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Vector of ones
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Zusammenfassung

Aufgrund der jiingsten Fortschritte in der Elektrotechnik, Mechatronik und Mikrosystemtechnik
werden stetig mehr informationstechnische Gerate in der Umwelt des Menschen eingesetzt. Um
den Menschen optimal zu unterstiitzen, ist es unabdingbar, dass diese Systeme die Intention des
Menschen auf Basis multimodaler Beobachtungen seines Verhaltens erkennen. Der Intentions-
erkennung kommt insbesondere bei humanoiden Robotern eine wichtige Rolle zu, da der Mensch
von einem mensch-ahnlichen Roboter mensch-ahnliches Verhalten erwartet. Gleichzeitig stellt
die Intentionserkennung fiir einen humanoiden Roboter unter Alltagsbedingungen besonders
hohe Anforderung an die Robustheit gegeniiber unvollstandigen und verrauschten Beobach-
tungen, an den Detailgrad der verwendeten Modelle und an die echtzeitfahige Inferenz, um
eine natirliche Interaktion zu gewéhrleisten. In dieser Arbeit wird untersucht, wie diese Prob-
leme durch eine durchgangige Unsicherheitsbeschreibung, automatische Modellidentifikation
und situationsbedingte Inferenz gelost werden konnen.

Um eine durchgangige Unsicherheitsbeschreibung und eine strukturierte Wissensmodellierung
zu gewahrleisten, wird in dieser Arbeit die Intentionserkennung als ein Problem der Model-
lierung der menschlichen Rationalitat in Form von hybriden, dynamischen Bayesnetzen sowie
der Inferenz mit diesem Modell betrachtet. Hervorzuheben ist, dass wertdiskrete und wertkon-
tinuierliche Groéflen generisch modelliert werden konnen. Hierdurch werden Diskretisierungs-
fehler vermieden und eine einheitliche Inferenz unter durchgangiger Berticksichtigung der Un-
sicherheit erreicht. Weiterhin erlaubt die verwendete Modellierung eine exakte, analytische
Inferenz auch bei nichtlinearen stochastischen Abhangigkeiten.

Ein Schwerpunkt der Arbeit liegt auf der automatischen Modellidentifikation der verwende-
ten nichtlinearen stochastischen Abhéngigkeiten. Das Identifikationsproblem wird als Ausgle-
ichsproblem betrachtet. Es werden mehrere Ansétze zur Optimierung des Verhaltnisses zwis-
chen der Distanz der vorhandenen Beobachtungen zur geschétzten nichtlinearen Funktion im
Verteilungsraum und der Unebenheit der Oberflache der Schatzfunktion vorgestellt. Es wird
gezeigt, dass die Betrachtung der Unebenheit der Oberflichen ausreichend ist, um eine an-
sonsten nur durch die explizite Annahme eines unterlagerten, generativen Modells erreich-
bare Qualitat der Modellidentifikation zu erhalten. Die erhaltenen Ergebnisse sind jedoch sig-
nifikant effizienter reprasentierbar und erlauben eine analytische Weiterverarbeitung, z.B. fiir
die rekursive Zustandsschatzung.

Der zweite Schwerpunkt der Arbeit liegt auf der situationsbedingten Inferenz in grofien dy-
namischen Bayesnetzen bei der eine Beschleunigung der Inferenz durch Ausnutzung der Situa-
tionsabhangigkeit des menschlichen Verhaltens demonstriert wird. Ausgehend von einer gegebe-
nen Dekomposition des Gesamtmodells in eine Menge kleinerer Teilmodelle wird die schritt-
haltende Inferenz auf jeweils das Teilmodell beschréankt, welches die aktuell vorherrschende
Situation am besten abbildet. Fiir die Auswahl wird das im Modell enthaltene Wissen iiber
die zukiinftige Zustandsentwicklung ausgenutzt. Fiir zwei Bewertungskriterien wird gezeigt,
dass dieser modell-pradiktive Ansatz eine signifikante Beschleunigung der Inferenz bei vernach-
lassigharem Approximationsfehler erlaubt.
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Die durch die durchgingige Unsicherheitsbeschreibung, automatische Modellidentifikation und
situationsbedingte Inferenz erzielte Robustheit, Qualitat und Skalierbarkeit der Intentionserken-
nung wird in Simulationen, durch eine videobasierte kombinierte Bewegungs-, Aktivitats- und
Intentionserkennung sowie in Testszenarien in der weitraumigen Teleprasenz analysiert. Die
verwendete durchgéngige Unsicherheitsbeschreibung lasst sich ohne Einschrankungen fiir an-
dere Anwendungen nutzbar machen. Die erzielten Ergebnisse fiir die Schatzung stochastischer
nichtlinearer Abhéngigkeiten in Form von bedingten Dichtefunktionen wurden auf die Dichte-
schatzung tibertragen und sind fiir die Identifikation allgemeiner nichtlinearer stochastischer
Abhéngigkeiten verwendbar. Das Prinzip der situationsbedingten Inferenz 1afit sich erfolgreich
auf die Inferenz in generischen dynamischen Bayesnetze iibertragen, wenn fiir diese situative
Dekomposition moglich ist.
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Abstract

Recent advances in electrical engineering, mechatronics, and microsystem technology promote
the deployment of an increasing number of computing devices into the environment of the
human. In order to support the human optimally, it is inevitable that these systems recognize
the human’s intention from multimodal observations of his behavior. The intention recognition
is especially important for humanoid robots as the human user expects a human-like behavior
from a humanoid robot. At the same time, it is challenging for the intention recognition of
a humanoid robot in everyday’s life to achieve robustness against uncertain and incomplete
observations, to maintain a high degree of detail of the used models, and to perform inference in
real-time to allow for natural interactive behavior. This thesis investigates how these challenges
may be addressed by a consistent uncertainty processing, automatic model identification, and
situation-specific inference.

In order to achieve a consistent uncertainty processing and allow for structured modeling of
domain knowledge, the intention recognition problem is phrased as a problem of modeling
the human rationale in the form of hybrid, dynamic Bayesian networks as well as inference
with these models. Additionally, discrete- and continuous-valued quantities may be modeled
uniformly. This approach avoids unnecessary discretization errors and allows for a uniform in-
ference with consistent uncertainty treatment as well as for exact, analytic inference even with
nonlinear stochastic dependencies.

The first focus of the present thesis is the automatic model identification of the employed non-
linear stochastic dependencies. The identification problem is considered as a trade-off problem:
several approaches to balancing the distance between the given observations and the estimated
nonlinear function as represented by their respective cumulative distribution function and the
function estimates’ surface roughness are presented. It is shown, that the consideration of the
surface’s roughness is sufficient to achieve a comparable quality of the model identification,
which has so far only been shown by approaches making explicit assumptions about an un-
derlying generative model. The obtained function estimates may be represented much more
efficiently and allow for analytic processing, e.g., in recursive state estimation.

The second focus of this thesis is the situation-specific inference in large dynamic Bayesian
networks for which a speed-up in inference by exploitation of the situation dependency of the
human behavior is demonstrated. Given a decomposition of a large model into a fixed set of
smaller models, the step-wise inference is limited to the model reflecting the prevailing situation
best. The model selection exploits the information contained in the model. For two evaluation
criteria, it is shown that these model-predictive approaches allow for significant speed-ups of
the inference at negligible approximation error.
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The robustness, quality, and scalability achieved by the consistent uncertainty processing, auto-
matic model identification, and situation-specific inference is analyzed in simulations, a video-
based combined motion, activity, and intention recognition setup, as well as experiments in an
extended-range telepresence scenario. The employed consistent uncertainty processing may be
easily generalized to other applications. The obtained results for the estimation of stochastic
nonlinear dependencies in the form of conditional density functions have been successfully trans-
ferred to density estimation and may be used for the identification of general nonlinear stochas-
tic dependencies. The principle underlying the situation-specific inference may be employed to
generic dynamic Bayesian networks if these allow for a situation-specific decomposition.



If a man will begin with certainties,

he shall end in doubts;

but if he will be content to begin with doubts,
he shall end in certainties.

—FRANCIS BACON

1 Introduction

Recent scientific progress in microelectronics, telecommunications, and power supply led to
the widespread deployment of technical devices into the human environment. The variety of
these devices ranges from intelligent power steering and smart washing machines at home to
control systems installed in industrial facilities or in air conditioning systems at work. The most
apparent technical devices to humans are laptops and smart phones as personal companions, but
also transparent state of the art infrastructure, e.g., smart gas grids, consist of many technical
devices. Thus, technical devices influence every aspect of human life. Furthermore, from today’s
perspective, it appears certain that further technical devices, such as service robots, will find
popular distribution in the near future and an end of this development is not foreseeable.

These technical devices are deployed to support the human either in tasks at their workplace
or household in general. The distribution will be linked to the benefits offered, i.e., how much
more efficient a task may be carried out with the assistance of the devices. In order to assist
the human at its best, the devices need to cooperate closely with the human. For this reason,
it is necessary for the devices to hypothesize about the human’s intentions at any given time.
The intention is estimated based on the observed behavior of the human and a model of his
rationale. Depending on the task at hand, this model of the human’s rationale reflects the
relevant relations between the human’s belief of the state of the world, his desires, and the
derivable intentions. Based on noise-perturbed audio and visual signals, the human’s long to
short term intentions shall be automatically inferred to provide optimal support. This problem
may be understood as an instantiation of a state estimation problem, where the hidden state
needs to be estimated from noisy measurements. Fig. 1.1 shows how the intention recognition is
incorporated in a simplified control loop of an assistive system, e.g., a humanoid robot. Given
the noisy sensor readings of the human behavior and domain knowledge, e.g., in this case about
the objects present in the scene, the intention recognition derives the intention estimate. This
estimate serves as an input to the high-level planning system of the humanoid robot. The
derived plan causes a change of the state of the world by the application of its actuators, e.g.,
by moving the robot or manipulating objects. The quality of the state estimator is fundamental
to the device’s decision process.

Because the sensor readings are prone to error and noise, the described model of the human’s
rationale needs to account for the uncertainty inherent in the problem. This problem may be
cast as a problem of representation, inference, and learning in a probabilistic graphical model.
In this thesis, this view will be adopted and intention recognition using hybrid dynamic Bayesian
Networks will be considered, i.e., a probabilistic graphical model captures the sequentiality
of the rationale as well as the unified treatment of discrete and continuous variables. This
thesis presents contributions to two topics central for the intention recognition problem: model
identification and inference in large scale models.
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Figure 1.1: A simplified control architecture for the humanoid robot ARMAR [182, 45] as adapted from [160].

e Model identification considers the problem of automatically determining the probabilistic
models fundamental to the probabilistic graphical model and therefore is of extreme im-
portance to the intention recognition application. The considered problem is restricted to
the estimation of (conditional) density functions relating continuous random variables as
used in the motion models of the example application. The main contributions of this the-
sis, are approaches towards conditional density estimation of sparse mixture conditional
densities based on information-theoretic and superficial regularization.

e The quality of the learned models is irrelevant, if inference in these models is too slow. For
realistic scenarios with hundreds of objects and actions related to these intentions, complex
probabilistic graphical models arise. For these large-scale models, real-time inference as
a basis of natural interactions is challenging. The main contribution of this thesis is
an approach to restricting the inference to the relevant situational task structure. This
exploitation of the situational dependency allows for real-time inference in larger models.

Both contributions complement each other, as the identification of the continuous conditional
densities may be understood as obtaining the substrate for large scale models, and only if infer-
ence in larger models is efficient enough to allow for natural interaction, the identified models
will be used. In the following, an outline of the thesis will be given by chapter. Disregarding
the chapters on the problem definition, conclusion and future work as well as this chapter, this
list reflects the two major problems addressed in this thesis. Each chapter concludes with a
summary of the main contributions and limitations.

Problem Definition In the problem definition, the relevant assessment criteria and the related
work for both parts of the thesis are reviewed and discussed. The deficiencies in the state of
the art will be pointed out and how these are addressed in this thesis. The key idea as well as
the major assumptions will be given.

Non-Parametric Density and Conditional Density Estimation With regard to system iden-
tification, the estimation of density and conditional density functions from data is considered.
In this chapter, the specific difference in the estimation is discussed. The key idea common to
density and conditional density estimation as a sparse extension to kernel density estimation
is derived. This idea consists of phrasing the estimation as an optimization problem balanc-
ing data fit with roughness of the probability density function surface. Based on the different
mathematical problem statements, the general challenges and key ideas are extended to op-
timization approaches for each problem. For the conditional density estimation, the specific
problem structure is further discussed and exploited.



Full Parameter Conditional Density Estimation The drawbacks of the sparse kernel condi-
tional density estimation are the restriction to components’ means coinciding with data points
as well as fixed and identical kernel parameters for all components. In this chapter, these limita-
tions are removed by the introduction of a novel roughness penalty and a covariance calculation
relative to the local data density. The novel roughness penalty is based on the curvature of the
probability density function allowing for an optimization of mean positions that regularize the
mean function’s curvature. Additionally, an efficient implementation of these key ideas and a
comparison to the other presented approaches as well as the state of the art are proposed.

Hyperparameter Optimization All of the presented non-parametric and full parameter esti-
mators perform density and/or conditional density estimation based on different sets of hyper-
parameters. In this chapter, a generic algorithm for determining hyperparameters is presented.
The generic optimization may then be instantiated w.r.t. each estimator and its set of hy-
perparameters, e.g., the kernel parameters and/or the parameter determining the trade-off
between fit and roughness or the loss-function’s parameters. The properties of the presented
cross-validation—based minimization of the error on held-out sets is discussed in simulations.

Conditional Density Estimation given Samples and Prior Knowledge Typically, not only
a set of data points is given when estimating densities and conditional densities. There might
be information from prior experiments, e.g., exploring other parts of the state space, or ex-
pert/domain knowledge. The challenge is to use this information if it is not given in form of
data points, but in the form of generative or probabilistic models with the proposed optimiza-
tion scheme. Note, that even if data from a previous measurement campaign might be given,
depending on the size of the data set it might be prohibitive to merely join the data sets, but
an abstraction is necessary. In this chapter, approaches using additional information in the
form of a generative or probabilistic model and its benefits will be given.

Intention Recognition This chapter introduces the models and inference methods used for
the intention recognition in the human-robot-cooperation scenario as introduced in the problem
definition. In detail, an introduction to hybrid dynamic Bayesian Networks is provided and the
entire design process and inference mechanism described using an exemplary case-study. On
the basis of the model developed for this case study, more realistic models for human-robot-
cooperation in the household setting will be presented, i.e., the number of entities will be
increased. Inference in the hybrid dynamic Bayesian Networks is challenging for large scale
models, e.g., if the household setting for the human-robot-cooperation scenario is modeled
with a realistic number of objects and associated intentions. The key idea is to use the fact
that even though the household setting entails a lot of unstructured intention sequences it
is possible to identify clusters of related intentions. As these clusters are describable using
time and space constraints, the concept of situations is adopted and used for an online model
selection of smaller models for each situation. In order to discuss the properties and limitations
of the intention recognition as means of tacit human-robot-cooperation, the proposed models
are adapted for a set of real and mixed-reality experiments. In the real scenario, the purely
video-based recognition of everyday kitchen tasks is presented. The reported results are based
on a large data set. The scalability of the inference for larger models is evaluated using an
extended range telepresence scenario given a 1:1 scale layout of a given kitchen, providing
reproducible experimental setups.
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Figure 1.2: The chapters of this thesis and dependencies between different chapters.

Conclusions and Future Work The thesis concludes with a summary of the contributions
and a list of the limitations, which remain as future work. Given the results presented in this
thesis promising approaches for addressing these remaining challenges are given.

Structure of the Thesis This thesis may be read sequentially and selectively. Fig. 1.2 shows
the dependencies between the different chapters of the thesis. As the state of the art, the
notation, and mathematical problem setup are discussed in the problem definition, it is re-
commended to read this chapter first. The other chapters may be read according to Fig. 1.2.
Reading Ch. 3 about non-parametric density and conditional density estimation second, the
remaining parameters may be determined by hyperparameter optimization, Ch. 5, or by hy-
perparameter optimization and the full-parameter optimization, described in Ch. 4. For all
chapters, conditional density estimation may not only be performed given samples but also if
prior knowledge is given in the form of generative or probabilistic models, as described in Ch. 6.
This chapter may be considered as optional. The intention recognition considered in Ch. 7 may
be read independently from the model identification chapters, even though some models used
in Ch. 7 may be identified with the methods described in the prior chapters.



Essentially, all models are wrong,
but some are useful.

—GEORGE Box

2 Problem Definition

This chapter precedes the main matter of the thesis and is meant to prepare the ground for an in-
depth treatment of the contributions. Resembling the rest of this thesis, this problem definition
is divided into a part dealing with model identification and a part considering the intention
recognition. In each part, the respective scope will be given, i.e., the considered problem will be
formalized and the employed assessment criteria will be introduced. The state of the art will be
discussed and the deficiencies addressed in this thesis described. In detail, the used assumptions,
the contributions, and their properties as well as restrictions as derived in the following chapters
will be briefly outlined.

2.1 Density and Conditional Density Estimation

The estimation of density functions and conditional density functions® f lies at the heart of
descriptive and inferential statistics. One of the earliest known scientific publications about
density estimation [189] was concerned with determining the probability density function de-
scribing the forehead to body lengths of a population of crabs, dating back to the 1890s by
Karl Pearson [144]. Pearson tried to estimate a heteroscedastic mixture density with two com-
ponents describing the scalar data best. Using this model, he was able to describe all 1000 data
points by only four numbers and used these statistics to infer the presence of two subspecies in
the given sample set. From an abstract point of view, Pearson tried to estimate the inaccessible
true density function f, describing the phenomena, based on the measurements. In general,
density and conditional density function estimation are methods for determining the closest
estimate f to the true density or conditional density function f.

The estimation of density and conditional density functions relating continuous random
variables is challenging, as the only information about f is the observed data D = { d;, ..., dp, },

where d, € RN are specific measurements. Note, that other forms of data may be available too,
e.g., uncertain data in the form of a distribution. For the further derivations, it is convenient
to formalize the data as the derivative of the empirical cumulative distribution function, i.e.,
the empirical probability density function (EPDF) [174],

|

fo(z) = Zwﬂ(&—di), (2.1)

with w; = 1/|D| for all 1 < i < |D| and z € RN, As for large |D|, the cumulative distribu-
tion of the EPDF Fp converges towards the true function F' [190], fp can be considered an

1For the sake of brevity, the nomenclature is imprecise: the term (conditional) density estimation is ambiguous as it may be
understood as denoting the estimation of a single probability value for one set of events or it may refer to the estimation of the
(conditional) density function, i.e., the entire function for all events and sets thereof.
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approximation of f—similar to a kernel density estimate [179, Ch. 3.7]. Therefore, in density
and conditional density estimation the distance D ( fp, f ) between the estimate and the data
shall be minimized. Note, that for both, density and conditional density function estimation,
fp is a probability density function. In the case of conditional density estimation, fp is the
joint density describing the observed combinations of input and output values.

Assessment Criteria Even though this setup might appear appropriate at a first glance, it is
doomed to fail because in hardly any application an infinite amount or at least a sufficiently?
large number of samples are either obtainable or may be obtained only at prohibitive costs.
Therefore, |D| has to be assumed to be small. This assumption means that only a very small
number of points in RN conveys information as for most events the probability is zero. The
problem is ill-posed in the sense that infinitely many functions f minimize D ( fp, f) but
potentially differ “between” the data points. In order to arrive at meaningful results, the
quality of an estimate is assessed according to the following criteria:

Descriptive Validity The observed data D shall be described well by the estimate f in the
sense that the elements of D are very likely to be generated from the model.

Prescriptive Validity For unobserved data U, U N'D = &, generated according to f, the
estimate f shall generalize well, i.e., the function shall assign high probability to u € U.

Besides these mandatory properties, an important property for the practitioner is:

Computational Efficiency Besides the quality of f, it may be necessary to optimize the
representation of f with respect to its future use, i.e., space and time complexity of
its processing. For some applications, only a low testing time, e.g., a sparse function
representation, is needed, whereas others additionally require a efficient training.

The above defined criteria will be used to assess contributions of this thesis as well as the
state of the art for density and conditional density estimation. These assessment criteria could
be formalized even further, e.g., with respect to the consistency [174, 179] or capacity/structural
risk minimization [190, 191], but this would exceed the scope of this thesis.

Difference between Density and Conditional Density Estimation Before giving the detailed
problem definitions, it is imperative to discuss the difference between density and conditional
density function estimation. In theory, conditional density function estimation is entailed in
the density function estimation problem as the following relation

[y, 2)

holds for continuous random variables z € RN,y € IRM. Determining the conditional density
function f(y|z) requires the knowledge of f(y,z) only, as f(z) can be obtained by marginal-
ization. From a theoretical point of view, the obtained conditional density fulfills all necessary
conditions, i.e., non-negativity and integration of the probability mass to one for each fixed
input value. Ex.2.1 demonstrates the main objection against subsuming conditional density
estimation by density estimation by a counterexample based on a trigonometric functional

dependency perturbed by additive Gaussian noise.

2In this context, sufficiently large shall be understood as a number of samples large enough to allow for the calculation of an
estimate with a precision beyond the numerical precision of the given computing device.
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Figure 2.1: Conditional density function estimates obtained from EM, KDE, and GPR.

Example 2.1 A cubic function disturbed by additive noise, as shown in Fig.2.1 (a) is given by
y=x+0.5cos(m x)+w, w ~ N(0,0.1).

From this functional dependency, 100 pairs of input and output samples were obtained by randomly
sampling @ uniformly in [—7/2, 7/2] and y according to the distribution of the noise term w.
Two common density estimators for mixture models of Normal densities were used: Expectation
Maximization (EM) algorithm [43] and a kernel density estimator (KDE) [140, 179]. As additive
noise is assumed, EM only trains models with axis-aligned components, i.e., covariance matrices with
non-zero entries on the main diagonal only. For KDE, the kernel bandwidths were chosen according
to “rule-of-thumb” [179]. The conditional densities for EM and KDE are obtained by a point-wise
numeric division of the obtained density function estimates f(y,x) and f(z) according to (2.2).
Fig.2.1 (b) and (c) show the conditional density functions resulting from this application of EM and
KDE. The given results are robust to different ways of regularization for EM, i.e., homoscedastic
or heteroscedastic mixtures model, automatic choice of component number by AIC, or addition of
diagonal stabilization matrices to the components’ covariance matrices. For KDE, the results are
invariant w.r.t. different bandwidth selection algorithms discussed below in Ch.2.1.2. In contrast,
Fig. 2.1 (d) shows the result obtained from Gaussian Process Regression (GPR) [152], which avoids
(2.2) and calculates f(y|x) directly.
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(a) True conditional density function described by p + o. (b) Gaussian mixture approximation.

Figure 2.2: Approximation of a probabilistic model (a) by a Gaussian mixture density with 25 components (b).

In Ex. 2.1, two state of the art density estimators are used for obtaining the density functions
f(z,y) and f(x). The conditional density function estimates obtained by using these f(x,y) and
f(z) as input to (2.2) are shown in Fig.2.1 (b) and (c). Clearly, one of the estimators overfits

and the other underfits f. This effect is inherent when using (2.2) as the models are optimized
to fit the data while ignoring the functional dependency. In contrast, the result of an estimator
dedicated to conditional density function estimation is shown in Fig.2.1 (d). This estimator
exploits the problem structure, e.g., by distinguishing between input and output dimensions.
This experiment shows that the problems of density and conditional density function estimation
need to be differentiated. Additionally, this subsumption approach yields results which are
computationally inefficient to use. This can be seen in the resulting expression in (2.2), as it
consists of a conditional density function representation involving the division of two densities
of potentially arbitrary type, for which in general no analytical calculation is possible.

2.1.1 Restriction to Mixtures of Normal Densities

The state of the art in density and conditional density estimation may be categorized according
to the type of density function considered and the type of estimator used. There is a wide variety
of density types, e.g., Normal, Exponential, Weibull, Z2, Dirichlet or finite and infinite mixtures
of component densities. We refer the interested reader to [174] for an extensive enumeration
of density types and the book series [49, 113] for an in-depth review of the most frequently
used state of the art density types and estimators. Each of the density representations offers a
different trade-off between approximation capability and modeling/processing cost, e.g., when
using them in Bayesian state estimation. For example, a Normal density is not a universal
approximator, i.e., a Normal density cannot represent any density function. Yet, a normal
density may be very efficiently represented and identified, as the moments pu and C suffice to
define it. Additionally, the Normal density allows for efficient processing as marginalization,
conditioning, and the product of two Normal densities may be calculated analytically [152]. In
contrast to the Normal density, a mixture of Normal densities, i.e., a Gaussian mixture density
(GM) is a universal approximator at least for an infinite number of components [128]. Even
though the result of a product of Normal densities could still be described by two parameters,
the representation size of a GM grows during multiplications, c¢f. Appendix A.1.2.
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For the remaining part of this thesis, only Normal densities and Gaussian mixture densities
will be used. Due to their reasonable trade-off between representation power and quality,
estimators for GM with a finite number of components will be considered. An approximation
of a conditional density function by means of a finite Gaussian mixture is depicted in Fig. 2.2.

2.1.2 Density Estimation

In this section, the state of the art in density estimation will be summarized w.r.t. GM density
representations. As mentioned in the beginning of this chapter, the density estimation problem
is central to statistics and has therefore gained a lot of attention for a long time. We refer the
interested reader to the statistics literature for a more detailed treatment and omitted aspects,
e.g., [174, 179, 189] or more recent treatments [49, 53, 129]. For a GM, density estimation
corresponds to the determination of the number of components L € IN and the parameters of
each component of the mixture density function

flz) = Z a N(z; ., C;) . (2.3)

The parameters for the i-th normal density are the weight a; € RY, a = [ay ... az]T, aT 1

the mean p, € IRY, and the covariance matrix C; € IRN*N with matrix elements C,Ej’k).The
parameters may be summarized in vectors

a=lay...on]" | (2.4)
T
o= [ ] (2:5)
T
2= [051,1) e 0§N’N) . U(Ll) o U(LN’N)} ) (2.6)

and collected into one vector-valued parameter 6, i.e.,

O=1[ ot u* =t ]T. (2.7)

The restriction to finite GM reduces the set of relevant estimators [53, 129, 189]. The remaining
estimators may be categorized according to the minimized scoring function or measure: log-
likelihood, mean integrated squared error, or a distance.

Maximum Likelihood Estimator This class of estimators is the most popular and reflects the
aforementioned descriptive validity. The key idea is to maximize the likelihood by which the
estimate f produced D. This can be formalized by the data likelihood function

D]

L(D) = f(d,....dim) = ] £(d). (2.8)

By a simple application of the logarithm to (2.8), the log-likelihood is derived

D]

L(D) = Z log f(d;) . (2.9)

The (log-)likelihood assumes D to be i.i.d. Because the factors of the likelihood decompose into
a sum in £ and the maximizers are identical, £ is maximized typically. Using this score, the
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parameters # are estimated for a fixed number of components L using the Expectation Maxi-
mization (EM) algorithm [43]. A maximum likelihood estimator (MLE) iteratively maximizes
(2.9) or a lower bound thereof. Note that there exists a wealth of variants of this algorithm.
The interested reader is referred to [49, 53, 129].

The log-likelihood captures only how well the data is described by the model. If a component
coincides with a data point, the log-likelihood for a GM is trivially maximized by a singular
covariance matrix. In order to avoid this effect and improve the prescriptive validity, e.g., a
stabilizing matrix may be added to the covariance matrix or a penalized log-likelihood estimator
[49] may be employed. The former regularization approach is popular but lacks an intuitive
interpretation w.r.t. the densities’ shape. The latter is a theoretically well-founded approach,
but suffers from inefficient implementation and has not found widespread application.

Kernel Density Estimator The key idea of the so-called kernel density estimator (KDE)
[87, 140, 153] is to allow the data “[...] to speak for themselves |...]” [179, p.1]. This estimator
may be understood as an extension of data histograms obtained by replacing bins with kernels
[49, 179]. The kernels are placed on each d; € D, e.g., for the M-dimensional case [179]

f(z) |D| i 2 K ( ) K(z,z,) =K (zf) (2.10)

where the kernel satisfies certain conditions, cf. Appendix A.1.5. The most important is

K(z,z;)dz =1,
RN
asserting that the probability mass integrates to one for each component and any convex combi-
nations of components subsequently. For the sake of simplicity, the rest of this section considers
only the univariate case, where the only free parameter in (2.10) is the smoothing parameter h.
Many methods for determining h exist. The interested reader is referred to [87, 140, 153] for an
overview. Typically, the value of this parameter is calculated by minimizing an approximation
to the mean integrated square error (MISE) [153, 179], e.g.,

MISE() = [ (#() = @) s
:/RE<f(93)—f(x)>2dx (2.11)

2

:/ E f(z) — f(2) dx+/ var (f(x)) dx.
R \ —m— R

bias

By reordering the operators, the integral of the mean square error is obtained (2.11). Further
calculations result in a sum of the integrated square bias of f and the integrated variance [179].
Both bias and variance may be further simplified and approximated [179]3, yielding

MISE(f —h4k2/ f(x)? dz + —/ K(t)? dt, (2.12)
R
and therefore the optimal bandwidth A € IR, minimizing (2.12) is [179, Sec. 3.3.2]

1 1
_2 1 - 5 5
h = argmhin ko © |D[7t}> {/R " (z)? dx} i {/R K(t)? dt] i : (2.13)

3The interested reader is referred [179], Ch. 3, for a more detailed derivation as only a brief review is given here.
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where ks is the constant variance of the density of the kernel function. Because f is not accessi-
ble, a minimizer to (2.13) cannot be found without further assumptions. Several approximations
have been used for this purpose. The most popular assumption is that f is normally-distributed
with a given standard deviation ¢. Calculating the factor depending on f and instantiating for
a specific kernel gives an approximate result for A* [179]. For a Gaussian kernel, the following
estimate of the optimal bandwidth is obtained

A
h* =~ (g) a|D|"5. (2.14)
The unknown & may be estimated from data, e.g., using the standard deviation of the empirical
probability density function, a robust estimate thereof, or calculated by a more complicated
spread calculation, which yields the most common variant of (2.14) known as Silverman’s “rule-
of-thumb” [179]. Note, that the choice of h w.r.t. an assumed density regularizes the results
and therefore improves generalization properties of the estimate, i.e., the prescriptive validity.

Minimum Distance Estimator The KDE minimizes the MISE error between the inaccessible
true density and its estimate w.r.t. an assumed true density type and the data, in order to
determine the smoothing parameter. The key idea of minimum distance estimators (MDE) [189]
is the use of the EPDF as an approximation of the true density only and the minimization of
a given distance measure w.r.t. 6

D(fo(z), f(z)) (2.15)

Note that even though D (., .) in (2.15) is commonly referred to as a distance, it only needs
to satisfy the following properties [189], which are automatically satisfied by a distance,

D(fi(z), f2(z)) 2D (filz), filz)), VY, foeF, (2.16)
and for the considered function space F
D(fi(z), folz)) =0 = fi=/fa. (2.17)

The condition (2.17) may be relaxed in the sense that the equality holds if the two densities are
identical only almost everywhere [189, Sec. 4.5.1]. The minimization of (2.15) may be performed
by standard optimization algorithms. These conditions do not assume the triangle inequality
or the symmetry of D to be fulfilled [189, p.115]. Because the approach uses the EPDF,
minimizing (2.15) asymptotically guarantees convergence to the true density, if the density is
identifiable [189]. The minimum distance approach has been employed with many types of
distances, e.g., the [y norm of the densities or distributions, the Kullback-Leibler divergence
(KL) or the Hellinger metric. The interested reader is referred to [189, p. 115] for a more
extensive overview. It is also interesting to see that the MLE may be obtained from the MDE
as a special case, when using the KL divergence [189], cf. Appendix A.2.2. Even though the
MDE approach exhibits mathematical simplicity, it did not gain much interest outside of the
academic community. This remains unexplained, but might be attributed to the computational
difficulties inherent in the minimization problem. In general, the MDE attempts to solve
a non-convex nonlinear function minimization problem for arbitrary distances w.r.t. a high-
dimensional parameter space. The size of the parameter space grows most often quadratically
with the dimensionality of the data points and for the considered mixture densities at least
linearly with the number of components, too. Additionally, the prescriptive validity is not
explicitly addressed by the MDE as the distance does not regularize the solution.
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Table 2.1: Brief summary of the properties of the MLE, KDE, and MDE.

Descriptive Prescriptive Efficiency Heuristics
Validity Validity
MLE || Fits arbitrary Augmentable #Components Initial
mixtures Penalty selectable values
KDE Mixtures Choice of kernel, #Components Smoothing
{u} =D smoothing parameter = |D| parameter only
MDE || Fits arbitrary Augmentable Large optimization Initial
mixtures Penalty problem values

Combinations of Estimators The presented types of estimators are prototypical. Some esti-
mators aim at combining the advantages of each estimator type as presented below:

e In order to advance “from kernels to miztures” [175], i.e., to increase the expressiveness of

the density estimate, a KDE is used to construct an initial estimate of the density. Given
this initial estimate, an MLE is employed to obtain a mixture density. The key idea is to
capture the major characteristics of the density function by means of the KDE estimate
and use the MLE as a post-processing in order to obtain a sparse mixture density.

Another approach is to make a KDE estimate sparse by means of a weight optimization
w.r.t. the integral squared distance (ISD). The advantage of this approach is a sparsifica-
tion of the KDE estimate at a low computational cost. The sparsification is formulated as
a weight optimization problem which can be solved in O (L?) operations only. Again, the
key idea is to capture the major characteristics of the density function by means of the
KDE estimate, but in this approach a sparsification of the estimate is sought [63].

Comparison The presented approaches may be contrasted w.r.t. descriptive and prescriptive
validity as well as its efficiency. Tab. 2.1 lists the major differences for the three prominent
estimators MLE, KDE, and MDE. Additionally, the most important heuristics/assumptions
necessary for implementing the considered estimator are described.

Descriptive Validity The respective MLE, KDE, and MDE estimators for GMM inflict differ-

ent limits to the functions estimated, i.e., the descriptive validity. KDE restricts the set of
GM estimates to all GM with means identical to the data points. Additionally, KDE only
involves the determination of one common kernel and its smoothing parameters, whereas
MLE and MDE determine for all parameters for each component.

Prescriptive Validity In order to assure prescriptive validity MLE needs to be augmented

by a penalty term, yielding the penalized log-likelihood score [49, 179], KDE implicitly
regularizes the optimization by referencing to a fixed distribution and the restriction of
the mean positions. The choice of the distance measure impacts the solution of MDE, e.g.,
penalize differences in the tails of the distributions or at points of high probability. Yet,
to obtain non-trivial results for small |D| additional regularization is necessary.



