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Introduction

The standard model of particle physics accurately describes a multitude of observa-
tions. However, it neither includes gravitation or explains the large hierarchy between
the gravitational scale and electroweak scale (hierarchy problem), nor does it provide
explanations of astrophysical observations attributed to dark matter, dark energy,
or the baryon asymmetry. These shortcomings inspired many theories beyond the
standard model (BSM) predicting new phenomena at the TeV-scale that could be
visible at the LHC [1]. The top quark is the heaviest particle in the standard model
and as such, it plays a special role in many BSM theories, some predicting a resonance
decaying preferentially to top quark pairs tt̄. Such models include topcolor-assisted
technicolor models that explain the large top quark mass and predict a leptopho-
bic topcolor Z′ [2, 3] and Randall-Sundrum models with warped extra dimensions
solving the hierarchy problem [4], which can give rise to a Kaluza-Klein partner
of the gluon detectable at the LHC [5]. Other relevant theories include additional
massive gauge bosons from unified gauge groups [6], and some models that explain
the unusually large forward-backward asymmetry of the top quark production at
the Tevatron [7–12] predict a resonance decaying to tt̄, e.g. [13–17].

Independent of the specific model, a resonance that decays to tt̄ is predicted,
which is always referred to as Z′ in this thesis. If the natural width of the Z′, ΓZ′ ,
is not too large compared to the experimental resolution and if the interference
effects with standard model tt̄ production can be neglected, the Z′ manifests itself
as a peak in the Mtt̄ distribution. Searches based on the Mtt̄ distribution are rather
model-independent and allow to set limits on the cross section σ(pp→ Z′ → tt̄) as a
function of MZ′ .

Searches for Z′ are also performed at the Tevatron [18–20], at ATLAS in the
lepton+jets channel [21, 22], in the dilepton channel [23], and in the all-hadronic
channel [24]. Other Z′ searches at CMS are performed in the all-hadronic and dilepton
channels [25, 26].

This thesis presents a search for Z′ → tt̄ resonances using the tt̄ invariant mass
spectrum in the muon+jets channel. The main challenges of this analysis are the
selection and reconstruction of tt̄ events from a high-mass resonance in which the
top quarks have large transverse momentum, and the decay products of the top
quarks are therefore not always reconstructed as well-separated isolated objects in the
detector. This requires to develop new selection and reconstruction techniques, which
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are different from those used in typical standard model tt̄ analyses. The analyzed
data have been recorded with the CMS detector during the 2011 proton–proton
run of the LHC with a center-of-mass energy of

√
s = 7 TeV and corresponds to an

integrated luminosity of L = 5.0 fb−1. No significant deviation from the standard
model backgrounds are found, and upper limits on the cross section σ(pp→ Z′ → tt̄)
are set as a function of the Z′ mass, for different widths ΓZ′ . Model-dependent mass
limits are set for a leptophobic topcolor Z′ model and for Kaluza-Klein excitations of
the gluon.

The analysis is a continuation of simulation-only studies at a center-of-mass energy
of
√
s = 10 TeV in reference [27]. The analysis methods developed on simulation have

been applied using a dataset corresponding to L = 1.1 fb−1, which is documented in
reference [28]. It is the first measurement in this channel using the newly developed
analysis techniques. In this thesis, the analysis has been further improved by includ-
ing more data and by enhancing the analysis technique. This improved analysis has
been combined with an electron+jets analysis at CMS, which uses similar selection
and reconstruction algorithms [29, 30].

Chapter 1 briefly reviews the standard model of particle physics and the phe-
nomenology of the top quark, and chapter 2 describes the CMS detector at the LHC.
The remaining chapters describe the analysis steps in the order they are performed:
Chapter 3 discusses the event simulation and low-level object reconstruction, fol-
lowed by a description of the event selection and tt̄ reconstruction in chapter 4. The
statistical methods to extract upper limits on the Z′ cross section are introduced in
chapter 5, and the resulting limits for the Z′ cross section and model-specific Z′ mass
limits are given in chapter 6. A short summary and some concluding remarks are
given in chapter 7.
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1 Theory

The standard model of particle physics describes the constituents of matter (fermions)
and their interactions within the framework of a quantum-field theory. Its extensive
theory framework and rich phenomenology only allow a superficial introduction in
this thesis, which is given in the first section. The second section focuses on the top
quark production and decay in the standard model and a generic Z′ model used in
this analysis. The chapter concludes with a brief section outlining the Monte-Carlo
event generation techniques.

1.1 Standard Model

This section provides a brief introduction to the standard model of elementary
particle physics; a more detailed introduction to the standard model and quantum
field theory can be found in textbooks [31–34], or reviews [35–39].

The standard model successfully describes most of the phenomena in particle
physics; the only currently known exceptions are gravitation and neutrino masses,
and both can be neglected for observables at colliders. The interactions in the
standard model are introduced via local gauge invariance based on the group
SU(3)C × SU(2)L × U(1)Y , where the SU(3) group corresponds to the strong in-
teraction, Quantum Chromodynamics, while the group SU(2)L ×U(1)Y corresponds
to the electromagnetic and weak interactions.

The fundamental fermions in the standard model are summarized in table 1.1.1

All fermions participate in the weak interaction, electrically charged particles in the
electromagnetic interactions, and only the quarks in the strong interaction. The
following sections provide an introduction into the different interactions of the
standard model, mainly following reference [36].

1The convention  h = c = 1 is used in this thesis.
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Quarks Leptons

Charge 2/3 Charge −1/3 Charge −1 Charge 0

Mass (GeV) Mass (GeV) Mass (GeV) Mass

u 0.0018–0.0030 d 0.0045–0.0055 e 0.000511 νe < 2 eV
c 1.25–1.30 s 0.090–0.100 µ 0.106 νµ < 0.19 MeV
t 173.5±1.0 b 4.2–4.7 τ 1.777 ντ < 18.2 MeV

Table 1.1: The masses of the quarks and leptons in the standard model, with
their electric charge in units of the electron charge |e| [35]. Note that
neutrinos in the standard model are massless, and the given neutrino
mass limits refer to the effective neutrino masses.

1.1.1 Quantum Chromodynamics

Quantum Chromodynamics is based on the gauge group SU(3) with quark fields
arranged in color triplets, and the Lagrangian density is

LQCD = −
1
4

8∑
A=1

FAµνF
Aµν +

nf∑
j=1

q̄j(i /D−mj)qj (1.1)

where qj are the quark fields with flavor j and mass mj; nf is the number of flavors,
nf = 6 in the standard model. The derivative /D = Dµγ

µ, where γµ are the Dirac
matrices and Dµ is the covariant derivative,

Dµ = ∂µ − ies
∑
A

tAgAµ , (1.2)

where es is the gauge coupling, and in analogy to electrodynamics, the strong
structure constant is given by

αs =
e2
s

4π
. (1.3)

tA with A = 1, . . . , 8 are the SU(3) generators in the 3×3 matrix representation acting
on the quark fields q. gAµ are the vector gluon fields and

FAµν = ∂µg
A
ν − ∂νg

A
µ − esCABCg

B
µg
C
ν , (1.4)

where the structure constants CABC of the group SU(3) are defined by

[tA, tB] = iCABCtC (1.5)
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with the normalization trace [tA, tB] = 1/2δAB.
In the perturbative expansion, the terms in the Lagrangian correspond to vertices

in the Feynman graphs. The vertices in the QCD are the gluon–quark–antiquark
vertex — where the quark and antiquark are of the same flavor — and the three-gluon
and four-gluon vertices of order es and e2

s, respectively. The latter gauge boson self-
couplings appear only in non-Abelian gauge theories in which the structure constants
CABC are non-zero, and the last term on the right hand side of equation (1.4) does
not vanish.

Two important properties of QCD are quark confinement and asymptotic freedom.
Confinement is the observation that quarks do not exist as free particles, but only
hadrons, which are color-neutral combinations of quarks and gluons. When gluons
and quarks in the final state of a process, such as e+e− → qq̄, separate, the coupling
effectively increases with the distance r, eventually creating new qq̄ pairs from the
vacuum. In the detector, the quarks and gluons appear as collimated stream of
hadrons, known as jets. In perturbative QCD, the effective coupling strength αs for
the vertices of the Feynman graphs is modified by higher-order radiative corrections.
These corrections depend on the momentum transfer of the vertex and the coupling
αs gains a dependence on the momentum transfer Q2, a fact referred to as running
coupling. Asymptotic freedom means that the effective coupling αs decreases for
large Q2. Conversely, for decreasing Q2, the effective coupling becomes very large,
and the perturbative approach breaks down.

1.1.2 Electroweak Interactions

The electroweak interaction is introduced via the SU(2)L × U(1)Y gauge group in
analogy to QCD. To explain the masses of the gauge bosons of the weak interaction,
the standard model includes the Higgs mechanism, which is also responsible for the
fermion masses, as will be explained below. The electroweak Lagrangian density is
split into the symmetrical part and the Higgs sector,

LEWK = Lsymm + LHiggs. (1.6)

The symmetrical part defines the matter field and the electroweak gauge bosons
(where it is understood that the sum is taken over all fermion fields ψ)

Lsymm = −
1
4

3∑
A=1

FAµνF
Aµν −

1
4
BµνB

µν + iψ̄L /DLψL + iψ̄R /DRψR, (1.7)

where — in analogy to equation (1.1) — the first two parts are the kinematic term of
the gauge bosons of SU(2)L ×U(1)Y with

Bµν = ∂µBν − ∂νBµ and FAµν = ∂µW
A
ν − ∂νW

A
µ − gεABCW

B
µW

C
ν . (1.8)
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νL eL eR uL dL uR dR

t3 +1/2 −1/2 0 +1/2 −1/2 0 0
Y −1 −1 −2 +1/3 +1/3 +4/3 −2/3

Q 0 −1 −1 +2/3 −1/3 +2/3 −1/3

Table 1.2: The quantum numbers weak isospin t3, hypercharge Y, and electric
charge Q = t3 + Y/2 for left-handed and right-handed quarks and
leptons.

Here, Bµ is the gauge field of the U(1)Y and WA
µ for A = 1, 2, 3 are the gauge fields

of the group SU(2)L. The structure constants of the SU(2)L coincide with the totally
asymmetric Levi-Civita tensor εABC.

The fermion fields ψL andψR denote the left-handed and right-handed components
of the field ψ and are defined by ψL,R = 1/2(1∓ γ5)ψ, with γ5 = iγ0γ1γ2γ3.

The interactions of the fermions with the gauge fields appear within the covariant
derivatives /DL and /DR in equation (1.7). The electroweak interaction is different for
right-handed and left-handed fermions; the electroweak theory is chiral: The fields
ψL are doublets under the SU(2)L, whereas the right-handed fields ψR are singlets.
This chirality prohibits introducing fermion mass terms into the Lagrangian directly,
which would contain terms proportional to ψ̄LψR violating the gauge symmetry. The
covariant derivatives are given by

Dµ,L/R = ∂µ + ig

3∑
A=1

tAL/RW
A
µ + ig′

1
2
YL/RBµ, (1.9)

where tAL/R and 1/2YL/R are representations of the generators of the groups SU(2)L
and U(1)Y , respectively. Table 1.2 summarizes the quantum numbers of the fermions
in the standard model.

The linear combinations (W1 ± iW2)/
√

2 correspond to the charged bosons W∓

and W3
µ mixes with Bµ to the photon field Aµ and the field of the Z boson Zµ. This

mixing is described by a single angle θW with

Aµ = cos θWBµ + sin θWW3
µ (1.10)

Zµ = − sin θWBµ + cos θWW3
µ, (1.11)

where tan θW = g′/g. These relations allow to derive the coupling strength of
the boson–fermion–fermion vertices and the W/Z three-/four-vertex in terms of
the couplings g and g′, which is however not done here. It is worth pointing out,
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however, that these relations lead to predictions for many electroweak observables
with only few parameters, and this provides an excellent testbed for the structure
of the electroweak sector of the standard model. By including radiative corrections
for these observables, precision measurements allow indirect constraints on the top
mass, Higgs boson mass, and new physics. For details, see e.g. [35] and references
therein.

The gauge bosons and fermions as introduced so far are massless. A mechanism
to give masses to the gauge bosons and fermions that preserves gauge invariance
is spontaneous symmetry breaking, where the coupling to a field with non-zero vac-
uum expectation value generates the masses. The minimal implementation of the
symmetry breaking is the Higgs mechanism. The Higgs mechanism introduces a
Lorentz-scalar, weak doublet field φ with the Langrangian density

LHiggs = (Dµφ)
†(Dµφ) − V(φ†φ) − ψ̄LΓψRφ− ψ̄RΓ

†ψLφ
†. (1.12)

Spontaneous symmetry breaking is induced by choosing the potential V(ψ) such
that the energy minimum is at φ 6= 0,

Rewriting the Lagrangian density around the energy minimum, the last two terms
in equation (1.12) with the matrices Γ lead to mass terms for the fermions. The fields
ψL and ψR in these Yukawa terms denote any fields with the same quantum numbers
and thus in general contain non-diagonal terms, leading to the mass eigenstates of
the quarks not coinciding with the weak states. The relation of the mass eigenstates
and weak eigenstates can be expressed as a matrix multiplication with the CKM
matrix.

Through the covariant derivative Dµ in the kinematic term for ψ in equation (1.12),
the Higgs doublet couples to the electroweak bosons and three of the four degrees of
freedom of the ψ correspond to the longitudinal components of the (now massive)
W± and Z0 bosons. One degree of freedom remains, the Higgs boson, which could
be the boson with a mass of 125 GeV recently found at the LHC [40, 41].

1.2 Top Quark

1.2.1 Standard Model Properties

The top quark has been predicted as the electroweak partner of the bottom quark and
was discovered after many years of direct search and indirect electroweak constraints
in 1995 at the Tevatron [42, 43]. In the standard model, top quark pairs at a hadron
collider are produced almost exclusively via the strong coupling. Some of the
leading-order Feynman graphs for top quark pair production are shown in figure 1.1.
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�q
q̄

t

t̄

�g
g

t

t̄

�g
g

t

t̄

Figure 1.1: Examples for leading-order Feynman graphs contributing to tt̄ pro-
duction at a hadron collider.

The top quark decays before it can hadronize via the weak interaction into a W
boson and a b quark. Decays to other down-type quarks are suppressed by the small
off-diagonal CKM matrix elements. The decay modes of the W bosons determine
the event signature. The all-hadronic category refers to tt̄ events in which both W
bosons decay to quarks, the di-lepton category if both W bosons decay to a charged
lepton and a neutrino, and the lepton+jets or semi-leptonic category comprises events
in which one W boson decays to a charged lepton and a neutrino and the other into
quarks. The all-hadronic channel is hard to study due to the large background from
QCD multijet production. The di-lepton channel allows a pure selection, but the
two neutrinos in the final state complicate the kinematic reconstruction of the top
quarks. The semi-leptonic channel, especially in case where the lepton is a muon or
an electron, is considered the golden channel, as it allows both a selection of a pure
sample and the reconstruction of the tt̄ kinematic. This analysis uses the muon+jets
channel; its branching fraction is given by the branching ratios of the W [35] and is
14.3%.

All properties of the top quark except of its mass are predicted by the standard
model. The top quark is the most massive particle in the standard model. Its mass
has been measured with very high precision: The latest combination of results of
the Tevatron experiments yields mt = 173.18 ± 0.94 GeV [44], and CMS reports a
consistent value of mt = 173.36± 0.99 GeV [45].

Many other properties of top quark production and decay are studied, and almost
all measurements are in very good agreement with the standard model prediction.

The top quark pair production cross section has been calculated at next-to-leading
order using MCFM and is σtt̄ = 157.5± 24 pb for proton-proton collisions at

√
s =

7 TeV, where the error includes uncertainties from the parton distribution func-
tions and scale uncertainties. This value is in agreement with approximate next-to-
next-to-leading order calculations [46] and measurements at the ATLAS and CMS
experiments, which yield a combined value of σtt̄ = 173± 10 pb [47].

Other examples of top quark property measurements at the LHC include the cross
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section for the electroweak production of single top quarks [48–51] and searches
for effects beyond the standard model, including searches for non-standard decays
through flavor-changing neutral currents [52,53], and charge measurements excluding
an exotic top quark charge of 4

3e [54, 55]. The results are in agreement with the
predictions from the standard model.

One result with some tension to the standard model prediction is the charge
asymmetry measurement in tt̄ production. At the Tevatron, this can be observed as a
forward-backward asymmetry in the detector frame and a positive asymmetry value
corresponds to top quarks preferentially produced in the direction of the incoming
proton, and the top anti-quarks in the direction of the anti-proton. Such asymmetries
can only arise in an asymmetric initial state qq̄. The standard model predicts a small
asymmetry as a result of higher-order effects [56], while analyses at CDF [10–12]
and DØ [7–9] observe deviations from the standard model predictions by more
than 3σ. The charge asymmetry is harder to measure at the LHC, as tt̄ events are
produced primarily via a gg initial state and the symmetric proton-proton initial state
requires the definition of a different observable, which exploits that for tt̄ production
via the relevant qq̄ initial state, the quark tends to have larger z momentum than
the anti-quark. The charge asymmetry measurements at the LHC [57–60] found
no indication for deviations from the standard model, but the sensitivity to some
of the BSM theories explaining the Tevatron result is very limited, and the charge
asymmetry measurements at the Tevatron still provide ground for speculation for
explanations beyond the standard model.

1.2.2 Beyond the Standard Model

To find an explanation for the forward-backward asymmetry observed at the Tevatron,
a widely considered model are axigluons, e.g. in [13–16]. In axigluon models, the
QCD gauge group is replaced by an extended group SU(3)L × SU(3)R with left-
handed and right-handed couplings. This symmetry is spontaneously broken by
some mechanism in analogy to the Higgs mechanism in the electroweak sector of
the standard model. This symmetry breaking leads to the standard model QCD
group SU(3)C with the well-known octet of massless gluons, and an octet of massive
gluons, the axigluons. The strong coupling ensures a large production cross section
and width of axigluons.

In the topcolor model [2], the QCD gauge group of the standard model SU(3)C is
embedded into a larger gauge group SU(3)1 × SU(3)2, where SU(3)1 only couples to
the first two quark generations, and SU(3)2 only couples to the third generation. To
be consistent with the current measurement, the SU(3)1×SU(3)2 symmetry is broken
into SU(3)C, creating 8 massive gluons known as topgluons that preferentially couple
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to the third generation. The formation of a tt̄ condensate is used as mechanism
for electroweak symmetry breaking, replacing the Higgs mechanism. This model,
however, has a fine-tuning problem in explaining the large mass difference between
the top and the bottom quark. A mechanism to explain this mass difference naturally
can be introduced by extending the hypercharge group of the standard model U(1)Y
to U(1)1×U(1)2 in analogy to the SU(3) extension discussed above, and U(1)1 couples
preferentially to the first and second generations, while U(1)2 preferentially couples
to the third generation. The breaking of this symmetry generates the topcolor Z′,
which couples preferentially to the third generation. Depending on the couplings
of the new gauge groups, the Z′ can have a negligible coupling to leptons, resulting
in a leptophobic topcolor Z′, while having a large enough coupling to the first quark
generation to generate a visible cross section via uū and dd̄. For the observable
relevant in this analysis, dσ(Z′ → tt̄)/dmtt̄, the relevant free parameters of this model
are the Z′ mass and the natural width ΓZ′ ; specifying those two parameter also
determines the production cross section. In this analysis, this model is used with
ΓZ′ = 0.012×MZ′ and ΓZ′ = 0.1×MZ′ . The narrow model with 1.2% width has already
been used at the Tevatron, e.g. in [19]. Recent analyses of Tevatron data exclude such
a narrow topcolor Z′ below masses of 900 GeV at 95% confidence level [18–20].

The huge difference of the energy scale of the electroweak theory around 102 GeV
and the scale of the gravitation, the Planck scale, at 1018 GeV is known as the hierarchy
problem, and it has inspired a number of models attempting to explain this scale
difference naturally. One of such models is the Randall-Sundrum (RS) model [4],
which is a generalization of the Kaluza-Klein model of extra dimensions. In the RS
model, the space-time metric contains an exponential warp factor that explains the hi-
erarchy without requiring fine-tuning or introducing additional arbitrary hierarchies.
The RS model can also be used to explain the mass hierarchy of the standard model
fermions, which is explained by placing the standard model fermions at different
locations in the fifth dimension [5]. A prediction of this model are Kaluza-Klein
excitation of the gluon, i.e. a gluon state with a non-zero mode in the fifth dimension,
which decays in more than 90% to tt̄. The natural width of the KK gluon is about
17%. For more details, see references [5, 61].

With the multitude of models, it is hardly possible to study all of them in detail.
Instead, in this analysis, a generic model leading to a resonant contribution to tt̄
production is used by assuming a Z′ with couplings as the standard model Z, which
is produced in the s channel via qq̄ and always decays to tt̄. The width is either
set to 1% of MZ′ or 10% of MZ′ . This allows to set limits which are valid for any
resonance with a similar reconstructed invariant tt̄ mass spectrum (which is affected
by resolution effects), and it allows to set limits on the mass of a leptophobic topcolor
Z′ for the a width of 1.2% and 10%. In addition, the Kaluza-Klein gluon model
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Figure 1.2: Events at hadron colliders [63].

from [5] is used to set cross section and mass limits. More details about the different
Z′ types are discussed in section 3.1.2.

