel (c) is attached to the left side due to periodicity.
Panel (d) shows how the equidistant coordinate lines (vertical) are mapped
onto compressed coordinate lines (horizontal).

We start with two parallel material interfaces in the unit cell located at two given coordinates
x̄1 and x̄2. Furthermore, we assume that the length of the interval that is mapped to [x̄1, x̄2]
is given—it is referred to as ∆x. Then, we perform the mapping Eq. (5.45) as if the first
material interface lied at 0.

x ∈ [0,∆x] : x̄(x) = x̄2 − x̄1
∆x x+ G∆x− (x̄2 − x̄1)

2π sin
(

2π x

∆x

)
, (5.47a)

x ∈ [∆x, L] : x̄(x) = α̃+ β̃x+ γ̃ sin
(

2π x−∆x
L−∆x

)
. (5.47b)

Here, we introduced the abbreviations

α̃ = L (x̄2 − x̄1)−∆x L
L−∆x , β̃ = L− (x̄2 − x̄1)

L−∆x , γ̃ = G (L−∆x)− (L− (x̄2 − x̄1))
2π . (5.48)

The result is depicted in Fig. 5.18(a)—we now have a compression at two interfaces with
the correct spacing between them, albeit at the wrong locations. In order to achieve the
compression in the interior in the unit cell, we first shift the function by x̄1 upwards, see
Fig. 5.18(b). The point where the compression function intersects with the unit cell edge,
denoted x̃, is

L = α̃+ β̃x̃+ γ̃ sin
(

2π x̃−∆x
L−∆x

)
+ x̄1 (5.49)

Unfortunately, Eq. (5.49) is a transcendental equation and, therefore, we have to find the
point x̃ numerically. Next, we shift the function to the right by L̃ = L− x̃, see Fig. 5.18(c).
The part that is still outside the unit cell (marked in red) is attached to the left side of the
unit cell—this makes sense due to periodic boundaries in the FMM. Finally, in Fig. 5.18(d)
we depict how the equidistant, vertical coordinate lines are now mapped to the compressed
horizontal lines. The compression function for two material interface points x̄1 and x̄2 in the

69



Chapter 5 Two-Dimensional Coordinate Transformations

interior of the unit cell then reads

x ∈ [0, L̃] : x̄(x) = α̃+ β̃ (x+ x̃) + γ̃ sin
(

2πx+ x̃−∆x
L−∆x

)
+ x̄1 − L , (5.50)

x ∈ (L̃, L̃+ ∆x) : x̄(x) = x̄2 − x̄1
∆x

(
x− L̃

)
+ G∆x− (x̄2 − x̄1)

2π sin
(

2πx− L̃∆x

)
+ x̄1, (5.51)

x ∈ [L̃+ ∆x, L] : x̄(x) = α̃+ β̃
(
x− L̃

)
+ γ̃ sin

(
2πx− L̃−∆x

L−∆x

)
+ x̄1. (5.52)

It needs to be stressed that one needs to start with the separation ∆x of the interfaces instead
of starting with their exact locations x1 and x2 (as has been the case in Eq. (5.45)). This
is due to the fact that these locations are determined by the shift of the entire function and
cannot be specified beforehand.

In Figs. 5.19(a) and 5.19(b), we display two examples of compression functions. They are plot-
ted together as a two dimensional mesh in Fig. 5.19(c) where the compression in Fig. 5.19(a)
was applied in the horizontal direction and the compression in Fig. 5.19(b) in the vertical
direction. When choosing the compression parameters it is important to make sure that x̄ is
monotonically increasing. If a constant coordinate line density is desired, the transformations
above offer a simple way to do so. For two compression points, G is chosen to be (x̄2−x̄1)/∆x
which leads to a vanishing prefactor of the sine in Eq. (5.45). This is how we have obtained
the compression in Fig. 5.19(b).
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Figure 5.19: Illustration how two one-dimensional compression functions are combined to a
two-dimensional compressed mesh. The compression in (a) is applied in hori-
zontal direction and the compression depicted in (b) (with a constant density
between x̄1 and x̄2) is applied in the vertical direction. Panel (c) depicts the
resulting mesh.

It is an interesting aspect how ASR alone transforms the permittivity. To illustrate this,
Fig. 5.20 displays components of the transformed permittivity when the mesh in Fig. 5.19 is
applied to empty space, i.e., the permittivity in the untransformed space is εbg = 1 in the
entire unit cell. The off-diagonal elements of the effective permittivity are zero. The shape
of the effective permittivity is rather counter-intuitive. The basic property is: the more the
mesh is varied away from a Cartesian mesh, i.e., the more it is compressed or the more the
coordinate lines are bent, the more the effective permittivity is going to be changed.
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Figure 5.20: Transformed permittivity for the mesh in Fig. 5.19(c) in empty space with
εbg = 1 and 1024×1024 points. Panels (a), (b) and (c) depict ε11, ε22 and ε33,
respectively. The more the mesh is distorted from the Cartesian mesh, the
more the transformed permittivity changes, cf. Fig. 5.19(c).

This completes our illustration of adaptive coordinates with adaptive spatial resolution: In
order to obtain meshes as those depicted in Fig. 5.6(b), we first map a Cartesian grid to a
grid that is compressed in certain regions by way of Eqs. (5.50) - (5.52). We then use this
locally compressed grid as input for the adaptive coordinate mapping which deforms the grid
in the desired way (nondifferentiable, smoothed, or differentiable), e.g., as in Eqs. (5.15) and
(5.16).

The smoothed meshes remove the singularities in the effective permittivity, Eq. (3.2a), of the
nondifferentiable meshes and only certain discontinuities in the partial derivatives remain.
These discontinuities, too, can be removed by using differentiable meshes. Obviously, this
removal of singularities and discontinuities will be conductive for the convergence of FMM.
However, another important aspect of the smoothed and the differentiable meshes is that—in
contrast to the nondifferentiable meshes—the structure’s surface is no longer grid-aligned in
the transformed space described by Eq. (3.2a) (see Fig. 5.13). Yet, the correct representation
of the structure and the success of the Fourier factorization rules critically depends on grid-
alignment.

The answer to the question which aspect is more important under which circumstances is the
subject of the subsequent section.
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5.4 Suitable parameter choice and convergence characteristics

More generally, in this section we deal with the important question which type of mesh
and which mesh parameters are suitable for a given structure. The number of parameters
for the mesh generation is very large—for each given frequency and structure, we can vary
the compression of the mesh (parameters G and ∆x), we can use different types of meshes
(Cartesian, nondifferentiable, smoothed, and differentiable) some of which have a smoothing
parameter τ , and we have to choose how many points are used for the real space discretization.
As it is impossible to display every combination of those parameters, we aim at presenting the
overall tendencies along with corresponding rules-of-thumb that we found in our extensive
parameter scans.

Firstly, we examine dielectric structures. We start with a study on how and why different
parameters change the convergence results of the propagation constants of low-lying eigen-
modes. This will result in guidelines how to find suitable parameters. Secondly, we repeat
this exercise for metallic structures and their convergence characteristics.

5.4.1 Dielectric structures

In order to investigate the convergence behavior of the FMM with different meshes for di-
electric structures, we choose a fiber with a cylindrical cross section as a test system. This
choice is motivated by the availability of analytical solutions for the guided eigenmodes of a
single cylindrical waveguide3, see Ref. [55]. For such modes, the inherent periodicity of the
FMM computations is of no relevance once the unit cell is sufficiently large, i.e., we are then
performing a supercell computation. Clearly, this also means that we should exercise care
for modes that are close to the cut-off as they might be fairly extended. In our subsequent
computations this has been carefully checked.

Specifically, we consider a fiber of radius of r = 800 nm that is centered within a square
unit cell and the index of which will be varied. The lattice constant is d = 4000 nm with
a background material of εbg = 1. The number of plane waves will be varied, but they will
always come from within a circle in reciprocal space centered around the origin. We analyze
this system for a wavelength of λ = 800 nm.

As a measure for the mesh quality, we compute the maximum relative error of the effective
refractive index of the first ten guided eigenmodes for a given number of plane waves, i.e.,

error = max
{
|neff,analyt,1st mode−neff,num,1st mode|

neff,analyt,1st mode
, ... ,

|neff,analyt,10th mode−neff,num,10th mode|
neff,analyt,10th mode

}
,

where the effective refractive index of an eigenmode with propagation constant γ is given
by neff = λγ/(2π). First, we compare the different types of meshes for a small dielectric
contrast. We initially refrain from compressing the coordinate lines in order to separate ASR
and AC effects. In Fig. 5.21(a), we depict the convergence characteristics for a fiber with
dielectric constant εfib = 2. The smoothed and especially the differentiable mesh performs
better than the Cartesian or the nondifferentiable mesh. From now on, we will concentrate
on the comparison of nondifferentiable and differentiable meshes since the smoothed meshes
show a worse quality than the differentiable meshes when a compression is used.

3I thank Thomas Zebrowski for kindly providing his implementation of the analytical eigenmode solutions.
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Figure 5.21: Convergence characteristics of different meshes for computing the effective
index of refraction of guided modes in a low-index fiber. Panel (a) displays
the convergence characteristics of Cartesian, nondifferentiable, smoothed, and
differentiable meshes without coordinate line compression. Panels (b) to (d)
depict the corresponding dependence of the relative error (color-coded) on the
compression parameters G and ∆x for a fixed number of 997 plane waves. The
same compression function is applied in x̄1- and x̄2-direction. All computations
have been performed on a grid with 1024×1024 sampling points in transformed
space. Panel (b) displays the results for the nondifferentiable mesh. Panels (c)
and (d) depict results for the differentiable mesh with τ = 0.002 and τ = 0.015,
respectively. The sketches in panel (d) depict compression functions for four
specific pairs of G and ∆x. The color bar of panel (d) also applies to panels
(b) and (c).

As the cylindrical fiber is centered in the square unit cell we can apply the same compression
function in x̄1- and x̄2-direction. The material surface, i.e., the compression points are x̄1 =
x− and x̄2 = x+ for the nondifferentiable mesh and x̄1 = α and x̄2 = 1−α for the differentiable
mesh (see section 5.3.3 and 5.3.4, respectively). In Figs. 5.21(b) to 5.21(d) we display the
dependence of the error on the compression parameters G and ∆x for the nondifferentiable
mesh (τ = 0, panel (b)) and the differentiable mesh with parameters τ = 0.002 (panel (c))
and τ = 0.015 (panel (d)). Each computation has been performed with 997 plane waves in
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conjunction with a discretization in transformed space of 1024×1024 points. In these graphs
the parameter G has been stepped in 0.01 intervals and ∆x in 0.0025 intervals. We have used
the same parameter stepping for G and ∆x in Figs. 5.21 to 5.24. For illustrative purposes, we
display in Fig. 5.21(d) selected compression functions for vastly different parameter values G
and ∆x.

From Fig. 5.21(b), we infer that the nondifferentiable mesh performs well for small values of
G. This is intuitive since a small value of G means that the coordinate line density at the
surface of the structure is increased. However, we obtain the best results for this mesh for
larger values of G at specific values of ∆x. For most values of these optimal combinations
G and ∆x, a small change in ∆x quickly compromises this optimal performance and results
in significantly larger errors. This is in contrast to the characteristics of the differentiable
mesh. For this mesh with τ = 0.002, we infer from Fig. 5.21(c) very good performance for
nearly all combinations of G and ∆x. The differentiable mesh with τ = 0.015 exhibits a
slightly worse performance but the qualitative behavior that very good results can be found
for a wide parameter range is retained (see Fig. 5.21(d)). Another feature which we extract
from Figs. 5.21(b) to 5.21(d) is that, for a fixed value of G, the error exhibits an apparent
oscillatory dependence on ∆x. We will return to this issue once we have addressed the role
of certain parameters.

To sum up our (partial) findings up to this point (see Fig. 5.21), nondifferentiable meshes
yield the overall best results but their performance sensitively depends on the correct choice
of mesh parameters. On the other hand, the differentiable meshes perform nearly as well as
the optimal nondifferentiable meshes but offer the advantage of being much less sensitive to
parameter change.

As alluded to above, an interesting aspect is how the meshes perform for different numbers
of plane waves. Therefore, we have carried out similar computations as those depicted in
Fig. 5.21 but this time with 293 plane waves. We display the results in Fig. 5.22 for the
nondifferentiable mesh (panel (a)), the differentiable mesh with τ = 0.002 (panel (b)) and
with τ = 0.015 (panel (c)). We do find our above (partial) summary confirmed: While the
nondifferentiable mesh performs best it does so only for very specific combinations of G and
∆x, the differentiable meshes yield slightly worse results though for a much wider range of
mesh parameters.

Moreover, these findings remain valid when the dielectric contrast is increased. In Fig. 5.23
we display the results for computations using again 997 plane waves (as in Fig. 5.21) but
this time for a fiber with larger permittivity εfib = 10. The background material is again
εbg = 1. We have further checked that the above (partial) conclusion holds true for other
values of the permittivity by performing calculations with varying εfib where the compression
parameters have been kept the same (not shown) as well as for varying wavelengths where
all other parameters have been kept the same (not shown).
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Figure 5.22: Dependence of the relative error (color-coded) for a low-index fiber on the
compression parameters G and ∆x for 293 planes waves and 1024 × 1024
discretization points in transformed space (cf. Fig. 5.21 for the results of
the same system with 997 plane waves). Panel (a) depicts the results for
the nondifferentiable mesh and panels (b) and (c) depict the results for the
differentiable mesh with τ = 0.002 and τ = 0.015, respectively. The color bar
of panel (c) also applies to panels (b) and (c).
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Figure 5.23: Dependence of the relative error (color-coded) for a high-index fiber on the
compression parameters G and ∆x for 997 planes waves and 1024× 1024 dis-
cretization points (cf. Fig. 5.21 for the results of a low-index fiber with the
same number of plane waves). Panel (a) depicts the results for the nondiffer-
entiable mesh and panels (b) and (c) depict the results for the differentiable
mesh with τ = 0.002 and τ = 0.015, respectively. The color bar of panel (c)
also applies to panels (b) and (c).

An important issue which we have yet to address is the influence of the real space discretiza-
tion. We have performed all the previous computations with 1024×1024 discretization points
in order to take full advantage of the capabilities of the Fast Fourier Transform. However,
we have to be aware that such a discretization must not necessarily be optimal for a given
problem, including our fiber system. This may become apparent by the following argument:
As described in Section 5.3.1, the nondifferentiable mesh leads to a diverging permittivity at
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specific points in space. Depending on the number of real space points we use in the com-
putations, the coordinate lines are either close to these points or not. Hence, the maximum
permittivity values ‘seen’ by the numerical framework changes drastically when changing the
number of real space points. Another important issue is the size of the structure ‘seen’ by
the numerics—placing a coordinate line right on the surface of the structure or next to the
surface changes its effective size. In our fiber system, for instance, the effective refractive
indices of the modes change according to how far away the coordinate lines are from the
structure’s surface. A potential way of dealing with this problem could be increasing the
number of sampling points or to find ways of appropriately distributing a given number of
points. As the former option might require considerable computational resources, we will, in
the following, pursue the latter option.

In order to start the quantitative analysis, we perform computations for the same low-index
fiber for which we have obtained the results of Fig. 5.21—this time only with 1000 instead
of 1024 discretization points per dimension. We depict our results in Fig. 5.24. As expected,
the largest changes occur for the nondifferentiable mesh (cf. Fig. 5.21(b) and Fig. 5.24(a)).
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Figure 5.24: Dependence of the relative error (color-coded) for a low-index fiber on the
compression parameters G and ∆x for 997 planes waves and 1000 × 1000
discretization points (cf. Fig. 5.21 for the results of the same system with
1024×1024 discretization points). Panel (a) depicts the results for the nondif-
ferentiable mesh and panels (b) and (c) depict the results for the differentiable
mesh with τ = 0.002 and τ = 0.015, respectively. The color bar of panel (c)
also applies to panels (b) and (c). The area within the white box in panel (a)
is selected for further detailed investigation in Fig. 5.25.

Upon this (rather minimal) change of the real space discretization, the results for the differ-
entiable meshes with τ = 0.002 and τ = 0.015 in Figs. 5.24(b) and 5.24(c), respectively, do
not change much relative to Figs. 5.21(c) and 5.21(d). Of course, this has been expected as
otherwise FMM computations would be rather useless to begin with. Nevertheless, through-
out Fig. 5.24 we observe the same interesting feature which we have already pointed out in
the context of Fig. 5.21: For a fixed value of G, the error apparently oscillates as a function
of ∆x. Therefore, we now turn to the analysis of this issue and investigate the parameter
region delineated by the white box in Fig. 5.24(a) in more detail, i.e., with a much higher
resolution in G and ∆x.
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Figure 5.25: Detailed investigation of the error associated with nondifferentiable and dif-
ferentiable meshes. Panel (a) represents a blow-up of the results highlighted
in the white box of Fig. 5.24(a). The maximum relative error of the first ten
guided eigenmodes of a low-index fiber have been obtained with 997 plane
waves and 1000×1000 real-space points in steps of 0.001 for G and 0.00005 for
∆x. Panel (b) depicts a line-cut through (a) at G = 0.165 and the relative er-
ror of each of the first ten guided eigenmodes together with the distance of the
structure’s physical surface to the numerical surface. Panel (c) illustrates the
definition of the numerical surface as the center between the two coordinate
lines closest to the physical surface. Panel (d) displays the computed distance
between numerical and physical surface for the same parameter range that is
used in (a). Panel (e) displays the results of a similar computation as shown
in (b), this time using the differentiable mesh with τ = 0.002 and G = 0.165.

Indeed, while the error changes continuously with G, it exhibits oscillations and even jumps
as a function of ∆x. This indicates that the error can be linked to the number of coordinate
lines within the structure—recall, that ∆x determines how many coordinate lines are inside
the structure, while G controls the density at the surface. In order to investigate this, we
show in Fig. 5.25(b) the dependence on ∆x of the relative error of the effective refractive
index for each of the first ten eigenmodes for a fixed value G = 0.165. In addition, we depict
the distance between the physical surface and the numerical surface. The latter is given by
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the center of the two coordinate lines closest to the physical surface (for an illustration, see
Fig. 5.25(c)). The dependence of this distance on the compression parameters G and ∆x
is also shown in Fig. 5.25(d). There exists a strong correlation between the accuracy of the
FMM computations and the distance between physical and numerical surface. As a matter of
fact, the results of the FMM computations for the nondifferentiable mesh are optimal when
the physical and the numerical surface coincide and deteriorate rapidly, when we move away
from these sweet spots. The reason the color scale in Fig. 5.25(d) is asymmetric around zero
is that the coordinate line density within the fiber is (by construction) marginally smaller
than outside for the AC mesh, see Fig. 5.7.

In Fig. 5.25(e) we display corresponding results of the relative error of each of the first ten
guided eigenmodes using a differentiable mesh with τ = 0.002. As expected, the above
effect is visible, too, i.e., the error oscillates as a function of ∆x for a fixed value of G.
However, the amplitude of the oscillations is significantly reduced relative to the amplitude
of the nondifferentiable mesh (cf. Fig. 5.25(b)), in particular for the low-lying modes; for our
low-index fiber system about one order of magnitude.

We have conducted extensive studies for values of G larger and smaller than those shown in
Fig. 5.25, for a larger and smaller number of plane waves, and for larger values of the dielectric
permittivity contrast. In all cases, the behavior as depicted in Fig. 5.25 is qualitatively
reproduced.

An interesting aspect is how the method reacts to a deliberate disturbance. For that, we
consider the same system as in Fig. 5.25(e), i.e., the differentiable mesh for the fiber. As we
have discussed at the end of Section 5.3.4, the coordinate line where we compress the mesh is
not given by x− like in Sections 5.3.2 and 5.3.3 but by α in Eq. (5.39). This is only a slight
variation since α and x− are very close together. On the other hand, we have observed that the
performance of the method crucially depends on the correct numerical representation of the
physical surface. Figure 5.26 shows the result of deliberately compressing the differentiable
mesh at x− instead of α. The error of the effective refractive index over the first 10 guided
eigenmodes is color-coded.
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Figure 5.26: Error for a differentiable mesh with a wrong compression point. Panel (a)
displays the numerical calculation of the eigenmode error and panel (b) dis-
plays the distance from numerical to physical surface for the mesh. Both agree
qualitatively. 997 plane waves and 1000×1000 real space points were used. G
was sampled in steps of 0.001 and ∆x in steps of 0.00005.
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In Fig. 5.26(a) the numerical computations are shown. In contrast to Fig. 5.25(a), the error
does not show jumps at certain fixed positions in ∆x. In Fig. 5.26(b) the distance between
numerical and physical surface of the mesh is depicted. The general behavior is identical
to Fig. 5.26(a).4 This means that the correct surface representation is still the dominant
parameter even when the mesh is compressed at the wrong position. The reason for the arcs
occurring in Fig. 5.26 is that by compressing at a position other than at the surface of the
structure, the percentage of the coordinate lines within the structure does not only depend
on ∆x any more but also on G. This insight might be of help when a mesh for a more
complex structure is employed—as long as the jumps occur like in Fig. 5.25, the compression
is performed at the correct coordinate line(s). In case the error behaves like in Fig. 5.26, the
compression was inadvertently carried out at an incorrect position.

This leads us to our final conclusion regarding ASR and AC within FMM for dielectric struc-
tures. The nondifferentiable mesh performs well for small values of G as this corresponds
to a good representation of the singularities in the effective permittivity due to an increased
density of coordinate lines at the surface. However, special care has to be exercised when
choosing the real space discretization and the parameters for the compression function(s).
More precisely, the number of real space points and the parameters G and ∆x have to be
chosen such as to best represent the surface of the physical system. Here, an inconsistent
choice of the mesh parameters easily leads to a rather significant loss of accuracy and/or
erratic behavior with regard to convergence. The differentiable mesh exhibits the same quali-
tative behavior but is considerably less sensitive to the actual parameter choice, especially in
terms of accuracy— good performance is achieved over a wide range of compression param-
eters G and ∆x. Overall, the nondifferentiable mesh with optimal parameters does deliver
somewhat better results than the differentiable mesh. This is the manifestation of the grid-
aligned effective permittivity of the nondifferentiable mesh which is more compliant with the
Fourier factorization rules than the differentiable mesh (see Section 5.3.4).

5.4.2 Metallic structures

We now turn to an investigation of metallic systems. Whereas much of the above discussion
qualitatively also applies in this case, the relative weighting of the above issues is rather
different. This may be seen as follows. Metals are characterized by permittivities with
negative real part. In turn, this leads to a finite penetration of the electromagnetic field into
the metal as well as to large field enhancements near the surfaces. As a result, we expect
that surfaces and their adequate representation is even more important for metallic structures
than for dielectric structures.

To be specific, we consider the same system that has been discussed in Ref. [15]. This means
that we investigate a square array (lattice constant d = 700 nm) of metallic cylinders (height
50 nm, radius 150 nm) in air. The cylinders are centered in the unit cell and their axes
are oriented in propagation direction. For the metal we use the permittivity given by a
Drude model with the parameters ε∞ = 9.0685, a plasma frequency ωD = 1.3544 · 1016 Hz
and a damping coefficient γ = 1.1536 · 1014 Hz, corresponding to gold [25]. In the absence
of analytic solutions for this problem, we have computed transmittance, reflectance and
absorbance spectra for normal incidence using several different compression functions and

4The position of the zeros should be compared (color-code green). They correspond to parameter pairs where
the error is minimal (Fig. 5.26(a)) and the numerical and physical surface coincide (Fig. 5.26(b)).
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found qualitatively the same results. In Fig. 5.27(a) we display the corresponding spectra
using the nondifferentiable mesh, 1750 plane waves and a compression with parameters G =
0.02 and ∆x = 0.5. We find the resonance frequency at 829 nm which is the subject of our
further investigation. Specifically, in Fig. 5.27(b) we compare the convergence behavior of
the reflectance for the nondifferentiable mesh, two smoothed, and two differentiable meshes
using the same compression function as in Fig. 5.27(a).
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Figure 5.27: Convergence characteristics of different meshes for a square array of metallic
cylinders of finite height. Panel (a) shows the transmittance, reflectance, and
absorbance spectra that have been computed using 1750 plane waves and the
nondifferentiable mesh. Our data agree well with those of Ref. [15] for this
system. Panel (b) depicts the convergence characteristics (in terms of plane
waves) of the reflectance for different meshes at the resonance frequency of 829
nm. The data in panels (a) and (b) have been obtained by using the same
compression function with parameters G = 0.02 and ∆x = 0.5 and a real space
discretization of 1024× 1024 points.

From Fig. 5.27(b), we infer that the nondifferentiable mesh exhibits a considerably faster
and less erratic convergence behavior than the smoothed and differentiable meshes. Along
the lines of our analysis for dielectric systems, we have traced this to the fact that the
transformed effective permittivity fails to be grid-aligned for the smoothed and differentiable
meshes. Therefore, it is less compliant with the Fourier factorization rules.

In contrast to dielectric structures, Fig. 5.27(b) strongly suggests that resolving the entire
surface and creating a grid-aligned structure for the transformed permittivity is crucial for
the performance when investigating metals with the FMM. Here, the nondifferentiable mesh
has a distinct advantage over the smoothed and the differentiable meshes.

Just as in the dielectric case, it is interesting to have a closer look at the compression parame-
ters G and ∆x. Consequently, we display in Fig. 5.28 the dependence of the reflectance at the
resonance on G and ∆x for a fixed number of 997 plane waves and a real space discretization
of 1024× 1024 points when using different meshes.

For the nondifferentiable mesh, we observe the same characteristics as in the dielectric case
(smooth dependence on G with a preference for low values, oscillatory behavior as a function
of ∆x). In contrast, the differentiable mesh exhibits a rather erratic behavior over much
of the parameter space. Consequently, for metallic structures we obtain (not unexpectedly)
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that an accurate representation of the surface is of paramount importance and that this can
be facilitated best via the nondifferentiable mesh.
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Figure 5.28: Dependence of the on-resonance reflectance from a square array of finite-
height metallic cylinders on the compression parameters G and ∆x for dif-
ferent meshes. Panel (a) shows the results when using the nondifferentiable
mesh and panel (b) shows the results when using the differentiable mesh with
τ = 0.005. All computations have been performed with 997 plane waves with
a real space grid of 1024 × 1024 sampling points. The parameter G has been
stepped in 0.005 intervals and ∆x in 0.0025 intervals. The color scale was
saturated at 0.81.

5.4.3 Summary

In the last two sections we have dealt with several important aspects of the FMM when using
adaptive coordinates (AC) and adaptive spatial resolution (ASR). Firstly, we have demon-
strated how different issues in analytical mesh generation such as maintaining periodicity,
non-rectangular unit cells and compression of coordinate lines at material interfaces can
be mastered even for rather complex structures. Secondly, we have provided construction
guidelines for different types of meshes such as nondifferentiable, smoothed and differen-
tiable meshes. Through a careful convergence study, we have discovered ‘sweet spots’ for the
nondifferentiable mesh where a judicious choice of real space discretization and compression
parameters leads to an optimal surface representation that efficiently treats the (for this mesh
unavoidable) singularities in the effective permittivity. As the nondifferentiable meshes nat-
urally lead to the best grid-alignment, i.e., to optimal compliance with regard to the Fourier
factorization rules, the nondifferentiable mesh turns out to be the best choice—provided one
knows what one is doing and one can realize the correct surface representation.

The differentiable meshes exhibit a comparable performance for dielectric structures and are
considerably less sensitive to the correct choice of compression parameters. This is welcome
news for black-box approaches. For metals, however, obtaining grid-aligned structures is
of paramount importance and the optimized nondifferentiable mesh still performs rather
well (necessarily less efficient than in the dielectric case) whereas the smoothed and the
differentiable mesh clearly fall behind (but are, of course, still much better than a simple
Cartesian grid).
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5.5 Modularity concept

In this section, I present an additional idea on the topic of mesh construction. As dis-
cussed throughout this chapter, there are two different strategies regarding mesh generation—
analytical and numerical. The downside of analytical mesh generation is that every new
structure has to be studied carefully to decide which specific coordinate lines should be used,
even when it consists of an arrangement of previously meshed structures. Therefore, it could
be an interesting thought to set up certain modules that can be reused several times in one
mesh. The basic modularity concept is illustrated in Figs. 5.29 and 5.30.

Figure 5.29: First step in the construction of a mesh with the modularity concept. The
inner region is mapped onto itself and is, thus, still Cartesian, see panels (a)
and (b). The corresponding mesh is depicted in panel (c). The second step is
to replace the Cartesian mapping with any other (properly scaled) mapping
in order to obtain sub-structures, see Fig. 5.30.

Here, we define characteristic lines that are quite similar to the ones in Fig. 5.7, i.e., a mesh
for a large circular structure with a sub-structure in the middle. The difference to the mesh
in Fig. 5.7 is an altered behavior in the center: instead of meshing a specific sub-structure like
another circle, we intentionally map the area A© onto itself. Thereby, we have a Cartesian
area in the middle of our mesh. This is where the idea of modularity comes into play—
in a second step we can replace the Cartesian mapping with any of the mappings that we
have acquired already (properly scaled, of course). An example is shown in Fig. 5.30(a),
where the Cartesian mapping in the center of the large circle is replaced with a small circle.
Alternatively, we could have put in the crescent or any other meshed structure. Moreover,
we can assemble even more complex structures—this is depicted in Fig. 5.30(b), where we
entered several more circles. A test system that could be studied with such a mesh is a
structured fiber with several cores. This may be of help for the investigation of new FMM
applications such as the simulation of photonic crystal fibers [56] or liquid crystal infiltrated
fibers [57].
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Figure 5.30: Complex meshes obtained using the modularity concept. The Cartesian region
of the mapping (see Fig. 5.29) is replaced by a scaled mapping of a circle (panel
(a)) and even a complex arrangement of circles (panel(b)).
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Chapter 6

Three-Dimensional Coordinate
Transformations

In Chapter 5, we have shown that adaptive spatial resolution (ASR) and adaptive coordinates
(AC) are of great help for the Fourier Modal Method when it comes to solving Maxwell’s
equations, especially in systems containing metals. A basic problem in this context is that
structures in different slices might need different ASR and AC meshes. In recent years, several
interesting structures were fabricated that fall into this category. For example, twisted-cross
photonic metamaterials, see Fig. 6.1(a), can lead to strong optical activity. Gold helix pho-
tonic metamaterials, as shown in Figs. 6.1(b) and (c) can be used as broadband circular
polarizers. Such structures have in common that the shape of the metallic parts of the
material distribution changes upon changing the x3 coordinate. First studies with different
two-dimensional AC and ASR meshes in adjacent layers, performed in our group by Sabine
Essig [34], were ambivalent since problems such as energy loss and artificial reflections ap-
peared.

Figure 6.1: Experimental realizations of metallic systems which are difficult to investigate
with the FMM. Panel (a) shows a system of twisted-cross metamaterials. The
picture is taken from Ref. [58]. Panels (b) and (c) depict gold helix metamate-
rials (side and top view, respectively) which can be used as circular polarizer.
The pictures are taken from Ref. [59].

In this chapter, we tackle these particular problems by means of a three-dimensional coordi-
nate transformation. The structure investigated for this purpose are two layers of mutually
rotated crosses with a layer of air between them1, see Fig. 6.2. A physical discussion of
this structure is found in Chapter 7 where we develop models to describe the transmission

1Naturally, crosses floating in air are not a very realistic test system. However, we could easily replace the
air’s permittivity by any other dielectric permittivity. This setup is chosen for the sake of simplicity.
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properties of light through such an arrangement of crosses. In order to handle this type of
structures in the FMM, we set up a suitably designed three-dimensional coordinate trans-
formation to enhance the density of coordinate lines along each surface in each layer. The
coordinate transformations we design in the following have the form

x̄1 = x̄1
(
x1, x2, x3

)
, (6.1a)

x̄2 = x̄2
(
x1, x2, x3

)
, (6.1b)

x̄3 = x3. (6.1c)

As we show in Section 6.1, this leads to a fully anisotropic transformed permittivity and
permeability. Thereby, we cannot use the small eigenproblem of the FMM since Maxwell’s
equations do not decouple into separate eigenproblems for the in-plane H- and E-fields.
Hence, the large eigenproblem of the FMM has to be utilized, see Section 3.3. In Section 6.2,
we briefly discuss efforts of coordinate transformations in x3 direction which can be found in
literature. This is followed by the description of the three-dimensional mesh construction in
Section 6.3. Since it is very instructive, we plot the transformed permittivity in Section 6.4.
Subsequently, we deal with the actual numerical investigation of the problem. In these
preliminary numerical results in Section 6.5, we encounter several problems, for some of
which we discuss possible solutions in Section 6.6. The terminology of Chapter 5 is retained
throughout this chapter. In particular, we use the methodology of nondifferentiable meshes.

Figure 6.2: Sketch of the structure under investigation in this chapter. For this structure we
create a three-dimensional mesh and study its impact on FMM computations.