2.1. Density and Conditional Density Estimation 13

Computational Efficiency Regarding the computational efficiency, KDE has lower training
times than MLE and MDE due to the fewer number of parameters to optimize. In contrast,
the resulting density of KDE—-except for additional sparsification—will entail by default |D|
components and the estimates for MLE and MDE may contain drastically less.

Heuristics This advantage for MLE and MDE is accompanied with the problem of selecting
how many components to use, which is easily bypassed by the KDE as all means as well as
the covariance matrix are fixed a priori. In addition, for the MLE a cautious initialization
of the components is necessary to avoid trivial results, e.g., singularities. Start value
selection is typically performed by employing heuristics [53, 129]. The kernel parameter
selection of the KDE is similarly heuristic w.r.t. to a reference distribution.

Remaining Challenges Each of the three main approaches MLE, KDE, and MDE as presented
and discussed above suffer from several drawbacks listed below. The following section describes
how these challenges are addressed in this thesis.

e The maximum likelihood approach is theoretically not sound, as a point-wise evaluation
of continuous densities is not well defined. MDE on the basis of cumulative distributions
allows for a comparison w.r.t. the entire state space. Yet, the MDE approach is in general
computationally inefficient, whereas the MLE is acceptable from a computational point of
view. Additionally, it should be noted, that the standard cumulative distributions for uni-
variate random variables are not well defined w.r.t. to density comparisons for multivariate
random variables.

e The state of the art approaches lack an easy implementation of regularization mechanisms
for improving the prescriptive validity of the obtained density function estimates. For
MLE, regularization may be introduced by penalty terms. An implementation thereof
is non-trivial. MDE allows for regularization by choosing the employed distance mea-
sure. KDE regularizes the estimates by the kernel choice and the assumptions used for
determining the smoothing parameter.

e Regarding the computational efficiency, the trade-off between sparse representations as
produced by MLE as well as MDE and efficient density estimation by KDE, i.e., a trade-off
between training and testing time, may be improved.

Contributions of this Thesis The contributions of this thesis w.r.t. density estimation may
be summarized as an MDE approach allowing for optimization of all mixture parameters and
an MDE approach to sparse KDE.

e A novel cumulative distribution function and the corresponding distance measure is intro-
duced to MDE. The novel cumulative distribution function resolves the ambiguity induced
by extending the univariate cumulative distribution to the multivariate case. This distance
asserts symmetry and uniqueness of the estimates.

e A regularized MDE approach using the same novel distance measure for estimating sparse
kernel densities is presented. This approach may be understood as a combination of the
MDE approach with kernel density estimation, which is phrased as an optimization prob-
lem and produces sparse KDE estimates.
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Figure 2.3: Different objectives and models used by function regression and conditional density estimation.

2.1.3 Conditional Density Estimation

In this section, the relevant state of the art in conditional density estimation (CDE) will be
summarized. As shown in Ex. 2.1, the problem of estimating conditional density functions
differs from density estimation. The DE cannot be subsumed by CDE, because the functional
dependency manifesting in the different interpretation of the input and output dimensions
is neglected. Nevertheless, both densities and conditional densities are estimated given only
samples of a (joint) density. For two random variables 2 € RN and y € IRM, the conditional
density f(y|z) is estimated using the empirical joint density N

ID|

fp(g,z)zgwiéqﬂ—di) : (2.18)

with w; = 1/|D| for all 1 < < |D| and d; = [d;, d;,]" € R and the following identity
fly.2) = flylz) f(z). (2.19)

Since neither the true joint density over the input and output variables f(y,z), nor the density
about the input variable f(z) are directly accessible, they may be substituted by an estimate,
e.g., the respective EPDF (2.18), as in [107, 190], or a Gaussian mixture estimate of the EPDF
[105]. The discrepancy between the estimates obtained in Ex. 2.1 results from the fact, that
only the parameters of f(y|z) in (2.19) should be learned, yet in the case of calculating the
conditional density from density estimates the joint densities’ parameters are optimized. The
problem of finding a solution satisfying (2.19) is challenging if descriptive and prescriptive
validity as well as computational efficiency shall be ensured for the same reasons as in DE. The
true underlying conditional density function may be obtained only by observing sample output
realizations for each input realization relative to its frequency.

Due to different objectives, there are several approaches towards CDE. The major distinc-
tion is whether the problem is understood as a function regression problem, i.e., estimation
of an underlying generative model and a superimposed noise term, or the identification of the
probabilistic model only. Fig. 2.3 depicts the different objectives of function regression and
conditional density estimation, which are discussed in the next sections.

Generative Model The most restrictive approach to CDE assumes the existence of a func-
tional dependency ¢ relating input to output values according to

y=yg(z w), (2.20)

where g : RN x RV — RM is a potentially nonlinear function and w € RY is a noise term
w ~ f, capturing the modeling deficiencies. In (2.20), the noise may effect the deterministic
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Figure 2.4: Top-down and perspective view of the probabilistic model f(y|z) (translucent) derived from a
generative model with mean function g (dark gray) and additive zero-mean Normal noise.

dependency arbitrarily. For additive zero-mean noise, i.e.,
y=yg(x) +w, (2.21)

the corresponding probabilistic model is obtained according to

flylz) = . 6y — g(z) — w) fu(w)dw (2.22)
= fu (y —9(2)) - (2.23)

Fig.2.4 is an illustration of an exemplary probabilistic model corresponding to a univariate
input/output dependency, g : R — IR, and obtained according to (2.22). CDE in this setting
corresponds to estimating ¢g and f,, simultaneously based on D. In general, every algorithm
for function regression, e.g., linear/kernel smoothing [73] or smoothing splines [194], might
be used to estimate g. The estimated generative model might be augmented with a noise
term perturbing the function value for each input value subsequently. Alternatively a function
approximator may be used to estimate the generative model and noise parameters jointly. For
example in Mixture Density Networks (MDN) [17, 18] a neural network is used to determine the
parameters of a GMM noise model. In contrast, a Gaussian Process Regression (GPR) [152]
calculates a distribution over mean functions f(g) or colloquially, a mean function with error

bars. A Gaussian process (GP) is defined by a multivariate Normal density for D = {(y, z) gl,
consisting of input and output tuples, e.g., in the scalar-valued case
WH2L ~ W (p({} )i K (2.24)

with a covariance matrix Kp € IRIP*IP! composed of the pairwise similarities of the data points

K(z1,21) K(z1,22) -+ K(x1,2p))

K _ K(.ZUQ,.TI) K(.TQ,(L‘Q)

7 (2.25)
K(]J|£|,£L‘1) s K(x\D\’x|D|)

where K a kernel function, cf. Appendix A.1.5. Note that for every finite subset of the input
values in D, the distribution of output values needs to be a multivariate Normal density to define
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a GP. The probabilistic model reflecting f(g) is calculated by conditioning and marginalizing
over all mean functions G, i.e.,

fie.P) = [ .0 D) flaiD) do.
Dropping the explicit dependency on D and following [152], one obtains
for(ylz) = N(y; u(z), 0 (2)), (2.26)

which corresponds to a Normal density. Using the pairwise similarity between a fixed input
value x and the observations D, i.e., k = [K(x,:z:l) o K(af,x|p|)]T, the vector of all output

values in D, ie., y = [yl .. .y|p|]T, and the noise variance 2, the mean function u(z) and

variance function o(x) used in (2.26) are given by

D

o(z) = K(z,2) — k" (K + 0,I) 'k,

with oy = (K + 0,1)y. The properties of the GP may be discussed for the mean function
estimate and the probabilistic model. The mean function p(x) of the GP is the estimate of the
mean function g. As pu(z) in (2.27) is a weighted linear combination of the output values in D
it may be considered a linear smoother, cf. [73]. The smoothness of u(x) depends on the kernel
choice. The GPR estimate of g(z) := u(x) is the minimizer of [152, Sec.6.2,7.1]

1 D]

%07 yi — g(z:)]* . (2.28)

=1

1
Jlg) = 5 llally, +

The trade-off problem (2.28) comprises of a regularization and a data fit term. The regularizer*

is the norm of the ¢ in the reproducing kernel hilbert space (RKHS) #H induced by the GP’s
kernel K. The data fit is measured by the squared error, which is relative to a negative log-
likelihood of a Normal noise model with variance o2 [73]. General consistency results, e.g., w.r.t.
other loss functions or asymptotically are unknown up to now. The existing results assume well-
behaved kernels which allow, e.g., for orthogonal decomposition and are non-degenerate [152,
Sec.7.1]. The probabilistic model in (2.26) consists of Normal densities centered at u(z) for
each fixed & with input dependent variance. The smoothness of the surface of the probabilistic
model fgp therefore depends on the kernel choice too. Assuming the noise variance is correctly
identified the model may only converge to the true probabilistic model relative to the limits of
the convergence of the generative model.

Regarding descriptive validity GPR only suffers from negligible side-effects of a wrong ker-
nel choice and kernel parameters if the noise is Normal. A major drawback of a GP is its
incapability of describing multimodal noise densities without reformulation of the problem,
i.e., the identification of multimodal noise or a data association problem in conjunction with
multiple regressions. Prescriptive validity is achieved by smoothing the generative model, i.e.,
by minimizing (2.28). Determining the hyperparameters is a model-selection problem, typically
involving gradient based maximization of the marginal likelihood of the output values [152], i.e.,
a target function with potentially many local extrema. The computational complexity is domi-
nated by the fact, that the entire data set D is stored in the obtained functional representation
by default. Evaluating a probabilistic model for a value involves the inversion of a |D| x |D|

4The interested reader is referred to [152, 164, 190] for more detailed information about RKHS and regularization properties.
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matrix, which costs O (|D|3) operations. Yet, there is a large variety of sparsification approaches
[89, 152] for reducing the complexity by using subsets of the data D’ C D, |D'| < |D|. Besides
this aspect, the representation of the conditional density function in the form of (2.26) is un-
favorable. Even though evaluating (2.26) for certain inputs is straight forward, if a density is
given as an input, this computation can only be performed approximately in general. This is
very disadvantageous, e.g., in nonlinear filtering or in inference in continuous Bayesian networks
[42]. Note that there exist some exceptions [152], e.g., for the squared-exponential kernel, and
assumed density solutions [42].

Probabilistic Model The less restrictive approach to CDE focuses on the recovery of the
probabilistic model only. The identification problem is relaxed by disregarding the existence of
a generative model, cf. Fig.2.4. The objective is the identification of the probabilistic model
only. Approaches only determining the probabilistic model may be categorized into indirect and
direct methods.

Indirect CDE Indirect methods construct a conditional density function estimate indirectly
by using density estimates. This is the approach used in Ex. 2.1, i.e., the relation
flylz) = f(y,z)/f(x) is exploited. The fundamental deficiency of this approach has
been pointed out earlier: optimization of the wrong parameters and in general, no closed-
form processing, because of the division contained in the probabilistic model, e.g., for the
considered density and conditional density function in the form of GM.

Direct CDE In contrast to the indirect approach, the direct approach aims at the estimation
of the conditional density function only. As noted in [78], “[...] a small amount of work
on nonparametric kernel conditional density estimation has been done by statisticians and
econometrics researchers |[...], it appears to have received little or no attention from the
machine learning community [...]”. In fact, the most important related works are a con-
ditional density approximation [78] and an SVM-like CDE [190, 193]. The former aims
at the fast evaluation of existing kernel conditional density estimates. The latter is a
straight-forward extension of the structural risk minimization (SRM) principle [164, 191],
i.e., estimates are determined based on their estimation quality and their capacity as de-
fined by the norm in the respective function space. Graphically, this can be understood
as preferring flat f over highly oscillating f or as minimizing an entropy measure of f.

Comparison The major differences between the approaches to CDE w.r.t. descriptive and
prescriptive validity as well as their efficiency may be summarized as follows. Due to the
obvious deficiencies of the approach of subsuming CDE by DE, this approach is not discussed.

Descriptive Validity The GPR and direct CDE as presented above are both non-parametric
approaches, i.e., f is represented in terms of the D in conjunction with a model. Both
approaches will therefore represent the training data well in the limits of the employed
model. The difference between GPR and the SVM-like CDE approaches is that the GPR
assumes one underlying mean function g and by default uses a noise term represented
by a Normal density. Even though possible, it is far more difficult to integrate multiple
g present in the data or multimodal noise than for the indirect approach. The indirect
approach suffers from the fact a finite mixture cannot represent a valid conditional density
function, because the probability mass constraints cannot be met.

Prescriptive Validity Regarding the prescriptive validity the GPR inherits the properties of
the well-understood non-parametric linear smoothing and combines it with a smooth noise
density. Given the model assumed by the GPR is appropriate, it delivers well generalizing
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estimates. The indirect CDE suffers from the restriction of the components’ positions.
This restriction causes severe degradation of the prescriptive validity in parts of the state
where little or no data is present.

Computational Efficiency The GPR has two drawbacks regarding computational efficiency.
The representation of the GPR’s probabilistic model (2.26) allows for an easy point-wise
evaluation, but only for approximate use in a Bayesian estimation framework. For example,
the GPR-based approaches to (nonlinear) filtering such as the extensions of the Extended
or Unscented Kalman Filter (GP-EKF/UKF) [95, 96, 97] or the analytic moment-based
GP (GP-ADF) [41, 42] have to perform an approximation in each step of the recursive
estimation. This approximation additionally limits the representation of the posterior
state estimates to be normally distributed. In contrast, a representation of f in the form
of a GM allows for closed-form Bayesian inference [4, 50, 107] and supports multimodal
posterior state distributions. Given the prior density and all probabilistic models are GM,
a nonlinear filter with constant time complexity may be derived [107].

Remaining Challenges The overall aim of this thesis is to learn dynamic systems for the
application in human-robot-cooperation. It is therefore imperative that these models may be
used for recursive state estimation and generalize well. The remaining challenges therefore are:

e A further sparsification of conditional density function representations in GM form. For
this reason, an improvement in the capacity of the kernel conditional density function and
the existing sparse CDE are necessary in order to allow for further sparsification.

e Like in density estimation, the indirect CDE is limited due to use of a cumulative distri-
bution function which is not well defined for comparing multivariate random variables.

e In general, a combination of the favorable processing properties of the GM representation
with the prescriptive validity of the GPR seems desirable.

Contributions of this Thesis The contributions of this thesis may be categorized into exten-
sions of the existing sparse CDE [190] and extensions lifting the default non-parametric to a
full parametric optimization, i.e., all parameters of the mixture density are optimized.

Eaxtensions of Non-Parametric Conditional Density Estimation

e A regularization term related to the Rényi entropy is derived and its relation to the norm
in the RKHS induced by the mixture estimates kernel is discussed. This regularization
term extends the norm in the RKHS by using inhomogeneous kernels.

e A regularized distance-based sparse CDE is derived, which avoids the fallacies of the
multivariate extensions of the cumulative distribution function by the modified Cramér-
von Mises distance. Using the above regularization term, heteroscedastic GM estimates
may be obtained.

Full Parameter Conditional Density Estimation

e The limitation of the non-parametric CDE approaches to estimate only GM with compo-
nent means identical to D is lifted by a nested optimization scheme and the introduction
of a superficial regularization term. The superficial regularization is based on the inter-
pretation of the roughness of the surface f in terms of the surface curvature. For the
bivariate case, the superficial regularization is shown to be an approximate upper bound
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on the curvature of the generative model’s mean function, a minimization of this regularizer
simultaneously regularizes the mean function.

e A desirable property of a GP is the modeling of the uncertainty about the model by means
of the covariance of the noise density f,,, cf. Fig.2.3. This property is very useful for many
applications, such as sensor scheduling or active sensing and conveys much information to
the practitioner. In order to reflect this property with a CDE represented as a GM, the
GM’s component covariances are adapted to the confidence in the model. This is achieved
by an extension with variable kernels [25] based on the local data density.

2.1.4 Hyperparameter Optimization

Solving the density or conditional density estimation problem not only involves finding the
parameters 6 of a Gaussian mixture density (2.7), but rather solving for

n=[a" p" " W], (2.29)

where w denotes the parameters such as the parameter A\ governing the trade-off between
training error and regularization term in the SRM [190] or the error tolerance e for the e-
insensitive loss function [107]. The regularized density and conditional density estimation al-
gorithm [107, 190] will determine only the weights « of a Gaussian mixture density. The other
parameters ¢ need to be optimized in a meta optimization, using the algorithm in Sec. 3.4 or
Sec. 4.3 as a subroutine. In the following, only ¢ are denoted as hyperparameters, i.e., the
parameters of @, which are not optimized by the algorithms in Sec.3.4 or Sec.4.3, and the
additional parameters, e.g., \. The optimization of the hyperparameters is important, as e.g.,
a progressive C; may result in overfitting and dense representations of the solution and a con-
servative C; may lead to underfitting and produce sparse representations. Similar to density
and conditional density estimation as such, hyperparameter optimization is concerned with
the problem of finding a hypothesis explaining the observations and generalizing to unobserved
values. Therefore the hyperparameter optimization problem may be understood as a classi-
cal model selection problem [130, 156] and addressed by the same approaches: assessment of
the generalization properties of the estimate based on theoretical bounds or example results,
i.e., based on data [47, 164]. As for the considered problem no theoretical bounds on the gen-
eralization properties exist up to this point in time, this approach is omitted and left to be
subject of future research. Regarding data driven approaches, these may be further categorized
as being based on heuristic, Bayesian model selection, or cross-validation.

Heuristic Model Selection Even though theoretically hardly grounded, enough model selec-
tion problems are addressed by the practitioner using heuristic “rules-of-thumb”. For example
in kernel density estimation, Silverman discusses “[s|ubjective [c]hoice[s]” [179, Sec.3.4.1] or
the so-called rule-of-thumb [179, Sec. 3.4.2] for choosing the smoothing parameter h of the GM.
Note, that the rule-of-thumb is one of the most often used kernel width selection methods
and typically this rule is applied disregarding whether the underlying assumptions hold or not.
More general “educated guess” methods may for example be found in [164, Ch. 7.8], which in-
clude advice for transferring parameter settings from already solved to new problems, stopping
criteria based on expected error rates or volume assessments.
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Bayesian Model Selection In contrast to the heuristic model selection, Bayesian model se-
lection [47, 123, 152] is based on the idea that models should be compared by the posterior
probability of the model given the data D. Adapting [123, Ch. 28] to the given problem, for a

fixed set of hyperparameters é , the posterior probability may be calculated by

F(CID) x f(DIC) - £(C). (2.30)

where f (é ) is our prior information about the distribution of é and the likelihood is given by

(0= [ | fPla.d)- feld) da. (231)
with « the set of parameters not being hyperparameters. Bayesian model selection results in
choosing the model which is most likely given the data and our prior information about the
hyperparameters. The flaw of this approach is that (2.30) is in general neither analytically nor
numerically solvable—at least not in reasonable time [47]. Additionally, the effort for asserting
the relevant constraints may be substantial.

Model Selection by Cross-validation The key idea of model selection based on cross-validation
[47, 130, 156] is to estimate the generalization performance by not estimating the distribution
of the underlying phenomenon explicitly but by using the data as a representative of this
distribution. This approach avoids the modeling problems of a Bayesian approach, but is
computationally expensive. The key idea is to obtain a robust generalization assessment by
partitioning the given data into several disjoint training and validation sets. By repeatedly
training and testing on different partitions the assessment shall avoid overfitting and deliver
a good approximation as to how the given estimators perform with unseen data. One ob-
tains a “leave-one out” (LOO) estimate of the generalization error if only one sample is left
for testing in each iteration. The computational effort is maximal for this type of estimate,
as |D| estimates need to be obtained from |D| — 1 samples. Even though the LOO estimate
may be approximated by, e.g., generalized cross-validation [73, 194], the computational effort
is demanding. In contrast, if the number of partitions is small, the test effort will be reduced,
but the data distribution may deviate strongly from the distribution of full data set, i.e., the
assessment of the generalization is inaccurate.

Contributions of this Thesis The hyperparameter optimization depends on the problem
given. In this thesis, hyperparameter optimization algorithms for the non-parametric density
and conditional density estimation as well as the full parameter conditional density estimation
will be presented. The contributions may therefore be understood as solutions to instantiations
of the generic hyperparameter optimization for two specific problems.

e The first hyperparameter optimization for non-parametric sparse density and conditional
density estimation is presented. Several extensions for the CDE are discussed.

e The first hyperparameter optimization for the full parameter sparse CDE is presented
and discussed. The main contributions are analytical calculations and approximations for
improved efficiency of the hyperparameter optimization.

2.1.5 Conditional Density Estimation given Samples and Prior Knowledge

In the preceding sections, the CDE from samples D was discussed. Yet, in reality no mea-
surement sequence performed for obtaining D is free of defects and the results of consecutive
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measurement sequences need to be fused. In this case, conditional density estimation w.r.t. D
and prior knowledge, e.g., in the form of already obtained estimates, needs to be considered.
Additionally, previously conducted high resolution measurement campaigns, which may have
been limited to a certain part of the state space, need to be combined with low-resolution
sequences which span a larger state space.

The challenge is to fuse information given in the form of samples with this prior knowledge,
which may be given in the form of already compiled generative or probabilistic models. The
key idea of the incorporation of prior knowledge is to estimate the conditional density function
from the samples and the prior knowledge simultaneously. The approach to introducing prior
knowledge into the CDE algorithm depends on the specific type of prior knowledge. For the
remaining part of this thesis, only prior knowledge in the form of a generative or a probabilistic
model is considered. For prior knowledge available in the form of a generative model, the
following model is assumed to be given

y=g(x)+w, (2.32)
with additive, zero-mean noise, where g : RN — RM, and a noise term w € RM, w ~ fuw- If
the corresponding probabilistic model is given, the prior knowledge will be represented as

flyle) = fu (y = 9(2)) -

The investigated CDE problem will be phrased as a quadratic program (QP) embedded in
a nonlinear non-convex hyperparameter optimization algorithm. Estimating the conditional
density function from samples and prior knowledge simultaneously requires the induction of
the prior knowledge into the QP. As the used QP formulations resemble generic support vector
machines (SVM), the approaches to introducing prior knowledge into SVMs [162, Ch. 4] can
be applied to conditional density estimation too. There exists a wealth of literature about
introducing prior knowledge into SVMs. The relevant approaches are discussed below. The
interested reader is referred to [115] for a more detailed overview about incorporating prior
knowledge into SVMs for classification and regression tasks. The approaches may be categorized
according to the way information is introduced into the QP formalism: adding artificial data,
changing the kernel, changing the regularization term, or changing the constraints.

Artificial Data The incorporation of prior knowledge, e.g., invariances, by appending artifi-
cial data is discussed, e.g., in [40] and [164, Ch. 11.3]. This approach may be seeminglessly
integrated into the proposed CDE algorithms. Given prior knowledge in the form of a compiled
model, i.e., information about f for the entire or parts of the state space, only samples thereof
may be used by this approach. This approach may be implemented fast but is inefficient.

Mixture Kernel Another approach towards incorporating prior knowledge in the form of in-
variances was proposed in [163], where the distance measure as implicitly encoded in the kernel
was changed to allow for invariance against group transformations and to make use of local
correlations. Other approaches based on specialized kernel, exploit that a convex combination
of valid kernels yields a valid kernel [178]. These include, product probability kernels [88] and
multiple kernel learning [8]. Product probability kernels model the causal dependencies pro-
ducing the data. In multiple kernel learning the original optimization problem is extended to
include the simultaneous determination of the mixture proportions of a set of kernels. The
resulting component of f is in itself a mixture kernel. For CDE one would obtain a mixture
density of mixture density components.
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Regularization Term & Constraints In [184], the regularization term was augmented with a
term penalizing the distance between the current estimate f and a given function f. Estimates
f closer to the prior knowledge encoded in f will be penalized less than other estimates. A
detailed discussion of the properties of the regularization term is given in [164]. A common
problem for SVM applied to classification problems, is the availability of prior knowledge in
the form of rules from a knowledge base [115]. The rules may be interpreted as constraining
the solutions and are therefore added to the optimization problem in the form of additional
constraints [124]. In contrast to SVMs used for classification, “rules” interpreted as constraints,
need to have real-valued consequences for the CDE optimization problem.

Contributions of this Thesis In this thesis, only prior knowledge in the form of a given
generative and probabilistic model is considered. The contributions are two approaches for
introducing the prior knowledge into the CDE approach based on the following approximations.

e For introducing prior knowledge about the generative model, the deviation of the mean
of the estimate f from the prior knowledge is penalized. This is achieved by sampling the
mean function and penalizing the point-wise deviation by means of the [j-error.

e In order to incorporate a probabilistic model, the prior knowledge is assumed to be given
as a GM. The GM may encode arbitrary conditional density functions, e.g., encoding
multimodal noise. This form of prior knowledge is introduced into the CDE by replacing
the components in f with a location-based mixture kernel. The kernel is a mixture of
the default kernel and the GM encoding the prior knowledge. The mixture proportion is
governed by the confidence in the prior knowledge w.r.t. the location in state space.

e Both approaches towards incorporating prior knowledge will be shown to reduce the
number of components in f, at the cost of potentially high estimation effort ex ante.

2.2 Intention Recognition

The second part of this thesis is concerned with the application of dynamical systems to in-
tention recognition as means of implicit human-robot-cooperation. The presented approach to
intention recognition is not limited to human-robot-cooperation but is applicable to the wide
range of tasks, which the permanently increasing number of technical devices embedded in
the human’s environment address. Any technical device assisting the human in his daily life
requires at least a basic understanding of the present and future human behavior in order to
support him. Examples are car traffic monitoring [147], surveillance systems [29, 133], airport
security systems |[7], assistance tools in software, e.g., in office [80] or email software [120],
computer games [2, 52|, card games like poker [20], wheelchair control [185] or human-robot-
cooperation [160, 171], cf. [30] for more applications. Applied to a humanoid robot the intention
recognition is input to the overall control loop of the humanoid robot and plays a crucial part
in enabling the humanoid robot to behave similar to a human [160, 172], c¢f. Fig.1.1. This
demands responsive behavior to the human behavior in real-time and with a level of under-
standing similar to humans. These properties are mandatory for the humanoid robot to be
supportive and may in the future lay the foundation for a further development to a robotic
social companion [23, 24, 38]. In the remainder of this section, the problem definition as appli-
cable to the general case, a restricted formulation w.r.t. human-robot-cooperation, the resulting
challenges, related work, and the key ideas for addressing these challenge are discussed. The
section is concluded with a summary of the main contributions.
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2.2.1 Generic Intention Recognition Problem

In this section the definitions necessary for the further discussion are given. The definition of
the concept of an intention is non-trivial: Literally, the term intention stems from the latin
word intentio, which translates depending on the context to mindfulness, concern, undertaking,
or aim [135]. A detailed definition and discussion of the term intention can be found in the
field of philosophy, e.g., [5]. For the purpose of this thesis the understanding of an intention as
an aim or an undertaking is relevant. The concept of an intention has been embedded into a
broader framework of belief-desire-intention (BDI) [22, 34], which has become very popular for
the development of software agents in computer science [76]. For the remainder of this thesis
the following definition is adopted from [168, German)].

Definition 2.1 (Intention, [168]) An intention is a conscious striving towards an aim.

The undertaking of recognizing an intention may therefore be defined as follows.

Definition 2.2 (Intention Recognition) Intention recognition is the process of recognizing
the aim of conscious behavior.

One should note two aspects of Def.2.1. First, Def.2.1 emphasizes the consciousness of the
behavior. The challenge for developing an recognition system is the definition of the relevant
conscious behavior, e.g., from a temporal point of view the question is whether the aim of
the intentional behavior in the next five minutes, one day, or one month is to be recognized.
Second, Def.2.1 does not state if only the aim or additionally the “way” how to achieve the
aim shall be recognized. The way of achieving a goal is denoted as a plan, i.e., a sequence of
actions, and the corresponding recognition problem is defined as follows®.

Definition 2.3 (Plan) “[...] The problem of plan recognition is to take as input a sequence of
actions performed by an actor and to infer the goal pursued by the actor and also to organize
the action sequence in terms of a plan structure. This plan structure explicitly describes the
goal-subgoal relations among its component actions. |...]” [161].

Since the execution of a plan is in each step intentional the terms intention and plan may be
used synonymously [103]. Yet, the concept of an intention may also refer to a relevant set only,
rendering it the more flexible concept [168, German]|. The set of all possible intentions in one
moment is restricted by the belief about state of the world. This set is denoted as a situation.

Definition 2.4 (Situation) A situation is a set of conditions enabling a certain behavior.

The set of conditions may be, e.g., social, temporal, or spatial. This definition is based on
[26, German| and extends the definition given in [168, German| by the emphasizing that the
existence of a situation is prerequisite for intentions. As the conditions of situations need not be
mutually exclusive, the set of existing situations is the context of the behavior [168, German)].
Just as the prevailing situation is a prerequisite for a set of intentions, the pursuit of an intention
changes the situation, i.e., the intention drives actions that change the state of the world.

Definition 2.5 (Action) An action is a manipulation of the state of the world.

An action® is a direct effect of an intention and therefore intentional, i.e., directed towards a
goal. The type of action is not further specified and may be as general as moving from one

5Note that in contrast to the definition of a policy [156] a plan does not describe the transitions between two states-of-the-world
but merely one sequence of actions pursued or to be pursued to achieve a goal.
61n this thesis the term “action” is used synonymously with motion or motion primitive, e.g., [55, 56, 59].
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place to another. For example, if in a household setting one leaves the kitchen towards the
living room, any kind of situation limited to being inside the kitchen, e.g., a meal preparation,
is impossible. The main distinction between an intention and an action is that the action can
be (visually) observed and atomic actions may be defined [58], e.g., as a motion “alphabet”

[55, 56, 59].

Definition 2.6 (Activity) An activity is a coarse change of the state of the world limited to
a restricted spatial area of the world.

In contrast to the fine-grained actions, which are motivated from a generative modeling of
human behavior, activities are motivated by the observation that most human behavior can be
described coarsely as being contained in certain spaces [136, 157, 199]. This is important for a
discrimination of human behavior. The importance of this differentiation for the construction
of a fast multi-level recognition system will be shown in Ch. 7.

The central insight of this section is that the definition of the quantity to estimate, i.e., the
intention, is difficult for a generic problem setup and requires a definition w.r.t. the considered
application. Therefore the exact definition of the intentions to be estimated will be given in
the context of the specific experiments in Ch. 7.

For the categorization of an intention recognition methods it is furthermore necessary to
distinguish whether the intentions of one human shall be estimated or if there is a group of
people, e.g., with a “collective” intention [176]. Similar to many persons being present, many
instances of technical devices may be present with complimentary or redundant tasks, e.g., each
person’s mobile phone and laptop may have complimentary tasks but multiple surveillance
camera systems may have redundant tasks. If these technical devices were equipped with
actuators one might attribute the property of agency to these devices and obtain an intention
recognition problem in a multi-agent scenario. Another categorization is based on the tasks
and their different requirements. For example, the required accuracy and acceptable latency
will differ for applications of a devices in a smart home, a mobile device, a robot, or a humanoid
robot. In the following section, the considered setup in terms of these categories will be discussed
for the intention recognition problem in human-robot-cooperation.

2.2.2 Intention Recognition in Human-Robot-Cooperation

The intention recognition problem discussed in this thesis is part of the Collaborative Research
Center 588 “Humanoid Robots - Learning and Cooperating Multimodal Robots”" [45, 182].
This project is aimed at developing a humanoid robot to support the human in its daily acti-
vities. The example scenario investigated is a household with a standard kitchen in which only
the robot and the human are present. In this setting, the intentions of the human shall be
estimated in order to allow for close cooperation with the humanoid robot in the household.
The estimation is based mainly on the observations made by the robot cameras and the provided
domain knowledge, e.g., the objects present. In order to allow for cooperation with the human,
e.g., cooperatively loading the dish washer, the intention recognition is required to deliver
robust estimates in real-time.

"The German name is “Sonderforschungsbereich 588 Humanoide Roboter - Lernende und kooperierende multimodale Roboter”
sponsored by the Deutsche Forschungsgemeinschaft (DFG).
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2.2.3 Challenges
The above described setting and defined requirements are challenging for the following reasons:

e The vision-based observations are uncertain, e.g., due to changes in lighting, temporary
partial visibility, or even occlusion. Furthermore an uncertain self-localization and inherent
unreliable calibration complicate the observation.

e In addition, the estimation problem involves dynamic dependencies, i.e., having set the
table, it is more likely to prepare and eat a meal than to clean the kitchen.

e The complexity of the relations is enormous for realistic scenarios. This means that all
realistic combinations of edible goods with food processing tools and their various ways
of usage on all workspaces have to be accounted for in the model. For example, apples
may be peeled, chopped, or die-pressed by different types of knives on and in pots or
plates, which may in turn lie on merely all workspaces in the kitchen. Each object-action-
place combination may have a distinct meaning.

2.2.4 Related Work

A lot of research has been performed in the field of intention and plan recognition. This research
differs in scope, i.e., recognition of the goal only [19], both goal and plan [60], whereas the plan
ranges from low-level movements [20, 58] to hierarchical plans or policies [19, 29, 103]. The
problem has been approached, e.g., with formal systems [80, 91], stochastic grammars [133],
temporal templates [20], case-based reasoning [52], token-passing [7], a combination of temporal
logic with Bayesian networks (BN) [86], Dynamic Bayesian networks (DBN) [2, 33, 103, 147],
a combination of Hidden Markov Models (HMM) [150] with grammars or n-grams [55, 58, 57],
or Abstract Hidden Markov (Memory) Models [29].

Categorization The existing research may be categorized according to intended or keyhole
recognition. Intended recognition occurs in any form of communication, where the addresser
has the aim of conveying his intention to the addressee. The addresser is thus cooperative and
facilitates intention recognition. In contrast, the intention recognition by surveillance systems
[29] or assistance software [80, 120] is based on the observation of the user only, i.e., peeping
through a keyhole, e.g., by using a camera or reading mouse and keyboard of a computer.
Additionally, the existing research may be categorized as symbolic and probabilistic recognition
approaches. Symbolic recognition approaches employ reasoning methods such as automata
theory, first order logic, or predicate calculus to deduce the possible intention. The notion
of symbolic reasoning emphasizes the absence of any kind of uncertainty in the observation
process, i.e., a symbol has been observed with certainty. In contrast, in the probabilistic
recognition approaches the intention is inferred not only on the possibility but on the likelihood
of the intention given the observations. The approaches allow for modeling uncertainty in
the inference and observation process. Hybrid approaches aimed towards combining symbolic
and probabilistic recognition exist. As a consequence of the human-robot-cooperation setting
and requirements only hybrid or probabilistic keyhole intention recognition approaches are
applicable. In the following, the relevant approaches will be discussed.

