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Abstract

The event-based communication paradigm is used increasingly often

to build loosely-coupled distributed systems in many different indus-

try domains. The application areas of Event-based Systems (EBS) range

from distributed sensor-based systems, over emergency and rescue sys-

tems, up to large-scale business information systems. Compared to syn-

chronous communication using, for example, Remote Procedure Calls

(RPCs), event-based interactions among components promise several

benefits such as high scalability and improved system adaptability and

extendability due to the loose coupling of components.

With the growing proliferation of event-based interactions in mission-

critical systems, Quality-of-Service (QoS) attributes like performance,

availability and scalability of such systems are becoming a major con-

cern. Although the event-based communication model promises many

advantages in terms of higher flexibility and scalability, this comes at

the cost of higher system complexity compared to RPC-based commu-

nication since the application logic is distributed among multiple inde-

pendent event handlers with decoupled and parallel execution paths.

This increases the difficulty of modelling EBS for evaluating their QoS

attributes at system design and deployment time. Most general-purpose

performance meta-models for component-based systems provide lim-

ited support for modelling event-based interactions at the architecture-

level and do not explicitly consider the influence of the underlying com-

munication middleware on the QoS attributes of the system. Further-

more, existing performance prediction techniques specialised for EBS

are focused on modelling the routing of events in the system as opposed
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to modelling the interactions and event flows between the communicat-

ing components.

In this thesis, we present a novel modelling and prediction approach

that combines architecture-level modelling of event-based interactions

with detailed platform-aware QoS prediction techniques for quantita-

tive system evaluation. The contributions presented in this thesis, can

be summarised as follows:

• Modelling Abstractions for Event-based Interactions at the

Architecture-level. The abstractions developed in this thesis en-

able architects to model event-based interactions at the system

architecture-level independent of the employed underlying com-

munication middleware. While abstracting platform-specific de-

tails about the communication middleware and its implementa-

tion, the developed modelling abstractions contain sufficient in-

formation to support the evaluation of system QoS attributes.

• Two-step Refinement Transformation for Platform-aware QoS

Evaluation and Prediction. The developed two-step refinement

approach enables platform-aware QoS evaluation. The refinement

transformation first substitutes event-based interactions modelled

at the architecture-level with a detailed chain of generic event pro-

cessing components. These components provide extension points

to integrate platform-specific components defined in a separate

middleware repository as part of the second transformation step.

The resulting model can serve as input for multiple existing ana-

lytical and simulative prediction techniques.

• Implementation, Evaluation, and Validation. An implemen-

tation of the developed modelling and prediction techniques in

the context of the Palladio Component Model (PCM) as a ma-

ture and representative Architecture Description Language (ADL)

for component-based systems serves as basis for the successful

validation of the proposed approach. The detailed evaluation of
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the contributions presented in this thesis in the context of several

real-world case studies based on a traffic monitoring system devel-

oped at the University of Cambridge and the SPECjms2007 bench-

mark demonstrates the applicability and accuracy of the proposed

modelling and prediction approach. In all case studies, the pre-

diction error, compared to measurements on the running system,

was less than 20% in most cases. Furthermore, applying the devel-

oped modelling and prediction techniques in different system evo-

lution stages demonstrated the efficiency of our approach, which

reduces the modelling effort by more than 80% compared to the

use of manual workarounds.

In addition to the detailed case studies presented in this thesis, the de-

veloped modelling and prediction techniques have already been applied

in two external projects for evaluating the design of a distributed control

system for power plants and for analysing the architecture and behaviour

of a control unit for solar orbiters, respectively. Applying the developed

modelling and prediction approach to PCM, we extended it to enable the

modelling and evaluation of event-based interactions in addition to the

already supported RPC-based communication. These extensions, which

have been included in the official PCM Release1 since version 3.3, open

up a new domain of systems that can be modelled and evaluated using

the Palladio approach. Furthermore, we are currently working on the

integration of the developed modelling abstractions into the Descartes

Meta-Model (DMM)2, a meta-model enabling the self-aware run-time

management of distributed systems.

1http://www.palladio-simulator.com
2http://www.descartes-research.net
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Kurzfassung

Ereignisbasierte Kommunikation wird in vielen verschiedenen Anwen-

dungsdomänen verwendet. Die Einsatzbereiche reichen dabei von ver-

teilten Sensornetzen zur Verkehrsüberwachung oder für das Notfall-

management bis zu komplexen betrieblichen Informationssystemen.

Im Vergleich zu synchroner Kommunikation mit z.B. Remote Procedure

Calls (RPCs) verspricht ereignisbasierte Kommunikation mehrere Vortei-

le wie z.B. eine verbesserte Skalierbarkeit sowie eine höhere Flexibilität

und Anpassbarkeit durch die lose Kopplung zwischen Komponenten.

Durch den zunehmenden Einsatz ereignisbasierter Interaktionen in-

nerhalb sicherheits- und geschäftskritischer Anwendungen nimmt die

Dienstgüte der Systeme und der erbrachten Funktionalität (wie z.B. Ver-

fügbarkeit oder Antwortzeitverhalten) einen immer wichtigeren Stel-

lenwert ein. Neben all den Vorteilen, die aus der losen Kopplung zwi-

schen Komponenten resultieren, ergeben sich durch den Einsatz ereig-

nisbasierter Kommunikation jedoch auch neue Herausforderungen für

den Entwurf der Systeme. Im Vergleich zu RPC-basierter Kommunika-

tion steigt die Komplexität der Systeme, da Ereignisse oft in mehre-

ren parallelen und asynchronen Verarbeitungspfaden in unterschiedli-

chen Systemteilen verarbeitet werden. Diese Komplexität erschwert ne-

ben der Modellierung vor allem die Qualitätsvorhersage eines ereignis-

basierten Systems (EBS) zur Entwurfszeit. Existierende Modellierungs-

und Vorhersagetechniken für Software-Architekturen bieten meist kei-

ne Unterstützung für ereignisbasierte Interaktionen auf der Architek-

turebene und vernachlässigen den Einfluss der eingesetzten Middleware

auf die Dienstgüte des Gesamtsystems. Im Gegensatz dazu bieten Vor-

hersagetechniken für EBS meist keine entwurfsnahe Modellierung der
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Software-Architektur und sind sehr stark auf die Modellierung und Vor-

hersage der Verarbeitung innerhalb der Middleware fokussiert und ver-

nachlässigen die Modellierung und Vorhersage kompletter Interaktionen

zwischen den einzelnen Komponenten des Systems. Im Rahmen dieser

Arbeit habe ich einen neuen Ansatz entwickelt, der die beiden Aspek-

te Modellierung ereignisbasierter Kommunikation auf Architekturebene

und Qualitätsvorhersagen unter Berücksichtigung plattformspezifischer

Einflussfaktoren kombiniert. Die Beiträge meiner Arbeit können wie folgt

zusammengefasst werden:

• Abstraktionen zur Modellierung ereignisbasierter Interaktionen

auf der Architekturebene. Die im Rahmen der Arbeit definierten

Elemente ermöglichen es, die Architektur eines EBS unabhängig

von eingesetzten Kommunikationstechnologien und Middleware-

Realisierungen zu modellieren. Plattformspezifische Details über

die Zustellung der Ereignisse innerhalb der Middleware und deren

eigene Architektur werden dabei abstrahiert, ohne die Möglichkei-

ten von Qualitätsvorhersagen einzuschränken.

• Eine 2-stufigen Verfeinerungstransformation zur Integration

plattformspezifischer Einflussfaktoren. Die entwickelte 2-stufige

Verfeinerungstransformation ermöglicht detaillierte Dienstgüte

Vorhersagen für EBS unter Berücksichtigung der Einflüsse der ein-

gesetzten Middleware-Lösung. Die Transformation verfeinert im

ersten Schritt die Modellierungselemente auf Architekturebene

durch die Einwebung einer generalisierten Ereignisübertragungs-

kette für jede Kommunikationsverbindung. Diese Übertragungs-

kette bildet die Basis für die im zweiten Schritt durchgeführte

Integration plattformspezifischer Komponenten aus einem dedi-

zierten und wiederverwendbaren Middleware-Repository. Das Er-

gebnis der Verfeinerungstransformation kann als Eingabe für ver-

schiedene existierende Vorhersagetechniken verwendet werden.
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• Umsetzung, Evaluation und Validierung. Eine Umsetzung des

entwickelten Modellierungs- und Vorhersageansatzes als Erweite-

rung des Palladio-Komponentenmodells (PCM), einer ausgereif-

ten und repräsentativen Architektur-Beschreibungssprache (ADL)

für die Modellierung und QoS-Vorhersage komponentenbasierter

Systeme, dient als Basis für die erfolgreiche Validierung des prä-

sentierten Ansatzes. Die detaillierte Evaluation im Kontext realisti-

scher Fallstudien basierend auf einem Verkehrsüberwachungssys-

tem, welches an der Universität Cambridge entwickelt wurde, und

dem SPECjms2007 Benchmark demonstrieren die Anwendbarkeit

des vorgestellten Modellierungsansatzes und die Genauigkeit der

entwickelten Vorhersagetechniken. In fast allen Fällen konnte ein

maximaler Vorhersagefehler von unter 20% nachgewiesen werden.

Des Weiteren konnte gezeigt werden, dass der Modellierungsauf-

wand im Vergleich zu einer Fallstudie basierend auf dem ursprüng-

lichen PCM mit manuellen Hilfskonstrukten ohne die entwickel-

ten Erweiterungen für ereignisbasierte Interaktionen um ca. 80%

reduziert werden konnte.

Neben den in dieser Arbeit präsentierten detaillierten Fallstudien,

wurden die entwickelten Modellierungs- und Vorhersagetechniken be-

reits in zwei weiteren externen Projekten eingesetzt. Es handelte sich

hierbei um die Bewertung des Entwurfs eines Kontrollsystems für

Kraftwerke sowie die Analyse der Architektur und des Verhaltens der

Steuereinheit eines neuen Satelliten für die Sonnenbeobachtung. Durch

die Umsetzung der entwickelten Modellierungs- und Vorhersagetechnik

als Erweiterung des PCM, untersützt dieses nun neben RPC-basierter

Kommunikation auch die Modellierung and Analyse ereignisbasierter

Interaktionen. Mit diesen Erweiterungen, welche seit Version 3.3 offizi-

eller Bestandteil des PCM Release3 sind, konnte ein neue Domäne von

3http://www.palladio-simulator.com
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Systemen für den Palladio Ansatz erschlossen werden. Darüber hinaus

werden die entwickelten Modellierungsabstraktionen aktuell als Erwei-

teung des Descartes Metamodells (DMM)4, einem Modell für das dyna-

mische Laufzeitmanagement verteilter Systeme, umgesetzt.

4http://www.descartes-research.net
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1. Introduction

1.1. Motivation

The event-based communication paradigm is used increasingly often to

build loosely-coupled distributed systems in many industry domains.

The application areas of Event-based Systems (EBS) range from embed-

ded systems like traffic monitoring systems or automotive control sys-

tems, over emergency and rescue systems, up to large-scale business in-

formation and supply-chain management systems [Hinze 10b]. Further-

more, event-based communication serves as enabling technology for

several emerging application domains as for example ubiquitous sensor

actor networks or ambient assisted living [Hinze 09]. Event-based com-

munication is often used to build loosely coupled and highly distributed

systems. Compared to synchronous communication using, for example,

Remote Procedure Calls (RPCs), event-based interactions among compo-

nents promise several benefits [Hohpe 08]. Being asynchronous in na-

ture, they allow a send-and-forget approach, i.e., a component that pub-

lishes information in form of an event can continue its execution without

waiting for the receivers to acknowledge the event or react on it. Further-

more, the loose coupling of components achieved by the mediating com-

munication middleware that encapsulates the event routing and delivery

leads to an increased extensibility of the system as components can eas-

ily be added, removed, or substituted.

With the growing proliferation of event-based interactions in business-

and mission-critical systems, the provisioning of Quality-of-Service

(QoS) guarantees with respect to availability, performance, or efficiency
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plays an increasingly important role. The application of event-based

interactions in the context of distributed rescue and emergency appli-

cations as described in [Skjeksvik 10] places high demands on the QoS

attributes of such systems and the communication middleware in par-

ticular, given that the high availability and responsiveness of such ap-

plications can often be of life-saving importance. Even in cases where

physical safety is not influenced by the system, poor QoS can often be

a business- and mission-critical aspect. The first release of SAP’s solu-

tion for medium-sized businesses called A1S, which also includes event-

based communication, showed that bad performance can be a signif-

icant threat for the success of a product [Briegleb 07]. Just recently,

the initial public offer of Facebook was overshadowed by the unavail-

ability of NASDAQ’s software system, which was caused by “poor de-

sign” [Bloomberg 12], resulting in the loss of several million US dollars.

In the past and at present, such problems have typically being han-

dled in an adhoc manner using a trial and error approach but this often

does not address the issues and may become too expensive consider-

ing the business constraints and scale of modern enterprise applications

[Williams 03]. Furthermore, in today’s data centres, software systems are

often deployed on server machines with significantly over-provisioned

capacity in order to guarantee highly available and responsive oper-

ation [Kaplan 08], which automatically leads to low system efficiency.

Moreover, this “kill it with iron” approach can only solve performance

problems caused by insufficient hardware resources and cannot address

problems that have their root in the design of the system [Smith 02].

Although the event-based programming model promises many advan-

tages in terms of increased flexibility, scalability, and elasticity to handle

peak loads, the system complexity compared to using RPC-based com-

munication is higher since the application logic is distributed among

multiple independent event handlers with decoupled and parallel ex-

ecution paths. This increases the difficulty of modelling event-based
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interactions for QoS prediction at system design and deployment time.

However, due to the often mission-critical importance of system QoS

attributes, the latter should be considered already in the system design

phase as argued for example by Clements and Northrop: “Whether or not

a system will be able to exhibit its desired (or required) quality attributes is

largely determined by the time the architecture is chosen.” [Clements 96].

Early stage architecture evaluation helps to avoid costly redesigns and

implementation delays. The evaluation of EBS requires specialised tech-

niques that consider the different characteristics and features of event-

based interactions. This thesis introduces an integrated approach sup-

porting the modelling of EBS combined with prediction techniques en-

abling system architects evaluate system QoS attributes at system design

and deployment time.

1.2. Problem Statement

Event-based communication is an important part of modern software

architecture styles like Service-Oriented Architecture (SOA) [Krafzig 06],

Event-Driven Architecture (EDA) [Etzion 11], or Complex Event Processing

(CEP) [Chandy 10] and it is natively supported by common implemen-

tation frameworks as for example the Java Platform, Enterprise Edition

(Java EE), Microsoft .NET, or the Common Object Request Broker Archi-

tecture (CORBA). Especially in the case of large scale and distributed sys-

tems where event-based interactions are typically used, the complexity

of system architectures is high. Using an Architecture Description Lan-

guage (ADL) enables architects to define and describe the system archi-

tecture at a higher level of abstraction. In addition to their descriptive

role, such architecture models can serve as a basis for a model-based

quality prediction process as described in [Becker 08a] in the context

of component-based systems. Performance modelling techniques for

component-based systems, surveyed in [Koziolek 10], support system
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architects in evaluating the prototype architectures and comparing dif-

ferent design alternatives with respect to their QoS attributes. However,

they often provide only limited support for modelling event-based inter-

actions. On the other hand, existing performance modelling and anal-

ysis techniques specialised for EBS (e.g., [Sachs 11, Mühl 09, Kounev 08,

Carzaniga 01]) are focused on modelling and evaluating the processing

of events within the communication middleware only, as opposed to

modelling the entire system including the behaviour and interactions

of all its components. QoS evaluation for complex and large scale sys-

tems using event-based communication requires a specialised ADL that

allows the description of the system architecture including the specific

characteristics of event-based interactions at a high abstraction level.

The ADL needs to be accompanied by analysis techniques to support the

QoS evaluation of the modelled system. In summary, the two high level

research questions addressed by this thesis are:

• How to describe and model event-based interactions in

component-based systems at the architecture-level?

• How to predict the expected QoS of an EBS at design and deploy-

ment time, based on its architecture-level model?

1.3. Goals and Success Criteria

The goal of this thesis is to support the QoS evaluation of component-

based systems with event-based interactions. The increasing applica-

tion of event-based communication in business- and mission-critical

systems requires detailed QoS evaluation techniques supporting system

architects in designing and optimising the system architecture and de-

termining the required hardware resources. The responsiveness of EBS

is one of the most important and critical QoS attributes and can heav-

ily influence the business success as demonstrated in [Briegleb 07] and
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[Bloomberg 12]. Furthermore, recent research reports list performance

modelling and evaluation in the context of EBS as one of the most urgent

and critical research areas to be addressed [Hinze 10a].

For these reasons, the focus of this thesis is placed on enabling the

analysis and prediction of performance metrics like response time, re-

source utilisation, and throughput, which additionally are the common

metrics based on which system efficiency is evaluated. Although, this

thesis is focused on performance prediction, the developed approach is

intended to be generic and extensible to support other QoS attributes

such as reliability. Our ultimate goal is the development of an integrated

methodology and framework that enables the modelling and evaluation

of EBS based on architecture-level models. This goal can be broken down

into the following sub-goals:

• Derivation and specification of modelling abstractions to cap-

ture event-based interactions at the architecture-level. Describ-

ing event-based interactions at the architecture-level aims at hid-

ing as much details related to the underlying communication pro-

tocols and mechanisms as possible while still giving the architect

the possibility to specify all information needed for analysing the

system’s behaviour and QoS attributes. For this reason, finding

an adequate abstraction level is an important aspect. Enabling

the modelling of complete systems requires the formalisation of

the identified modelling abstractions and their integration into an

ADL for component-based systems.

• Platform-aware QoS prediction techniques for EBS. In EBS, the

processing of events between interacting components is done by

a communication middleware. Implementations of such middle-

ware systems range from simple client libraries up to complex and

distributed routing systems. Since the architecture and behaviour

of the communication middleware significantly influence the QoS
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attributes of the system running on top of it [Sachs 09], our per-

formance prediction techniques for EBS should explicitly consider

such influence factors. According to the model-based prediction

process presented in [Becker 08a], architecture-level models are

used as input to analytical or simulation-based prediction tech-

niques, which provide different trade-off between prediction ac-

curacy and overhead. Our proposed modelling approach should

support the use of existing prediction techniques as far as possi-

ble and thus retain the flexibility in being able to trade-off between

prediction accuracy and overhead when evaluating system archi-

tectures.

• Integration of the modelling and prediction capabilities into a

state-of-the-art modelling and prediction tool. In order to be ap-

plicable both in industrial and research settings, the modelling and

prediction techniques developed as part of this thesis should be

combined to build an integrated state-of-the-art modelling and

prediction framework. Only a smooth integration of the mod-

elling approach and the corresponding QoS prediction techniques

would enable external users to apply the results developed as part

of this thesis in real-world projects. The integration should close

the gap between the abstract descriptions at the architecture-level

and the prediction models, which include platform-specific de-

tails about the event processing within the communication mid-

dleware.

With the aim of being applicable and usable in real-world scenarios,

our approach should fulfil the following success criteria that are consid-

ered essential for every modelling and prediction approach:

• Expressiveness: The approach should be applicable to the vari-

ous types of event-based communication used in practice. Fur-
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thermore, the prediction techniques should take into account the

influences of the communication middleware.

• Accuracy: The developed modelling and prediction techniques

should provide results with good accuracy compared to the ac-

tual system’s performance. Normally, deviations within 35% from

measurements taken on the real system are considered accept-

able for design-time performance analysis and capacity plan-

ning [Menascé 04].

• Efficiency: The approach should reduce the manual modelling

and prediction effort as well as lower the required expert knowl-

edge compared to the existing approaches for modelling and eval-

uating EBS based on workarounds using conventional modelling

constructs or specialised performance models such as Queueing

Petri Nets (QPNs) or Layered Queueing Networks (LQNs).

• Scalability: The approach should support the modelling and eval-

uation of systems of realistic size and complexity.

• Automation: The approach should allow a high degree of automa-

tion, meaning that most activities except for the modelling task,

which we assume to be a manual activity, should be supported and

automated by tools as much as possible.

1.4. Approach and Contributions

In this thesis, we developed a novel modelling and performance pre-

diction approach for component-based systems with event-based inter-

actions. Our approach for the first time combines modelling of event-

based interactions at the architecture-level with detailed platform-aware

performance prediction techniques. The modelling abstractions pro-

posed in this thesis allow the specification of event-based interactions
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between components. So far existing architecture-level modelling and

prediction approaches provide only limited support for event-based

interactions. With the novel and unique support for explicitly mod-

elling different interaction types, i.e., direct Point-to-Point (P2P) con-

nections and decoupled Publish/Subscribe (Pub/Sub) interactions, at the

architecture-level, our approach opens up the area of EBS for QoS pre-

diction techniques based on architecture-level models. Given that mul-

tiple mature ADLs for component-based systems supporting model-

based performance prediction exist in the literature (e.g., as surveyed in

[Koziolek 10]), our approach aims at extending existing ADLs in such a

way that existing prediction techniques can be leveraged.

Our novel platform-aware prediction process extends the model-

based performance prediction process defined in [Becker 08a]. As illus-

trated in Figure 1.1, an EBS is described by an architecture-level software

model that conforms to a specific base ADL extended with the modelling

abstractions developed in this thesis. According to the original process,

the software model is annotated with additional attributes such as re-

source demands, input parameter characterisations, or workload speci-

fications. Depending on the existence of a system implementation, these

attributes can be derived either based on measurements or using estima-

tion techniques.

At the architecture-level, platform-specific details about the underly-

ing communication middleware are abstracted away. However, given

that the employed middleware significantly influences the QoS at-

tributes of the system built on top of it [Happe 09, Sachs 11], platform-

specific details need to be taken into account by the prediction tech-

niques. To realise a platform-aware QoS prediction technique, our ap-

proach extends the model-based prediction process by introducing the

novel two-step refinement transformation. In the refinement step, the

transformation first refines event-based interactions between compo-

nents with a detailed chain of components each representing one of
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Figure 1.1: Extended Model-based Performance Prediction Process
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the different processing stages that are common for the event process-

ing within a communication middleware. The integrated components

serve as extension points to integrate additional platform-specific com-

ponents. These components, which are specified in a separate middle-

ware repository, describe the platform-specific behaviour and resource

demands of the employed communication middleware. The second

transformation step, merges the middleware repository with the refined

software model and integrates the platform-specific components into

the platform-independent event processing chain. The described two-

step transformation extends the general idea of performance comple-

tions introduced by Woodside [Woodside 02] with a strict separation of

platform-specific and platform-independent aspects.

Given that the refinement step substitutes the introduced architecture-

level abstractions for event-based interactions with the mentioned

generic event-processing chain, the refined platform-specific model

conforms to the base ADL und can thus be used as input to existing pre-

diction techniques available for the respective base ADL. The developed

two-step refinement transformation is encapsulated in the tooling and

integrated into the automated prediction process. This automated and

transparent execution of the two-step refinement transformation allows

system architects for concentrating on modelling the considered EBS at

a high level of abstraction, while platform-specific details are automati-

cally integrated based on the selected middleware repository.

1.4.1. Contributions

The contributions of the work presented in this thesis can be classified

into conceptual and technical contributions. Figure 1.1 highlights the

various areas of contributions which are summarised in the following.

These contributions are supplemented by additional work and publica-

tions in the context of performance modelling and prediction that influ-

enced the work and results presented in this thesis.
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Conceptual Contributions

• Specification of abstractions enabling the modelling of event-

based interactions at the architecture-level. The modelling of

event-based interactions at the architecture-level requires the

identification of a set of adequate modelling abstractions. As part

of this thesis, we analyse the different characteristics of event-

based interactions and derive a set of generic architecture-level ab-

stractions that enable the modelling of event-based interactions

at the architecture-level while abstracting implementation and

platform-specific details. With the support of direct P2P connec-

tions as well as decoupled Pub/Sub communication, the proposed

modelling abstractions cover the major types of EBS used in prac-

tice. The results in this area were published in [Rathfelder 09b],

[Rathfelder 09c], and [Rathfelder 13].

• Definition of a generic event processing chain abstracting from

implementation-specific details. Transmitting events from pro-

ducers to consumers requires several processing steps within

the communication middleware as well as at the producer and

consumer sides. Based on an analysis of the event process-

ing process, we identify a set of generic processing stages ex-

isting in any EBS. Aligned with these processing stages, we de-

fine the generic event processing chain that serves as foundation

for refining event-based interactions following the idea of com-

pletions [Woodside 02]. In contrast to existing completion-based

approaches (e.g., [Happe 08], [Kapova 10a]), our proposed event

processing chain is platform-independent and explicitly consid-

ers the different event processing stages. Although it is defined

to be platform-independent, it contains enough details and struc-

ture to integrate individual platform-specific components imple-

menting the different event processing stages. The event process-
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ing chain was initially published in [Rathfelder 10b] and refined

in [Rathfelder 13].

• Development of a generic and flexible evaluation methodology

based on a two-step refinement transformation. Enabling QoS

evaluation of EBS modelled at the architecture-level requires the

integration of platform-specific details about the underlying trans-

mission system into the prediction models. With the developed

two-step refinement transformation, our approach strictly sep-

arates the platform-independent architecture-level model from

platform-specific details of the underlying communication mid-

dleware. While the first step of the proposed two-step transfor-

mation refines event-based interactions by introducing a chain

of platform-independent components representing the different

event processing stages, the second step integrates platform-

specific components specified in separate middleware repositories

that describe the behaviour and resource demands of a specific

middleware implementation. With this separation, we achieve

a substantial improvement in flexibility concerning the evalua-

tion of different middleware implementations and their impact

on the system performance compared to existing approaches

(e.g., [Woodside 02], [Kapova 11]) where platform-specific de-

tails are often hard coded in middleware-specific completions.

The proposed two-step refinement transformation substitutes

all modelling elements describing event-based interactions at

the architecture-level with a chain of platform-independent and

platform-specific components. The resulting model conforms to

the original base ADL and thus is compatible with all existing pre-

diction techniques. The initial idea of using a refinement trans-

formation was published in [Rathfelder 10b] and further refined in

[Kounev 12b] and [Rathfelder 13].
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Technical Contributions

• Application of the proposed modelling abstractions to a repre-

sentative ADL for component-based systems. The Palladio Com-

ponent Model (PCM) [Becker 09, Happe 11] is a mature design-

oriented ADL for component-based software architectures. PCM

is accompanied by a graphical modelling and prediction tool and

provides support for a number of different performance prediction

techniques including techniques based on LQNs [Koziolek 08b],

QPNs [Meier 11] and simulation models [Becker 09, Becker 08a].

Due to its maturity and the multiple available different predic-

tion techniques, we selected PCM as a representative example.

Applying our modelling approach to PCM, we extended it to en-

able the modelling of event-based interactions in addition to the

already supported RPC-based communication. This extension

opens up a completely new domain of systems that can be mod-

elled and evaluated using the Palladio approach. We demonstrated

the modelling and prediction capabilities of the extended PCM

in [Rathfelder 11a].

• Implementation of a performance prediction technique based

on the two-step refinement transformation in the context of

PCM. Based on the extended version of PCM, we implemented a

model-to-model transformation according to the developed two-

step refinement approach. The transformation is realised as in-

place transformation based on the QVT Operational Mapping Lan-

guage (QVT-O). The integration of the transformation into the pre-

diction workflow enables an automated and transparent execution

of the transformation. The extensions of PCM, which form the ba-

sis for our validation, were published in [Klatt 11b].

• Development of a realistic traffic monitoring system as event-

based reference system. In order to validate and evaluate our
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work, we developed a novel reference system based on the traffic

monitoring system developed as part of the Transport Information

Monitoring Environment (TIME) project [Bacon 08] at the Univer-

sity of Cambridge. We implemented configurable workload drivers

that are able to reproduce real-world event streams collected in the

city of Cambridge. The system is highly adaptable and can be setup

on a single machine or distributed over multiple servers. To sup-

port the automated setup and execution of experiments, we imple-

mented a central control application responsible for deploying the

system and the event generators on the different servers, executing

the experiments, and finally collecting all measurement data. Due

to this high automation and the adaptability of the system, it can

be used as a general reference application for validating research

results in the context of EBS and architecture evaluation and op-

timisation approaches in general. The traffic-monitoring system

combined with a validation of our approach was initially published

in [Rathfelder 10a] and then later on as extended version with ad-

ditional components in [Rathfelder 11c].

• Evaluation of our methodology and framework in the context of

two real-world systems. The validation of our approach is based

on an evaluation plan that addresses both the accuracy of the pre-

diction results and the applicability of the developed modelling ab-

stractions. We selected two real-world systems, the traffic monitor-

ing system described above and the SPECjms2007 standard bench-

mark. The two selected systems represent different types of EBS,

i.e., a distributed peer-to-peer system and a centralised system

with a mixture of P2P and Pub/Sub interactions and thus can be

considered as representative for a large set of existing EBS. Follow-

ing the evaluation plan, we conduct several experiments and ap-

ply the developed methodology and framework in multiple archi-
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tecture evaluation scenarios. Based on the collected metrics, we

evaluate our approach with focus on the defined success criteria

expressiveness, accuracy, efficiency, scalability, and automation.

The results of the evaluation show that the prediction error of our

prediction technique is less than 20% in most cases and thereby

significantly better than the generally accepted prediction error of

35% [Menascé 04]. The introduced modelling abstractions sub-

stantially reduce the modelling effort compared to using manual

workarounds as described in [Rathfelder 10a]. System variations

and evolutions typical for loosely coupled EBS can be reflected in

architecture-level models in less than 30 minutes. The evaluation

demonstrates the effectiveness of our proposed methodology and

respective prediction techniques for evaluating realistic systems

with complex event-based interactions.

1.4.2. Related Activities and Publications

The above described contributions in the area of event-based interac-

tions in component-based systems form the focus of this thesis. At the

same time, as a byproduct of this work some additional contributions

were made in several related areas as summarised in the following.

• Architecture evaluation and certification. We presented an ap-

proach to evaluate the architecture documentation of a software

system with the aim to derive indicators on its maintainability

in [Rathfelder 08b]. In [Rathfelder 09a], we extended this idea

and developed the Architecture Documentation Maturity Model

(ADM2), a multi-dimensional maturity model to evaluate the ar-

chitecture documentation with indicators on the architecture’s

maintainability. Furthermore, in [Rathfelder 08c] we described the

application of component quality certificates in the context of soft-

ware industrialisation and distributed development processes.
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• QoS prediction in service-oriented systems. We studied dif-

ferent service-oriented systems and demonstrated that the con-

sideration of QoS characteristic is an important success fac-

tor when migrating to a Service-Oriented Architecture (SOA) as

presented in [Rathfelder 07, Schuster 10]. This research led

to the development of the independent SOA Maturity Model

(iSOAMM) [Rathfelder 08a]. In [Rathfelder 11b, Klatt 11a], we

showed how prediction techniques can be employed to evaluate

services and service compositions in Service Level Agreement (SLA)

management frameworks.

• Evaluating the applicability and effectiveness of performance

modelling techniques in the context of real-life industrial sys-

tems. We conducted two industrial case studies using PCM for

modelling and performance prediction. We demonstrated PCM’s

applicability in two realistic industrial scenarios,namely IBM’s

storage virtualisation layer and 1&1’s email system. In [Huber 10],

we evaluated and compared two different design alternatives of

a storage virtualisation system that is part of IBM’s mainframe

systems. In [Rathfelder 12], we demonstrated the use of PCM to

enable continuous performance monitoring in the context of the

email system operated by the 1&1 Internet AG, which is with more

than 2000 servers providing services for more than 40 million users

is currently one of Europe’s largest email systems.

1.5. Application Scenarios

The developed modelling and QoS prediction approach can be applied

in different stages of the lifecycle of a software system ranging from the

design and development over operation up to maintenance and evolu-

tion. Due to its integrated nature, our approach supports multiple of
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these scenarios and enables the reuse of the described architecture mod-

els in different application scenarios throughout the system lifecycle.

1.5.1. Evaluation of Design Alternatives

Designing a system based on a set of requirements often results in sev-

eral different design alternatives, which provide the same functionality

however differing in QoS attributes such as service availability and re-

sponsiveness. The loose coupling between components introduced by

using Pub/Sub-based communication opens up a wide range of design

alternatives as removing, changing or adding new components, does not

have any impact on the other components, their interfaces, and existing

connections. Although the individual components are not influenced,

the end-to-end performance of the system can be significantly impacted

by such changes. Evaluating and comparing different design alternatives

is often done based on prototypical implementations. Using a model-

based QoS prediction approach as presented in this thesis enables the

evaluation at the model-level and does not require expensive and time

consuming prototypical implementations. The use of a design-oriented

ADL instead of specialised prediction models allows architects to eas-

ily model the architecture and its variations without requiring special

knowledge in low-level prediction models. Combined with the automa-

tion of the QoS prediction process, the required effort for evaluating dif-

ferent design alternatives is significantly reduced compared to using pro-

totypical implementations as shown in [Huber 10]. The typical questions

that can be answered by applying a model-based prediction approach

like the one presented in this thesis are:

• What is the response time or event processing time of a given de-

sign alternative?

• How does the integration of an additional component impact the

system performance?
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• How is the performance influenced by the substitution of compo-

nent A with component B?

1.5.2. System Sizing and Capacity Planning

EBS promise high system scalability and the flexibility to handle vary-

ing workloads. Combined with the simplified adaptation of the system’s

structure and deployment by adding new components, replicating com-

ponents or moving components to other servers, the evaluation of the

system performance in different workload situations often requires ex-

pensive and time-consuming load testing. The developed modelling and

prediction approach enables architects to evaluate the system perfor-

mance in different hardware environments, to analyse the influences of

the used communication middleware as well as to compare different de-

ployment alternatives in terms of their performance and efficiency. The

developed techniques help to answer the following questions that arise

frequently both at system deployment time and during operation:

• What would be the average utilisation of system components and

the average event processing time for a given workload and deploy-

ment scenario?

• How much would the system performance improve if a given

server is upgraded?

• What would be the performance impact of changing the used com-

munication middleware?

• How many servers are needed to ensure adequate performance

under the expected workload?

1.5.3. Scalability / Impact Analysis of Workload Changes

High scalability combined with elasticity with respect to workload peaks

are two of the benefits of using event-based interactions. However, high
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scalability does not mean that the system can handle every workload

without problems. In EBS, events can be queued up, which enables han-

dling higher peak loads but also increases the complexity of detecting

an overload situation. The approach developed in this thesis allows ar-

chitects to easily specify and vary the workload used in the evaluation

of the system behaviour and performance. In contrast to performance

tests, the model-based approach allows evaluating the system without

setting up a realistic testbed and implementing the required workload

drivers. The automated prediction process providing detailed evaluation

results enables both determining the maximal system throughput as well

as detecting potential bottlenecks as demonstrated in one the case stud-

ies presented as part of this thesis and in [Rathfelder 11c]. The questions

that arise in this scenario and that can be answered by applying the mod-

elling and prediction techniques developed in this thesis are:

• What maximum load level can the system sustain for a given re-

source allocation?

• How does the system behave if the workload is increased?

• Which component or resource is a potential bottleneck?

1.5.4. Run-time Performance Testing and Monitoring

Existing software monitoring and management solutions support the

definition of rules and conditions evaluated at run-time to detect poten-

tial performance problems and to identify malfunctions of the system.

Most of these solutions use fixed thresholds as upper or lower bounds to

differentiate between normal system operation and a potentially prob-

lematical system state [Cherkasova 09]. However, the performance of a

system in terms of response times or resource utilisation depends on the

workload, which especially in the context of EBS can significantly vary

over time. Workload-aware performance monitoring approaches like the
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one presented in [Rathfelder 12] enable a more fine-grained monitoring.

The methodology and techniques developed in this thesis enable the re-

alisation of such workload-aware monitoring processes for EBS. Ques-

tions that can be answered by combining the workload-aware monitor-

ing process with the methodologies and techniques developed in this

thesis are:

• Does the system behave as expected under the current workload?

• What is the root cause of observed unexpected performance

changes (varying workload or mal-operation)?

• What is the expected CPU utilisation of a server or the response

time of a service for a given workload?

1.5.5. Automated Architecture Evaluation and Optimisation

The loose coupling between components introduced by using event-

based interactions opens up a large space of different design and deploy-

ment alternatives for implementing a component-based system. Auto-

mated architecture evaluation and optimisation methods, such as the

scalability analysis presented in [Rathfelder 11c], or automated architec-

ture optimisation frameworks like PerOpertyx [Koziolek 11b] reduce the

manual effort for evaluating and comparing different alternatives and

support the selection of the best alternatives. Due to the lack of for-

mal ADLs that provide support for modelling event-based interactions,

these automated evaluation and optimisation techniques have so far

been limited to component-based systems with synchronous method in-

vocations only. The modelling abstractions for event-based interactions

combined with the prediction technique introduced in this thesis make

it possible to apply such automated evaluation and optimisation tech-

niques to EBS, which were not supported before. The combination of

the techniques developed in this thesis with existing automated archi-
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tecture evaluation and optimisation techniques promise to answer the

following questions:

• What is the most efficient deployment of a system for a given re-

source environment?

• What is the optimal system structure and deployment for a given

set of constraints in terms of available resources?

• What is the most cost efficient design and deployment of a system

for a given QoS level that should be guaranteed?

1.6. Thesis Organisation

The thesis is organised as follows. In Chapter 2, we present the foun-

dations, upon which the developed methodology and techniques are

based. First, we give an overview of the domain of EBS. This overview

starts with the introduction of basic terminology followed by the pre-

sentation of a classification schema for EBS. Applying this classification

schema to existing systems, we demonstrate the large variety of different

types of EBS used in practice. Second, we introduce the area of model-

driven engineering. After a general overview, we present the two trans-

formation languages used in this thesis. Following a brief introduction

into the domain of software performance engineering, we finally present

the Palladio Component Model (PCM), which we use as basis for the pre-

sented implementation and validation of our approach.

Chapter 3 reviews related work in the two research areas architecture-

level modelling and performance prediction techniques with a focus on

the provided support for modelling and evaluating event-based interac-

tions in component-based systems.

Chapters 4 through 6 constitute the core of this thesis and present the

main contributions. In Chapter 4, we present the developed modelling

methodology and introduce a set of architecture-level abstractions for
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specifying event-based interactions between components. In the second

part of this chapter, we apply the developed modelling abstractions to an

existing and representative ADL for component-based systems.

In Chapter 5, we introduce the two-step refinement transformation

we developed to enable platform-aware performance predictions for

EBS. After presenting the generic event processing chain, which pro-

vides the basis for the following two-step refinement transformation,

we present more details on the transformation including the integration

of platform-specific components. Next, we present a detailed and for-

malised specification of the transformation. The chapter ends with a

short overview of the transformation’s implementation and its integra-

tion into the PCM tool chain.

In Chapter 6, we evaluate the contributions of this thesis in the context

of two real-world case studies, a traffic monitoring system and the of-

ficial SPECjms2007 benchmark. The chapter begins with the definition

of evaluation goals, which form the basis for the evaluation presented

in the following sections. Section 6.2 introduces the traffic monitoring

system and demonstrates the application of our approach in different

evolution stages of the system. The results show that the prediction ac-

curacy with mostly less than 20% error is significant better compared

to the generally accepted 35%–40% error range considered as accept-

able for model-based performance prediction techniques [Menascé 04].

The application of our modelling approach to different design alterna-

tives demonstrates its efficiency since the required modelling adapta-

tion could be realised in less than 30 minutes. Section 6.3 presents the

SPECjms2007 benchmark which includes different interaction types with

a complex mixture of events designed to be representative for industrial

supply chain management systems. The case study demonstrates the

applicability of our approach to such complex systems and the good pre-

diction accuracy, which was mostly within 25%. In Section 6.4, we give an

overview of two external projects in which the contributions presented in
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this thesis are currently applied, followed by a summary of the evaluation

results in Section 6.5.

