
Analysis of Metallic Nanostructures by a

Discontinuous Galerkin Time-Domain Maxwell Solver on

Graphics Processing Units

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M. Sc. Richard Timothy Helmut Diehl
aus München

Tag der mündlichen Prüfung: 14.12.2012
Referent: Prof. Dr. K. Busch

Korreferent: Prof. Dr. M. Wegener





Fakultät für Physik

Institut für Theoretische Festkörperphysik

Analysis of Metallic Nanostructures by a

Discontinuous Galerkin Time-Domain Maxwell Solver on

Graphics Processing Units

PhD Thesis

by

M.Sc. Richard Timothy Helmut Diehl

14.12.2012

Instructor: Prof. Dr. Kurt Busch

2nd Instructor: Prof. Dr. Martin Wegener





Contents

1 Introduction 1
1.1 Plasmonic Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Numerical Simulation's Contribution to Research . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Graphics Processing Units Accelerated Research . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Classical Electrodynamics 5
2.1 Macroscopic Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Time-Evolution of the Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Normalization to Dimensionless Units . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Dispersive Materials in the Time-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Auxiliary Di�erential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 The Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Calculation of Model Parameters from Experimental Data . . . . . . . . . . . . . 12

2.3 Scattering of Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The Discontinuous Galerkin Time-Domain Method 15
3.1 Spatial Discretization via the Nodal Discontinuous Galerkin Method . . . . . . . . . . . 16

3.1.1 Maxwell's Curl Equations in Conservation Form . . . . . . . . . . . . . . . . . . 16
3.1.2 Tesselation of the Computational Domain . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Element-Local Approximate Solution . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Restoring a Physical Solution via the Numerical Flux . . . . . . . . . . . . . . . . 19
3.1.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.6 Expansion of the Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.7 The Semi-Discrete Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.8 Convergence and Error of the Spatial Discretization . . . . . . . . . . . . . . . . 27

3.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 The Low-Storage Runge Kutta Method . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Extensions for Practical Use 33
4.1 The Discretized Drude-Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Total-Field/Scattered-Field Source . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Scattered-Field Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Uniaxial Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 38

V



Contents

4.3.2 Stretched Coordinate Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . 39

5 DGTD on Graphics Processing Units 41
5.1 GPU Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 The Graphics Processing Unit Design Paradigm . . . . . . . . . . . . . . . . . . . 42
5.1.2 NVidia's Compute Uni�ed Device Architecture . . . . . . . . . . . . . . . . . . . 43
5.1.3 Optimal Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.4 Kernel Design and Occupancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.5 Summary of Performance Related Issues . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Implementation of the DGTD Method on GPUs . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Analysis of the DGTD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Segmentation of the DGTD Algorithm into Kernels . . . . . . . . . . . . . . . . . 52
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.4 Host-Device Interaction, Heterogeneous Computing, and Probing . . . . . . . . . 62

5.3 Validation and Performance Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Empty Metallic Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Optical Spectroscopy of a 100 nm Silver Sphere . . . . . . . . . . . . . . . . . . . 67
5.3.3 Electron Energy Loss Spectroscopy of a 20 nm Aluminum Sphere . . . . . . . . . 70

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Optical Characterization of Metallic Nano-Antennae 75
6.1 Parametrization of Split-Ring Resonators and Nanorods . . . . . . . . . . . . . . . . . . 76
6.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Extinction, Scattering, and Absorption Cross Section . . . . . . . . . . . . . . . . . . . . 80
6.4 Tuning of the Scattering to Absorption Cross Section Ratio . . . . . . . . . . . . . . . . 82
6.5 Errors and Parameter Tendencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Electron Energy Loss Spectroscopy of Split-Ring Resonators 85
7.1 Fundamentals of the Electron Energy Loss Spectroscopy Analysis . . . . . . . . . . . . . 86

7.1.1 Calculation of the Loss Probability in the Time-Domain . . . . . . . . . . . . . . 86
7.1.2 Excitation of a Relativistic Electron in DGTD . . . . . . . . . . . . . . . . . . . 87

7.2 The Individual Split-Ring Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Validation of Applied Analysis and Simulation Setup . . . . . . . . . . . . . . . . 90
7.2.3 Characterization by EELS Spectra and Maps . . . . . . . . . . . . . . . . . . . . 91
7.2.4 Harmonic Inversion of the Electric Field . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.5 Comparing EELS Maps to the Modes of the Electric Field . . . . . . . . . . . . . 95
7.2.6 Comparing EELS and Extinction Cross-Section Spectra . . . . . . . . . . . . . . 96
7.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Coupled Split-Ring Resonator Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.1 Coupled Split-Ring Resonators in 1x2 Con�guration . . . . . . . . . . . . . . . . 98
7.3.2 Coupled Split-Ring Resonators in 2x1 Con�guration . . . . . . . . . . . . . . . . 105
7.3.3 Coupled Split-Ring Resonators in 1x4 Con�guration . . . . . . . . . . . . . . . . 111

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VI



Contents

8 Summary and Outlook 119
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Publications 125

Bibliography 133

VII





1 Chapter 1

Introduction

In this thesis, we examine the optical properties of metallic nanostructures with typical feature sizes
of the order of visible light. The interaction of light with such structures can be accurately described
by classical electrodynamics. Thus, for the analysis of metallic nanostructures within this thesis, we
will employ Maxwell's equations [1] to model the physical behavior of the electromagnetic �elds. On
these length-scales, light does not respond to the atomic-scale variation induced by the individual nuclei
and electrons of matter, and, hence, a rigorous treatment in terms of quantum electrodynamics is not
required.

1.1 Plasmonic Nanostructures

Plasmonics refers to a relatively young �eld of optical science in which the properties of nano-scale
metallic structures and their interaction with light is investigated. Metal structures support localized
oscillations of free electrons, so called plasmons. These plasmons couple to the incident electromag-
netic and can be resonantly enhanced which results in a potentially strong enhancement of the local
�eld. Such strong local �elds are employed in a variety of methods and techniques, e. g., surface
enhanced Raman spectroscopy, surface enhanced infrared absorption, or nonlinear frequency conver-
sion (cf. Refs. [2, 3] and references therein).
Besides local enhancement, the �eld tends to be strongly localized. In other words, the �eld strongly

varies over short distances which renders plasmonic structures suitable devices for sensing. For ex-
ample, the detection of single molecule events has been reported [4]. Scanning near-�eld optical mi-
croscopy (SNOM) is a technique that exploits the strong localization. This leads to a spatial resolution
below the di�raction limit [5�7].
Remarkable e�ects occur when individual metallic structures are periodically arranged. Among these,

the discovery of an e�ective magnetic response from non-magnetic conducting media by Pendry et al. [8]
is outstanding. Based on their �ndings, negative refraction has been demonstrated for several di�erent
arrangements, e. g., split-ring resonators [9] (cf. Fig. 1.1), net-structures [10], and nanostrips [11]. Such
behavior has not been observed in nature and, hence, these materials, fabricated from periodically
arranged metallic building-blocks1, are suitably coined �metamaterials� [10]. In order to obtain these
exceptional properties, the extent of the metaatoms must be (signi�cantly) smaller than the wavelength
of the incident radiation.

1We also refer to the building-blocks by �metaatoms�.
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1 Introduction

Figure 1.1: Scanning electron microscope image (left panel, courtesy of M.Husnik and M.Wegener)
and tetrahedral mesh (right panel) of an individual split-ring resonator. The side-
length of the split-ring resonator is approximately 140 nm.

The properties of a metamaterial are the result of the collective response of the individual metaatoms.
In order to understand the underlying coupling mechanisms, the electromagnetic properties of an
individual metaatom must be characterized. Among a large amount of characterization methods, two
sophisticated methods are considered in the context of this thesis:
Recently, Husnik et al. [12] demonstrated the simultaneous and quantitative measurement of the

scattering and the extinction cross section of individual nanostructures. Their novel setup combines
a spatial modulation technique with a common-path interferometer. Since this newly developed tech-
nique cannot be compared to any other measurement, we supported the development by numerical
investigations (Chap. 6).
The second characterization method, which we consider in this thesis, is electron energy loss spec-

troscopy (EELS). Due to a spatial resolution on the nm-scale and a high energy resolution (sub-eV),
EELS gained considerable attention throughout the last years. In this thesis, both individual and cou-
pled systems of split-ring resonators are treated numerically and are compared to a series of other (nu-
merical) characterization methods (Chap. 7). Parts of this analysis along with experimental data2 will
be published soon [13].

1.2 Numerical Simulation’s Contribution to Research

Albeit a remarkable progress in fabrication and measurement techniques, the analysis of nanostructures
is a costly and time-consuming task. In particular, extensive parameter studies are challenging in terms
of time-consumption and reproducibility. A parameter study of split-ring resonators was numerically
performed by use of the discontinuous Galerkin time-domain (DGTD) method in Ref. [14]. Therein, the
dependence of the scattering, the absorption, and the extinction cross section on numerous geometry
parameters (e. g., height, thickness, etc.) was examined. This example demonstrates that numerical
simulation methods are comparatively cheap, �exible, and reliable tools.
Besides these aspects, numerical simulations provide physical quantities which are inaccessible in the

experiment. Very naturally, the time-evolution of the electromagnetic �eld distribution can be observed
by employing time-domain simulations [15]. Due to the high frequencies in the optical regime, such

2The experimental work is accomplished by F. von Cube and S. Linden.
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1.3 Graphics Processing Units Accelerated Research

an analysis cannot be easily obtained by experimental techniques. For a particular system, a single
time-domain simulation su�ces to obtain a spectrally broad response when employing a short pulse for
excitation.
A variety of numerical methods exist which handle Maxwell's equations in both the time- and the

frequency-domain. Undoubtedly, the most famous one is the �nite-di�erent (FD) method and, in
particular, the �nite-di�erence time-domain (FDTD) method. In its basic form, the FD method lays
down an structured grid in space and approximates spatial derivatives by di�erences across neighboring
grid points [16]. Being conceptually simple and intuitive, the method su�ers from a low order of
accuracy when dealing with material interfaces [17]. Bound to a necessarily structured grid, the FD
method leads to unsatisfactory results when dealing with round structures. In particular, the grid may
induce spurious �eld enhancement when simulating metallic objects.
Another well-established numerical method is the �nite-element method (FEM) [18, 19]. In contrast

to FD, unstructured grids are supported, i. e., the geometry of the physical system is modeled by
elements of di�erent sizes and shapes. An unstructured mesh of a split-ring resonator consisting of
tetrahedra is depicted in the right panel of Fig. 1.1. Obviously, the geometry can be accurately modeled
by an unstructured tetrahedral mesh.
In the FEM, the numerical solution of the physical problem is approximated by high-order basis

functions. Both the size of the grid elements and the order of approximation can be employed to
control the accuracy of the solution which is known as hp-adaptivity. The discretization according
to the FEM method results in a (potentially large) implicit semi-discrete set of equations. For time-
domain simulations, the solution of the associated systems of linear equations can yield to an ine�cient
numerical scheme.
Thus, our method of choice is the discontinuous Galerkin (DG) method which combines the ma-

jor advantages of both the �nite-di�erence and the �nite-element method: The representation of the
geometry by an unstructured grid, high-order basis functions, and an e�cient applicability in the time-
domain. In contrast to the FEM, element-local basis functions are employed. This leads to an implicit
method which can be e�ciently inverted. Furthermore, this element-local ansatz is ideally suited for
execution on massively parallel devices.
Originally, the DG method was proposed in 1973 in the context of neutron-transport [20]. A major

step towards its application in the �eld of classical electrodynamics was done in 2002 when Hesthaven
and Warburton published a nodal scheme and proved convergence of the numerical �ux [21]. Since
then, the DGTD method has attracted much attention and has been applied to a variety of analyses,
e. g., for optical spectroscopy [12, 22, 23] and electron energy loss spectroscopy [13, 24, 25]. These anal-
yses techniques are, however, computationally demanding which emphasizes the need for accelerated
approaches, e. g., graphics processing units.

1.3 Graphics Processing Units Accelerated Research

During the last decade, graphics processing units (GPUs) have attracted a lot of attention in the
scienti�c community. These massively parallel processing units o�er steadily increasing computational
raw power which � today � is an order of magnitude larger than that of CPUs [26]. Furthermore,
they are also more e�cient in terms of cost and power consumption. Besides this bare power, it is the
evolving ecosystem around GPUs which attracts scientists to employ these devices for their research.
Suitable programming languages and development kits were released which simplify the application of
GPUs for general purposes.

3



1 Introduction

Today, GPUs are applied in those �elds of research which handle complex systems by numerical
simulation tools. In physics, for example, GPUs are employed for Maxwell's equations [27], seismic
wave propagation [28], and incompressible �ow dynamics [29], just to mention a few. In comparison to
well-established CPU codes, GPU implementations have been reported to yield a signi�cant reduction
of the simulation time which may open the door for the treatment of systems governing high complexity
or demanding increased accuracy.
Based on these encouraging prospects, we address an implementation of the DGTD method for

Maxwell's equations on GPUs. A detailed description of our venture is presented in this thesis. In
essence, we obtained a powerful tool which enables us to perform computationally intense physical
investigations of, e. g., plasmonic nanostructures.

1.4 Outline of the Thesis

A brief review of classical electrodynamics is given in Chap. 2 where the necessary physical equations
governing the description of plasmonic systems are introduced. Subsequently, in Chap. 3, the set of
partial di�erential equations is discretized in space by the nodal DGmethod, and the low-storage Runge-
Kutta method is applied to integrate the set of ordinary di�erential equations in time. Extensions for
the practical use of the DGTD method are presented in Chap. 4. With the theory at hand, the DGTD
method for Maxwell's equations is analyzed, implemented, and tested in Chap. 5. In the following
chapters, we apply the GPU implementation to plasmonic systems. First, we examine the cross sections
of gold nano-antennae and compare the results to the corresponding experiment in Chaps. 6. An
individual split-ring resonator and coupled systems of several split-ring resonators are analyzed by
electron energy loss spectroscopy in Chap. 7. We conclude the thesis with a brief summary and an
outlook in Chap. 8.
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2 Chapter 2

Classical Electrodynamics

The physical systems discussed in this thesis can be accurately described by classical electrodynamics.
In particular, quantum mechanical e�ects do not need to be considered. In this chapter, a brief review
of classical electrodynamics is presented focusing on topics which are relevant for this thesis. For an
elaborate discussion of classical electrodynamics, the reader is referred to standard textbooks, e. g.,
Refs. [30, 31].

2.1 Macroscopic Maxwell’s Equations

The theory of classical electrodynamics is based on James Clerk Maxwell's publication in 1865 [1]
and describes the propagation of electromagnetic waves and their interaction with matter. In vector
notation and the SI unit system, the macroscopic Maxwell's equations in di�erential form read [30, 32]

~∇ · ~D
(
~r, t
)

= ρ
(
~r, t
)
, (2.1a)

~∇ · ~B
(
~r, t
)

= 0 , (2.1b)
~∇× ~H

(
~r, t
)

= ∂t~D
(
~r, t
)

+~j
(
~r, t
)
, (2.1c)

~∇× ~E
(
~r, t
)

= −∂t~B
(
~r, t
)
, (2.1d)

where the electric �eld ~E, the magnetic �eld ~H, the electric displacement ~D, and the magnetic in-
duction ~B are three-dimensional vectors comprising x-, y-, and z-components. The free electric charge
density ρ and the free electric current density ~j denote sources due to free charge in the system, e. g.,
charge that is not bound to the cores of atoms. These quantities depend on position ~r = (x, y, z)T and
time t.
The macroscopic Maxwell's equations1 are accurate for wavelengths large compared to atomic scales

as the �elds and the sources are considered averaged quantities of a microscopic theory. The sys-
tems discussed in this thesis comprise typical length-scales of the order of 100 nm which justi�es the
application of the macroscopic approach.

1For brevity, we refer to Eq. (2.1) by simply �Maxwell's equations� in the remainder of the thesis.
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2 Classical Electrodynamics

2.1.1 Constitutive Relations

Maxwell's equations comprise twelve unknown �eld components in eight independent equations. Thus,
Eq. (2.1) cannot be solved until ~D and ~H are known in terms of ~E and ~B [30]. The missing relations
are expressed by the constitutive relations which model the interaction between the �elds and matter
by

~D
(
~r, t
)

= ε0~E
(
~r, t
)

+ ~P
[
~E, ~B

]
,

~H
(
~r, t
)

=
1

µ0

~B
(
~r, t
)
− ~M

[
~E, ~B

]
,

(2.2)

where ~P and ~M denote the macroscopic polarization and magnetization, respectively. Upon introduction
of the vacuum permittivity ε0 and the vacuum permeability µ0, an essential arbitrariness of dimensions
is introduced [31] � a fact that we exploit in Sec. 2.1.3 to introduce a dimensionless formulation.
Implicitly, ε0 and µ0 must ful�ll

c =
1

√
ε0µ0

, (2.3)

where c denotes the vacuum speed of light. The polarization ~P and the magnetization ~M may depend
on ~E, ~B, ~r, and t in a complex way, expressed by [·], e. g., they can depend on past history, be nonlinear,
etc. Consequently, media are conveniently classi�ed by the dependencies of ~P and ~M.

In the regime of weak �elds, the material response of most media other than ferroelectrics or ferro-
magnets can be accurately modeled by the linear relation [30]

Dα

(
~r, t
)

=
∑
β

∞∫
−∞

d3r′
∞∫
−∞

dt′ εαβ

(
~r ′, t′

)
Eβ

(
~r−~r ′, t− t′

)
,

Hα

(
~r, t
)

=
∑
β

∞∫
−∞

d3r′
∞∫
−∞

dt′ µ′αβ

(
~r ′, t′

)
Bβ

(
~r−~r ′, t− t′

)
,

(2.4)

which supports non-local, dispersive, and anisotropic behavior. For many simple metals and dielectrics,
the material response is local and isotropic in space and most conveniently described in the frequency-
domain by

~D
(
~r, ω

)
= ε0εr(ω) · ~E

(
~r, ω

)
,

~B
(
~r, ω

)
= µ0µr(ω) · ~H

(
~r, ω

)
,

(2.5)

where εr and µr are the relative permittivity and permeability, respectively. For dispersionless media,
the constitutive relations in the time-domain � obtained by the inverse Fourier transform of Eq. (2.5) �
read

~D
(
~r, t
)

= ε0εr
(
~r
)
· ~E
(
~r, t
)
,

~B
(
~r, t
)

= µ0µr
(
~r
)
· ~H
(
~r, t
)
.

(2.6)
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2.1 Macroscopic Maxwell's Equations

Employing Eq. (2.6), Maxwell's equations for local, isotropic, and dispersionless media simplify to

~∇ ·
(
εr
(
~r
)
· ~E
(
~r, t
))

=
ρ
(
~r, t
)

ε0
, (2.7a)

~∇ ·
(
µr
(
~r
)
· ~H
(
~r, t
))

= 0 , (2.7b)

~∇× ~H
(
~r, t
)

= −ε0εr
(
~r
)
· ∂t~E

(
~r, t
)

+~j
(
~r, t
)
, (2.7c)

~∇× ~E
(
~r, t
)

= −µ0µr
(
~r
)
· ∂t~H

(
~r, t
)
. (2.7d)

2.1.2 Time-Evolution of the Electromagnetic Fields

The evolution of the electromagnetic �elds in time is governed by the curl equations Eqs. (2.1c) and
(2.1d). The divergence conditions Eqs. (2.1a) and (2.1b) are satis�ed for all time, if the divergence
conditions were initially ful�lled and the �elds are evolved in time by the curl equations [21]. Hence,
Eqs. (2.1a) and (2.1b) can be regarded as initial conditions for the �elds and need not be considered
for time-evolution.
To show that, we require the conservation of charge

∂tρ
(
~r, t
)

+ ~∇ ·~j
(
~r, t
)

= 0 , (2.8)

which is obtained2 by application of the divergence to Eq. (2.1c) and subsequent insertion of Eq. (2.1a).
Applying the divergence to the curl equations and using Eq. (2.8) yields

∂t

(
~∇ · ~D

(
~r, t
)
− ρ
(
~r, t
))

= 0 ,

∂t

(
~∇ · ~B

(
~r, t
))

= 0 ,
(2.9)

which implies that if the divergence conditions are satis�ed at some (initial) time t0, they will not
change upon time-evolution by the curl equations as long as charge remains preserved.

2.1.3 Normalization to Dimensionless Units

In the previous sections, we expressed Maxwell's equations in the SI unit system. For numerical
simulations, a dimensionless unit system is more convenient and, thus, we scale all lengths λ with
respect to a reference length λ0 � in SI units � and express time by the (normalized) distance that
light propagates in free space. In this system, the vacuum speed of light becomes 1:

λ =
λSI
λ0

, t =
1

λ0
· cSItSI , c =

λ

t
= 1 . (2.10)

In essence, the interval [0, λ0]SI is mapped to [0, 1], and light in vacuum propagates 1 �dimensionless
unit� of length in 1 �dimensionless unit of time�.

2The divergence of a curl of a vector is identical to zero, i. e., ~∇ ·
(
~∇× ~A

(
~r
))
≡ 0.
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2 Classical Electrodynamics

Quantity SI Unit Dimensionless Units

Length λSI = λ0 · λ λ = 1
λ0
· λSI

Time tSI = λ0
cSI
· t t = cSI

λ0
· tSI

Frequency ωSI = cSI
λ0
· ω ω = λ0

cSI
· ωSI

Electric Field ~ESI = E0 · ~E ~E = 1
E0
· ~ESI

Magnetic Field ~HSI = E0

√
ε0
µ0
· ~H ~H = 1

E0

√
µ0
ε0
· ~HSI

Table 2.1: Conversion rules between SI system and dimensionless units. Throughout the thesis,
we set E0 = 1 Vm and λ0 = 1µm.

In a next step, we eliminate ε0 and µ0 from the curl equations by rescaling of the �elds. For linear
media, we can additionally normalize the �elds by an arbitrary �eld strength E0 � in SI units. Thus,
the �elds in dimensionless units are obtained by

~E =
~ESI

E0
, ~H =

√
µ0

ε0
·
~HSI

E0
, ~j =

√
µ0

ε0
· λ0

~jSI
E0

. (2.11)

Employing Eqs. (2.10) and (2.11), the curl equations for linear, local, isotropic, dispersionless media
are transformed to

∂t~E
(
~r, t
)

= ε−1
(
~r
)
·
(
~∇× ~H

(
~r, t
)
−~j
(
~r, t
))

, (2.12a)

∂t~H
(
~r, t
)

= −µ−1
(
~r
)
· ~∇× ~E

(
~r, t
)
. (2.12b)

This set of equations comprises only dimensionless quantities. Note that the index r of the relative
permittivity and permeability has been dropped for convenience, and we will merely employ quantities in
the dimensionless unit system in the remainder of the thesis unless stated otherwise. The transformation
rules are summarized in Tab. 2.1. For all simulations of this thesis, we set λ0 = 1µm and E0 = 1 Vm .

2.2 Dispersive Materials in the Time-Domain

Plasmonic structures are most commonly fabricated from metals such as silver, gold, or aluminum.
Within the visible and near-infrared regime, the real and imaginary part of the permittivity of these
metals can vary by orders of magnitude, i. e., these materials exhibit considerable dispersion. Dispersion
enters Maxwell's equations via the constitutive relations and can be expressed in both the frequency-
and the time-domain. In the frequency-domain, dispersion is conveniently modeled by a frequency-
dependent permittivity and permeability (cf. Eq. (2.5)). In contrast, the time-domain formulation
contains a convolution integral (cf. Eq. (2.4)) which is notoriously di�cult to handle in numeric meth-
ods. A feasible technique to include linear, dispersive materials in numerical time-domain methods is
based on auxiliary di�erential equations [15].
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2.2.1 Auxiliary Differential Equations

In order to e�ciently include dispersive media in a time-domain numerical method, we seek for a simple
expression of the time-derivative of the constitutive relation

~D
(
~r, t
)

=

∞∫
−∞

dt′ ε
(
t′
)
· ~E
(
~r, t− t′

)
, (2.13)

which enters Maxwell's equations via Eq. (2.1c). The time-derivative of Eq. (2.13) transformed into
frequency-domain reads

− iω~D
(
~r, ω

)
= −iω

(
ε(ω) · ~E

(
~r, ω

))
, (2.14)

where the convolution becomes a simple product and the time-derivative transforms as

∂t ←→ −iω. (2.15)

Despite the transformed time-derivative, Eq. (2.14) corresponds to Eq. (2.5) in dimensionless units.
The permittivity ε(ω) can be decomposed into a constant background permittivity ε∞ and a frequency-
dependent susceptibility χ(ω) by

ε(ω) = ε∞ + χ(ω) . (2.16)

Upon insertion of Eq. (2.16) into Eq. (2.14), we obtain

−iω~D
(
~r, ω

)
= −iωε∞ · ~E

(
~r, ω

)
+~jp

(
~r, ω

)
, (2.17a)

~jp
(
~r, ω

)
= −iωχ(ω) · ~E

(
~r, ω

)
, (2.17b)

where ~jp
(
~r, ω

)
denotes a frequency-dependent auxiliary polarization current density. Thus, the polar-

ization in the frequency-domain reads

~P
(
~r, ω

)
= χ(ω) · ~E

(
~r, ω

)
=
~jp
(
~r, ω

)
−iω

. (2.18)

An inverse Fourier transform of Eqs. (2.17a) and (2.17b) yields the desired time-domain expression
for dispersive, linear media. While Eq. (2.17b) depends on the particular material model in charge and
must be rearranged before transformation in order to avoid a convolution integral in the time-domain,
Eq. (2.17a) is easily transformed:

∂t~D
(
~r, t
)

= ε∞∂t~E
(
~r, t
)

+~jp
(
~r, t
)
. (2.19)

Upon insertion of Eq. (2.19) into the Eq. (2.1c), the modi�ed curl equation including the auxiliary
polarization current density in dimensionless units reads

∂t~E
(
~r, t
)

= ε−1
∞ ·

(
~∇× ~H

(
~r, t
)
−~j
(
~r, t
)
−~jp

(
~r, t
))

. (2.20)

For suitable susceptibilities χ(ω), i. e., rational functions with respect to iω, an inverse Fourier trans-
form of Eq. (2.17b) leads to (several) auxiliary di�erential equations (ADEs) that are to be solved in
parallel with Maxwell's equations [15].
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2 Classical Electrodynamics

2.2.2 The Drude Model

Around 1900, Paul Drude described the material response of metals by means of the kinetic theory
of gases [33, 34]. In the Drude model, the metal is considered to consist of heavy immobile ion cores
and bound and free electrons. Bound electrons are located in the vicinity of the ion cores and stated
immobile as well while the free electrons behave like an ideal kinetic gas, i. e., in absence of external
forces the momentum of the free electrons remains unchanged. In particular, the free electrons interact
neither with the ion cores (free electron approximation) nor with each other (independent electron
approximation) [35].
Consequently, the velocity of a single electron is modeled by

∂t~v(t) + γD~v(t) =
−e
me

~E(t) , (2.21)

where e denotes the (positive-valued) elementary charge, me represents the electron mass, and γD
corresponds to a phenomenological damping term, also referred to by collision frequency. Solving
Eq. (2.21) for the velocity in the frequency-domain yields

~v(ω) =
1

iω − γD
e

me

~E(ω) . (2.22)

The harmonically driven electron is associated with a macroscopic (polarization) current density, i. e.,

~jD(ω) = −en~v(ω) , (2.23)

where n refers to the free electron density. Upon insertion of Eq. (2.23) into Eq. (2.18), we obtain the
susceptibility

χD (ω) = −
ω2
D

ω
(
ω + iγD

) (2.24)

with the plasma frequency

ωD =

√
ne2

me
. (2.25)

The permittivity according to ε(ω) = ε∞ + χD(ω) is visualized in the left panel of Fig. 2.1. For
frequencies larger than the plasma frequency, the metal behaves similarly to a dielectric, i. e., <{ε}
slowly approaches the positive-valued ε∞ accompanied by a practically vanishing ={ε}. Below ωD,
Drude metals exhibit a strong dispersive response with a negative <{ε} and signi�cant, positive ={ε}.
The Drude model accurately describes metals in the near- and far-infrared regime where the photon

energy is insu�cient to invoke interband transitions. Gold in the near-infrared, for example, features
a plasma frequency of ωD,Au ≈ 14 · 1015 Hz. In comparison, light of λ = 1500 nm corresponds to
a frequency of ω ≈ 1.3 · 1015 Hz, i. e., the light frequency is well below the plasma frequency. In
practice, the free parameters ε∞, ωD, and γD are obtained by the �tting Drude model permittivity to
experimental data as described in Sec. 2.2.4.
In order to employ the Drude model in time-domain simulations, the frequency-dependent suscepti-

bility χD(ω) must be expressed in the ADE formalism (cf. Sec. 2.2.1). Therefore, Eq. (2.24) is inserted
into Eq. (2.17b), rearranged, and transformed into the time-domain [15], leading to a single ADE:

∂t~jD(t) = ω2
D
~E(t)− γD~jD(t) (2.26)
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1

0

1

0

Figure 2.1: Electric permittivity ε(ω) for the Drude (left panel) and the Lorentz (right panel)
model. Real and imaginary parts of the permittivity are indicated in blue and red,
respectively.

2.2.3 The Lorentz Model

By considering merely free electrons, the Drude model fails to describe interband transitions in the
high energy range of the visible spectrum. Hendrik Antoon Lorentz extended the Drude model by
taking bound electrons into account which are modeled as harmonic oscillators. In an equivalent
mechanical model, an electron is bound to an ion by an elastic spring which results in a restoring
force [32]. Consequently, polarizable matter is understood as a collection of identical, independent,
isotropic harmonic oscillators.
The equation of motion for an electron of charge −e and mass me is given by

∂2
t~x(t) + γL∂t~x(t) + ω2

L~x(t) =
−e
me

~E(t) , (2.27)

where ~x represents the displacement from the equilibrium position, ωL denotes the eigenfrequency of
the oscillator and γL corresponds to a phenomenological damping term. Solving for ~r in Fourier space
yields

~x(ω) =
1

ω2
L − iγLω − ω2

· −e
me

~E(ω) . (2.28)

The displacement is associated with a dipole moment by ~p(ω) = −e~x(ω). As the individual oscillators
are considered non-interacting, the macroscopic polarization is obtained by ~P(ω) = n~p(ω), where n
denotes the density of microscopic oscillators. Employing Eq. (2.18), the susceptibility of the Lorentz
oscillator model reads

χL(ω) =
∆εL · ω2

L

ω2
L − iγLω − ω2

(2.29)

with the oscillator strength

∆εL =
ω2
D

ω2
L

,

(
with ω2

D =
ne2

me

)
. (2.30)

Note that the density of microscopic oscillators and the free electron density of the Drude model di�er
and � despite the formal equity of ωD and the Drude plasma frequency � ∆εL is a free parameter of
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2 Classical Electrodynamics

the Lorentz model. In practice, the free parameters ωL, γL, and ∆εL are obtained by a �t procedure,
described in Sec. 2.2.4.
The permittivity according to ε(ω) = ε∞ + χL(ω) is depicted in the right panel of Fig. 2.1. The

imaginary part exhibits a signi�cant increase around ωL which models absorption due to interband
transitions. In the same range, the real part is strongly dispersive.
The ADE formulation of the Lorentz model is obtained by insertion of the susceptibility Eq. (2.29)

into Eq. (2.17b), rearrangement, and subsequent transformation into the time-domain. Two ADEs are
required to model the time-domain polarization current density [15]:

∂t~jL(t) = ∆εLω
2
L
~E(t) + ~qL(t) , (2.31a)

∂t~qL(t) = −ω2
L
~jL(t)− γL∆εLω

2
L
~E(t)− γL~qL(t) . (2.31b)

2.2.4 Calculation of Model Parameters from Experimental Data

Both the Drude and the Drude-Lorentz model accurately describe the electric permittivity within a
limited spectral range. Previously published material parameters were often designed to model large
spectral regions leading to a suboptimal representation of the permittivity within narrow ranges of the
spectrum, e. g., in the visible and near-infrared regime. For practical purposes, the model must be
accurate within the range of illumination and observation. Thus, we determine the free parameters of a
material model by �tting the permittivity to experimental values within the spectral range of interest.
Assume a metal of which the permittivity is to be modeled by one Drude and one Lorentz pole, i. e.,

ε�t
(
ω; Π

)
= ε′�t(ω) + iε′′�t(ω)

= ε∞ −
ω2
D

ω
(
ω + iγD

) +
∆εL · ω2

L

ω2
L − iγLω − ω2

(2.32)

with the free parameters Π 3 {ε∞, ωD, γD,∆εL, ωL, γL}. For a given set ofN experimentally determined
values of the complex electric permittivity

εexp(ωi) = ε′exp(ωi) + iε′′exp(ωi) , i ∈ [1, N ] , (2.33)

the relative deviation of the real and imaginary part of the experimental values and the model permit-
tivity are de�ned by

δε′i =
ε′�t(ωi)− ε′exp(ωi)

ε′exp(ωi)
and δε′′i =

ε′′�t(ωi)− ε′′exp(ωi)

ε′′exp(ωi)
, (2.34)

respectively. The set of free parameters Π is determined by

min
Π

 N∑
i=1

(
δε′i

)2
+

N∑
i=1

(
δε′′i

)2

 . (2.35)

Here, the sum of the squared relative deviation of both the real and the imaginary part is minimized
which implies that the real and the imaginary parts are optimized together. This means that each of
the 2N data points of {ε′exp(ωi) , ε

′′
exp(ωi)}, i ∈ [1, N ] contributes to the minimization functional with
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equal weight. In order to ensure reasonable physical values, the free parameters are bound to limits,
e. g., {ε∞,∆εL} ∈ [1,∞[ and {ωD, γD, ωL, γL} ∈ [0,∞[.
The nonlinear minimization algorithm employs the subspace trust-region method and is based on

the interior-re�ective Newton method [36, 37]. In general, nonlinear minimization algorithms cannot
guarantee to arrive at a global minimum but return local minima in the parameter space Π. The result
of the minimization strongly depends on the initial condition which must be provided to the algorithm.
Previously established model parameters often serve as suitable initial conditions. For gold, silver,

and copper, Ref. [38] provides both initial conditions for the Drude model and experimental values
at optical frequencies and in the near-infrared. Vial et al. [39] extended the Drude model parameters
by an additional Lorentz pole. Experimental values for a large number of elements and compound
materials are compiled in, e. g., Ref. [40].