Hybrid Recognition The key idea underlying the relevant hybrid recognition approaches is
to remove the uncertainty in the observation and use the certain observation with the sym-
bolic reasoning. The most relevant approaches are the pending-set approach [60, 65] and the
token-passing approach [7]. The key idea of the pending-set approach [60, 65] is to maintain
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a set of actions which are consistent with a given plan library and the preceding observations,
i.e., the actions which have completed. The set is updated using Probabilistic Horn Abduc-
tion. This approach allows for a fast detection of plan/goal abandonment [61] and interleaving
plans. The token-passing approach [7] may be understood as a Petri network augmented with a
sophisticated “feature decision tree” [7]. This decision tree maps uncertain observation to cer-
tain causes, which are used as input to the network. The feature decision tree compensates for
not observed features by missing value branches. Time consistency is asserted for by memory
flags and duration models.

Probabilistic Recognition The key idea underlying the probabilistic recognition approaches
is to convert a causal model into a DBN [39, 134] and then infer the intention by performing
standard exact or approximate inference methods with the DBN. The most relevant proba-
bilistic approaches are grammar-based approaches [147] and policy-based approaches [29]. The
grammar-based approaches [148, 147, 149] use a given grammar of the behavior and generate
parse trees from this grammar. This may be understood as using a generative model of the be-
havior to produce all possible behaviors and compile these into a DBN. As the human behavior
is state-dependent the most advanced approaches use a probabilistic state dependent grammar
(147, 149] for the generation. Additionally, the policy-based approaches [29] employ a layered
structure of the intention. In the lowest-level of the DBN the transition from the past to the
current state of the world is modeled given all possible actions. The state space of the random
variable corresponds to the elements of the policy [134]. The state of the worldis estimated
from the observations. Higher level or abstract policies may be modeled by appending these

random variables as parents of the lower levels to the DBN. This model is also referred to as
an Abstract Hidden Markov (Memory) Model [29].

Comparison w.r.t. Human-Robot-Cooperation The approaches presented above need to be
compared with regard to the three challenges: model complexity, uncertain observations, and
dynamic dependencies. All of the approaches presented above, are capable to process dynamic
dependencies directly. Regarding the processing of uncertain information only probabilistic
recognition approaches, which compile a DBN, allow for a consistent uncertainty treatment.
The hybrid approaches lack any uncertainty regarding the dynamic dependencies [60] or restrict
the uncertainty treatment to the measurement update [7]. All of the approaches suffer from the
number of considered states of the world and actions. The hybrid approaches need to account
for all possible further execution plots, e.g., all plans consistent with the plan library and the
state of the world. The effect on the DBN s compiled by the probabilistic approaches is even
more drastic as the state space has to map the policy into its state space. As stated in [147,
Ch. 7.11], the state space may contain a full enumeration of all plans. This renders inference
already for small problems intractable. In summary, all approaches are incapable of handling
the combinatorial explosion inherent in the problem. The probabilistic approaches at least
allow for a consistent uncertainty modeling.

2.2.5 Key ldea

As a consequence of the above comparison an extension of the probabilistic approaches is
sought, which addresses the combinatorial explosion inherent in the problem. The key insight
of the discussion is that even though many object-action-place combinations are possible, only
a few are likely. This is not always the case, but many applications have, e.g., spatio-temporal
constraints, which may be exploited. These spatio-temporal constraints match the definition
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of a situation in Def.2.4. The key idea is therefore to exploit the situation dependencies in the
problem to reduce the state-space sizes and therefore to alleviate the combinatorial explosion.

2.2.6 Main Contributions

The main contributions of this thesis w.r.t. the intention recognition as means of non-verbal
communication in human-robot-cooperation may be summarized as follows.

e A model-predictive approach is presented to exploit the situational dependencies inherent
in the intention recognition problem. This approach is shown to allow for efficient inference
in large-scale models and is based on selecting subset models on-line.

e The approach is validated using video-based and extended-range telepresence experiments.
Especially the latter experiments are used for showing the properties and restrictions of
the approach w.r.t. the scalability due to the reproducible and scalable problem setups.






A theory with mathematical beauty is more likely to be correct
than an ugly one that fits some experimental data.
—PAUuL DIRAC

3 Non-Parametric Density and
Conditional Density Estimation

In this chapter, non-parametric approaches to density and conditional density estimation from
samples will be presented as introduced in Ch.2.1. The samples are given in the form of the
empirical probability density function fp (2.1). The non-parametric approach is limited to
estimating mixtures with components collocated with the samples D only and employs iden-
tical parameters for all components. Initially, the two main challenges for density and condi-
tional density estimation as well as the key idea how these may be addressed by regularized
non-parametric approaches will be discussed. Consecutively, the elements of a non-parametric
approach are presented in Sec. 3.1-3.3, i.e., distance measures, regularization terms as well as
constraints. These elements are combined to a generic algorithm in Sec. 3.4 for the estima-
tion of sparse density and conditional density functions. This chapter is concluded with an
experimental validation section in Sec. 3.5 and the summary of contributions in Sec. 3.6.

Challenges The two main challenges for density and conditional density estimation are pre-
scriptive validity and computational efficiency. Regarding the prescriptive validity, the gener-
alization of the estimate to unobserved data is still an open question for mixture density and
conditional density estimates. In order to achieve computational efficiency, the considered mix-
ture representation needs to be sparse relative to the training sample size as the computational
complexity of any application of the estimate will scale with its number of components.

Key Idea Both challenges are addressed by optimizing the data fit in terms of a distance
measure and the regularization of the estimates’ capacity. The application of a distance measure
enforces descriptive validity and allows for the identification of redundant components in the
mixture as will be shown in the rest of this section. The approach proposed in this section is a
Minimum Distance Estimator (MDE) in the sense of Sec. 2.1.2 with regularization. The MDE
approach is employed for both density and conditional density estimation. The regularization
term ensures prescriptive validity and amplifies the sparseness of the representation as it governs
whether a given data point is considered redundant or relevant for the estimate. In the rest
of this section, these two elements of the approach will be presented as well as the constraints
that need to be asserted to obtain valid density or conditional density functions. The approach
is summarized in a generic algorithm in pseudo-code.

3.1 Distance Measures

In this section, the reformulation of the conditional density estimation problem into a density
estimation problem and the employed distance measure are discussed.

29
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3.1.1 Reformulation of the Conditional Density Estimation Problem

Before introducing the employed distance measure, the conditional density estimation problem
needs to be reformulated into a density estimation problem, in the sense that the conditional
density estimate is extended to a joint density of both input and output random variables.
This is necessary as no distance measure for conditional density functions is defined and fp is a
joint density of the input and output random variables. Additionally, this reduction allows for
a unified treatment of both problems w.r.t. the distance measure. In detail, given the estimate
f(y|z) of the considered true conditional density function f(y|z), a joint density function based
on the estimate may be obtained by calculating a

fly,z) = flylz) - flz). (3.1)

In an MDE approach, the joint density f(z,y) in (3.1) is compared to the given data in the form
of the EPDF fp(z,y), cf. Sec.2.1. The EPDF is an approximation of the left-hand side of (3.1)
if the true conditional density function would be used. In (3.1), the density f(x) corresponds
to the prior knowledge about the probability density function of . As Vapnik states one
“l...] can use [...] better approzimations of the density [...]” [190, 7.11]. The quality of this
density will impact the quality of the conditional density estimate. Besides a user given f(x),
it may be determined as the marginal distribution of the given data D directly, i.e., as a Dirac
mixture density [190], or as a Gaussian mixture density estimate of this marginal density [107].
The choice of f(z) influences the computational complexity of the estimation too. It should be
noted, that if f(z) and f(y|z) are mixture densities with L and K components respectively,
the number of components in (3.1) is L+ K and for a distance measure involving the calculation
of f?, e.g., the integral squared distance, a term with (L - K )2 components has to be formed.

3.1.2 Cumulative Distributions

The preceding section has shown that similar to the density estimation problem an MDE
approach to conditional density estimation involves the comparison of two densities only. As
introduced in Sec. 2.1.2, many distance measures are applicable for comparing densities. These
may be categorized into point-wise and integral distances with the respective advantages and
disadvantages discussed in Sec.2.1.2. Both point-wise and integral distance measures may be
calculated w.r.t. the probability density or the cumulative probability distribution function.
Since for the considered problem, fp is defined only at the sample points and undefined in the
rest of the state space, a comparison of the density functions is theoretically not sound? and
neglects the rest of the state space. For this reason, it is common to compare two densities, f
and f, based on their respective cumulative probability distribution functions, F and F, i.e.,

D(f,f)zD(F,F). (3.2)

3.1.3 Localized Cumulative Distribution

In order to compare probability density functions over the entire state space, the cumulative
distribution shall be used. Even though the cumulative distribution function is well defined
for scalar random variables, there is no canonical extension to the multivariate case. The
challenge is the non-uniqueness of an extension, as 2V integration orders are possible in an N-
dimensional space. The integration order influences the distances as it yields asymmetric results
and therefore biases the outcome of any estimation algorithm [70, 71]. These disadvantages
are overcome by the localized cumulative distribution (LCD) [71], i.e., it is symmetric and

1Point-wise evaluations are not defined for a probability density function w.r.t. a continuous space.
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unique. The key idea is to measure the local probability mass only. The LCD is calculated by
integrating the product with symmetric kernels for all positions and widths. For the sake of
self-containedness, the definition of the LCD from [71] is restated below.

Definition 3.1 (Localized Cumulative Distribution, [71]) For a multivariate random vec-
tor ¢ € RN with corresponding probability density function f : RN — IR., the Localized
Cumulative Distribution (LCD) is

F(m,b) = [ f(z) Ky(z,m)dz, (3.3)
RN
with Q C RN x ]RJNr7 F:Q—[0,1],b€ IRII, Ko(z,m) an admissible kernel, in the sense of [71],
centered at m = [m® - mMN T with extent /width b and K : Q — [0, 1].

A typical choice for the kernel is an axis-aligned Gaussian kernel (A.5) with mean m and
identical width b for all N dimensions [71], i.e

H exp (——w) . (3.4)

Even though other choices are possible, only (3.4) is used for the remaining part of this thesis,
as the multiplication of a Gaussian kernel with a Gaussian mixture density will give rise to a
Gaussian mixture density and may be performed in closed-form for a fixed kernel width b.

Localized Cumulative Distribution of f and f The LCDs of the density estimate f or its
reformulation according to (3.1) and the empirical probability density function fp in Gaussian
mixture form are obtained by multiplying both densities with the kernel

Ko(z,m) = /det (203,) N (z; m, 3y) , (3.5)
with 3, = b - diag(1), i.e., identical kernel width b for all dimensions. For the EPDF given by

|

= > wid(z—dy, (3.6)

with w; = 1/|D| for all 1 <i < |D| and x € RN, the LCD is obtained by multiplying (3.6) with
(3.5) and integrating over . The resulting LCD is a function of m and b, i.e., the position and
the width of the multiplied kernel, and given by

|

Zwﬂ/det 2rX) N(m;d;, 2 (3.7)

For fixed parameters m and b, the term in (3.7) may be understood as measuring the average
overlapping probability mass located at the sample d,. Each kernel in (3.7) will attain a value
of 1 if m = d; and otherwise a value in [0,1) depending on the distance between the kernel
centers relative to the kernel width. The target density—based in case of conditional density
estimation on (3.1)—is a Gaussian mixture density (A.1.2), with 2 € RN and L components

L

fl@) =) aN(zp, ). (3.8)

i=1
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The LCD of (3.8) is obtained by the same operations as for fp and given by

||Mm

det 271’21;) N(Hi;m, 3+ Eb) . (39)

3.1.4 Modified Cramér-von Mises Distance

In order to compare two distributions, a distance measure has to be employed. Note, that
even though there exists a wealth of distance measures? a novel distance measure is required if
two LCDs shall be compared. For comparing the LCDs over the entire state space a distance
measure extending the l-distance® between the two distributions F and F' may be derived

(7. f) :A(ﬁ(@-F@))de, (3.10)

e.g., by weighting or averaging the l-distance [189, p. 116]. Given the LCDs F and F, the
modified Cramér-von Mises distance measure (mCvMD) was defined in [71]

D:i/+w@X/N<F@L®—Fh@b»2wgﬁ, (3.11)

as a modification of the standard Cramér-von Mises distance, where the lo-distance is calculated
w.r.t. all kernel positions m € RN and widths b € IR*. The function w(b) in (3.11) is introduced
in order to assert for convergence of the integral. For the remaining part of this thesis,

w(b) = {bN# b€ [0, ]

0 , elsewhere

will be used. The interested reader is referred to [71] for more information. The maximum
kernel width b, is set to a sufficiently large size in order to capture even low frequency
variation in the densities, e.g., a multiple of the maximum distance between two samples in D.

3.1.5 Properties and Restrictions

In summary, the distance calculation between two density and conditional density functions
may be reduced to the calculation of the distance between two density functions. Due to the
non-uniqueness and the asymmetry of the straight-forward extension of the scalar cumulative
distribution function to the multivariate case, the LCD is employed. In consequence, the [5-
distance of the cumulative distributions is replaced by the mCvMD and thus the shortcomings
of the cumulative distribution functions are overcome. The properties and restrictions applying
when using the mCvMD are listed below:

e The mCvMD is a modification of the [s-distance and therefore considers the difference of
the two distributions over the entire state space and emphasizes differences relative to the
local probability mass, i.e., differences in the tails of the distributions are less important.

e For all densities considered in this thesis, the integral in (3.11) over m may be solved
analytically using equation (A.7). In general, the integral b may be calculated numerically
only and for numerical reasons the kernel width is upper bound, i.e., b < b, is assumed
to hold. Note, that the integral will converge for a fixed by ay-

2The interested reader is referred to [189] for an overview.
3In some parts of the literature this is referred to as squared integral or integral squared distance (ISD).
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e The choice of integration points by a numerical integration algorithm may be understood
as an automatic kernel width selection, conveying insight about the data distribution.

e As discussed above, the squared term involved in calculating the mCvMD may be too
expensive to compute due to the L - K components and approximations may be required.

e Even though not theoretically proven, it was observed that for density and conditional
density estimation no additional constraints were necessary for asserting non-negativity
and the amount probability mass. This may be understood as being automatically ensured
by aligning the estimate to a positive density with correct probability mass.

A straight-forward but computationally intractable MDE approach minimizing the mCvMD in
Sec.3.1.4 w.r.t. all parameters of each mixture components is presented in Appendix A.3. In
the following section, the regularization term for the non-parametric approach is derived.

3.2 Regularization

Unregularized Minimum Distance Estimators have an important shortcoming: they are prone
to overfitting [130]. As already mentioned in Sec. 2, both, the density and conditional density
estimation problem are ill-posed as an infinite amount of solutions may represent the given
data arbitrarily well. Maximizing the descriptive validity of an estimate f may be achieved by
maximizing the likelihood of f given the D. Yet, maximizing the likelihood or any distance will
result in poor prescriptive validity as the estimation disregards all parts of the state space not
(densely) populated by data. One possible approach to improving the prescriptive validity, is the
use of additional information in form of a preference bias when solving the estimation problem.
This information is typically introduced into the estimation algorithm by means of penalty
terms. These terms measure properties of the solution, which influence the generalization
property. The challenge is to determine a measure for the generalization property. Intuitively,
a density or conditional density function capable of high oscillations can model arbitrary noise,
thus overfit the data. Whereas, a “flat” density or conditional density function may underfit the
data. The key idea is to find a measure related to the roughness* of the surface of the density
and conditional density function. In the next sections, the regularization using the norm of f
in the respective reproducing kernel hilbert space, a generalization of the regularization term
based on the Rényi-entropy, and the properties as well as the restrictions of these approaches
are presented. Note, the following derivation of the regularization terms are identical for density
and conditional density estimation.

3.2.1 Regularization using the Reproducing Kernel Hilbert Space

The key idea of a regularization in a Hilbert space may be understood as measuring the distance
of the density or conditional density function estimate to a constant or flat function by means of
the spectrum of eigenfunctions. In the following, an inner product of two Gaussian components
in a Hilbert space is derived based on the eigen-decomposition of a Gaussian density function.
Using this pairwise inner product, the inner product of two Gaussian mixture densities is
derived. Finally, a roughness term as a function of the weights of the considered Gaussian
mixture is obtained. These results are compiled and in part reproduced from [51, 164, 190, 194].
A scalar Normal density with mean z; and standard deviation o possesses the expansion [190]

4The term roughness is used in this context, to avoid the confusion of (surface) smoothness with differentiability. Gaussian
mixture densities are convex combinations of normal densities, which are infinitely often continuously differentiable.



34 Chapter 3. Non-Parametric Density and Conditional Density Estimation

xr — x —
(a) Weight distribution ~ sin(zx) . (b) Weight distribution ~ 0.5 - sin(z).

x— x —
(c) All weights = 1/|D]. (d) Weights obtained from minimizing Rényi regularizer.

Figure 3.1: Joint GMM density functions plotted for various weight distributions: the weights are (a) sinusiodally
distributed, (b) sinusiodally distributed with lower bandwidth, (c) all identical, and (d) determined to minimize
(3.15). The means are 100 equidistant sample points of a sine function and the covariance are identical.

fl@) = N(@;1,0) =Y A du() ul)

with weights A, and eigenfunctions ¢,. In [51, p. 22 and 23|, the Fourier decomposition is
employed for a scalar Gaussian component with o = 1 yielding

)\n — Ae—n2/2 ’ ¢n(x) — eQTrimL" an(,u) _ e—27rinu’

where the A, decrease with increasing n. The function f(x) may be represented as
Fola) = cntnlz). (3.12)
n=1

Two Gaussian density functions f and f therefore differ in their eigenvalue spectra only. For
a Gaussian kernel, the following inner product and the set of functions representable by (3.12)
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define a reproducing kernel hilbert space (RKHS) H, i.e.,

< P, foo) s= Y 2

The self-similarity is given by

< fla), f(x) >u=) i— (3.13)

n=1

showing that the kernel choice defines the roughness of the density function in terms of the
eigenvalues of the spectrum. This derivation may be generalized to Gaussian mixture densities.
In analogy to (3.12), one obtains for a mixture of L-components [190]

L

L oo L oo
= Z a; N(z;p, o) = Z a; Z Ay O, (), (10 Z o Z c;”gbni (x). (3.14)
i=1

=1 n=1 =1 n=1

Inserting (3.14) into (3.13) gives rise to the self-similarity for a GMM
< f(x), f(x) >4 =< Zaz T T4,y Z% (;25,7) >n

L
= Zai Zaj <N(x,a:l,’y),/\f(x,x],”y) >

J
=a"'Ka. (3.15)

The vector-valued formulation of the self-similarity (3.15) will be used in the remaining part
of this section. The above results hold for scalar Gaussian kernels. For the sake of brevity,
any further discussion w.r.t. generalization to more powerful kernel functions or the necessary
conditions for a kernel to possess such an expansion are out-of-the-scope of this thesis. The
interested reader is referred to [51, 194] for more information. The above derivation was used
for the case that all kernels are identical. For density and conditional density estimation this
is restrictive and in the next section it will be shown, that from an entropy perspective [177] a
similar regularization term may be obtained that is meaningful for arbitrarily aligned kernels.

3.2.2 Regularization using the Negative Rényi-Entropy

The regularization term in (3.15) is based on the idea that the roughness of a function f is
measured by the norm in the function space H induced by the kernel. This may be understood
as measuring the oscillation of the density or conditional density function surface. Alternatively,
this may be understood measuring the deviation of the estimate from a flat or constant function.
As entropy measures [177] colloquially quantify the deviation of a function from a constant
function, they may be employed as regularization terms. In this setting, the entropy term
needs to be maximal, i.e., one wishes to determine the least informative estimate. A common
entropy measure for continuous random variables is the Rényi-Entropy.
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Definition 3.2 (Rényi Entropy) The Rényi entropy [35] is defined as

1
log | f'(z)dz, (3.16)
- T RN

HR(&? T) = 1

with r € [0,00] \ 1.

More details of the Rényi entropy, e.g., convergence to the Shannon entropy in the limit, can
be found in [35]. As the parameters 6 of the “flattest” function are desired, one minimizes the
negative Rényi-entropy. Choosing r = 2 for its similarity to the lo-distance, gives

6" = argmin [ Hr(z,2)]

= arg min {log ( f(z) dg)}
g RN

= argmein/ f(z)dz, (3.17)
o4 RN

where the logarithm may be omitted due to its monotonicity. The minimization of (3.17)
not only minimizes the negative Rényi entropy, but has similar to the RKHS a meaning in a
function space. Because probability density functions are square-integrable, the l5-space of all
probability density functions allows for the definition of the inner product, thus

<fl@), f@) >, = [ flz) flz)dz. (3.18)
R
The self-similarity in (3.18) may be computed for an arbitrary Gaussian mixture density f by
I 2
fla)- fz)de = / (Z a; N (z; EJ) da
RY RY \ 721 B
L K
=D > iy | Nap, D) Nap, 25 de
i=1 j=1 RY
L K
= Z Z CY,L'CKJN(,U/ iy 721_'_2])
i=1 j=1
=a Ka. (3.19)

The terms in (3.19) may be further simplified if a homoscedastic Gaussian mixture density is
considered, e.g., a Parzen window, or all components have identical weights [62].

Properties and Restrictions

In this section, two regularization terms were introduced. The first regularizer function corre-
sponds to the norm in the reproducing kernel hilbert space induced by the component function
of the mixture density. This regularizer intuitively measures the oscillation of the density or
conditional density function estimate. As this regularizer is derived for a mixture of components
of the same scale, a regularization motivated by the entropy minimization idea was introduced,
which avoids this shortcoming. The term may be calculated for mixture densities with com-
ponents differing in every parameter. It is not only related to an estimate of the second-order
Rényi entropy, but may also be understood as the norm in the space of square integrable func-
tions. The effect of the regularization is depicted in Fig. 3.1, where the joint probability density
functions for several weight distributions are contrasted with the weight distribution obtained
by minimizing (3.19).
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e Although both terms differ in their derivation and motivation, the effective calculation is
almost identical. Both terms were shown to be representable as functions of the weight
vector only and may be calculated in vector-matrix form. As the component functions for
the RKHS approach are identical, this regularizer is slightly more efficient to calculate.

e Intuitively, both regularization terms measure the distance to a flat function. As will be
shown in the experimental validation, minimizing this property prevents the lumping of
probability mass. For example, in conditional density estimation turning points of the
generative model may have a high local data density, cf. Fig. 3.1.

e For fixed covariances, the components’ locations which minimize any of the two regular-
izers will be maximally distributed, i.e., spread apart. This trivial minimization of the
regularization terms will been shown in Ex.4.1.

3.3 Constraints

In the previous sections, the components for density and conditional density estimation have
been presented, which ensure that the estimates fit the data and generalize well. A requirement
for any density and conditional density estimation algorithm is to additionally assert that the
results are valid density and conditional density functions. A function is a valid density function
if the constraints

f(z) >0,Vz € RN, /RN flz)dz =1. (3.20)

are satisfied, i.e., f returns valid probabilities and the probability mass integrates to one. A
function is a valid conditional density function if the following constraints

flylz) > 0,vz € RY,vy € RM, RNf(glz)dgzl,VzelRN. (3.21)

are satisfied, i.e., f returns valid probabilities and the probability mass integrates to one.

Non-Negativity Constraint For both density and conditional density functions, the first con-
straint asserts the non-negativity of the probabilities returned by either the density or con-
ditional density function. Because in this work density and conditional density functions are
represented by Gaussian mixture densities (A.8) only, the non-negativity may be asserted by
restricting the weights

a; >0, 1<i<L. (3.22)

If the constraint (3.22) is satisfied, both the density and conditional density function values are
sums of evaluations of normal densities, which are weighted by positive factors. Therefore, the
density and conditional density function values have to be positive®.

Mass Constraint In contrast to the non-negativity constraint, the mass constraints in (3.20)
and (3.21) cannot be treated uniformly for density and conditional density estimation. For
density estimation the mass constraint in (3.20) may be satisfied by trivially adding the following
constraint for the weights a@ = [y . .. aL]T, a; € Ry

L

Y a=1"a=1, (3.23)

=1

5This constraint is overly strict, as the evaluation of a Gaussian mixture density may still be positive even if some components
are negative. The given constraint satisfies the necessary condition and can be enforced easily.
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(a) Density estimation (DE). (b) Conditional DE - slice constraint.  (c) Conditional DE - interval constraint.

Figure 3.2: Mass constraints for density and conditional density estimation: for density estimation the integration
of the mass over the entire state space (red area) is asserted (a). For conditional density estimation the mass
constraint may be asserted for “slices” (red lines) aligned with the sample points (b) or the over the considered part
(red area) of the state space (b).

which in conjunction with (3.22) also implies a; < 1 as an upper bound on the weights. Any
Gaussian mixture density adhering to these weight constraints fulfills the mass constraint in
(3.20), cf. Fig.3.2 (a). Asserting the mass constraint for conditional densities is more challeng-
ing as the integral condition in (3.21) needs to be satisfied for all fixed input values z € RN,
Even if the values are restricted to an interval Z = [z, .,z | and z € Z, an infinite number of
mixture components would be necessary to fulfill the mass constraint. If the conditional density
function is extended to a joint density, similar to Sec.3.1.1, the necessary mass constraint is

| ] ) f@) dgaz 21, (3:21)

and for the conditional density function in the form of a mixture of f;(.|.) one obtains

/RN /RM (u % fi@@) fla) dydz = /RNEL; o fi(x) de = 1. (3.25)

The density f(z) may be replaced with fp(x), giving rise to the approximate constraint [190]

DI L
> (Z a; f{(zd)) =a's=1, (3.26)

d=1 \i=1

where s is obtained by rearranging the sums. The approximate constraint (3.26) enforces that
the probability mass of slices conditioned on z-positions of the samples sums to one, cf. Fig. 3.2
(b). The mass constraint in (3.21) is met only approximately, as the probability mass is only
measured at a set of distinct Z. Asserting (3.26) is cumbersome as it involves the summation
over point-evaluations of the conditional density function. Additionally, (3.26) only enforces
the mass constraint in total, i.e., the sum of evaluations at D not the mass of each slice
is constrained. This may be understood as asserting that the probability mass w.r.t. the
interval T of the state space populated by the data approximately. In the following, a simpler
interval-based approximation to (3.24) is proposed, cf. Fig.3.2 (c)

/ f(ylz) dy dz = vol (Z) .
RN

For a conditional density function represented as a mixture density, this gives rise to

[ > i) dr=aT1=vol (@), (3.27)
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Table 3.1: Overview of the constraints to be asserted in density and conditional density estimation.

|  Estimate || Non-Negativity Constraint Mass Constraint
Density 0<a(<1) atl=1

Slices Interval

Cond. Density 0<a(<1-7) als=1, ofl1=1T

which resembles the mass constraint for the density estimation problem. Note, that the mass
constraint in (3.27) imposes an upper bound on the weights, similar to the density estimation
case. This constraint is simple to assert as it only involves the calculation of the interval size
vol (Z). Tab. 3.1 gives an overview of the constraints to be asserted in density and conditional
density estimation presented in this section.

3.4 Density and Conditional Density Estimation Algorithm

Up to this section, the three components of the non-parametric density and conditional density
estimation algorithm have been introduced: a distance term, a regularization term, and the
necessary constraints to obtain valid estimates. In this section, an algorithm will be composed
from the components presented in the previous sections, which may be used generically for both
density and conditional density estimation and addresses the problem of insufficient generaliza-
tion capabilities as well as sparseness of the mixture representation. The key idea is that the
estimation process for both problems corresponds to a weight optimization. In the rest of this
section, the composition of the optimization problem, i.e., the target function and constraints,
the pseudo-code of the algorithm as well as the properties and restrictions of the approach are
discussed.

Setting up the Optimization Problem The optimization problem consists of two steps.
First, a problem-specific preprocessing converts the distance and the regularization term into
quadratic forms. Second, the target function of the optimization problem is composed and the
constraints are determined. The initial step of the preprocessing concerns only the conditional
density estimation as the conditional density f(y|z) is extended into a density f(x), where for
the sake of brevity the notation is abused by setting z := [yT 2T ]*. Consecutively, the LCDs
of Fp(z) and F(z) of fp(x) and f(z) for both density and conditional density estimation are
determined. Using the notation introduced in Ch. 2.1.2, all parameters of f(z) are

O=1[ o & =7 )" (3.28)

In this non-parametric approach, the means p are collocated with the samples D, the para-
meters of the covariances of all GM components are identical and obtained from hyperparam-
eter optimization, cf. Sec. 5. Thus, only the weights a in (3.28) are optimized. This allows for
a simplification of the expressions for the LCDs (3.7) and (3.9) as well as the mCvMD (3.11)

D= [ wb) (a"Pra—2a"P,+P;s) db. (3.29)
Rt
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In (3.29), P;-P3 denote the closed-form solutions to the m-integrals of the terms arising from
expanding the binomial. In general, the integral over b in (3.29) may be solved numerically
only. A further simplification can be achieved by omitting the term Pj3, as it is independent
of the weights «a, thus it will only influence the absolute value of the distance measure but not
the extrema w.r.t. o. For the remaining part of this thesis, this term will be neglected®. These
calculations and transformations yield

D=a"Qa-2a"Q,, (3.30)

with
Qi j) == /R ) QP (B) b,
Q)= [ wit)af'm) a.

The expressions for elements of the matrix Q; and the vector QQ may be found in [105]. The
distance term (3.30) for both densities and conditional densities is a quadratic function of the
weights a. As described in Sec. 3.2, the regularization term will be calculated identically for
density and conditional density functions. Similar to the distance term, the regularization term
for both, the RKHS (3.15) and the negative Rényi-entropy-based term (3.19) is obtained as a
quadratic function of the weights a. In the second step, the target function T(a) is calculated
as a weighted combination of the distance and regularization terms

T(a) =a"Qia — 2QTQ2 + X2a'Ka =a"(Q+)K)a—2a"Q,. (3.31)
—2, —_——

TV
Distance term

Regularization term

The parameter A € IR in (3.31) is obtained from hyperparameter optimization, cf. Ch. 5, and
governs the combination of both terms, i.e., for A = 0 the target function corresponds to an
unregularized MDE approach optimizing only «. The larger the A value, the more emphasis
is put onto the regularization. The third component of the optimization problem, are the
constraints necessary for asserting the validity of the densities and conditional densities. By
minor transformations, the non-negativity and mass constraints for densities and conditional
densities as a function of the weight, may be generically given in the form of

0<a=1-c, a'w = cp, (3.32)
where the respective constants c,, ¢, € IR and w € IRN need to be set according to Tab.3.1.
The density and conditional density estimation problems formulated as a quadratic program
of the weights « using the above derived generic expressions for the target function (3.31) and
the constraints (3.32) may be summarized in the following optimization problem

min o’ (Q; + \K)a — 2QT92 (3.33)
s.t. ngjl'cpa
OéTw =Cm

The properties of the solution depend on the matrix (Q; + AK). The most important property
is the positive (semi-)definite” of a matrix. Using Corollary A.2, the positive semi-definiteness
of matrix (Q; + AK) may be proven by showing that both Q; and K are obtained from dyadic

61f the absolute value of the distance measure needs to be calculated the expression P3 may be derived based on [71].
"The interested reader is referred to Def. A.2 for a definition of p.(s.)d.
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Algorithm 1 Regularized Density and Conditional Density Estimation.

1. Input: D, hyperparameters, i.e., {z,3;} and A

2: Assign oy < E.g. 1= > Initial Values

D]
3. [ Calculate f(x), f(y,z) = f(ylz) - f(z) ] > Reformulation
4. Calculate Q1,Q, «+ D(F, Fp) wrt. «
5. Calculate K < regularization term > Preprocessing

6: Calculate cp, ¢, for the constraints

7. at < COMPOSE AND SOLVE QP(ay, Ql,gz,K,cp,cm) > Standard solver
8 o < REDUCE(a™)

9: Output: f ~ GMM{Q*,{&,,Ei}*}
10: function REDUCE(¢) > Removing obsolete components

11: o' —a >« >Eg e=1le?

12: end function

products. This can be seen for Q; and K in the derivation of (3.30) and for K can be seen for
the regularization by the norm in RKHS in (3.15) as well as for the regularization by Rényi-
entropy in (3.19). As shown in Corollary A.1, the addition of two p.s.d. matrices yields a p.s.d.
result, i.e., the proposed optimization problem is a convex quadratic problem.

Algorithm The entire algorithm is summarized in Alg. 1. Given a set of samples D and the
hyperparameters, i.e., the estimate’s component means and covariances {ﬁi’ 3.} as well as the
trade-off parameter \, the algorithm determines the weights o minimizing the target function
(3.31) w.r.t. the constraints (3.32) for density or conditional density estimation. The structure
of Alg. 1 is as follows. Initially, the starting values for the weights are set similarly to the
standard KDE, e.g., to uniform weights. Consecutively, the three main components of the
algorithm are computed, i.e., the distance term, the regularization term, and the constraints.
If a conditional density shall be estimated, the reformulation needs to be calculated prior to
determining the distance term. The regularization term may be calculated independent of
the type of estimation problem. The constraints are set according to Sec.3.3. The resulting
quadratic program (QP) may then be solved by any standard solver for this type of problem.
Finally, weights smaller than a given tolerance, e.g., le~*, are removed from the obtained vector
of weights o™, yielding the reduced weight vector o*. The reduced components are negligible
for the overall density or conditional density function due to their tiny weight. The result of
the algorithm is a Gaussian mixture density with weights a* and the set of given means and
covariances { s 3 }* associated with the non-reduced weights.

Properties and Restrictions The descriptive validity, prescriptive validity, and computa-
tional efficiency of the proposed regularized density and conditional density estimation may be
summarized as follows:

e A solution to the problem for density estimation exists and may be attained as the Parzen
window estimate is in the feasible set of solutions [190]. For conditional density estimation
a similar solution may be obtained by assigning an identical weight to all components in
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the estimate. As by construction (Q; + AK) is p.s.d., cf. (A.34), the solution of the QP
will be a minimum of the target function. For the stricter case of (Q; + AK) being p.d.
this minimum will be unique. In the former case, there is a set of solutions with identical
values of the target function.

e The descriptive validity may be investigated w.r.t. a small or an asymptotic amount of
data. For A = 0, the density and conditional density estimation algorithms return esti-
mates that fit the data best w.r.t. the given distance and hyperparameters. For an asymp-
totic amount of data for density estimation the classical consistency arguments of kernel
density estimation may be employed. For conditional density estimation, these same re-
sults apply w.r.t. each fixed input value. In the proposed algorithms, the parameters of
all components are identical. This property restricts the set of estimates and limits the
algorithm’s capacity to model the data especially for small data sets.

e Regarding the prescriptive validity, the probability mass is located at the data points only.
This is a strong restriction of the capability of the model and limits its generalization to
parts of the state space, which are only populated by a few data points, e.g., gaps where a
generative model was not sampled. In the absence of data the uncertainty is maximal. By
definition, the mean function values in those parts of the state space align with the last
components’ mean values due to the exponentially decreasing influence of the components.

e The computational effort for obtaining the solution to the QP depends on the number of
variables L being optimized. The complexity depends on the used implementation and may
have a complexity as lows as polynomial in L. Due to the formulation in matrix/vector-
form and the locality inherent in the problem, the estimation algorithm lends itself to
parallelization. For more information the interested reader is referred to Appendix A.4.3.

e As the optimization fulfills (A.34), the optimization problem is a constrained convex
quadratic problem. These problems may be solved in polynomial time w.r.t. the number
of optimization variables and constraints, cf. Appendix A.4.3.