Finally, Chapter 7 summarises the contributions presented in this the-

sis and concludes with an outlook on future work.
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This chapter introduces the general terminology, describes the context

of Event-based Systems (EBS), and presents an overview of the founda-

tions our approach is based on. More specifically, Section 2.1 describes

the domain of EBS. It first introduces a generic set of term and defini-

tions followed by a detailed characterisation schema for EBS. The section

closes with an overview of existing middleware implementations for EBS

based on the introduced classification schema. Section 2.2 presents the

area of model-driven engineering in general and the two transformation

languages used in this thesis in particular. Section 2.3 gives an overview

of software performance engineering followed by a detailed introduction

to the Palladio Component Model (PCM) providing the basis of our im-

plementation.

2.1. Event-based Systems

Event-based systems are used in a variety of different domains and

their size ranges from small embedded systems up to large-scale and

world-wide distributed systems [Hinze 09]. Nevertheless, most systems

that use event-based interactions have the four core elements Source,

Sink, Transmission System, and Event, illustrated in Figure 2.1, in com-

mon [Carzaniga 98b]. Chandy [Chandy 06] defined an Event as “a sig-

nificant change in state”, where by significant only those changes are

meant that influence the system or application. This definition is one

of the most widely used in the IT world [Chandy 10, Hinze 10b]. Detect-

ing such changes leads to the instantiation of events, which are emit-
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Source	
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Figure 2.1: Core Elements of Event-based Systems

ted by a Source. In the literature, the Source is also known as Pro-

ducer [Hinze 09, Mühl 06], Publisher [Eugster 03], Sender [Pietzuch 04],

Generator [Carzaniga 98b], or Monitoring Component [Sachs 11]. The

Transmission System is responsible to deliver events from sources to

connected sinks that have registered for receiving the events. The

transmission system encapsulates the communication between the

sources and sinks. The communication can be push-based, pull-

based or completely decoupled following the Publish/Subscribe (Pub/-

Sub) paradigm [Mühl 06]. In push-based systems, the source is the ac-

tive part responsible to invoke the event processing behaviour within

the sink. In pull-based systems, the sink actively asks for new events

that should be processed [Sachs 11]. In the literature, the transmis-

sion system is also known as Notification Service [Hinze 09, Mühl 06],

Event Service [Eugster 03], Event-based Middleware [Pietzuch 04], Chan-

nel [Hohpe 08] or Event Bus [Carzaniga 98b]. The Sinks, also known as

Reactive Components [Hinze 09, Sachs 11], Consumers [Mühl 06], Sub-

scribers [Eugster 03], or Receivers [Carzaniga 98b, Pietzuch 04], contain

the business logic for processing incoming events. Although most EBS

share this common structuring in sink, source and transmission system,

they differ in many different aspects. In the following, we present and

discuss a characterisation schema, which highlights these differentiating

factors.
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2.1.1. Characterisation Schema for Event-based Systems

The characterisation schema developed as part of this thesis systemat-

ically structures the different characteristics of an EBS. We use feature

models [Czarnecki 00] to group and visualise these characteristics. In

Figure 2.2, we present an overview of the different categorisation dimen-

sions. In the following, these dimensions are explained in more detail,

each with its own sub-model.

Event-based
System

Degree of
Decoupling

Delivery & 
Subscription 

Model

Interaction
Types

Event Model

QoS Model

Middleware
Architecture

Figure 2.2: Characterisation Overview

Event Model The Event Model, depicted in Figure 2.3, focuses on the

characteristics of the events used within the system. We differentiate

between Notifications/Triggers, Messages, and Typed Events. The distin-

guishing feature is the type of content events encapsulate referred to as

Event Model

Notification/
Trigger Messages Typed 

Events
Complex
Events

Figure 2.3: Characterisation: Event Model
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payload. Notifications and triggers do not contain any data, they com-

prise only a notification that something happened, without providing

further data. In contrast, messages as well as typed events contain a

payload, which can be used to transmit data from sources to sinks. The

contained data can range from a simple value of a certain sensor up to

complex business data objects. Messages are envelopes that need to

be unwrapped in order to analyse the content and the included meta-

data to differentiate messages. The possible message content ranges

from unstructured text as used in Java Message Service (JMS) text mes-

sages [Hapner 02], over key value pairs [Carzaniga 01] and structured

XML data, up to serialised objects [Eugster 03]. In contrast to messages,

Typed Events are data objects [Oki 93] as used in object-oriented pro-

gramming languages. In [Eugster 01], typed-events are called Obvents

to highlight the fusing of data objects and events. The access to typed

events is usually integrated into the programming languages used on the

source and sink side, thus an explicit serialisation or de-serialisation is

not required. Additionally, the transmission system is able to determine

the type of a certain event and thus adjust the handling and routing of

events depending on their type.

Some EBS allow to define Complex Events also known as com-

posite events, which are an aggregation of basic or other complex

events [Mühl 06]. The detection of event patterns described using an

event correlation language leads to the instantiation and sending of a

complex event [Hinze 09].

Delivery & Subscription Model Figure 2.4 illustrates the different

characteristics of the Delivery & Subscription Model.

It differentiates between Point-to-Point (P2P) and Publish/Subscribe

(Pub/Sub) communication, which are illustrated in Figure 2.5. P2P com-

munication, is built around the concept of queues which form a virtual

communication channel. Each event is sent to a specific queue and
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Figure 2.4: Characterisation: Delivery & Subscription Model
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Figure 2.5: Event-based Interactions

later retrieved from there and processed by a sink [Sachs 11]. Usually

a queue is associated with a single sink. However, in the most general

case multiple sinks can be connected to a queue and events are then de-

queued from the queue on a first-come-first-serve (FCFS) basis resulting

in the fact, that each event is received and processed by exactly one sink.

In Pub/Sub interactions, the sink connects to the transmission system

and subscribes for the events of interest by defining a set of conditions

that the respective events should fulfill [Eugster 03]. Event subscriptions

can address different aspects of an event. Our classification schema dif-

ferentiates between three different subscription models Channel-based,
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Content-based, and Type-based. In order to allow a fine-grained selection

of events, EBS often support a mixture of different subscription models.

All subscription models have in common that an event is delivered to all

sinks whose selection conditions are satisfied by the event.

With Channel-based subscriptions, the transmission system offers dif-

ferent event channels that sinks can connect to as illustrated in 2.5(b).

When emitting an event, the source is responsible to select the channel

that is used to publish the event. The transmission system forwards the

event to all sinks subscribed to this channel. Channels are independent

of the employed event model and the event content and thus they allow

a logical grouping of events. This logical grouping can be used to reflect

for example the geographical distribution of the system like the group-

ing of events within a traffic monitoring system based on the districts in

which emitting sensors are located.

In Type-based subscriptions [Eugster 01], the events of interest are

identified by their data type, which means that the transmission system

delivers to the subscribed sinks all events that conform to a specified type

or a subtype. Obviously, this requires the support of typed events within

the transmission system.

Often a sink’s interest in an event depends on the content of the event.

For these reasons, Content-based subscriptions allow the definition of

filtering rules that refer to the content and payload of events. Content-

based subscription can only be used with messages or typed-events as

event model. Content-based subscriptions enable a fine-grained selec-

tion of events, however, they induce more processing overhead within

the transmission system compared to the other subscription models.

Each event needs to be examined in order to route the event to all sub-

scribed sinks that have issued matching subscriptions. With the aim

to combine fine-grained event selection with simplified event routing,

channel- or type-based subscriptions are often used in combination with

a content-based subscription model.
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Channel-based as well as type-based subscriptions can be hierarchi-

cal. In a hierarchical channel-based subscription, a sink not only re-

ceives the events published on the specified channel, but it also re-

ceives all events published on one of the sub-channels. Hierarchical

channel-based subscriptions are also known as subject-based subscrip-

tions [Mühl 06, Sachs 11]. In a hierarchical type-based subscriptions, the

sink receives all events which conform with the defined type or are a sub-

type of this type.

Interaction Types The number of sources and sinks that can partici-

pate in an event-based interaction is an additional characteristic of the

interaction. Our characterisation schema differentiates between four in-

teraction types, depicted in Figure 2.6. One-to-one interactions are in-

teractions between exactly one source and one sink. In one-to-many

interactions only one source but several sinks are allowed also known

as centralised broadcasting of events. In contrast many-to-one interac-

tions allow several event sources participating in an event-based inter-

action, however the emitted events are consumed by exactly one sink.

The last and most powerful interaction type is the many-to-many inter-

action, which does not restrict the number of participating sources and

sinks. Thus, it subsumes all other interaction types.

Interaction 
Types

1-1 1-n m-1 m-n

Figure 2.6: Characterisation: Interaction Types

Degree of Decoupling The decoupling of components is one of the

benefits promised by event-based communication. In analogy to the
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Source Sink
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Figure 2.7: Characterisation: Degree of Decoupling

characterisation used in [Eugster 03], we differentiate three aspects of

decoupling namely Synchronisation, Space, and Time. As illustrated in

Figure 2.7, the first two are further subdivided into decoupling on the

source and sink side.

Synchronisation decoupling means that the control flow of sources and

sinks is decoupled. In the case of source decoupling, the event source is

blocked only until the event is handed over to the transmission system

and does not have to wait until the event is delivered to and processed

by the receiving sinks. In the case of sink decoupling, the event delivery

is often realised by using callback functions invoked by the transmission

system. However, there also exist event-based systems that use blocking

event pulling mechanisms, e.g., the PIRATES middleware (described in

Section 2.1.2), which provide synchronisation decoupling on the source

side but not on the sink side. In contrast, the event listener concept often

used to build graphical user interfaces provides decoupling of sinks while

the event source is often blocked until all event listeners are executed.

In systems decoupled in Space, the sources do not know which and

how many sinks are receiving the events. Similarly, sinks do not know

which and how many sources are producing events. Pub/Sub-based sys-

tems are always decoupled in space both on the source and on the sink

side [Eugster 03]. However, other event-based systems, especially P2P-
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based systems might be decoupled only on the source side or the sink

side or provide no space decoupling at all.

The last aspect of decoupling is Time decoupling. Following the defi-

nition in [Eugster 03], sources and sinks do not need to be active at the

same time to interact via sending events. Thus, a sink can consume

events that have been emitted by a source which was deactivated before

the receiving sink became active. In the case of time decoupling there is

no differentiation between the source side and sink side, as in contrast to

the other aspects of decoupling, the source sides and sink sides cannot

be considered in isolation in this case.

QoS Model A lot of different quality models for software can be found

in the literature with the ISO/IEC 9126 [ISO/IEC 03] as one of the most

prominent representatives. In contrast to those general software qual-

ity models, our characterisation focuses on the run-time behaviour of

EBS and thus it does not consider quality characteristics like usability

QoS Model

Reliable Delivery

Timeliness/
Performance

Security/
Trustworthiness

Guaranteed 
Max Latency

Guaranteed
Bandwidth

Priorities

Ordering

At Least Once

At Most Once Exactly Once

Confidentiality IntegrityPersistency

Figure 2.8: Characterisation: QoS Model
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or maintainability. Corsaro et al. [Corsaro 06] classified the Quality-of-

Service (QoS) attributes of EBS into the domains reliable delivery, time-

liness, security, and trust. As illustrated in Figure 2.8, our classifica-

tion schema refines these domains resulting in the characteristics Reli-

able Delivery, Timeliness/Performance, and Security/Trustworthiness. We

rearranged and refined the QoS metrics specialised for EBS defined in

the literature (e.g., [Behnel 06], [Appel 10], [Corsaro 06]) according to our

schema.

According to [Behnel 06], we differentiate between three guaranteed

types of Reliable Delivery. At Least Once guarantees that an event is de-

livered to the subscribed components, however, the same event might

be transferred several times to a receiving component. In contrast, the

At Most Once guarantee forbids such multiple delivery of events, but it

also allows that events might be dropped and not delivered to the sinks.

Exactly Once is a combination of the two previous guarantees, thus it

guarantees that all events are delivered to the sinks and each event is

delivered only once. The guaranteed delivery of events requires a Per-

sistency mechanism that prevents the loss of events. Given that an EBS

can offer a persistent storage of events without supporting any delivery

guarantees, it is an additional and separat aspect of the Reliable Delivery

characteristic.

Timeliness/Performance focuses on the temporal aspects of the event

delivery as well as on performance aspects of the delivery mechanisms.

In the case of Ordering, the transmission system guarantees, that the or-

dering of the events delivered to sinks corresponds to the order in which

the events have been published. This means that if event A was pub-

lished before event B, A will always be delivered first. Often transmission

systems do not guarantee an ordered delivery in order to increase the op-

timisation opportunities within the routing algorithms and to avoid ex-

pensive synchronisation mechanisms. In some EBS, sources can assign

Priorities to events, which are considered within the transmission sys-
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tem and influence the processing and routing of events. Events with high

priorities are processed faster and might overtake events with lower pri-

orities. The event delivery latency and the bandwidth or event through-

put respectively are two important QoS metrics of EBS [Behnel 06]. Es-

pecially when using event-based communication in real time systems

(e.g., [Iwai 00], [Kaiser 05]), the transmission system should be able to

guarantee a certain QoS level. In our classification schema, we differ-

entiate between the two optional characteristics Guaranteed Max La-

tency, the ability to guarantee an upper bound of the delivery latency,

and Guaranteed Bandwidth, which is the ability of the transmission sys-

tem to guarantee a given event throughput. Our schema only considers

the ability to guarantee such behaviours and not the values of the respec-

tive metrics themselves. Thus, we do not differentiate between fast and

slow EBS, as the performance of a system is always context dependent.

With the use of event-based communication in business- and mission-

critical systems, the security and trustworthiness of the communica-

tion mechanisms became an increasingly important aspect. In analogy

to [Behnel 06], we differentiate between the two aspects Confidentiality

and Integrity. In the case of confidentiality, the transmission system has

to ensure that events and the data they carry can only be read by the

sources and sinks that participate in the respective interactions and not

by other components that intercept the communication. As described

in [Fiege 04], confidentiality can be realised by using a trusted trans-

mission system combined with encrypted data connections between

sources, sinks, and the transmission system. In order to ensure the in-

tegrity of events, the transmission needs to provide authentication func-

tionalities to identify each component. In combination with techniques

like digital signatures, the source of an event can be identified and it can

be ensured that the event has not been modified.
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Middleware Architecture The architecture of the underlying commu-

nication middleware and respectively the transmission system is an ad-

ditional differentiating factor. As illustrated in Figure 2.9, the character-

isation schema differentiates between three architecture types. In Peer-

to-Peer architectures, there is no dedicated server or set of servers host-

ing the transmission system. The functionality provided by the trans-

mission system is integrated into the communicating components of the

sources and sinks in the form of local libraries. The centralised middle-

ware is characterised by a transmission system running as one central

process all sources and sinks are connected to. Most industrial event-

based systems are based on a centralised middleware like for example

JMS-based servers. In distributed architectures, the transmission sys-

tem is distributed over several independent event brokers [Mühl 06].

The brokers use specialised routing algorithms to deliver the published

events to all subscribed sinks that can be connected to different brokers.

Middleware
Architecture

Peer-to-Peer Centralized Distributed

Figure 2.9: Characterisation: Middleware Architecture

2.1.2. Overview of Existing Event-based Systems

In this section, we apply the derived categorisation schema to existing

EBS. As seen in the previous section, the variations between different sys-

tems especially with respect to the underlying communication middle-

ware is high. In the following, we survey existing EBS considering both

industrial systems and research prototypes and classify them according

to our categorisation schema. The selected systems we consider serve
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as representative examples and demonstrate the large variation ranging

from centralised large scale systems up to highly distributed embedded

systems. Several similar surveys exist in the literature, however, they fo-

cus on other aspects and do not evaluate all dimensions in our categori-

sation schema. [Liu 03], [Baldoni 06], and [Pietzuch 07] present surveys

on existing Pub/Sub systems, which in the case of [Baldoni 06] is focused

on distributed Pub/Sub systems. Schmidt et al. [Schmidt 08] present an

overview of the area of Complex Event Processing (CEP). [Mühl 06] and

[Hinze 10b] give a more generic overview of existing EBS, however, lack-

ing a common categorisation schema to compare different systems.

CORBA Notification Service

The Common Object Request Broker Architecture (CORBA) [OMG 11] de-

fines a platform- and language-independent object-oriented middle-

ware architecture. CORBA is a mature middleware technology that is

widely used in the financial and telecommunication domains. In 1994,

the Object Management Group (OMG) introduced the CORBA Event Ser-

vice [OMG 94] as a new CORBA service, with its latest version 1.2 re-

leased in 2004 [OMG 04a]. Events are defined as CORBA objects using

the Interface Definition Language (IDL), which is part of the CORBA stan-

dard. The Event Service decouples sources and sinks by introducing

an event channel, which can be accessed by components in a pull- as

well as push-based manner. This channel allows components to partic-

ipate in many-to-many interactions. The asynchronous communication

is implemented on top of the already existing synchronous method in-

vocations provided by the CORBA framework. The event service does

not provide any filtering mechanisms, which in combination with some

other shortcomings has led to the development of the Notification Ser-

vice [OMG 04b]. As successor of the Event Service, it introduces new

functionality like event filtering, QoS, and a new event type called struc-

tured events. Structured events are divided into header and body, which
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both can contain a filterable list of key-value pairs. The Notification Ser-

vice specification defines several parameters to configure reliable and

persistent delivery. Furthermore, the parameters allow to assign prior-

ities and configure the ordering of events.

Java Message Service (JMS)

The Java Message Service (JMS) [Hapner 02] is a standardised Applica-

tion Programming Interface (API) for Java applications to access the fa-

cilities of Message-Oriented Middleware (MOM) servers. It is part of the

Java Platform, Enterprise Edition (Java EE) standard [(Sun) 09], which de-

fines a set of standards for building large enterprise applications. In the

terminology of JMS, the communication middleware that provides the

JMS API is referred to as JMS server while applications using the API to

exchange messages are referred to as JMS clients. Nearly all industrial

enterprise application servers (e.g., IBM’s WebShpere, SAP’s Netweaver

platform, or Oracle’s Weblogic server) support event-based communica-

tion using the JMS API, resulting in JMS being the de facto standard in

Java-based enterprise messaging applications.

JMS is based on messages as event model and supports different mes-

sage types, e.g., text, byte object, or map messages, depending on the

payload that should be transferred. In addition, JMS allows to define

message attributes using key value pairs. When subscribing to a chan-

nel, each sink can specify individual filtering rules called selectors ap-

plied to the event attributes on the server side. JMS supports P2P

communication through JMS-Queues as well as channel-based Pub/Sub

communication using JMS-Topics in a many-to-many interaction style.

JMS decouples sources and sinks with respect to synchronisation and

space. With durable subscriptions, JMS additionally allows decoupling

sources and sinks with respect to time. JMS differentiates between non-

persistent and persistent delivery modes. In non-persistent mode, pend-

ing messages are kept in main memory buffers while they are waiting to
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be delivered resulting in low messaging overhead at the cost of losing un-

delivered messages in case of a server crash. In persistent mode, the JMS

server ensures that no messages are lost by logging messages to persis-

tent storage such as a database or a file system. In non-persistent mode,

each message is guaranteed to be delivered at most once, whereas in per-

sistent mode it is guaranteed to be delivered exactly once. JMS ensures

the ordering of messages which belong to one session. Furthermore, it

allows the specification of message priorities, however it does not guar-

antee any quality attributes, neither performance guarantees with re-

spect to latency or bandwidth nor security aspects.

WS Eventing and WS Notification

Web Services have been designed to allow platform-independent ac-

cess to web-based services based on synchronous request/reply inter-

actions. With their growing popularity and their integration into busi-

ness applications, the need for an asynchronous push-based service in-

terface was recognised. Sending messages to a service requires that

the service can be addressed and contacted using a communication

endpoint. Web Service Addressing (WS-Addressing) [W3C 04], a stan-

dard defined by the World Wide Web Consortium (W3C), introduces

service endpoint references for Web services. Such endpoints can be

passed as message parameters to a source service to register for an

event stream. Web Service Eventing (WS-Eventing) [W3C 06], which is

based on WS-Addressing, standardises the direct communication be-

tween Web Service sources and Web Service sinks. Events are realised

as Extensible Markup Language (XML) messages, which can contain a

simple value as well as complex data types. Sources and sinks are not

decoupled with respect to synchronisation nor with respect to space

and time. The event sink can define an event filter, which is a boolean

XPath expression. As an alternative to WS-Eventing, the Organisation

for the Advancement of Structured Information Standards (OASIS) intro-
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duced the Web Service Notification (WSN) [OASIS 04] standard. Simi-

larly to WS-Eventing, WSN builds on top of WS-Addressing. In contrast

to WS-Eventing, which is a pure peer-to-peer based solution, WSN al-

lows direct peer-to-peer based connection between sources and sinks

using Web Service Base Notification (WS-BaseNotification) [OASIS 06a]

as well as space decoupled communication using Web Service Brokered

Notification (WS-BrokeredNotification) [OASIS 06b] or Web Service Top-

ics (WS-Topics) [OASIS 06c]. WS-BrokeredNotification introduces bro-

ker intermediaries to decouple sources and sinks. WS-Topics addresses

the features related to a channel-based Pub/Sub delivery. Similarly to

WS-Eventing, WSN supports the specification of content-based filtering

rules. However, neither WS-Eventing nor WSN provide any support for

QoS-related characteristics.

PIRATES

The Peer-to-peer Implementation of Reconfigurable Architecture for Typed

Event Streams (PIRATES) [Ingram 09b] middleware was designed to sup-

port distributed component-based applications. The traffic monitoring

system that we later use in one of our case studies in Section 6.2 is built

on top of the PIRATES middleware. Its peer-to-peer based architecture

is illustrated in Figure 2.10. The basic entity is the component. Each

component is divided into a wrapper, provided by the PIRATES frame-

work, and the business logic that encapsulates the component’s func-

tionality. The wrapper manages all communication between compo-

nents including handling of the network I/O, registration of endpoints

and management of their schemas, and reporting on the component’s

status. Each endpoint can be a client, a server, a source, or a sink. Clients

and servers implement Remote Procedure Call (RPC) functionality pro-

viding synchronous request/reply operations and are attached in many-

to-one relationships. The communication between sources and sinks is

entirely asynchronous based on many-to-many interactions. Each end-
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Figure 2.10: Schematic Overview on PIRATES Components

point specifies the data schema of the messages that it will emit and ac-

cept. The event type specification is based on the Language of Interface

Types for Messages in Underlying Streams (LITMUS) [Ingram 09a], which

is integrated into the PIRATES framework. PIRATES enforces matching

of sender and receiver schemas ensuring that only compatible endpoints

are connected. The act of connecting two endpoints is called mapping.

The separation of the wrapper is intentional as it insulates business logic

from dealing with network communication issues such as providing re-

silience in the face of failure of connected components. The business

logic specifies its endpoints’ mappings and the wrapper takes care of

sending an event to all connected sinks as well as forwarding received

events to the business logic. The interaction with the wrapper process

is encapsulated within the PIRATES Library, which decouples the con-

trol flow of the source while the event handler of the sink is blocked until

the next event is received. Furthermore, the PIRATES wrappers decouple
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sources and sinks in the space domain. PIRATES does not provide any

QoS guarantees, neither reliability nor performance or security-related.

SIENA

The Scalable Internet Event Notification Architecture (SIENA)

[Carzaniga 98a, Carzaniga 01] was one of the first distributed content-

based Pub/Sub systems. SIENA is based on a distributed multi-broker

architecture targeted at an Internet-scale deployment. In SIENA, bro-

kers are called servers. Sources connect to one of the SIENA servers

to publish an event. Sinks register by placing content-based subscrip-

tions at one of the servers. The latter is not required to be the same as

the one the source is connected to. SIENA servers build a logical over-

lay network and route events through this network to the target servers

that host matching subscriptions. The topology of the overlay network

of event brokers is static and must be specified at deployment time. In

SIENA, events are a set of typed attributes while the event itself is not

typed. SIENA supports only content-based subscriptions applying filter-

ing rules to the attributes contained in an event. When a subscription

reaches a server (either from a client or from another server), the server

forwards the subscription only if the set of addressed events is not sub-

sumed by one of the sets addressed by existing subscriptions. The rout-

ing paths of events are defined based on these subscriptions at subscrip-

tion time. The communication in SIENA is many-to-many. Since SIENA

does not contain any persistence mechanisms, it decouples sources and

sinks only with respect to synchronisation and space. There exists no

precise specification of the semantics of event delivery [Mühl 06]. The

content-based routing algorithms hamper any further security mecha-

nisms like encryption [Wang 02].
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SCRIBE

Scribe [Castro 02] is a scalable channel-based Pub/Sub system developed

at Microsoft Research. Its architecture is a decentralised peer-to-peer ar-

chitecture based on Pastry [Rowstron 01], a generic peer-to-peer object

location and routing overlay network. Each node within the Scribe net-

work can act as an event source or sink but it can also define a chan-

nel or act only as a forwarding relay node. In Scribe, channels are called

groups, each identified through a unique ID. All messages can contain

data and are thus classified as messages following our schema. Groups

are not limited to only one source and thus allow many-to-many com-

munication. Event delivery in Scribe is a best-effort approach and does

not guarantee any QoS characteristics. Any reliable and/or ordered de-

livery of events has to be implemented on top of Scribe, which provides

a dedicated extension interface. Similarly to SIENA, Scribe does not pro-

vide any persistence mechanisms and thus only decouples sources and

sinks with respect to synchronisation and space but not with respect to

time.

REBECA

The Rebeca notification service [Mühl 02, Parzyjegla 10] realises a

content-based Pub/Sub system. Its distributed architecture is compara-

ble to the broker-based architecture of SIENA. Events in Rebeca are a set

of key-value pairs. Since Rebeca was designed to be extendible, which is

a distinguishing feature compared to other approaches, it allows the in-

tegration of additional data types and filtering models [Mühl 06]. Rebeca

distinguishes three types of brokers: local, border, and inner brokers. Lo-

cal brokers are usually part of a local communication library, which en-

capsulates the communication with the Rebeca middleware. Each local

broker is connected to one of the border brokers that form the boundary

of the distributed overlay network. The network itself consists of border
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brokers handling the connections with sources and sinks and inner bro-

kers forwarding events to other inner or border brokers. Local brokers

forward messages created by sources into the Rebeca network. The rout-

ing among the border and inner brokers is based on filter-based routing

tables and extendable routing strategies. Finally, the messages are sent

through the local brokers to the subscribed sinks. This message flow de-

couples components with respect to synchronisation and space but not

with respect to time. In its original version, QoS-related guarantees have

been considered as future work [Mühl 02]. Given that the design of Re-

beca allows the integration of new routing algorithms, the Rebeca mid-

dleware can be extended to support for example reliable delivery or en-

crypted communication as described in [Parzyjegla 10].

HERMES

Hermes [Pietzuch 04] is similarly to the previously described approaches

based on a distributed broker network. However, in contrast to other

systems, Hermes supports type-based subscriptions that can be com-

bined with content-based rules. Hermes aims at an easy integration

into existing object-oriented (OO) programming languages and supports

type-checking of event data and event type inheritances. Similarly to

Scribe, Hermes builds on top of a variation of the Pastry routing algo-

rithm. Hermes has a layered architecture inspired by the ISO/OSI net-

work stack. Each layer builds on top of the functionality provided by the

layer underneath and provides an explicitly defined interface to the layer

above. Thanks to this layered architecture, the implementations of the

different layers can be replaced individually or adapted without affect-

ing the other layers. The top layer provides extension points to plugin

additional high level middleware services, which can be used for exam-

ple to enforce QoS properties such as performance, reliability or secu-

rity [Mahambre 08]. As Hermes does not provide persistence mecha-
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nisms, it decouples sources and sinks only with respect to synchronisa-

tion and space but not with respect to time.

2.1.3. Summary

The previous sections gave an overview of area of EBS. After intro-

ducing the general terminology, we presented a detailed characterisa-

tion schema for EBS. We introduced the six categorisation dimensions

Event Model, Delivery & Subscription Model, Interaction Types, Degree

of Decoupling, QoS Model, and Middleware Architecture each including

multiple sub-characteristics. We applied the developed characterisa-

tion schema to different existing middleware implementations for EBS

with the aim to present a survey on the large variety between exist-

ing EBS. Table 2.1 summarises the survey and lists the identified char-

acteristics for each dimension. We selected the surveyed systems to

represent different classes of EBS and thus to allow us demonstrating

the large variety between existing systems. Several further middleware

implementations for EBS not covered in our survey have been devel-

oped by research and industry, e.g., Ahkera [Fromm 09], Cambridge

Event Architecture (CEA) [Bacon 00], Corona [Ramasubramanian 06],

Echo [Eisenhauer 06], Java Event-based Distributed Infrastructure

(JEDI) [Cugola 01], Gryphon [IBM 01], NaradaBrokering [Pallickara 03],

READY [Gruber 00], and XMessages [Slominski 02].

While the presented overview of EBS introduced the context our ap-

proach is applied in, the following sections on model-based engineering

and software performance engineering describe the foundations that our

approach builds on.

2.2. Model-Driven Engineering

The aim of Model-driven Engineering (MDE) and more specific Model-

driven Software Development (MDSD) is to leverage the role of models

45



2. Foundations

E
ve

n
t-

M
o

d
el

D
el

iv
er

y
M

o
d

el
In

te
ra

ct
io

n
Ty

p
es

D
ec

o
u

p
li

n
g

Q
o

S
M

o
d

el
M

id
d

le
w

ar
e

C
O

R
B

A
•

M
es

sa
ge

s
w

it
h

ty
p

ed
p

ay
lo

ad
•

P
u

b
/S

u
b

:
ch

an
n

el
-

an
d

co
n

te
n

t-
ba

se
d

•
M

an
y-

to
-m

an
y

•
Sy

n
ch

ro
n

is
at

io
n

•
Sp

ac
e

•
C

o
n

fi
gu

ra
b

le
R

el
.D

el
iv

er
y

•
O

rd
er

in
g

•
P

ri
o

ri
ti

es

•
C

en
tr

al
is

ed

JM
S

•
M

es
sa

ge
s

•
P

2P
•

P
u

b
/S

u
b

:
ch

an
n

el
-

an
d

co
n

te
n

t-
ba

se
d

•
M

an
y-

to
-o

n
e

(Q
u

eu
es

)
•

M
an

y-
to

-m
an

y
(T

o
p

ic
s)

•
Sy

n
ch

ro
n

is
at

io
n

•
Sp

ac
e

•
C

o
n

fi
gu

ra
b

le
R

el
.D

el
iv

er
y

•
O

rd
er

in
g

•
P

ri
o

ri
ti

es

•
C

en
tr

al
is

ed

W
S-

E
ve

n
ti

n
g

•
M

es
sa

ge
s

•
P

2P
•

O
n

e-
to

-m
an

y
•

Sy
n

ch
ro

n
is

at
io

n
si

n
k

si
d

e
-

•
Pe

er
-t

o
-P

ee
r

W
SN

•
M

es
sa

ge
s

•
P

2P
•

P
u

b
/S

u
b

:
ch

an
n

el
-b

as
ed

•
M

an
y-

to
-m

an
y

•
Sy

n
ch

ro
n

is
at

io
n

•
Sp

ac
e

-
•

Pe
er

-t
o

-P
ee

r
•

C
en

tr
al

is
ed

P
IR

A
T

E
S

•
M

es
sa

ge
s

•
Ty

p
es

E
ve

n
ts

•
P

2P
•

M
an

y-
to

-m
an

y
•

Sy
n

ch
ro

n
is

at
io

n
(o

n
ly

so
u

rc
e)

•
Sp

ac
e

-
•

Pe
er

-t
o

-P
ee

r

SI
E

N
A

•
M

es
sa

ge
s

w
it

h
at

tr
ib

u
te

s
•

P
u

b
/S

u
b

:
co

n
te

n
t-

ba
se

d
•

M
an

y-
to

-m
an

y
•

Sy
n

ch
ro

n
is

at
io

n
•

Sp
ac

e
-

•
D

is
tr

ib
u

te
d

Sc
ri

b
e

•
M

es
sa

ge
s

•
P

u
b

/S
u

b
:

ch
an

n
el

-b
as

ed
•

M
an

y-
to

-m
an

y
•

Sy
n

ch
ro

n
is

at
io

n
•

Sp
ac

e
-

•
Pe

er
-t

o
-P

ee
r

R
eb

ec
a

•
M

es
sa

ge
s

w
it

h
at

tr
ib

u
te

s
b

u
t

ex
te

n
d

ab
le

•
P

u
b

/S
u

b
:

co
n

te
n

t-
ba

se
d

•
M

an
y-

to
-m

an
y

•
Sy

n
ch

ro
n

is
at

io
n

•
Sp

ac
e

•
ex

te
n

d
ab

le
•

D
is

tr
ib

u
te

d

H
E

R
M

E
S

•
Ty

p
ed

-E
ve

n
ts

•
H

ie
ra

rc
h

ic
al

•
P

u
b

/S
u

b
:

ty
p

e-
ba

se
d

•
M

an
y-

to
-m

an
y

•
Sy

n
ch

ro
n

is
at

io
n

•
Sp

ac
e

•
C

o
n

fi
d

en
ti

al
it

y
•

In
te

gr
it

y
•

D
is

tr
ib

u
te

d

Table 2.1: Categorisation of Existing Event-based Systems
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in the software development process. Models describe the software at a

higher level of abstraction. Compared to source code, implementation

specific details and complexity are abstracted. Model transformations

support the translation of high-level models into models at a lower ab-

straction level, which might include source code. In doing so, MDSD

aims to handle the increasing complexity and flexibility in today’s soft-

ware systems by allowing low level implementation tasks like coding to

be substituted by modelling activities like the specification of domain

or problem specific high-level models [Schmidt 06]. In the following,

we first introduce the foundational concepts of MDE including defini-

tions of central terms like model and meta-model. Second, we present

a general introduction to model transformations and then introduce the

two transformation languages used in the context of this thesis namely

MOdel transformation LAnguage (MOLA) and Query/View/Transforma-

tion (QVT).

2.2.1. Basic Concepts

Models are the central artifact in MDE. A common definition of the term

Model is given in [Uhl 07] and [Becker 08a]:

Definition 2.1 (Model [Becker 08a]). “A formal representation of entities

and relationships in the real world (abstraction) with a certain correspon-

dence (isomorphism) for a certain purpose (pragmatics).”

This definition is based on the three characteristics of a model iden-

tified by Stachowiak [Stachowiak 73] namely abstraction, isomorphism,

and pragmatism. Abstraction refers to the property of a model to hide

details of the real-world objects (entities and relationships) it represents.

The selection of included and abstracted aspects is guided by the goal for

which the model is created. The relation between the model and the re-

spective real-world objects can be seen as a projection. This projection

must be an isomorphism to allow drawing conclusions from the model

47



2. Foundations

that can be translated in the context of the real-world objects. Again, the

definition of this projection should be guided by the goal for which the

model is built. This pragmatism in the definition of a model is the last

important characteristic of models. Models are not defined for their own

sake but are always designed for a given specific purpose.

MDE aims at the automated processing of models, which requires a

formal definition of rules and constraints that should be satisfied by

models in a given target domain. In MDE, such rules and constraints

are specified by means of meta-models.

Definition 2.2 (Meta-Model [Ernst 99]). “A meta-model is a precise defi-

nition of the constructs and rules needed for creating semantic models.”

A meta-model contains rules that are either syntactic or seman-

tic [Völter 06]. Rules defining the semantic can again be split into rules

defining the concrete syntax or the abstract syntax of model instances.

Following the description of Becker [Becker 08a], the abstract syntax de-

fines the concepts of a meta-model independently of concrete encod-

ing specifics, while the concrete syntax defines encoding rules to store

and visualise the abstract concepts. The semantics of a model comprises

static and dynamic rules. Static semantics define further constraints on

the model that can be checked without “executing” the model or know-

ing its intention. In contrast, the dynamic semantics define the intention

of the meta-model concepts and describe how to interpret a model in-

stance in a given context. However, the borderline between the different

types of rules is not always strict.

With the aim to increase the adoption of MDSD in industrial soft-

ware projects, the OMG developed the Model-Driven Architecture (MDA)

approach [OMG 06b]. In the context of the MDA approach, the OMG

defined a set of standards with the aim to ensure the interoperability

between different MDSD tools. The central standard is the Meta Ob-

ject Facility (MOF) [OMG 06c], which is a self-describing meta-meta-
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model providing a common language to specify meta-models. MOF

has been developed in the context of the Unified Modeling Language

(UML) [OMG 10] and was used to formally define the UML meta-model,

which is the most well-known meta-model for software systems. With

the Object Constraint Language (OCL) [OMG 06d], the OMG defined a

language to specify the rules restricting the set of valid models as well as

meta-models. Meta-model designers often use OCL expressions to de-

fine the static semantic.

Meta-models and models can be defined on different abstraction lev-

els. The MDA guide [OMG 03] groups them into platform-independent

models (PIMs) and platform-specific models (PSMs) defined as follows:

Definition 2.3 (Platform-independent model (PIM) [OMG 03]). “A model

of a subsystem that contains no information specific to the platform, or

the technology that is used to realise it.”

Definition 2.4 (Platform-specific model (PSM) [OMG 03]). “A model of

a subsystem that includes information about the specific technology that

is used in the realisation of it on a specific platform, and hence possibly

contains elements that are specific to the platform.”

The term platform originally comes from technology platforms like

Java EE, .NET, or CORBA, which offer middleware services and simplify

the building of complex software systems. It is defined as:

Definition 2.5 (Platform [OMG 03]). “A set of subsystems/technologies

that provide a coherent set of functionality through interfaces and spec-

ified usage patterns that any subsystem that depends on the platform can

use without concern for the details of how the functionality provided by

the platform is implemented.”

According to the MDA guide, transformations bridge the semantic gap

between a PIM and a PSM as illustrated in Figure 2.11. A transformation
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Figure 2.11: Transformation Pattern According to the MDA Guide [OMG 03]

takes the PIM together with optionally additional information and gen-

erates the PSM. The amount of additional information can vary from not

taking any additional information to providing sets of additional models

parameterising the transformation process. Although this generic pat-

tern shows a direct mapping from PIM to PSM, a transformation can con-

sists of several transformation steps generating a chain of PIMs followed

by a chain of PSMs. Each model is a refinement of the previous model

instance, which in case of a PIM is still platform independent. In the fol-

lowing section, we give an overview of techniques that can be used to

implement such model transformations.

2.2.2. Model Transformations

In the domain of MDSD, model transformations are generally classified

into two types, namely Model-2-Text (M2T) and Model-2-Model (M2M)

transformations [Czarnecki 03], which we briefly describe in the fol-

lowing paragraphs. For a more detailed survey and characterisation of

model transformations, we refer the reader to [Mens 06], [Czarnecki 06],

and [Rose 12].
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M2T transformations M2T transformations receive a model that con-

forms to a certain meta-model as input. The result of the transforma-

tion is one or more arbitrary text files, which in the area of MDSD mostly

contain source code in a given programming language. However, M2T

transformations are not limited to source code and can also be applied

to generate for example documentation or configuration files. Accord-

ing to the surveys presented in [Czarnecki 06] and [Rentschler 06], the

most common approaches to realise M2T transformations are visitor-

based and template-based approaches. Applying the visitor design pat-

tern [Gamma 95], visitor-based approaches use a visitor object that tra-

verses a graph of elements and writes text specific for the currently vis-

ited element to an output stream. Template-based approaches use tem-

plates that contain a combination of text artefacts and small code snip-

pets. When executing the transformation, the included code is executed

to query information from the source model and the result is inserted

into the surrounding text artefact.

M2M transformations As illustrated in Figure 2.12, M2M transforma-

tions transform a Source Model that conforms to a Source Meta-Model

into a Target Model that conforms to a Target Meta-Model. In case of

identical source and target meta-models, M2M transformations enable
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Figure 2.12: Concept of Model-2-Model Transformations [Czarnecki 06]
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a direct manipulation of the input model, which is referred to as in-place

transformation. Kleppe et al. [Kleppe 07] provide the following defini-

tions:

Definition 2.6 (Transformation [Kleppe 07]). “A transformation is the

automatic generation of a target model from a source model, according

to a transformation definition.”

Definition 2.7 (Transformation Description [Kleppe 07]). “A transforma-

tion definition is a set of transformation rules that together describe how

a model in the source language can be transformed into a model in the

target language.”