2.3 Scattering of Electromagnetic Radiation

Photonic and plasmonic structures can be characterized by the amount of energy they absorb, i. e.,
convert into non-radiative energy or heat, and scatter, i. e., reradiate into all directions. The total
amount of energy that is removed from an incident electromagnetic �eld is referred to by extinction.
Sophisticated experimental setups allow to obtain the absorption, scattering, and extinction cross
section of individual particles and nanostructures [12, 23, 41]. This section brie�y summarizes relevant
aspects of scattering of electromagnetic radiation for the purposes of this thesis. For an extensive
introduction, we refer the reader to Refs. [32, 42].
The �ux of energy carried by an electromagnetic �eld is determined by the Poynting vector [32]

~S
(
~r, t
)

= ~E
(
~r, t
)
× ~H

(
~r, t
)
. (2.36)

For light in the visible and near-infrared regime, the Poynting vector Eq. (2.36) oscillates at frequencies
above 100Thz. Most detectors are not able to follow these rapid oscillations [32]. The physical quantity
which is accessible in the experiment is the time-averaged Poynting vector

~S
(
~r, ω

)
=

1

2
<
{
~E
(
~r, ω

)
× ~H∗

(
~r, ω

)}
, (2.37)

which determines the energy transported by an electromagnetic wave per unit area and time within
the period T = 2πω−1 [15]. Note that the time-averaged Poynting vector depends on frequency and is
not the Fourier transform of Eq. (2.36).
The net rate W (ω) at which electromagnetic energy crosses the closed surface ∂V of a volume V is

given by [32]

W (ω) = −
∫
∂V

~S
(
~r, ω

)
· n̂
(
~r
)

d2r , (2.38)

where n̂
(
~r
)
is the outwardly directed normal vector on the surface ∂V and the minus sign ensures that

energy �owing into the volume is accounted for by a positive value.
Let us consider a scatterer embedded in a homogeneous, lossless, linear medium. Due to the linearity

of Maxwell's equations, we can decompose the total �eld, labeled �tot�, into the incident �eld �inc� and
the scattered �eld �scat� by

~Etot

(
~r, ω

)
= ~Einc

(
~r, ω

)
+ ~Escat

(
~r, ω

)
,

~Htot

(
~r, ω

)
= ~Hinc

(
~r, ω

)
+ ~Hscat

(
~r, ω

)
.

(2.39)
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2 Classical Electrodynamics

In such a medium, the rate at which energy is absorbed within V reads

Wabs(ω) = −
∫
∂V

~Stot
(
~r, ω

)
· n̂
(
~r
)

d2r , (2.40)

where ~Stot
(
~r, ω

)
is the time-averaged Poynting vector of the total �elds ~Etot

(
~r, ω

)
and ~Htot

(
~r, ω

)
. Sim-

ilarly we calculate the rate of energy that is scattered from within the volume through ∂V by

Wscat(ω) = +

∫
∂V

~Sscat
(
~r, ω

)
· n̂
(
~r
)

d2r . (2.41)

Here, the time-averaged Poynting vector of the scattered �elds ~Sscat
(
~r, ω

)
is calculated from ~Escat

(
~r, ω

)
and ~Hscat

(
~r, ω

)
. Note that we inverted the minus sign in order to account for energy that is transported

out of the volume V by a positive value. In absence of scatterers within V , the scattered �elds vanish,
i. e., ~Escat

(
~r, ω

)
= ~Hscat

(
~r, ω

)
≡ 0, which implies that both Wabs(ω) and Wscat(ω) equal zero, too.

BothWabs(ω) andWscat(ω) directly depend on the strength of the incident �eld. In order to eliminate
this dependence, both rates are normalized by the modulus of the incident energy rate which yields the
absorption and the scattering cross section, respectively:

Cabs(ω) = − 1

|~Sinc(ω) |
·
∫
∂V

~Stot
(
~r, ω

)
· n̂
(
~r
)

d2r , (2.42)

Cscat(ω) =
1

|~Sinc(ω) |
·
∫
∂V

~Sscat
(
~r, ω

)
· n̂
(
~r
)

d2r . (2.43)

The extinction cross section is expressed as the sum of the absorption and scattering cross section [32]:

Cext(ω) = Cabs(ω) + Cscat(ω) . (2.44)

In terms of geometrical optics, the extinction cross section corresponds to the size of a shadow cast by
a perfectly opaque object. In the regime of wave optics, however, the �shadow� may di�er considerably
from the geometric cross section [32].
In many cases, the incident �eld is a homogeneous plane wave of which the modulus of the Poynting

vector in a lossless medium with real-valued permittivity ε and permeability µ reads [32]

∣∣S(ω)
∣∣ =

1

2

√
ε

µ

∣∣∣~E0(ω)
∣∣∣2 . (2.45)
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3 Chapter 3

The Discontinuous Galerkin Time-Domain
Method

With the exception of some usually highly symmetric cases, analytic solutions to Maxwell's equations
are elusive. In contrast, numerical techniques provide universal access to an approximate solution of
a physical system in both the time- and frequency-domain. Roughly, we can categorize numerical
methods into general-purpose and specialized methods. While the former make few assumptions about
the physical system at hand, the latter utilizes speci�c properties of the system which renders these
methods very e�cient in their �eld but unsuitable in other cases.
In this chapter, the nodal discontinuous Galerkin time-domain (DGTD) method for Maxwell's

equations is presented which can be considered a general-purpose method. The nodal discontinu-
ous Galerkin (DG) discretization supports a �exible representation of the physical system's geometry
by an unstructured mesh which can approximate almost arbitrarily shaped geometries. In principle,
the DG approach inherently supports curvilinear mesh elements, i. e., elements of which the faces may
be curved [21]. However, highest computational e�ciency is achieved for planar-faced elements. Un-
structured meshes help to avoid arti�cial �eld enhancement due to sharp edges which was observed for
methods employing an orthogonal grid, e. g., the popular �nite-di�erence (FD) methods.
Another noteworthy advantage of the DG method is its arbitrary order basis functions which pro-

vide excellent control over the discretization error compared to, e. g., the �nite-di�erence time-domain
(FDTD) method which is bound to second order accuracy when dealing with material interfaces [17].
The DG method provides discretized matrix operators for the spatial derivatives of a set of PDEs

and leaves the temporal derivatives untouched. This is known as the method of lines approach. Con-
sequently, DG discretized Maxwell's equations can be solved in both the time- and frequency-domain
by a multitude of di�erent approaches [15].
Most naturally, the propagation of electromagnetic waves and their interaction with matter is inves-

tigated in the time-domain. However, the response of a physical system is more conveniently described
in terms of frequency-resolved spectra. Employing short pulses in the time-domain gives access to the
response of the physical system in a broad frequency range by a single simulation.
From a practical point of view, the simulation time, i. e., the time a simulation requires to be executed,

is important, too. The DGTD method provides a highly parallel numerical scheme, especially under
the assumption of planar-faced elements [21], for which we will present an implementation on Graphics
Processing Units in Chap. 5. Recently, a similarly e�cient approach was presented for curvilinear
elements, too [43].
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Notation Meaning

êi Cartesian unit vector in i-direction
(
i = x, y, z

)
n̂ Outwardly directed normal vector of unit length

~a Physical vector with x-, y- and z-component

a Physical state vector with arbitrary number of components

ã Vector of expansion coe�cients of a single physical vector component

~̃a
Physical vector with x-, y- and z-components, where each component
contains a vector of expansion coe�cients ãx, ãy and ãz

ã
State vector with arbitrary number of components, where each compo-
nent contains a vector of expansion coe�cients

Table 3.1: Notation of vector types employed throughout the thesis. The notation is in agreement
with Ref. [15].

3.1 Spatial Discretization via the Nodal Discontinuous Galerkin Method

In the spirit of the method of lines approach, this section comprises the discretization of the spa-
tial derivatives according to the nodal discontinuous Galerkin method. The discussion is mainly
guided by Refs. [14, 15, 21, 44] and concentrates on providing a conclusive derivation of the numer-
ical scheme while omitting proofs in the interest of brevity. For details on proofs, the reader is referred
to Refs. [21, 45]. In order to provide a compact description, we employ the notation of Ref. [15], which
is summarized in Tab. 3.1.

3.1.1 Maxwell’s Curl Equations in Conservation Form

The �rst step is to formulate the physical problem in terms of the common basis for the DG discretiza-
tion, i. e., we formulate Maxwell's equations in conservation form. In order to focus on the method itself,
we consider linear, isotropic, dispersionless media resulting in simple constitutive relations (cf. Eq. (2.6))
and neglect current density sources, i. e.,~j

(
~r, t
)
≡ 0. Given suitable initial conditions, the time-evolution

of Maxwell's equations is governed by the curl equations (cf. Sec. 2.1.2).
Casting Eq. (2.12) in conservation form, Maxwell's curl equations in dimensionless units read [21]

Q
(
~r
)
· ∂tq

(
~r, t
)

+ ~∇ · ~F
(
q
)

= 0 , (3.1)

where material matrix Q
(
~r
)
and the state vector q

(
~r, t
)
are de�ned by

Q
(
~r
)

=

(
ε
(
~r
)

0
0 µ

(
~r
)) and q

(
~r, t
)

=

(
~E
(
~r, t
)

~H
(
~r, t
)) , (3.2)

respectively, and the �ux is given by

~F =
(
Fx,Fy,Fz

)T
, Fi

(
q
)

=

−êi × ~H
(
~r, t
)

êi × ~E
(
~r, t
)
 . (3.3)
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Here, the material matrix comprises the position-dependent material properties, i. e., the (relative)
permittivity ε

(
~r
)
and permeability µ

(
~r
)
. The state vector is a super-vector of the electric and magnetic

�eld, i. e., it contains two physical vectors of three components each (cf. Tab. 3.1). The �ux vector is a
physical vector of three components of which each is itself a super-vector depending on the components
of q. The Cartesian unit vector into the ith direction is denoted by êi, i ∈ {x, y, z}.
At �rst glance, the notation might seem confusing but serves to support a compact notation later

on. Note, that the product of the material matrix and the state vector is to be understood as

Q
(
~r
)
· q
(
~r, t
)

=

(
ε
(
~r
)
· ~E
(
~r, t
)

µ
(
~r
)
· ~H
(
~r, t
)) ,

and the divergence of the �ux vector is given by

~∇ · ~F = ∂x

−êx × ~H
(
~r, t
)

êx × ~E
(
~r, t
)
+ ∂y

−êy × ~H
(
~r, t
)

êy × ~E
(
~r, t
)
+ ∂z

−êz × ~H
(
~r, t
)

êz × ~E
(
~r, t
)
 ,

i. e., both operations yield physical state vectors of six components. The remainder of this section
addresses the discretization of Eq. (3.1) by the DG method following Refs. [15, 21, 45].

3.1.2 Tesselation of the Computational Domain

The DG method inherits properties from both the �nite-volume and the �nite-element method. As
such, the volume in which we evaluate Maxwell's equations, referred to by computational domain Ω,
is �nite in extent. In order to allow for a �exible representation of the physical system's geometry, the
computational domain Ω is tessellated into K non-overlapping body-conforming simplices D4, where
4 ∈ {1, . . . ,K} refers to the element index.
According to Ref. [21], the simplices, also referred to by (physical) elements, may by curvilinear,

i. e., their faces are not necessarily planar. However, the assumption of planar faces will simplify the
implementation considerably and lead to an e�cient numerical scheme.
The shape of the elements is not uniquely de�ned. Amongst others, tetrahedra, hexahedra, prisms,

or pyramids can be employed for three-dimensional systems. A mesh may even contain combinations
of di�erent element types which complicates matters in practice considerably. By far the most common
choice is to employ merely tetrahedra [45]. As an example, a sphere modeled by tetrahedra is depicted
in Fig. 3.1.
Operations of the physical elements D4 can be expressed in terms of those de�ned on a reference

element Dref, which is a fundamental strength of the DG method. Therefore, we introduce a mapping
which uniquely relates the two simplices [21]

Ψ : Dref → D4 . (3.4)

For linear elements, i. e., elements with planar faces, this relation is expressed by an a�ne transform of
coordinates:

~r4 =~r40 + J4~s , (3.5a)

J4 =
∂~r

∂~s
. (3.5b)
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3 The Discontinuous Galerkin Time-Domain Method

Figure 3.1: Tesselation of the computational domain and mapping to the reference element. The
left panel shows a sphere modeled by tetrahedra. The geometry is approximated by
elements of di�erent sizes and shapes. The right panel depicts a physical element and
its mapping to the reference element.

Here, J4 is the element-local Jacobian matrix, and ~r = (x, y, z)T ∈ D4 ⊂ R3 and ~s = (u, v, w)T ∈
Dref ⊂ R3 are local coordinate vectors of a physical element D4 and the reference element Dref,
respectively. The values of ~r40 and J4 depend on the explicit vertices of the reference element and the
physical elements.
Later in this chapter, we want to express the operators of physical elements in terms of those de�ned

on the reference element. Therefore, we require the inverse Jacobian matrix

(
J4

)−1
=
∂~s

∂~r
=


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 =

J
4
xu J4yu J4zu
J4xv J4yv J4zv
J4xw J4yw J4zw

 , (3.6)

which contains merely constant values for planar-faced elements.

3.1.3 Element-Local Approximate Solution

Our ultimate goal is to �nd the exact solution q of the problem formulated in Eq. (3.1). The solution
obtained by a numerical method qN generally di�ers from the � in general unknown � exact solution
while convergence ensures that the error is bounded.
On a particular element, the numerical solution q4N cannot satisfy Eq. (3.1) exactly which results in

a residuum:
Q
(
~r
)
· ∂tq4N

(
~r, t
)

+ ~∇ · ~F
(
q4N

)
= res . (3.7)

In some sense, it must be de�ned how the numerical solution shall satisfy Eq. (3.1) exactly. The
DG discretization inherits this property from FEM. Let Li

(
~r
)
represent a scalar basis function of a

�nite, linear function space and demand that the residuum is orthogonal to this function space. On
element D4, this condition is expressed by a vanishing scalar product of the residuum and the test
functions: ∫

V4

(
Q
(
~r
)
· ∂tq4N

(
~r, t
)

+ ~∇ · ~F
(
q4N

))
· Li
(
~r
)

d3r =

∫
V4

res · Li
(
~r
)

d3r
!

= 0 . (3.8)
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3.1 Spatial Discretization via the Nodal Discontinuous Galerkin Method

The local solution q4N must satisfy Eq. (3.8) for all test functions Li
(
~r
)
while the global solution

qN must satisfy Eq. (3.8) for all elements. Note that in contrast to FEM, where orthogonality to
the test functions is demanded globally over the entire computational domain Ω, Eq. (3.8) demands
orthogonality locally for each element. As a consequence, the elements are completely decoupled from
each other and we have to establish a mechanism to enforce the boundary conditions of Maxwell's
equations.

3.1.4 Restoring a Physical Solution via the Numerical Flux

Due to the entirely local statement of Eq. (3.8), discontinuities across element-boundaries are explicitly
allowed. In general, the local solutions of two adjacent elements exhibit a jump at their common
interface irrespective of the physical behavior they ought to describe.
Maxwell's equations demand continuity of the electromagnetic �elds within homogeneous regions

and exhibit well-de�ned conditions at material interfaces [30]. In particular, the tangential components
of ~E and ~H must be continuous across material interfaces while the normal components jump. These
conditions must be explicitly enforced to obtain a physically reasonable, global solution.
Integrating Eq. (3.8) by parts yields∫

V4

(
Q
(
~r
)
· ∂tq4N

(
~r, t
)
· Li
(
~r
)
− ~F

(
q4N

)
· ~∇Li

(
~r
))

d3r = −
∫
∂V4

(
n̂ · ~F

(
q4N

))
· Li
(
~r
)

d2r , (3.9)

where n̂ denotes the outwardly oriented normal (unit-)vector on the element's boundary ∂V4. Inten-
tionally, the integration by parts yields a surface term on the right-hand side which can be �employed�
to transfer information between elements through their common face. In this spirit, we modify the
surface term in order to account for physical conditions by introduction of the numerical �ux ~F∗ which
ought to enforce a physically correct solution. Obviously, the choice of the numerical �ux is crucial for
correctness and stability of the numerical scheme, and we will address the issue in more detail later in
this section.
Undoing the integration by parts yields the strong variational form of Maxwell's equations [45]:∫
V4

(
Q
(
~r
)
· ∂tq4N

(
~r, t
)

+ ~∇ · ~F
(
q4N

))
· Li
(
~r
)

d3r =

∫
∂V4

n̂ ·
(
~F
(
q4N

)
− ~F∗

(
q4N

))
· Li
(
~r
)

d2r . (3.10)

Note that the left-hand side remains an element-local expression while the right-hand side mediates
coupling of adjacent elements through their common face by the numerical �ux.

The Numerical Flux for Maxwell’s Equations

As the numerical �ux is supposed to enforce physical conditions across element boundaries, it is speci�c
to the physical problem at hand. Surprisingly, the numerical �ux is not unique. In 2002, Hesthaven and
Warburton proved convergence of a numerical upwind �ux for the nodal DG method which enforces
the boundary conditions of Maxwell's equations in a weak form1 [21]. From their paper and Ref. [45],

1This implies continuity of the electromagnetic �elds within homogeneous regions.
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we obtain

n̂ ·
(
~F
(
q4N

)
− ~F∗

(
q4N

))
=


Z̄−1

(
α

[
∆~E− n̂

(
n̂ ·∆~E

)]
+ Z+n̂×∆~H

)

Ȳ −1

(
α

[
∆~H− n̂

(
n̂ ·∆~H

)]
− Y +n̂×∆~E

)
 . (3.11)

The upwind �ux Eq. (3.11) comprises the impedance Z and admittance Y of the local �-� and
neighboring �+� element

Z± =

√
µ±

ε±
, Y ± =

(
Z±
)−1

(3.12)

and their sums
Z̄ = Z+ + Z− , Ȳ = Y + + Y − . (3.13)

In Eq. (3.11), n̂ denotes the normal unit-vector at the boundary of the local element in outward direction
and the �eld di�erences across common interfaces are de�ned as

∆~E = ~E+ − ~E− , ∆~H = ~H+ − ~H− . (3.14)

Eq. (3.11) contains the so-called upwind parameter α. Hesthaven and Warburton showed [21] that a
stable, convergent scheme can be achieved for α ∈ [0, 1]. For nodal methods, an upwind �ux (α 6= 0)
is preferable over an energy conserving central �ux (α = 0) since unphysical spurious oscillations are
damped. Optimal convergence is obtained for α = 1 [21, 45]. Hence, for the simulations performed in
the context of this thesis, we employ α = 1. The derivation of the numerical �ux involves the solution
of a Riemann problem, and is discussed in detail in, e. g., Refs. [14, 21, 45].

3.1.5 Boundary Conditions

As a consequence of the truncation of space, we are obliged to de�ne the behavior at the boundary
of the computational domain by means of boundary conditions. These boundary conditions ought to
mimic the behavior of the physical system under consideration. For example, assume a scattering ex-
periment in which an object located in (an in�nite) free space is illuminated by some source. Scattered
light leaves the vicinity of the object and the experiment without further interaction. This behavior is
modeled by absorbing radiation impinging onto the boundary of the computational domain by employ-
ing absorbing boundary conditions. In the context of the thesis, we employ re�ecting and absorbing
boundary conditions (ABCs) albeit there exist several more, e. g., periodic boundary conditions [17].
Within the DG method, information between elements is exchanged by the numerical �ux. Thus,

it is not surprising that boundary conditions are enforced by the numerical �ux. In case of Maxwell's
equations, the �eld di�erences mediate in between adjacent elements (cf. Eq. (3.11)). Boundary ele-
ments, i. e., elements at the boundary of the computational domain, are missing a neighbor to evaluate
the �eld di�erence and, thus, virtual elements are provided to evaluate the �eld di�erences Eq. (3.14).
These virtual elements are assigned the material properties of the local elements, i. e.,

Z+ ≡ Z− and Y + ≡ Y − , (3.15)

and the �eld di�erences are de�ned according to Tab. 3.2.
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3.1 Spatial Discretization via the Nodal Discontinuous Galerkin Method

Boundary Condition (BC) ∆~E ∆~H

Perfect Electric Conductor (PEC) −2~E− 0

Perfect Magnetic Conductor (PMC) 0 −2~H−

Silver-Müller (�rst order absorbing) −2~E− −2~H−

Table 3.2: Field di�erences for selected boundary conditions [44].

Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary conditions are
re�ecting boundary conditions which are typically employed to model cavities (cf. Sec. 5.3.1) or to
enforce symmetry (cf. Sec. 7.2.4).
Absorbing boundary conditions, e. g., the Silver-Müller boundary conditions, mimic open space by

absorbing incident radiation. Unfortunately, the Silver-Müller boundary conditions provide unaccept-
able performance for oblique incidence, and more sophisticated approaches must be employed to over-
come this disadvantage. In practice, so-called perfectly matched layers (PMLs) are required, which are
addressed in Sec. 4.3.

3.1.6 Expansion of the Electromagnetic Fields

In Sec. 3.1.3, we de�ned in which sense the approximate solution q4N must ful�ll the set of PDEs
Eq. (3.1). In this section, we explicitly de�ne the approximate solution in terms of the previously
de�ned test functions Li

(
~r
)
.

We assume that the exact solution q4 is well approximated on element D4 by [15, 21]

q4N
(
~r, t
)

=

Np∑
i=1

q4N
(
~ri, t

)
Li
(
~r
)

=

Np∑
i=1

q̃4i (t)Li
(
~r
)
, (3.16)

where Np nodal points ~ri are utilized, and q̃4i (t) = q4N
(
~ri, t

)
serves as short-hand notation for the

expansion coe�cients (cf. Tab. 3.1). Employing the same function space for both the test functions
and the expansion of the unknowns is commonly known as the Galerkin choice.
Due to the nodal expansion, the space- and time-dependence are separated, i. e., the time-evolution

is fully captured by the expansion coe�cients q̃4i (t) at the nodal points ~ri while the space-dependence
is governed by the multivariate Lagrange interpolation polynomials Li

(
~r
)
.

Due to the de�ning property of the interpolation polynomials

Li

(
~rj

)
= δij =

0 for i 6= j

1 for i = j
i, j ∈ {1, . . . , Np} , (3.17)

the expansion coe�cients directly represent unknown �eld values at the nodal points ~ri. Exploiting
Eq. (3.17), this property is easily shown:

q4N

(
~rj , t

)
= q4N

(
~ri, t

)
Li

(
~rj

)
= q4N

(
~ri, t

)
δij = q̃4j (t) . (3.18)

For convenience, we applied Einstein notation, i. e., summation of repeating indices. This convention
is employed throughout the thesis.
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p Np Nfp NfNfp b i

2 10 6 24 10 0
3 20 10 40 20 0
4 35 15 60 34 1
5 56 21 84 52 4
6 84 28 112 74 10

Table 3.3: Characteristic quantities of the DG method: the number of nodes per element Np, the
number of nodes on a single face Nfp, the product NfNfp, the number of nodes on the
element's boundary b, and the number of nodes inside the element i are listed for the
practically most relevant polynomial orders p = {2, . . . , 6}, where Nf = 4 is the number
of faces per element for three-dimensional systems.

The Lagrange polynomials of order p are given by [15]

Li
(
~r
)

=

k+l+m≤p∑
k,l,m=0

a
(i)
k,l,m · x

kylzm , (3.19)

where the coe�cients a(i)
k,l,m are determined by the position of the nodes~ri and Eq. (3.17). The choice of

the nodal points crucially in�uences the accuracy of the approximation Eq. (3.16) with which q4N
(
~r, t
)

is interpolated in between the nodes. Interestingly, there exists a set of optimal node positions for
one-dimensional systems, given by the Legendre-Gauss-Lobatto quadrature nodes [45]. For higher
dimensions, the empirical Warp&Blend method is employed to create a suitable set of nodal points [46].
In order to set up the numerical scheme, we must calculate the Lagrange polynomials explicitly. For

a set of predetermined nodal points ~ri, the Lagrange polynomials can be determined from Eqs. (3.17)
and (3.19). Unfortunately, the resulting linear systems of equations are ill conditioned and su�er low
precision, especially for high orders [21]. Consequently, the Lagrange polynomials are constructed using
an intermediate basis of Koornwinder-Dubiner polynomials [21, 45, 47].
According to Eq. (3.19), the number of basis functions Np is given in dependence of the polynomial

order p by

Np =
1

6
·
(
p+ 1

)
·
(
p+ 2

)
·
(
p+ 3

)
(3.20)

for three-dimensional systems. Note that Np also represents the number of interpolation nodes ~ri per
element and the number of expansion coe�cients for each component of the state vector q̃4. Thus,
the polynomial order controls both accuracy and convergence rate of the approximation. Obviously,
increasing p yields improved accuracy and convergence at the cost of additional computational e�ort.
A compilation of characteristic quantities for the DG method resulting from the node distribution
according to the Warp&Blend method is listed in Tab. 3.3.

3.1.7 The Semi-Discrete Form

The last step of the discretization procedure is the insertion of the expansion of the unknowns Eq. (3.16)
into the strong variational form of Maxwell's equations Eq. (3.10).

22



3.1 Spatial Discretization via the Nodal Discontinuous Galerkin Method

Therefore, we must evaluate the integrals

I41,i =

∫
V4

Q
(
~r
)
· ∂tq4N

(
~r, t
)
· Li
(
~r
)

d3r , (3.21a)

I42,i =

∫
V4

~∇ · ~F
(
q4N

)
· Li
(
~r
)

d3r , (3.21b)

I43,i =

∫
∂V4

n̂ ·
(
~F
(
q4N

)
− ~F∗

(
q4N

))
· Li
(
~r
)

d2r , (3.21c)

which leads to the so-called semi-discrete matrix formulation. In the following, we examine each of the
above integrals.

The Mass Matrix

First, we evaluate Eq. (3.21a) by considering the Ex-component of the state vector q4N
(
~r, t
)
. Similar

expressions for other state vector components follow straightforwardly. Upon insertion of Eq. (3.16)
into Eq. (3.21a), we obtain

I4,Ex

1,i =

∫
V4

ε
(
~r
)
· ∂tẼ4x,j(t) · Lj

(
~r
)
Li
(
~r
)

d3r

= ∂tẼ
4
x,j(t)

∫
V4

ε
(
~r
)
· Lj
(
~r
)
Li
(
~r
)

d3r

(3.22)

due to the separation of the space- and time-dependence of the nodal expansion. Demanding constant
material parameters within each element, the integrand reduces to Li

(
~r
)
Lj
(
~r
)
. This assumption will

allow for a very e�cient numerical scheme and does not impose severe restrictions [14].
Thus, replacing the position-dependent permittivity ε

(
~r
)
by the element-constant ε4 yields

I4,Ex

1,i = ε4 · ∂t
((
M4

)
ij

Ẽ4x,j(t)

)
, (3.23)

where the element-local mass matrixM4 is de�ned as(
M4

)
ij

=

∫
V4

Li
(
~r
)
Lj
(
~r
)

d3r . (3.24)

Note that the mass matrixM4 is de�ned on element D4, and we have not yet assumed a particular
relation to the reference element Dref.
The e�ciency of the DG method is partially based on the creation of template operators which are

de�ned on the reference element Dref [21]. Acknowledging Eq. (3.5), the mass matrix of the reference
element is de�ned as (

M4
)
ij

=

∫
Vref

Li
(
~s
)
Lj
(
~s
)
· det

(
J4

(
~s
))

d3s , (3.25)
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where the Lagrange polynomials Li
(
~s
)
are de�ned by the nodal points of the reference element. For

planar-faced elements, the Jacobian matrix merely contains constant-valued entries [21]. Consequently,
the determinant of the Jacobian matrix

J4 = det
(
J4

)
(3.26)

is constant-valued, too. Eq. (3.25) simpli�es to

M4 = J4M , (3.27)

whereM is the mass matrix of the reference element being de�ned as

M =

∫
Vref

Li
(
~s
)
Lj
(
~s
)

d3s . (3.28)

Employing, Eq. (3.27), we can construct the mass matrices of each element by a simple scaling
operation which results in an e�cient numerical scheme later on.

The Stiffness and the Differentiation Matrices

In a similar fashion, we treat the second integral Eq. (3.21b). Employing the de�nition of the �ux
Eq. (3.3) and the expansion of the unknowns Eq. (3.16), the integral for the Ex-component can be
expressed by

I4,Ex

2,i =

∫
V4

(
∂z~H

4
y,N

(
~r, t
)
− ∂y~H4z,N

(
~r, t
))
· Li
(
~r
)

d3r

=

∫
V4

H̃4y,j(t) · Li
(
~r
) (
∂zLj

(
~r
))

d3r −
∫
V4

H̃4z,j(t) · Li
(
~r
) (
∂yLj

(
~r
))

d3r

=
(
S4z
)
ij
· H̃4y,j(t)−

(
S4z
)
ij
· H̃4y,j(t) ,

(3.29)

where the element-local sti�ness matrices S4k , k ∈ {x, y, z} of D4 are de�ned as(
S4k
)
ij

=

∫
V4

Li
(
~r
) (
∂kLj

(
~r
))

d3r . (3.30)

Again, the separation of space- and time-dependence within the expansion is essential. As a conse-
quence, the spatial derivatives merely act on the Lagrange polynomials. For a compact notation in
later sections, we introduce the vector of sti�ness matrices

~S4 =
(
S4x ,S4y ,S4z

)T
. (3.31)

Similar to the mass matrix, we strive to �nd a de�nition of the sti�ness matrix on the reference
element. The derivative of any polynomial of order p is a polynomial of order p− 1. Thus, there exists
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a unique representation of the derivative in terms of Lagrange polynomials with the coe�cients given
by ∂kLj at the nodal points [14]. Employing this, the sti�ness matrices can be expressed by(

S4k
)
ij

=

∫
V4

Li
(
~r
) (
∂kLj

(
~rm
))
Lm
(
~r
)

d3r

=
(
D4k
)
mj
·
∫
V4

Li
(
~r
)
Lm
(
~r
)

d3r

=
(
M4D4k

)
ij
,

(3.32)

where we de�ned the element-local di�erentiation matrices D4k as(
D4k
)
mj

= ∂kLj
(
~rm
)
. (3.33)

For reasons that will become clear by the end of this section, we reformulate Eq. (3.32) to

D4k =
(
M4

)−1
S4k (3.34)

and introduce the vector of di�erentiation matrices

~D4 =
(
D4x ,D4y ,D4z

)T
. (3.35)

The di�erentiation matrices of the reference element Dref are de�ned in analogy to Eq. (3.33):(
Dd
)
mj

= ∂dLj
(
~sm
)
, d ∈ {u, v, w} . (3.36)

Acknowledging Eq. (3.6), we can construct the local-element di�erentiation matrices from the di�eren-
tiation matrices of the reference element:

D4k =
3∑
d=1

(
J4

)−1

kd
· Dd . (3.37)

Instead of storing the element-local di�erentiation matrices for each element, they can be e�ciently
constructed from the template matrices Dd. Therefore, the inverse Jacobian matrix for each element is
required. However, for three-dimensional systems, this amounts to nine values per element only.

The Face-Mass and the Lift Matrices

The last integral Eq. (3.21c) involves the numerical �ux Eq. (3.11). Conceptually, there is no di�erence
compared to the derivations of the mass, the sti�ness, and the di�erentiation matrices. In the interest
of brevity, we omit the lengthy derivation and state the result, as usual, for the Ex-component:

I4,Ex

3,i =
∑
f

F4f
α
(

∆~̃E4f − n̂(n̂ ·∆~̃E4f )
)

+ Z+n̂×∆~̃H4f

Z̄


x


i

(3.38)
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Here, ∆~̃E4f and ∆~̃H4f correspond to physical vectors of three components. Each component comprises
a vector of expansion coe�cients which contains the �eld di�erence across face f (cf. Tab. 3.1).
For each face of element D4, we introduced the element-local face-mass matrix F4f which is de�ned

as (
F4f
)
ij

=

∫
f4

Li
(
~r
)
Lj
(
~r
)

d2r , ~r ∈ f4 . (3.39)

Note that the integration is performed over a single face f4. Due to Eq. (3.17), a Lagrange polynomial
Lj
(
~r
)
identically vanishes on face f , if the associated node~rj does not lie on this face [14]. Consequently,

many entries of the face-mass matrix are zero.
The element-local face-mass matrices are easily expressed in terms of template operators acknowl-

edging the analogy to the mass matrix. Thus, the face-mass matrix on face f of element D4 can be
constructed by

F4f = J4f · Ff , (3.40)

where the face-mass matrix of the reference element Dref is de�ned as

Ff =

∫
fDref

Li
(
~s
)
Lj
(
~s
)

d2s . (3.41)

As it turns out, it is advantageous to de�ne the so-called lift matrix of face f on the reference element:

Lf ≡M−1 · Ff . (3.42)

Thus, the element-local lift matrix is given by(
M4

)−1
· F4f ≡ L

4
f =

J4f
J4
Lf . (3.43)

Semi-Discrete Form of Maxwell’s Equations

Finally, we can express the strong variational form in terms of the previously derived matrix operators.
The semi-discrete form of Maxwell's equations for local, isotropic, linear, dispersionless media with
element-wise constant parameters reads

∂t~̃E
4 =

1

ε4

(
M4

)−1

 ~S4 × ~̃H4 + Z̄−1F4f

[
α

(
∆~̃E4f − n̂

(
n̂ ·∆~̃E4f

))
+ Z+n̂×∆~̃H4f

] ,

∂t ~̃H
4 =

1

µ4

(
M4

)−1

− ~S4 × ~̃E4 + Ȳ −1F4f

[
α

(
∆~̃H4f − n̂

(
n̂ ·∆~̃H4f

))
− Y +n̂×∆~̃E4f

] .