1.3 Event Modeling

The comparison of data to theory prediction requires a comprehensive model of
events at hadron colliders. The different steps and ingredients of a realistic event at
a hadron collider are depicted in figure 1.2. The description in this section follows
reference [62].

The protons are not fundamental particles of the standard model, and the cross
section on the parton level has to be weighted by the parton distribution functions;
the total cross section for the process pp→ X is given by

σpp→X(µR,µF) =
∑
a,b

∫
dxadxbfa(x,µF)fb(x,µF)σ̂ab→X(xa, xb,µR), (1.13)

where a and b denote the parton types (quarks, gluons), fa are the parton distribution
functions, and σ̂ is the partonic cross section, which can be calculated perturbatively.
This is known as the factorization ansatz. The parton distribution function fi(x)
is the probability to find a parton of type i with momentum fraction x in the
proton. It has a dependence on the factorization scale µF, which is introduced to
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absorb large logarithms spoiling the perturbative convergence that appear in higher-
order corrections in cases where a gluon is emitted approximately collinear to the
incoming quarks. The partonic cross section has an explicit dependence on the
renormalization scale, which is the scale the running coupling αs is evaluated. Both
the renormalization scale and the factorization scale are set to the typical momentum
transfer in the process, such as the mass of the produced particle, its transverse
momentum. They are unphysical parameters in the sense that in a hypothetical
calculation of the cross section to all orders, the dependence on µR and µF would
disappear. For a finite series, the cross section result depends on the chosen scales,
and an uncertainty on the result is quoted by varying µR and µF up and down by
some amount, e.g. by a factor of two.

Monte-Carlo event generators are used to sample from the integrand of equa-
tion (1.13), resulting in a representative sample of events, each consisting of a set
of final state particles including their four-vectors, spin, color, which are used to
study the process and develop the analysis. For many processes, tree-level matrix
elements and cross sections can be calculated automatically with packages such as
MadGraph [64], which can also generate a Monte-Carlo sample. This is known as
the matrix element part of the simulation.

After the matrix element, the parton shower adds the dominant higher-order contri-
butions to the hadronic process, which are collinear and soft gluon emissions and
g→ qq̄ splittings. After simulating the parton shower, the gluons and quarks form
hadrons — a process that is not described perturbatively —, which subsequently
decay. One implementation simulating the parton shower, hadronization, and decay
is the program Pythia [65]. It also includes the simulation of other aspects of the
underlying event, such as additional interactions between the proton remnants, leading
to additional particles uncorrelated to the hard process. Many of these processes
cannot be calculated perturbatively, and phenomenological models are used that are
“tuned” to data using sensitive observables, e.g. the median jet energy per jet area in
an event as a measure for the energy contribution of the underlying event [66].

The matrix element approach is suitable for modeling hard, large-angle radiation,
whereas soft and collinear radiation is handled better by the parton shower program,
as these lead to divergencies in the matrix element. Therefore, one can simulate a
process with additional jets, e.g. Z+jets, by using tree-level matrix element simulation
from MadGraph simulating Z+0 parton, Z+1 parton, Z+2 partons, . . . Z+n partons.
In this case, a potential double-counting of phase space can occur, as the parton
shower might add the same radiation to the Z+0 parton sample, which is included
in the matrix element of the Z+1 parton sample. To avoid this double counting a
matching algorithm is used. For a review of different matching algorithms, see [67].
In this analysis, the MLM matching is used. After the parton shower, it clusters the
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partons to jets and accepts the events only if each jet matches to a final state parton
of the matrix element. This ensures that the parton shower part cannot generate
additional jets, beyond what is included as partons in the matrix element already.
One exception is the sub-sample with the highest parton multiplicity (Z+n partons),
in which the parton shower is allowed to generate additional jets. This matching
algorithm depends on the parameters used for the jet clustering, in particular the jet
pT threshold. This threshold is chosen such that the transition of the jet pT spectra
from matrix element to parton shower is smooth and depends on the process. The
values used here are pT = 10 GeV for W and Z production and pT = 20 GeV for tt̄
production. As this threshold is arbitrary to some extent, an uncertainty on the result
is estimated by varying it up and down by a factor of two.

Finally, for a realistic simulation of additional inelastic proton–proton interactions
within the same bunch crossing (pileup), a minimum bias process is simulated, which
mainly relies on non-perturbative, phenomenological models of inelastic proton–
proton scattering. This is also simulated with Pythia.





2 The CMS Detector and the LHC

Figure 2.1: Overall view of the underground Large Hadron Collider ring with
the four main detectors ATLAS, ALICE, CMS, and LHCb [68].

The analysis discussed in this thesis uses data from proton–proton collisions at
the Large Hadron Collider (LHC), recorded by the Compact Muon Solenoid (CMS).
This chapter introduces the LHC apparatus and the CMS detector and focuses on
the features relevant for this analysis; more details can be found in the provided
references.

2.1 The Large Hadron Collider

This section outlines some features of the Large Hadron Collider [69] and describes
the LHC design parameters for an operation at 7 TeV proton beam energy, unless
noted otherwise.

The LHC is the most powerful hadron collider, designed to collide proton beams
with energies up to 7 TeV and lead ion beams with an energy up to 2.76 TeV per
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nucleon. The main tunnel of the Large Hadron Collider is located at the Franco-
Swiss border near Geneva, between 45 and 170 m below the surface, and it has a
circumference of 26.7 km. The main tunnel was originally built for the Large Electron-
Positron Collider (LEP), which operated from 1989 to 2000. An overall view of the
LHC ring and the four main detectors is shown in figure 2.1. The proton and lead
ion energy is limited by the strength of the magnetic dipole field required to bend
the particle trajectories along the ring. For an energy of 7 TeV per proton beam, the
field strength of the magnetic dipoles is 8.33 T. Due to space constraints in the tunnel,
this magnetic field is not provided by two separate magnets, but by twin magnets
producing two magnetic dipole fields of opposite field direction within the same
mechanical support and cooling infrastructure. In total, 1232 dipole magnets and 392
quadrupoles are installed in the ring.

The LHC ring has eight straight sections, and at the center of each straight section
are the points at which the proton beams can be brought to collision, labeled point
1 to point 8. At four of these points, detectors are installed. Point 2 hosts A Large
Ion Collider Experiment (ALICE) [70], which is specialized in studies of lead ion
collisions, studying properties of the high density matter present when colliding
lead ions. The LHCb detector [71] at point 8 is designed for studies of b quark
production and decay in proton-proton collisions. The detectors ATLAS (A Toroidal
LHC Apparatus) and CMS (Compact Muon Solenoid), located at point 1 and point 5
respectively, are general-purpose detectors focusing on studies of high-luminosity
proton-proton collisions.

In many cases, the sensitivity of searches for a rare process — as the one studied
in this thesis — are mainly limited by the production rate of the new process. The
cross section of a heavy particle typically rises with the center-of-mass energy

√
s,

which is chosen as high as the LHC machine technology allows. For a given
√
s, the

key performance parameter for an accelerator determining the production rate is the
instantaneous luminosity L: The number of events per second N is given by N = Lσ

for a process with cross section σ. Cross sections for some standard model processes
and the corresponding production rates are given in figure 2.2. The instantaneous
luminosity L does not depend on the physics process but is a machine parameter
determined by the beam geometry; high luminosities require high-intensity beams
with small transverse beam areas. The design luminosity of the LHC is 1034 cm−2s−1.
The protons in the beams are arranged in up to 2808 bunches per beam with 1.1 · 1011

protons per bunch and a bunch spacing of 25 ns.
The proton acceleration is performed in several steps by different accelerators, as

sketched in figure 2.3. The protons for the LHC are accelerated by the Linac 2, the
Proton Synchrotron Booster (PBS), the Proton Synchrotron (PS), and the Super Proton
Synchrotron (SPS), which provides proton bunches for the LHC with an energy of
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Figure 2.2: Next-to-leading order cross sections (left axis) and event rates (right
axis) for various standard model processes for proton-antiproton
(
√
s < 4 TeV) or proton-proton collisions (

√
s > 4 TeV) [62]. The

event rates are given for an instantaneous luminosity of 1033 cm−2s−1,
which is ten times smaller than the design luminosity and 3.5 times
smaller than the maximum instantaneous luminosity reached during
2011.
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Figure 2.3: Schematic of the accelerators related to the LHC [72]. The LHC is
filled with protons accelerated by Linac 2, Booster, PS, and SPS.

450 GeV. After beam injection, the protons are accelerated using radio frequency
cavities in the LHC, which increase the proton energy by 0.5 MeV per turn.

During the commissioning of the LHC magnets on September 19th 2008, a malfunc-
tion in the interconnection of a dipole and quadrupole magnet caused an electrical
arc, leading to the heating of the liquid helium [73]. The helium could not be released
fast enough by the relief valves and the high pressure caused severe damage, and
37 magnets had to be replaced by spares [74]. In the investigation of this incident, a
number of copper interconnections with an abnormally large resistance have been
found, and it was decided to operate the LHC at 3.5 TeV beam energy [75]. The
current analysis uses data taken in 2011. During that time, the LHC has been oper-
ated with a beam energy of 3.5 TeV using up to 1380 bunches per beam and bunch
intensities of up to 1.4 · 1011 protons per bunch, and a peak instantaneous luminosity
of 3.5 · 1033 cm−2s−1 [76].

2.2 The CMS Detector

The Compact Muon Solenoid detector [77, 78] is shown in figure 2.4. It is 22 m
long, 15 m high, and weighs about 12 500 t. A main feature of CMS is its large
superconducting solenoid with a diameter of 6 m enclosing the calorimeter systems,
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Figure 2.4: The CMS detector at the LHC [79]. It is divided into the central barrel
and two endcaps and has a length of 22 m and a diameter of 15 m.
The subdetectors are described in the given sections.

leading to a “compact” design. The solenoid produces a homogeneous magnetic
field of 3.8 T parallel to the beam axis, which allows the momentum measurement of
charged particles in the inner tracker by bending their trajectories.

The main requirements for the design of the CMS detector are a good muon
identification and momentum resolution, a good momentum and position resolution
for charged particles for b tagging, good electromagnetic energy resolution, and a
good dijet mass and missing transverse energy resolution, all with a large geometric
coverage. The main experimental challenges include the high levels of radiation in
the inner and forward parts of the detector and the large collision rates of up to
40 MHz for operating at LHC design parameters, leading to high trigger rates and
data volumes. These requirements and challenges are addressed by the design of the
subdetectors of CMS discussed in the next sections.

The coordinate system of CMS has its origin at the center of the detector at the
nominal interaction point with the x axis pointing towards the center of the LHC
ring, the y axis pointing upwards, and the z being parallel to the counterclockwise
beam direction. The polar angle θ is measured from the z axis and the azimuthal
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angle φ is measured in the x-y plane. The cylindrical coordinate system uses z, φ,
and the radius r measured in the x-y plane. The pseudorapidity η is defined as

η = − ln tan
θ

2
. (2.1)

For massless particles, it coincides with the rapidity y, defined as

y =
1
2

ln
E+ pz
E− pz

, (2.2)

which has the property that differences in rapidity are invariant under Lorentz
transformations along the z axis. This is useful for hadron collisions as it allows
to define observables independent of the z momentum of the initial state, which is
random in each event according to the parton distribution functions.

2.2.1 Silicon Tracker

The innermost subdetector is the silicon tracker [78, 80], used to reconstruct the helix
trajectories of charged particles in the magnetic field, allowing the measurement of
particle momenta and the reconstruction of vertices, which is discussed in section 3.2.1.
It covers the pseudorapidity range |η| < 2.4.

Experimental challenges arise from the high particle flux from the interaction
region, requiring a radiation-hard design. To keep the number of channels at a
managable level, the outer regions are equipped with strip sensors, while the inner
part is instrumented with pixel sensors. The overall tracker layout is shown in
figure 2.5.

The pixel detector in the inner part comprises three barrel layers at radii of 4.4,
7.3, and 10.2 cm with a length of 53 cm each. The two endcaps per side are located
at |z| = 34.5 cm and |z| = 46.5 cm and extend in r from 6 to 15 cm. The pixel size
is 100× 150 µm2. Through the Lorentz force, the charge generated from a particle
traversing the sensor is shared among neighboring pixel sensors, increasing the
resolution up to 10 µm for the r and φ coordinates and 20 µm for the z coordinate.
The pixel sensor has a total of 66 million pixels, covering an area of about 1 m2.

The strip detector is divided into an inner part and outer part, both divided further
into the barrel part and discs that cover the forward region. These four parts are
called TIB (Tracker Inner Barrel), TID (Tracker Inner Disks), TOB (Tracker Outer
Barrel), and TEC (Tracker Endcaps). The TIB consists of 4 layers, extends up to
|z| = 65 cm, and uses silicon sensors with a pitch between 80 and 120 µm. In general,
the strips are parallel to the z axis, thus providing measurements for r and z. The
inner two layers contain stereo modules, which are made up of two strip modules
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Figure 2.5: Schematic of the CMS inner silicon tracker [77]. Each line corresponds
to a detector module, double lines indicate stereo strip modules.

with an angle of 100 mrad between the strips, thus providing also a measurement for
φ. The single-point resolution is 23–34 µm. The TOB consists of 6 layers and extends
to |z| = 110 cm. It uses strip pitches between 120 and 180 µm. As for the TIB, the first
two layers are stereo modules, and the single point resolution is 35–52 µm. The TID
comprises three disks, filling the gap between the TIB and TEC. Each part of the TEC
consists of 9 disks in the region 120 cm < |z| < 280 cm. The total number of strips is
around 9.6 million, with a total area of about 200 m2.

2.2.2 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [78, 81] consists of nearly 80 000 scintillating
crystals of lead tungstate (PbWO4). The material was chosen because of its short
radiation length of X0 = 0.89 cm and because it is a fast scintillator: 80% of the
light is emitted within 25 ns. The crystals have a length of 230 mm in the barrel and
220 mm in the endcap, corresponding to 25.8X0 and 24.7X0, respectively. Each crystal
is instrumented with either silicon avalanche photodiodes in the barrel or vacuum
photodiodes in the endcaps.

The inner radius of the barrel is 129 cm and covers the pseudorapidity up to
|η| = 1.479. It comprises 36 “supermodules” spanning half of the barrel in z direction
and 20° in φ direction. The crystals almost point to the nominal interaction point at
the center of the detector, but are slightly tilted by 3° to avoid particle trajectories
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Figure 2.6: The electromagnetic calorimeter of CMS [77].

coinciding with the boundary between two crystals, which would degrade the
response. The crystals have a front cross section of about 22 × 22 mm2 and cover
∆φ = ∆η = 0.0174.

The endcaps are located at |z| = 314 cm, covering the region up to |η| = 3.0. Each
endcap consists of two semicircular aluminum structures, called “Dees”. The crystals
are arranged in a x-y structure and have identical cross sections of 28.6× 28.6 mm2.
The preshower detector in front of the endcaps covers 1.65 < |η| < 2.61 and provides
good angular resolution that allows to separate single photons from neutral pions π0

that decay to two almost collinear photons. It contains two layers of lead converters
with 3 radiation lengths.

Around 99% of the channels of the barrel and endcap and about 95% of the
channels in the preshower detector have been operational in 2011, and the observed
resolution in data agrees with the expected resolution from test-beam measurements
and simulation [82]. The relative energy resolution σrel for electrons hitting the center
of a crystal can be parametrized as

σrel(E) =
2.8%√
E
⊕ 12%

E
⊕ 0.3%, (2.3)

where E is the electron energy measured in GeV, and the symbol ⊕ denotes the
square root of the quadratic sum, as required for the Gaussian error propagation, i.e.
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Figure 2.7: The hadron calorimeter at CMS, comprising the barrel (HB), endcap
(HE), outer (HO), and forward (HF) parts [77].

a⊕ b :=
√
a2 + b2.

2.2.3 Hadron Calorimeter

The Hadron Calorimeter (HCAL) [78, 83] surrounds the electromagnetic calorimeter.
The HCAL design is driven by the magnet and the requirement to provide hermetic
coverage; a sketch is shown in figure 2.7. The absorber material is brass, which is
non-magnetic, easy to process, and has a reasonably short radiation length. The active
material consists of plastic scintillators read out with wavelength-shifting fibers.

The Hadron Barrel (HB) covers the pseudorapidity range up to |η| = 1.4, extending
radially from r = 1.806 to 2.95 m. It has a segmentation of ∆η = ∆φ = 0.087, resulting
in 2304 towers. In total 15 brass plates, each about 5 cm thick, are interleaved with
the plastic scintillator plates of 3.7 mm thickness. The Hadron Outer (HO) is located
outside of the solenoid, covering the region |η| < 1.26. It uses the magnet coil
as additional absorber material and thereby extends the effective thickness of the
Hadron Calorimeter to over 10 hadron radiation lengths. The Hadron Endcaps (HE)
comprise 14 η segments each, covering the region 1.3 < |η| < 3.0. The segmentation
in η is 0.087 for the inner part at small |η| and increases to 0.35 for the outermost
part. The Hadron Forward (HF) calorimeter measures hadrons in the forward region
and covers a substantial pseudorapidity range of |η| between 3.0 and 5.0, which
is important for the measurement of missing transverse energy. It is located at
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|z| = 11.2 m and the absorber depth is 1.65 m. The segmentation is between ∆η ≈ 0.1
for the lowest-η tower, ∆η ≈ 0.175 for the towers between, and ∆η ≈ 0.3 for the
highest-η tower. The φ segmentation is ∆φ = 0.175, except for the highest-η tower,
where it is ∆φ = 0.35.

The relative energy resolution for the HCAL is expected to be

σrel(E) =
100%
E
⊕ 5% (2.4)

where E is the energy of the particle in GeV. This resolution was confirmed in first
data [84] and is also confirmed by the resolution of the jet energy and the missing
transverse energy discussed in section 3.2.

2.2.4 Muon System

The muon system at CMS [78, 85] is located outside of the solenoid, interleaved with
the iron return yoke. As shown in figure 2.8, three types of gas detectors are used:
Drift Tubes (DT), Resistive Plate Chambers (RPC), and Cathode Strip Chambers
(CSC).

Drift tubes are used in the barrel region, roughly covering |η| < 1.3, where the
particle flux is relatively low. The drift tubes are arranged in chambers MB1 to MB4
at radii of about 4.0, 4.9, 5.9 and 7.0 m, separated by the iron flux return yoke. The
three inner chambers consist of 12 layers of drift tubes, the first and last four measure
r and φ, while the inner four provide measurements for r and z. The outermost
station comprises 14 tube r-φ measuring layers. The single-point resolution for each
tube is about 250 µm, leading to a resolution of 100 µm per chamber and a time
resolution of a few nanoseconds. One or two resistive plate chambers are coupled
to each DT chamber, which provide additional timing information and allow muon
track building at the trigger level.

The endcap region uses cathode strip chambers, covering 0.9 < |η| < 2.4, arranged
in four stations ME1 to ME4. Cathode strip chambers can cope with the higher
magnetic field and particle rates in that region. Each station comprises two or three
layers of chambers, arranged to maximize coverage on all possible muon paths. There
are different types of chambers, covering azimuth angles of either 10 or 20°. Each
chamber comprises six layers of cathode panels with radial strips and six anode
panels with parallel wires approximately perpendicular to the cathode strips, thus
providing six measurements of r and φ per chamber. The position resolution is
between 75 and 150 µm.
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Figure 2.8: The muon detectors of CMS: Drift Tubes (CT), Resistive Plate Cham-
bers (RPC), and Cathode Strip Chambers (CSC) [78].

2.2.5 Trigger and Data Processing

The main challenge for the data taking is the large bunch crossing rate of 40 MHz.
To keep the event rate at a manageable level in terms of both storage and computing
power requirements, a trigger is used, which selects a subset of events for further
storage and processing. The trigger at CMS [77, 78, 86, 87] consists of two levels. The
level-1 trigger reduces the data rate to under 100 kHz. This trigger is implemented
using custom hardware and has to reach a trigger decision within 3.2 µs of the bunch
crossing. The trigger decision is based on primitive trigger objects, provided by
the calorimeter and muon trigger subsystems. Only if the level-1 trigger fires, the
event data is read out from the detector. The event data is zero-suppressed, i.e. only
channels with non-vanishing signal are kept, and the remaining data of about 1 MB
per event is sent to the surface, where the second level of the trigger decision, the
high-level trigger (HLT), is performed. The HLT is implemented in a computing farm
running a special version of the CMS reconstruction software. It has around 20 ms
CPU time to reach a trigger decision and reduces the trigger rate to under 400 Hz.

