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Miniaturized microreactors enable photochemistry with laser irradiation in flow mode to convert azidobiphenyl into carbazole with

high efficiency.

Introduction

Classical combinatorial chemistry [1,2] approaches usually aim
at the synthesis of multi-milligram amounts of new compounds
to extend screening decks used in multiple screening campaigns
[3]. An alternative method enabled by the maturing microreac-
tion technology and the use of flow chemistry [4-6] is the inte-
gration of synthesis and screening in one integrated lab-on-a-
chip approach [7].

Using this methodology we have integrated photochemistry in a
miniaturized reaction setup to enable combinatorial flow chem-

istry in lab-on-a-chip applications.

Photochemical processes are in this case particularly interesting
because of their enhanced molecular activation [8]. Photochem-
istry in microreactors is an emerging research area [9], and
especially photocatalytic reactions have been investigated in
detail by Matsushita et al. [10,11]. To date there are a couple of
reported examples combining miniaturized reaction systems

with synthetic laser photochemistry [5,6,9,12-28].
The influence of photons, which are delivered via a suitable

light-transparent window, on the processes running in miniatur-

ized photoreactors, is investigated with a focus on increasing
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the yield and selectivity as well as decreasing the reaction time.
Photochemistry with laser radiation is a promising tool to
broaden the application spectrum of miniaturized systems, by
facilitating a powerful activation step due to a wide range of
available wavelengths and energy ranges [29,30]. Moreover, the
optical systems can be designed in a way that the reaction initia-
tion by photons and an additional online analysis of the running
reaction is feasible.

Results and Discussion

Design and fabrication

In order to realize photochemical synthesis, several reactors and
small reactor arrays with reaction volumes of approximately
1 mL down to 35 pL were developed. These reactors were espe-
cially designed for the stimulation of photochemical reactions
(UV-vis radiation) as well as for demanding reaction condi-
tions, such as the rapid elevation of temperature (with pulsed
IR-laser radiation) or pressure pulses (due to the evaporation of
the solvent upon the introduction of energy).

Several microstructured reactor types were designed and
produced for reactions in the liquid phase. They are equipped
with quartz-glass cover plates, transparent to the laser radiation,
pressed onto an appropriate sealing material. Moreover, chan-
nels suitable for the mixing and reaction of two or more
isopycnic solutions were built in a polymer bloc by mechanical
treatment [31]. The provision of bubble-free fluid is ensured in
this case by microchannels in at least two levels, which are built
from corresponding structured layers. These reactors were made
of polyether ether ketone (PEEK) and polytetrafluoroethylene
(PTFE) [32] to study the influence of side reactions with the
reactor material, which could reduce the yield of the desired
reaction product. The multilayer system is placed in a stainless-
steel frame.

With this type of reactor, it is possible to realize a series of reac-
tions in parallel by arranging the reactor chambers in an (n x m)

matrix. The microreactors applied for this study have four reac-

tion chambers with varying volumes of the chambers due to

N3

2x1072M

1

Scheme 1: Synthesis of carbazole (2) by photolysis.
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increasing depth, and different connections for the reagent

entrance (Figure 1).

Figure 1: Four-fold PEEK-reactors with increasing chamber depths
from left to right and different techniques of fluid connection; top: glued
PEEK-capillaries, bottom: 4 in. screw connections.

Photochemistry

The combinatorial synthesis of heterocycles and among them of
carbazole is of particular interest since they are potential active
pharmaceutical compounds [33-35]. The photolysis of 2-azido-
biphenyl (1) with the help of a conventional UV-lamp has been
used for the synthesis of carbazole (2) since 1960 (Scheme 1)
[36-39].

side product
3
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However, there are only a few examples of substituted products
obtained by this reaction, and several side-products, such as the
corresponding azo-derivatives, are usually formed [36,40-44].
During the past few years, we successfully employed triazene
resins, such as 4, which are readily available from aniline in the
synthesis of a library of aromatic derivatives [45-48]. Moreover,
triazene-resins are perfectly suitable for the synthesis of
arylazides 5 (Scheme 2) [49].

P
d\N Ph Me3SiN3 N3

CF3COoH R

R up to 95% yield

4 5

Scheme 2: Synthesis of arylazides 2 by solid-phase synthesis.

The photochemical decomposition of arylazides into carbazoles
is appropriate for application in miniaturized photoreactors,
since significant results can be observed by an online analysis
through HPLC and GC [50]. Because of the miniaturization,
online analysis is especially suitable for our setup.