(3.44)

In this particular form, merely element-local matrix operators are employed. Eq. (3.44) holds for
both linear and curvilinear elements since we have not yet assumed a particular mapping between the
element D4 and the reference element Dref.
Note that the mass and the face-mass matrix act on physical vectors of expansion coe�cient vec-

tors (cf. Tab. 3.1). In this sense, the face-mass matrix acts on a vector of expansion coe�cients ~̃a
by

F4f · ~̃a ≡
(
F4f · ãx, F

4
f · ãy, F

4
f · ãz

)T
. (3.45)
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The semi-discrete form describes the time-evolution of an element D4. Since all elements are treated
equivalently, it also represents the time-evolution of the global electromagnetic �elds.

Semi-Discrete Form of Maxwell’s Equations on the Reference Element

The semi-discrete form Eq. (3.44) employs element-local operators. In order to utilize this form in a
numerical scheme, we would have to store the matrix operators of all elements simultaneously which
would result in an immense memory consumption and an ine�cient numerical method.
Assuming a particular mapping Ψ : Dref → D4, we can cast Eq. (3.44) into a computationally more

e�cient form. Under the assumption of planar-faced elements, the Jacobi matrix (cf. Sec. 3.1.2) and
its determinant are constants. This results in simple linear relations between element-local matrix
operators and those de�ned on the reference element (cf. Eqs. (3.27),(3.37), and (3.40)).
Upon insertion of the previously derived template operators, we obtain the semi-discrete form of

Maxwell's equations for planar-faced elements

∂t~̃E
4 =

1

ε4

(
~D4 × ~̃H4 + Lf · ~̃FE,4

f

)
,

∂t ~̃H
4 =

1

µ4

(
− ~D4 × ~̃E4 + Lf · ~̃FH,4

f

)
.

(3.46)

Here, we have employed Eqs. (3.34) and (3.43) to absorb the inverse mass matrix. Note that the
element-local di�erentiation matrices can be e�ciently calculated using Eq. (3.37).

The �ux vectors ~̃FE,4
f and ~̃FH,4

f are de�ned as

~̃FE,4
f = Z̄−1

J4f
J4

[
α

(
∆~̃E4f − n̂

(
n̂ ·∆~̃E4f

))
+ Z+n̂×∆~̃H4f

]
,

~̃FH,4
f = Ȳ −1

J4f
J4

[
α

(
∆~̃H4f − n̂

(
n̂ ·∆~̃H4f

))
− Y +n̂×∆~̃E4f

]
.

(3.47)

Note that element-local constants, such as J4f , J4, and the material parameters are absorbed in the
�ux vectors.
Due to the application of template matrix operators, Eq. (3.46) merely requires the di�erentiation

and lift matrices of the reference element and the mapping constants of each element. Element-local
operators can be constructed on-the-�y at moderate computational e�ort.
Finally, note that the template matrix operators are relatively small in size, i. e., each di�erentiation

matrix contains Np×Np entries and the lift matrix of face f reduces to Np×Nfp entries (cf. Tab. 3.3).
Thus, in order to implement the DG approach e�ciently, one must be capable to handle a large number
of small matrix-vector-products.

3.1.8 Convergence and Error of the Spatial Discretization

A rigorous proof of convergence is a necessary condition for every numerical method. For the DG
method, convergence can be proven by use of the Lax-Richtmyer equivalence theorem [48]. However,
this yields suboptimal error estimates [45].
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3 The Discontinuous Galerkin Time-Domain Method

Sharp error bounds for the DG method applied to Maxwell's equations including the upwind �ux
Eq. (3.11) were determined in Ref. [21]. In this case, the error of the numerical solution qN is bounded
by [15] ∥∥∥qref − qN

∥∥∥ = O
(
hp+1

)
, (3.48)

where qref denotes the � in general unknown � exact solution, h represents the size of the largest
element of the mesh, and p is the polynomial order.
The convergence is algebraic in h and exponential in p [15] which is known as hp-convergence. Hence,

for a constant order of interpolation p, the error can be reduced by decreasing the size of the elements
in the mesh. Alternatively, the polynomial order p can be increased to enhance the accuracy of the
solution. In general, both h and p can be di�erent for each element which is known as hp-adaptivity. In
principle, p does not need to be constant during a time-domain simulation (adaptive p-re�nement) [45].
For the simulations performed in the context of this theses, p is equal for all elements of the mesh and
is not changed during the simulation.

3.2 Time Integration

The discretization according to the DG method results in the semi-discrete form of Maxwell's equa-
tions (cf. Eq. (3.46)). The missing part towards a time-domain solver is the integration in time.
In order to simplify the notation, we rewrite Eq. (3.46) as [15]

∂tp̃(t) = H · p̃(t) + p̃source(t) , (3.49)

where H denotes the system operator and p̃source(t) corresponds to a source term. The system operator
acts on the state vector of expansion coe�cients and represents the right-hand side of Eq. (3.46).
Eq. (3.49) is a set of coupled ordinary di�erential equations (ODEs) of �rst order in time, which are in
a more general form described by

∂tp̃(t) = f̃
(
p̃(t) , t

)
. (3.50)

A set of �rst order ODEs can be dealt with by a multitude of di�erent methods. An overview of the
general structure of these methods is depicted in Fig. 3.2. The choice of a particular method should
account for the properties of the set of ODEs, especially those of the system operator H.
In case of the DG discretization, the temporal order of accuracy should be su�ciently high to ac-

company the spatial order of discretization p. In addition, we usually face systems with a large amount
of unknowns, typically of the order of 107 and above. Thus, the time-integration method ought to
consume little memory.
Based on these requirements, we opt for an explicit low-storage Runge-Kutta (LSRK) method of the

Williamson formulation [50]. Currently established LSRK methods provide a temporal accuracy of up
to fourth order. Employing such a method, the numerical error is usually dominated by the spatial
discretization. The LSRK method demands to store a total of (only) 2N coe�cients simultaneously,
where N refers to the number of unknowns in p̃.

3.2.1 The Low-Storage Runge Kutta Method

In order to integrate Eq. (3.50) in time, we divide the time-axis into a number of � not necessarily
equidistant � time-steps tn. For the 2N -LSRK method, we prepare two equivalent state vectors of
expansion coe�cients q̃ and p̃, each containing N entries.
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3.2 Time Integration
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Figure 3.2: Classi�cation of general method types for the time-integration of ODEs. The �gure is
adapted from Ref. [49].

The set of ODEs is evolved from tn to tn+1 by [15]

q̃0 = q̃(tn) , (3.51a)

p̃i = Ai · p̃i−1 + ∆t · f̃
(
q̃i−1, tn + ci∆t

)
, (3.51b)

q̃i = q̃i−1 +Bi · p̃i , (3.51c)

q̃
(
tn+1

)
= q̃s . (3.51d)

Eqs. (3.51b) and (3.51c) de�ne the so-called stages i = {1, . . . , s}, where s is the number of stages.
For a given number of stages s and temporal order of accuracy pt, the parameters Ai, Bi, and ci de�ne
a particular scheme of the LSRK method. Interestingly, the scheme is not unique for a given set (s, pt).
The time-step ∆t = tn+1 − tn denotes the time-interval integrated by a single evaluation of Eq. (3.51).
Per se, the time-step is a free parameter which is, however, bound to conditions. We will address the
time-step in more detail in the following section. Note that the amount of storage is independent of
the number of stages s and the order of accuracy pt.
A �ve-stage, fourth order scheme of Carpenter and Kennedy [51] is most commonly employed for

DGTD simulations of Maxwell's equations [21, 22, 52]. In previous work, we developed LSRK schemes
of third and fourth order which can yield increased performance compared to Carpenter and Kennedy's
scheme [53, 54]. In several cases, these schemes allow for a 40% − 50% increased time-step compared
to the scheme of Ref. [51].

3.2.2 Stability

Since we chose an explicit LSRK method, the time-integration by Eq. (3.51) is conditionally stable.
This conditional stability imposes conditions on the time-step ∆t, i. e., we cannot choose ∆t arbitrarily
large. The relation between the unknowns of two consecutive time-steps is given by the ampli�cation
factor

R(z) = 1 + γ1z + γ2z
2 + · · ·+ γsz

s , z ∈ C . (3.52)

Here, the parameters γi, i = {1, . . . , s} can be directly related to parameters of the LSRK scheme
Ai, Bi, and ci [49, 53, 54]. Employing the ampli�cation factor, a necessary condition of stability is

29
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Figure 3.3: Eigenvalue spectrum of an empty cavity (blue dots) and normalized stability contours
of Niegemann's 14-stage (blue) and Carpenter and Kennedy's �ve-stage (red) LSRK
scheme. Both schemes are of fourth order in time.

expressed by [49, 55]

∀i :
∣∣∣R(∆t · λi)∣∣∣ ≤ 1 , (3.53)

where λi are the eigenvalues of the system operator H in the absence of sources (cf. Eq. (3.49)). Note
that Eq. (3.53) does not guarantee stability. However, it served as a good approximation of a su�cient
condition [45, 56].
Violation of the stability condition Eq. (3.53) results in an unphysical exponential growth of the

unknowns. Based on Eq. (3.53), we can formulate an explicit condition for the maximum stable time-
step ∆tmax:

∀i :
∣∣∣R(∆tmax · λi

)∣∣∣ = 1 . (3.54)

Consequently, the maximum time-step depends on both the physical system, represented by λi, and
the integration scheme, i. e., the set of parameters Ai, Bi, and ci (cf. Eq. (3.52)). The region of stability
{z :

∣∣R(z)
∣∣ ≤ 1} of schemes employing di�erent numbers of stages s can be quantitatively compared by

the so-called normalized region of absolute stability [53, 54]{
z

s
:
∣∣R(z)

∣∣ ≤ 1

}
. (3.55)

The normalized stability region of Carpenter and Kennedy's �ve-stage, fourth order scheme, as well
as our 14-stage, fourth order scheme, are visualized2 in Fig. 3.3. In order to ful�ll the stability condition
Eq. (3.53) for a given normalized time-step ∆ts = ∆t

s , all eigenvalues must reside within the normalized
stability contour. In case of Fig. 3.3, the normalized time-step per stage ∆ts is chosen such that the
stability condition is exactly ful�lled for the 14-stage scheme. In contrast, employing the same ∆ts for
the �ve-stage scheme violates stability, i. e., the normalized time-step is too large to ful�ll Eq. (3.53).
2In fact, the normalized stability contour {z/s : |R(z) | = 1} is depicted. The region of normalized stability governs the
closed area within the normalized stability contour.
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3.2 Time Integration

As a result, for this particular eigenvalue spectrum, the 14-stage scheme allows for a larger maximum
normalized time-step than the �ve-stage scheme [53, 54]. An empirical guideline to chose the time-step
in practice is provided in Ref. [15].
In order to achieve a large, stable, normalized time-step, two main approaches can be derived from

Eq. (3.55):
• Manipulate the eigenvalue spectrum such that it �ts into the stability contour.
• Form the stability contour according to the eigenvalue spectrum.

Since the eigenvalue spectrum directly depends on the physical problem at hand, there is only limited
freedom to manipulate its shape. Furthermore, the exact spectrum is in general not available.
In case of the simulation of Maxwell's equations, the eigenvalue spectrum can be directly manipulated

by the upwind parameter α [45, 54, 57]. By variation in the range α = [0, 1], signi�cantly increased
maximum stable time-steps of the order of 40%− 50% compared to the conventionally employed α = 1
were observed [54, 57].
The second point, adapting the stability contour according to the eigenvalue spectrum, o�ers more

�exibility. In order to do this, the eigenvalue spectrum is required but in general unknown. Based on
generic shapes of the eigenvalue spectrum, Niegemann et al. [53, 54] developed LSRK schemes which
are optimized for the DGTD method.
In their approach, the degrees of freedom emerging from an increased number of stages s are employed

to optimize those parameters γi which are not bound to accuracy conditions. In a subsequent step, a
nonlinear minimization yields the LSRK parameters Ai, Bi, and ci. Such optimized schemes show up
to 40%− 50% enhanced performance compared to the most frequently used scheme of Carpenter and
Kennedy for an upwind parameter α = 1 [53, 54].
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4 Chapter 4

Extensions for Practical Use

In the previous chapter, Maxwell's equations were discretized according to the nodal discontinuous
Galerkin method. In order to focus on the approach itself, we excluded sources and restricted the
constitutive relations to linear dispersionless media. Only a limited number of simple systems can be
treated due to these constraints which must be remedied for realistic physical setups. In particular,
we extend the previously presented method to include metals which are described by the Drude and
the Drude-Lorentz model in Sec. 4.1. In addition, the total-�eld/scattered-�eld and scattered-�eld
techniques are introduced to include practically arbitrary electromagnetic sources in Sec. 4.2. Finally,
perfectly matched layers (PMLs), a sophisticated approach to limit the computational domain by an
absorbing medium, are addressed in Sec. 4.3.

4.1 The Discretized Drude-Lorentz Model

Essential properties of metals originate from their dispersive response described by a frequency-dependent
electric permittivity ε(ω). A general approach to arrive at a computationally feasible time-domain for-
mulation for dispersive media by means of auxiliary di�erential equations was introduced and applied
for both the Drude and the Drude-Lorentz model (cf. Sec. 2.2). In this section, the ADEs of the Drude-
Lorentz model are discretized according to the DG formalism1. We consider a Drude-Lorentz metal
with one Drude and one Lorentz pole of which the electric permittivity is given by

ε(ω) = ε∞ −
ω2
D

ω
(
ω + iγD

) +
∆εL · ω2

L

ω2
L − iγLω − ω2

. (4.1)

For convenience, we collect the set of PDEs emerging from the ADE formalism of permittivity
Eq. (4.1), which were previously derived in Sec. 2.2:

∂t~E
(
~r, t
)

= ε−1
∞ ·

(
~∇× ~H

(
~r, t
)
−~jD

(
~r, t
)
−~jL

(
~r, t
))

, (4.2a)

∂t~jD
(
~r, t
)

= ω2
D
~E
(
~r, t
)
− γD~jD

(
~r, t
)
, (4.2b)

∂t~jL
(
~r, t
)

= ∆εLω
2
L
~E
(
~r, t
)

+ ~qL
(
~r, t
)
, (4.2c)

∂t~qL
(
~r, t
)

= −ω2
L
~jL
(
~r, t
)
− γL∆εLω

2
L
~E
(
~r, t
)
− γL~qL

(
~r, t
)
. (4.2d)

1The formulation for the Drude model is implicitly contained in the Drude-Lorentz model and obtained by neglecting
the terms emerging from the Lorentz pole.
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We arrive at the discretization of Eq. (4.2) in a straightforward manner following the same basic
steps as presented in Sec. 3.1. The state vector q is extended to hold the additional DOFs of the
ADEs. Hence, each auxiliary �eld is expanded in terms of Lagrange polynomials in full analogy to
the electromagnetic �elds (cf. Eq. (3.16)). The ADEs of the Drude and the Drude-Lorentz model do
not include spatial derivatives. Consequently, merely the mass matrix appears in the discretization of
ADEs, and the �ux is not a�ected at all. For brevity, we omit a general form and immediately include
the simpli�cations arising from employing linear elements and homogeneous material properties on
individual elements which yields

∂t~̃E
4 =

1

ε4∞
·
(
~D4 × ~̃H4 −~̃j4D −~̃j

4
L + Lf · ~̃FE,4

f

)
, (4.3a)

∂t~̃j
4
D =

(
ω4D

)2
· ~̃E4 − γ4D ·~̃j

4
D , (4.3b)

∂t~̃j
4
L = ∆ε4L

(
ω4L

)2
~̃E4 + ~̃q4L , (4.3c)

∂t~̃q
4
L = −

(
ω4L

)2
~̃j4L − γ

4
L ∆ε4L

(
ω4L

)2
~̃E4 − γ4L ~̃q

4
L . (4.3d)

In practice, the core algorithm of Sec. 3.1 does not need to be modi�ed except for the additional
current density terms in Eq. (4.3a). The additional DOFs must be stored for metallic elements only
which generally results in a memory e�cient approach [15]. The ADEs of the Drude and Drude-Lorentz
model induce little computational e�ort, as expensive matrix-vector-products do not occur.

4.2 Sources

Initial conditions in form of initial values of the DOFs can be considered as the most simplistic source
for a time-domain method. No cost arises from this type of source as, in any case, the DOFs must be
initialized at the start of a simulation. Unfortunately, initial conditions provide only limited �exibility
and are � for our purposes � employed for simple (test) systems only, e. g., for the preparation of a
particular mode in the empty cubic cavity of Sec. 5.3.1.
For realistic physical setups, sources of various spatial and temporal dependencies are required, e. g.,

plane waves, waveguide modes, or electron sources. From the sources of Maxwell's equations, i. e., ρ
and~j (cf. Eq. (2.1)), merely the current density on the right-hand side of Eq. (2.12a) remains applicable
due to the reduction to the curl equations. Another ansatz is given by the coupling of adjacent elements.
In this section, the total-�eld/scattered-�eld and the scattered-�eld source are introduced which

employ both principle approaches and allow to include almost arbitrary electromagnetic �elds. Both
sources rely on the linearity of Maxwell's equations which allows us to split the total �eld, i. e., the
physical �eld, labeled �tot�, into the incident �eld �inc� and the scattered �eld �scat� by

~Etot

(
~r
)

= ~Einc

(
~r
)

+ ~Escat

(
~r
)
,

~Htot

(
~r
)

= ~Hinc

(
~r
)

+ ~Hscat

(
~r
)
.

(4.4)

Note that Eq. (4.4) holds in both the time- and the frequency-domain. Here, the incident �elds are
considered to be known for all space and time while the scattered and, hence, the total �elds are
unknowns. As a consequence, the scattered �elds can immediately be retrieved in terms of the total
�elds, and vice versa.
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4.2 Sources

4.2.1 Total-Field/Scattered-Field Source

The total-�eld/scattered-�eld (TF/SF) source is a well known technique in the �eld of �nite element
methods. It is based on the modi�cation of the coupling of (adjacent) elements in a mesh and commonly
applied to inject, e. g., plane waves [17].
Following Ref. [15], the computational domain is divided into the total-�eld region and the scattered-

�eld region. In the total-�eld region, we solve for the total �eld and equivalently in the scattered-�eld
region for the scattered �eld. Due to the linearity of Maxwell's equations and assuming that the incident
�eld implicitly ful�lls Maxwell's equations, we can solve

Q
(
~r
)
· ∂tqtot

(
~r, t
)

+ ~∇ · ~F
(
qtot

)
= 0 ,

Q
(
~r
)
· ∂tqscat

(
~r, t
)

+ ~∇ · ~F
(
qscat

)
= 0 ,

(4.5)

in the total- and scattered-�eld region, respectively. As a fundamental principle of the DG formalism,
elements only couple to adjacent neighbors via the numerical �ux. In particular, for Maxwell's equa-
tions, information is exchanged between elements by the �eld di�erences (cf. Eq. (3.11)). Within the
total-�eld and the scattered-�eld region, the �eld di�erences can be evaluated as usual (cf. Eq. (3.14)).
At the interface of both regions, i. e., on the TF/SF contour, elements of both domains share a

common face and the �eld values of mutual neighbors cannot be used to determine the �eld di�erence
directly. In order to evaluate the �eld di�erence of an element in the TF region, for example, the total
�eld of the neighbor is required. However, the neighbor is located in the scattered-�eld region and
merely provides the scattered �eld. Employing Eq. (4.4), this issue is readily resolved, and the �eld
di�erences can be calculated by

∆~Etot

(
~r, t
)

= ~E+
scat

(
~r, t
)
− ~E−tot

(
~r, t
)

+ ~Einc

(
~r, t
)
,

∆~Escat

(
~r, t
)

= ~E+
tot

(
~r, t
)
− ~E−scat

(
~r, t
)
− ~Einc

(
~r, t
)
.

(4.6)

In essence, ~Einc

(
~r, t
)
is either added or subtracted to restore the total �eld from the scattered �eld, and

vice versa. A similar expression holds for the magnetic �eld.
The algorithm of Sec. 3.1 needs only slight adaption to employ the TF/SF source. The calculation

of the �eld di�erence for elements at the TF/SF contour must be performed by Eq. (4.6) instead of
Eq. (3.14) which renders the TF/SF technique an ideal extension to the DGTD method [15]. Field
distributions for a number of relevant sources, i. e., analytic expressions for ~Einc

(
~r, t
)
and ~Hinc

(
~r, t
)
, are

given in many textbooks, e. g., Refs. [7, 15, 30, 32].

4.2.2 Scattered-Field Source

The scattered-�eld (SF) source technique relies on the decomposition of the total �elds ~Etot

(
~r, ω

)
and

~Htot

(
~r, ω

)
into known incident �elds and unknown scattered �elds according to Eq. (4.4). In contrast to

the TF/SF source, the computational domain is not decomposed into a total-�eld and a scattered-�eld
region [17], but the entire domain is regarded a scattered-�eld domain. In particular, only the scattered
�elds ~Escat

(
~r, t
)
and ~Hscat

(
~r, t
)
are evolved in time, and the incident �elds ~Einc

(
~r, t
)
and ~Hinc

(
~r, t
)
do

not propagate within the grid, as is the case for the TF/SF source. As a consequence, the total �eld
is not available from the grid and must be calculated a posteriori to the simulation, if required. The
formulation of the scattered-�eld source is developed in the following, focusing on the electric �eld.
Similar expressions for the magnetic �eld follow analogously in a straightforward manner.
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Assuming no external sources, the curl equation of the total electric �eld for linear dispersive materials
modeled by Eq. (2.16) in the frequency-domain reads

− iω
(
ε∞ + χ(ω)

)
· ~Etot

(
~r, ω

)
= ~∇× ~Htot

(
~r, ω

)
. (4.7)

Similarly, the curl equation of the incident �eld in vacuum is given by

− iω~Einc

(
~r, ω

)
= ~∇× ~Hinc

(
~r, ω

)
. (4.8)

Due to the linearity of Maxwell's equations, Eq. (4.8) can be subtracted from Eq. (4.7) [17]. Substitut-
ing Eq. (4.4), we obtain

− iωε∞~Escat

(
~r, ω

)
= ~∇× ~Hscat

(
~r, ω

)
+ iωχ(ω) · ~Etot

(
~r, ω

)
+ iω (ε∞ − 1) · ~Einc

(
~r, ω

)
. (4.9)

An inverse Fourier transform yields the desired time-domain formulation of the scattered-�eld source.
Employing the ADE formalism, the term involving the susceptibility is absorbed in a polarization
current density:

∂t~Escat

(
~r, t
)

= ε−1
∞

(
~∇× ~Hscat

(
~r, t
)

+~jp
(
~r, t
))

+
(
ε−1
∞ − 1

)
∂t~Einc

(
~r, t
)
. (4.10)

Here,~jp
(
~r, t
)
is obtained by an inverse Fourier transform of iωχ(ω) · ~Etot

(
~r, ω

)
. In order to avoid a con-

volution integral in the time-domain, χ(ω) must be a rational function with respect to iω (cf. Sec. 2.2.1)
and the expression must be suitably rearranged before transformation. Note that ~jp

(
~r, t
)
represents

the polarization current density of the total �eld. This implies, that additional ADEs besides those
introduced by the dispersive material itself are not required.
Due to the term (ε−1

∞ −1)∂t~Einc

(
~r, t
)
, Eq. (4.10) must be evaluated for all elements in a mesh modeling

ε∞ 6= 1. In particular, the time-derivative of the incident �eld must be calculated even for non-dispersive
materials which can � but need not necessarily � render the SF source time-expensive.

Scattered-Field Source for the Discretized Drude-Lorentz Model

Due to the analogy to the ADE formalism (cf. Eqs. (4.10) and (2.20)), we can immediately formulate
the SF source for Drude and Drude-Lorentz metals. The time-domain formulation of the polarization
current density is identical to Eqs. (4.2b)-(4.2d), acknowledging the fact that the driving electric �eld
is given by the total �eld ~Etot

(
~r, t
)
. Including the incident �eld term of Eqs. (4.10), we obtain

∂t~̃E
4 =

1

ε4∞
·
(
~D4 × ~̃H4 −~̃j4D −~̃j

4
L + Lf · ~̃FE,4

f

)
+

(
1

ε4∞
− 1

)
· ∂t~̃E4inc , (4.11a)

∂t~̃j
4
D =

(
ω4D

)2
·
(
~̃E4 + ~̃E4inc

)
− γ4D ·~̃j

4
D , (4.11b)

∂t~̃j
4
L = ∆ε4L

(
ω4L

)2
(
~̃E4 + ~̃E4inc

)
+ ~̃q4L , (4.11c)

∂t~̃q
4
L = −

(
ω4L

)2
~̃j4L − γ

4
L ∆ε4L

(
ω4L

)2
(
~̃E4 + ~̃E4inc

)
− γ4L ~̃q

4
L , (4.11d)

where we dropped the label of the scattered �eld for convenience.
For ε4∞ = 1, the last term in Eq. (4.11a) vanishes which holds for most of the published material

models, e. g., Ref. [38]. The previously developed algorithm requires minor modi�cation to include the
SF source. In particular, only the terms involving the incident �eld have to be added which contain
arithmetically light vector operations.
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4.3 Perfectly Matched Layers

Many setups of interest comprise nanostructures (on substrate) in free space. Light impinging onto
theses structures is scattered into all directions and leaves the vicinity of the experimental setup. When
treated in a numerical method, the setup of the numerical simulation must ensure a similar behavior,
i. e., light radiated into free space may not return or interact with the structure again.

As a volume method, the DG method does not inherently support in�nitely extended systems due to
the locality of the element's basis functions and the truncation of the computational domain. Conse-
quently, free space must be �created� by absorbing electromagnetic radiation of arbitrary wavelength,
polarization, and direction of propagation.

Waves impinging onto the boundary of the computational domain act according to boundary con-
ditions (cf. Sec. 3.1.5). Thus, a straightforward approach is to apply absorbing boundary condi-
tions (ABCs). The class of analytic ABCs (AABCs) provides physical boundary conditions which
support outgoing radiation and suppresses re�ection, e. g., Silver-Müller boundary conditions [19]. Un-
fortunately, AABCs provide insu�cient absorption under oblique incidence [17].

A conceptually di�erent approach was introduced by Bérenger [58]. Instead of applying (only)
boundary conditions, an arti�cial � not necessarily physical � medium is introduced in between the
physical region of interest and the boundary of the computational domain. In other words, the physical
region is enclosed by a shell of which the material is speci�cally designed. The arti�cial medium
attenuates propagating waves and prohibits re�ection at the interface by matching the impedance of
the physical region at the shared interface (cf. Fig. 4.1). Hence, this ansatz is also referred to by
perfectly matched layers (PMLs). In the following, two di�erent approaches, uniaxial PMLs (UPMLs)
and stretched coordinate PMLs (SC-PMLs), are addressed.

Perfectly Matched Layer

Physical region

PML
region

Physical
region

Figure 4.1: Principle of perfectly matched layers. An arti�cial medium (yellow) enclosing the
physical region of interest absorbs propagating radiation and prohibits re�ection at the
shared interface due to impedance matching. Attenuation within the PML region is
visualized in the right panel (reproduced from Ref. [15]). Note that no re�ected waves
occur at the interface.
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4.3.1 Uniaxial Perfectly Matched Layers

For a PML, two aspects must be achieved: Impedance matching and absorption within the PML layer.
In the context of UPMLs, absorption is taken into account by the dispersive, anisotropic material
tensors [15, 22]

ε′ ≡ λε , µ′ ≡ λµ , λ ≡


sysz
sx

0 0

0 sxsz
sy

0

0 0
sxsy
sx

 (4.12)

with the complex, dispersive parameters

sk(ω) ≡ 1− σk
iω
, k ∈ {x, y, z} . (4.13)

Here, ε and µ represent the material parameters of the adjacent physical region which are emulated in
the PML to achieve impedance matching. In Eq. (4.13), the real-valued σk controls the damping along
direction k.
As thoroughly examined in Ref. [15], the ADE technique can be applied to handle the dispersive

property of the material tensors ε′(ω) and µ′(ω), following the principle steps of Sec. 2.2.1. Assum-
ing dispersionless material properties ε and µ, this results in one ADE for each electromagnetic �eld
component, i. e., for the Ex-component, the set of PDEs reads
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− σxpx

(
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)
,

(4.14)

where px denotes an auxiliary �eld for the Ex-component, and [·]x returns the x-component of the
vector in square brackets. Note that outside of the PML region, σk = 0 and Eq. (4.14) reduces to the
set of equations for the material parameters ε and µ, i. e., Eq. (4.14) must be evaluated inside the PML
region only.
The discretization of Eq. (4.14) by the DG method (cf. Sec. 3.1) follows straightforwardly which

yields [15]:
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x
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4
z

)
· ε4Ẽ4x (t)− σ4x p̃4x (t) .

(4.15)

As before, the discretized formulation assumes constant material parameters σ4k within an element 4,
and the additional DOFs of the ADE are to be absorbed in the state vector q̃. The ADE in Eq. (4.14)
does not contain derivatives with respect to space and, hence, there are no additional matrix-vector-
products contained in Eq. (4.15) which renders the UPML formulation computationally cheap.
As the ADE formalism is applied to the material tensors ε′(ω) and µ′(ω) and not to λ(ω), the

properties of ε and µ are explicitly taken into account during the derivation of the ADEs. Consequently,
the resulting ADEs directly depend on the material of the physical region which is to be matched.
Note that the equations above are valid for dispersionless media only. An UPML formulation and

subsequent discretization according to the DGmethod for dispersive media is provided in, e. g., Ref. [15].
A numerical study of the free parameters σk in the context of the DG method is provided in Ref. [22].

38



4.3 Perfectly Matched Layers

4.3.2 Stretched Coordinate Perfectly Matched Layers

A disadvantage of UPMLs is their direct dependence on the material to match, i. e., the ADE formalism
must be derived and subsequently be discretized for each ε(ω) and µ(ω). In addition, absorption of
evanescent waves does not work optimal [17, 59]. The SC-PML approach, originally proposed in
Ref. [60] and recently applied to the DG method [61], overcomes these problems.
In SC-PMLs, absorption is achieved via a transform of space which maps a real-valued position ~r to

a complex-valued vector [58]. Consequently, propagating �elds � commonly described by exp(i~k ·~r) �
are attenuated due to the complex component of the transformed position vector. Within the DG
framework, the transformation is introduced by a modi�cation of the spatial derivatives [61]:

∂
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∂

∂x
,

∂
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→ 1

sy(ω)

∂

∂y
,

∂

∂z
→ 1

sz(ω)

∂

∂z
. (4.16)

Here sk, k ∈ {x, y, z} is a complex, dispersive stretching factor which is typically de�ned as [17]

sk(ω) = κk −
σk

iω − αk
. (4.17)

It can be shown that the stretching factors do not lead to re�ections [17, 59]. The free parameters κk,
σk, and αk are to be optimized for performance. Ref. [61] provides a numerical study of the parameters
for a three-dimensional reference system.
The ADE approach can be employed to formulate the modi�ed set of Maxwell's equations in the

time-domain, as described in detail in Refs. [15, 61]. For the Ex-component, the ADE formalism yields
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(4.18)

where κk = 1 is assumed without loss of generality [15]. Similar expressions hold for all other electro-
magnetic �eld components.
For each electromagnetic �eld component, two ADEs are required which both involve spatial deriva-

tives. These derivatives result in computationally expensive matrix-vector-products and, in addition,
induce a modi�cation of the numerical �ux. As the SC-PMLs are not employed in the context of this
thesis, we omit the DG discretized form and refer the reader to Refs. [14, 15, 61].
As alluded to above, SC-PMLs implicitly ful�ll impedance matching irrespective of the material

properties ε and µ. In comparison to UPMLs, SC-PMLs require more ADEs � at least for dispersionless
materials � which is accompanied by an increased memory consumption and signi�cantly increased
computational e�ort. However, due to the enhanced technique, SC-PMLs show an attenuation increased
by an order of magnitude compared to UPMLs and can be applied to dispersive and even nonlinear
materials without adaption.
The physical systems investigated in this thesis are located on substrates and embedded in air. Both

these media are conveniently modeled by dispersionless dielectrics and, hence, UPMLs are employed in
conjunction with Silver-Müller boundary conditions throughout the thesis.

39





5 Chapter 5

DGTD on Graphics Processing Units

During the last decade, graphics processing units (GPUs) became popular accelerators for scienti�c
applications. Maxwell's equations by the DGTD method [27], seismic wave propagation by the spectral-
element method [28], and the investigation of incompressible �ow dynamics [29] are only a few examples
from the �eld of computational physics on GPUs. GPUs o�er tremendous computational power for
single precision �oating point arithmetics and memory bandwidth at low cost. Both were steadily
improved over the last decade and grew at a higher rate compared to Intel's CPUs as depicted in Fig. 5.1.
Today, the computational power for single precision arithmetic and the memory bandwidth o�ered
by GPUs is an order of magnitude larger compared to CPUs, which renders GPUs ideal devices for
computationally intense tasks. The vendors of GPU hardware recently began to address the developer's
needs for high performance double precision routines, bridging a serious drawback of GPUs for accurate
scienti�c calculations.
As a matter of fact, the GPU ecosystem is at a stage of rapid growth and vital evolution. This means

that, in contrast to the well established environment of CPU programming, hardware architectures,
programming models, libraries, and application programming interfaces (APIs) such as OpenCL or CUDA
are subject to �sudden� modi�cation. As a consequence, code designed to �t the requirements of a
speci�c hardware architecture is quickly outdated and might need refactoring to exploit the capabilities
of new hardware. Several approaches to adapt existing code bases to the GPU hardware requirements
have been developed, e. g., OpenACC [62], but a standard has not yet been established. Libraries similar
to those known from CPU programming, e. g., BLAS or LAPACK, have been implemented for the hardware
of speci�c vendors, binding the developer to a vendor speci�c API. For example, cuBLAS [63] and
CULA [64] are math libraries optimized for NVidia devices based on the CUDA programming language.
�OpenCL (Open Computing Language) is an open royalty-free standard for general purpose parallel

programming across CPUs, GPUs and other processors, giving software developers portable and e�cient
access to the power of these heterogeneous processing platforms.� [65]. As a cross platform standard,
OpenCL can be employed for any given hardware as long as the vendors support the standard by
providing drivers. Often, these drivers lag behind the latest version of the OpenCL standard. In contrast,
GPU vendors release evolved hardware side-by-side with updated drivers and adapted programming
languages on a regular basis, providing full support for their own development package. The evolution
of the OpenCL standard is not bound to follow these modi�cations, resulting � if at all � in delayed
adaption with respect to vendors on the one hand, but long term backward compatibility on the other.
In order to remain independent of a particular vendor, we choose OpenCL [65].
Developing new code or porting existing code to GPU hardware is time-consuming and often not
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Figure 5.1: Evolution of computational power (left panel) and memory bandwidth (right panel) of
NVidia graphics processing units and Intel CPUs over the last decade. The graphs are
reproduced from [26].

feasible in a straightforward way, as the programming languages employed to write GPU compliant
code do not conform with standard languages such as C/C++ or Fortran. For example, OpenCL uses
a subset of ISO C99, and NVidia's CUDA programming language supports CUDA C and CUDA Fortran,
languages similar to C and Fortran with GPU speci�c extensions, respectively. As a consequence, large
parts of legacy code must often be reimplemented as long as suitable libraries are not available.
The computational e�ort of the DGTD method is dominated by the evaluation of many rather

small matrix-vector-products (cf. Sec. 3.1.7). Unfortunately, math libraries for application on GPU
devices are usually designed for large matrix-vector-products and perform poorly for small matrices.
Consequently, these fundamental math operations must be implemented by hand, as demonstrated in
the �rst DGTD implementation of Maxwell's equations employing the CUDA programming language by
Klöckner et al. [27].