Events accepted by the HLT are divided into around 20 primary datasets based



30 2 The CMS Detector and the LHC

on the trigger decision and sent to the Tier-0 computing center at CERN, where a
prompt reconstruction is performed within hours of data taking. To meet the large
demands for computing power and storage, CMS uses a distributed computing
model [88]. The recorded data is distributed from the Tier-0 to Tier-1 and further to
the smaller Tier-2 computing centers. The main function of the seven Tier-1 centers
is the storage, reconstruction, and further distribution of data. Tier-1 centers are
also used to run the simulation of collision events. The total storage space used
by CMS at Tier-1 centers in 2011 was slightly above 40 PB, and used a computing
power of around 100 000 HEP-SPEC06 units [89], where modern CPUs have around
10 HEP-SPEC06 per core [90]. There are about 50 Tier-2 computing centers, which
are used for centrally managed simulation and by individual physicists accessing the
reconstructed datasets for their analyses, who in general do not have access to Tier-0
and Tier-1 resources.

The data taking is separated into runs comprising a consistent configuration
of the data taking, including trigger settings, and a run can last several hours.
Each run is further divided into luminosity sections (LS) lasting 23.3 s, in which the
instantaneous luminosity and other machine parameters are considered to be constant.
The instantaneous luminosity is measured during data taking using the energy or
occupancy of the hadron forward calorimeter [77, 78, 91], which are proportional to
the instantaneous luminosity. The absolute luminosity normalization is provided
by Van-der-Meer scans [92], which measure the effective beam area by displacing
the beams along the x/y axes. For physics analyses, a luminosity based on pixel
cluster counting [93] is used, which is affected by fewer nonlinearity effects and less
calibration drift than the HF-based luminosity measurement. It is also normalized
using the Van-der-Meer scans and provides luminosity with a total uncertainty of
2.2%. Recorded data undergoes a validation procedure in which a list of runs and
luminosity sections is created during which all detector components were operational;
this reduces the amount of data available for analyses. As the data acquisition of CMS
(DAQ) and the trigger are not always operational and have some non-zero dead time
by design, it is common to cite three different values for the integrated luminosity:
The delivered luminosity is the one provided by the LHC, the recorded luminosity refers
to the stored dataset, corrected for dead time and DAQ downtime, and the certified
luminosity contains only validated luminosity sections. The delivered integrated
luminosity as a function of time in 2011 is shown in figure 2.9. This analysis uses the
single-muon primary dataset. It corresponds to a certified integrated luminosity of
5.0± 0.1 fb−1.
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Figure 2.9: The delivered and recorded integrated luminosities at CMS as a
function of time in 2011 [94]. This analysis uses the certified subset
of the recorded data, which corresponds to 5.0± 0.1 fb−1.





3 Event Simulation and Reconstruction

The analysis method relies on a realistic prediction of the properties of signal and
background events. This is done with a detailed simulation of events based on
theory calculation and is described in section 3.1. The reconstruction algorithms
applied to the low-level detector response of simulated and recorded events in order
to obtain high-level physics objects are discussed in section 3.2. Known differences
between recorded and simulated events can be accounted for by applying corrections
to the simulated events, which are discussed in section 3.3. The chapter concludes
with section 3.4 pointing out the systematic uncertainties related to both the theory
predictions as well as to the reconstruction algorithms introduced earlier in this
chapter.

3.1 Event Simulation

The event simulation described in this section provides a realistic sample of events
on detector level for different background and signal processes used in this analysis.
It starts with the generation of events at the parton level, including the underlying
events, the parton shower, hadronization, and decay as discussed in section 1.3.
The result of this step is a set of events, each consisting of a list of those long-lived
particles that typically reach the detector, including charged kaons and pions. These
are used as input to a detailed CMS detector simulation based on Geant4 [95],
which includes propagating the particle trajectories in the magnetic field, the decay
of the long-lived particles, and the detailed simulation of the interaction of detector
material with the particles resulting in the detector response. On a technical level,
the result of this simulation is the low-level detector response in the same format
as for actual data, and the same reconstruction algorithms can be applied for both
simulated and recorded events.

A realistic event simulation requires to include additional inelastic proton-proton
interactions within the same or adjacent bunch crossings, known as pileup. Pileup
events in the same bunch crossing (in-time pileup) give rise to additional low-pT

charged and neutral particles originating from additional vertices. Out-of-time pileup
events in adjacent bunch crossings, i.e. 50 ns before or after the current bunch crossing,
contribute to energy in the calorimeter readout, as the readout extends to these bunch
crossings; the contribution from pileup events more than 50 ns before or after the
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primary bunch crossing can be neglected. Pileup events are included by simulating
minimum bias events using Pythia as generator and mixing pileup events with the
simulated event of the primary interaction discussed in the previous paragraph.

A weight is assigned to the simulated events such that the weighted number of
events corresponds to the number of events expected from the integrated luminosity
and the cross section. The event weight is thus

w =
Lσ

Nsim
, (3.1)

where L is the integrated luminosity of the dataset one wants to scale to, σ is the
cross section of the simulated process and Nsim is the number of simulated events for
this process. The event weight is modified by multiplying additional event weights
to correct for known differences between data and simulation, as will be discussed in
section 3.3.

3.1.1 Background Processes

The standard model background processes for events in the muon+jets channel fall
into two classes for which different strategies are employed: The first class comprises
background processes with a muon in the final state of the hard interaction, prompt
muons. This background is modeled with simulated events, making use of theory
predictions. The second class of background processes comprises events containing a
reconstructed non-prompt muon, i.e. muons from heavy flavor decays, decay-in-flight
muons, or wrongly reconstructed muons. This background process is referred to
as QCD multijet. The QCD multijet background is hard to model as the underlying
2 → 2 process has a large cross section, but the probability to find muons in such
events is very low and not well-known. Therefore, the strategy for the QCD multijet
background is to reduce it as much as possible by applying appropriate event
selection criteria and to estimate the remaining fraction of QCD multijet events with
methods, using data sidebands, not relying on the event simulation.

The background processes with prompt muons include the irreducible QCD tt̄
production introduced in section 1.2.1. Events are generated with MadGraph 5 [64]
with up to three final state partons beyond the tt̄ final state. Parton showering is
performed with Pythia 6.4 [65], and the MLM algorithm introduced in section 1.3 is
used to do the matching between the matrix element and the parton shower. The
same combination of MadGraph and Pythia is used for the simulation of the W+jets
and Z/γ∗+jets background processes, which are another important source for prompt
muons. In these cases, up to four partons in the final state are included in the matrix
element. Examples for tree-level Feynman graphs for these processes are shown in
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figure 3.1. In both cases, only leptonic decays of the vector boson are included in the
simulation. For the Z/γ∗+jets background, a requirement for the invariant dilepton
mass of m`` > 50 GeV is applied to remove the infrared-divergent component at low
m``, which does not contain high-pT leptons contributing to the muon+jets topology
anyway. The electroweak production of single top quarks is another source for prompt
muons. There are three production modes for single top quark events, single top
quarks in association with a W boson, t channel, and s channel, where “t” and “s” are
Mandelstam variables referring to the four-momentum-square of the W boson in the
respective leading-order Feynman graphs. Some leading-order Feynman graphs for t
channel and associated tW production are shown in figure 3.2. The s channel single
top quark production has a low cross section and is not considered in this analysis.
Single top quark events in the t channel and associated tW production are generated
with the next-to-leading order Powheg [96–100] event generator and showered with
Pythia. Events with more than one W/Z boson in the final state have a negligible
contribution compared to the other processes and are therefore not considered in this
analysis. All top quark processes use a top quark pole mass mtop = 172.5 GeV; the
used parton distribution function is the appropriate leading-order or next-to-leading
order variant of the CTEQ6 pdf sets [101]. The Pythia parameters governing the
modeling of multiple interactions and underlying event are set according to the tune
Z2 [102]. The renormalization and factorization scale for tt̄ (W/Z) simulation with
MadGraph are different for each event and set to Q2 = m2 +

∑
i p

2
T,i, where m is the

top quark mass (W/Z mass), and i loops over all final state partons simulated in
addition to the tt̄ (W/Z) final state.

While the QCD multijet background is estimated from data sidebands for the final
event selection, a simulated sample of QCD multijet production is still used in order
to develop the event selection and make cross-checks for the QCD multijet estimation
technique. The simulated sample uses Pythia to generate QCD 2 → 2 processes
with p̂T > 15 GeV, allowing all gluons and quarks (except top quarks) in the final
state. After hadronization and decay, but before the detector simulation, a filter is
applied that only keeps events in which a muon with pT > 15 GeV and |η| < 2.5 is
found.

The cross sections and the numbers of simulated events for all background pro-
cesses are summarized in table 3.1. In case of QCD tt̄, W+jets and Z/γ∗+jets, the
cross sections are next-to-leading order values calculated with MCFM 5.8 [103]. The
cross sections for single top quark production in the t channel and tW production are
approximate NNLO results from references [104, 105]. In all cases, the uncertainties
include uncertainties from parton distribution functions, αs uncertainties, and scale
uncertainties. The cross section for the QCD multijet process is a leading-order
result from Pythia for which no uncertainty has been evaluated. The uncertainties
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Figure 3.1: Example Feynman graphs for W+jets and Z/γ∗+jets production with
different final state parton multiplicities included in the simulation.
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Figure 3.2: Example Feynman graphs for single top quark production in the t
channel (left) and in association with a W boson (right).
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Process Cross Section (pb) Sim. Events (106)

QCD tt̄ 157.5± 24 59.5
W→ `ν+jets 31 314± 1558 81.3
Z/γ∗ → ``+jets 3048± 132 36.1
Single-Top t channel 64.6± 2.6 5.8
Single-Top associated tW production 15.7± 1.2 1.6
QCD multijet (µ-enriched) 84 679 20.4

Table 3.1: The cross sections and numbers of events of the simulated background
processes.

used in the statistical evaluation have additional contributions and are discussed in
section 3.4.

3.1.2 Signal Processes

The Z′ signal events are generated according to the process qq̄ → Z′ → tt̄ in the
s channel. They use the same top quark mass, underlying event tune, and parton
distribution function as the background processes discussed in the previous section.
Three different signal types have been simulated, narrow Z′ with a natural width
Γ = 0.01×MZ′ , wide Z′ with Γ = 0.1×MZ′ , and the KK-Gluon process introduced in
section 1.2.2. The narrow and wide Z′ samples have been generated with the same
combination of MadGraph and Pythia used as for the QCD tt̄ process, including the
generation of up to three additional partons in the final state of the matrix element.
The Kaluza-Klein sample was generated with a leading-order implementation in
Pythia 8 [106], and a fast simulation relying on parameterizations of the CMS
detector response rather than on the detailed but time-consuming simulation with
Geant4 has been used in this case. For all three signal types, samples have been
generated for MZ′ = 1, 1.5, 2, and 3 TeV; for the narrow Z′, an additional sample with
MZ′ = 1.25 TeV was generated.

The distribution of the generated invariant tt̄ mass mgen
tt̄ for the different signal

types is shown in figures 3.3 and 3.4. For large MZ′ , there is a tail towards lower
generated invariant tt̄ massesmgen

tt̄ . This tail results from the large partonic luminosity
at these low values for ŝ = mgen

tt̄ , corresponding to virtual Z′.
The narrow Z′ sample has a natural width of 1%, which is much smaller than the

experimental resolution for the reconstructed invariant tt̄ mass Mtt̄ of 6% to 10%
(see section 4.2). Therefore, the width of the Mtt̄ peak — which is given by the
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Figure 3.3: Distribution of the generated invariant tt̄ mass mgen
tt̄ for the narrow Z′

signal and standard model QCD tt̄ production for different MZ′ .

Figure 3.4: Distribution of the generated invariant tt̄ mass mgen
tt̄ for the wide Z′

signal (left) and the KK-Gluon sample (right).
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Figure 3.5: Distribution of the distance ∆R of the b quark and the lepton of the
leptonically decaying top quark (left) and the minimum distance
between any pair of the three quarks of the hadronically decaying
top quark (right).

convolution of the natural width and the experimental resolution — is determined
almost completely by the experimental resolution rather than the natural width.
Therefore, the narrow Z′ samples can be used to model all resonances for which the
natural width is much smaller than the Mtt̄ resolution, and it is used to set limits
on the topcolor Z′ model with Γ = 0.012 ×MZ′ . As the narrow Z′ samples have a
small range of generated invariant mass values mgen

tt̄ , they are suitable for studying
different properties that change as a function of mgen

tt̄ such as the Mtt̄ resolution and
the selection efficiency; the narrow Z′ signal is therefore used as the default signal
type in the next chapters.

For increasing values of mgen
tt̄ , the top quarks have larger transverse momenta. As

a result, the decay products of the top quarks have smaller angular separation in the
detector reference frame. This can be seen in figure 3.5, where the left graph shows
the distribution of the distance ∆R in the η–φ plane of the b quark of the leptonically
decaying top quark b` and the lepton `; the right graph shows the distribution of
the minimum ∆R between any pair of the three quarks of the hadronically decaying
top quark bhad, q, q̄. The angular separation decreases with increasing MZ′ and
this has significant consequences for the resulting event signature regarding the jet
multiplicity and the lepton isolation at high MZ′ , which has to be considered in the
event selection discussed in chapter 4.
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3.2 Event Reconstruction

This section outlines the pattern recognition algorithms applied to the low-level
CMS detector signals in order to find high-level particle candidates such as muons,
electrons, jets, and missing transverse energy, which are used to study the underlying
interaction.

3.2.1 Charged Particle Tracking

The tracking algorithm combines hits originating from charged particles traversing
the inner tracking system of CMS. The resulting track parameters provide estimates
for the momentum of the charged particle at the point of the hard interaction, as well
as the closest distance to this point, the impact parameter.

The track reconstruction algorithm [107] starts with the local reconstruction, which
clusters the raw detector signals from the pixel detector and the silicon strip detector
into hits. For each hit, the hit position and its uncertainty are estimated.

In the seeding step, two or three hits are combined into so-called pairs and triplets;
some of the algorithms applied also make use of the beamspot position [108]. Each
seed provides an initial estimate for the track parameters that are used in the track
building step. In this step, the current track parameters are used to estimate the
position and the uncertainty of the hit position in the next layer, going from the
inside to the outside of the CMS tracker. This track propagation accounts for energy
loss of the particle in the tracker layers. At the next layer, compatible hits are included
and the track parameter estimates are updated. This procedure of propagating the
current estimate and updating it with new information is performed with a Kalman
filter [109]. If there is more than one compatible hit, multiple track candidates are
created with different track parameters; the algorithm also allows for the absence of
a compatible hit in one layer.

Ambiguities in the track finding can arise if a given track is found by more than
one seed or if one seed gives rise to multiple tracks. Therefore, tracks with a low
quality (few hits and large χ2) that share more than half of the hits with a high-quality
track are removed. Finally, the track parameters are re-estimated by a global fit to
the track using all assigned hits. This final fit removes any potential bias introduced
in the seeding stage.

This track finding algorithm is applied multiple times; at the end of each itera-
tion, all hits used in the track reconstruction are removed and the new iteration
is performed with looser requirements for the seeds and other parameters in the
track building [110]. This iterative approach allows track finding with reasonable
computing time at a high efficiency.
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The reconstructed tracks are used to find primary vertices by first clustering tracks
based on their z coordinate at the point of the closest approach to the beam-line. A
track can be assigned to multiple clusters with weights based on the compatibility of
the track with the z position of the cluster; this clustering step is performed with the
deterministic annealing algorithm [111, 112]. In a second step, the vertex positions
and uncertainties are estimated from the track clusters.

Primary vertices originating from pileup interactions usually have few and low-pT

tracks. Therefore, the primary vertices are sorted by the decreasing sum of the
associated squared track transverse momenta. The first primary vertex after sorting
is used as the position of the primary interaction one wants to study, all other vertices
are considered to correspond to pileup interactions.

3.2.2 Reconstruction of Muons

For the reconstruction of muons [113], two types of tracks are used: Tracks recon-
structed in the inner tracker as described in the previous section and standalone-muon
tracks reconstructed from hits in the muon systems by first searching for short track
segments in each muon system (DT or CSC), which are then combined in a track
fit. From these two types of tracks, muon candidates are reconstructed by two
algorithms:

1. The Global Muon reconstruction propagates the track position from standalone-
muon tracks and from tracks from the inner tracker to a common surface. If
they are compatible, a global track is found by fitting a track to all hits used in
either one of the tracks.

2. The Tracker Muon reconstruction starts with tracks reconstructed in the inner
tracking system and extrapolates their position to the muon system, allowing
for energy loss as the muon traverses the detector. In the muon system, a
compatible track segment is sought.

In most cases a prompt muon, i.e. a muon originating directly from the hard
interaction, is successfully reconstructed by both algorithms. Sources of non-prompt
muon include muons from the decay of mesons containing c and b quarks, muons
from cosmic rays, and decay-in-flight muons from decays K/π→ µν, where the track
from the kaon is combined with the hits of the muon in the muon chamber.

In order to suppress the rate of non-prompt muons, additional identification
requirements on the muon candidates are imposed. The used requirements are:

• The global track fit has to fulfill χ2/ndof < 10, where ndof is the number of
degrees of freedom in the track fit. Also, a minimum number of hits in the inner
tracker is imposed. These two requirements reject decay-in-flight muons.
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• The z distance of the muon track extrapolated to the closest approach of the
primary vertex has to be smaller than 1 cm and the transverse impact parameter
has to be 6 200 µm. These requirements reduce cosmic muon background and
muons form heavy flavor decays.

• The number of muon chambers with hits used for the track reconstruction has
to be at least 2, to be compatible with the requirement of the muon trigger.

Using simulated events the muon trigger and identification efficiency can be esti-
mated by searching for a reconstructed muon for each generated muon in a tt̄ decay.
This efficiency is found to be larger than 90% for all types of tt̄ events used in the
analysis presented in this thesis. The efficiency for the muon identification and trigger
requirements can also be studied on data using the so-called tag and probe method
in which a pure sample of Z → µ+µ− candidate events is selected by imposing
tight requirements on the tag muon and subsequently applying the identification
requirements on the probe muon, which yields estimates for the efficiency of these
requirements. With this technique it was shown that the agreement for the muon
efficiency between data and simulation is good; differences are below 5% for all
regions of pT and η [114]. While these measurements could be used to apply an
event reweighting for simulated events based on the muon pT and η as discussed in
section 3.3, such a detailed correction is not required for this analysis. Therefore, no
correction to the simulation has been applied and the maximal deviation of 5% is
used as a systematic uncertainty for the muon efficiency.

3.2.3 Reconstruction of Electrons

Before reaching the electromagnetic calorimeter, electrons traverse the inner tracker
can lose a considerable part of their energy by photon radiation at the tracker
layers. These photons are emitted approximately in the current flight direction.
This energy loss in the inner tracker is larger for electrons than for other charged
particles and the energy in the electromagnetic calorimeter has a large spread in φ.
This is considered in the electron reconstruction algorithm used at CMS [115, 116],
which starts by searching for clusters in the electromagnetic calorimeter, considering
their η-φ asymmetry. For these clusters compatible tracks in the inner tracker are
searched. However, instead of using the track reconstruction algorithm discussed in
section 3.2.1, a dedicated tracking algorithm is used that accounts for the increased
energy loss caused by the photon emissions. Seeds are generated from hits in the
pixel detector compatible with the ECAL cluster. To account for the increased energy
loss at each tracker layer, the track building uses a Gaussian sum filter [117, 118]
instead of the Kalman filter.



3.2 Event Reconstruction 43

Additional requirements are imposed on electron candidates in order to reduce
fake electrons, e.g. from pions. In the analysis discussed in this thesis, a cut-
based electron identification is used [119]. The variables used include track–cluster
compatibility variables, shower shape variables of the ECAL cluster, the amount
of energy measured in the hadron calorimeter, and track parameters such as the
transverse impact parameter.

3.2.4 The Particle Flow Algorithm

The simplest and historically first approach at CMS for the reconstruction of jets and
missing transverse energy was based only on the energy deposits measured in the
electromagnetic and hadron calorimeters. The energy resolution of these calorimeter-
based algorithms is limited due to various effects. One of these limitations is that
calorimeter-based algorithms assume that the direction of energy flow associated
with a calorimeter tower is given by a straight line extending from the primary
vertex towards the position of the measured energy deposit. This is not true for
the trajectories of charged particles, which are bent in the magnetic field. Another
limitation is that the calorimeter response depends on the particle type and is not
perfectly linear in the energy of the particle.

The particle flow (PF) algorithm [120] overcomes some of these limitations by
combining track information with calorimeter information, which allows a much
better direction resolution and a better energy calibration. The particle flow algorithm
provides a set of particles of five classes: muons, electrons, photons, charged hadrons,
and neutral hadrons. The reconstruction of these particle candidates is based on
tracks and calorimeter clusters that are linked using a linking algorithm resulting in
blocks. Each of these blocks is classified into one of the five particle categories and an
energy correction is applied for each particle candidate.

The clustering algorithm starts with single calorimeter cells above a given threshold
as seeds and aggregates neighbor cells if their energy exceeds twice the cell’s noise
level. Each seed results in one cluster, and a given cell can belong to more than one
cluster. In this case, the cell energy is partitioned among all clusters based on the
cell–cluster distance.