Definition 2.8 (Transformation Rule [Kleppe 07]). “A transformation rule

is a description of how one or more constructs in the source language can

be transformed into one or more constructs in the target language.”

As illustrated in Figure 2.12, transformation definitions are specified at

the meta-level and refer to the elements defined within the meta-models.

They describe the mapping between source and target element types.

For example, a M2M transformation transforming UML class diagrams

to Entity Relationship (ER) models would contain one rule to map UML

classes to entities in the ER model and a second rule to map UML asso-

ciations to ER relations. When executing such a transformation in the

transformation engine, the rules are evaluated for each element and if

they match, the corresponding elements in the target model are created.

In the case of the example UML to ER transformation, an entity is created

for each class defined within the source UML model as well as a relation

for each association between classes.

According to the classification of Czarnecki et al. [Czarnecki 06], M2M

transformations can be grouped into different types depending on the

realisation of rules and their evaluation. The most important types are

direct-manipulations, operational, relational, graph-based, and hybrid

approaches.
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Direct-manipulations require equal source and target meta-models.

They are mostly implement as in-place transformations where the re-

sults of the transformation are directly stored in the source model. Such

approaches provide an internal representation of the model extended

with an API to manipulate the model elements. Often they are realised

as an OO framework in multi-purpose programming languages like Java.

Operational approaches have similarities with direct-manipulations as

they are also build out of operational methods used to manipulate the

source model. However, operational approaches are normally based on

a dedicated transformation language specialised for model transforma-

tions. Often they combine query languages like OCL with imperative

programming constructs. The most well known transformation language

representing operational approaches is the QVT Operational Mapping

Language (QVT-O), which is part of OMG’s QVT standard [OMG 07]. Sec-

tion 2.2.4 presents more details on QVT in general and QVT-O in partic-

ular.

Relational approaches use a declarative language to define relations

between source and target elements. The transformation engine takes

the set of relations and either tests if the relationships are fulfilled or

adapts the target model such that none of the relationships is violated.

QVT Relations Language (QVT-R), which is the second transformation

language defined within the QVT standard, is one of the most prominent

representatives of this type of transformations.

Graph transformations operate on typed, attributed, labeled

graphs [Andries 96]. Rules usually consist of a left-hand-side (LHS) and

a right-hand-side (RHS) graph pattern. Whenever a LHS pattern can

be matched, it is replaced by the structure given via the RHS pattern.

The process is repeated until no more matching LHS patterns can be

found. Several transformation approaches like VIsual Automated model

TRAnsformations framework (VIATRA2) [Varro 07], Henshin [Arendt 10],

Story Diagrams/Fujaba [von Detten 12], and MOLA (described in Sec-
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tion 2.2.3) extend the basic approach of graph mappings with additional

elements to define an explicit scheduling of the different mapping rules.

Hybrid approaches combine different techniques of the previous ap-

proaches. Mostly, they allow a mixture of declarative and imperative

rules. The Atlas Transformation Language (ATL) [ATLAS Group 07] rep-

resents this type of transformations as it support fully declarative, hybrid

as well as fully imperative transformation rules.

The previous paragraphs, provided a brief overview of the different

techniques that can be applied to implement transformations. In the fol-

lowing sections, we introduce the two transformation languages used in

this thesis.

2.2.3. MOLA

The MOdel transformation LAnguage (MOLA) [Kalnins 04] represents the

group of graph transformation based approaches. It has been developed

at the University of Latvia. The main goal of MOLA was “to provide an

easy readable graphical transformation” [Kalnins 04]. MOLA combines

traditional structured programming using some kind of flowcharts with

transformation rules based on relatively simple graph patterns. The re-

sults of the transformation tool contest published in [Rose 12] highlight

that the developers reached their goal of providing a easy readable graph-

ical transformation language that is still executable and applicable to im-

plement realistic transformations. Before describing the MOLA syntax in

more detail, we provide a short overview of the tool support for MOLA

transformations.

The MOLA tool [Kalnins 06] that is publicly available from the project

website [Latvia 12] is based on the METAclipse framework, which itself

is based on the Eclipse platform. The tool consists of two main parts,

the Transformation Definition Environment (TDE) and the Transforma-

tion Execution Environment (TEE). Both use a common repository to

store transformations, meta-models and model instances. TDE provides
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Figure 2.13: Syntax of MOLA

graphical editors supporting the modelling of MOLA-based transforma-

tions as well as a dedicated meta-model editor. However, the tool also

supports importing externally defined meta-models. TEE provides dif-

ferent possibilities to execute MOLA transformations. The most often

used variant is the execution within the MOLA tool, based on an inter-

preter directly working with the repository [Kalnins 06]. Additionally,

TEE provides a compiler transforming MOLA transformation into exe-

cutable libraries for Java and C++. The Java libraries are based on the

JGraLab framework [JGraLab 12] while the C++ implementation uses the

framework presented in [Barzdins 06]. For a more detailed description of

the different transformation solutions, we refer the reader to [Sostaks 10].

Each MOLA transformation consists of a set of procedures with one

marked as main procedure being the starting point of the transforma-

tion. Each procedure is specified using the elements provided by the

graphical syntax of MOLA, shown in Figure 2.13. Similarly to UML ac-

tivity diagrams, each procedure contains one Start node and depending

on the control flow one or more End nodes. Control Flow arrows connect

the different statements (namely loops, rules, procedure calls, and value

assignments) with each other as well as the start and end nodes.
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Rules are the most important statements within a MOLA procedure,

as they contain the definition of graph patterns describing the transfor-

mation. Each rule contains a set of Matching Elements representing a

certain type defined within the source meta-model. In addition to the

direct referencing of meta-model elements, matching elements can also

reference other matching elements defined in one of the previous rules.

The addressing of an element in MOLA is specified with the@ symbol fol-

lowed by the element’s name. To define a matching pattern, matching el-

ements are connected by drawing associations between these elements.

The semantics of these associations, which have a corresponding associ-

ation within the meta-model, is that the pattern matches if an instance

of the respective meta-model association between the two elements ex-

ists within the source model. Matching elements can additionally be ex-

tended with constraints on the attributes of the elements. For example,

they allow specifying that only elements with a certain attribute value

are matched. When executing the transformation, the pattern matching

algorithm tries to find the defined pattern within the source model. If

the pattern can be matched the execution continues with the next state-

ment following the control flow arrow. If it is not matched, the execution

continues with the statement specified by the Else Branch. In addition

to pure matching patterns, MOLA allows the specification of element in-

stances as well as their deletion. The Element Creation is similar to the

matching of elements, however, they have a thicker dashed border in red.

Element Deletions are marked with a black dashed border. Element cre-

ation as well as element deletion can be mixed with matching elements

to define the required context of the element instances in which the cre-

ation or deletion should be executed. Additionally, MOLA allows the cre-

ation and deletion of associations represented by red dashed and black

dashed lines, respectively.

Providing explicit loop constructs is a unique selling point of the MOLA

approach. MOLA provides two types of loops, a ForEach Loop and a
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Figure 2.14: Exemplary MOLA Procedure based on [Kalnins 06]

While Loop. Each loop starts with a rule containing the declaration of

the loop element. In order to distinguish the loop element from other

classes in the mapping instances defining its context, the loop element

has a thicker border. The semantics of both types of loops differ in the

following way. A ForEach loop is executed only once for each valid in-

stance matching the pattern. A While loop continues execution until

there is no more matching variable instance, which means that the same

loop variable instance may be processed several times.

Figure 2.14 provides an example containing two nested ForEach loops.

The outer loop iterates over all elements of type A and executes the inner

loop for each instance of A exactly once. The inner loop iterates over all

elements of type B that are connected with the current instance of loop

element a1 of the outer loop. In addition to the pure definition of the

loop element, the rule contains an element creation. For each matching

tuple a new instance of type W together with an association to element

a1 is created. Additionally, the attribute attrW is set to the sum of at-

trA2 of element a1 and attrB of element b.

As already mentioned, MOLA transformations can be split over several

procedures allowing to structure the transformation and thus improve its

readability. Procedure Call statements are used to integrate these proce-
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dures into the control flow. Further to calls of MOLA procedures, MOLA

additionally allows the integration of procedures that are implemented

in Java. Within the MOLA syntax, they are integrated by means of Exter-

nal Procedure Calls. Both procedure calls allow referencing elements that

are handed over to the procedure using the already explained combina-

tion of the @-symbol and the element name. The MOLA syntax provides

two constructs to specify the parameters of a procedure. Input param-

eters are read-only parameters which means that the element instances

received via such parameters as well as their attributes cannot be manip-

ulated within the transformation. In contrast, In-Out Parameters follow

the call by reference paradigm and manipulations on the received pa-

rameter within the procedure are visible for the calling procedure. With

in-out parameters, it is possible to implement utility procedures for ex-

ample creating and returning elements that are further processed out-

side the procedure. In addition to parameters, MOLA procedures can

also include internal Variables. Similar to parameters, variables refer-

ence an element type defined within one of the meta-models. Value As-

signments integrated in the control flow allow to store elements in vari-

ables.

Due to the easy readability of MOLA combined with its formalised and

executable semantics, we selected MOLA as a formal language to spec-

ify the transformation developed in this thesis in a readable and at the

same time formal manner. Although MOLA provides several transfor-

mation engine implementations, their integration into the Palladio tool

chain confronted us with several technical issues discussed in Section 5.5

and therefore we decided to use another transformation language for our

implementation, which is presented in the following section.

2.2.4. Query/View/Transformation Standard

In the context of the MDA approach, the OMG has developed the

Query/View/Transformation (QVT) standard [OMG 07] including the two
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Figure 2.15: QVT Overview [OMG 07]

already mentioned transformation languages QVT Relations Language

(QVT-R) and QVT Operational Mapping Language (QVT-O). The central

concepts in QVT are Queries describing requests on the source model to

identify the parts of the model that serve as input for the transformation,

Views specifying the results in the source model, and Transformations

describing the mapping between queries in the source model to views in

the target model [Nolte 10].

As shown in Figure 2.15, QVT defines a common language core. This

core provides a small set of operations supporting pattern matching over

a flat set of variables by evaluating conditions over those variables. The

core has the same expressiveness as the declarative transformation lan-

guage QVT-R built on top of it. As QVT-R provides more complex lan-

guage constructs mapped to a set of operations provided by the core, it

allows a less verbose specification of transformations. This direct map-

ping between QVT-R and core operations can be compared with the

transformation of Java source code into bytecode executed by the Java

virtual machine. Operational mappings defined with QVT-O are partially

mapped to either core operations or to relations later transformed to core

operations. This combination of core and relational operations reduces

the complexity of the transformations and allows to reuse the mappings

defined between the relations and the core. Additionally, QVT allows the

integration of custom black box language extensions that use either QVT

or other multi-purpose programming languages like Java or C++. To al-
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low an easy navigation within the models, QVT integrates the OCL stan-

dard [OMG 06d] supporting both the access to model elements and their

attributes as well as the selection of elements based on conditional state-

ments.

With QVT-R and QVT-O, the QVT standard provides two expressive and

powerful transformation languages that highly differ in their language

structure as being based on different transformation approaches. Both

languages are still young and the number of reference projects and ex-

perience reports is still limited. However, the selection of the transfor-

mation language has a big impact on the implementation and requires

weighing up advantages and disadvantages.

We selected QVT-O as language to implement the transformations de-

veloped in this thesis. Before presenting some insights into the QVT-O

language, we first discuss the rationale behind our decision, which is

based on our own experiences as well as on [Guduric 09] and [Nolte 10].

Transformation Structure Complex transformations grow to a rea-

sonable amount of code. Similarly to programming languages, splitting

the transformation into multiple files can reduce the complexity and si-

multaneously increase the maintainability and reusability. Only QVT-O

allows structuring a transformation into multiple files. QVT-R requires

having all relations to be defined within a single file resulting in files with

more the 1.000 lines of code [Kapova 10b].

In-place Transformations The refinement transformation developed

as part of this thesis is implemented as an in-place transformation

(Chapter 5). Furthermore, the existing PCM prediction workflow follow-

ing the pipeline pattern requires the manipulation of existing models in-

stead of creating new instances. Implementing in-place transformations

with QVT-R requires to create a complete clone using a generated copy

transformation [Goldschmidt 08] which is later manually adapted to in-
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clude the transformation rules that adapt the target model [Kapova 09].

QVT-O provides direct support of in-place transformations as well as

copy operations for model elements and complete sub-models.

Branching QVT-R supports only simple branches which means that an

if-then-else-endif statement allows only one “if” and one “else” expres-

sion. This limitation results in multiple nested if-then-else constructs if

more than a binary branch decision is required. In contrast, QVT-O pro-

vides an explicit else-if construct (elif) supporting unlimited branches.

Transformation Control Flow QVT-R does not define an execution or-

der in the case of multiple matching rules. To prevent an indeterministic

execution of transformations, relations should be defined in a way that in

every case only one rule matches, which requires additional marker rela-

tions and further increases the design complexity. Due to its operational

structure, QVT-O provides several constructs to manage the control and

data flow within the transformation. For example, QVT-O allows the iter-

ation over a list of elements and the execution of different actions within

each iteration.

Required Programming Skills Nowadays most programmers are fa-

miliar with OO programming languages following an imperative pro-

gramming style. Only a few programmers have experience with declar-

ative programming styles like functional programming or logical pro-

gramming supported by languages like Haskell or Prolog. For this reason,

the learning curve for developers learning QVT-O based on the impera-

tive programming style, raises much faster compared to QVT-R, which is

based on a declarative programming style.

Eclipse Integration The prediction tools that we extend as part of this

thesis are all based on the Eclipse framework. For this reason, a smooth
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integration of the transformation engine into the Eclipse platform is an

important aspect. The Eclipse Modeling Project [Eclipse Foundation 12]

focuses on the evolution and promotion of model-based development

technologies. The M2M sub-project, promises eventual support for

QVT-O as well as QVT-R. However, the recent Eclipse releases only pro-

vided a stable version of the QVT-O engine since the QVT-R implementa-

tion is still under development. For this reason, executing QVT-R trans-

formations within Eclipse requires additional third party transformation

engines like mediniQVT [ikv++ 12] increasing the installation and main-

tenance complexity due to further dependencies.

Insights into QVT-O

In the following, we provide a brief introduction to QVT-O which, as

mentioned above, was chosen for the implementation of the transfor-

mations developed in this thesis. For a detailed introduction to QVT-O,

we refer the reader to [Nolte 10], which forms the basis for this intro-

duction, as well as to the official QVT-O specification provided by the

OMG [OMG 07].

Listing 2.1: QVT-O Transformation Definition

1 import myUtilityLibrary;
2

3 modeltype UML uses SimpleUml
4 ( "http://omg.qvt-examples.SimpleUml" );
5 modeltype RDBM uses SimpleRdbms
6 ( "http://omg.qvt-examples.SimpleRdbms" );
7

8 transformation exampleTransformation(
9 in inputModel : UML,

10 out outputModel : RDBM)
11 access library myUtilityLibrary;
12 main() {
13 ...
14 }

62



2.2. Model-Driven Engineering

QVT-O transformations contain as a minimum the three mandatory

sections: model declarations, transformation declaration and the main

operation. As shown in Listing 2.1, model declarations start with the

keyword modeltype followed by an identifier that is assigned to this

model. The keyword uses separates the assigned name from the meta-

model specification. QVT-O allows importing externally defined meta-

models using a Uniform Resource Locator (URL) as well as the inline def-

inition as part of the QVT-O source code. Referencing an external meta-

model as illustrated in Listing 2.1 is the preferable option as it allows to

access and reuse the meta-model also from outside the transformation.

The transformation declaration, which begins with the keyword

transformation, defines the name of the transformation followed

by a comma separated list of models encapsulated in parentheses. An

identifier put in front of each model’s name defines the accessibility of

the model. Possible identifiers are in for “source model only”, out for

“target model only” and inout for “source and target model at the same

time” (in-place transformation). The models can be placed in this list

without any need to order them in relation to the access modifiers. Each

model is defined with a unique identifier to access them within the trans-

formation followed by the meta-model type as defined in the model dec-

laration section. The mandatory main operation is the starting point

when executing the transformation.

In addition to these mandatory elements, Listing 2.1 includes the im-

port of an external library. Libraries allow to partition the transforma-

tion into several files as well as to define common operations that can be

reused in other transformations. To access such external files they first

have to be imported using the import keyword followed by a reference

to the file omitting the file extension. Second, the transformation dec-

laration needs to be extended with an access library statement to

gain access to the library defined in the external file.
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Besides the main() operation which is the starting point of each

transformation, QVT-O differentiates the following three types of oper-

ations that can be declared within the transformation itself or within an

external library.

• Mappings are the standard operations to create new elements in

the transformation.

• Helpers specify general functionality not focused on the creation

of new elements. They have the same expressiveness as mapping

operations.

• Queries are read-only operations. They are used to locate and ac-

cess objects within a model.

Helper and mapping operations have a slightly different syntax but

comparable expressiveness as both are able to receive one or more in-

put parameters and able to return one or more output parameters. Ad-

ditionally, both handle input parameters as references and are thus able

to modify the referenced elements. The significant difference between

these two operation types is the fact that mapping operations cache the

returned results for each set of parameter values. This means that a map-

ping called a second time with the same parameters directly returns the

results of the first execution without executing its internal operations.

The QVT-O specification provides the following definitions to further

clarify the difference between mappings and helpers:

Definition 2.9 (Mapping [OMG 07]). “A mapping operation is an oper-

ation implementing a mapping between one or more source model ele-

ments and one or more target model elements.”

Definition 2.10 (Helper [OMG 07]). “A helper is an operation that per-

forms a computation on one or more source objects and provides a result.”
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Listing 2.2: QVT-O Operation Declaration

1 mapping myOperation(myClass: Class) : Entity @ targetmodel
{

2 name = "name";
3 }
4

5 helper myOperation(myClass: Class) : Entity {
6 var myEntity : Entity @ targetmodel =
7 Entity { name = "name" };
8 return myEntity;
9 }

10

11 query myOperation(myClass: Class) : Entity {
12 var myEntity : Entity = Entity { name = "name" };
13 return myEntity;
14 }

Additionally, the QVT-O specification states that helpers should not be

used to create new objects except when they refer to sets, tuples, or in-

termediate properties. Helpers can also be used to combine a sequence

of mappings when none or only one reference to a created element is

returned.

Listing 2.2 shows an example for each of these operation types. The

parentheses following the operation name contain a list of input ele-

ments in the form of tuples of identifiers and element types similar to

well-known programming languages. A colon separates the set of input

elements from the definition of the return type. Declaring multiple re-

turn types requires to separate them with a comma. If the operation

does not return any elements the body which is encapsulated in curly

braces begins directly after the specification of input parameters without

any colon. If the parent transformation specifies more than one output

model, the @ character followed by the name of the output model is used

to identify the target model that the element should be created in. The

@ syntax can also be used to identify the target model for inline object

creation as shown in Listing 2.2.
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Listing 2.3: QVT-O OCL example

1 container.containedElement->select(element | element.
oclIsTypeOf(MyType))

With OCL [OMG 06d], QVT-O integrates a very expressive and powerful

language supporting the selection and querying of elements within oper-

ations. Listing 2.3 demonstrates the querying of all instances of MyType

contained in container element.

In QVT-O, operations can be executed on a single element or on each

element of a provided set corresponding to an implicit foreach loop. A

simple dot “.” specifies the single execution while the arrow operator

“->” specifies the implicit for-each loop. In the example shown in List-

ing 2.4, the mappingA() operation is executed for each element con-

tained in the list elementList, but the oclIsTypeOf() operation

is applied only once for the whole elementList.

Listing 2.4: QVT-O Arrow Operator

1 elementList->map mappingA();
2 elementList.oclIsTypeOf(Collection);

In addition to this simplified notation using the arrow operator, QVT-O

provides and explicit forEach construct, which allows specifying a set

of instructions that should be executed for each element. Listing 2.5 pro-

vides an example of a forEach expression. The example first selects all

instances ofMyElement defined inmyModel. Second, the foreach loop

Listing 2.5: QVT-O forEach Construct

1 myModel.objectsOfType(MyElement)->forEach(element){
2 myModel.removeElement(element);
3 log("element removed");
4 };
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iterates over all selected elements. Within the loop body, the element is

first removed from myModel and then a log entry of the successful dele-

tion is created. Similarly to OO programming languages, the parenthe-

ses of the forEach construct contains the identifier to access the actual

processed element within the block.

After briefly introducing MDE and MDSD in general and the two trans-

formation languages applied in the context of this thesis, in the following

section we present an overview of the application of model-driven tech-

niques in the context of performance modelling and prediction.

2.3. Software Performance Engineering

Modelling and predicting extra-functional properties of software sys-

tems such as their performance and reliability is in the focus of research

for a long time. Quality and especially performance issues are one of the

root causes for serious problems that hamper the success of a software

project as reported in [Glass 98],[Briegleb 07], and [Bloomberg 12]. In the

past and at present, these problems are often targeted with a trial and er-

ror approach but this can be insufficient and become too expensive in

matters of business constraints and scale of modern business applica-

tions [Williams 03].

Over the last years numerous approaches have been proposed for in-

tegrating performance prediction techniques into the software engineer-

ing process. Efforts were initiated with Smith’s seminal work on Software

Performance Engineering (SPE) [Smith 90]. In recent years, with the in-

creasing adoption of Component-based Software Engineering (CBSE), the

SPE community has focused on adapting and extending conventional

SPE techniques to support component-based systems.

A number of architecture-level performance meta-models for compo-

nent-based systems have been developed as surveyed in [Koziolek 10].

The most prominent examples are the UML SPT profile [OMG 05] and
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its successor the UML MARTE profile [OMG 06e], all of which are ex-

tensions of UML as the de facto standard modelling language for soft-

ware architectures. Such meta-models provide means to describe the

performance-relevant aspects of software components (e.g., internal

control flow and resource demands) while explicitly capturing the influ-

ences of their execution context. The idea is that once component mod-

els are built they can be reused in multiple application and execution

contexts.
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Figure 2.16: Model-based Prediction Process based on [Becker 08a]
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2.3.1. Model-based Performance Prediction Process

To close the gap between architecture-level descriptions on the one hand

and specific performance prediction techniques on the other hand, most

approaches base upon a model-based prediction process [Becker 08a]

as illustrated in Figure 2.16. This process starts with a Software Model

that describes the Software System under study at the architecture-level.

The modelled system can be an already existing system, but it needs not

necessarily. Architecture-level meta-models like the already mentioned

UML but also meta-models specially designed for model-based perfor-

mance prediction techniques like CSM [Petriu 07], KLAPPER [Grassi 05],

or PCM, which is described in more detail in Section 2.4, form the basis

for modelling the system. Often, such architecture-level models already

exist as part of the software engineering process. For a more detailed pre-

sentation and discussion of individual architecture-level meta-models

for performance prediction and their support for modelling event-based

interactions, we refer to Section 3.1.2.

In the second step, the model is annotated with additional information

required for the performance prediction resulting in the Annotated Soft-

ware Model. As sketched in Figure 2.16 these annotations cover differ-

ent aspects and range from workload specifications over brach probabil-

ities and parameter characterisations up to resource demands for inter-

nal calculations and the processing rate of hardware resources. Generic

design languages like UML require additional profiles like the already

mentioned SPT or MARTE profile extending the language with the re-

quired annotation elements. Designated architecture-level meta-models

for performance prediction like PCM or KLAPPER already foresee such

annotation elements and supersede the extension with additional pro-

files. Depending on the existence of a system implementation, the anno-

tated values can be based on measurement on a running instance of the

system or estimated by the architect or software developer.
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The following steps are encapsulated and executed within an auto-

mated tool chain. First the Annotated Software Model is transformed into

a Prediction Model, which serves as input for a specific performance pre-

diction technique. Figure 2.16 sketches a Queueing Network as exem-

plary representative of a Prediction Model. However, a multitude of dif-

ferent prediction techniques exists. Applying the solver or simulators be-

longing to a prediction technique returns different performance metrics

like resource utilisation, throughput or processing times. These Predic-

tion Results serve as feedback to the architect to evaluate the system and

its architecture. Furthermore, the results enable optimising the system

architecture regarding one or more extra-functional properties, which

can be conducted manually by the architect or automated in architec-

ture optimisation frameworks like PerOpteryx [Koziolek 11a].

In the following section, we present an overview of different predic-

tion techniques that can be integrated in the model-based prediction

process.

2.3.2. Performance Prediction Techniques

Performance prediction techniques can be categorised into simulation-

based and analytical approaches. However, this classification is no clear

cut [Kounev 09a]. Both approaches have in common, that they require a

dedicated prediction model as input.

In Simulation-based approaches the prediction models are software

programs that mimic the behaviour of a system as requests arrive and get

processed at the various system resources. For this reason, they require

very detailed information about the system behaviour and the available

resources. The structure of a simulation program is based on the states

of the simulated system and simulated resources (e.g. CPU) used by the

system. The simulation programs records the duration of time spent in

different states. Based on these data, performance metrics of interest

(e.g., the average time a request takes to complete or the average system
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throughput) can be estimated at the end of the simulation run. The main

advantage of simulation models is that they are very general and can be

made as accurate as desired. However, this accuracy comes at the cost of

the time taken to develop and run the simulation.

Different approaches for realising a simulation-based performance

prediction exist [Kounev 12a]. The most time consuming approach is

the manual implementation based on general purpose programming

languages like C++ or Java, which might be extended with specialised

simulation libraries (e.g., DESMO-J [DESMO-J 12], SSJ [Simard 11] or

OMNET++ [OMNeT 12]). Applying model-driven techniques to gener-

ate the simulation code as for example demonstrated in [Becker 08a]

significantly reduces the implementation effort. Other simulation ap-

proaches use specialised languages to specify the simulation. These lan-

guage range from simple textual representations (e.g., SPSS [Gordon 78]

or MODSIM III [Goble 97]) up to graphical languages with specialised

modelling tools like ExtendSim [extendsim 12], Arena [Kelton 10] or

QPME [Kounev 10b]. A comprehensive treatment of simulation tech-

niques can be found in [Banks 04] and [Law 99].

Analytical approaches use mathematical laws and algorithms to solve

the prediction model and calculate the performance metrics. They

are usually less expensive and more efficient to analyse compared to

simulation-based approaches. However, because the analytical models

are defined at a higher level of abstraction, they are normally less de-

tailed and information about the system behaviour and structure are

lost. Queueing networks and generalised stochastic Petri nets are per-

haps the two most popular types of models used in practice. Queueing

networks provide a very powerful mechanism for modelling hardware

contention (contention for CPU time, disk access, and other hardware

resources) and scheduling strategies.

A number of efficient analysis methods have been developed for

product-form queueing networks, a special subclass of queueing net-
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works. The downside of queueing networks is that they are not ex-

pressive enough to model software contention and synchronisation as-

pects accurately. Extended queueing networks [MacNair 94] and Lay-

ered Queueing Networks (LQNs) (also called stochastic rendezvous net-

works) [Woodside 95] provide some support for modelling software con-

tention and synchronisation aspects, however they are often restrictive

and inaccurate. In contrast to queueing networks, generalised stochas-

tic Petri nets can easily express software contention, simultaneous re-

source possession, asynchronous processing, and synchronisation as-

pects. However, they do not provide any support for scheduling strate-

gies. With Queueing Petri Nets (QPNs) [Bause 93], which combine the

modelling power and expressiveness of queueing networks and stochas-

tic Petri nets, this disadvantage can be eliminated. A major hurdle to

the practical use of QPNs, however, is that their analysis suffers from the

state space explosion problem limiting the size of the models that can be

solved. Currently, the only way to circumvent this problem is by using

simulations for model analysis [Kounev 06].

All of the above performance prediction techniques have in common,

that detailed knowledge about the used prediction models is required,

so performance prediction could only be carried out by performance ex-

perts. The integration of these techniques into the model-based per-

formance prediction process in combination with the use of design-

oriented software models, enable software architects and developers,

which lack the required expert knowledge, evaluating the performance

of the system as part of the development cycle.

2.4. Palladio Component Model

This section introduces the Palladio Component Model (PCM) [Becker 09,

Happe 11], which provides the technical foundation for implementing

and validating the concepts presented in this thesis. The discussion of
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PCM’s meta-model is not exhaustive but reduced to the core concepts

that are required for understanding the following thesis chapters. For

more details, we refer to the technical report [Reussner 11], which pro-

vides a full discussion of the PCM meta-model.

The development of PCM started in 2003 at the University of Olden-

burg, and since 2006 it has been further developed at the Karlsruhe In-

stitute of Technology (KIT) and the Forschungszentrum Informatik (FZI).

PCM is accompanied by an integrated modelling and prediction tool,

the PCM-Bench [PCM 12]. It is build on top of the Eclipse technology

stack extensively using the Eclipse Modeling Framework Project (EMF)

and Graphical Modeling Framework (GMF). PCM-Bench provides graph-

ical editors aligned with the UML syntax, a simulation engine as well

as several transformations into analytical prediction models and differ-

ent visualisations of the prediction results. PCM is one of the most ad-

vanced and mature solutions in the field of model-based performance

prediction techniques for component-based system architectures (sur-

veyed in [Koziolek 10]). The applicability and prediction accuracy of Pal-

ladio approach has been validated in several industrial case studies (e.g.,

[Huber 10], [Koziolek 11c], [Rathfelder 12], and [Gouvêa 12]) as well as

empirical experiments [Martens 08b, Martens 08a, Martens 11].

The PCM meta-model is structured into several loosely coupled sub

models. This separation respectively parameterisation of a PCM model,

allows an individual variation of the different influence factors on the

performance of component-based systems [Becker 06a], which are:

1. Implementation Obviously, the implementation of algorithms

and data structures within a component has an impact on the pro-

cessing and memory demands and thereby on the performance of

the whole system.

2. Required Services Components or complete systems that require

services provided by other components respectively systems de-
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pend not only functionally on these services. As the requiring com-

ponent has to wait until the service call is executed, the perfor-

mance is influenced by the performance of the required services.

3. Resource Environment and Deployment The resource environ-

ment, which consists of different hardware resources, like servers

with CPUs, memory and hard disks, but also the network infras-

tructure and the different middleware systems, has an impact on

the system performance. Often, but not always, more or faster

CPUs, memory, or network connections promise an improved per-

formance of a system, which results in the “Kill it with iron” ap-

proach [Weikum 02]. This approach tries to solve performance

problems with increasing the number and speed of available hard-

ware resources.

4. Usage Profile The dependency between the execution time of an

algorithm and the input parameters is known for a long time.

Especially in the area of algorithm theory, the Big-O notation

(O(n)) [Landau 09] is often used to describe such dependency be-

tween execution time and a characterisation n of the input param-

eters. In addition to the characterisation of input parameters, the

usage profile also covers the number of system calls as well as their

frequency. It is obvious, that a concurrent use of the system by sev-

eral users induces more load on the resources than one single user

with only one request.

In order to enable an individual variation of these influence factors

within one model, PCM defines the overall five different sub-models,

which are depicted in Figure 2.17. The Repository Model specifies a

library of system components and their provided and required inter-

faces. To specify the internal behaviour of components providing a ser-

vices, PCM provides the Resource Demanding Service Effect Specifica-

tion (RD-SEFF) language, which additionally includes specifications of
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Figure 2.17: Overview on the Palladio Approach

resource demands and parameter dependencies. The System Model de-

scribes the structure of the system by connecting components via their

provided and required interfaces. In the Allocation Model, the compo-

nents that are part of the system are allocated to physical resources de-

scribed in the ResourceEnvironment, which specifies the hardware envi-

ronment the system is executed on, e.g., servers, processor speed, net-

work links. The Usage Model describes the workload induced by the

system end-users. For example, it specifies how many users access the

system, the inter-arrival time of requests, or characterisations of input

parameters. Usage profiles within the model represent individual user

behaviours. As illustrated in Figure 2.17, the combination of al these

models forms an instance of a Palladio model. To predict the perfor-

mance of the modelled system, several transformation into prediction

models have been developed. Becker developed a transformation into

a Java-based simulation [Becker 08a], called SimuCom. The generated

Java code, which builds on the DESMO-J simulation framework, is com-

piled on-the-fly and executed. SimuCom is tailored to directly sup-

75



2. Foundations

port all PCM elements and thus is the most expressive prediction tech-

nique for PCM models. Meier et al. presented a transformation into a

QPN model [Meier 11] that enables using simulative as well as analyt-

ical prediction techniques developed for QPNs [Kounev 06]. Koziolek

et al. developed a transformation into LQNs [Koziolek 08b] that can be

solved with low overhead however with less accuracy compared to QPN-

based predictions [Meier 11]. Brosch developed a transformation into

Markov Chains [Brosch 12] that enables a combined evaluation of per-

formance and reliability as demonstrated in [Martens 09]. The following

sub-sections provide a detailed presentation of the different sub models.

2.4.1. Repository Model

The PCM Repository Model contains all information required to spec-

ify the individual components, namely component types, interfaces, re-

quired and provided relations between components and interfaces, and

component behaviours. Figure 2.18 gives a high-level overview of the

meta-model classes involved in component definitions. For the sake

of clearance, we abstract some multi-level inheritances. The Repos-

itory, which is the root element of the Repository Model, contains a list

of RepositoryComponents, Interfaces, and DataTypes.

EachInterface contains a list ofSignatures, defining inputPa-

rameters and a DataType as returnType of an operation. PCM

supports the specification of PrimitiveDataTypes, Collection-

DataTypes, and CompositeDataTypes. PrimitiveDataTypes

conform to one out of a list of given types including “int”, “string”, “bool”,

and others. CollectionDataTypes represent a set of data items of

a specific innerType. CompositeDataTypes contain a list of In-

nerDeclarations, each pointing to one contained DataType.

RepositoryComponents are a specialised InterfaceProvid-

ingRequiringEntity, which means that they can provide or require

interfaces through the specification of contained ProvidedRoles and
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Figure 2.18: Meta Model of PCM Repository Model

RequiredRoles. This concept of Roles allows reusing interface

definitions within multiple component specifications. A Reposito-

ryComponent is either a BasicComponent or a CompositeCom-

ponent. While the first one cannot be further decomposed, the lat-

ter one is a composition of existing components. Section 2.4.2 pro-

vides more details on the composition of components. Moreover, the

Repository itself and most of the described elements are Entities,

equipped with a unique id and a name.
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Each service operation offered by a BasicComponent through

its ProvidedRoles must be accompanied by a corresponding be-

havioural specification that describes the reaction of the component

when the service operation is invoked. In PCM, the component be-

haviour is represented by a contained ResourceDemandingSEFF

(where “SEFF” stands for service effect specification), which is, as illus-

trated in Figure 2.19, a subtype a ResourceDemandingBehaviour.

Each behaviour contains a set of AbstractActions, with each Ab-
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stractActions pointing to its predecessor and successor.

Different action types represent different kinds of execution steps.

StartActions and StopActions act as delimiters of action se-

quences. The AbstractLoopAction represents a repeated execu-

tion of a referenced internal ResourceDemandingBehaviour. Nor-

mal LoopActions contain a loop iteration counter specified through a

PCMRandomVariable while CollectionIteratorActions ref-

erence a Parameter with a CollectionDataType and iterate over

the size of this parameter. BranchActions represent decisions

within the control flow. They contain a set of AbstractBranch-

Transitions each including exactly oneResourceDemandingBe-

haviour. ProbabilisticBranchTransitions contain a fixed

value expressing the probability for executing this branch. Guard-

edBranchTransitions contain a PCMRandomVariable repre-

senting a boolean expression. ForkActions include a set of Re-

sourceDemandingBehaviours, which are concurrently executed.

An InternalAction represents a computational step during service

execution. It abstracts the algorithmic details and lists the associated

resource consumption in form of ParametricResourceDemands.

A resource demand refers to a certain ProcessingResourceType

(e.g. a CPU or hard disk). ExternalCallActions describe the in-

vocation of an operation provided by another component. They refer-

ence the RequiredRole of the current component and the Signa-

ture of the invoked operation to avoid a direct wiring between compo-

nents. To hand over parameters, ExternalCallActions contain a

set of VariableUsages.

As illustrated in Figure 2.20 VariableUsages include an Ab-

stractNamedReference to identify the parameter and a characteri-

sation of a parameter property through a VariableCharacterisa-

tion. The identification is a VariableReference, which contains

the name of the parameter on its own or encapsulated in Namespac-
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Figure 2.20: Meta Model of Variable Usages

eReferences, which in case of a complex data type address the outer

data type. Each VariableCharacterisation specifies one out of a

given set of properties (such as “Value”, “Type”, “Bytesize”, “Structure”, or

“NumberOfElements”) and provides the value of this property through a

PCMRandomVariable. The PCMRandomVariable contains a string

based on the Stochastic Expression (StoEx) language [Koziolek 08a]. This

language, which is part of PCM, allows expressions, which range from

single numbers, probability distributions up to mathematical and log-

ical expressions that contain references to parameters available in the

current execution context.

2.4.2. System Model

The PCM System Model captures the instantiation of components in-

cluding their interconnections to describe the system architecture. Fig-

ure 2.21 shows the involved meta-model classes with the System as

root element. It is both an InterfaceProvidingRequiringEn-
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tity and a ComposedStructure. As ComposedStructure, it

provides the ability to instantiate RepositoryComponents through

AssemblyContexts. These contexts can be connected through As-

semblyConnectors. Connectors contain references to the providing

and requiring contexts as well as to the belonging provided and required

roles. While systems represent the highest level of composition, the cor-

responding meta-model concepts can also be used to express composi-

tion on lower levels through CompositeComponents, which are con-

tained in a PCM Repository Model.
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2.4.3. Resource Environment and Allocation Model

PCM includes modelling constructs for a physical resource environment

and the allocation of software components to computing nodes in form

of the Resource Environment and the Allocation Model. As they are

tightly coupled, Figure 2.22, presents a merged overview of the two meta-

models. The Allocation Model maps components of a system to comput-

ing nodes and resources. For each AssemblyContext defined within

the System Model, the Allocation Model contains an AllocationCon-

text associated with the AssemblyContext and additionally with a

ResourceContainer that represents the computing node.

The Resource Environment defines a set of ResourceContain-

ers that can be connected through LinkingResources. Each Re-

sourceContainer hosts physical resources declared as Process-
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ingResourceSpecifications. ProcessingResourceSpec-

ifications refer to one specific ProcessingResourceTypes

(e.g., CPU or HDD) and contain a PCMRandomVariable specifying

the processing rate of the resource. A LinkingResource contains a

single CommunicationLinkResourceSpecification that refer-

ences a CommunicationLinkResourceType such as LAN and in-

cludes a specification of latency and throughput by means of two PCM-

RandomVariables.

2.4.4. Usage Model

With the Usage Model, PCM offers explicit modelling constructs de-

picted in Figure 2.23 to express the usage profile of a system. A Us-

ageModel contains a list ofUsageScenarios, each scenario describ-

ing a certain use case of the system. The behaviour itself is captured

through ScenarioBehaviours, similar to ResourceDemanding-

Behaviours used to describe the component behaviour. To specify

the execution frequency, each UsageScenario contains an abstract

Workload, which can either be an OpenWorkload or a Closed-

Workload. OpenWorkloads specify the execution frequency by

means of an interArrivalTime specified as PCMRandomVari-

able. ClosedWorkloads contain an Integer attribute to specify the

size of the population pool and an additional PCMRandomVariable to

specify the thinkTime between each service invocation. Each Sce-

narioBehaviour includes a set of AbstractUserActions, ref-

erencing each other as successors and predecessors. Similarly to Re-

sourceDemandingBehaviours, the Usage Model foresees elements

for begin and end of behaviour (Start, Stop), loops (Loop), deci-

sions (Branch), and invocations of operations provided by the system

(EntryLevelSystemCall). Furthermore, the Usage Model allows the

specification of waiting or sleep times in form of the DelayAction,

which includes a PCMRandomVariable as timeSpecification.
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Loops specify iteration counts through PCMRandomVariables and

branches contain BranchTransitions with individual branch prob-

abilities. Both loops and branch transitions include nested internal be-

haviours. An EntryLevelSystemCall references one of the Pro-

videdRoles belonging to the system and a Signature identifying a

certain operation.
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Figure 2.23: Meta Model of PCM Usage Model
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2.5. Concluding Remarks

In this chapter we provided the background needed for the understand-

ing of this thesis. We started with the concept of events and EBS. As part

of this discussion, we introduced a categorisation schema for EBW and

applied it to multiple existing middleware implementations to demon-

strate the variations between different existing systems. This overview of

the context of our work was followed by an introduction into the domain

of MDE and MDSD including a detailed description of the two transfor-

mations languages (MOLA and QVT-O) applied in this thesis. Further-

more, we introduced the area of SPE. At the end of this chapter, we gave

an overview of PCM, which forms the basis for our implementation de-

scribed in Section 4.4.
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The approach presented in this thesis combines architecture-level mod-

elling of event-based interactions (Chapter 4) with a detailed platform-

specific performance prediction technique (Chapter 5) which are both

independent research areas on their own. The following overview of re-

lated work starts with a presentation of different approaches that target

modelling at the architecture-level in Section 3.1. Following this in Sec-

tion 3.2, we present related work in the area of performance prediction

techniques specialised for EBS, while finally Section 3.3 concludes with

a summary.