5.1 GPU Basics

As alluded to in the introduction of this chapter, fundamental math operations must be implemented
by hand. This requires insight into the concepts and work �ow of GPUs. Therefore, we must account
for the basic idea of the GPU and its design paradigms described in Sec. 5.1.1. As we implement the
DGTD method for NVidia hardware, the compute uni�ed device architecture (CUDA), NVidia's platform
for general purpose GPU (GPGPU) programming, is presented in Sec. 5.1.2, which comprises the
fundamental concepts and work �ow of Fermi based devices. From the principles of optimal performance
in Sec. 5.1.3 and the concepts of kernel design in Sec. 5.1.4, we deduce performance relevant guidelines
for the implementation of the DGTD method which are summarized in Sec. 5.1.5.

5.1.1 The Graphics Processing Unit Design Paradigm

By design, a graphics processing unit is a device for highly parallel, arithmetically intense computations.
From this �paradigm� the hardware design of GPUs is derived. In comparison to CPUs, much more
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Figure 5.2: Schematic design of CPU (left panel) and GPU (right panel) hardware. In contrast
to the CPU, the GPU devotes much more transistors to ALUs and much less to cache
and cache management (control). The graphs are reproduced from [26].

transistors are spent on arithmetic logic units (ALUs) and much less on caching or �ow control as
schematically visualized in Fig. 5.2. Little cache size for a large amount of ALUs seems surprising at
�rst glance, but it is at the heart of GPU's design to hide load latency, i. e., the time required to transfer
data to and from memory, by a large number of arithmetic operations rather than big cache, as is the
case in CPU design. The concept of latency hiding by means of hardware multithreading is described
in detail in Sec. 5.1.2.
The GPU is designed for data parallel operation, i. e., an operation is executed on a large set of inde-

pendent data at a time. Consequently, only those algorithms which provide su�cient data parallelism
and high arithmetic intensity can fully utilize the GPU's power. An analysis of the DGTD method
with respect to, amongst others, data parallelism and arithmetic intensity is conducted in Sec. 5.2.1.

5.1.2 NVidia’s Compute Unified Device Architecture

The compute uni�ed device architecture (CUDA) is NVidia's platform for general purpose applications on
GPUs. It de�nes hardware mechanisms and serves as an interface for APIs such as the CUDA program-
ming languages CUDA C and OpenCL. In the following, the key features of CUDA GPUs are summarized
and a detailed description of the mechanisms realizing the GPU design paradigm is presented. CUDA and
the OpenCL architecture are closely related in their entities although, in principle, they are completely
independent of each other. As we use the OpenCL API to implement the DGTD method on CUDA based
hardware, both NVidia and OpenCL terminology is introduced side-by-side and emphasized by special
formatting: CUDA term and OpenCL term .

A Scalable Programming Model by Hierarchical Hardware

While hardware is evolving fast in comparison to large (legacy) code bases, it is generally undesirable
to adapt a given code basis upon change of the executing hardware. CUDA accounts for this need by a
scalable programming model and hierarchically organized hardware as follows.
A data parallel program is executed by mapping mutually independent data to threads (work-items ),

i. e., each datum is treated by a single, addressable thread. A program will typically issue hundreds if
not thousands of threads at the same time; not all are executed at the same time, though. Threads are
organized in groups, referred to as thread blocks (TB) or work groups . thread blocks are themselves
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Figure 5.3: Distribution of work in the scalable programming model. The thread blocks (TB) of the
OpenCL program are distributed among the available streaming multiprocessors (SM) by
the hardware. The horizontal distribution of the TBs indicates parallelization among
the SMs, while the vertical distribution shows their execution in time. Several TBs
can simultaneously reside and be processed on a single SM which, for clarity's sake,
is not depicted.

organized in a grid of thread blocks (NDRange ). Consequently, a three level hierarchy comprising threads,
thread blocks, and a grid1 is established.
These purely conceptual entities of the CUDA (OpenCL) programming model are mapped to CUDA

hardware entities to implement the scalable programming model. GPU hardware compliant to CUDA

is structured in CUDA cores (processing elements ), i. e., a unit performing �oating point and integer
operations, and streaming multiprocessors (SM), also referred to as compute units . In the schematic
GPU of Fig. 5.2, one green square represents a single CUDA core that executes a single thread at a time.
One �row� of CUDA cores, cache, and control units makes up a single streaming multiprocessor, and the
entire GPU comprises 8 SMs. In the Fermi architecture [66], a single SM consists of 32 CUDA cores.
The number of SMs is device speci�c. However, a maximum of 16 SMs per chip was implemented
for Fermi based GPUs. NVidia's latest GPU architecture, the Kepler GK110 maintains the principle
structure of multiprocessors and cores. Kepler's [67] new streaming multiprocessor SMX contains 192
single precision CUDA cores, 64 double precision units and 32 special function units (SFU).

1In OpenCL terms: Work-items, work-groups, and NDRange.
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Figure 5.4: Branching and serialization of a warp. An if-condition splits the execution path of
the threads (arrows) in a warp3 (yellow box). While the �rst half of the warp executes
the if-clause (solid arrows), the second half idles (hollow arrows), and vice versa in
the else-clause. The execution paths merge after the clauses and the threads execute
synchronously again.

Scalability of a program is achieved by distribution of thread blocks among the multiprocessors of a
GPU during runtime. As sketched in Fig. 5.3, the 8 thread blocks of a grid, de�ned by the programmer,
are scheduled automatically to the multiprocessors available on the GPU. The more SMs, the �wider�
the TBs are parallelized and the faster the program is executed. The hierarchy of thread blocks mapped
to multiprocessors gives vendors a possibility to enhance their devices, e. g., increase the number of SMs
or improve the productivity of an SM, while code remains productive without adaption.

Single-Instruction Multiple-Thread (SIMT) Architecture and Hardware Multithreading

The challenges of implementing high-performance code for GPUs emerge from the mechanisms of the
hardware, i. e., how the device distributes work among its processing units, burdens the programmer
with conditions and limitations. In this section, details about the work �ow of a GPU are described
and performance relevant guidelines emanating thereof are deduced.
As alluded to above, a streaming multiprocessor is designed to handle hundreds and thousands

of threads at the same time. In order to manage this large amount of threads, the single-instruction
multiple-thread (SIMT) architecture is employed. SIMT allows the programmer to write thread-parallel
code. This means that a kernel, i. e., a set of instructions similar to a function in C/C++, de�nes the
operations of all threads of all thread blocks in a grid of thread blocks.
In the SIMT architecture, the SM �creates, manages, schedules, and executes threads in groups of

32 parallel threads called warps.� [26] The number of threads in a warp corresponds to the number of
CUDA cores in one SM of the Fermi architecture.2 The threads of a warp are launched in parallel at the
same time. However, they need not follow the same execution path, i. e., the threads of a warp may
branch, e. g., by condition, and execute independently.
A warp executes a single instruction at a time. In essence, threads on a common execution path are

2The warp size is maintained for devices of the Kepler architecture although the number of CUDA cores increased to 192
per SM [67].

3The size of the warp has been reduced to 8 for simpli�cation of the �gure.
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executed simultaneously while divergent threads of the warp pause, as sketched in Fig. 5.4. Divergent
threads lead to a serialization of instructions, i. e., parts of the warp execute while other parts of the
warp idle. Obviously, this is a performance relevant issue as a lot of time can be wasted upon branching
of the threads in a warp. Hence, maximum e�ciency is achieved when all threads in a warp follow the
same execution path and do not branch.
When a kernel is launched, CUDA hardware partitions each thread block on a SM into warps and

schedules the warps for execution by the warp scheduler. If the number of threads in the thread block
is not an integer multiple of the warp size, not all threads of the last warp are utilized for computation,
although they are reserved by the hardware since instructions are always issued per warp. Consequently,
threads are wasted and performance diminished. However, if the number of threads in a thread block
is much larger than the warp size, the performance loss becomes negligible.
Another consequence of the three-level hierarchy is the potential mismatch of the number of thread

blocks and SMs. As alluded to in Sec. 5.1.2, the thread blocks of a given kernel are distributed among
the SMs of a device. If the number of thread blocks is not an integer multiple of the number of SMs, the
last heat of thread blocks does not �ll all available SMs, and computational power is wasted. Again,
this e�ect becomes negligible when the number of thread blocks is much larger than the number of
SMs.

Hardware Multithreading

�The number of clock cycles it takes for a warp to be ready to execute its next instruction is called
latency� [26]. Most of the time, latency occurs when an instruction's input operands are not yet
available, e. g., because data is to be transferred. By design, latency on GPUs is supposed to be hidden
by computation rather than big cache or smart control, as alluded to in Sec. 5.1.1. In this section,
hardware multithreading, the key mechanism to achieve latency hiding on GPUs, is introduced and the
consequences for the programmer aiming at high-performance code are addressed.
Full utilization of the hardware is achieved, when all cores are busy all the time, i. e., when the

warp scheduler issues instructions of some warp at every clock cycle. This implies that the latency of
all warps must be hidden completely. In order to implement this concept, the execution context, i. e.,
program counters, registers, etc., of each warp processed by a SM is maintained on-chip during the entire
lifetime of the warp. As alluded to above, thread blocks are distributed among the SMs of a GPU and
partitioned into warps by the warp scheduler, i. e., at a given time, several warps reside simultaneously
on a SM. As the execution context is kept on-chip, switching from one execution context to another
has no cost, i. e., no time is spent on changing the warp to be processed on a SM. Consequently, latency
can be hidden by switching to a warp ready to execute while the other resident warps get prepared.
Therefore, latency can be e�ciently hidden, if enough warps reside on a SM simultaneously and

the arithmetic intensity of the kernel in process is su�ciently large. The �rst condition, referred to
as occupancy, can be in�uenced by the programmer as described in detail in Sec. 5.1.4. The latter is
bound to the algorithm to be executed, and the programmer has only limited design opportunity to
interfere.

5.1.3 Optimal Performance

Based on the mechanisms of CUDA hardware presented in the previous sections, the most important
issues related to optimal performance are addressed in this section. For every computing device, optimal
performance is achieved when the bus and the computing units work at their peak throughput. The bus
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transfers data from DRAM to the compute units and vice versa (cf. Fig. 5.2). When the bus bandwidth,
i. e., the number of bytes transferred per unit time, is insu�cient to saturate the compute units, the
latter idle and the performance of the kernel is bandwidth limited. In contrast, when the instruction
throughput, i. e., the number of instructions executed per unit time, of the compute units is too small
to saturate the bus, bandwidth is wasted and the kernel is bound by instruction. Thus, optimal
performance is achieved when the bus and the compute units are balanced and simultaneously execute
at their device speci�c peak values. The ratio of instruction throughput and bus bandwidth is referred
to as instruction to byte (I/B) ratio. Each device has a speci�c optimum I/B ratio, e. g., the NVidiar

GeForcer GTX580, the device on which all computations of this thesis were performed, executes one
single precision �oating point instruction (e. g., add, multiply, or fused multiply-add (FMA)) each clock
cycle [66]. Employing all 512 cores at 1544MHz results in 790·109 instructions per second. Dividing this
by the maximum bandwidth of 192.4GByte/s [68] yields the theoretical, hardware speci�c, optimum
I/B ratio of approximately 4.1 single precision �oating point instructions per byte transferred over the
bus.
In order to familiarize ourselves with the I/B ratio, some matrix-vector operations required in the

DGTD method are examined. The matrix-vector-product is the computationally most intense part of
the DGTD method. For example, the I/B ratio of an m × n matrix being multiplied to a vector of n
components whose result is written back to memory (DRAM) is given by4

I/B[m×n]·n =
m · n

(m+ 2) · n · 4
m,n�1−−−−→ 1

4
. (5.1)

For each of the m ·n entries of the matrix, a single FMA instruction performing y ← y+a ·b is required
to compute the result which corresponds to 2 �oating point operations (Flops) adding the product of
a and b to y. However, m · n components of the matrix and n elements of the vector must be loaded
and n elements of the result stored. For reasonably large m,n, the I/B ratio approaches 1

4 , which is far
below the hardware optimum of the GPU.
The I/B ratio of the addition of two vectors comprising n components is even lower, as, per vector

component, one add instruction is issued for 2 �oats loaded and 1 stored, i. e.,

I/Bn-vector add =
n

3n · 4
=

1

12
. (5.2)

As intuitively applied in the examples above, the I/B ratio is determined by load and store instructions
to DRAM (global memory ) and the instructions performed by each thread of the kernel. Consequently,
the programmer must encounter the I/B ratio at kernel level. This is the reason why math libraries for
matrix-vector calculus on GPUs often perform poorly as the I/B ratios of hardware and math operation
strongly di�er and cannot be compensated for. For our implementation of the DGTD method we are
free to decide how to segment the algorithm, i. e., what kernels execute which part of the method. The
segmentation of the DGTD method based on an analysis of the I/B ratio is described in Sec. 5.2.
Since the I/B ratio is the fundamental access to high performance, basically all optimization strategies

and techniques approach either memory throughput or instruction throughput. As illustrated by the
examples above, code is limited by bandwidth in most cases. Hence, memory management and tra�c
minimization dominate optimization guidelines thoroughly discussed in Refs. [26, 69]. Only little room
for improvement is left if a kernel is bound by instruction. However, in principle, accuracy can be
traded for speed by employing low-accuracy directives.
4We consider single precision arithmetics with 4 bytes per �oat.
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Symbol Description Value

Tmax
TB Maximum number of threads per thread block 1024
Bmax
SM Maximum number of resident thread blocks per multiprocessor 8

Wmax
SM Maximum number of resident warps per multiprocessor 48

Tmax
SM Maximum number of resident threads per multiprocessor 1536

Table 5.1: Kernel design relevant hardware limits of Fermi based GPUs of compute capability 2.0.

5.1.4 Kernel Design and Occupancy

In order to arrive at a high-performance code, more than the I/B ratio must be considered when
designing a kernel. Assume a kernel with ideal I/B ratio. At some point data must be loaded and
stored which will unavoidably cause latency to the warp in progress. Full utilization of the device
can only be achieved when the latency is fully hidden by hardware multithreading (cf. Sec. 5.1.2).
Consequently, several warps on a SM are required.
The ratio of the number of resident warps per multiprocessor WSM to the maximum number of

resident warps per multiprocessor supported by the hardware Wmax
SM (cf. Tab. 5.1) is referred to as

occupancy, and must be su�ciently large to e�ectively apply hardware multithreading. Often, an
occupancy of 0.5 is su�cient [69], however, for kernels with low I/B ratio the occupancy should be as
large as possible. Thus, it is at the heart of kernel design to implement both a suitable I/B ratio and
a su�ciently high occupancy.
Full occupancy is achieved when WSM reaches the device speci�c maximum Wmax

SM which is speci�ed
by the compute capability (CC) for NVidia GPUs. Fermi and Kepler based GPUs are referred to by
CC2.x and CC3.x, respectively.
The number of resident warps on a single multiprocessor WSM is determined by

WSM = WTB ·BSM , (5.3)

WTB =

⌈
TTB
WS

⌉
1

, (5.4)

where WTB is the number of warps per thread block, BSM is the number of thread blocks per SM,
TTB is the number of threads per thread block, WS is the number of threads in a warp, referred to as
warp size, and dxey is a function returning x rounded up to the nearest multiple of y. Note that these
quantities are bound to device speci�c hardware limits listed in Tab. 5.1, and it is the programmer's
task to simultaneously balance them to achieve high occupancy.
Within hardware limits, TTB, and consequentlyWTB, can be de�ned by the programmer according to

the kernel's needs, however, these quantities a�ect the performance, too, and must therefore be chosen
with great care. For Fermi based GPUs, the maximum number of warps per SM, i. e., full occupancy,
can only be achieved when 192 ≤ TTB ≤ 512 as, per SM, 8 thread blocks of 192 threads and 3 thread
blocks of 512 threads result in 1536 threads, i. e., 48 warps which is equivalent to the hardware limit
Wmax

SM .5

5In fact, TTB = 189 with BSM = 8 yields WSM = 48, too. However, the last warp comprises a single active thread and
31 idle threads due to the SIMT architecture (cf. Sec. 5.1.2). Therefore, when calculating occupancy, TTB is assumed
to be an integer multiple of WS.
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In contrast to TTB, the number of resident thread blocks per multiprocessor BSM cannot be freely
de�ned by the programmer but depends on the resources consumed by a thread block of a given kernel
as well as hardware- and CC-speci�c resources [26] and limits (cf. Tab. 5.1). In particular, BSM is
directly limited by Bmax

SM and indirectly by Tmax
SM through TTB. For example, assuming TTB = Tmax

TB for
Fermi based GPUs, only a single TB per SM is possible due to Tmax

SM (since threads must be invoked
at thread block granularity).
In addition, BSM is also limited by memory resource requirements. Each SM on a GPU comprises a

CC-dependent amount of registers and shared memory, i. e., on-chip fast local memory in contrast to
slow global memory (DRAM). For a given kernel and TTB, the number of registers and shared memory
required by a thread block is evaluated by the OpenCL compiler. The memory resources are allocated at
thread block granularity, i. e., per thread block, the number of registers RTB and shared memory STB
allocated for a given kernel on Fermi based GPUs is given by [26]

RTB =
⌈
Rk ·WS

⌉
GT
·WTB , (5.5)

STB =
⌈
Sk
⌉
GS

, (5.6)

where Rk is the number of registers required by a single thread of the kernel, GT is the thread allocation
granularity (64 for Fermi), WTB is given by Eq. (5.4), Sk is the amount of shared memory in bytes
required by a thread block of the kernel, and GS is the shared memory allocation granularity (128 for
Fermi). The number of registers required by a kernel depends on the instructions issued in the kernel,
i. e., the kernel code, and is therefore bound to the algorithm. In contrast, shared memory is fully
controlled by the programmer.
The number of thread blocks per SM due to memory restrictions Bmem-bound

SM is then given by

Bmem-bound
SM = min

⌊RHW
TB

RTB

⌋
1

,

⌊
SHWTB
STB

⌋
1

 , (5.7)

where RHW
TB and SHWTB are the CC-speci�c hardware limits of registers and shared memory per SM,

respectively [26], and bxcy is a function returning x rounded down to the nearest multiple of y. In
essence, the available local memory resources of a SM are distributed among fully equipped thread
blocks resulting in a limited number of thread blocks per SM. When a kernel requires lots of registers,
for example, a high amount of the available registers is consumed by a single thread block resulting in
few thread blocks per SM and low occupancy.

5.1.5 Summary of Performance Related Issues

This section summarizes the most important performance related issues including those introduced in
the previous sections. A detailed list of guidelines for kernel design, memory and instruction throughput
optimization is available in Ref. [69].

Instruction to byte ratio The I/B ratio (cf. Sec. 5.1.3) is the fundamental guideline to optimal
performance. Suitable and ineligible sections of an algorithm with respect to the GPU design
paradigm can be identi�ed a priori to the implementation which helps to partition the algorithm
into kernels.

Occupancy High occupancy (cf. Sec. 5.1.4) is mandatory for e�cient hardware multithreading (cf.
Sec. 5.1.2). Occupancy is determined by the resource requirements of the kernel, the thread
block, and hardware speci�c limits and resources.
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Levels of parallelism CUDA hardware and the OpenCL programming model exploit a three level hier-
archy (thread, thread block, grid mapped to core, multiprocessor, GPU) to parallelize a task into
subtasks and to e�ciently distribute the work among the available multiprocessors (cf. Sec. 5.1.2).
Consequently, the algorithm's potential for parallelization must be thoroughly examined to ap-
propriately utilize the hierarchy levels.

Warp serialization Avoid branching of the threads' execution paths which causes serialization of the
instructions (cf. Sec. 5.1.2).

Minimize host to device memory tra�c Host memory, i. e., the CPU's DRAM, and device mem-
ory, i. e., the GPU's DRAM, are connected via a low bandwidth PCIe bus causing very large
latency. Tra�c minimization between host and device is of high priority.

Minimize global memory tra�c Although the bandwidth between global memory, i. e., the pro-
gram model's term for the GPU's DRAM, and the cores is several hundreds of GByte/s, it is a
performance limiter in many cases. The minimization of global memory tra�c and the optimiza-
tion of the transfer e�ciency is of high priority.

5.2 Implementation of the DGTD Method on GPUs

5.2.1 Analysis of the DGTD Method

The �rst step towards an e�cient implementation of the DGTD method on GPUs is an analysis
with respect to performance relevant issues determined in the previous sections. We identify levels of
parallelism, i. e., sections of the DGTD method that can be executed simultaneously and, hence, be
distributed among the compute units of the GPU followed by an investigation of the I/B ratio of the
method's algorithm.

Levels of Parallelism

The time-integration via the LSRK method is the �outermost� algorithm of the DGTD method. It
solely involves scale and add operations on the state vector of expansion coe�cients (cf. Eq. (3.51))
and can therefore be parallelized on component level. This means that each component of q̃ can be
treated by an individual thread.
The kernel of the time-integration f̃

(
q̃, t
)
, i. e., the right-hand-side of Eq. (3.46) comprises computa-

tionally intense matrix-vector-products and simple vector operations. The set of equations is spanned
by three levels of parallelism. The �rst level originates from the tessellation of the computational
domain into elements and the subsequent formulation of the physical problem on a single element.
This element based level of parallelism is very broad, i. e., in general, the number of elements is large
compared to GPU related quantities such as the size of the thread block or the number of SMs on a
device. The vector nature of Maxwell's curl equations yields a second level of parallelism, i. e., each
component of the two vector equations in Eq. (3.46) can be evaluated simultaneously. The third level
rises from the expansion of the �elds into Lagrange polynomials, i. e., the level of expansion coe�cients.
Besides these structural levels, the particular form Eq. (3.46) provides parallelism of arithmetic parts.

The matrix-vector-products involving the element-local di�erentiation and the �ux lifting, i. e., the
application of the lift matrix to the �ux vectors, could be evaluated in parallel [27]. However, there is
no advantage in a simultaneous execution of several kernels as the levels of parallelism provided by the
method su�ce to saturate the compute units of a GPU completely.

50



5.2 Implementation of the DGTD Method on GPUs

Instruction to Byte Ratio

As the fundamental approach to high performance, we analyze the I/B ratio (cf. Sec. 5.1.3) of the
individual parts of the DGTD method and identify suitable and ineligible sections for implementation
on the GPU. The time-integration via the LSRK method comprises little arithmetic instructions per
DOF (cf. Eq. (3.51)), resulting in a very low I/B ratio.
Per se, the matrix-vector-products of Eq. (3.44) su�er a low I/B ratio, as dense matrices must

be loaded for each individual element. For linear elements and the simpli�ed form of Eq. (3.46),
the di�erentiation matrices of an element D4i , i ∈ {x, y, z} are related to the reference element's
di�erentiation matrices Dj , j ∈ {u, v, w} by a simple linear transformation (cf. Eq. (3.37)). A similar
approach for curvilinear elements has recently been proposed [43]. It is possible to tune the I/B ratio
when Dj is kept in memory or cache and is reused for the calculation of the di�erentiation matrices of
several elements.
Assume a di�erentiation kernel whose thread block evaluates ~D4× ~̃H4 and − ~D4× ~̃E4 for κ elements

employing Eq. (3.37). The di�erentiation matrices Dj , each of N2
p entries, are loaded once. The inverse

Jacobi matrix (J4)−1 contains 9 entries for each element, and 6Np expansion coe�cients of the �elds
are loaded and stored. For each element, each D4i , i ∈ {x, y, z} is constructed by 2 FMA instructions
and 1 multiplication and for the 6 �eld components, a matrix-vector-product consumes N2

p FMA
instructions, which yields an I/B ratio of

I/Bdi� =
κ ·
(

6N2
p + 3N2

p

)
[
κ ·
(

6Np · 2 + 9
)

+ 3N2
p

]
· 4
. (5.8)

Due to the fact that instead of a full Np ×Np matrix only the inverse Jacobi matrix must be loaded
for each element, I/Bdi� steadily increases with increasing κ (cf. Tab. 3.3 for typical values of Np).
Hence, a tunable I/B ratio kernel can be implemented for the element-local di�erentiation. Note that
I/Bdi� increases with the polynomial order p. Employing this technique in Sec. 5.2.3, I/B ratios beyond
the hardware optimum are achieved, and the full computational power of the GPU becomes accessible.
A similar situation arises for the lift operation. In general, the lift of a single element su�ers a low

I/B ratio (cf. Eq. (3.44)). Due to the application of linear elements, resulting in an arithmetically cheap
relation between the face-mass matrix of an element F4f and the reference element Ff (cf. Eq. (3.40)),
the I/B ratio of the lift operation can be tuned as well.
Assume a lift kernel whose thread block performs κ matrix-vector-products of the lift matrix Lf with

the �ux vector F̃E,4x,f of one �eld component, here Ex. The resulting I/B ratio is given by

I/BLift =
κ ·
(
NfNfp ·Np

)
[
κ ·
(
NfNfp +Np

)
+NfNfp ·Np

]
· 4
, (5.9)

where for each element NfNfp entries of the �ux vector are loaded and Np lifted values are stored. The
NfNfp ·Np entries of the lift matrix are loaded once. Each (lift-)matrix entry is processed by one FMA
instruction. As a consequence, I/BLift steadily increases with increasing κ, resulting in a tunable and
again p-dependent I/B ratio.
The calculation of the �ux vectors (cf. Eq. (3.47)), also referred to as gather stage, is not an element-

local operation [27] and involves only simple vector operations that are speci�c for each element.
Consequently, the I/B ratio is �xed and low.
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The ADEs for the Drude and Drude-Lorentz model as well as the uniaxial PMLs result in arith-
metically little e�ort, as the ADEs themselves involve simple vector operations (cf. Eqs. (4.3b), (4.3c),
(4.3d), (4.15)) and are coupled to the curl equations by additional current terms only (cf. Eq. (2.20)).
Within the ADEs, data cannot be reused and, hence, they govern a low I/B ratio.

5.2.2 Segmentation of the DGTD Algorithm into Kernels

The next step towards an implementation is the segmentation of the entire DGTD algorithm into ker-
nels. This design process is a balancing act between performance on the one hand and maintainability,
extensibility, and modularity on the other. One approach is to hide parts of low I/B ratio in a common
kernel with parts of tunable I/B ratio. This results in improved performance at the cost of decreased
modularity which, in turn, hinders maintainability and extensibility of the code. Based on the analysis
of the previous section, our DGTD implementation for GPUs comprises the following kernels. Our
segmentation of the core kernels, i. e., local-element di�erentiation, lift, and �ux is in analogy with
Ref. [27].

LSRK Kernels

Depending on the application of interest, the DG method can be used with other time-integration
methods, e. g., implicit or exponential integrators, or even in the frequency-domain [15]. Therefore,
modularity of the code is favored over potential speedup for the low I/B ratio LSRK algorithm. The
LSRK time-integration method requires 2 kernels, one for each step of the LSRK algorithm, i. e.,
Eq. (3.51b) and Eq. (3.51c), respectively.

Flux

The calculation of the �ux vectors (cf. Eq. (3.47)) is a struggling task on the GPU. Loading the DOFs
on adjacent faces for two di�erent elements in a 3D system unavoidably results in scattered access
patterns which deteriorates the per se low I/B ratio.
A fused lift and �ux kernel seems an appropriate approach at �rst glance but cannot be implemented

in an e�cient way for several reasons [27]. Algorithms comprising vector operations or small matrix-
vector-products often apply the one-thread-per-output principle, i. e., a single thread is employed per
output value to be computed. Per �eld component and element, the number of output values of the lift
operation Np and the length of the �ux vector of all faces NfNfp are in general not equal (cf. Tab. 3.3).
Consequently, the one-thread-per-output principle cannot be applied without wasting threads during
either the lift or the gather operation. Assume that the thread block is designed to �t the lift operation,
then, an arti�cial index space for the �ux calculation must be calculated by computationally very
expensive modulo and integer division instructions. At last, kernels diverse in their instructions consume
more registers than simple kernels and, hence, potentially su�er from low occupancy.
We implemented both approaches, i. e., one fused lift-�ux kernel and two individual kernels, and

found that two individual kernels execute more e�ciently than one fused kernel.

Lift and Local-Element Differentiation Kernel

The calculation of the lift operation, i. e., the application of the lift matrix on the �ux vectors, and
the local-element di�erentiation, i. e., the evaluation of the curl operator, are the computationally most
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intense sections of the DGTD method. Both govern a tunable I/B ratio (cf. Sec. 5.2.1) and their
performant implementation is the basis for an e�cient DGTD method.
Albeit both can be fused in a common kernel following the one-thread-per-output principle, each

operation is implemented in an individual kernel to provide modularity and maintainability.

ADEs of the Uniaxial PMLs, the Drude, and the Drude-Lorentz Model

ADEs of uniaxial PMLs, the Drude and the Drude-Lorentz model result in additional PDEs to be solved
simultaneously with the curl equations. The ADEs are coupled to Maxwell's curl equations by current
density terms (cf. Eq. (2.20)) which could be easily absorbed in the tunable lift and local-element
di�erentiation kernels. However, this would result in a large amount of kernels as each combination of
ADEs with one of the tunable kernels would have to be implemented and executed individually.
In practically relevant numerical setups, a low percentage of elements are metallic, and the time con-

sumed by kernels evaluating the Drude and Drude-Lorentz operations in a present CPU implementation
is short compared to the lift and di�erentiation kernels. Consequently, the Drude and Drude-Lorentz
algorithms (cf. Eq. (4.3)) are implemented by individual kernels and executed for metallic elements
only.
In contrast, the number of PML elements is often large enough to be performance relevant. For this

reason, the di�erentiation kernel is diversi�ed for PMLs, i. e., there exist two kernels implementing the
element-local di�erentiation with and without the PML's ADEs.

TF/SF and SF Sources

Due to the large number of spatial pro�les and temporal dependences, sources must be implemented in
a maintainable and modular fashion. The TF/SF source enters the algorithm via the manipulation of
the �eld di�erences (cf. Sec. 4.2.1). In order to avoid explicit storage of the �eld di�erences in global
memory, the TF/SF source is integrated into the calculation of the �ux vectors. This means, that the
�ux kernel is diversi�ed for the TF/SF source, i. e., there exist two kernels, one performing only the
gather stage and one that evaluates the �ux vectors with the �eld di�erences modi�ed by the source.
The SF source enters the algorithm via the manipulation of the metallic elements' auxiliary �elds (cf.

Sec. 4.2.2). For reasons of modularity, two individual kernels implement SF Drude and SF Drude-
Lorentz sources.

5.2.3 Implementation

This section comprises detailed information about the implementation of the core kernels of the DGTD
algorithm. In particular, the design of the element-local di�erentiation and the lift operation are
presented in conjunction with the memory layout. In contrast to Ref. [27], we do not employ textures
as they do not support double-precision arithmetics according to the OpenCL speci�cation [65]. Our
kernels are templated to be utilized in both single and double precision without further modi�cation. We
intend to design the kernels and the memory layout such that the computationally intense di�erentiation
and lift kernels achieve highest throughputs. Note that the implementation is explicitly designed for 3D
problems of variable polynomial order p, i. e., there are 6 �eld components for electromagnetic �elds, a
vector in space has 3 components, and an element has Nf = 4 faces.
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Notation Reference

Symbol Description

[a] Size of index space of variable a
|a, b〉 Set of integers from the half-open interval [a, b[
{a} Predetermined expression for a during initialization
tx, ty, tz Local thread indices within a thread block
Tx, Ty, Tz Number of threads within a thread block
gx, gy, gz Global thread indices within a grid
Gx, Gy, Gz Number of threads within a grid
bx, by, bz thread block indices within a grid
Bx, By, Bz Number of thread blocks within a grid
K Total number of elements (in a mesh)
κ Number of elements processed by a single thread block
k Global element index
A := a Preprocessor macro for a constant value a
Q, P DOF variable containing data of q̃ and p̃
F Flux vector
L Lift matrix of the reference element

Table 5.2: Notation within algorithms of the implementation.

Symbol Storage region

a Variable in register
aS Variable in shared memory
aG Variable in global memory
aC Variable in constant memory

Table 5.3: Typography of the GPU memory regions.

Thread Indexing

Each thread and each thread block within a grid are attributed several indices for identi�cation. The
OpenCL programming language [65] provides two sets of indices for each thread, spanning an index-space
in up to three dimensions:
• Local thread indices tx ∈ |0, Tx〉, ty ∈ |0, Ty〉, tz ∈ |0, Tz〉 within each thread block.
• Global thread indices gx ∈ |0, Gx〉, gy ∈ |0, Gy〉, gz ∈ |0, Gz〉 within the grid.