3.5 Experimental Validation

In this section, the derived generic non-parametric estimation algorithm shall be compared to
existing approaches. This comparison needs to be performed for density and conditional density
estimation separately as the data is generated in a different manner, i.e., a different experimental
setup is required, and the estimator needs to be compared to different state of the art estimators.

3.56.1 Density Estimation

In the following, the experimental setup, the evaluation criteria, relevant implementation details
regarding the employed estimators, and the results for density estimation are presented.

Experimental Setup In contrast to conditional density estimation, the data for density es-
timation does not correspond to noisy measurements of a deterministic dependency, but are
samples from an unknown density function f. In order to determine the performance for es-
timating multimodal densities, 2D Gaussian mixture densities were automatically produced by
sampling the parameters of each component uniformly at random from the intervals

&; €[001,1], pe[l,2]x[5,7], C=D'D withD;;€[025, 04]. (3.34)
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The constrained random generation of C in (3.34) asserts that the covariance matrices are p.d.
From each generated mixture 150 samples are drawn for training and testing.

Evaluation Criteria The quality of the density estimates obtained for the Gaussian mixtures
estimated from the data generated according to (3.34) is assessed by the following criteria:

e The prescriptive validity is quantified by determining a test set of 150 samples by sampling
the random Gaussian mixture and determining the negative log-likelihood of this test set.

e The number of components is a measure of computational efficiency as the number of
components governs the computational complexity of any further application of a mixture,
e.g., w.r.t. a Bayesian estimation framework.

Implementation Details The following implementations and parameter settings were used
for the different estimators:

e Expectation Maximization (EM) was employed as a parametric density estimator. As
discussed in Ch. 2, the main drawbacks of EM are the model selection problem—as the
number of components has to be specified in advance—and no direct account for the
generalization properties. For the comparison four settings EM1 - EM4 were used, i.e.,
the number of components was either fixed to the number of components obtained from the
proposed approach (EM1 & EM2) or determined by optimizing the widely used Akaike
Information Criterion (AIC) in (EM3 & EM4). In order to improve the generalization
properties, a matrix 1 - ¢ was added to C (EM2 & EM4). The minimal covariance was
introduced yielding smoother estimates. The implementation of EM for Gaussian mixture
densities by Matlab™ was used.

e As a nonparametric estimator the default kernel density estimator (KDE) was employed.
Several bandwidth selection rules were used for the comparison, e.g., Silverman’s rule
of thumb (ROT), a plug-in estimator w.r.t. the MISE criterion (HALL), a leave-one-out
likelihood criterion (LCV), and a k-th nearest neighbor distance measure (LOC). The
KDE toolbox for Matlab™ from [85] was used for the comparison.

e The approach resembling the proposed algorithm most is the Reduced Set Density Esti-
mator (RSDE) [63]. This approach performs a sparsification ez post of the KDE estimate.
Therefore, reduced estimates of the kernel density estimates were calculated too. Given
the HALL, LCV and LOC estimates, the respective RSDE estimates are denoted by REH,
RER, and REL. The RSDE implementation is contained in the toolbox [85]; too.

e For the proposed approach the LCD distance and the Rényi-based regularization term
are used. The by, was set to ten times the largest data spread over all dimensions. The
parameter A balances between the distance and the regularization term was initialized
with A\g = 0.25 and optimized with the constraints A € [0.01, 100]. For the hyperparam-
eter optimization the algorithm based on k-fold cross-validation minimizing the negative
log-likelihood, as proposed in Ch. 5 was employed. This approach is referred to as LCD.

Results The results of ten random experiments generated according to (3.34) in terms of the
proposed performance measures are given in Fig. 3.3. The results show, that the generalization
capability of the approach is better than the results of EM and KDE except for ROT. Yet,
the ROT estimate has on average ca. 30 % more components than the proposed approach. In
general, the results for the RSDE estimator are sparser than LCD, but the quality is worse. This
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Figure 3.3: Mean and standard deviation of the negative Log-Likelihood scores and number of components achieved
by different density estimation algorithms’ results for ten Monte Carlo experiments.

is due to the fact that the results of RSDE given the generated densities are almost unimodal.
The reason for this is that the bandwidth selection performs badly for multimodal densities.
In contrast to KDE and RSDE, EM captures the present multimodalities well but suffers from
the model selection problem and the quality of the solution varies largely.

3.5.2 Conditional Density Estimation

The procedure for evaluating the quality of the conditional density estimation algorithm differs
from the setup for evaluating the density estimation algorithms in that the data is generated
differently, the set of estimators and their respective implementation differs as well as the
evaluation needs to be performed differently to account for the semantic differences.

Experimental Setup In the case of density estimation, the space of Gaussian mixture densities
was sampled w.r.t. certain restrictions. As conditional density estimation is concerned with the
estimation of a probabilistic model possibly derived from a deterministic functional dependency
perturbed by a noise term, the space to sample from is the space of dependencies and noise
terms. In order to discuss the proposed approach, experiments based on the following exemplary
nonlinear system perturbed by additive Normal noise are presented.

y=x+sin(z®)+w , w ~ N(0,0.15). (3.35)

The nonlinear mean function oscillates with varying frequencies. For example, the system
is almost linear around (0,0) and oscillates strongly elsewhere. For learning the conditional
density function 100 samples are obtained by sampling & uniformly at random for the interval
[—3, 3] and y according to normally distributed noise term w.

Evaluation Criteria The quality of the estimates is assessed according to the criteria below:

e The prescriptive validity is quantified only by determining a second set of 100 samples
used for testing and calculating the log-likelihood of this test set.

e The number of components is used as a measure of computational efficiency for the
conditional density function estimates.
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Figure 3.4: Mean and standard deviation of the negative Log-Likelihood scores and number of components achieved
by different conditional density estimation algorithms’ results for ten Monte Carlo experiments.

Implementation Details As mentioned before, the set of considered estimators differs from
the density estimation case as density estimators are only theoretically applicable to conditional
density estimation, cf. Ex.2.1. The bandwidth selection rules as presented in Sec. 2.1.2 render
an application of KDE or the respective RSDE estimator inadequate. As EM fits the Gaussian
mixture component covariances locally, i.e., without reference to an assumed overall density
over the input dimensions, EM will yield meaningful results and is therefore included in the
comparison as a representative of the subsumption approach to conditional density function
estimation.

e EM was employed for the comparison with four settings EM1 - EM4 for both, the esti-
mation of f(y,z) and f(z). The number of components was either fixed to the number of
components obtained from the proposed approach to conditional density estimation (EM1
& EM2) or determined by optimizing the common Akaike Information Criterion (AIC)
[129, 53] (EM3 & EM4). In order to improve the generalization properties, a matrix 1 - €
was added to C, i.e., the minimal covariance was introduced yielding smoother estimates
(EM2 & EM4). The implementation of EM for Gaussian mixture densities by Matlab™
was used for all experiments.

e As the state of the art conditional density function estimator for additive Gaussian noise,
the Gaussian Process Regression (GPR) was used. The default parameter settings and
hyperparameter optimization was used for all experiments. The GPR implementation from
[152] for Matlab™ with default parameter settings was used for the experiments.

e The proposed nonparametric approach was implemented by means of an support-vector
regression (SVR) with the [;-distance between the estimate and the EPDF at the sample
points and the RKHS regularizer, as proposed in [107]. Additionally, implementations
using the LCD in conjunction with the RKHS or Rényi regularizer were proposed. For
the hyperparameter optimization the k-fold cross-validation-based algorithm minimizing
the negative log-likelihood, as proposed in Sec. 5 was employed.

Results The results of ten random experiments based on samples of the system (3.35) w.r.t.
the proposed performance measures are reported in Fig. 3.4. These show that the subsumption
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approach as represented by EM produces overfitting results. This can be seen especially at the
turning points of the underlying sine function. GPR produces results with almost ground truth
quality. Yet, without any further sparsification a GPR will have a function representation,
i.e., the non-parametric mean and covariance functions, containing the entire training data
set. The proposed approach yields drastically better generalization results than EM and only
slightly worse results than the GPR. The implementation using LCD and the Rényi-entropy
based regularizer produces even better results than the GPR. Yet, even though the resulting
Gaussian mixture densities are not as sparse as the results of the AIC-based EM, cf. Fig. 3.4 (b),
there is a significant reduction in the number of components, i.e., 20 % — 50 % less components.

3.6 Main Contributions

The main contributions of this thesis w.r.t. non-parametric density and conditional density
estimation are summarized in the following list.

e The proposed weight optimization of densities and conditional densities produces sparse
and well-generalizing estimates w.r.t. the state of the art. Given the hyperparameters, the
arising optimization problem may be solved efficiently by standard QP solvers.

e A novel entropy-based regularization term was derived, which is more general than the
regularization by the norm in the RKHS.

e The introduction of the LCD and the modified l5-norm, i.e., the mCvMD, removes the
fallacies of the default extensions of the standard cumulative distribution functions for
density and conditional function estimation.

e Due to its non-parametric nature, the approach is limited due to the assumption of identical
parameters for all components and the limitation to {Hi}lﬁiﬂm =7D.

e The arising optimization problem may be solved efficiently as it is a constrained convex
quadratic problem. The problem may therefore be solved in polynomial time w.r.t. the
number of optimization variables and constraints.



It is easier to perceive error than to find truth,

for the former lies on the surface and is easily seen,
while the latter lies in the depth,

where few are willing to search for it.

—JOHANN WOLFGANG VON GOETHE

4 Full Parameter ldentification

In the last section, density and conditional density estimation of sparse Gaussian mixture den-
sities or conditional densities were considered. The proposed approach improved the respective
state of the art by offering a good compromise between sparseness and quality. This chapter is
concerned with further improvements of the conditional density estimation algorithms.

Challenge The quality of the conditional density estimation algorithms presented in Ch. 3 is
limited due to the restriction of the estimates to Gaussian mixture densities with means identical
to the data points and identical parameters for all components of the mixture density. The
limitation to fixed mean positions prohibits a good approximation of the true conditional density
by the mixture density in parts of the state space where little or no data is located. The
restriction to identical parameters for all components allows for an efficient implementation of
the algorithms, but does not reflect variations in the local data distributions.

Key idea The aim of this chapter is to increase the model’s capacity to allow for improved
generalization. In the rest of this chapter, an approach for lifting each restriction is pre-
sented. The key ideas are the introduction of a curvature-based regularization term allowing
for a simultaneous regularization of the mean function and the probabilistic model as well as a
local data-driven calculation of the component covariances. As the extension to variable mean
positions and variable kernel covariances requires a fundamentally different interpretation for
density and conditional density estimation this chapter is limited to conditional density es-
timation. In the rest of this chapter, approaches for introducing variable means and kernel
covariances will be presented and summarized in an algorithm in Sec. 4.3.

4.1 \Variable Mean Positions

The proposed conditional density estimation involves finding the parameters of a Gaussian
mixture density! and the hyperparameters w = [\ £]T of the optimization problem, i.e.,

g=[a", g, 2, "', (4.1)

Using Alg.1 from Ch.3, o may be efficiently determined. The set of mean positions were
set to {u} = D, thus |{u}| = |D|, and considered hyperparameters of Alg. 1. Extending the
set of mean positions to the entire state space, i.e., ;€ RY, introduces two model selection
problems: (a) the number of components, because not necessarily [{u}| = |D|, and (b) the
mean locations. One advantage of Alg. 1 is the automatic determination of the number of com-
ponents by the algorithm itself. This property may be exploited when determining variable

LA definition of a Gaussian mixture density is given in (A.30).

47
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Figure 4.1: Effect on the second derivative for a minimal change in the shape: both (a) and (c) are bimodal
probability density functions. In (c) three components were removed from (a).

means, because redundant components will be removed when using Alg. 1 as an inner loop of
a hyperparameter optimization. In principle, it would be possible to add an arbitrary number
of variable means to the optimization problem and let Alg. 1 determine the optimal number of
components. Because the hyperparameter optimization is a costly nonlinear function minimiza-
tion, it is advisable to keep the number of variable means low. Additionally, the regularization
terms presented in Sec. 3.2 and used in Alg. 1 cannot be used when optimizing mean positions
as trivial minimization may be shown, e.g., w.r.t. mean positions for fixed kernel covariances,
cf., in Ex.4.1. In the following, a regularizer is proposed, that avoids this fallacy and penalizes
conditional density estimates based on the curvature of the density’s surface.

Example 4.1: Trivial Minimizer of RKHS-based and Rényi-based Regularization Terms.
Assume the following scalar Gaussian mixture density with two components to be given

f(@) = ar N(z; py, 01) + (1 — aa) N (5 pi, 02)

with fixed a = [a; (1 —ay)], a1l =1, o; € [0,1], fixed 01,05 € R", 01 = 09, and g = 1y + €.
The Rényi-based regularization term according to Sec.3.2.2 is

a"Ka=afN(ui;p,0) + (1 —a))* Ny +&;p1 +6,6) + araa N (g gy +€,0)
= (a?+ (1 —@)?) V(215 + ar(l — an) N (i +¢€,5) (4.2)

with fixed 0 € IR*. From (4.2) it follows that
maxe = argmin o' Ka, (4.3)

holds, thus minimizing the regularizer means maximizing the distance between both components.
The same argument holds for the regularization in terms of the norm in RKHS. |

4.1.1 Superficial Regularization

The aim of introducing variable means for the components in the target function of Alg.1 is
to improve the generalization in parts of the state space where little or no data is located. If
only the mean function of the generative model shall be recovered from the data, determining
function values of the mean function at positions, where no data is located corresponds to a
classical regression. This problem may be solved with any (non-)parametric regression algo-
rithm, cf. [73]. These algorithms have a justification in their own right, but since in conditional
density estimation, not the mean function of the generative model, but the probabilistic model
is required, they may not be employed.
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Key Idea The key idea is to extend the smoothness assumptions underlying the (non-)parame-
tric regression algorithm for the mean function to the surface of the conditional density. By
assessing the quality merely of the conditional density surface, there is no need for an underlying
generative model and the conditional density function representation may be arbitrary. The
measure of roughness which is implicitly minimized by a regression method, e.g., splines [77]
or smoothing splines [73], is the curvature. The curvature K (-) of a curve g : R — IR in the
plane for a point p € IR is defined by

9% g(p)

K (9(p)) = e - (4.4)

As only the cumulated strength of the curvature at this point and not the direction of the
curvature is of interest, the squared or absolute value of (4.4) is considered

7 _ (32355))2 _ (P9 A
(9(0)) = <1+<ag_?)2)3_( ) (45)

and bounded from above by neglecting the denominator of (4.4) in (4.5). For the overall curve,

K2(9)=/RK2 (9(p)) dpé/R (a;‘gf))z dp, (4.6)

is an upper bound of the curvature. Regression methods, e.g., smoothing splines, minimize a
target function consisting of a data fit term and (4.6), cf. [73, p. 151]. As a result smooth, mini-
mally oscillating functions are obtained. The sensitivity of the second derivative as an element of
the upper bound on the curvature (4.6) to the smoothness of the surface is visualized in Fig. 4.1.
In Fig. 4.1, the difference in the second derivative of two scalar bimodal GMM is depicted be-
fore and after removing a number of components. Regarding conditional density functions,
it is intuitive that for additive Gaussian noise, smooth, minimally oscillating mean functions
correspond to smooth, minimally oscillating conditional density function surfaces. Lifting the
curvature-based regularization from the mean function to the function’s surface corresponds to
using a regularization term measuring the curvature of this surface. In the remaining part of
this section, a regularization term for 2D surfaces will be derived and discussed.

4.1.2 Superficial Regularization for 2D Conditional Density Functions

A 2D conditional density function in this section denotes a function f : IR x IR — [0, 1]
with scalar in- and output dimension. The surface of f is a 2Dsurface in a 3Dspace. In
contrast to the point-wise curvature of a line, the curvature of a surface is not uniquely defined
[31]. The canonical curvature definitions arise from different combinations of the curvatures
of plane curves defined by the intersection of the surface with two normal planes at a given
point p = (x,7) € IR% The mean curvature averages and the Gaussian curvature multiplies
the minimal and the maximal curvature [31]. For the sake of brevity, some abbreviations are
introduced, e.g., the considered Gaussian mixture function may be written as vector product

L

Fle) =" i N (s pryi, 0y0) N (25 iy 000) = o f(y, ) | (4.7)

=1
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Figure 4.2: Relationship of the curvature of the mean function and probabilistic model w.r.t. different measures is
exemplified by evaluating the curvature measures for an oscillating system (a) progressing towards a linear system
(b). The values of the numerically calculated integral squared curvature measures for varying progression parameters
v (red) are depicted in (c), i.e., Gaussian curvature K (blue), mean curvature H (black), the superficial regularizer’s
value R (scaled, green), and curvature of the generative model x. Graphics taken from [109].

with weights o = [0 ... ], &; € RT and the vector of normal components f(y, z) in (4.7)

[, x) =1 y,x) ... fHy,2)]", (4.8)

where each component is defined by
fi(y7 ZL’) - N(y, My,i» Uy,i) N(ﬁ, Haz iy Ux,i) .

For the calculation of the curvature, partial derivatives of (4.8) need to be calculated w.r.t. a
point p, i.e., a pair of input and output values

gl W) = fulyle),  ghf.e) =) foo)]",  flle)=fp).  (49)

Using these definitions, the signed Gaussian curvature for a point p is given by

Kl = a7 2w)

The pointwise squared Gaussian curvature is upper bound by neglecting the denominator

K2(p) < [ fue®) fiu(@) — F2,0)]°

and for the overall surface of f the upper bound of the Gaussian curvature is given by

KN = [ Ke@dn< [ [l £ do. (4.10)

In order to incorporate the regularizer into Alg.1, KZ(f) needs to be minimized w.r.t. the
weights with all other parameters fixed. The following regularizer w.r.t. the weights is proposed.

Definition 4.1 (Scalar Superficial Regularizer, [109]) For a conditional density f(y|z)
with scalar in- and output x,y € R, given in the form of (4.7) with
Ny py1,041) - N(@; a1, 01)

flx,y) = : :
Ny iy 0y0) - N5 phe,r, 001)
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the superficial reqularizer R is defined w.r.t. the weights o as
R:=ca'Ra, (4.11)

with ¢ constant w.r.t. the weights a. The entries of the matrix R are calculated by

L
Ry =30 [ 1890 500 1590 157 0) do,
k=1

with
0

a—mN(:L’; Uiy Ozi) = N (Y iy 0i) - N5 pa e, Oare) - N (Y5 py ks Oy k) -

For the purpose of this thesis, the constant ¢ in the quadratic form (4.11) is neglected. The
most important properties of (4.11) are given in the following theorem.

F9R (p) =

Theorem 4.1 (Properties of the scalar Superficial Regularizer, [109]) The superficial
regularizer, introduced in Def. 4.1, has the following properties:

1. R is an approximation of an upper bound of K2(f), as defined in (4.6).

2. For a generative model perturbed by zero-mean Gaussian additive noise, the superficial
regularizer of the probabilistic model is a linear transform of an upper bound of the squared
curvature of the generative model.

The proofs for Theorem 4.1 are given in Appendix A.4.2. The key idea behind the proof of the
first property is a series of approximation of the squared curvature of the entire surface of
the scalar conditional density function f. For the second property, a point-wise upper bound
on the curvature of the generative model is extended to the entire surface. In analogy to
Sec. 3.4, the definiteness properties of the superficial regularization matrix R can be shown by
an application of Lemma A.2. Based on (4.11), it is shown in Appendix A.2, that R is obtained
from dyadic product and thus, R is p.s.d. When using the same distance matrix as in Sec. 3.1,
the same properties of the solution w.r.t. uniqueness and attainment of a solution as well as
the computational efficiency of the solution algorithm as for the conditional density estimation
algorithm in Sec. 4.11 hold. The application of the regularization term will be shown in Alg. 4.3.

4.1.3 Properties and Restrictions
The properties and restrictions of the superficial regularization may be summarized as follows:

e The insight given by Theorem4.1 is that the regularization with the term proposed in
Def. 4.1 regularizes an approximate upper bound of the curvature of the generative model’s
mean function and the conditional density function’s surface simultaneously. The general-
ization properties of a regularized mean function can therefore be achieved by regularizing
the surface only. This relation is visualized in Fig. 4.2, where a system progressing from
an oscillating to a linear mean function is shown. The values of the upper bound on the
curvature for the probabilistic model and other numerically calculated integral squared
curvature measures are depicted.

e Theorem4.1 needs to be put into perspective with the underlying assumptions. These
assumptions include that the noise disturbance needs to be additive and that the approx-
imation quality needs to be high, which corresponds to a high number of components in
the resulting conditional density.
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e Another restriction is that the superficial regularizer does not distinguish between in- and
output dimensions, requiring additional regularization of the probability mass distribution
over the input dimension.

e The regularization term in Def. 4.1 is defined for scalar in- and output dimensions only.
This definition needs to be extended to include the higher-dimensional cases.

4.2 \Variable Kernel Covariances

In this section, the limitation to identical kernel covariances as used in Ch. 3 is removed to
improve the capacity of the model and allow for a modeling of the model uncertainty due to a
locally varying distribution of the data used for the conditional density estimation.

4.2.1 Related Work

The idea of adapting the covariances of the kernel functions corresponding to probability density
functions has found wide-spread use in kernel density estimation [25, 158, 179]. For the remain-
ing part of this section, the terms (locally) adaptive [158, 179] or variable kernel parameters [25]
are used synonymously as in kernel density estimation. The first approach towards alleviating
the shortcomings of using a common kernel covariance as described in Sec. 3.4 was given in
[25]. The key idea is to scale the width of each kernel with the lo-distance h; := lo(z"* — ;) of
this kernel’s mean z; to its k-th nearest neighboring sample z**

similar to the k-th nearest neighbor density estimator [122]. This choice is known to be asymp-
totically equivalent to scaling with the likelihood of the data point z; [179, 187], i.e.,
hi = f(z;) "N, (4.12)

1

As a result, the kernel width will be small in areas densly populated by samples and will be
large in low density areas. This may be understood as modeling the model uncertainty as more
change in the density function’s shape is allowed in areas with a high density of samples. Since
[25], a lot of research has been pursued leading to a categorization of variable kernel approaches
into sample-based and balloon estimators [158, 187]. The sample-based estimators extend to the
idea of [25], whereas the balloon estimators scale the kernel covariance relative to the evaluation
point and not to the component’s mean. Variable kernel density estimation is still an active
research field, e.g., in computer vision, where incremental and online estimation algorithms are
investigated [28, 110, 131]. In the remaining part of this section, the sample-based covariance
estimator presented in [28] is extended for the application to conditional density estimation.

4.2.2 Key ldea

The key idea of determining the variable kernel covariances is to calculate the kernel covariances
relative to the local data density. This implies a decomposition w.r.t. the in- and output
dimensions of ¥; into independent matrices ¥;, € RN and iy € RMM je.,

_ Ei,y 0
Ei_[ 0 zx}
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The submatrices have different semantics and are calculated separately. In principle both 33; ,
and 3, , might be estimated for each component independently. In this thesis, the idea of
the scalable kernel is adopted [25], as this approach reduces the computational effort to the
optimization of two submatrices only and the calculation of the scale parameter, i.e.,

D
i = ¢ [ Eoy E?D } +1e, (4.13)

where ¢; captures the local data density and the submatrices 3, and X, may be understood as a
basis kernel capturing the average covariance w.r.t. the input and output dimensions. The last
term in (4.13) adds a tiny value € to X, and 3, in order to avoid singular covariances. There
exist many ways for estimating the basis kernels 3, and 3,. Some of which are considered
in the section about initial values in Ch.5. Note that 3, and ¥, may be used without any
further optimization too. This approach is the default procedure used in KDE [179]. If on the
other hand, e.g., the variance in the sample covariance for any of the directions is too high, the
above estimates may serve as an initial value for an optimization, e.g., w.r.t. cross-validated
log-likelihood scores as proposed in Ch. 5. The submatrices 3, and X, are scaled relative to K
of k-nearest neighboring samples to the respective B,

6 =g ( {2y, )™ 1) e ) -

The function ¢ : RN™ — IR may be, e.g., the average or maximal distance to each sample in
the k-neighborhood. Combining all elements gives rise to the data-dependent adaptive kernel
covariance 3J; for each component of the Gaussian mixture density. The sections about variable
mean positions and kernel covariances are summarized in an algorithm in the following section.

4.2.3 Properties and Restrictions

The two main properties and restrictions of the variable kernel covariances are listed below.

e The presented approach is an extension of existing variable kernel approaches for density
estimation to conditional density estimation. The variable kernel covariances removes the
restriction to identical parameters for all components and allows for reflecting variations
in the local data distributions.

e Without further assumptions, the number of variables of the optimization problem depends
on the dimensionality of the considered spaces due to the variable kernel covariances.

4.3 Algorithm

In this section, the nested optimization scheme for optimizing all parameters of a Gaussian mix-
ture is stated based on the preceding sections. The proposed optimization scheme is composed
of an outer and inner loop: the inner loop optimizes the weights and the outer loop optimizes
the means, covariances of the Gaussian mixture density as well as hyperparameters w

T T T T
0= «a TSN Y w " (4.14)
~~ —_——
Inner loop Outer loop Hyperparameter

Optimization
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Outer Loop The outer loop comprises of the determination of the adaptive kernel covariances
for each component, the solution of the inner loop, and the update of the components’ means
based on the function value of the inner loops target function. The adaptive kernel covariances
are determined as described in Sec. 4.2 for the given components’ mean position. Having
determined each component’s mean and covariance as well as the hyperparameters, the inner
loop, i.e., the weight optimization, may be performed. The target function value v is minimized
using a default function minimization algorithm w.r.t. p. The adaptive kernel covariances are
determined separately and analytically, without any further optimization. In order to determine
the hyperparameters w, e.g., cross-validation—-based methods as proposed in Sec. 5 may be used.

Inner Loop The inner loop of the optimization scheme consists of composing and solving
a convex quadratic program, similar to Alg. 1 for conditional density estimation. The major
difference from this inner loop to Alg.1 is the calculation of the regularization and the dis-
tance terms. The distance measure needs to be calculated w.r.t. a Gaussian mixture density
with non-identical covariance matrices. As a regularization term, the superficial regulariza-
tion term presented in Sec. 4.1.1 needs to be calculated. Additionally, the regularization term
and the distance measure term need to be combined to form the target function of a convex
quadratic program. The constraints of the arising quadratic program are identical to Alg. 1 as
the conditions for a GMM to be estimated do not differ from Alg. 1.

Start Values The above algorithm corresponds to the solution of a nonlinear and non-convex
optimization problem. It is advisable to carefully choose the start values for the optimization.

e As described in Sec. 4.1, the number of mean positions will be automatically reduced
by the QP of the inner loop of the overall optimization scheme. Due to the complexity
of the optimization scheme, an iterative test is proposed whether additional components
improve the solution. Otherwise a heuristic needs to be adopted, e.g., sampling from the
largest adaptive covariances for {u} = D, until a threshold, e.g., on the determinant of
the covariances, is reached. B

e In order to reduce the computational effort, the variable means may be set to {H} =DuUV,
so that only the additional set V needs to be determined, by, e.g., an adaptive kernel
covariance based sampling scheme.

e Fundamental to the further optimization is the determination € and the size of neighbor-
hood k employed for calculation of the variable kernel covariances in each optimization
step. These parameters may be determined a prior: and their calculation corresponds
to a model selection problem, which may be solved as described in Sec.5. The other
hyperparameters may be determined as proposed for Alg. 1 and shown in Ch. 5.

4.3.1 Efficient Implementation

The computational complexity of the proposed algorithm depends on the number of opti-
mization variables and constraints in the outer and inner loop. In order to obtain an efficient
implementation, an approach to reduce the computational burden is proposed for each loop.

e In the outer loop, for m means K, € RN, an (m - N)-dimensional optimization problem

arises. As proposed for the start Values setting {1} = DUV lends itself to the reduction to

a (|V|-N)-dimensional optimization problem, with |V| < m, if the means of the components

located at D are not optimized. Because a 20-dimensional optimization problem arises for

ten components with means in IR?, an iterative optimization scheme is proposed, where
the means are iteratively optimized one after the other until convergence.
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Algorithm 2 Nested Conditional Density Estimation Algorithm.

1:

10:
11:
12:
13:

14:

Input: D, w
. Calculate 0,_, > Initial Values
repeat > Outer Loop
(ay, vk) + OPTIMIZEWEIGHTS(D, p, , X, w)
Py UPDATE(y, , w) > Update variable means
Calculate ¥, ; from D > Update variable covariances

until A(vp_1, 1) < e

function OpPTIMIZEWEIGHTS(D, By X, w) > Inner Loop
Q — g) Ek’ 2k+1
Calculate D(D, 0) and R(0) > E.g. (4.11)
Calculate constraints

Compose and solve QP
return Weights o, value of v

end function
Output: f ~ GMM {ijﬁkak}

e A similar scheme may be pursued for the optimization of the weights « in the inner loop.

All but a small “chunk” of variables «, is considered constant a, i.e., @ = [ap al]". The
target function of the QP (3.33) then allows for a decomposition into a smaller problem

T T, _ 1| Qu Que 27| L

ZQEQ'UUQU—’_QE [ZQUCQC_2QU:| +c, (415)

with a scalar term combining all summands independent of «,. The constraints of the
QP may be reformulated analogously. The QP in (4.15) has only length(a,) < length(a)
optimization variables, but will require the iterated solution of chunks containing all «
until convergence to obtain a solution. For this approach no optimality or convergence
have been proven up to now. This approach is equivalent to the “chunking” method for a
fast solution of the QPs arising in large SVMs [138, 164].

4.3.2 Properties and Restrictions

In the following, the properties of the proposed conditional density estimation are discussed.

e The proposed method of optimizing the variable mean positions required the introduc-

tion of a novel superficial regularizer to avoid a trivial minimization of the regularization
term. The superficial regularizer was proposed for two-dimensional problems and shown
to be related to an upper bound on the curvature of the generative model disturbed by
additive Gaussian noise. Minimizing the superficial regularizer may thus be understood
as minimizing an approximate upper bound on a common measure of curvature for the
mean function of the generative model. Using the superficial regularizer the deficient ap-
proximation of the approaches in Ch. 3, where data is distributed scarcely was overcome
and the generalization performance may be improved.
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Table 4.1: Average neg. log-likelihood scores and component numbers for Exp.4.4.1.

EM1  EM?2 GPR Rényi SF  SF+XV
NL 147577 254307  0.79627  0.83207  0.72647  0.56547
Lo 1+ 5.7847 £9.6808 +£0.062536 +£0.62414 £0.1773 £0.11966
4 Comp. | 67.3 67.3 N/A 66.1 67.3 66.5

e The extension of the existing variable kernel approach used in density estimation to variable
kernel covariances for conditional density estimation allows for a representation of the
model uncertainty. The local data density scales the kernel covariance, so that in areas
with plenty of data more peaked conditional densities are allowed, whereas for low density
parts of the state space large, i.e., more conservative covariance extensions reflect the
model uncertainty.

e A caveat is the computational complexity of the given approach as discussed in Sec. 4.3.1.
A naive implementation of the proposed overall optimization problem, i.e., a simultane-
ous optimization of all means’ positions yields an optimization problem with a number of
optimization variables scaling with the number of the variable kernel means and the di-
mensionality of the estimation problem. The proposed efficient implementation alleviates
this problem, but is greedy, order-dependent, and not guaranteed to converge. The same
statement holds for the proposed “chunking” method. It should be noted that chunking
is one of the most common methods for solving the QPs arising in SVMs.

Alg. 2 summarizes this chapter by combining the implementation of the outer and inner loop
of the nested optimization scheme into one algorithm. This algorithm takes only the data as
input and returns the estimated conditional density in the form of a Gaussian mixture density.

4.4 Experimental Validation

The experimental validation resembles the evaluation setup in Sec. 3.5.2 for non-parametric con-
ditional density estimation presented in the preceding chapter. For the evaluation, the identical
system is employed, but in order to test the generalization capabilities an artificial “gap” was
created by not sampling a part of the system. Additionally, the application of the presented ap-
proach to nonlinear filtering is investigated for the benchmark Kitagawa growth process [42, 93].
In the following, the experimental setup as deviating from Sec. 3.5.2 is presented.

4.4.1 Conditional Density Estimation

In the following, the experimental setup, evaluation criteria, implementation details, and results
for conditional density estimation are presented.

Experimental Setup For the evaluation of the conditional density estimation, a probabilistic
model derived from the following exemplary nonlinear functional dependency perturbed by a
noise term is sampled. This system is identical to the system in Sec. 3.5.2

y=x+sin(z’)+w , w ~ N(0,0.15) . (4.16)

The conditional density estimators are given 100 samples as input, which are obtained by
sampling & uniformly at random for the intervals [ -3, —0.5] and [0.5, 3] as well as the corre-
sponding y according to the normally-distributed noise term w. The generalization performance
of the estimators is investigated for the not sampled interval [—0.5,0.5].
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T —
(b) EM estimate.

x — x —
(e) SF estimate. (f) SF+XV estimate.

Figure 4.3: Plots of the [0.025,0.05,0.075,0.1,0.35,0.45] probability contours (a) of the true underlying proba-
bilistic model and (b)-(f) exemplary unnormalized estimates for the experiment in Sec. 4.4.1. Crosses mark samples
(black) and component variable means (red). The results are based on [109].
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(a) System function. (b) Measurement function.

Figure 4.4: System (a) and measurement function (b) of the Kitagawa growth process [93] used in Exp. 4.4.2.

Evaluation Criteria The quality of the estimates is assessed according to the criteria below:

e The prescriptive validity is quantified by determining a second set of samples from [—1, 1],
i.e., half of the sampling interval overlaps with the sampling interval of the training samples
and the rest is sampled in an interval for which the estimators are not given any data. For
testing, the negative log-likelihood of this test set is calculated

e The computational efficiency of the conditional density function estimates is quantified by
the number of components in the estimate. This differs from Sec. 3.5.2 as for the proposed
full-parameter optimization some means are freely placeable and the inner loop of the
optimization will remove components irrelevant of their positioning.