3.1. Architecture-level Modelling

Architecture-level models for component-based systems (e.g., surveyed

in [Lau 06], [Lau 07], [Feljan 09], and [Crnkovic 11]) can be classified into

two areas depending on the goal for which the models are used. The

first area covers component and architecture models that are designed

with the goal to support the implementation. They are often comple-

mented with M2T transformations to generate source code, configura-

tion files, or deployment descriptors. The second area contains mod-

els that have beed designed to enable QoS prediction. Compared to the

implementation-oriented approaches, these models often include addi-

tional information required by the prediction techniques. The classifi-

cation schema for component models introduced in [Crnkovic 11] ex-

plicitly addresses the support of modelling Pub/Sub interactions. How-

ever, none of the more than 20 models surveyed in [Feljan 09] and
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[Crnkovic 11] using this classification schema provides any support for

modelling Pub/Sub interactions.

3.1.1. Implementation-oriented Approaches

With the goal to simplify the implementation and structuring of systems,

several component models have beed developed in research and in-

dustry. These implementation-oriented models can be categorised into

platform-specific and platform-independent models. Platform-specific

models are defined to enable the specification of components executed

in a specific execution container or technical framework, while platform-

independent models describe components on a higher level of abstrac-

tion without assuming a specific execution environment. In the follow-

ing overview, we focus on models that provide an explicit support of

event-based communication. For a more comprehensive survey of com-

ponent models in general, we refer to [Lau 06] and [Feljan 09].

Platform-specific Models

Platform-specific component models have mostly been defined by in-

dustry. They often build on existing programming languages and ex-

tend them with the definition of explicit component boundaries includ-

ing provided and required interfaces. The most prominent examples of

industrial component models are Microsoft’s Component Object Model

(COM) [Microsoft 07], Enterprise JavaBeans (EJB) [DeMichiel 06], which

are based on Java EE, and the language independent CORBA Component

Model (CCM) [OMG 06a] standardised by the OMG.

CORBA The Common Object Request Broker Architecture (CORBA)

[OMG 11] is a framework specified by the OMG for building distributed

component-based applications. It enables software components writ-

ten in different languages and running on multiple computers to work
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together. The CORBA Component Model (CCM) [OMG 06a], which is

one part of the CORBA standard, defines the general structure of com-

ponents and their possible interfaces. CCM explicitly distinguishes be-

tween method calls and events. It supports four kinds of component

ports that enable components communicating with each other.

• Facets are operational interfaces respectively methods provided by

a component.

• Receptacles define the interfaces required by a component. The

receptacles are later connected with facets.

• Event Sources define the ports of a component that emit events of

a specific type.

• Event Shrinks specify sink ports through which a component re-

ceives events of a given type from one or more sources.

For Facets and Receptacles, it is necessary to define the interfaces that

specifies the input and output parameters. Event Sources and Shrinks re-

quire only the definition of the event’s data type. Composition of compo-

nents is done by connecting Facets with matching Receptacles or Event

Sources with Event Shrinks. Although CORBA supports channel-based

interactions between event sources and sinks based on the Notification

Service [OMG 04b] standard as described in Section 2.1.2, CORBA and

CCM in particular do not provide any support for specifying such inter-

actions at the architecture-level.

AUTOSAR The Automotive Open System Architecture (AUTOSAR)

[aut 07] is an open and standardised automotive software architecture,

jointly developed by automobile manufacturers, suppliers and tool de-

velopers. In contrast to CORBA, which is often used for large business

information systems, AUTOSAR focuses on embedded systems for auto-

motive industries. The aim of AUTOSAR is to provide a common frame-
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work that enables and supports the integration and interaction of soft-

ware components from different vendors in a car. Although CORBA

and AUTOSAR are developed for completely different domains, the in-

cluded component models bear large resemblance. AUTOSAR also dis-

tinguishes between method invocations and event-based communica-

tion. In AUTOSAR they are called client-server and sender-receiver. In

addition to these two communication types, the AUTOSAR component

model defines a third port type, the calibration ports. Calibration ports

are not involved in component interactions, they rather allow compo-

nents access to static calibration parameters. In addition to the three

port types client-server, sender-receiver, and calibration, ports are ad-

ditionally differentiated by providing or requiring data. Similarly to

CORBA, it is only allowed to connect required and provided ports of the

same type. Furthermore, a required client-server port can be connected

with only one provided port. In contrast, both required and provided

sender-receiver ports may be connected to several provided respectively

required ports. Similar to CORBA, AUTOSAR does not provide any sup-

port for modelling Pub/Sub interactions.

SCA The Service Component Architecture (SCA) [OASIS 07b] is a set

of specifications that allow the modelling and specification of appli-

cations and systems using a Service-Oriented Architecture (SOA). SCA

combines component-based development with the paradigm of service-

orientation. In contrast to the component models presented before, SCA

components do not distinguish between event-based communication

and synchronous method invocation. SCA differentiates between re-

quired and provided interfaces only. As shown in Fig. 3.1, SCA compo-

nents have additionally the possibility to configure a component from

the outside. Similar to AUTOSAR, SCA components provide a special

properties port. Although, SCA considers only provided and required

interfaces, it is also possible to use message-based communication us-
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Figure 3.1: Schematical Overview of an SCA Component [OASIS 07b]

ing JMS [Hapner 02]. The JMS Binding Specification [OASIS 07a] defines

how to map the provided and required interfaces to a JMS-based com-

munication. As this mapping is done after specifying a component, it is

not possible to explicitly specify that certain interfaces of a component

have to use message-based communication or emit respectively handle

events. Furthermore, an explicit modelling of one-to-many or many-to-

many interactions is not supported.

The presented platform-specific component models have in common

that they enable the specification of component boundaries but mostly

neglect the composition of components. The definition of an interme-

diate event channel and Pub/Sub interactions is supported by none of

these component models.

Platform-independent Models

With the aim to allow platform-independent specifications, several Ar-

chitecture Description Languages (ADLs) have been developed. The most

prominent representative is the Unified Modeling Language (UML). Such

platform-independent ADLs are on the one hand often used to docu-

ment the architecture of a software system in an abstract but formal way.

On the other hand, they are often accompanied by (semi-)automated

transformations, that directly generate code or refine the model to a

platform-specific model as described in Section 2.2.2. The following

overview focuses on a selection of representative platform-independent
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models, which have not yet been covered in one of the referenced sur-

veys, and their capabilities to model event-based interactions.

UML The Unified Modeling Language (UML) more specifically UML

2.0 [OMG 10], defines several views on a software system. Component di-

agrams aim at illustrating the structure of a system. A UML component

represents a modular unit of a system with explicitly defined provided

and required interfaces. In UML, “An interface declares a set of public fea-

tures and obligations that constitute a coherent service offered by a clas-

sifier” [OMG 10], which does not limit interfaces to a pure request/reply

behaviour. Nevertheless, UML does not allow an explicit differentiation

between RPC-style and event-based communication. When describing

the behaviour of a system using activity diagrams, UML provides ded-

icated action elements to emit and receive events, which can be con-

nected with Ports that belong to a Classifier element and, following the

inheritance hierarchy, to interfaces as well. Similarly to the other compo-

nent models, UML does not support the modelling of Pub/Sub commu-

nication using one or multiple intermediating event channels. As already

described in Section 2.2, UML forms the basis of the MDA approach. Fur-

thermore, extended with profiles, UML is used as platform-independent

modelling language for several performance prediction approaches.

QImPrESS SAMM The Quality Impact Prediction for Evolving Service-

oriented Software (QImPrESS) project, a European research project, de-

veloped methodologies and tools to provide service-orientation to crit-

ical application domains with guaranteed end-to-end quality. The Ser-

vice Architecture Meta-Model (SAMM) [Becker 08b] is one of the results

of the project. This meta-model is similar to PCM but extended with a

couple of modifications specific to the requirements of the QImPrESS

project. The design goal of SAMM was to provide a general ADL to de-

scribe service-oriented systems, which is not limited to predictions of a
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certain quality attribute. SAMM contains elements for event-based com-

munication including support for many-to-many relationships between

connected components. Although SAMM allows many-to-many connec-

tions, it does not provide any elements for specifying Pub/Sub interac-

tions. The QImPrESS tools support performance prediction based on the

PCM tool-chain. Nevertheless, the event-based part of the meta-model

is not supported by the included performance prediction techniques.

PICML The Platform-independent Component Modeling Language

(PICML) [Balasubramanian 07] is part of the Component Synthesis with

Model Integrated Computing (CoSMIC) framework [Gokhale 02] devel-

oped at Vanderbilt University. PICML provides a language to describe

components in a platform-independent way. Automated transforma-

tions generate platform-specific code skeletons, deployment descrip-

tors, and configuration files. As the main goal of CoSMIC and PICML is

the generation of implementation artefacts, it lacks information required

for performance prediction, like an explicit usage model of the system

or a description of the component’s internal behaviour. Furthermore,

PICML only supports direct connections between components and does

not provide meta-model elements to modelling individual event chan-

nels or a central event bus.

MontiArch MontiArch [Haber 12] is a framework for modelling and

simulation of distributed interactive systems developed at RWTH

Aachen. It contains a textual language to describe components and

their composition. Components in MontiArch communicate only by

interchanging events, which is one of the characteristics distinguishing

MonitArch from other models. Each component contains a set of ports

associated with an event type. In addition to the explicit definition of

connectors between source and sink ports, MontiArch allows an implicit

definition, which automatically connects a sink with all sources that of-
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fer a compatible event type. According to our classification schema for

EBS, implicit definition of connectors are type-based subscriptions. Syn-

chronous RPC-style interactions are not supported in MontiArch. The

specification of a component’s behaviour is based on declarative invari-

ants using Java or OCL. More complex behaviours need to be directly im-

plemented using Java.

Although some of the presented implementation-oriented approaches

are accompanied by prediction and simulation techniques, they have

been designed with the main goal to support the implementation of a

system. The architecture-level performance prediction approaches de-

scribed in the following, use models that have been explicitly been de-

signed to enable performance prediction.

3.1.2. Analysis-oriented Approaches

Following the SPE [Smith 90] approach, a number of architecture-level

performance meta-models have been developed. Several approaches

use model transformations to derive performance prediction models

(e.g., [Marzolla 04, Petriu 00, Di Marco 04, Becker 09]). A survey on per-

formance meta-models [Cortellessa 05] led to a conceptual MDA frame-

work of model transformations for the prediction of different extra-

functional properties [Cortellessa 07b, Cortellessa 07a].

CB-SPE [Bertolino 04] applies the original SPE method of Smith et al.

to component-based systems with the limitation that impacts of the in-

ternal processing and input parameters are not considered. Resource

demands are modelled probabilistically and dependencies on input pa-

rameters are neglected. The ROBOCOP [Gelissen 03] framework and

the associated performance prediction techniques [Bondarev 04] are fo-

cused on the area of embedded systems. They allow the description of

component internals in relation to the parameters of external services

and resources. Due to the focus on embedded systems, resource param-

eters can only be specified as constant values and software layers are
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not supported at all. Communication in ROBOCOP can be either syn-

chronous or asynchronous, however always limited to the request/re-

ply paradigm. SAPS [Balsamo 03] uses annotated UML models as input

for the performance prediction technique. The annotations are based

on a proprietary annotation model and require manual model adap-

tations. Since the approach is based on UML, it provides no support

for modelling and analysing event-based interactions. A recent survey

of methods for component-based performance engineering was pub-

lished in [Koziolek 10]. Although some of the approaches support asyn-

chronous communication between components, none of them supports

the modelling and performance prediction of Pub/Sub-based interac-

tions.

Since the communication middleware can have significant influence

on the performance of the system, several approaches, which build on

existing architecture-level prediction techniques, explicitly address the

refinement of connectors and the integration of middleware-specific

performance influence factors into prediction models.

Woodside et al. [Woodside 02] introduced the idea of performance

completions. Completions are used to refine an abstract software model

by integrating annotations, sub-models or patterns that describe per-

formance relevant factors on a lower level of abstraction. One of the

presented examples is a CORBA-based RPC that is refined by integrat-

ing multiple interactions with the object request broker. Based on this

idea, several approaches that use model transformations to integrate

platform-specific details into architecture-level models have been devel-

oped.

Wu et al. [Wu 04] envision a repository of common platform-specific

components, such as database or middleware servers. Based on a set

of rules, the required components are selected and integrated into the

model. Although, they identified the importance of automating this pro-

cess, it seems that they have discontinued their work on this approach.
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Verdickt et al. [Verdickt 05] developed a framework to automatically

consider the impact of CORBA middleware on the performance of dis-

tributed systems. Transformations integrate CORBA-specific details into

high-level middleware-independent UML models. The work focuses on

the influence of RPCs as implemented in CORBA, Java Remote Method

Invocation (RMI), and Simple Object Access Protocol (SOAP) and neglects

event-based communication. Dependencies on service parameters were

not considered.

The approach developed by Grassi et al. [Grassi 06] transforms

architecture-level UML models into the intermediate Kernel LAnguage

for PErformance and Reliability analysis (KLAPER) [Grassi 08]. When

transforming the UML models into KLAPER, QVT-R-based transforma-

tions refine the typed UML connectors with additional processing steps

for marshalling or calling a name service within the KLAPER model. Sim-

ilarly to Verdickt’s approach, the selection of using UML as specification

language limits the approach to direct RPC-style communication.

Coupled Transformations [Becker 08a] combine automated perfor-

mance completions with model-driven code generation. A dedicated

configuration model attached to connectors in a PCM model specifies

the realisation (e.g., SOAP or RMI) of the respective connector. Using

this annotated PCM model as input, Coupled Transformations gener-

ate both the implementation code and the refined performance model

in parallel. Since component interactions in PCM have been limited to

RPC-style communication before introducing the extensions presented

in this thesis, event-based interactions have never been in the focus of

Coupled Transformations.

A method for modelling JMS-Queues using performance completions

is presented in [Happe 10]. Modelling patterns are used to refine com-

ponent connectors with asynchronous communication. Again the use

of the original PCM as a basis limits this approach to direct P2P con-

nections. A case study based on the SPECjms2007 benchmark is pre-
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sented as a validation of the approach. However, no interactions in-

volving multiple message exchanges or interaction mixes are included

and their case study considers only a small subset of the benchmark

functionality tailored to a specific workload scenario. In [Happe 10], the

combination with Coupled Transformations enabling a configurable au-

tomated model refinement is demonstrated. This refinement transfor-

mation has never been completely implemented and integrated into the

Palladio tool, but the underlying idea was one of the starting points for

the approach presented in this thesis.

In [Kapova 10a], a refinement transformation for concurrent systems

is presented based on PCM. The authors introduce one-to-many con-

nectors between operational interfaces to model Pub/Sub interactions,

which limits the approach to one-to-many interactions. Since in real-

istic systems using Pub/Sub communication, the interactions are often

many-to-many, this limitation restricts the approach to a small subset of

EBS. Although PCM supports only one-to-one connectors, the authors

do not provide any details explaining this new connector type and its se-

mantics in terms of blocking method invocations and handling of return

values. The sketched refinement of connectors abstracts the complete

transmission system in one black-box component and thus does not al-

low the specification of detailed resource demands that depend for ex-

ample on the number of subscribed sinks.

The Chilies approach developed by Kapova [Kapova 11] uses Higher

Order Transformations (HOTs) to generate refinement transformations

that integrate performance completions into the prediction model. Ex-

tended feature diagrams are used to control the transformation gener-

ation. In these extended feature diagrams, each feature node (e.g., en-

crypted communication or data compression) contains a QVT-R code

snippet. This code snippet is integrated into the refinement transforma-

tion if the respective feature is selected. This generation approach makes

the assumption that the different features are independent. But, even
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if the order of encryption and compression might eventually be negli-

gible from a functional point of view, the differences in terms of perfor-

mance can be significant. In contrast to our approach, which strictly sep-

arates platform-independent and platform-specific aspects, the Chillies

approach encapsulates all knowledge in HOTs. As already recognised by

Kapova, the complexity of developing a HOT for performance comple-

tions is very high and developers require expert knowledge in the areas

of M2M transformations, performance completions as well as platform-

specific details. A detailed evaluation of the applicability of the Chilies

approach in terms of effort reduction compared to the manual specifica-

tion of refinement transformations is not available.

3.2. Performance Prediction Techniques for Event-based Systems

In the following, we present an overview of existing performance mod-

elling and analysis techniques specialised for EBS including systems

based on a centralised MOM as well as distributed environments. A sur-

vey of techniques for benchmarking and performance modelling of EBS

was published in [Kounev 09b].

Liu et al. [Liu 05a] developed an approach to predict the perfor-

mance of component-based systems deployed in a Java EE application

server. Their approach uses queueing networks to model the system. A

lightweight application-independent benchmark is used to derive the re-

source demands of the application server. In [Liu 05b], they extended

their approach for applications using JMS-based communication. How-

ever, the workloads considered in their approach do not include multiple

message exchanges or interaction mixes.

In [Henjes 06b], a mathematical model of the message processing time

and throughput of the WebSphereMQ JMS server is presented and vali-

dated through measurements. The presented results show that the sys-

tem throughput is significantly influenced by the number of subscribed

98



3.2. Performance Prediction Techniques for Event-based Systems

sinks and the number of defined filters. Several similar studies using

FioranoMQ, ActiveMQ, and BEA WebLogic JMS server were published

in [Henjes 06a], [Henjes 07a] and [Henjes 07b], respectively. [Menth 06]

presents a detailed analysis of the message waiting time for the Fiora-

noMQ JMS server. All these studies, however, focus only on the event

processing within the middleware and neglect the system architecture

and the event processing within the system components. Additionally,

they consider only the overall message throughput and latency and do

not provide any means to analyse complex event-based interactions and

message flows.

In [Baldoni 05, Virgillito 03], computational models for Pub/Sub com-

munication are proposed. The transmission system is represented by a

set of delay values that are assumed to be known, which is not realis-

tic to expect. Based on this computational model, the authors derive a

probabilistic model for the effectiveness of the transmission system in

delivering events to a set of the subscribers. Performance metrics such

as event processing and transmission times or resource utilisations are

not considered.

He et al. [He 07] use probabilistic model checking techniques to anal-

yse Pub/Sub systems. The model describing the transmission system in-

frastructure is based on probabilistic timed automata. Component be-

haviours described as state chart diagrams are translated into probabilis-

tic timed automata. The analysis considers the probability of message

loss, the average time taken to complete a task and the optimal message

buffer sizes.

In [Sachs 09], Sachs et al. present a detailed evaluation of a MOM

server using the SPECjms2007 benchmark. With the aim to simplify

the development of performance models for EBS, Sachs defined sev-

eral performance modelling patterns in [Sachs 11] . These patterns map

architecture-level characteristics and attributes like “Pub/Sub with n sub-

scribers” or “Queueing Load Balancer” to Queueing Petri Net (QPN) mod-
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els. Although these patterns reduce the gap between architecture-level

specifications and low level prediction models such as QPNs, still expert

knowledge is required as the performance model has to be built man-

ually. The applicability of the modelling patterns and the accuracy of

the prediction results was demonstrated using the SPECjms2007 bench-

mark [Sachs 12].

Kounev et al. [Kounev 08] present a methodology for workload char-

acterisation and performance modelling of distributed event-based sys-

tems. Based on a workload model, analytical prediction techniques are

used to estimate the mean delivery time. For more accurate prediction

results, QPN models are used. The approach relies on the availability of

monitoring data from the running system and is thus only applicable if a

running system implementation is available.

Mühl et al. [Mühl 09] present an analytical model for Pub/Sub systems

using hierarchical identity-based routing. The approach only considers

the routing table size and the message rate as factors. In [Schröter 10],

Schröter et al. refine this approach and extend it with support for ad-

ditional routing algorithms. However, both approaches do not consider

the client’s behaviour in their analyses and are targeted only at analysing

the performance of the distributed transmission system instead of the

system as a whole.

3.3. Concluding Remarks

This chapter provided an overview of related work in the area of mod-

elling event-based interactions at the architecture-level and perfor-

mance prediction techniques for EBS. Our review of architecture-level

modelling approaches ranges from implementation-oriented compo-

nent models developed by industry, over generic platform-independent

ADLs, up to modelling approaches that have been designed to enable

QoS evaluation and prediction. As this area of research has been in the
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focus of several surveys, we focused our review on the support of mod-

elling event-based interactions provided by a selected set of representa-

tive approaches. While several approaches provide support for explicitly

modelling event ports provided by components, only few of them allow

modelling component compositions by connecting different ports. Sup-

port for modelling Pub/Sub communication using one or several inter-

mediate event channels is provided by none of the existing approaches.

Several performance prediction approaches based on architecture-

level models explicitly address the integration of middleware-specific

behaviour and resource demands into the prediction models. They all

highlight the significant impact of the employed underlying communi-

cation middleware on the system performance. However, due to the

lack of modelling support for decoupled Pub/Sub interactions these ap-

proaches are limited to systems using direct one-to-one connections be-

tween components.

In contrast, prediction approaches explicitly targeted at Pub/Sub sys-

tems focus on the transmission system only and neglect the system ar-

chitecture and the individual behaviour of the interacting components.

Given that such approaches use specialised analytical models, apply-

ing them in practice requires detailed expert knowledge, which hampers

their integration into a general software development process.
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Event-based interactions are used increasingly often to build scalable

and loosely-coupled distributed systems in many different industry do-

mains. The application areas of Event-based Systems (EBS) range from

distributed sensor-based systems up to large-scale business information

systems [Hinze 09]. Modelling such systems at the architecture-level re-

quires a set of abstractions to describe event-based interactions between

components. As already discussed in Section 3.1, multiple Architecture

Description Languages (ADLs) for component-based system exist in in-

dustry and research. Although some of them contain modelling elements

that support the explicit modelling of direct Point-to-Point (P2P) interac-

tions between components, none of them provide support for modelling

decoupled Publish/Subscribe (Pub/Sub) interactions using an intermedi-

ate event channel. Pub/Sub interactions are one of the most often used

approaches to realise decoupled many-to-many communication in dis-

tributed component-based systems. Supporting the modelling of such

systems at the architecture-level requires new and more expressive mod-

elling abstractions.

In this chapter, we develop a set of abstractions enabling the modelling

of event-based interactions at the architecture-level supporting the spec-

ification of direct P2P communication as well as decoupled Pub/Sub

communication. With the native support for P2P and Pub/Sub interac-

tions between components, the developed modelling approach enables

the modelling of a large set of different EBS that are not supported by ex-

isting approaches. After discussing the requirements on an architecture-
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level modelling approach for event-based interactions in Section 4.1, we

present the developed modelling abstractions. We designed the abstrac-

tions with the aim to be capable of being integrated into existing ADLs

for component-based system. Section 4.3 describes the behavioural se-

mantics of the introduced modelling abstractions. In Section 4.4, we

demonstrate the extension of the Palladio Component Model (PCM) a

representative and mature ADL for component-based systems using the

presented modelling abstractions. Finally, in Section 4.5, we conclude

with a short summary.

4.1. Relevant System Aspects and Characteristics

In [Koziolek 06], a QoS-driven modelling process for component-

based systems is presented based on the general Component-based

Software Engineering (CBSE) process defined by Cheesman and

Daniels [Cheesman 00]. The authors highlight the partitioning of system

models into several preferably independent views that reflect the differ-

ent development roles (component developer, system architect, system

deployer and domain expert) as an essential aspect. This partitioning

is based on the observation, that components have several instantia-

tion levels [Becker 06b], which are illustrated in Figure 4.1. At the Type

Level, component developers describe the system components including

their provided and required interfaces as well as their internal behaviour.

At the Instance Level, system architects instantiate components defined

at the Type Level and connect their provided and required interfaces to

compose a system. It is thereby possible to have several instances of the

same component as shown Figure 4.1, with Comp2 and Comp3 both be-

ing instances of Component Type B. A second instantiation of com-

ponents at the Run-time Level is performed when deploying the system

in the target execution environment. The system deployer specifies the

available hardware infrastructure and the allocation of component in-
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stances to hardware nodes. As a last step in the CBSE process, the do-

main expert describes the usage profile of the system including input

parameters passed to services upon invocation.

The modelling of event-based interactions influences all three compo-

nent instantiation levels described above. Furthermore, it is important

not to mix up these levels and roles including their responsibilities and

the respective modelling views. In the following, we discuss the charac-

teristics of event-based interactions with the goal to identify the essential

characteristics of that need to be captured in architecture-level models

for quality evaluations.
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Events as First Class Entities In traditional RPC-based distributed

systems, components communicate by invoking methods, which are

part of interfaces provided by other components [Szyperski 02]. In event-

based interactions, the business logic of components is mostly imple-

mented in the form of event handler methods executed when an event

is received by a sink. The component emitting the event (the source)

and the component receiving it (the sink) must recognise and support

the respective type of event, i.e., the event is the common connection

point similarly to operational interfaces that are provided or required by

components. Thus, in analogy to operational interfaces, the component

developer should be able to specify and model “event types” as first class

entities and declare the ability of components to emit or to receive spe-

cific event types.

Separation of Modelling Aspects The loose coupling of components

combined with the increased system flexibility and adaptability is one

of the main benefits promised by event-based interactions. This flex-

ibility and adaptability needs to be taken into account when defining

modelling abstractions. Thus, the specification of system components

and the specification of their connections should be strictly separated.

The specification of components should include the definition of sup-

ported events as well as a specification of the event handling behaviour

for event sinks. The specification of the event handling behaviour must

be done in a way such that it is independent of the number of con-

nected sources or sinks. Only if component internals and the compo-

sition of components are specified independently, the connections be-

tween components can be changed by the architect without requiring

any adaptations of the components themselves. Likewise, changes of the

component’s behaviour have no influence on the system’s architecture.

This separation is one of the basic concepts of component-based devel-

opment.
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In addition to the different components a system consists of, the im-

plementation of the transmission system and its internal architecture

has a significant impact on the system behaviour [Sachs 09]. Thus,

these influences need to be taken into account in prediction techniques

for EBS. However, when modelling a system at design-time, platform-

specific details should ideally be abstracted at the architecture-level and

modelled separately in a dedicated platform-specific model serving as

additional input to prediction techniques.

Architecture-Level Abstractions The categorisation schema, intro-

duced in Section 2.1.1, covers general design aspects and distinguish-

ing attributes of EBS addressing both architecture-level characteristics as

well as implementation details and run-time behaviour. In the following,

we discuss the relevance of these characteristics from the perspective of

architecture-level models for quantitative system evaluations.

• Event Model The characterisation schema differentiates three

types of events, namely notifications, messages, and typed events.

Their main differentiating characteristic is the payload of the event

and its accessibility from the transaction system’s point of view.

The content of the payload is an important factor since it may in-

fluence the behaviour of the event-handling components. There-

fore, architecture-level models for quantitative system evaluations

should support modelling events both in terms of their types and

possible payloads. The latter includes the definition of the pay-

load’s structure in the form of simple unstructured data types for

messages, or complex object types for typed events, as well as the

possibility to specify the instantiation and value assignment for

emitted events. At the architecture-level, Complex Events can be

seen as notifications with predefined semantics defined by the cor-

responding event matching patterns, and thus they can be mod-

elled in a similar fashion to notifications. In Complex Event Pro-
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cessing (CEP) systems, these patterns cover a large part of the sys-

tem’s business logic and their evaluation typically consumes a sig-

nificant amount of computational resources. Thus, in CEP sys-

tems, the design of the event processing algorithms and the pat-

tern language plays a critical role [Gal 10] and in many scenarios

they would be the dominating factor determining the overall sys-

tem behaviour, as opposed to the components emitting and re-

ceiving events. Therefore, modelling CEP systems would possibly

require a different approach compared to modelling component-

based systems with event-based interactions, as done in the con-

text of this thesis.

• Delivery & Subscription Model In the P2P delivery model, when a

source emits an event, the latter is put in a queue associated with

the respective sink. The queue decouples the execution threads

of the source and the sink. This decoupling is an essential aspect

of event-based communication that differentiates it from Remote

Procedure Call (RPC)-style interactions. However, from the archi-

tecture point of view, the queue can be abstracted and integrated

into the P2P connector between the source and the sink. The Pub-

/Sub delivery model provides a higher decoupling of sources and

sinks by introducing intermediate event channels. In contrast to

P2P connections, channel-based Pub/Sub requires an additional

model element representing the transmission system’s event chan-

nel, to which sources and sinks are connected. As discussed in Sec-

tion 2.1.1, channel-based subscriptions are often used to enforce a

logical grouping of events and thus they are an important element

for structuring the event space of EBS. For example in distributed

sensor-based systems, event channels can be used to realise a geo-

graphical grouping of sensors and the events they produce, respec-

tively. Furthermore, the use of an explicit intermediate channel el-
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ement improves clarity and reduces the modelling effort since con-

necting n sources with m sinks requires overall n +m connectors,

n connections from the sources to the intermediate element and

m connectors from the intermediate element to the sinks, instead

of n ∗m direct connections to connect each source with all receiv-

ing sinks. The definition of a dedicated subscription element sim-

plifies the distinction of P2P and Pub/Sub communication at the

architecture-level. Not all EBS are based on the Pub/Sub model,

thus our modelling approach should provide elements that sup-

port both types of delivery models. The existence of typed events

is a prerequisite for modelling type-based subscriptions. The in-

termediate channel element can be associated with a certain event

type allowing the architect to connect/subscribe a sink to a typed

channel and thus to a certain event type.

Content-based subscriptions enable a more fine-grained specifi-

cation of the events of interest for each sink. Thus, modelling

content-based subscriptions requires the possibility to specify fil-

tering rules referring to the event’s structure and content individu-

ally for each sink. Furthermore, content-based subscription capa-

bilities are often combined with channel- or type-based subscrip-

tion mechanisms as for example realised in Java Message Service

(JMS) [Hapner 02] by combining topics with individual message

selectors. Architecture-level models should support a grouping of

events based on their channel or type combined with the specifi-

cation of individual filtering rules for each sink. Hierarchical sub-

scriptions allow sinks to subscribe to multiple channels or event

types by means of only one subscription to a channel or type de-

fined on a higher hierarchical level. Thus, hierarchical subscrip-

tions increase the system complexity by introducing complex in-

heritance hierarchies in a similar way as in object-oriented (OO)

systems [Sheldon 02]. For this reason, for the sake of simplicity,
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inheritance is often avoided at the architecture-level. The Uni-

fied Modeling Language (UML), as one prominent example, sup-

ports inheritance only in modelling artefacts closely related to the

implementation like class diagrams and not in architecture-level

modelling artefacts such as component diagrams. Similarly, an

easy to use and intuitive modelling approach for quantitative eval-

uation should avoid the explicit modelling of inheritance at the

architecture-level.

• Interaction Types As already described as part of the categorisa-

tion schema, interactions between components in EBS can have

different types depending on the number of participating com-

ponents. We identified the following interaction types: one-to-

one, one-to-many, many-to-one, and many-to-many, which dif-

fer in the number of sources and sinks that participate in an in-

teraction. Modelling event-based interactions in realistic systems

requires support for modelling all the different interaction types.

many-to-many interactions are the most complex interaction type

and comprise the other types, since neither the number of sources

nor the number of sinks is limited. By explicitly supporting the

modelling of many-to-many connections at the architecture-level,

the architect can use the same model elements for modelling all

the previously mentioned interaction types.

• Degree of Decoupling The decoupling of sources and sinks and

their respective control flows is realised within and supported

by the transmission system. Since the decoupling and asyn-

chronous communication between components is an inherent

characteristic of event-based interactions, an explicit modelling

of event-based connections at the architecture-level is sufficient

and does not require an additional modelling of the asynchronous

behaviour. Although at the architecture-level, the asynchronous
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behaviour is specified only implicitly by event-based connections,

considering them within the prediction techniques is very impor-

tant.

• QoS Model The different characteristics covered by the QoS model

dimension of our characterisation schema have in common that

they focus on the run-time behaviour of the system. For example,

the realisation of reliable delivery requires different types of per-

sistence and synchronisation techniques within the transmission

system. Similarly to the attributes of reliable delivery, the charac-

teristic timeliness/performance cover quality guarantees ensured

by the transmission system itself and not by the architecture.

From the architecture’s point of view, the transmission techniques

are transparent and therefore should only be reflected within the

platform-specific model describing the transmission system’s in-

ternals.

Security and trustworthiness capabilities can either be explicitly

implemented as part of the system architecture by including for

example explicit authentification and encryption components or

they can be transparently provided by the transmission system. In

the case of an explicit design, the different components need to

be modelled within the system architecture similarly to functional

components. If encryption and authentication are taken care of by

the transmission system, the connections between sinks, sources

and the transmission system might be annotated similarly to the

way this is done for reliability attributes. However, usual imple-

mentation details should not be part of the architecture-level ab-

stractions and should be included in a platform-specific model de-

scribing the transmission system.

• Transmission System Architecture As mentioned multiple times,

architecture-level prediction models should be decoupled from
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the implementation and deployment details of the underlying

transmission system. However, the latter can have a significant im-

pact on the system’s performance and resource utilisation. Thus,

these influences should be reflected when evaluating the whole

system, but modelling the transmission system’s architecture and

behaviour should be done as part of the platform-specific middle-

ware model.

Based on the presented overview of the characteristics and aspects

of event-based interactions in component-based systems relevant to

quantitative system properties, we derive the following requirements

on an ADL supporting the modelling of event-based interactions in

component-based systems at the architecture-level:

R-1 Separation of modelling concerns

The ADL should provide dedicated and independent views to

model the components including their internal behaviour, the

component’s connections within the system architecture, the de-

ployment of the system, and finally the use and workload of the

system.

R-2 Events as first class entities

Similarly to interfaces, events should be modelled as first class enti-

ties. Components, or more specifically their source and sink ports,

should refer to a common event type definitions, similarly to the

way provided and required interfaces refer to a common interface

specification.

R-3 Modelling the payload of events

The ADL should support the definition of different event types in-

cluding the possibility to model their payload and to assign values

when instantiating an event.
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R-4 Differentiation between P2P and Pub/Sub connections

The ADL should be able to differentiate between P2P delivery and

the more decoupled Pub/Sub communication using event chan-

nels.

R-5 Specification of sink-specific filtering rules

To reflect content-based subscriptions and event filtering, the ADL

should support the definition of filtering rules individually for each

sink.

R-6 Abstraction from the communication middleware

The performance influences induced by the communication mid-

dleware should be reflected in the system’s evaluation, however,

modelled independently and separately from the system architec-

ture.

4.2. Core Modelling Abstractions

Based on the presented requirements that should be satisfied by an ADL

for component-based EBS, we developed a set of modelling abstractions

for describing event-based interactions in architecture-level models for

quantitative system evaluations. We developed the modelling abstrac-

tions with the aim to be independent of a concrete ADL and thus being

applicable to extend different existing ADLs for component-based sys-

tems. However, we have to assume the following basic modelling sup-

port provided by an ADL for component-based systems to serve as base

ADL being extended with the developed modelling abstraction:

• Support for specifying data types.

• Support for specifying components and interfaces as first class en-

tities including additional elements to define the provided and re-

quired relationships between components and interfaces.
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• Support for modelling the different component instantiation levels

(type, instance, and run-time) illustrated in Figure 4.1 including

the composition of components in terms of connecting provided

and required ports.

• Explicit specification of a component’s behaviour as sequence of

activities. Applying the prediction techniques developed in Chap-

ter 5 additionally requires the support of branches and forks for

modelling asynchronous and parallel executions.

Integrating the developed modelling abstractions into a base ADL,

which provides the listed modelling support, results in an extended ADL

that provides explicit support for modelling events as first class entities,

specifying event ports of a component, connecting components using

direct P2P-based connectors as well as decoupled Pub/Sub connections

with intermediate event channels, and finally explicitly specifying the

deployment of components and event channels. Since the developed

modelling abstractions only reference elements defined within the base

ADL and do not require any modifications of existing elements, the re-

sulting extended ADL combines the expressiveness of the base ADL with

the additional support for event-based interactions. Thus, the extended

ADL supports the modelling of purely RPC-based and purely event-

based systems, but also systems that include a mixture of RPC-based and

event-based interactions.

To reflect the different roles in the CBSE process, we grouped the de-

veloped modelling abstractions into different views each supporting an

individual modelling aspect. The Events and Components view provides

elements to specify the different events used in the system combined

with elements to define communication ports used by components to

emit or receive the respective events. The Behaviour view provides ele-

ments that component developers use to model the internal behaviour

of components. This includes the specification of dedicated actions to
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instantiate and emit events as well as elements to model event handling

mechanisms that process events received through sink ports. The Com-

position view enables architects to instantiate components in the context

of a system and connect emitting and receiving event ports to describe

the flow of events. Finally, the Deployment view allows to assign the dif-

ferent system elements to hardware nodes.

Beside the definition of the abstract syntax for each view, the follow-

ing sections additionally introduce a concrete graphical syntax. We use

a running example based on the order management in a supermarket

scenario, as depicted in Figure 4.2, to illustrate the graphical syntax and

to describe the behavioural semantics of the introduced elements. The

exemplary scenario contains a central order management system, which

receives messages from two cash desks informing about products that

have been sold and from the goods receiving department acknowledging

the receipt of ordered products. While the goods receiving department

has only one central system to register received shipments resulting in

Order	
  
Management	
  

Cashdesks	
  Goods	
  Receiving	
  Department	
  

Product	
  
Sold	
  Shipment	
  

Recieved	
  

	
  Sales	
  
StaGsGcs	
  

Figure 4.2: Exemplary Supermarket Scenario
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only one event source, the supermarket is equipped with several cash

desks each acting as an individual event source. The messages about

sold products emitted by the cash desks are additionally consumed by a

sales statistics system.

In the following sections, we introduce individually for each view the

abstract syntax before demonstrating the concrete syntax in the context

of this running example.

4.2.1. Events and Components

In component-based systems, interfaces describe the contract between

two components. In the case of synchronous RPC-style communication,

the contract consists of a set of method signatures, which describe oper-

ations that are required by one component and provided by another one.

In the case of event-based iterations, the contract does not include a set
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Figure 4.3: Events and Components
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of operations but rather a set of event types that can be emitted by one

component and received and processed by another.

As shown in Figure 4.3, we define a new model element EventGroup

as a first class entity within the meta-model. In analogy to interfaces con-

sisting of signatures, the EventGroup consists of one or more Event-

Types. In order to enable the modelling of the payload for typed events

or messages, the EventType contains an optional element Payload,

which is associated with the abstract DataType element. This abstract

element represents the concepts for modelling data types provided by

the base ADL. When integrating the presented modelling constructs in an

existing ADL, the respective meta-model elements provided by the base

ADL for specifying data types should be used. The sketched modelling

of data types illustrated in Figure 4.3 is a simplified abstraction. Usually,

a DataType can be defined either as a SimpleType or a Complex-

Type, where the latter itself consists of a set of DataTypes. Further-

more, theSubtypeOf relation allows specifying inheritance hierarchies

among data types.