Here Ti and Gi, i ∈ {x, y, z} refer to the number of threads in dimension i within a thread block and
within the grid, respectively (cf. Tab. 5.2). A thread block is identi�ed by the thread block indices
bx ∈ |0, Bx〉, by ∈ |0, By〉, bz ∈ |0, Bz〉 within the grid, where Bi, i ∈ {x, y, z} refers to the number of
thread blocks within dimension i of the grid. Global and local thread indices are related by

gi = bi · Ti + ti, i ∈ {x, y, z} . (5.10)
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Memory layout: pairs of adjacent face DOFs Memory layout: element en bloc

Figure 5.5: Memory layout dilemma. A memory layout of contiguously aligned pairs of adjacent
faces (left panel) leads to a distribution of the center element's DOFs (solid lined
boxes) in memory. In contrast, the DOFs of the center element are stored en bloc in
the layout of the right panel.

On CUDA devices, a thread is attributed a unique thread ID t within a thread block which is related
to the local thread indices by

t = tx for 1D thread blocks ,

t = tx + tyTx for 2D thread blocks ,

t = tx + tyTx + tzTxTy for 3D thread blocks .

(5.11)

The thread ID is employed to partition the threads of the thread block into warps [26], i. e., batches of
WS contiguous threads identi�ed by t make up a warp. Memory transfer e�ciency is strongly related
to the pattern by which the threads of a warp � ordered by the thread ID � access global memory
data. As a consequence, the �thread layout�, i. e., the partitioning of threads into the dimensions of the
thread block is crucial for the performance of the kernel.

DOF Memory Layout

The layout of the variables in memory and the implementation of the kernels mutually depend on each
other. This renders the de�nition of the memory layout a very di�cult task. A change in memory
layout induces time-consuming refactorings of a potentially large number of kernels. In principle, the
memory layout can be de�ned freely by the programmer. However, it must match the kernels' load
patterns in order to yield e�cient memory accesses.
The DOFs of the DGTD method cannot be arranged such that all previously de�ned kernels can

access the data in a contiguous way. The gather stage, for example, requires data of adjacent faces
to be stored contiguously, while the di�erentiation and lift require a compact representation of the
DOFs of each element as visualized in the left and right panels of Fig. 5.5, respectively. The memory
layout that contiguously arranges the DOFs of adjacent faces results in a scattered access pattern
for the element-local matrix-vector-products in the di�erentiation and lift kernel, and vice versa. For
polynomial orders p ≤ 3, all DOFs of an element are located on the element's faces (cf. Tab. 3.3) and
an optimized memory layout can be constructed. However, for the sake of generality of our approach,
we de�ne a memory layout of �best practice� that does not depend on p.
We decided to optimize the layout with respect to the di�erentiation and lift kernels' access patterns.

The arrangement of all DOFs is described in detail in Fig. 5.6. The DOFs of the electromagnetic and
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pad pad pad pad

Figure 5.6: Structure of DOF containers Q,P for the GPU implementation of the DGTD method.

auxiliary �elds are stored in a single structure, referred to by Q in analogy to the state vector q̃. As
Q contains all DOFs that need to be integrated in time, only a single kernel for each step of Eq. (3.51)
is launched to process all DOFs. The LSRK method requires a second identically structured DOF
container, referred to by P in analogy to p̃ (cf. Eq. (3.51)).
Q and P are structured by a four level hierarchy: Field type, element, �eld component, and node.

Field type level segments DOFs into the electromagnetic �eld Q�eld and the problem-speci�c aux-
iliary �elds QPML, QD, and QDL resulting from the ADE formulation of the PMLs, the Drude,
and the Drude-Lorentz model, respectively.

Element level segments the DOFs of a particular �eld type at element granularity, e. g., QkX , k ∈
|0,KX〉 contains the DOFs of the �eld type X of element k. Note that the number of elements
of the �eld type KX is problem-dependent and depends on the �eld type X. The segmentation
of the electromagnetic �eld DOFs Q�eld on element level is depicted in Fig. 5.6.

Field component level segments the DOFs within an element according to the components of a
given �eld type, i. e., Qk�eld 3 {Ẽkx, Ẽky , Ẽkz , H̃k

x, H̃
k
y , H̃

k
z}, QkPML 3 {p̃kEx

, p̃kEy
, p̃kEz

, p̃kHx
, p̃kHy

, p̃kHz
},

QkD 3 {̃jkD,x, j̃kD,y, j̃kD,z}, and QkDL 3 {̃jkL,x, j̃kL,y, j̃kL,z, j̃kP,x, j̃kP,y, j̃kP,z}.

Node level structures the order within a �eld component of a particular element and �eld type, e. g.,
QkEx

[i], i ∈ |0, Np〉 accesses the Ex-component of element k at the ith node. Alternatively, the
individual DOFs are accessed by Qk�eld[υ ·Np + i], i ∈ |0, Np〉, υ ∈ |0, 6〉.

The structure of Q also contains padding of two di�erent kinds, marked by red boxes in Fig. 5.6.
At element level, each DOF block of a particular �eld type QkX , k ∈ |0,KX〉 is elongated by several
elements of the same �eld type QkX , k ∈ |KX ,KX + 10〉 in order to allow for a simpli�ed treatment of
kernels that execute more than one element per thread block, i. e., κ > 1.
If the last thread block of a kernel with κ > 1 is processed and the total number of elements K

processed by the kernel is not an integer multiple of κ, out-of-bound memory accesses may occur in
non-padded data-structures. The problem of how to handle kernels with κ > 1 safely can in principle
be solved by two approaches:
• Check boundedness of memory accesses during runtime within the kernel.
• Provide su�cient padding elements to allow safe out-of-bound accesses.

We decided for the latter solution as the problem is solved during initialization of the simulation and not
during runtime as additional conditional instructions would be necessary causing avoidable overhead.
The waste of memory is negligible as currently 10 element entities are padded after each �eld type.

56



5.2 Implementation of the DGTD Method on GPUs

Figure 5.7: Memory layout of the �ux vector F . At element level, the DOF block is padded to the
next 128Byte boundary.

p R(6Np) [%] R(NfNfp) [%]

2 93.75 90.00
3 93.75 93.75
4 93.75 93.75
5 95.45 98.44
6 98.44 100

Table 5.4: Ratio of used to allocated memory due to �eld component level padding determined by
Eq. (5.12). The values are based on single precision and 3D settings, i.e., Nf = 4.

This is much less than the total number of elements, i. e., in realistic systems, padded memory accounts
for less then 1%� of total allocated memory.
Another di�erent kind of padding is applied at �eld component level. Memory transfers yield highest

e�ciencies when data is transferred in large blocks and is aligned to 128Byte boundaries in memory
space. Thus, each DOF block of a particular element (for all �eld types) is elongated to the next
128Byte boundary by padding of additional �oats. The number of �oats in a DOF block at �eld
component level is calculated by dxe32, where x is the number of used �oats of the block, e. g., x = 6Np

in case of the electromagnetic �elds, and 32 corresponds to the number of �oats within 128Bytes.
Consequently, the ratio of used to the allocated memory due to the padding at �eld component level is
given by

R(x) =
x

dxe32
. (5.12)

An overview of ratios for commonly used polynomial orders is listed in Tab. 5.4. Note that �eld
component level and element level padding are di�erent. While the former adds �oats up to the next
128Byte boundary, the latter pads full entities of the element level.

The �ux vectors ~̃FE,4
f and ~̃FH,4

f , f ∈ |0, Nf 〉 are explicitly stored in a variable referred to by F in
the GPU's global memory. It is structured similarly to the DOF container Q, as depicted in Fig. 5.7.
The �ux values of the Nf faces of a particular �eld component are contiguously aligned, i. e., F kEx

[f ·
Nfp + i], f ∈ |0, Nf 〉, i ∈ |0, Nfp〉 accesses the �ux of the Ex-component of element k on face f at node
i. Resulting memory usage ratios are listed in Tab. 5.4. Our approach of padding yields comparable
e�ciency to the one proposed in Ref. [27]. Finally, it should be noted that we apply padding to 128Byte
boundaries to data, too, e. g., the inverse Jacobi matrix (J4)−1.
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Differentiation Kernel

The di�erentiation kernel evaluates the curl operations of Eq. (3.46) and scales the intermediate results
by ∆t

ε4
and ∆t

µ4
, respectively, i. e., the kernel performs

P4
Ẽx
← P4

Ẽx
+

∆t

ε4

(
D4y ·Q

4
H̃z
−D4z ·Q

4
H̃y

)
, P4

H̃x
← P4

H̃x
− ∆t

µ4

(
D4y ·Q

4
Ẽz
−D4z ·Q

4
Ẽy

)
,

P4
Ẽy
← P4

Ẽy
+

∆t

ε4

(
D4z ·Q

4
H̃x
−D4x ·Q

4
H̃z

)
, P4

H̃y
← P4

H̃y
− ∆t

µ4

(
D4z ·Q

4
Ẽx
−D4x ·Q

4
Ẽz

)
,

P4
Ẽz
← P4

Ẽz
+

∆t

ε4

(
D4x ·Q

4
H̃y
−D4y ·Q

4
H̃x

)
, P4

H̃z
← P4

H̃z
− ∆t

µ4

(
D4x ·Q

4
Ẽy
−D4y ·Q

4
Ẽx

)
,

(5.13)

where D4i , i ∈ {x, y, z} is calculated by Eq. (3.37).
The algorithm of the di�erentiation kernel is presented in Alg. 1. The thread block is given by

κ × Np, i. e., a two-dimensional index-space is spanned to evaluate the kernel. The thread index in
the �rst dimension tx re�ects the number of elements processed by a single thread block, referred
to as elementblock. The second dimension represents the number of DOFs per element and �eld
component which is motivated by the one-thread-per-output principle for the calculation of the matrix-
vector-products in Eq. (5.13), i. e., the index-space spanned by ty is equal to the number of rows
in D4i , i ∈ {x, y, z}. Consequently, we launch a grid of dKκ eκ thread blocks which are indexed by
bx (cf. Tab. 5.2). During initialization, κ is determined by evaluation of the minimum execution time
of the kernel in the range of κ ∈ {1, . . . , 10}. As K is in general not an integer multiple of κ, Q and P
are padded in order to prevent out-of-bound accesses by the last thread block.
A single thread processes all �eld components at a given node in order to achieve maximum reuse

of the element-local di�erentiation matrix elements calculated during the execution of the kernel. In
contrast to the implementation in Ref. [27], we store the �eld DOFs in shared memory. More precisely,
the expansion coe�cients of the electromagnetic �elds of all elements in the elementblock are kept in
shared memory, hence, [uS] = Np×κ×6 is allocated by each thread block. Macros are used to represent
constant integer values and to facilitate readability of the pseudo-code.
For the calculation of the I/B ratio (cf. Eq. (5.8)) we assumed that the input vector to a matrix-

vector-product is loaded only once. We implement this assumption by loading the expansion coe�cients
of the electromagnetic �eld of κ elements into shared memory. Hence, when requested, the DOFs are
loaded from fast memory.
Tunability of the I/B ratio is achieved by an appropriate ordering of Dj , j ∈ {u, v, w} in memory and

speci�cally designed global memory accesses. Let us consider the �rst warp of the thread block and
assume Tx ≡ κ = 3. At line 12 of Alg. 1, κ threads with contiguous thread IDs t access the same address
in global memory due to Eq. (5.11), and dWS

κ e1 = 11 contiguously aligned �oats are requested by the
warp. CUDA devices of CC2.0 always issue 128Byte transfers, i. e., 32 �oats are loaded although only 11
are requested by the �rst warp. These 32 �oats are �rst loaded into the so-called L1 cache and remain
there until another global memory request is issued whose data is not yet available in L1 cache. Note
that, by design, no global data other than the di�erentiation matrix elements of the reference element
are requested within the for loop, i. e., the cache is not evicted by other global memory accesses. As
a consequence, the following warps access data already available in L1 cache. This is exactly the point
at which di�erentiation matrix elements are reused for multiple elements, and the I/B ratio becomes
tunable.
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5.2 Implementation of the DGTD Method on GPUs

Algorithm 1: Local-element di�erentiation with tunable I/B ratio and �eld in shared memory.

Thread block: κ×Np , i. e., tx ∈ |0, κ〉, ty ∈ |0, Np〉
Grid : dKκ eκ, i. e., bx ∈ |0, d

K
κ eκ〉

Data : Di�erentiation matrix of the reference element [DG] = Np × 3×Np (Fig. 5.8)
Shared mem : [uS] = Np × κ× 6 for �eld expansion coe�cients of κ elements
Macros : Ex := 0, Ey := 1, Ez := 2, Hx := 3, Hy := 4, Hz := 5
Macros : u := 0, v := 1, w := 2, x := 0, y := 1, z := 2

// Prepare element index

k ←− bx · κ+ tx1

// Load fields into shared memory and synchronize threads

if tx < 3 then2

for l←− 0 to κ do3

uS[ty][l][0 + tx]←− QG,bx·κ+l
�eld [(0 + tx) ·Np + ty]4

uS[ty][l][3 + tx]←− QG,bx·κ+l
�eld [(3 + tx) ·Np + ty]5

end6

end7

=== Barrier and Memory Fence ===8

// Initialize registers for matrix-vector-product

uυ ←− 0 for υ ∈ {Ex,Ey,Ez,Hx,Hy,Hz}9

// Load inverse Jacobi matrix entries

Ji,j ←− JG,k
i,j for i ∈ {x, y, z}, j ∈ {u, v,w}10

// Loop over (major) columns of DG

for c ∈ |0, Np〉 do11

// Load reference element entries, κ threads access a single address

Dj ←− DG[c][j][ty] for j ∈ {u, v,w}12

// Assemble element-local differentiation matrices Di

Di ←− Ji,u ·Du + Ji,v ·Dv + Ji,w ·Dw for i ∈ {x, y, z}13

// Perform matrix-vector-product for column c
uEx ←− uEx +Dy · uS[c][tx][Hz]−Dz · uS[c][tx][Hy]14

uEy ←− uEy +Dz · uS[c][tx][Hx]−Dx · uS[c][tx][Hz]15

uEz ←− uEz +Dx · uS[c][tx][Hy]−Dy · uS[c][tx][Hx]16

uHx ←− uHx +Dy · uS[c][tx][Ez]−Dz · uS[c][tx][Ey]17

uHy ←− uHy +Dz · uS[c][tx][Ex]−Dx · uS[c][tx][Ez]18

uHz ←− uHz +Dx · uS[c][tx][Ey]−Dy · uS[c][tx][Ex]19

end20

// Store result of matrix-vector-product onto second DOF vector

P G,k
�eld[υNp + ty]←− P G,k

�eld[υNp + ty] + ∆tC · {ε−1}G,k · uυ for υ ∈ {Ex,Ey,Ez}21

P G,k
�eld[υNp + ty]←− P G,k

�eld[υNp + ty] + ∆tC · {µ−1}G,k · uυ for υ ∈ {Hx,Hy,Hz}22
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128

Figure 5.8: Storage of the reference element di�erentiation matrices Dj , j ∈ {u, v, w}. Columns
of equal index are contiguously aligned as visualized by the color code. The entire
memory block of DG is aligned to a 128Byte boundary. A major column of DG refers
to aligned columns of Dj , j ∈ {u, v, w} of equal column index.

Per element, the di�erentiation kernel performs
(

(3 · 5 + 2 · 2 · 6) ·Np + 12
)
·Np Flops, i. e., for each

di�erentiation matrix element, 3 · 5Flops are required to construct the element-local di�erentiation
matrices, and the matrix-vector-products consume 2 ·2 ·6Flops. The operations on lines 21 and 22 cost
2 · 6 ·Np Flops. In contrast, the diversi�ed di�erentiation kernel which also performs the ADEs of the
PMLs performs

(
39Np+ 66

)
·Np Flops. The Flop-count is used to determine the practically achieved

computational power for the test cases in Sec. 5.3.

Lift Kernel

The lift kernel evaluates the matrix-vector-product of the lift matrix Lf of face f and the �ux vectors
~̃FE,4
f and ~̃FH,4

f for a single element (cf. Eq. (3.46)). The sum over the faces f is absorbed into an
extended matrix-vector-product by casting the lift matrix and �ux vectors in the form depicted in

Fig. 5.9 and Fig. 5.7, respectively. The element-dependent factors Z̄−1 J
4
f

J4 and Ȳ −1 J
4
f

J4 are absorbed in
the �eld di�erences of the �ux vectors and evaluated during the �ux kernel. In essence, the lift kernel
calculates

P4ũ ←− P
4
ũ +

∆t

ε4
LF4u for u ∈

{
Ex, Ey, Ez

}
,

P4ũ ←− P
4
ũ +

∆t

µ4
LF4u for u ∈

{
Hx, Hy, Hz

}
.

(5.14)

The basic layout of the lift kernel's algorithm (cf. Alg. 2) is similar to the di�erentiation kernel,
i. e., the tunable I/B ratio is implemented by maintaining lift matrix segments in cache while the
�ux vectors are stored in shared memory. The thread block size is given by κ × Np, i. e., tx and ty
index the elements and nodes processed within the thread block, respectively. As a consequence, the
grid spans dKκ eκ thread blocks, and bx identi�es the corresponding elementblock. The lift matrix is
stored in global memory such that contiguous indices i access contiguously aligned memory locations
by LG[c][i], c ∈ |NfNfp〉, i ∈ |0, Np〉, where c refers to the columns of L. The input vector to the
matrix-vector-products, the �ux vectors of all elements of the elementblock, are loaded into shared
memory.
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5.2 Implementation of the DGTD Method on GPUs

Figure 5.9: Construction of the reference element's lift matrix L which results from the product
of the inverse mass matrixM−1 and a constructed matrix consisting of the face-mass
matrices Ff , f ∈ |0, Nf 〉.

Algorithm 2: Lift kernel with tunable I/B ratio and �ux vector in shared memory.

Thread block: κ×Np , i. e., tx ∈ |0, κ〉, ty ∈ |0, Np〉
Grid : dKκ eκ, i. e., bx ∈ |0, d

K
κ eκ〉

Data : Lift matrix of the reference element [LG] = NfNfp ×Np

Shared mem : [F S] = κ× 6×NfNfp for �ux vectors of κ elements
Macros : Ex := 0, Ey := 1, Ez := 2, Hx := 3, Hy := 4, Hz := 5

// Prepare element index

k ←− bx · κ+ tx1

// Load flux vectors into shared memory

// Cast of dimensionality: [F S] = κ× 6NfNfp

for l←− 0 to κ do2

for m←− tx + tyκ to 6NfNfp increment by κNp do3

F S[l][m]←− F G,bx·κ+l[m]4

end5

end6

=== Barrier and Memory Fence ===7

// Initialize registers for matrix-vector-product

uυ ←− 0 for υ ∈ {Ex,Ey,Ez,Hx,Hy,Hz}8

// Loop over nodes on faces

for c ∈ |0, NfNfp〉 do9

// Load lift matrix entry; κ contiguous threads access same entry

L ←− LG[c][ty]10

// Perform matrix-vector-product for column c
uυ ←− uυ + L · F S[tx][υ][c] for υ ∈ {Ex,Ey,Ez,Hx,Hy,Hz}11

end12

// Add result of matrix-vector-product onto second DOF vector

P G,k
�eld[υNp + ty]←− P G,k

�eld[υNp + ty] + ∆tC · {ε−1}G,k · uυ for υ ∈ {Ex,Ey,Ez}13

P G,k
�eld[υNp + ty]←− P G,k

�eld[υNp + ty] + ∆tC · {µ−1}G,k · uυ for υ ∈ {Hx,Hy,Hz}14
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Similar to the di�erentiation kernel, Tx ≡ κ threads access the same element of LG on line 10 of
Alg. 2. During the evaluation of the matrix-vector-product, no data from global memory is fetched.
The lift matrix remains in cache, leading to an e�ective reuse. Shared memory allows for a very e�cient
access on line 11, too, where Ty ≡ Np threads access the same address. Multiple threads can access one
or more addresses in shared memory simultaneously without causing latency in a mechanism referred
to as (multi)-broadcast, available for CC≥2.0 [26]. Finally, the result of the matrix-vector-product is
scaled and added to P .
Per element, the lift kernel consumes

(
(NfNfp + 1) · 2 · 6

)
·Np Flops, i. e., for each row of the matrix-

vector-product 2NfNfp Flops are required, and lines 13 and 14 demand 2 · 6 ·Np Flops.

5.2.4 Host-Device Interaction, Heterogeneous Computing, and Probing

As one of the most important issues to be regarded for a high-performance implementation, the min-
imization of host�device tra�c must be addressed (cf. Sec. 5.1.5). The DGTD method on GPUs is
embedded in a well-established CPU-framework which is employed to setup all entities required during
time-integration, e. g., the reference element's di�erentiation matrices Dj , j ∈ {u, v, w}, the lift matrix
L, boundary conditions, mapping of volume-to-surface indices, and so forth. After initialization of all
variables on the host, the entities required during time-integration are transferred to the device and
time-integration commences.
The evaluation of the kernels is controlled by the host program, i. e., the kernels required for the

physical problem at hand are launched in sequential order on the host. A single kernel is executed
on the device at a time. The time-integration of the DOFs on the device proceeds without further
interaction of host and GPU.
After each LSRK step, i. e., after integration of ∆t time, the electromagnetic �elds are copied from

the device to the host for probing purposes. Neither the host program nor the GPU process further
instructions during the time of the transfer, which is typically of the order of the execution time of a
single stage for the 14-stage scheme (cf. Sec. 3.2.1). Consequently, a large number of stages helps to
reduce the cost of the transfer while leading to a large ∆t.
Additional book keeping could help to minimize the host�device tra�c as currently all electromag-

netic �eld components of all elements are transferred regardless of the con�guration of the probes.
Transferring only data that is actually processed by a probe may reduce the amount of data tra�c.
Furthermore, data might not be required at every time-step and could be fetched only when needed.
However, for time-integration methods with a high number of stages, less than 10% of the execution
time of a single stage can be saved.
The evaluation of the probes is performed entirely by an existing CPU-framework. The framework

was extended to evaluate the probes asynchronously, i. e., the host program launches the kernels of the
next time-step and the GPU recommences time-integration while the probes are being processed. This
allows to hide probe evaluation completely behind the time-integration. Probe evaluation and host
program synchronize at the transfer of the DOFs after each time-step, i. e., the GPU idles as long as
the probe evaluation is not �nished, and vice versa.

5.3 Validation and Performance Benchmark

In this section, the implementation of the DGTD method on GPUs is checked for both validity and per-
formance by simulation of several test systems. Problems whose analytic solutions are known explicitly
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are used to investigate convergence and correctness of the simulated results.
Our primary motivation for the realization of a DGTD Maxwell Solver on GPUs was the potential

speedup compared to conventional CPU computer systems. Here, we quantify the speed up by com-
paring the GPU to a highly optimized CPU implementation, which has been developed over several
years. The CPU implementation is powered by hand-written matrix-vector-products that outperform
Intel's MKL BLAS routines [14]. We limit our analysis to the practically most relevant polynomial orders
p = {2, 3, 4, 5}. Higher orders are rarely employed as the accuracy of the method can also be improved
by h-re�nement, i. e., a re�nement of the mesh, or curvilinear elements [43].
In the following test cases, we employ a NVidiar GeForcer GTX580. Our CPU test system is

equipped with an Intelr CoreTM i7 CPU 970 @ 3.20GHz.

5.3.1 Empty Metallic Cavity

The �rst test system is an empty cubic cavity with metallic boundaries. It is employed to verify correct
functionality of the DGTD-GPU implementation's core components: The LSRK time-integrator and
the DG Maxwell operator (right-hand side of Eq. (3.46)) including the di�erentiation, lift, and �ux
kernel.
The physical system is a cube of edge length L = 2 (in dimensionless units) ��lled� with vacuum,

i. e., ε = 1. We apply perfect electric conductor (PEC) boundary conditions, i. e., the tangential
component of the electric �eld must vanish at the boundary. The boundary conditions are enforced via
the manipulation of �eld di�erences according to Tab. 3.2. The analytic solution [70] provides initial
�eld values and serves as reference solution for the calculation of the numerical error.
The �elds are initialized by a (222) eigenmode. In order to suppress the error emerging from time-

integration, we chose the time-step ∆t = 0.1 · ∆tmax (cf. Sec. 3.2.2). Thus, any deviation from the
analytic solution arises from the spatial discretization. The system is simulated with polynomial orders
p = 2, . . . , 5 for T = 15T0, where T0 = 2√

3
refers to the oscillation period of the initial (222) eigenmode.

Full control of the mesh element size is guaranteed by explicit construction of the mesh. The mesh
consists of identical sub-cubes of edge-length h = L

k , where k is the number of elements per cavity
edge. Each sub-cube comprises 5 tetrahedra, resulting in a total number of 5 · k3 elements to model
the cavity.
We calculate the maximum absolute error with respect to the analytic solution over time and all grid

points for the Hz-component6 by

Γ = max
t,~r

(∣∣∣Hnum
z

(
~r, t
)
−Href

z

(
~r, t
)∣∣∣) . (5.15)

Fig. 5.10 depicts the maximum error Γ as a function of h for several polynomial orders p. The solid
lines are regression curves and indicate the �tted convergence rate, listed in the inset. We observe that
the error decays in accordance with Eq. (3.48) until it saturates around 10−5. When saturated, the
error is limited by the �oating point precision of the device. Based on this analysis, we assume that
our implementation of the core features mentioned above works correctly.
As a next step, we analyze the performance of the GPU and CPU implementation. As for all perfor-

mance analyses of this thesis, we compare GPU and CPU calculations performed in single precision. We
are interested in the time both implementations require to process, more precisely integrate, in time.
Hence, we relate their times spent on the time-integration, referred to as computational time, which

6Every other component would yield the same conclusions.
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Figure 5.10: Maximum error Γ of the Hz-component as a function of h for the polynomial orders
p = {2, 3, 4, 5}. The convergence rate obtained from a linear �t is listed in the inset
and visualized by solid lines. For small h, the error saturates at the single precision
�oating point accuracy.

includes the evaluation of the DG operator, but excludes time consumed to prepare the simulation and
evaluate probes.
Fig. 5.11 depicts the speedup of the GPU over the CPU implementation, i. e., the ratio of their

computational times in dependence of the number of tetrahedra for orders p = {2, 3, 4, 5}. We observe
a speedup of approximately 25-55, i. e., the GPU implementation requires 25-55 times less time than the
CPU implementation on a single core. The speedup depends on the polynomial order p and saturates for
largeK. Increasing arithmetic intensity per DOF due to increasing polynomial order p is not necessarily
connected to a growing speedup. In fact, for this particular system, the highest speedup occurs for
p = 2. The saturation of the speedup is directly related to the saturation of the GPU's cores. Meshes
consisting of only hundreds of elements do not provide su�cient work to utilize all cores (not shown).
However, realistic physical systems usually require enough elements to saturate the device completely.
In general, the speedup should not be overestimated as many device and implementation speci�c factors
in�uence it. Nevertheless, the presented speedup shows the order of acceleration provided by the GPU
implementation.
The kernel execution ratio of the employed kernels, i. e., the execution time of a particular kernel

normalized to the execution time of all kernels, is summarized7 for p = {2, . . . , 5} in the left panel of
Fig. 5.12. The kernels of the LSRK method consume roughly 10% of the total kernel execution time.
For increasing order p, the common share of the computationally intense di�erentiation and lift kernels
rises from 50% to 70% due to the increasing number of operations per DOF which, in turn, reduces
the ratio of the �ux kernel from 40% to 20%. The kernel execution ratio of the �ux kernel is, however,
remarkably large in comparison to the number of arithmetic operations evaluated by it.

7We observe that the kernel execution ratio of each kernel is practically independent of K if the GPU is saturated.
Hence, we average the kernel execution ratios of simulations with varying K in the range investigated in Fig. 5.11.
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Figure 5.11: Speedup of the GPU over the CPU implementation for the cubic metallic cavity in
dependence of the number of tetrahedra K for spatial orders p = {2, 3, 4, 5}.
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Figure 5.12: Kernel execution ratio (left panel) and calculation time per element and stage τ (right
panel) for spatial orders p = {2, 3, 4, 5}. The dashed lines mark the asymptotes for
large K and serve as guides to the eye for further tests.
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Figure 5.13: Computational power in GFlops/s of time-consuming kernels for polynomial orders
p = {2, 3, 4, 5}.

The calculation time per element and stage τ is a measure for the absolute time required to evaluate
one stage of the LSRK method for one element including the time-integration and the DG operator
kernels. The right panel of Fig. 5.12 depicts the calculation time per element and stage τ as a function
of the number of elements K in dependence of p. We observe an asymptotic behavior even for small
element numbers, i. e., the GPU implementation scales linearly with respect to the number of elements
in a mesh. Clearly, the dependence on the polynomial order is associated with the increasing number
of instructions per stage. These quantities can be used directly to estimate the calculation time of
simulations in advance.

At last, we analyze the number of single precision �oating point operations per second (Flops/s)
for each kernel in order to compare the practically achieved computational power to the available
theoretical one. We calculate the computational power by counting the required Flops in each kernel,
multiply by the total number of threads in the grid, and divide by the kernel execution time. Note that
only �oating point operations are counted.

Fig. 5.13 summarizes the computational power in GFlops/s for polynomial orders p = {2, 3, 4, 5}.
The di�erentiation and lift kernel's computational power grows with p due to the increased I/B ratio
within the kernels. For p = 5, a maximum of almost 800GFlops/s is achieved, which corresponds
to roughly 50% of the theoretical optimum value of approximately 1500GFlops/s for the NVidiar

GeForcer GTX580. Note that the theoretical optimum value assumes FMA operations only. The
remaining kernels are bandwidth limited and, hence, su�er low computational power of the order of
50GFlops/s. Based on the kernel execution ratio of Fig. 5.12, another factor of 2 in speedup can � in
theory � still be gained as all kernels execute at best at half of the theoretical computational power.

Our implementation shows slightly improved behavior over the one presented in Ref. [27]. Therein,
roughly up to one third of the theoretical computational power was utilized for both the di�erentiation
and the lift kernel on a NVidiar GeForcer GTX280. The bandwidth limited kernels of the time-
integration and the gather stage show (similar to our implementation) practically p-independent values
of approximately 30 and 100-150GFlops/s, respectively.
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5.3.2 Optical Spectroscopy of a 100 nm Silver Sphere

As another example, we examine the scattering cross section of a silver sphere of 100 nm diameter in
vacuum, i. e., a typical setup of a realistic physical system including external �eld sources and probes.
With this test, the total-�eld/scattered-�eld source, the ADEs for the Drude model, and the evaluation
of the �ux through the TF/SF contour are veri�ed. These setup entities are required for the detailed
investigation of extinction, scattering, and absorption cross-section spectra of several di�erent nano-
antennae in Chap. 6.
The electromagnetic �elds of a sphere whose dispersive material is described by a frequency-dependent

electric permittivity ε (ω) can be expressed analytically in terms of spherical harmonics which is com-
monly known as the Mie theory. Thereof, the cross sections can be directly evaluated from the scattering
coe�cients an and bn, i. e., the expansion coe�cients of the scattered electromagnetic �eld in terms of
the vector spherical harmonics [32].
Since the setup of the system is not at the focus of interest, the reader is referred to the detailed

presentation of the setup in Sec. 6.2 on page 77. The permittivity of silver is described by a Drude
model (cf. Sec. 2.2.2) and corresponding material parameters ε∞ = 1, ωD = 13.9 · 1015 Hz, γD =
3.23 · 1013 Hz are obtained by �tting the experimental values of Johnson and Christy [38] by the
procedure described in Sec. 2.2.4. The system is terminated by Silver-Müller boundary conditions and,
in contrast to the setup of Sec. 6.2, PMLs of 125 nm width. We excite the system by a plane wave
Gaussian pulse by means of a total-�eld/scattered-�eld source (cf. Sec. 4.2.1) and simulate it with
polynomial orders p = {2, 3, 4, 5} for T = 133 fs.
Fig. 5.14 depicts the scattering cross section8 calculated from DGTD simulation and Mie theory. We

observe excellent agreement of numeric and analytic cross sections. Even for the relatively low order
p = 3, no signi�cant di�erence to the analytic cross section is discernible in both the overview and the
zoomed view of the sharp resonances. Hence, we conclude that our implementation of the Drude ADE,
PMLs, and TF/SF source works correctly.
Similar to the case of the empty cubic cavity, we analyze the performance by comparison of the

calculation times of both GPU and CPU implementation for a series of h-re�ned meshes and polynomial
orders p = {2, 3, 4, 5}. In contrast to the setup described above, the simulated time is chosen such that
exactly 20 time-steps are processed which results in 280 evaluations of the DG operator using the 14-
stage LSRK scheme of Sec. 3.2.1. Fig. 5.15 depicts the speedup in dependence of K and p. Similar to
the empty cavity, the speedup is of the order of 25-55 and practically constant in K.
In order to determine the in�uence of the Drude and TF/SF kernels, we compare the calculation

time per element and stage τ to the empty metallic cavity case. In the right panel of Fig. 5.16, we
observe that τ

(
K
)
shows asymptotic behavior, i. e., the GPU implementation scales linearly with K.

The absolute values of τ are practically unchanged in comparison to the empty metallic cavity case,
indicated by the dashed lines.
These observations are consistently reproduced by the kernel execution ratio, depicted in the left

panel of Fig. 5.16. The share of the Drude and TF/SF source kernels amounts to less than 3% and
1% of the total kernel execution time, respectively, while similar ratios compared to the empty metallic
cavity case are observed for the core kernels (cf. Fig. 5.12). Note that the evaluation of the PMLs
is embedded in a diversi�ed local-element di�erentiation kernel (cf. Sec. 5.2.2) and, thus, cannot be
quanti�ed independently.
8In practice, we determine extinction, scattering and absorption cross section simultaneously. For this system, the
extinction is dominated by scattering and absorption is very low. In order to keep the �gure well-arranged, we merely
depict the scattering cross section. However, the conclusions derived in the following are equivalently obtained from
the analysis of extinction and absorption.
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Figure 5.14: Scattering cross section of a silver sphere of radius 50 nm calculated via analytic
Mie theory and DGTD for polynomial orders p = {3, 5}. The left panel shows an
overview, while the right panel depicts a zoomed view of sharp resonances.
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Figure 5.15: Speedup of the GPU over the CPU implementation for a silver sphere in dependence
of K for polynomial orders p = {2, 3, 4, 5}.
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Figure 5.16: Kernel execution ratio (left panel) and calculation time per element and stage τ (right
panel) for polynomial orders p = {2, 3, 4, 5}. Dashed guides refer to the asymptotic
values of the empty metallic cavity test.
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Figure 5.18: Simulation setup of the EELS analysis of an aluminum sphere (gray) whose mate-
rial properties are described by ε (ω). The electron trajectory ~re(t) is indicated by a
straight line (red) passing the sphere at a minimum distance of 5 nm. The compu-
tational domain is limited by a sphere of radius 110 nm and �lled with vacuum, i.e.,
ε = 1.