Implementation Details The estimators used for this comparison are identical to the set of
estimators considered in Sec.3.5.2, i.e., different variants of EM (EM1-2), the standard GPR
and the non-parametric approach with LCD distance measure and Rényiregularizer. Regarding
the approach proposed in this chapter, two parameter sets were considered. In order to show
the benefit in optimizing the variable means, the proposed regularizer and variable covariances
were used with the constraint of fixing all components’ means to D (SF) and adding five variable
means to this set as well as optimizing these (SF+XV). Except for this difference, the employed
parameters are identical, i.e., the size of the considered neighborhood for the variable covariance
was k = 10, ¢ = 0.02, the by, value for the LCD was set to ten times the largest distance
between two sample points, an initial o, = 0.05 as well as the trade-off parameter was set to
A = 0.5. For determining the variable means’ initial positions a greedy splitting procedure was
adopted. The largest variable covariance was determined and the variable mean was located
half-way between the component’s mean and the nearest neighboring sample. This step was
repeated for all variable means.

Results The results w.r.t. the prescriptive validity are given in Tab. 4.1 and show that EM
produces drastically worse conditional density estimates than all other approaches. The reason
for this can be seen in Fig. 4.3 (b). EM appears to overfit the estimate at the turning points of
the oscillating function, where clusters of data points are located. Thus, no continuous function
is recovered and the estimate deviates strongly from the true underlying system Fig. 4.3 (a).
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Table 4.2: Negative log-likelihood scores for the growth process [93]. The results are averages over ten experiments.

NL*® 4o NL*® 4o NL*™ 4o
EKF 921.7 +168.7 29e+04 +1585.9 2.7¢+05 =+4036.5
UKF 60.8 +1.9 6284  +31.0 2399.8  +63.4
GP-UKF 62.7 +4.9 4293  +54.2 17171 +£95.5
GP-ADF 59.3  +3.1 283.6  +234 1066.8  +42.8
GMF-SF 55.0 +3.5 246.5  +57.1 775.6  +296.8
GMF-SF+XV || 53.8 +1.38 1872  +19.4 489.5  +77.6

The quality of GPR, the nonparametric Rényi approach, and full parametric SF approach yield
comparable results with no significant advantage for either of the estimators, cf. Tab. 4.1.
This resembles the results from Sec. 3.5.2 and shows that the superficial regularizer allows
for the same level of generalization as the Rényiregularizer. GPR produces results of similar
quality. Yet, the variance of the results shows that the GPR produces high quality results
more consistently. The overall best results are obtained from SF+XV. These results improve
on SF and have a variance in the estimation, which is second only to the GPR. Note, that
only SF4+XV and GPR are capable of interpolating the underlying functional dependency at
intervals, where no data is located, cf. Fig. 4.3 (b)-(d). Regarding the computational efficiency,
the GPR will have a function representation entailing all samples if not further sparsification is
performed. In contrast, the other approaches produce GMM with ca. 30-40 % less components.
The results presented in this section are based on [109].

4.4.2 Nonlinear Filtering Application

As the conditional density estimation algorithm proposed in this chapter will be used for nonlin-
ear filtering, results for a nonlinear Gaussian filtering benchmark application and an experiment
for filtering with multimodal posterior densities are presented.

(a) Kitagawa growth process

The benchmark problem considered is the Kitagawa growth process [93], which has been used

for comparing especially GP-based filters, e.g., in [42, 107, 109].

Experimental Setup The process comprises the following nonlinear system model

Tppr = 052 + B35+, (4.17)
and the nonlinear sinusoidal measurement model
Yr =5 sin(2xy) + vy, . (4.18)

Identical to [42], the stationary process noise is set to wy ~ N (w,0.2) and vy, ~ N (vx,0.01).

Evaluation Criteria For the evaluation, a second data set was generated. Given a fixed
prior normal density f(zy), the successive state distribution f(x;) was calculated and a mea-
surement 7; sampled. This generation process was performed for 200 prior normal distributions
with equidistantly sampled mean py € [—10,10], but fixed noise oy = 0.5. In order to assess
the quality of the results two criteria are employed.
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Table 4.3: Mahalanobis distance results for the growth process [93].

M(x) +o
EKF 2.1e4+06 =£3.0e + 06
UKF 1025.6  £4499.2
GP-UKF 3623.9  £41986.9
GP-ADF 22.6 +36.6
GMF-SF 12.1 +13.3
GMF-SF+XV 7.2 +7.1

e The distribution of the negative log-likelihood score (NL) of the true state for the estimated
f(z1) is given in three quartiles. The NL shows how well the true state is explained by
the estimates.

e The Mahalanobis distance M (x) [125] between the true and the estimated state is given
as a measure of the estimate’s uncertainty, i.e., estimates close to the true state will be
considered far away, if the uncertainty about the state is high.

In summary, lower values indicate better performance for both scores.

Implementation Details For the comparison, the Extended Kalman Filter (EKF), Un-
scented Kalman Filter (UKF), the GP-based UKF, i.e., the GP-UKF, and the GP-based ana-
lytic moment based filter (GP-ADF) were used as state of the art nonlinear filters. The EKF,
UKF, GP-UKF and GP-ADF implementations of [42] were used with default parameter set-
tings. For testing, the quality of the proposed conditional density estimates for nonlinear
filtering, a Gaussian mixture filter was employed. In this filter the system and measurement
model are GMM. The implementation from [107] was used. Similar to Sec. 4.4.1 the system
model was trained with SF and SF4+ XV and the measurement model was trained with SF only.

Results The numerical results for both benchmark nonlinear Gaussian filtering experiment in
Tab. 4.2 and Tab. 4.3 show that the proposed GMM filter based on the estimated GMM yields
results better than EKF, UKF, and GP-UKF. Only the GP-ADF produces comparable results.
Additionally, the results show that the introduction of the variable means improves the results
for the Kitagawa experiment. The reason for this improvement is that the system model, cf.
Fig. 4.4 (a) is almost a jumping system around (0,0). As the samples used for training are
uniformly distributed this jump is undersampled. Thus, the optimization of the means w.r.t.
the superficial regularization alleviates this problem as the variable means “fill” the gap.

(b) Multimodal Posterior Densities

The Kitagawa growth process was used for comparing with Gaussian filters. In order to show
the capability of the proposed GMM-based filter to estimate multimodal posterior densities the
following nonlinear cubic sensor model [72, 107] is considered

Ty =2z, — 0.5 +wy,, wp ~ N(0,0.175). (4.19)

For training, 100 samples were generated according to (4.19). As only the capability to estimate
multimodal posterior densities shall be investigated the GMM conditional density for the system
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Figure 4.5: Posterior densities after 1,2,3, and 4 prediction steps: true posterior density (red, solid), the GP-
ADF estimated posterior density (blue, dash-dotted), the SVR-based estimate (SVDF) (black, dash), and a moment-
matched Gaussian approximation of the SVR-based estimate (black, dotted). Graphics taken from [107].

model is estimated using the SVR approach described in Sec. 3.5.2. Given the prior density

the prediction capacity of the resulting Gaussian mixture filter (SVDF) [107] is compared to
the GP-ADF for four consecutive prediction steps without any measurements.

Results Fig. 4.5 shows the prediction results for the cubic sensor system (4.19). This example
shows that the GMM filter captures the modes well, whereas the GP-ADF as a prototypical
nonlinear Gaussian filter degenerates. Note that even a moment-matching approximation of
the GMM yields better results than the GP-ADF. The results presented in this section are
reproduced in part from [107, 109].

4.5 Main Contributions

The main contributions of this chapter may be summarized as follows w.r.t. descriptive and
prescriptive validity as well as computational efficiency.

e In this section, a conditional density estimation algorithm was proposed that overcomes
the limitation of the estimates to Gaussian mixture densities with means identical to the
data points and identical parameters for all components of the mixture. These restrictions
reduced the capacity of approaches proposed in Ch. 3 and therefore limited the quality of
the obtainable conditional density estimates, i.e., the descriptive validity.
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e The proposed approach improved the prescriptive validity by simultaneously smoothing

the mean function of the estimate and smoothness of the conditional density function
surface by means of the superficial regularization term. Additionally, an account for the
model uncertainty in the estimate was introduced by means of data-dependent covariances.
As was shown in the experimental validation, both measures improve the generalization
capability of the obtained estimate.

Regarding the computational efficiency, the resulting conditional densities are sparser than
the estimates produced by the more restrictive approach presented in Ch. 3, but the train-
ing algorithm is more expensive. The conditional densities produced by the proposed ap-
proach are more efficient for the use with a nonlinear filtering online, but take longer to
train offline.

For the potential application of the conditional density estimator, i.e., nonlinear filtering,
the proposed approach has been shown to produce comparable or better results in nonlinear
Gaussian filtering than GP-based filters. Additionally, the proposed GMM-based filter is
capable of supporting multimodal posterior densities, which is not possible for all assumed
Gaussian filters.



That which we must learn to do,
we learn by doing.

—ARISTOTLE

5 Hyperparameter Optimization

The density or conditional density estimation algorithms presented in Ch. 3 and Ch. 4 solve
their respective estimation problems w.r.t. a set of predefined hyperparameters. Since the
solutions and therefore the quality of the solutions depend on the hyperparameters, the deter-
mination of the hyperparameters is crucial to the density and conditional density estimation.
In this chapter methods for the optimization of the hyperparameters w.r.t. to scalar objective
functions will be derived. Most of the optimization methods are applicable to density and
conditional density estimation. The specific differences will be considered where necessary.

Challenge Let the set of all parameters of the generic optimization problem be given identi-
cally to the problem definition (2.29) by the following vector
Q: [ QT HT ZT gT ]T. (51)

The hyperparameters ( are the parameters in @, which are not optimized by the respective
algorithm presented in Ch. 3 or Ch. 4. The exact set ¢ depends on the specific algorithm.
Similar to the underlying problem, the challenge is the determination of ¢ is ill-posed and
needs to be performed w.r.t. a given measure of generalization. For example, a covariance X,
e.g., with a small value of det(X), may result in overfitting and dense representations of the
solution or may lead to underfitting for large values and produce sparse representations, cf.
Fig.5.1. Furthermore, the optimization problem to be solved is nonlinear and nonconvex and
has many local extrema in general.

Key Idea As motivated in Sec. 2.1.4, the hyperparameter optimization problem may be un-
derstood as a classical model selection problem and addressed by approaches ranging from
heuristics over Bayesian approaches to cross-validation. In this chapter, a data-driven approach
to hyperparameter optimization for density and conditional density estimation based on cross-
validation (CV) [47, 130, 156] is presented. The key idea of this approach is the assessment
of the generalization performance of the estimator w.r.t. the distribution of the underlying
phenomenon as manifesting in the data. In order to obtain a robust assessment, the assessment
is performed iteratively on hold-out data.

5.1 Overall Optimization Scheme

In this thesis, hyperparameter optimization is considered as a generic constrained optimization
problem. The optimization comprises of four components: the optimization variables (, a mea-
sure of generalization, a generic function minimization procedure, and the constraints of the
optimization variables. The key idea is to create a measure of generalization and to perform
a generic function minimization thereof w.r.t. the hyperparameters . In the following, the
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(a) Overfitting. (b) Underfitting. (c¢) Correct fit.

Figure 5.1: Three different noise levels for an exemplary system. In (a), the noise is too small in @-direction to
approximate the underlying functional dependency well and the noise too large in the y-direction. In (b), the noise
value is too large so that the oscillation of the function can be hardly seen. In (c), the correct noise level was used.

generalization measure based on a performance score on a hold-out sets will be derived, the
constraints on ¢ will be introduced, and combined with a generic function minimization scheme.

5.2 Generalization Measure

A data-driven measure of generalization performance is CV [47, 130, 156]. The most common
type of CV is so-called k-fold CV. In k-fold CV, the data D is partitioned into k equally sized
subsets F; C D. For estimating the generalization performance, training 7; and validation V;
sets are constructed for each fold

D= J %, FNF=0, 7= 7 V,=F;. (5.2)
i=1:k 1;71&:(9,
1#]

In (5.2), the j-th fold is used for validation and all other folds are merged into the training set.
If a merger like (5.2) is performed for each of the k folds, k distinct training and testing data
sets are obtained, cf. Fig. 5.2 (left). The generalization performance of an estimator is assessed
by considering the estimator’s performance on each fold, i.e., by training the estimator with
each training set and evaluating its performance on the respective testing set for each of the k
folds, cf. Fig.5.2 (right). Typically generalization performance of the estimator is calculated as
the average performance v over all k folds, other choices are possible, e.g., a least regret choice,
cf. [130, Ch.5]. In order to assess the estimator’s score, which is trained on the training set 7;,
on the validation set V; the log-likelihood (2.9) is employed!

121 [Vl
L) =) logfr(z), Yo, €Vy,  LV) =) logfrlyle), ¥(z.y) €V, (53)
i=1 i=1
The definition of the log-likelihood in (5.3) differs for density estimation (left) and condi-

tional density estimation (right). Other measures for assessing the estimator’s performance are
applicable too and only need to substitute the log-likelihood score in the overall algorithm.

5.3 Function Minimization

Using the obtained approximation of the generalization performance v, the hyperparameters
¢* are obtained by minimizing 7 w.r.t. ¢ using standard function minimization algorithms [12].

1The interested reader is referred to Appendix A.2.2 for more information about the log-likelihood as a distance measure.
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Figure 5.2: [Illustration of the pre-processing used for the cross-validation (left) and the hyperparame-
ter optimization algorithm (right) as explained below and formalized in Alg. 3.

Note, that the specific choice of the generalization measure may facilitate or prohibit some
function minimization approaches, e.g., due to non-differentiability of the measure. Having op-
timized the hyperparameters, the final estimate (* is obtained by using C and then performing
density or conditional density estimation using the entire data set. The generic CV optimiza-
tion scheme? is summarized in the Alg. 3. Given an initial parameter estimate Cys the number
of folds k, and D, Alg.3 returns the optimal hyperparameters ¢* and the Gauss1an mixture
density or cond1t10na1 density f*.

5.4 Constraints and Reformulations

The algorithms for density and conditional density estimation proposed in Ch. 3 and Ch. 4
use different sets of hyperparameters. The weights o are estimated by the algorithms in both
chapters and also the non-negativity and mass constraints of a are imposed by these algorithms.
For the other parameters in 6 the constraints are presented below. Wherever necessary, the
difference in constraints w.r.t. density or conditional density estimation is explained.

Means pi: The means of the estimate are defined as the concatenation of all mean vectors .
of the estimated mixture density representation in the density or conditional density, i.e.,

pt = [Erlf Hz]T. (5.4)

In the non-parametric approaches to density and conditional density estimation presented
in Ch. 3, both the number of components L = |D| and the mean locations p,=d;, d; €D
are ﬁxed Therefore, the means were not variable and not subject to any constralnts The
advantage of the full parameter conditional density estimation proposed in Ch. 4 was the
removal of this restriction by allowing a set of means M, to be freely chosen, i.e., L # |D|,
typically, L = |D|+|M,| and the mean locations . € DUM,,, M, C IRN+M As dlscussed
in Ch. 4 the typical restrictions are due to computatlonal limitations. It was the purpose
of the optimization of the component locations M, to improve the expressiveness of the
estimator in parts of the state space where little or no data is given and a non-parametric
approach is inadequate. All of the above statements do not constitute constraints. In
general, an optimization of each component in M, w.r.t. a non-convex and nonlinear

2More information, other CV variants, and respective pseudo-code can be found in [130, Ch. 5] and [47, Ch.9].
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Algorithm 3 Hyperparameter Optimization by Cross-Validation.

1:

2:

w

4:

5:

6:

T

8:

9:

10:

13:

Input: D, QO, k

Initialize Qt — g 0

{T:i, Vi }i=1.x <Partition D > Create Ti.x, Vi
repeat > Standard function minimizer
fori=1:F%kdo
0, < Estimation(7;, ¢,) > (Conditional) Density Estimation
v; < Evaluate(V;, 0,) > E.g. Log-likelihood Score
end for

v < Average or Minimum/Maximum ({v;}i=1.x)

¢,y < Update (l/t, §t>

cuntil e < v — 1

(T §t+1

Output: f* ~ GMM {Qkaﬂkazk}

g*

objective function, i.e., an objective function with many local extrema, would be performed
over the entire state space. As this is impractical, the mean position may be constrained to
fixed regions of the state space to incorporate prior knowledge into the estimation process.

Covariances X: A valid covariance matrix needs to be symmetric and positive definite [18].

It is non-trivial to ensure these properties in a constrained optimization, where the opti-
mization variables are the vectorized elements of the different covariance matrices, i.e.,

T
= [agl’l) o 0’§N’N) o U(Ll) o J(LN’N) , (5.5)
with 01(1’1) ...,V the elements of the covariance matrix %; € R¥™. In order to

1
assure positive definiteness of the symmetric matrix, the optimization variables may be

substituted against the elements of the square root formulation of the covariance matrix
T, =%./?, > =T; T;.

Using the elements of T; € RN*N as optimization variables and constructing 3; for the
evaluation of the estimate guarantees both constraints. Asserting for both constraints may
be trivially achieved if the covariance matrices are axis-aligned, i.e., 3; = diag(g;) with
g; € IRIJ\Ir the vector of variances along each of the N-dimensions. By construction, 3; will
be symmetric. If 0 < g, is satisfied the covariance matrix will be positive definite too.
Note, that there is no difference in the optimization for covariances between density and
conditional density estimation. The interpretation of the elements of 3; and therefore the
structure of X; deviates largely. In the case of density estimation X; is a dense matrix in
general. For conditional densities, the in- and output dimensions should be independent
of each other, i.e., the covariance matrix will consist of one block matrix encoding the
correlation w.r.t. the input and one encoding the correlations w.r.t. output dimensions.
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Figure 5.3: Example for the initial values of variable means in the sense of Ch.4. The system (mean function
[dashed gray] and samples [blue crosses]) is identical to (4.17) and the initial positions for the variable means (red
crosses) were obtained by the described greedy reduction of the maximum trace of the adaptive covariances.

Trade-off Parameter \: The parameter A\ € IR, adjusts the trade-off between the distance
term Qp and the regularization term K in the target functions of the QPs constituting the
main part of the algorithms presented in Ch. 3 and Ch. 4, e.g., in (3.33) of Sec. 3.4

o' (Qi+AK)a —22"Q,.

In the above formulation, A = 0 will remove the regularization term from the target func-
tion. This effectively converts the regularized nonparametric density or conditional density
estimator into an unregularized estimator, i.e., in the case of Sec.3.4 to a kernel density
estimator with mere weight optimization. A high value of A\ will enforce a stronger regula-
rization relative to the distance between estimate and the empirical density or conditional
density. The only necessary constraint is the positivity of A, i.e., a lower bound A > 0.
Yet, if a maximum value for A is known, it may be used as an upper bound?.

For the sake of easier interpretation and numerical stability it is useful to normalize the
regularization term, e.g., with a kernel estimate of the Rényi-entropy and the distance. A
normalized lambda might be calculated as \¥ = A - N with

' Qin

N =~ =1.
TKn n=1

SIE

Loss Insensitivity c: In some implementations of the algorithms presented in Ch. 3 and Ch. 4
the e-insensitive loss function [36, 164, 165, 190] is employed for point-wise comparisons

lﬂmM:{O le—blse (5.6)

la—b] —e , else

This loss-function penalizes deviations between the two values a and b if they exceed ¢.
This insensitivity allows for some noise in the estimates, but still penalizes strong devia-
tions. For example, this robust loss function is used in [107] for the point-wise comparison
of an empirical cumulative distribution function with the cumulative function constructed
from the estimator’s result. The level of noise ignored by the loss-function is a hyperpa-
rameter, which needs to be optimized. It is lower bound by 0, as an absolute negative
difference cannot be obtained. The upper bound differs for density and conditional density

3Note, that some function minimization implementations even require both a lower and an upper bound to be provided.
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T — y—

Figure 5.4: Example for determining the initial value of the basis kernel’s covariance in y-direction for data
(crosses) sampled from an oscillating system (blue) with normal additive noise (blue, dashed). Initially the state
space is partitioned in @-direction (dashed gray lines), a robust linear regression estimate (red solid line) is estimated
(left), and o of the data (crosses) in each partition normalized by the regression is calculated (right). For visualization
a normal density was plotted over the partition’s data (blue, right) and the o-bounds for the regression estimate
are depicted (left, dashed red lines). The overall o is then determined by averaging all partitions’ o.

Yy —

Figure 5.5: Example for determining the initial value of the basis kernel’s covariance in y-direction for data
(crosses) sampled from an oscillating system (blue) with normal additve noise (blue, dashed). Initially, a nonlinear
regression estimate, i.e., a cubic smoothing spline with p = 0.9 (red solid line), is estimated (left), and o of the data
normalized by the regression function is calculated (right). For visualization a normal density was plotted over the
partition’s data (blue, right) and the o-bounds for the regression estimate are depicted (left, dashed red lines).

estimation. In the case of density estimation the upper bound is u, = 1. For conditional
density estimation, the upper bound depends on the distribution of the components in
input and output dimensions, thus may be u. = vol(Z) in the worst case. For both
density and conditional density estimation it is favorable to introduce any available prior
knowledge into the estimation process.

5.5 Initial Values

As discussed before, the hyperparameter optimization yields a non-convex and nonlinear opti-
mization problem with many local extrema. In order to achieve fast convergence to a high-
quality solution a good initial value for the hyperparameters is advisable. In the following list
some heuristics, which were found to be useful are devised.

Means Ky The optimization of the locations of additional means arises only in the conditional
density estimation algorithm proposed in Ch. 4. There are two initial values to be set: the
number of variable components and their location. The determination of both initial values
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(a) Kernel-weighted contribution of one sample in the data (b) K-nearest neighbors (red crosses) for one sample (black
density estimator (5.8) w.r.t. the x-direction. cross), which are used for a density estimate, cf. (5.9).

Figure 5.6: Example for determining the initial value of the basis kernel’s covariance in y-direction for data
(crosses) sampled from an oscillating system (blue) with normal additive noise (blue, dashed). The overall o is
calculated by an averaged covariance calculation w.r.t. each data point. The contribution of each data point is
either the local covariance as obtained by using the sample as a sample mean and performing a kernel-weighted
covariance calculation (left, dotted and dash dotted lines indicate the kernel u + o bounds) or by calculating a

k-nearest neighbor (red crosses, red outline) estimate of the data density (right).

should be considered simultaneous and is an optimization problem in itself for which an
approximation is proposed. The informal reasoning for optimizing components’ locations
was the improved capacity of the estimator especially in areas of the state space which are
populated by no or little data, cf. Fig.5.3. This intuition may be formalized by an upper
bound on the maximum size uy, of the variable covariances 3; on each component, e.g., in
terms of the trace of ¥;. Determining the number of components to be optimized may then
be determined by a greedy iterative approach: In each step, an additional component’s
a-position is sampled or calculated as the mean of a k-nearest neighbor sample set of the
component of the current estimate with the largest covariance trace. This procedure is
repeated until the covariance size falls below a user-defined threshold. The latter approach
is shown in Fig.5.3 (b) and (c) for different numbers of means. If only one functional
dependency is present in the data, the y-locations of the variable components may be
obtained by standard regression procedures [73]. Otherwise a nearest neighbor density
estimator may be employed.

Covariances ¥, The initial values for the covariance differ for density and conditional density

estimation as for conditional density estimation an underlying functional dependency may
be assumed as well as there is a semantic difference for the input and output dimensions.

For density estimation, the results from the kernel density estimation literature as pre-
sented in Sec.2.1.2 or obtainable from the classical texts [87, 140, 153] and more recent
overviews [49, 179] may be employed for determining the initial values. Note that in the
literature the kernel width is typically calculated a priori and not optimized.

For conditional density estimation, a decomposition of 3y into independent submatrices
for the input dimensions ¥, € R¥*N and output dimensions 3, € R™M i.e.,

3,0
Eoz[oyz}’

needs to be considered. Different approaches for the calculation of the ¥, may be con-
sidered given information about the data present. For example, if the data corresponds

(5.7)
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to a functional dependency perturbed by additive Gaussian noise, i.e., not more than one
dependency and no multimodal noise are present, a mean function x : RN — IRM may be
determined by standard regression methods [73]. Using this mean function, an estimate of
the noise, e.g., by calculating the variance or the y values normalized w.r.t. the regression
function may be obtained. This procedure is demonstrated in Fig. 5.4 for an approach,
which partitions the state space and performs a robust regression of a linear mean function
in each partition and in Fig.5.5 for an approach based on estimating a cubic smoothing
spline mean function. Alternatively, the noise may be estimated by local kernel averaging,
which gives rise to the following estimator

Dl

% = o7 2 vlees) [1,-0)] [, -] 55)

i.e., the sample covariance with the samples weighted according to their distance to the
position of the i-th component in z-direction by a function w : RN x RN + [0, 1], e.g., by
a kernel function [28]. This approach and a classical kernel-weighted approach are shown
in Fig.5.6. A similar approach has been derived in [28] for density estimation. If multiple
functional dependencies are present in the data and the data cannot be associated certainly
with one dependency only, the above approach is inapplicable. The sample covariance
would be centralized for one of the present mean functions only and the data produced
by other dependencies will increase the covariance size. For this reason, an approach may
be considered, which does not assume any functional dependency, but considers the local
data density only. This density estimate is calculated based on the k-nearest neighbors

{4\ h<jen of y,
[D| k
=7 |D| Z (Zz > (5.9)

The resulting 25 is then obtained by averaging the local data densities (5.9). Note, that
the number of neighbors k, needs in turn to be determined by general model selection
procedures. For calculating 3., regression approaches are not applicable, as the marginal
density f(x) is a uniform distribution over the considered part of the state space in the
optimal case. Therefore, 3, is estimated based on the k-nearest neighbors {gy) Hi<j<k of
z;, in analogy to the calculation of ¥, in (5.9)

Dl /b
== Z(le Wz, ) . (5.10)

Trade-off Parameter )\, The necessity of regularization as governed by A depends on the

data distribution. As a derivation of a data-dependent regularization is out of the scope
of this thesis, the simple rule-of-thumb that regularization should depend on the number
of data present is proposed. It is therefore proposed to employ the following heuristic

1

il (5.11)

XA=p-
where p is the maximum amount of regularization expected as an initial value, e.g., p =
0.5, which is weighted by the number of data. With |D| — oo the initial amount of
regularization converges (. This formalizes that in this case the density or conditional
density estimation problem is no longer ill-posed, i.e., regularization is not necessary.



5.6. Properties and Restrictions 71

Figure 5.7: Larger view of the basis kernel’s covariance as shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6 (left) for the same
data and system (a). The partitioning, the respective linear regression estimates with their o-bounds corresponding
to Fig.5.4 are depicted in (b). The result using the nonlinear regression from Fig. 5.5 is given in (¢) and for the
data-driven kernel-weighted approach of Fig. 5.6 in figure (d).

Loss Insensitivity ¢y Because ¢ encodes the tolerated amount of noise in the solution, the
initial value may be the initial estimate of this tolerance level. For density and conditional
density estimation ¢ may be either the point-wise accepted difference in probability or
cumulative distribution between the estimated and the empirical function. Intuitively, the
tolerance shall be given as a percentage p, e.g., 10%, depend on the number data |D| given,
and be relative to the maximum deviation Uy, €.g., a function like

1

B (5.12)

€0 = P Umax °

and the initial value obtained from instantiating (5.12) converges to 0 for |D| — oc.

5.6 Properties and Restrictions

The most important properties of each of the four components of the overall optimization
scheme—the optimization variables, the objective function measuring the generalization, the
generic function minimization procedure, and the constraints on the optimization variables—
are summarized in the following list.
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(a) Boxplots of the standard deviations estimated by the (b) Boxplots of the standard deviations estimated by the
linear-regression approach w.r.t. number of partitions. nonlinear-regression approach w.r.t. parameter p.
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(c) Boxplots of the standard deviations estimated by the
data-driven kernel-weighted approach w.r.t. kernel width.

Figure 5.8: Boxplots of the standard deviations estimated by the different approaches w.r.t the respective para-
meters. Each boxplot summarizes the statistics of 100 MC runs for an approach with a fixed parameter setting. For
the linear-regression approach the number of partitions, which are averaged to obtain ¢ is varied. For the nonlinear
regression approach, the trade-off parameter p is varied—p = 0 corresponds to a least-squares linear model fit and
p = 1 yields the cubic spline interpolation. For the data-driven kernel-weighted approach, the degree of locality is
varied by varying the width of the employed Gaussian kernel.

e The complexity of the hyperparameter optimization depends on the setup, i.e., the number
of optimization variables and the number of folds considered as well as the initial values.
In general, all components’ positions may be optimized in one large optimization problem.
Since determining only all positions corresponds to solving an L- (M + N)-dimensional op-
timization problem, this becomes intractable already for small problems [181]. Note, that
a naive optimization of each covariance matrix requires the optimization of O ([M + N]?)
variables. As the number of optimization variables, specifically the number of variable
means has been discussed in Ch. 4, only the setup of the hyperparameter optimization is
considered in the remaining part of this list. If k& = |D|, one obtains a “leave-one-out”
estimate of the generalization error. The computational effort is maximal for this type of
estimate, as |D| estimates need to be obtained from |D| — 1 samples. In contrast, if k is
small, e.g., k = 5, only 5 estimates need to be obtained, but the data distribution in the
folds may deviate strongly from the distribution of the full data set, i.e., the estimate of
the generalization capability will become inaccurate. The same reasoning holds, if |D| is
small and already omitting one sample biases the estimate.
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e The objective function is the cross-validated negative log-likelihood score. This score is
not appropriate in the case of scarce data and may require an augmentation with prior
knowledge, e.g., in the form of smoothness assumptions may be necessary.

e From a theoretical point of view, no statements about convergence speed or even con-
vergence may be given for the considered nonlinear and non-convex problem. This is an
inherent property of the density and conditional density estimation problem. We refer the
interested reader to [200, 202], where this problem is discussed in depth in the context of
the EM algorithm as such and for EM applied to GMM estimation. Local convergence
may be guaranteed at most for GMM estimation with EM [202].

e The complexity of evaluating the density or conditional density estimate may be con-
sidered independent of the hyperparameter optimization given that the hyperparame-
ter optimization yields non-trivial estimates. For example, if the hyperparameter opti-
mization underfits the true phenomenon too few and if it overfits too many components
will be chosen. Typically, this is not the case or may be avoided easily.

e The constraints are necessary to obtain valid estimates, yet they allow for an introduction
of prior knowledge into the estimation algorithm too. This is for example the case if it
is known that the variance in one dimension is bound due to physical reasons governing
the data generation process. This fact may be exploited by setting tighter bounds on the
allowed maximum variance for this dimension.

e The initial values allow for an easy introduction of prior knowledge into the estimation
problem too. Any prior knowledge, e.g., about the noise due to multiple tracks present
in the data may be exploited. A poor choice of the initial values for ¢ may result in
long training times, w.r.t. the employed function minimizer, and potentially poor quality
estimates.

e Each heuristic for determining the initial values shown in Fig.5.4, Fig.5.5, and Fig. 5.6
depends on the specific parameters. For a larger state space, the partitioning scheme of the
linear regression approach will deliver only good results if the partitions contain enough
data as can be seen in Fig. 5.7 (b), where some regression estimates are too smooth or too
steep. Similarly, the nonlinear regression smoothes too strongly in Fig. 5.7 (c), e.g., around
(2.5,3), and the kernel-weighted density estimation underfits the noise in Fig. 5.7 (d). The
sensitivity to the parameter choices for these three approaches is given in Fig. 5.8, where
the number of partitions, the smoothing parameter, and the kernel size were varied for a
set of 100 MC runs. The results show that only a good parameter choice will provide an
initial value close to the desired true value.

5.7 Main Contributions

The contributions of the presented hyperparameter optimization can be summarized w.r.t.
descriptive and prescriptive validity as well as computational efficiency as follows.

e The descriptive and prescriptive quality of the given approach is theoretically limited
due to the amount of data given and the chosen cross-validation procedure, because the
partitioning scheme may prohibit the consideration of a data distribution as represented
in the full data set. Practically, the approach is limited by the amount of computation
investable in hyperparameter optimization scheme.
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e The bottleneck of the algorithm presented in this section is the computational complexity.

Assuming the fixed computational complexity of the algorithms for density and conditional
density estimation, which are used as a subroutine in Alg. 3, the computational effort of the
hyperparameter optimization is dominated by the CV and the convergence properties of
the nonlinear function minimization algorithm. For applications, where this computational
cost is not acceptable, the proposed algorithm may serve as a benchmark for developing
faster, e.g., approximative approaches.

The presented hyperparameter optimization approach is generic, because—except for mi-
nor details—the algorithm may be employed for any density and conditional density esti-
mation. This algorithm resembles cross-validated approaches for KDE [179], but extends
these to hyperparameters needed for the regularized estimation scheme. The approach may
therefore be understood as a blend of these approaches and hyperparameter optimization
for SVMs [165]. As to the best of our knowledge, the given description of hyperparame-
ter optimization, which is an extended and improved version of [107], is the first of this
kind for conditional density estimation.



You don’t understand anything
until you learn it more than one way.

—MARVIN MINSKY

6 Conditional Density Estimation given
Samples and Prior Knowledge

In this section, the problem of conditional density estimation from samples and prior knowledge
is investigated!. This problem arises because the results of previous measurement sequences
or expert/domain knowledge may be available and shall be used in conjunction with the data
to solve the conditional density estimation problem. For example previously conducted high
resolution measurement sequences, which may have been limited to a certain part of the state
space, need to be combined with samples from a low-resolution sequence, which are scattered in
a larger fraction of the state space. As will be shown in this chapter, the use of these additional
sources of information is advantageous especially for the generalization performance.

Challenges The challenge in using both prior knowledge and data is that the prior knowledge
typically will not be given as additional samples but in the form of already compiled generative
or probabilistic models. Because of its advantageous properties the type of the conditional
density function shall remain unchanged and the computational overhead for using the prior
knowledge shall be minimized in training and testing.

Key Ideas The key ideas for the incorporation of the prior knowledge are to use a favorable
approximation of the prior knowledge and to estimate the conditional density from the samples
and the approximation simultaneously. In the following, the introduction of prior knowledge
will be restricted to one specific approximation for a generative and a probabilistic model with
scalar input and output dimension each. Both approximations may approximate the prior
knowledge arbitrarily well, whereas a higher approximation quality always is accompanied by
higher computational complexity. In the following, conditional density estimation with data
and prior knowledge of the generative model in the form of mean function constraints or of
the probabilistic model in form a Gaussian mixture density kernel approximating the given
probabilistic model will be demonstrated.

6.1 Mean Function Constraints

Mean function values are the key information conveyed by prior knowledge in the form of a
generative model. Let the generative model be given with additive, zero-mean Normal noise

y=yg(®)+w, (6.1)

with ¢ : R — IR, w € IR, and a Normal noise term w ~ f,,. The mean function of (6.1) gives
the location of the expected values of the density f(y|z), for fixed z € IR.

IThe results presented in this chapter are an extended version of the results presented in [108].
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(a) Generative model with samples. (b) Mean function constraints. (c) Kernels Ko and K.