The results in this chapter were obtained in close cooperation with Thomas Zebrowski. I
designed the three-dimensional mesh and provided the transformed permittivity and per-
meability tensors. Thomas Zebrowski implemented the full anisotropic FMM, I contributed
minor parts to the implementation.
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6.1 Transformed permittivity

In this section, we briefly investigate the transformed permittivity tensor for transformations
of the form given in Eqs. (6.1). Assuming an isotropic permittivity distribution ε̄ in the
Cartesian space, see Eq. (3.2a), the effective permittivity εij reads

ε11 = √
g ε̄

(
∂x1

∂x̄1
∂x1

∂x̄1 + ∂x1

∂x̄2
∂x1

∂x̄2 + ∂x1

∂x̄3
∂x1

∂x̄3

)
, (6.2a)

ε12 = √
g ε̄

(
∂x1

∂x̄1
∂x2

∂x̄1 + ∂x1

∂x̄2
∂x2

∂x̄2 + ∂x1

∂x̄3
∂x2

∂x̄3

)
, (6.2b)

ε13 = √
g ε̄

∂x1

∂x̄3 , (6.2c)

ε21 = √
g ε̄

(
∂x2

∂x̄1
∂x1

∂x̄1 + ∂x2

∂x̄2
∂x1

∂x̄2 + ∂x2

∂x̄3
∂x1

∂x̄3

)
= ε12, (6.2d)

ε22 = √
g ε̄

(
∂x2

∂x̄1
∂x2

∂x̄1 + ∂x2

∂x̄2
∂x2

∂x̄2 + ∂x2

∂x̄3
∂x2

∂x̄3

)
, (6.2e)

ε23 = √
g ε̄

∂x2

∂x̄3 , (6.2f)

ε31 = √
g ε̄

∂x1

∂x̄3 = ε13, (6.2g)

ε32 = √
g ε̄

∂x2

∂x̄3 = ε23, (6.2h)

ε33 = √
g ε̄. (6.2i)

ε13 assumes such a simple form because ∂x3/∂x̄i = δ3i. Eqs. (6.2) mean that even though
the transformations in Eqs. (6.1) are not the most complex transformations possible, they
already lead to a fully anisotropic permittivity tensor since x1 and x2 now depend on x̄3,
i.e., ∂x1/∂x̄3 6= 0 and ∂x2/∂x̄3 6= 0. The permeability has a similar form. Like in two-
dimensional meshing, we construct the mappings x̄i(xj) and not xi(x̄j)—therefore, we have
to derive the corresponding derivatives used in Eqs. (6.2) from x̄i(xj). They are calculated
using the Jacobian J̄ and its inverse, i.e.,

∂x1

∂x̄1
∂x1

∂x̄2
∂x1

∂x̄3

∂x2

∂x̄1
∂x2

∂x̄2
∂x2

∂x̄3

∂x3

∂x̄1
∂x3

∂x̄2
∂x3

∂x̄3

 (6.1)=


∂x1

∂x̄1
∂x1

∂x̄2
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∂x2

∂x̄1
∂x2

∂x̄2
∂x2

∂x̄3

0 0 1
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∂x̄2

∂x3

0 0 1


−1

= 1
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∂x1
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∂x̄2

∂x3
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∂x1
∂x̄2

∂x2 − ∂x̄1

∂x2
∂x̄2

∂x1

 , (6.3)

where we again used the inverse function theorem in (∗). The derivatives of x3 with respect
to x̄1 and x̄2 are zero because of Eq. (6.1c).
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6.2 Review of related work

A method related to three-dimensional transformations is the Chandezon method [60]. There,
grating problems can be made easier by transforming the surface between adjacent layers from
curvy to flat. However, our problem in the context of the structures depicted in Fig. 6.1 is not
a curvy surface. Therefore, the Chandezon method, although transforming in x3 direction,
cannot be of help.

In the Fourier Modal Method, there have also been attempts to incorporate transformations in
the slicing direction. Vallius and Honkanen applied their ASR function to multilevel profiles
[51]. However, the in-plane coordinate transformations include only ASR in one direction, i.e.,
they are one-dimensional. Also, the numerical results are not too convincing and questions
about the effects of artificial reflections and energy loss due to the mesh are not addressed.

A different approach was presented by Gushchin and Tishchenko [61]. They investigated a
periodically modulated surface, i.e., a lamellar, corrugated grating. Instead of stair-casing in
x3-direction, they attempt to introduce slanted walls in order to achieve an improved approx-
imation of the modulated surface. Even though their numerical results are positive, they do
not perform the investigation for metallic systems. Also, the slices are only one-dimensional,
i.e., invariant in one transverse direction. Unfortunately, even though the method is inter-
esting, we cannot utilize it since our problem is different: while Gushchin and Tishchenko
work on the improvement of bent slices, we face slices ideal for the FMM, i.e., straight in
x3-direction, see Fig. 6.2. Our problem at hand is to rotate the cross in the second layer. For
that, we need AC in three dimensions. To the best of my knowledge, there are no published
attempts to apply three-dimensional AC and ASR coordinate transformations in the context
of the FMM.

6.3 Mesh construction

The overall aim of this section is to obtain a three-dimensional coordinate transformation of
the form in Eqs. (6.1) for the system depicted in Fig. 6.2. It consists of two layers of mutually
rotated crosses—the first cross2 is grid-aligned and the second cross is rotated by the angle
ϕ0.

The general idea is to create a mesh for a rotated cross with a rotation angle that depends on
the x3 coordinate. This means that we start with an unrotated mesh since the cross in the
lower layer is grid-aligned. Then, the mesh is rotated3 with increasing x3 up to the second
layer where it is rotated by ϕ0. Behind the structure, the mesh can be rotated back to the
original shape.

Since three-dimensional meshing is a complex endeavor, this section is structured the following
way: Firstly, the general train of thought is outlined. Secondly, we discuss the construction
of the underlying two-dimensional mesh for a cross. Thirdly, the planar mapping for the
rotated cross is utilized to create a three-dimensional coordinate transformation. Fourth and
final, the use of adaptive spatial resolution (ASR) is addressed.

2“The first cross” means in this context the cross with the smaller x3 value. The x3-axis is defined along the
propagation direction of the incident light.

3The detailed meaning of the term “the mesh is rotated” is explained in the subsequent section.
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6.3 Mesh construction

6.3.1 General train of thought

We pointed out that metallic systems with different structures in each layer are difficult for
the FMM. We tackle this problem the following way: assume the second cross of our test
structure in Fig. 6.2 would be grid-aligned above the first cross. Then, we could apply the
same ASR transformation in every layer. Thus, no matching problems between the layers
would arise. The key point is now that we can accomplish this using adaptive coordinates.
In the previous chapter, we transformed the shape of the structure—a circle was transformed
into a square and the optical properties were changed accordingly. However, we do not have
to change the structure’s shape, we can also ‘just’ rotate it.

A delicate point is that we have to make sure during the construction of the mesh that the
second cross is exactly above the first cross. This means that we cannot choose arbitrary
characteristic coordinate lines and points4. An example with a bad choice is depicted in
Fig. 6.3.

Figure 6.3: Bad choice for characteristic lines for three-dimensional meshing. The cross
in the first layer is grid-aligned, see panel (a). In order to use the same ASR
function in every layer, the second cross needs to be rotated via AC such that it
is right above the first cross. Although the characteristic coordinate lines (blue
and red) as chosen in panel (b) result in a transformed permittivity for the cross
that is grid-aligned, they fail to map the cross in the second layer directly over
the first cross, see panel (c).

Here, the characteristic lines (see Fig. 6.3(b)) were chosen in such a way that the transformed
permittivity features a grid-aligned cross (see Fig. 6.3(c)) which is at the wrong position, i.e.,
not above the first cross depicted in Fig. 6.3(a).

The conclusion is that we have to stop choosing points that are 2D-characteristic for the
structure. Instead, three-dimensional meshing requires that we choose points and coordinate
lines that are 3D-characteristic. In the next section, we show how this is accomplished for
the system of crosses.

4In Chapter 5, the characteristic lines were used to define and construct the mapping, see for example Fig. 5.5.
The points where the characteristic lines intersect are called characteristic points.
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6.3.2 Two-dimensional mesh for a rotated cross

In this section, we deal with the construction of the underlying planar mesh that we utilize
in the subsequent section to build a three-dimensional mapping. We have argued that char-
acteristic three-dimensional coordinate lines have to be chosen. A possible choice is depicted
in Fig. 6.4.

Figure 6.4: Possible choice for 3D-characteristic coordinate lines/points. The points marked
in green in panel (a) define the characteristic coordinate lines. They would also
have to be used for the mesh construction in the second layer, see panel (b). A
construction sketch for a possible mesh is depicted in panel (c).

This choice is realizable but the mesh would be distorted at several points. As we have
seen in Chapter 5, this directly leads to a strongly varying transformed permittivity. Also,
the construction would be rather lengthy due to the large number of different zones for the
mapping. A rather simple and elegant choice of 3D-characteristic lines for this problem is
depicted in Fig. 6.5. Here, the lines and the mesh that we use in the following are shown.

Figure 6.5: Characteristic points for a rotated cross’ mesh. Panel (a) displays the partition-
ing of the [0, 1]× [0, 1] unit cell—the points are 3D-characteristic and stem from
the unrotated cross, cf. Fig. 6.4(a). Panel (b) sketches how these coordinate
lines are mapped to form the mesh (panel (c)).

The motivation of this choice is that the mapping for zone 5© is just a Cartesian grid that is
rotated. As we show in Section 6.4, this causes the transformed permittivity in this region
to be the same as the untransformed permittivity, only rotated by ϕ.

90



6.3 Mesh construction

The points P0, Q0, R0, S0 are defined by the intersection points of the outer blue and red
lines in Fig. 6.4(a), i.e., Q0 = (Q0,x1 , Q0,x2) = (d−, d+), P0 = (d−, d−), R0 = (d+, d+), S0 =
(d+, d−) with d± = 0.5 ± a ± d and a and d like sketched in Fig. 6.3(a). The corresponding
points in Fig. 6.5(b) are given by

Pϕ,x1 = 0.5−m cos
(
ϕ− arccos

(
a+ d

m

))
− d sinϕ, (6.4a)

Pϕ,x2 = 0.5 +m sin
(
ϕ− arccos

(
a+ d

m

))
− d cosϕ, (6.4b)(

Sϕ,x1 , Sϕ,x2

)
=

(
Pϕ,x1 + 2(d+ a) cosϕ, Pϕ,x2 − 2(d+ a) sinϕ

)
, (6.4c)(

Qϕ,x1 , Qϕ,x2

)
=

(
Pϕ,x1 + 2(d+ a) sinϕ, Pϕ,x2 + 2(d+ a) cosϕ

)
, (6.4d)(

Rϕ,x1 , Rϕ,x2

)
=

(
Sϕ,x1 + 2(d+ a) sinϕ, Sϕ,x2 + 2(d+ a) cosϕ

)
, (6.4e)

with the abbreviation m =
√
a2 + (a+ d)2 . The points P0, Q0, R0, S0 partition the unit cell

in every layer.

Before constructing the mesh we have to recognize a systematical difference to our previous
two-dimensional, nondifferentiable mesh generation. In Chapter 5, we also defined points that
divided the unit cells, see for example Fig. 5.5. These points were mapped onto themselves
since they were always on the structure’s surface. In contrast to this, the 3D-characteristic
points P0, Q0, R0, S0 are not on the surface of the rotated cross. Therefore, they are not
mapped onto themselves. Instead, they are mapped onto Pϕ, Qϕ, Rϕ, Sϕ.

On first sight, this might be a technical detail. However, it changes the way we construct
the mapping. In Chapter 5, we could easily construct the mapping like in Eq. (5.13). This
procedure gets more complicated when we choose the mesh construction points to be 3D-
characteristic, i.e., not structure-specific. We start by constructing the mapping in zone
1© = {(x1, x2) : x1 ∈ [0, P0,x1 ], x2 ∈ [0, P0,x2 ]}, where we utilize the LT (c, c̄, d, d̄, x)-function
introduced in Eq. (5.10) which, as a reminder, defines a straight line through the points (c, c̄)
and (d, d̄) as a function of x ∈ [c, d]. The mapping reads

x̄1
(
x1, x2

)
= LT

(
0, 0, P0,x1 , H1(x2), x1

)
, (x1, x2) ∈ 1©

with H1
(
x2
)

= LT
(
0, P0,x1 , P0,x2 , Pϕ,x1 , x2

)
, (6.5a)

x̄2
(
x1, x2

)
= LT

(
0, 0, P0,x2 , H2(x1), x2

)
, (x1, x2) ∈ 1©

with H2
(
x1
)

= LT
(
0, P0,x2 , P0,x1 , Pϕ,x2 , x1

)
. (6.5b)

The help functions H1 and H2 are visualized in Fig. 6.6(b). The essential change in the
mapping procedure compared to Section 5.3.2 is that we cannot map each coordinate inde-
pendently from the other coordinate any more. This means, that the x̄1- and x̄2-mappings
need to be designed such that they yield the desired results when they are combined.

Upon carefully inspecting Eqs. (6.5) we observe that the mesh construction conceptually
differs in the help functions Hi. Instead of directly parameterizing the function between
the points (P0,x1 , 0) and Pϕ we have to make sure that P0 is mapped onto Pϕ. This is
accomplished by the form of Eq. (6.5a). In the scheme from Chapter 5, the help function for
x̄1 would have read LT (0, P0,x1 , Pϕ,x2 , Pϕ,x1 , x2). Again, this scheme cannot be used since P0
is not mapped onto itself, i.e., P0 6= Pϕ.
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Figure 6.6: Panel (a) displays the mapping of the first zone. Since P0 is not mapped onto
itself, we have to alter the nondifferentiable mapping formalism established in
Section 5.3.2. Panel (b) displays the help functions H1 and H2 we employ to
construct the mapping in Eqs. (6.5).

The x̄1 mapping in the other zones is constructed analogously and reads

x̄1
(
x1, x2

)
=



LT
(
P0,x1 , H1(x2), S0,x1 , H3(x2), x1

)
, (x1, x2) ∈ 2©

LT
(
S0,x1 , H3(x2), 1, 1, x1

)
, (x1, x2) ∈ 3©

LT
(
0, 0, P0,x1 , H5(x2), x1

)
, (x1, x2) ∈ 4©

LT
(
P0,x1 , H5(x2), S0,x1 , H7(x2), x1

)
, (x1, x2) ∈ 5©

LT
(
S0,x1 , H7(x2), 1, 1, x1

)
, (x1, x2) ∈ 6©

LT
(
0, 0, P0,x1 , H9(x2), x1

)
, (x1, x2) ∈ 7©

LT
(
Q0,x1 , H9(x2), R0,x1 , H11(x2), x1

)
, (x1, x2) ∈ 8©

LT
(
R0,x1 , H11(x2), 1, 1, x1

)
, (x1, x2) ∈ 9©

(6.6)

with the help functions

H3(x2) = LT
(
0, S0,x1 , S0,x2 , Sϕ,x1 , x2

)
, H5(x2) = LT

(
P0,x2 , Pϕ,x1 , Q0,x2 , Qϕ,x1 , x2

)
,

H7(x2) = LT
(
S0,x2 , Sϕ,x1 , R0,x2 , Rϕ,x1 , x2

)
, H9(x2) = LT

(
Q0,x2 , Qϕ,x1 , 1, Q0,x1 , x2

)
,

H11(x2) = LT
(
R0,x2 , Rϕ,x1 , 1, R0,x1 , x2

)
. (6.7)

The x̄2 mapping is given by

x̄2
(
x1, x2

)
=



LT
(
0, 0, P0,x2 , H4(x1), x2

)
, (x1, x2) ∈ 2©

LT
(
0, 0, P0,x2 , H6(x1), x2

)
, (x1, x2) ∈ 3©

LT
(
P0,x2 , H2(x1), Q0,x2 , H8(x1), x2

)
, (x1, x2) ∈ 4©

LT
(
P0,x2 , H4(x1), Q0,x2 , H10(x1), x2

)
, (x1, x2) ∈ 5©

LT
(
S0,x2 , H6(x1), R0,x2 , H12(x2), x2

)
, (x1, x2) ∈ 6©

LT
(
Q0,x2 , H8(x1), 1, 1, x2

)
, (x1, x2) ∈ 7©

LT
(
Q0,x2 , H10(x2), 1, 1, x2

)
, (x1, x2) ∈ 8©

LT
(
R0,x2 , H14(x2), 1, 1, x2

)
, (x1, x2) ∈ 9©

(6.8)
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with the help functions

H4(x1) = LT
(
P0,x1 , Pϕ,x2 , S0,x1 , Sϕ,x2 , x1

)
, H6(x1) = LT

(
S0,x1 , Sϕ,x2 , 1, S0,x2 , x1

)
,

H8(x1) = LT
(
0, Q0,x2 , Q0,x1 , Qϕ,x2 , x1

)
, H10(x1) = LT

(
Q0,x1 , Qϕ,x2 , R0,x1 , Rϕ,x2 , x1

)
,

H12(x1) = LT
(
R0,x1 , Rϕ,x2 , 1, R0,x2 , x1

)
. (6.9)

Here, the LT functions in Eqs. (6.6) and (6.8) describe the linear transition between the
characteristic coordinates lines. This means that these LT functions define the coordinate
line density in each zone. The help functions Hi, on the other hand, are linear since the
characteristic coordinate lines are mapped on piecewise linear functions, see Fig. 6.5(b).
They would have to be replaced by other functions if the red and blue lines in Fig. 6.5(b)
were bent instead of linear.

The resulting planar mesh is depicted in Fig. 6.5(c). In the subsequent section, we show how
this mesh is enhanced to form a three-dimensional coordinate transformation.

6.3.3 Construction of the three-dimensional transformation

In the previous section, we obtained a mesh for a cross with arbitrary rotation angle ϕ. We
discussed that this transformation can be applied in the layer of the rotated cross to align
it to the grid in transformed space. However, the idea is to change the coordinate system
in between the crosses continuously. This means that we obtain a different planar mesh for
every value of x3. This value of x3 directly translates into a rotation angle. Explicitly, we
perform coordinate transformations in the space between the crosses, too. At his point it
becomes clear why we built the planar mesh in the subsequent section the way we did—for
a given value of x3 we only compute the rotation angle ϕ(x3) and easily obtain the planar
mesh using Eqs. (6.6) and (6.8). Thus, we can write Eqs. (6.1) in a more precise way, i.e.,

x̄1 = x̄1
(
x1
(
x̄3
)
, x2

(
x̄3
) )

, (6.10a)

x̄2 = x̄2
(
x1
(
x̄3
)
, x2

(
x̄3
) )

, (6.10b)

x̄3 = x3. (6.10c)

The next step is to formulate the dependence of the rotation angle ϕ on the x3 coordinate.
The lower surface of the lower cross defines the x3 = 0 plane. The height of one cross is
denoted h and the distance between the crosses is denoted b. The upper cross is rotated by
ϕ0. The lower cross is not rotated. In between, we choose a linear function to make the
transition from ϕ = 0 to ϕ = ϕ0 since it seems the most reasonable approach. Thereby, we
obtain the dependence of the mesh parameter ϕ on the x3 coordinate:

ϕ
(
x3
)

= ϕ0
b

(
x3 − h

)
, x3 ∈ [h, h+ b]. (6.11)

When numerically investigating this system, we rotate the mesh to ϕ0 in the second layer
and then rotate it back to the Cartesian mesh behind the second cross. The rotation back to
the Cartesian mesh is performed on the distance b, such that the rotation to ϕ0 and back is
symmetric. This means that the rotation angle for the mesh construction behind the second
cross is given by

ϕ
(
x3
)

= −ϕ0
b

(
x3 − 2h− 2b

)
, x3 ∈ [2h+ b, 2h+ 2b]. (6.12)
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Hereby, we complete the construction of the three-dimensional AC mapping.5 In the following
section, we briefly comment on ASR before we visualize the transformed permittivity in
Section 6.4.

6.3.4 Adaptive spatial resolution

Up to this point we created an AC mesh leading to a fully anisotropic effective permittivity
where the gold crosses are grid-aligned in both layers. Since we designed the three-dimensional
adaptive coordinates such that the crosses are right above each other, it suffices to apply a
two-dimensional, planar adaptive spatial resolution transformation function. The same ASR
function is applied in every layer. We discussed the form of such functions with two material
surfaces in great detail in Section 5.3.7. Since we need four compression points for the crosses,
this transformation has to be adjusted. The expressions and the construction principle in
Section 5.3.7 are very general though and can easily be extended for four compression points.
We compress the mesh at the points 0.5−a−d, 0.5−a, 0.5+a, 0.5+a+d in each direction of
the [0, 1]× [0, 1] unit cell since these are the coordinate lines enclosing the structure’s surface,
see Figs. 6.3(a), 6.4(a) and 6.5(a).

6.4 Visualization of the effective permittivity

Constructing a mesh is a rather complex and technical procedure. Visualizing its effect by
plotting the transformed permittivity is, therefore, important to gain a deeper understanding
of coordinate transformations in the FMM in general. For that, we choose a specific test
system and plot the effective permittivity tensor elements together with the corresponding
mesh. As stated above, the same ASR function is applied in all layers. Here, we only visualize
the effect the adaptive coordinates have on the transformed permittivity.

The test system is a square lattice of crosses, mutually rotated by ϕ0 = 15◦. The lattice
constant is 600 nm. The half-width of one cross’ arm is a = 25 nm, the arm length is
d = 100 nm. The cross height is h = 25 nm and the distance between the crosses is b =
50 nm. We assume the crosses to consist of gold, described by a Drude model with the
parameters ε∞ = 9.0685, a plasma frequency ωD = 1.3544 ·1016 Hz and a damping coefficient
γ = 1.1536 ·1014 Hz, see Ref. [25]. The wavelength we used for Fig. 6.7 is 1000 nm. The color
scale in Figs. 6.7(a) and 6.7(c) has been saturated at 0 for ε11 and ε33 in order to see more
features, even though the real part of the dielectric function of the gold crosses is about − 42.
We depict the ε11, ε12, ε13 and ε33 components of the effective permittivity. This suffices
since the permittivity tensor is symmetric, e.g., ε12 = ε21, and the mapping in Fig. 6.5 is C4
symmetric. This results in ε22 and ε23 being ε11 and ε13 rotated counter clockwise by 90◦,
respectively. In all plots, we discretize the effective permittivity with 1024 × 1024 points.

In Fig. 6.7(a), the permittivity for the first layer is depicted. Since the cross is already
grid-aligned, the rotation angle ϕ is zero and we have a Cartesian mesh. Therefore, the
background (ε̄bg = 1) and the cross permittivity (Re (ε̄cross) ≈ −42) stay like they are in the
untransformed space. In Fig. 6.7(b) the permittivity between the crosses is plotted. All tensor

5In the subsequent sections, the phrase “the mesh is rotated” is used. This is a bit colloquial but a lot shorter
than “the parameter ϕ, which we used for the construction of the mesh, is increased”. Naturally, this does
not mean that the mesh itself is rotated; we always deal with a square, unrotated unit cell. However, the
grid in zone 5©, see Fig. 6.5, is rotated.
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6.4 Visualization of the effective permittivity

Figure 6.7: Real part of the effective permittivity for two layers of mutually rotated crosses
transformed with the three-dimensional AC transformation. See text for further
details. 95
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components are non-zero and exhibit a strong spatial variation. Note that the permittivity
in the untransformed, physical space has the value 1 everywhere in the unit cell since the
volume in between the crosses is assumed to consist of air only.

The transformed permittivity inside the second layer of crosses is shown in Fig. 6.7(c). Here,
the effective permittivity tensor is not fully anisotropic because the mesh does not change
along x3 within the second layer. A further observation is that our aim of a grid-aligned gold
cross is achieved. In the vicinity of the gold-cross the permittivity has the value 1—this is
due to the fact that the mesh was designed to be a rotated Cartesian mesh in zone 5© in
Section 6.3.2. Finally, behind the second layer of crosses, the mesh is rotated back to ϕ = 0◦.
Behind the first cross the rotation angle ϕ (which is the x3-dependent mesh parameter)
increased. Behind the second cross it decreases. This sense of rotation is observable well in
the ε13 components, compare Figs. 6.7(b) and 6.7(d). In this component, the sign changes
due to the different sense of rotation with respect to the x3 coordinate.

Having obtained the coordinate transformations and the effective permittivities, we investi-
gate their performance in the subsequent section.

6.5 Preliminary numerical results

Before presenting actual computations, it is worth pointing out numerical advantages and
disadvantages of the presented approach. The classical FMM faces a problem when it is
applied to the test structure since the structure is not grid-aligned. This means that in-plane
stair-casing and the Gibbs phenomenon massively reduce the method’s accuracy. In fact,
even if 10,000 plane waves could be used we would still face the problem of the in-plane stair-
casing. So even when the classical FMM would lead to converged results for such a system
it would only provide the converged result for the stair-cased, i.e., unphysical, structure.
This could, in principle, be tackled by increasing both the number of the real space points
for the Fourier transformation as well as the number of plane waves for the field expansion.
However, especially memory is limited and, therefore, convergence for a system such as our
test system can hardly be reached with classical FMM. This is the case even though only the
small eigenproblem of the FMM needs to be solved which is 23 times faster than the large
eigenproblem and consumes (1/2)2 of the memory.

In contrast to this, our approach creates fully anisotropic tensors. Thus, the large FMM
eigenproblem has to be solved, with much higher effort needed. The underlying aim is to
obtain much more accurate results. Apparently, we have to slice the system into several more
layers because each value of x3 features a different effective permittivity. On the other hand,
the metallic structures are fully grid-aligned and we can increase the density everywhere
along the surface. So the trade would be to endure the computation of more layers but on
the other hand gain better results with a much smaller number of plane waves.

In the following, we present first numerical investigations for such a three-dimensional trans-
formation. The first test in Section 6.5.1 is an empty lattice calculation which means that
the permittivity is unity everywhere in the physical, untransformed system. Thereafter, in
Section 6.5.2, we investigate the numerical results of our test system of periodically arranged,
mutually rotated crosses.
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6.5.1 Empty lattice calculation

An important step in the method’s validation is performing consistency checks such as an
empty lattice calculation. We have performed convergence studies for the system described
and visualized in Section 6.4, where we replaced the gold crosses with the background per-
mittivity εbg = 1. The wavelength for the calculation is 1070 nm. In all layers and all
computations, we use the same ASR function to compress the coordinate lines. Its parame-
ters are equal in x1 and x2 direction and read x̄1 = P0,x1 , x̄2 = 0.5− a, x̄3 = 0.5 + a, x̄4 =
S0,x1 , ∆x1 = 0.2, ∆x2 = 0.2, ∆x3 = 0.2, see Sections 6.3 and 5.3.7 for definitions.

We performed the computations for a varying number of layers. In the first layer (where
the first cross would be), we used a Cartesian mesh. In the layer where the second, rotated
cross would be, we used a mesh with rotation angle ϕ = ϕ0. Figure 6.8 sketches how many
intermediate layers were used in the computations and how the rotation angles of the mesh
are defined. The layers where the crosses would be are shaded in yellow—this is only supposed
to guide the eye, in the actual computations of this section we have ε̄ = εbg everywhere in
the untransformed space.

Figure 6.8: Number of intermediate layers for the calculation. In all layers the same ASR
compression is used. This figure sketches how the AC (and, thereby, the per-
mittivities and permeabilities) look like in each layer. In the case of 0 layers we
transform the mesh only in the layer with x3 ∈ [h+ b, 2h+ b]. The permittivity
tensor used for the eigenproblem in this layer is depicted in Fig. 6.7(c). For 1
intermediate layer we solve 4 eigenproblems besides the incoming and outgoing
layer—the effective permittivities that correspond to each eigenproblem are de-
picted in Fig. 6.7(a)-(d), only with the crosses replaced with εbg. Even though
the system consists of two-dimensional slices, the permittivity tensor in each
slice contains the information of the three-dimensional rotation due to its full
anisotropy, cf. Fig. 6.7.

The results of the empty lattice computations are depicted in Fig. 6.9. The first test of the
three-dimensional coordinate transformations reveals certain weaknesses. In Fig. 6.9(a), we
display a convergence study for the transmittance. We calculated the total transmittance for
50 to 1000 plane waves in steps of 25 and used a circular truncation scheme in k-space. In
all cases, the transmittance does not reach one. With more than 600 plane waves the result
only exhibits a relative variation by less than 10−4. The computation with 0 layers (dashed)
shows the same behavior like the computations with more layers but has a small offset to
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Figure 6.9: Convergence studies for the empty lattice calculated with the three-dimensional
mesh at 1070 nm. Panel (a) displays the transmittance and panel (b) depicts the
absorption of the system both in dependence of the square root of the reciprocal
number of plane waves. Panel (a) shows that not all light is transmitted, whereas
panel (b) depicts the absorption of the system.

them. The computations with 1, 2, 4 and 8 layers are rather close together, namely in an
interval of 3 · 10−5. In fact, this is an interesting result: positively speaking one could say
that already one intermediate layer shows results close to 8 intermediate layers. Negatively
speaking one could all call them equally wrong.

Fig. 6.9(b) depicts the absorption of the system, i.e., one minus transmittance T minus
reflectance R. The reflectance of the system is rather small—however, we still miss about 5%
of the systems energy.

Since our structure is C4-symmetric, TE and TM polarization should yield the same results
for normal incidence. We checked the difference between TE and TM for the values depicted
in Fig. 6.9(a). In the case of 0 layers, the transmittance for TE and TM only differ by 1 ·10−9.
For all other numbers of layers, the transmittance for TE and TM polarization differs by a
nearly constant value of 8 · 10−4.

These results of the empty lattice calculation are not too promising. However, they give
us a hint in which order of magnitude the error is. We discuss possible sources of error in
Section 6.5.3.
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6.5.2 Test structure calculation - two layers of crosses

In this section, the numerical results for the test structure depicted in Fig. 6.2 are discussed.
The system parameters are as described in Section 6.4 and the ASR function used is the same
as in the computations for the empty lattice. The wavelength for the convergence study in
Fig. 6.10 is 1070 nm. Again, we calculated the total transmittance for 50 to 1000 plane
waves in steps of 25 and used a circular truncation scheme in k-space. The periodic structure
is illuminated under normal incidence with TE polarization. In this convergence plot, the
transmittance is depicted as a function of the square root of the reciprocal number of plane
waves. The transmittance was computed for a Cartesian mesh, with 0 intermediate layers
between the AC layers with ϕ = 0 and ϕ = ϕ0, and with 1, 2, 4 and 8 intermediate layers
like described in Fig. 6.8.

Figure 6.10: Convergence investigation for the transmittance of the double cross structure
at 1070 nm in TE polarization for different numbers of intermediate layers.
The cross rotation angle ϕ is 15◦. The Cartesian mesh leads to an erratic con-
vergence behavior while the three-dimensional mesh exhibits a smooth form.

The results are quite interesting: while the Cartesian mesh shows a very erratic convergence
behavior, the transmittance calculations using the three-dimensional adaptive mesh converge
very quickly. In particular, the transmittance using the Cartesian mesh shows variations for
up to 50% for small numbers of plane waves. The three-dimensional AC and ASR mesh, on
the other hand, varies only little even for few plane waves. Interestingly, like in Fig. 6.9, it
does not make too much of a difference how many intermediate layers are chosen—the results
for 1, 2, 4 and 8 show very little deviation from one another.

Unfortunately, a problem that we hinted at in the previous section is observable in the
calculations for the test structure, too: the transmittance for TM polarization differs from
the one for TE polarization, cf. Figs. 6.10 and 6.11(b). Again, due to the symmetry of the
system, this should not be the case. For 0 layers TE and TM polarization yield the same
results. In Fig. 6.11(a) we show the transmittance spectrum of the system for TE polarization
obtained with 4 intermediate layers and 797 plane waves.

99



Chapter 6 Three-Dimensional Coordinate Transformations

Figure 6.11: Transmittance spectrum for the double cross test structure with incident TE
polarization, 4 intermediate layers and 797 plane waves shown in panel (a) and
convergence study with TM polarization depicted in panel (b). While the data
for the Cartesian mesh in panel (b) is consistent with Fig. 6.10, the results for
the three-dimensional mesh show a deviation compared to the TE calculation.
Due to the system’s C4 symmetry, this should not be the case.

6.5.3 Interpretation and specific problems

The results of the computations for the empty lattice and the two layers of mutually rotated
crosses were ambiguous. The convergence behavior of the computations with the three-
dimensional mesh are much smoother than the corresponding Cartesian computation. On
the other hand, the strong difference between results for incoming TE and TM polarization
points to remaining challenges.

In essence, developing a three-dimensional AC and ASR mesh is an important step towards
new fields of application for the FMM. However, the method cannot be deemed reliable at this
point. The issues occurring suggest that there is either an error in the FMM code itself or in
the way we constructed the mesh and the effective permittivity. A hint towards an incorrect
implementation is the strong absorption in the empty lattice calculation, cf. Fig. 6.9(b).
A significant non-zero reflection would have hinted to problems with the matching of the
layers. However, this is not the case. A possible source of error would be an incorrectly
derived Poynting flux. Since TE and TM polarization yield the same results for two layers
of crosses with 0 intermediate layers (cf. Figs. 6.10 and 6.11(b)) the (implementational or
conceptual) error could be an effect of the rotation, i.e., ε13 6= 0 6= ε23. Also, we might have
made a conceptual mistake in either the construction and application of the three-dimensional
adaptive mesh or in the interpretation of the numerical data. In conclusion, the open issues
of this method have to be left for further studies.

There is a specific problem that we did not address up to this point: starting a plane wave in
the AC and ASR approach is not always easy. As we discussed earlier, the expansion basis
of the fields change due to the use of AC and ASR coordinate transformations. When we
start a plane wave in the transformed space, this does not necessarily mean that it is also a
plane wave in the untransformed (and, thereby, physical!) space. In fact, this is hardly ever
the case. Therefore, a first approach is to start the eigenmode of the transformed system
that is closest to a plane wave in the physical, Cartesian space. We applied this approach in
the simulations presented in this chapter. A possible solution to this concern is examined in
Section 6.6.
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Although this is an important issue, it does not seem to be the cause for the problems observ-
able in the previous sections. In the empty lattice, any mode should propagate regardless of
whether it is a plane wave or not. Especially, this does not explain the energy loss discussed
in Fig. 6.9(b).

6.6 Advanced concept

We stated above that it is difficult to start a plane wave in physical space, since this plane
wave is also transformed when we change the basis functions due to the ASR transformation
we perform in every layer. Here, we present an idea how this may be tackled. Note that
this section solely addresses the problem of the properly started plane wave. The suggestions
here are not expected to have a positive impact on the problems concerning the empty lattice
calculations in Section 6.5.1.

In the above scheme, we gradually rotate the mesh when increasing the x3 component. In
analogy, we could also start to introduce the ASR function gradually with increasing x3 before
rotating the mesh. Thereby, the basis functions of the problem would be in the real, physical
space. Therefore, we could easily start an ordinary plane wave in the incoming, Cartesian,
physical half-space. Then, we could introduce several intermediate layers to start the ASR.
The general procedure is sketched in Fig. 6.12(a). In this sketch, we start by a Cartesian
layer at the bottom, cf. Fig. 6.12(b). In the next three layers, we gradually introduce the
ASR as discussed in Section 5.3.7. “1/3 ASR” figuratively means that the ASR has reached
a third of its desired strength, see Figs. 6.12(c) and (d).