The computational power of time-consuming kernels is depicted in Fig. 5.17. In general, a behavior
similar to the empty cavity case is observed, i. e., the di�erentiation and lift kernels show high GFlops/s
values that increase with p, and the bandwidth limited kernels perform at approximately 50GFlops/s.
Again, maximum values beyond 700GFlops/s are achieved. For high orders, additional cost of PMLs
in the diversi�ed local-element di�erentiation kernel decreases the computational power only slightly,
whereas moderate performance loss is observed for low orders, e. g., p = 2.
For GPU simulations, probing is �outsourced� to the host and the time spent on probe evaluation

contributes to neither the simulation nor the calculation time. Therefore, for practically realistic systems
including probes, the speedup is expected to be increased over the empty metallic cavity case.

5.3.3 Electron Energy Loss Spectroscopy of a 20 nm Aluminum Sphere

As a last test system, we examine the electron energy loss spectrum of an aluminum sphere of diameter
20 nm embedded in vacuum in order to verify the implementation of a fast electron source (cf. Sec. 7.1.2)
and the EELS analysis (cf. Sec. 7.1.1) used throughout Chap. 7 for a detailed analysis of split-ring
resonators.
An electron of kinetic energy E = 200 keV, corresponding to v = 0.6953c, where c is the vacuum

speed of light, passes the aluminum sphere by a minimum distance of 5 nm as sketched in Fig. 5.18. The
electron's initial position is chosen far away from the sphere, such that the electromagnetic �elds induced
by the electron are negligible at the start of the simulation. The permittivity of aluminum is described
by a Drude model (cf. Sec. 2.2.2) and corresponding material parameters ε∞ = 1, ~ωD = 15 eV, and
~γD = 0.07ωD are taken from Ref. [71]. We simulate the system for T = 16.6 fs.
The electron energy loss spectra calculated by an analytical expression in Ref. [72] and the DGTD

method are depicted in Fig. 5.19. The analytic spectrum was calculated employing multipoles up to
15th order. Despite minor deviations in the absolute value, the resonance position is met precisely. The
overall agreement is very good even for the relatively low order p = 3. From these results, we assume
that our implementation of the fast electron source and the subsequent analysis work correctly.
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Figure 5.19: Overview (left panel) and close up view (right panel) of electron energy loss spectra
obtained via analytic theory (black solid) from Ref. [72] and DGTD simulation of
order p = 3 (red dashed).
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Figure 5.20: Speedup of the GPU over the CPU implementation for the EELS analysis of a 20 nm
aluminum sphere.
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Figure 5.21: Kernel execution ratio (left panel) and calculation time per element and stage τ (right
panel) for spatial orders p = {2, 3, 4, 5}. Dashed guides refer to the asymptotic values
of the empty metallic cavity test.
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Figure 5.22: Computational power in GFlops/s of time-consuming kernels for polynomial orders
p = {2, 3, 4, 5}.
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5.4 Summary

For the performance analysis, the system is simulated for a series of h-re�ned meshes and polynomial
orders p = {2, . . . , 5} for 20 time-steps, i. e., 280 evaluations of the DG operator are performed.
In Fig. 5.20, the speedup is depicted in dependence of K. In agreement with the previous test cases,

the speedup is approximately 30-50 and constant in K. The analysis of the kernel execution ratio,
depicted in the left panel of the Fig. 5.21, shows similar behavior, too. The SF source kernel consumes
more time than the Drude kernel. For this system, their total share amounts to less than 4%.
The computational power of time-consuming kernels is summarized in Fig. 5.22. In contrast to other

bandwidth limited kernels, the SF source kernel shows moderate increase with order p in the range
of 60-120GFlops/s. The behavior of the remaining kernels is similar to the previous test cases with
maximum computational power of 700-800GFlops/s achieved by the di�erentiation kernel.
As in most cases, the mesh of this test system is dominated by non-metallic elements and, hence, τ

must behave similarly to previously presented test cases, which is clearly observed in the right panel of
Fig. 5.21.

5.4 Summary

Based on the fundamental hardware design paradigm of graphics processing units and NVidia's platform
for general purpose GPU applications CUDA, performance relevant issues and the responsibilities of the
programmer to achieve a high-performance DGTD implementation were presented. The instruction to
byte ratio was introduced as the basic guideline to optimal performance. It was demonstrated that
math libraries implementing standard matrix-vector operations cannot yield a su�ciently high I/B
ratio and are, hence, not suitable for a high-performance implementation of the DGTD method.
The algorithm of the DGTD method was analyzed with respect to the I/B ratio, and suitable and

ineligible sections for implementation on the GPU were identi�ed. For linear elements used throughout
the thesis, the computationally intense matrix-vector-products of the element-local di�erentiation and
the lift of the �ux vectors were identi�ed to yield a tunable I/B ratio upon reuse of the reference
element operators. Respective kernels of tunable I/B ratio were implemented and can take advantage
of the GPU's computational power. Based on a thorough discussion of the partitioning of the DGTD
algorithm into kernels, taking performance, maintainability, and modularity of the code into account,
kernels for the LSRK time integration, the �ux calculation, the ADEs of PMLs, the Drude, and the
Drude-Lorentz model, as well as total-�eld/scattered-�eld and scattered-�eld sources of various space-
and time-dependencies were implemented.
Several test cases were employed to verify correct functionality of the implementation. Three of

these test cases, for which analytic reference solutions of the electromagnetic �elds are available, were
presented. Many more tests were performed by direct comparison of the well-established CPU and
newly developed GPU implementation in order to guarantee correctness and stability. These tests also
demonstrate that the reasoning which lead to partitioning of the code into kernels was justi�ed.
The implementation of the core components of the method, i. e., the local-element di�erentiation

and the lift operation were thoroughly described by algorithms with emphasis on the concept of the
tunable I/B ratio. Furthermore, the memory layout of the implementation was described since the
minimization of memory tra�c is one of the most important aspects to high performance.
Employing the test cases mentioned above, the performance with respect to the well-established CPU

implementation was analyzed. For polynomial orders p = {2, . . . , 5} and practically independent of the
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number of elements K, the GPU code provides a speedup of 30-55 over the CPU implementation9.
The calculation time per element and stage τ was shown to be a p-dependent constant with respect

to K for the GPU implementation, i. e., the calculation time scales linearly with K. The di�erentiation
and lift kernels yield computational powers of up to almost 800 and 600GFlops/s, which corresponds
to roughly 50% of the theoretical value. This tremendous reduction of simulation time allows us to
approach computationally intense problems such as the EELS analysis of coupled split-ring resonator
systems, presented in Chap. 7.

9We compare the calculation times of simulations performed in single precision on a NVidiar GeForcer GTX580 (GPU
system) and an Intelr CoreTM i7 CPU 970 @ 3.20GHz (CPU system). The CPU system employs a single core.
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6 Chapter 6

Optical Characterization of Metallic
Nano-Antennae

Metallic nano-antennae convert electromagnetic radiation into localized energy and heat. In the case of
conversion into localized energy, incident light is converted into localized surface plasmons and plasmon
polaritons. These plasmons can be resonantly enhanced resulting in a local �eld enhancement, i. e., an
ampli�cation of the local �eld with respect to the incident �eld. This locally con�ned, large �eld is uti-
lized in a variety of methods and techniques, e. g., surface enhanced Raman scattering (SERS), surface
enhanced infrared absorption (SEIRA), near-�eld imaging, nonlinear optical frequency conversion and
many more, see e. g. [2, 3] and references therein. Below the plasma frequency, the �eld of a plasmon
is strongly con�ned to the surface and depends on its environment, hence, metallic nanoparticles and
-antennae can serve as sensing devices, too.
Depending on the application of interest, a nano-antenna is designed to yield a de�ned ratio of

scattering to absorption. In photothermal cancer therapy [73], for example, ideally all incident light
is converted to heat, i. e., a large absorption cross section is desired. In order to tune the properties
of the nano-antenna, characterization methods must be established that quantitatively measure the
extinction, the scattering, and the absorption cross section of individual nanostructures. Recently,
Husnik et al. [12] presented an experimental setup which determines these cross sections simultaneously
and quantitatively for the �rst time. Our contribution to their analysis of a series of nano-antennae by
numerical simulations employing the DGTD method is presented in this chapter.1

In order to verify the experimental setup and the associated analysis, the extinction, the scattering,
and the absorption cross section of a series of nano-antennae are calculated by the DGTD method
on GPUs. As in the experiment, we investigate the transition of a straight gold dipole nano-antenna,
referred to as nanorod, into a split-ring resonator by bending wires of roughly equal length into a
�U�-like shape. As a consequence, the nanorod and the split-ring resonators show similar resonance
wavelengths.
For an ideal electric dipole, the scattering cross section scales quadratically with the dipole mo-

ment [32]. As the response of the antennae considered here is dominated by the dipole term of a
multipole expansion and the dipole moment directly depends on the separation of charges, we expect
the dipole antenna to show a larger scattering cross section than the split-ring resonator. Since the
nano-antennae are fabricated from �wires� of nearly the same length, their ohmic resistance and, hence,
their absorption cross section is supposed to be approximately equal. As a result, in transition from

1The general structure of this chapter is guided by Ref. [12].
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Figure 6.1: Parametrization of the split-ring resonator (left panel) and the nanorod (right panel).
The split-ring resonator is de�ned by its width w, height h, thickness t (not shown),
gap width wg, gap height hg, edge radius r and mirror symmetry. Both arms are of
equal width wa. The nanorod is de�ned by its width w, height h, thickness t (not
shown) and edge radius r.

a nanorod to a split-ring resonator, the ratio of scattering and absorption cross section is expected to
decrease. We investigate these aspects in the remainder of this chapter, which is structured as follows:
The nano-antennae, nanorods and split-ring resonators, are parametrized according to a geometric

model presented in Sec. 6.1. In Sec. 6.2, the setup of the simulation including tetrahedral meshes,
material models, excitation, and probing is described. Experimentally and numerically obtained ex-
tinction, scattering and absorption cross sections of the nano-antennae are compared and discussed
in Sec. 6.3. The dependence of the scattering to absorption ratio of a straight dipole antenna on the
ohmic resistance is analyzed in Sec. 6.4. Finally, errors and the in�uence of several material, geometry,
and simulation parameters are addressed in Sec. 6.5.

6.1 Parametrization of Split-Ring Resonators and Nanorods

The numerical treatment of physical systems by means of the DGTD method demands a geometric
model of the system in the form of a mesh. As alluded to in Sec. 3.1.2, we employ tetrahedra as building
blocks for the mesh. The meshes themselves are created by netgen [74], an open source meshing tool.
We de�ne the geometry using constructive solid geometry, i. e., cuboids, cylinders, spheres etc. are used
in conjunction with boolean operations to describe the geometry of the system. As a consequence, the
split-ring resonator and the nanorod must be parametrized in terms of these objects.
The de�nition of the geometric model and the associated parameters are depicted in Fig. 6.1. The

split-ring resonator is de�ned by its width w, height h, thickness t, gap width wg, gap height hg, and
edge radius r together with the property of mirror symmetry, i. e., the SRR is located such that the
structure is symmetric with respect to x = 0. Consequently, the arms are equal in width. The thickness
t is the system's extent in z-direction and is not to be confused with the height h, i. e., the extent in y-
direction. Cylinders, parametrized by the edge radius r and indicated by the dashed guides in Fig. 6.1,
are used to model edges which account for the fact that fabricated nanostructures do not exhibit sharp
edges � at least in the lateral dimensions.
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6.2 Simulation Setup

Figure 6.2: Sketch of the simulation setup. The scatterer (gold), either split-ring resonator or
nanorod, is located on a silicon nitride membrane (green). Both, scatterer and mem-
brane are embedded in air (cyan). The computational domain is terminated by PMLs
in all directions (white). The blue region represents colocated membrane and PML
property, and the red box indicates the contour of the total-�eld/scattered-�eld source.

The nanorod is modeled by a rectangular cuboid of width w, height h, and thickness t with round
edges, as before, de�ned by the edge radius r.

6.2 Simulation Setup

An overview of the system setup is depicted in Fig. 6.2. The scatterer, either a split-ring resonator
or a nanorod, is located on a silicon nitride membrane of 30 nm thickness whose material is modeled
by a dielectric of constant permittivity εmem = 4. In analogy to the experimental setup, the scatterer
and the membrane are embedded in air described by ε = 1. It is important to include the �airbox�
as the electromagnetic �elds of the source propagate therein. However, due to the limited amount of
computer memory and �nite operation speed, an in�nitely extended system cannot be simulated. In
order to mimic open space, the computational domain is terminated by PMLs in all directions which, in
conjunction with Silver-Müller boundary conditions on the outmost surface, absorb outgoing radiation.
Note that the blue region in Fig. 6.2 models both membrane and PML properties.
The scatterers themselves are de�ned in terms of the model presented in Sec. 6.1. The model pa-

rameters of the four systems of interest, classi�ed as three split-ring resonators and one nanorod, were
deduced from SEM images of the respective experimental structures and are summarized in Tab. 6.1.
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w [nm] h [nm] t [nm] wg [nm] hg [nm] r [nm]

Split-ring resonator 139 146 35 52 88 19
Intermediate SRR #1 182 124 35 92 68 18
Intermediate SRR #2 227 104 35 145 48 17
Nanorod 292 55 35 - - 21

Nanorod 35 nm Au 283 44 35 - - 21
Nanorod 25 nm Au, 10 nm Cr 283 49 35 - - 21

Table 6.1: Geometry parameters of the scatterers investigated in this chapter based on the model
de�ned in Sec. 6.1. The parameters of split-ring resonators and nanorods considered
in Sec. 6.3 and Sec. 6.4 are summarized in the upper and lower section, respectively.
Thereof constructed tetrahedral meshes are depicted in Fig. 6.3 and Fig. 6.4.

Gold Chromium

ε∞ 1.00 13.6

ωD 13.8× 1015 Hz 7.81× 1015 Hz

γD 1.08× 1014 Hz 6.75× 1014 Hz

∆εL 0 17.77

ωL 1.93× 1015 Hz

γL 1.91× 1015 Hz

Table 6.2: Material parameters for gold and chromium in the near-infrared. The values for gold
were originally published by Johnson and Christy [38]. The Drude-Lorentz parameters
for chromium were obtained by a �t in the range 800 − 2000nm with experimental
data from Ref. [75]. The associated permittivities are depicted in Fig. 6.5. Note that
γsimD,Au = 1.75 · γD = 1.88× 1014 Hz is used for simulations in practice.

Tetrahedral meshes modeling the scatterers on the silicon nitride membrane, each consisting of approx-
imately 37k elements, are depicted in Fig. 6.3.
In the experiment, the scatterers were fabricated from gold, hence, the material model of the sim-

ulation must account for the dispersive properties of the metal. In the (near-)infrared regime, where
the fundamental resonance of the structures is expected, the electromagnetic response of gold is well
described by a Drude model (cf. Sec. 2.2.2). The free parameters of the Drude model are deduced from
Johnson and Christy's famous paper [38] and are listed in Tab. 6.2.
As is known from previous studies [9], the fabrication process leads to internal grain boundaries and

rough surfaces of the gold structures. This leads to additional scattering of electrons and electronic
surface states which, in turn, lead to signi�cantly higher damping when compared to the measurements
of Johnson and Christy. For this reason, we increase the damping used in the simulations by a factor
1.75, i. e., γsimD,Au = 1.75 · γD,Au is employed for the calculations of this chapter. The manipulation of
γD in�uences both the real and imaginary part of the permittivity as depicted in Fig. 6.5.
The system is illuminated by a Gaussian pulse with plane wave spatial pro�le polarized in x-direction,

i. e., parallel to the base of the split-ring resonator and to the long axis of the nanorod. Technically,
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6.2 Simulation Setup

Figure 6.3: Section of tetrahedral meshes modeling scatterers (gold) in transition from the split-
ring resonator (top left) to the nanorod (bottom right) with two intermediate split-ring
resonators on a silicon nitride membrane (green). The parameters according to the
model in Fig. 6.1 are listed in Tab. 6.1.

Figure 6.4: Section of tetrahedral meshes modeling nanorods of gold (left panel) and layered
chromium (red) and gold (right panel) on a silicon nitride membrane (green). The
parameters according to the model in Fig. 6.1 are listed in Tab. 6.1.
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Figure 6.5: Real (blue) and imaginary (red) part of the permittivity of gold (left panel) and
chromium (right panel). Circles represent experimental data of Johnson and Christy
for gold [38] and chromium [75]. The permittivities are modeled by a Drude and a
Drude-Lorentz model (solid lines), respectively. Associated material parameters are
listed in Tab. 6.2. In the left panel, the dashed lines result from adjusting the damping
to γsimD,Au = 1.75 · γD,Au.

the source is implemented by a total-�eld/scattered-�eld source (cf. Sec. 4.2.1). Therefore, the TF/SF
contour, indicated by a red box in Fig. 6.2, divides the computational domain into the total-�eld region,
including the scatterer and parts of the membrane on the inside, and the scattered-�eld region on the
outside.
Employing our GPU implementation of the DGTD method, the simulations are performed in fourth

order spatial discretization, i. e., p = 4, which yields su�ciently converged results for all systems
considered in this chapter [14]. The simulation is run for 166 fs which ensures at least 250 optical cycles
for waves of λ = 2000 nm, the longest wavelength (slowest oscillation) under consideration.
The scattering and absorption cross sections are calculated from the �ux through a closed surface

around the scatterer (cf. Sec. 2.3). Therefore, the total �eld on the inside and the scattered �eld on
the outside of the TF/SF contour are processed according to Eq. (2.42) and Eq. (2.43), respectively.
Finally, the extinction cross section is computed by Eq. (2.44). Note that this setup has been checked
for correctness in Sec. 5.3.2.

6.3 Extinction, Scattering, and Absorption Cross Section

In this section, we compare extinction, scattering, and absorption cross sections obtained by theory
and experiment for the four systems de�ned in Sec. 6.2. Husnik et al. [12] developed an experimental
setup which, for the �rst time, determines both the extinction and the scattering cross section of
individual nanostructures simultaneously and quantitatively. Consequently, the absorption cross section
is calculated from extinction and absorption by Eq. (2.44). The experimental setup is based on a spatial
modulation technique combined with a common-path interferometer. Their analysis employs the optical
theorem and the ideal-electric-dipole approximation which limits the approach to structure sizes small
compared to the wavelength of the incident light. For details about the experimental setup and the
analysis, the reader is referred to Ref. [12].
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Figure 6.6: Extinction (blue), scattering (green) and absorption (red) cross-section spectra of scat-
terers in transition from a nanorod to a split-ring resonator (top to bottom) in absolute
units. The left column shows experimental values (circles) and Lorentzian �ts (solid
lines) as guides to the eye (data by courtesy of M.Husnik and M.Wegener). The sim-
ulated spectra are located in the right column. The scale bar of the insets is 100 nm,
and the doublearrow indicates the polarization of the incident electric �eld.
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The extinction, scattering and absorption cross-section spectra of both the experiment and the sim-
ulation of the four systems are summarized Fig. 6.6. In the experiment, only extinction and scattering
cross section data is accessible as marked by circles. The absorption cross section is calculated employ-
ing Eq. (2.44).
As intended, all four systems exhibit approximately the same resonance wavelength for both ex-

periment and simulation. However, a slight, consistent red-shift is observed in the numerical results
compared to the experiment.
The absolute values of the extinction cross section agree for all structures while the scattering and

absorption cross sections slightly di�er, especially for the dipole-like nanorod. In transition from the
nanorod to the split-ring resonator, the absorption cross section decreases slightly in the experiment
and is practically constant in the simulation due to the similar ohmic resistances of all structures. For
both cases, the scattering cross section drops substantially in accordance with the anticipated smaller
dipole moment of the SRR compared to the nanorod. In a consistent manner throughout all structures,
the measured absorption is slightly larger than the calculated one while the simulated scattering cross
section is larger than the measured one.
All tendencies discussed in the introduction of this chapter could be con�rmed by overall good

agreement between experiment and simulation. Nevertheless, deviations of experiment and simulation
as well as the in�uence of material and geometry parameters are addressed in Sec. 6.5.

6.4 Tuning of the Scattering to Absorption Cross Section Ratio

Despite the shape of the nano-antenna, the ratio of scattering and absorption cross section also depends
on the ohmic loss of the structure. Focusing on the nanorod, it is this dependence that we want to
investigate in this section by manipulation of the nano-antenna's ohmic resistance. Experimentally,
the ohmic resistance of the nanorod is manipulated by introduction of chromium, which is known to
possess a much higher damping than gold. Consequently, the scattering to absorption cross section
ratio is expected to decrease.
In both the experiment and the simulation the nanorod is structured as a layered system of 10 nm

thickness of chromium underneath 25 nm of gold. A nanorod of 35 nm of gold is used for comparison.
The remaining parameters were deduced from SEM images of the experimental structures according
to the model in Sec. 6.1. Tab. 6.1 summarizes the geometry parameters, and, visualizing the material
distribution, Fig. 6.4 depicts tetrahedral meshes of both nanorods.
The Drude model of gold, used in the previous section, is reemployed. Chromium is described by

a Drude-Lorentz model, �tted in the region 800 nm - 2000 nm to experimental data from Ref. [75]
employing the method of Sec. 2.2.4. The dispersion relation of both metals is depicted in Fig. 6.5, and
the related material model parameters are listed in Tab. 6.2.
The cross section spectra of extinction, scattering and absorption for both experiment and simulation

are depicted in Fig. 6.7. The resonance positions of experiment and simulation match well. The
chromium layer causes a strong red-shift of the resonance wavelength due to the almost positive real
part of the permittivity <

{
εCr
}
(cf. Fig. 6.5). As expected, the ratio of scattering to absorption

decreases substantially due to the increase of the ohmic resistance. Interestingly, it is the scattering
cross section that drops signi�cantly while the absorption remains practically constant in absolute
value. As in the previous section, the simulation shows slightly larger scattering and smaller absorption
compared to the experiment. The anticipated trends, however, are con�rmed.
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Figure 6.7: Extinction (blue), scattering (green), and absorption (red) cross-section spectra of
nanorods of 35 nm gold (top row) and layered 25 nm gold on 10 nm chromium (bot-
tom row) in absolute units. The left column shows experimental values (circles)
and Lorentzian �ts (solid lines) as guides to the eye (by courtesy of M.Husnik and
M.Wegener). Simulated spectra are located in the right column. The scale bar is
100 nm, and the doublearrow indicates the polarization of the incident electric �eld.
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6 Optical Characterization of Metallic Nano-Antennae

6.5 Errors and Parameter Tendencies

At last, sources of errors and the in�uence of the parameters involved in the previously presented
simulations are addressed. We distinguish between systematic errors caused by the employed methods,
e. g., the spatial discretization by the DGmethod, and problem-speci�c errors induced by, e. g., geometry
and material parameters.
The 14-stage 4th-order LSRK time-integration method ensures that the error is dominated by the

spatial discretization which, for polynomial order p = 4 (cf. Sec. 6.2), yields su�ciently converged
results, as reported in Ref. [14]. In addition, we check for correct functionality of the TF/SF source for
each of the presented results. Therefore, the metallic elements of a system are assigned ε = 1 which
resembles the source's reference behavior. Ideally, the observed extinction, scattering, and absorption
cross sections are identical to zero, as, in essence, the source's reference system is simulated. Due to
the limited precision of numeric simulation, non-zero cross sections several orders of magnitude below
the reported absolute values of the previous sections are observed which, in turn, indicates correct
functionality of the source.
Deviations between simulation and experiment are consequently caused by the description of the

system itself. The abstract representation of the system's geometry by a tetrahedral mesh introduces
deviations. For example, the roughness of an experimental sample is not modeled as the surfaces of the
scatterers are described by simple objects such as cylinders, spheres, and planes. The lateral extent
of the scatterer is well determined by SEM images of nm-precision. In contrast, the thickness of a
structure is estimated rather than measured as fabrication rates are used to determine the sample's
thickness.
An extensive parameter study on gold split-ring resonators, including the in�uence of the thickness,

is presented in Ref. [14]. Therein, in the range of 20 − 50 nm, increasing thickness causes a blue-shift
of the resonance wavelength, a decrease of absorption, and an increase of scattering while extinction
remains practically constant. This behavior was consistently reproduced for both, the SRR and the
nanorod. However, increased thickness would compensate only for the red-shift between theory and
experiment and worsen scattering, absorption, and extinction values.
Another source of uncertainty arises from the material parameters of gold. Due to the surface

roughness of the experimental sample, which is accounted for by an arti�cially increased damping
parameter γsimD,Au, a realistic material model is di�cult to state. By Eq. (2.24), increasing γD results
in a practically constant <{ε(ω)} and strongly increasing ={ε(ω)} employing the material parameters
of Tab. 6.2. For both, the nanorod and the SRR, this results in a decrease of scattering and an
increase of absorption while leaving the resonance wavelength practically unchanged. Based on these
tendencies, a combination of increased thickness and γD approaches the experimental values in all
aspects, i. e., resonance wavelength, scattering, absorption, and extinction cross sections. However,
it should be emphasized that we did not �tune� the geometry and material parameters to arti�cially
match experiment and theory.
At last, the uncertainties of the chromium model are addressed. The experimental values of εCr in

the near-infrared of Johnson and Christy [75] and Palik [40] di�er considerably. The in�uence of the
thickness of the chromium layer while retaining the total thickness of the nanorod was investigated
using the values of Johnson and Christy. Increasing the ratio of chromium results in a red-shift of the
resonance wavelength due to the �quasi dielectric� behavior of chromium, i. e., <{εCr

(
λ
)
} � <{εAu

(
λ
)
}.

Furthermore, both the scattering and the absorption cross section decrease slightly.
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7 Chapter 7

Electron Energy Loss Spectroscopy of
Split-Ring Resonators

Electron energy loss spectroscopy is a characterization method for nanostructures which gained con-
siderable attention during the last decade [2, 76]. The method is based on the analysis of the en-
ergy distribution of initially monoenergetic electrons after their interaction with a specimen. A vari-
ety of physical systems such as bulk, �lms, nanoparticles and nanostructures have been investigated,
see Refs. [71, 76�79] and references therein. The energy loss su�ered by an electron ranges from sub-eV
to keV giving access to a large number of physical phenomena, e. g., inter and intra band transitions,
plasmon excitations, inner shell ionizations and �erenkov radiation [80].
In this thesis we are interested in the properties of plasmonic structures with typical energy loss

below 10 eV probed by �fast� electrons with kinetic energy larger than 100 keV, often referred to as
valence EELS. In practice, these analyses are conducted using scanning transmission electron micro-
scopes (STEM), where the sample is scanned by the electron beam and the electrons' energy distribution
after interaction with the specimen is analyzed. A large number of electrons contributes to the zero
loss peak (ZLP), i. e., the initial energy of the electrons is distributed around a mean value. Scattered
electrons whose interaction energy is smaller than the width of the ZLP cannot be detected as is the
case for, e. g., phonon interaction. The ZLP consequently de�nes the minimum detectable interaction
energy for EELS and is continuously minimized to increase the sensitivity of the method reaching
0.3 eV in the best STEM-EELS setups [81]. In contrast to the experiment, the excitation employed in
the numerical simulation is perfectly monoenergetic and, hence, the energetic resolution of the EELS
analysis is not limited by the ZLP.
Inelastically scattered electrons contain information about the structure of the specimen �encoded�

in their energy loss su�ered from the interaction with the specimen, i. e., each electron loses an amount
of kinetic energy speci�c to the interaction process. In the experiment, the energy loss is analyzed using
a variety of energy �lters. For technical details about the setup of the experiment the reader is referred
to Refs. [76, 80]. In order to study fundamental interaction processes using EELS, multiple scattering
processes must be avoided. Consequently, the specimen is limited in thickness by the mean free path
which is about 50 − 150 nm for 100 keV electrons [80]. Furthermore, extremely thin membranes are
employed to minimize the in�uence of the supporting structure.
An outstanding characteristic of STEM-EELS, rendering it a suitable method for the investigation

of nanostructures, is the sub-nm spatial [78] and sub-eV energetic resolution with reported sensitivity
below 0.2 eV [25, 71, 76, 79]. In addition, due to the point-like excitation, optically bright and dark
modes can be e�ciently excited [82, 83].
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7 Electron Energy Loss Spectroscopy of Split-Ring Resonators

Several nanostructures of di�erent shapes consisting of various materials have been investigated, e. g.,
nanotriangles of silver [78] and gold [84], silver nanorods [85] as well as split-ring resonators of silver [86]
and gold [25] with resonances in the near-infrared to visible regime. Surprisingly, only few structured
systems composed of more than one metaatom have been considered, e. g., dimers of silver spheres,
both, experimentally [82] and theoretically [24], and formations of gold [79]. In the context of this
thesis, individual and coupled systems of gold split-ring resonators were investigated numerically and
compared to experimental results [13].
The fundamentals of the EELS analysis are presented in Sec. 7.1 including the calculation of the loss

probability � the central quantity in an EELS experiment representing the loss distribution su�ered by
an electron � from a time-domain simulation and the simulation of a relativistic electron in the context
of the DGTD method. The single split-ring resonator located on a 30 nm silicon nitride membrane is
analyzed in great detail using EELS in Sec. 7.2. After a comparison of the EELS analysis to a variety
of other spectroscopic methods, the remainder of the thesis is dedicated to the analysis of systems of
split-ring resonators composed of two and four metaatoms in Sec. 7.3.

7.1 Fundamentals of the Electron Energy Loss Spectroscopy Analysis

In this section, the theoretical fundamentals required for the EELS analysis using the DGTD method
are presented. As alluded to in the introduction of this chapter, EELS is based on the analysis of the
energy distribution of initially monoenergetic electrons after their interaction with a specimen. On a
theoretical level, only a single electron is considered for the analysis. The theoretical analog to the
energy distribution is the loss probability P which describes the probability for an electron to lose
a speci�c amount of energy ∆E with respect to its initial (kinetic) energy. The loss probability is
subsequently associated with an interaction process, e. g., the excitation of a (surface) plasmon mode.
The calculation of the loss probability by a time-domain numerical simulation is described in Sec. 7.1.1.
In contrast to the experiment, a single relativistic electron is required as a source of radiation to

perform the analysis presented in Sec. 7.1.1. In order to include the relativistic electron in a DGTD
simulation, its space- and time-dependent electric �eld must be known. Hence, details about the
excitation in the context of the DGTD method are addressed in Sec. 7.1.2.

7.1.1 Calculation of the Loss Probability in the Time-Domain

We follow the classical dielectric formalism [71] to describe the energy loss su�ered by a single fast
electron moving at constant velocity ~v along the straight line trajectory ~re(t) = ~r0 + ~vt. This implies
that the �elds induced by the electron do not in�uence the momentum of the electron which is a
reasonable assumption for fast electrons and is known as the no-recoil approximation (NRA) [71]. The
energy loss is related to the force exerted by the induced electric �eld acting back on the electron by

∆E = e

∞∫
−∞

dt~v · ~Eind
(
~re(t) , t

)
, (7.1)

where ~Eind
(
~r, t
)
is the electric �eld of the induced plasmonic oscillation and e is the elementary charge.

Alternatively, the energy loss ∆E is expressed by

∆E =

∞∫
0

dω ~ωP (ω) , (7.2)
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7.2 The Individual Split-Ring Resonator

where the loss probability P (ω) accounts for the probability of losing the energy ~ω during interaction.
Replacing ~Eind

(
~r, t
)
by its Fourier transform in Eq. (7.1) and exploiting ~Eind

(
~r, ω

)
= −~Eind

(
~r, ω

)∗, the
loss probability expressed in terms of the induced �eld reads

P (ω) =
e

π~ω

∞∫
−∞

dt<
[
e−iωt~v · ~Eind

(
~re(t) , ω

)]
, (7.3)

where < [.] denotes the real part. In order to examine the loss probability, a Fourier transform of
~Eind

(
~r, t
)
must be calculated for every point along the trajectory ~re(t) , t ∈

[
−∞,∞

]
. Eq. (7.3) is

the central equation of the EELS analysis as it provides a straightforward relation between the loss
probability and the induced electric �eld which is directly accessible everywhere in the computational
domain when exclusively employing SF sources (cf. Sec. 4.2.2). When employing total-�eld/scattered-
�eld sources as is the case in Ref. [24], the induced �eld is directly accessible in the scattered-�eld
region only.

7.1.2 Excitation of a Relativistic Electron in DGTD

The electromagnetic �eld of a fast electron can be regarded as an evanescent source of radiation �travel-
ing� through space. The associated dispersion relation lies outside the light cone to which propagating
optical �elds, e. g., plane waves in homogeneous dielectric media, are limited. As a consequence, surface
plasmons can be directly excited by fast electrons [71].
The relativistic electron is modeled by a scattered-�eld source, introduced in Sec. 4.2.2, which exploits

several advantages over the originally proposed total-�eld/scattered-�eld technique used in Ref. [24].
First, the mesh does not need to be adapted in order to raster-scan a nanostructure. Second, using
a total-�eld/scattered-�eld source introduces a conceptual error when scanning the nanostructure.
The �eld of the electron does not induce electromagnetic �elds in the scattered-�eld region which
is the fundamental property of the total-�eld/scattered-�eld source. This becomes an issue when the
scattered-�eld region intersects with the metal structure where a �eld is supposed to be excited on the
entire structure and not exclusively in the total-�eld region.
The formalism of the scattered-�eld source requires the space- and time-dependent electric and

magnetic �eld ~E
(
~r, t
)
and ~H

(
~r, t
)
, respectively. An electron modeled by a point charge moving at

constant velocity ~v along the trajectory ~re(t) = ~r0 + ~vt is described by the charge density ρ
(
~r, t
)

=

eδ
(
~r−~re(t)

)
and the resulting current density ~j

(
~r, t
)

= ~vρ
(
~r, t
)
[24]. The electric and magnetic �elds

are determined from the Liénard-Wiechert potentials [30] and read

~E
(
~r, t
)

=
γ~d
(
~r, t
)(∣∣∣~d(~r, t)∣∣∣2 +

(
γc
)−2

(
~d
(
~r, t
)
· ~v
)2
) , ~H

(
~r, t
)

=
~v

c
× ~E

(
~r, t
)
, (7.4)

where ~d
(
~r, t
)

=~re(t)−~r and γ =
(

1−
(
v/c
)2)−1/2

denotes the Lorentz factor.