Figure 6.1: (a) The true mean function (solid, red) with o bounds (dashed,gray) and samples drawn accordingly
are shown. (b) A discretization of the mean function from equidistant sampling in x-direction is depicted (red). (c)
The o bounds for the default kernel Ko (gray) and for each component of the mixture kernel K1 (red) are depicted.

Key Idea The key idea of incorporating (6.1) into the conditional density estimation algorithm
is the minimization of the distance D between the expected values of the estimate f and the
mean function values § = ¢(z) for all fixed € IR, i.e.,

min/RD (/Ryf(y|x) dy, g(:v)) dz. (6.2)

The calculation of the expectation cannot be performed analytically in general and a minimiza-
tion of (6.2) for an interval, i.e., a restricted part of the state space, involves an infinite number
of point-wise evaluations, the following approximation to (6.2) is proposed

mm}jD(/ L@dyg@a>, (63)

where . € IR, g(2.) € R, and {(Z.,9(Z.) )} 1<e<c € R x IR correspond to C' sample points
obtained from discretizing the values of g. Any sampling algorithm may be employed for
obtaining the samples, e.g., Monte Carlo or distance-measure based approaches. Each sample
corresponds to a constraint on the expected values of the estimate for one fixed input value.

Incorporation In order to introduce the prior knowledge about the mean function into Alg. 1,
a term penalizing the distance in (6.3) needs to be added to the QP in (3.33) as a function of
the weights a of the mixture conditional density f. For each of the C' fixed sample points z;,
one may calculate the expectation using the following simplifications

L

[ sl =3 acs) ([ v an) - }:m@ﬁwc=@i(w) (6.4)

=1

and instantiating D in (6.3) with the [§-loss function yields for the ¢-th sample point

F(ylae) dy = g(ae)| = |aT [ (@) - glac)

=Y

<e+¢&. (6.5)

In (6.5), the slack variable &. captures the error for the c-th sample point, i.e., the deviation
between the expected and the mean function value exceeding the tolerated deviation €. The
absolute value in (6.5) may be resolved into one constraint measuring positive and one mea-
suring negative deviation. For each of the C' samples, (6.5) may be incorporated into the QP
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in (3.33) by adding a positive and a negative case of the left-hand side of (6.5) as constraints
and the sum of the errors to the target function, i.e., the parts marked red and blue below

min k' Pk — 2§T]_9 +k's, (6.6)
st. 02k,

E'w = ¢,

KTH < le.

In (6.6), P, p, L, as well as w are identical to the matrices and vectors used in (3.33) except that
they are zero-padded to fit the k™ and £~ as the slack variables £ are not used in the calculation

of the distance and regularization term in (3.33). Additionally, the following vectors are used
s=[a" &gl T s=[0" 1" 17" (6.7)

As can be seen from (6.6), introducing prior knowledge about the generative model in the way
presented above requires only minor changes to both the nonparametric and the full-parameter
conditional density estimation algorithms presented in Ch.3 and Ch.4 respectively. This is
due to the fact that the calculation of the distance as well as regularization terms remains
independent of the slack variables and the constraints as well as the term in the target function
only require zero-padding.

6.2 Location-based Mixture Kernel

In the last section, prior knowledge about the mean function was introduced into (3.33) in the
form of constraints. It is more difficult if not only the mean function but a probabilistic model
is given with unknown function g, i.e., only the left-hand side of the following model is given

flylz) = fu(y —g(z)) . (6.8)

If information about (6.8) shall be incorporated into Alg. 1. The incorporation depends on the
specific representation of the probabilistic model in (6.8). As Gaussian mixture densities are
universal approximators, it is assumed for the rest of this section that (6.8) is given as or
approximated by a Gaussian mixture density. As the prior knowledge is already a probabilistic
model, the challenge is to decide how the estimate f combines prior knowledge with the samples.

Key Idea The key idea of incorporating a probabilistic model in the form of a Gaussian
mixture density into Alg. 1 is to create a kernel, which combines the default kernel Ky and a
kernel X; encoding the prior knowledge using the sample information. The key requirements
are listed below:

e The combined kernel needs to be a valid kernel, in the sense of Appendix A.1.5 or [178].

e The combination shall be a function of the sample location in state space, reflecting our
belief in the accuracy of the prior knowledge.

These requirements are fulfilled if the resulting combined kernel is a convex combination of
the kernels Ky and Ky, where the mixing proportions depend on the sample location in state
space. This location-based mixture kernel is a valid kernel as a convex combination of valid
kernel functions is a valid kernel function, cf. Appendix A.1.5 or [178]. This location-based
mixture kernel may be understood as modeling the causal dependency which kernel is valid in
which part of the state space. This resembles a product probability kernel [88]. Furthermore,
this approach may be considered a multiple kernel approach [8] without learning the mixture
weights too.
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Figure 6.2: Means of the true system (dashed, blue) and expectations of the conditional density estimate (red,
solid) conditioned on fixed « (a) in case only samples are given, (b) if samples and the mean constraints over [0, 3]
are given, and (c) the error in terms of the /;-distance of the conditional expectations to the true mean function.
The depicted results were obtained by a modification of the LCD-based approach [105].

Incorporation Following this key idea, the mixture kernel including the mixing function needs
to be specified. For the definition of the mixture kernel it is assumed that the default kernel
KCo and the kernel IC; based on the prior-knowledge represented as a Gaussian mixture model
are given. The mixture kernel C for the location [u U]T € IR? is then given by

(LD GLED R GLED] (D o
() T 3 3

where £ = 0 (k = 1) denotes the weight or mixing proportion for &y (). The mixing function
s : IR* — [0,1] x [0,1] may be an arbitrary function yielding valid convex combinations, i.e.,
satisfies the following condition for all points in IR?

on([1]) -+

The mixture kernel (6.9) is a valid kernel, c¢f. Appendix A.1.5, and needs to be used in the
calculation of the distance term D, the regularization term R, and the constraints. Since (6.9)
replaces the default kernel, the representation of f is changed too.

with

6.3 Experimental Validation

In the following, the experimental setup, the evaluation criteria, implementation details, and
the results for conditional density estimation with prior knowledge given as mean function
constraints and a Gaussian mixture approximation of the probabilistic model are presented.

Experimental Setup In order to demonstrate the advantage of the incorporation of prior
knowledge into conditional density estimation the probabilistic model corresponding to the
following functional dependency with additive zero-mean noise is used as a ground truth system

y=2z - 05z +w, w~N(0,009). (6.12)

For the comparison, the results of conditional density estimation based on samples of (6.12)
only are compared to the estimation results when these samples and prior knowledge in the
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(a) System + samples. (b) Estimate unnormalized. (c) Estimate normalized.

Generative Model
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(d) Mean constraints.

Probabilistic Model

(g) K1 unnormalized. (h) Estimate unnormalized. (i) Estimate normalized.

Figure 6.3: (a) True system with samples generated accordingly for = € [—3, 3], (b-c) conditional density estimate
(un)normalized without prior knowledge, (d) prior knowledge in the form of mean function values, (e-f) conditional
density estimate (un)normalized, (g) prior knowledge in the form of a PM, and (h-i) conditional density estimate
(un)normalized. The depicted results were obtained by modification of the LCD-based optimization problem [105].

form of additional mean constraints or a Gaussian mixture approximation of parts of the prob-
abilistic model derived from (6.12) are given. For the experiments, 100 samples were generated
by sampling (6.12) uniformly at random for x € [—3,3]. The mean function constraints were
25 uniformly distributed samples with z € [0, 3] with y = g(z) = 22 — 0.523. The Gaussian
mixture approximation was obtained by manually specifying the positions of the components’
means. The components’ covariances were axis-aligned and the main-diagonal elements were
obtained by minimizing the MCvMD between the true probabilistic model of (6.12) and the
Gaussian mixture approximation.

Evaluation Criteria The use of the prior knowledge as modeled in this chapter is meant
to reduce the deviation between the expected function values and the mean function or the
conditional density function surfaces of the true and the estimated conditional density function
surfaces. For comparing the deviation between the conditional expectations of the estimate
and the true mean function g the [;-distance is employed and calculated numerically for the
considered interval. For comparing the true conditional density function f with the estimate
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Table 6.1: Average results for ten experiments: [i-error +o of the mean, total variation v + o, and the number
of components for the normalized and unnormalized conditional densities obtained by the SVM and LCD approach
without and with prior knowledge in the form of mean constraints () and the Gaussian mixture approximation
(GM). The errors are calculated w.r.t. the part of the state space with the prior knowledge, i.e., z € [0, 3].

Estimator Normal. Results ‘ Unnormal. Results | Comp.
hi(p) v A v
No Prior SVM 0.30 £0.08 0.24 +0.03 | 0.50 £0.21 0.26 £0.03 99.9
Knowledge LCD 0.37+0.04 0.244+0.03 | 0.63+£0.14 0.27+0.04 | 95.3
Mean SVM-u 0.23£0.08 0.21£0.03 | 0.27+0.19 0.23 £0.03 71.2
Constraints LCD-u 0.30£0.09 0.22+0.02 | 0.59+0.16 0.25+0.02 100
Prob. SVM-GM 0.1240.02 0.114+0.01 | 0.254+0.08 0.13 4+ 0.02 88.5
Model LCD-GM || 0.14£0.03 0.1240.01 | 0.36 +£0.13 0.13+£0.01 57.9
f, the total variation normalized to the considered interval in z-direction
= mee | /y 1) - f/ 1) dy da (6.13)

is calculated for the intervals X := [Zmin, Tmax] a0d YV := [Ymin, Ymax] Dumerically. The values
of the total variation as defined in (6.13) are independent of the x-range considered.

Implementation Details In order to show that the two proposed approaches of incorporating
prior knowledge work for the class of conditional density estimators, which are implemented
as standard constrained optimization problems, the proposed approaches are tested with two
implementations. Both approaches are variants of the nonparametric conditional density esti-
mators proposed in Sec. 3.4 producing Gaussian mixture model estimates. The first implemen-
tation is based on [107]. As it is closely related the conditional density estimator proposed in
[190, Ch. 7] it will be denoted for the rest of this section as the SVM implementation. The main
characteristics are that the distance term is calculated based on the [;-distance between the
empirical and estimated conditional density function at the sample points [107], a regularization
based on the norm of in the RKHS of the Gaussian kernel function (3.15), and “slice” mass
constraints. The second implementation is based on [105] and uses the MCvMD of the LCD
transforms of the empirical and estimated conditional density function (3.29), a regularization
based on the negative Rényi-entropy (3.19), and “interval” mass constraints (3.27). Both im-
plementations were written in Matlab [188] and use the CVX library [67] for the solution of
the respective convex quadratic problems.

Results The results of the above described experiments are given in Fig. 6.3 and Tab. 6.1. The
true system, the unnormalized, and normalized? estimate given only the samples are depicted
in Fig. 6.3 (a)-(c). An exemplary effect of mean function constraints is shown in Fig. 6.2 (a)-(b),
where the deviation between the conditional expectations and the mean function is reduced in
the part of the state space influenced by the prior knowledge. Fig.6.2 (c) shows an exemplary
improvement in terms of the [;-distance. The results for SVM-u and LCD-p in Tab. 6.1 are
average deviations for ten MC experiments and support the visual results. Besides the im-
provement in the mean function deviation, the introduction of mean function constraints also
reduces the normalized total deviation between the true and the estimated conditional density

2The normalization corresponds to a numeric normalization of the GM approximation of a conditional density function to a
valid conditional density function.
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function. Regarding the incorporation of prior knowledge in the form of a Gaussian mixture
approximation of the prior knowledge Fig. 6.3 (g), Fig. 6.3 (h)-(i) depict some exemplary results.
Especially the improvement w.r.t. the unnormalized results is drastic and can be observed in
Tab. 6.1 too. In addition, the number of components in the estimates as listed in Tab. 6.1 is re-
duced. This shows, that even though the incorporation of prior knowledge into the conditional
density estimation increases the training time, the testing time, i.e., the computational effort
necessary for evaluating or further processing the estimate is reduced. The experiments and
results presented in this chapter are reproduced from [108].

6.4 Properties and Restrictions

In this section, two approaches to introducing prior knowledge into conditional density estima-
tion have been presented. These approaches are based on two specific approximations of the
prior knowledge, which may be generalized to other approximations of the prior knowledge.

e The introduction of prior knowledge by definition increases the prescriptive validity and
descriptive validity. This statement is of course bound to the fact that the prior knowledge
is correct and the combination with the samples is non-trivial, i.e., the prior knowledge is
not redundant.

e For prior knowledge in the form of a generative model, the approximation of the mean
function dominates the information gain achievable. The approximation quality increases
with the number of sample points, i.e., the constraints.

e The location-based mixture kernel approach may be extended to include more probabilistic
models, i.e., a mixture of multiple kernels. In order to allow for more models, only (6.9)
and (6.10) have to be extended to yield valid convex combinations of kernels so that
the overall kernel satisfies the conditions in Appendix A.1.5. Additionally, as presented
above the mixing proportions are fixed a priori, even though these may be optimized
simultaneously with the other parameters.

e Regarding the computational complexity of Alg. 1, the addition of mean function con-
straints will increase the complexity by the number of constraints, cf. Appendix A.4.3 or
[21, Ch. 1]. The location-based kernel will change all components in Alg. 1 involving the
kernel function, i.e., the distance term D, the regularization term R, and the constraints.
The effort for evaluating each component involving these terms will increase due to the
additional number of mixture components encoding the prior knowledge. This means
training time is drastically increased.

e The size of the representation dominates the effort for using the estimate. The worst-case
size of the representation is not increased for the mean function constraint approach, thus
remains |D|. When using the location-based kernel, the worst-case number of components
is increased by the number of components in the Gaussian mixture kernel encoding the
prior knowledge: Using the following abbreviations for the mixing function

no=r k=il %]).

and the default as well as the prior knowledge kernel

fee(G1 (5D memgam( 2]
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it is straightforward to obtain the following result by simple rearrangements
D
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where the kernels K} correspond to either the default kernel at different locations or the
kernels encoding the prior knowledge, i.e., the Gaussian mixture kernels of K;.

e The restriction to location-based mixture kernels based on a Gaussian mixture represen-
tation or approximation of the prior knowledge may be relaxed to other kernels in the
sense of Appendix A.1.5. Note, that the favorable computational properties, e.g., that the
product of two Gaussian densities is an unnormalized Gaussian density, will typically not
be obtained. This is the main objection against a higher-order Bayesian approach to the
introduction of prior knowledge, which would be theoretically optimal.

6.5 Main Contributions

In this chapter, the incorporation of prior knowledge into the conditional density estimation
algorithms presented in Ch.3 and Ch.4 was demonstrated. The main contributions may be
summarized as follows.

e The conditional density estimation based on samples and prior knowledge was demon-
strated for two specific approximations of the prior knowledge. These approximations are
generic as, e.g., the Gaussian mixture densities are universal approximators. The presented
methods for incorporating prior knowledge is generically applicable for all conditional
density estimators based on standard constrained optimization problems.

e The use of prior knowledge increases the prescriptive validity as shown in the experiments
for both approximations and for two different estimators each.

e Even though the approach using mean function constraints increases training time less
than the use of the proposed location-based mixture kernel, both approaches increase the
training time necessary for obtaining the conditional density estimate.



It is a precarious undertaking
to say anything reliable about aims and intentions.

—ALBERT EINSTEIN

[/ Intention Recognition

The second part of this thesis is concerned with intention recognition as a basis for the non-
verbal communication between a human and a humanoid robot. Intention recognition is the
process of estimating the intention of a human. The intention is not directly observable, i.e.,
hidden, and needs to be estimated from noisy and error-prone measurements of the human’s
behavior, e.g., from visual observations. In this thesis, a model-based approach is adopted, i.e.,
given the observations, the hidden intention is inferred using a model of the human rationale.
Even though the recognized intention is typically only one input to a control of the humanoid
robot, taking the information non-verbally conveyed by the human into account is decisive to
enable close cooperation. This is especially important for humanoid robots.

Challenge The main problem addressed in this chapter is the scalability of the intention
recognition under the constraints of uncertain asynchronous observations and real-time infer-
ence as required for interactive behavior by the robot. In most realistic scenarios, e.g., in a
kitchen, many objects are present and may be used in conjunction with other objects in a large
variety of workplaces for a lot of purposes. All of these object-action-place combinations need
to be considered when inferring the intention of the human. For example in a kitchen, food
may be processed by chopping, stomping, etc. in pots, pans, or on plates, which may in turn
be located on the stove, table, or counter. Additionally, the available observations are uncer-
tain, e.g., depend on specific lighting conditions, and are error-prone, i.e., sensors may fail or a
person’s object manipulations may be occluded. Furthermore, it may not be possible to obtain
all measurements in each time step, but asynchronously and/or in batches. Fast inference in
such a setting is challenging, but a conditio sine qua non. No human will tolerate a humanoid
robot in his kitchen, which needs minutes to recognize that support in “washing the dishes” or
“loading the dishwasher” is required.

Key Idea The key idea of the approach to efficient inference in large scale models given un-
certain observations is to exploit that human behavior is bound to specific preconditions. For
example, in order to “wash dishes”, a human needs to be in the kitchen and will most likely
perform this task only at certain times of the day. This definition of prerequisite conditions
to human behavior matches the definition of a situation given in Def.2.4. The key idea may
be summarized as exploiting the situation-specific structure of the intention recognition prob-
lem. The advantage of conditioning the intention recognition on the prevailing situation is that
the number of object-action-place combinations to be considered may be reduced drastically—
allowing for faster inference. The remainder of this chapter is organized into sections considering
the model of the human rationale and a computational model thereof, inference exploiting the
situation-specific structure and using asynchronous measurements, learning the model parame-
ters, and the experimental validation in a video-based and extended-range telepresence setups.
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(c) Discrete-valued @ and continuous-valued y. (d) Continuous-valued variables @ and y.

Figure 7.1: Four types of hybrid conditional density functions for scalar in- and output dimension @ and y.

7.1 Model of the Human Rationale

The following exposition is based on [103, 169, 171] as summarized in [168] and shall be part
of the control architecture for a humanoid robot as presented in [159, 160, 172]. The section is
structured as follows. Initially, a causal model of the intentions is developed relating relevant
objects with actions and places in the world. This type of modeling is intuitive but not sufficient
if observations are uncertain as in the considered problem. For this reason, a computational
model in the form of a Bayesian network is introduced, which extends the causal model by
qualitative relations. Finally, a fragment-based model generation is proposed for the human-
robot-cooperation problem with detailed, i.e., large models.

7.1.1 Causal Model

The causal model describes the causality between intentions and actions in the form of a graph
G consisting of vertices z; € V, i € {1,...|V|} and directed edges £ between vertices,

G=(V,¢), V=A{x}ic1,. v, E={(x; = z;)}.

The vertices correspond to causes and effects, i.e., the intention, action, objects, or places. The
edges relate causes to effects. Due to this interpretation (x; — x;), i # j follows as neither
may a cause be a cause nor an effect be an effect of itself. An example for a causal model
[168, 170] is depicted in Fig. 7.2 (b). In this example, the cause “intention” may attain values
in a set A = { Cook , Wash dishes,...}. The effect of the “action” caused by the “intention”
may also attain values from an alphabet only. In contrast, the effect “distance” caused by the
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“action” is continuous-valued and may attain values, e.g., in IR. The shape of the nodes in the
graphical models reflects this difference, i.e., rectangles for discrete-valued variables and ellipses
for continuous-valued variables. Additionally, this example shows the dynamic dependencies
of the intention, as the intention in each time step' depends on the intention in the previous
time step. For example, if one did not prepare a meal one can not eat it. This model describes
the causal dependencies governing the changes of the state of the world due to the human
manipulation but does not account for any modeling or measurement uncertainty. For example
the action Bring Object X to Place Y requires a change of location, but certainly no human will
arrive at the precisely same location when repeating this action. From a practical point of view,
observations are uncertain and ambiguous, i.e., disallowing for a mapping to one cause only.
Therefore, a computational model capable of processing uncertain information is required.

7.1.2 Computational Model

In order to process uncertain information, the causal model is extended by mapping the vertices
V of the directed graphical model to random variables and the edges £ to conditional densities

ZT; = &y, {(fL’l —>.flfj),...,($k —>.I'J)}'—>f($]|3?l,,xk)

In contrast to the causal model, all dependencies with the same effect need to be converted
into one conditional density function with all causes for the effect as arguments. The obtained
probabilistic directed graphical model is a Bayesian network (BN) [142, 143]? if only one time
step is considered. Adding the dynamic dependencies, converts the model into a Dynamic
Bayesian network (DBN) [39, 134]. As the set of random variables is mixed-valued, Hybrid
Dynamic Bayesian network (HDBN) are considered [99, 116, 134, 168]. For the remainder of
the thesis, HDBN of the type proposed in [168, 170, 173] and described below are considered.

Hybrid Dynamic Bayesian Network Many types of Hybrid BN (HBN) exist, cf. [99, 116, 134,
183] for an overview and [119] for theoretical limitations. All of these HBNs may be converted
to HDBNs by appending temporal dependencies. Yet, none of these approaches allow for con-
tinuous causes to discrete effects. Most approaches are limited to conditional linear Gaussian
dependencies, which have the advantage of allowing for closed-form inference. Arbitrary non-
linear dependencies prohibit closed-form inference in general and typically require approximate
inference. The representation proposed initially in [167, 170] and reformulated in [168, 173] is
an exception. There are two key ideas underlying this type of HDBN: a mapping of discrete-
valued variables into the continuous domain and a mixture density representation of both, the
discrete- and continuous-valued random variables and dependencies. A discrete-valued random
variable x4 is mapped to a continuous-valued random variable . as follows

Cook i f(z = Cook) |A|
Clean — [ T2 , = §: f(l' - Clecm) ~ fc(xc) = Z ;0 (l’c - .’131) )
: : : i—1

with Cook, Clean, ... € A, x; € R, i =1,...,|A|, §(.) the Dirac delta distribution as defined
in AppendixA.1.3, f.: IR — IR, and «; the probability values. Using this definition f. returns
non-zero values only at the locations x;, which correspond to the events of the discrete valued

'In this thesis only discrete-time systems are considered. The interested reader is referred to [134] for more information about
continuous time modeling.

2The interested reader is referred to [32, 101, 118] for concise introductions to BN and to [18, 99] for a more detailed treatment.
A more generic review of BN in the context of undirected probabilistic graphical models may be found in [54, 111, 121] and [18].
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(a) Two generic HDBN fragments. (b) Exemplary HDBN generated from a set fragments (a).

Min. Hand
Distance

Velocity
towards Y
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Figure 7.2: A HDBN may be constructed from generic fragments (a), which relate abstract objects X with
abstract places Y. An exemplary HDBN for the intention recognition is shown in (b). It may be constructed using
two stacked chains of dynamic dependencies for the situation and intention as well as a hidden node modeling action
combinations. The actions are instantiated fragments (blue, red, gray). For example, object X corresponds to any
cup, the place may be the dishwasher and the observable nodes, i.e., the leafs are the minimal hand distance to any
cup as well as the hand distance and velocity of a specific cup towards the dishwasher.

random variable, cf. Fig. 7.1 (a). The above mapping allows for a unified modeling of discrete-
and continuous-valued random variables as both density types may be described uniformly
[168, 170, 173]. A hybrid conditional density function may be defined for the generic case of D
discrete-valued and C' continuous-valued parent variables where N = D + C' by

D C

Flen,. o) =3 f9) [T 19 @a) T 19 (7.1)

d=1 c=1

and the scalar densities f are Dirac mixture densities in the case of discrete-valued and Gaussian
densities in the case of a continuous-valued @ or y.If only continuous-valued random variables
are considered, Def. 7.1 corresponds to a Gaussian mixture representation of a conditional den-
sity with axis-aligned components. An extensive example and more explanation of this modeling
can be found in [168, Ch.3.6]. Note that a Gaussian mixture representation of a conditional
density with axis-aligned components may be estimated with the approaches to conditional
density estimation proposed in the first part of this thesis, ¢f. Ch.3 and 4. If only discrete-
valued random variables are given, the default matrix vector operations for discrete-valued BN
[142, 143] are obtainable [168]. The modeling in 7.1 allows for continuous-valued random vari-
ables being parents of discrete-valued random variables. For scalar input and output values,
the four different value-combinations of f(y|x) are shown in Fig. 7.1.

7.1.3 Fragment-based Model Generation

In order to work with the proposed computational model, the causal structure and the respective
conditional density functions need to be determined. Neither may such a model be hand-made
exclusively due to its mere size, as, e.g., several hundreds of objects exist in a typical kitchen,
nor may it be derived automatically exclusively, due to the large parameter space. Additionally,
an automatically created model is not likely to be readable for a human, i.e., prohibiting error
correction or adaption by the human. From a practical point of view model generation is most
often performed by using expert knowledge and automatic model identification jointly. For
example, the causal dependencies and the higher level conditional density functions may be
easily determined by an expert, while the sensor models may be determined, e.g., by one of the
estimation algorithms presented in the first part of this thesis. Additionally, the given problem
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may be simplified by reducing the number of parameters to be determined. One approach
towards reducing the number of parameters to be estimated is the use of standardized model
fragments, which share parameter [168, 169]. By using this parameter-tying, the number of
parameters to be determined is drastically reduced. A typical fragment for the considered HRI
problem might be, e.g., Take Object X, which models the process of holding an abstract object
X [168]. Such a fragment is depicted in Fig. 7.2 (a, left) and may be used as a building block of
a larger fragment Fig. 7.2 (a, right). which in turn is appended to an existing model as shown in
Fig. 7.2 (b). Note that before combing the models, each fragment needs to be instantiated, i.e.,
the observable variables need to reference the variable of the world they model. For example,
the observable variables distance and grasp of the fragment Take Object X, cf. Fig. 7.2 (a), need
to reference the distance to the glas and the grasp of a glas. Appending the fragment then only
requires adjusting the conditional density from the hidden node to each action, i.e., modeling
the impact of an intention to Take Object(glas) w.r.t. all other actions.

Example 7.1: Exemplary HDBN Generation from Fragments

In this example, a rudimentary HDBN for estimating the intentions Lay Table, Load Dishwasher,
and Clear Table will be created from the abstract fragments® shown in Fig.7.2 (a). The HDBNs
Take Object X and Bring Object X to Place Y correspond to the two abstract fragments shown in
Fig.7.2 (a). The fragment Take Object X consists of four random variables Min. Hand distance
attaining values in IR as well as Near Object X, Grasping, and Take Object X all using the
alphabet { Yes, No}. The hybrid conditional density function between Min. Hand distance and
Near Object assigns a high probability to Yes and low probability to No if a human is close to
the Object X or vice versa. The conditional densities between Near Object, Grasping and Take
Object X each model that the value Yes for Take Object X is assigned a high probability if the
human is near the object or grasps it and a uniform distribution otherwise. During inference the
probability for Yes will be very high if the human is close to the object and grasps. If only one event
occurs Yes will be less likely but still will be more likely than No. The second abstract fragment
Bring Object X to Place Y consists of two components: The first is the already described fragment
Take Object X. The second is an HDBN modeling that a specific object is moved towards a specific
location. The reasoning underlying the fragment for moving an object towards location Y resembles
Take Object X. For more details, refer to [1, Ch.5]. The remaining two random variables in this
fragment are Bring Object X to Place Y with alphabet { Yes, No } and Object & Place with an
alphabet consisting of the four combinations for binary-valued Close to Place x Approaching Place.
Only the leaf nodes, e.g., distances to objects or velocities, of both fragments may be observed.
In order to generate an HDBN for inferring the three intentions the abstract fragments need to be
combined into one HDBN as shown in Fig. 7.2 (b). The basis of the HDBN in Fig. 7.2 (b) are three
random variables Situation, Intention, and Action combinations. The alphabets are the set of
situations, the set of intentions, and the number of relevant action combinations?. As the situation
is prerequisite for a specific intention, which is causal for an Action combination consisting of
actions, the fragments from Fig. 7.2 (a) are appended to the random variable Action combination
in the HDBN in Fig.7.2 (b). Note that each abstract fragment needs to be instantiated, e.g., a
fragment Take Object X is instantiated as Take Object Towel by replacing the abstract object
by the towel to which the distance is modeled. In order to improve efficiency, the distance may be
calculated w.r.t. all objects satisfying the properties of a towel. Note that this extension of the
graphical model is straightforward, but the conditional density functions relating the intentions with
the combinations and the combinations with the actions, i.e., the fragments, need to be determined.
The former should be learned from data. The latter may be an automatically generated conditional

3This example is based on the fragments as initially presented in [1] and further described in [168, Ch.7] and [169]. The
descriptions of all conditional density functions used in these fragments may be found in [1, 168].
4For an exact model, the number of actions combinations grows by 2#Actions cf [169].
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probability table (CPT), i.e., for each specific action combination the probability for a specific
fragment is set. Details of the specific conditional density functions may be found in [169]. |

Properties and Restrictions The fundamental properties and restrictions of the proposed
model as well as the fragment-based model generation are summarized in the following list.

e In this section, the derivation of an HDBN model extending the causal model to incorporate
uncertainties has been discussed. An HDBN can handle uncertainty consistently, but is
limited in its modeling capacity by having a fixed structure. Inference using an HDBN is
therefore less powerful than, e.g., first-order logic.

e The size of a model constructed from fragments, may be approximated in terms of the
variables/nodes. Let d be the depth of the tree corresponding to the average fragment,
cf. Fig.7.2 (a), and b be the branching factor of the tree composed from fragments,
e.g., Fig. 7.2 (b). Then the size of the model is approximately in O (bd). Note that this
approximation assumes that with an increasing number of fragments, the number of nodes
in the fragments increases simultaneously.

e The computational complexity of inference with an HDBN depends on the graph structure
and the type of dependencies. Within each time-slice, the graph structure is a polytree
(143, 156]. Additionally, the time, position, and distance measurements are continuous-
valued, i.e., parts of the measurement system, and all other nodes are discrete-valued.

7.2 Inference

In the last section, a computational model of the human rationale in the form of a specific type
of HDBN has been proposed. Intention recognition is performed by using the given observations
of the human and performing inference from effect to cause with this model. The complexity of
inference in a BN depends on the structure of the graphical model and the state spaces [141].
Intuitively, inference is harder if more quantities are interconnected and need to exchange
information, e.g., calculating the posterior probability densities for a BN with a chain structure
is easier than if a loop is present in the graph [18]. In general, inference in BNs with arbitrary
graphs is NP-hard [18, 32, 99]. The computational complexity for purely discrete-valued BNs,
with special types of graph structures, e.g., chains or polytrees grows polynomially with |.A]
and linearly with |V| [18, 32, 141]. In [119], it was shown, that there exist HBN (CLG) with
polytree structure for which inference is NP-hard. Thus, inference in a HBN is at least as hard
as for discrete-valued BN. Inference as such may be performed for a BN based on localized
calculations of posterior densities, so-called “message passing” [32, 142, 143|. A generalization
of this inference method w.r.t. Dynamic Bayesian network [39] is discussed in [99, 134] and a
uniform framework for directed and undirected probabilistic graphical models is given, e.g., in
[18, 99]. For the type of HDBN used in this thesis, a generalization of the “message passing”
algorithm [32, 142, 143] has been proposed in [167, 168, 170]. This HDBN inference algorithm
calculates the posterior densities of all random variables in the HDBN in closed form. For the
remainder of this thesis, this algorithm will be used. The model this algorithm is applied to
will be a polytree, where inference in the continuous-valued parts is limited to the leaf nodes
and standard filtering, cf. Fig. 7.2 (b). The number of dynamic dependencies in this model
is bounded and therefore negligible. Since the measurement system within each time slice
corresponds to a polytree with discrete-valued variables—except for the leafs — inference in this
model has a time complexity linear in the number of variables in the model, i.e., the number
of nodes |V| in the graphical model.
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Challenge The challenge to intention recognition arises from the combination of the size of
the computational model proposed in Sec. 7.1.2 and the complexity of the inference. Informally,
this means combining the linear complexity of the inference method, w.r.t. |V| in the graphical
model—given a fixed |A|—with the size of the computational model. The time complexity of
inference with such a model, e.g., the model derived in Ex. 7.1, is in

O (cbv?), (7.2)

with the expected depth of the measurement tree d, branching factor b, and constant term c
from the complexity of inference. Due to the combinatorial explosion of the model size, the
overall computational complexity (7.2) will drastically increase too. There are basically two ap-
proaches towards addressing this problem: approximate inference and approximate modeling.
There is a large variety of approximate inference methods for BNs [134]. Due to their con-
ceptual simplicity and easy implementation, the most popular approximate inference methods
are based on non-deterministic sampling [6], e.g., the particle filter (PF) [46], marginalized PF
[166], or rao-blackwellized PF [134]. We refer the interested reader to [37] for an overview.

According to [134] for discrete-valued DBN and BN “[...] the [...] disadvantage of sampling
algorithms is speed: they are often significantly slower than deterministic methods, often making
them unsuitable for large models and/or large data sets. [...]” [134, Ch.5 and B.7.4]. Addition-

ally to the best of our knowledge, no approximate method of inference, especially no PF has
been developed for the considered HDBN type. Even though deterministic sampling approaches
[48, 155] or combinations of sampling with analytical calculations [82, 94] seem promising for
inference for the considered HDBN type. Approximate modeling methods may be categorized
as exploiting contextual independence in BNs [134, B.6] and approximate modeling of dynamic
dependencies [134, Ch.6]. As described in [134, B.6], the key idea of exploiting the contextual
independence corresponds to making independence implicit in the conditional density functions
explicit by adding logical nodes to the BN in order to perform evaluations more efficiently. For
the considered application, this would correspond to enlarging an even larger model. Approx-
imate modeling of dynamic dependencies corresponds basically to making the time update in
inference tractable. In summary, neither the approximate inference methods nor the approxi-
mate modeling methods address the key challenge of the given application, i.e., the complexity
of the measurement system.