Once the ASR is fully introduced at its desired strength (cf. Fig. 6.12(e)), the layer with
the first cross can be computed (shaded in yellow). Then, like before, we rotate the mesh,
only with an ASR applied before that, see Fig. 6.12(f). Once the mesh is rotated up to the
cross rotation angle ϕ0, we can compute the layer of the rotated cross, again shaded in yellow
in Fig. 6.12(a). The mesh that is used to compute the effective permittivity in this layer is
depicted in Fig. 6.12(g). Like above, we then gradually reverse the mesh changes—first, the
mesh is rotated back, then the ASR is decreased until we reach the outgoing layer with a
Cartesian mesh.

Mathematically, this looks the following: when we want the increase of the density to happen
on the interval x3 ∈ [0, c], then the mapping has to obey

x̄1(x1, 0) != x1, (6.13a)

x̄1(x1, c) != ASR(x1). (6.13b)

Here, ASR denotes the compression function (cf. x̄(x) in Section 5.3.7). A linear introduction
of the ASR seems most reasonable. Therefore, a suitable function fulfilling the requirements
is

x̄1(x1, x3) = 1
c

(
ASR(x1)− x1

)
x3 + x1 (6.13c)

The x̄2 mapping is constructed similarly.

Conceptually, the whole coordinate transformation still has the form of Eqs. (6.1). For any
given value of x3 we first compress the coordinate lines and then apply the AC coordinate
transformation. The result are meshes like in Fig. 6.12. The great advantage of such a
procedure would be that it could be easily incorporated into any classical FMM code which
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Figure 6.12: Three-dimensional meshing with a Cartesian layer as first and last layer. Start-
ing from Cartesian, physical, untransformed space, we could gradually increase
the density of coordinate lines using a x3 dependent compression function.
Then, after the layer with the grid-aligned cross, the mesh is rotated up to the
angle ϕ0 in the layer with the second cross. After this, the mesh is rotated
back and the coordinate line density is reduced until the mesh is Cartesian
again. The corresponding meshes are depicted in panels (b) to (g). From
those meshes we can compute the transformed permittivity and permeability
tensors.

can solve the large eigenproblem. Since the incoming and outgoing layer are Cartesian, this is
perfectly compatible. So any classical FMM code that can solve the large eigenproblem could
just be given the transformed permittivity and permeability and would, thereby, incorporate
three-dimensional coordinate transformations. This could be particularly interesting when
using ASR and AC in combination with open source codes of the classical FMM, see Refs. [38,
39].
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Chapter 7

Coupled-Dipole Models for Slabs of
Metallic Nanostructures

Up to this point we predicted the optical properties of slabs of periodic nanostructures by
solving Maxwell’s equations using a suitable dielectric function ε to describe the structure’s
optical response. To do so, we found ways to predict the optimal mesh parameter regions for
numerical calculations with the Fourier Modal Method. However, often enough we are not
interested in high accuracy calculations but rather in finding optimized designs. This calls
for a different approach since finding such designs by solving Maxwell’s equations for various
geometries is time- and memory-consuming. Therefore, a simple and analytical model to
predict optical properties would be of great help. The aim of this chapter is to find a model
for periodic, metallic, multi-layer nanostructures that is able to identify interesting geometries
or parameter regions with the desired properties. These geometries can then be investigated
further using common Maxwell solvers. In my “Wissenschaftliche Arbeit zur Zulassung zum
ersten Staatsexamen im Fach Physik” [62] (from now on referred to as Staatsexamensarbeit)
I started to design such a model. This chapter presents several extensions to this work.

I carried on to develop this model since it became clear at the end of the Staatsexamensarbeit
that the approach had to be extended.

Before we focus on the details of the model, we start by reviewing related methods and models
in Section 7.1. The systems considered in this chapter are discussed in Section 7.2. This is
followed by a review of the methods and the dipole model used in the Staatsexamensarbeit in
Section 7.3. Here, we encounter strengths and shortcomings of the dipole model. A particular
strength of this model is investigated in Section 7.4. Because the dipole model in Ref. [62]
does not include effects of the lattice, we show how these effects can be incorporated in the
method in Section 7.5.

The mentioned shortcomings of the dipole model lead us to an important new model—the
twin dipole model. Here, we first face certain technical aspects of the model’s development
in Section 7.6. This is followed by the presentation of the model’s predictions in Section 7.7.
There, we show that the new twin dipole model is significantly better than the dipole model
since it reproduces physical aspects of the investigated systems that are absent in the dipole
model. In Section 7.8 we demonstrate how a near-field coupling can be incorporated in the
method. Although the results are ambiguous, they lay the route for possible future work.
This is also the case for the approach presented in Section 7.9 where a generalized model
with a continuous charge distribution is outlined. The chapter is concluded in Section 7.10
with a summary and an outlook.

The development of the models presented in this chapter was conducted over a long period of
time. Along this route, many people offered ideas how to proceed and improve the models.
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In particular, this work has benefited from the regular input and discussions with Kurt Busch
and Christian Wolff.

7.1 Related methods

In the past years, many models were developed to describe the optical properties of metallic
nanostructures. Different models emerged for different structures. For example, a common
model for split ring resonators is an inductor-capacitor circuit [63]. For the systems investi-
gated in this chapter (see Section 7.2) there exist various models. They deal either with the
description of the single meta-atom, i.e., the basic building blocks that metamaterials consist
of (see Ref. [64]) or they try to describe the light propagation in these metamaterials by an
effective medium approach [65, 66, 67]. Therein, it is assumed that the material’s response
can be described by means of an effective permittivity tensor. The aim of these models is to
derive the effective material properties by considering different physical mechanisms.

A method similar to the model presented in this thesis is the discrete dipole approximation,
see Ref. [68]. Here, each element of the constituent meta-atoms is modeled as a point dipole
with electric (and possibly magnetic) polarizability. However, depending on the number of
dipoles, this method is on the edge between numerical and analytical method.

Especially when the metamaterial consists of several layers, the interlayer coupling is a con-
troversially debated topic. There are several models, some of which contain dipole-dipole
coupling [69], inductive coupling [70] and higher order multipoles [65]. So far, the ‘holy grail’
has not yet been found—although many models show features similar to either experiment or
ab initio numerics, they often lack the ability to fully describe and predict the transmission
properties of light through the considered nanostructures.

7.2 Considered systems

In this section, we briefly discuss the investigated systems and their basic physical properties.
The numerical data is presented together with the predictions of the models in the subsequent
sections. Since the basic idea of these models is to describe metallic nanostructures as coupled
dipoles, the structures we investigate have a suitable form: the simplest structure in this
chapter is one layer of periodically arranged metallic rods. These rods may be rotated within
the unit cell, see Fig. 7.1.

Throughout this chapter, the incident light is linearly polarized in x-direction. Naturally, the
system strongly depends on the polarization of the incident light. The more the polarization
coincides with the orientation of the rod, the more the charges are displaced from their equi-
librium positions. This also means that the absorption is strongest, when the polarization is
parallel to the rods. Hence, the system exhibits linear dichroism. In general, the transmission
is strongly influenced by the polarization’s orientation with respect to the rod. Therefore, we
also find linear birefringence-like behavior. The problem is that the term birefringence refers
to different permittivities for different field components. However, the system is not very
thick and, thus, it is questionable how well an effective medium description of this system in
terms of an effective permittivity tensor can be.

Another important question is whether circular effects occur. Due to the symmetry of the
single meta-atom, it does not show circular effects. Yet, the periodic arrangement does, see
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7.2 Considered systems

Figure 7.1: The basic system consists of one layer of periodically arranged rods. While the
incident field is always assumed to be linearly polarized in x-direction, the rods
may be rotated within the unit cell.

Ref. [62]. When a circularly polarized field is incident on the structure, the light transmitted
through the periodic arrangement is a superposition of left- and right-circularly polarized
fields (LCP, RCP). For the periodic arrangement of rotated rods, the conversion from incident
RCP to transmitted LCP does not yield the same results as for LCP to RCP. A similar effect
has been observed in ’fish-scale’ metameterials, see Ref [71].

The second structure we investigate is a layer of rotated crosses. Effectively, this structure
can be regarded as two superimposed, perpendicular rods. This structure does not show
linear polarization effects which is due to its C4 symmetry. Any incident linear polarization
can be split into parts parallel to one of the crosses’ arms. Then, each of these parts ‘sees’
only one rod and is transmitted like in the case of one layer of unrotated rods. Behind the
cross, the two parts can be recombined again with the result of light that is identical to the
light transmitted by an unrotated rod. This picture is valid for any cross rotation angle.
Hence, no linear effects occur.

The more complex systems considered in this chapter are depicted in Fig. 7.2.

Figure 7.2: The most complex structures considered in this chapter are two layers of peri-
odically arranged, mutually rotated, metallic rods and crosses.

An important property of such systems is the coupling between the layers. In this chapter, we
present models based on the assumption that the coupling is dominated by the dipole-dipole
interaction between the rods. For two layers of rods we investigate the transmitted light when
the upper rod is rotated. Then, the polarization behind the slab is elliptically. Again, linear
dichroism occurs.
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The most complex and physically challenging structure is depicted in Fig. 7.2(b)—two layers
of mutually rotated crosses. This structure has gathered a lot of attention, see Refs. [58,
72, 73]. Here, we touch the subject of chirality. A structure is called chiral when it has a
handedness, a sense of rotation. For most angles this is the case for the structure shown in
Fig. 7.2(b). The question arises whether circular effects occur, i.e., whether σ+ and σ− polar-
izations are treated differently since one has the same sense of rotation like the structure and
the other does not. Since the structure is C4 symmetric, the same line of argument as for one
layer of crosses applies—thus, the structure does not show linear polarization effects. Hence,
any polarization rotation can directly be attributed to the different transmission behavior
of left- and right-circularly polarized light. More elaborate analyses of chiral nanostructures
can be found in Refs. [8, 74, 75, 76].

The parameters of the investigated systems are discussed at the appropriate places where the
numerical data and the model’s predictions are discussed. The rods and crosses are assumed
to be cuboids, i.e., invariant in z-direction since this makes the numerical investigations
drastically easier. The numerical reference computations used throughout this chapter were
obtained by Sabine Essig with the classical Fourier Modal Method [34]. For each calculation,
841 plane waves were used. The reason for applying the classical FMM in all cases is that
no fully reliable three-dimensional ASR and AC calculations are available, yet. Naturally,
we could use ASR and AC for single layer structures. However, we would then fit the free
parameters of the models to numerical data obtained with one method and, thereafter, try
to fit the coupling for multi-layer systems to numerical data obtained with another method.
Therefore, it seems most reasonable to use the same method for all calculations to ensure
consistency.

In Chapter 6, we argued that rotated, metallic structures are very challenging for the classical
FMM. For example, resonances in the transmittance tend to shift even between calculations
with high but different numbers of plane waves. However, the models applied contain free
parameters such as the resonance frequency—a shift in the numerical data would just result
in a slightly varied fit parameter. Thus, the underlying physics is not affected—after all, this
is what we try to model in this chapter.

7.3 Review of own previous work

In this section, I review the most important content of my Staatsexamensarbeit [62]. Natu-
rally, content, notation and formulation are closely related to Ref. [62]. This is an important
section since we reuse many of the formulations and concepts presented here throughout the
entire chapter.

I start by discussing the field emitted by an oscillating charge in Section 7.3.1. This is fol-
lowed by the discussion of a scattering matrix formalism in Section 7.3.2. In the subsequent
Section 7.3.3 I review how light is transmitted through a slab of identical, randomly dis-
tributed, non-interacting particles. The three following Sections 7.3.4, 7.3.5 and 7.3.6 present
the predictions of the model for a layer of rods and crosses and two layers of rods and crosses.
The section is concluded with a short summary in Section 7.3.7.

106



7.3 Review of own previous work

7.3.1 Theoretical background: field and dipole moment of an oscillating
charge

Assume an illuminated, oscillating particle with charge −e. Since the particle is accelerated
by the external field it emits radiation. The field at the point Q is given by [20]

Erad(Q, t) = − 1
4πε0

e

r c2 [n× (n× r̈oscill(t))]t− r
c
, (7.1)

where r is the distance to the observer and roscill is the position vector of the oscillator, see
Fig. 7.3.

Figure 7.3: The unit vector n points from the position of the oscillator to the observer at
Q.

The vector n is the unit vector pointing from the position of the oscillator to the observer:

n = Q− roscill
|Q− roscill|

. (7.2)

Since the observer is located at distance r, a retardation
(
t− r

c

)
enters into Eq. (7.1). Using

Eq. (7.1) we can determine the field emitted by the charge at any point of the system.

By performing a multipole expansion like in [21], we obtain the dipole moment of a charge
distribution ρ as

P =
∫
d3r′r′ρ(r′), (7.3)

which reduces for a single electron (whose charge distribution is characterized by a delta
function at the point of the charge) to

p = −e r(t). (7.4)

7.3.2 Theoretical background: scattering matrix formalism

We already introduced scattering matrices in the framework of the Fourier Modal Method.
They related the fields between different layers. Here, we introduce a scattering matrix that
works similarly. This new scattering matrix relates the electric field incident on a scatterer
(a plane, harmonic wave) with the light scattered by it. For this purpose, we define different
coordinate systems which are depicted in Fig. 7.4.1

1The content of this and the subsequent section follows Ref. [18] and, thus, uses their notation. Furthermore,
Figs. 7.4 and 7.5 are adapted from Refs. [18] and [62].

107



Chapter 7 Coupled-Dipole Models for Slabs of Metallic Nanostructures

Figure 7.4: Coordinate systems used for the scattering matrix formalism. The scatterer
defines the origin of the coordinate system Oxyz.

As depicted in Fig. 7.4, the propagation direction of the incident plane wave, also called the
forward direction, defines the z-axis. Any point of the particle may be used as origin. The
x and y axes form a Cartesian coordinate system with the z axis but underlie no further
restrictions. The so-called scattering plane is defined by the scattering direction êr and the
forward direction êz. When êr is parallel to êz, we choose φ = 0 to determine the scattering
plane.

We start by decomposing the incident electric field (which lies in the xy plane) into parts
parallel and perpendicular to the scattering plane, i.e.,

Ei = (E0x êx + E0y êy) eikz−iωt = E‖i ê‖i + E⊥i ê⊥i, (7.5)

with
ê⊥i = −êφ, ê‖i = sin θ êr + cos θ êθ, (7.6)

which form a right-handed coordinate system with êz:

ê⊥i × ê‖i = êz. (7.7)

In Eq. (7.6) we use the orthonormal basis vectors êr, êθ and êφ of the common spherical
coordinate system (r, θ, φ).

In the far-field region (characterized by kr � 1), the scattered electric field Es is approxi-
mately transverse and has the asymptotic form [20]

Es ∼
eikr

−ikr
A, êr ·A = 0. (7.8)

Thus, in the far-field region we can decompose it using the coordinate system

ê‖s = êθ, ê⊥s = −êφ, ê⊥s × ê‖s = êr. (7.9)

Then the scattered electric field in the far-field region reads

Es = E‖s ê‖s + E⊥s ê⊥s. (7.10)

Since the boundary conditions for Maxwell’s equations at the surface between two media are
linear, the amplitude of the scattered field is a linear function of the amplitude of the incident
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field [18, 20]. This can be formulated in a matrix relation between the incident and scattered
electric field (

E‖s
E⊥s

)
= eik(r−z)

−ikr

(
S2 S3
S4 S1

) (
E‖i
E⊥i

)
, (7.11)

where z denotes the z-component of the observer and r denotes the distance between the
particle and the observer. It is noteworthy that Ei and Es are expressed in different coordinate
systems, see Eqs. (7.5) and (7.10). Also, we should keep in mind that the entries of this
amplitude scattering matrix are angular dependent, i.e.,

Sj = Sj(θ, φ), j = 1, ..., 4. (7.12)

Therefore, we obtain a different scattering matrix when the point of observation changes.

7.3.3 Theoretical background: reflection and transmission through a slab

The aim of the dipole model is to predict the transmission properties of light through periodic
nanostructures. However, we assume that the response of a single scatterer is independent of
the surrounding scatterers. Consequently, we assume that our slab of periodically arranged
scatterers may as well be described by a slab of randomly distributed, non-interacting scat-
terers. Therefore, we discuss the transmission properties of such a slab. It is assumed to be
infinitely extended in the xy-plane and finite in z-direction. The scatterer’s distribution is
assumed to be random but more or less uniform. A sketch is depicted in Fig. 7.5. In the
following, we assume a sufficiently large number of particles such that the summation over
the scattered field can be approximated by an integration. In a certain sense, we describe
the slab of scatterers as an effective medium.

Figure 7.5: Sketch of a slab with randomly distributed scatterers. A plane wave is incident
in z-direction. The observer is located at point P. The field at P is given by
the superposition of the incident field and the field scattered by each particle.

The incident field is assumed to be a plane wave which is polarized in x-direction, i.e.,

Ei = E0 e
ikz−iωt êx. (7.13)

The scattered field at a point P is given by the sum of the incident field and all scattered
fields. With the field Esj scattered by the jth particle this reads

Et = Ei +
∑
j

Esj . (7.14)

109



Chapter 7 Coupled-Dipole Models for Slabs of Metallic Nanostructures

Next, we introduce the so-called vector scattering amplitude, defined as

X = (S2 cosφ+ S3 sinφ) ê‖s + (S4 cosφ+ S1 sinφ) ê⊥s. (7.15)

The symbol X is used as a reminder that the incident plane wave is polarized in x-direction.
This is the case throughout the entire chapter. The unit vectors in Eq. (7.15) are defined as
in Section 7.3.2 and the Si are the entries of the amplitude scattering matrix as defined in
Eq. (7.11).

With the definitions in Eqs. (7.11) and (7.15) we can calculate the scattered field at the point
P caused by the jth particle at position (xj , yj , zj). It reads

Esj = eikRj

−ikRj
Xj(êj) E0e

ikzj−iωt, Rj = |Rj | , (7.16a)

êj = Rj

Rj
, Rj = −xj êx − yj êy + (d− zj) êz. (7.16b)

Note that the vector scattering amplitude (and, thereby, the scattering matrix entries) de-
pends on êj , i.e., the position of the particle relative to the observer.

Next, we simplify the sum over all scattered fields in Eq. (7.14). Firstly, we realize that our
material consists of identical particles and secondly, we assume that the number of particles
per unit volume is sufficiently large such that the summation in Eq. (7.14) may be replaced
by an integration over the continuous variables x, y and z. Therefore, the sum turns into

∑
j

Esj ' E0e
−iωt

∫ h

0
dz

∫ ∞
−∞

∫ ∞
−∞

eik(R+z)

−ikR
X(ê)N dx dy, (7.17)

where R =
√
x2 + y2 + (d− z)2, ê = R

R and N denotes the number of particles per unit
volume. Although the integrals’ limits in Eq. (7.17) are infinite, the integrals have a finite
value since it is independent of the lateral extent of the slab if the extent is large compared
to
√

4πd/k (see Ref. [18]). Evaluating the integrals yields

Et = E0 e
−iωt+ikd

[(
1− 2πN

k2 (X · êx)θ=0h

)
êx −

2πN
k2 (X · êy)θ=0h êy

]
(7.18)

for the transmitted field at point P. We recognize two features in Eq. (7.18). Firstly, the
polarization of the field will be rotated if (X · êy)θ=0 6= 0. Secondly, we only need the
scattering information in forward direction to determine the transmitted field (θ = 0). As we
have stated in Section 7.3.2, we choose φ = 0 to determine the scattering plane in forward
direction. In that case, i.e., θ = φ = 0, the vector scattering amplitude reduces to

X(θ = φ = 0) = S2(0, 0) êx + S4(0, 0) (−êy). (7.19)

This means that we only have to determine two scattering matrix entries for one particle and,
thereby, obtain the field that is transmitted through the slab.

In a similar fashion we can calculate the field reflected by the slab. The reflected field Er at
the point P′ is given by the sum of all scattered fields

Er =
∑
j

eikR
′
j

−ikR′j
Xj(êj) E0e

ikzj−iωt, (7.20)
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where R′j = −(xj êx + yj êy + (d′ + zj) êz). By applying the same methods and assumptions
as before, we obtain

Er = −E0e
−iωt+ikd′

(
1− ei2kh

) iπN
k3 Xθ=180◦ . (7.21)

As discussed in [18],
Xθ=0 = Xθ=180◦ (7.22)

is valid for particles small compared to the wavelength, which holds true in our case.

A characteristic quantity we use in the subsequent sections is the transmittance which is
defined by

T = |Et|
2

|Ei|2
. (7.23)

The reflectance is defined analogously. Since we do not neglect absorption, reflectance and
transmittance do not add up to one.

7.3.4 One layer of rods and one layer of crosses

Basic course of action

In this section, we discuss the first, easy applications of the dipole model2. The systems under
investigation are a layer of periodically arranged rods and a layer of periodically arranged
crosses, see Fig. 7.6. This section also demonstrates how the general calculation of the
transmitted field looks like. First, we replace the rod by a dipole centered in the middle of
the rod. The cross is modeled by two dipoles orthogonal to each other. Then, we set up
equations of motion for the charge that is oscillating due to the external field, similar to the
equation of motion for a Lorentz oscillator (see Section 2.2.1). Then, we derive the dipole
field that is emitted by the oscillator and, thereby, obtain the suitable scattering matrix, see
Section 7.3.2. This scattering matrix is used to derive the field transmitted through a slab
of particles according to Section 7.3.3. Finally, the free parameters of the model are fitted to
numerical data.

Figure 7.6: The two building blocks of the investigated structured layers. The layers dis-
cussed in this section consist of a periodic arrangement of rotated rods (panel
(a)) and rotated crosses (panel (b)).

In the following, we choose the origin of the coordinate system to be in the middle of the
bottom surface of the rod (or the cross). Therefore, the center of the rod, which is also the

2Throughout the chapter, the terms “dipole model” and “oscillator model” are used interchangeably.
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position of the oscillator, is given by (0, 0, h/2), with the rod height h. The incident field is
a plane wave polarized in x-direction propagating in z-direction.

Equation of motion for a single rod

The oscillator is a point dipole that is excited in the direction of the longest extent of the
rod. Using cylindrical coordinates, we find the oscillator at

r(t) =

ρ(t) cosϕ
ρ(t) sinϕ

1
2h

 , (7.24)

where the rod is rotated by the angle ϕ with respect to the x axis. The equation of motion
we want to use includes a damping term γ and a resonance frequency ω0. We always assume
the incident field to be polarized in x-direction. Therefore, the rotated rod is only excited by
the field component parallel to the largest extent of the rod. Thus, the equation of motion
reads

ρ̈+ Γ ρ̇+ ω2
0 ρ = − N e

N m
E0 e

−iωt+ik h2 cosϕ. (7.25)

Here, N is the number of free electrons contributing to the dipole. With a time-harmonic
ansatz e−iωt for ρ, the solution to Eq. (7.25) is given by

ρ(t) = − e

m

1
ω2

0 − ω2 − iωΓ
E0 e

−iωt+ik h2 cosϕ. (7.26)

We note that the rod is not excited when it is oriented along the y-direction and that the
influence of neighboring rods in adjacent unit cells is not explicitly included in the equation
of motion.

Derivation of the scattering matrix entries

The far-field of the dipole is given by Eq. (7.1). In our case, on the z axis we observe the
field

Erad (0, 0, r + h/2, t) = − 1
4πε0

N e

r c2

−ρ̈(t) cosϕ
−ρ̈(t) sinϕ

0


t− r

c

. (7.27)

Since the derivation of the scattering matrix included different coordinate systems, see Fig. 7.4,
we first have to define the scattering plane. As stated in Section 7.3.2, we choose φ = 0 in
the case of normal incidence, i.e., θ = 0. Equations (7.6) and(7.9) then yield

ê‖i = êx, ê⊥i = −êy, ê‖s = êx, ê⊥s = −êy, (7.28)

for the coordinate systems used in the scattering matrix in Eq. (7.11). With those coordinate
systems the scattering matrix equation (7.11) takes the form

− N e

4πε0 r c2

(
−ρ̈(t) cosϕ
ρ̈(t) sinϕ

)
t− r

c

!= 1
−ikr

(
S2 S3
S4 S1

) (
E0 e

−iωt+ik(h2 +r)
0

)
. (7.29)

Entering the expressions above, we obtain

S2(0, 0) = −i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ)

cos2 ϕ, (7.30a)

S4(0, 0) = i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ)

sinϕ cosϕ, (7.30b)
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for the scattering matrix entries. Here, the arguments of S2(0, 0) shall stress that the scat-
tering matrix entries are depended on the position of the observer, see Section 7.3.2. This
will be suppressed in the following.

Transmittance and reflectance

The field that is transmitted through a slab was discussed in Eq. (7.18). At the point (0, 0, d),
d > h, it reads

Et = E0e
−iωt+ikd

[(
1− 2π N

k2 S2 h

)
êx −

2π N
k2 S4 h êy

]
= E0e

−iωt+ikd
[(

1− 2π
k2 A

S2

)
êx + 2π

k2 A
S4 êy

]
. (7.31)

The number of oscillators per unit volume, N , is one per unit cell. The area of the unit cell
is denoted by A and the height of the slab corresponds to the height of the rod. As we see in
Eq. (7.31), the polarization of the transmitted field is rotated except when the rod rotation
angle ϕ is zero (or ninety) degrees.

The reflected field is obtained from Eq. (7.21). At the point (0, 0,−d′), d′ > 0, it reads

Er = −E0 e
−iωt+ikd′

(
1− ei2kh

) iπ N
k3 Xθ=180◦

= −E0 e
−iωt+ikd′

(
1− ei2kh

) iπ

A h k3 (S2 êx + S4 (−êy)) . (7.32)

The transmittance is defined as

T = |Et|
2

|Ei|2
=
∣∣∣∣1− 2π

k2 A
S2

∣∣∣∣2 +
∣∣∣∣ 2π
k2 A

S4

∣∣∣∣2 . (7.33)

Analogously, the reflectance reads

R = |Er|
2

|Ei|2
=
∣∣∣∣(ei2kh − 1

) iπ

A h k3

∣∣∣∣2 · (|S2|2 + |S4|2
)
. (7.34)

Emitted field of a rotated cross

In Section 7.2, we argued that a rotated cross should physically behave like an unrotated rod
due to its symmetry. Here, we show that the dipole model yields this result. A cross that is
rotated by an angle ϕ with respect to the lattice is modeled as two perpendicular oscillators.
They are located at

r1(t) =

ρ1(t) cosϕ
ρ1(t) sinϕ

1
2h

 , r2(t) =

 ρ2(t) sinϕ
−ρ2(t) cosϕ

1
2h

 . (7.35)

Each one is excited by the external, x-polarized field. The equations of motion read

ρ̈1 + Γ ρ̇1 + ω2
0 ρ1 = − e

m
E0 e

−iωt+ik 1
2h cosϕ, (7.36a)

ρ̈2 + Γ ρ̇2 + ω2
0 ρ2 = − e

m
E0 e

−iωt+ik 1
2h sinϕ, (7.36b)
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where we neglect any possible interaction of the two oscillators. The solution is then of form

ρ1(t) = − e

m

1
ω2

0 − ω2 − iωΓ
E0 e

−iωt+ik 1
2h cosϕ, (7.37a)

ρ2(t) = − e

m

1
ω2

0 − ω2 − iωΓ
E0 e

−iωt+ik 1
2h sinϕ. (7.37b)

Next, we can investigate the radiated dipole field, similarly to the case of the single rod. It
is a superposition of both radiated fields:

Erad

(
0, 0, r + h

2

)
= − N e

4πε0 r c2 n× (n× r̈1)t− r
c
− N e

4πε0 r c2 n× (n× r̈2)t− r
c

= − N e

4πε0 r c2

−ρ̈1 cosϕ
−ρ̈1 sinϕ

0


t− r

c

− N e

4πε0 r c2

−ρ̈2 sinϕ
ρ̈2 cosϕ

0


t− r

c

= − N e

4πε0 r c2


−ω2 e

m
1

ω2
0−ω2−iωΓ E0 e

−iωt+ikr+ik 1
2h cosϕ cosϕ

−ω2 e
m

1
ω2

0−ω2−iωΓ E0 e
−iωt+ikr+ik 1

2h cosϕ sinϕ
0



− N e

4πε0 r c2


−ω2 e

m
1

ω2
0−ω2−iωΓ E0 e

−iωt+ikr+ik 1
2h sinϕ sinϕ

+ω2 e
m

1
ω2

0−ω2−iωΓ E0 e
−iωt+ikr+ik 1

2h sinϕ cosϕ
0


= N e

4πε0 r c2 ω
2 e

m

1
ω2

0 − ω2 − iωΓ
E0 e

iωt+ikr+ik 1
2h êx. (7.38)

Thus, Eq. (7.38) describes the radiated field of not only an excited unrotated rod (cf.
Eq. (7.26) entered in Eq. (7.27) with ϕ = 0) but also of the excited rotated cross as pre-
dicted in Section 7.2.

Parameter fit and first predictions

Having derived the general expressions for the transmittance and reflectance, we can fit the
free parameters of the model to numerical data computed with the Fourier Modal Method.
The system is a rod (length 500 nm, height 50 nm, width 50 nm) centered in a rectangular
unit cell (length 1350 nm, width 900 nm). The fit is performed for ϕ = 0◦, i.e., for grid-
aligned rods. The fit parameters are the total mass of the oscillator, the resonance frequency
and the damping. For a further discussion see Ref. [62]. All parameters are assumed to be
independent of frequency in the considered spectral range. The fitted values read

mtot = N ·m = N ·me ·3.35 = 2.16·10−22 kg, ω0 = 1.21·1015 Hz, Γ = 1.42·1014 Hz, (7.39)

where N is the number of free electrons in the rod. It is given by the product of the rod’s
volume and the free electron density %e = 5.707 · 1028 1/m3. This number originates from the
Drude model used for the numerical computations, see Ref. [25]. The Drude model’s plasma
frequency can be translated into the electron density3 [62].

Figure 7.7(a) shows the transmittance and reflectance for one layer of unrotated rods, both
for the FMM and the dipole model with the parameters from Eq. (7.39). At this point, all

3It should be mentioned that, in practice, the effective free electron density in gold can vary a great deal
depending on the system under consideration, see Ref. [77].
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parameters of the model are fixed. This means that there is no free parameter left to fit when
the rod is rotated. Figure 7.7(b) shows the azimuthal and the ellipticity angle of the light
transmitted by a layer of rods that are rotated by ϕ = −25◦. Both angles, which together
contain the polarization information of the transmitted light, are reproduced very well over
the entire spectrum. This is even valid for larger rotation angles (not shown here).

Figure 7.7: Panel (a) displays the transmittance of a layer of unrotated rods. The dipole
model’s parameters are fitted such that the numerical FMM data is reproduced.
Panel (b) shows the polarization state (azimuthal and ellipticity angle) of the
transmitted light for a layer of rods rotated by ϕ = −25◦. The dipole model
can reproduce this numerical data without any additional free parameter.

In both panels of Fig. 7.7 there is an important feature: there are spikes at 900 nm and
1350 nm. These are lattice resonances. Since the dipole model assumes non-interacting
and randomly distributed scatterers, it cannot reproduce these features. They occur in
all subsequent spectra and, thus, we will not always state their origin again. We show in
Section 7.5 that they can be incorporated in the model.

Optimized designs

The motivation to search for a simple model was the prospect of a deeper physical insight
on the one hand and the prospect of the ability to find optimized designs on the other. For
one layer of rods, I searched for optimized structures with respect to the azimuthal angle
and the largest field in y-direction. The incident field is assumed to be x-polarized. First,
we have a look at Fig. 7.8(a). Here, the azimuthal angle, i.e., the angle by which the electric
field behind the slab of rods is rotated, was calculated as a function of the wavelength of the
incident plane wave and the rod rotation angle.

The interesting result is that the largest azimuthal angle is found for a rod rotation angle of
ϕ = −30◦. The maximum azimuthal angle is ψ = 29.6◦. This is somewhat surprising since
one may have expected the biggest polarization rotation at ϕ = −45◦.

In Fig. 7.8(b) we plot the absolute value of the normalized y-component of the transmitted
electric field over the rod rotation angle and the wavelength of the incident light. Here, we find
that the largest field in y-direction can be obtained for a rod configuration with ϕ = −45◦.
This is understandable upon careful inspection of the angular dependence of the expressions
in Eqs. (7.30b) and (7.31).

It is worth mentioning that the computational effort for both calculations in Fig. 7.8 is
minimal and barely reaches a second.
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Figure 7.8: Azimuthal angle (panel (a)) and absolute value of Et,y (panel (b)) over wave-
length and rod rotation angle ϕ. The largest polarization rotation is obtained
for ϕ = −30◦ at the resonance. The largest field in y-direction is present for
ϕ = −45◦.

Transmission and reflection coefficients

In the subsequent section, we need coefficients for transmission and reflection for multiple
scattering processes. They are a handy tool to obtain the transmitted field by just multiplying
with the corresponding coefficient. The reflection coefficient r̃ϕ for a layer of rotated rods is
given by

r̃ϕ = Er ·E∗i
Ei ·E∗i

=
E0

(
ei2kh − 1

)
iπ

A h k3 (S2 êx + S4 (−êy)) · E∗0 êx
|E0|2

=
(
ei2kh − 1

) iπ

A h k3
−i k3 N e2 cos2 ϕ

4πε0 m (ω2
0 − ω2 − iωΓ)

, (7.40)

where E∗ denotes the complex conjugate of the electric field. An alternative way to obtain
this coefficient is via

r̃ϕ =
r̃0 E‖

E⊥ + E‖
, (7.41)

where E⊥ and E‖ denote the field components perpendicular and parallel to the rod, respec-
tively. The corresponding transmission coefficient reads

t̃ϕ = Et ·E∗i
Ei ·E∗i

= 1− 2π
k2 A

−i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ)

cos2 ϕ. (7.42)

There are three important things to note about these coefficients. Firstly, the phases are
defined such that the transmission coefficient multiplied with the field behind the rod gives
us the transmitted field through the slab. Secondly, we note that this field is only the
transmitted part parallel to the incident field. Thirdly, the reflection coefficient multiplied
with the incident field in front of the rod yields the field at the same point after reflection in
direction of the incident field.
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7.3.5 Two layers of rods

In this section, we address the very delicate question of how to describe multi-layer structures.
As we have discussed, the coupling of layers is a difficult topic. We assume a certain form
based on dipole-dipole interaction in the equations of motion and use a fit parameter. The
most basic test system we can investigate consists of two layers of rods, possibly mutually
rotated, see Fig. 7.9. The lower rod is expected to be oriented in x-direction such that
it is exposed to the whole x-polarized incident field. Once one of the rods is rotated, the
transmitted and reflected field is going to be polarized elliptically.