The EventGroup represents the contract between components that

can either create and emit events of the respective group or that can re-

ceive and process them. In order to specify the ability of a component

to emit or process events of a certain EventGroup, the Component

element contains a SourcePort or SinkPort element for each sup-

ported EventGroup. The number of SourcePort and SinkPort el-

ements defined for a Component is not limited and it is even possible

to have multiple ports defined for the same EventGroup, which for ex-

ample would make sense if the respective component provides different

event handlers for the same types of events, or the component emits the

same type of events on different ports.
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<<EventHandler>>	
  
ShipSink:Acknowledgment	
  

	
  
<<EventHandler>>	
  
ProdSink:Sold	
  

<<EventType>>	
  
Acknowledgment	
  
Payload:AckType	
  

	
  

<<EventGroup>>	
  
Shipments	
  

<<EventType>>	
  
Sold	
  

Payload:Product	
  
SoldType	
  

<<EventGroup>>	
  
Products	
  

<<Component>>	
  
OrderManagement	
  

System	
  

<<Component>>	
  
Shipment	
  
RegistraGon	
  

<<SourcePort>>	
  
Shipments	
  

<<SinkPort>>	
  
ShipSink	
  

<<SinkPort>>	
  
ProdSink	
  

<<SourcePort>>	
  
Products	
  

<<Component>>	
  
CashDesk	
  

<<EventHandler>>	
  
ProdSink:Sold	
  

<<Component>>	
  
SalesStaGsGcs	
  

<<SinkPort>>	
  
ProdSink	
  

Figure 4.4: Events and Component View of the Supermarket Scenario

Figure 4.4 depicts the events and components view of the exemplary

supermarket scenario using a graphical syntax1. The view defines two

EventGroups, namely Shipments and Products and the four compo-

nents, ShipmentRegistration, CashDesk, OrderManagementSystem, and

SalesStatistics, which represent the different systems participating in the

scenario. Both EventGroups contain an EventType, which itself in-

cludes a Payload with a specified DataType. The ShipmentRegis-

tration component defines a SourcePort Shipments, which is illus-

trated as an arrow connecting the Component with the EventGroup.

In a similar fashion, the CashDesk Component defines a SourcePort

connected with the Products EventGroup. The OrderManagementSys-

1When describing the exemplary supermarket scenario, we use an italic font for ele-
ment instances and a typewriter font in the case of referring to meta-model elements
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tem Component, contains two SinkPorts, one connected with the

Shipments EventGroup called ShipSink and the otherone connected

with the EventGroup Products and named ProdSink. In analogy to

SourceRoles, SinkRoles are represented by arrows connecting the

Componentwith the respectiveEventGroup. As bothEventGroups

contain one EventType, the OrderManagementSystem contains two

EventHandlers. Each EventHandler, lists the EventType and

theSinkPort it is responsible for. The SalesStatistics Component con-

sumes events of the Products EventGroup and thus contains only one

SinkPort and the respective EventHandler.

The specification of event instantiations and the processing of events

within a component is part of the Behaviour view described in the next

section.

4.2.2. Behaviour

The meta-model extensions presented above cover only the static as-

pects of components. To model the dynamic aspects, we define new

modelling elements to reflect the creation and publishing of events by

source components as well as their processing in receiving sink compo-

nents. As already mentioned, we assume, that the base ADL provides

support for modelling the behaviour of a component as a sequence of

activities. Two examples for such behavioural specifications are activ-

ity diagrams, which are part of UML, or the Resource Demanding Service

Effect Specification (RD-SEFF) language of PCM, which we introduced

in Section 2.4. In Figure 4.5, these individual actions provided by the

base ADL are represented by the abstract BehaviourElement, which

is contained in a BehaviourDescription.

To model the instantiation of an event, we define the new mod-

elling element EventEmission as a specialisation of the generic Be-

haviourElement. It references the SourcePort through which the

event should be published as well as the EventType of the event.
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Figure 4.5: Instantiation and Emission of an Event

The EventType must be part of the EventGroup associated with

the SourcePort, which can be enforced through an Object Constraint

Language (OCL) constraint. To specify the payload of the published

event, the EventEmission can include a ValueSpecification.

Although the DataType of the Payload can be uniquely identified by

navigating from the EventEmission to the associated EventType,

we define a direct reference between DataType and ValueSpecifi-

cation since the ValueSpecification element represents a con-

cept, we assume to already exist in the base ADL for specifying the value

of parameters in operation calls. When modelling operations with more

than one parameter, the parameter and the respective DataType can-

not be uniquely derived. The additional association between Value-

Specification and DataType ensures, that the DataType of the

variable the value is assigned to can always be derived.
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Figure 4.6: Modelling of Event Handling Behaviour

To model the event processing within a sink component, we introduce

the new modelling element EventHandler. The EventHandler is

a subtype of the abstract BehaviourDescription, which as already

mentioned previously represents the concept for modelling component

behaviour already existing in the base ADL. Reusing this concept allows

for modelling anEventHandler in the same way the behaviour of pro-

vided component services is specified. As illustrated in Figure 4.6, Com-

ponents can contain several EventHandlers, each of them associ-

ated with exactly one SinkPort and a respective EventType (from

the SinkPort’s EventGroup).

The presented modelling abstractions for behavioural modelling use

the concepts provided by the base ADL as foundation and extend them

with an additional action for instantiating events. Instead of defining a

new graphical syntax for this single element, we propose to use the con-

crete syntax provided by the base ADL and use a representation similar to

the action that describes the method invocation and parameter instanti-

ation.
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With the new modelling elements introduced so far, it is possible to

model components and events as well as to define source and sink ports

provided by components. Furthermore, the introduced elements allow

the specification of the component behaviour when events are emitted

through source ports and received through sink ports. Events are mod-

elled as first class entities (requirement R-2) and support the specifica-

tion of their payload (requirement R-3). Since the specification of com-

ponents and their behaviour aspects does not contain any references to

elements describing the instantiation and composition of components,

the specification of components and their event ports is as requested in

requirement R-1 independent of their composition within the system ar-

chitecture.

4.2.3. Composition

In the Composition view, system architects define the system architec-

ture by instantiating components and connecting their provided and re-

quired interfaces as well as their source and sink ports, respectively. The

instantiation of components is modelled using the CompositionIn-

stance element, which references the respective Component that is

instantiated. To connect the event sources and sinks, we developed ab-

stractions to specify direct P2P connections as well as Pub/Sub connec-

tions using an intermediate event channel (requirement R-4), which are

introduced in the following sections.

P2P Connections

Figure 4.7 illustrates the modelling elements introduced for defining di-

rect P2P connections between source and sink ports of component in-

stances. A P2PConnector includes two associations, the Connect-

edSourcePort and the ConnectedSinkPort, referencing the re-

spective SourcePort and SinkPort, that are connected. Since it is
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Figure 4.7: Modelling of P2P Connections

possible to have several independent instances of the same component

in the systems, the associations to the SourcePort and SinkPort do

not provide enough information to determine which specific component

instances are involved. For this reason, the P2PConnector contains

two additional associations to the CompositionInstance element,

theSourceInstance association referencing the component instance

emitting events and the SinkInstance association referencing the

component instance receiving the events. An additional OCL constraint

ensures that the Components associated with the CompositionIn-

stances referenced by SourceInstance and SinkInstance, re-

spectively, are the same Components as the ones referenced by the

SourcePort and SinkPort. The ∗-cardinalities of the associations

allow several P2PConnectors starting at one event source to be con-
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nected to several independent event sinks or several P2PConnectors

starting at different sources to be connected to the same sink.

To enable the specification of sink-specific filtering rules (requirement

R-5), each P2PConnector contains an optional FilterCondition

element. With our modelling abstractions, we aim on the extension

of existing ADLs not on the development of a completely new meta-

model. For this reason, the latter is a placeholder to integrate an exist-

ing expression language. JMS for example provides a language to spec-

ify rules like the expressions “NumberOfOrders > 1” or “age >=

15 AND age <= 19” as part of message selectors [Hapner 02]. PCM,

as a representative ADL for component-based systems provides the so-

called Stochastic Expression (StoEx) language. In addition to value-based

filtering rules like “event.BYTESIZE <= 1000”, which filters out

large messages, or “event.TYPE == ERROR”, which selects only er-

ror messages, PCM’s StoEx language supports probabilistic expressions,

e.g., 80% of the generated events should be forwarded to the sink. Prob-

abilistic filters enable modelling unreliable event processing as well as

abstracting from concrete value dependencies or load balancing strate-

gies.

Pub/Sub Connections

In contrast to direct P2P connections between sources and sinks as pre-

sented in the previous section, Pub/Sub connections decouple sources

and sinks by introducing an intermediate element, the channel, as de-

scribed in Section 2.1. In addition to the decoupling aspect, chan-

nels allow to structure event-based interactions by grouping logically re-

lated events, sources and sinks. To model the channels, we introduce

a new modelling element, the EventChannel as part of the Composi-

tion view. Each EventChannel is associated with exactly one Event-

Group ensuring that only compatible sources and sinks are connected
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Figure 4.8: Modelling of Pub/Sub Connections

to the channel. We define two dedicated connectors to connect sources

and sinks with an EventChannel.

As illustrated in Figure 4.8, a PublisherConnector contains a ref-

erence to exactly one CompositionInstance representing a com-

ponent and one SourcePort of the respective component. This tu-

ple of elements unambiguously identifies the source of the event sim-

ilarly to the P2PConnector. However, instead of directly referencing

a receiving CompositionInstance and a respective SinkPort, the

PublisherConnector is connected with the EventChannel used

to publish the event. The cardinalities of the associations ensure that

each PublisherConnector connects exactly one SourcePort of a

CompositionInstance with one EventChannel. Nevertheless, it
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is possible to connect several sources to one channel or to connect one

source to several channels by defining a separate PublisherConnec-

tor for each connection.

Similarly to the PublisherConnector, the SubscriberCon-

nector contains a reference to a CompositionInstance and one

SinkPort of the respective component. These associations allow to

identify the target of the event. Additionally, the SubscriberCon-

nector is associated with the EventChannel acting as a source of

the subscribed events. As previously, each SubscriberConnector

connects exactly one EventChannel with a SinkPort of a Compo-

sitionInstancewhile at the same time it is possible to have multiple

SubscriberConnectors associated with a given channel or sink. In

contrast to the PublisherConnector, the SubscriberConnec-

tor can contain an additional FilterCondition element to specify

individual filtering rules for each sink (requirement R-5) as already de-

scribed in the context of P2PConnectors in the previous section.

The Composition view of the exemplary supermarket scenario is de-

picted in Figure 4.9. In this view, ComponentInstances are repre-

sented by graphical symbols similar to UML components. Each Com-

ponentInstance has an individual name extended with the name of

the associated Component. The SourcePorts defined for the cor-

responding Component are represented by small triangles connected

with the ComponentInstance. In a similar fashion, SinkPorts are

illustrated as quadrates with a cut triangle. In our exemplary scenario,

we use a P2PConnector to directly connect the Shipments port of the

ComponentInstance SR with the ShipSink port of the OMS Compo-

nentInstance. The communication between the two CashDesk in-

stances and the event consuming OMS and Statistics ComponentIn-

stances is modelled as Pub/Sub interaction using an EventChan-

nel named ProductChannel. Channels are graphically represented by

a diamond. SubscriberConnectors and PublisherConnec-
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Figure 4.9: Composition View of the Supermarket Scenario

tors illustrated as arrows connect the SinkPorts and SourcePort

of the particular ComponentInstancewith the ProductChannel. Sink

specific filtering rules are attributes of SubscriberConnectors and

P2PConnectors respectively. For the sake of clearance, they are not

represented in the graphical syntax but listed and editable in the at-

tribute list of the respective connector.

4.2.4. Deployment

In the Deployment view, the CompositionInstances and

EventChannels defined as part of the Composition view, are assigned

to hardware nodes. CompositionInstances and EventChan-

nels can be deployed individually on different hardware nodes rep-

resented by DeploymentContainer elements. In the meta-model,

this is reflected by the abstract DeployableEntity element, of which

EventChannel and CompositionInstance are subtypes. The ex-

plicit deployment of EventChannels on hardware nodes allows to

specify the responsible server for each channel that provides the re-
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Figure 4.10: Deployment of Components and Event Channels

sources required for routing and delivering the events sent over the chan-

nel. Although the presented modelling elements do not include any

platform-specific processing behaviour and resource demands (require-

ment R-6), the explicit deployment of EventChannels allows to later

integrate such information in platform-specific models referring to the

respective DeploymentContainer. As illustrated in Figure 4.10, each

DeploymentInstances refers to exactly one DeployableEntity.

To specify the mapping of a DeployableEntity to a hardware node,

the DeploymentInstance includes a reference to exactly one De-

ploymentContainer. The DeploymentContainer itself contains
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Figure 4.11: Deployment View of the Supermarket Scenario

Resources that abstract hardware resources like CPU, main memory

or hard disks. The hardware infrastructure is further modelled by means

of the specific modelling elements provided for this purpose by the con-

sidered ADL used as a basis.

The presented modelling abstractions for specifying the deployment

of components and event channels extend the concepts provided by

the base ADL. As EventChannels are deployed similarly to Compo-

nentInstances, the graphical representation should be similar as

well. Figure 4.11 illustrates the deployment of the different components

of the supermarket example. The hardware environment consists of sev-

eral servers represented by different DeploymentContainers. The

ShipmentRegistration component is running on a separate server located

at the goods receiving department. The central backend sever hosts both

the order management and the sales statistics system. For each cash desk

an individualDeploymentContainer is specified hosting the respec-

tive instance of the CashDesk component. Finally, the EventChannel

is deployed on a separate MiddlewareServer.
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4.3. Behavioural Semantics

In this section, we provide a description of the behavioural semantics

of the presented meta-model elements for modelling event-based in-

teractions in component-based architecture models using the super-

market scenario as illustrating example. For a formal specification, we

refer to Chapter 5 (especially Section 5.4), which describes a transfor-

mation into a refined model based on the original PCM. Combined

with the formal specification of PCM’s behavioural semantics presented

in [Koziolek 08a], the provided transformation among other things serves

as a formal specification of the behavioural semantics of the modelling

abstractions introduced in the previous section.

Figure 4.12(a) shows a UML sequence diagram illustrating the P2P in-

teraction between the shipment registration system SR and the order

management system OR of our exemplary supermarket scenario. SR ini-

tialises the Acknowledgement event within an EmitEventAction as-

sociated with a SourcePort contained in the corresponding Shipmen-

tRegistration Component. After initialising the event it is sent to the

connected SinkPort and the execution of SR immediately continues.
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(a) P2P Interaction
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(b) PubSub Interaction

Figure 4.12: Behavioural Semantics
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As soon as the event is received at the connected SinkPort, the op-

tional FilterCondition contained in the connector is evaluated. If

it evaluates to true the EventHandler associated with the SinkPort

that received the message is executed. Since the execution of SR imme-

diately continuos after emitting the event, the EventHandler of OR

is executed in parallel. In the case of several sinks connected with one

source using a P2PConnector, the event is sent to all sinks in parallel.

Figure 4.12(b) illustrates the communication between the two cash

desks DeskA and DeskB and the receiving OMS and Statistics systems.

Similarly to P2PConnectors, the events are initialised within the

source components and emitted through the SourcePort, while the

execution of the components immediately continues. As depicted in Fig-

ure 4.12(b), the event is sent to the EventChannel the SourcePort

is connected to, which in our supermarket example is the ProductsChan-

nel. When an EventChannel receives an event, it replicates the event

for each connected SinkPort and immediately forwards the events to

them in parallel. The optional FilterCondition contained in each

SubscriberConnection is evaluated when an event is received by a

sink component similarly to the use of P2PConnectors. If the evalu-

ation results in true, the EventHandler contained in the component

and associated with the particular EventType and SinkRole is exe-

cuted.

The presented behavioural semantics presented above assume an op-

timal “zero-delay” processing and transmission of events, which from

an architecture point of view is acceptable. However, from the perfor-

mance point of view, the transmission system induces several platform-

specific delays, which should be considered when evaluating the perfor-

mance of an EBS. Chapter 5 provides more detail on the event process-

ing within a transmission system, and presents the platform-aware pre-

diction technique that combines architecture-level modelling using the
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presented modelling abstractions with detailed performance prediction

techniques.

4.4. Integration into the Palladio Component Model

In Section 4.2, we presented a set of generic meta-model elements en-

abling the modelling of event-based interactions at the architecture-

level. The defined modelling abstractions are independent of a con-

crete ADL and are designed to be integrated into different ADLs for

component-based systems. In the following, we demonstrate the inte-

gration and implementation of these elements into the Palladio Com-

ponent Model (PCM), which was described in Section 2.4. PCM was se-

lected as a representative example given its maturity and extensive tool

support. For a detailed specification and description of the PCM meta-

model elements, we refer the reader to [Reussner 11].

4.4.1. Repository

As described in Section 2.4, the PCM Repository contains interface and

component specifications including the behavioural descriptions for

each component and provided interface. We extended the repository

meta-model to allow the definition of event groups and event types, the

specification of the different component ports as well as the behavioural

aspects for creating and processing events.

Events

In analogy to the generic modelling abstractions, we extended PCM with

the new meta-model elements EventGroup and EventType, which

are illustrated in Figure 4.13. EventGroup is a specialisation of the

abstract Interface element, which is also the base class for Opera-

tionInterfaces. The Interface itself is a specialisation of Name-
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Figure 4.13: EventGroup and EventType in PCM

dEntity, which contains an attribute Name. The latter can be used to

assign names to OperationInterfaces and EventGroups.

An EventGroup contains at least one EventType. The Event-

Type element is a specialisation of the abstract Signature element

and it is the counterpart to OperationSignatures in RPC-based

communication. In contrast to OperationSignatures that contain

a set of Parameters representing input variables and an optional ref-

erence to a DataType describing the return parameter, EventTypes

reference only one Parameter describing the payload of the event. We

use the PCM element Parameter to exploit the existing capabilities

of PCM to describe different DataTypes combined with the specifi-

cation of behaviour and performance relevant variable characteristics.

PCM provides three different elements to describe simple and complex

data types namely PrimitiveDataType, CollectionDataType,

and CompositeDataType, as sub-classes of the DataType element.

Depending on the specific scenario, the performance relevant character-

istics of an event vary from a single property such as the sender ID to a

complex structure describing the event content. For example, a system
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might be influenced only by the sender ID stored as a string in an event

or a filter might analyse the event content in detail to decide whether

any further processing is necessary. Integrating the existing Parame-

ter and DataType elements into the specification of EventTypes

provides the flexibility to support all these cases.

Ports

In PCM, interfaces provided or required by a component are modelled

using the concept of Provided- and RequiredRoles. As illustrated

in Figure 4.14, the abstract ProvidedRole element is contained by

the abstract InterfaceProvidingEntity while the Required-

Role element is part of an InterfaceRequiringEntity. These

entity types are combined within the abstract InterfaceProvidin-

gRequiringEntity using multiple inheritance. The complete inher-

itance hierarchy, which ends with the BasicComponent as a first non-

abstract element, was introduced in PCM, to support the component

type hierarchy described in [Becker 08a].

For modelling RPC-based communication, PCM provides two spe-

cialised roles namely OperationProvidedRole and Opera-

tionRequiredRole, both associated with an OperationInter-

face and defined as sub-classes of ProvidedRole and Require-

dRole, respectively. In analogy to OperationInterfaces and the

belonging roles, we define the new elements SourceRole and Sink-

Role supporting the specification of source and sink ports as described

in the generic modelling abstraction. We defined the SinkRole as spe-

cialisation of ProvidedRole, since the event handling behaviour of-

fered by a component and associated with a SinkRole provides func-

tionality that can be invoked by other components through emitting an

event. Similar to, functionality provided through OperationProvid-

edRoles, functionality provided in form of event handlers can be exe-

cuted by other components but need not. The SourceRole is a spe-
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Figure 4.14: Source and Sink Roles

cialisation of the RequiredRole, as events that are emitted by one of

the components through a SourceRole require at least one receiver

that process the event to not being obsolete. Both roles have in common

that they include a reference to exactly oneEventGroup containing the

EventTypes emitted or processed by the component.
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Behaviour

With RD-SEFF, PCM provides a language to describe the behaviour

of components supporting the modelling of complex control and data

flows. In the following, we extend the RD-SEFF meta-model with new

elements to describe the instantiation and emission of events. Further-

more, we integrate behavioural descriptions to describe the event han-

dling behaviour associated with sink ports.

As depicted in Figure 4.15, our extensions introduce the EmitEven-

tAction as a sub-class of AbstractAction, which is the base

class of all actions a ResourceDemandingBehaviour consists of.

ResourceDemandingBehaviour

AbstractAction

EmitEventAction

CallAction
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VariableCharacterisation
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EventType

SourceRole

EventGroup

New Elements Existing PCM Elements

Legend:

*

0..1

+ successor_AbstractAction

0..1

+ predecessor_AbstractAction

*

1

* 1

*

*

1..*
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Figure 4.15: Emit Event Action
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Figure 4.16: Event Handling

Furthermore, EmitEventAction is a specialisation of the abstract

CallAction, which subsumes all elements that involve an instantia-

tion and value assignment for variables and parameters. CallActions

can include multipleVariableUsages, which themselves can include

multiple VariableCharacterisations. Each VariableChar-

acterisation contains a StoEx expression encapsulated as a string in

thePCMRandomVariable element to define the value assignment. For

more details on the value specification, we refer to [Reussner 11].

Each EmitEventAction contains a reference to the Source-

Role that should be used to publish the event. Additionally, the

EmitEventAction references the concrete EventType that is in-

stantiated within theVariableUsage andVariableCharacteri-

sation. An OCL constraint ensures that the EventType referenced by

the EmitEventAction is contained in the EventGroup referenced

by the SourceRole.

The event handling behaviour is modelled in a similar fashion to

the way the behaviour of provided operations is specified through the

RD-SEFF language. We exploit the existing abstract ServiceEffect-

Specification combined with its specialisation the ResourceDe-
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mandingSEFF. As depicted in Figure 4.16, each ServiceEffect-

Specification contains a reference to a Signature element iden-

tifying the entity whose behaviour is modelled. As the EventType

is defined as a sub-class of the generic and abstract Signature ele-

ment, aServiceEffectSpecification can be associated either to

an OperationSignature (when modelling the behaviour of a pro-

vided service) or to an EventType (when modelling the behaviour of

an event handler). PCM in its original version is based on the assump-

tion that a component provides an OperationInterface only once.

In order to allow components to provide different event handlers for the

same EventType respectively contain several SourceRoles associ-

ated with the same EventGroup, we define an optional association

connecting a ServiceEffectSpecification with a SinkRole.

This additional association ensures that the event handler can always be

uniquely identified based on the tuple SinkRole and EventType.

4.4.2. System

In PCM, the System model is used to describe the instantiation and com-

position of components specified within the Repository model. The

meta-model provides elements to instantiate components namely the

AssemblyContexts as well as different Connectors used to con-

nect the different ports provided and required by components. Based

on our generic modelling approach presented in Section 4.2, we de-

fine three new specialisations of the generic Connector element:

AssemblyEventConnectors for specifying direct P2P connectors

andEventChannelSourceConnectors respectivelyEventChan-

nelSinkConnectors for specifying Pub/Sub connections with an in-

termediate channel.

As illustrated in Figure 4.17, each AssemblyEventConnector con-

tains references to exactly oneSourceRole and oneSinkRole. While

the number of roles per connector is limited, the same SinkRole or
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Figure 4.17: P2P Connector

SourceRole can be referenced by multiple AssemblyEventCon-

nectors resulting in an implicit modelling of many-to-many con-

nections. AssemblyEventConnectors include two references to

AssemblyContexts representing the source and sink component

instances, respectively. Given that each component can have mul-

tiple ports, both the AssemblyContexts and the Source- and

SinkRoles must be specified to provide sufficient information to

clearly identify the communicating endpoints.

The specification of sink specific filtering rules is realised by extend-

ing the AssemblyEventConnector with an optional PCMRandom-

Variable as filterCondition that allows to specify a boolean ex-

pression using the StoEx language. Such expressions can include com-

parison operators to specify value dependent filtering rules but also sup-

port the inclusion of probabilistic expressions. For more details on the

StoEx language and grammar, we refer the reader to [Reussner 11].
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Figure 4.18: Event Channel

For modelling Pub/Sub interactions, we introduce the new

EventChannel element. As illustrated in Figure 4.18, the

EventChannel, similarly to AssemblyContexts and Connec-

tors , is defined as a sub-class of Entity and is contained in

a ComposedStructure representing a composite component or

the complete system. Each EventChannel is associated with ex-

actly one EventGroup to ensure that only compatible Source- and

SinkRoles associated with the same EventGroup are connected.

Figure 4.19 illustrates the realisation of the EventChannelSource-

Connector. It connects a source with an EventChannel and thus

contains, in analogy to the AssemblyEventConnectors, one ref-

erence to a SourceRole and one reference to an AssemblyCon-

text to uniquely identify the component instance and its source port.

Additionally, the EventChannelSourceConnector refers to the

EventChannel used to publish the event. Each event published to

a channel is forwarded to all sink instances connected to the chan-

nel. Similarly toEventChannelSourceConnectors,EventChan-
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Figure 4.19: Pub/Sub Connectors

nelSinkConnectors contain a reference to an EventChannel,

an AssemblyContext, and a SinkPort. In analogy to Assem-

blyEventConnectors, EventChannelSinkConnectors con-

tain an optional PCMRandomVariable allowing to specify value de-

pendent or probabilistic filtering rules individually for each sink.

4.4.3. Allocation

In PCM, AllocationContexts describe the run-time instances of

components. Each AssemblyContext is associated with exactly one

AllocationContext and vice versa. PCM does not contain an ab-

stract element representing all deployable entities such as the Deploy-

ableEntity, used in the generic modelling abstractions. Since intro-
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Figure 4.20: Allocation Model

ducing such an element into the original PCM, would result in signifi-

cant changes of existing elements as well as their inheritance hierarchies

and associations, we slightly deviated from the general modelling ab-

stractions. Instead of introducing an abstract element, we extended the

AllocationContext element to contain an association either to an

AssemblyContext or to an EventChannel. We changed the car-

dinality of the association between AssemblyContext and Alloca-

tionContext from "1" to "0,1" and added a new association allow-

ing to connect AllocationContexts with EventChannels. An

OCL constraint ensures that an AllocationContext is always as-

sociated with either an AssemblyContext or an EventChannel.

In PCM, each AllocationContext is additionally associated with

a ResourceContainer representing the hardware node that the re-

spective component instance or the event channel should be deployed

on. To specify the different resources provided by the node, the Re-
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sourceContainer contains a ProcessingResourceSpecifi-

cation for each offered resource.

4.5. Concluding Remarks

In this chapter, we introduced a set of abstractions that enable the mod-

elling of event-based interactions at the architecture-level. The abstrac-

tions provide explicit support for both direct P2P connections between

components and decoupled many-to-many interactions based on the

Pub/Sub paradigm using an intermediate event channel and thus cover

a large set of different EBS. The modelling concepts have been developed

with the goal to be independent of a concrete ADL and enable the exten-

sion of multiple existing ADLs for component-based systems with an ex-

plicit support for modelling event-based interactions at the architecture-

level. We demonstrated the extension of an existing ADL with the devel-

oped modelling abstractions using PCM as a representative example of a

mature ADL for component-based systems.

The contributions presented in this chapter enable the modelling of

event-based interactions at the architecture-level and constitute the ba-

sis for the platform-aware analysis method presented in the next chapter.
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The modelling abstractions introduced in the previous chapter enable

architects to model event-based interactions at the architecture-level. To

enable detailed quality evaluations based on the models, this chapter in-

troduces a two-step refinement transformation approach. Since the im-

plementation and behaviour of the employe transmission system has a

significant influence on the end-to-end system performance [Sachs 09],

the goal of our transformation is to supper platform-independent mod-

elling of the system at the architecture-level while at the same time en-

abling a detailed platform-aware performance prediction by automati-

cally integrating platform-specific details into the models.

As a novelty to existing refinement approaches (e.g., [Woodside 95],

[Kapova 11]), our two-step transformation strictly separates the

platform-independent refinement of event-based interactions and the

integration of platform-specific details. This strict separation eases the

evaluation of different transmission system solutions in terms of their

influence on the system performance since varying the underlying plat-

form does not require any adaptation of the architecture-level models.

In a similar fashion, the platform-specific models describing the trans-

mission system are defined once independent of the system architecture

and can be reused in the context of different systems.

In order to derive a platform-specific model that integrates platform-

specific details about the behaviour of the underlying transmission sys-

tem, the architecture-level model is refined by applying the developed

two-step refinement transformation as depicted in Figure 5.1. The pre-
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Figure 5.1: Transformation Overview

sented transformation approach is an extension of the merge approach

defined in the “Model-Driven Architecture (MDA) Guide” [OMG 03]. The

architecture model is first refined by integrating a platform-independent

event processing chain. This refinement step substitutes the event-

based connections between components with a chain of components

representing the different event processing stages inside the transmis-

sion system. Using the resulting refined model as a basis, the next step

of the transformation integrates platform-specific components specified

in a separate middleware model. These components capture the per-

formance relevant influence factors of the employed transmission sys-

tem. Since all elements that have been introduced by applying the exten-
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sions presented in the previous chapter are substituted with the detailed

event-processing chain, the resulting final model serves as input for dif-

ferent existing prediction techniques, that have been implemented for

the original base Architecture Description Language (ADL).

In the following, we first describe the generic event processing chain

that provides a skeleton to integrate platform-specific components rep-

resenting the different event processing activities within the transmis-

sion system. Second, we provide an exemplary description of the two-

step transformation explaining the refinement of the model as well as the

merging with the middleware model. Finally, in Section 5.4, we provide

a formal specification of the complete transformation.

5.1. Generic Event Processing Chain

The generic event processing chain, illustrated in Figure 5.2, consists of

six processing stages that are common for Event-based Systems (EBS).

The execution of the different stages is distributed among the involved

source and sink components and the transmission system. Given that

the processing chain is defined to be platform-independent, it does not
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Figure 5.2: Generic Event Processing Chain
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include any concrete resource demanding behaviour, however, it pro-

vides placeholders to integrate such platform-specific behaviour that is

executed as part of the various stages. The first stage, send event to trans-

mission system performed on the source side, includes the communica-

tion activities to send the event to the transmission system. This stage

is usually performed within a local library, which encapsulates the com-

munication and includes activities like marshalling, compression, or en-

cryption on the source side. In the parallel receive event stage, the event

is received by the transmission system, which includes the communica-

tion with the source component as well as possibly additional activities

like for example the de-marshalling required to acknowledge the correct

receipt of the event.

Asynchronous many-to-many communication between components

is one of the main characteristics of event-based interactions. In the

generic event processing chain, this behaviour is reflected by the repli-

cate event and split control flow processing stage. While providing a

cloned instance of the event to each connected sink, the control flow

between sources and sinks is decoupled and the cloned events are for-

warded to the sinks in parallel as illustrated in Figure 5.3. The remaining

activities of the event processing chain are executed in parallel and inde-

pendently for each connected sink.

After splitting the control flow, the generic event processing chain con-

tains the filtering/sink-specific processing based on the filtering condi-

tions defined within the connectors. If the event matches the defined

filtering conditions for a given sink, the event is further processed. Other-

wise, the event processing for the respective sink is terminated. In addi-

tion to the filtering, which is considered as platform-independent logic,

the filtering stage allows to integrate additional platform-specific pro-

cessing like for example data conversion, deserialization, or decompres-

sion. Such platform-specific activities are described as part of the mid-
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Figure 5.3: Replicate Event and Split Control Flow Step

dleware model which is later integrated when deriving the final platform-

specific model.

In analogy to the communication between sources and the transmis-

sion system, which is reflected by the first two stages of the event pro-

cessing chain, the communication between the transmission system and

sinks is split into two stages. The send event to sink stage encapsulates

the communication aspects the transmission system is responsible for

while allowing the integration of platform-specific marshalling or serial-

isation operations. The receive event stage is the counterpart stage on the

sink side usually executed in parallel by a local library encapsulating the

communication with the transmission system.

The presented platform-independent event processing chain is the

foundation for the platform-independent refinement transformation

presented in the following section.

5.2. Platform-independent Refinement

The platform-independent refinement, which is the first step of our two-

step transformation, substitutes event-based interactions modelled at

the architecture-level with a chain of components. Each of these compo-

nents represents exactly one of the presented processing stages. In the
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following, we present an exemplary transformation of source and sink

components to illustrate our approach before providing a formal speci-

fication in Section 5.4.

Point-to-Point (P2P) and Publish/Subscribe (Pub/Sub) interactions are

modelled differently at the architecture-level. In the first case, direct con-

nectors betweens sources and sinks are used while in the second case

sources and sinks are connected through intermediary event channels.

In the following, we first present a detailed description of the refinement

of Pub/Sub connections followed by an description of the differences in

case of direct P2P connectors.

5.2.1. Refinement of Publish/Subscribe Connectors

Figure 5.4 presents an overview of the refinement of two source com-

ponent connected with two sinks using an EventChannel with

Publisher- and SubscriberConnectors, respectively. However,

before transforming the connectors, the transformation generates an

OperationInterface for each EventGroup including an Oper-

ationSignature for each EventType, with the event itself defined

as input parameter.

TheSourcePort as part of component A is replaced by a port requir-

ing this OperationInterface resulting in a synchronous call initiat-

ing the event processing chain. This port is connected with the provided

operational port of the newly generated SourcePort1 component, which

represents the local library that encapsulates the communication with

the transmission system. The SourcePort component is always deployed

on the same node as the source component itself. In a similar fashion,

component B is modified and connected with a second instance of the

SourcePort component.

1In the following description of the refinement transformation, we use an italic font
when referring to components of the generic event processing chain and a typewriter
font in case of meta-model and model elements
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Figure 5.4: Refinement of Event Channels

TheEventChannel and the correspondingPublisher- andSub-

scriberConnectors are transformed into a chain of components.

The SourceCommunication component as first component inside the

transmission system receives the emitted events from all SourcePort

components. The SourceCommunication component provides a skele-

ton to integrate platform specific-components describing the resource

demands for receiving and processing the event.

The following EventDistribution component is responsible for replicat-

ing the event and splitting the control flow for each sink connected with

the channel. It forwards the event by calling the provided interface of the

sink-specific EventFilter component. The generated EventDistribution

component contains an individual required port of the OperationIn-

terface representing the EventGroup for each of these sinks. To re-

alise the asynchronous and decoupled behaviour of event-based inter-

actions, the behaviour description of the EventDistribution component

makes use of an asynchronous fork. This is illustrated in Figure 5.5 using

Palladio Component Model (PCM) as an example meta-model where a

ForkAction is defined in the respective Resource Demanding Service

Effect Specification (RD-SEFF) containing a separate ForkBehaviour
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Figure 5.5: Fork-Based Event Splitting

for each sink. Each of these behaviours contains an action to call the

next component through the required port that has been integrated for

the respective sink component.

The EventFilter component, which is generated individually for each

sink connected with the channel, is connected with the sink-specific re-

quired operational port of the EventDistribution component. The Event-

Filter component encapsulates the sink-specific filtering rule for the re-

spective sink. SubscriberConnectors as well as P2PConnectors

contain an optional sink-specific filtering rule in form of a boolean ex-

pression. In contrast to the other components, which directly call the

next component in the chain of responsibility, the EventFilter compo-

nent includes a branch using the boolean expression contained in the

connector as guard. Thanks to this guard, the event processing continues

with the call of the SinkCommunication component only, if the filtering

rules evaluates to TRUE, otherwise the event processing for this specific

sink is terminated.

Similarly to the SourceCommunication component, the SinkCommu-

nication provides a skeleton to integrate relevant resource demanding

152



5.2. Platform-independent Refinement

behaviour of the transmission system when communicating with the re-

spective sink.

In analogy to the transformation of SourcePorts, each SinkPort

is replaced by a provided operational port and an additional instance

of the SinkPort component. This component is the counterpart of the

SinkCommunication component and abstracts the local library of the

sink component and its local resource demanding behaviour at the sink

side. In addition to the provided operational interface, the sink compo-

nent is modified to handle the incoming operation calls of the transmis-

sion system when events are delivered. The existing behavioural descrip-

tions specifying the EventHandlers are linked with the Signature

representing the EventType and the operational required port that has

been generated to substitute the SinkPort. Since the event is handed

over as a parameter of the signature, it can be accessed in a similar fash-

ion compared to accessing the event within an EventHandler. For

this reason, no further modifications of the behavioural descriptions are

required.

EventChannels are explicitly deployed by defining a Deploy-

mentInstance, which connects an EventChannel with exactly one

ResourceContainer. In analogy to this deployment, the different

components representing the transmission system, i.e., the SourceCom-

munication, EventDistribution, EventFilter and SinkCommunication

components, that have been generated and instantiated when trans-

forming the EventChannel are deployed on the same Resource-

Container. The SourcePort component is always deployed on the

sameResourceContainer, the source component is running on. In a

similar fashion, the SinkPort component is deployed on theResource-

Container the respective sink component is running on.
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5.2.2. Refinement of Point-to-Point Connectors

The transformation of P2P connections is quite similar to the process-

ing of Pub/Sub connections and varies only in the instantiation and de-

ployment of components. Figure 5.6 illustrates the transformation of a

source component connected through P2PConnectors with two sink

components.

In contrast to the transformation of Pub/Sub connections, which in-

stantiate the event processing chain once for each EventChannel, the

transformation of P2P connections generates an instance of the event

processing chain for each source component. The SourcePort of the

source component is substituted with a required port referencing the

OperationInterface representing theEventGroup. This required

port is connected with a new instance of the SourcePort component re-

spectively its provided port. Similarly to the processing of Pub/Sub con-

nections, the SourcePort component is connected with SourceCommuni-

cation component, which itself invokes an instance of the EventDistribu-

tion component. The EventDistribution contains an individual required

operational port for each sink connected with the SourcePort using

a P2PConnector. For each P2PConnector an individual EventFilter
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Figure 5.6: Refinement of a Source with Point-to-Point Connectors
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component is generated encapsulating the branch with theEventFil-

teringCondition contained in the connector as guard. In analogy to

Pub/Sub connections, the event processing chain is completed with an

instances of the SinkCommuncation and SinkPort components.

Similar to the case of Pub/Sub connections, the SourcePort and

SinkPort components are deployed on the same ResourceContain-

ers hosting the source and sink component respectively. To support

peer-to-peer-based as well as centralised middleware systems, the com-

ponents representing the transmission system are deployed differently

depending on the existence of a central ResourceContainer host-

ing the middleware named “Middleware”. If the ResourceEnviron-

ment contains such aResourceContainer, the components belong-

ing to the transmission system, i.e., SourceCommunication, EventDistri-

bution, EventFilter and SinkCommunication, are deployed on this node

otherwise they are deployed on the ResourceContainer hosting the

source component.

5.3. Merging with Platform-specific Middleware Components

From a modelling point of view, the general event-based connections be-

tween components and the specific middleware used for the technical

implementation are at two different abstraction levels. For this reasons,

we separate the platform-specific behaviour and resource demands of a

middleware implementation using a dedicated middleware model. As a

result of this separation, changes of the system architecture to evaluate

different design alternatives do not require any adaptation of the mid-

dleware model. Additionally, variations of the middleware with the aim

to evaluate different middleware products and their influence on the per-

formance of the system do not require changes of the architecture model.

The middleware model contains platform-specific components de-

scribing the behaviour and resource demands of the middleware for
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Figure 5.7: Examples of Middleware Models and their Weaving

executing the different event processing steps. To enable the integra-

tion of the platform-specific components, their specifications have to

conform to the base ADL used as basis for integrating the modelling

abstractions for event-based interactions. The middleware model in-

cludes six predefined operational interfaces namely IMiddleware-

SourcePort, IMiddlewareSourceCommunication, IMiddle-

wareEventDistribution, IMiddlewareFilter, IMiddle-
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wareSinkCommunication, and IMiddlewareSinkPort. Each

interface contains a signature having a similar name as the interface and

containing one input parameter representing the processed event. As

one example, the operation defined as part of theIMiddlewareSour-

cePort interface is named handleSourcePort. The definition of

individual interfaces for each operation allows a variable modelling of

the middleware. The middleware model can contain a dedicated com-

ponent for each interface but also allows to specify only one component

providing all interfaces and every variation between these two options.