The linking algorithm extrapolates tracks to the expected maximum of the energy
deposit in the electromagnetic and hadron calorimeter. If the track is within the
boundaries of a cluster, or only one calorimeter cell away from a cluster, the track
is linked to the cluster. For electron reconstruction, bremsstrahlung is collected by
constructing tangents to the track at tracker layers that are extrapolated to the ECAL.
If clusters are found, they are linked to the track. ECAL and HCAL clusters are
linked if the ECAL cluster position is within the HCAL cluster envelope. For the
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muon reconstruction, tracks reconstructed in the inner tracker are matched to track
segments reconstructed in the muon system and linked if the global track fit has an
acceptable χ2.

To convert these blocks into particle flow candidates of one of the five categories,
first all muon and electron candidates and the corresponding tracks and clusters
are removed. Each of the remaining blocks with a track is classified as charged
hadron. Some care has to be taken to avoid double-counting as one cluster can be
linked to more than one track and vice versa. The calorimeter energy expected for a
charged pion with the momentum given by the track is subtracted from the cluster.
Remaining clusters without a linked track are classified as photons, or — if there
is significant contribution of HCAL energy — as neutral hadron. The calorimeter
clusters associated to hadrons are calibrated for nonlinearities in the HCAL response.

3.2.5 Reconstruction of Jets

Jets are the collimated streams of particles originating from partons of the underlying
hard interaction undergoing hadronization. In general, jet algorithms can be applied
to any set of four-vector input objects such as the final state partons of the interaction,
the stable particles after hadronization (generator jet or GenJets), or the particle flow
candidates (particle flow jets or PFJets). The jet algorithms used to cluster these
four-vectors to jets are introduced in the first section.

The jets clustered from different types of input objects contain energy contributions
from different sources, e.g. energy from pileup events and effects due to the imperfect
detector response are included in particle flow jets, but not in the corresponding
particle jets. The comparisons between the observables from the experiment and the
theoretical modeling are usually based on generator jets, as depicted in figure 3.6.
This requires correcting the energy of particle flow jets to the level of generator jets.
This is discussed in the second section.

Sequential Jet Clustering Algorithms

A sequential jet clustering algorithm iteratively operates on a set of four-momenta
called protojets, which initially is the set of input objects. At each iteration, all possible
distances between two protojets i and j, dij, are calculated, as well as all beam-protojet
distances diB:

dij = min(p2n
T,i,p

2n
T,j)
∆Rij

R
(3.2)

diB = p2n
T,i , (3.3)
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Figure 3.6: Illustration of the different steps of simulation and reconstruction,
and the resulting jets (adapted from [121]). In this picture, the
event modeling and simulation starts with the hard interaction at
the bottom, whereas the jet reconstruction starts with particle flow
jets at the top and corrects these to the level of generator jets, which
defines the level at which theory and experimental observables are
compared with each other.
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where ∆Rij is the distance of the protojets i and j in the y-φ plane; n and R are
parameters of the algorithm discussed in more detail below.

If the smallest distance is a dij, the two protojets i and j are replaced by a protojet
with the four-vector sum of i and j. If the smallest distance is a diB, the protojet i is
a jet and it is removed from the list of protojets. This iteration is repeated until no
protojets are left and all input objects are part of a jet.

The value of n specifies the type of the jet algorithm. For n = 1, the algorithm
is called the kT jet algorithm [122], n = 0 results in the Cambridge-Aachen algo-
rithm [123], and n = −1 results in the anti-kT algorithm [124]. All of these algorithms
require the specification of the cutoff parameter R, which controls the size of the jets:
All pairs of jets i, j satisfy ∆Rij > R.

The default choice at CMS for jet reconstruction is the anti-kT algorithm with
R = 0.5, which has the advantage of resulting in approximately cone-shaped jets. A
straight-forward implementation of the sequential jet clustering algorithms requires a
large number of distance evaluations, leading to a runtime rising at least quadratically
in the number of input four-momenta N, which would make the algorithm unusable
in practice at the LHC, where N is often on the order of one thousand. However, by
not evaluating the distances dij in case it is known to be too large from geometrical
arguments, the complexity can be reduced to O(N logN), which was done in the
FastJet package [125, 126] used at CMS.

One important property of jet algorithms in general is their stability with respect
to higher-order corrections of perturbative QCD. In particular, the logarithmically
divergent behavior for infinitely collinear and soft emissions arising in perturbative
QCD must not change the result of the jet clustering; these requirements are known
as collinear safety and infrared safety, respectively. All sequential clustering algorithms
discussed here have these properties.

For the jet energy corrections discussed below, it is necessary to determine the area
of a jet in the y-φ plane. As the jets can be irregularly shaped, this area cannot be
calculated analytically. Instead, a large number of infinitely soft “ghost particles”,
which are evenly distributed in the y-φ plane, is added to the list of input objects
of the jet clustering algorithm. The number of ghost particles is chosen such that
the statistical uncertainty of the jet area due to the finite number of ghost particle is
much smaller than other uncertainties. The configuration used at CMS is an average
ghost area in the y-φ of 0.01, and the area determination is repeated five times with
this setting. The jet algorithm is then applied on this new list and the jet area is given
by the number of ghost particles clustered to this jet, divided by the number of ghost
particles per y-φ unit area. This method was originally proposed in Reference [127].
Note that this method exploits both the infrared safety as well as the sub-quadratic
runtime behavior of the clustering algorithm.
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Jet Energy Corrections

The jets used in this analysis are anti-kT jets using particle flow candidates as
input objects. However, not all particle flow candidates found by the particle flow
algorithm are used for jet clustering: All particle flow candidates that are identified
as originating from pileup interactions, as well as isolated electrons and muons are
removed from the original list. Particle flow candidates are considered as originating
from pileup interactions if their track is associated to a primary vertex that is not
the highest pT primary vertex in the event. This method requires a track for the
particle flow candidate and thus removes only the pileup contribution from charged
particles within the tracker acceptance. Muons (electrons) are considered isolated if
the pT-sum of all particle flow candidates in a cone in the η-φ plane with a radius
∆R = 0.4 is below 15% (20%) of the lepton’s transverse momentum. These leptons are
considered candidates for prompt leptons, and removing them from the jet clustering
avoids double-counting of their energy in the analysis.

After jet clustering, the jet energies are corrected by applying a scale factor on the
jet four-momenta such that the average jet energy response D is one, where

D(p
gen
T ,η) =

〈
prec

T

p
gen
T

〉
. (3.4)

Here pgen
T is the transverse momentum of the generator jet clustered from stable

particles and prec
T is the corrected transverse momentum of the corresponding particle

flow jet. To find this correspondence of generator jets and reconstructed jets is called
matching. For jets, the used criterion is based on ∆R: The reconstructed jet and
generator jet match if their distance in the η-φ plane fulfills ∆R < 0.3.

equation (3.4) should hold for all values of η and pgen
T . The jet energy corrections

at CMS [128] are applied sequentially in different levels:

• The level-1 or offset correction subtracts the energy shift due to pileup interactions
and calorimeter noise.

• The level-2 or relative correction is an η-dependent correction that makes the
response D(p

gen
T ,η) flat in η.

• After applying the level-3 or absolute correction, the response is flat in pgen
T .

Technically, the corrections up to level-3 are derived for simulated events first, and
the (small) difference to the actual response measured in recorded data is accounted
for by applying an additional residual correction on recorded data only.

There are more correction levels, among them flavor-dependent corrections and
corrections to the parton level instead of the generator jet level, but these are not
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used in this analysis. The jet energy correction levels applied here are the level-1,
level-2, and level-3 corrections and all jet energies in this thesis refer to the corrected
energies up to level-3, unless mentioned otherwise. These three correction levels are
discussed in more detail below. They are applied for both data and simulated events.
As the corrections on simulation and data are very similar, the corrections derived
from simulated events are applied in both cases, and the remaining difference after
level-3 corrections between simulation and data is accounted for by applying a small
level-2,3-residual correction on data only.

The remainder of this section briefly discusses the different jet energy correction
levels. For more details, see reference [128].

The level-1 or offset correction removes the average pileup contribution. The
component of transverse momentum for a jet due to pileup can be estimated by the
area of the jet, multiplied with the pileup pT density in the y-φ plane [129]. The jet
area is determined using the ghost particle method described in the previous section.
The pT per unit area in y-φ due to pileup, ρ, is estimated for each event by taking the
median of the values piT/Ai where i runs over all jets clustered with the kT algorithm
with R = 0.6. The level-1 energy correction for jet j subtracts the energy ρ′Aj where
Aj is the area of the jet and ρ′ is an estimate of the pileup energy density. It is based
on ρ with corrections that account for the η dependence of the pileup density and the
fact that a part of the pileup energy has already been removed by not using particle
flow candidates identified as originating from pileup vertices. The contribution from
the underlying event — which is contained in ρ′ and thus was subtracted — is added
back to the jet.

The level-2 or relative correction makes the response flat as a function of η. It is
derived using the transverse momentum balance in dijet events: Events with one jet
in the central region |η| < 1.3 are selected to derive the η-dependent correction for
the other jet.

The level-3 or absolute correction is derived from the transverse momentum
balance of γ+jet and Z+jet events (with Z → µ+µ− or Z → e+e−), exploiting the
precise momentum measurement for photons, electrons, and muons.

The analysis described in this thesis uses jets with |η| < 2.4 and pT > 50 GeV. Jets
are required to pass identification requirements in order to suppress jets built from
single noisy calorimeter cells.

The jet energy uncertainty after the correction depends on the jet pT and η and is
about δjes = 2–3% for the kinematic range used in this analysis. Its impact on the
analysis can be assessed by scaling the jet four-momenta in simulated events by a
factor 1± δjes, as discussed in more detail in section 6.1.

For a sample of jets at a fixed value of jet pgen
T , the jet transverse momenta of the

corresponding reconstructed, corrected jets, prec
T , follow a Gaussian distribution with
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the same mean. The width of this distribution is the jet transverse momentum resolution.
It can be measured by using the balance in the transverse plane in dijet events. These
measurements suggest that the resolution in simulated events is smaller than in data
by about 10% [128], which is taken into account by smearing the jet four-momenta in
simulated events as discussed in section 3.3.1.

3.2.6 Identification of b Jets

The identification of b jets is an important tool to select events with b quarks in the
final state in order to strongly suppress non-b background processes. Jets originating
from a b quark contain a B meson after hadronization, which travels a distance in
the order of millimeters in the detector before decaying via the weak interaction. The
charged particles from this decay are reconstructed as tracks with a large impact
parameter. In many cases, the tracks can be used to identify the position of the B
meson decay as a secondary vertex.

The b-tagging algorithm used in this analysis is the Combined Secondary Vertex
algorithm [130], which uses variables from the secondary vertex. These variables
include the distance from and direction relative to the primary vertex and the
invariant mass of the tracks associated to the secondary vertex. This information is
combined with track parameters such as the impact parameters, yielding a single
discriminator variable per jet, which takes large values for b jets and small values
for other jets. Different working points are defined based on the average mistag rate
for light flavor jets, i.e. the probability to wrongly classify a jet as b jet if it actually
originates from a gluon or from u, d, or s quarks. The working point chosen in this
analysis is the “tight” working point defined by the average mistag rate of 1h. The
average efficiency is around 50% and has been measured in tt̄ events [131] and by
methods using other b-tagging criteria [130]. Differences of the b-tagging efficiency
and mistag rate between simulated events and data are corrected for by reweighting
the simulated events as discussed in section 3.3.

3.2.7 Reconstruction of Missing Transverse Energy

Some particles such as neutrinos (or certain hypothetical particles in theories beyond
the Standard Model) escape the detector without leaving signals that could be used
for a direct detection. However, such particles can be detected indirectly as they
manifest as an imbalance in the total momentum of the final state: As the proton-
proton initial state has a vanishing total momentum in the detector reference frame,
this is also true for the total momentum of the final state. As the proton remnants
leave the detector in the beam line, this principle can only be applied to the transverse
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momentum. The missing transverse energy is the momentum vector in the x-y plane
that restores the momentum balance and is thus given by

~Emiss
T = −

N∑
i=1

~pT,i , (3.5)

where i runs over all final state objects. As for jet algorithms, different types of input
objects can be used, such as the stable particles in the simulation, energy deposits in
the calorimeters, or particle flow candidates. In this analysis, the missing transverse
energy is calculated from particle flow candidates.

The missing transverse energy can be taken as an estimate for the sum of the
transverse momenta of all “invisible” particles in the final state of the interaction;
in the muon+jets tt̄ final state studied here, the only invisible particle is the muon-
neutrino and ~Emiss

T thus directly provides an estimate for its transverse momentum.
The magnitude of the vector ~Emiss

T is denoted with Emiss
T , which is a useful quantity to

distinguish between processes with and without neutrinos in the final state.
The performance of the missing transverse energy reconstruction at CMS has been

studied using Z+jet events (with Z → e+e− or Z → µ+µ−), γ+jet events, and dijet
events, in which the Emiss

T resolution and scale is dominated by detector effects as
there are no neutrinos contributing to the missing transverse energy; the agreement
between data and simulation is found to be good [132].

3.3 Simulation Corrections

While the simulation in general agrees well with the data, some aspects of the
simulation are different than in data. In order to make meaningful comparisons
between simulation and data, known differences between the simulation and data
are taken into account by different techniques described in more detail in this section.
Three quantities in which data–simulation differences appear are discussed here:
Jet transverse momentum resolution, b-tagging rates, and the multiplicity of pileup
events.

3.3.1 Jet Transverse Momentum Resolution

The jet transverse momentum resolution is defined as the width of the Gaussian core
of the reconstructed jet pT distribution for a fixed pgen

T . This resolution is measured
in data using dijet events [128], and it was found that the resolution in data is
worse than in the simulation. One possibility to account for this difference would
be to add additional Gaussian noise to the jet momenta in simulated events. This
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procedure, however, does not allow to emulate values for the jet energy momentum
resolution, which are smaller than simulated, but this is required to study systematic
uncertainties. Therefore, in this analysis, a different method is used that also allows
to change the jet momentum resolution in both directions [133].

The jet momentum resolution difference between data σ(pgen
T ) and simulation

σsim(p
gen
T ) is taken into account by scaling the difference of the reconstructed and

corresponding generated transverse momentum by a factor f = σ/σsim. More formally,
each corrected jet four-momentum p in simulated events is replaced by a scaled four-
momentum p′:

p′ = p · α , where (3.6)

α =
p

gen
T + f · (pT − p

gen
T )

pT
. (3.7)

In rare cases, the factor α can be smaller than zero in which case zero is used instead
to avoid unphysical flips of the jet direction. As this method scales the difference
of the reconstructed and generated transverse momentum, it re-uses many features
already present in the simulation and e.g. keeps the non-Gaussian tails of the pT

distribution. Another advantage of this method is that it does not require the absolute
value of the jet transverse momentum resolution at a given pgen

T ; also, there is no
(pseudo-)randomness necessary, making results easier to reproduce.

This procedure is applied to all jets in simulated events with pgen
T > 15 GeV. It

modifies the reconstructed transverse momentum in simulated events. It is assumed
that the difference of the jet momentum resolution has its origin in a difference of the
momentum resolution of particle-flow candidates. As the particle-flow candidates are
used to reconstruct the missing transverse energy, this correction of the jet transverse
momentum resolution has to be propagated to the missing transverse energy as well,
changing the value of the missing transverse energy in simulated events to

~Emiss
T
′ = ~Emiss

T +
∑
i

(1 − αi)~p
raw
T,i , (3.8)

where i runs over all jets for which the resolution correction is applied to, αi is the
scale factor defined in equation 3.7, and ~praw

T,i is the uncorrected transverse momentum
of jet i, i.e. the sum of the four-momenta of the particle-flow candidates the jet consists
of, without applying jet energy corrections.

The measurement of the jet transverse momentum resolution in data has limited
precision. To take that into account, not only the “nominal” value of f is used, but
also smaller and larger values, which cover the 1σ uncertainty of the resolution
measurement from reference [128]. The values for f are summarized in table 3.2.
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scale factor f
|η| Range nominal up down

< 0.5 1.05 1.11 0.99
0.5–1.1 1.06 1.12 1.00
1.1–1.7 1.10 1.16 1.04
1.7–2.3 1.13 1.23 1.03
> 2.3 1.29 1.49 1.09

Table 3.2: Values for the resolution scale factor f used to modify the jet momenta
in simulated events. The “up” and “down” variation correspond to
the 1σ interval of the resolution measurement [128, 133].

3.3.2 b-Tagging Rates

The b-tagging efficiency εb is defined as the probability that an actual b jet is tagged
by the b-tagging algorithm; it is a function of the jet transverse momentum and pseu-
dorapidity. On simulated events, this efficiency can be determined using generator
information; it is the fraction of b jets that are tagged. For data, different methods are
used as discussed in section 3.2.6. The difference of the b-tagging efficiency between
data and simulation are expressed as a scale factor SFb, with

SFb =
εb,data

εb,sim
, (3.9)

which in general depends on the jet η and pT. Similarly, the scale factor SFl is
determined for the mistag rate for light jets εl, defined as the probability to tag a jet
originating from u,d,s quarks or gluons. As jets from c quarks behave similarly to b
jets, the scale factor SFb is also used for correcting c jet tagging efficiencies.

The uncertainty on the efficiency measurements on data are propagated to SFb and
SFl. The values and uncertainties for the scale factors for the Combined Secondary
Vertex tagger at the tight working point are summarized in figure 3.7. The scale
factors are determined as a function of the jet pT. The scale factors are measured up
to 670 GeV [130], and the scale factors and uncertainties used for jet pT > 670 GeV
correspond to the values at pT = 670 GeV, with the uncertainty increased by a factor
of two [134].

The scale factors SFb and SFl are used to correct the simulation by reweighting the
simulated events. In general, the event weight w for such an efficiency correction is
the ratio of the selection probability expected for data events, divided by the selection
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Figure 3.7: The data–simulation scale factors SFb and SFl for the b-tagging effi-
ciency and mistag rate for the Combined Secondary Vertex tagger at
the tight working point [130]. The bands indicate the 1σ uncertainty.

probability on simulated events,

w =
pdata

sel

psim
sel

. (3.10)

The event selection probabilities are calculated for each event by considering all
2Njet possible combinations of which jets in the event are b tagged and which are not
b tagged. The probability of a single combination c — in which the jets are numbered
such that the jets 1, . . . ,k are b tagged and the jets k+ 1, . . . ,Njet are not b tagged —
is given by

pc =

k∏
i=1

εfi

Njet∏
i=k+1

(1 − εfi), (3.11)

where fi denotes the jet flavor of jet i and is either “b” for a b jet or “l” for a light
quark jet. The probability pc can be calculated using either the tagging probabilities
for data or for simulation, leading to pc,data and pc,sim, respectively. The selection
probabilities psel in equation (3.10) are then given by

psel =
∑
c

pc (3.12)

where the sum runs over those combinations c for which the event would pass the
event selection, i.e. using only combinations with a certain minimum and maximum
number of b-tagged jets, according to the event selection the correction is applied for.

The systematic uncertainty on the b-tagging efficiency is considered by constructing
two additional samples of simulated events in which the value used for SFb in the
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reweighting is shifted up or down by 1σ in the whole pT range. Similarly, SFl is
varied by ±1σ to derive different event weights.

3.3.3 Pileup Event Multiplicity

The distribution of the number of pileup events included in the simulation is different
from the number of pileup events in data. This can be corrected for by reweighting
simulated events.

For each simulated event, the number of pileup events to include is generated
randomly in two steps:

1. A value λ for the mean number of pileup events per bunch crossing is drawn
from a parent distribution psim

pileup.

2. The three numbers of pileup events (in-time; out-of-time before/after the current
bunch crossing) are drawn independently from a Poisson distribution with mean
λ.

While the pileup reweighting could also be based on the three numbers generated in
the second step, the simpler choice of reweighting based on λ is pursued in this analy-
sis. This requires the knowledge of the probability distributions ppileup for simulation
and data. For simulated events, the used value of λ is saved and the distribution
psim

pileup is evaluated from all simulated events for a given sample. The distribution for
data is estimated for a given luminosity section from the instantaneous luminosity
and the total inelastic proton-proton cross section [135, 136]. The distributions ppileup

for the dataset used in this analysis and for the simulated W+jets sample are shown
in figure 3.8. The fluctuations in the W+jets distribution are not of statistical origin,
but rather an (unintentional) artifact of the seeding mechanism of the pseudo random
number generators used to generate the number of pileup events.

The simulated events are reweighted such that the distribution of the Poisson mean
λ of pileup events after reweighting, but before any event selection, reproduces the
one for data. The weight for a simulated event with mean λ is thus given by

wpileup =
pdata

pileup(λ)

psim
pileup(λ)

. (3.13)

The uncertainty on the total inelastic cross section and other sources of uncertainties
can be considered by using alternative distributions for pdata, constructed by varying
the total inelastic cross section by ±5% [137] and re-deriving the event weights.
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Figure 3.8: The distribution for the mean number of pileup events per bunch
crossing λ for data and for the simulated W+jets sample.
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3.4 Systematic Uncertainties

Systematic uncertainties for the simulation fall into two broad classes, theoretical
uncertainties related to the event generation and uncertainties specific to the CMS
detector, data taking, and reconstruction.