Figure 7.9: Sketch of one building block for the investigated system consisting of two layers
of mutually rotated crosses.

In the following, we have to discuss multiple scattering between the layers and the form of
the coupling. This has to be known before setting up the equations of motion. The general
course of action is outlined in Fig. 7.10.

Figure 7.10: Course of action to obtain the transmittance of two layers via the dipole model.

The idea of Fig. 7.10 is to help keeping the calculation’s course of action in mind. This is
complicated since, on the one hand, we set up equations of motion for single oscillators but,
on the other hand, use the field transmitted and reflected through a whole slab as input for
the equations of motion.

The first problem is finding suitable positions for the oscillators. In the case of one layer this
did not matter—here, we have to decide whether they are placed in the center of the rods
or, e.g., at opposing sides. We choose the symmetric version and place the oscillators in the
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center of the rods, resulting in

r1(t) =

ρ1(t)
0

1
2h

 , r2(t) =

ρ2(t) cosϕ
ρ2(t) sinϕ
b+ 3

2h

 . (7.43)

The reason is that the other possibilities have been checked and the best results were found
for the choice in Eq. (7.43). Like in the previous section, the height of the rods is denoted by
h. The spacing between the rods is denoted by b.

The next steps are the following: Firstly, we discuss the accelerating fields, taking multi-
ple scattering into account. Secondly, we set up the equations of motion for the coupled
oscillators. Thirdly, we construct the scattering matrices for the first and second layer and
derive the transmittance of the system. Finally, we fit the coupling, which is used as a free
parameter, to numerical data and investigate the behavior of the system upon the rotation
of a rod.

Accelerating fields

When light is incident on two plane-parallel plates, multiple back-scattering from each plate
is encountered, see Fig. 7.11. Technically, this is known as a Fabry-Pérot interferometer which
can, e.g., be used for optical filters.

Figure 7.11: Multiple reflection and transmission for two plane-parallel plates.

This multiple scattering has to be taken into account since the reflectance is not negligibly
small, see Fig. 7.7(a). Especially near the resonance it is very high. Consequently, we have
to add up all fields that affect the two oscillators. Since we restrict ourselves to normal
incidence, the angle θ′ in Fig. 7.11 is assumed to be zero. Therefore, we collect a phase of

δ = 4π
λ
b (7.44)

in case of a double traversal of the space between the rods (surface to surface). First of all,
we look at the fields acting on the first oscillator. Note that the reflection coefficient r̃ϕ in
Eq. (7.40) gives us the field reflected back in the direction of polarization of the incident field.
As the field incident on the second rod is x-polarized (because the first grid-aligned rod does
not change the polarization) a multiplication with r̃ϕ and with the phase will give us the first
reflected field acting on the first oscillator. The fields acting on the first oscillator are (with
the abbreviation Ei = E0 e

−iωt):

Ei e
ik h2 , Ei t̃0 r̃ϕ e

iδ eik
3
2h, Ei t̃0 r̃

2
ϕ r̃0 e

i2δ eik
3
2h, ...

... , Ei t̃0 r̃
(p−1)
ϕ r̃

(p−2)
0 ei(p−1)δ eik

3
2h,

118



7.3 Review of own previous work

with p being the number of approaching waves. Just as a short explanation we discuss the first
two terms, the others are derived the same way. The first term Ei e

ik h2 is the original incident
field. The second field is obtained the following way: the incident field gets transmitted and,
therefore, the field on the backward surface4 of the rod is Eieikh t̃0. Then the wave propagates
to the second rod and gets reflected, with the field on the surface looking like Eieikh t̃0eiδ/2 r̃ϕ.
This is the field in x-direction, i.e. parallel to the first rod. Then the field propagates for
b+ 1

2h in −z direction and there it acts on the first oscillator.

Now we sum up the first p fields acting on the first oscillator5:

E(1st)(p) =
(
eik

h
2 + t̃0 r̃ϕ e

iδ+ik 3
2h
(
1 + r̃ϕr̃0 e

iδ + ...+ (r̃ϕr̃0)(p−2) ei(p−2)δ
))

Ei

=
(
eik

h
2 + t̃0 r̃ϕ e

iδ eik
3
2h

1− (r̃ϕ r̃0 e
iδ)p−1

1− r̃ϕ r̃0 eiδ

)
Ei. (7.45)

Since we consider the angle of the incident light to be zero, we have a large number of reflected
waves. As |Re

(
r̃ϕ r̃0 e

iδ
)
| < 1 and |Im

(
r̃ϕ r̃0 e

iδ
)
| < 1 the series in Eq. (7.45) converges.

For p→∞ we obtain

E(1st) ≡ E(1st)(∞) =
(
eik

h
2 + t̃0 r̃ϕ e

iδ eik
3
2h

1− r̃ϕ r̃0 eiδ

)
︸ ︷︷ ︸

=: α1

E0 e
−iωt. (7.46)

Analogously, we derive the total field acting on the second oscillator. The first p fields acting
on the second oscillator are

Ei t̃0 e
i δ2 eik

3
2h cosϕ, Ei t̃0 e

i δ2 eik
3
2h r̃ϕ r̃0 e

iδ cosϕ, ...

... , Ei t̃0 e
i δ2 eik

3
2h r̃(p−1)

ϕ r̃(p−1)
o ei(p−1)δ cosϕ.

The first field approaching the second oscillator is the field that is transmitted by the first
rod. The second rod is rotated by ϕ so the field acting on the oscillator will only be the part
parallel to it, namely the field multiplied with the factor cosϕ.

Adding the first p fields results in

E(2nd)(p) = t̃0 e
i δ2 eik

3
2h cosϕ

(
1 + r̃ϕ r̃0 e

iδ + ...+
(
r̃ϕ r̃0 e

iδ
)p−1

)
Ei

= t̃0 e
i δ2 eik

3
2h cosϕ 1− (r̃ϕ r̃0 e

iδ)p

1− r̃ϕ r̃0 eiδ
Ei. (7.47)

Just like before, we consider p→∞

E(2nd) ≡ E(2nd)(∞) = t̃0 e
i δ2 eik

3
2h cosϕ

1− r̃ϕ r̃0 eiδ︸ ︷︷ ︸
=: α2

E0 e
−iωt. (7.48)

Thereby, we have obtained the total fields acting on the two oscillators due to multiple
reflections.

4Note that we mean at (0, 0, z = h). Of course, the dipole model does not reproduce the correct continuity
conditions at the surface of the metallic rod.

5With the help of the geometric sum: 1 + x + x2 + x3 + ... + xp = 1−xp+1

1−x .
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Equations of motion

The next step in calculating the transmittance and reflectance for the system of two layers
of rods is to set up the equations of motion. The coupling mechanism between the layers is
assumed to be due to the dipole moment, see Ref. [62]. We set up the equations of motion
to be

ρ̈1 + Γ ṗ1 + ω2
0 ρ1 + L cosϕ ρ2 = − e

m
α1 E0 e

−iωt, (7.49a)

ρ̈2 + Γ ṗ2 + ω2
0 ρ2 + L cosϕ ρ1 = − e

m
α2 E0 e

−iωt, (7.49b)

with the coupling L. This coupling is used as fit parameter for each distance b. The cosine
term in the coupling enters because the upper rod is rotated and the dipole moments do not
point in the same direction anymore. Using a time-harmonic ansatz we write Eqs. (7.49a)
and (7.49b) in matrix form(

ω2
0 − ω2 − iωΓ L cosϕ
L cosϕ ω2

0 − ω2 − iωΓ

) (
ρ1
ρ2

)
= − e

m
E0 e

−iωt
(
α1
α2

)
. (7.50)

By inverting the matrix6 we get the solution to the equations of motion(
ρ1(t)
ρ2(t)

)
= − 1

n

e

m
E0 e

−iωt
(
ω2

0 − ω2 − iωΓ −L cosϕ
−L cosϕ ω2

0 − ω2 − iωΓ

) (
α1
α2

)
, (7.51)

with the abbreviation n = (ω2
0 − ω2 − iωΓ)2 − L2 cos2 ϕ. The two oscillatory eigenmodes

of the system, corresponding to parallel and anti-parallel movement of the oscillators, are
discussed in detail in Ref. [62].

By knowing how the oscillators are moving, we can determine the scattering matrices of the
layers. In this case we have two: the first one determines the field between the layers of rods
and the second one describes the final field transmitted through both layers.

Scattering matrix of the first rod

The field radiated by the first oscillator reads (r̃1 > 0)

Erad,1(0, 0, r̃1 + h/2, t) = − 1
4πε0

N e

r̃1 c2

−ρ̈1
0
0


t− r̃1

c

. (7.52)

Here we again have to rewrite the fields into fields parallel and perpendicular to the scattering
plane (see Section 7.3.2 and Eq. (7.28)). Then we relate incident and scattered field:

− N e

4πε0 r̃1 c2

(
−ρ̈1

0

)
t− r̃1

c

!= 1
−ikr̃1

(
S21 S31
S41 S11

) (
E0 e

−iωt+ik(h2 +r̃1)
0

)
, (7.53)

where the bold 1 indicates that we deal with the first layer (and, therefore, the first oscillator).
As scattering matrix entries we obtain

S21 = −i k3 N e2

4πε0 m n eik
h
2

[(
ω2

0 − ω2 − iωΓ
)
α1 − L cosϕ α2

]
, (7.54a)

S41 = 0. (7.54b)
6Inverting the matrix is possible since L cos ϕ 6= ω2

0 − ω2 − iωΓ is the case.
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Since the rod is parallel to the incoming polarization we know from Section 7.3.4 that S41 = 0.
Thereby, we obtain the field transmitted by the first layer, namely at (0, 0, d+ h), d > 0:

Et1(0, 0, d+ h, t) = E0 e
−iωt+ikh+ikd

(
1− S21

2π
k2 A

)
êx. (7.55)

Scattering matrix of the second rod

The field emitted by the second oscillator, observed from a distance r̃2, is given by

Erad,2

(
0, 0, r̃2 + b+ 3

2h, t
)

= − 1
4πε0

N e

r̃2 c2

−ρ̈2(t) cosϕ
−ρ̈2(t) sinϕ

0


t− r̃2

c

. (7.56)

After changing the coordinate system like above we obtain the scattering matrix equation

−Ne
4πε0r̃2c2

(
−ρ̈2(t) cosϕ
ρ̈2(t) sinϕ

)
t− r̃2

c

!= 1
−ikr̃2

(
S22 S32
S42 S12

) (
Ex,t1

(
0, 0, b+ 3

2h+ r̃2, t
)

0

)
. (7.57)

Entering the solution of the equation of motion for the second rod (see Eq. (7.51)) in the
latter equation yields the following scattering matrix entries for the second rod:

S22 = −i k3 N e2

4πε0 m n
cosϕ −L cosϕ α1 +

(
ω2

0 − ω2 − iωΓ
)
α2

eikb+ik
3
2h
(
1− S21

2π
k2 A

) , (7.58a)

S42 = i k3 N e2

4πε0 m n
sinϕ −L cosϕ α1 +

(
ω2

0 − ω2 − iωΓ
)
α2

eikb+ik
3
2h
(
1− S21

2π
k2 A

) . (7.58b)

The next step after having derived both scattering matrices is to calculate the transmit-
tance.

Transmittance

As shown in Eq. (7.18), we obtain the transmitted field by multiplying the incoming field
with a term connected to the scattering matrix. The incident field on the second oscillator is
not Ei anymore but Et1. Therefore, the field transmitted through two layers of rods at the
point (0, 0, e), e = h+ b+ h+ e′, e′ > 0, is

Et2 = E0 e
−iωt+ike

(
1− 2π S21

k2 A

) [(
1− 2π S22

k2 A

)
êx + 2π S42

k2 A
êy
]
. (7.59)

For S42 6= 0 we find a field in y-direction. So, as expected, there is a change in the polarization
state for all angles except for 0◦ and 90◦.

With Eq. (7.23) we calculate the transmittance for the double layer of rotated rods

T =
∣∣∣∣1− 2π S21

k2 A

∣∣∣∣2 ·
[∣∣∣∣1− 2π S22

k2 A

∣∣∣∣2 +
∣∣∣∣2π S42
k2 A

∣∣∣∣2
]
. (7.60)
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Fit of the coupling to numerical data

In the previous section, we fixed the parameters m, ω0 and Γ of the dipole model. Since the
coupling L enters the model as a new parameter, cf. Eq. (7.49), we have to fit it to numerical
data. In Fig. 7.12, the transmittance is displayed for two layers of unrotated rods with a
distance of b = 50 nm. The coupling was fitted to be L = 1.2 · 1029 1

s2 .

Figure 7.12: Transmittance for two layers of rods. The rods are unrotated, i.e., ϕ = 0◦, the
distance between the rods is b = 50 nm and the fitted coupling parameter is
L = 1.2 · 1029 1

s2 . Qualitatively, the numerical data is reproduced, although
not on a quantitative level.

The physical behavior can be reproduced qualitatively—there are two resonances correspond-
ing to two oscillatory eigenmodes of the system. However, the model does not reproduce the
correct frequency and height of the second resonance. At this point it is important to point
out that we can perform the fit either to the transmittance itself or to the transmitted field.
Since the transmitted field carries the phase information (which is important for the polar-
ization state), we performed the fit to the transmitted field (not shown) and calculated the
transmittance in Fig. 7.12 afterwards.

The distance dependence of the coupling is another interesting topic. I performed investi-
gations for distances between 25 nm and 150 nm which all display similar features as the
transmittance in Fig. 7.12. The result is a rather slow decrease—the coupling declines with
b−0.4 which is slower than what one might expect for dipole coupling. The corresponding
plots and the fit data can be found in the appendix of Ref. [62].

Predictions for rotated rods

Once the coupling is fixed for a certain distance between the rods, the model does not have
any free parameters left. Thus, we enter the corresponding fitted coupling L and the rotation
angle ϕ into the model and compare to numerical data. In Fig. 7.13, the polarization state
for two layers of rods, mutually rotated by ϕ = −20◦, is displayed.

Like in the case of the transmittance, the polarization state, namely the azimuthal and ellip-
ticity angle, are qualitatively reproduced. Both angles show a large and a smaller resonance
that can also be found in the dipole model. However, the model predicts larger angles than
the ones obtained with the FMM.

122



7.3 Review of own previous work

Figure 7.13: Polarization state of the transmitted light for two layers of mutually rotated
rods with ϕ = −20◦ and b = 50 nm. The dipole model reproduces the numer-
ical results but overestimates the angles at the resonance.

Large spacings b

We have shown that the coupling of the dipole model does not yet sufficiently describe the
numerically obtained spectra for small layer distances b. For large distances, this changes.
Figure 7.14(a) shows the transmittance for a system of two layers of unrotated rods that are
b = 1000 nm apart. At this large distance, the coupling should be practically zero. Therefore,
we enter L = 0 into the dipole model and obtain the red, dashed curve in Fig. 7.14(a). As
we see, the dipole model describes the system well for this distance. Also, we can rotate the
upper rod. The resulting polarization state behind the second layer of rods is depicted in
Fig. 7.14(b). Again, the coupling was set to L = 0. Although minor deviations occur, the
dipole model describes the numerical data very well for large spacings.

Figure 7.14: Panel (a) shows the transmittance of the FMM and the dipole model for two
layers of unrotated rods with a large spacing of b = 1000 nm. The oscillator
model uses L = 0 for the coupling since it is assumed to vanish. Panel (b)
shows the polarization state for the light transmitted through two layers of
rods, where the upper rod is rotated by ϕ = −20◦ and b = 1000 nm. Again,
the oscillator model with L = 0 reproduces the numerical data well.
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7.3.6 Two layers of crosses

The most complex structure investigated with the dipole model is depicted in Fig. 7.15—two
layers of mutually rotated crosses.

Figure 7.15: Sketch of the basic building block for the system investigated in this section—
two layers of mutually rotated crosses. Due to the sense of rotation, both
circular polarizations are expected to be transmitted differently.

As discussed above, this structure is very interesting since it exhibits a handedness, a sense
of rotation. For most angles7 ϕ this is the case for the structure shown in Fig. 7.15. As
we see in the following, this structure changes the polarization state of the incident, linear
x-polarized light. Furthermore, the structure has C4 symmetry. Therefore, we can expect all
linear polarizations to be transmitted equally.

In the following, we show that the oscillator model presented so far and the numerical calcu-
lations using the Fourier Modal Method show fundamentally different results.

We proceed analogously to the case of two layers of rods. It might be helpful to recapitulate
the course of action depicted in Fig. 7.10. After calculating the acting fields, we can set up
and solve the equations of motion which leads us to the scattering matrices and, thereby, the
transmission through the whole structure.

Like above, the distance between the surfaces of the crosses is denoted by b, the height of the
rods by h. We find the four oscillators at

r1 =

ρ1
0

1
2h

 , r2 =

 0
ρ2
1
2h

 , r3 =

ρ3 cosϕ
ρ3 sinϕ
b+ 3

2h

 , r4 =

 ρ4 sinϕ
−ρ4 cosϕ
b+ 3

2h

 . (7.61)

When ρ4 gets positive, the fourth oscillator is located in the area with positive x and negative
y values (this is sketched in Fig. 7.15 by the encircled four). This is of particular importance
when we deal with the coupling.

As we consider only dipole coupling, let us take a look at the dipole moments to understand
which terms enter the equations of motion. When ρ1 and ρ3 have positive values then the
dipole moments of the two oscillators are parallel. The coupling has, therefore, a positive
sign. Now imagine ρ2 and ρ4 having positive values. Due to the definitions in Eq. (7.61) their
dipole moments are anti-parallel. Thus, their coupling has a negative sign.

7There is no handedness for ϕ = 0◦ ± m 90◦ and ϕ = ± m 45◦, m ∈ N.
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Note that this is all a matter of definition. For instance, we could have defined the fourth
oscillator as r̃4 = (−ρ̃4 sinϕ, +ρ̃4 cosϕ, b + 3/2 h). Then all couplings would have a
positive sign. However, the negative sign enters when a field in positive x-direction drives
the first oscillator to positive values of ρ1 but the oscillator at r̃4 is driven to negative values
of ρ̃4. Therefore, the results of our analysis are not dependent on the algebraic signs in the
definitions given in Eq. (7.61).

Accelerating fields

In Section 7.3.4, we discussed that a single rotated cross behaves like an unrotated rod in
terms of the transmitted and reflected field. The first cross is grid-aligned, so it transmits
like a rod lying in x-direction for an incoming x polarized wave. No matter how the second
rod is rotated, it will reflect like a rod parallel to the incoming polarization, i.e. a rod in
x-direction. Consequently, the accelerating fields for the two layers of rotated crosses are the
same as the fields for the system of two layers of unrotated rods. Therefore, as we have seen
in Eq. (7.46), the field impinging on the first cross is

E(1st) ≡ E(1st)(∞) =
(
eik

h
2 + t̃0 r̃0 e

iδ eik
3
2h

1− r̃2
0 e

iδ

)
E0 e

−iωt, (7.62)

and the field approaching the second cross is (see Eq. (7.48))

E(2nd) ≡ E(2nd)(∞) = t̃0 e
i δ2 eik

3
2h

1− r̃2
0 e

iδ
E0 e

−iωt. (7.63)

Remember that those are the fields impinging on the oscillators, i.e., the field values in x-
direction. Since the rods are rotated, the fields exciting the various oscillators are only the
parts parallel to them:

E1 =
(
eik

h
2 + t̃0 r̃0 e

iδ eik
3
2h

1− r̃2
0 e

iδ

)
E0 e

−iωt =: β1 E0 e
−iωt, (7.64a)

E2 = 0, (7.64b)

E3 = t̃0 e
i δ2 eik

3
2h

1− r̃2
0 e

iδ
cosϕ E0 e

−iωt =: β2 cosϕ E0 e
−iωt, (7.64c)

E4 = t̃0 e
i δ2 eik

3
2h

1− r̃2
0 e

iδ
sinϕ E0 e

−iωt, (7.64d)

with El denoting the field acting on the l-th oscillator.

Equations of motion

There are two oscillators in each layer, each of which couples to both oscillators in the other
layer while the strength of the coupling is equal for all rods since all rods are identical (except
for the angular term due to the rotation of the rods and the problem of the sign we have
discussed before). With the fields obtained above, the equations of motion read

ρ̈1 + Γ ρ̇1 + ω2
0 ρ1 + L cosϕ ρ3 + L sinϕ ρ4 = − e

m
E1, (7.65a)

ρ̈2 + Γ ρ̇2 + ω2
0 ρ2 + L sinϕ ρ3 − L cosϕ ρ4 = − e

m
E2, (7.65b)

ρ̈3 + Γ ρ̇3 + ω2
0 ρ3 + L cosϕ ρ1 + L sinϕ ρ2 = − e

m
E3, (7.65c)

ρ̈4 + Γ ρ̇4 + ω2
0 ρ4 + L sinϕ ρ1 − L cosϕ ρ2 = − e

m
E4. (7.65d)
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Just like in Section 7.3.5 we have not added a phase to the coupling L although it might
seem reasonable. Yet this does not change the basic results we obtain. To prove this, one
might assume L = |L| eikb and follow the calculation process which will lead to the result
that no qualitative differences arise between the calculation with and without phase. This is
due to the fact that all couplings would have the same phase determined by the distance of
the oscillators.

Using the time-harmonic ansatz and writing the equations in matrix form results in8


ρ1
ρ2
ρ3
ρ4

 =


Σ 0 L cosϕ L sinϕ
0 Σ L sinϕ −L cosϕ

L cosϕ L sinϕ Σ 0
L sinϕ −L cosϕ 0 Σ


−1 (

− e

m

) 
E1
E2
E3
E4



= − e E0 e
−iωt

m (L2 − Σ2)


−Σ 0 L cosϕ L sinϕ
0 −Σ L sinϕ −L cosϕ

L cosϕ L sinϕ −Σ 0
L sinϕ −L cosϕ 0 −Σ




β1
0

β2 cosϕ
β2 sinϕ



= − e E0 e
−iωt

m (L2 − Σ2)


Lβ2 − Σβ1

0
(Lβ1 − Σβ2) cosϕ
(Lβ1 − Σβ2) sinϕ

 , (7.66)

with the abbreviation Σ = ω2
0 − ω2 − iωΓ. This yields the first surprising result: the second

oscillator is not excited and, therefore, does not scatter any light! One might have expected
a movement as both the third and fourth oscillator couple to it. Surprisingly, both effects
cancel each other. This can be understood the following way: the third oscillator (that
‘feels’ the cosine of the incoming x-polarized field) couples positive with a sine term to the
second oscillator. The fourth oscillator (that ‘feels’ the sine of the incoming x-polarized field)
couples negative with a cosine term to the second oscillator. As a consequence, we have equal
coupling terms that cancel each other.

Knowing how the oscillators are moving, we can determine the scattering matrices. Just like
in the case of two layers of rods we have two: the first one determines the field transmitted
by the first cross and the second one describes the field transmitted through the whole
structure.

Scattering matrix of the first cross

Observed from distance r̃1 on the z axis, the field radiated by the two oscillators in the first
layer is

Erad,1 = − N e

4πε0 r̃1 c2 (n× (n× r̈1) + n× (n× r̈2))
t− r̃1

c

, (7.67)

with n = (0, 0, 1). With Eqs. (7.61) and (7.66) we write the scattering matrix equation

− N e

4πε0 r̃1 c2

(
−ρ̈1(t)

0

)
t− r̃1

c

!= 1
−ikr̃1

(
S21 S31
S41 S11

) (
E0 e

−iωt+ik(h2 +r̃1)
0

)
. (7.68)

8We assume all oscillators to be identical in this argumentation. Therefore, damping, the number of electrons
and the resonance frequency are equal for all rods.
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The bold 1 is a reminder that we deal with the first layer. Using Eq. (7.66), the scattering
matrix entries are

S21 = −i k3 N e2

4πε0 m eik
h
2

L β2 − Σ β1
L2 − Σ2 , (7.69a)

S41 = 0. (7.69b)

Since the second oscillator is not excited there is no polarization rotation. The field trans-
mitted by the first and second oscillator observed at the point (0, 0, d+ h), d > 0, is

Et1(0, 0, d+ h, t) = E0 e
−iωt+ikh+ikd

(
1− S21

2π
k2 A

)
êx, (7.70)

and therefore x-polarized.

Scattering matrix of the second cross

Observed from a distance r̃2 on the z axis, the field emitted by the second cross is given by

Erad,2 = − N e

4πε0 c2 r̃2
((n× (n× r̈3) + (n× (n× r̈4))

t− r̃2
c

= − N e

4πε0 c2 r̃2

 −ρ̈3 cosϕ− ρ̈4 sinϕ
−ρ̈3 sinϕ+ ρ̈4 cosϕ

0


t− r̃2

c

= N e2 ω2 E0e
−iωt

4πε0 m c2 r̃2

Lβ1 − Σβ2
L2 − Σ2

 cosϕ cosϕ+ sinϕ sinϕ
cosϕ sinϕ− sinϕ cosϕ

0


t− r̃2

c

. (7.71)

Here, we have the second surprise—not only does the second oscillator not contribute to the
system, the rotation angle of the second cross does not play a role at all. This is understand-
able in a similar fashion as before. The third oscillator (which is exposed to the cosine of
the incoming field) couples with a cosine to the first oscillator. The fourth oscillator (which
is exposed to the sine of the incoming field) couples with a sine to the first oscillator—as a
result both coupling terms add up as if there was only one rod with the orientation of the
polarization of the incoming plane wave.

Based on

Ne2k2E0e
−iωt+ikr̃2

4πε0 m r̃2

Lβ1 − Σβ2
L2 − Σ2

(
1
0

)
!= 1
−ikr̃2

(
S22 S32
S42 S12

)(
Ex,t1 (d, t)

0

)
, (7.72)

with d = (0, 0, b+ 3
2h+ r̃2), we obtain as scattering matrix entries

S22 = −i k3 N e2

4πε0 m

1
eikb+ik

3
2h
(
1− S21 2π

k2 A

) (L β1 − Σ β2)
L2 − Σ2 , (7.73a)

S42 = 0. (7.73b)
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Transmitted field

Since we know the scattering matrix of the second layer, we can now calculate the field
transmitted through the whole structure—the two layers of periodically arranged, mutually
rotated crosses. Observed on the z axis at the point (0, 0, e), e = h + b + h + e′, e′ > 0, the
transmitted field is

Et2 = E0 e
−iωt+ike

(
1− S21 2π

k2 A

) (
1− S22 2π

k2 A

)
êx. (7.74)

Comparing these results with the transmitted field from the system of two layers of unrotated
rods, we find that the crosses, no matter which value the angle ϕ has, behave like two layers
of unrotated rods. Therefore, no polarization conversion effects are observable.

Parameter fit

In Sections 7.3.4 and 7.3.5, the system under consideration was a rod (or two rods) in a
rectangular unit cell. Since two layers of crosses as sketched in Fig. 7.15 exhibit a building
block that is C4 symmetric, it makes sense to choose the unit cell accordingly. Otherwise, the
unit cell would reduce the systems symmetry. Therefore, we consider a rod of size 250 nm
× 50 nm × 25 nm (length, width, height) in a square unit cell of length 400 nm. Naturally,
this means that we have to perform new parameter fits. The course of action is like before:
first, the mass, resonance frequency and damping are fitted to numerical data obtained for
one layer of unrotated rods with incident x-polarized light. The resulting transmittance is
depicted in Fig. 7.16(a). The fit parameters read

mtot = 3.46 · 10−23 kg, ω0 = 1.82 · 1015 Hz, Γ = 3.62 · 1014 Hz. (7.75)

Second, the coupling between two layers has to be fitted. The transmittance spectrum for
two layers of grid-aligned rods is shown in Fig. 7.16(b), together with the dipole model’s
description. The coupling strength is L = 2.63 · 1029 1

s2 for a layer spacing of b = 50 nm.

Figure 7.16: Transmittance for one layer of rods (panel (a)) and two layers of unrotated
rods (panel (b)) for the setup with the square unit cell. It is square in order
to preserve the systems symmetry. See text for further details.

Since the model’s parameters are now fixed, we can investigate the predictions of the model
for light impinging on two layers of mutually rotated crosses.
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Predictions for two layers of mutually rotated crosses

Using Eq. (7.74) and the fitted values for the dipole model’s parameters, we can plot the
predictions of the dipole model for the light transmitted by two layers of mutually rotated
crosses. The results are shown in Fig. 7.17. As we see, the model exhibits the same difficulties
as before—the resonances in Fig. 7.17(a) are not reproduced well. The important aspect is
that the model does not predict an electric field in y-direction, cf. Fig. 7.17(b), in contrast
to the numerical simulation with the FMM. We found this result already while inspecting
Eqs. (7.66) and (7.71).

Figure 7.17: Transmitted light in x- and y-direction. The dipole model shows features in
x-direction similar to the numerical data. They fundamentally differ in y-
direction: while the dipole model does not predict any light, the FMM finds a
nonzero y-component of the transmitted electric field.

7.3.7 Summary and conclusion

This section contains the information gathered for the dipole model in Ref. [62], which was
supposed to describe the transmission properties of certain (multi-layered) nanostructures.

The model’s basic assumptions were that we can represent a metallic rod by an oscillating
dipole and that looking at the optical atom itself instead of doing an analysis of the whole
array, would be sufficient.

We started with the simplest structure possible, one layer of metallic rods. We analyzed the
motion of the oscillator due to the incident electric field and were, thereby, able to determine
the scattered field. We fitted the free parameters of the model to numerical data and were
able to reproduce one layer of rods very well. The success was evident, especially when the
rods were rotated in the unit cell and the model could still reproduce numerical data perfectly
without additional fitting.

Thereafter, we tried to model two layers of rods. This is a difficult task since there are multiple
reflections and couplings between the layers to consider. We carried out the necessary analysis
and found that the transmittance spectrum of the nanostructures cannot be fully explained
by the dipole model in its current form.
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Finally, we investigated two layers of mutually rotated crosses. This structure is special
because it is C4 symmetric and shows a handedness for most rotation angles. We found a
fundamental difference between the predictions of the oscillator model and numerical calcu-
lations: the FMM results shows a polarization rotation and the oscillator model does not.

Due to the results obtained, we conclude that the model should be extended to describe the
transmission properties of the considered nanostructures, although very good results were
obtained for single layer structures. A first attempt to extend the model by describing one
rod as two perpendicular oscillators did not show qualitatively new results, see App. A of
Ref. [62]. In the following sections, we discuss further predictions and developments of new
models based on the dipole model.

7.4 Two layers of rods - large spacing

In this section, we start with new insights gained beyond my previous work from my Staats-
examensarbeit. However, we do not yet develop the method further. Instead, we continue to
study the model described in Section 7.3. The system of interest in this section consists of
two layers of unrotated rods that are far apart, see Fig. 7.18.

Figure 7.18: The system of interest: two layers of unrotated rods with a large spacing b.
The geometrical parameters are like in Section 7.3.5: the rods are 500 nm long,
have a height and width of 50 nm and are centered within a 1350 nm × 900
nm unit cell. Their distance is denoted by b.

We already discussed a system with two layers (ϕ = 0◦ and b = 1000 nm) in Section 7.3.5. The
transmittance could be reproduced by the dipole model (cf. Fig. 7.14(a)) with the reasonable
assumption that the interlayer coupling is zero, i.e., L = 0. Since there is no coupling left,
only one resonance appears in the spectrum. Also, the polarization state could be described
well, cf. Fig. 7.14(b).

In this section, we examine how the transmittance changes upon an increase of the spacing
b. For that, Figs. 7.19(a) to (e) display the transmittance of the system as predicted by the
FMM and the dipole model. For the dipole model, Eqs. (7.54) to (7.60) were used with a
vanishing coupling, i.e., L = 0. It is remarkable how well the dipole model reproduces the
numerical data. Note that no fit parameters were adjusted. Only the distance b changes. The
system’s behavior for small wavelengths is particularly interesting. Here, strong oscillations
occur which are also well described by the dipole model. In order to find their origin, we
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display in Fig. 7.19(f) a curve (dashed blue) that is obtained by just multiplying two single
layers of the dipole model. To be precise, we calculate the transmittance by

S2 = −i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ)

, (7.76a)

T = |Et|2

|Ei|2
=
∣∣∣∣1− 2π

k2 A
S2

∣∣∣∣4 . (7.76b)

Here, S2 is the scattering matrix entry for a single layer of unrotated rods, cf. Eq. (7.30b)
with ϕ = 0◦. As we see, the herewith obtained curve in Fig. 7.19(f) does not at all resemble
the numerical data. No oscillations for small wavelengths are found. What is the difference
between the dipole model for two layers as presented in Section 7.3.5 and the transmittance in
Eq. (7.76)? Contrary to Eq. (7.76), in the case of the proper dipole model multiple scattering
is taken into account, cf. Fig. 7.11. This insight leads us to the conclusion that the oscillations
in Fig. 7.19 stem from Fabry-Pérot oscillations, i.e., the multiple scattering processes between
the layers. This shows the strengths of an analytical model—we can intentionally vary the
model and study the impact of the variation on the model’s predictions. Thereby, we gain
an understanding of the occurring physical processes.