Figure 5.7 illustrates possible variations.

The integration of the platform-specific components into the

platform-independent event processing chain follows the transforma-

tion process depicted in Figure 5.8. The first step is the identification

and localisation of the components providing the different middleware

interfaces. As a next step, the components representing the platform-

independent event processing are extended to invoke the platform-

specific middleware component providing the respective middleware in-

terface. This extension includes the integration of a new required oper-
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  components	
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  processing	
  components	
  
with	
  middleware	
  calls	
  	
  

Deploy	
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Figure 5.8: Middleware Weaving Process
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ational port into the event processing component. Furthermore, the be-

havioural specification of the component is extended with an additional

action to initially invoke the middleware component before continuing

the event processing by calling the next component in the event process-

ing chain. The third step generates the deployment specification for the

different platform-specific middleware components. All components are

instantiated and deployed to the same ResourceContainer the re-

spective platform-independent component is deployed to. The trans-

formation ensures that each ResourceContainer contains only one

instance of each platform-specific component. This instance is shared

between the multiple instances of platform-independent components.

This deployment of platform-specific middleware components as lo-

cal singletons enables the consideration of software resources like lo-

cal thread pools or semaphores used within the middleware or local li-

brary shared over different sources or sinks running on the same con-

tainer. Finally, the merging transformation generates the connectors be-

tween the newly generated required operational ports of the platform-

independent event processing components with the corresponding pro-

vided operational port of the platform-specific middleware component

instance on the same resource container. The result of the model merg-

ing is the refined platform-specific model that conforms to the base ADL

and thus can serve as input to multiple existing analysis and prediction

techniques defined for the base ADL.

5.4. Formalised Transformation Description

While the previous section gave an overview on the developed trans-

formation approach as well as the substitutions and completions per-

formed when executing the transformation based on illustrating exam-

ples, this section introduces a formalised representation of the transfor-

mation using the extended PCM presented in Section 4.4 as source and
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Figure 5.9: Transformation Process Overview

target meta-model. Figure 5.9 presents an overview of the transforma-

tion, which consists of several transformation procedures. These proce-

dures cover different transformation aspects ranging from the substitu-

tion of EventGroups and EventTypes in the Repository Model over

the processing of connectors in the System Model up to the individual

deployment of generated components as part of the Allocation Model.

The transformation iteratively transforms each EventGroup. As il-

lustrated in Figure 5.9, it contains a loop iterating over all Event-

Groups. First of all, an OperationInterface representing the

EventGroup is generated. Based on the generated interface the cor-

159



5. Analysis Method based on Model-to-Model Transformations

responding event processing components providing and requiring this

interface are created and added to the Respository. Later these com-

ponents are instantiated and composed to realise the component chain

representing the platform-independent event processing chain. To con-

nect source and sink components with the event processing chain, the

components are extended with Provided- and RequiredRoles ref-

erencing the OperationInterface. As final step in the process-

ing loop for each EventGroup, the connectors, P2P as well as Pub-

/Sub, connecting Source- and SinkRoles associated with the cur-

rentEventGroup are processed and substituted with an instance of the

platform-independent processing chain. As last processing step within

the loop, the transformation integrates the platform-specific compo-

nents specified within the middleware model. Finally after processing

all EventGroups, the model is cleaned up and all event-related ele-

ments that have been substituted and refined in the previous steps are

removed.

In the following, we present a detailed specification of the devel-

oped transformation steps based on MOdel transformation LAnguage

(MOLA), a formalised transformation language, which we already intro-

duced in Section 2.2.3. In contrast to other graph-based transforma-

tion languages with control-flow annotations like Henshin [Arendt 10] or

Story Diagrams [von Detten 12], MOLA is the only one providing an ex-

plicit foreach loop construct. MOLA combines a strict formalisation that

can be directly compiled into executable model-to-model transforma-

tions [Sostaks 10] with an intuitive graphical representation [Kalnins 04].

These characteristics of MOLA, which were the reason why we selected it,

have been confirmed by the tool evaluation and comparison presented

in [Rose 12].
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5.4.1. Main Transformation Loop

Figure 5.10 illustrates the main procedure, which is the starting point

of the refinement transformation. It includes the main loop iterating

over all EventGroups, as described in the transformation overview

presented in the introduction of this section. In addition to the map-

ping rules that generate an OperationInterface that later substi-
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repository":"Repository
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Figure 5.10: Main Procedure Transformation
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tutes the EventGroup, the procedure contains several procedure calls,

each representing one of the transformation steps presented above.

The control flow starts with a loop including a mapping rule that spec-

ifies the iteration over all EventGroups contained in a Repository.

The mapping rule creates an OperationInterface belonging to the

same Repository for each EventGroup. The attribute Entity-

Name of this newly created OperationInterface is initialised us-

ing the EntityName of the EventGroup. Following the interface

generation, a nested foreach loop iterates over all EventTypes con-

tained in the EventGroup. The included matching rule creates an

OperationSignature for each EventType. The generated Op-

erationSignature contains a Parameter with the attribute pa-

rameterName set to ”event”. This Parameter references the

DataType originally associated with the EventType. After generating

the complete OperationInterface for an EventGroup, the sub-

procedures responsible for generating the processing components, ex-

tending the components with additional OperationProvided- and

OperationRequiredRoles, processing of the different connectors,

and finally integrating the platform-specific middleware components

are executed. All these procedures have in common, that they receive

the current EventGroup and the newly generated OperationIn-

terface as input parameter. After iterating over all EventGroups,

the procedure for cleaning up the model is executed. The following sub-

sections provide a detailed description of the different procedures.

5.4.2. Generation of Processing Components

The procedure createProcessingComponents generates the Ba-

sicComponents that represent SourcePort, SourceCommunication,

SinkCommunication and SinkPort for the given EventGroup. The

structure and the contained RD-SEFFs of the EventDistribution compo-

nent depend on the number of connected sinks and thus are generated
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Figure 5.11: Procedure createProcessingComponents
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when processing the connectors. Since the EventFilter components en-

capsulates the sink-specific filtering rules contained in the connectors, it

is also individually generated when processing the connectors.

The procedure, as illustrated in Figure 5.11, contains a dedicated map-

ping rule for each of the four components. Within these rules, a new

BasicComponent is created and the attribute entityName is set to

the component type followed by an underscore and the entityName

of the EventGroup. For each component, an OperationProvid-

edRole and an OperationRequiredRole associated with the Op-

erationInterface opInt received as second input parameter are

generated. Each mapping rule is followed by a call of the createFor-

wardingBehaviour sub-procedure described in the following.

Generation of Forwarding Behaviours

The createForwardingBehaviour sub-procedure generates the

behavioural specification in the form of RD-SEFFs for each service re-

spectively signature offered by the component handed over as first in-

put parameter. To call the next component in the event processing

chain, each RD-SEFF contains an ExternalCallAction connected

with the OperationRequiredRole of the component, which is the

second input parameter.

Figure 5.12 illustrates the createForwardingBehaviour pro-

cedure, which includes a foreach loop iterating over all Opera-

tionSignatures contained in the OperationInterface associ-

ated with the OperationRequiredRole received as second input

parameter. Within this loop, a new ResourceDemandingSEFF ref-

erencing the current OperationSignature is added to the compo-

nent. Each ResourceDemandingSEFF consists of a StartAction,

an ExternalCallAction and finally a StopAction. These actions

are interconnected using the predecessor respectively successor asso-

ciations defined for all AbstractActions. The generated Exter-
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Figure 5.12: Sub-Procedure createForwardingBehaviour

nalCallAction is associated with the current OperationSigna-

ture and the OperationRequiredRole received as input parame-

ter, which is the connection point to the next component in the event

processing chain. The loop ends with the execution of the procedure

createVariableUsages, which extends the ExternalCallAc-

tion handed over as parameter with VariableUsages and Vari-

ableCharacterisations required to forward the event’s content as

part of the operation call.

Generation of Variable Usages and Characterisations

As already described, the “event” parameter of the OperationSigna-

ture represents the event that is forwarded. As PCM does not sup-
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port a direct forwarding of parameters, an explicit value assignment us-

ing VariableUsages and VariableCharacterisations is re-

quired. In case of a SimpleDataType, the ExternalCallAction

contains only one VariableUsage with the name of the parameter,

while for CompositeDataTypes, a dedicated VariableUsage for

each DataType used as part of the CompositeDataType is required.

Each VariableUsage contains at least one VariableCharacter-

isation referencing one of the five predefined Characterisa-

tionTypes, STRUCTURE, NUMBER_OF_ELEMENTS, VALUE, BYTE-

SIZE, and TYPE. Additionally, each VariableCharacterisation

contains a PCMRandomVariable, which encapsulates a string repre-

senting the Stochastic Expression (StoEx) to specify the assigned value.

In the case of complex data types, the generation of Vari-

ableUsages and-Characterisations requires a recursive execu-

tion. Furthermore, in PCM the addressing of inner data types as well as

the definition of stochastic expressions is based on strings. Given that

MOLA is a graph transformation language, its support for recursive op-

erations with string handling is limited. However, MOLA provides the

possibility, to integrate external procedures, for example written in Java,

into the transformation.

Listing 5.1 illustrates the createVariableUsages procedure,

which is integrated as external procedure into the MOLA transforma-

tion. Before calling the recursive sub-method addUsage, the procedure

initially extracts the data type of the event and sets the namespace to

"event", which is the generated name of the parameter as shown in Fig-

ure 5.10. Together with a reference to the current ExternalCallAc-

tion, these variables are handed over to the method addUsage. This

method initialises a new VariableUsage for the current namespace

and then adds a new VariableCharacterisation for each Char-

acterisationType. All VariableCharacterisations contain

a string representing a StoEx defining the value that should be assigned.
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Listing 5.1: Pseudo Code createVariableUsages

1 createVariableUsages(ExternalCallAction eca){
2 DataType type = eca.getDataTyp
3 Namespace name= new Namespace("event");
4 addUsage(eca,namespace,type);
5 }
6

7 addUsage(ExternalCallAction eca, String namespace,
DataType type){

8 usage=createUsage(namespace);
9 usage.addChar(Characterisation.STRUCTURE,

10 new StoEx(namespace.toString+".STRUCTURE");
11 usage.addChar(Characterisation.NUMBER_OF_ELEMENTS,
12 new StoEx(namespace.toString+".NUMBER_OF_ELEMENTS

");
13 usage.addChar(Characterisation.VALUE,
14 new StoEx(namespace.toString+".VALUE");
15 usage.addChar(Characterisation.BYTESIZE,
16 new StoEx(namespace.toString+".BYTESIZE");
17 usage.addChar(Characterisation.TYPE,
18 new StoEx(namespace.toString+".TYPE");
19 eca.add(usage);
20

21 foreach InnerType it in type{
22 addUsage(eca, namespace.add(it), it.getType)
23 }
24 }

This string contains the namespace, which addresses the parameter or

one of the included subtypes, extended with the dot-separated name

of the CharacterisationType. After adding a VariableUsage

to the ExternalCallAction, the addUsage method is recursively

called for each included subtype represented by an InnerType decla-

ration. The namespace is extended to directly address this subtype and

handed over together with the data type of the subtype and the Exter-

nalCallAction.
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5.4.3. Processing of Roles

After generating the generic event processing components, the proce-

dure ProcessRoles is responsible to extend source and sink com-

ponents with additional OperationRequired- respectively Oper-

ationProvidedRoles. Additionally, the procedure adapts the in-

cluded RD-SEFFs. In case of a source, the EmitEventAction is sub-

stituted with an ExternalCallAction and in case of a sink, the

RD-SEFF describing the event handling is connected with the provided

OperationSignature.

Figure 5.13 depicts the processRoles procedure. The first element

is a foreach loop iterating over all SourceRoles corresponding to the

EventGroup stored in the input parameter eventGroup. An Oper-

ationRequiredRole referencing the OperationInterface re-

ceived as second input parameter is generated for each SourceRole

that is connected with a RepositoryComponent. After creating

the OperationRequiredRole two sub-procedures, namely pro-

cessEmitActions and createSourcePortContexts are exe-

cuted. Both receive the current SourceRole and the newly created

OperationRequiredRole as input parameters. We present more

details on these two sub-procedures after describing the second loop,

which iterates over all SinkRoles.

In analogy to the processing of a SourceRole, the first rule in the

loop extends the RepositoryComponent that contains the current

SinkRole with an additional OperationProvidedRole. A sec-

ond embedded loop iterates over all EventTypes that are contained

in the EventGroup referenced by the current SinkRole of the outer

loop. The RepositoryComponent, this role belongs to, already con-

tains a ResourceDemandingSEFF for each EventType describing

the event handling behaviour. The mapping rule substitutes the link

to the EventGroup with a link to the OperationSignature. The
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sourceRoleI:ISourceRole
{repository}

@eventGroupI:IEventGroup
{repository}

sourceRoleI:ISourceRole
{repository}

sourceCompI:IRepositoryComponent
{repository}

reqRoleI:IOperationRequiredRole
{repository}

entityName:=@sourceRolehentityName

@opIntI:IOperationInterface
{repository}

processEmitActionsk@sourceRolegI@reqRoleT createSourcePortContextsk@sourceRolegI@reqRoleT

sinkRoleI:ISinkRole
{repository}

@eventGroupI:IEventGroup
{repository}

sinkCompI:IRepositoryComponent
{repository}

provRoleI:IOperationProvidedRole
{repository}

entityName:=@sinkRolehentityName

@opIntI:IOperationInterface
{repository}

eventTypeI:IEventType
{repository}

@sinkRoleI:ISinkRole
{repository}

compI:IRepositoryComponent
{repository}

rdSEFFI:IResourceDemandingSEFF
{seff}

opSigI:IOperationSignature
{repository}

{entityName=AhandleADeventTypehentityName}

@opIntI:IOperationInterface
{repository}

@eventGroupI:IEventGroup
{repository}

@provRoleI:IOperationProvidedRole
{repository}

createSinkPortContextsk@sinkRolegI@provRoleT

@eventGroupI:IEventGroup
2

{repository}

@opIntI:IOperationInterface
2

{repository}

opp_eventGroup__SourceRole_SourceRoleeventGroup__SourceRolerequiredRoles_InterfaceRequiringEntityrequiringEntity_RequiredRole

requiringEntity_RequiredRole

requiredRoles_InterfaceRequiringEntityopp_requiredInterface__OperationRequiredRole_OperationRequiredRole
requiredInterface__OperationRequiredRole

opp_eventGroup__SinkRole_SinkRole

eventGroup__SinkRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providingEntity_ProvidedRole
providedRoles_InterfaceProvidingEntity providedInterface__OperationProvidedRoleopp_providedInterface__OperationProvidedRole_OperationProvidedRole

describedService__SEFF

opp_describedService__SEFF_ServiceEffectSpecification

eventTypes__EventGroup

eventGroup__EventType

providedRoles_InterfaceProvidingEntity
providingEntity_ProvidedRole

eventGroup__SinkRole

opp_eventGroup__SinkRole_SinkRole

providingEntity_ProvidedRole
providedRoles_InterfaceProvidingEntity

opp_describedService__SEFF_ServiceEffectSpecificationdescribedService__SEFF

signatures__OperationInterface
interface__OperationSignature

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

Figure 5.13: Procedure processRoles
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corresponding signature is identified using the attribute entityName,

which was set when generating the OperationInterfaces for all

EventGroups in the main procedure of the transformation. As fi-

nal step in the iteration over all SinkRoles, the sub-procedure cre-

ateSinkPortContexts responsible for instantiating and connecting

the SinkPort and SinkCommunication components corresponding to the

EventGroup is invoked.

emitActionx:xEmitEventAction
{seff}

@sourceRolex:xSourceRole
{repository}

@emitActionx:xEmitEventAction
{seff}

rdSEFFx:xResourceDemandingBehaviour
{seff}

extCallx:xExternalCallAction
{seff}

@reqRolex:xOperationRequiredRole
{repository}

eventTypex:xEventType
{repository}

opSigx:xOperationSignature
{repository}

{entityName==qhandleqV@eventType2entityName}

varUsagex:xVariableUsage
{parameter}

sucessorx:xAbstractAction
{seff}

predecessorx:xAbstractAction
{seff}

varUsagex:xVariableUsage
{parameter}

@emitActionx:xEmitEventAction
{seff}

@extCallx:xExternalCallAction
{seff}

@sourceRolex:xSourceRole
1

{repository}

@reqRolex:xOperationRequiredRole
2

{repository}

opp_sourceRole__EmitEventAction_EmitEventAction
sourceRole__EmitEventAction

steps_Behaviour
resourceDemandingBehaviour_AbstractAction opp_eventType__EmitEventAction_EmitEventActioneventType__EmitEventAction

callAction__VariableUsage

inputVariableUsages__CallAction

successor_AbstractAction

predecessor_AbstractAction

predecessor_AbstractAction

successor_AbstractAction

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

opp_calledService_ExternalService_ExternalCallAction

calledService_ExternalService

predecessor_AbstractAction

successor_AbstractAction

successor_AbstractAction

predecessor_AbstractAction

inputVariableUsages__CallAction

callAction__VariableUsage

callAction__VariableUsage

inputVariableUsages__CallAction

Figure 5.14: Sub-Procedure processEmitActions
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Processing of Emit Actions

The sub-procedure processEmitActions, which is executed after

integrating the new OperationRequiredRole, substitutes the orig-

inal EmitEventActionswith ExternalCallActions referring to

the OperationRequiredRole in order to call the next component in

the event processing chain.

As shown in Figure 5.14, the transformation iterates over all

EmitEventActions associated with the input parameter source-

Role. For each EmitEventAction, the transformation creates an

ExternalCallAction. The new action substitutes the EmitEven-

tAction in the control flow by transferring the references to the suc-

ceeding and preceding AbstractAction. Additionally, the new ac-

tion is connected with the input parameter reqRole and the Opera-

tionSignature that represents the EventType associated with the

original EmitEventAction. Again, the OperationSignature is

identified using the attribute entityName. In a final embedded loop,

all VariableUsages contained in the EmitEventAction are trans-

ferred to the ExternalCallAction.

Generate Context Elements for Sources and Sinks

The two procedures createSourcePortContexts and cre-

ateSinkPortContexts encapsulate the instantiation of the Source-

Port respectively SinkPort components and their connection with the

source or sink component. The structure of both transformation pro-

cedures is similar. They differ only in the platform-independent com-

ponent that is instantiated. For this reason, we use the createSour-

cePortContexts procedure as an example for both procedures and

show the createSinkPortContexts procedure in Appendix A.1.

As illustrated in Figure 5.15, the procedure contains a loop iterating

over all AssemblyContexts belonging to the RepositoryCompo-
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sourceAssemblyContext=:=AssemblyContext
{composition}

@sourceRole=:=SourceRole
{repository}

conp=:=RepositoryComponent
{repository}

eventGroup=:=EventGroup
{repository}

compSourePort=:=BasicComponent
{repository}

{entityName=_SourcePort__+@eventGroup.entityName}

sourcePortAssembyContext=:=AssemblyContext
{composition}

@sourceAssemblyContext=:=AssemblyContext
{composition}

structure=:=ComposedStructure
{composition}

conPort=:=AssemblyConnector
{composition}

@reqRole=:=OperationRequiredRole
{repository}

sourcePortProvRole=:=OperationProvidedRole
{repository}

@sourceAssemblyContext=:=AssemblyContext
{composition}

sourceAllocationContext=:=AllocationContext
{allocation}

container=:=ResourceContainer
{resourceenvironment}

@sourcePortAssembyContext=:=AssemblyContext
{composition}

sourcePortAllocationContext=:=AllocationContext
{allocation}

@sourceRole=:=SourceRole
1

{repository}

@reqRole=:=OperationRequiredRole
2

{repository}

sourceRole__AssemblyEventConnector

opp_sourceRole__AssemblyEventConnector_AssemblyEventConnector

eventGroup__SourceRole
opp_eventGroup__SourceRole_SourceRole

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

encapsulatedComponent__AssemblyContext

assemblyContexts__ComposedStructure

parentStructure__AssemblyContext

assemblyContexts__ComposedStructure

parentStructure__AssemblyContext

requiringAssemblyContext_AssemblyConnector

opp_requiringAssemblyContext_AssemblyConnector_AssemblyConnectorrequiredRole_AssemblyConnector

opp_requiredRole_AssemblyConnector_AssemblyConnector

providedRole_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector
assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

resourceContainer_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

Figure 5.15: Sub-Procedure createSourcePortContexts

nent that belongs to the SourceRole received as input parameter.

In the second rule, the BasicComponent representing the SourcePort

component is identified using a constraint on the attribute entity-

Name, which exploits the generation pattern for component names used

in the createProcessingComponents procedure. The constraint

selects the component with the string "SourcePort_" concatenated

with the name of the EventGroup referenced by the input parame-
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ter sourceRole. Additionally, the rule generates a new Assembly-

Context associated with the identified BasicComponent. A newly

created AssemblyConnector connects the OperationRequire-

dRole and the current AssemblyContext of the source component

with the generated AssemblyContext representing the SourcePort

component and its provided role.

As a final step within the loop, the created sourcePortAssembly-

Context is deployed in the sameResourceContainer as the source

component itself. The mapping rule creates a new AllocationCon-

text that on the one hand references thesourcePortAllocation-

Context and on the other hand theResourceContainer associated

with the AllocationContext of the sourceAssemblyContext.

After integrating the Source- and SinkPort components and connecting

them with the operational interfaces, the main transformation continues

with the processing of connectors.

5.4.4. Transformation of Event Channels and Connectors

The transformation of event channels generates an EventDistribution

component skeleton for each event channel. This skeleton contains only

the provided interface together with an initial RD-SEFF. The provided in-

terface is connected with the SourceCommunication component, which

itself is later connected with the SourcePort components belonging to the

connected event source. Afterwards, the channel-specific EventDistribu-

tion component is extended with a dedicated OperationRequire-

dRole and an additional ForkBehaviour for each event sink con-

nected with the channel. Finally, the connector-specific EventFilter com-

ponent is generated and connected.

Figure 5.16 depicts the processChannelsandConnectors

procedure. It consists of one main loop that iterates over all

EventChannels associated with the current EventGroup. For each

EventChannel, a new EventDistribution component is created and
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channel@:@EventChannel
{composition}

distrComp@:@BasicComponent
{repository}

entityName:=GDistribution_Gq@channel,entityName

@eventGroup@:@EventGroup
{repository}

rep@:@Repository
{repository}

@opInt@:@OperationInterface
{repository}

provRole@:@OperationProvidedRole
{repository}

@sourceComAssembly@:@AssemblyContext
{composition}

@distrAssembly@:@AssemblyContext
{composition}

@channel@:@EventChannel
{composition}

channelAlloc@:@AllocationContext
{allocation}

container@:@ResourceContainer
{resourceenvironment}

sourceComAlloc@:@AllocationContext
{allocation}

distrAlloc@:@AllocationContext
{allocation}

@channel@:@EventCha,,,
{composition}

@distrComp@:@BasicComponent
{repository}

@provRole@:@OperationProvided,,,
{repository}

distrAssembly@:@AssemblyContext
{composition}

structure@:@ComposedStructure
{composition}

sourceCommComp@:@RepositoryComponent
{repository}

{entityName=GSourceCommunication_q@eventGroup,entityName}

sourceComReq@:@OperationRequiredRole
{repository}

sourceComAssembly@:@AssemblyContext
{composition}

con@:@AssemblyConnector
{composition}

sourceComProvRole@:@OperationProvidedRole
{repository}

createInitialDistributionSEFFA@distrCompF@@opIntx

connectSourcesAndChannelA@channelF@@sourceComAssemblyF@@sourceComProvRolex

processSubscriptionConnectorsA@channelF@@distrAssemblyx

@eventGroup@:@EventGroup
2

{repository}

@opInt@:@OperationInterface
2

{repository}

eventGroup__EventChannel

opp_eventGroup__EventChannel_EventChannel

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

repository__RepositoryComponent

components__Repository

repository__Interface

interfaces__Repository

opp_providedInterface__OperationProvidedRole_OperationProvidedRole
providedInterface__OperationProvidedRole

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

eventChannel__AllocationContext

opp_eventChannel__AllocationContext_AllocationContextresourceContainer_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

eventChannel__ComposedStructure

parentStructure__EventChannel

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providedRole_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

providingAssemblyContext_AssemblyConnector

opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

parentStructure__AssemblyContext

assemblyContexts__ComposedStructure

assemblyContexts__ComposedStructure

parentStructure__AssemblyContext

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

encapsulatedComponent__AssemblyContext

opp_requiredRole_AssemblyConnector_AssemblyConnector

requiredRole_AssemblyConnector

requiringAssemblyContext_AssemblyConnector

opp_requiringAssemblyContext_AssemblyConnector_AssemblyConnector

Figure 5.16: Procedure processChannelsandConnectors
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added to the Repository, in which the EventGroup received as

input parameter is defined. As the number of required interfaces and

the internal behaviour depends on the number of connected sinks, the

EventDistribution component is individually generated for each chan-

nel. For this reason, the attribute entityName is set to the type of the

component "Distribution_" extended with the entityName of

the EventChannel and not the EventGroup as done in the cre-

ateProcessingComponents procedure. Furthermore, the rule ex-

tends the component with an OperationProvidedRole associated

with OperationInterface representing the EventGroup.

The second mapping rule generates two AssemblyContexts

namely distrAssembly and sourceComAssembly that are as-

sociated with the currently generated EventDistribution component

and respectively with the SourceCommunication component. Again,

a constraint on the entityName is used to identify the respec-

tive SourceCommunication component. Both AssemblyContexts

are added to the ComposedStructure that contains the current

EventChannel. A new AssemblyConnector connects these new

AssemblyContexts and the OperationProvided- respectively

OperationRequiredRoles of the respective components.

The third rule creates two AllocationContexts to specify the

deployment of the newly created AssemblyContexts on the Re-

sourceContainer referenced by the AllocationContext be-

longing to the current EventChannel.

After executing the sub-procedure createInitialDistribu-

tionSEFF, which integrates an initial RD-SEFF into the EventDistri-

bution component, the connectSourceWithSourceCommunica-

tion procedure connects all event sources and the corresponding Sour-

cePort components with the SourceCommunication component. The

sub-procedure processSubscriptionConnectors is executed to

complete the chain of event processing component by introducing

175



5. Analysis Method based on Model-to-Model Transformations

the EventFilter and SinkCommunication components and connecting

them with the corresponding SinkPort component. The following sub-

sections provide a detailed description of these sub-procedures.

Generation of an initial RD-SEFF

The sub-procedure createInitialDistributionSEFF (illus-

trated in Figure 5.17) iterates over all OperationSignatures that

are contained in the OperationInterface received as input param-

eter opInt. For each OperationSignature, a new ResourceDe-

mandingBehaviour is created, added to the component comp, and

finally associated with the current OperationSignature. All gener-

ated ResourceDemandingBehaviours contain a StartAction,

a ForkAction and a StopAction that are connected using the pre-

decessor and successor associations. The ForkAction provides

a container for ForkBehaviours generated later when processing the

connectors between channels and sinks.

Connecting Sources with Source Communication Components

The aim of the sub-procedure connectSourceWithSourceCom-

munication is the connection of the newly instantiated SourceCom-

munication component and respectively its AssemblyContextswith

the AssemblyContext of the SourcePort and the respective Opera-

tionProvidedRole.

As illustrated in Figure 5.18, the procedure starts with a pure map-

ping rule. The aim of this rule is to identify the AssemblyContext

of the SourcePort component that belongs to the AssemblyContext

of the source component received as input. To identify the Assem-

blyContext of the SourcePort component, the rule follows the al-

ready existing AssemblyConnector between the AssemblyCon-

texts of the event source and the corresponding SourcePort compo-
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nent. This connector has already been created when executing the pro-

cessRoles procedure. Exploiting the reference between Alloca-

tionContext and BasicComponent, the OperationRequire-

dRole of the SourcePort component to be connected with the Op-

erationProvidedRole of the SourceCommunication component is

identified. This mapping is unique, as the event processing components

with exception of the EventDistribution component contain exactly one

OperationProvided- and one OperationRequiredRole.

The second and last rule creates a new AssemblyConnector that

connects the identified OperationProvidedRole of the SourcePort

component and the respective AssemblyContext with the Opera-

tionProvidedRole and AssemblyContext of the SourceCommu-

nication component received as input parameters.

@compD:DBasicComponent
1

{repository}

@opIntD:DOperationInterface
2

{repository}

opSigD:DOperationSignature
{repository}

@opIntD:DOperationInterface
{repository}

@opSigD:DOperationSignature
{repository}

rdSEFFD:DResourceDemandingBehaviour
{seff}

@compD:DBasicComponent
{repository}

startActionD:DStartAction
{seff}

forkActionD:DForkAction
{seff}

stopActionD:DStopAction
{seff}

signatures__OperationInterface

interface__OperationSignature

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

successor_AbstractAction
predecessor_AbstractActionsuccessor_AbstractActionpredecessor_AbstractActionFigure 5.17: Sub-Procedure createInitialDistributionSEFF
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Transforming Subscription Connectors

The transformation of the connectors between a channel and sinks is

more complex compared to the connectors between sources and the

channel. In addition to the pure identification and composition of As-

semblyContexts, this transformation procedure adapts and extends

the EventDistribution component depending on the number of con-

nected sinks. Furthermore, it generates connector- respectively sink-

specific EventFilter components. For this reason, the procedure pro-

cessSubscriptionConnector, illustrated in Figure 5.19, contains

several sub-procedures responsible for the different aspects.

sourceCompx:xRepositoryComponent
{repository}

sourceOpReqx:xOperationRequiredRole
{repository}

{entityName=@sourceRole.entityName}

sourcePortCompx:xBasicComponent
{repository}

assemblyConnx:xAssemblyConnector
{composition}

sourcePortAssemblyx:xAssemblyContext
{composition}

sourcePortOpProvx:xOperationProvidedRole
{repository}

sourcePortOpReqx:xOperationRequiredRole
{repository}

@sourceAssemblyx:xAssemblyContext
{composition}

@sourcePortOpReqx:xOperationRequiredRole
{repository}

@sourcePortAssemblyx:xAssemblyContext
{composition}

connectorx:xAssemblyConnector
{composition}

@sourceCommAssemblyx:xAssemblyContext
{composition}

@sourceCommProvRolex:xOperationProvidedRole
{repository}

@sourceAssemblyx:xAssemblyContext
1

{composition}

@sourceRolex:xSourceRole
2

{repository}

@sourceCommAssemblyx:xAssemblyContext
3

{composition}

@sourceCommProvRolex:xOperationProvidedRole
4

{repository}

encapsulatedComponent__AssemblyContextopp_encapsulatedComponent__AssemblyContext_AssemblyContext

requiredRoles_InterfaceRequiringEntity

requiringEntity_RequiredRole

requiredRole_AssemblyConnector

opp_requiredRole_AssemblyConnector_AssemblyConnector

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

providedRoles_InterfaceProvidingEntity
providingEntity_ProvidedRole

requiredRoles_InterfaceRequiringEntity

requiringEntity_RequiredRole

opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

providingAssemblyContext_AssemblyConnector

providedRole_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

requiredRole_AssemblyConnector

opp_requiredRole_AssemblyConnector_AssemblyConnector

opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

providingAssemblyContext_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

providedRole_AssemblyConnector

Figure 5.18: Sub-Procedure connectSourceWithSourceCommunication
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@channelf:fEventChannel
1

{composition}

@distibContextf:fAssemblyContext
4

{composition}

sinkConf:fEventChannelSinkConnector
{composition}

@channelf:fEventChannel
{composition}

sinkContextf:fAssemblyContext
{composition}

sinkRolef:fSinkRole
{repository}

filterCondf:fPCMRandomVariable
{core}

integrateForkBehaviour(@opInt)f@comp)f@distrReqRoleI

connectFilterSink(@filterAssembly)f@filterReqRole)f@sinkContext)f@sinkRoleI

createFilterComponent(@filterCond)f@opInt)f@filterComp)f@filterProvRole)f@filterReqRoleI

@filterCompf:fBasicComponent
{repository}

@filterProvRolef:fOperationProvidedRole
{repository}

filterAssemblyf:fAssemblyContext
{composition}

@distibContextf:fAssemblyContext
{composition}

@distrReqRolef:fOperationRequiredRole
{repository}

connf:fAssemblyConnector
{composition}

distrAllocf:fAllocationContext
{allocation}

filterAllocf:fAllocationContext
{allocation}

containerf:fResourceContainer
{resourceenvironment}

@distribCompf:fBasicComponent
3

{repository}

@opIntf:fOperationInterface
2

{repository}

@filterCompf:fBasicComponent
{repository}

@filterProvRolef:fOperationProvidedRole
{repository}

@filterReqRolef:fOperationRequiredRole
{repository}

@distrReqRolef:fOperationRequiredRole
{repository}

eventChannelSinkConnector__EventChannel

eventChannel__EventChannelSinkConnector

opp_assemblyContext__EventChannelSinkConnector_EventChannelSinkConnector

assemblyContext__EventChannelSinkConnector

opp_sinkRole__EventChannelSinkConnector_EventChannelSinkConnector

sinkRole__EventChannelSinkConnector

eventChannelSinkConnector__FilterCondition

filterCondition__EventChannelSinkConnector

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

requiredRole_AssemblyConnector

opp_requiredRole_AssemblyConnector_AssemblyConnector

opp_requiringAssemblyContext_AssemblyConnector_AssemblyConnector

requiringAssemblyContext_AssemblyConnector

opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

providingAssemblyContext_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

providedRole_AssemblyConnector

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContextassemblyContext_AllocationContextopp_assemblyContext_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

resourceContainer_AllocationContextopp_resourceContainer_AllocationContext_AllocationContext

Figure 5.19: Sub-Procedure processSubscriptionConnector
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The procedure processSubscriptionConnector has four in-

put parameters: the current EventChannel and the OperationIn-

terface representing the corresponding EventGroup as well as the

EventDistribution component and its AssemblyContext. The last

two have been generated within the first rules of the processChan-

nelsandConnectors procedure. In addition to these parameters, the

procedure contains four internal variables that are used as IN-OUT pa-

rameters to return elements generated within sub-procedures. These

variables are the OperationRequiredRole (distrReqRole) that

is added to the EventDistribution component and the generated

EventFilter component (filterComp) including its OperationPro-

videdRole (filterProvRole) and OperationRequiredRole

(filterReqRole).

The control flow iterates over all EventChannelSinkConnec-

tors connected to the current EventChannel. The first mapping

rule identifies the AssemblyContext and SinkRole referenced by

the EventChannelSinkConnectors as well as the PCMRandom-

Variable that contains the filter condition. For each EventChan-

nelSinkConnector the integrateForkBehaviour procedure

extends the EventDistribution component handed over as parameter

with a new OperationRequiredRole, which is returned using the

IN-OUT parameter distrReqRole. Furthermore, the procedure inte-

grates a new ForkBehaviour into the already existing ForkAction.

In the following, we first describe the remaining parts of the process-

SubscriptionConnector procedure, before providing more details

on the different sub-procedures. After extending the EventDistribution

component, the sub-procedurecreateFilterComponent generates

the connector-specific EventFilter component based on the interface

and the filter condition handed over as IN parameters and returns the

created component itself and the required and provided roles using the
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IN-OUT parameters filterComp, filterProvRole, and filter-

ReqRole.

The following rule instantiates the created EventFilter component by

creating a new AssemblyContext associated with the BasicCom-

ponent returned and stored in the variable filterComp. A new

AssemblyConnector connects this context and the belonging Op-

erationProvidedRole with the AssemblyContext and the Op-

erationRequiredRole of the EventDistribution component. While

the AssemblyContext is one of the input parameters, the Op-

erationRequiredRole is returned by the integrateForkBe-

haviour procedure and stored in the variable distrReqRole. Fur-

thermore, the rule creates an AllocationContext connected with

the new AssemblyContext of the EventFilter component. This Al-

locationContext references the same ResourceContainer as-

sociated with the AllocationContext belonging to the EventDistri-

bution component.

As last operation in this procedure, the sub-procedure connect-

FilterSink is executed. It is responsible for completing the con-

nections between the different components in the event processing

chain and finally connecting the component chain with the Sink com-

ponent. The AssemblyContext and OperationRequiredRole

of the EventFilter component together with the AllocationContext

and SinkRole of the Sink component referenced by the EventChan-

nelSinkConnector are input parameters of this sub-procedure.

Integration of Fork Behaviours

The sub-procedure integrateForkBehaviour consists of two pro-

cessing steps. First, the component is extended with an additional Op-

erationRequiredInterface, which is later used to connect the

sink component and the intermediate components of the event pro-

cessing chain, respectively. Second, the RD-SEFFs and the contained
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Figure 5.20: Sub-Procedure integrateForkBehaviour

ForkActions are extended with an additional ForkBehaviour to

split the control flow independently for each connected Sink.

The first rule of the procedure (see Figure 5.20), generates a new Op-

erationRequiredRole that connects theBasicComponentcomp

with the OperationInterface opInt, both received as input pa-

rameter. The IN-OUT parameter reqRole is used to store the newly

created OperationRequiredRole and return it to the calling pro-

cessSubscriptionConnector procedure.

After generating the OperationRequiredRole, a loop iterates

over all ResourceDemandingSEFFs belonging to the BasicCom-

ponent received as input. Each ResourceDemandingSEFF is as-

sociated with exactly one OperationSignature, which is identified
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within this rule. As the ResourceDemandingSEFFs are the result of

the already explained procedure createInitialDistribution-

SEFF, it is known that each behaviour contains exactly one ForkAc-

tion. This ForkAction is extended with an additional Forked-

Behaviour that contains a StartAction, an ExternalCallAc-

tion, and a StopAction connected via the successor and predeces-

sor associations. The ExternalCallAction contains a reference

to the newly created OperationRequiredRole and the Opera-

tionSignature that corresponds to the currentResourceDemand-

ingSEFF. Although the ResourceDemandingSEFF references the

provided signature, the required signature is identical as the respective

provided and required interfaces are identical. As a final step in the

loop, the external procedure createVariableUsages, described in

Section 5.4.2, is used to generate the VariableUsages and Vari-

ableCharacterisations required to forward the event’s content.

Generation of Filter Components

The createFilterComponent sub-procedure generates individual

EventFilter components for a given interface and filter condition spec-

ified as StoEx. Both are defined as input parameters namely opInt

and filterCondition. To return the generated BasicComponent

as well as included roles, the procedure defines the IN-OUT parame-

ters component, provRole, and reqRole. A BranchAction with

an integrated GuardedBranchTransition realises the filtering. En-

capsulating the forwarding ExternalCallAction within a Guard-

edBranchTransition with the filter condition as guard ensures that

the event is forwarded only if the condition evaluates to true.

The transformation procedure, depicted in Figure 5.21, starts with

the generation of a new BasicComponent belonging to the same

Repository the interface opInt is contained in. The compo-

nent is extended with an OperationProvidedRole and an Oper-
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Figure 5.21: Sub-Procedure createFilterComponent
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ationRequiredRole both associated with the OperationInter-

face opInt. Following this first rule, a loop iterates over all Opera-

tionSignatures belonging to opInt.

The loop contains several rules to define the loop variable, create the

initial RD-SEFF and finally to integrate the GuardedBranchTransi-

tions into the BranchAction. Furthermore, the loop includes a call

of the already described procedure createVariableUsages.

After defining the iteration over all OperationSignatures con-

tained in opInt, the second rule extends component with a

ResourceDemandingSEFF associated with the current Opera-

tionSignature. Furthermore, it integrates a StartAction, a

BranchAction, and a StopAction (all connected using the prede-

cessor and successor relations) into the ResourceDemandingSEFF.

The next rule generates a GuardedBranchTransition and inte-

grates it into the BranchAction. The filterCondition that con-

tains the PCMRandomVariable received as one of the input parame-

ters is assigned as guard. The GuardedBranchTransition contains

a ResourceDemandingBehaviour that, in analogy to the forward-

ing behaviours generated in the createForwardingBehaviour

procedure, contains a StartAction, an ExternalCallAction,

and finally a StopAction. The ExternalCallAction is associ-

ated with opSig, the current OperationSignature, and reqRole,

the OperationRequiredRole generated as part of the second rule.