Theoretical uncertainties are considered by varying parameters used in the event
simulation. Cross section uncertainties are considered for all standard model back-
ground processes. The uncertainties given in table 3.1 are the uncertainties on the
corresponding higher-order result, while the simulation of most background pro-
cesses — all except single top quark production — are based on tree-level Feynman
graphs. This suggests to increase the uncertainties. Also, the statistical analysis can
constrain the background rates in-situ anyway, and increased uncertainties on the
background cross section do not have a large impact on the resulting sensitivity. The
used uncertainties for the cross sections are 15% for the QCD tt̄, 50% for the two
single top quark production processes, and 100% for Z/γ∗+jets.

The W+jets background contains jets originating from heavy flavor quarks (c and
b quarks) and from light flavor quarks and gluons. While the theoretical uncertainty
from higher-order calculations on the inclusive W cross section is small, the fraction
of W+heavy flavor has large uncertainties, e.g. differences of up to 50% are observed
for the predicted W+b production rate between Pythia and MadGraph [138]. To
account for this uncertainty, the W+jets events are split into two subsamples, a
W+heavy flavor sample and a W+light flavor sample: If a simulated event contains
at least one reconstructed jet originating from a heavy flavor quark, it is assigned to
the W+heavy flavor sample; otherwise, it is assigned to the W+light flavor sample.
The splitting allows to vary the contributions of both samples independently. A cross
section uncertainty of 50% for the W+light flavor cross section is used and a value of
100% for the W+heavy flavor cross section.

Theoretical uncertainties also arise from the arbitrariness of some of the param-
eters used in the event generation discussed in section 1.3. The uncertainty due to
the parton distribution functions typically changes the acceptance in the order of
a few percent and is neglected in this analysis. The arbitrariness of the factoriza-
tion/renormalization scale is considered by generating two samples in which both
scales are simultaneously increased and decreased by a factor two. This has been
done for the QCD tt̄ and the W+jets sample. Another arbitrary parameter is the jet
pT threshold used in the MLM matching algorithm (see section 1.3), which is also
varied up and down by a factor two for tt̄ and W+jets. These samples are used to
determine uncertainties on the rate and shape of distributions used in the statistical
analysis as discussed in section 6.1.

The uncertainties specific to CMS are due to the uncertainties on the jet energy
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correction discussed in section 3.2.5 and the simulation corrections introduced in
section 3.3. They can be included by applying jet energy corrections or events
weights to simulated events, in which the underlying correction is varied upwards or
downwards by 1σ of their respective uncertainty. This generates two additional event
samples per uncertainty, and the difference of these “up” and “down” variations with
respect to the “nominal” sample is considered in the statistical analysis as discussed
in detail in chapter 5 and section 6.1.





4 Event Selection and Reconstruction of the tt̄ System

In order to make statistical statements about tt̄ resonances, the employed method
comprises: Selecting a pure sample of tt̄ events by suppressing all non-tt̄ backgrounds
— in particular the QCD multijet background —, estimating the invariant tt̄ mass Mtt̄

for each of the remaining events, and comparing the simulated and observed Mtt̄

distributions. The first two items are covered in this chapter; the last item is the topic
of the next chapter.

Events undergo a common preprocessing and a first loose selection, the preselection,
both discussed in section 4.1. The remaining events have a well-defined event content.
This allows to apply the tt̄ reconstruction algorithm discussed in section 4.2, which
provides an estimate for the invariant tt̄ mass, Mtt̄. The suppression of the QCD
multijet background is discussed in section 4.3. The chapter concludes with the final
event selection presented in section 4.4.

4.1 Preprocessing and Preselection

This section outlines the processing and selection steps applied to the simulated and
recorded events. The first section discusses preprocessing and filtering steps, while
the second section describes the preselection requirements motivated by the event
signature of Z′ → tt̄ signal events.

4.1.1 Preprocessing and Filtering

The first step of the event selection is the high-level trigger discussed in section 2.2.5.
For the selection of tt̄ events in the muon+jets channel, high-level triggers are used
that require the presence of one muon above a certain pT threshold; in contrast
to other analyses using prompt leptons, no isolation requirement on the muon is
imposed. For simulated events, the requirement is pT > 30 GeV. For data, the trigger
requirement depends on the run range as the trigger requirement changed to adapt
to the increasing instantaneous luminosity during data taking. The most restrictive
trigger, used for the latest runs, requires a muon with pT > 40 GeV and |η| < 2.1.
Which trigger is used for which run range is summarized in table 4.1. The muon pT

requirement pT > 42 GeV, which is part of the preselection discussed in section 4.1,
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Run Range Trigger Integrated Luminosity (fb−1)

160431–163869 HLT_Mu24 0.22
165088–167913 HLT_Mu30 0.96
170826–173198 HLT_Mu40 0.83
173236–180252 HLT_Mu40_eta2p1 2.99

Table 4.1: Triggers used for the different run ranges, with the corresponding
integrated luminosity. The number in the trigger name refers to the
applied pT cut, and eta2p1 in the last row refers to the requirement
|η| < 2.1. Gaps between the run ranges do not contain any certified
runs.

is higher than the highest trigger pT threshold. This ensures that all used triggers in
data and simulation have the same efficiency within the assumed uncertainties.

Recorded events with anomalous noise in the hadron calorimeter are rejected, as
well as so-called beam-scraping events with a large tracker occupancy leading to a
high fraction of low-quality tracks. Also, the highest-pT primary vertex is required to
be consistent with proton-proton collisions and has to fulfill |z| < 24 cm and ρ < 2 cm,
where ρ is the distance from the center of the detector in the transverse plane. These
conditions are designed to be effective against anomalous events only, rejecting much
less than one permille of tt̄ events.

Recorded events are only accepted if they belong to a run and luminosity section
in which all detector components were found to be functional by a data certification
procedure, as discussed in section 2.2.5.

As the muons are also particle-flow objects, they are clustered to particle-flow jets,
unless the muon is isolated. In order to avoid double counting of the muon energy
in the tt̄ reconstruction, the non-isolated muon momentum is subtracted from the jet
it has been clustered to.

The jet energy corrections discussed in section 3.2.5 and the jet energy resolution
smearing described in section 3.3.1 are also applied at this stage.

4.1.2 Preselection

The preselection is a loose event selection with a high efficiency for tt̄ events. It serves
several purposes:

• It significantly reduces the amount of simulated and recorded events for further
processing,
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• it ensures that the trigger efficiency plateau for the muon trigger is reached,

• it removes any overlap with the e+jets selection from reference [139], required
for a statistical combination, and

• it ensures that all events have a well-defined event content — a muon, and
a minimum number of jets — for which a tt̄ reconstruction algorithm can be
developed, which is discussed in section 4.2.

As discussed in section 1.2.1, the final state of a tt̄ event in the muon+jets channel
comprises two b quarks from the top quark decays, two light quarks from the
hadronic W decay and a muon and a neutrino via the leptonic W decay. The expected
event signature for tt̄ events therefore consists of four jets, two of which are b jets, one
muon, and substantial Emiss

T due to the neutrino. For increasing generated invariant tt̄
masses mgen

tt̄ , the angular separation of the three quarks of the hadronically decaying
top quark decreases, as discussed in section 3.1.2. As the distance of the quarks in ∆R
becomes smaller, so does the distance of the corresponding reconstructed jets until,
for high mgen

tt̄ , fewer than three jets are reconstructed for a large fraction of events;
this effect is referred to as jet merging. Therefore, the selection does not require four
jets — as is commonly done to select QCD tt̄ events, e.g. in reference [58] —, but only
at least two jets in total, allowing for the three quarks of the hadronically decaying
top quark to merge into a single jet. Similarly, the decay products of the leptonically
decaying top quark have a small angular separation, and the small angle between the
b quark and the muon leads to the muons not to be necessarily isolated. Therefore,
no isolation requirement is imposed, neither at the trigger level nor later in the event
selection.

Considering the desiderata and the event signature just discussed, the preselection
requires

• at least one muon with pT > 42 GeV and |η| < 2.1,

• at least two jets with pT > 50 GeV and |η| < 2.4, and

• no electron with pT > 40 GeV and |η| < 2.5.

Details about identification criteria applied for muons, electrons, and jets can be
found in section 3.2.

4.2 Reconstruction of the tt̄ System

The tt̄ reconstruction provides an estimate for the four-momenta of the leptonically
decaying top quark tlep and the hadronically decaying top quark thad for each event.
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The reconstruction algorithm has to cope with the different expected jet multiplicities
arising from the possible jet merging of the thad decay products and it has to work
for all events passing the preselection. The algorithm starts with the reconstructed
objects: the four-momenta of the muon, the missing transverse energy, and the jets.
It proceeds in three steps: Reconstruction of the neutrino, hypothesis list building,
and hypothesis selection.

In a first step, the neutrino four-momentum is reconstructed by assuming that its
transverse component is given by the missing transverse energy and that the neutrino
and the muon originate from the decay of an on-shell W boson with an invariant
mass mW, as expected for tt̄ events. This condition leads to a quadratic equation for
the z component of the neutrino momentum, which has either zero, one, or two real
solutions. The case that there is no real solution for pz,ν arises if the reconstructed
transverse W boson mass MT,W, defined via

M2
T,W = E2

W − p2
x,W − p2

y,W, (4.1)

is larger than mW. This happens mainly due to the limited resolution of the missing
transverse energy. There are different strategies to estimate pz,ν in this case [140], but
the particular choice only has very little impact on the resulting Mtt̄ resolution in the
current analysis. Therefore, a simple approach is pursued, and the real part of the
complex solution for pz,ν is used. In case of two real solutions, both solutions are
considered in the second step of the algorithm. The number of neutrino four-vector
solutions is thus either one or two, denoted with Nν-sol.

The second step of the reconstruction algorithm consists of building a list of
hypotheses. Each hypothesis picks one of the Nν-sol neutrino solutions. Exactly one
of the Njet jets of the event is assigned to tlep, and each of the (Njet − 1) remaining jets
is either assigned to thad or not considered for this hypothesis. The initial number
of hypotheses is thus Nν-sol · Njet · 2Njet−1, where Njet is the total number of jets in
the event. Hypotheses for which no jet is assigned to thad are removed. For each
hypothesis, the four-momentum for tlep is given by the sum of the four-momenta of
the muon, the neutrino, and the jet assigned to tlep. The four-momentum for thad is
given by the sum of the four-momenta of all jets assigned to thad.

The third and last step selects one hypothesis per event. In order to develop
selection criteria, it is useful to study simulated tt̄ events in the muon+jets channel for
which the correct hypothesis is known. The notion of a correct hypothesis, however, is
quite ambiguous and requires a more stringent definition. This is done by matching
each of the four quarks of the tt̄ final state to a jet, using ∆R < 0.3 as matching
criterion. Matching two (or three) quarks to the same jet is allowed to consider all
possible cases of jet merging. The events in which this matching is successful are
referred to as matchable events. If one or more jets from the tt̄ decay are outside the
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kinematic acceptance, the event is not matchable. The fraction of matchable events is
35% for a narrow Z′ with MZ′ = 2 TeV. For matchable events, there is a well-defined
correct hypothesis, which is the hypothesis using the same assignment of jets to
thad and tlep as found by the matching; in case there are two neutrino solutions, the
hypothesis considered as the correct one is the one with smaller |p

hyp
z,ν − ptrue

z,ν |. The
properties of the correct hypothesis for matchable events are studied in order to find
suitable hypothesis selection criteria.

There are various variables that could potentially be used for the hypothesis
selection. One desired property of any hypothesis selection criterion is that it should
work equally well for the different cases of jet merging (one, two, or three jets for
thad), and for a large range of invariant tt̄ masses. This excludes using variables such
as the distance ∆R between the decay products of thad as this variable depends on
both the jet multiplicity as well as on mtt̄. Two simple variables that have the desired
property are the invariant top quark masses. For the correct hypothesis both mthad

and mtlep are expected to be close to the top quark mass. Using these two variables, a
single variable χ2 is calculated for each hypothesis,

χ2 =
(mthad − m̄thad)

2

σ2
thad

+
(mtlep − m̄tlep)

2

σ2
tlep

. (4.2)

The mean values m̄thad , m̄tlep and standard deviations σthad , σtlep entering this definition
are the mean values and standard deviations obtained using a Gaussian fit to the
core of the distributions of mthad and mtlep for the correct hypotheses in matchable
events for a narrow Z′ with MZ′ = 2 TeV. The distributions for the top quark masses
are shown in figure 4.1, which also shows that the dependence of those variables
on MZ′ is small. The mean values found for m̄thad and m̄tlep are 177 GeV and 173 GeV
respectively; the values for the standard deviations σthad and σtlep are 17 GeV and
19 GeV respectively. The differences of the mean values and standard deviations
for mthad and mtlep arise from the different resolutions of the input objects used to
reconstruct these quantities and from the different reconstruction techniques applied
for thad and tlep.

Note that the task of hypothesis selection can be seen as a statistical classification
problem, separating the correct hypothesis from the wrong hypotheses. In such an
approach, practical solutions can be obtained by applying multivariate classifiers. For
this analysis, however, the adopted standpoint is that hypothesis selection is merely
a heuristic method without this statistical background. In particular, this means that
using the χ2 variable does not imply that there is an assumption that the variables
mtlep and mthad entering the χ2 definition above actually follow a normal distribution.

For each event, the hypothesis with the smallest value for χ2, χ2
min, is selected and

this hypothesis is used to estimate the invariant mass of the tt̄ system Mtt̄. Figure 4.2
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Figure 4.1: The invariant top quark masses mthad and mtlep for the correct hy-
pothesis in matchable events for a narrow Z′ for different values of
MZ′ .

shows the shape of the reconstructed Mtt̄ for a narrow Z′ for different values of MZ′ .
The tail towards lower Mtt̄ values is due to various sources: A part of the tail is
already present on generator-level mgen

tt̄ as shown in figure 3.3. Another contribution
arises from tt̄ dilepton events passing the event selection. For these events, the value
for Mtt̄ is systematically too low as the hypothesis is constructed assuming that Emiss

T
is only due to one neutrino, not two. Finally, tt̄ µ+jets events contribute to the tail if
one or more of the tt̄ decay products are outside the kinematic acceptance, which
also leads to a Mtt̄ value that is too low.

A valuable by-product of the hypothesis selection criterion is the value of χ2
min for

each event, which can be used as a compatibility measure for tt̄ events: Correctly
reconstructed tt̄ events are expected to have a small value for χ2

min, while events from
background processes or incorrectly reconstructed tt̄ events are expected to have
large χ2

min values. This is used in the event selection discussed in the next section.
The resolution of the Mtt̄ reconstruction is defined as the width of the Gaussian

core of the Mtt̄ distribution for a fixed value of mgen
tt̄ . The relative resolution is

determined on simulated µ+jets events by iteratively fitting a Gaussian distribution
to the distribution of (Mtt̄ −m

gen
tt̄ )/m

gen
tt̄ , adapting the fit range after each iteration to

the ±2σ peak region, where σ is the Gaussian width determined by the previous fit
iteration. In general, the resolution depends on the event selection, especially if it has
a higher efficiency for correctly reconstructed tt̄ events, which is the case for the final
event selection as it applies a χ2

min requirement. For events passing the final event
selection, the relative resolution of Mtt̄ is about 10% for mgen

tt̄ = 1 TeV and improves
(decreases) for larger mgen

tt̄ , reaching a value of just below 6% for mgen
tt̄ = 3 TeV.
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Figure 4.2: The reconstructed invariant tt̄ mass Mtt̄ for standard model tt̄ pro-
duction and narrow Z′ samples.
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4.2.1 Mtt̄ Interpolation

The statistical inference is based on the Mtt̄ distributions for Z′ and background
processes. As discussed in section 3.1.2, the simulated Z′ samples have been generated
with the masses MZ′ = 1, 1.25, 1.5, 2, and 3 TeV. In order to make statistical statements
for other values of MZ′ , Mtt̄ distributions for intermediate values of MZ′ are required.
These are obtained via the RooMomentMorph interpolation algorithm [141], which uses
the templates for two MZ′ masses to obtain the Mtt̄ distribution at an intermediate
mass value. An affine transformation (scale and shift) on the Mtt̄-axis for each input
distribution is applied to obtain distributions with the same mean and standard
deviation. The interpolated template is then given by the weighted average of the
two input distributions at each transformed Mtt̄ value, and the affine transformation
is undone, using a weighted average of the shift and scale factors used in the
transformation of the input templates. Figure 4.3 shows an example for the output
of the algorithm: The Mtt̄ distributions for MZ′ = 1 TeV and MZ′ = 1.5 TeV are used
to obtain an Mtt̄ distribution for MZ′ = 1.25 TeV. This distribution is in reasonable
agreement with the one obtained by using a simulated sample with MZ′ = 1.25 TeV.

4.3 QCD Multijet Suppression

After the preselection, the largest contribution is from QCD multijet production. As
the QCD multijet production is harder to model from simulation than the other
background processes, it is especially important to suppress this background.

The muons in QCD multijet production mainly originate from two sources: Decay-
in-flight muons from the decay K/π → µ + X and from heavy quark decays in bb̄
and cc̄ events. In all of these cases, the muon is created in association with hadrons
or within a jet and thus particles close in ∆R are expected around the muon direction.
A widely used approach to suppress QCD multijet production for the selection of
prompt muons from W/Z+jets and tt̄ events is therefore to require that the muon is
isolated. A muon is considered isolated if the pT-sum of all particle flow candidates
in a cone in the η-φ plane with a radius R = 0.4 is below 15% of the muon transverse
momentum. As mentioned in section 4.1, however, the small angles between the
muon and the b quark from the leptonic top quark decay can lead to prompt muons
in the signal not passing this isolation criterion. Therefore, an alternative criterion is
applied here. It is based on the observation that muons in QCD multijet events are
usually accompanied by a jet, which is close in ∆R and uses variables based on the
muon and the nearest jet in ∆R, where in this case, a lower pT requirement than usual
is used for the jet definition, pT > 25 GeV. For QCD multijet events, this jet is often
the heavy flavor jet from which the muons originate. This jet is used to define the
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Figure 4.3: Example for the template interpolation: MZ′ = 1 TeV and MZ′ =

1.5 TeV distributions are used to obtain the interpolated distribution
for MZ′ = 1.25 TeV, which is compared to the distribution obtained
directly from simulation.
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Figure 4.4: Illustration of the definition of the relative transverse momentum prel
T :

It is defined as the length of the vector ~prel
T , which is the component

of the muon momentum perpendicular to the jet axis.

variable prel
T , which is the component of the momentum of the muon perpendicular

to the jet axis. This is illustrated in figure 4.4 and can be expressed as

prel
T = pµ sinα , (4.3)

where α is the angle between the jet and the muon momentum and pµ is the
magnitude of the three-momentum of the muon. This variable is used for b tagging
algorithms [130] as it typically takes larger values for muons from semileptonic B
meson decays in b jets than for muons originating from light quark jets. It takes even
larger values for high-mass tt̄ events and thus a requirement of a large prel

T can be
used to keep muons in tt̄ events while suppressing both decay-in-flight muons and
muons from heavy flavor decays.

Muons in this analysis are selected based on two variables; the selection is referred
to as the muon 2D-cut. A muon passes this cut if it either has ∆R > 0.5 or prel

T >

25 GeV, both defined w.r.t. the nearest jet in ∆R, where any jet with pT > 25 GeV is
considered. To compare this cut with the isolation requirement, figure 4.5 shows the
selection efficiencies of these two selections as a function of the Z′ mass. For this
comparison, the selection efficiency is calculated for a selection that also requires at
least two jets with pT > 50 GeV; this jet requirement is the reason for the selection
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Figure 4.5: The signal event selection efficiency εsel for requiring the muon to be
isolated or to fulfill the 2D-cut for a narrow Z′ as a function of MZ′ .

efficiency for the muon 2D-cut to increase as a function of MZ′ for small MZ′ . The
efficiency for the isolation requirement decreases with increasing MZ′ , while the
2D-cut efficiency is approximately constant. At high masses, the 2D-cut is two times
more efficient than the isolation requirement. Therefore, the 2D-cut is used in this
analysis to reduce QCD multijet background.

After applying the muon 2D-cut, still a large fraction of QCD multijet events
remains. This fraction is further reduced by requiring Hlep

T > 150 GeV, where Hlep
T is

the scalar sum of the missing transverse energy and the muon transverse momentum.
This requirement has a high efficiency for tt̄ signal events in which a high-pT muon
and a high-pT neutrino lead to a large value for Hlep

T , while both Emiss
T and pµT are

typically small for QCD multijet events, as is shown in section 4.4 in more detail.
The muon 2D-cut and the Hlep

T requirements do not only suppress the QCD
multijet background, but also allow to construct sidebands to estimate the number
of remaining QCD multijet events after the selection: Sidebands enriched in QCD
multijet events can be defined by inverting the muon 2D-cut. From events in these
sidebands, a shape for the QCD multijet distribution for Hlep

T is extracted and by
fitting the Hlep

T distribution in the region Hlep
T < 150 GeV, the number of QCD multijet



70 4 Event Selection and Reconstruction of the tt̄ System

events with Hlep
T > 150 GeV can be estimated [27,28]. As the number of QCD multijet

events is very small and negligible compared to the rate uncertainties due to the
other background processes — the fraction of QCD multijet events is around 2%
—, the QCD multijet background is not considered in the statistical analysis. The
simulated sample for the QCD multijet background is still used, however, in the
development of the final event selection.

