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Abstract

The Modular Multilevel Matrix Converter (M3C) is a new topology which extends the Modular
Multilevel Converter (M2C) family for converters to low speed drive applications. The energy
pulsation and therefore the amount of the installed capacitance is very important for the design
of such a converter. This paper presents a method to estimate the required amount of capac-
itance for a given application. Additionally, the design of a newly proposed coupled z-winding
arm inductor is explained. It is verified that the use of this inductor allows considerable savings
of core and coil material.
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Figure 1: Modular Multilevel Matrix Converter (M3C) with coupled three-phase z-winding arm
inductors L

1 Introduction

The Modular Multilevel Matrix Converter shown in fig. 1 has been presented in 2001 without the
arm inductors L [1]. [2] and [3] present control principles based on the space vector modulation
which are difficult to implement in a M3C with more than one cell per arm. In [4] conventional
arm inductors are added and a feedforward control is implemented, which is extended in [5] with
a DC-circulating current balancing control. The system works in steady state, but the dynamic



behaviour is not clear. [6] presents design principles and the control of the M3C for high power
low speed drives. The control principles are based on the power balance and include a method
to reduce the installed amount of capacitance. In [7] a cascaded feedback control system with
inner arm current controllers and superimposed capacitor voltage controllers is presented. The
operation at steady state is shown, but the dynamic behavior is not clear. In [8] the coupled
z-winding arm inductors (fig. 1) are presented together with a cascaded vector control scheme.
This control scheme allows the independent input and output current control and the complete
equalization of the energy stored in the converter arms with an average, horizontal and vertical
balancing control. The stable operation is verified even under dynamic changes of the operation
point.

1.1 Voltages and currents in one subconverter
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Figure 2: Subconverter with coupled three-phase z-winding arm inductors L

The M3C (see fig. 1) analyzed in this paper consists of 3 identical subconverters with 3 con-
verter arms and a coupled z-winding arm inductor L (fig. 2). Each converter arm connects one
input phase via the three-phase z-winding arm inductor L with one output phase. It consists
of N series-connected cells which are built as an H-bridge with a DC-capacitor. The detailed
relations of currents and voltages inside of a subconverter are derivated in [8] and given here
for steady state operation. The arm currents i11, i21, i31 contain the following components:

i11 =
ie1
3

+
ia1

3
=
Îe
3
· cos(ωet+ ϕe) +

Îa
3
· cos(ωat+ γ + ϕa)

i21 =
ie2
3

+
ia1

3
=
Îe
3
· cos(ωet−

2π

3
+ ϕe) +

Îa
3
· cos(ωat+ γ + ϕa)

i31 =
ie3
3

+
ia1

3
=
Îe
3
· cos(ωet−

4π

3
+ ϕe) +

Îa
3
· cos(ωat+ γ + ϕa)

(1)

ϕe and ϕa are the phase angles of the currents to the related voltages and γ is the initial phase
angle between the input and output voltage system. Note that the arm currents can contain also
internal currents ii which are used for the energy balancing and energy pulsation reduction.
The arm voltages which are generated by the converter arms without the consideration of the



Table 1: power components in converter arm 11

Component power components

+1
6 Ûe · Îe · cos(ϕe) active input power

+1
6 Ûe · Îe · cos(2ωet+ ϕe) reactive power with 2fe

−1
6 Ûa · Îa · cos(ϕa) active output power

−1
6 Ûa · Îa · cos(2ωat+ 2γ + ϕa) reactive power with 2fa

+1
6 Ûe · Îa[cos((ωe − ωa)t− γ − ϕa)− cos((ωe − ωa)t− γ + ϕe)] reactive power with fe − fa

+1
6 Ûa · Îe[cos((ωe + ωa)t+ γ + ϕa)− cos((ωe + ωa)t+ γ + ϕe)] reactive power with fe + fa

inductor voltages are defined as:

u11 = ue1 − ua1 = Ûe · cos(ωet)− Ûa · cos(ωat+ γ)

u21 = ue2 − ua1 = Ûe · cos(ωet−
2π

3
)− Ûa · cos(ωat+ γ)

u31 = ue3 − ua1 = Ûe · cos(ωet−
4π

3
)− Ûa · cos(ωat+ γ)

(2)

Using (1) and (2) the instantaneous arm power can be calculated:

p11 = u11 · i11 p21 = u21 · i21 p31 = u31 · i31 (3)