We therefore investigated whether the photoreaction can be
realized in miniaturized photoreactors and to what extent the
use of a laser as a photon source is advantageous. The irradi-
ation of 2-azidobiphenyl (1) in methanol with a conventional
xenon lamp (400 W, A > 345 nm) required 18 h for 50% yield
(95% selectivity) in a 10 mm cell with an 8 mm light-exposure
diameter (Figure 2).
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Figure 2: Photolysis results in batch setup (flask) with a xenon lamp
(400 W, A > 345 nm).
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Frequency-tripled Nd:YAG laser radiation (A = 355 nm, 8 kHz
pulse frequency; pulse duration 26 ns) was chosen because the
wavelength is close to that of the applied UV-lamp, 355 nm is
usually within the absorption area of azides, and this laser type
is commonly used in most laser labs. We applied a single-pulse
power of 0.16 to 3 W resulting in pulse energies between 4
and 87 nJ and energy densities of approximately 0.02 to
0.17 pJ/em? within a defocused laser spot of 0.2 to 0.5 cm?, to
carry out the same reaction (Scheme 1), but carbazole was
obtained much faster from 2-azidobiphenyl (1). Compared to
conventional UV sources, the use of laser irradiation clearly
accelerated the reaction: from 18 h (Xe lamp, Figure 2) to 30 s
(Nd:YAG laser) for 50% yield and 95% selectivity, calculated
from the data presented in Figure 3. This reaction was success-

fully carried out in a miniaturized photoreactor (Figures 3—6).

The monomolecular reaction can be realized by using laser radi-
ation of 355 nm wavelength as a photon source, in a clean way,
avoiding almost completely the formation of the undesired
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Figure 3: Carbazole synthesis in miniaturized photoreactors Type I
(PEEK and Teflon), flow control, P = 0.92 W.
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Figure 4: Carbazole synthesis in miniaturized photoreactors Type Il
(PEEK and Teflon), power control, flow 26 mL/h.
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Figure 5: Test setup with continuously operating, miniaturized
photoreactor.

Figure 6: The miniaturized photoreactor (PEEK) during photolysis.

diazo derivatives 3. The side reaction is supposedly reduced due
to a lesser effect of heating owing to the small bandwidth irradi-
ation and minimized exposure time through the miniaturized

flow setup.

During these tests, it was shown that a largely better selectivity
can be achieved, compared to the one obtained in a standard UV
irradiation setup (Figure 2). Experiments were performed in
batch as well as flow-injection configuration. The continuous
process used allowed us to vary the residence time in the reactor
by regulating the flow speed of the reactant solution, with the
help of a syringe pump (Figure 5).

For this study, reactors made of PEEK, as well as PTFE reac-
tors were used, leading to similar yields of carbazole (Figure 3
and Figure 4), showing no major influence of the reactor ma-

terial on the reaction.

Beilstein J. Org. Chem. 2012, 8, 1213-1218.

The deviations from linearity in the low power area of Figure 4
can be attributed to fluctuations of the laser power. For the
high-power area, a correlation between yield, power and reac-
tion time, which can be explained by kinetics, is observed.

Conclusion

The preparation and application of polymeric, miniaturized
photoreactors, equipped for the effective use of photons in the
reaction chamber, provided by frequency-converted laser
sources, was successfully shown.

With these reactors or reactor components, the photonic influ-
ence on reactions in miniaturized photoreactors was proven to
be useful in parameter studies in which laser power and flow

rate were varied.

The advantages of laser chemistry in the condensed phase
compared to standard photochemical approaches have been
shown in this preliminary study, proving the suitability of laser
photochemistry for organic synthesis. Thanks to the further
miniaturization and the availability of new moderately priced
laser systems even better suited beam sources can be provided
for photochemistry.

In the described experiments, laser radiation of 355 nm wave-
length (frequency-tripled Nd:YAG) was used. Since the spec-
tral range of interest for most photoreactions ranges from the
ultraviolet to the visible region, tunable laser systems (optical
parametric oscillators) feature promising properties for use
photochemical experiments. Thus, the irradiation wavelength
can be adapted to the needs of the reaction (e.g., to a shifted
absorption maximum of the reactant due to substitution) facili-
tating a large range of applications of this technique. Further-
more, IR laser sources (diode laser, Nd:YAG laser, CO, laser)
could be applied for pulsed temperature and pressure elevation
in microreactors, as well as microwave stimulation to accel-
erate reactions.

Experimental

All starting materials and products were characterized by stan-
dard techniques ('"H NMR, '3C NMR, and elemental analysis)
and are compared with authentic samples. The products were
analyzed by GC-MS (internal standard, dodecane) and/or
HPLC.

A solution of 2-azidobiphenyl (1) was continuously added to a
miniaturized reactor of type II (see Figure 1, dimension of the
reactor chamber 3 x 5 mm, 35 pL volume) with a syringe pump.
The chamber was continuously irradiated with a Nd:YAG laser
(355 nm). At a constant flow of 26 mL/h, the laser-pulse power
was varied from 0.16 to 1.28 W. Furthermore, at a constant
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intermediate power of 0.92 W the flow rate (10 to 100 mL/h)
and therefore the dwell time (exposure time) in the reactor was
varied. The yield was determined by HPLC.

Supporting Information

Supporting Information File 1

Description of the flow reactor setup, kinetics, experimental
procedures and spectroscopic data of all compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-135-S1.pdf]
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