Key Idea The key idea behind efficient inference in large computational models of the type
presented in Sec. 7.1.2 is to exploit the situation-specific structure of the problem in order
to reduce the model size. The proposed approach may be understood as a combination of
approximate modeling with approximate inference. The approximate modeling corresponds
to the construction of a set of smaller models, e.g., constructed from less fragments. The
approximate inference corresponds to inference with a selected smaller model and the selection
of the smaller model to consider in the next time step. Even though the approach will not
change the complexity class of the problem—unless the smaller models are of constant size and
the selection algorithms requires constant time—a drastic speed up may be obtained, as

b>a — O(cbd)>>0(cad),

which will be shown to correspond to significant reductions in computation time. There are
two challenges associated with this approach. First, the approximate modeling corresponds to
the determination of a set of smaller models. Even though these models are smaller, there are
more of them and the determination may not be trivial. Second, the approximate inference
corresponds to the default state estimation w.r.t. a small model, but additionally requires the
selection of a model from the set of smaller models. In order to solve this model selection
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Figure 7.3: The current state estimate ék is inferred based on the model My, selected w.r.t. the prior state estimate
§0 or last state estimate § o1 and the current measurement 2. The estimate § X is then used to determine M.

problem, an appropriate measure for the approximation quality and speed up has to be deve-
loped and the model selection problem has to be performed online, cf. Fig.7.3. In contrast to
Bayesian multinets [15], the proposed approach changes the entire network structure and the
selection approach is not modeled by an additional dynamic model. The proposed approach
resembles other structured generation algorithms for BN, e.g., object-oriented BNs (OOBNs)
[100] or situation-specific BNs [114, 126], which are constructed w.r.t. a specific query of the
BN. An extension of OOBNs to dynamic queries is described in [64], where first-order logic is
employed to infer the network structure. In contrast, the proposed approach does not infer a
BN’s structure by means of rules or logic, but selects one model out of a set of smaller models.
The key advantage of the approach proposed in the following section is the selection process
being probabilistic and model-predictive. This means, that it accounts for uncertain state

information and the future development of the state as predicted by the dynamic dependencies
in the HDBN, cf. Fig.7.4.

7.2.1 Efficient Inference by Online Model Selection

The structure of this section is as follows. The components of the proposed approach will be
discussed: the definition of the situation-specific smaller models, the model-predictive online
model-selection, the selection criteria, and the properties as well as restrictions of the approach.

Definition of Submodels

In the remainder of this section, an efficient inference method based on selecting a smaller
model, i.e., a submodel, is proposed. Given the exact, large model U

U={v,Cc},

a set of smaller submodels M is compiled. The large model U is defined by the set of all random
variables V and conditional as well as prior density functions C. Every random variable v € V
has its associated alphabet or domain X,. A submodel M € M is defined® by a set

M=V C},

with V' C V and conditional as well as prior density functions C" C C. Typically, it holds for two
random variables v € V and v’ € V' that X, C X, and for M, N € M that M NN # (. The
former is trivially achieved by means of zero-padding. For the investigated intention recognition
problem, the challenge is to find a set of submodels M, which describes the typical situations
in the household scenario best.

5Note that the definition in terms of subsets is an abuse of notation as two discrete random variables with differing state spaces,
e.g., Xy = X,y UA, with A # 0, are not identical. The same applies for the prior and conditional density functions.
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Model-Predictive Approach

The model-predictive approach to inference in large HDBN may be understood as an online
solution to the model selection problem, i.e., a sequential decision problem, cf. [10, 11] or [156,
Ch. 17], taking the future development of the state into account. In each time step &, the model
M € M to be used for the next time step k£ + 1 needs to be chosen. This is done w.r.t. an
objective function J(.) measuring the quality over a lookahead horizon defined by a maximum
number of predicted future states K. In Fig. 7.4, the tree of model sequences for K" = 2 is shown
for the set of submodels M = { M, N, O, P }. Because the model selection is performed per
time step and shall minimize the approximation error, it is proposed to minimize the distance
between state estimates using the large model and submodel as a scalar-valued recursive cu-
mulative objective function, cf. Appendix A.2.2. This recursive cumulative objective function®
is defined for a finite time horizon k < K by

and the solution, i.e., the submodel to be used for inference in time step k + 1, is the minimizer

M, = arg min_{ g(§, , M) + J(§ §in e, M }. (7.4)
Mpem

In (7.3) and (7.4), the function g(.) measures the quality of the selected model stepwise, e.g.,
in terms of approximation error or switching frequency. Note, for the sake of brevity the
dependency on the sequence of predictions with the full model f Sk and the previous submodel
M,._1 was omitted. As the future state development is considered up to time step K only, the
recursion in (7.3) ends with the following value

J(E) = Mr?(ienM{ 9(&, s Mk) }- (7.5)

Note that this definition of a sequential decision problem differs from the optimal control
problem [10, 11] or the sensor selection problem [81]. The reason is that the expectation of
future rewards w.r.t. future observations has been neglected. For the remainder of the section
only discrete-valued random variables and state-space models are considered. In the following
two sections, applicable recursive cumulative objective functions for the model selection problem
will be presented.

Recursive Cumulative Objective Function There are basically two quantities, which the
selection criteria needs to measure in each step:

Deviation(gk €, ), # Model changes,

i.e., the deviation between the estimate produced by the large model 5 and its approximation
5 by using the selected submodel M, as well as the number of model changes In many cases,
these measures are conflicting, i.e., choosing the model, which produces the least estimation
error may mean switching the model in each and every step, e.g., flip-flopping between two
models. In this thesis, two selection criteria will be investigated: mutual information and a
distance between HMMs. The number of model changes may be modeled by a stepwise penalty.

SFor an overview of cumulative objective functions as used in sensor scheduling or selection, the interested reader is referred to
[10, 11] in general, [81, 198] for continuous-valued (non)linear filter methods, and [203] for discrete-valued BN.
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Figure 7.4: In the model-predictive approach, the possible state evolution is predicted given the current state
estimate based on the observations made. The state evolution is predicted for the possible submodels, e.g.,
{M,N,0,P}, given the current estimate gk until the desired prediction horizon is reached.

(a) Mutual Information Mutual information I [18, 35, 123] is an information-theoretic crite-
rion measuring the stochastic dependency between two random variables. Informally, the value
of I may be understood as quantifying the mutual reduction in uncertainty by gaining infor-
mation about one random variable. Mutual information is a measure commonly used in the
sensor scheduling or selection problem both for scalar continuous-valued states [81, 83, 84, 198]
and discrete-valued states [106, 203]. The mutual information between two continuous-valued
random variables & and vy is defined by

I(w,y)z/X/yf(:c,y) ln(%> dy dy, (7.6)

and for two discrete-valued random variables defined by

x Y

z=1 y=1

From both (7.6) and (7.7), it can be seen that I is zero if  and y are independent and I attains
higher values, the stronger the dependency is. For the given application I may quantify the
strength of the stochastic dependency between f g, and its approximation § The submodel is a
good approximation if the dependency between both variables is strong. For practical reasons
this strength will be measured in the following sections relative to the entropy H.

(b) Distance Measure for HMM As shown in Sec.7.1.3; the coarse dependencies in the
HDBN are modeled by the relations between the intentions over time and the action combi-
nations. If only a coarse estimate of the future state development is sought, it is sufficient to
consider only the preceding and current intention as well as the action combination. These
three nodes—as depicted in Fig. 7.2—constitute an HMM with discrete-valued state and obser-
vations, cf. [150]. A recent result from the literature about discrete-valued HMM compression
[44] and decomposition [197] is a distance between two HMMs [201].

The key idea is to measure the distance in terms of total variation of the state estimate and
all observations up to a given time step k produced, i.e., § . and § . As this distance calculation
involves each and every observation combination, an approximate upper bound of the distance
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Algorithm 4 Probabilistic Branch-and-Bound based on [195].

1: Initialize parameters

2. while not N .exhausted do > Recurse until solution found
3. while (N.visited ) do > Expand leaf nodes
4: Calculate N.J for each child

5: C < Non-leaf child of N with best..J

6: Recurse with N < C

7: end while

g  if not (N.visited) then

9: if recursion level < horizon then > Expand best search path
10: C + Instantiate child nodes of N/

11: for all Children of C of N do

12: C.J < ¢g(C) + Parent(C).J + Switching Penalty

13: C.exhausted < FALSE

14: end for

15: Update N.J > Update subtree value
16: else

17: C.exhausted < TRUE

18: Update parent J

19: end if

20: N .visited + TRUE > Bookkeeping
21: end if

22: end while
23: Output: Return M < child with best..J

w.r.t. all observations has been proposed in [201], i.e.,

b <§k ’ gk) B Hék _EkHV = Hgk—l _gk—lHV +a(F, M) . (7.8)
L& 6

This upper bound may be used as a substitute for the distance. Additionally, it avoids the
determination of predicted future measurements as all measurements are considered. The
generalized measurement update function a(.) is independent of the predicted state estimates
as well as the full model’s estimate and may be calculated in advance. This distance measure
may then be used straightforwardly in the optimization problem.

Probabilistic Branch- and Bound Algorithm The aim of the optimization problem (7.3)
is the determination of the submodel M to be used in the next inference step. In order
to obtain the solution, the space of possible submodel sequences has to be searched for the
minimizer of (7.3). As the size of the search tree grows exponentially with the prediction horizon
K, branch-and-bound (BB) algorithms [156, Ch.4] may be used to reduce the computational
cost. A similar approach has been proposed for the sensor scheduling and selection problems
[81, 195, 196]. The key idea of employing a BB algorithm is that the quality of some branches
or nodes is dominated in the submodel sequence tree, cf. Fig. 7.4, and may be pruned during
the incremental creation of the search tree [81, 156]. As the expansion of a node is based on a
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Figure 7.5: Ideal model assuming the availability of all measurements at all times (a) and a more realistic model
assuming asynchronous, but constant measurement frequencies (b) for the video-based experiment of Sec. 7.4.1.

predicted state estimate, the proposed algorithm is denoted as a probabilistic BB (PBB) and
summarized in Alg.4. Starting with the given state estimate and the current model as the
initial node in Alg. 4, the consecutive nodes are expanded w.r.t. the corresponding submodels,
e.g, {M,N,O,P} in Fig.7.4. After this expansion, the respective child’s node..J value is
calculated. The parent nodes’ J values are recursively updated, i.e., the tree is traversed in
backward direction. The node.J value is calculated using a stepwise switching penalty s(.) as
well as (7.7) or (7.8), w.r.t. the prediction using the full model ék and submodel My, i.e., §

9(&, M) = s(My, My—1) + 2DH( (~§k) - (gk’ ékle) | j E:gi’

| M,

§k ’ §k|Mk ’

whereas, in contrast to [106], the mutual information score (7.7) is relative to the entropy H
of the state estimate in order to obtain a minimization problem for both functions. The node
with best node.J value is expanded. Alg.4 terminates if there are no more nodes that may be
expanded or all other nodes are dominated by an already expanded sequence.

7.2.2 Inference at Different Frame Rates

Inference in realistic scenarios is not only governed by a realistic number of objects and asso-
ciated actions, but by realistic measurement setups. For example, there are potential delays
induced by the network, which passes the sensor readings, the feature computation cannot
deliver measurements in each time step, or the estimates are based on batches/windows of
measurements. In Fig. 7.5 (a), an exemplary model is depicted for estimating the intention
from action estimates m, and activity estimates ag, which in turn are estimated from features
v, and v’,. The assumption underlying the model shown in Fig.7.5 (a) is, that all measure-
ments are delivered in each time step. In realistic scenarios, measurements or updates arrive
asynchronously and estimates from subsystems are based on batches of measurements, rather
than a single measurement. This may be summarized as attributing an independent but con-
stant update frequency for each subsystem and that the estimates correspond to batches of
measurements. A realistic model based on these assumptions is given in Fig. 7.5 (b). In order
to perform inference with a realistic model, one needs to adopt a “measure or predict” scheme
as shown in [56] similar to the processing of out-of-sequence measurements [98]. For simplicity,
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consider my, only and assume the measurements 9,5, @ < k to be given. The intention estimate
may be obtained from the following calculations, where i, € Z; and m; € M,

Firdino) = [ [ e flisaualiv) (f@alm) o inoa )] filiun) A (7)

Vv Vv Vv
Prediction Measurement Update Previous Filtering

if an estimate f(2,.,|mp) for a batch of measurements ,,.,, @ < b < k is obtained. In (7.9), the
state predictions for the time steps without measurements are calculated by

k b
flikpialin) = ] flilia), f(mu, ivaslia) = fomli) [ Flalica),
1=b+1 l=a+1

and the normalization constant in (7.9) is given by ¢ = 1/ f(0..124:0)-

7.2.3 Properties and Restrictions

The properties and restrictions of the model-predictive approach for efficient inference and the
inference with asynchronous measurements are discussed below.

e The proposed model-predictive approach is not optimal in the sense of an optimal solution
to a control problem [10, 11, 81] as the expectation of the future objective function value
w.r.t. future measurements has been omitted. The future measurements were either
neglected or approximated. A further discussion of the optimality of the proposed approach
remains future work.

e Regarding the inference at different frame rates, as discussed in Sec.7.2.2, the proposed
method is only approximate, as dependencies in the HDBN; e.g., the subsystems’ dynamics,
are neglected. Employing the prediction for the time steps, where no measurement is
performed corresponds to assuming quasi-stationarity.

7.3 Learning

Learning the proposed HDBN is challenging for realistic scenarios. For example in the case of
nine intentions manifesting in 60 actions, at least 531 conditional probability values need to be
calculated. This number does not include the parameters involved in learning the continuous-
valued measurement models. Learning may also involve not only fully observable, but also
partially observable data. Data may be missing at random or not [99]. Approaches to learning
HDBN may be categorized into approaches for learning single conditional density functions and
entire networks, consisting of sets of conditional density functions and uncertain intermediary
estimates. The first part of this thesis was concerned with learning conditional density functions
relating only pairs of continuous random variables. The proposed approaches may be integrated
into the approaches for learning entire networks. The interested reader is referred to [134] for an
overview over learning entire networks. Note that learning DBNs may be subsumed by learning
BNs with parameter-tying. In general two approaches for learning BN have been investigated:
learning by maximizing the data log-likelihood by, e.g., a gradient ascent [9, 16] or by EM
[75, 117]. A Bayesian approach towards learning discrete-valued BN has been proposed in
[74]. Learning in the closely related mixture-of-experts framework is discussed in [17, 90]. For
learning hybrid BN, the interested reader is referred to [16, 132].
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(a) Lay Table. (b) Prepare Cereals. (¢) Prepare Pudding.

(d) Eat with Spoon. (e) Eat with Fork. (f) Clear Table. (g) Wipe Table.

Figure 7.6: Snapshots of the seven different kitchen tasks considered in the video-based experiment in Sec.7.4.1.

Properties and Restrictions

The properties and restrictions of learning HDBN are discussed below.

e Learning HDBN is challenging as it may involve a model selection problem for every
conditional density function in the network. For a given network structure it may be
impossible to learn certain relations as discussed in the context of blind source separation
[186]. In general, no statement about the learning success is possible, e.g., about the
convergence properties of EM [202]. Except for some special cases, e.g., fully-observable
data in the limit, no descriptive or prescriptive validity may be proven.

e The computational complexity depends on the network structure as inference is used as a
subroutine in learning. Inference has been shown to be NP-hard for hybrid networks even
with polytree structure [119], i.e., at least as complex than in purely discrete networks.

7.4 Experimental Validation

The experiments in this section are part of the scenario used within the Collaborative Research
Center 588 “Humanoid Robots - Learning and Cooperating Multimodal Robots””. In the
experiments, the properties and restrictions of inference with asynchronous measurements and
the model-predictive approach for inference in large models are investigated. Video-based and
extended range telepresence experiments are presented in this section. The former demonstrates
inference with asynchronous measurements and may be understood as a proof of concept that
the developed algorithms are applicable in a real-world setting. The latter allows for a discussion
of the properties of the proposed inference methods for large models by varying the number of
objects, places, and actions given a reproducible experimental setup.

7"The German name is “Sonderforschungsbereich 588 Humanoide Roboter - Lernende und kooperierende multimodale Roboter”
[182, 45] sponsored by the Deutsche Forschungsgemeinschaft (DFG).



7.4. Experimental Validation 97

Table 7.1: Typical kitchen tasks and the corresponding intentions, activities, and actions as considered in the
video-based experiment in Sec.7.4.1. The seven different kitchen tasks listed below are depicted in Fig. 7.6.

Tasks Lay Table, Prepare Cereals, Prepare Pudding, Fat with Spoon,
Eat with Fork, Clear Table, Wipe Table.
\

Intentions Lay Table, Prepare Cereals, Prepare Pudding, Spoon Breakfast,
Spoon Lunch, Cut Breakfast, Cut Lunch, Clear Table, Wipe Table.

Activities Lay Table, Prepare Meal, Fat with spoon,
FEat with fork, Clear Table, Wipe Table.

Actions 60 actions were defined, cf. [56], e.g.,

Walk left, Pour, Stir, Place Object on Table, etc.

7.4.1 Video-Based Experiments

The video-based experiments® are concerned with the actions, activities, and intentions of
complex daily tasks in the kitchen setting as investigated in CRC 588. In the remainder of
this section, the specific scenario, the specific underlying model, i.e., the considered actions,
activities, and intentions, the experimental setup, as well as the results are presented.

Scenario In the considered scenario, a person enters a room, performs a task, e.g., laying the
table, and then leaves the room again. The tasks may be understood as the visually observable
manipulations of the world. Each of the considered tasks consists of different manipulations of
objects as described in Tab. 7.1 and shown in Fig. 7.6 for seven different kitchen tasks. In this
scenario, the considered set of intentions is the set of tasks further distinguished by knowledge
of the current time, i.e., Fat with spoon is further discerned into Fat breakfast with spoon or
Fat lunch with spoon depending on the time of day, cf. Tab.7.1. An activity—as defined in
Def. 2.6-is a distinct coarse movement in a part of the state space, i.e., manipulations by the
human, but no objects are discernible [136, 157, 199]. This means that object and activity
recognition are separated and their recognition results may be used complementarily. This
alleviates the problem that some manipulations are ambiguous, but distinguishable by object
knowledge. The set of activities is therefore a subset of the set of tasks. In this scenario, the
tasks Prepare cereals and Prepare pudding correspond to the activity prepare meal, cf. Tab.7.1.
A fine-grained modeling of the human behavior into more than 60 actions!®—in the sense of
Def. 2.5—has been performed semi-automatically. Exemplary actions are Walk left, Pour, Stir,
or Place Object on Table. These actions serve as an alphabet for a motion grammar [55], which
describes the human behavior without knowledge about the present object or the time of day.
The interested reader is referred to [56] for more information.

Specific Model The considered model comprises five components: the intentions, actions,
and activities, the object and time knowledge. As the computational model is an HDBN as
described in Sec.7.1.2, all of the five components are modeled as random variables with their
respective relations. Such a model without object and time knowledge is given in Fig. 7.5 (a).
The causal dependencies encoded in this model are as follows. The intention 2, as the force

8The results presented in this subsection are reproduced or extended versions of the joint work with Dirk Gehrig, Lukas Rybok et
al. cf. [56] as part of the Collaborative Research Center 588 “Humanoid Robots - Learning and Cooperating Multimodal Robots”?.
10Tn this thesis the term “action” is used synonymous with motion or motion primitive, cf. [55, 59, 56].
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Figure 7.7: The average recognition rates in terms of misclassifications of the ML estimate for each frame per
intention is given in (a) for a model with uncertain object and time knowledge but with and without either the
activity or the action recognition. The impact of the asynchronous measurement updates on the intention estimate
for the video-based experiment of Sec. 7.4.1 is shown in (b). The results are based on [56].

driving the human behavior causes both actions my and activities a,. Neither actions my
nor activities ay are observable, but only specific features of the movements by the human are
observable, which are caused by the actions and activities respectively, i.e., v, and v}. These
features are directly calculated from each video frame, cf. [56]. Dynamic dependencies exist as
the intentions, activities, and actions depend on their respective preceding values. The features
as such are calculated for each image in the recorded video or incoming video-stream. The
models of the activities and actions, e.g. the action grammar, are described in [56].

Learning In order to obtain a realistic model, most of the parameters in the model shown
in Fig. 7.5 (b) are learned automatically. From the five components the dependencies between
the intention and activity as well as action, the dependencies between the actions and activi-
ties and their respective measurements are learned automatically. The dependencies between
intention, object knowledge as well as the dynamic dependency of the intention are not learned
but obtained from expert knowledge. For learning, a training data set in the form of videos
of the seven tasks was recorded, cf. Tab.7.1 and Fig. 7.6. This data set was split into an
evaluation and a training set. The dependencies described above were learned separately, e.g.,
the dependency between action and features was optimized to yield the best recognition rates
for this subsystem. Note that for learning the dependencies between the intention and activi-
ties or actions the estimated activities and actions were used. Learning the dependencies from
features to activities and actions exceeds the scope of this thesis and the interested reader is
referred to [56]. Regarding the dependencies between the intention and activities or actions
the given estimates were assumed to be fully-observable data and learning then corresponds to
calculating sample statistics [99]. The dynamic dependency of the intention is not learned, but
set to a damping system, i.e., for continued predictions without measurements the intention

estimate will converge towards a uniform distribution. All dependencies were learned using
eight-fold LOO-CV, cf. Ch.5.

Experimental Setup The experimental setup for the recordings consisted of a fixed view-point
camera on top of a tripod with the height of ca. 1.8 m. The camera was a Point Grey Dragon-Fly
used with a frame rate of 30 fps and an image resolution of 640x 480 pixel. The setup consisted of



7.4. Experimental Validation 99

5668 | 57 | 0 0 0 0 o |1752 | 92 [749% 5668 | 57 | 0 0 0 0 o |1752 | 92 |749%
Lay Table | 6o, | 019 | 0.0% | 00% | 0.0% | 0.0% | 00% | 17% | 0.1% |25.1% Lay Table | Zgo, | 010 | 00% | 0.0% | 0.0% | 00% | 00% | 1.7% | 0.1% [25.1%
4015 |10890 | 9970 | 455 | 440 | 92 | o8 | 4538 | 305 |354% 4015 |11001 | 304 | 369 | 376 | 88 | 92 | 4538 | 305 |522%
Prepare Cereals| 4000 |108% | 9.9% | 05% | 04% | 0.1% | 0.19% | 45% | 0.3% |646% Prepare Cereals | 400, |109% | 03% | 04% | 04% | 0.1% | 0.1% | 45% | 0.3% |47.8%
h u | 2 0 0 0 8 8 | 53 | 6 |o0% ) 44 | o |9706 | 30 | o 8 8 | 53 | 6 [oss%
Prepare Pudding| 0, | 0.0% [00% | 0.0% | 0.0% | 00% |0.0% | 0.1% | 00% | 100% Prepare Pudding| 460, | 0.0% | 96% | 00% | 0.0% | 00% | 00% | 0.1% | 0.0% | 1.5%
0 o | 12 |10527| 210 | 119 | o o | 24 |966% 0 0 o |10s67 | 180 | 117 | o o | 24 |o7a%
£ Spoon Breakfast | oo | 0% | 0.0% |105% | 02% | 0.1% | 0.0% | 00% | 0.0% | 3.4% £ Spoon Breakfast | 00, | 0.0% | 0.0% [105% | 02% | 0.1% | 0.0% | 00% | 0.0% | 2.9%
> >
S P
0 0 0 o |10365| 114 | 119 | o 4 |o7.8% 0 o | 12 | o |10430| 114 | 117 | o 4 |o7.7%
_'E Spoon Lunch | o0, | 000 | 00% | 0.0% |103% | 0.1% | 0.1% | 0.0% | 00% | 22% _'g Spoon Lunch | o460, | 0.0 | 0.0% | 00% [104% | 0.1% | 01% | 0.0% | 0.0% | 2%
C 6 C
9 | 80 | 80 | 745 | 80 [12433 | 278 | 93 | 80 |89.1% 9 | 80 | 80 | 769 | 80 [12441| 250 | 93 | 80 |89.1%
01% | 0.1% | 0.1% | 0.7% | 0.1% [124% | 03% | 0.1% | 0.1% |109% 01% | 0.1% | 0.1% | 0.8% | 0.1% [12.4% | 02% | 0.1% | 0.1% |10.9%
8 Cut Breakfast 8 Cut Breakfast
S S
] 120 | 120 | 120 | 120 | 748 | 124 [12387 | 237 | 120 |87.9% 6] 120 | 120 | 120 | 120 | 789 | 122 |12423 | 237 | 120 [87.7%
Cutlunch| ole | 03% | 0.1% | 01% | 07% | 0.1% |123% | 02% | 0.1% |12.1% Cutlunch| 7o | 01% | 0.1% | 0.1% | 08% | 0.1% |123% | 02% | 0.1% |12.3%
1448 | 100 | 100 | 100 | 100 | 100 | 100 |3549 | 175 |615% 1448 | 100 | 100 | 100 | 100 | 100 | 100 | 3549 | 175 |61.5%
ClearTable | 140 | 019 | 0.1% | 0.1% | 0.1% | 01% | 0.1% | 35% | 0.2% |385% ClearTable | 140 | 019 | 0.1% | 0.1% | 01% | 01% | 0.1% | 3.5% | 0.2% |385%
) 255 | 181 | 68 | 8 | 12 | 0 o | 203 | 6079 |893% ) 255 | 72 | 28 | o 0 0 o | 203 | 6079 |91.6%
Wipe Table 079 Wipe Table 6079
P 03% | 02% | 0.1% | 0.0% | 0.0% |00% |00% |02% |60% |10.7% p 03% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 02% |6.0% | 8.4%
487% |953% | 0.0% |88.1% |86.7% [95.7% [95.4% |34.0% |883% |71.5% 48.7% | 96.2% |93.8% | 88.4% |87.29% |95.8% [95.6% |34.0% |88.3% |81.4%
51.3% | 47% | 100% | 11.9% |13.3% | 43% | 46% |66.0% |11.7% |28.5% 513% | 3.8% | 6.2% | 11.6% |12.8% | 42% | 44% |66.0% |11.7% |18.6%
Estimate Estimate
(a) A =0.00. (b) A = 0.50.
5668 | 51 0 0 0 0 o |1752 | 92 |749% 5668 | 51 0 0 0 0 o |1752 | 92 |749%
Lay Table | 560, | 019 | 0.0% | 00% | 0.0% | 0.0% | 00% | 17% | 0.1% |25.1% Lay Table |50, | 019 | 0.0% | 0.0% | 0.0% | 00% | 0.0% | 1.7% | 0.1% [25.1%
4015 [11028 | 192 | 140 | 140 | 28 | 28 | 4538 | 305 |54.0% 4015 [11032| 178 | 16 | 16 | 0 o0 |4s38 | 305 [s49%
Prepare Cereals | ;o0 |11.0% | 02% | 01% | 0.1% | 0.0% | 00% | 45% | 03% |46.0% Prepare Cereals | , o0, |11.0% | 02% | 00% | 0.0% | 0.0% | 00% | 45% | 0.3% |45.1%
P Puddi 44 | o |9o828 | 30 | o 0 o | 53| 6 |os7% P Puddi 44 | o |o8s2| 38 | 8 0 o | 53 | 6 [oss%
repare Fudding| o9, | 0.0% | 98% | 0.0% | 00% | 0.0% | 00% | 0.1% | 00% | 1.3% repare Fudding| o9, | 0.0% | 98% | 0.0% | 00% | 0.0% | 00% | 0.1% | 00% | 1.5%
0 o | 10 |10705| 132 | 117 | o o | 24 |974% 0 0 8 [10775 | 130 | 17 | o o | 24 |o75%
S Spoon Breakfast | oo | 00% | 0.0% |106% | 0.1% | 0.1% | 0.0% | 00% | 0.0% | 2.6% < Spoon Breakfast | 00, | 0.0% | 0.0% [107% | 0.1% | 0.1% | 00% | 00% | 0.0% | 2.5%
> >
E s Lunch| .0 0 0 o |10620| 110 | 117 | o 4 |97.9% E s Lunch| -© 0 0 o [10692| 110 | 117 | o 4 fo7.9%
S POON LUNCN | 600, | 00% | 0.0% | 00% [106% | 0.1% | 0.1% | 0.0% | 0.0% | 2.1% - poon Lunch | g0, | 0.0% | 0.0% | 0.0% [106% | 01% | 0.1% | 00% | 0.0% | 21%
= 9 | 80 | 80 | 80 | 80 [12515| 202 | 93 | 80 |88.9% c 9 | 80 | 80 | 906 | 80 [12543 | 202 | 93 | 80 |[s8.6%
8 CutBreakfast | 1o, | 019 | 0.1% | 09% | 0.1% [124% | 02% | 01% | 0.1% |11.1% :o’ Cut Breakfast | 1o, | 0.1% | 0.1% | 09% | 0.1% |12:5% | 02% | 0.1% | 0.1% |11.4%
P L
G 120 | 120 | 120 | 120 | 883 | 120 |12543 | 237 | 120 [87.2% G 120 | 120 | 120 | 120 | 929 | 120 |12571 | 237 | 120 |87.0%
CutLunchy o3e | 019 | 0.1% | 0.1% | 09% | 01% [12:5% | 02% | 0.1% |12.8% CutLunchi 7o, | 019 | 0.1% | 0.1% | 09% | 0.1% [125% | 02% | 0.1% |13.0%
1448 | 100 | 100 | 100 | 100 | 100 | 100 | 3549 | 175 |61.5% 1448 | 100 | 100 | 100 | 100 | 100 | 100 | 3549 | 175 [61.5%
Clear Table | 140, | 0.1 | 0.1% | 01% | 0.1% | 0.1% | 0.1% | 35% | 0.2% |38.5% ClearTable | 140, | 019 | 0.1% | 01% | 0.1% | 0.1% | 0.1% | 35% | 0.2% |38.5%
) 255 | 51 | 20 | 0 0 0 o | 203 | 6079 [920% ) 255 | 47 | 12 | o 0 0 o | 203 | 6079 |92.2%
Wipe Table | 535, | 070 | 00% | 0.0% | 0.0% | 00% | 0.0% | 0.2% | 60% | 80% Wipe Table | o35, | 000 | 00% | 00% |00% | 00% | 00% | 0.2% | 60% | 7%
48.7% | 96.5% | 95.0% |89.5% |88.8% [96.3% [96.6% |34.0% |883% |82.0% 48.7% | 96.5% |95.2% | 90.1% |89.4% [96.6% |96.8% |34.0% |88.3% [823%
51.3% | 35% | 50% [10.5% |11.2% | 3.7% | 3.4% |66.0% |11.7% [18.0% 513% | 3.5% | 48% | 99% [10.6% | 3.4% | 3.2% |66.0% |11.7% |17.7%
Estimate Estimate
(c) A=0.75. (d) A =1.00.

Figure 7.8: Impact of the uncertainty of the object knowledge on the recognition results. The confusion matrices
give the classification rates in terms of the ML estimates matching the ground truth. The object knowledge varies
from a uniform distribution (A = 0) to 70% probability of the ground truth (A = 1) for the experiments in Sec. 7.4.1.

a table on which all manipulations were performed. The background is both plain and textured.
Exemplary images of the setup are depicted in Fig.7.6. As the experiments were recorded
between 9 AM and 8 PM the lighting in the data varied from artificial to day light. The data
corpus consists of recordings of all seven tasks for ten test persons. As each person performed
each task ten times, a total of 700 videos were recorded. The recordings of the first two persons
(140 videos) were used as evaluation and the other recordings (560 videos) as training set. The
data set is publicly available from http://www.sfb588.uni-karlsruhe.de/minta/.

Results As the focus of this thesis is on the intention recognition, the performance of the
activity and action recognition system is not reported. The interested reader is referred to
[56, Ch. VII| for more information. The presented results are either reproduced or extended
versions of the results presented in [56]. The recognition rate R (.) of the estimator is calculated
w.r.t. the number of frames | F| of the evaluation set F, the true intention i, and the maximum
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(a) Head-mounted display for stereo (b) Bluetooh cyberglobe with wired (c) Mobile computer used for visualiza-
display of the virtual household. acoustic hand tracking device. tion and tracking the head and hand.

Figure 7.9: Equipment for extended range telepresence experiments in Sec.7.4.2: a head mounted display for a
stereo visualization of the virtual household (a), a cyberglove with attached acoustic tracking system for measuring
the finger angles (b), i.e., grasping activity, and a mobile computer (c) producing the visualization as well as the
head and hand tracking calculations. A test person wearing all equipment is shown in Fig. 7.10.

likelihood estimate ML (2, ) of the intention estimate 2, for each frame k.

|71
R(F) = % S IMLG,) @7 (7.10)

with the element-wise vector multiplication ®. In Fig. 7.7 (a), the intention recognition results
using either the activity or the action recognition, and both recognition systems are given
as average ML recognition rates over all frames. The object and time knowledge was always
supplied. The average intention recognition results (7.10) improve the more information is used,
e.g., the complementarity of the activity and action recognition can be seen especially for two
intentions lay table and wipe table. In Fig.7.7 (b), the benefit of using a model for the coarse
activities and fine-grained actions is shown over time. Additionally, the benefit of the object
knowledge may be seen in the estimation results when using only object and time knowledge
as well as the activity recognition. Only due to the object knowledge may Prepare Cereals
and Prepare Pudding be distinguished. The impact of the time knowledge can be seen in the
recognition results for the breakfast and lunch tasks. The impact of the object knowledge w.r.t.
the level of uncertainty A with which it was used is shown for four values of A in Fig.7.8. The
results show that the object knowledge improves the results, but the estimation results without
object knowledge would still be high for A = 0. The intention is estimated every second frame.
The estimates of the activity recognition start after ca. 120 frames and is updated every fourth
frame. The action recognition results are available every 30th frame. The effect of the different
update rates is shown in Fig. 7.7 (b). The impact of the damping system used for the prediction
in the sense of Sec. 7.2 can be seen by a zig-zagging curve.

7.4.2 Extended-Range Telepresence Experiments

In order to determine the properties and restrictions of the model-predictive approach to infer-
ence in large models experiments using exztended-range telepresence (ERT) were performed. In
contrast to the video-based experiments, experiments in the ERT may be very easily extended
to scale the number of objects. The experimental environment used for the experiments was
initially developed in a student research project [1, German] as part of the CRC 588. An
overview over the entire system is given in [168, Ch.7.2]. The key idea of the ERT as an
experimental environment for the intention recognition is that a test person is telepresent in
a virtual 1:1 scale version of the CRC 588 household scenario. The test person wears a head
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Figure 7.10: Setup for the ERT experiments: the user wearing a head-mounted display, a bluetooth cyberglove
and tracking devices on the hand as well as the head (left). The tracked poses and grasp are mapped into the
virtual household, e.g., into the kitchen (right), cf. Sec.7.4.2.

mounted display on which a view of the household scenario relative to his pose in the virtual
household is rendered, cf. Fig. 7.9 (a). The position of the test person’s head and left hand
in the real-world is tracked by an acoustic tracking system [13, 14], cf. Fig. 7.9 (b) and (c).
The relative motions in the real world are mapped into motions in the virtual world, thus
giving the test person the impression of moving in the virtual household, cf. Fig.7.10. The
advantage of this specific extended range telepresence system [14, 68, 154] is that the motion is
compressed [137] mapping the test person’s motions in the limited area, which is tracked, to a
much larger virtual household and a potentially infinitely large environment. Besides the test
person’s head and hand positions his grasping activity is measured by a cyberglove device!!.
Using the grasping and position information, the object manipulations, i.e., the change in pose
or stacking relations, are rendered in the virtual house. The object knowledge is thus directly
obtainable from the computer graphics model underlying the virtual house. In summary, the
ERT experimental setup allows a test person to move naturally in a virtual model of the house-
hold scenario. The tracked grasping activity as well as the head and hand positions serve as
input to the intention recognition. Note, that these measurements are subject to measurement
noise. The ERT setup has two advantages in comparison with the video-based setup: scala-
bility and reproducibility. The scalability refers to the virtual household size and the number
of considered objects contained in the household. The size and number of objects of the vir-
tual household may be as easy increased as a designer may create and add virtual objects.
Additionally, the experimental setup may be reproduced exactly, i.e., a restart of the virtual
household resets the state of all objects in the virtual household. Due to these two advantages,
the ERT setup is especially advantageous for investigating the properties and restrictions of
the proposed inference method for large models. The experiments and results are extended
versions of the experiments presented in [104, 106].