Table 1 shows the different power components of the converter arm 11. The other converter
arms have similar power components, only the phase angles of the reactive power components
are different. The active power components must sum up to zero to maintain the DC-capacitors
of the converter arms at a given reference voltage. The input current amplitude Îe can be
calculated depending on the desired M3C output voltage Ûa and current amplitude Îa (which
also defines the M3C output power Pa = 3

2 · Ûa · Îa · cos(ϕa)) and using k = Ûa

Ûe
which is the

voltage relation between the input and output voltage amplitude:

0 =
1

6
Ûe · Îe · cos(ϕe)−

1

6
Ûa · Îa · cos(ϕa) ⇒ Îe = k · Îa ·

cos(ϕa)

cos(ϕe)
(4)

2 Estimation of the energy pulsation in the converter arms

The energy pulsation p̃11 of one converter arm 11 which has to be buffered by the arm capaci-
tance can be calculated using the reactive power terms from table 1:

p̃11 =
Pa
9

[+
1

cos(ϕe)
cos(2ωet+ ϕe)−

1

cos(ϕa)
· cos(2vωet+ 2γ + ϕa)

+
1

k
· 1

cos(ϕa)
· cos((1− v)ωet− γ − ϕa)−

k

cos(ϕe)
· cos((1− v)ωet− γ + ϕe)

+
1

k
· 1

cos(ϕa)
· cos((1 + v)ωet+ γ + ϕa)−

k

cos(ϕe)
· cos((1 + v)ωet+ γ + ϕe)]

(5)

with the frequency transfer ratio v = ωa
ωe

.The upper limit is calculated in order to estimate the
maximum energy pulsation ∆Wmax. Due to this, it is secured that the real energy variation can



not extend the calculated limit in steady state operation. ∆Wmax is calculated by the sum of the
integration of all different frequency terms from (5) over half a period:

∆Wmax =
Pa

9 ·ωe

[
1

cos(ϕe)
+

1

|vcos(ϕa)|
+

(∣∣∣∣1k · 1

cos(ϕa)

∣∣∣∣ +

∣∣∣∣ k

cos(ϕe)

∣∣∣∣) · ( 2

|1− v|
+

2

|1 + v|

)]
(6)

Together with the allowed maximum voltage variation ∆uc,max the required arm capacitance
Carm will be calculated to ([6]):

Carm = ks ·
∆Wmax

Uc,avg ·∆uc,max
(7)

with the average arm capacitor voltage Uc,avg and an additional safety factor ks = 2...3 which
may be used to get the time for the balancing of the energy stored in the M3C.

3 Advantages of the coupled z-winding arm inductor

In this section the amount of material needed for the core and the coils of the three-phase
inductor is calculated for the series connection and the z-winding. Fig. 3 shows the physical
layout of a three-phase inductor with 2 windings per inductor leg.
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Figure 3: Physical layout of a three-phase inductor
with 2 windings per inductor leg
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Figure 4: Equivalent magentic cir-
cuit of the three-phase inductor

3.1 General considerations

Fig. 4 shows the equivalent magnetic circuit of the inductor. The current linkages Θ = w · i are
drawn as voltage sources which generate a corresponding magnetic flux Φ depending of the
magnetic conductance Λ. Λ depends on the core cross section Ak and the equivalent air gap
lE , which considers also the length on the magnetic flux line in the core material lFe:

Λ = µ0 ·
AK

lL + lFe
µrFe

= µ0 ·
AK
lE

(8)



We obtain the magnetic flux Φ inside of the three inductor core legs depending on the six
current linkages by solving the equations from fig. 4:

Φu = +
2

3
Λ(Θu1 + Θu2) −1

3
Λ(Θv1 + Θv2)− 1

3
Λ(Θw1 + Θw2)

Φv = −1

3
Λ(Θu1 + Θu2) +

2

3
Λ(Θv1 + Θv2)− 1

3
Λ(Θw1 + Θw2)

Φw = −1

3
Λ(Θu1 + Θu2) −1

3
Λ(Θv1 + Θv2) +

2

3
Λ(Θw1 + Θw2)

(9)

In case of

Θu1 + Θu2 + Θv1 + Θv2 + Θw1 + Θw2 6= 0 (10)

a common-mode flux Φ0 is generated which can not flow inside of the inductor core:

Φ0 =
3Λ ·Λ0

3Λ + Λ0
· 1
3
· (Θu1 + Θu2 + Θv1 + Θv2 + Θw1 + Θw2) =

3Λ ·Λ0

3Λ + Λ0
·Θ0 (11)

The self-inductance LE is defined as relation between the magnetic flux linkage Ψ generated
in the winding w and the current i following through it:

LE =
Ψ

i
=
w ·Φ
i

=
w · (2

3Λ ·Θ)

i
=
w · (2

3Λ ·w · i)
i

= w2 · 2
3

Λ (12)

3.2 Series connection of two coils

For the series connection of two coils on one inductor leg the current linkage is defined as:

Θu =Θu1 + Θu2 = 2 ·wR · iu1

Θv =Θv1 + Θv2 = 2 ·wR · iv1

Θw =Θw1 + Θw2 = 2 ·wR · iw1

(13)

wR is the number of turns per winding. The magnetic flux is calculated to:

Φu =
2

3
ΛwR(+2iu1 − iv1 − iw1) = 2ΛwRiu1

Φv =
2

3
ΛwR(−iu1 + 2iv1 − iw1) = 2ΛwRiv1

Φw =
2

3
ΛwR(−iu1 − iv1 − 2iw1) = 2ΛwRiw1

(14)

with iu1 + iv1 + iw1 = 0 which is valid for the input currents ie of the subconverter. The magnetic
flux linkage is calculated using the number of turns 2wR:

Ψu = 4Λw2
Riu1 Ψv = 4Λw2

Riv1 Ψw = 4Λw2
Riw1 (15)

Finally, the inductance representing the series connection LR is defined as:

LR =
Ψu

iu1
=

Ψv

iv1
=

Ψw

iw1
= 4Λw2

R (16)

The common-mode flux linkage Ψ0 is generated depending on the magnetic conductance Λ0

and the output current ia:

Ψ0 = 2 ·wR ·
3Λ ·Λ0

3Λ + Λ0
·Θ0 = 4 · 3Λ ·Λ0

3Λ + Λ0
·w2

R ·
ia
3

(17)

The inductance LR0 which is valid for the output current ia is calculated to:

LR0 =
Ψ0

ia
=

4

3

3Λ ·Λ0

3Λ + Λ0
w2
R <

LR
3

(18)



3.3 Connection as z-winding

The six windings can be connected as z-winding. The current linkage of the three inductor legs
are defined as:

Θu =Θu1 + Θu2 = wz · (iu1 − iw1)

Θv =Θv1 + Θv2 = wz · (iv1 − iu1)

Θw =Θw1 + Θw2 = wz · (iw1 − iv1)

(19)

wz is the number of turns of one winding. The magnetic flux of the inductor legs is calculated
to:

Φu = Λwz(iu1 − iw1)

Φv = Λwz(iv1 − iu1)

Φw = Λwz(iw1 − iv1)

(20)

The magnetic flux linkage is given by:

Ψuv = wz · (Φu − Φv) = w2
zΛ(iu1 − iw1 − iv1 + iu1) = 3Λw2

ziu1

Ψvw = wz · (Φv − Φw) = w2
zΛ(iv1 − iu1 − iw1 + iv1) = 3Λw2

ziv1

Ψwu = wz · (Φw − Φu) = w2
zΛ(iw1 − iv1 − iu1 + iw1) = 3Λw2

ziw1

(21)

with iu1 + iv1 + iw1 = 0 which is valid for the input currents ie. The inductance for the input
currents of the z-winding Lz is calculated to:

Lz =
Ψuv

iu1
=

Ψvw

iv1
=

Ψwu

iw1
= 3Λw2

z (22)

The output current ia = iu1 + iv1 + iw1 does not generate any current linkage:

Θ0 =
1

3
(Θu + Θv + Θw) = wz ·

1

3
(iu1 − iw1 + iv1 − iu1 + iw1 − iv1) = 0 (23)

and therefore no magnetic flux. The inductance for the output currents ia is

Lz0 = 0 (24)

3.4 Comparison of series connection and z-winding

To compare the inductance Lz = LR for the input currents ie the number of turns wz and wR is
compared:

Lz = LR 3Λw2
Z = 4Λw2

R ⇒ wz =
2√
3
·wR ≈ 1.155 ·wR (25)

The result is that about 15.5% more turns are needed to get the same inductance Lz as in the
series connection LR.