4.4 Final Event Selection

The goal of the final event selection is to suppress the background processes while
keeping a high signal efficiency in order to allow stringent statements about the cross
section of resonances decaying to tt̄. This suggests to develop an event selection
that minimizes the expected limit. As the calculation of the expected limit including
all uncertainties is hardly feasible, simpler quantities are used for the optimization,
such as the ratio of the number of signal and background events S/B or the expected
significance in the Gaussian approximation S/

√
B. Possible selection criteria have

been studied in reference [27], using S/
√
B in windows of Mtt̄ as the optimality

criterion. These studies suggest that the sensitivity can be increased by requiring
a minimum transverse momentum for the leading jet (the highest-pT jet), but no
sensitivity is gained by requiring a minimum transverse momentum for the second
jet or for the muon. A requirement for the leading jet of pT > 250 GeV is used in this
analysis.

The three requirements discussed so far — the muon 2D-cut and Hlep
T requirement

to suppress the QCD multijet background and the cut on the leading jet pT — are
a suitable event selection and have been used as the final event selection in refer-
ence [28]. The expected limit can be further improved (reduced), however, by about a
factor 2–3 if two additional steps are performed. The first step is a further selection
step requiring χ2

min < 8. This suppresses the non-tt̄ background and tt̄ events with
an unusually high χ2

min, e.g. in dilepton events or in events in which one or more
decay products of the tt̄ events are outside the kinematic acceptance. To find the
optimal threshold for this cut, the quantities S/B and S/

√
B have been studied. Both

quantities exhibit only a small dependence on the cut threshold, but suggest to use
a small χ2

min threshold that rejects a large fraction of the W+jets background, which
is the main non-tt̄ background. A very small threshold, however, would reduce the
number of simulated events to a level that does not allow a reliable modeling of
these backgrounds from simulation. The chosen threshold of 8 keeps around 50%
of the signal and rejects about 96% of the W+jets background. The second step is
to split the events into two disjoint channels, based on the number of b tagged jets
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Nb-tag; the channels require Nb-tag = 0 and Nb-tag > 1, respectively. The background
composition in these channels is different: The QCD tt̄ process dominates the back-
ground in the Nb-tag > 1 channel, while the channel Nb-tag = 0 also contains a large
fraction of W+jets events, which is affected by much larger uncertainties. Therefore,
the background in the Nb-tag > 1 channel is better known and this increases the
sensitivity.

In summary, the event selection criteria applied after the preselection are:

1. muon 2D-cut

2. leading jet pT > 250 GeV

3. Hlep
T > 150 GeV

4. χ2
min < 8

5. either Nb-tag = 0 or Nb-tag > 1, using the CSV b tagging algorithm at the tight
working point.

The selection efficiencies of the leading jet pT requirement, of the Hlep
T requirement,

and of the χ2
min requirement for the main background processes and for Z′ signal are

shown in figures 4.6 to 4.8, as functions of the applied thresholds.
The expected numbers of events for different processes, as well as the numbers

of signal events and data, are summarized in table 4.2. The simulated samples
are weighted according to the integrated luminosity using the corresponding cross
sections, as discussed in section 3.1.1. The signal cross section is set to the arbitrary
value of 1 pb. The corrections for the simulation discussed in section 3.3 have been
applied. Between 20 and 30% fewer events are observed in data than expected
for background only from the simulation. Considering the uncertainties on the
backgrounds discussed in section 3.4, however, the observed number of events is
compatible with the expected number of events. The events used in the statistical
evaluation are those in the Nb-tag = 0 and Nb-tag > 1 channels, i.e. those in the last
two columns in table 4.2.

One factor limiting the sensitivity of the analysis is the signal selection efficiency.
It rises from 1.5% for MZ′ = 1 TeV — where the leading jet pT requirement has a
rather low efficiency — to 4.8% for MZ′ = 2 TeV, and slightly decreases to 4.5% for
MZ′ = 3 TeV, where the decrease can be understood with the tail towards low Mtt̄

values discussed above. This leads to a slight decrease in sensitivity for MZ′ = 3 TeV,
as will be discussed in more detail in chapter 6. Another cause for the loss of
sensitivity is the b tagging efficiency: The fraction of the selected signal events in the
channel Nb-tag = 0 rises for increasing MZ′ , as the b tagging efficiency decreases with
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Figure 4.6: The selection efficiency εsel as a function of the leading jet pT thresh-
old, after applying the muon 2D-cut. This selection step reduces all
background processes. The chosen threshold of 250 GeV is indicated
with the vertical line.
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Figure 4.7: The selection efficiency εsel as a function of the Hlep
T threshold, after

applying the leading jet pT requirement. This requirement mainly re-
duces the QCD multijet background. As the simulated QCD multijet
background sample contains only few events, the curve for this pro-
cess exhibits statistical fluctuations. The chosen threshold of 150 GeV
is indicated with the vertical line.
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Figure 4.8: The selection efficiency εsel as a function of the χ2
min threshold, after

applying the Hlep
T requirement. This reduces all non-tt̄ background

processes. The chosen threshold of 8 is indicated with the vertical line.
No simulated QCD multijet is shown due to the very low number of
simulated events passing the selection.

increasing jet pT. As the Nb-tag = 0 channel contains a considerable amount of the
W+jets background affected by larger uncertainties, this leads to a loss of sensitivity
as well.
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4.4.1 Modeling Checks

The statistical analysis relies on the simulation to model the properties of the data
events within the assumed uncertainties. As a cross-check, distributions of various
variables are compared between data and simulation in a sideband of the final event
selection to find signs for possible sources of mismodeling. The chosen sideband
is defined by inverting the leading jet pT requirement and by not applying the χ2

min

and Nb-tag requirements. This particular sideband was chosen as it is close to the
final selection but does not contain a considerable fraction of QCD multijet events.
The distributions checked fall into two broad classes: Distributions related to the
reconstruction of the tt̄ system and variables related to the reconstructed objects such
as transverse momenta, pseudorapidities, multiplicities, and distances of jets, the
muon, and missing transverse energy.

Figure 4.9 shows some variables of the latter class: The pT and η of the muon, the
number of jets Njet, and the missing transverse energy Emiss

T . Figure 4.10 shows vari-
ables related to the tt̄ event reconstruction: The distributions for the reconstructed top
quark masses mthad and mtlep for the hypothesis with the smallest χ2, the distribution
of χ2

min, and the Mtt̄ distribution. The events with low mthad are due to events with
only two jets in which the hypothesis with the smallest χ2 is a hypothesis with only
one jet assigned to thad, mthad being the invariant mass of this jet. In both figures, the
simulated events have been weighted according to the integrated luminosity and
cross section. About 3% less data is observed than expected from the sum of the
background processes. Various distributions have been checked and no signs of
mismodeling have been found.

4.4.2 Selected Events

The statistical analysis is based on the simulated and observed distributions forMtt̄ in
the channels Nb-tag = 0 and Nb-tag > 1. These are shown in figure 4.11. The simulated
samples have been scaled to match the number of events observed in data. From
these distributions, there is no visual indication for a resonant tt̄ contribution; this
conclusion is supported by the quantitative statistical analysis discussed in chapters 5
and 6.

Figure 4.12 shows a transverse view of the CMS detector with the selected event
that has the highest value for Mtt̄. It is an event in the Nb-tag > 1 channel and has
many of the features expected for a high-mass tt̄ event: It has only two jets in total —
one b jet from the tlep and one merged jet from thad — and a non-isolated, high-pT

muon. Both reconstructed top quark candidates have an invariant mass close to the
expected mass — the χ2

min value is 1.1, much below the required value of 8. They
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Figure 4.9: Distributions of the pT and η of the muon, the number of jets Njets

and Emiss
T in the cross-check sideband with inverted leading jet pT

requirement and without χ2
min and Nb-tag requirements. Simulated

events are weighted according to the luminosity and cross section.
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Figure 4.10: Distributions for variables connected to the tt̄ reconstruction in the
sideband: The reconstructed invariant masses for the top quarks
for the selected hypothesis, χ2

min, and the reconstructed tt̄ mass Mtt̄.
Simulated events are weighted according to the luminosity and
cross section.



4.4 Final Event Selection 79

are balanced in the transverse plane, one jet fulfills the tight CSV b tag, the other
would pass the loose CSV b tag working point. Based on the purity of the Nb-tag > 1
channel, the probability that this is indeed a tt̄ event is larger than 90%.
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Figure 4.11: The Mtt̄ distribution after the final event selection for the channels
Nb-tag > 0 and Nb-tag = 0, showing narrow Z′ signals using a cross
section of 1 pb.
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Jet
pT= 465 GeV/c

η = 0.52

Muon

pT= 355 GeV/c

η = 0.23

b-tagged Jet

pT= 904 GeV/c

η = 0.73
leptonically decaying
top quark candidate:
m = 167 GeV/c2

pT = 904 GeV/c

ET
miss  = 88 GeV

hadronically decaying
top quark candidate:
m = 194 GeV/c2

pT = 904 GeV/c

CMS Experiment at LHC, CERN
Data recorded: Tue, Aug 9 13:57:08 2011 CEST
Run/Event: 172952 /1031053741
Lumi section: 887

Mtt = 1.87 TeV/c2

Figure 4.12: Transverse detector view showing the event with the highest value
of Mtt̄.





5 Statistical Analysis

The event selection and tt̄ reconstruction discussed in chapter 4 allow the construction
of Mtt̄ distributions for both data and Monte-Carlo simulation. Comparing these
distributions, upper limits on the cross sections for resonances Z′ → tt̄ can be set.
Formally, this involves defining a statistical model which specifies the probability
to observe a certain dataset as a function of some underlying parameters such as
the Z′ cross section. This is described in section 5.1. Based on this model, various
statistical methods for limit setting can be applied as introduced in section 5.2. The
implementation of these methods in the theta framework, which has been developed
in this analysis, is discussed in section 5.3.

This chapter introduces the methods and tools that are required in general to set
upper limits on a cross section. The application of these methods to the Z′ → tt̄
search is discussed in chapter 6, including the interpretation of these cross-section
limits as lower mass limits within some specific Z′ models.

5.1 Statistical Model

The statistical model specifies the probability to observe a certain dataset as a function
of some real-valued parameters, including the parameter one wants to make statistical
statements about, which is the signal cross section in this case. This section first
introduces a simple statistical model which is subsequently extended to the more
complicated model used in this analysis.

A simple model, which can be seen as a prototype for many analyses, is a counting
experiment in one channel where the expected number of background events b
is known and the signal cross section is the parameter of interest. In this case,
the dataset is completely specified by the number of observed events, n, and the
probability to observe n events follows a Poisson distribution,

Poisson(n|λ) =
λne−λ

n!
, (5.1)

where λ is the Poisson mean predicted by the model. This Poisson mean λ is written
as a function of the model parameters, the only model parameter being the unknown
signal cross section σs. Rather than including σs as a model parameter directly, a
signal strength modifier µ is used as parameter that scales the number of expected
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signal events s. This expected number of signal events s is calculated for an arbitrary,
but known signal cross section σs,0. Thus, the dimensionless parameter µ is the signal
cross section in units of the cross section σs,0. The final result is expressed as a cross
section and is given by µ · σs,0, which will not depend on the choice of σs,0. Now µ is
the only model parameter and λ is given by

λ(µ) = b+ µ · s. (5.2)

This completes the definition of the prototype model: The probability to observe
a certain dataset (n), given the values of the model parameters (µ), is completely
specified by equations (5.1) and (5.2).

The first extension to this prototype model is to use histograms instead of a single
event count. In this case, the dataset n as well as the prediction λ are histograms
whose bin contents for bin i = 1, . . . ,Nbin are given by ni and λi, respectively. The
probability to observe the dataset n is given by the product of Poisson probabilities
over all bins,

p(n|λ) =

Nbin∏
i=1

Poisson(ni|λi) =
Nbin∏
i=1

λnii e
−λi

ni!
. (5.3)

For each bin i, λi is given by the sum of the expected number of background events
and the scaled expected number of signal events as in equation (5.2). In general, more
than one selection and physical observable is used, in which case the probability is
given by taking the product over all these Nchan channels,

p(n|λ) =

Nchan∏
c=1

Ncbin∏
i=1

Poisson(ni,c|λi,c), (5.4)

where c denotes the channel and the dataset n. The prediction λ and number of bins
Nbin both acquire a dependency on the channel c. However, note that equations (5.3)
and (5.4) are equivalent if the bin index i in equation (5.3) runs over all bins in all
channels. Therefore, the slightly simpler notation of equation (5.3) will be used in
the following discussion, with the understanding that more than one channel can be
used and the bin index i always runs over all bins used in the statistical analysis.

The second modification to the model is to explicitly write the expected number of
background events b as a sum of the different contributing background processes
which are determined separately,

b =

Np∑
p=1

λp, (5.5)
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whereNp is the number of background processes considered. For more consistency of
notation, the expected number of signal events s is called λs. This modification allows
a simpler formulation of systematic uncertainties which often affect the different
background process differently.

The third and last extension is to introduce systematic uncertainties. For each
source of systematic uncertainty u, an additional model parameter θu is introduced.
The expected number of events for process p in bin i, λp,i, is written as a function
of these nuisance parameters. Different types of systematic uncertainties lead to
different choices for the functional dependency of λp,i on the nuisance parameters
θu and will be discussed in sections 5.1.1 to 5.1.3.

In this analysis, a Bayesian concept for systematic uncertainties is used, which
allows to write down a prior probability distribution for the nuisance parameters.
The nuisance parameter priors are independent normal distributions with a mean of
zero and a standard deviation of one. This can be assumed without loss of generality,
as it is always possible to apply a transformation on a model parameter such that the
prior in the new parameter is such a normal distribution with mean zero and width
one.

The complete model can now be written as

p(n|µ, θ) =
Nbin∏
i=1

Poisson(ni|λi(µ, θ)) with (5.6)

λi(µ, θ) =
Np∑
p=1

λp,i(θ) + µ · λs,i(θ), (5.7)

π(θ) =

Nsyst∏
u=1

Gauss(θu|0, 1), (5.8)

where the last line specifies the prior π for the nuisance parameters θu where

Gauss(x|x0,σ) =
1√
2πσ

e−
1
2(
x0−x
σ )

2

(5.9)

is the Gaussian probability density for x with mean x0 and standard deviation σ.
Equations (5.6) and (5.7) define the probability to observe the dataset n, given

model parameters µ and θ. For a fixed dataset n, this expression can also be read as
a function of µ and θ, known as the likelihood function L(θ,µ|n). In this thesis, the
likelihood function always includes the prior terms for the nuisance parameters θ
according to equation (5.8), and the likelihood function is thus given by

L(θ,µ|n) = p(n|µ, θ) ·
Nsyst∏
u=1

Gauss(θu|0, 1). (5.10)
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In the next sections, different types of systematic uncertainties are discussed and
how they affect the prediction λ.

5.1.1 Rate Uncertainties

Theory cross-section uncertainties and uncertainties on the selection efficiency affect
the overall rate of a process. They are included in the model by scaling all bins i
of the histogram for process p, λp,i, by a bin-independent factor. If the nuisance
parameter for the considered source of the uncertainty is θu and the best prediction
for the mean in process p in bin i is λp,i,0, then the scaling used is

λp,i(θu) = eδp,uθu · λp,i,0 , (5.11)

where δp,u is a constant connected to the relative uncertainty for this process assigned
to this source of uncertainty; note that δp,u depends on the process p but not on the
bin index i. If there are multiple rate uncertainties affecting the rate, each of them is
included by adding another exponential factor.

To better understand how this uncertainty changes the prediction λ, one can
choose a different but equivalent way to parameterize this uncertainty by replacing
the exponential factor in equation (5.11) with a scale parameter ξ,

ξ := eδp,uθu

The Gaussian prior for θu with mean 0 and width 1 is equivalent to a log-normal
prior for ξ given by

p(ξ|δp,u) =
1

ξδp,u
√

2π
e
−

(lnξ)2

2δ2
p,u , ξ > 0. (5.12)

This probability density is shown in figure 5.1 for δp,u = 0.3. One advantage of this
distribution over using a scale factor with a Gaussian prior is that unphysical values
ξ < 0 do not occur by construction. On the other hand, it can be observed that this
log-normal distribution is not symmetric, which is reflected in the non-coincidence of
the median, mean, and maximum of the log-normal density given in figure 5.1. If the
relative systematic uncertainty for a process is ∆, the corresponding value for δp,u

is set to log(1 + ∆). This results in a 1σ interval for the factor ξ of
[

1
1+∆ , 1 + ∆

]
. The

asymmetry of the log-normal distribution in ξ can be seen for large uncertainties,
e.g. a “100% uncertainty” ∆ = 1 leads to a 1σ interval for ξ of [1/2, 2].

Equation (5.11) can be generalized to asymmetric log-normal uncertainties by using
two different coefficients δp,u,±, where the sign of θu determines which one of those
is used.
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Figure 5.1: Log-normal probability density function p(ξ|δp,u) for a scale factor
ξ used to model rate uncertainties for δp,u = 0.3. The mean is at
ξ = eδ2

p,u/2, the median is at ξ = 1 and the mode at ξ = e−δ2
p,u .
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5.1.2 Shape Uncertainties: Template Morphing

Some uncertainties do not only affect the expected overall rate of a process but also
the shape of the histogram. One example would be the jet energy scale uncertainty
shift, which would move an invariant mass peak to smaller or larger invariant masses.

For each uncertainty of this kind, in addition to the nominal prediction template
for process p, λp,i,0, two more templates, one “up” and one “down” template are
constructed by applying the +1σ systematic shift and the −1σ shift corresponding to
this uncertainty in the simulated events. Details about how such a shift is applied
in simulated events depends on the uncertainty and are discussed in section 6.1.
To include this effect in the statistical model, the nuisance parameter θu is used to
interpolate between the nominal histogram and these two additional histograms.
This is known as template morphing. The interpolation for λp,i is performed such that
for θu = 0, the nominal histogram λp,i,0 is reproduced, and θu = ±1 yields the “up”
and “down” histograms. For values |θu| > 1, λp,i is chosen to be a linear function of
θu going through the points at θu = 0 and θu = ±1. For the interpolation (|θu| < 1), a
cubic function is used such that the predicted event yield as a function of θu, λp,i(θu),
is continuously differentiable at the points θu = ±1 and its derivative at θu = 0 is
the average of the slopes of the linear extrapolation. These conditions determine the
parameterization for the interpolation completely and for |θu| < 1, it is

λp,i(θu) = λp,i,0 +
1
2
θu (λp,i,+ − λp,i,−) +

(
θ2
u −

1
2
|θu|

3
)
(λp,i,+ + λp,i,−) (5.13)

where λp,i,± is the bin content of bin i for the “up” and “down” histograms for
process p. This function is shown in figure 5.2. If more than one shape uncertainty is
considered, the difference to the nominal bin content, λp,i(θu) − λp,i,0, is determined
for each uncertainty u and all these differences are added to the nominal bin content.
For |θu| > 1, it is possible that the resulting prediction after template morphing is
smaller than zero. As this is unphysical, the value is set to zero in this case.

Template morphing techniques have been used, see e.g. [142], although with
different dependence of the predicted yield as a function of the nuisance parameter.
The functional dependence chosen here — with a cubic interpolation and a linear
extrapolation — has the advantage that it is continuously differentiable. This leads to
a continuously differentiable negative log-likelihood function, which is important for
the numerical minimization. This parameterization was proposed by Jan Steggemann
(unpublished).

An example for template morphing is shown in figure 5.3. The left plot shows
the three templates for Mtt̄ used for the jet energy scale uncertainty; the nominal
template was constructed using the nominal jet energy corrections, while for the
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Figure 5.2: The prediction for process p in bin i, λp,i, as a function of the nuisance
parameter θu used for template morphing. The interpolation for
|θu| < 1 uses a cubic function and the extrapolation for |θu| > 1 is
linear.
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Figure 5.3: Example for template morphing for the Z′ sample with MZ′ = 2 TeV
for the jet energy scale uncertainty. The left plot shows the input
histograms used for the template morphing, while on the right, the
output of the template morphing for different values of θjes is shown.

“up” (“down”) template, the jet energies have been shifted up (down) by the pT and
η-dependent 1σ uncertainties. As expected, a small shift in the peak position can be
observed. These templates are used as input for the template morphing; they are
reproduced for values of the nuisance parameter θjes = 0,±1. The right plot shows
the output of the template morphing for θjes = −2.0, which results in a more extreme
downward shift of the peak than the “down” histogram, and for θjes = 0.5, which
results in a peak shift between the “nominal” (θu = 0) and “up” histogram (θu = 1).
This demonstrates that the template morphing qualitatively behaves as expected.