Figure 7.19: Panels (a) to (e) depict the transmittance computed with the FMM and the
dipole model (with coupling L = 0) for varying layer distances b. Their agree-
ment is excellent. Panel (f) shows a transmittance curve obtained by mul-
tiplying two single layer transmission coefficients in the dipole model. The
result is poor. This means that the oscillations at small wavelengths can be
attributed to the multiple back reflections between the layers, i.e., Fabry-Pérot
oscillations, since they are incorporated in the proper dipole model discussed
in Section 7.3.5.
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After having understood the spectra in detail, we can use another strength of the analytical
model: we can easily predict the transmittance spectra for a great number of different layer
spacings b with very little computational effort. Figure 7.20 shows the transmittance color-
coded over the wavelength of the incident light and the layer spacing b. Panels (a), (b), (c)
and (d) show the transmittance for systems where the upper rod is rotated by ϕ = 0◦, −30◦,
−60◦ and −90◦, respectively.

Figure 7.20: Dipole model predictions for the transmittance over layer distance b and wave-
length for different rod rotation angles. The more the rods in the second layer
are rotated with respect to the first layer, the less they influence the transmit-
tance behavior. While they cause strong Fabry-Pérot oscillations for ϕ = 0◦,
the influence of the second layer is non-existent for ϕ = −90◦. For angles close
to ϕ = 0◦ the transmittance reaches minimal values. The reason is that the
second layer of rods absorbs and reflects most around these angles.

The strongest Fabry-Pérot oscillations occur for unrotated rods. The more the rods are
rotated (cf. Fig. 7.20(b) and (c)) the weaker the oscillations get until they disappear, cf.
Fig. 7.20(d). This is plausible, since the second layer reflects less, the more the rods are
rotated. For ϕ = −90◦, the second rod is perpendicular to the incident electric field and,
thus, the dipole is not excited. Therefore, no reflections occur at the second layer of rods and,
thus, no Fabry-Pérot oscillations are observable. Like in previous cases, the computational
effort for these large parameter scans is of the order of seconds.
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7.5 Lattice-periodic calculation

Up to this point we assumed that all particles within the slab are identical, non-interacting
and randomly distributed, see Section 7.3.3. This allowed us to describe the transmission
properties of light through the investigated periodic nanostructures. Apparently, the model
does not include the lattice resonances that can be observed, e.g., in Fig. 7.7. In this section,
I demonstrate that the dipole model can qualitatively reproduce the lattice resonances if
it is changed accordingly. We start by reviewing the theory of light scattering by particle
arrays [78]. Then, we reproduce the results for a test system discussed in Ref. [78]. Finally,
we apply the lattice periodic calculation to the dipole model.

7.5.1 Light scattering by particle arrays

In the following, we consider periodically arranged particles on a square lattice with lattice
constant a. The particles are located at the lattice sites Rn as depicted in Fig. 7.21.

Figure 7.21: A two-dimensional array of particles illuminated by an electric field Eext. On
each lattice site Rn a dipole moment pn is induced.

Any electric field E induces a dipole moment pn given by

pn = αE E(Rn), (7.77)

where αE is the polarizability of the particle. This dipole moment at lattice site Rn itself
creates an electric field. At some point r this field reads9

E(r) = G0(r−Rn) pn, (7.78)

where we used the dipole-dipole interaction tensor G0 defined as

G0(r) =
(
k2
13 +∇∇

) eikr

r
. (7.79)

Here, 13 denotes the three-dimensional unit matrix. The action of G0 on a dipole moment p
is then given by

G0(r) · p = eikr

r3

(
((kr)2 + ikr − 1) p− (kr)2 + 3ikr − 3

r2 (r · p) r
)

(7.80)

9In this section, we use Gaussian units. We will skip to SI units when we apply the lattice calculation to the
dipole model.
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Explicitly, the tensor components read

G0
xx = k2 eikr

r
+ eikr

(
ik

r2 −
k2x2

r3 − 1
r3 −

3ikx2

r4 + 3x2

r5

)
, (7.81a)

G0
xy = G0

yx = eikr
(
−k

2xy

r3 − 3ikxy
r4 + 3xy

r5

)
, (7.81b)

G0
xz = G0

zx = eikr
(
−k

2xz

r3 − 3ikxz
r4 + 3xz

r5

)
, (7.81c)

G0
yy = k2 eikr

r
+ eikr

(
ik

r2 −
k2y2

r3 −
1
r3 −

3iky2

r4 + 3y2

r5

)
, (7.81d)

G0
yz = G0

zy = eikr
(
−k

2yz

r3 − 3ikyz
r4 + 3yz

r5

)
, (7.81e)

G0
zz = k2 eikr

r
+ eikr

(
ik

r2 −
k2z2

r3 −
1
r3 −

3ikz2

r4 + 3z2

r5

)
. (7.81f)

After thoroughly defining the interaction tensor, we are interested in the self-consistent dipole
moment at the lattice site Rn. It is important to note that every dipole moment affects every
other dipole moment since it causes a field interacting with all other dipoles. This is the
reason why the dipole moment has to be deduced self-consistently. It reads

pn = αE

Eext(Rn) +
∑
n′ 6=n
G0(Rn −Rn′) pn′

 , (7.82)

where
Eext(Rn) = Eext eik‖Rn (7.83)

is the external field into which the lattice site enters only with a phase factor. This phase
factor is given by the in-plane component k‖ of the incident field’s wave vector. The first
part of Eq. (7.82) stems from Eq. (7.77) and describes the dipole moment induced by the
external field. The second term sums up all contributions by the other dipole moments.
Such statements are well-known from solid-state physics. Bloch’s theorem, see Section 2.7.2,
guarantees that the dipole moment pn has the form

pn = p eik‖Rn . (7.84)

We enter Eq. (7.84) in Eq. (7.82) and obtain

p eik‖Rn = αE

Eext(Rn) +
∑
n′ 6=n
G0(Rn −Rn′) p eik‖Rn′

 (7.85a)

⇒ p = αE Eext + αE p
∑
n′ 6=n
G0(Rn −Rn′) eik‖(Rn′−Rn) (7.85b)

using Eqs. (7.83) and (7.84). Without loss of generality we can use n = 0 and R0 = 0. Then,
we can rewrite the last term in Eq. (7.85b)

∑
n′ 6=0
G0(0−Rn′) eik‖(Rn′−0) Rn′ → −Rn=

∑
n6=0
G0(Rn) e−ik‖Rn . (7.86)
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In Eq. (7.86) we first changed the summation index from n′ to n. Second, we used the
fact that for every particle on lattice site Rn there is another particle at −Rn. With this
intermediate step we can write Eq. (7.85b) in a more convenient form:

p = αE Eext + αE p
∑
n6=0
G0(Rn) e−ik‖Rn (7.87a)

⇒ p

 1
αE
−
∑
n6=0
G0(Rn) e−ik‖Rn

 = Eext (7.87b)

⇒ p = 1
1
αE
−G(k‖)

Eext (7.87c)

with the abbreviation
G(k‖) =

∑
n6=0
G0(Rn) e−ik‖Rn . (7.88)

The expression we obtain for the dipole moment in Eq. (7.87c) is very elegant since it separates
the contributions of the single particle (αE) from the lattice contribution (G(k‖)).

As a first step, we derived the self-consistent dipole moment of the particles. However, what
we are really interested in is the field that is transmitted through the arrangement of periodic
scatterers. Obtaining the expression for the transmitted field of a single scatterer is the next
objective, followed by the derivation of the total transmitted field.

Before we can handle the expression for the transmitted field we have to formulate some
mathematical tools. First, we reformulate the right end of Eq. (7.79) by changing to the
two-dimensional momentum space at z = 0, i.e., in the plane of the periodic arrangement of
particles. This reads

eikr

r
= i

2π

∫
d2Q√
k2 −Q2 ei(QR+

√
k2−Q2|z|), (7.89)

with the normal momentum
√
k2 −Q2 and the notation R = (x, y) and r = (R, z). This

way, Eq. (7.79) becomes

G0(r) =
(
k2
13 +∇∇

) eikr

r
=
(
k2 +∇∇

) i

2π

∫
d2Q√
k2 −Q2 ei(Qxx+Qyy+

√
k2−Q2|z|) (7.90)

Next, we swap differentiation and integration and obtain expressions like

G0
xx(r) = i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei(QR+

√
k2−Q2|z|) (7.91)

for the xx component of the interaction tensor.

In the following, we restrict ourselves to specular symmetry with respect to the xz-plane and
normal incidence (i.e., k‖ = 0). This is reasonable since we are interested in demonstrating
that, in general, lattice resonances can be incorporated into a dipole model.

With the corresponding mathematical preparations at hand, we proceed to the field that is
emitted by a single dipole. An observer at a point r finds the field to be

Etrans
single(r) =

((
k2 +∇∇

) eikr
r

)
p. (7.92)
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Next, we enter the self-consistent dipole moment from Eq. (7.87c) and the expression in
Eq. (7.89) in Eq. (7.92) and obtain

Etrans
single(r) =

(
(k2 +∇∇) i2π

∫
d2Q√
k2 −Q2 ei(QR+

√
k2−Q2|z|)

)
Eext

1
αE
−G(k‖)

. (7.93)

Just like we did in the step from Eq. (7.90) to Eq. (7.91) we swap differentiation and inte-
gration in Eq. (7.93) and find

Etrans
single =

(
i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei(QR+

√
k2−Q2|z|)

)
1

1
αE
−Gxx(0)

Eext (7.94)

for the transmitted field caused by a single particle.

The final step is to derive an expression for the total transmitted field, i.e., the field that
is found behind the periodic array of particles. Naturally, it consists of the external field
and the sum of all fields caused by the induced dipole moments of the scatterers. The total
transmitted field then reads

Etrans
total = Eext +

∑
n

(
i

2π

∫
d2Q

(
k2 −Q2

x

)√
k2 −Q2 ei(QRn+

√
k2−Q2|z|)

)
Eext

1
αE
−Gxx(0)

. (7.95)

Using the relation ∑
n

eiQ·Rn = (2π)2

A

∑
g
δ(Q− g) (7.96)

with the sum over the two-dimensional reciprocal lattice vectors g and the unit cell area A
we can reformulate Eq. (7.95) such that it reads

Etrans
total = Eext + lim

z→0

[(
2πi
A

∫
d2Q

(
k2 −Q2

x

)√
k2 −Q2

∑
g
δ(Q− g) ei

√
k2−Q2|z|

)
·

1
1
αE
−Gxx(0)

Eext
]
(7.97)

= Eext + lim
z→0

[
2πi
A

∑
g

(k2 − g2
x)√

k2 − g2 ei
√
k2−g2|z| Eext

1
αE
−Gxx(0)

]
. (7.98)

In the last step we integrated over the δ functions. Performing the limit value and restricting
us to 0th order yields

Etrans
total =

(
1 + 2πik

A

1
1
αE
−Gxx(0)

)
︸ ︷︷ ︸

=:t̃

Eext (7.99)

for the total transmitted field.
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7.5.2 Investigation of a test system

In this section, we reproduce the results for a test system investigated in Ref. [78]. The
expression for the reflected field (in terms of a reflection coefficient) is given by

r̃ = − 1
1 + i A

2πkRe
(

1
αE
−Gxx(0)

) . (7.100)

Since the derivation is lengthy, I do not present it here. However, since it is described only
marginally in Ref. [78] I added the derivation to the appendix, see App. C.

The test system is a layer of perfectly conducting discs. They are arranged on a square lattice
with lattice constant a. A sketch is depicted in Fig. 7.23(a). The polarizability of such a
structure can be derived analytically by perceiving the disc as ellipsoid with vanishing height.
The polarizability is given by

αE = 1
3π
4b3 −

2ik3

3
, (7.101)

where b denotes the radius of the discs, see Ref. [18]. In the test system, the lattice constant
a is chosen to be a = 5b. The distance from the origin to the lattice sites Ri is

|Ri| =
√
n2a2 +m2a2 = a

√
n2 +m2, n,m ∈ Z. (7.102)

With the unit cell area A = a2, the reflection coefficient reads

r̃ = −

1 + iλ̄

4π2 Re

3π53

4 − 2i (2π)3

3λ̄3 − a3 ∑
i 6=0
G0
xx(Ri)

−1

. (7.103)

In this formulation, λ̄ = λ/a is the wavelength in units of the lattice constant. The lattice
sum reads

∑
i 6=0
G0
xx(Ri) = 1

a3

∞ ′∑
n,m=−∞

ei
2π
λ̄

√
n2+m2

(
4π2

λ̄2
√
n2 +m2

+ i 2π
λ̄ (n2 +m2)

− 4π2n2

λ̄2
√
n2 +m23 −

1
√
n2 +m23 −

3i 2π n2

λ̄ (n2 +m2)2 + 3n2
√
n2 +m25

)
, (7.104)

following Eq. (7.81a). The dash close to the sum symbol indicates that the summation does
not include the element n = m = 0. The reflectance is calculated as the squared absolute
value of the reflection coefficient.

Naturally, we cannot numerically compute the infinite sum in Eq. (7.104). Instead, we have
to truncate the sum at a certain number of lattice sites. To determine how many sites are
needed, a convergence study was performed. The results are depicted in Fig. 7.22.

The lattice sites for the study in Fig. 7.22 were chosen on a square array. Of course, other
truncation schemes of the sum in Eq. (7.104) are possible. As we can see in Fig. 7.22, the
lattice sum converges extremely slowly. Since this type of slowly converging lattice sums is
known, techniques were developed to increase performance. For instance, a possible way is to
reformulate Eq. (7.104) into a rapidly converging sum using Ewald’s method, see Refs. [79, 80].
Since we are only interested in the basic proof that lattice resonances can be incorporated in
the dipole model, we do not apply the method here.
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Figure 7.22: Convergence study for the lattice sum in Eq. (7.104). As shown in the inset,
a large number of lattice sites is needed in order to reach an error below one
percent. This study is performed at a normalized wavelength λ̄ = 1.02. This
is the resonance wavelength as depicted in Fig. 7.23.

The highest number of lattice sites in one direction investigated in Fig. 7.22 is one million.
According to the inset in Fig. 7.22, the lattice sum is converged up to less than one percent.
We use this number of lattice sites to reproduce the reflectance presented in Ref. [78], see
Fig. 7.23(a). Our results are depicted in Fig. 7.23(b).

Figure 7.23: Sketch of the test system and reflectance over normalized wavelength. Panel
(a) displays the results obtained in Ref. [78] (and is taken from there). Panel
(b) displays our results obtained with one million lattice sites in each direction.
The dashed black line is the line from panel (a), the red circles mark the points
where we calculated the reflectance.

As we see, we can reproduce the reflectance for the test system very well. Thus, we proceed
by applying the described formalism to the dipole model.
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7.5.3 Application to the dipole model

In order to obtain the field that is transmitted through a layer of rods, we use the expression
in Eq. (7.99) and include the polarizability we obtained for the dipole model. Again, we have
to calculate the lattice sum which means that we deal with a term similar to Eq. (7.104). The
difference is that we no longer have a quadratic unit cell since the unit cell in our investigations
in Section 7.3.4 is a rectangle. This means that the lattice sites Ri are given by

|Ri| =
√
n2(1350nm)2 +m2(900nm)2 = 900nm︸ ︷︷ ︸

=:a

√
n2
(1350

900

)2
+m2︸ ︷︷ ︸

=:τnm

, n,m ∈ N. (7.105)

Like above we define the normalized wavelength

λ̄ := λ

a
, k = 2π

λ̄ a
. (7.106)

The lattice sum then reads

Gxx(0) =
∑
i 6=0
G0
xx(Ri) = 1

a3

∞ ′∑
n,m=−∞

ei
2π
λ̄
τnm

(
4π2

λ̄2τnm
+ i 2π
λ̄τ2

nm

−
4π2n2

(
1350
900

)2

λ̄2τ3
nm

− 1
τ3
nm

−
3i 2π n2

(
1350
900

)2

λ̄τ4
nm

+
3n2

(
1350
900

)2

τ5
nm

 . (7.107)

By entering this expression in Eq. (7.99) we obtain the transmitted field in Gaussian units

Etrans
total =

1 + 4 π2 i

λ̄ 1350
900

1
a3

αE
−Gxx(0) a3

 Eext. (7.108)

The next step is to enter the polarizability of the dipole model (see Section 7.3.4) and to
obtain the transmittance in SI units. It reads

T =

∣∣∣∣∣∣∣∣1 + 4π2i

λ̄ 1350
900

1
m
e2

(
ω2

0 −
(

2πc
a λ̄

)2
− i2πc

a λ̄
Γ
)
a3 4πε0

N −Gxx(0) a3

∣∣∣∣∣∣∣∣
2

. (7.109)

Note that m in Eq. (7.109) is not a summation index but the electron mass. At this point
it is worth to once again point out the elegance of this expression: the contribution of the
particle, namely the polarizability, and the contribution of the lattice, namely Gxx(0), enter
separately. This is particularly helpful since we only have to compute the lattice sum once
and can then perform the fit to determine the dipole model’s free parameters.

Like in Section 7.5.2, we first perform a convergence analysis, see Fig. 7.24. Here, the real
part of the lattice sum from Eq. (7.107) without the prefactor 1/a3 is plotted over the square
root of the inverse number of lattice sites.

The convergence behavior does not differ from the one displayed in Fig. 7.22. Again, high
numbers of lattice sites are needed to ensure convergence up to one percent. Like in the
previous section, we did not use enhanced truncation schemes. Instead, an equal amount
of lattice sites in each direction was considered. Having obtained the lattice sum, we can
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Figure 7.24: Convergence study for the real part of the lattice sum in Eq. (7.107). As shown
in the inset, a large number of lattice sites is needed in order to reach an
error below one percent. This study is performed at a normalized wavelength
λ̄ = 1.02. The imaginary part of the lattice sum shows the same convergence
behavior.

perform the fit of the dipole model’s parameters to the FMM data. The results are depicted
in Fig. 7.25.

The transmittance is reproduced well. The parameters for the dipole model read

mtot = N ·m = N ·me · 3.16, ω0 = 1.16 · 1015 Hz, Γ = 1.51 · 1014 Hz. (7.110)

Since both the numerical transmittance in general and the lattice resonances in particular
are reproduced qualitatively well, we successfully demonstrated that the contribution of the
lattice can be incorporated in the dipole model.

Figure 7.25: Transmittance spectrum for a single layer of unrotated rods. The lattice reso-
nances can be reproduced both at 900 nm and 1350 nm, see panel (a). Panel
(b) shows a close-up around the strong lattice resonance at 900 nm.
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7.6 Twin dipole model - unprojected Si

In the previous sections, the dipole model was introduced and both strengths and shortcom-
ings were discussed. The strengths include the correct physical description of single layer
structures and structures with a large interlayer spacing. On the other hand, the model faces
problems to correctly determine the transmission properties of close-coupled layers. A par-
ticular shortcoming is that the model does not reproduce the polarization rotation occurring
for two layers of mutually rotated crosses which should be found due to the structures’ hand-
edness. A first extension of the model, namely representing one rod by two perpendicular
dipoles, was not successful to overcome this shortcoming, see Appendix A of Ref. [62].

In this section, we start to derive an extended model, called the twin dipole model, that
successfully describes the physical properties of the two layers of rotated crosses. Before this
extended model is presented in its final form in Section 7.7, we deal with an intermediate
step in this section. Here, we encounter a particular technical problem that stems from the
scattering matrix and the transmission through a slab, cf. Sections 7.3.2 and 7.3.3.

We first present the model using the example of one layer of rods in Section 7.6.1. The
occurring problems and open questions are discussed. In Section 7.6.2, we find answers to
these questions by investigating two layers of rods.

7.6.1 Single layer of rods

Like the name “twin dipole model” already implies, a rod is, from now on, described by two
dipoles. These dipoles are arranged as sketched in Fig. 7.26.

Figure 7.26: The twin dipole model describes one rod as two coupled dipoles, sketched here
with red circles.

The two oscillators are located at the positions

r1 =


l
4 cosϕ+ ρ1 cosϕ
l
4 sinϕ+ ρ1 sinϕ

h
2

 , r2 =

−
l
4 cosϕ+ ρ2 cosϕ
− l

4 sinϕ+ ρ2 sinϕ
h
2

 , (7.111)

where l is the length of the rod, ϕ is the rod rotation angle and h denotes the height of
the rod like in the previous sections. At the places ri we find the dipoles with moment pi,
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i = 1, 2. The dipole moments read

p1 =

ρ1 cosϕ
ρ1 sinϕ

0

 −N e

2 , p2 =

ρ2 cosϕ
ρ2 sinϕ

0

 −N e

2 , R̂ =

cosϕ
sinϕ

0

 , R = l

2 , (7.112)

where N is the number of electrons in the whole rod and R̂ is the unit vector pointing from
one dipole to the other. Due to the dipole-dipole potential, which has the form

U = 1
4πε0

p1 · p2 − 3 (p1 · R̂) (p2 · R̂)
R3 , (7.113)

the equations of motion are

ρ̈1 + Γ ρ̇1 + ω2
0 ρ1 − L ρ2 = − e

m
E0 e

−iωt+ik h2 cosϕ, (7.114a)

ρ̈2 + Γ ρ̇2 + ω2
0 ρ2 − L ρ1 = − e

m
E0 e

−iωt+ik h2 cosϕ. (7.114b)

Here, the abbreviation L := 2
N m L′ with L′ := 2q2

4πε0 (l/2)3 was used. The charge q of a
single oscillator is given by half the electrons of the rod, i.e., q = −N

2 e. With the usual
time-harmonic ansatz, the solution to the equations of motion is given by(

ρ1
ρ2

)
= − e

m
E0 e

−iωt+ik h2
cosϕ

ω2
0 − ω2 − iωΓ− L

(
1
1

)
. (7.115)

The emitted field of an oscillating charge has already been discussed in Section 7.3.1. We
reuse the notation from Fig. 7.3. The observer is located on the z-axis at the point Q, i.e.,

Q =

 0
0

a+ h
2

 , roscill,1 =


l
4 cosϕ
l
4 sinϕ

h
2

 , |Q− roscill,1| =

∥∥∥∥∥∥∥
− l

4 cosϕ
− l

4 sinϕ
a


∥∥∥∥∥∥∥ =

√(
l

4

)2
+ a2 = r.

(7.116)
Figure 7.27 sketches the positions of the oscillators and the observer. Furthermore, the
important quantity a which defines the position of the observer is depicted.

Figure 7.27: Sketch of the distance r between the oscillators and the observer Q and the
distance a defining the observer’s position.

The field emitted by the first dipole, E1, is given by

E1(Q, t) = − 1
4πε0

N e

2 r3 c2

−a2 ρ̈1 cosϕ
−a2 ρ̈1 sinϕ
− l

4 a ρ̈1


t− r

c

, (7.117)
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where Eq. (7.1) was used. It is important to note that each dipole carries half the amount
of electrons of the whole rod. The field E2 of the second oscillator differs from the field of
the first only through a switched sign of the z-component. Thus, the total emitted field at
Q reads

E1+2(Q, t) = 1
4πε0

N e2 a2 k2

r3
e

m
E0 e

−iωt+ik h2 +ikr cosϕ
ω2

0 − ω2 − iωΓ− L

cosϕ
sinϕ

0

 . (7.118)

In the previous sections, the general procedure after obtaining the emitted field of the scat-
terers was changing the coordinate system according to Eq. (7.28) and writing down the
scattering matrix equation that links incident and emitted field, see Eq. (7.11). The right
hand side of the scattering matrix equation is here given by

...
!= 1
−ika

(
S2 S3
S4 S1

) (
E0 e

−iωt+ik h2 +ika

0

)
. (7.119)

Note that the distance a enters, cf. Fig. 7.27. Combining Eqs. (7.118) and (7.119) yields the
scattering matrix entries

S2 = −i k3 N e2

4πε0 m

cos2 ϕ

ω2
0 − ω2 − iωΓ− L

a3(√(
l
4

)2
+ a2

)3 e
ik

(√
( l4)2+a2−a

)
, (7.120a)

S4 = i k3 N e2

4πε0 m

cosϕ sinϕ
ω2

0 − ω2 − iωΓ− L
a3(√(

l
4

)2
+ a2

)3 e
ik

(√
( l4)2+a2−a

)

︸ ︷︷ ︸
=:f(a)

. (7.120b)

At this point it may become clear why we emphasized the definition of a—unlike in previous
cases (cf. Section 7.3), the scattering matrix entries still depend on the distance to the
observer! The intuitive perception of the function f is, that it does not play a role for large
distances. In fact, this is true, see Fig. 7.28. As we see, the real part converges rapidly
towards 1. The imaginary part converges to zero, although slower than the real part.

Thus, the formulation in Eqs. (7.120) does not pose a problem for a single layer—we might
directly take the limit value of f . However, for two layers that are close together, it is not
a priori clear which formulation of the scattering matrix entries is correct—the unprojected
formulation with f(a) or the projected formulation with f(∞) = 1.

This problem of projecting the scattering matrix entries is the technical problem we men-
tioned earlier. In a first step, we proceed with the unprojected scattering matrix entries
in this section and fit the numerical data to the model in order to obtain values for the
free parameters. In a second step, we investigate two layers of rods with the twin dipole
model. Therein, we encounter that only the projected scattering matrix entries can be used
reasonably.

The transmittance is obtained from the scattering matrix like before (cf. Eq. (7.31)). We fit
the model to the electric field rather than to the transmittance to include the information
carried in the phase. Thus, we have to enter the distance at which we evaluate the field
behind the structure. In our case, this distance was one unit cell length, i.e., 1350 nm. This
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Figure 7.28: Real and imaginary part of the function f defined in Eq. (7.120) at the reso-
nance wavelength of the rod. The real part converges rapidly to one while the
imaginary part converges slowly to zero.

means that a is given by 1350 nm + h/2. The system’s parameters are like in Section 7.3.4:
the unit cell is 1350 nm long and 900 nm wide, the rod is 500 nm long and 50 nm wide and
high. The rods are assumed to be unrotated, i.e., ϕ = 0◦. The model’s results obtained with
the parameters

ω0 = 1.35 · 1015 Hz, Γ = 1.4 · 1014 Hz, mtot = N

2 ·me · 3.35︸ ︷︷ ︸
=m

(7.121)

are depicted in Fig. 7.29. Again, the model reproduces the numerical data well.

Figure 7.29: Transmittane and reflectance of a single layer of unrotated rods modeled with
the twin dipole approach. Here, a = 1375 nm was used in the unprojected
formulation of the model in Eq. (7.120).

The coupling between the oscillators forming the twin dipole is

L = 1
4πε0

N e2

m

(2
l

)3
= 3.486 · 1029 Hz2, (7.122)

where the fitted mass from Eq. (7.121) enters.
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7.6 Twin dipole model - unprojected Si

7.6.2 Double layer of rods

In this section, we model two layers of rods as two twin dipoles above each other, see
Fig. 7.30.

Figure 7.30: Two layers of rods are modeled as two twin dipoles above each other.

The positions of the twin dipoles are

r1 =

L̃+ ρ1
0
h
2

 , r2 =

−L̃+ ρ2
0
h
2

 ,
r3 =

L̃ cosϕ+ ρ3 cosϕ
L̃ sinϕ+ ρ3 sinϕ

b+ 3
2 h

 , r4 =

−L̃ cosϕ+ ρ4 cosϕ
−L̃ sinϕ+ ρ4 sinϕ

b+ 3
2 h

 , (7.123)

where we introduced the abbreviation L̃ = l/4. The dipole moments read

2 p1
q N

=

ρ1
0
0

 , 2 p2
q N

=

ρ2
0
0

 , 2 p3
q N

=

ρ3 cosϕ
ρ3 sinϕ

0

 , 2 p4
q N

=

ρ4 cosϕ
ρ4 sinϕ

0

 . (7.124)

The unit vectors pointing from oscillator j to oscillator i are denoted R̂ij and are given by

R̂14 =

−L̃ cosϕ− L̃
−L̃ sinϕ
b+ h

 1
c2
, R̂13 =

L̃ cosϕ− L̃
L̃ sinϕ
b+ h

 1
c1
, R̂12 =

1
0
0

 ,

R̂23 =

L̃ cosϕ+ L̃

L̃ sinϕ
b+ h

 1
c2
, R̂24 =

−L̃ cosϕ+ L̃

−L̃ sinϕ
b+ h

 1
c1
, R̂34 =

cosϕ
sinϕ

0

 .
(7.125)

Here, c1 and c2 are defined for normalization and read

c1 =
√

(L̃ cosϕ− L̃)2 + (L̃ sinϕ)2 + (b+ h)2 =
√

2L̃2 − 2L̃2 cosϕ+ (b+ h)2, (7.126a)

c2 =
√

(L̃ cosϕ+ L̃)2 + (L̃ sinϕ)2 + (b+ h)2 =
√

2L̃2 + 2L̃2 cosϕ+ (b+ h)2. (7.126b)

145



Chapter 7 Coupled-Dipole Models for Slabs of Metallic Nanostructures

The distances between the oscillators are related by

R12 = R34 = l

2 , R13 = R24 = c1, R23 = R14 = c2. (7.127)

Since we model the system by two twin dipoles, we have a total of four interacting dipoles.
Bearing in mind the potential in Eq. (7.113), the equations of motion have the form

Σ −L L1 L2
−L Σ L2 L1
L1 L2 Σ −L
L2 L1 −L Σ



ρ1
ρ2
ρ3
ρ4

 = − e

m
E0 e

−iωt


α1
α1
α2
α2

 , (7.128)

where we introduced the abbreviation Σ = ω2
0 − ω − iωΓ. In the dipole model we discussed

how the accelerating fields look like with multiple scattering between the layers. We reuse
the formulations from Eqs. (7.46) and (7.48) for α1 and α2, namely

α1 = eik
h
2 + t̃0 r̃ϕ e

iδ eik
3
2h

1− r̃ϕ r̃0 eiδ
, α2 = t̃0 e

i δ2 eik
3
2h cosϕ

1− r̃ϕ r̃0 eiδ
. (7.129)

However, the transmission and reflection coefficients t̃0 and r̃ϕ look differently than in Sec-
tion 7.3.5. In the unprojected twin dipole model they are derived from Eqs. (7.120) and read

r̃ϕ =

(
ei2kh − 1

)
iπ

A h k3
−i k3 N e2

4πε0 m

cos2 ϕ

ω2
0 − ω2 − iωΓ− L

a3 e
ik

(√
( l4)2+a2−a

)
(√(

l
4

)2
+ a2

)3 , (7.130a)

t̃0 = 1− 2 π
k2 A

−i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ− L)

a3 e
ik

(√
( l4)2+a2−a

)
(√(

l
4

)2
+ a2

)3 . (7.130b)

The coupling terms in Eq. (7.128) have the form

L = N e2

4πε0
(
l
2

)3
m
, (7.131a)

L1 = τ
N
2 e2

4πε0

cosϕ+ 3 L̃2 (cosϕ− 1)2 1
c21

c3
1 m

, (7.131b)

L2 = τ
N
2 e2

4πε0

cosϕ− 3 L̃2 (cosϕ+ 1)2 1
c22

c3
2 m

, (7.131c)

where L is the coupling of the oscillators within one twin dipole like in Eq. (7.122). Also, we
introduced a fit parameter τ . Applying the time-harmonic ansatz to the equations of motions
yields the solution

ρ1
ρ2
ρ3
ρ4

 = −
e
m E0 e

−iωt

L2
2 + 2 L1 L2 − Σ2 − L2 + L2

1 + 2 Σ L


α2 L2 − α1 Σ + α1 L+ α2 L1
α2 L2 − α1 Σ + α1 L+ α2 L1
α1 L2 + α1 L1 − α2 Σ + α2 L
α1 L2 + α1 L1 − α2 Σ + α2 L

 . (7.132)
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As a first step towards the transmitted field, we investigate the field emitted by the first
oscillator, observed at Q = (0, 0, u+ h/2):

Q =

 0
0

u+ h
2

 , roscill,1 =

L̃0
h
2

 , |Q− roscill,1| =

∥∥∥∥∥∥∥
−L̃0
u


∥∥∥∥∥∥∥ =

√
L̃2 + u2 =: r1. (7.133)

E1(Q, t) = − 1
4πε0

N
2 e

r3
1 c

2


−L̃0
u

×

−L̃0
u

×
ρ̈1

0
0




t− r1

c

= − 1
4πε0

N e

2 r3
1 c

2

 −u2 ρ̈1
0

−L̃ u ρ̈1


t− r1

c

(7.134)
The field E2 emitted by the second oscillator is nearly identical; only the z-component of the
field changes its sign. Thus, the emitted field of the first twin dipole reads

E1+2 = −N e k2

4πε0

ρ1
0
0


t− r1

c

u2

r3 . (7.135)

Thus, the scattering matrix for the first layer of rods reads

S21 = i k3 N e

4πε0

1
E0 e

−iωt+ik h2
ρ1(t) u3(√(

l
4

)2
+ u2

)3 e
ik

(√
( l4)2+u2−u

)
, (7.136a)

S41 = 0. (7.136b)

Again, we find the same unprojected form of the scattering matrix. To find the scattering
matrix of the second layer, we observe the field emitted by the third oscillator at the position
Q′ = (0, 0, d+ b+ 3/2 h):

roscill,3 =

L̃ cosϕ
L̃ sinϕ
b+ 3

2 h

 , ∣∣Q′ − roscill,3
∣∣ =

∥∥∥∥∥∥∥
−L̃ cosϕ
−L̃ sinϕ

d


∥∥∥∥∥∥∥ =

√
L̃2 + d2 =: r2, (7.137)

E3(Q′, t) =
−N

2 e

4πε0 r3
2 c

2


−L̃ cosϕ
−L̃ sinϕ

d

×

−L̃ cosϕ
−L̃ sinϕ

d

×
ρ̈3 cosϕ
ρ̈3 sinϕ

0




t− r2

c

= − 1
4πε0

N e

2 r3
2 c

2

−d2 ρ̈3 cosϕ
−d2 ρ̈3 sinϕ
−L̃ d ρ̈3


t− r2

c

. (7.138)

Analogously, the field for the fourth oscillator is obtained, which again just flips sign in the
z-component. Therefore, the field radiated by the second twin dipole reads

E3+4 = − 1
4πε0

N e k2

ρ3 cosϕ
ρ3 sinϕ

0

 d2

r3
2

(7.139)
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The resulting scattering matrix entries are

S22 = i k3 N e

4πε0

ρ3 cosϕ(
1− S2,1 2π

k2 A

)
E0 e

−iωt+ 3
2 h+b

d3 e
ik

(√
( l4)2+d2−d

)
(√(

l
4

)2
+ d2

)3 , (7.140a)

S42 = −i k3 N e

4πε0

ρ3 sinϕ(
1− S2,1 2π

k2 A

)
E0 e

−iωt+ 3
2 h+b

d3 e
ik

(√
( l4)2+d2−d

)
(√(

l
4

)2
+ d2

)3 . (7.140b)

Like in the dipole model, the transmitted field is given by

Et2 = E0 e
−iωt+ike

(
1− 2π S21

k2 A

) [(
1− 2π S22

k2 A

)
êx + 2π S42

k2 A
êy
]
. (7.141)

From Section 7.6.1 we know the values for ω0,Γ and m. The other parameters read a = b+h,
u = b + h and d = 1375 nm. The latter is chosen like that since we fit the coupling to the
numerical field obtained one unit cell behind the upper rod.