Scenario In this scenario a test person performs a fixed task sequence in the household. The
high-level description of this sequence is that the test person at first eats a meal, which consists
of laying the table, cooking, and clearing the table. The more detailed task description'?, which
was read to the test persons is given below.

1 This cyberglove was produced by the Forschungszentrum Karlsruhe (FZK) within the CRC 588.
12The detailed task description was read to the test person in German. The description given is a translation.
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Table 7.2: Number of nodes in the full model and submodels used for the ERT Ex. 1 and 2.

| #Nodes || Full model [ M N O P |

Ex.1 305 243 229 179 49
Ex.2 611 299 229 275 497

Task description The person starts at the center of the virtual kitchen. He sets the table
by putting a plate and a cup onto the table inside the kitchen. Thereafter the person performs
a symbolic cooking procedure, consisting of approaching the stove, putting a pot onto the stove,
and bringing the pot to the table. After waiting a couple of seconds in front of the table—which
corresponds to symbolic eating the prepared meal-the person opens the dishwasher, puts an object
from the table into the dishwasher, and closes the dishwasher again. This partial clearing of the
table is meant as a decision point, where the humanoid robot may start helping the human by
finishing the started task. After having closed the dishwasher the test person leaves the kitchen,
walks down the hall-way into the living room.

This task has been performed ten times with six different test persons. Note that the test
person were left with the choice in which order, the objects for laying the table were carried to
the table and which object was put into the dishwasher for symbolically clearing the table.

Specific Model Two experiments in the ERT with different model sizes were performed to
test the scalability of the approach, cf. Tab. 7.2. The full model used in Ex.1 estimated ten
intentions with a HDBN of 305 nodes. In Ex. 2, 15 intentions were estimated using 611 nodes
in the full model. The set of submodels consists of four models, i.e., M, N, O, and P, with
different numbers of nodes, cf. Tab. 7.2. These models are composed of all fragments associated
with a given situation. For example all fragments for Lay Table and Clear Table were combined
in one model. This may be understood as removing all nodes from the full model except for
the fragments related to Lay Table and Clear Table.

Experimental Setup In this subsection details about the performed experiments as well as
the technical details for the ERT as motivated in the beginning of Sec. 7.4.2 will be given. The
execution of each sequence took ca.10-20 Min. to complete. From all recordings the first 12.5
Min. were used. As the parameters of the models are not learned, this is directly the evaluation
set for recognition rates presented in the following section. The area covered by the tracking
system of the ERT was ca. 3 x4 m. The setup of the tracking system follows [13, 14]. As all of
the information regarding the object poses, the head and hand position of the human as well as
the grasping activity were recorded by accessing the object model underlying the visualization
a uniform update rate of 750 ms was used. Quantitatively, the noise is roughly normal in z-
and y-direction and has variances of o &~ 5 cm as well as o ~ 10 cm in z-direction. Regarding
the model-predictive approach the parameters are set as follows if not otherwise specified. The
number of look-ahead steps is set to 2 and model selection is performed in every fifth update
step. Switching the model is penalized by a 1/(number of intentions). The complexity costs
for each model in the switching approach are set to the normalized sum of number of nodes
in each model, cf. Tab.7.2; and [100 100 200 400], to equalize the differnt model sizes. For
the selection criteria, the switching penalty and the complexity costs are weighted against the
similarity score by factors of 0.2 and 2, i.e., switching is less penalized than complexity costs
in order to show the speed-up achievable if only a small estimation error is accepted. A tiny
value was used for the mutual information criterion and set to 1le=%4.
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of the absolute deviation of the estimates
from the estimate using the full model.

Figure 7.11: Average difference between the intention estimates 2, using the full and the reduced model as well as
the respective standard deviation for both experiments and both objective functions (a). The used average number
of nodes and computation time per step for both objective functions are given in (b) and (c).

Results For assessing the quality two criteria are used: approximation quality and speed-
up. Regarding the approximation quality, the deviation between the posterior densities of the
intention Dy as estimated for time step k using the standard approach § . and the model-
predictive approaches § N is measured according to

DiEe&) = & -, -
and the results are then given as average absolute deviations over all frames

|7
D(F D . 7.11

The speed-up is defined as the decrease in processing time without input-/output operations
per frame. The results of the experiments are given for the two model decompositions shown in
Tab.7.2. For a good decomposition scheme, a very low approximation error can be obtained,
cf. Fig.7.11 (a), allowing for the use of smaller models, cf. Fig.7.11 (b), and thus resulting
in a speed-up of up to one order of magnitude as shown in Fig.7.11 (c¢). In contrast for a
less favorable set of smaller models a worse approximation quality is inevitable and in some
situations too many model changes may be observed.

7.5 Main Contributions

The main contributions of this chapter regarding the intention recognition for human-robot-
cooperation are summarized in the following list w.r.t. descriptive and prescriptive validity as
well as computational efficiency.

e In this chapter, a model-predictive approach for efficient inference in large-scale models
based on online model selection was proposed. The presented approach reduces the de-
scriptive and prescriptive validity as it approximates an already existing model, in order
to allow for more efficient inference in the large model.
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e Even though the proposed model-predictive approach does not change the computational
complexity class, it improves the computational efficiency by a large factor and allows for
real-time inference with larger and more realistic models. Two different objective functions
aimed at an online model selection have been presented and discussed for this purpose.
The proposed method enables non-verbal communications for more scenarios.

e A method for processing asynchronous measurements was proposed in this chapter. This
method is of importance for the practitioner as in realistic scenarios, sensor information
of mid-level fusion results are typically not instantaneously available to the estimator,
but arrive in batches or aggregates of batches of measurements. The applicability of the
method was demonstrated in video-based experiments.

e The practicability of the proposed approaches towards efficient inference with large mod-
els has been demonstrated using an extended range telepresence scenario with differing
numbers of object-action-place combinations in the virtual household.



I enjoyed your seminar.
Before I was confused,
now I am still confused,
but on a higher level.

—Louls PASTEUR

8 Conclusions and Future Work

In this thesis, methods for enhancing the intention recognition capabilities of technical devices,
such as humanoid robots, were developed. The problem of inferring the intention of a human
by a technical device was understood as a problem of modeling, inference with, and learning
probabilistic graphical models. In detail, the proposed methods may be employed but are not
restricted to Hybrid Dynamic Bayesian networks. In the following, the main contributions of
this thesis and possible future work are summarized. In analogy to the structure of the thesis,
these are categorized by the main challenges, which were addressed: model identification and
intention recognition.

8.1 Model ldentification

As described above, a probabilistic graphical model is used for the intention recognition. These
probabilistic models not only describe the existence of dependencies between random variables,
but also their quality in terms of density and conditional density functions, i.e., prior densities
and state transitions. In this thesis, model identification by estimating density and conditional
density functions given the graphical model structure is considered. More specifically, the prob-
lem of determining continuous-valued density and conditional density functions from samples
is discussed. In both cases, the estimation problem is further restricted to the estimation of
functions in the form of Gaussian mixtures densities. The contributions presented in this thesis
and possible future work are listed below.

Main Contributions

o A sparse mizture density and conditional density estimation algorithm based on a weight
optimization has been proposed. This method restricts all components to be fixed to the
sample points and the parameters for all component covariances to be identical. The
method may be understood as an extension of kernel density estimation by a weight
optimization. Whereas the optimization is performed w.r.t. a novel distance between lo-
calized cumulative distributions and a regularization term, e.g., a norm in an RKHS or
a Rényi Entropy-based term. Due to the semi-definiteness of the elements of the target
function it could be shown that the arising optimization problem is a constrained convex
quadratic problem. The problem may therefore be solved in polynomial time w.r.t. the
number of optimization variables and constraints.

e A full parameter identification algorithm, which lifts the restrictions of collocation of com-
ponents’ means with the data and parameter-tying of the components’ covariances was
introduced. For the purpose of an improved approximation and generalization quality, a
superficial regularization term was derived, allowing for a simultaneous regularization of
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the surface of the conditional density function and a generative model potentially under-
lying the surface. In order to represent the model uncertainty in the presence of scarce or
no data in parts of the state space, a method for calculating the component covariances
w.r.t. the local data distribution was developed.

e A hyperparameter optimization algorithm determining the parameters not estimated by the
non-parametric or full parameter identification algorithms, e.g., the trade-off between data
fit and regularization or the kernel parameters, was presented. The proposed algorithm
may be understood as a blend of a hyperparameter optimization used in SVMs and the ez-
ante parameter estimation in classical kernel density estimation. The algorithm is the first
approach towards a cross-validation—based hyperparameter optimization algorithm for the
proposed non-parametric or full parameter density and conditional density estimation.

e A method for the incorporation of prior knowledge to allow for exploiting expert knowledge
not given in the form of samples or previously compiled models was proposed and shown
to improve the estimation quality. Prior knowledge given in the form of generative and
probabilistic models is approximated by means of additional constraints and a mixture
kernel respectively. These approximations are generic and simple to introduce into the
presented and all other conditional density estimation algorithms, which may be phrased
as a constrained weight optimization problem.

Future Work

e Efficiency may be improved by exploiting the locality inherent in the problem. Due to the
availability of large data sets relevant for many applications, e.g., “A Mine of its own”
[192], an improvement in training time will be necessary to address large data sets. A very
promising approach in this direction is the truncation of mixture components of the density
and conditional w.r.t. their distance based on existing error bounds. This allows for an
efficient processing of the functions, e.g., by dual-tree schemes [78] and may additionally
offer significant speed-ups for recursive state estimation.

e The learning problem may be reduced from high-dimensional spaces to manifolds. Many
data sets and the respective full parameter identification require the solution of the density
and conditional density estimation problem in a high-dimensional space. This challenge is
inherent in the problem. If these estimation problems may be considered locally only, the
estimation problem is likely to be intrinsically of lower dimension. Therefore, one potential
solution to this problem is to determine the intrinsic manifold and perform the estimation
only w.r.t. this lower-dimensional space [145].

e Models should be learned incrementally. This feature is crucial in order to develop adaptive
nonlinear state estimators. The challenge lies not only in the unavailability of exact state
values, but also in the dynamic regularization of the estimates. One possible direction for
further work is a Bayesian adaption scheme based on the model uncertainty as obtained
from the full parameter identification.

8.2 Intention Recognition

The capability to recognize the intention as the driving force behind the human behavior is
of importance to many technical devices. One important challenge to intention recognition in
general is the efficient inference in complicated scenes with many objects to take into account.
This problem is especially important for the intention recognition by humanoid robots. These
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robots shall assist the human and therefore have to cooperate closely with the human. If the
inference in non-trivial models is too slow, no useful reactive assistance by the humanoid robot
will be possible. The contributions of this thesis towards alleviating this problem and possible
future work is summarized in the following lists.

Main Contributions

e A model-predictive approach towards efficient inference in large scale models based on
online model selection has been proposed. The method is based on the key idea that a
human’s intentions are bound to preconditions, i.e., situations, and these situations may
be exploited to restrict inference to smaller models. In order to solve the model selection
problem of finding the appropriate smaller model in a set of small models, selection criteria
based on mutual information and a distance between HMM have been proposed. Using
the model-predictive approach with online model selection allows for inference to be sped
up by up to an order of magnitude at low approximation errors.

e Inference with asynchronous measurements has been proposed. One of the main challenges
for the implementation of intention recognition systems involving multimodal sensors is the
fusion of measurements or mid-level estimates at asynchronous update rates. Additionally,
mid-level estimates may summarize batches of measurements. The proposed inference
method compensates for these deficiencies and was shown to produce recognition rates of
more than 80% in a video-based experiment.

Future Work

e [ntention recognition will benefit from more domain knowledge and active sensing. As
shown in the Sec. 7.2.2, the entire non-verbal communication may be modeled as one joint
Bayesian network. This understanding motivates that in the sense of Pearl’s message
passing algorithms measurement systems, such as the activity and action recognition, may
use domain knowledge or higher-level information to refine their respective estimates. It
seems promising that the view of a camera system of a humanoid robot may be adjusted
to allow for the most informative measurements.

e Automated situation decomposition will facilitate inference in large scenarios. The central
prerequisite for the proposed model-predictive approach to efficient inference based on
online model selection is the availability of a set of situation-specific smaller models. For
large scenarios, a manual construction of this situation-specific models is not possible and
thus automated model construction methods appear to be inevitable.



In the field of 'Theory’,
chance only favors those minds
which have been prepared.

A Appendix

For the sake of self-containedness, in the remaining part of this chapter basic definitions are
restated as well as abbreviated calculations and omitted proofs are given. Throughout the
appendix, the definitions z,u € IR, 0 € Ry, z, 1 € RN, and C € RY*N, C p.s.d., will be used.

A.1 Density Representations

In this section, the definition of a density and relevant representations are described. These
definitions were compiled from from [127, 139, 180] and [92, German]. A generic function

fiQ—1[0,1], (A.1)

mapping from a probability space €2, e.g., RN, to the interval [0, 1] is a valid probability density
function (PDF), if and only if,
[ rwaz=1.
Q
0

Note, (A.1) particularly implies f(z) >

A.1.1 Normal Density

Due to its many advantageous properties, e.g., entropy maximization and minimization of the
Kullback-Leibler divergence [72], the normal density, for the scalar case defined as

N(z —p,0) = —= exp{—%@;—g)z}, (A.2)

2mo

and for the multivariate case defined as

N(z —p,C) = \/ﬁeXp{—%(z—g)TC”(z—ﬁ)} , (A.3)

is a very common density function. The normal density is said to be axis-aligned, if
C = diag(co), (A.4)

2 ..0%]" € RN, which allows a decomposition according to

with o = [o7 ..

Even if (A.4) doesn’t hold, it is often used an approximation to the non-aligned density. A
heavily exploited property of the normal density, is that the product of two normal densities
yields an (unnormalized) normal density again as

N —p,o0) Nx—v,7)=Npu—-v,Vo2+72) - N(x — i/, 0'), (A.6)
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for the scalar case, with /' = “;zi: ‘2’2, o = U’j—sz, and for the multivariate case
N@—p,C)-Nz—-v,D)=N(p—-v,C+D)-N(@z -, C), (A7)

with y// = (C~' 4+ D7) (D \p+ C~Ww) and €' = (C1 + D7)

A.1.2 Gaussian Mixture Density

A Gaussian mixture density (GM)! is a weighted summation of normal densities, i.e.,

L
fl@) =Y a;N(z;p,C), (A.8)

=1
with L € INt, a = [0y ...az]" € R*, and a"1 = 1. In contrast to normal densities, GM

allow for the representation of multimodal densities. Additionally, with an infinite number of
components, GM are universal approximators [72]. Because the only condition imposed on the
mixture is o’ 1 = 1, negative weights are possible. In order to facilitate the computations, the
stricter condition 0 < a; < 1 may be enforced too, as positivity of the GM is guaranteed, if
all components are positive. Introducing fi(z) :== N'(z — ., C;) and f(z) = [fi(z) ... fo(@)]*,
(A.8) may be rewritten into

L

fl@) =) aifilz) =a" f(z). (A.9)

=1

A.1.3 Dirac Delta Distribution

The Dirac delta distribution ¢ may be derived as a special case of the normal density by

§(z,2') = }LHSON(J; — o).
The Dirac delta distribution has a function value of zero over the entire state space except
for the point = 2’. This property is exploited in the definition of the empirical probability
density function, where a Dirac delta distribution is located at each data point. The Dirac
delta distribution fulfills the sifting property, which is, e.g., exploited for the unified treatment
of discrete- and continuous-valued random variables [167].

A.1.4 Dirac Mixture Density

In analogy to the extension of one Gaussian density to a Gaussian mixture density, a Dirac

mixture density is defined by
L

fl@) =) a;éz—z). (A.10)
i=1
with L € IN", a = [ay...az]", a; > 0, and ™1 = 1. The empirical probability density
function is then given by setting D = {z;}1<i<jp| and all oy = ﬁ . The function in (A.10)
satisfies all properties of a valid density function, i.e., integration to one and non-negativity.
Note that evaluations at singular points of a continuous density functions are not defined.

IThe terms Gaussian Mixture Model/Density (GMM) or Normal Mixture Model are used synonymously in this thesis.
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A.1.5 Kernel Functions

The term kernel (function) is widely used in the literature and defined differently depending
on the context. For the sake of clarity, the definitions of a kernel in the relevant literature are
discussed in the following, i.e., the kernel definitions for kernel density estimation [179], SVMs
[164], and GPs [152]. In general, they are given or have outputs in the form of

flz) = Z o; Ki(z, z;) . (A.11)

In order for (A.11) to be a valid density or conditional density function, the kernel function K
is assumed to be a valid density satisfying the following constraints

| Kewyaz-1. K(e,x) > 0. (A12)
R

The mass and positivity constraint enforce, that a convex combination of kernel functions yields
a valid density function. These conditions may be relaxed to allow for K to be proportional
to a density function, e.g., a positive constant normalization factor may be absorbed by the
weights. In the remaining part of this section, the validity of the mass and positivity constraints
for kernel functions used in kernel density estimation, SVMs, and GPs are discussed.

As the form resulting from kernel density estimation (KDE) is a mixture density of the
type shown in (A.11), the kernel functions need to fulfill the above conditions to yield valid
density estimates. This condition is trivially met for kernel functions being valid probability
density functions. Typically, radially-symmetric, unimodal probability density function kernels
are used [179], e.g., the multivariate normal density or an Epanechnikov kernel, i.e.,

Lot (d+2) (1—2"z) ,ifz"z<1

A.13
0 , else ’ ( )

K(z,0) = {

with the vy volume of the d-dimensional unit sphere [179, Ch. 4.2]. Other definitions of kernel
functions, which are not valid probability density functions exist [87]. When these kernels are
used, e.g., renormalization is needed, to satisfy (A.12). The difference between kernel functions
in KDE and SVM is the interpretation and the conditions that a kernel function has to fulfill.
In SVM, the kernel function measures the similarity between two points. The kernel functions
correspond to scalar products in not-explicitly constructed feature spaces. Following [164,
Ch. 2], a kernel for z € R is given by

¢ RN — H, K(z,2') =< ¢(z), p(2') >, (A.14)

where H may be a higher-dimensional space of which only the scalar product needs to be
calculated. Since K is a scalar product, the function satisfies

K(z,2') > 0,Vz € RY, K(z,2)=0 < z=0, (A.15)

i.e., the positivity constraint is fulfilled. Even though some kernels fulfill the mass constraint
(up to a normalization constant), e.g., the radial basis function kernel, in general, the SVM
kernel functions will not satisfy this condition. An example, where the mass constraint is
violated is the popular polynomial kernel for degree d

K(z,2') =< ¢(x), ¢(z') >* .
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This limitation needs to be taken into account, when combining kernels as discussed in [18,
36, 178] or [164, Ch. 13]. A kernel which can be used with both SVM and the algorithms is
presented in [190, 191],

r—2x

K e) =) € (E25)), (o) =1, (A.16)

where 7 is a scaling parameter, ¢(7) a normalization factor, which is constant w.r.t. z, and K
non-negative. For an appropriate normalization factor, (A.16) satisfies the mass and positivity
constraints. GP and SVM use kernel functions in a similar way. In GPs, the kernel are also
termed covariance functions measuring the dependency of two data points. The kernel functions
are used in the definition of both, the mean and covariance function, cf. Sec.2.1.3 and [152].
The kernel function needs to be p.s.d. in the sense of integral operator theory [152, Ch. 4].
In order to give valid covariance matrices, the kernel needs to be symmetric. Similar to the
kernels used in SVM, the mass constraint is not enforced, i.e., only some kernels used in GPs
are applicable for the density and conditional density estimation.

Additionally, in this thesis kernel functions are employed in the definition of the localized
cumulative distribution, Def.3.1. These kernel functions are used for comparing local prob-
ability masses of multivariate random variables. The suitable kernels for this definition are
symmetric and integrable [70], e.g., a rectangle functions [71] or a (axis-aligned) Gaussian func-
tion [70]. Again, some admissible kernels satisfy the positivity and mass constraint, but this is
in general not the case.

A.2 Norms, Distances and Scores

In this thesis, norms, distances, and scores are used in manifold ways. In the following, the
definition of a norm and distance will be given as well as distances for comparing densities and
conditional densities will be presented.

A.2.1 Definition of Norm and Distance

In the following, a definition of a norm is given as well as the corresponding derivation of a
distance based on this norm as compiled form [21] and [27, German].

Definition A.1 (Norm) Let V be a vector space for the field IK, the function f: V— R,
1s denoted as a norm if for arbitrary x,y € V and o € IK the following conditions hold

(Non-Negativity) f(z) >0, (A.17)
(Definiteness) flz) =0 2=0, (A.18)
(Homogeneity) flazx)=|a| f(x), (A.19)
(Triangle Inequality) flx+y) < flz)+ fy) (A.20)

A specific norm is typically denoted with |[|.||y,... Given a norm as defined above a distance
between arbitrary elements of the vector space x,y € V may be defined by

D(z,y)=lz—yl. (A.21)
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A.2.2 Comparing Densities

In order to compare the results of the density and conditional density estimation algorithm
appropriate measures are required. For comparing two densities f and f of a scalar, continuous-
valued random variable, the integral squared distance (ISD) can be used

D(f.f)= \//R (f(x)—f(x))2 dz | (A.22)

The normalized ISD [69] as defined below allows for more interpretation of the distance values

R 2
i Je (f@) = f(z)) dz
D(f,f>= fR(Q ) T (A.23)
Jo (F@)" dot [ (F@))? da
with D : F x F — [0,1], i.e., a value of zero is returned for identical functions fand f in

(A.23). At maximum a value of one for differing functions is returned. For the comparison of
two conditional densities f and f, the ISD may be defined analogously

(f f flylz) - ’ylx)) dy dz, (A.24)

where X C IR is the considered domain of z. If the difference in the “tails” of the conditional
density functions shall be emphasized, the total variation (TV) can be employed

D (f, f> Vol / /‘f ylr) — y|x)‘ dy dz. (A.25)

The TV may be calculated for discrete-valued random variables too, e.g., x € N

:[f(g;:l) ...f(sz)]T>

for which x attains values in the alphabet A, |[A| = N, and thus

N .
D<§’§> 252 € =&l (A.26)
i=1

The values of (A.26) range from 0, if § = f , and 1, if the densities differ most. It is instructive
to understand the relation between the (negative) log-likelihood and the Kullback-Leibler (KL)
divergence [112] as difference measure of probability density functions. In the following, it is
shown that maximizing the log-likelihood is equivalent to minimizing the KL divergence. Given
the true, underlying density function f and its estimate f, the KL divergence is defined as

KL (fu f) :/Rf(x) In (%) dz | (A.27)

z)

o
Il
=
8
I
=
=
8
I
=z
=
ax¥

which may be simplified to

KL (f|| f) :/Rf(x) In (f(z)) dz — </ fla ln ) dx) . (A.28)

Entropy of f
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As (A.28) shall be minimized w.r.t. parameters ¢ of f, the entropy of f in (A.28) may be
neglected. If f is approximated by samples fp in the form of (2.1), §* is obtained by solving

0" = argmgin KL(fp || f) = arg max —Zln (f(z;)) - (A.29)

The right-hand side of (A.29) is the log-likelihood, which shows that minimizing the KL di-
vergence is identical to maximizing the log-likelihood. Note, that a different understanding of
the log-likelihood w.r.t. the information theory and entropy exists, cf. [3, 18], and KL is not
symmetric w.r.t. its arguments.

A.3 A Multivariate Parametric Minimum Distance Estimator

The simplest density estimator derivable on the basis of the mCvMD as discussed in Ch. 3 is
an unregularized parametric minimum density estimator (MDE). In the following, an MDE for
estimating an arbitrary Gaussian mixture density from data as presented in [102] is described.
The MDE corresponds to a minimization of the mCvMD by means of a standard function
minimization algorithm. This implies that in each step of the iterative function minimization,
the LCDs of the empirical probability density function fp and the target density f in Gaussian
mixture form as well as the mCvMD need to be calculated, c¢f. Sec. 3.1. The parameters of
(3.8), which are optimized in order to minimize the mCvMD are

T
a:=log...ar]
T
o= ™ ]
T
2= [agl) e agN'N) e U(Ll) e U(LN'N)] ,

w.r.t. an N-dimensional random variable, L components, weights a; € [0,1], a* 1 = 1, means

with p0) € R and covariance matrix entries o7 € R*. Collecting all parameters into one
vector gives the vector of optimization variables

Q:[QT aET 7ZT]T' <A30)

The MDE estimate #* may then be found by minimizing the mCvMD w.r.t. to F and Fp, the
LCDs of f and fp, i.e.,

0" = arg mein /R+ w(b) /RN (F(m,b) — Fp(m, b)) dm db, (A.31)

by the application of a standard nonlinear function minimization algorithm. Similar to [71],
the function w(.) is selected to ensure the convergence of the integral over b

_1
U)(b) _ JNT be [07 bmax] 7
0 , elsewhere

where b,,.x may be set to a multiple, e.g., 10x the maximum distance between two samples.

Efficient Solution

For the MDE approach, the integrals about the kernel position m and width b in (A.31) have
to be calculated in each minimization step. For the given density representations closed-form
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solutions to the integral over m exist [102] yielding

6" = argmin = / w(b) det (2753,) (Py — 2Py + Py) db | (A.32)
v Rt

In (A.32), Py, Py, and P3 denote the results of integrating each summand of the resolved
binomial term (F(m, b) — Fp(m, b))* in (A.31) over m. The term Py in (A.32) may be neglected
for the function minimization, as it is constant w.r.t. #. It may be understood as describing
the self-similarity of the LCD for fp. The integral over the kernel width b in (A.32) has to be
solved by numerical integration, as no closed-form solution to these terms for arbitrary Gaussian
mixture densities is known up to now. Additionally, any algorithm for solving (A.32) has to
assert the positivity of f(z) and validity of the covariance matrices. This may be achieved
by standard methods, such as the method of Lagrange or the addition of penalty functions, a
reformulation of the problem in terms of squared weights /a; or VE, but also by an iterative
resampling scheme, as proposed in [102]. For further information refer to [102].

Properties and Restrictions
The main properties and restrictions of this naive MDE approach may be summarized as follows.

e Regarding the descriptive validity, this naive approach fits an arbitrary Gaussian mixture
to the data and minimizes the distance of the estimate to the data. Therefore, the approach
produces estimates, which represent the data well. Up to now, no proof of (asymptotic)
consistency of this approach exists.

e The approach only optimizes the data fit and lacks a robust mechanism to avoid overfitting,
thus asserting for prescriptive validity.

e This approach is computationally inefficient. Let M and L be the number of compo-
nents in fp and the estimate f. Further, let e be the number of points used by the
numerical integration, and s the number of steps until converging to the minimum solu-
tion. Based on (A.32), the computational complexity of the MDE approach is at least in
O([L-L+ L-M]-e-s) evaluations of an N-dimensional normal density.

e Note, that 6 € RECHNN?) implies that the function minimization needs to be performed
w.r.t. a large space. No analytic expression for the gradient of the mCvMD is available
up to this point in time, requiring a numerical calculation of the gradient.

e The algorithm for solving this minimization problem needs to assert the positivity of the
resulting density estimate and that the integral of the density estimate over the state space
equals one. Without proof, it has been noted in [102] that these constraints are practically
asserted by the mass comparison performed by the minimization of mCvMD.

A.4 Miscellanea

In this section various mathematical background material for all chapters of this thesis has been
collected. The relevant sources are given in the respective sections.

A.4.1 Matrix Properties & Operations

This section is based on [21, 79, 151] as well as [27, 77, both in German|. For an efficient
implementation of the the matrix operations the interested reader is referred to [66, 146].
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Definition A.2 (Positive [Semi-]Definiteness of a Matrix) A given symmetric matrix A €
IRN*N g positive [semi-]definite (p.[s.]d.), if for all & € RN, o # 0

ol Ao 0. (A.33)

>
=]
As the addition of matrices is considered, the following properties are required.

Corollary A.1 (Addition of Positive Semi-Definite Matrices) If two matrices A,B €
IRN*N are positive semi-definite according to (A.33), the following inequality holds [79]

(A.33)
a"(A+B)a=a"Aa+a"Ba > 0, (A.34)

stating that an addition of p.s.d. matrices is still p.s.d.

The above lemma allows for determining the definiteness of a sum of matrices based on the
definiteness of the added matrices. Matrices resulting from dyadic products have the following
property, which is relevant for Ch. 3 and Ch. 4.

Lemma A.1 (Symmetry of Dyadic Product Matrix) Let w € RN be given, the matrix
W € RN resulting from the dyadic product of w

W=ww", (A.35)

is symmetric.
PROOF. Let w = [w; ... wy]T, w; € IR, the elements of the matrix W = ww?T be given, then

Wij = Ww; - wj s
and Lemma A.1 follows from

Wij — W]" .

Using Lemma A.1, the following property can be shown.

Lemma A.2 (Positive Semi-Definiteness of Dyadic Product Matrix) Any matrix

W € R™N resulting from a dyadic product of a vector w € RN, i.e., W = ww?, is p.s.d.
PROOF. In order for W to be p.s.d., W has to be symmetric and needs to fulfill (A.33). Due
to Lemma A.1, W is symmetric. The positivity follows from

" Wa=a" (wu') a=(a"w) >0,

for all & € RN and thus W is p.s.d. according to Def. A.2. O

Corollary A.2 (Positive Semi-Definiteness of the Superficial Regularizer) According
to [151], given a density representation with a kernel function k(x)

flz) = Z a; ki(z) = o' k(z), (A.36)
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and D™z a differential operator w.r.t. m, using commutativity and linearity, one may obtain
/ (D" f(x))" dz = / D"a'k(x) - D"a'k(z) dz
RN RN
= / o' (D™k(z) - D"k(z)") adz

ot </RN D™ k(z) D" k(z)" c@) a

with
Dy = [ (D7) (D" (w)") da (A.37)

The p.s.d. property follows.
A detailed derivation of Corollary A.2 can be found in [151].

A.4.2 Proof of Theorem 4.1 - Properties of the scalar Superficial Regularizer

PRrROOF. In the following, the proofs are given for each property. The derivation is adapted from
[109]. For the sake of brevity, the following abbreviation will be used in the further calculations

N (@5 pzns 021) N(Y; fy1,041)
k(x,y) = : =:
N(I; Mz L, Ux,L) N(y; Hy. L, Uy,L)

|7

with (z,y) = p € IR? is used. The first property is derived by successively approximating the
definition of the squared curvature of the entire surface of the scalar density function f.

Property 1: The square of the surface’s curvature of f is simplified by using (A.8), the
linearity of the integral, and the commutativity of the inner product, giving rise to

K = [ 1) )]
:/R2 [ Tkmkyyo‘ }2 dp

— [ 1" (k) ol dp (A.39)
ST

with M € RN, The above transformations use the separability of the mixture density, the
linearity of the integral, and the commutativity of the inner product. Further simplification of
(A.38) gives the approximate upper bound

/2[QTMQ]2 dp 2/2 o"Maa"Madp ~ema'Ra
R R

the desired result with ¢y a constant independent of o

Ry =3 [ KOWROD 0K 0 (A9
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In order to proof the second property, the regularization expression is derived for one point and
shown to be an upper bound on the curvature of the generative model. The upper bound is
then extended to the entire surface.

Property 2: The integral squared curvature of y = g(z), i.e., a curve in the xy-plane at
x, may be upper bounded according to the following inequality

h ! [+(—gg<<)>])] JACTQOES (A0

This upper bound of the curvature of g is related to an upper bound of the squared curvature
of the conditional density function’s surface f according to

Fee®) Fuu(p) = F2,(0) = c1 - F2(y — g(2)) h(y — 9(2)) 52-9(x) . (A.41)

For Gaussian additive noise, integrating (A.41) over the in- and output dimension yields
2
K(g) =/ / (foa(@,y) fyy(z,y) — f2,(x, )" dyda
RJ/R
— [ e (sligta)
R
with ¢; € IRY and ¢, independent of g. The result then follows from K(g) < K(f). O

A.4.3 Nonlinear Optimization

A special type of nonlinear optimization is convex optimization, which entails as an important
special case convex quadratic optimization. This section gives a brief review of the most
important properties of this sort of optimization problems based on [21, 27]. In nonlinear
optimization, one seeks to minimize an objective function® f : RN — IR for the optimization
variables @ € RN w.r.t. a set of P inequality constraints ¢; : RN — IR and @ equality
constraints h; : RN 5 IR, ie.,

minimize f(a) (A.42)
subject to  ¢g;(a) <0, i=1,..., P,
hjg):(), ]:1,,Q

The set of constraints defines the feasible set of solutions. Depending on the properties of f,
gi, and hj, the nonlinear problem in (A.42) may be further qualified, potentially allowing for
a more efficient solution of the problem. If the objective function in (A.42) is quadratic and
the constraint functions are affine, the nonlinear optimization problem is called a quadratic
optimization problem [21]. The problem (A.42) may then be written in the following form

—~

1
minimize 5 a'Ca+cla+r (A.43)
subject to Aa <D,
Da =e,

where C € RN, c e RN, r e R, A € RPN, b € RP, D € RYY, ¢ € R, and <
denotes the component-wise inequality. The objective function in (A.43) is (strictly) convex,

2The objective function is also denoted as the target function.
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if C is p.(s.)d. Due to the convexity, the optimality properties are inherited from convex
optimization problems. In detail, any local minimum is a global minimum, i.e., optimum, w.r.t.,
the feasible region. Further information about other theoretical properties, such as existence
and uniqueness of the solution, can be found in [21]. Detailed implementation advice and
applications, e.g., w.r.t. learning problems can be found in [164]. For the experiments in this
thesis, the problems were converted to the standard form and solved with the implementation
[67] or [188]. For a practitioner, the time complexity of the algorithm solving (A.43) is an
important property. From a theoretical perspective, it was shown, that for convex problems, i.e.,
C p.s.d., (A.43) may be solved in a time depending polynomially on the number of optimization
variables N and constraints P + (). The complexity of a naive implementation involves O (Ng)
operations [21, Ch. 1] per iteration. Note that specialized solvers, e.g., for SVM, exist and may
be computationally more efficient than the default solvers at the cost of optimality [164].
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