The currents flowing in the subconverter are defined in (1). For k = 1 the input and output
currents have the same amplitude. In the z-winding only the input currents can generate a
current linkage (see eq. (19)) and therefore a magnetic flux Φ which must be conducted in one
leg of the inductor core with the cross section AKz:

Φuz = Λwz · (iu1 − iw1) = Λwz · (
ie1
3
− ie3

3
)⇒ Φz,max = Λwz ·

√
3

3
· Îe (26)



In contrast using the series connection the input and output currents generate a current linkage
(see eq. (13)) and therefore a magnetic flux Φ:

ΦuR = 2Λ ·wR · iu1 = 2Λ ·wR · (
ie1
3

+
ia1

3
)⇒ ΦR,max = 2Λ ·wR ·

2

3
· Îe (27)

The ratio between (26) and (27) leads to:

2 =
ΦR,max

Φz,max
(28)

Using the same constant magnetic flux density B = Φ
AK

= const inside of the inductor core the
z-winding needs a core with the half cross section:

AKz =
AKR

2
(29)

To sum it up, for the z-winding about 15.5% more turns to get the same inductance Lz as in
the series connection LR are needed, but the core cross section Az and therefore the edge
length of the inductor core is smaller by the factor

√
2. This leads to smaller diameters of the

windings. In total, only about 2√
3
√

2
≈ 81% of the winding material is needed compared to the

series conection using a similar current density. Altogether only half of the core material and
about 81% of the winding material is needed compared to a conventional 3 phase inductor or
conventional arm inductors presented in [4]. Additionally there is no influence of the z-winding
inductor to the output current control which limits the dynamic control performance.

4 Simulation results
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Figure 5: M3C with induction machine

Fig. 5 shows the M3C working together with an induction machine which is planned to use for
the future laboratory prototype. At t = 0s flux generating currents are feed in and at t = 0.1s the



speed reference value is set to n = 500min−1. At t = 0.2s a load torque step with ML = 50Nm
is applied. At t = 0.35s the speed reference value is set zu n = −1000min−1, therefor the
direction of the power flow changes. The control system described in [8] is used and retains
the system stable unter all circumstances.

5 Conclusion

This paper presents a method to estimate the maximum energy pulsation in the converter arms
of the M3C. Additionally, a new three phase z-winding arm inductor L is explained for the M3C
which allows considerable saving of core and coil materials. With this results it is possible to
build a efficient M3C for high power low speed drive applications. Simulation results are used to
verify the stable function and the presented design considerations of the passive components.

Acknowledgment

The authors would like to thank the DFG (German Research Foundation) which supports this
research project.

References

[1] R.W. Erickson and O.A. Al-Naseem. A new family of matrix converters. In Industrial Elec-
tronics Society, 2001. IECON ’01. The 27th Annual Conference of the IEEE, volume 2,
pages 1515 –1520 vol.2, 2001.

[2] S. Angkititrakul and R.W. Erickson. Capacitor voltage balancing control for a modular ma-
trix converter. In Applied Power Electronics Conference and Exposition, 2006. APEC ’06.
Twenty-First Annual IEEE, page 7 pp., march 2006.

[3] S. Angkititrakul and R.W. Erickson. Control and implementation of a new modular matrix
converter. In Applied Power Electronics Conference and Exposition, 2004. APEC ’04. Nine-
teenth Annual IEEE, volume 2, pages 813 – 819 vol.2, 2004.

[4] C. Oates. A methodology for developing chainlink converters. In Power Electronics and
Applications, 2009. EPE ’09. 13th European Conference on, pages 1 –10, sept. 2009.

[5] C. Oates and G. Mondal. Dc circulating current for capacitor voltage balancing in modular
multilevel matrix converter. EPE 2011 Birmingham, aug. 2011.

[6] A.J. Korn, M. Winkelnkemper, P. Steimer, and J.W. Kolar. Direct modular multi-level con-
verter for gearless low-speed drives. EPE 2011 Birmingham, aug. 2011.

[7] D. C. Ludois, J. K. Reed, and G. Venkataramanan. Hierarchical control of bridge-of-bridge
multilevel power converters. Industrial Electronics, IEEE Transactions on, 57(8):2679 –
2690, aug. 2010.

[8] F. Kammerer, J. Kolb, and M Braun. A novel cascaded vector control scheme for the modular
multilevel matrix converter. IECON 2011 Melbourne, Nov. 2011.