In Fig. 7.31(a), the transmittance for two layers of unrotated rods with a spacing of b = 50
nm is shown. The fit parameter is τ = 0.045.

Figure 7.31: Transmittance obtained with the FMM and the unprojected twin dipole model
for two layers of periodically arranged rods. Panels (a) and (b) display the
results for unrotated rods and for ϕ = −75◦, respectively. The unprojected
formulation of the twin dipole model yields unphysical transmittance values
above 1 and, furthermore, does not reduce to the transmittance of the single
layer of rods for ϕ = −90◦. This shows that a projected formulation needs to
be used.

The model’s description of the numerical data is not particularly better than previous results
of the dipole model. In fact, it exhibits transmittance values above one for small wavelengths
which is unphysical. In Fig. 7.31(b), the transmittance for b = 50 nm and a rotation of
ϕ = −75◦ is shown. As we see, there is a huge difference between the numerical data and
the prediction of the unprojected twin dipole model. The reason can easily be understood
on a formal level: the more the upper rod is rotated, the less it is excited by the external, x-
polarized field. Thus, once the second rod is rotated by ϕ = 90◦, the transmittance predicted
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by the (twin) dipole model for two layers of rods should be identical to the model’s predictions
for one layer of rods. However, this is not the case in the unprojected formulation of the twin
dipole model: Eq. (7.136a) with ϕ = 90◦ does not equal Eq. (7.120a). The reason is that a
in Eq. (7.120a) was set to 1375 nm (distance between oscillator and point where numerical
data is obtained behind the layer) but u in Eq. (7.136a) was set to b + h since that is the
distance to the upper twin dipole. Yet, a would have to be equal to u for Eq. (7.136a) being
identical to Eq. (7.120a). Of course, we could just set a to b+ h or u to 1375 nm. However,
both versions lack geometrical sense.

Hence, the only sensible solution to the problem is to use the projected twin dipole model.
This means that we use the limit values for a→∞ and u→∞, i.e., f(∞) = 1. This means
that f(a) is set to 1 in Eqs. (7.120) and (7.130) as well as f(u) in Eq. (7.136a). Consequently,
we also have to set f(d) to 1 in Eq. (7.140).

In the subsequent section, we discuss the effect of the projection and show the results for the
projected twin dipole model, from now on referred to only as the twin dipole model.

7.7 Twin dipole model - projected Si

In the previous section, we discussed the twin dipole approach and how it leads to the tech-
nical problem of the scattering matrix’ distance dependence. We argued that an unprojected
formulation does not lead to consistent results and, thus, we present the results of the pro-
jected twin dipole model in this section. We start by discussing a single layer of rods. This
is followed by the results of the projected twin dipole model for two layers of rods. After
applying the model to one layer of crosses, we finally arrive at the structure that was the
reason for extending the dipole model—two layers of mutually rotated crosses. Here, the
twin dipole model proves its ability to describe the system’s physics correctly.

7.7.1 Single layer of rods

In Section 7.6.1, we presented the unprojected formulation of the twin dipole model. At the
end of Section 7.6.2 we explained why this formulation cannot work and that we have to set
f(a), f(u) and f(d) to 1 in Eqs. (7.120) and (7.130), (7.136a) and (7.140), respectively. With
this projected formulation, we find the new fit parameters

ω0 = 1.35 · 1015 Hz, Γ = 1.4 · 1014 Hz, mtot = N

2 ·m = N

2 ·me · 3.35, (7.142)

for the 1350 nm× 900 nm unit cell with the 500 nm× 50 nm× 50 nm rods. The transmittance
and reflectance are depicted in Fig. 7.32(a).

For the 400 nm × 400 nm unit cell with the 250 nm × 50 nm × 25 nm rods, the parameters
read

ω0 = 2.1 · 1015 Hz, Γ = 3.68 · 1014 Hz, mtot = N

2 ·m = N

2 ·me · 2.1 kg. (7.143)

The results are shown in Fig. 7.32(b). For both unit cells, transmittance and reflectance are
reproduced well.
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Figure 7.32: Transmittance and reflectance of FMM and projected twin dipole model for a
single layer of unrotated rods. Panel (a) refers to the 1350 nm × 900 nm unit
cell and panel (b) to the 400 nm × 400 nm unit cell.

7.7.2 Double layer of rods

Since we already derived the expressions for the twin dipole model for two layers of rods in
the unprojected form in Section 7.6.2, we can directly present the results for the projected
twin dipole model. Figure 7.33 shows the transmittance for two layers of unrotated rods for
different values of the layer spacing b.

Qualitatively, the twin dipole model reproduces the numerical data. The physical behavior,
namely the decrease in the transmittance at the second resonance, is described well by the
model. The fit values for the coupling are:

b [nm] τ

25 0.025
50 0.05
75 0.07
100 0.11
125 0.15
150 0.18

The values of τ suggest an increase in the coupling with increasing b. However, this is not
true since the physical coupling is described by the parameters L1 and L2 in Eq. (7.131).
They show the (physically) necessary decay with increasing layer spacing.
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Figure 7.33: Transmittance of the FMM and the twin dipole model for two layers of unro-
tated rods with varying layer distance b. The data shown refers to the 1350
nm × 900 nm unit cell.

Having fixed the values for the interlayer coupling, we can rotate the upper twin dipole
and investigate the transmittance and polarization state of the transmitted light. They are
depicted in Fig. 7.34.

Figure 7.34: Transmittance and polarization state for the light transmitted through two
layers of rotated rods with b = 50 nm, ϕ = −20◦ and the 1350 nm × 900 nm
unit cell. The twin model’s predictions are better than the ones of the dipole
model, cf. Fig. 7.34.

Although the twin dipole still overestimates the strength of the polarization rotation, it shows
better results than the dipole model, compare Figs. 7.34 and 7.13.

Finally, we fit the coupling τ to the numerical data for the 400 nm × 400 nm unit cell that
we need for the cross structures. The results with the fit parameter τ = 0.13 for b = 50 nm
are depicted in Fig. 7.35.
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Figure 7.35: Transmittance of two layers of unrotated rods with the 400 nm × 400 nm unit
cell and b = 50 nm. The twin dipole model’s coupling is τ = 0.13 for this
system.

7.7.3 Single layer of crosses

So far, we modeled a layer of rods and two layers of rods as one twin dipole and two twin
dipoles, respectively. The next system we investigate is one layer of crosses. They are modeled
as two perpendicular twin dipoles as depicted in Fig. 7.36.

Figure 7.36: One layer of crosses is modeled as two superimposed twin dipoles (panel (a)).
The unit vectors pointing from oscillator j to oscillator i are denoted R̂ij

(panel (b)).

The oscillators are located at

r1 =

L̃ cosϕ+ ρ1 cosϕ
L̃ sinϕ+ ρ1 sinϕ

h/2

 , r2 =

−L̃ sinϕ− ρ2 sinϕ
L̃ cosϕ+ ρ2 cosϕ

h/2

 ,
r3 =

−L̃ cosϕ+ ρ3 cosϕ
−L̃ sinϕ+ ρ3 sinϕ

h/2

 , r4 =

 L̃ sinϕ− ρ4 sinϕ
−L̃ cosϕ+ ρ4 cosϕ

h/2

 , (7.144)

with the abbreviation L̃ = l/4. Their moments are

2 pi
q N

=

ρi cosϕ
ρi sinϕ

0

 , i = 1, 3, 2 pj
q N

=

−ρj sinϕ
ρj cosϕ

0

 , j = 2, 4. (7.145)
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The unit vectors pointing from one oscillator to the others are given by

R̂12 =

−L̃ sinϕ− L̃ cosϕ
L̃ cosϕ− L̃ sinϕ

0

 1
c1
, R̂13 =

−L̃ cosϕ− L̃ cosϕ
−L̃ sinϕ− L̃ sinϕ

0

 1
c2
,

R̂14 =

 L̃ sinϕ− L̃ cosϕ
−L̃ cosϕ− L̃ sinϕ

0

 1
c1
, R̂23 =

−L̃ cosϕ+ L̃ sinϕ
−L̃ sinϕ− L̃ cosϕ

0

 1
c1
,

R̂24 =

 L̃ sinϕ+ L̃ sinϕ
−L̃ cosϕ− L̃ cosϕ

0

 1
c2
, R̂34 =

−L̃ sinϕ− L̃ cosϕ
L̃ cosϕ− L̃ sinϕ

0

 1
c1
, (7.146)

which is also sketched in Fig. 7.36(b). The terms c1 and c2 are defined for normalization.
The distances between the oscillators is given by

R12 = R14 = R23 = R34 = c1, R13 = R24 = c2. (7.147)

With the potential from Eq. (7.113) we can derive the equations of motion. They read


Σ L1 L2 −L1
L1 Σ −L1 L2
L2 −L1 Σ L1
−L1 L2 L1 Σ

 ·

ρ1
ρ2
ρ3
ρ4

 = q

m
E0 e

−iωt+ik h2


cosϕ
− sinϕ
cosϕ
− sinϕ

 . (7.148)

Here, we introduced the coupling terms L1 and L2 which are given by

L1 =
3
(
q
c1

)2
L̃2

4πε0 c3
1 m

N
2
,

L2 =
q2 − 3

(
q
c2

)2 (
l
2

)2

4πε0 c3
2 m

N
2

c2=l/2= − 2 q2

4πε0 c3
2 m

N
2

= − L. (7.149)

The charge q of a single oscillator is given by half the electrons of the rod, i.e., q = −N
2 e.

The coupling L is known from the single twin dipole, cf. Eq. (7.114). The solution to the
equations of motion is 

ρ1
ρ2
ρ3
ρ4

 = − e

m
E0 e

−iωt+ik h2
1

Σ− L


cosϕ
− sinϕ
cosϕ
− sinϕ

 . (7.150)

Having obtained the motion of the four oscillators, we can deduce their radiated field. The
field emitted by the first oscillator at the position of an observer at Q = (0, 0, a+ h/2) on the
z axis is given by

roscill,1 =

L̃ cosϕ
L̃ sinϕ

h
2

 , |Q− roscill,1| =

∥∥∥∥∥∥∥
−L̃ cosϕ
−L̃ sinϕ

a


∥∥∥∥∥∥∥ =

√
L̃2 + a2 =: r, (7.151)
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E1(Q, t) =
−N

2 e

4πε0 r3 c2


−L̃ cosϕ
−L̃ sinϕ

a

×

−L̃ cosϕ
−L̃ sinϕ

a

×
ρ̈1 cosϕ
ρ̈1 sinϕ

0




t− r

c

= − 1
4πε0

N e

2 r3 c2

−a2 ρ̈1 cosϕ
−a2 ρ̈1 sinϕ
−L̃ a ρ̈1


t− r

c

(7.152)

The fields caused by the other oscillators are obtained in a similar fashion. At the observer’s
position Q the sum of all fields (i = 1, ..., 4) reads

E∑
i
(Q, t) = −N e

8πε0 r3 c2

−a2ρ̈1 cosϕ+ a2ρ̈2 sinϕ− a2ρ̈3 cosϕ+ a2ρ̈4 sinϕ
−a2ρ̈1 sinϕ− a2ρ̈2 cosϕ− a2ρ̈3 sinϕ− a2ρ̈4 cosϕ

−L̃ a ρ̈1 − L̃ a ρ̈2 + L̃ a ρ̈3 + L̃ a ρ̈4


t− r

c

= − 1
4πε0

N e2 k2

2 r3 m

E0 e
−iωt+ikr+ik h2

ω2
0 − ω2 − iωΓ− L

(−2 a2). (7.153)

With Eq. (7.119) and r =
√
L̃2 + a2 we obtain the scattering matrix entries

S2 = −i k3 N e2

4πε0 m

1
ω2

0 − ω2 − iωΓ− L
a3

r3 e
ik(r−a)︸ ︷︷ ︸

= f(a)

, (7.154a)

S4 = 0. (7.154b)

A first important property we can observe from Eq. (7.154) is that the polarization is not
rotated, i.e., S4 = 0. Since the structure is C4 symmetric, all linear polarizations should be
treated equally. This is the case. The second important property is that the scattering matrix
entries in Eq. (7.154) are identical to the scattering matrix entries of one layer of unrotated
rods derived with the twin dipole model, cf. Eq. (7.120). In the projected twin dipole model,
we set f(a) = 1 and, thus, obtain the same results as for one layer of unrotated rods, see
Fig. 7.32(b).

7.7.4 Double layer of crosses

In this final section of the twin dipole model, we examine the structure that has proven to
be very challenging—two layers of mutually rotated rods. The dipole model was not able to
reproduce the numerical data obtained with the FMM, see Section 7.3.6. Here, we show that
the projected twin dipole model is able to describe the physical properties of the transmitted
light reasonably well.

The system depicted in Fig. 7.37 is modeled as four twin dipoles. All eight oscillators interact
with each other.

Since writing down the positions, couplings and unit vectors from one oscillator to the others
is rather lengthy, I omitted them here and added them to the appendix, see App. D. We
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Figure 7.37: The structure under investigation in this section: two layers of periodically
arranged, mutually rotated crosses. The crosses are modeled by two super-
imposed twin dipoles.

start right away with the equations of motion that read

Σ L1 L2 −L1 L3 L4 L5 L6
L1 Σ −L1 L2 −L6 L3 −L4 L5
L2 −L1 Σ L1 L5 L6 L3 L4
−L1 L2 L1 Σ −L4 L5 −L6 L3
L3 −L6 L5 −L4 Σ L1 L2 −L1
L4 L3 L6 L5 L1 Σ −L1 L2
L5 −L4 L3 −L6 L2 −L1 Σ L1
L6 L5 L4 L3 −L1 L2 L1 Σ


·



ρ1
ρ2
ρ3
ρ4
ρ5
ρ6
ρ7
ρ8


= H



E1
0
E1
0

E2 cosϕ
−E2 sinϕ
E2 cosϕ
−E2 sinϕ


(7.155)

Here, we introduced the abbreviationH = − e
mE0e

−iωt that we only use here and in Eq. (7.156).
The coupling terms L1 to L6 can be looked up in App. D. Like before, we use the abbrevia-
tion Σ = ω2

0 −ω2− iωΓ. The fields accelerating the oscillators are essentially the same as for
the dipole model. The only difference is that the coupling term L enters which links the two
oscillators forming a twin dipole. For further details, see App. D.

The solution to Eq. (7.155) is

ρ1
ρ2
ρ3
ρ4
ρ5
ρ6
ρ7
ρ8


= H

g



E1Σ− E2 cosϕL5 + E1L2 + E2 sinϕL6 + E2 sinϕL4 − E2 cosϕL3
E2 (cosϕ L6 + sinϕ L3 + cosϕ L4 + sinϕ L5)

E1Σ− E2 cosϕL5 + E1L2 + E2 sinϕL6 + E2 sinϕL4 − E2 cosϕL3
E2 (cosϕ L6 + sinϕ L3 + cosϕ L4 + sinϕ L5)
E2 cosϕ Σ− E1 L5 + E2 cosϕ L2 − E1 L3
− (E2 sinϕ Σ + E1 L4 + E2 sinϕ L2 + E1 L6)
E2 cosϕ Σ− E1 L5 + E2 cosϕ L2 − E1 L3
− (E2 sinϕ Σ + E1 L4 + E2 sinϕ L2 + E1 L6)


, (7.156)

with g = Σ2 + 2 Σ L2 − L2
6 − L2

4 − L2
3 − L2

5 + L2
2 − 2 L6 L4 − 2 L3 L5. At this point, it is

worth interpreting the physical results contained in Eq. (7.156): the parameters ρ2 and ρ4
are non-zero. They describe the motion of the oscillators 2 and 4. Recall that the incident
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electric field is x-polarized. Therefore, the external field itself does not excite the twin dipole
formed by oscillators 2 and 4 since they are oriented perpendicular to the external field. That
they still move is a consequence of the coupling between the layers. To show this, one can
set the coupling terms between the layers (namely L3, L4, L5 and L6) to zero. Then, no field
in y-direction is found.

The step after solving the equations of motion is to derive the field emitted by the oscillators
in the first layer. It is given by

E1+2+3+4(Q, t) = −N e k2

4πε0

ρ1
ρ2
0


t− r1

c

u2

r3
1
, (7.157)

with the observer’s position Q = (u, 0, h/2) and the abbreviation r1 =
√
L̃2 + u2. See App. D

for further details. Note that ρ1 = ρ3 and ρ2 = ρ4 in Eq. (7.156). After the usual coordinate
system change we can write the scattering matrix equation for the first layer:

− N e k2

4πε0

u2

r3
1

(
ρ1
−ρ2

)
t− r1

c

= 1
−i k u

(
S2,1 S3,1
S4,1 S1,1

) (
E0 e

−iωt+ik(h2 +u)
0

)
. (7.158)

The resulting scattering matrix entries are

S2,1 = − i k
3 N e2

4πε0 m g

u3(√
L̃2 + u2

)3
1

eik
h
2
e
ik

(√
L̃2+u2−u

)
·

(E1 Σ− E2 cosϕ L5 + E1 L2 + E2 sinϕ L6 + E2 sinϕ L4 − E2 cosϕ L3) , (7.159a)

S4,1 = i k3 N e2

4πε0 m g
E2

u3(√
L̃2 + u2

)3
eik

h
2

e
ik

(√
L̃2+u2−u

)
·

(cosϕ L6 + sinϕ L3 + cosϕ L4 + sinϕ L5) . (7.159b)

Note that this is still the unprojected formulation. As we argued above, only the pro-
jected scattering matrix entries enter the final equations. Therefore, we project the terms in
Eqs. (7.159) such that the proper scattering matrix entries of the twin dipole model for the
first layer read

S2,1 = − i k
3 N e2

4πε0 m g
(E1 Σ− E2 cosϕ L5 + E1 L2 + E2 sinϕ L6 + E2 sinϕ L4 − E2 cosϕ L3)

(7.160a)

S4,1 = i k3 N e2

4πε0 m g
E2 (cosϕ L6 + sinϕ L3 + cosϕ L4 + sinϕ L5) . (7.160b)

The radiated fields of the second layer are obtained like before, see App. D. The super-
imposed fields of all four oscillators in the second layer at Q′ = (d+ b+ 3/2 h) are

E5+6+7+8(Q′, t) = 1
4πε0

k2Ned2

r3
2

−ρ5 cosϕ+ ρ6 sinϕ
−ρ5 sinϕ− ρ6 cosϕ

0


t− r2

c

(7.161)

with the abbreviation r2 =
√
L̃2 + d2. Also, ρ5 = ρ7 and ρ6 = ρ8 is explicitly entered.

At this point, we derived the emitted fields of all oscillators. The upcoming, rather com-
plicated step is the derivation of the scattering matrix entries for the second layer that we
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need for predicting the transmittance through a slab of independent, randomly distributed
particles.

We face the situation that the field between the layers is not linearly polarized anymore which
is a consequence of the oscillators 2 and 4 being excited.

In all previous calculations, the incident field was x-polarized which allowed for an easy
solution to the scattering matrix equation for the second layer. Furthermore, Eq. (7.18)
then allowed for a simple calculation of the light transmitted through the slab. Since both
x- and y-components are non-zero here, the scattering matrix equation and the transmitted
field are much harder to predict. To do so, we have to explore how the suitable expressions
change when y-polarized light is incident since this is not discussed in Ref. [18]. For a better
understanding and visualization, Fig. 7.38 depicts the system’s response to light incident in
x- and y-direction, displayed in panels (a) and (b), respectively.

Figure 7.38: Visualization of the transmitted fields for incident x- and y-polarization, see
panels (a) and (b), respectively.

To distinguish the two situations in Fig. 7.38, we denote the fields that are induced by an
incident x-polarized field by Ex. Analogously, fields that are caused when the incident light
is y-polarized, are called Ey.

The field transmitted by the first layer follows from Eqs. (7.160) and reads

Ex
t1,at2 = E0 e

−iωt+ikb+ik 3
2h
((

1− S2,1 2π
k2 A

)
êx + S4,1 2π

k2 A
êy
)

= m êx + n êy. (7.162)

Here, we use the abbreviations m and n, see Fig. 7.38. The subscript “at2” indicates that
the phase of the field is chosen such that the field is defined at the second layer of crosses.

Due to the systems’s symmetry, an incident field polarized in y-direction causes the field

Ey
t1,at2 = −n êx +m êy = E0 e

−iωt+ikb+ik 3
2h
(
−S4,1 2π

k2 A
êx +

(
1− S2,1 2π

k2 A

)
êy
)
. (7.163)
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As we have seen in Eq. (7.161), the emitted fields of the second layer have the form

Ex
5+6+7+8 = 1

4πε0

k2Ned2

r3
2

−ρ5 cosϕ+ ρ6 sinϕ
−ρ5 sinϕ− ρ6 cosϕ

0


t− r2

c

(7.164)

for incident x-polarization. Consequently, the field emitted by the second layer with incident
y-polarization reads

Ey
5+6+7+8 = 1

4πε0

k2Ned2

r3
2

 ρ5 sinϕ+ ρ6 cosϕ
−ρ5 cosϕ+ ρ6 sinϕ

0


t− r2

c

. (7.165)

To keep track it is helpful to follow the argument with one eye on Fig. 7.38. Before we write
the scattering matrix equation, it is important to recall that the coordinate system is changed
according to Section 7.3.2. With the scattering matrix equation

Es|t− r2
c

!= 1
−ikd

(
S2,2 S3,2
S4,2 S1,2

)
·Et1,at2|t− d

c
(7.166)

we obtain a linear set of equations

γ · (−ρ5 cosϕ+ ρ6 sinϕ) = S2,2 · Ext1,at2,x + S3,2 · (−Ext1,at2,y) (7.167a)
γ · (ρ5 sinϕ+ ρ6 cosϕ) = S4,2 · Ext1,at2,x + S1,2 · (−Ext1,at2,y) (7.167b)
γ · (ρ5 sinϕ+ ρ6 cosϕ) = S2,2 · Eyt1,at2,x + S3,2 · (−Eyt1,at2,y) (7.167c)
γ · (ρ5 cosϕ− ρ6 sinϕ) = S4,2 · Eyt1,at2,x + S1,2 · (−Eyt1,at2,y) (7.167d)

with the abbreviation
γ = − i k

3 N e d3

4πε0 r3
2

eik(
√
L̃2+d2−d). (7.168)

Here, we again identify the function f(d) in Eq. (7.168). One last time we project the
scattering matrix entries and, thus, continue our calculation with

γ = − i k
3 N e

4πε0
. (7.169)

The scattering matrix entries we find as a solution to Eq. (7.167) are

S2,2 =
−γ(ρ5 sinϕ+ ρ6 cosϕ)S4,1 2π

k2 A + γ(ρ6 sinϕ− ρ5 cosϕ)
(
1− S2,1 2π

k2 A

)
e−iωt+ikb+ik

3
2h
[(

S4,1 2π
k2 A

)2
+
(
1− S2,1 2π

k2 A

)2
] , (7.170)

S4,2 =
−γ(ρ5 cosϕ− ρ6 sinϕ)S4,1 2π

k2 A + γ(ρ5 sinϕ+ ρ6 cosϕ)
(
1− S2,1 2π

k2 A

)
e−iωt+ikb+ik

3
2h
[(

S4,1 2π
k2 A

)2
+
(
1− S2,1 2π

k2 A

)2
] . (7.171)

Field behind the second layer of crosses

Between the layers, the electric field has non-zero x- and y-components. Each of these
field components induces further fields in x- and y-direction. Since Ref. [18] only states the
expressions for the transmission with incident x-polarized field, we deduce the field in our
case by symmetry considerations.
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The course of action is (cf. Fig. 7.38)

G Calculation of the fields caused by m êx (for incident x-polarization)

G Calculation of the fields caused by −n êx (for incident y-polarization)

G Convert −n′ êx and n′′ êy into the fields that n êy would create for incident x-
polarization

We already know

Ex
t1,at2,x = E0 e

−iωt+ikb+ik 3
2h
(

1− S2,1 2π
k2 A

)
êx = m êx. (7.172)

Then, the transmitted field at the upper surface of the second cross (i.e., directly behind the
crosses) is

Ex
t2,m−Teil = E0 e

−iωt+ikb+ik2h
(

1− S2,1 2π
k2 A

) [(
1− S2,2 2π

k2 A

)
êx + S4,2 2π

k2 A
êy
]

= m′ êx +m′′ êy. (7.173)

The next step is to calculate the field that is transmitted by the y-polarized part of the
field between the crosses. To do so, we take the detour via the incident y-polarization and
calculate the fields that are transmitted due to −n êx. They read

Ey
t2,−n−part = E0 e

−iωt+ikb+ik2h
(
−S4,1 2π

k2 A

) [(
1− S2,2 2π

k2 A

)
êx + S4,2 2π

k2 A
êy
]

= −n′ êx + n′′ êy. (7.174)

To gain the field caused by the y-component in between the crosses for incident x-polarization,
we only make few recasts and arrive at

Ex
t2,n−part = n′′ êx + n′ êy = E0 e

−iωt+ikb+ik2h S4,1 2π
k2 A

[
−S4,2 2π

k2 A
êx +

(
1− S2,2 2π

k2 A

)
êy
]
.

(7.175)

Hereby, we obtained all expressions necessary to deduce the field that is transmitted through
two layers of mutually rotated crosses when the light incident on the structure is x-polarized.
It is the sum of m′ êx, m′′ êy, n′′ êx and n′ êy.

Ex
t = E0 e

−iωt+ikb+ik2h
[(

1− S2,1 2π
k2 A

) (
1− S2,2 2π

k2 A

)
+
(
−S4,1 2π

k2 A

) (
S4,2 2π
k2 A

)]
êx

+E0 e
−iωt+ikb+ik2h

[(
S4,2 2π
k2 A

) (
1− S2,1 2π

k2 A

)
+
(
S4,1 2π
k2 A

) (
1− S2,2 2π

k2 A

)]
êy

(7.176)

Since no free parameters are left for fitting (the coupling τ was already adjusted in Sec-
tion 7.7.2 for two layers of rods), the next step is to plot the predictions of the twin dipole
model. For two layers of crosses, mutually rotated by ϕ = −10◦, the numerical and modeled
data is depicted in Fig. 7.39. Here, we see that the physical behavior of the system is quali-
tatively reproduced—two resonances occur with only minor displacement in frequency. This
shows that the twin dipole approach is able to model the underlying physics in contrast to
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Figure 7.39: Transmittance (panel (a)) and polarization state (panels (b) and (c)) for two
layers of rotated crosses with ϕ = −10◦, b = 50 nm and the 400 nm × 400
nm unit cell. The coupling parameter τ was fixed in Section 7.7.2 with the
value 0.13. Although the twin dipole model overestimates the strength of
the polarization rotation, the two physical resonances are qualitatively repro-
duced. Here, the superiority of the twin dipole model over the dipole model is
apparent.

the dipole model. Even though the angles in the polarization state are overestimated, the
general characteristics of the model match the numerical data. Bearing this in mind, we can
once more exploit the strengths of the model, namely a very rapid computation of all other
cross rotation angles. As an example, Fig. 7.40 displays the azimuthal angle color-coded over
the cross rotation angle and the wavelength. Naturally, the strongest polarization rotation is
found near the main resonance.

Figure 7.40: Azimuthal angle over cross rotation angle ϕ and wavelength. The layer dis-
tance is b = 50 nm and the coupling parameter is τ = 0.13, cf. Fig. 7.39.
When the cross is rotated in different directions (positive vs. negative angles)
the sign of the azimuthal angle flips. The most pronounced rotations occur
near the main resonance.
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7.8 Twin dipole model with near-field coupling

The twin dipole model is a significant development of the dipole model. It describes the basic
physical properties of the considered systems well, although not optimally. Especially the
coupling between the layers is still not fully reproduced.

When analyzing the models so far, it becomes apparent that we always couple the (twin)
dipoles in adjacent layers via their far-field. Then their emitted radiation is deduced and the
transmission through a slab of such scatterers is determined with the help of a scattering
matrix for each layer.

In this section, we couple the oscillators with their total dipole field, i.e., including near-field
terms. Also, we realize that using scattering matrices for each layer may not be optimal. For
two layers that are far apart, this seems reasonable. However, for two close layers, this is not
necessarily the case, see Fig. 7.41.

Figure 7.41: For small layer spacings b, describing the problem with one scattering matrix
rather than with two appears reasonable. Then, we describe the system as one
layer of double-rods instead of two layers of rods.

The red circles sketch the procedure we used so far—we use two scattering matrices for two
layers of rods. Since the rods are very close together and we couple them with their total
dipole field, we change this procedure in this section. Instead of two layers of rods with
two scattering matrices, we use one scattering matrix to calculate the transmission. Thus,
we perceive the system as one layer of double-rods. This may seem like a technicality but
is conceptually a big difference since only one scattering matrix is used and, thus, the slab
approach assumes a slab consisting of randomly distributed double-rod scatterers.

To include the near-field coupling, we utilize the methodology introduced in Section 7.5. In
particular, we use the dipole-dipole interaction tensor. This means that we first deduce the
self-consistent dipole moments of all oscillators and then determine their radiated fields. The
metallic rods are modeled by twin dipoles.

7.8.1 Tensorial polarizability, oscillator position and projection

In this introductory section, we deal with three technical topics: the polarizability of the
oscillators, their position and a projection problem similar to the one we already know from
the twin dipoles. First, we address the position issue.

In all previous calculations, we assumed that the oscillators are centered in the rods, i.e.,
they are placed on the main rotation axis of the rods10. When the rods are close together,
this distance plays a crucial role. Figure 7.42 shows this dilemma—the oscillators could be
located in the middle of the rods like before (l1 = l2 = h/2, they could be close together
(l1 = h, l2 = 0) or they could be on opposing sides (l1 = 0, l2 = h).
10Although not shown, the other versions have been tested for all previous sections.
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Figure 7.42: Sketch for the oscillator’s positions defined by l1 and l2. Furthermore, we
face a projection problem similar to the one in Sections 7.6 and 7.7 with the
observer Q on the z axis.

In order to be as general as possible, we keep the quantities l1 and l2 as parameters.

The second topic of this section is the polarizability. So far, we never used it in the tensorial
form. However, the derivation is essentially already contained in Section 7.3.4. Therefore, we
only state the polarizability tensors here:

α1
E =

1 0 0
0 0 0
0 0 0

 αE , α2
E =

 cos2 ϕ cosϕ sinϕ 0
cosϕ sinϕ sin2 ϕ 0

0 0 0

 αE (7.177)

In Eq. (7.177), α1
E is the polarizability of an unrotated oscillator. Since it is only excited

in x-direction, all entries other than the xx-component are zero. The polarizability for the
rotated oscillator is given by α2

E . In both expressions, the term αE enters, which describes
the scalar polarizability of the oscillators. For the twin dipole model it reads

αE = N

2
e2

m

1
ω2

0 − ω2 − iωΓ
, (7.178)

where N is the total number of electrons in the rod, m is the effective electron mass, ω0 the
resonance frequency and Γ the damping term.