7.2 The Individual Split-Ring Resonator

In this section, we perform an electron energy loss spectroscopy analysis of a single gold split-ring
resonator and compare the results to a variety of other characterization methods. As alluded to in the
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7 Electron Energy Loss Spectroscopy of Split-Ring Resonators

introduction of this chapter, single split-ring resonators fabricated from silver [86] and gold [25] have
been analyzed in great detail including parameter studies on size-dependence. The fundamental char-
acteristics of the system and the analysis of the individual split-ring resonator are, however, the basis
of the investigation of coupled split-ring resonator systems in Sec. 7.3 where two and four individual
split-ring resonators form the physical system. Therefore, we employ this section to familiarize the
reader with the various setups and analysis methods applied in the remainder of the thesis, organized
as follows:
In Sec. 7.2.1, the setup of the EELS analysis including details about the geometry of the system,

applied materials, and the numerical setup is presented and followed by a veri�cation of the applied
settings in Sec. 7.2.2. The results of the characterization � EELS spectra, deduced resonances and
EELS maps � are presented in Sec. 7.2.3. The results of the EELS analysis and other characterization
methods are compared in the subsequent sections. At �rst, harmonic inversion is employed to analyze
the time-domain electric �eld in Sec. 7.2.4. Next, the mode pro�le of the electronic eigenmodes is
calculated and compared to the EELS maps in Sec. 7.2.5. Finally, the extinction cross section is
calculated to verify the declaration of optical bright and dark modes and cross check the resonance
energies by EELS and the harmonic inversion in Sec. 7.2.6.

7.2.1 Simulation Setup

We investigate a single split-ring resonator de�ned by w = 195 nm, wg = 107 nm, h = 186 nm, hg =
137 nm, r = 18 nm (cf. Fig. 6.1) and thickness 40 nm located on a membrane of 30 nm thickness. A
schematic overview of the system setup (not drawn to scale) is depicted in Fig. 7.1. The silicon nitride
membrane is modeled by an isotropic, non-dispersive material of ε = 4. Split-ring resonator and
membrane are �embedded� in air, i. e., ε = 1. The computational domain is terminated by perfectly
matched layers of 400 nm width and Silver-Müller boundary conditions mimicking an open space system
by absorbing outgoing radiation. As in the previous chapter, the tetrahedral mesh is created using
netgen and consists of 35k elements. The section of the tetrahedral mesh modeling the split-ring
resonator is depicted in Fig. 7.2.
The source of radiation is a relativistic electron modeled by a scattered-�eld source as described

in Sec. 7.1.2. Due to the NRA, the electron's trajectory is known a priori and we are free to de�ne
its propagation direction and velocity. For the remainder of the thesis, we choose ~v = v0 · êz, v0 =
0.6953c, where c is the vacuum speed of light, i. e., the electron propagates parallel to the z-Axis. This
corresponds to a kinetic energy of 200 keV.
As in the experiment, we raster-scan the sample by modi�cation of the electron's initial coordinates

x0 and y0. Note, however, that a single simulation provides the loss probability associated with a single
pair (x0, y0). Therefore, in general a large number of independent simulations must be performed to
obtain a full scan. Due to the symmetry of the physical system with respect to the yz-plane, only the
domain in positive x-direction must be scanned which reduces the number of calculations by a factor
of 2. The loss probability in the halfspace x < 0 is determined by

P
(
−x, y;ω

)
= P

(
x, y;ω

)
. (7.5)

The total amount of simulations depends on the area of interest and the desired resolution. In
case of the single split-ring resonator, a region of 220 nm×440 nm resolved in a 10 nm grid requires
approximately 1000 simulations. Employing the symmetry property Eq. (7.5), the loss probability in
an area of 440 nm×440 nm is obtained. The system is simulated in third order spatial discretization for
133 fs.
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7.2 The Individual Split-Ring Resonator

Figure 7.1: Sketch of the EELS simulation setup. The scatterers (gold), either the single split-ring
resonator or con�gurations of split-ring resonators (Sec. 7.3), are located on a silicon
nitride membrane (green). Both, scatterers and membrane are embedded in air (cyan).
The computational domain is terminated by PMLs in all directions (white). The blue
region models colocated membrane and PML properties. The plane of symmetry at
x = 0 (gray) is explicitly modeled for the calculation of the harmonic inversion and
the mode pro�le only.

Figure 7.2: Section of tetrahedral meshes modeling the single split-ring resonator (gold) on a sil-
icon nitride membrane (green) excluding and including the symmetry plane (gray) in
the left and right panel, respectively. The �rst is employed for the EELS analyses
while the latter is used for the calculation of the mode pro�le and harmonic inversion.
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7 Electron Energy Loss Spectroscopy of Split-Ring Resonators

Gold

ε∞ 6.21

ωD 13.4× 1015 Hz

γD 1.04× 1014 Hz

∆εL 1.00

ωL 4.02× 1015 Hz

γL 5.81× 1014 Hz

Table 7.1: Optimized Drude-Lorentz parameters for gold in the range 500− 2000nm. The associ-
ated permittivity is depicted in Fig. 7.3.

Due to the large number of simulations, we employ the GPU implementation of the DGTD method
described in Chap. 5. Consequently, the calculation is performed in single precision and we must verify
that the employed �oating-point precision yields su�ciently accurate results. Therefore, we recalculate
several simulations using a regular CPU implementation with double precision. A comparison of both
�oating-point precision calculations demonstrates that the analysis presented in the following sections
of this thesis su�ers neither qualitative nor quantitative di�erences.
In order to calculate the loss probability according to Eq. (7.3), it is su�cient to record the z-

component of the induced �eld Eind
z

(
~re(t) , t

)
as the electron propagates parallel to the z-axis. In a

postprocessing step, we obtain Eind
z

(
~re(t) , ω

)
by a fast Fourier transform of the time-domain �eld.

An important detail is the material model which is used to describe the dispersive properties of gold.
Here, a Drude-Lorentz model is employed whose free parameters were optimized to the experimental
data of Johnson and Christy [38]. The parameters optimized in the range of 500− 2000 nm by means
of the procedure described in Sec. 2.2.4 are summarized in Tab. 7.1. The resulting dispersion relation
along with the experimental data is depicted in Fig. 7.3.

7.2.2 Validation of Applied Analysis and Simulation Setup

The principle setup of the EELS simulation was already validated in Sec. 5.3.3, when we compared
analytically and numerically determined electron energy-loss spectra. However, we must ensure that
the slightly modi�ed setup including the split-ring resonator works correctly.
Thus, before continuing with the electron energy loss spectroscopy analysis, we take a closer look at

the recorded time-domain data in order to validate the simulation setup and the excitation of plasmons
by the electron source. Fig. 7.4 depicts the modulus of the electric �eld in the time-domain. In this
setup, the electron penetrates the right arm of the SRR as indicated by the inset of Fig. 7.4. The SRR
and the membrane span zSRR ∈

[
0, 0.04

]
and zmem ∈

[
−0.030, 0

]
, respectively.

Strong �eld oscillations are observed once the electron is in proximity of the SRR. These correspond
to plasmonic oscillations of the SRR excited by the passing electron. Surface plasmons are identi�ed
on both sides of the SRR. The �eld oscillations decay on several di�erent characteristic time-scales
associated with the life-time of the plasmonic oscillations.
In order to calculate the loss probability Eq. (7.3), we perform a Fourier transform of the time-

dependent electric �eld to obtain the spectrum along the trajectory Eind
z

(
~re(t) , ω

)
. This corresponds

to an integration along a horizontal line in Fig. 7.4 whereby we are bound to the limited simulated
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Figure 7.3: Permittivity of gold in the range of 500 − 2000nm. The plots show the real (left
panel) and imaginary (right panel) part of the permittivity ε for gold based on the
optimized parameters (solid lines) in Tab. 7.1. Crosses indicate experimental data
taken from Ref. [38]. Note the logarithmic scale due to the large change in permittivity.

time. In order to guarantee a su�ciently accurate approximation of the Fourier integral, the dominant
contributions of Eind

z

(
~re(t) , t

)
must be provided by the simulation. This condition is ful�lled as the

�eld decays by several orders of magnitude during the simulated time (cf. Fig. 7.4).
Due to the limited computational domain, the integration along the trajectory in Eq. (7.3) must

be truncated as well. As the modulus of the �eld and, hence, of the spectrum is several orders of
magnitude smaller near the limits of the recorded trajectory compared to the dominant contributions
near the SRR, the integration is accurately approximated.

7.2.3 Characterization by EELS Spectra and Maps

In this section, we characterize the single split-ring resonator by the loss probability and visualize the
results by means of EELS spectra and EELS maps. An energy loss of only few eV is attributed to
plasmonic resonances [80]. Therefore, we analyze the loss probability in the range of 0.4− 2.5 eV.
Fig. 7.5 shows EELS spectra, i. e., the loss probability as a function of the energy loss ∆E, for three

electron trajectories as indicated by the inset. Several resonance energies can be identi�ed by the
Lorentzian peaks of the individual spectra in the range 0.4 − 1.9 eV. Above that range, several more
resonances can be anticipated but are no longer distinguishable due to their spectral overlap. The
�rst four resonance energies deduced from the EELS spectra, indicated by the gray dashed guides in
Fig. 7.5, are listed in Tab. 7.3 on page 97.
In the spectral region considered here, the features of the EELS spectrum are associated with the

electromagnetic eigenmodes of the SRR [78] which are dominated by the collective oscillations of the
free electrons, also referred to as plasmons. Both surface plasmons, i. e., oscillations bound to the
surface of the structure, and bulk plasmons, i. e., collective oscillations in the entire volume of the
structure, contribute to the spectrum. Plasmons have a limited life-time associated to the width of a
resonance. In the case of the single SRR, plasmons of di�erent life-times can be identi�ed in Fig. 7.5.
The spatial dependence of the loss probability is trivially apparent upon comparison of the three

EELS spectra. The fundamental resonance at ∆E = 0.69 eV, for example, is contained only in the
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Figure 7.4: Pseudo-color plot of
∣∣∣Eind

z

(
z, t
)∣∣∣ in dependence of the (normalized) simulated time

and the coordinate z for (x, y) as indicated by the red dot in the inset. The black
line indicates the position of the electron moving at ~v = 0.6953c · êz. The inset also
visualizes the trajectory of the electron in the xy-plane. The bottom plane of the SRR
and the top plane of the membrane are both located at z = 0.
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Figure 7.5: EELS spectra of the single split-ring resonator for distinct electron trajectories centered
above the base (blue), above the right arm (green) and right of the SRR (red). The
inset visualizes the trajectory of the electron in the xy-plane.
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Figure 7.6: EELS map (top row) and �eld distribution of the Ez-component (bottom row) for the
�rst four resonance energies of the EELS spectrum calculated for the single split-ring
resonator. The white contour represents the boundary of the SRR. The resonance
energies correspond to the dashed guides in Fig. 7.5. The colorbar is individually
normalized for each image, i. e., colors in di�erent images indicate di�erent absolute
values.

spectra taken on top (green) and right (red) of the SRR's right arm. This is clearly attributed to
the modal pro�le of the plasmonic structure. In fact, the experimentally and numerically accessible
spatial dependence is exactly what renders EELS an excellent tool for the characterization of plasmonic
systems.
The spatial dependence of the loss probability for a constant energy loss, i. e., P

(
x, y;ω

)
, where

x, y represent the electron's initial coordinates, is visualized in EELS maps. The EELS maps for the
�rst four resonance energies, indicated by gray dashed guides in Fig. 7.5 and listed in Tab. 7.3, are
summarized in the top row of Fig. 7.6. Note that the scale of the colorbar is normalized for each image
independently, i. e., identical colors indicate di�erent absolute values in di�erent maps throughout the
remainder of the thesis.
The fundamental resonance at ∆E = 0.69 eV shows maximum loss probability at the arms and nearly

zero at the center of the base, i. e., it is most likely for the electron to lose ∆E = 0.69 eV at the tip of
the SRR's arms. Clearly, a systematic evolution of the probability pro�le is observed as one �hot spot�
and one node is added per next higher resonance. The map of the second resonance at ∆E = 1.19 eV
comprises maximum loss probability at the tip of the arms and the base of the SRR. Maximum and
moderate loss probability of the third resonance at ∆E = 1.48 eV is observed at the lower and upper
corners of the SRR, respectively. At ∆E = 1.82 eV three hot spots of loss probability are found in
the center of the arms and the base. With increasing resonance order, the spectral distance between
resonances decreases and the extrema of the loss probability are located closer to each other which is
in agreement with Refs. [25, 86].
The interpretation of EELS maps is a somewhat delicate issue and a matter of ongoing debate [77, 87].

In 2007, Nelayah et al. [78] suggested that the EELS signal maps the eigenmodes' �eld distribution
which is in accordance with the �ndings of Abajo et al. [77, 88], who demonstrate that EELS directly
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7 Electron Energy Loss Spectroscopy of Split-Ring Resonators

renders the photonic local density of states (LDOS). Based on these results, the EELS signal was used to
identify plasmonic modes and associated charge (density) distributions in split-ring resonators [25, 86].
However, recently Hohenester et al. [87] showed that there is no direct link between EELS and LDOS,
stating that often both quantities qualitatively agree. In the following, we want to gain insight into
the interpretation and verify the acquired data by employing a series of alternative characterization
methods.

7.2.4 Harmonic Inversion of the Electric Field

In order to verify the resonance energies previously determined from the EELS spectra, we employ
harminv [89, 90] to analyze the time-dependent electric �eld recorded at speci�c points. harminv

is a free software which employs harmonic inversion to analyze a time-domain signal by assuming
the signal to consist of a �nite number of decaying sinusoids and determines the frequencies, decay
constants, amplitudes, and phases thereof. In addition, the symmetry with respect to the yz-plane of
the decaying sinusoids can be determined. Therefore, odd or even symmetry of the excited modes is
explicitly enforced by employing PEC or PMC boundary conditions on the plane x = 0, respectively.
This requires slight modi�cations of the geometrical and numerical setup.

Simulation Setup

The general setup of the system is not altered compared to Sec. 7.2.1, i. e., the dimensions of the SRR,
the membrane, the PMLs as well as the gold material model are identical to the setup of the EELS
analysis described in Sec. 7.2.1. In order to take advantage of the geometrical symmetry with respect to
the yz-plane, an arti�cial plane, referred to as the symmetry plane, is introduced at x = 0 as visualized
in Fig. 7.1. Note that the SRR is centered with respect to the x-axis. Either PEC or PMC boundary
conditions are assigned to the symmetry plane to enforce odd or even modes. As a result, only one half
of the system must be simulated as the other half must obey the applied symmetry, i. e., we set

~E
(
x, y, z

)
= −~E

(
−x, y, z

)
for PEC,

~E
(
x, y, z

)
= ~E

(
−x, y, z

)
for PMC.

(7.6)

Consequently, one simulation must be performed for each boundary condition. The tetrahedral mesh
consists of 23k elements. The section of the mesh modeling the split-ring resonator and the plane of
symmetry is depicted in Fig. 7.2. With exception of the symmetry plane at x = 0, the computational
domain is limited by PMLs and Silver-Müller boundary conditions as before.
In contrast to the EELS simulations, the sample is not scanned, but a single electron trajectory is

used to simultaneously excite as many modes as possible. Therefore, the trajectory of the source is
determined from the EELS maps where a location is sought that shows high loss probability for all
resonances. We choose a trajectory parallel to the z-axis passing the SRR at the tip of its right arm as
indicated by the green dot in the inset of Fig. 7.5.
The time-dependent electric �eld is recorded at three points located 20 nm above the SRR as indicated

in the inset of Fig. 7.5. In this region, a strong contribution to the EELS signal can be expected [87].
The simulation is performed in sixth order spatial discretization.

Analysis of the Electric Field by Harmonic Inversion

For all three points, each component of the electric �eld is analyzed resulting in nine independent sets
of resonance energy ~ω, quality factor Q and associated boundary BC. Robustness of the analysis is
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7.2 The Individual Split-Ring Resonator

# 1 2 3 4
~ω
[
eV
]

0.69 1.19 1.48 1.82
Q 11 4 9 13
BC PEC PMC PEC PMC

Table 7.2: Resonance energy, quality factor and associated boundary condition for the �rst four
resonances of the single split-ring resonator obtained by employing harminv.

guaranteed by accepting only those sets which reproduce under variation of the input parameters given
to harminv. In addition, a resonance must be found at least three times in all sets within a tolerance
of 0.01 eV in order to be accounted.
The resonance energies, quality factors and associated boundary conditions obtained by this approach

are listed in Tab. 7.2. A direct comparison of the resonance energies to the results of other charac-
terization methods is provided in Tab. 7.3 on page 97. The agreement with the resonance energies
determined from the EELS spectra is very good. We will make use of the determined mode symmetry
in the following section where we compare the modes of the electric �eld to the EELS maps.

7.2.5 Comparing EELS Maps to the Modes of the Electric Field

We want to gain insight into the interpretation of EELS maps by comparing them to the mode pro�le
of the �eld. Due to the linearity of the system, we express the time-dependent �eld as a sum over the
modes of the system by

~E
(
~r, t
)

=
∑
i

~E
(
~r, ωi

)
e−iωit, (7.7)

where ~E
(
~r, ωi

)
is the mode pro�le of the �eld for the eigenfrequency ωi. We calculate the mode pro�le

Ez
(
~r, ωi

)
for the resonance frequencies obtained by the EELS analysis (cf. Tab. 7.3) via an on-the-

�y Fourier transform [15] of the electric �eld in a plane 20 nm above the SRR reusing the setup of
Sec. 7.2.4. In fact, we deduce both, the time-dependent electric �eld and the mode pro�le, from the
same simulation.
The EELS analysis of Sec. 7.2.3 does not provide phase information of the mode [77, 86] which is

required to construct the pro�le in the negative halfspace x < 0 using Eq. (7.6). Consequently, the
phase relation must be obtained by another approach. Employing the symmetry of the system, the
harmonic inversion in Sec. 7.2.4 delivers the boundary condition (cf. Tab. 7.2) and, hence, the symmetry
associated with each mode.
The magnitude of the z-component of the electric �eld |Ez

(
x, y;ωi

)
| calculated at the resonance

frequencies ωi previously obtained from the EELS simulations is depicted in the bottom row of Fig. 7.6.
We observe a similar pattern in the �eld distribution of the modes compared to the EELS maps in the
top row. Due to the symmetry of the system, we obtain alternating odd and even modes.
The �rst order mode, an odd mode, has one node and two extrema at the tips. The second mode,

an even mode, contains two nodes at the center of the arms and three extrema located at the tip of
the arms and in the base. For each next higher order one node and one extremum is added to the
mode pro�le. Therefore, the third order mode at ~ω = 1.48 eV has extrema at all corners of the SRR
with alternating orientation along the SRR. The fourth order mode at ~ω = 1.82 eV comprises �ve
extrema and four nodes. In accordance with Refs. [25, 86], the eigenmodes are standing waves along
the split-ring resonator.
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Figure 7.7: Extinction cross-section spectra and EELS spectra for the single split-ring resonator.
The extinction cross sections were obtained using horizontally (solid black) and verti-
cally polarized (dashed black) plane waves, respectively. The EELS spectra are identical
to those in Fig. 7.5 and serve for comparison.

The EELS maps represent the (squared) magnitude of the electromagnetic eigenmodes projected
along the trajectory, here the z-axis, as suggested in Refs. [78, 86]. However, minor deviations are
observed at the tips of the SRR's arms for the third and fourth resonance in accordance with Ref. [86].

7.2.6 Comparing EELS and Extinction Cross-Section Spectra

The electronic system of a plasmonic structure can support optically bright and dark modes. Modes
that can be excited using optical �elds, e. g., plane waves, are stated optically bright. In contrast,
optical dark modes cannot be (e�ciently) excited using optical �elds. The relativistic electron excites
both optical bright and dark modes. Consequently, both of them contribute to the EELS spectrum. As
a result, resonances can spectrally overlap, and the identi�cation of their resonance energies might be
hindered. Employing planes waves for excitation instead, only bright modes are excited (and observed)
which allows to distinguish between optical bright and dark modes.
Whether a mode is optically bright or dark depends on the symmetry of the mode and the excitation

�eld, and can be determined when the mode pro�le is available. In case of a single SRR, we expect all
odd and even modes to be optically bright and excitable by horizontally and vertically polarized plane
waves, respectively. Therefore, we calculate the extinction cross section for the single SRR using the
setup of Chap. 6.
The resulting extinction cross-section spectra obtained for horizontal and vertical polarization are

compared to the EELS spectra of Sec. 7.2.3 in Fig. 7.7. Note that, in contrast to Chap. 6, the extinction
cross section is plotted as a function of energy. The resonance energies determined from the extinction
cross section are listed in Tab. 7.3.
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7.3 Coupled Split-Ring Resonator Systems

Single SRR # 1 2 3 4
EELS ∆E

[
eV
]

0.69 1.19 1.48 1.82
harminv ~ω

[
eV
]

0.69 1.19 1.48 1.82
extinction ~ω

[
eV
]

0.69 1.20 1.48 1.82

Table 7.3: Resonance energies of the single split-ring resonator. The values for EELS were ob-
tained from the EELS spectra depicted in Fig. 7.5. The values for harminv were
calculated as described in Sec. 7.2.4. The resonance energies of the extinction cross
section were determined from Fig. 7.7.

The �rst and third order resonance are excited by a horizontally polarized plane wave. The second
order resonance is obtained employing vertical polarization. The fourth order resonance is hard to
identify due to a very small extinction cross section. All resonance energies of the extinction cross
section match their counterparts in the EELS spectrum. Since all dominant resonances in the EELS
spectrum were contained in the extinction cross-section spectrum as well, no dark modes are observed
for the single SRR. In the following section on coupled split-ring resonator systems, we will use the
extinction cross section to discriminate between optical bright and dark modes.

7.2.7 Summary

We analyzed a single gold split-ring resonator on a silicon nitride membrane using EELS and compared
the results to other characterization methods. The resonance energies obtained by EELS, harmonic
inversion of the electric �eld, and the extinction cross section calculation are summarized in Tab. 7.3.
Very good agreement in the resonance energy is achieved, rendering EELS reliable and e�cient.
In comparison to the �eld distribution of the plasmonic eigenmodes, we con�rmed the �ndings

of Refs. [25, 86] and relate the EELS signal to the (squared) magnitude of the mode pro�le and the
charge (density) distribution. The eigenmodes are found to be standing waves along the structure.
Finally, we compared the EELS spectra of several trajectories to the extinction cross-section spectra

employing horizontally and vertically polarized plane waves. All resonances were determined to be
optically bright as was expected for an individual structure.

7.3 Coupled Split-Ring Resonator Systems

Based on the interference of plasmons, metallic nanostructures composed of several metaatoms may
yield signi�cant �eld enhancement giving rise to nonlinear interaction processes. The extinction cross
section can be enhanced, too, which is applied in, e. g., surface enhanced Raman spectroscopy. Arrays of
split-ring resonators are employed in the �eld of metamaterials, i. e., materials with arti�cial properties
not occurring in nature which may exhibit, e. g., negative refraction.
The analysis of systems composed of several identical metaatoms was performed for dimers of gold [24]

and silver spheres [82] as well as nanorods [83] and demonstrated the formation of dark plasmons.
The formation of optical dark modes is well understood in the picture of the plasmon hybridization
model [91, 92] as demonstrated for a dimer of spheres by Nordlander et al. [93].
The plasmon hybridization model is considered an electromagnetic analog of molecular orbital theory

which describes the plasmon response of complex nanostructures of arbitrary shape [91]. The plasmons
of the individual structures composing a system interact and form new eigenstates whose associated
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Figure 7.8: Sketch and sections of tetrahedral meshes of the 1×2 con�guration of split-ring res-
onators. The split-ring resonators are separated by d = 35nm and centered around
x = 0 (left panel). All other parameters are equivalent to the single SRR case
(cf. Sec. 7.2.1 and Fig. 6.1). The central and right panel visualize sections of the tetra-
hedral meshes modeling coupled SRRs (gold) on a silicon nitride membrane (green)
excluding and including the symmetry plane (gray), respectively.

eigenmodes are combinations of the eigenmodes of the metaatom obeying characteristic phase relations.
Due to the coupling of the plasmons, each resonance of the metaatom is split into energetically lower and
higher resonances whereby the number of split resonances is directly linked to the number of interacting
plasmons. In case of a dimer of metallic spheres, two contributing plasmons lead to a splitting into
one energetically lower and higher resonance for each fundamental resonance of the sphere. The split
resonances are referred to as symmetric or �bonding� for in-phase related plasmons and antisymmetric
or �antibonding� for antiphase related plasmons, respectively [91]. In-phase related plasmons can be
optically excited, i. e., they form optical bright modes while antiphase related plasmons form optical
dark modes.

7.3.1 Coupled Split-Ring Resonators in 1x2 Configuration

Simulation Setup

The �rst coupled system we analyze is composed of two split-ring resonators arranged side by side
as illustrated in Fig. 7.8. The simulation setup of the 1×2 con�guration of split-ring resonators is
conceptually identical to the one presented for the single split-ring resonator in Sec. 7.2.1. The geometry
of the individual SRRs, the membrane and the perfectly matched layers as well as the material model
and boundary conditions are equal to the single SRR case.
The two SRRs are vertically aligned and horizontally separated by 35 nm as sketched in Fig. 7.8 (left

panel). The tetrahedral mesh consists of approximately 47k elements (cf. Fig. 7.8, central panel). The
�scanned� area is increased to 330 nm × 440 nm which corresponds to more than 1500 simulations to
obtain a 10 nm resolution. Note that similar to the case of the single SRR, only the positive halfspace
x > 0 is scanned and the symmetry of the geometry is employed to construct the EELS signal for x < 0
which yields a total determined area of 660 nm× 440 nm.

Characterization by EELS Spectra and Maps

EELS spectra for selected electron trajectories are depicted in Fig. 7.9. As alluded to in Sec. 7.2.3
several trajectories must be considered in order to obtain all resonances. For each of the �rst three
fundamental resonances of the single SRR, we observe a splitting into an energetically lower and higher
resonance for the coupled system. These correspond to the new eigenmodes of the coupled system
which are created from the fundamental mode with in-phase and antiphase relation. The associated
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Figure 7.9: EELS spectra of the 1×2 con�guration of SRRs for distinct electron trajectories cen-
tered below the base (blue) and right of the right SRR (green) and in between the SRRs
(red). The inset visualizes the trajectory of the electron in the xy-plane.

resonance energies, indicated by the gray dashed guides in Fig. 7.9, are summarized and compared to
the values of the single SRR case in Tab. 7.5 on page 105. The energy shift from the fundamental to the
lower and higher resonances is asymmetric. Note that the fourth and �fth resonances at ∆E = 1.23 eV
and ∆E = 1.40 eV, respectively, are di�cult to obtain from the EELS spectra as their individual loss
probability is spectrally overlapped by other resonances.
EELS maps at the six resonance energies are depicted in the left column of Fig. 7.10. Maximum loss

probability for the �rst resonance of the 1×2 con�guration at ∆E = 0.62 eV is observed at the outer
arms while the inner arms provide quasi zero loss probability. The second resonance at ∆E = 0.74 eV
forms a counter part with maximum and little loss probability at the inner and outer arms, respectively.
The maps of the third and fourth resonance show a signi�cant similarity to the second resonance of
the single SRR (cf. Fig. 7.6) with pronounced features at the tips and bases of the SRRs. For the �fth
resonance the highest loss probability is found at the lower outer corners while the remaining corners
show moderate values. High loss probability is observed at all lower corners of the SRRs for the sixth
resonance.
In analogy to the single SRR case, harmonic inversion, a comparison to the �eld distribution of the

modes, and an extinction cross section calculation are performed to con�rm and compare the results
of the EELS analysis.

Harmonic Inversion of the Electric Field

In analogy to Sec. 7.2.4, the time-dependent electric �eld is analyzed to cross check the resonance
energies determined by the EELS analysis using a setup conceptually equivalent to the single SRR case.
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Figure 7.10: EELS map (left column) and �eld distribution of the Ez-component (right column)
of the 1×2 con�guration of SRRs at resonances indicated in Fig. 7.9.
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7.3 Coupled Split-Ring Resonator Systems

# 1 2 3 4
~ω
[
eV
]

0.62 0.74 1.11 1.53
Q 8 19 12 14
BC PEC PMC PEC PMC

Table 7.4: Resonance energy, quality factor and associated boundary condition for resonances of
the 1×2 con�guration of split-ring resonators obtained by employing harminv.

Nevertheless, the mesh must be adapted to account for the two SRRs and consists of 27k tetrahedral
elements (cf. Fig. 7.8, right panel). As before, the electron propagates parallel to the z-axis and passes
the SRRs above the tip of the right1 SRR's right arm.
We record the �eld at points 20 nm above the SRRs indicated in the inset of Fig. 7.9. The results

of the analysis are listed in Tab. 7.4 and a compilation of the resonance energies obtained by other
characterization methods is given in Tab. 7.5 on page 105.
In contrast to the EELS analysis, only four of the �rst six resonances can be obtained (cf. Tab. 7.5).

In particular, the resonances at ∆E = 1.23 eV and ∆E = 1.40 eV are not found in a robust way. These
resonances are spectrally broad and their contribution to the EELS spectrum is small (cf. Fig. 7.9).
Hence, their contribution to the time-domain signal is small, too, which hinders the determination of
the resonances.
The four resonances obtained by harminv accurately reproduce the values of the EELS analysis. In

analogy to the single SRR case, the associated mode symmetries are employed to construct the mode
pro�les in the following section.

Comparing EELS Maps to the Modes of the Electric Field

We calculate the mode pro�le for the 1×2 con�guration of split-ring resonators in analogy to Sec. 7.2.5,
i. e., the setup of the harmonic inversion of the 1×2 con�guration is reused. The resulting mode pro�les
calculated for the six resonance energies obtained from the EELS analysis (cf. Tab. 7.5) are depicted in
the right column of Fig. 7.10. Here, the associated boundary conditions determined by the harmonic
inversion in the previous section were employed to construct the mode pro�les in the halfspace x < 0
using Eq. (7.6). The symmetry of those modes lacking an associated symmetry is consistently attributed
from their �sibling�, i. e., the other resonance forming the pair of a split fundamental resonance.
The coupled mode of the �rst resonance at ~ω = 0.62 eV is composed of its �parent� mode pro�le,

i. e., the �rst resonance of the single SRR at ~ω = 0.69 eV (cf. Fig. 7.6). The �eld on both SRRs
is in phase. This is not surprising as the modes of the composed system are constructed from the
corresponding, here �rst, mode of the metaatom with in-phase and antiphase relation, as alluded to
in Sec. 7.3. Consequently, the second coupled mode at ~ω = 0.74 eV is constructed by the single SRR
�rst order mode in antiphase.
Only in-phase related modes can be excited by optical �elds and are, hence, considered optical bright

modes. In contrast, optical dark modes cannot be excited by optical �elds. Therefore, the modes at
~ω = 0.62 eV and ~ω = 0.74 eV are optically bright and dark, respectively.
The third and fourth coupled modes are constructed from the second mode of the single SRR with

antiphase and in-phase relations, rendering them optically dark and bright, respectively. The behavior

1For clarity's sake, the resonator is referred to by its position in the con�guration although it is in fact the only one in
the setup due to the explicit application of the system symmetry (cf. Sec. 7.2.4).
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of the �fth and sixth coupled mode is analogous to the �rst and second one, i. e., they are constructed
from the third order mode of the single SRR with in-phase and antiphase relation resulting in optical
bright and dark modes, respectively.
In summary, the modes of the 1×2 con�guration are standing waves along the path of each split-ring

resonator coupled by in-phase or antiphase relations. These observations are a consistent extension of
the results in Ref. [86].
Comparing EELS maps and mode pro�les yields some interesting features. The EELS map of the �rst

resonance at ∆E = 0.62 eV reveals quasi zero loss probability at the inner arms while the corresponding
mode pro�le clearly shows in-phase related �rst order mode pro�les of the single SRR. These �blind
spots� have already been reported in Ref. [87]. The second to sixth resonances remain to represent the
(squared) electric �eld along the trajectory with minor deviations at the tips of the sixth resonance
as described in Ref. [86]. Obviously, EELS maps do not represent unique characteristics of individual
modes as the maps of the third and fourth can barely be distinguished.

Comparing EELS and Extinction Cross-Section Spectra

At last, we perform an optical characterization method, i. e., a method that excites the system by an
optical �eld and probes the system using the far-�eld. With these constraints only optically bright
modes are excited and measured. Hence, the spectrum merely contains optically bright resonances
which allows to cross-check previously obtained resonance energies and considerations of optical dark-
ness and brightness of the modes. The characterization quantity of choice is the extinction cross section
already employed and described in Chap. 6.
Fig. 7.11 shows the extinction cross-section spectra for both horizontal and vertical polarization

together with the EELS spectrum. The resonance energies determined from the extinction cross section
are listed in Tab. 7.5 on page 105. The �rst maximum of the extinction cross section coincides well
with the resonance energy of the �rst EELS resonance of the coupled system at ~ω = 0.62 eV. This
con�rms the declaration of this resonance as optically bright. Furthermore, it demonstrates that the
loss probability is not �polluted� by other modes as the resonance energy is met precisely. The second
resonance of the EELS spectrum is con�rmed to be a dark mode as a resonance cannot be observed
for both excitation polarizations. The same result is obtained for the �fth and sixth EELS resonances
which are con�rmed by an extinction cross section resonance at ~ω = 1.40 eV to be optically bright
and dark, respectively.
The extinction cross section resonance of the vertical polarization at ~ω = 1.27 eV does not match

the fourth EELS resonance energy exactly. However, we still can con�rm the third and fourth EELS
resonances as optically dark and bright, respectively. Here, the spectral overlap of several EELS
resonances leads to a shift of the �measured� maximum of the loss probability with respect to the
true position of the resonance. This e�ect clearly demonstrates advantages and disadvantages of the
simultaneous excitation (and measurement) of dark and bright modes which gives access to a lot of
information on the one hand but may be di�cult to interpret and deduce exact quantities from on the
other hand.