5.1.3 Uncertainties due to Limited Number of Simulated Events

If a histogram used in the statistical model for the description for the signal or a
background process is built from a sample of simulated events, the limited number
of simulated events in that sample is an additional source of systematic uncertainty.
The predicted event yield for process p and bin i, λp,i,0, is obtained by counting
the number of simulated events falling in bin i after the event selection, Np,i,pass,
multiplied by a weight factor which depends on the cross section of the considered
process, σp, and integrated luminosity L,

λp,i,0 =
Np,i,passLσp

Np,total
, (5.14)

where Np,total is the total number of simulated events in the sample for process p,
before applying the event selection. In this procedure, the number of simulated events
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Np,i,pass is a random variable with a binomial probability distribution with some
selection efficiency εp,i. For small selection efficiencies, the number of unweighted
simulated events in bin i, Np,i,pass, can be considered to follow a Poisson distribution
with mean εp,i ·Np,total with very good approximation. To include this uncertainty
into the statistical model, one possibility is to include these Poisson probabilities
for each process explicitly into the statistical model, a solution originally proposed
by Barlow and Beeston in Reference [143]. In that proposal, the statistical model is
extended to include one additional nuisance parameter per bin and process that is
the true mean, denoted with λp,i,0,t. Using these additional parameters, one can write
down the joint probability to observe both ni data events in bin i, and λp,i,0 weighted
simulated events in this bin.

In practice, this approach introduces a large number of additional nuisance pa-
rameters and numerical minimization algorithms used to find the maximum of the
likelihood function often fail to converge. Also, this approach is only applicable
directly if all simulated events for a given process have the same event weight. How-
ever, in this analysis, the event reweighting to correct the simulation for b-tagging
and pileup discussed in section 3.3 assigns a different weight to each event.

The suggested modification in Reference [142] is to approximate the Poisson
probability for Np,i,pass by a Gaussian. For a given process p and bin i, one can
estimate the appropriate width for this Gaussian uncertainty on λp,i(θ) by the square
root of the sum of the squared weights of the simulated events in this bin. This
uncertainty is then propagated to the total predicted event yield in bin i, λi given
in equation (5.7). This uncertainty on λi is denoted with ∆i. The statistical model is
extended to include one additional nuisance parameter per bin i, νi, which denotes
the additive shift of the estimated mean λi to the true mean λi,t which one would
obtain with an infinite number of simulated events,

λi,t(θ,νi) = λi(θ) + νi, (5.15)

where νi has a Gaussian prior around 0 with width ∆i. Note that this approach
is slightly different to the one in Reference [142] where the nuisance parameter is
a factor, not a summand. The probability to observe dataset n, originally given in
equation (5.6), is now

p(n|µ, θ,ν) =
Nbin∏
i=1

Poisson(ni|λi(µ, θ) + νi). (5.16)

The statistical methods discussed in the next section do not require the full likeli-
hood function but rather the value of the likelihood function at the maximum taken
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over all nuisance parameters. As intermediate step, the profile likelihood function Lp is
defined which carries out this maximization in the parameters ν,

Lp(µ, θ|n) = max
ν

L(µ, θ,ν|n), (5.17)

where L is the likelihood function defined in analogy to equation (5.10) based on the
probability given in equation (5.16). The function Lp has very similar properties as
the full likelihood function for all practical applications.

The important observation is that this maximization over ν can be performed
analytically: Consider the partial derivatives of the logarithm of the likelihood
function with respect to νi,

∂ logL
∂νi

=
∂

∂νi
(log Poisson(ni|λi(µ, θ) + νi) + log Gauss(νi|0,∆i)) (5.18)

= −1 +
ni

λi(µ, θ) + νi
−
νi

∆2
i

. (5.19)

Setting this to zero for all νi in order to find the local extrema yields the following
quadratic equation for each νi:

ν2
i + νi(λi(µ, θ) + ∆2

i) + ∆
2
i(λi(µ, θ) − ni) = 0, (5.20)

which can be solved for νi. Only one of the two solutions yields a physical (non-
negative) prediction λi+νi which is used to evaluate the full likelihood function. This
procedure allows to calculate the profile likelihood function numerically in a robust
way, avoiding the practical problems arising when applying minimization algorithms
directly on the high-dimensional, full likelihood function based on equation (5.16).

5.2 Limit Setting Methods

In the field of statistics, one can identify two different schools: classical statistics
(also known as “frequentist” statistics) and Bayesian statistics. These two approaches
differ in their use of the term probability and actually give rise to different statistical
methods.

In classical statistics, probability is defined as the relative frequency of an event. It
is not meaningful to make statements about the probability distribution of a model
parameter, such as the signal cross section µ: The signal cross section, while unknown,
has one well-defined value in nature and is no random variable for which one can
define a probability in the sense of a relative frequency, as there is no well-defined
experiment one could repeat.
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In Bayesian statistics, the term probability is not only used for relative frequencies
as in classical statistics but can also be used to refer to a “degree of belief” and it is
valid to make probabilistic statement about a model parameter, such as a probability
density for the signal cross section.

In the analysis discussed in this thesis, the goal is to derive upper limits on the
signal cross section. Both the classical and Bayesian approaches are used which lead
to quite different methods. The classical interval construction is introduced first.
Some modifications of this approach lead to the CLs limit construction discussed in
the second section and finally, the Bayesian approach is explained in section 5.2.3.

5.2.1 Classical Limits

For a given statistical model, any method setting upper limits on the parameter
µ (which is considered to be the only model parameter) can be considered as a
function assigning each observed dataset n the upper limit µα(n), where α is a
probability introduced below. In classical methods, the central property of a limit
setting procedure is the coverage probability. It is the probability that the true parameter
value is below the cited upper limit and is written as

pµ(µ < µα(n)). (5.21)

In general, this coverage probability depends on the true value of µ. A confidence level
(1 − α) means that the coverage probability of the method is at least (1 − α) for all
values of µ,

∀µp(µ < µα(n)) > 1 − α. (5.22)

Note that one would usually prefer equality in this Equation, but this is not always
possible (e.g. due to discreteness of the data n), and the usual convention is to require
the coverage to be larger in such cases, not smaller. This is known as overcoverage
and the limit setting method used is said to be conservative.

The classical interval construction method is the Neyman construction [144], which
guarantees the correct (over-)coverage. This construction is first introduced using a
counting experiment where the outcome of the experiment is the number of observed
events, n; generalizations will be discussed later.

The Neyman construction can be illustrated as constructing a belt in the n-µ-plane1:
For a confidence level of (1−α), for each value of µ the belt in the n direction consists
of the values n from n0 to infinity such that the probability at this value of µ to
measure a value n > n0 is at least the confidence level (1 − α). This belt is shown in

1Note that “belt” refers to the general case of a two-sided interval construction. In the case of upper
limits discussed here, this “belt” extends to positive infinity in n.
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Figure 5.4: Neyman construction for 95% C.L. upper limits for a counting exper-
iment with 100 expected background events and a measurement of
nobs = 110. The resulting 95% C.L. upper limit on the mean number
of signal events is µ = 27.8.

figure 5.4. For the measurement, the observed data nobs is used to read off the upper
limit for µ, as indicated in the figure. To see that this construction yields correct
coverage, choose an arbitrary but fixed true value for µ. The probability to measure
a value n within the belt is at least (1 − α), and exactly in those cases, this value
for µ is part of the resulting interval. This is true for all values of µ and therefore
equation (5.22) holds.

This construction can also be seen as an inverted hypothesis test where for upper
limits, the null hypothesis µ = µ0 is tested versus the (composite) alternative µ < µ0.
The 95% confidence level (C.L.) upper limit for µ is the smallest value of µ0 for which
the null hypothesis cannot be rejected at the α = 0.05 level.

To generalize this construction to analyses with more than one channel, the multi-
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dimensional dataset has to be reduced to one real number that summarizes the
compatibility with the tested hypothesis, known as the test statistic. In the convention
used here, large test statistic values refer to greater incompatibility with the null
hypothesis. The optimal choice for the test statistic is the likelihood ratio test statistic,
according to the Neyman-Pearson lemma [145]. It is optimal in the sense that it
maximizes the probability to reject the null hypothesis for a given type-I error rate α,
which is the probability to reject the null hypothesis although it is true. However,
this is only applicable in cases where both the null hypothesis and the alternative
hypothesis are not composite hypotheses, i.e., do not contain any free parameters,
and it is therefore not directly applicable here. A common choice for the test statistic
in this case is to use the ratio of profile likelihood functions [146], where the full
likelihood function is maximized over all parameters in the parameter space allowed
by the respective hypothesis. In the case for upper limits where the null hypothesis
is µ = µ0 and the alternative is µ < µ0, the test statistic thus is

qµ0(n) = ln
maxµ<µ0,θ L(µ, θ|n)

maxθ L(µ0, θ|n)
, (5.23)

where θ denotes the nuisance parameters.2

To construct the Neyman band, the probability distribution for qµ0 has to be known.
In general, this distribution is not known analytically. Rather, the statistical model is
used to construct an empirical distribution function by generating a large sample of
random pseudo datasets and for each pseudo dataset, the value for the test statistic
is calculated. This ensemble can then be used for the construction of intervals.

If introducing systematic uncertainties via nuisance parameters into the problem,
the classical approach requires that the coverage probability in equation (5.22) holds
not only for all values of µ but also for all values of the nuisance parameters θ.
However, most interval construction schemes (such as the Neyman construction
discussed above) in general have many issues in practice as they require projecting
the generalized band construction, which is performed in the full model parameter
space, onto the axis of the parameter of interest. These problems of eliminating
nuisance parameters in classical interval construction are known in the statistics
literature, for example the Behrens-Fisher problem, for which it is impossible to
construct intervals with the desired properties [147], or Fillier’s problem, which can
lead to infinite confidence intervals [148] which are useless in practice. Therefore,

2The logarithm is included here mainly for implementation and illustration purposes in order to
avoid extremely small values while calculating the test statistic which in practice would often be
smaller than the smallest number representable by usual floating point arithmetic used on CPUs.
The result of the limit setting method itself is not affected and in general, any strictly monotonic
transformation can be applied to the test statistic without changing the result.
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an approach often taken that is also followed in this analysis is to adopt a Bayesian
standpoint for the nuisance parameters and replace the coverage condition from
equation (5.22) by an average coverage where the average is taken over all nuisance
parameters using their priors, while this coverage condition is still required to hold
for all true values µ; no averaging over µ is performed.

5.2.2 CLs Method

The CLs method [149, 150] modifies the classical interval construction to remove
some undesired properties of a purely classical interval construction that appear
in searches for a small signal on top of a large background, where overestimating
the background yields smaller upper limits on the signal cross section. This effect
is mitigated in the CLs construction by also considering the compatibility of the
observation with the background-only hypothesis. The CLs upper limit at (1 − α)

confidence level is the value of µ for which

CLs(µ,qobs
µ ) =

CLs+b(µ,qobs
µ )

CLb(qobs
µ )

= α, (5.24)

where CLs+b is the probability to observe a dataset with true signal µ with a test
statistic value larger than qµ, and CLb is the corresponding probability without
signal (µ = 0). Note that setting the denominator CLb to 1.0 corresponds to the
original Neyman construction discussed in the previous section. The limits obtained
with the CLs method are therefore always larger than the one obtained from a
Neyman construction, but they are more robust in cases where the background level
is overestimated.

5.2.3 Bayesian Method

The Bayesian method uses the Bayesian concept of probabilities introduced above,
which allows to assign probability densities to the parameters of a model such as
µ. Bayes’ theorem is used to derive an expression for the posterior density for the
model parameters µ and θ:

p(µ, θ|n) =
p(n|µ, θ)π(µ)π(θ)

p(n)
, (5.25)

where p(n|µ, θ) is given by the statistical model explained in section 5.1, π(θ) is the
prior for the nuisance parameters, π(µ) is the prior for the signal cross section and the
denominator p(n) is the total probability to observe the dataset n. The denominator
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can be expressed with the other ingredients,

p(n) =

∫
θ,µ
π(θ)π(µ)p(n|µ, θ), (5.26)

and is a constant ensuring that the posterior density p(µ, θ|n) is a properly normalized
probability density function. Note that this probability is not well-defined if using
improper priors such as flat priors in the signal strength µ, as the expression in the
integral diverges. However, all the methods applied later do not require explicit
normalization of the posterior, and only the nominator in the right hand side of
equation (5.25) has to be calculated.

The prior for µ can be chosen to be constant on the interval from zero to infinity.
While this is not a proper probability density (as it cannot be normalized), the
expression for the posterior on the right hand side of equation (5.25) can still be
calculated and normalized, given that the probability p(n|µ, θ) falls fast enough as a
function of µ—which is always fulfilled in the cases considered here. The priors for
the nuisance parameters θ, π(θ), are independent normal distributions with mean
zero and standard deviation one, as introduced in the model earlier in section 5.1.

The choice of priors, in particular for the parameter of interest µ, is arbitrary to
some extent and considered subjective. This is a main source of criticism of the
Bayesian approach which has inspired the developments of formal selection rules
for the priors [151]. However, they are not widely used in high-energy physics and
for setting upper limits on a Poisson signal, a flat prior for the signal cross section µ
yields similar results as the classical construction and has similar coverage properties.
Therefore, a flat prior for µ is used in this analysis.

While equation (5.25) defines the posterior in all model parameters, the marginal
posterior in the signal cross section µ is required to construct upper limits for µ. This
marginal posterior p(µ|n) is given by integrating over all nuisance parameters,

p(µ|n) =

∫
θ

p(µ, θ|n)dθ , (5.27)

where the integrand p(µ, θ|n) is the posterior given by equation (5.25) includes the
prior. This integral often has many dimensions (more than 10), and its calculation
requires numerical integration methods suitable for those situations. The used
algorithm is discussed in section 5.3.2.

5.3 The theta Framework

The theta framework is a set of computer programs, scripts, and libraries developed
within this thesis. It is designed for making statistical analyses for template-based
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models, as introduced in section 5.1. The statistical model is the product of Poisson
probabilities as given in equation (5.6). In general, theta is an extensible framework
that allows the user to create C++ plugins to model arbitrary dependencies of the
prediction λi on the model parameters µ and θ.

Many methods, especially classical frequentist methods, require the generation
of a large number of pseudo datasets, e.g. to get an empirical distribution of a test
statistic, or for coverage tests. For this reason, theta is optimized for this use case and
contains many speed optimizations, for example by making use of vector instructions
found in modern CPUs and the available methods of parallelization and distributed
computing.

In many analyses, including the Z′ search discussed here, only the log-normal rate
uncertainties and the template morphing discussed in section 5.1 are used. For this
case, Python scripts have been developed which automatically build the statistical
model from a ROOT [152] file. This file has to contain all histograms required to
define the statistical model in a certain naming convention, i.e. the histograms with
the predictions for all channels and processes for the “nominal” templates and the
“up” and “down” shifted histograms used for template morphing. The log-normal
rate uncertainties are added using simple Python statements in a script.

One useful construction used in the algorithms discussed below is the Asimov
dataset. This is a fictitious dataset n that is defined by setting the number of observed
events in bin i, ni, to the predicted number of events λi, evaluated at the most likely
values of the nuisance parameters. While the Poisson means λi are in general not
integers, this is not a problem as the expressions defining the likelihood function
given in equation (5.6) can still be evaluated. This likelihood function of the Asimov
dataset can be used to derive reasonable values for the step sizes for the nuisance
parameters required by Markov Chain Monte-Carlo method and numerical mini-
mization algorithms, as discussed below. The dataset also represents the “most likely”
outcome and can be used as observed dataset to evaluate the expected outcome of a
statistical method.

5.3.1 CLs Method

The CLs method is based on solving equation (5.24) numerically. First, the test statistic
values qµ are determined for data for different values of µ, qobs

µ . The test statistic in
equation (5.23) is found by numerical minimization of the negative log-likelihood
using the general-purpose minimizer MINUIT [153]. For these values qobs

µ , the value
of CLs is determined by using pseudo datasets. These pseudo datasets are generated
according to the statistical model given in equations (5.6) to (5.8) and the test statistic
value qµ(n) is calculated for each pseudo-dataset n to get an empirical distribution



5.3 The theta Framework 99

function for the underlying test statistic distribution.
As an example, two test statistic distributions for a narrow resonance Z′ with

M = 2 TeV are shown in figure 5.5 which were made using 10,000 pseudo datasets
in each case. For this example, the signal normalization is chosen such that µ is
the signal cross section in picobarn. It shows the qµ distribution for µ = 0.05
for pseudo datasets generated without signal for the calculation of CLb (“b only”)
and for with the signal scale factor set to µ = 0.05 to calculate CLs+b (“s+b”), see
equation (5.24). The qµ distribution has a peak at 0.0 for both cases. This happens
when the likelihood values at the maximum of the likelihood in the nominator and
denominator in equation (5.23) coincide. The test statistic value for data, qobs

µ , is also
indicated in the plot. The fraction of s+b (b only) pseudo datasets with larger values
than qobs

µ define CLs+b (CLb). In this case, the found values are

CLs+b = 0.017± 0.0013,

CLb = 0.12± 0.003, and

⇒ CLs =
CLs+b

CLb
= 0.14± 0.012,

where the uncertainties for CLs+b and CLb are the binomial uncertainties due to the
limited number of generated pseudo datasets, which are propagated to CLs using
Gaussian error propagation. As the CLs value is above α = 0.05, the 95% C.L. upper
limit µ0.05 will be larger than the tested value µ = 0.05.

While the method discussed so far allows to calculate the value of CLs as a function
of µ, the 95% C.L. upper limit requires to find the value µ0.05 for µ such that the CLs

value is α = 0.05. The algorithm used is similar to the tool based on RooStats [154]
that is used for computing Higgs boson cross-section limits at CMS and ATLAS [146].
First, the CLs calculation is repeated for different values of µ in order to find an
interval in µ that contains CLs values significantly above and below the desired
CLs value of α = 0.05. In this interval in µ, an exponential fit to the CLs values
as a function of µ is performed in order to find an estimate for the limit µ0.05. The
uncertainties due to the limited number of pseudo datasets are propagated to µ0.05;
more pseudo datasets are generated for a random value of µ in the fit interval until
the desired accuracy on µ0.05 is reached.

5.3.2 Markov Chain Monte-Carlo

The Markov chain Monte-Carlo method is an algorithm to sample from a probability
density function. It generates points x ∈ Rk in the k-dimensional parameter space
which are distributed according to a probability density function given by f. It
is particularly suitable if the number of dimensions k is large. In these cases the
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Figure 5.5: Distribution for the test statistic qµ with the fraction of pseudo
datasets per bin for pseudo datasets either generated with signal
(µ = 0.05) or without signal (µ = 0). The shaded areas are the frac-
tion of pseudo datasets (toys) with test statistic values above qobs

µ and
define the CLs+b and the CLb values used for the calculation of CLs.
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straight-forward integration algorithm of calculating f(x) for values x arranged in a
regularly-spaced grid in k dimensions requires a large number of function evaluations
which grows exponentially with the number of dimensions k. Depending on the
problem, the practical limit is already reached with k = 3–5. On the other hand,
the Markov chain Monte-Carlo method does not require an exponentially growing
number of function evaluations and is thus suitable to integrate the posterior density
which for the current analysis has k = 17 (see section 6.1).

The Markov chain Monte-Carlo algorithm used here was first introduced by
Metropolis et al. in the context of generating microstates distributed according to
the Boltzmann distribution in a thermodynamical system [155]. This idea was later
generalized by Hastings [156], and the algorithm is therefore known as Metropolis-
Hastings algorithm. The algorithm to construct the Markov Chain x0, . . . , xn, given
the probability density f, consists of the following steps:

1. Pick a starting point x0 for which f(x0) > 0.

2. Using the current point xi, construct a proposal point

x′i = xi + ∆x (5.28)

where ∆x is a random vector distributed according to the proposal density p(x)
discussed in more detail below.

3. The proposal point is accepted with the probability min(1, f(x
′
i)

f(xi)
) and rejected

otherwise. Accepting the proposal point means setting xi+1 := x′i; rejecting it
repeats the current point, xi+1 := xi.

4. Repeat steps 2 and 3 until the desired chain length is reached.

Note that according to step 3, the proposal point x′i is always accepted if the posterior
density at the proposal point is larger than the one at the current point. So the chain
will always go to the proposal point x′ if the posterior density is larger there, but it
will also allow a decreasing density with some probability. A more detailed analysis,
which is not discussed here, shows that the values xi in the resulting Markov chain
are distributed according to the density f, if some rather general conditions for the
proposal density p are met, which is always the case for the choices of p discussed
here.

This algorithm is applied using the posterior from equation (5.25) as the density f.
Note that the algorithm does not require the density f to actually be normalized as
the algorithm only depends on ratios of density values where any constant factor
cancels. Therefore, it is enough to know the nominator on the right hand side of
equation (5.25), as already discussed in section 5.2.3.
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The crucial point for the algorithm to work in practice is the choice of the proposal
probability density function p(x). One possible choice is to use a multivariate
Gaussian. However, the covariance matrix has to be chosen with care: if the width of
the Gaussian is much smaller than the typical scale in x with which f changes, then
the proposal point will be accepted very often and the Markov chain is effectively
a random walk, which would require a huge chain length to reasonably cover all
allowed regions of the parameter space. If on the other hand the width is too large, the
function value at the proposal point is always be very small and most proposals are
rejected, again requiring very long chains to reasonably cover the allowed parameter
values. According to [157], the ideal choice in case f is a multivariate Gaussian is to
use a multivariate proposal function with the same covariance, but scaled by a factor
of 2.38/

√
k where k is the dimensionality of the problem. This proposal density is

used in theta.
From the arguments about the correct proposal density it can also be seen that the

acceptance rate is an important indicator of whether the chosen proposal function is
reasonable. While typical acceptance rates in general depend on the problem and can
span large ranges, extreme values such as acceptance rates lower than 5–10% or over
70–80% usually indicate that the choice for the proposal function is not adequate.