The third subject of this section is a projection similar to the one already encountered for the
twin dipole model. As always, the scattering matrix uses the far-field with outgoing plane
waves of the form exp(ikr)/r in z-direction. Since the emitters are not situated on the z-axis,
small deviations occur. As we argued in Section 7.6 and 7.7, it makes sense to project the
observer to infinity. The terms occurring in these sections were of the form

a3(√(
l
4

)2
+ a2

)3 e
ik

(√
( l4)2+a2−a

)
. (7.179)

Their limit value for a→∞ was found to be 1.
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Since we apply a different methodology in this section, the terms we encounter take a different,
but similar form. The notation follows Fig. 7.42. They read

a− l1
d1

eik(d1−a) = a e
ik

(√
( l4)2+(a−l1)2−a

)
√(

l
4

)2
+ (a− l1)2︸ ︷︷ ︸

→ e−ikl1 (a→∞)

− l1 e
ik

(√
( l4)2+(a−l1)2−a

)
√(

l
4

)2
+ (a− l1)2︸ ︷︷ ︸

→ 0 (a→∞)

. (7.180)

Analogously, we find

a− l1
d2

eik(d2−a) → e−ik(h+b+l2) + 0 (a→∞). (7.181)

7.8.2 Single layer of rods

Before we can predict the transmission properties of one layer of double-rods, we have to
model one layer of rods according to the new procedure. We start by stating the positions of
the oscillators forming the twin dipole:

r1 =

L̃ cosϕ
L̃ sinϕ
l1

 , r2 =

−L̃ cosϕ
−L̃ sinϕ

l1

 , (7.182)

where we use the abbreviation L̃ = l/4. They describe a rod that is rotated by ϕ. The
z-coordinate is defined according to Fig. 7.42. The dipole moments of the oscillators have a
general form of

p1 =

p1 cosϕ
p1 sinϕ

0

 , p2 =

p2 cosϕ
p2 sinϕ

0

 . (7.183)

The next step is to formulate the self-consistent equations for the dipole moments. For that,
we use the methodology described in Section 7.5.1. They read

p1 = α2

E0e
−iωt+ikl1 êx + f

4πε0
G0


L̃ cosϕ
L̃ sinϕ
l1

−
−L̃ cosϕ
−L̃ sinϕ

l1


 p2


= αEE0e

−iωt+ikl1

 cos2 ϕ
cosϕ sinϕ

0

+

α2 f

4πε0
eik2L̃

8L̃3

(4k2L̃2 + ik2L̃− 1)

p2 cosϕ
p2 sinϕ

0

− 4k2L̃2 + 6ikL̃− 3
4L̃2 (2L̃p2)

2L̃ cosϕ
2L̃ sinϕ

0




= αEE0e
−iωt+ikl1

 cos2 ϕ
cosϕ sinϕ

0

+ αE
f

4πε0
eik2L̃

8L̃3

(
2− 4ikL̃

)
p2

cosϕ
sinϕ

0

 , (7.184)

p2 = αEE0e
−iωt+ikl1

 cos2 ϕ
cosϕ sinϕ

0

+ αE
f

4πε0
eik2L̃

8L̃3

(
2− 4ikL̃

)
p1

cosϕ
sinϕ

0

 . (7.185)
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Here, we explicitly used Eq. (7.79). Furthermore, we introduced a free parameter f so that
the coupling between the oscillators of the twin dipole can be adjusted. As one might expect
for the two oscillators forming the twin dipole, their movement is identical, i.e., p1 = p2.
Inserting Eqs. (7.184) and (7.185) into each other yields

p1 =
αE cosϕE0e

−iωt+ikl1 + f α2
E

4πε0 cosϕE0e
−iωt+ikl1 eik2L̃

8L̃3

(
2− 4ikL̃

)
1−

(
f αE
4πε0

)2 (
eik2L̃

8L̃3

)2 (
2− 4ikL̃

)2 . (7.186)

The next step is to obtain the emitted field of the oscillators and link that to the scattering
matrix. We assume an observer at Q = (0, 0, a), a > 0. The distance between observer and
oscillators is denoted by d = |Q − r1|. Using p1 = p2, the emitted field of the twin dipole
reads

E(Q) = 1
4πε0

eikd

d

2
(
k2 + ik

d
− 1
d2

)p1 cosϕ
p1 sinϕ

0

− (k2

d2 + 3ik
d3 −

3
d4

)2L̃2 p1 cosϕ
2L̃2 p1 sinϕ

0


 .

(7.187)
Linking the far-field of Eq. (7.187) to the scattering matrix yields

2
4πε0

eikd

d
k2 p1

(
cosϕ
− sinϕ

)
!= 1
−ik(a− l1)

(
S2 S3
S4 S1

)(
E0e

−iωt+ika

0

)
. (7.188)

Thereby, we obtain the far-field scattering matrix entries for the oscillators coupled both with
their near- and far-field. They read

S2 = −ik3

4πε0
2 p1 cosϕ a− l1

d
eik(d−a) 1

E0e−iωt
proj.= −ik3

4πε0
2 p1 cosϕ e−ikl1

E0e−iωt
, (7.189a)

S4 = ik3

4πε0
2 p1 sinϕ a− l1

d
eik(d−a) 1

E0e−iωt
proj.= ik3

4πε0
2 p1 sinϕ e−ikl1

E0e−iωt
. (7.189b)

For both scattering matrices, we entered the result of a projection of the type we discussed
in Eq. (7.180).

Upon comparing Eqs. (7.189) and (7.186) we encounter that the choice of the oscillator’s
height within the rod (l1, see Fig. 7.42) does not play a role for one layer of rods. This is
due to the fact that Eq. (7.186) contains a phase exp(ikl1) and Eq. (7.189) contains a phase
exp(−ikl1). This is consistent with all previous models where the oscillators’ height did not
enter for single layer structures.

In total, the transmitted field according to Eqs. (7.189) contains four fit parameters: the
coupling strength f between the oscillators forming the twin dipole, the oscillator’s mass m,
its resonance frequency ω0 and its damping Γ. Naturally, several different combinations yield
good results. However, the twin dipole model with the near-field coupling does not reproduce
the transmittance as well as the dipole or twin dipole model. There are minor deviations
occurring that are due to the near-field coupling between the oscillators and especially this
term’s phase in Eq. (7.186). Neglecting this term and assuming an instantaneous coupling
could be a possible route for further studies.

In Tab. 7.1 we collected some parameter sets that describe both the transmittance for the
single layer of unrotated rods and the field behind the structure. The first three sets show
slightly better results than the last three.
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f ω0 [Hz] Γ [Hz] m

0.1 1.235 · 1015 1.45 · 1014 me · 2.97
0.5 1.31 · 1015 9.9 · 1013 me · 3.22
0.75 1.36 · 1015 7.7 · 1013 me · 3.22
1 1.41 · 1015 5.5 · 1013 me · 3.17

1.25 1.465 · 1015 3.4 · 1013 me · 2.97
1.5 1.51 · 1015 9 · 1012 me · 2.97

Table 7.1: Fit parameter sets for a layer of rods described by the twin dipole model with
near-field coupling. The first three sets describe the system well, while the per-
formance of the last three is slightly worse.

Figure 7.43 shows the results for the fourth parameter set in Tab. 7.1. Panel (a) displays the
transmittance which shows minor deviations due to the near-field coupling’s phase. Panels (b)
and (c) depict the real and imaginary part of the transmitted field in x-direction, respectively.
The numerical field is obtained one unit cell length behind the layer, i.e., at z = 1350 nm +
50 nm.

Figure 7.43: Transmittance (panel (a)) and transmitted field in x-direction (panels (b) and
(c)) for a layer of unrotated rods described by the twin dipole model with
near-field coupling with the fourth parameter set of Tab. 7.1. The numerical
data is reproduced, although minor deviations occur.

7.8.3 Double layer of rods

After having applied the twin dipole model with the near-field terms to one layer of rods, we
employ it to two layers of rods in this section. The positions of the four oscillators forming
the two twin dipoles is

r1 =

L̃0
l1

 , r2 =

−L̃0
l1

 , r3 =

 L̃ cosϕ
L̃ sinϕ
h+ b+ l2

 , r4 =

−L̃ cosϕ
−L̃ sinϕ
h+ b+ l2

 . (7.190)

We already sketched the setup in Fig. 7.42. The dipole moments are

p1/2 = p1/2 êx, p3/4 =

p3/4 cosϕ
p3/4 sinϕ

0

 . (7.191)
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Since the four oscillators have different distances to each other, there are three different
couplings present. For each, we introduce a fit parameter, see Tab. 7.2. Pairs of oscillators
are abbreviated like “(oscillator 1, oscillator 2)”. The coupling parameter f is already known
from Section 7.8.2—it links the oscillators within the twin dipoles, i.e., oscillator pairs (1,2)
and (3,4).

quantity meaning
f coupling parameter of (1,2) and (3,4)
g coupling parameter of (1,3) and (2,4)
w coupling parameter of (1,4) and (2,3)
q distance of (1,3) and (2,4)
s distance of (1,4) and (2,3)

Table 7.2: Couplings and distances for the twin dipole model with near-field terms.

The distances defined in Tab. 7.2 are given by

q = |r1 − r3| =
√

(L̃− L̃ cosϕ)2 + L̃2 sinϕ2 + (l1 − h− b− l2)2, (7.192a)

s = |r1 − r4| =
√

(L̃+ L̃ cosϕ)2 + L̃2 sinϕ2 + (l1 − h− b− l2)2. (7.192b)

The next step is to obtain the dipole moments that contain the interaction with all other
dipoles of the two twin dipole system. Since that is rather lengthy, we show the result for
oscillator one here. It is obtained by

p1 = α1E0e
−iωt+ikl1 êx + α1 1

4πε0

f G0


L̃0
l1

−
−L̃0
l1


p2 +

g G0


L̃0
l1

−
 L̃ cosϕ

L̃ sinϕ
h+ b+ l2


p3 + w G0


L̃0
l1

−
−L̃ cosϕ
−L̃ sinϕ
h+ b+ l2


p4


= ...

= αEe
−iωt+ikl1 êx + αE

4πε0
êx

[
f
eik2L̃

8L̃3 (2− 4ikL̃) p2 +

g
eikq

q3

(
(k2q2 + ikq − 1) cosϕ+ k2q2 + 3ikq − 3

q2 (L̃ cosϕ− L̃)2
)
p3 +

w
eiks

s3

(
(k2s2 + iks− 1) cosϕ− k2s2 + 3iks− 3

s2 (L̃ cosϕ+ L̃)2
)
p4

]
. (7.193)

The third oscillator has a similar form. However, it is important to use the polarizability α2

of the rotated rod. Then, the dipole moment can be calculated via

p3 = α2E0e
−iωt+ik(h+b+l2)êx +

α2 1
4πε0

f G0


 L̃ cosϕ

L̃ sinϕ
h+ b+ l2

−
−L̃ cosϕ
−L̃ sinϕ
h+ b+ l2



p4 cosϕ
p4 sinϕ

0

 + (7.194)

g G0


 L̃ cosϕ

L̃ sinϕ
h+ b+ l2

−
L̃0
l1


p1 + w G0


 L̃ cosϕ

L̃ sinϕ
h+ b+ l2

−
−L̃0
l1


p2

 .
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The vectorial form reduces to a scalar equation when Eq. (7.191) is applied:

p3 = αEE0e
−iωt+ik(h+b+l2) cosϕ+ αE

4πε0
f
eik2L̃

8L̃3 (2− 4ikL̃)︸ ︷︷ ︸
=:f̄

p4 +

αE
4πε0

g
eikq

q3

(
(k2q2 + ikq − 1) cosϕ+ k2q2 + 3ikq − 3

q2 (L̃ cosϕ− L̃)2
)

︸ ︷︷ ︸
=:ḡ

p1 +

αE
4πε0

w
eiks

s3

(
(k2s2 + iks− 1) cosϕ− k2s2 + 3iks− 3

s2 (L̃ cosϕ+ L̃)2
)

︸ ︷︷ ︸
=:w̄

p2. (7.195)

Here, we defined several terms that are also found in Eq. (7.193). The dipole moments of
oscillators 2 and 4 are derived in a similar fashion. Together, the dipole moment equations
for each oscillator form a linear set of equations. It reads

1 −f̄ −ḡ −w̄
−f̄ 1 −w̄ −ḡ
−ḡ −w̄ 1 −f̄
−w̄ −ḡ −f̄ 1

 ·

p1
p2
p3
p4

 = αE E0 e
−iωt


eikl1

eikl1

eik(h+b+l2) cosϕ
eik(h+b+l2) cosϕ

 . (7.196)

For solving it, we multiply by the inverse of the matrix on the left hand side and, thus,
obtain the self-consistent dipole moments of the system with two twin dipoles above each
other. They contain all parts of the dipole-dipole interaction, both near- and far-field, and
read

p1
p2
p3
p4

 = αE E0 e
−iωt

n


−f̄ eikl1 + ḡ eik(h+b+l2) cosϕ+ w̄ eik(h+b+l2) cosϕ+ eikl1

−f̄ eikl1 + ḡ eik(h+b+l2) cosϕ+ w̄ eik(h+b+l2) cosϕ+ eikl1

−f̄ eik(h+b+l2) cosϕ+ ḡ eikl1 + w̄ eikl1 + eik(h+b+l2) cosϕ
−f̄ eik(h+b+l2) cosϕ+ ḡ eikl1 + w̄ eikl1 + eik(h+b+l2) cosϕ

 , (7.197)

where we used the abbreviation n = f̄2 − 2f̄ + 1 − ḡ2 − w̄2 − 2w̄ḡ. Physically, one would
expect the oscillators forming the pairs (1,2) and (3,4) to move identically. This is the case,
since p1 = p2 and p3 = p4.
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After having obtained the self-consistent dipole moments, we can deduce their emitted electric
fields. For the observer at Q = (0, 0, a), they are

E(Q) = 1
4πε0

4∑
i=1
G0 (Q− ri) · pi (7.198)

= 1
4πε0

eikd1

d3
1

(k2d2
1 + ikd1 − 1)

p1
0
0

− k2d2
1 + 3ikd1 − 3

d2
1

(−L̃p1)

 −L̃0
a− l1




+ 1
4πε0

eikd1

d3
1

(k2d2
1 + ikd1 − 1)

p2
0
0

− k2d2
1 + 3ikd1 − 3

d2
1

L̃p2

 L̃
0

a− l1




+ 1
4πε0

eikd2

d3
2

(k2d2
2 + ikd2 − 1)

p3 cosϕ
p3 sinϕ

0

− k2d2
2 + 3ikd2 − 3

d2
2

(−L̃p3)

 −L̃ cosϕ
−L̃ sinϕ

a− h− b− l2




+ 1
4πε0

eikd2

d3
2

(k2d2
2 + ikd2 − 1)

p4 cosϕ
p4 sinϕ

0

− k2d2
2 + 3ikd2 − 3

d2
2

L̃p4

 L̃ cosϕ
L̃ sinϕ

a− h− b− l2


 .

For the scattering matrix we need only the far-field of this expression. Hence, we neglect the
emitted near-field of the coupled dipoles. However, their coupling is still based on all parts
of the dipole field. With the usual change in the coordinate system the scattering matrix
equation reads

2 k2

4πε0

(
eikd1

d1
p1

(
1
0

)
+ eikd2

d2
p3

(
cosϕ
− sinϕ

))
!= 1
−ik(a− l1)

(
S2 S3
S4 S1

)(
E0e

−iωt+ika

0

)
. (7.199)

This yields the scattering matrix entries

S2 = −2ik3

4πε0
1

E0e−iωt

(
p1
a− l1
d1

eik(d1−a) + p3 cosϕ a− l1
d2

eik(d2−a)
)

proj.= −2ik3

4πε0
1

E0e−iωt

(
p1 e

−ikl1 + p3 cosϕ e−ik(h+b+l2)
)
, (7.200a)

S4 = 2ik3

4πε0
p3 sinϕ a− l1

d2
eik(d2−a) 1

E0e−iωt

proj.= 2ik3

4πε0
p3 sinϕ e−ik(h+b+l2) 1

E0e−iωt
. (7.200b)

Here, we remember that the twin dipole model’s scattering matrix entries need to be pro-
jected. The terms for the projection were explained in Eqs. (7.180) and (7.181).

The final step is fitting the model to numerical data. For that, we assume that the coupling
parameters w and g (see Tab. 7.2) are equal since there is no physical or geometrical reason
why they should differ. Note that g and w are only factors in front of terms that contain the
actual distance dependence of the coupling.

Since we left l1 and l2 (see Fig. 7.42) as free parameters so far, we have to discuss several
possible realizations. In the following, we discuss the results of the efforts made to find
suitable parameters for the model. In all discussed realizations of l1 and l2 we used each of
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the parameter sets in Tab. 7.1 and searched for suitable coupling parameters g (= w). The
distance of the layers used in these investigations is b = 50 nm.

For l1 = h and l2 = 0, which corresponds to the situation that the oscillators are as close
together as possible, no sensible fit can be performed for any of the parameter sets in Tab.
7.1. Any fit yields only one resonance in the transmittance spectrum.

For l1 = l2 = 0 the fits become better. For example, the parameter set with f = 1.25 and
a coupling fit parameter g = 0.16 yields acceptable results similar to the ones of the dipole
model. This means that the polarization state for a rotated upper rod is overestimated, but
qualitatively correct. Unfortunately, the resonance in the unrotated case is shifted.

For l1 = l2 = h/2, the situation is similar. Some parameter sets (f = 1.25, f = 1.5)
result in transmittances and polarization states for rotated rods that are comparable to the
l1 = l2 = 0-case. Again, the resonances are shifted in frequency.

For l1 = 0 and l2 = h the best results are obtained. The best fit uses the f = 1 parameter
set—which is good since this means that we effectively get rid of one fit parameter. The fitted
coupling parameter is g = 0.4. The result is displayed in Fig. 7.44. As we see, the polarization
state (panels (a) and (b)) is reproduced rather well. Unfortunately, this is mainly the case
because the whole spectrum is dominated by the main resonance. As we see in Fig. 7.44(c),
the field near the second resonance is not described well. Therefore, the model still does
not reproduce the physics correctly. Moreover, we performed the same fits for the distances
b = 25 nm, 75 nm and 100 nm. In no case were the results satisfactory.

Figure 7.44: Polarization state (panels (a) and (b)) and real part of the transmitted field
in y-direction for two layers of rotated rods with ϕ = −20◦. The twin dipole
model with one scattering matrix and near-field coupling reproduces the po-
larization state for this distance (b = 50 nm) well but the transmitted field still
lacks a proper description. The field is evaluated one unit cell length behind
the structure, i.e., at z = 1450 nm. We use the data for the 1350 nm × 900
nm unit cell. The model’s parameters are l1 = 0, l2 = h, g = w = 0.4 and
f = 1. ω0, Γ and m are chosen according to Tab. 7.1.

Although the model as presented in this section is not yet an improvement over the other
presented models, I still think of it as conceptually important. The reason is that two
important concepts could be shown and discussed. Firstly, we showed a possible way to
incorporate a near-field coupling into the (twin) dipole model. Secondly, we discussed that
the question whether one or two scattering matrices should be used cannot be answered a
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priori. Therefore, this section offers quite a few possible ways to continue research on the
(twin) dipole model. Firstly, one scattering matrix could be used for the description of two
layers of rods in the ordinary (twin) dipole model without near-field coupling. Secondly, we
could use the near-field coupling but exclude the phase in the coupling between the oscillators
in one layer. Thirdly, one might use two scattering matrices for two layers but still incorporate
the near-field coupling in the equations of motion.

7.9 Further prospects - continuous charge distribution model

In the previous sections, we changed our description of metallic nanostructures from the dipole
model to the twin dipole model. This enabled us to physically describe the transmission
properties of light impinging on two layers of periodically arranged and mutually rotated
crosses. The essential step was to describe one metallic rod as a twin dipole, i.e., two dipoles,
instead of one. The next steps suggest themselves—either we could use three, four or more
oscillators or we could assume a whole charge and current density along the rod. The latter
seems to be the most general procedure. In this section, we briefly outline the basis of such
a continuous charge distribution model (CCDM).

7.9.1 Fields of time-harmonic sources

The basic physics of charges that oscillate harmonic in time can be found in Ref. [20]. In
this section, we review the elements needed for the proposed CCDM. We start by assuming
a general time-harmonic dependence of charge and current density

ρ(r, t) = ρ(r) e−iωt, J(r, t) = J(r) e−iωt. (7.201)

The fields and potentials have, therefore, the same time dependence. We assume all sources
to be in free space. The resulting vector potential reads

A(r, t) = µ0
4π

∫
d3r′

∫
dt′

J(r′, t′)
|r− r′| δ

(
t′ + |r− r′|

c
− t
)
, (7.202)

where the delta function ensures causality. With the form of the time dependence in Eq. (7.201)
we can integrate parts of Eq. (7.202) and obtain

A(r) = µ0
4π

∫ J(r′)
|r− r′| e

ik|r−r′| d3r′. (7.203)

In the far-field, where the distance r between the observer and the emitter is much larger
than the wavelength and the wavelength itself is much larger than the emitter’s dimensions,
we can approximate

|r− r′| ≈ r − n · r′, (7.204)

where n is the unit vector in the direction of r and r = |r|. With this approximation the
vector potential in the far-field reads

lim
kr→∞

A(r) = µ0
4π

eikr

r

∫
J(r′)e−ikn·r′d3r′ (7.205)
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7.9.2 Application to one layer of rods

As a first layout of the model, we assume a general form of

ρ(r, t) = a(ω) sin
(
π

l
x

)
e−iωt δ(y) δ(z) Θ

(
l

2 − |x|
)

(7.206)

for the charge distribution. Here, l denotes the length of the rod which is located at the origin
and oriented in x-direction. ρ describes a sinusoidal line charge density in x-direction with
length l. The corresponding current density is the derivative of Eq. (7.206). The function
a(ω) comprises the damping and the resonance of the system. Its concrete form would have
to be developed.

Next, the current density corresponding to Eq. (7.206) can be entered in Eq. (7.203). The
vector potential then reads

lim
kr→∞

A(r) = −iωµ0
4π

l

π
a(ω) e

ikr

r
êx
∫ l/2

−l/2
cos

(
π

l
x′
)
e
−ik xx′√

x2+y2+z2 dx′

= −iωµ0
4π

l

π
a(ω) e

ikr

r
êx

e
−ik xx′√

x2+y2+z2
(
−π
l sin

(
π
l x
′)+ i kx√

x2+y2+z2
cos

(
π
l x
′))

k2x2√
x2+y2+z2

− π2

l2


l/2

−l/2

= ... = iωµ0
4π a(ω) e

ikr

r

cos
(

kxl

2
√
x2+y2+z2

)
k2x2√

x2+y2+z2
− π2

l2

êx. (7.207)

The electric field caused by this vector potential is

E(r) = ik

√
1

ε0µ0
[n×A(r)]× n

= ik

√
1

ε0µ0

1
r

xy
z

×
Ax0

0


 1
r

xy
z

 = ik

√
1

ε0µ0

1
r2

 0
zAx
−yAx

×
xy
z


= ik

√
1

ε0µ0

1
r2

z2Ax + y2Ax
−xyAx
−xzAx

 . (7.208)

We combine Eqs. (7.207) and (7.208), assume an observer at distance r0 on the z-axis and
find

E (r0êz) = ik

√
1

ε0µ0

1
r2

0
r2

0 Ax êx

= ik

√
1

ε0µ0

iωµ0
4π a(ω) e

ikr0

r0

1
−π2

l2

êx

= 1
4πε0

k2 l2

π2 a(ω) e
ikr0

r0
êx. (7.209)
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Once the field radiated by the charge distribution is acquired in forward direction, we can
translate this into a scattering matrix by k2

4πε0

(
l
π

)2
a(ω) eikr0

r0

0

 = 1
−ikr0

(
S2 S3
S4 S1

)
·
(
E0 e

ikr0−iωt

0

)
. (7.210)

Thus, the scattering matrix’ non-zero entry reads

S2 = −ik
3

4πε0

(
l

π

)2
a(ω) 1

E0e−iωt
. (7.211)

The similarity to the previously obtained statements using the dipole and the twin dipole
model is evident.

The application of this CCDM is methodically rather similar to the previous approaches.
In a certain sense, it is the generalization of the dipole and twin dipole model. Therefore,
this approach would be a logical next step to continue the modeling of the metallic systems
described in this thesis.

7.10 Summary and outlook

The overall aim of this chapter was to develop a model that can reproduce the physical
properties of light transmitted through one or more slabs of periodically arranged, metallic
nanostructures. In essence, we accomplished this task for the test structures under investi-
gation.

The modeling started with the review of my Staatsexamensarbeit in Section 7.3. Here, we
discussed one of the basic elements of the models: the approach which describes the slab as a
large number of randomly distributed, non-interacting particles. Thus, the light transmitted
through this slab can be obtained by deducing the scattering matrix of a single scatterer
in forward direction. The model applied in Section 7.3 describes one metallic rod as one
oscillating dipole centered in the rod. We encountered problems for small layer spacings and
found the absence of polarization rotation for two layers of rotated crosses. On the other
hand, we showed in Section 7.4 that the model yields very good results and insights for
large layer spacings where the layers effectively decouple. In Section 7.5 we could show that
the effects of the lattice’s periodicity, namely spikes in the transmittance spectrum, can be
incorporated in the model.

The absence of a polarization rotation for the double layer of crosses, however, made it nec-
essary to develop a new approach which we called the twin dipole model. In this model, we
describe one rod as two oscillators forming a twin dipole. We encountered the projection
problem in Section 7.6 which originated from the scattering matrix and the slab formulation.
We deduced how this dilemma has to be solved on physical grounds and, thereafter, demon-
strated that the twin dipole yields a better performance than the dipole model, see Section 7.7.
Especially, the twin dipole model was able to qualitatively reproduce the transmittance spec-
trum of two layers of mutually rotated crosses and, most important, the polarization state of
the transmitted light.

Since the physical description of the coupling between the layers still remains a challenge, we
examined a way to incorporate an interlayer coupling based on near-fields of the dipoles in
Section 7.8. Also, we used only one scattering matrix instead of two like before. This meant
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that we perceived the system of two layers of rods as one layer of double-rods. Although
the results cannot yet be considered a breakthrough, they still outline the way to further
research by demonstrating the methodology. In fact, we stated several possible ways to
continue: we could either use the near-field coupling with two scattering matrices, we could
use the double-rod perception without near-fields and, finally, we could omit the phase of the
oscillators forming a twin dipole.

Another possible route to an even further improved description of the nanostructures was
outlined in Section 7.9. Here, we generalized the dipole approach such that the rod is de-
scribed by a continuous, sinusoidal line charge distribution. The next step on this route
would be to model a suitable polarizability.

Another possible change in the physical description of the system could be that we enter
different physical coupling mechanisms. A potential extension of the method would be to
include magnetic dipole coupling and electric quadrupole coupling between the oscillators.

Naturally, developing the discussed models further is a complex endeavor. This is true par-
ticularly with regard to the different combinations—for example, we could use the continuous
charge distribution model either with the effective slab approach or the lattice-periodic for-
mulation. For two-layer systems, we can either incorporate near-fields or not. In the case
of the slab formulation we can apply one scattering matrix or two. This large variety of
the model’s possible realizations is what makes it an interesting challenge, even beyond the
successful improvements presented in this thesis.
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Chapter 8

Conclusion

In this thesis, we dealt with the description of nano-photonic systems by means of numerical
simulations and analytical models. The two major topics were the improvement of coordinate
transformations for the Fourier Modal Method (FMM) and the design of dipole models for the
description of periodic, metallic metamaterials. In the following, we summarize the results
of these efforts and give an outlook on possible future work.

8.1 Summary

After introducing the fundamentals of electrodynamics, the Fourier Modal Method in curvi-
linear coordinates was discussed. Here, the effective permittivity and permeability, which
comprise all effects of the applied coordinate transformations from Cartesian to curvilinear
space, were introduced.

In Chapter 4, we examined opal photonic crystals by means of the classical FMM. We com-
pared the numerical data for the bar and cross transmittance with experimental results and
found a very good agreement. Deviations between simulation and experiment in the cross
transmittance were attributed to stacking faults of the opal. By simulating samples with
various numbers of opal layers we exploited the strengths of the FMM’s scattering matrix
algorithm and gained new physical insight: The change from bar to cross transmittance is a
thickness-dependent effect that shows a sinusoidal behavior in dependence of the number of
opal layers. Moreover, we showed that the minima in angle-resolved spectra can be predicted
by a Bragg model.

The subsequent Chapter 5 dealt with several important aspects of two-dimensional coordinate
transformations. First, we diagnosed that the nondifferentiable AC mesh for cylinders which
is discussed in literature leads to a diverging effective permittivity. This laid the ground
for the creation of smoothed and differentiable transformations that do not feature a grid-
aligned effective permittivity but in return show a finite effective permittivity. For all of those
types of meshes, i.e., nondifferentiable, smoothed and differentiable, we presented a general
construction procedure based on the concept of characteristic points and coordinate lines.
Beyond the technical aspects of enforcing periodicity and the treatment of nonrectangular
unit cells, we explained the ASR function we use to increase the density along the specific
coordinate lines. A very important aspect was the investigation of two test systems, namely
a fiber with analytically known eigenmodes and an array of metallic cylinders. While the
nondifferentiable mesh showed the overall best results for specific parameter sets, the differ-
entiable mesh showed good results for a wide range of parameters. Using large parameter
scans, we could identify sweet spots and a general principle to deduce suitable mesh parame-
ters. According to this principle, the parameters have to be chosen such that numerical and
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physical surface of the considered structures coincide. Finally, we formulated a modularity
concept which allows for an arrangement of several sub-structures within a structure. Both
the general mesh construction principle and the discovery of the sweet spots in the parame-
ter space were previously unknown and close an essential gap in the use of two-dimensional
coordinates in the context of the FMM.

With the knowledge of the two-dimensional coordinate transformations at hand, we gener-
alized the approach to three dimensions. We constructed a three-dimensional mesh for two
layers of mutually rotated crosses and introduced the concept of three-dimensional charac-
teristic points. Due to the full anisotropic permittivity and permeability tensor we used the
large FMM eigenproblem to solve Maxwell’s equations. For the first test system, namely
empty space, we observed that parts of the system’s energy is absorbed. For two layers of
mutually rotated, metallic crosses we found a very good convergence behavior but on the
other hand faced the fact that TE and TM polarization did not yield the same results as they
should due to symmetry. However, we demonstrated for the first time how three-dimensional
coordinate transformations can be constructed and used in the FMM. To the best of my
knowledge, there are no published efforts that use ASR and AC in three dimensions for the
Fourier Modal Method.

Finally, we developed several analytical models to predict the transmission of light through
slabs of metallic nanostructures in Chapter 7. First, we reviewed the dipole model, which
was able to accurately describe single layer structures and double layer structures with large
spacings. Also, we demonstrated the incorporation of lattice resonances into the model.
However, the interlayer coupling for small spacings was not fully reproduced. Also, a quali-
tative difference occurred in the description of two layers of mutually rotated crosses. Here,
the numerical data obtained with the FMM showed a polarization rotation while the dipole
model did not. Therefore, we introduced the twin dipole model that showed a highly im-
proved performance compared to the dipole model. After discussing the technical detail
of the projection, we examined the model’s predictions for two layers of mutually rotated
crosses and qualitatively found the polarization rotation occurring in the FMM simulation.
By discussing the twin dipole model with near-field coupling we aimed at improving the de-
scription of strongly coupled layers even further. Although the results were ambiguous, we
demonstrated the methodology and discussed the important question of how many scattering
matrices are needed. The chapter was concluded by the outline of the twin dipole model’s
extension to a continuous charge distribution model. In general, we were able to describe
the physical properties of the transmitted light qualitatively well. The strengths of the twin
dipole model could be exploited by predicting the general behavior upon the rotation of the
rods and crosses.

8.2 Outlook

Beyond the work that has been described in this thesis, there are lots of possible projects
worth pursuing in the future.

Regarding the generation of coordinate transformations for the Fourier Modal Method, fur-
ther work on the three-dimensional transformations is necessary. Here, the most important
first step is to find a solution to the challenges discovered in Chapter 6, namely the absorption
of the system even for an empty lattice. It has to be checked whether this is an intrinsic and
systematic error or a mistake in the implementation of either the effective permittivity or the
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FMM itself. Once this challenge is coped with, the investigation of the gold helix structures
discussed in Chapter 6 is an interesting project, especially with regard to optimization of
the setup to gain an optimal polarization rotation. Also, the idea that the adaptive spatial
resolution could be gradually introduced (see Section 6.6) should be tested for its influence on
the performance. Finally, the generalization towards coordinate transformation of the form
of Eq. (2.41) could be performed. A suitable test system is a metallic sphere which would
be transformed into a cube. Since analytical solutions for the scattered field are available
in Mie theory, this system is ideally suited to test whether the guidelines we formulated for
two-dimensional transformations also hold in three dimensions.

In the case of the dipole models I already started to formulate possible future work at the end
of Section 7.8.3. Essentially, a first important step is to test combinations of the presented ap-
proaches. This means that the predictions for several models could be checked: For example,
one scattering matrix for twin dipoles without near-field coupling or two scattering matri-
ces for twin dipoles with near-field coupling could be used. Finally, the continuous charge
distribution model could help to further improve the description of two layers of mutually
rotated rods. Beyond the presented approaches, different mechanisms of coupling could be
incorporated in the models, i.e., magnetic dipole and electric quadrupole moments. A dif-
ferent but promising road is the application of the presented models to more complex single
layer structures. Since the description of these structures is very good, an extension to, for
example, structures showing electromagnetically induced transparency [81] is a propitious
endeavor.
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Appendix A

Fourier Transformation

In this part of the thesis, I briefly show the important aspects of Fourier transformations
and convolutions which we need to correctly Fourier transform Maxwell’s equations. For
that, I first review the basics of Fourier transformations needed in this thesis and discuss the
issue of how to properly transform products of step functions. Finally, I demonstrate the
Fourier transformation of the anisotropic constitutive relations which we utilize in the FMM
to formulate Maxwell’s equations as an eigenvalue problem.

A.1 Basics of Fourier transformations

Fourier transformations in general are a broad topic, especially in the context of signal pro-
cessing. Here, we restrict ourselves to the essentials needed to understand the FMM. Since we
deal with periodic structures and expand Maxwell’s equations into periodic function, we first
deal with the one-dimensional Fourier transformation of a periodic function f with spatial
period a. It reads

f(x) =
∞∑

n=−∞
f̃ne

i 2π
a
nx ≈

N∑
n=−N

f̃ne
in 2π

a
x, (A.1)

where we already included the fact that a numerical simulation can only contain a finite
number of coefficients f̃n. These coefficients are obtained by

f̃n = 1
a

∫ a

0
f(x) e−in

2π
a
x dx. (A.2)

Since many quantities in Maxwell’s equations are discontinuous somewhere in the unit cell,
we have to be aware of the so-called Gibbs phenomenon. It refers to the effects occurring
when Fourier transforming a step function. An example is depicted in Fig. A.1. Here, a step
function (red) is reconstructed using 10 Fourier coefficients in panel (a) and 85 coefficients in
panel (b). As we see, strong oscillations near the position of the step occur which cannot be
removed by simply increasing the number of harmonics. More harmonics result in oscillations
closer to the step, but even for high numbers of harmonics the overshoot of the Fourier series
does not drop below 8.9% of the step’s height.

While transforming Maxwell’s equations one finds that products of functions need to be
Fourier transformed which results in so-called convolutions in Fourier space. Such convolu-
tions are performed as follows: assume a function h(x) = f(x) · g(x). Then, the coefficients
for the Fourier expansion of h can be obtained from the coefficients of f and g by

hn =
∞∑

m=−∞
fn−m gm ≈

N∑
m=−N

fn−m gm. (A.3)
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Figure A.1: Visualization of the Gibbs phenomenon. In panel (a) the step function (red)
is reconstructed with 10 harmonics, in panel (b) with 85 harmonics. When
the number of harmonics is increased, the frequency of the oscillation increases
and the points of the maximal error between step function and reconstruction
are located closer to the position of the jump. However, even for very high
numbers of harmonics, the absolute value of this error does not drop below 8.9
% of the jump height. Only parts of the [-2,2] interval are shown.