The following call of the already introduced external procedure cre-

ateVariableUsages generates the VariableUsages and Vari-

ableCharacterisations required to forward the event payload.

The behavioural semantics of PCM [Reussner 11] specifies that exactly

one BranchTransition within a BranchAction is executed. As

PCM does not provide an explicit ELSE construct, the last rule generates

a second GuardedBranchTransition with the inverted condition

using the NOT operator provided by the StoEx language. As illustrated in
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Figure 5.21, a new PCMRandomVariable is instantiated and assigned

to the GuardedBranchTransition. The attribute Specifica-

tion, which contains the string representation of the StoEx, is set to the

specification of the filterCondition surrounded by the NOT oper-

ator and the belonging brackets. The GuardedBranchTransition

contains an “empty” ResourceDemandingBehaviour that contains

only aStart- andStopAction. These twoGuardedBranchTran-

sitions ensure that always one ResourceDemandingBehaviour

is executed. The ResourceDemandingBehaviour that includes the

ExternalCallAction to the next component in the event process-

ing chain is executed only if the filterCondition evaluates to true.

Otherwise, the second behaviour is executed and the control flow termi-

nates with the final StopAction.

Connecting the Filter Components

connectFilterSink is the last sub-procedure called within the

processSubscriptionConnectors procedure and thus also the

final sub-procedure of the complete processChannelsandCon-

nectors procedure. It instantiates and integrates the EventFilter and

SinkCommunication components to complete the chain of event pro-

cessing components.

The transformation procedure, shown in Figure 5.22, has four in-

put parameters. These parameters are the AssemblyContext

(filterContext) and theOperationRequiredRole of the Event-

Filter component (filterReqRole) as well as the AssemblyCon-

text (sinkContext) and the SinkRole (sinkRole) belonging to

the sink addressed by the connector. The control flow of the transforma-

tion starts with a rule that identifies the EventGroup associated with

the sinkRole parameter.

The second rule identifies the BasicComponent that represents the

SinkCommunication component belonging to the EventGroup iden-
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Figure 5.22: Sub-Procedure connectFilterSink
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tified in the previous rule. Again we use the generated value of the

attribute EntityName to identify the matching SinkCommunication

component. Additionally, the rule creates an AssemblyContext as-

sociated with the identified component. The created AssemblyCon-

text is added to theComposedStructure, theAssemblyContext

of the EventFilter component received as input belongs to. Furthermore,

a new AllocationContext is generated. This context connects the

new AssemblyContext with the ResourceContainer that is also

referenced by the AllocationContext belonging to filterCon-

text.

Similarly to the processPublishingConnectors procedure, the

third rule is a pure mapping rule to identify the AssemblyContext

of the SinkPort component belonging to the sink component repre-

sented by the input parameter sinkContext. Using the input pa-

rameter sinkContext as starting point, the corresponding Repos-

itoryComponent and its OperationProvidedRole are identi-

fied using the entityName attribute, which is equal to the enti-

tyName of the sinkPort parameter. Following the already existing

AssemblyConnector, the sinkPortAssembly and the respective

sinkPortReqRole are located. Based on these elements, the rule de-

rives the BasicComponent that represents the SinkPort component

and the corresponding OperationProvidedRole. The identified el-

ements are used in the last rule to instantiate the SinkCommunication

component and complete the processing chain by connecting both the

EventFilter as well as the SinkPort component with the SinkCommuni-

cation component.

In the final rule, two new AssemblyConnectors are generated.

The first one (connFilterSinkComm) connects the filterCon-

text and the filterReqRole representing the EventFilter com-

ponent with the SinkCommunication component represented by the

sinkCommAssembly and the sinkCommProvRole. The second one
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connects sinkCommAssembly and the respective OperationRe-

quiredRole (sinkCommReqRole) with the AssemblyContext

and the OperationProvidedRole of the SinkPort component. Both

have been identified within the previous mapping rule. With this last

AssemblyConnector, the event processing from source to sink com-

ponents is completed and finalised.

5.4.5. Transformation of Point-to-Point Connectors

The processing of P2P connectors has several commonalities with the

processing of Pub/Sub connections and thus it reuses several sub-

procedures. In contrast to the channel-based communication, the event

processing chain is not generated for each channel but rather for each

event source. For this reason, the transformation iterates as depicted

in Figure 5.23 over all AssemblyContexts belonging to a Repos-

itoryComponent that contains a SourcePort associated with the

EventGroup received as input parameter eventGroup.

The first rule generates a new EventDistribution component

(distrComp) for each sourceAssembly. The new component is ex-

tended with an OperationProvidedRole associated with the Op-

erationInterface received as second input parameter and rep-

resenting the EventGroup. Additionally, the transformation creates

a new AssemblyContext referencing the generated BasicCompo-

nent as part of the ComposedStructure that the sourceAssem-

bly corresponds to. In analogy to the processing of Pub/Sub connec-

tors, the already introduced sub-procedurecreateInitialDistri-

butionSEFF integrates a stub of the behavioural description into the

component.

The second rule identifies the BasicComponent representing the

SourceCommunication component belonging to the current Event-

Group using the attribute entityName. A new AssemblyCon-

text associated with this BasicComponent is added to the Com-
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Figure 5.23: Sub-Procedure processP2PConnectors
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posedStructure structure, which was already identified as part

of the previous rule. Furthermore, the rule generates a new Assem-

blyConnector connecting the two AssemblyContexts and their

OperationRequired- and OperationProvidedRole.

Finally, the three sub-procedures allocateP2PComponents,

connectSourceWithSourceCommunication, and process-

P2PSink are executed. While the second one has already been used

and explained in the context of the processChannelsAndConnec-

tors procedure, the following sub-sections provide a description of the

two remaining procedures.

Allocation of Components

For channel-based connections, the deployment of middleware compo-

nents is explicitly specified by defining an AllocationContext for

each EventChannel. In contrast, P2P connections are direct connec-

tions between the source and sink component without any intermediate

elements. Peer-to-peer systems, which lack a central transmission sys-

tem are mostly limited to P2P connections. In this case, the transmission

system is deployed together with the components. However, in order to

also support P2P connections in centralised and server-based systems,

the transformation introduces an implicit deployment specification. If

a central middleware server is defined within the Resource Environment,

the components representing the transmission system are deployed on

this container. Otherwise, the allocateP2PComponents allocates

the components on the same ResourceContainer that hosts the

source component.

For this reason the allocateP2PComponents procedure, illus-

trated in Figure 5.24, starts with a rule to check if a ResourceCon-

tainer fullfilling the constraint entityName="Middleware" ex-

ists. If the rule can be matched, which means that such a Resource-

Container exists, the left execution path is taken and the identified
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Figure 5.24: Sub-Procedure allocateP2PComponents

ResourceContainer is stored in the internal variable container.

Otherwise, the right path is taken and an additional rule identifies the

ResourceContainer, that the event source is deployed on, and then

stored in the variable container.

As a last rule merging the two execution paths, two new Alloca-

tionContexts are generated to connect theAssemblyContexts of

the EventDistribution and the SourceCommunication components with

the ResourceContainer stored in the variable container.
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Transformation of Sinks

Similarly to the processSubscriptionConnector procedure, the

processP2PSinks procedure completes the component chain. It dif-

fers only in few aspects. In contrast to the processSubscription-

Connector procedure, which receives the EventChannel as input

parameter and iterates over all associated EventChannelSinkCon-

nectors, the processP2PSinks receives an AssemblyContext

and a SourceRole representing the event source as input and iterates

over all AssemblyEventConnectors associated with this element

tuple.

In analogy to the processSubscriptionConnector procedure,

the two sub-procedures integrateForkBehaviour and create-

FilterComponent are used to extend the EventDistribution compo-

nent with an OperationRequiredRole for each connected sink and

to generate the sink-specific EventFilter component.

The following rule generates an AssemblyContext associated

with the EventFilter component returned by the createFilter-

Component procedure. This new AssemblyContext belongs

to the ComposedStructure that the AssemblyContext of the

EventDistribution component is contained in. A new Assembly-

Connector connects these two AssemblyContexts and their

OperationProvided- and respectively OperationRequire-

dRoles. Furthermore, the rule creates a new AllocationContext

in order to deploy the AssemblyContext of the EventFilter compo-

nent on the sameResourceContainer as the EventDistribution com-

ponent.

The last rule is again an exclusive mapping rule to identify theAssem-

blyContext and SinkRole referenced by the AssemblyEvent-

Connector. Both elements together with the AssemblyContext of

the EventFilter component and the respective OperationProvide-
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providingAssemblyContext_AssemblyConnector

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

resourceContainer_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

opp_sinkAssemblyContext__AssemblyEventConnector_AssemblyEventConnector

sinkAssemblyContext__AssemblyEventConnector

opp_sinkRole__AssemblyEventConnector_AssemblyEventConnector

sinkRole__AssemblyEventConnector

Figure 5.25: Sub-Procedure processP2PSinks
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dRole are forwarded to the connectFilterSink procedure. As ex-

plained in Section 5.4.4, the connectFilterSink procedure instan-

tiates the SinkCommunication component and connects the remaining

component instances completing the event processing chain.

5.4.6. Integration of Middleware Components

The integration of middleware-specific components follows the process

described in Section 5.3. The integrateMiddlewareComponents

procedure, depicted in Figure 5.26, sequentially extends the different

event processing components that correspond to an EventGroup. The

transformation procedure integrates an additional middleware call into

the RD-SEFFs of the event processing components. Furthermore, it in-

tegrates and deploys the platform-specific components. The procedure

is invoked within the loop of the main procedure and thus executed in-

dividually for each EventGroup. It receives the generated Opera-

tionInterface representing the EventGroup as input parameter.

This information enables the identification of the event processing com-

ponents in the model as all of them have in common that they provide

and require this interface.

integrateSourcePortMiddleware(@opInt)

@opIntm:mOperationInterface
1

{repository}

integrateSourceCommMiddleware(@opInt)

integrateSinkCommMiddleware(@opInt)

integrateSinkPortMiddleware(@opInt)

integrateDistributionMiddleware(@opInt)

integrateFilterMiddleware(@opInt)

Figure 5.26: Sub-Procedure integrateMiddlewareComponents
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The component-specific procedures, called within the inte-

grateMiddlewareComponents procedure, have a similar struc-

ture and differ only in the mapping rules that identify the differ-

ent components. For this reason, we select two sub-procedures,

namely integrateSourcePortMiddleware and integrate-

DistributionMiddleware, which we describe here as representa-

tive examples and refer to Appendix A.2 for the presentation of the re-

maining procedures.

Integration of Source Port Middleware

The procedure integrateSourcePortMiddleware, shown in Fig-

ure 5.27, serves as a representative example for the procedures

integrateSourceComMiddleware, integrateSinkCommMid-

sourcePortMdwCompS:SRepositoryComponent
{repository}

sourcePortMdwProvRoleS:SOperationProvidedRole
{repository}

sourcePortMdwOpIntS:SOperationInterface
{repository}

{entityName=bIMiddlewareSourcePortbb}

sourcePortCompS:SBasicComponent
{repository}

{substring)entityName,0,9@=bSourcePortbb}

sourcePortProvRoleS:SOperationProvidedRole
{repository}

@opIntS:SOperationInterface
{repository}

@opIntS:SOperationInterface
1

{repository}

integrateMiddlewareCall)@sourcePortComp,S@sourcePortMdwOpInt@

assembleAndAllocateMiddlewareComponent)@sourcePortComp,S@sourcePortMdwComp,SS@sourcePortMdwOpInt@

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

{ELSE}

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

Figure 5.27: Sub-Procedure integrateSourcePortMiddleware
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dleware, and integrateSinkPortMiddleware. The only differ-

ences are the constraints to identify the involved components.

The procedure starts with a mapping rule to query components that

contain an OperationProvidedRole associated with the IMid-

dlewareSourcePort interface, which is identified based on its

entityName. If the mapping is successful, which means that a

middleware-specific component exists within the repository, the execu-

tion of the procedure continues with the next rule. Otherwise, the con-

trol flow continues with the ELSE branch and terminates. In this case

the SourcePort component is not extended and the event is directly for-

warded to the next event processing component since the middleware

model does not contain any platform-specific component for the corre-

sponding event processing stage.

The second rule queries the component that should be extended

with the middleware call. The mapping exploits the constraint that the

entityName of the BasicComponent starts with "SourcePort"

and the fact that the component provides the OperationInterface

opInt representing the EventGroup.

The following call of the integrateMiddlewareCall procedure

hands over the identified SourcePort component (sourcePortComp)

together with the middleware interface (sourcePortMdwOpInt). This

procedure, which is described in the following section, extends the event

processing component with a call of the corresponding platform-specific

middleware component. Finally, the assembleAndAllocateMid-

dlewareComponent, which receives the two identified components

(sourcePortComp and sourcePortMdwComp) and the middleware

interfacesourcePortMdwOpInt as input, instantiates, assembles and

deploys the components. Both sub-procedures are described in the fol-

lowing.
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Extending Event Processing Components with Middleware Calls

The integrateMiddlewareCall procedure extends the Basic-

Component received as input parameter comp and its RD-SEFFs. This

extension integrates a call of the middleware-specific component as

first action into the behavioural specification. This ensures that the

middleware-specific behaviour is executed before the event is further

processed to the next component.

As depicted in Figure 5.28, the procedure first extends the compo-

nent comp with an OperationRequiredRole associated with the

middlewareInterface received as second input parameter. Follow-

ing that, a foreach loop iterates over all ResourcedDemandingSEFFs

contained in the component comp.

The following rule generates a new ExternalCallAction. To in-

tegrate this action as first element in the execution process, the suc-

cessor respectively predecessor associations between StartAction

and the first AbstractAction element are removed and substituted

with an association between the StartAction and the new Exter-

nalCallAction and a second association connecting the Exter-

nalCallActionwith the primarily first AbstractAction. Further-

more, the new ExternalCallAction is associated with the Opera-

tionRequiredRole created as part of the first rule and the Oper-

ationSignature contained in the middleware interface middle-

wareInterface. The OperationInterfaces that need to be pro-

vided by the middleware are predefined. For this reason, it is known that

each interface contains exactly one signature and thus the simple map-

ping of interface and signature is sufficient to identify the correct sig-

nature. Additionally, the mapping rule identifies the Parameter con-

tained in the OperationSignature as input parameter, as this ele-

ment is required within the next rule.
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@compl:lBasicComponent
M

{repository}

rdseffl:lResourceDemandingSEFF
{seff}

@compl:lBasicComponent
{repository}

@rdseffl:lResourceDemandingSEFF
{seff}

startl:lStartAction
{seff}

actionl:lAbstractAction
{seff}

middlewareCallActionl:lExternalCallAction
{seff}

@mdwCallReqRolel:lOperationRequiredRole
{repository}

@middlewareInterfacel:lOperationInterface
{repository}

opSignl:lOperationSignature
{repository}

paraml:lParameter
{repository}

@middlewareCallActionl:lExternalCallAction
{seff}

varUsagel:lVariableUsage
{parameter}

varRefl:lVariableReference
{stoex}

referenceName:=@paramhparameter_Name

characTypel:lVariableCharacterisation
{parameter}

type:=lTYPE

assignTypel:lPCMRandomVariable
{core}

specification:=xeventhTYPEx

characVALUEl:lVariableCharacterisation
{parameter}

type:=VALUE

assignValuel:lPCMRandomVariable
{core}

specification:=xeventhVALUEx

characBytesizel:lVariableCharacterisation
{parameter}

type:=BYTESIZE

assignBytesizel:lPCMRandomVariable
{core}

specification:=eventhBYTESIZE

characStructurel:lVariableCharacterisation
{parameter}

type:=STRUCTURE

assignStructurel:lPCMRandomVariable
{core}

specification:=xeventhSTRUCTUREx

characNumberl:lVariableCharacterisahhh
{parameter}

type:=NUMBER_OF_ELEMENTS

assignNumberl:lPCMRandomVariable
{core}

specification:=xeventhNUMBER_OF_ELEMENTSx

@compl:lBasicComponent
{repository}

mdwCallReqRolel:lOperationRequiredRole
{repository}

@middlewareInterfacel:lOperationInterface
{repository}

@middlewareInterfacel:lOperationInterface
"

{repository}

serviceEffectSpecifications__BasicComponent

basicComponent_ServiceEffectSpecification

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

predecessor_AbstractAction

successor_AbstractAction

predecessor_AbstractAction
successor_AbstractAction

predecessor_AbstractAction

successor_AbstractAction

opp_role_ExternalService_ExternalCallAction

role_ExternalService

opp_calledService_ExternalService_ExternalCallAction

calledService_ExternalServicesignatures__OperationInterfaceinterface__OperationSignature

operationSignature__Parameter
parameters__OperationSignature

callAction__VariableUsage
inputVariableUsages__CallAction

variableUsage_VariableCharacterisation

variableCharacterisation_VariableUsage

variableUsage_VariableCharacterisation

variableCharacterisation_VariableUsage

variableUsage_VariableCharacterisation

variableCharacterisation_VariableUsage

namedReference__VariableUsage

opp_namedReference__VariableUsage_VariableUsage

variableCharacterisation_VariableUsage

variableUsage_VariableCharacterisation

variableCharacterisation_VariableUsage

variableUsage_VariableCharacterisation

variableCharacterisation_Specification
specification_VariableCharacterisation

variableCharacterisation_Specification

specification_VariableCharacterisation
variableCharacterisation_Specification

specification_VariableCharacterisation

variableCharacterisation_Specificationspecification_VariableCharacterisation

variableCharacterisation_Specification
specification_VariableCharacterisation

requiringEntity_RequiredRole

requiredRoles_InterfaceRequiringEntityopp_requiredInterface__OperationRequiredRole_OperationRequiredRolerequiredInterface__OperationRequiredRole

Figure 5.28: Sub-Procedure integrateMiddlewareCall
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The last rule in the loop generates aVariableUsage and some addi-

tionally required elements to forward the performance characteristics to

the middleware. In contrast to the event forwarding within the event pro-

cessing components realised by the createVariableUsages proce-

dure, this mapping generates only oneVariableUsage containing the

five predefined characteristics TYPE, VALUE, BYTESIZE, STRUCTURE,

and NUMBER_OF_ELEMENTS, common for all data types. The middle-

ware model is defined independently of the system model and is reusable

for different systems. To enable this, it does not contain any dependen-

cies on system specific data types and uses only generic characteristics

common for all data types.

A VariableReference added to the VariableUsage identifies

the Parameter that is characterised by the five VariableCharac-

terisations, one for each of the five predefined types. In PCM,

VariableReferences do not contain direct references to Param-

eters, but rather they contain a string identifying the Parameter by

name. For this reason, the mapping rule contains an assignment to set

the attribute referenceName of the VariableReference to the

name of the Parameter identified within the previous rule. All Vari-

ableCharacterisations contain an assignment, which sets the at-

tribute type to the respective type (TYPE, VALUE, BYTESIZE, STRUC-

TURE, and NUMBER_OF_ELEMENTS), and a PCMRandomVariable

that contains the value definition as string representation of a StoEx. For

each PCMRandomVariable, the attribute specification is set to

the name of the input parameter representing the event and the type of

the characterisation separated by a dot. The name of the parameter is al-

ways set to "event" when generating the OperationInterfaces,

thus the specification is set to "event.%CHARACTERISATION_-

TYPE%", where %CHARACTERISATION_TYPE% is substituted with the

respective type.
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Composition and Allocation of Middleware Components

After extending the event processing component with a middleware

call as part of the previous sub-procedure, the assembleAndAl-

locateMiddleware procedure instantiates the middleware compo-

nents, connects them with the processing components and finally de-

ploys them on hardware resources. It receives the processing compo-

nent (comp), the middleware component (middlewareComp), and the

OperationInterface (middlewareInterface) provided by the

middleware component as input.

As there might be several AssemblyContexts respectively Allo-

cationContexts belonging to the same processing component, the

procedure iterates over all AllocationContexts belonging to the

BasicComponent comp. This iteration is defined within the first rule

of the procedure, which is depicted in Figure 5.29.

The second mapping rule checks the existence of an Assembly-

and AllocationContext belonging to the middleware component

middlewareComp that are associated with the same ResourceCon-

tainer as the current AllocationContext of comp. If the map-

ping is successful, which means that there is already a deployed instance

of the middleware component on the ResourceContainer, the ex-

ecution skips the following rule and continues with the last rule. If the

mapping is not successful, the ELSE branch contains a rule that cre-

ates a new Assembly- and AllocationContext associated with

middlewareComp. The AllocationContext references the Re-

sourceContainer that the processing component is deployed on.

The last rule, which is executed in any case, generates a new Assem-

blyConnector. This connector connects the AssemblyContext of

the processing component and the OperationRequiredRole gen-

erated within the integrateMiddlewareCall procedure, with the
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@compb:bBasicComponent
1

{repository}

@middlewareCompb:bRepositoryComponent
2

{repository}

@middlewareInterfaceb:bOperationInterface
3

{repository}

compAllocb:bAllocationContext
{allocation}

@compb:bBasicComponent
{repository}

compAssemblyb:bAssemblyContext
{composition}

@middlewareCompb:bRepositoryComponent
{repository}

mdwAssemlyb:bAssemblyContext
{composition}

mdwAllocb:bAllocationContext
{allocation}

containerb:bResourceContainer
{resourceenvironment}

@compAllocb:bAllocationContext
{allocation}

@middlewareCompb:bRepositoryComponent
{repository}

mdwAssemlyb:bAssemblyContext
{composition}

mdwAllocb:bAllocationContext
{allocation}

containerb:bResourceContainer
{resourceenvironment}

@compAllocb:bAllocationContext
{allocation}

@middlewareInterfaceb:bOperationInterface
{repository}

@middlewareCompb:bRepositoryComponent
{repository}

mdwProvRoleb:bOperationProvidedRole
{repository}

compReqRoleb:bOperationRequiredRole
{repository}

@compb:bBasicComponent
{repository}

@compAssemblyb:bAssemblyContext
{composition}

@mdwAssemlyb:bAssemblyContext
{composition}

connectorb:bAssemblyConnector
{composition}

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext
resourceContainer_AllocationContext

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

assemblyContext_AllocationContext

opp_assemblyContext_AllocationContext_AllocationContext

opp_resourceContainer_AllocationContext_AllocationContext

resourceContainer_AllocationContextopp_resourceContainer_AllocationContext_AllocationContext
resourceContainer_AllocationContext

{ELSE}

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

requiredInterface__OperationRequiredRole

opp_requiredInterface__OperationRequiredRole_OperationRequiredRole

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContextrequiredRoles_InterfaceRequiringEntity
requiringEntity_RequiredRole

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContext

providingAssemblyContext_AssemblyConnector

opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

requiringAssemblyContext_AssemblyConnector
opp_requiringAssemblyContext_AssemblyConnector_AssemblyConnector

providedRole_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

requiredRole_AssemblyConnector

opp_requiredRole_AssemblyConnector_AssemblyConnector

Figure 5.29: Sub-Procedure assembleAndAllocateMiddleware

202



5.4. Formalised Transformation Description

@opInt":"OperationInterface
1

{repository}

distrMdwComp":"RepositoryComponent
{repository}

distMdwProvRole":"OperationProvidedRole
{repository}

distrMdwOpInt":"OperationInterface
{repository}

{entityName=DIMiddlewareEventDistributionDD}

distrComp":"BasicComponent
{repository}

{substring,entityName,0,110=DDistributionDD}

distrProvRole":"OperationProvidedRole
{repository}

@opInt":"OperationInterface
{repository}

integrateMiddlewareCall,@distComp,"@distrMdwOpInt0

assembleAndAllocateMiddlewareComponent,@distrComp,"@distrMdwComp,""@distrMdwOpInt0

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole
providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRoleprovidedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

{ELSE}

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

Figure 5.30: Sub-Procedure integrateDistributionMiddleware

AssemblyContext and the OperationProvidedRole of the mid-

dleware component associated with middlewareInterface.

Integration of Event Distribution Middleware

In analogy to the integrateSourcePortMiddleware procedure,

the integrateDistributionMiddleware procedure (shown in

Figure 5.30) and the similar integrateFilterMiddleware proce-

dures start with a mapping rule to identify and check the existence of a

component providing the middleware interface.
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While the transformation or more specifically the createProcess-

ingComponents procedure generates exactly one BasicComponent

representing the SourcePort, SourceCommunication, SinkCommunica-

tion, and SinkPort components for eachEventGroup, it might generate

several different BasicComponents representing the EventDistribu-

tion and EventFilter components. This is caused by the fact, that Event-

Filter components contain sink-specific filtering rules, and the structure

of the EventDistribution components depends on the number of con-

nected sinks, which leads to source-, channel-, or sink-specific com-

ponents for the same EventGroup. For this reason, the two proce-

dures integrateDistributionMiddleware and integrate-

FilterMiddleware contain a loop iterating over all components that

provide the OperationInterface opInt and whose entityName

starts with "Distribution_" or "Filter_". Similarly to the in-

tegrateSourcePortMiddleware procedure, the two procedures

integrateMiddlewareCall and assembleAndAllocateMid-

dleware are executed to extend the processing component with an ad-

ditional middleware call and finally connect and deploy the middleware

component.

5.4.7. Cleaning up the Refined Model

After generating the event processing chain and integrating the platform-

specific middleware components based on the procedures explained in

the previous sections, the cleanUpModel procedure, shown in Fig-

ure 5.31, removes leftover event-related elements. The procedure itself

consists of several foreach loops.

The first three loops iterate over AssemblyEventConnec-

tors, EventChannelSourceConnector, and EventChan-

nelSinkConnector, respectively. They all have a similar struc-

ture starting with a first rule to define the loop variable. The second

rule deletes the current instance stored in the loop variable. After re-
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eventConnectorB:BAssemblyEventConnector
{composition}

@eventConnectorB:BAssemblyEventConnector
{composition}

channelB:BEventChannel
{composition}

@channelB:BEventChannel
{composition}

sourceRoleB:BSourceRole
{repository} emitActionB:BEmitEventAction

{seff}
@sourceRoleB:BSourceRole

{repository}

@emitActionB:BEmitEventAction
{seff}

behaviourB:BResourceDemandingBehaviour
{seff}

@sourceRoleB:BSourceRole
{repository}

compB:BRepositoryComponent
{repository}

sinkRoleB:BSinkRole
{repository}

@sinkRoleB:BSinkRole
{repository}

sinkCompB:BRepositoryComponent
{repository}

eventGroupB:BEventGroup
{repository} eventTypeB:BEventType

{repository}
@eventGroupB:BEventGroup

{repository}

@eventTypeB:BEventType
{repository}

@eventGroupB:BEventGroup
{repository}

@eventGroupB:BEventGroup
{repository}

repB:BRepository
{repository}

channelSourceConB:BEventChannelSourceConnector
{composition}

@channelSourceConB:BEventChannelSourceConnector
{composition}

channelSinkConB:BEventChannelSinkConnector
{composition}

@channelSinkConB:BEventChannelSinkConnector
{composition}

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

steps_Behaviour

resourceDemandingBehaviour_AbstractAction

requiredRoles_InterfaceRequiringEntity

requiringEntity_RequiredRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

eventTypes__EventGroup

eventGroup__EventType
eventTypes__EventGroup

eventGroup__EventType

interfaces__Repository
repository__Interface

Figure 5.31: Sub-Procedure cleanUpModel
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moving all event-related connectors, the fourth loop iterates over all

EventChannels. Again, the first rule defines the loop variable while

the second one removes the respective element.

After removing all connectors and channels, the next two loops remove

Source- and SinkRoles belonging to a component. The first one it-

erates over allSourceRoles. After defining the loop variable in the first

rule, a second embedded loop iterates over allEmitEventActions as-

sociated with the currentSourceRole. TheEmitEventAction is re-

moved from the ResourceDemandingBehaviour it belongs to and

completely deleted. After this embedded loop, the currentSourceRole

is detached from the component and deleted. The loop iterating over all

SinkRoles does not contain any inner loops. It detaches and removes

the SinkRole from the RepositoryComponent.

The last loop iterates over all EventGroups. Before removing an

EventGroup from the Repository it is contained in, an embedded

loop iterates over all EventTypes belonging to the EventGroup and

removes them. After executing this final procedure all event-related ex-

tensions of the meta-model have been removed and substituted with

components of the event processing chains based on synchronous Op-

erationInterfaces. Furthermore, the middleware-specific com-

ponents have been integrated into the event processing and all event-

related meta-model elements have been removed. The resulting model

is now compatible with the original PCM and serves as input to existing

prediction techniques.

5.5. Transformation Implementation

MOLA is a formal and executable transformation language accompanied

by a transformation engine [Sostaks 10] and a modelling tool [Latvia 12]

both supporting the ECore meta-meta-model, which is the basis for

defining the PCM meta-model. However, a fully automated integration
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into the Palladio prediction process was inhibited by the following tech-

nical reasons:

• Namespace conversion In PCM, the different sub-models and

packages have predefined namespaces. The current version of

the MOLA-based transformation engine does not support such

namespaces and substitutes them with a relative addressing of

packages. Compensating this behaviour would requires additional

adaptation steps directly manipulating the XML Metadata Inter-

change (XMI)-serialisation of the model before and after executing

the transformation to re-substitute the namespaces.

• Source Code Access The MOLA tool is publicly avail-

able [Latvia 12], however, only as a binary version integrated into a

specialised windows version of Eclipse. The tool supports the gen-

eration of externally executable transformations. However, due to

the missing access to the source code, we were not able to fix the

namespace issue within the transformation generators.

• Long-term support PCM is built on top of the Eclipse framework

with a yearly release cycle. The MOLA project is decoupled from

this cycle which might result in version conflicts in future releases

of Eclipse and especially the Eclipse Modeling Framework Project

(EMF), which provides the core model handling and storage func-

tionality.

In order to provide a long-term stable and maintainable implementa-

tion of our transformation fulfilling the quality requirements to be inte-

grated into the official PCM release, we selected QVT Operational Map-

ping Language (QVT-O) as implementation language. As described in

Section 2.2.4, QVT-O is the operational version of the Query/View/Trans-

formation (QVT) standard. The selection of QVT-O for the implementa-

tion of our transformation is based on the following criteria. A more de-
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tailed evaluation and comparison with QVT Relations Language (QVT-R)

is presented in [Klatt 10].

• Native support in Eclipse The Eclipse Modeling Project

[Eclipse Foundation 12], which is fully integrated into Eclipse and

the surrounding framework, provides native support to execute

QVT-O transformations. Therefore, no additional transformation

engines are needed.

• Maintainability Compared to QVT-R the maintainability of QVT-O

transformations especially in the case of inplace transformations is

higher. To realise inplace transformations with QVT-R, the model

has to be copied using an individually generated copy transforma-

tion [Goldschmidt 08] resulting in large sets of generated relations

that have to be partially adjusted manually. Furthermore, our ex-

periences gained in student and research projects show that the

learning curve for developers who are well versed in modern pro-

gramming languages and start working with QVT-O grows much

faster compared to QVT-R

• Experience Within our group, QVT-O has already been success-

fully applied in several projects that transform PCM models, for

example [Ciancone 10, Meier 10, Vogel 12]. The experience show

that QVT-O is a mature and stable transformation language.

• Integration into PCM workflow The PCM Workflow Engine al-

ready provides a QVT-O transformation job, which significantly

easies the integration of QVT-O-based transformations into the

prediction workflow.

As illustrated in Figure 5.32, the implementation consists of several

QVT-O files grouped into 4 logical packages. These packages are logi-

cal as the QVT-O standard does not provide any structuring concepts like
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  Transforma=on	
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Figure 5.32: Structural Overview of the Implementation

Java packages beyond the separation into different files. The Main Trans-

formation packages includes the main procedure of the transformation.

While the Event Processing Component package contains several opera-

tions that are specialised for a certain element type, the Common Utility

Functions package subsumes general manipulation operations that are

used in different contexts and for different elements. Finally, the Reg-

istries package provides functionality to query and search for different

element instances within the model.

In the following, we provide a brief overview of the implementation.

For more details, we refer to [Klatt 10] and the documented code, which

is part of the official Palladio workbench since release 3.3 [Palladio 12].

Main Transformation The Main Transformation package contains

only one QVT-O file that contains the main procedure and several query
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Listing 5.2: Finder Operations

1 query Finder_findAllEventGroups(
2 in allocationModel : PCM_ALLOC) : Set(EventGroup){...}
3 query Finder_findAllSourceRoles(
4 in allocationModel : PCM_ALLOC) : Set(SourceRole){...}
5 query Finder_findAssemblyEventConnectors(
6 in sourceRole : SourceRole,
7 in allocationModel : PCM_ALLOC)
8 : Set(AssemblyEventConnector){...}
9 query Finder_findSystem(

10 in allocationModel : PCM_ALLOC) : System {...}
11 query Finder_findAllocation(
12 in allocationModel : PCM_ALLOC) : Allocation {...}
13 query Finder_findAllocation(
14 in assemblyContext : AssemblyContext,
15 in allocationModel : PCM_ALLOC) : Allocation {...}
16 query Finder_findResourceContainer(
17 in assemblyContext : AssemblyContext,
18 in allocationModel : PCM_ALLOC) : ResourceContainer

{...}
19 query Finder_findMiddlewareContainer(
20 in allocationModel : PCM_ALLOC) : ResourceContainer

{...}
21 query Finder_findOperationProvidedRole(
22 in interfaceName : String, in repository : PCM_REP)
23 : OperationProvidedRole {...}

operations. The query operations support the identification and selec-

tion of meta-model element instances and thus require direct access to

the complete source and target models. Although some of these querying

operations should, from a semantical point of view, be located in other

packages, the current implementation of the QVT-O language does not

support the forwarding of complete models to procedures located in ex-

ternal files. We marked these queries, shown in Listing 5.2, with the prefix

Finder_ to ease their extraction into separate files as soon as support

for this is provided by the QVT-O implementation. All other operations

are marked with the prefix Transformation_.
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Listing 5.3: Source_transformEmitEventActions

1 helper Source_transformEmitEventActions(
2 sourceRole: SourceRole,
3 requiredRole : OperationRequiredRole,
4 availableEmitEventActions : Set(

EmitEventAction)) {
5

6 // get the emit event actions currently pointing to the
source role

7 var emitEventActions := availableEmitEventActions->
8 select(e | e.sourceRole__EmitEventAction =

sourceRole and
9 e.predecessor_AbstractAction <> null and

10 e.successor_AbstractAction <> null);
11 emitEventActions->forEach(emitEventAction) {
12 Source_createExternalCallAction(emitEventAction,
13 requiredRole,sourceRole);
14 };
15 return;
16 }

Event Processing Components The Event Processing Components

package includes individual QVT-O libraries, one for each component

of the event processing chain as well as the source and sink compo-

nents. For example, the operations defined in the Source library adapt

and extend the original source component as described in the previous

sections. The helper Source_transformEmitEventActions(),

shown as an example in Listing 5.3, substitutes EmitEventActions

with ExternalCallActions.

The Sink library provides helpers to manipulate components that

contain an EventSinkRole. This includes the creation of Opera-

tionProvidedRoles and the assignment of the RD-SEFFs that de-

scribe the event handling. In contrast to the other operations, which are

all implemented as helpers, theSink_createSinkOperationPro-

videdRole(), depicted in Listing 5.4, is implemented as a mapping.

Mappings have a caching characteristic and thus ensure that only one
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Listing 5.4: Sink_createSinkOperationProvidedRole

1 mapping Sink_createSinkOperationProvidedRole(
2 sinkComponent : RepositoryComponent,
3 operationInterface : OperationInterface)
4 : OperationProvidedRole {
5 entityName := operationInterface.entityName
6 +’OperationProvidedRole’
7 +Commons_getUniqueElementNameSuffix();
8 providingEntity_ProvidedRole := sinkComponent;
9 providedInterface__OperationProvidedRole :=

operationInterface;
10 }

OperationProvidedRole is created for a specific SinkRole, even

if it is connected to multiple sources.

The remaining libraries in the Communication Components generate

the platform-independent event processing components. As already

described, these BasicComponents are equipped with an Opera-

tionRequiredRole and anOperationProvidedRole associated

with the OperationInterface that replaces the EventGroup. All

operations have in common that they instantiate and deploy the created

BasicComponents in the ComposedStructure and Resource-

Container provided as parameters.

Common Utility Functions The libraries in the Common Utility Func-

tions package include operations for general element modifications.

These operations are used by multiple operations from different pack-

ages to create or manipulate model elements. The InterfaceUtil, SEFFUtil

and VariableUtil libraries provide manipulation operations specialised

for interfaces, RD-SEFFs, and variables and their instantiation, respec-

tively.

Registries The Registries package includes operations to support a

simplified lookup and querying of specific model elements. These
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registries provide capabilities with advanced usability and expressive-

ness compared to the caching feature of QVT-O mapping operations.

The registries substitute the error-prone string comparison used in the

MOLA transformations to identify elements created in previous process-

ing steps.

5.6. Concluding Remarks

In this chapter, we presented the developed prediction approach en-

abling quantitative system evaluations of component-based systems ap-

plying event-based interactions. A two-step refinement transforma-

tion combines architecture-level modelling using the abstractions in-

troduced in Chapter 4 and detailed platform-aware Quality-of-Service

(QoS) prediction. The first step refines the event-based interactions with

a detailed platform-independent event processing chain, which acts as

skeleton for the integration of platform-specific components in the sec-

ond step. Since the integrated event-processing chain conforms to the

base ADL, the refined model serves as input for multiple existing predic-

tion techniques defined for the base ADL.

Beside the introduction of the two-step refinement transformation ap-

proach, this chapter presented a formalisation of the transformation us-

ing the extended version of PCM, described in Section 4.4, as a basis. Fi-

nally, we gave a short overview of the implementation of the transforma-

tion and its integration into the PCM tool chain. The results presented in

this and the previous chapter provide the basis for the evaluation of our

approach presented in the next chapter.
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The primary goal of the work presented in this thesis is enabling the

architecture-level modelling of event-based interactions in component-

based systems while providing support for detailed platform-aware per-

formance prediction techniques as a basis for quantitative system eval-

uation. In order to achieve this goal, Chapter 4 introduced generic

modelling abstractions for event-based interactions, which were im-

plemented as an extension of the Palladio Component Model (PCM)

serving as a representative Architecture Description Language (ADL) for

component-based systems. Based on these extensions, the two-step re-

finement transformation presented in Chapter 5 substitutes the event-

based interactions with a detailed event processing chain and integrates

additional platform-specific components enabling in-depth quantitative

system analysis by means of existing prediction techniques.

According to [Böhme 08], prediction models can be validated on vari-

ous levels. Assuming an existing implementation (Type 0 validity), Type I

validations focus on metrics, i.e., the comparison of measured and pre-

dicted values, and demonstrate that prediction results reflect the ob-

served reality with an acceptable margin of error. Type II validations fo-

cus on the applicability of the modelling approach and cover the expres-

siveness of the modelling language to describe representative real-world

systems as well as ability of trained users to apply the approach with

reasonable effort. Type III validations finally aim at demonstrating that

the approach has benefits over other competing approaches, which nor-

mally is very cost- and time-intensive as it requires to conduct projects

multiple times under the same preconditions.. The evaluation goals de-
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fined in Section 6.1 focus on Type I and Type II validation of our approach

while also considering its Type III validity at the conceptual level.

In order to provide a comprehensive evaluation of our approach, we

selected two representative real-world systems from different applica-

tion domains that cover the major classes of event-based systems. The

first case study is based on a traffic monitoring system developed at the

University of Cambridge [Bacon 08] and built on top of a distributed

peer-to-peer middleware called Peer-to-peer Implementation of Recon-

figurable Architecture for Typed Event Streams (PIRATES) [Ingram 09b].

The second case study is the official SPECjms2007 benchmark, a sup-

ply chain management system representative of real-world industrial

applications built on top of a centralised Message-Oriented Middleware

(MOM). The different interactions exercise a complex transaction mix in-

cluding Point-to-Point (P2P) and Publish/Subscribe (Pub/Sub) commu-

nication [Sachs 09].