In general, many similar pseudo datasets are analyzed in theta, and their posteriors
will have similar covariances. Therefore, the covariance matrix for the proposal func-
tion is determined once for many pseudo datasets, using the posterior constructed
with the Asimov dataset introduced in section 5.3. The covariance matrix is estimated
iteratively from Markov chains: The first covariance matrix is a diagonal matrix in
which the diagonal elements are derived from the change of the posterior density
along the respective axis. Using this matrix for the proposal density a Markov chain
is constructed and the covariance matrix from the chain elements is calculated. This
covariance matrix is then used for the proposal density of the next chain. This is
repeated until the acceptance rate of the Markov chain is stable, or a maximum
number of iterations has been reached.

A Markov chain for the posterior consists of points in the µ-θ space. The µ values
of this chain are distributed according to the marginal posterior p(µ|n) defined in
equation (5.27). The 95% C.L. upper limit can be estimated as the 95% quantile of the
µ values in the chain. The upper limit obtained in this way carries an uncertainty due
to the limited length of the Markov chain. As the chain elements are not statistically
independent, and the dependence is not known, this uncertainty cannot be calculated
directly. Instead, this uncertainty can be estimated with a bootstrapping method
by repeating the limit setting procedure with different random seeds and using the
variance of the obtained limits as an estimate for this uncertainty.

The chain elements can also be used to estimate the posterior density for p(µ|n) by
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filling the values for µ in a histogram. While this procedure yields a valid estimate for
the posterior, the chain length required to obtain a histogram with reasonably small
uncertainties in each bin is very large. Therefore, a method has been developed which
calculates the marginal posterior density p(µ|n) at l equidistant points µmin, . . . ,µmax

directly, yielding a smooth estimate for the posterior. For j = 1, ..., l, the estimated
posterior density at µj is given by

p̂(µj|n) =

∫
θ

p(µj, θ|n)dθ.

This integral can be evaluated using the values for θ from the Markov chain by
evaluating the posterior values p(µj, θ|n) for all j = 1, . . . , l and each chain element
θ. As an example, the posterior density obtained with this method for a narrow Z′

resonance with M = 2 TeV is shown in figure 5.6.
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Figure 5.6: The marginal posterior for the cross section σ(pp → Z′ → tt̄) for a
narrow resonance Z′ with M = 2 TeV. The 95% C.L. upper limit
on the signal cross section is the 95% quantile of this posterior; it is
indicated with the vertical line.



6 Results

This chapter describes how the methods for setting upper limits introduced in
chapter 5 are applied to the analysis described in this thesis. Section 6.1 summarizes
all systematic uncertainties considered in the statistical model, which is discussed in
more detail in section 6.2. Finally, the results for the upper limits on σ(pp→ Z′ → tt̄)
as a function of the mass of the resonance for different resonance types Z′ are
presented in section 6.3, which also interprets these limits as lower limits on the
resonance mass within a some specific Z′ models.

6.1 Summary of Systematic Uncertainties

This section summarizes all sources of systematic uncertainties considered in the
statistical model used in this analysis. As discussed in section 5.1, each source of
uncertainty corresponds to one nuisance parameter in the statistical model with a
Gaussian prior. In total 16 sources of uncertainty are considered in this analysis. Of
these uncertainties, 9 are rate uncertainties as discussed in section 5.1.1. The relative
rate uncertainties for the processes are given in table 6.1. The theory cross-section
and acceptance uncertainties given in this table have been introduced in section 3.4.
The acceptance uncertainties for the W+jets matching and scale uncertainties are
derived from the alternate W+jets samples discussed in section 3.4. As these samples
have only a few number of simulated events, the Mtt̄ shape and rate change is
determined for a looser event selection that omits the χ2

min requirement and the b
tagging categorization. As no shape difference has been found, both uncertainties
are treated as rate uncertainties rather than as shape uncertainties.

The muon efficiency uncertainty is discussed in section 3.2.2; for details about the
luminosity uncertainty see section 2.2.5.

The remaining 7 uncertainties are shape uncertainties treated via template mor-
phing as discussed in section 5.1.2. For each shape uncertainty and affected process
two alternative templates “up” and “down” are constructed using the simulated
samples in which the systematic shift is applied at +1σ and −1σ and re-deriving the
Mtt̄ templates. What this means specifically for each uncertainty is discussed in more
detail for each uncertainty:

• The jet energy scale (JES) uncertainty is evaluated by simultaneously changing
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all jet four vectors in all simulated events by the pT and η-dependent jet energy
scale uncertainties discussed in section 3.2.5 by 1± δjes(pT,η) for the “up” and
“down” templates, where δjes is the relative jet energy scale uncertainty. The
typical impact of the JES uncertainty on the acceptance is about 6–8% for the
background processes and about 3–6% for the signal, decreasing with increasing
resonance mass.

• The jet energy resolution (JER) uncertainty is evaluated by scaling the difference
of the reconstructed and generated jet pT by different, η-dependent factors, as
discussed in section 3.2.5. The typical impact of the JER uncertainty on the
process yields is about 1–3%.

• The b-tagging efficiency and b mistag rate uncertainties are treated via event
reweighting by using the ±1σ scale factors as discussed in section 3.3. The
typical change in acceptance due to the efficiency uncertainty is about 5–7% for
processes containing b quarks, and smaller for other processes. The impact of
the b mistag rate uncertainty is� 1% for all processes.

• The pileup uncertainty is treated by reweighting the generated pileup spectrum
to the pileup expected in data with different assumptions about the total inelastic
cross section as discussed in section 3.3. The change in acceptance is around 1%
and becomes smaller for higher invariant tt̄ masses.

• The tt̄ Q2 scale and tt̄ matching uncertainties are derived by using alternative
simulated tt̄ samples with altered generator settings as discussed in section 3.4.
This uncertainty only affects the tt̄ background and changes the acceptance of
up to 20%, depending on the channel.

6.2 Statistical Model

The histograms used for the statistical model are the two Mtt̄ distributions for
Nb-tag = 0 and for Nb-tag > 1 as introduced in section 4.4.2. In the histogram bins for
small and for large values of Mtt̄, the number of simulated events is low, resulting in
a large uncertainty as discussed in section 5.1.3. Therefore, some of the Mtt̄ bins are
merged to ensure that this uncertainty does exceed 20% only for very few bins. The
chosen binning has one low-mass bin from 0 to 0.4 TeV, followed by an equidistant
binning with a bin width of 0.1 TeV between 0.4 and 1.3 TeV and one high-mass bin
extending from 1.3 to 3 TeV. The remaining uncertainty due to the limited number of
simulated events is treated with the method discussed in section 5.1.3. In addition,
all uncertainties discussed in section 6.1 are also included in the statistical model.



6.2 Statistical Model 107

Process Relative yield change (%)

Theory cross-section uncertainties
Z+jets ±100
W+light flavor ±50
W+heavy flavor ±100
tt̄ ±15
Single-Top ±50

Theory acceptance uncertainties
W+jets matching ± 8
W+jets Q2 scale +76/− 38

Experimental uncertainties
Luminosity ±2.2
Muon efficiency ±5

Table 6.1: Systematic uncertainties treated as rate uncertainties. The values in
this table are the relative uncertainty on the yields ∆ as introduced in
section 5.1.1.

In order to illustrate whether the model can qualitatively describe the data, a maxi-
mum likelihood fit is performed, which yields estimates for all nuisance parameters.
The parameter values at the maximum are found to be in agreement with the prior
expectation, i.e. the values found indicate no disagreement to the assumed Gaussian
priors around 0 with width 1. Using these parameter values, the model prediction
is evaluated by applying template morphing and rate uncertainties as discussed in
sections 5.1.1 and 5.1.2. The values for the nuisance parameters νi introduced to
treat the uncertainty due to the limited number of simulated events discussed in sec-
tion 5.1.3 are not explicitly determined and used for the evaluation of the prediction
of the statistical model, effectively setting them to zero. The resulting histograms
for both channels and all processes are shown in figure 6.1. The uncertainty bands
show the only uncertainty which is not propagated to the model prediction after
minimizing it, i.e. the uncertainty due to the limited number of simulated events
corresponding to the nuisance parameters νi.

Three different types of resonances, all referred to as Z′ are used, as discussed
in section 3.1.2: A narrow resonance with a natural width of 1% which is a generic
model for any resonance whose natural width is much smaller than the experimental
Mtt̄ resolution, a wide resonance with 10% natural width, and Kaluza-Klein gluons.
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Figure 6.1: Comparison of data and the prediction of the statistical model for the
Mtt̄ distribution, evaluated at the parameter values which maximize
the likelihood function in case of background only. The uncertainty
is from limited size of the simulated Monte-Carlo samples.
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In all cases, the considered mass range extends from 1–3 TeV, where the limits are
evaluated at a spacing of 50 GeV, which is well below the Mtt̄ resolution.

The models used to derive mass limits from the cross-section limits are a lepto-
phobic topcolor Z′ [3] model with 1.2% and 10% width denoted with Z′t and the
Kaluza-Klein gluon model described in Reference [5].

6.3 Cross Section and Mass Limits

The CLs method and the Bayesian method introduced in chapter 5 are now applied
for setting upper limits on the cross section σ(pp → Z′ → tt̄) as a function of the
resonance mass and the type of the resonance (narrow, wide, KK gluon).

For both limit setting methods, the expected limit can be evaluated using back-
ground-only pseudo datasets. These datasets are generated according to the statistical
model by first generating random values for all nuisance parameters θ by sampling
from their priors. These nuisance parameter values are used to calculate the predicted
mean value λi in bin i. The number of events in bin i, ni, is drawn from a Poisson
distribution around λi. Then the limit is computed for this pseudo dataset as if it
were real data. This is repeated two thousand times. The median value of these
limits at each mass point define the expected limit. In order to illustrate the spread
of expected limits, the 16% and 84% quantiles of these limits are displayed as the 1σ
band of expected limits, with the rationale that if repeating the experiment many
times, the observed limit is expected to be within this band in 68% of the cases, which
corresponds to the area under a Gaussian distribution within ±1σ. Correspondingly,
the 2σ band indicates the central 95% of the limits obtained from the 2.5% and the
97.5% quantiles of the limits obtained from the pseudo datasets. As these expected
limit bands are susceptible to fluctuations in the pseudo datasets, the curve of the
expected limit as a function of the mass is smoothed in the plots.

The limits on the cross section can also be interpreted in the context of specific
models that predict such resonances: Any resonance mass for which an excluded
cross section value is predicted is excluded. This leads to a lower limit on the
resonance mass. It should be emphasized, however, that any mass limit is inherently
model-dependent, while the upper limits on the cross section do not carry such
strong dependencies on the considered model.

Section 6.3.1 summarizes the CLs limits, which are considered as the main result.
As a cross-check, limits are also set with a Bayesian method discussed in section 6.3.2,
and section 6.3.3 briefly revisits the presented results.
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Figure 6.2: Expected and observed upper limits using the CLs method for the
cross section σ(pp→ Z′ → tt̄) for narrow resonances Z′ with a natural
width much smaller than the experimental resolution. The excluded
mass region for this topcolor Z′ model [3] is MZ′ < 1.44 TeV.

6.3.1 CLs limits

The expected and observed limits for the CLs method for the three different types
of resonances are shown in figures 6.2 to 6.4. The excluded cross sections for the
different signal types at some mass points are given in table 6.2. As discussed
in section 4.4, the selection efficiency for narrow Z′ become smaller in the region
MZ′ > 2 TeV, leading to a larger limit for MZ′ = 3 TeV than for MZ′ = 2 TeV. The
limits on the wide Z′ are higher than for the narrow Z′ as the signal shape in the Mtt̄

distribution is broader.
In table 6.3, the mass limits for these models are summarized. The observed limits

on the cross section are consistently lower than the expected ones, reflecting that the
prediction used in the statistical model predicts more events than actually observed,
as discussed in section 4.4. Overall, the data is consistent with the standard model
background, and there is no hint for resonant tt̄ production.
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Figure 6.3: Expected and observed upper limits using the CLs method for the
cross section σ(pp→ Z′ → tt̄) for resonances Z′ with a natural width
of 10% of its mass. The excluded mass region for this topcolor Z′

model [3] is MZ′ < 2.02 TeV.

upper cross-section limit (pb)

MZ′ (TeV) narrow wide KK gluon

1.0 0.44 0.53 0.87
1.5 0.106 0.125 0.20
2.0 0.072 0.102 0.14
3.0 0.077 0.163 0.25

Table 6.2: Upper limits for the cross section σ(pp→ Z′ → tt̄) at 95% confidence
level for some selected masses for the different signal types using the
CLs method.
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Figure 6.4: Expected and observed upper limits using the CLs method for the
cross section σ(pp → Z′ → tt̄) of Kaluza-Klein gluons [5]. The
excluded mass region is MZ′ < 1.88 TeV.

lower MZ′ limit (TeV)

Z′t, 1.2% width Z′t, 10% width KK gluon

expected 1.28 1.90 1.74
observed 1.44 2.02 1.88

Table 6.3: Expected and observed lower mass limits for the three considered
signal models at 95% C.L. using the CLs method.
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Figure 6.5: Expected and observed upper limits using the Bayesian method for
the cross section σ(pp → Z′ → tt̄) for narrow resonances Z′ with a
natural width much smaller than the experimental resolution. The
excluded mass region for this topcolor Z′ model [3] is MZ′ < 1.49 TeV.

6.3.2 Bayesian limits

In addition to the CLs limits in the previous section, the Bayesian limits are given
here as a cross-check. While a perfect agreement with the CLs limits is not expected
due to the different underlying concepts, a deviation of more than e.g. 20–30% in
the upper limit could point to a problem in one of the implementations or it could
indicate a genuine difference between the Bayesian and frequentist approach. In any
case, such a deviation would suggest to conduct more studies to understand the
origin of this difference.

The expected and observed limits for the different signal types are shown in Figures
6.5 to 6.7. The upper limit for some mass points are given in table 6.4. Comparing the
obtained limits to the CLs limits given in table 6.2 shows that the agreement between
these methods is around 10%. The resulting mass limits are given in table 6.5.
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Figure 6.6: Expected and observed upper limits using the Bayesian method for
the cross section σ(pp → Z′ → tt̄) for resonances Z′ with a natural
width 10% of its mass. The excluded mass region for this topcolor Z′

model [3] is MZ′ < 2.04 TeV.

upper cross-section limit (pb)

MZ′ (TeV) narrow wide KK gluon

1.0 0.43 0.55 0.82
1.5 0.099 0.130 0.184
2.0 0.067 0.095 0.138
3.0 0.072 0.152 0.23

Table 6.4: Upper limits for the cross section σ(pp→ Z′ → tt̄) at 95% confidence
level for some selected masses for the different signal types using the
Bayesian method.
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Figure 6.7: Expected and observed upper limits using the Bayesian method for
the cross section σ(pp → Z′ → tt̄) of Kaluza-Klein gluons [5]. The
excluded mass region is MKKG < 1.90 TeV.

lower MZ′ limit (TeV)

Z′t, 1.2% width Z′t, 10% width KK gluon

expected 1.26 1.90 1.76
observed 1.49 2.04 1.90

Table 6.5: Expected and observed lower mass limits for the three considered
signal models at 95% C.L. using the Bayesian method.
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6.3.3 Discussion

For narrow resonances Z′, the upper limits on the cross sections ranges from 0.5 pb
for MZ′ = 1 TeV and decreases for higher Z′ masses to 0.07 pb for MZ′ = 2 TeV.
These limits apply to any resonance for which the natural width is much smaller
than the experimental resolution. In particular, the leptophobic topcolor Z′ model
with a width of 1.2% of MZ′ [3] fulfills this criterion and this model is excluded for
1 < MZ′ < 1.44 TeV.

For resonances with 10% width, the Mtt̄ distribution after event selection and
reconstruction is broader. Therefore, the resulting limits are higher than for the
narrow resonances and are in the region 0.10–0.53 pb for the whole considered mass
range 1–3 TeV. Interpreting the limits on the context of a leptophobic topcolor Z′ with
a width of 10%, the excluded mass range is 1 < MZ′ < 2.02 TeV.

The Kaluza-Klein excitations in the Randall-Sundrum model [5] have an even
larger width of around 17% of the mass and thus results in even higher limits of
about 0.14–0.9 pb in the 1–3 TeV range. This Kaluza-Klein gluon model is excluded
for MKKG < 1.88 TeV.
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In summary, this thesis presents a search for resonant tt̄ production in the muon+jets
channel, using proton–proton collisions at

√
s = 7 TeV recorded with the CMS

experiment. The event signature of muon+jets tt̄ events at high invariant tt̄ masses
includes cases in which the three quarks of the hadronic top quark decay merge to a
single jet and the muon of the top quark decay is not isolated. This prohibits re-using
selection and tt̄ reconstruction techniques applied for standard model tt̄ analyses, and
a new event selection and reconstruction is applied in this analysis, which have been
studied and validated on data. The most important improvements of the analysis
technique over the previous version of this analysis documented in [28] are the use
of b-tagging and the use of the χ2

min requirement in the event selection. Both of these
requirements increase the tt̄ purity and applying both enhancements improves the
expected limit by a factor 2–3, depending on the Z′ mass.

The statistical analysis is performed using both a Bayesian method and the modified
frequentist (CLs) method with the theta framework. The theta framework — which I
developed originally for this analysis — implements many functions for statistical
modeling, e.g. template morphing and the treatment of uncertainties due to limited
Monte-Carlo sample size. It also implements various statistical methods, including
the CLs method and Bayesian methods with a Markov chain Monte-Carlo algorithm.
In the meantime, theta is also used in other analyses at CMS, including [25, 26, 48, 49].

Model-independent limits are set on the cross section σ(pp→ Z′ → tt̄) for narrow
Z′ resonances and resonances with a width of 10%. In both cases, the upper limits
are set as a function of the Z′ mass in the mass range 1–3 TeV. The obtained limits
are well below 1 pb; for MZ′ > 1.5 TeV, the limits are in the region 0.07–0.17 pb.

Model-dependent limits are derived for a leptophobic topcolor Z′ model [3] with
1.2% width, which is excluded in the region 1 < MZ′ < 1.44 TeV. Leptophobic
topcolor Z′ models with 10% width are excluded for 1 < MZ′ < 2.02 TeV, and Kaluza-
Klein gluon excitations in the Randall-Sundrum model [5] are excluded in the region
1 < MKKG < 1.88 TeV.

A similar analysis has been performed in the electron+jets channel at CMS, which
uses similar event selection criteria and the same method for tt̄ reconstruction [139].
The statistical combination of the muon+jets analysis discussed in this thesis and the
electron+jets analysis is published in reference [30], which also includes a lepton+jets
analysis focusing on lower MZ′ , mainly using a tt̄ event topology without jet merging
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and with isolated leptons. This “low-mass” analysis extends the search to the
mass range 0.5 < MZ′ < 1 TeV, whereas the combination of the electron+jets and
muon+jets “high-mass” analyses is more sensitive in the region MZ′ > 1 TeV, and
while the expected limits of the low-mass and high-mass analyses almost coincide
for MZ′ = 1 TeV, the high-mass analysis expected limits are lower by about a factor 2
for MZ′ > 1.5 TeV, indicating the benefit of using analysis techniques adapted to the
event topology in this mass regime. The muon+jets analysis discussed here is the
single most sensitive analysis in this mass range at CMS.

The limits substantially extend previous limits for a leptophobic topcolor Z′ of,
which has been excluded in the region MZ′ < 0.9 TeV at the Tevatron [19]. AT-
LAS reports comparable or slightly better results for a combined electron+jets and
muon+jets analysis using substructure techniques [22].

The current analysis could be further improved by including more data taken at√
s = 8 TeV and further optimizing the event selection, for example by replacing the

currently used simple χ2 reconstruction approach by an algorithm better adapted
to the different event topologies due to the different cases of which jets merged
and using more information such as b-tagging. Such an improved reconstruction
could allow a better separation of the W+jets background and yield an improved
mass resolution. Another possible area of improvements is the application of novel
techniques for identifying high-pT hadronically decaying top quarks by searching jet
substructure. This approach has been proposed in references [158, 159]. I contributed
to studies of such algorithms [27, 160–162]. Similar techniques are used in a Z′ → tt̄
search in the tt̄ all-hadronic channel at CMS [25]. These techniques are interesting
especially for invariant tt̄ masses even larger than the ones considered here, which
will be even more important for searches performed in data taken at future runs of
the LHC with higher center-of-mass energies.
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