Again, the numerical treatment can only contain a finite number of coefficients. Since we
use it in the subsequent section, we realize that Eq. (A.3) can be written in terms of a
matrix vector product. When we arrange all coefficients hn and gm in a row vector h̃ and g̃,
respectively, we can relate them by

h−N
h−N+1
h−N+2

...
hN


︸ ︷︷ ︸

=: h̃

=



f0 f−1 f−2 · · · f−2N
f1 f0 f−1 · · · f−2N+1

f2 f1 f0 · · ·
...

...
...

... . . . ...
f2N f2N−1 f2N−2 · · · f0


︸ ︷︷ ︸

=: [[f ]]

·


g−N
g−N+1
g−N+2

...
gN


︸ ︷︷ ︸

=: g̃

, (A.4)

where we arranged the coefficients of f in a so-called Toeplitz matrix [[f ]]. Unfortunately,
convolutions of functions with jumps are difficult to handle with the coefficients defined in
Eq. (A.3). Although the finite Fourier sum of h converges to the correct values for large
numbers of coefficients, the function is not represented well for small N . An example is
depicted in Fig. A.2(a).

Here, we show the reconstruction of the convolution of f and g which exhibit concurrent
jump discontinuities. This means that the jumps are pairwise complementary and, thus, the
product of f and g is continuous. As we see, the finite representation is of poor quality.
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Figure A.2: Visualization of the numerical errors occurring when transforming a product
of two functions with concurrent jump discontinuities. Panel (a) displays the
results using the coefficients defined in Eq. (A.3). Panel (b) shows the recon-
struction using Li’s inverse rule, cf. Eq. (A.5) which yields much better results.

A suitable alternative was published by Li in Ref. [82]. He divided the problems into three
classes:

G Type 1: Two piecewise-smooth, bounded, periodic functions without concurrent jump
discontinuities shall be transformed. Then, the coefficients in Eq. (A.3) apply. We refer
to type 1 as Laurent’s rule.

G Type 2: Two piecewise smooth, bounded, periodic functions with concurrent jump
discontinuities shall be transformed. The appropriate coefficients are obtained by

h̃ =
[[ 1
f

]]−1
· g̃. (A.5)

We refer to this way of determining the coefficients of h as Li’s inverse rule.

G Type 3: Two piecewise-smooth, bounded, periodic functions that exhibit concurrent
jumps which are not complementary. In this case, Li judged both rules as insufficient.
Fortunately, the products in Maxwell’s equations are of type 1 and 2.

The inverse rule is demonstrated in Fig. A.2(b). Here, the applied coefficients from Eq. (A.5)
show a very good representation of h. The strong oscillations that occur for Laurent’s rule
are not present with Li’s rule. Thus, we use this formulation to obtain the coefficients in the
case of a convolution of type 2.

In general, a two-dimensional Fourier transformation of a periodic function f with period ai
in direction xi, i = 1, 2, reads

f
(
x1, x2

)
=

∞∑
n,m=−∞

f̃nm e
i

(
n 2π
a1
x1+m 2π

a2
x2
)
, (A.6)

where the coefficients are in general determined by

f̃nm = 1
a1 a2

∫ a1

0

∫ a2

0
f
(
x1, x2

)
e
−i
(
n 2π
a1
x1+m 2π

a2
x2
)
dx2 dx1. (A.7)
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However, we cannot use this formulation since the jumps in the permittivity and in the fields
demand that type 1 and type 2 transformations are applied, sometimes even in different
directions. Thus, we perform the transformation separately first into one and afterwards into
the other direction. This is demonstrated in the subsequent section. Naturally, this results in
a complicated composition of the matrices containing the coefficients, which then only have
block Toeplitz structure. For the explicit form of these matrices we refer to Ref. [33].

Before applying the described transformation rules to the constitutive relations of Maxwell’s
equations, a few practical details should be mentioned. In our implementation of the FMM, we
use the Fast Fourier Transform, a very efficient algorithm to determine the Fourier coefficients.
Since it is most effective for a power of two, we normally use 1024 = 210 coefficients in each
direction for the transformation. This high number of coefficients also ensures that the
aliasing effect is kept at a minimal level. To ensure a sufficient representation, we normally
apply at least a fivefold oversampling. The numerical tools for the Fourier transformation
used in the code are the FFTW library [83] (Fastest Fourier Transform in the West) and the
MKL library [42] on Intel machines.

A.2 Fourier transformation of the anisotropic constitutive
relations

In the FMM, Maxwell’s equations are transformed into Fourier space and solved there. Due
to the jumps in the permittivity and in the fields at material boundaries, this transformation
is a delicate procedure as we have shown in the preceding section. This is particularly true
for the constitutive relations. In this section, we demonstrate how the constitutive relation

Dρ = ερσEσ (A.8)

is transformed. The relation for the permeability is transformed analogously. We follow
Refs. [12, 34, 33] for the presentation and do not discuss the procedure for every component
of the fields. Instead, we demonstrate it for one component and state the result for the
others.

We first perform the Fourier transformation along x1. According to the continuity conditions
of Maxwell’s equations, the fields D1, E2 and E3 are continuous functions of x1, except for
sharp material corners where D1 and E2 become singular. Since the number of those points
is assumed to be small, we ignore them throughout the transformation. Before we perform
the Fourier transformation, we reorganize Eq. (A.8) such that it reads

D1 = ε11
(
E1 + ε12

ε11E2 + ε13

ε11E3

)
, (A.9)

D2 = ε21

ε11D
1 +

(
ε22 − ε21ε12

ε11

)
E2 +

(
ε23 − ε21ε13

ε11

)
E3, (A.10)

D3 = ε31

ε11D
1 +

(
ε32 − ε31ε12

ε11

)
E2 +

(
ε33 − ε31ε13

ε11

)
E3. (A.11)

All products occurring here are of type 1 or type 2, see Section A.1. Therefore, we can
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perform the transformation in x1 direction and obtain

[
D1
]
1

=
[ 1
ε11

]−1

1

(
[E1]1 +

[
ε12

ε11

]
1

[E2]1 +
[
ε13

ε11

]
1

[E3]1

)
, (A.12)

[
D2
]
1

=
[
ε21

ε11

]
1

[
D1
]
1

+
[
ε22 − ε21ε12

ε11

]
1

[E2]1 +
[
ε23 − ε21ε13

ε11

]
1

[E3]1 , (A.13)

[
D3
]
1

=
[
ε31

ε11

]
1

[
D1
]
1

+
[
ε32 − ε31ε12

ε11

]
1

[E2]1 +
[
ε33 − ε31ε13

ε11

]
1

[E3]1 . (A.14)

The lower case ‘1’ is a reminder of the direction of transformation. In order to simplify the
nomenclature, we define the quantities

Q11
1 =

[ 1
ε11

]−1

1
, (A.15a)

Q12
1 =

[ 1
ε11

]−1

1

[
ε12

ε11

]
1
, (A.15b)

Q13
1 =

[ 1
ε11

]−1

1

[
ε13

ε11

]
1
, (A.15c)

Q21
1 =

[
ε21

ε11

]
1

[ 1
ε11

]−1

1
, (A.15d)

Q22
1 =

[
ε21

ε11

]
1

[ 1
ε11

]−1

1

[
ε12

ε11

]
1

+
[
ε11ε22 − ε21ε12

ε11

]
1
, (A.15e)

Q23
1 =

[
ε21

ε11

]
1

[ 1
ε11

]−1

1

[
ε13

ε11

]
1

+
[
ε11ε23 − ε21ε13

ε11

]
1
, (A.15f)

Q31
1 =

[
ε31

ε11

]
1

[ 1
ε11

]−1

1
, (A.15g)

Q32
1 =

[
ε31

ε11

]
1

[ 1
ε11

]−1

1

[
ε12

ε11

]
1

+
[
ε11ε32 − ε31ε12

ε11

]
1
, (A.15h)

Q33
1 =

[
ε31

ε11

]
1

[ 1
ε11

]−1

1

[
ε13

ε11

]
1

+
[
ε11ε33 − ε31ε13

ε11

]
1
, (A.15i)

which enable use to write the partially transformed constitutive relation as
[
Di
]

1
= Qij1 [Ej ]1 . (A.16)

As an example how to proceed, we investigate
[
D2
]

1
= Q21

1 [E1]1 +Q22
1 [E2]1 +Q23

1 [E3]1 . (A.17)

The boundary conditions demand that D2 and E1 as functions of x1 and x2 are continuous
almost everywhere with respect to x2 and that E3 is continuous everywhere. The question
is whether this is still the case after partially transforming the functions in one direction.
As shown in the appendix of Ref. [12], this is true. Therefore, we can Fourier transform
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Eq. (A.17) in x2-direction with the rules of type 1 and 2. The transformation reads

[E2]1 =
(
Q22

1

)−1 [
D2
]

1
−
(
Q22

1

)−1
Q21

1 [E1]1 −
(
Q22

1

)−1
Q23

1 [E3]1 (A.18)

⇒ [E2]12 =
[(
Q22

1

)−1
]

2

[
D2
]
12
−
[(
Q22

1

)−1
Q21

1

]
2

[E1]12 −
[(
Q22

1

)−1
Q23

1

]
2

[E3]12

⇒
[
D2
]

12
=

[(
Q22

1

)−1
]−1

2

([(
Q22

1

)−1
Q21

1

]
2

[E1]12 + [E2]12 +
[(
Q22

1

)−1
Q23

1

]
2

[E3]12

)
.

The lower case ‘2’ indicates the transformation in x2 direction. The procedure for the other
components is analogously: the terms are rearranged such that D2, E1 and E3 are on one
side and then the equation is transformed. With the coefficient vectors of the fields, we can
then relate the coefficients by

D̃i =
[[
εij
]]

12
Ẽi, (A.19)

where we introduce the abbreviations[[
ε11
]]

12
=

[
Q11

1 −Q12
1

(
Q22

1

)−1
Q21

1

]
2

+
[
Q12

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q21

1

]
2
,

[[
ε12
]]

12
=

[
Q12

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2
,

[[
ε13
]]

12
=

[
Q13

1 −Q12
1

(
Q22

1

)−1
Q23

1

]
2

+
[
Q12

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q23

1

]
2
,

[[
ε21
]]

12
=

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q21

1

]
2
,

[[
ε22
]]

12
=

[(
Q22

1

)−1
]−1

2
,

[[
ε23
]]

12
=

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q23

1

]
2
,

[[
ε31
]]

12
=

[
Q31

1 −Q32
1

(
Q22

1

)−1
Q21

1

]
2

+
[
Q32

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q21

1

]
2
,

[[
ε32
]]

12
=

[
Q32

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2
,

[[
ε33
]]

12
=

[
Q33

1 −Q32
1

(
Q22

1

)−1
Q23

1

]
2

+
[
Q32

1

(
Q22

1

)−1
]

2

[(
Q22

1

)−1
]−1

2

[(
Q22

1

)−1
Q23

1

]
2
.

In Ref. [12], Li introduced certain operators to reduce the complexity of the notation. First,
the operators l±i are introduced. They act on 3× 3 matrices like

l±k

(
Aij
)

=



(
Akk

)−1
, k = i = j(

Akk
)−1

Akj , i = k, k 6= j

Aik
(
Akk

)−1
, k = j, k 6= i

Aij ±Aik
(
Akk

)−1
Akj , i 6= k 6= j

(A.20)

which implies that l−i l
+
i (A) = A = l+i l

−
i (A). Next, Fi is defined for a matrix B(x1, x2, x3)

such that Fi(B) is a block matrix whose elements are Toeplitz matrices generated by the
coefficients of B with respect to variable xi. In total, these operators allow to write the
matrices Qij1 in Eq. (A.15) as

Q1 = l+1 F1l
−
1 (ε) =: L1(ε). (A.21)
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A.2 Fourier transformation of the anisotropic constitutive relations

The corresponding operator in x2 direction can then be used to obtain a representation of
the matrices

[[
εij
]]

12 which reads
[[ε]]12 = L2L1(ε). (A.22)

So far, we did not address the issue why we first Fourier transformed in x1 direction. Nat-
urally, a first transformation in x2 direction is equally well applicable. This would yield the
result

[[ε]]21 = L1L2(ε). (A.23)

Unfortunately, the expressions in Eqs. (A.22) and (A.23) are not equal for a finite number of
coefficients. Therefore, the example of a structure which is symmetric in x1 and x2 reveals
that simply choosing one of them is not an option. Thus, we use a symmetrized form which
reads

[[ε]] = 1
2 ([[ε]]12 + [[ε]]21) . (A.24)

The downside of this choice is that energy conservation problems appear [12]. However, they
vanish for a sufficiently large number of plane waves.
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Appendix B

Numerical transmittance data of opal
photonic crystals

In this appendix, transmittance spectra for opal photonic crystals are presented, some of
which were already discussed in Chapter 4. Here, the plots are shown with a linear pseudo-
color scale. For further details on the geometry see Section 4.3.

Figure B.1: Transmittance into zeroth order for θ = 30◦ and incoming s-polarization. Panel
(a) displays the s-polarized part of the zeroth order and panel (b) the p-
polarized part.

Figure B.2: Transmittance into first order and the total transmittance for θ = 30◦ and
incoming s-polarization. Panel (a) displays the first order transmittance into
all polarizations and panel (b) depicts the total transmittance.

XVII



Appendix B Numerical transmittance data of opal photonic crystals

The first order transmittance shows maxima at certain points where the zeroth order exhibits
minima, cf. Figs. B.1(a) and B.2(a) at λ = 480 nm and λ = 540 nm at ϕ = 40◦. When they
are added to form the total transmittance, they nearly cancel each other such that the total
transmittance shows 6-fold symmetry above 500 nm.

Figure B.3: Transmittance into zeroth order for θ = 30◦ and incoming p-polarization.
Panel (a) displays the s-polarized part of the zeroth order and panel (b) the
p-polarized part.

Figure B.4: Transmittance into first order and the total transmittance for θ = 30◦ and
incoming p-polarization. Panel (a) displays the first order transmittance into
all polarizations and panel (b) depicts the total transmittance.

A similar behavior is observed for incident p-polarized light. Again, a minimum in the zeroth
order (see Fig. B.3(b)) is at the same place as a maximum in the first order (see Fig. B.4(a)).
This again leads to an effective six-fold symmetry above 500 nm in the total transmittance
depicted in Fig. B.4(b).
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Figure B.5: Transmittance for θ = 65◦ and incoming s-polarization. Panel (a) displays
the s-polarized part of the zeroth order and panel (b) the p-polarized part.
Furthermore, the transmittance in first (panel (c)) and second order (panel (e))
are shown. They all add up to the total transmittance depicted in panel (d).

For light incident with an angle of θ = 65◦ (see Figs. B.5 and B.6), light is diffracted into
not only the zeroth and first but also in the second order. However, this is only so for high
frequencies, see Figs. B.5(e) and B.6(e). For higher wavelengths, there is only diffraction into
zeroth and first order. Again, zeroth and first order add up such that an effective six-fold
symmetry is observed above 600 nm in the total transmittance for incident s-polarized light.
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Appendix B Numerical transmittance data of opal photonic crystals

With incident light in p-polarization, the effective six-fold symmetry is found for wavelengths
higher than 650 nm.

Figure B.6: Transmittance for θ = 65◦ and incoming p-polarization. Panel (a) displays the
s-polarized part of the zeroth order and panel (b) the p-polarized part. Also,
the transmittance in first order (panel (c)) and in the second order (panel (e))
are shown. They all add up to the total transmittance depicted in panel (d).
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Appendix C

Derivation of the reflection coefficient for
an array of periodic particles

In Section 7.5 we discussed the scattering of light by periodic arrays of particles. Specifically,
we deduced a transmission coefficient for such an array in Section 7.5.1. It is denoted by
t̃ in Eq. (7.99). For our test system, however, we used the reflection coefficient given by
Eq. (7.100). The derivation of this equation is the topic of this part of the appendix1. I
present the whole derivation here because only few information is given in Ref. [78].

We recall Eq. (7.99)

Etrans
total =

(
1 + 2πik

A

1
1
αE
−Gxx(0)

)
︸ ︷︷ ︸

=:t̃

Eext. (C.1)

This result was achieved with the assumptions that we use normal incidence (i.e., k‖ = 0), a
specular symmetry with respect to the xz-plane and that we only investigate the 0th order
transmitted field. We obtain the reflection coefficient r̃ by

r̃ = t̃− 1 = 2πik
A

1
1
αE
−Gxx(0)

. (C.2)

Then, the absorbance of the array is found to be 1− |1 + r|2 − |r|2.

The aim is to derive Eq. (7.100) which we use in Section 7.5.2 from Eq. (C.2). We start by

1The definitions made in Section 7.5.1 remain valid.
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Appendix C Derivation of the reflection coefficient for an array of periodic particles

reformulating the term Gxx(0) that was defined in Eq. (7.88):

Gxx(0) =
∑
n 6=0
G0
xx(Rn) e−i 0Rn (C.3)

=
∑
n 6=0

i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei(QRn+

√
k2−Q2|z|) (C.4)

(7.96)= lim
z→0

2πi
A

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

) ∑
g
δ(Q− g) ei

√
k2−Q2|z|

− lim
z→0

(
i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei(QRn+

√
k2−Q2|z|)

)
n=0

(C.5)

R0=0= lim
z→0

2πi
A

∫
dQx dQy√
k2 −Q2

x −Q2
y

(
k2 −Q2

x

) ∑
g
δ(Qx − gx)δ(Qy − gy) ·

ei
√
k2−Q2

x−Q2
y |z| − lim

z→0

i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei
√
k2−Q2|z|) (C.6)

= lim
z→0

(
2πi
A

∑
g

1√
k2 − g2 (k2 − g2

x) ei
√
k2−g2|z|

− i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei
√
k2−Q2|z|)

)
. (C.7)

To get from Eq. (C.4) to Eq. (C.5) we first enter Eq. (7.96). Secondly, we realize that the
summation in Eq. (C.4) does not include n = 0. So in order to be able to utilize Eq. (7.96)
which sums over all elements including n = 0, we have to subtract the term for n = 0 after
applying Eq. (7.96). This is the second term in Eq. (C.5).

Our aim is to obtain an analytic expression for the imaginary part of Eq. (C.7). For that,
we first investigate the integral expression in Eq. (C.7) by introducing cylinder coordinates
Qx = r cosφ and Qy = r sinφ. It reads

∫ ∫
k2 −Q2

x√
k2 −Q2

x −Q2
y

ei
√
k2−Q2

x−Q2
y |z| dQx dQy

=
∫ ∞

0

∫ 2π

0

k2 − r2 cos2 ϕ√
k2 − r2

ei
√
k2−r2|z| r dϕ dr

=
∫ ∞

0

∫ 2π

0

k2 ei
√
k2−r2|z|

√
k2 − r2

r dϕ dr −
∫ ∞

0

∫ 2π

0

r3 ei
√
k2−r2|z|

√
k2 − r2

cos2 ϕ dϕ dr

= 2π k2
∫ ∞

0

r ei
√
k2−r2|z|

√
k2 − r2

dr −
∫ ∞

0

r3 ei
√
k2−r2|z|

√
k2 − r2

[1
2ϕ+ 1

4 sin(2ϕ)
]2π

0
dr

= 2π k2
[
− 1
i|z|

ei
√
k2−r2|z|

]∞
0
− π

[
2|z|
√
k2 − r2 + i r2|z|2 + 2i

|z|3
ei
√
k2−r2|z|

]∞
0

= eik|z|

|z|

(
−2π k2i+ 2π k

|z|
+ 2πi
|z|2

)
. (C.8)
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The expression in Eq. (C.8) can be split in real and imaginary part:

− i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei
√
k2−Q2|z|) (C.8)= eik|z|

|z|

(
− k2 − i k

|z|
+ 1
|z|2

)
=
(
−cos(k|z|)

|z|3
k2|z|2 + cos(k|z|)

|z|3
+ sin(k|z|)

|z|3
k|z|

)
+i

(
−sin(k|z|)
|z|3

k2|z|2 + sin(k|z|)
|z|3

− cos(k|z|)
|z|3

k|z|
)
. (C.9)

Applying l’Hôspital’s rule several times, the limit value for z → 0 of the imaginary part
becomes

lim
z→0

(
−sin(k|z|)
|z|3

k2|z|2 + sin(k|z|)
|z|3

− cos(k|z|)
|z|3

k|z|
)

= lim
z→0

sin(k|z|) k2|z|2 − sin(k|z|) + cos(k|z|) k|z|
|z|3

l’H= ...
l’H= ...

l’H= lim
z→0

1
6
(
cos(kz)k5z2 + sin(kz)k42z + 4 sin(kz)k4z

−4 cos(kz)k3 − cos(kz)k3 − sin(kz)k4z + cos(kz)k3
)

= −2
3 k

3. (C.10)

Up to this point, we arrived at an expression for the imaginary part of the second term
in Eq. (C.7). Next, we achieve the same for the first term. For that, we recall that the
wavelength of the incident light in our test system in Section 7.5.2 is larger than the lattice
constant. This means that |g| > k and that all diffraction orders other than the 0th order
are evanescent. Then we deduce

2πi
A

∑
g

1√
k2 − g2 (k2 − g2

x) ei
√
k2−g2|z|

= 2πi
A

k eik|z| + 2πi
A

∑
g 6=0

1√
k2 − g2︸ ︷︷ ︸
∈ i ·R

(k2 − g2
x) e

i

∈ i ·R︷ ︸︸ ︷√
k2 − g2 |z|︸ ︷︷ ︸
∈ R︸ ︷︷ ︸

∈ i ·R︸ ︷︷ ︸
∈R

. (C.11)

This means that only the first part of the expression is complex while the rest of the sum is
purely real. The limit value of the imaginary part is then given by

lim
z→0

2πk
A

cos(k|z|) = 2πk
A

. (C.12)
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Appendix C Derivation of the reflection coefficient for an array of periodic particles

To sum up our findings we reformulate Eq. (C.7):

Gxx(0) = lim
z→0

(
2πi
A

∑
g

1√
k2 − g2 (k2 − g2

x) ei
√
k2−g2|z|

− i

2π

∫
d2Q√
k2 −Q2

(
k2 −Q2

x

)
ei
√
k2−Q2|z|)

)

= lim
z→0

i 2π
A
k cos(k|z|)− 2π

A
k sin(k|z|) 2πi

A

∑
g 6=0

(k2 − g2
x)√

k2 − g2 ei
√
k2−g2|z|

+
(
−cos(k|z|)

|z|3
k2|z|2 + cos(k|z|)

|z|3
+ sin(k|z|)

|z|3
k|z|

)
+ i

(
−sin(k|z|)
|z|3

k2|z|2 + sin(k|z|)
|z|3

− cos(k|z|)
|z|3

k|z|
)]

. (C.13)

The imaginary part of Gxx(0) is given by the limit value of two terms. Since we know that
both terms converge and that the limit value of each of the two terms exists we can deduce
that the limit value of their sum also exists. Then, the total limit value of the imaginary part
is given by the sum of the limit values of the two terms. This reads

Im (Gxx(0)) (C.13)= lim
z→0

[2π
A

k cos(k|z|)

+
(
−sin(k|z|)
|z|3

k2|z|2 + sin(k|z|)
|z|3

− cos(k|z|)
|z|3

k|z|
)]

(C.12),(C.10)= lim
z→0

[2π
A

k cos(k|z|)
]

+ lim
z→0

[(
−sin(k|z|)
|z|3

k2|z|2 + sin(k|z|)
|z|3

− cos(k|z|)
|z|3

k|z|
)]

(C.12),(C.10)= 2π
A
k − 2

3 k
3. (C.14)

So far, we only discussed the part of Eq. (C.2) that describes the lattice. For the polarizability
there also exists a condition. It is given by the optical theorem and reads

Im
( 1
αE

)
= −2k3

3 . (C.15)

Finally, we combine Eqs. (C.2), (C.14) and (C.15) and obtain

r̃ = 2πik
A

1
Re
(

1
αE

)
+ i

(
−2k3

3

)
− Re (Gxx(0))− i

(
2πk
A −

2k3

3

) (C.16)

= 2πik
A

1
−i2πk

A + Re
(

1
αE
−Gxx(0)

) (C.17)

= − 1
1 + i A

2πkRe
(

1
αE
−Gxx(0)

) . (C.18)

Thereby, we achieved to derive the form of the reflection coefficient in Eq. (7.100).
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Appendix D

Details of the twin dipole model applied to
two layers of crosses

In this appendix, we present information on the twin dipole model’s application to two layers
of mutually rotated crosses. The following notation is in line with Section 7.7. Especially
Fig. 7.37 should be borne in mind.

With the abbreviation L̃ = l/4 we write the positions of the oscillators forming the twin
dipoles.

r1 =

L̃+ ρ1
0
h
2

 , r2 =

 0
L̃+ ρ2

h
2

 , r5 =

L̃ cosϕ+ ρ5 cosϕ
L̃ sinϕ+ ρ5 sinϕ

b+ 3
2 h

 ,
r4 =

 0
−L̃+ ρ4

h
2

 , r3 =

−L̃+ ρ3
0
h
2

 , r6 =

−L̃ sinϕ− ρ6 sinϕ
L̃ cosϕ+ ρ6 cosϕ

b+ 3
2 h

 ,
r7 =

−L̃ cosϕ+ ρ7 cosϕ
−L̃ sinϕ+ ρ7 sinϕ

b+ 3
2 h

 , r8 =

 L̃ sinϕ− ρ8 sinϕ
−L̃ cosϕ+ ρ8 cosϕ

b+ 3
2 h

 . (D.1)

The occuring dipole moments are

p1 =

ρ1
0
0

 , p2 =

 0
ρ2
0

 , p5 =

ρ5 cosϕ
ρ5 sinϕ

0

 , p6 =

−ρ6 sinϕ
ρ6 cosϕ

0

 ,

p3 =

ρ3
0
0

 , p4 =

 0
ρ4
0

 , p7 =

ρ7 cosϕ
ρ7 sinϕ

0

 , p8 =

−ρ8 sinϕ
ρ8 cosϕ

0

 . (D.2)

We state the unit vectors from each oscillator to the others for completeness. They read:

R̂12 =

−L̃L̃
0

 1
c1
, R̂15 =

L̃ cosϕ− L̃
L̃ sinϕ
b+ h

 1
c3
, R̂56 =

−L̃ sinϕ− L̃ cosϕ
L̃ cosϕ− L̃ sinϕ

0

 1
c1
,

R̂13 =

− l
2

0
0

 1
c2
, R̂16 =

−L̃ sinϕ− L̃
L̃ cosϕ
b+ h

 1
c4
, R̂57 =

−L̃ cosϕ− L̃ cosϕ
−L̃ sinϕ− L̃ sinϕ

0

 1
c2
,

R̂14 =

−L̃−L̃
0

 1
c1
, R̂17 =

−L̃ cosϕ− L̃
−L̃ sinϕ
b+ h

 1
c5
, R̂58 =

 L̃ sinϕ− L̃ cosϕ
−L̃ cosϕ− L̃ sinϕ

0

 1
c1
,
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Appendix D Details of the twin dipole model applied to two layers of crosses

R̂23 =

−L̃−L̃
0

 1
c1
, R̂18 =

L̃ sinϕ− L̃
−L̃ cosϕ
b+ h

 1
c6
, R̂67 =

−L̃ cosϕ+ L̃ sinϕ
−L̃ sinϕ− L̃ cosϕ

0

 1
c1
,

R̂24 =

 0
− l

2
0

 1
c2
, R̂28 =

 L̃ sinϕ
−L̃ cosϕ− L̃

b+ h

 1
c5
, R̂68 =

 L̃ sinϕ+ L̃ sinϕ
−L̃ cosϕ− L̃ cosϕ

0

 1
c2
,

R̂34 =

 L̃

−L̃
0

 1
c1
, R̂35 =

L̃ cosϕ+ L̃

L̃ sinϕ
b+ h

 1
c5
, R̂78 =

 L̃ sinϕ+ L̃ cosϕ
−L̃ cosϕ+ L̃ sinϕ

0

 1
c1
,

R̂45 =

 L̃ cosϕ
L̃ sinϕ+ L̃
b+ h

 1
c4
, R̂46 =

 −L̃ sinϕ
L̃ cosϕ+ L̃

b+ h

 1
c5
, R̂25 =

 L̃ cosϕ
L̃ sinϕ− L̃
b+ h

 1
c6
,

R̂48 =

 L̃ sinϕ
L̃− L̃ cosϕ

b+ h

 1
c3
, R̂36 =

L̃− L̃ sinϕ
L̃ cosϕ
b+ h

 1
c6
, R̂37 =

L̃− L̃ cosϕ
−L̃ sinϕ
b+ h

 1
c3
,

R̂38 =

L̃ sinϕ+ L̃

−L̃ cosϕ
b+ h

 1
c4
, R̂47 =

 −L̃ cosϕ
−L̃ sinϕ+ L̃

b+ h

 1
c6
,

R̂26 =

 −L̃ sinϕ
L̃ cosϕ− L̃

b+ h

 1
c3
, R̂27 =

 −L̃ cosϕ
−L̃ sinϕ− L̃

b+ h

 1
c4
. (D.3)

Here, the terms ci, i = 1, ..., 6 are used for normalization. They are given by

c1 = L̃
√

2, c3 =
√

2L̃2 − 2L̃2 cosϕ+ (b+ h)2, c4 =
√

2L̃2 + 2L̃2 sinϕ+ (b+ h)2,

c2 = l

2 , c5 =
√

2L̃2 + 2L̃2 cosϕ+ (b+ h)2, c6 =
√

2L̃2 − 2L̃2 sinϕ+ (b+ h)2. (D.4)

With the dipole-dipole potential from Eq. (7.113) the equations of motion for the four twin
dipoles are derived. They are stated in Eq. (7.155). The occurring coupling terms are:

L5 = τ
Ne2

(
cosϕ− 3

(
l

4c5

)2
(cosϕ+ 1)2

)
8πε0 c3

5 m
, L3 = τ

Ne2
(

cosϕ+ 3
(

l
4c3

)2
(cosϕ− 1)2

)
8πε0 c3

3 m
,

L1 = 3N e2 L̃2

8πε0 c5
1 m

, L4 =
N e2

(
− sinϕ+ 3

(
l

4 c4

)2
(sinϕ+ 1)2

)
8πε0 c3

4 m
,

L2 = τ
N e2

(
1− 3 l2

4 c22

)
8πε0 c3

2 m
, L6 = τ

Ne2
(
− sinϕ− 3

(
l

4c6

)2
(sinϕ− 1)2

)
8πε0 c3

6 m
. (D.5)

Interestingly, the term L1 does not enter the resulting expressions for the transmittance—it
does not play a role due to symmetry reasons. Furthermore, L2 = −L with L being the
coupling of the two oscillators forming the twin dipoles, see Eq. (7.114). The negative sign
is explained by the different definition of the ρi in the equations of motion. The parameter
τ is the fit parameter of the interlayer coupling, cf. Eq. (7.131).
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The field terms in the equations of motion (7.155) are given by

E1 = eik
h
2 + t̃0 r̃0 e

iδ eik
3
2h

1− r̃2
0 e

iδ
, E2 = t̃0 e

i δ2 eik
3
2h

1− r̃2
0 e

iδ
. (D.6)

They are derived just like in the case of two layers of rods and/or crosses modeled with the
dipole model and read

r̃ϕ =

(
ei2kh − 1

)
iπ

A h k3
−i k3 N e2

4πε0 m

cos2 ϕ

ω2
0 − ω2 − iωΓ− L

, (D.7a)

t̃0 = 1− 2 π
k2 A

−i k3 N e2

4πε0 m (ω2
0 − ω2 − iωΓ− L)

. (D.7b)

Here, we already used the projected formulation. The only difference to the dipole model
is that the coupling L, which describes the coupling between two oscillators forming a twin
dipole, enters.

With the help of the terms above, the equations of motion for the system can be solved. The
solution is given in Eq. (7.156). The next step is deducing the field emitted by the first layer
of oscillators. The field emitted by the first oscillator at the observer’s position Q is obtained
by

Q =

 0
0

u+ h
2

 , roscill,1 =

L̃0
h
2

 , |Q− roscill,1| =

∥∥∥∥∥∥∥
−L̃0
u


∥∥∥∥∥∥∥ =

√
L̃2 + u2 =: r1 (D.8)

E1(Q, t) = − 1
4πε0

N
2 e

r3
1 c

2


−L̃0
u

×

−L̃0
u

×
p̈1

0
0




t− r1

c

= − 1
4πε0

N e

2 r3
1 c

2

 −u2 p̈1
0

−L̃ u ρ̈1


t− r1

c

.

(D.9)
The other oscillators follow in analogy. The sum of the emitted fields of the first layer is then
found in Eq. (7.157).

Similarly, we derive the fields for the second layer. Exemplarily, the field of the fifth oscillator
at Q′ = (0, 0, d+ b+ 3/2 h) reads

roscill,5 =

L̃ cosϕ
L̃ sinϕ
b+ 3

2 h

 , |Q′ − roscill,5| =

∥∥∥∥∥∥∥
−L̃ cosϕ
−L̃ sinϕ

d


∥∥∥∥∥∥∥ =

√
L̃2 + d2 =: r2 (D.10)

E5(Q′, t) =
−N

2 e

4πε0 r3
2 c

2


−L̃ cosϕ
−L̃ sinϕ

d

×

−L̃ cosϕ
−L̃ sinϕ

d

×
p̈3 cosϕ
ρ̈3 sinϕ

0




t− r2

c

= − 1
4πε0

N e

2 r3
2 c

2

−d2 p̈3 cosϕ
−d2 ρ̈3 sinϕ
−L̃ d ρ̈3


t− r2

c

. (D.11)

The sum of all emitted fields, the resulting scattering matrix entries and the field transmitted
through the whole structure are found in Section 7.7.4.
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