Separation Dependence Analysis by Electron Energy Loss Spectroscopy

In this section, we study the dependence of the resonance energies with respect to the separation distance
d (cf. Fig. 7.8) of the SRRs by EELS. Similar investigations were previously performed by means of
optical characterization, in particular, the extinction cross section, in Refs. [14, 23]. In accordance with
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Figure 7.11: Extinction cross-section spectra and EELS spectra for the 1×2 con�guration of
SRRs. The extinction cross sections were obtained using horizontally (solid black)
and vertically polarized (dashed black) plane waves, respectively. The EELS spectra
are identical to those in Fig. 7.9 and serve for comparison.
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Figure 7.12: Energy loss ∆E at the resonances of the 1×2 con�guration in dependence of the
separation distance d. The colors emphasize the resonances' parent resonance of the
single split-ring resonator, whereby red, blue, and green reference the �rst, second,
and third resonance, respectively.

their �ndings, we expect a strong resonance shift in dependence of the separation distance d, i. e., the
smaller the separation the stronger the interaction and the larger the splitting of the resonance energies.
For large separation, the resonance energies should approach those of the single, individual SRR. In
contrast to Refs. [14, 23], we expect to probe both contributions to the resonance splitting as bright
and dark modes are accessible in EELS. However, in their terminology, we investigate the side-by-side
con�guration only.

The simulation setup is identical to the one presented at the beginning of Sec. 7.3.1. In order to model
the varying separation, a tetrahedral mesh must be created for each distance. We model separation
distances from 10 nm to 250 nm in steps of 10 nm whereby the separation is de�ned as sketched in
Fig. 7.8. For each distance an EELS analysis for several trajectories is performed and the maxima of
the EELS spectra are extracted in the vicinity of the expected resonance positions according to Tab. 7.5
on page 105.

The energy loss at the resonance positions in dependence of the separation distance d is depicted
in Fig. 7.12. The plot includes resonances found in all trajectories considered, i. e., several energy loss
values at a single separation distance emerge from the resonances found for all trajectories. We observe
energetically lower and higher branches of resonances for the children of the single SRR's �rst and
third resonances. The reduction of the separation distance leads to super-linear growth of the energy
splitting. For large separation distances, the energy splitting shrinks and the resonance energies of the
single SRR are approached (cf. Tab. 7.5).

The blue curve, indicating the resonances emerging from the second resonance of the single SRR,
includes the low energy branch of the splitting only, although a high energy branch is expected, too. As
before, the resonance around 1.23 eV cannot be robustly determined due to the strong spectral overlap
of neighboring resonances. However, the trend of the low energy split branch is still in accordance with
previous observations.
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Single SRR # 1 2 3
EELS ∆E

[
eV
]

0.69 1.19 1.48

Con�guration 1×2 # 1 2 3 4 5 6
EELS ∆E

[
eV
]

0.62 0.74 1.11 1.23 1.40 1.53
harminv ~ω

[
eV
]

0.62 0.74 1.11 - - 1.53
extinction ~ω

[
eV
]

0.62 - - 1.28 1.40 -

Table 7.5: Resonance energies of the 1×2 con�guration of split-ring resonators. The values for
EELS were obtained from the EELS spectra depicted in Fig. 7.9. The resonance en-
ergies of the extinction cross section were determined from Fig. 7.11. �-� indicates
indeterminable resonances. Resonance energies of the single SRR serve for compari-
son.

Summary

We have analyzed the 1×2 con�guration of split-ring resonators by use of EELS, harmonic inversion
of the electric �eld, calculation of the mode pro�le and the extinction cross section for horizontal and
vertical polarization. The resonance energies of the �rst six resonances are summarized in Tab. 7.5. The
splitting of the resonances of the metaatom were observed as expected by the plasmon hybridization
model, i. e., for each resonance of the metaatom an energetically lower and higher resonance is deter-
mined for the coupled system. The plasmons of the coupled SRR system are composed of in-phase
and antiphase related combinations of the single SRR modes. Optical bright and dark plasmons were
consistently identi�ed by the results of the harmonic inversion and the extinction cross section spectra.
�Blind spots� (cf. Ref. [87]) in the EELS maps were observed for the �rst order resonance at ∆E =

0.62 eV. The spectral overlap of resonances, promoted by the simultaneous excitation and measurement
of optical bright and dark modes, can lead to di�culties in the extraction of exact values from the EELS
spectra as the comparison to the extinction cross-section spectra reveals. Furthermore, due to the miss-
ing phase information, EELS maps cannot be uniquely attributed to a single resonance (cf. resonances
at ∆E = 1.11 eV and ∆E = 1.23 eV).

7.3.2 Coupled Split-Ring Resonators in 2x1 Configuration

Simulation Setup

The simulation setup of the 2×1 con�guration of split-ring resonators is conceptually identical to the
one presented for the single split-ring resonator in Sec. 7.2.1 and the 1×2 con�guration. The geometry
of the individual SRRs, the membrane and the perfectly matched layers as well as the material model
and boundary conditions are equal to the single SRR case.
The two SRRs are horizontally aligned and vertically separated by 35 nm as sketched in Fig. 7.13 (left

panel). The tetrahedral mesh consists of approximately 46k elements (cf. Fig. 7.13, central panel), and
the scanned area is increased to 220 nm × 620 nm which corresponds to more than 1300 simulations
to obtain a 10 nm resolution. As before, only the halfspace in positive x-direction x > 0 is scanned.
Employing the symmetry of the physical system, the loss probability in the region x < 0 is determined
using Eq. (7.5).
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dx

y
z

Figure 7.13: Sketch and sections of tetrahedral meshes of the 2×1 con�guration of split-ring
resonators. The split-ring resonators are separated by d = 35nm and centered around
x = 0 (left panel). All other parameters are equivalent to the single SRR case
(cf. Sec. 7.2.1 and Fig. 6.1). The central and right panel visualize sections of the
tetrahedral meshes modeling the coupled system of SRRs (gold) on a silicon nitride
membrane (green) excluding and including the symmetry plane (gray), respectively.

Characterization by EELS Spectra and Maps

The EELS spectra for the 2×1 con�guration of split-ring resonators for distinct electron trajectories
are depicted in Fig. 7.14. Similar to the previously analyzed 1×2 con�guration, the splitting of the �rst
three fundamental resonances of the single SRR is clearly observed. Resonances at higher energies can
be anticipated but are in general strongly overlapping with other resonances. The resonance energies
of the �rst six resonances of the 2×1 con�guration are summarized in Tab. 7.7 on page 110 together
with previously determined resonances for comparison. Again, each resonance of the metaatom is split
into an energetically lower and higher resonance.
EELS maps of the 2×1 con�guration at the resonances listed in Tab. 7.7 are depicted in Fig. 7.15.

The �rst two resonances at ∆E = 0.65 eV and ∆E = 0.70 eV show strong loss probability at the arms
of the SRRs with maximum values at the lower and upper SRR, respectively. The loss probability
drops to zero between the SRRs for the �rst resonance while a non-zero loss probability �connects� the
two metaatoms in case of the second resonance. The strongest features are observed at the tip of the
arms of the upper and at the base of the lower SRR for the resonance at ∆E = 1.03 eV. The situation
is inverted for the fourth resonance at ∆E = 1.31 eV, which shows high loss probability at the tip
of the arms of the lower SRR, at the base of the upper SRR, and in between them. Here, moderate
loss probability at the hot spots of the third resonance is observed due to spectral overlap of both
resonances mediated by the broad third resonance (cf. blue spectrum in Fig. 7.14). The resonances at
∆E = 1.42 eV and ∆E = 1.53 eV show strong loss probability at the SRRs' lower corners and moderate
loss probability at the tips of both SRRs. Clear characteristic di�erences are di�cult to state which is,
again, due to the spectral overlap of the contributing resonances.

Harmonic Inversion of the Electric Field

The time-dependent electric �eld is analyzed in analogy to Sec. 7.2.4 to con�rm the resonance energies
of the EELS analysis. Thus, the mesh is adapted to account for the explicit application of the system's
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Figure 7.14: EELS spectra of the 2×1 con�guration of SRRs for distinct electron trajectories
centered below the base (blue) and right of the lower SRR (green) and right of the
upper SRR's base (red). The inset visualizes the trajectory of the electron in the
xy-plane.

# 1 2 3 4 5
~ω
[
eV
]

0.65 0.71 1.03 1.30 1.53
Q 16 9 3 13 14
BC PEC PEC PMC PMC PEC

Table 7.6: Resonance energy, quality factor and associated boundary condition for resonances of
the 2×1 con�guration of split-ring resonators obtained by employing harminv.
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0.65 eV 0.70 eV 1.03 eV 0

1

0.65 eV 0.70 eV 1.03 eV -1

0

1

1.31 eV 1.42 eV 1.53 eV

1.30 eV 1.42 eV 1.53 eV

Figure 7.15: EELS map (�rst and third row) and �eld distribution of the Ez-component (second
and fourth row) of the 2×1 split-ring resonator con�guration at resonance energies
indicated by the dashed guides in Fig. 7.14.
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symmetry and consists of 26k elements (cf. Fig. 7.13, right panel). The electron passes the 2×1
con�guration near the tip of the right arm of the upper SRR. The �eld is recorded at three points
located 20 nm above the SRRs as indicated in the inset of Fig. 7.14. Resulting resonance energies,
quality factors and associated boundary conditions are listed in Tab. 7.6 and compared to the data of
the EELS analysis in Tab. 7.7 on page 110.
As in the case of the 1×2 con�guration of SRRs, harminv struggles to determine all resonances and

their energies in the spectral range of interest. Consequently, the resonance ∆E = 1.42 eV cannot be
con�rmed while the remaining �ve resonance energies match the values of the EELS analysis. As usual,
the associated boundary conditions are used to construct the mode pro�le in the following section.

Comparing EELS Maps to the Modes of the Electric Field

The calculation of the mode pro�le is performed in analogy to Sec. 7.2.5 employing the symmetries of the
resonances obtained in the previous section. The missing symmetry for the resonance at ~ω = 1.42 eV
is attributed as consistency requires. The mode pro�les for the six resonances listed in Tab. 7.7 are
depicted in Fig. 7.15.
We �nd the �rst two coupled modes at ~ω = 0.65 eV and ~ω = 0.70 eV to consist of the single

SRR's �rst order mode in antiphase and in-phase relation, rendering them optically dark and bright,
respectively. The modes at ~ω = 1.03 eV and ~ω = 1.31 eV are composed of the second order mode
of the single SRR and determined to be optically bright and dark which is equivalently true for the
�fth and sixth mode of the coupled system. In analogy to the 1×2 con�guration, the modes of the
2×1 con�guration are standing waves along the path of each split-ring resonator coupled by in-phase
or antiphase relation.
The comparison of EELS maps and mode pro�les yields qualitatively consistent results compared to

the 1×2 con�guration. The maps of all except the third resonance seem to represent the magnitude of
the (squared) electric �eld projected along the electron's trajectory. Similar to the �rst resonance of the
1×2 con�guration, the EELS map of the third resonance of the 2×1 con�guration di�ers considerably
from its mode pro�le due to the �blind spot� at the center of the structure. Due to the absent phase
information, the EELS maps of the �fth and sixth resonance cannot be distinguished which emphasizes
the fact that EELS maps do not uniquely represent a resonance.

Comparing EELS and Extinction Cross-Section Spectra

We continue the analysis with the calculation of the extinction cross section using both horizontal and
vertical polarization. The resulting spectra are depicted together with the EELS spectra in Fig. 7.16.
The resonance energies determined from the extinction cross section are listed in Tab. 7.7 on page 110.
The �rst extinction cross section maximum coincides with the higher resonance of the split �rst

order single SRR resonance, i. e., the second EELS resonance at ~ω = 0.70 eV. Further extinction cross
section maxima at ~ω = 1.05 eV and ~ω = 1.43 eV are found slightly shifted compared to the EELS
spectra. Again, we attribute the shift to the spectral overlap of the resonances in the EELS spectrum.
Finally, the assignment of optical bright and dark resonances previously stated are con�rmed by the
extinction cross-section spectra.

Summary

We characterized the 2×1 con�guration of split-ring resonators employing EELS, harmonic inversion
of the electric �eld, the mode pro�les and the extinction cross-section spectra for horizontal and vertical
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Figure 7.16: Extinction cross-section spectra and EELS spectra for the 2×1 con�guration of
SRRs. The extinction cross sections were obtained using horizontally (solid black)
and vertically polarized (dashed black) plane waves, respectively. The EELS spectra
are identical to those in Fig. 7.14 and serve for comparison.

Single SRR # 1 2 3
EELS ∆E

[
eV
]

0.69 1.19 1.48

Con�guration 1×2 # 1 2 3 4 5 6
EELS ∆E

[
eV
]

0.62 0.74 1.11 1.23 1.40 1.53

Con�guration 2×1 # 1 2 3 4 5 6
EELS ∆E

[
eV
]

0.65 0.70 1.03 1.31 1.42 1.53
harminv ~ω

[
eV
]

0.65 0.71 1.03 1.30 - 1.53
extinction ~ω

[
eV
]

- 0.71 1.05 - 1.43 -

Table 7.7: Resonance energies of the 2×1 con�guration of split-ring resonators. The values for
EELS were obtained from the EELS spectra depicted in Fig. 7.14. The resonance en-
ergies of the extinction cross section were determined from Fig. 7.16. �-� indicates
indeterminable resonances. Resonance energies of the single SRR and 1×2 con�gura-
tion serve for comparison.
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polarization. The resonance energies determined by these methods are summarized in Tab. 7.7 together
with other systems for comparison. In general, qualitatively similar results are obtained compared to
the 1×2 con�guration.
The EELS spectra provide quick access to the resonances of the structure, however, exact values

are often di�cult to retrieve due to the spectral overlap of optical bright and dark plasmons. The
comparison to the extinction cross section shows that the �rst few resonance energies are correctly
determined from the EELS analysis. With the exception of the third order resonance for which a blind
spot is observed in the center of the structure, EELS maps represent the magnitude of the (squared)
electric �eld.
The eigenmodes of the composed structure are standing waves along each SRR connected by in-

phase and antiphase relations. These were consistently assigned optically bright and dark by harmonic
inversion and the extinction cross-section spectra.

7.3.3 Coupled Split-Ring Resonators in 1x4 Configuration

In this section, we investigate an coupled system of four SRRs. Due to the increase of the number of
metaatoms, we expect the fundamental resonance of the single SRR to be split into four resonances
whereby the number of energetically higher and lower resonances should be equal.

Simulation Setup

The simulation setup of the 1×4 con�guration of split-ring resonators is conceptually identical to the
one presented for the single split-ring resonator in Sec. 7.2.1. The geometry of the individual SRRs,
the membrane and the perfectly matched layers as well as the material model and boundary conditions
are equal to the single SRR case.
The SRRs are vertically aligned and horizontally separated by 35 nm from each other as sketched

in Fig. 7.17 (top panel). The tetrahedral mesh consists of approximately 80k elements (cf. Fig. 7.17,
central panel), and the scanned area is increased to 530 nm× 440 nm which corresponds to more than
2400 simulations to obtain a 10 nm resolution. As before, only the positive x-direction is scanned.
The loss probability in the negative halfspace x < 0 is constructed by Eq. (7.5), resulting in a total
accessible area of 1060 nm× 440 nm.

Characterization by EELS Spectra and Maps

EELS spectra for several electron trajectories of the 1×4 con�guration of split-ring resonators are
depicted Fig. 7.18. We can clearly identify the four expected resonances emanated from the �rst
order resonance of the single SRR at ∆E = 0.69 eV. The corresponding resonance energies are listed in
Tab. 7.9 on page 116 together with values of the single SRR and 1×2 con�guration for comparison. As
expected by the plasmon hybridization model, the number of energetically higher and lower resonances
is found to be equal. Interestingly, the �rst two resonances of the 1×4 con�guration form a lower and
higher pair with respect to the 1×2 con�guration resonance at ∆E = 0.62 eV. The same holds for the
higher energy pair. Split resonances of the second fundamental single SRR mode can be anticipated,
however, the resonances overlap strongly.
The EELS maps at the four resonance energies listed in Tab. 7.9 are summarized in the left column

of Fig. 7.19. At ∆E = 0.55 eV, maximum and moderate loss probability is found at the outer arms
of the outer and inner SRRs, respectively. Noteworthy, quasi zero loss probability is observed at the
inner arms of the respective metaatoms. The following resonances show a clear evolution by forming
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Figure 7.17: Sketch and sections of tetrahedral meshes of the 1×4 con�guration of split-ring
resonators. The split-ring resonators are equidistantly separated by d = 35nm, and
the con�guration is centered around x = 0 (top panel). All other parameters are
equivalent to the single SRR case (cf. Sec. 7.2.1 and Fig. 6.1). The central and
bottom panel visualize sections of the tetrahedral meshes modeling the coupled system
of SRRs (gold) on a silicon nitride membrane (green) excluding and including the
symmetry plane (gray), respectively.
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Figure 7.18: EELS spectra of the 1×4 split-ring resonator con�guration for distinct electron tra-
jectories, indicated by identical colors in the inset.

one, two and three locations of maximum loss probability. The resonance at ∆E = 0.66 eV shows
signi�cant loss probability at the outermost arms and at the center of the coupled system spread over
the arms of the inner SRRs and the central gap. The loss probability of the third order resonance at
∆E = 0.73 eV is dominated by the contributions located at the outer gaps and the arms around them.
At ∆E = 0.76 eV, all three gaps and their enclosing arms show strong loss probability.

Harmonic Inversion of the Electric Field

The time-dependent electric �eld is analyzed in analogy to Sec. 7.2.4 to con�rm the resonance energies
of the EELS analysis. The tetrahedral mesh is adapted to the 1×4 con�guration and consists of 40k
elements (cf. Fig. 7.17, right panel). The system is excited by an electron passing the SRR con�guration
at the tip of the right arm of the rightmost SRR. We record the electric �eld at points located 20 nm
above the SRRs as indicated in the inset of Fig. 7.18. The resonance energies, quality factors and
associated boundary conditions for the �rst four resonances are listed in Tab. 7.8 and compared to the
data of the EELS analysis in Tab. 7.9 on page 116.
The resonance energies con�rm the results of the EELS analysis and help to construct the mode

pro�les of the resonances in the following section.

Comparing EELS Maps to the Modes of the Electric Field

In analogy to previous sections, the analysis is continued by the calculation of the mode pro�les.
The resulting mode pro�les of the four resonance energies listed in Tab. 7.9 were constructed by use
of Eq. (7.6) together with the associated boundary conditions determined by harminv. The mode
pro�les are depicted in the right column of Fig. 7.19.
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0.66 eV 0.66 eV
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0 1 1-1 0

Figure 7.19: EELS map (left column) and �eld distribution of the Ez-component (right column)
of the 1×4 split-ring resonator con�guration at resonance energies indicated by the
dashed guides in Fig. 7.18.

# 1 2 3 4
~ω
[
eV
]

0.56 0.66 0.73 0.76
Q 6 13 18 20
BC PEC PMC PEC PMC

Table 7.8: Resonance energy, quality factor and associated boundary condition for resonances of
the 1×4 con�guration of split-ring resonators obtained by employing harminv.
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The �rst mode at ~ω = 0.55 eV comprises solely in-phase related �rst order modes of the single
SRR which renders the mode optically bright. A similar evolution as compared to the EELS maps is
observed for the coupled mode pro�les, too. The two rightmost and leftmost SRRs are in phase for
the second mode at ~ω = 0.66 eV, resulting in an antiphase relation of the inner SRRs. In contrast,
at ~ω = 0.73 eV, the two rightmost and leftmost SRRs exhibit an antiphase relation, resulting in an
in-phase behavior of the inner SRRs. The fourth eigenmode at ~ω = 0.76 eV consists of mutually
antiphase related �rst order modes of the single SRR.
The comparison of the mode pro�le and the EELS map of the �rst resonance at 0.55 eV reveals

a blind spot at the arms enclosing the central gap, i. e., while the eigenmode shows signi�cant �eld
strength in these arms the loss probability is very small. In addition, a novel feature is observed. An
asymmetric distribution of the loss probability in the enclosing arms of the rightmost (and leftmost) gap
is observed. More precisely, the �eld strength of the mode pro�le in both arms enclosing the rightmost
gap is signi�cantly di�erent from zero while the loss probability shows signi�cant values in one arm
only.
A similar situation occurs for the second resonance, too. Consequently, antiphase related �elds

in neighboring arms of the mode pro�le are not necessarily connected to a uniform loss probability
distribution. Another interesting fact is observed for the third resonance at 0.73 eV. While the third
order mode crosses zero at x = 0 (middle of the central gap, cf. Fig. 7.17), the loss probability remains
non-zero. This supports the interpretation of the EELS map to render a LDOS(-like quantity).

Comparing EELS and Extinction Cross-Section Spectra

At last, we analyze the extinction cross section of the 1×4 con�guration employing horizontally and
vertically polarized plane waves. The resulting extinction cross-section spectra are depicted in Fig. 7.20,
thereof determined resonance energies are listed in Tab. 7.9.
The resonance energies obtained by the EELS analysis are con�rmed. As expected by the analysis

of the mode pro�le, the �rst resonance of the coupled system at ~ω = 0.55 eV is optically bright.
Interestingly, we �nd the third resonance at ~ω = 0.73 eV to be optically bright, too, while the second
and fourth resonance at ~ω = 0.66 eV and ~ω = 0.76 eV are optically dark.

Summary

The 1×4 con�guration of split-ring resonators was analyzed by EELS, harmonic inversion of the
electric �eld, the mode pro�le and the extinction cross section. The resonance energies obtained by
these approaches are summarized in Tab. 7.9 and agree well.
We obtain the expected splitting into four resonances for the �rst resonance of the metaatom from

the EELS spectrum. Higher resonances can be anticipated but strongly overlap spectrally. The EELS
maps show blind spots, similar to the case of the 1×2 and 2×1 con�guration. A novel e�ect was
observed which is characterized by an asymmetric loss probability distribution although the associated
mode is (anti)symmetric at this location. The maps also support the interpretation of EELS to render
a LDOS(-like quantity).
The �rst and third resonance are optically bright modes as identi�ed by the extinction cross-section

spectra. Consequently, the second and fourth resonance are optically dark modes.
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Figure 7.20: Extinction cross-section spectra and EELS spectra for the 1×4 con�guration of
SRRs. The extinction cross sections were obtained using horizontally (solid black)
and vertically polarized (dashed black) plane waves, respectively. The EELS spectra
are identical to those in Fig. 7.18 and serve for comparison.

Single SRR # 1
EELS ∆E

[
eV
]

0.69

Con�guration 1×2 # 1 2
EELS ∆E

[
eV
]

0.62 0.74

Con�guration 1×4 # 1 2 3 4
EELS ∆E

[
eV
]

0.55 0.66 0.73 0.76
harminv ~ω

[
eV
]

0.56 0.66 0.73 0.76
Extinction ~ω

[
eV
]

0.56 - 0.73 -

Table 7.9: Resonance energies of the 1×4 con�guration of split-ring resonators. The values for
EELS were obtained from the EELS spectra depicted in Fig. 7.18. The resonance ener-
gies of the extinction cross section were determined from Fig. 7.20. Resonance energies
of the single SRR and 1×2 con�guration serve for comparison.
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7.4 Summary

In this chapter, we analyzed a single split-ring resonator and various coupled split-ring resonators in
1×2 , 2×1 and 1×4 con�guration by electron energy loss spectroscopy, harmonic inversion of the
electric �eld, the �eld distribution of the electromagnetic modes and the extinction cross sections.
The comparison of the resonance energies determined by EELS, harmonic inversion and the extinction

cross-section spectra shows that EELS e�ciently and accurately determines the resonance energies of
the system's eigenmodes. However, due to the simultaneous excitation and probing of optically bright
and dark modes, resonances may overlap strongly. As a consequence, the resonance energies determined
from the EELS spectra can di�er from the eigenenergies of the electromagnetic modes as observed for
the 1×2 con�guration. The splitting of resonances of the metaatom was consistently observed for all
coupled systems in accordance with the plasmon hybridization model [91].
EELS maps, i. e., the loss probability as a function of space for a constant energy loss, were calculated

at the resonance energies and compared to the �eld distribution of the modes projected along the
electron's trajectory. The interpretation that EELS maps roughly represent the magnitude of the
squared electric �eld [86] is con�rmed for the single SRR. For coupled systems of SRRs, however,
we observe blind spots as reported in Ref. [87]. Furthermore, the 1×4 con�guration shows a locally
asymmetric loss probability distribution although the associated mode is (anti)symmetric at that site.
At any rate, the interpretation of EELS maps to render to magnitude of the (squared) electric �eld
seems crude for complex systems.
In agreement with Ref. [86], the electromagnetic modes of the single SRR are standing waves along

the split-ring resonator. The eigenmodes of the coupled systems are composed of the metaatom's
eigenmodes with in-phase or antiphase relation as predicted by the plasmon hybridization model [91].
In addition, the eigenmodes were attributed optically bright and dark modes which was deduced from
the harmonic inversion of the electric �eld and con�rmed by the extinction cross-section spectra.
Electron energy loss spectroscopy o�ers a detailed characterization of plasmonic systems including

optically bright and dark plasmons. However, due to the absent phase information in the EELS analysis,
further characterization methods are required to distinguish between optically bright and dark modes.
On a numerical level, the capabilities of EELS are paid for by increased computational e�ort since every
pixel in an EELS maps requires an independent simulation. Our GPU implementation on a NVidiar

GeForcer GTX580 outperforms an equivalent well established CPU implementation on a single Intelr

Xeonr X5670 CoreTM @ 2.93GHz by a factor of 50-60 for the simulations performed for the EELS
analyses whereby both calculations were executed in single precision. The in�uence of the limited
single precision was inspected by comparison against double precision calculations. DGTD on GPUs
provides a feasible method to encounter the numerical e�ort and provides a suitable tool to perform
EELS analyses on plasmonic nanostructures.
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8 Chapter 8

Summary and Outlook

Today, increasingly complex dielectric and metallic nanostructures are investigated by researchers.
Likewise, characterization methods become more and more sophisticated. These demanding analyses
require �exible and highly powerful numerical tools which are capable of handling arbitrarily shaped
geometries to a high degree of accuracy at reasonable time- and cost-e�ciency.
Various applications have demonstrated that the discontinuous Galerkin time-domain method is well

suited for the numerical analysis of photonic and plasmonic nanostructures [22, 24, 52, 94]. An unstruc-
tured mesh of tetrahedral elements supports a �exible representation of the physical system's geometry
while high-order polynomial basis functions ensure an accurate approximation of the electromagnetic
�elds. However, �exibility and high accuracy come at the price of increased algorithmic complexity.
In this thesis, we implemented the discontinuous Galerkin time-domain method on graphic processing

units. This implementation allows for a time- and cost-e�cient treatment of almost arbitrarily shaped
dielectric and metallic nanostructures rendering the DGTD method on GPUs a versatile and powerful
numerical tool.

8.1 Summary

In Chap. 5, we demonstrated that the DGTD method is well suited for implementation on GPUs.
Quantifying the performance in absolute values, we �nd that the local-element di�erentiation and the
lift operation, i. e., the computationally most demanding sections of the method, are performed by up
to 800GFlops/s1 and 600GFlops/s, respectively. This amounts to roughly 50% of the theoretically
available number of �oating-point operations per second. Based on bare numbers, our implementation
outperforms the one presented in Ref. [27] which exploits 30% of the peak performance.2

In comparison to a well-established in-house CPU implementation executed on a single core3, the
GPU code shows speedups of the order of 30-50. Comparing the performance in terms of cost-e�ciency4,
a net-speedup of 5− 10 over CPU systems can be achieved. Thus, individual simulations are evaluated
5− 10 times faster at similar cost.

1One GFlops/s corresponds to 109 single-precision �oating point operations per second.
2This comparison is based on values determined on di�erent GPUs of the same hardware architecture. Nevertheless,
this comparison should not be overestimated.

3We compare the calculation times of simulations performed in single precision on a NVidiar GeForcer GTX580 (GPU
system) and an Intelr CoreTM i7 CPU 970 @ 3.20GHz (CPU system).

4A single NVidiar GeForcer GTX580 roughly corresponds to 6-10 CPU cores.
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Due to the dramatic reduction of simulation time, this approach is particularly bene�cial for rapid
prototyping. For example, the structures investigated in Chap. 6, nanorods and split-ring resonators,
can be simulated in one to two hours which would amount to roughly half a day on a multi-core CPU
system. Furthermore, computationally very intense investigations, such as the electron energy loss
spectroscopy analysis of Chap. 7, can be achieved in a reasonable amount of time. Here, more than
6000 individual simulations were performed � each of 30− 60 minutes simulation time. Calculated on
a single NVidiar GeForcer GTX580, this amounts to (at least) 125 days. At similar cost, our Intelr

CoreTM i7 CPU 970 @ 3.20GHz multi-core CPU system would have required (at least) 625 days.5

As a �rst application of the GPU implementation, we calculated the scattering, absorption, and
extinction cross-section spectra in the near-infrared for a series of gold nanorods and split-ring res-
onators (SRRs) in order to assist the veri�cation of a newly developed experimental characterization
method [12] (Chap. 6). The comparison between experimental and simulated results exhibits over-
all good agreement which con�rms the anticipated behavior for both the nanorods and the split-ring
resonators.
Two major sources of deviations between simulated and experimental results were identi�ed: Due

to rough surfaces and grain boundaries of the samples, the experimental gold does not quite agree
with the data of Johnson and Christy [38], which we employed to determine the free parameters of a
Drude model in the near-infrared regime. In addition, the thickness of the nanostructures is deduced
from fabrication characteristics and not measured explicitly. As examined in Ref. [14], the thickness
strongly in�uences the resonance wavelength as well as the scattering and the absorption cross section.
In conclusion, the deviations between simulation and experiment can be understood in dependence of
these parameters.
At last, an extensive study of coupled systems split-ring resonators employing electron energy loss

spectroscopy and further analysis methods was performed in Chap. 7. Our analysis of a single split-ring
resonator is in accordance with Refs. [24, 78, 86], i. e., the spatial distribution of the loss probability for
a constant energy loss (EELS map) roughly renders the squared modulus of the projected electric �eld,
and the eigenmodes are standing waves along the �U�-like shape. Our analysis of coupled split-ring
resonator systems is in accordance with Ref. [87], i. e., we observe the formation of blind spots in EELS
maps. Furthermore, the eigenmodes are composed of the single SRR's eigenmodes in in-phase and
antiphase relation which is in accordance with the plasmon hybridization model [91, 93].
In addition, we examined the energy splitting due to the interaction of two vertically aligned SRRs

in dependence of their separation with comparatively little e�ort. On an experimental basis, such an
investigation is costly and time-consuming since several tens of samples would have to be fabricated and
measured in order to yield similar results. Furthermore, experimental artifacts due to imperfections of
the fabrication methods can be easily distinguished from intended physical e�ects. The bene�ts outlined
here are not due to the properties of particular systems but generic features of our implementation.

8.2 Outlook

Finally, we address some issues of potential future work. We have not yet exploited the full potential
of the DGTD method. Curvilinear elements [43], for example, yield several advantages compared to
planar-faced elements. These elements represent round geometries by curved faces. This immediately
increases accuracy and allows the application of larger and less elements. Both of these aspects may

5This example is meant to emphasize the value of the speedup. In practice, we employ multiple GPUs in parallel in
order to evaluate large amounts of simulations.
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accelerate the method. Less elements result in a reduced computational e�ort. Larger elements allow
for a larger time-step, since the time-step is usually limited by those elements which model curved
geometries. Therefore, we can pro�t twice from the implementation of curvilinear elements: It reduces
the total number of elements and it potentially improves the time-step. A proof-of-principle implemen-
tation, that did however not employing the memory e�cient approach by Warburton, was applied for
two-dimensional slot-waveguide resonators in Ref. [94].
Another yet unexploited potential is given by hp-adaptivity which allows for a dynamic adaption

of both the element-size h and the polynomial order p during runtime. A dynamic increase of both
parameters in regions of high �eld gradients may increase accuracy while a reduction in low �eld
gradient regions results in decreased computational e�ort. In combination with the DGTD method's
inherent parallelism and increasing functionality of GPUs, accuracy as well as time- and cost-e�ciency
of this numerical approach will strongly increase in the near future.
These improvements would be especially bene�cial for the analysis of large structures with smooth

surfaces, e. g., whispering-gallery mode resonators. These resonators exhibit an exceptionally large
quality factor and were already applied to detect single molecule events [95].
Another interesting topic closely related to this work, is electron energy gain spectroscopy (EEGS) [96].

In contrast to electron energy loss spectroscopy, the electron gains energy from an initially excited plas-
monic structure. While the energetic resolution of EELS experiments is limited by the zero-loss peak,
i. e., the energy distribution of the electrons prior to the scattering event, the resolution in EEGS is
fundamentally limited by the bandwidth of the illumination of the plasmonic structure leading to a
sub-meV resolution [96].

8.3 Conclusion

In conclusion, we have implemented the DGTD method for Maxwell's equations on GPUs. This pow-
erful tool was successfully employed in computationally demanding physical investigations of metallic
nanostructures. Both applications of the GPU implementation of this thesis demonstrate the need and
the capabilities of sophisticated numerical methods in the �eld of nano-plasmonics.
We believe that the discontinuous Galerkin time-domain method is one of the most versatile and

e�cient simulation tools for arbitrarily shaped photonic and plasmonic nanostructures. In conjunction
with graphic processing units, the DGTD method provides a time-, and cost-e�cient approach to
handle the complexity of plasmonic nanostructures.
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