The rest of this chapter is structured as follows: In Section 6.1, we

present the goals of our evaluation, which we defined based on the suc-

cess criteria and application scenarios listed in Chapter 1. The following

sections present the detailed evaluation of the developed modelling and

prediction approach in the context of the two case studies: The traffic

monitoring system in Section 6.2 and the SPECjms2007 benchmark in

Section 6.3. Section 6.4 presents two external projects that have already

been using the results presented in this thesis including the reported ex-

periences. Finally, in Section 6.5, we summarise and discuss the evalua-

tion results.

6.1. Evaluation Goals

The main goal of this thesis is the development of an integrated method-

ology and framework supporting the modelling and performance pre-

diction of component-based systems with event-based interactions. To

216



6.1. Evaluation Goals

provide a detailed evaluation, this goal is broken down into the following

three evaluation goals covering the different success criteria identified in

Section 1.3.

6.1.1. Goal 1: Prediction Capabilities

When evaluating prediction techniques, the accuracy of the predicted

metrics (Type I validity) is a crucial aspect for their successful applica-

tion. To evaluate the accuracy of our techniques, we deploy the two case

studies in multiple variations in our testbed. We compare performance

measurements (processing time and resource utilisation) with measure-

ments taken on the running system for different usage profiles ranging

from low load scenarios up to the maximal load that can be processed

by the system. When evaluating design time performance prediction

techniques, a prediction error of around 35% is typically considered as

acceptable [Menascé 04]. In addition to the accuracy, the prediction re-

sults should provide enough information allowing an architect to anal-

yse and compare different design and deployment options enabling in-

depth quantitative system evaluations and architecture improvements.

To demonstrate the suitability of the prediction results to serve as a ba-

sis for improving the system architecture or for modifying it to accom-

modate changed requirements, the traffic monitoring case study (Sec-

tion 6.2) contains different system evolution scenarios covering external

factors like workload and hardware changes as well as internal changes

like system adaptations and extensions.

6.1.2. Goal 2: Modelling Capabilities

The expressiveness of the developed language enabling the modelling of

the different types of event-based interactions is an important aspect for

Type II validity. The two case studies we selected represent complemen-

tary types of Event-based Systems (EBS). The traffic monitoring system
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is a distributed peer-to-peer system based exclusively on P2P interac-

tions. The SPECjms2007 benchmark is supply chain management sys-

tem based on a central Java Message Service (JMS) server with a complex

mixture of both P2P and Pub/Sub interactions with multiple event types.

These case studies cover nearly all characteristics of EBS presented in

Section 2.1.1 and can thus be seen as representative for most existing

EBS.

In addition to the expressiveness, the usability of the language en-

abling architects to model design alternatives and specify deployment

options with low effort is a significant success criteria when applying the

approach in realistic scenarios as part of Type II and Type III validations.

To analyse this aspect, we evaluate the effort required to perform adap-

tations of the model instances to reflect different design alternatives or

deployment options within the traffic monitoring case study. Further-

more, we compare the modelling effort required when using the original

version of PCM and modelling event-based interactions manually using

complex workarounds as described in [Rathfelder 10a] against the mod-

elling effort when using the extended PCM version developed as part of

this thesis to show the improved usability.

6.1.3. Goal 3: Integration of Modelling and Prediction Aspects

Applying the developed modelling and prediction approach within the

software design and development process requires a smooth integra-

tion and combination of modelling capabilities for event-based inter-

actions at the architecture-level with detailed analysis and prediction

techniques. A high degree of automation reduces the manual effort re-

quired to derive the performance model based on architecture-level de-

sign models and thus lowers the barrier to integrate model-based pre-

diction techniques into the development process. An empirical study

evaluating the applicability of the Palladio approach in comparison

to other modelling and prediction approaches has already been con-
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ducted [Martens 08a, Martens 08b] and is not in the focus of this thesis.

However, the two real-world case studies presented here demonstrate

the automated integration of different middleware-specific components

implemented as part of the extended PCM-Bench. Furthermore, the traf-

fic monitoring case study shows the integration of the performance pre-

diction techniques into an automated scalability analysis process.

In the following, we present the two case studies including the detailed

evaluation results. After these case studies, Section 6.4 gives an overview

of two external projects, in which our approach has been applied. FI-

nally, Section 6.5 discusses the evaluation results and presents some con-

cluding remarks.. .

6.2. Traffic Monitoring Case Study

The system under study is a traffic monitoring application based on re-

sults from the Transport Information Monitoring Environment (TIME)

project [Bacon 08] at the University of Cambridge. It consists of multi-

ple distributed components emitting and consuming different types of

events. The system is based on the component-based middleware PI-

RATES [Ingram 09b] introduced in Section 2.1.2. The PIRATES frame-

work encapsulates the communication between components and thus

enables easy reconfiguration of component connections and deploy-

ment options without affecting the component implementations. After a

short introduction of the scenario, we present the different components

the traffic monitoring system consists of. In four different scenarios rep-

resenting different system evolution stages, we demonstrate the applica-

tion of our approach in the context of evaluating and optimising design

alternatives as well as capacity planning. Finally, we perform a detailed

evaluation of the prediction accuracy comparing predicted performance

metrics with measurements conducted in our testbed for the different

scenarios.
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6.2.1. Application and Scenario

The application enables monitoring and controlling the traffic in a city

like Cambridge. The system monitors passenger cars on streets using li-

cense plate recognition techniques. Based on this data, the application

detects speeding and is able to calculate the individual toll for each car.

An additional functionality provided by the system is the estimation of

buses that are near traffic lights when they turn red. This allows city plan-

ners to measure the effects on public transport of different light schedul-

ing policies and can contribute to assessing the impact of future alterna-

tives (such as changing the light behaviour based on bus proximity). This

application is interesting because it collects and integrates data from dif-

ferent distributed sensors and systems. Furthermore, it contains com-

ponents with high and varying resource demands like the licence place

recognition algorithm. Thanks to the employed event-based middle-

ware, the system architecture is highly adaptable in terms of adding new

components or changing the connections between components or their

location. Due to the complexity of the system, the influence of adap-

tations on the overall system performance and utilisation can hardly be

anticipated by the architect. In such scenarios, model-based Quality-of-

Service (QoS) prediction techniques support the architect in evaluating

the system as presented in this case study.

Components

The traffic monitoring application consists of 8 different classes of PI-

RATES components (see Figure 6.1) described below. Due to the use

of the PIRATES middleware, it is possible to distribute these components

over several computing nodes with redundant instances as well as to cen-

tralise them on one node without any changes of the component imple-

mentations.
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 Cam 1  Cam n

SCOOT
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Figure 6.1: Case Study Overview

Lamp Post Mounted Camera (the “Cam component”) As described

in [Evans 10], some lamp posts are equipped with cameras. In our ex-

tended scenario, these cameras take pictures of each vehicle passing the

street. Each camera is connected to a local PIRATES component respon-

sible to publish the taken picture together with position information of

the camera and a time stamp. As the cameras have limited computing re-

sources, further processing of the image has to be performed on remote

servers.

Licence Plate Recognition (the “LPR component”) The LPR com-

ponent receives the events emitted by one or more Cam components.

The implementation is based on the JavaANPR library [Martinsky 06],

which provides algorithms to detect license plate numbers of vehicles.

The recognised number together with the timestamp and the location

information received from the Cam component is then emitted. This im-
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age processing is very resource consuming, so we separated it from any

further processing of this data. Combined with the easy system recon-

figuration provided by the PIRATES middleware, this allows the distribu-

tion of the load over several computing nodes all running an individual

instance of the LPR component. Additionally, it is possible to add ad-

ditional components processing the detected license plate information

without any effects on the already existing components.

Speeding Detection (the “Speeding component”) One component

receiving the events of detected license plate numbers is the Speeding

component. It calculates the speed of a vehicle based on the distance

between two cameras and the elapsed time between the two pictures.

[Webster 09] reports about the installation of a similar system in London,

in which, however, the license plate recognition functionality is tightly

coupled with speeding detection functionality as part of a single com-

ponent. In our system, the separation of license plate recognition and

speeding detection into two separate components allows using the in-

formation about the observed license plates also in other contexts like

for example the toll calculation as described in the following.

Toll Calculation (the “Toll component”) The second component pro-

cessing the events emitted by the LPR component is the Toll compo-

nent. Assuming all arterial roads are equipped with Cam components

the Toll component calculates the toll fee that must be paid for entering

the city. The toll calculation can also be bound to certain roads. The Ex-

press Toll Route [etr 10] system installed near Toronto, or the VideoMaut

system [ASFINAG 11] operated in Austria, are two examples of systems

calculating road fees for frequently used highways based on recognised

license plate numbers.
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Bus Location Provider (the “ACIS component”) The bus location

provider uses sensors (in our case, GPS coupled with a proprietary radio

network) to note the locations of buses and report them as they change.

Such a component produces a stream of events, each containing a bus

ID, a location, and the time of the measurement. In the purest instanti-

ation, there is one such component per bus. However, nothing prevents

a component reporting on multiple buses’ positions, or one component

being responsible for all buses. Many intermediate architectures are pos-

sible, such as a component per geographic area or a component per bus

operator.

Location Storage (the “Location component”) The Location com-

ponent maintains state data for a set of objects like the most recent loca-

tion that was reported for each of them. The component has no knowl-

edge of what the objects are, each of them is identified only by its name.

The input is a stream of events consisting of name/location pairs with

timestamps making the ACIS component a suitable event source.

Traffic Light Status Reporter (the “SCOOT component”) In the

city of Cambridge, the city’s traffic lights are controlled by a SCOOT sys-

tem [Hunt 81], designed to schedule green and red lights so as to opti-

mise use of the road network. As a necessary part of controlling the lights,

the system knows whether each light is red or green and can transmit a

stream of data derived from vehicle detecting induction loops installed in

the roads. The SCOOT component is a wrapper of this system. It supplies

a source endpoint emitting a stream of events corresponding to light sta-

tus changes (red to green and green to red), a second source endpoint

emitting a stream of events that reflect SCOOT’s traffic flow data, and

two RPC endpoints that allow retrieval of information about a junction

(such as its name and its location) as well as links between junctions (the

junction the link is attached to, the location of the link’s stop line, and so
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on). While our implementation uses SCOOT because that is available to

us, another means of detecting junctions’ status could be used with no

changes to the rest of the system, the SCOOT component provides effec-

tive decoupling between the SCOOT system and the traffic monitoring

application.

Proximity Detector (the “Bus Proximity component”) The Bus

Proximity component receives a stream of trigger events reflecting when

lights turn from green to red. This stream is emitted by the SCOOT com-

ponent. Upon such a trigger, the SCOOT component’s Remote Procedure

Call (RPC) facility is used to determine the location of the light that just

turned red. This is collated with current bus locations collected by the

Location component to find which buses are nearby.

6.2.2. Architecture-level Model for Performance Evaluation

The architecture-level model of the traffic monitoring system is based on

the extended version of PCM described in Section 4.4. In the following,

we present each of the different sub-models that a PCM model instance

consists of in a separate section.

Component Repository

As illustrated in Figure 6.2, the Component Repository contains one Ba-

sicComponent for each of the system components presented in the

previous section. In order to enable a type-safe composition of the sys-

tem, we specified four EventGroups with overall five EventTypes

and the OperationInterface LinkInfo. This OperationInter-

face is provided by the SCOOT component and required by the Bus

Proximity component. For each component we specified the Sink-

and SourceRoles. To connect the components with the Usage Model

that specifies the rate of incoming events, we defined additionalOpera-
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Figure 6.2: Component Repository of the Traffic Monitoring System

tionInterfaces to trigger the event emissions by sources. The Com-

ponent Repository contains one of these trigger interfaces for each of the

three components ACIS, SCOOT, and Cam. The SCOOT component con-

tains a PassiveResource used to reflect the single-threaded imple-

mentation of the component.

Except for the LPR, the resource demands of the components are

nearly constant and independent of the data values included in the

event. This allows us to model them as fixed demands in an Inter-

nalAction of the respective Resource Demanding Service Effect Speci-

fication (RD-SEFF). For each component, we measured the internal pro-

cessing time under low system load to derive the resource demands. Ta-

ble 6.1 lists the individual resource demands of the components.
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Table 6.1: Event Processing Times

Component ACIS
SCOOT

Location
Event RPC

Processing Time [ms] 35.0 50.0 65.0 40.0

Component
Bus

Proximity
Toll Speeding

Processing Time [ms] 50.0 40.7 50.4

Measurements with different images showed that the resource de-

mands of the LPR component were highly dependent on the content of

the image. PCM allows to specify parameter dependencies, however, it

is not possible to distinguish the image parameters. Thus, we modelled

the resource demand using a probability distribution function. We anal-

ysed a set of 100 different images. For each image, we measured the pro-

cessing time using System.nanoTime() required by the recognition

algorithm over 200 detection runs. The standard deviation was less than

2% of the mean value for all measurements. The measurements indi-

cate that the processing of images that can be successfully recognised
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Figure 6.3: Measured and Predicted Processing Time Distribution
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is nearly log-normal distributed (µ = 12.2353,σ = 0.146403). Figure 6.3,

illustrates the fitted distribution function compared with the measured

values. Pictures where no license plate could be detected have a signifi-

cantly higher but fixed processing time of 1092.4ms.

To represent this behaviour in the RD-SEFF of the LPR component,

we used a BranchAction. One BranchBehaviour contains an In-

ternalAction with the fixed demand for undetected images and the

other one contains a log-normal distribution L N (µ,σ2) with the fitted

parameter values µ= 12.2353 and σ= 0.146403.

Middleware Repository

The PIRATES-specific Middleware Repository contains one component

representing event sources and one representing event sinks. Both com-

ponents include a semaphore to model the single threaded behaviour of

the PIRATES implementation. Furthermore, the RD-SEFFs include In-

ternalActions to represent the resource demands imposed by the

PIRATES middleware. We instrumented the PIRATES implementation to

measure the processing time in the different event processing steps. In

order to derive the CPU demands, we extended the PIRATES framework

with several sensors that collect the time spent within the library to com-

municate with the wrapper and within the wrapper to communicate with

the wrapper of the connected component. We ran experiments and mea-

sured the time spent in the library and the wrapper under low workload

conditions. We took the mean value over more than 10,000 measure-

ments whose variation was negligible. Table 6.2 lists the derived resource

demands of the library and the wrapper.

System Model

In this case study, we evaluate different design variations required to sup-

port the system’s evolution. For this reasons, we need to adapt the Sys-
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Table 6.2: CPU Demands of PIRATES middleware

Source Sink

Library Wrapper Library Wrapper

0.0357 µs 15.2 µs 0.0357 µs 7.73 µs

tem Model for each scenario we analyse. Depending on the scenario, the

relevant components are instantiated and the event sources and sinks

are connected accordingly. We use only direct P2P connectors, as PI-

RATES does not support Pub/Sub communication. The System Model

describes the logical connections between components only and thus it

is independent of the components’ deployment on different hardware

resources.

Deployment Model

According to the deployment option that should be analysed, we use the

Allocation Model to describe the allocation of components on individual

hardware nodes. In our case study, the ResourceEnvironment describes

our test environment (see Figure 6.4) and consists of 8 ResourceCon-

tainers, each containing one ProcessingResource representing

the CPU. We selected processor sharing on 4 cores as Scheduling-

S3

Experiment

Controller

S2S1

S9S8S7

S4 S5 S6

S10 S11 S12

Gigabit

Switch

Each machine equipped with:

Intel Core 2 Quad Q6600 2.4GHz,

8GB RAM, Ubuntu 8.04

Figure 6.4: Experimental Environment of the Traffic Monitoring System
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Policy, as all machines in our testbed are equipped with quad-core

CPUs. The ResourceContainers are connected by a LinkingRe-

source with a throughput of 1 GBit/s. The mapping of components to

hardware nodes is adjusted according to the individual deployment op-

tions in the various scenarios.

Usage Model

The Usage Model consists of three different types of behaviours executed

in parallel. Two UsageBehaviours are used to trigger SCOOT and

ACIS to emit events. For both behaviours, we specify an OpenWork-

load with an exponentially distributed inter-arrival time with a mean

value of 200ms. Additionally, we introduce a UsageBehaviour for

each street equipped with two cameras. In these behaviours, the two

calls of the cameras are separated by a DelayAction. With this equally

distributed delay, we simulate the driving time of a vehicle from the first

camera to the second one. Each invocation of the Cam component in-

cludes the specification of the image size. Similarly to the other be-

haviours, we use an exponentially distributed inter-arrival time for the

UsageBehaviour.

6.2.3. Applicability Demonstration

After introducing the system components and the performance model,

we now demonstrate the application of our approach to evaluate differ-

ent architecture alternatives and deployment options. In the real-world,

the requirements on the system, the system itself, and the available hard-

ware infrastructure evolve over time. These changes require to evaluate

the system considering different design and deployment options. Find-

ing the maximal processable event rate for a given deployment option

or identifying a resource-efficient deployment scenario that still meets

all requirements on the event processing times is a complex task. Using
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performance prediction techniques eases the analysis of performance

attributes for different deployment scenarios or event rates, as they re-

move the need for expensive testing and measurements on real hard-

ware. Our case study consists of four different scenarios that cover most

of the changes and evolution stages typical for EBS (e.g., change of the

system workload, change of available hardware resources, modification

of a component, or introduction of new components). These changes in-

fluence the system performance and thus their impacts must be carefully

evaluated by the system architect.

In [Rathfelder 11c], we demonstrated the application of an automated

model-based performance prediction approach in the context of a ca-

pacity planning process. Evaluating EBS requires the analysis of different

design variations as well as the evaluation of different load situations. In

order to reduce the required effort, we developed an automated model-

based scalability analysis process (see Figure 6.5). As input to the process

an architecture-level model of the system combined with a specification

of the parameter variations (e.g., load or size variations) must be pro-

vided. This specification includes the upper and lower bounds as well as

the increments of the parameter variations. By means of this specifica-

tion, the values of model parameters are set. This adapted model is the

input to the two-step refinement transformation described in Chapter 5.

Depending on the selected prediction technique, this refined model is

transformed into one of the supported prediction models, e.g., Layered

Queueing Network (LQN) or Queueing Petri Net (QPN), or directly into

End of 

Parameter Range?

Middleware-

Weaving

M2M-Event-

Transformation

Parameter

Variation

Model Solution/

Simulation

Transformation to

Prediction Model

No
Yes

Figure 6.5: Model-based Scalability Analysis Process
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a Java-based simulation code. As a last step, the prediction itself is per-

formed by solving the analytical models or running simulations. Once

the upper bounds of the considered parameters are reached, the predic-

tion process ends. Otherwise, the process starts again with a new pa-

rameter value. In the following scenarios, we apply this automated per-

formance prediction to conduct scalability analysis for each design and

deployment option.

Scenario 1 - Throughput Analysis

This scenario, which we use as a basis for all other scenarios, demon-

strates the use of our approach to derive the maximal event rate that

can be successfully processed by the system without queueing up events.

The System Model in this case consists of single instances of SCOOT,

ACIS, Location, and Bus Proximity. ACIS and SCOOT have a fixed event

rate of 5 events per second. Additionally, one street is equipped with two

cameras and two instances of the Cam component, which are connected

to one LPR component. The detected license plate numbers are pro-

cessed by the Speeding component. In this scenario, all processing com-

ponents (i.e. LPR, Speeding, Location, and Bus Proximity) are deployed

on one central server, as illustrated in Figure 6.6. The utilisation of this

central server is the target performance metric of interest in this scenario.

Gateway ServerCentral Server

 Cam 1

SCOOT

  ACIS

 LPR

 Speeding

 Location

Bus

Proximity

 Cam 2

Figure 6.6: Deployment of Scenario 1
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Figure 6.7: Predicted CPU Utilisation in Scenario 1

The Cam components are running on individual computing nodes that

are part of the camera systems mounted on the street lights. As part of the

Allocation Model, we deployed them on a separate node to avoid any in-

fluences on the other components. As ACIS and SCOOT are the gateways

to other systems and thereby to other network segments, they have to be

deployed on separate servers for security reasons. In this scenario, there

is only one possible deployment option, however, for capacity planning

the utilisation of this central server as well as the maximal throughout

needs to be analysed subject to the event rate. The maximal utilisation

of the CPUs should not exceed 80% to guarantee a stable operation.

In this scenario, we have only one System and Allocation Model. To

analyse and evaluate different load situations, we automatically reduced

the timespan between two images emitted by the Cam component. The

results (see Figure 6.7) show that the system can handle a traffic flow

of up to 0.35 seconds between two cars and respectively a frequency

of ≈2.86 cars per second until the limit of 80% resource utilisation is

reached.
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Scenario 2 - Growing Workload

In this scenario, we demonstrate the application of our performance

evaluation to improve the system’s deployment by analysing perfor-

mance bottlenecks and analysing different deployment options. Com-

pared to the previous scenario, the load on the system is increased as

two additional streets are equipped with cameras to monitor the traf-

fic resulting in a total of six Cam components sending images. Addi-

tionally, a second server is available. This server can be used to deploy

some of the components on it in order to balance the load. In analogy

to the previous scenario, we first analyse the deployment option with all

processing components on a single machine, the AllOnOne deployment

Gateway ServerCentral Server

 Cam 1

SCOOT

  ACIS

 LPR

 Speeding

 Location

Bus

Proximity

 Cam 2

 Cam 3

 Cam 4

 Cam 5

 Cam 6

(a) AllOnOne Deployment

Processing  Server Gateway ServerLPR  Server

 Cam 1

SCOOT

  ACIS

 LPR

 Speeding

 Location

Bus

Proximity

 Cam 2

 Cam 3

 Cam 4

 Cam 5

 Cam 6

(b) Decentralised Deployment

Figure 6.8: Deployment Options of Scenario 2
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Figure 6.9: Predicted CPU Utilisation of Scenario 2

(see Figure 6.8(a)), to detect the component which induces most load.

We add the new camera components to the System model and connect

them with the LPR component. Again, we specify an automatic variation

of the workload induced by the Cam components. The bottleneck analy-

sis shows that the LPR component induces most load on the CPU, so this

component is the best candidate to be deployed on the second server in

which case we speak of a Decentralised deployment (see Figure 6.8(b)).

We compare these two deployment options and deduce the maximum

throughput of the two variants, namely all processing components on

one system and LPR separated from the other processing components.

In Figure 6.9, the results of the prediction series are visualised. As the

machine hosting the LPR component is still the bottleneck no further

optimisation is possible in this scenario. Assuming an upper limit of

80% CPU utilisation for a stable state, the prediction results show that

the AllOnOne deployment can handle up to 0.8 images per second and

camera. The Decentralised deployment can handle up to 1 image per

second. Thanks to the easy to use graphical editors, the required adap-

tations of the composition and allocation models could be done in less

than 10 minutes.
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Scenario 3 - New Components

The loose coupling of components in EBS improves the system extend-

ability of the system by enabling the integration of new components with

low effort. In this scenario, we demonstrate such an extension of the sys-

tem involving the integration of new components analysing the perfor-

mance influences caused by this extension. With the cameras added in

the previous scenario, all arterial roads in and out of the city centre can

be monitored for vehicles entering and leaving the inner city. This allows

LPR  Server 2

LPR  Server 1

 LPR

Processing  Server Gateway Server

LPR  Server 1

 Cam 1

SCOOT

  ACIS
 LPR

 Speeding

   Toll

 Location

Bus

Proximity

 Cam 2

 Cam 3

 Cam 4

 Cam 5

 Cam 6

 LPR

(a) Centralised Deployment
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(b) Decentralised Deployment

Figure 6.10: Deployment Options in Scenario 3
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Figure 6.11: Predicted CPU Utilisation in Scenario 3

building up an automated toll collection system implemented using the

Toll component. This component is the second component processing

the events emitted by the LPR component. It induces additional load on

the CPU of the Processing Server, which was not foreseen in the previous

scenarios. To increase the system’s throughput, an additional server is

added allowing to run three independent instances of LPR on individual

servers. In the first deployment option that we consider, the new hard-

ware is not used and the LPR component is running isolated from all

other components as in the previous scenario. Again, the LPR compo-

nent is the bottleneck. Based on these results, we evaluated two further

deployment options. In both options, three individual instances of LPR

are running on different nodes each responsible for the events of two

cameras. In the first option, all other components are running on the

central Processing Server (Centralised deployment, see Figure 6.10(a)).

In the second option, Speeding and Toll are deployed with three separate

instances and co-located with the LPR instances on the three LPR Servers

(Decentralised deployment, see Figure 6.10(b)).

The required adaptation effort of the model is slightly higher compared

to the previous scenario. However, the adaptation can still be done in less
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than 20 minutes. The results of the prediction series are visualised in Fig-

ure 6.11. The AllOnOne deployment option with only one instance of the

LPR has a maximum throughput of about 1 image per second and cam-

era while the other two options (with three LPR instances) can handle up

to 2.5 images per second and camera. Looking at the load balance be-

tween the machines hosting the LPR and the machine hosting the other

components, the centralised deployment is preferable. The most effi-

cient utilisation, i.e., equally balanced CPU utilisation, is at a load with

an offset of roughly 0.9 seconds between two images.

Scenario 4 - Upgraded Sensors

In this last scenario, an additional street is equipped with two cameras.

Furthermore, the existing cameras are replaced with a newer and im-

proved model. The new cameras are able to take pictures with higher

resolution and improved quality. With the improved quality, the detec-

tion error ratio can be reduced from 30% to 5%. It is known that the re-

source demand for processing images with undetectable license plates is

significantly higher than for successfully recognised license plates. How-

ever, the resource demand D also depend on the image size p in pixels.

In the following equation, the values of µ and σ are the same as the fitted

values presented in Section 6.2.2, ∆p is the difference of the image size,

and φ a scaling factor with φ= 7.473 ·10−4 ms
px .

D = Log Nor m(µ,σ)+φ ·∆p

The impacts on the system performance caused by the introduction of

the new camera versions are the target of the evaluation in this scenario.

The evaluation allows to decide if the investment into new cameras will

improve the system performance. Similarly to the previous scenario, we

evaluate a centralised and a decentralised deployment of the Toll and

237



6. Validation

●

●

●

●

●
●

●
●●●●●

2.5 2.0 1.5 1.0 0.5

0
20

40
60

80
10

0

Timespan between two images [s]

C
P

U
 u

til
is

at
io

n 
[%

]

● Centralised: LPR Server
Centralised: Processing Server
Decentralised: LPR Server

(a) Old Cameras

●

●

●

●
●

●
●

●
●

●
●●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●

2.5 2.0 1.5 1.0 0.5

0
20

40
60

80
10

0

Timespan between two images [s]
C

P
U

 u
til

is
at

io
n 

[%
]

● Centralised: LPR Server
Centralised: Processing Server
Decentralised: LPR Server

(b) New Cameras

Figure 6.12: Predicted CPU Utilisation in Scenario 4

Speeding components. These two deployment options both have four

instances of LPR as a new server node is available.

To represent the new cameras in the prediction model only two model

parameters, the size of an image and the probability of an unsuccess-

ful detection, must be changed. Furthermore, we need to adapt the

Stochastic Expression (StoEx) representing the resource demand within

the RD-SEFF of the LPR component to additionally consider the size of

the images based on the equation shown above. Finally, the new Cam

and LPR instances must be added to the System and Allocation models.

Nevertheless, the required modelling time is less than 30 minutes. The

results are visualised in Figure 6.12. In contrast to all other scenarios, the

bottleneck in the Centralised deployment option with the new cameras is

the machine hosting the event processing components and not the ma-

chines hosting the LPR components. This means that further replication

of the LPR component has no influence on the maximum throughput.

Comparing the new and old cameras, the maximum throughput can be

slightly improved by introducing the new camera version.
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6.2.4. Prediction Accuracy Evaluation

When applying the developed performance prediction techniques in the

previous section, we assumed that the accuracy of the results is suffi-

cient. In this section, we validate this assumption and compare mea-

surements in our testbed with the predicted values. We set up all the pre-

viously presented scenarios in our experimental environment, which is

depicted in Figure 6.4. We extended the implementations of the SCOOT,

ACIS and Cam components with configurable and scalable event gen-

erators. The events emitted by SCOOT and ACIS are based on an event

stream recorded in the city of Cambridge. The event generator added

to the Cam component uses a set of real images of different vehicles in-

cluding their license plates. All event generators have in common that

the event rate can be specified using a configuration file.

A single run of the prediction series simulates about 100,000 images

and its execution lasts about 3 minutes. On a real system, measuring

such a set of data will last up to 5 hours or longer. For this reason, we had

to limit the number of experiment runs and workload scenarios. For each

scenario, we conducted up to seven experiments that cover the whole

range from low to high system load. In the following, we present the re-

sults of these measurements compared to the predicted values.

Scenario 1: Throughput Analysis

In the base scenario, we used three machines of our experimental envi-

ronment. On the first one, we deployed ACIS and SCOOT, on the sec-

ond one the two Cam components, and on the last one the LPR compo-

nent together with Speeding, Location, and Bus Proximity. In four exper-

iments we ran the system with different event rates of the Cam compo-

nents. Each experiment run lasts at least 20 minutes in which we mea-

sured the mean utilisation of the machine containing the event process-

ing components. Table 6.3 lists the measured and predicted values com-
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bined with the calculated prediction error. Overall, the mean prediction

error is less than 20% and the maximal error less than 25% and thus suf-

ficient for capacity planning purposes and the evaluation of the maximal

throughput.

(a) CPU Utilisation

Image rate per Cam [1/s] 0.67 1 1.43 2 3.33

Measurement [%] 24.78 33.9 54.64 68.63 92.5

Prediction [%] 21.8 30.7 42.4 56.9 92.8

Error 12% 9.4% 22.4% 17.1% 0.3%

(b) Processing Time

Image rate per Cam [1/s] 0.67 1 1.43 2 3.33

Measurement [s] 0.517 0.52 0.637 0.806 2.409

Prediction [s] 0.48 0.485 0.503 0.538 2.09

Error 7.3% 6.9% 21.1% 33.3% 13.2%

Table 6.3: Scenario 1: Model Predictions Compared to Measurements

Scenario 2: Growing Workload

We set up the AllOnOne as well as the Decentralised deployment option

in our testbed. Figure 6.13 visualises the measured and predicted mean

CPU utilisation of the LPR server hosting the LPR component as well as

the Processing Server hosting the remaining components in the Decen-

tralised deployment. Overall, the mean prediction error of the CPU util-

isation in this scenario is less than 5%. In both deployment options, the

prediction error increases with higher CPU load, which can be explained

by caching effects since the algorithm used within the LPR component is

very memory-intensive and the high CPU load leads to a higher number

of context switches during execution. The measured utilisation under

the highest load was lower than expected for both deployment options.
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Figure 6.13: Scenario 2: Model Predictions Compared to Measurements

The analysis of the throughput measurements showed that some images

were queued up and not processed by the LPR component in cases where

the CPU utilisation was higher than 80%. This is an indicator for an over-

loaded and instable system state. We conducted some more experiments

running the system continuously over several hours as well as with an

increased event rate. In both cases, the system crashed, which confirms

our assumption of an overloaded and instable system state.

Scenario 3: New Components

Again, we set up two deployment options in our testbed. In the cen-

tralised deployment, the event processing components with exception

of the three instances of LPR are deployed on one machine. In the de-

centralised option, one instance of Toll and one instance of Speeding are

deployed with one instance of LPR on the same machine. Figure 6.14(a)

shows the measured and predicted mean utilisation of the machines

hosting the LPR component for both deployment options. Additionally,

it includes the utilisation of the machine hosting the processing compo-

nents in the centralised deployment options. We leave out the values for
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the decentralised deployment options, as they are independent of the

image frequency. Overall, the mean prediction error for the CPU utili-

sation of the machine hosting the LPR component is 11.52% and never

exceeded 20%.

Additionally, we compared the measured and predicted processing

time within the LPR component. The results are listed in Table 6.4 and vi-
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Figure 6.14: Scenario 3: Model Predictions Compared to Measurements
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Image rate per Cam [1/s] 0.4 0.67 1 1.43 2 2.5 3.33
ce

n
t. Measurement [s] 0.47 0.48 0.49 0.55 0.66 0.84 1.99

Prediction [s] 0.41 0.47 0.44 0.43 0.52 0.59 0.96

Error [%] 12.4 2.0 10.0 21.7 21.7 30.4 52.1

d
ec

en
t. Measurement [s] 0.49 0.48 0.52 0.57 0.68 1.09 -

Prediction [s] 0.44 0.47 0.44 0.44 0.49 0.73 -

Error [%] 9.6 2.8 15.0 22.4 27.4 32.2 -

Table 6.4: Scenario 3: LPR Mean Processing Time

sualised in Figure 6.14(b). Under the highest workload, the decentralised

deployment option was overloaded and thus these values are not present

in the table and figure. Due to the caching effects, which cannot be pre-

dicted by the model, the prediction error increases with higher event

rates and higher CPU utilisation respectively. However, the mean pre-

diction error is still under 20%.

Scenario 4: Upgraded Hardware

In this scenario, we set up four different variants of the system, in which

we varied between the new and the old version of the cameras by chang-

ing the images used as input and considering again a centralised and de-

centralised deployment. The results of the measurements and predic-

tions of the mean CPU utilisation of the machines hosting an instance of

the LPR component are shown in Figure 6.15(a). Again the prediction er-

ror increases with higher load due to the caching effects induced by the

memory intensive algorithm of the LPR. However, the mean prediction

error is only 5.56%.

We also analysed the measured and predicted mean processing time

within the LPR component. In Figure 6.15(b), we present the processing

times of LPR in the scenarios using the improved cameras. The mean

prediction error was 5.36% and never exceeded 15%. Similarly to Sce-
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Figure 6.15: Scenario 4: Model Predictions Compared to Measurements

nario 2, the measured CPU utilisation and processing time in the decen-

tralised deployment option are lower than expected since again events

were being queued up. The results for an even higher load that com-

pletely overloaded the system are not included. To further validate the

prediction results, we analysed and compared the results in more detail.

Beside the prediction of the aggregated mean processing times, the Pal-
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Figure 6.16: Processing Time of LPR with 1 Image per Second
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Figure 6.17: Processing Time of LPR with 4 Images per Second
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ladio approach additionally provides more detailed results in form of a

set of individual response times, histograms, and distribution functions

to support the analyse of varying response times. Since we measured

the individual processing time in our experimental setup, we were able

to compare the distributions of the predicted and measured response

times. Figure 6.16(a) shows the density function and the Cumulative Dis-

tribution Function (CDF) of the LPR’s processing time in the centralised

deployment with new cameras with the load of one image per second for

each camera while Figure 6.17(a) shows the same functions for a load of

four images per second. The graphs highlight that in addition to the ac-

curately predicted mean values the distributions of predicted and mea-

sured values fit quite well.

6.2.5. Evaluation of the Achieved Effort Reduction

To evaluate the improvement in terms of reduced modelling effort that

can be achieved using our automated transformation-based modelling

and prediction method, we compared the required modelling effort us-

ing the approach presented in this thesis with the modelling effort re-

quired in a previous manually conducted case study [Rathfelder 09c]

based on a subset of the traffic monitoring system. As part of this previ-

ous case study, we demonstrated that it is possible to model event-based

communication using the original PCM by utilising a set of manual mod-

elling workarounds quite similar to the constructs automatically inte-

grated by our transformations. These workarounds enable the architect

to define performance equivalent structures emulating the behaviour of

event-based communication. However, their modelling is very time con-

suming and at the architecture-level, they are semantically incorrect as

they are based on synchronous interfaces combined with forks to emu-

late asynchronous behaviour. With the introduction of new modelling

abstractions for an explicit modelling of events, source and sink ports,

event channels as well as the respective connectors using our approach
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Figure 6.18: Comparison of Source and Sink Modelling

it is now possible to model event-based interactions in a semantically

correct fashion at the architecture-level. Figures 6.18(a) and 6.18(b) il-

lustrate an event-based P2P connection using the workaround and using

our modelling approach developed in this thesis. Using the workarounds

based on synchronous interfaces combined with forks, event-based and

RPC-style connections cannot be distinguished at the architecture-level.

In contrast, the new elements make it possible for architects to explicitly

differentiate between the two interaction styles.

In addition to enabling the semantically correct modelling of event-

based interactions, the new elements significantly reduce the modelling

effort. To evaluate this reduction, we tracked the effort in terms of num-

ber of elements that need to be created. We did not measure the time

required for the creation of the individual elements in order to exclude

any influence of the individual experience and training in the usage of

Eclipse modelling tools in general and the PCM tool chain in particular.

In the first scenario, we create a completely new direct P2P connection

between two components. The second scenario adds a new sink to an ex-
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isting connection and the third one adds a new source. This evaluation

is a summary of the results presented in [Klatt 10].

Creation of a new connection We assume, that the source and sink

components are already specified and the respective Assembly- and

AllocationContext elements already exist. While the sink compo-

nent is already equipped with the event handling behaviour and the re-

spective ProvidedRole, the source component needs to be extended

with the elements required for emitting an event.

Using the manual workarounds, modelling the PIRATES middleware

requires three additional components between the sink and source com-

ponents as depicted in Figure 6.18(a). Two of the components repre-

sent the PIRATES endpoints with the respective resource demands, while

the third one, ThreadPool, is required to model the single threaded im-

plementation of the PIRATES wrapper. The source and sink endpoint

Element
Manual

Workarounds
Using the Model

Extensions

Interface / EventGroup 2 1

Signature / EventType 3 1

BasicComponent 3 0

RequiredRole 5 1

ProvidedRole 3 0

RD-SEFF 3 0

ForkAction 1 0

ForkBehaviour 1 0

Call Action 5 1

VariableUsage 5 3

VariableCharacterisation 15 3

AssemblyContext 4 0

Connector 5 1

AllocationContext 4 0

Total 59 11

Table 6.5: Required Elements to Define a new P2P Connection
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components contain the event-specific resource demands and thus are

modelled individually for each event type. The ThreadPool component

was modelled only once in the Repository and instantiated individu-

ally for each wrapper in the system. Thus, the effort tracking counted

three new BasicComponents and four new Assembly- and Allo-

cationContext elements. Assuming a new event type, new Oper-

ationInterfaces including an OperationSignature and Pa-

rameter need to be defined in the Repository model. The RD-SEFF

of the source component is extended with an ExternalCallAc-

tion connected with the OperationRequiredRole representing

the source port. Furthermore, the RD-SEFFs of the PIRATES endpoints

need to be defined so that they forward the event content using multiple

VariableUsages and -Characterisations. A list of all required

elements is shown in Table 6.5.

Using our modelling extensions, specifying a new P2P connection re-

quires the definition of an EventGroup with an EventType. Further-

more, a SourceRole that references this EventGroup is added to the

component and the RD-SEFF is extended with an EmitEventAction

that references thisSourceRole. TheEmitEventActions contain a

VariableUsage with three VariableCharacterisations to in-

stantiate the event. Finally, an AssemblyEventConnector links the

new SourceRole with the SinkRole of the sink component.

In summary, the manual approach requires 59 new elements to model

a source to sink connection, while using the introduced modelling con-

structs requires only 11 new elements.

Adding a new sink In this scenario, we assume that there is already an

existing event-based connection between two components and an addi-

tional sink component should be added to this interaction by connecting

it with the source component.
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Using the manual workarounds, adding a new sink requires the ex-

tension of the PIRATES EndpointSource component with an additional

OperationRequiredRole as well as the integration of an addi-

tional ForkedBehaviour including an ExternalCallAction into

the RD-SEFF of this component. The ExternalCallAction is

connected with the new OperationRequiredRole and contains a

VariableUsage and three VariableCharacterisations to for-

ward the event content. TheOperationInterface referenced by the

OperationRequiredRole is already existing and thus can be reused.

Furthermore, new Assembly- and AllocationContexts for the

new components as well as AssemblyConnectors connecting them

need to be created.

Using the proposed modelling extensions, only one new Assem-

blyEventConnector between the existing SourceRole and the

SinkRole are necessary. As listed in Table 6.6, the workarounds re-

Element
Manual

Workarounds
Using the Model

Extensions

Interface / EventGroup 0 0

Signature / EventType 0 0

BasicComponent 0 0

RequiredRole 1 0

ProvidedRole 0 0

RD-SEFF 0 0

ForkAction 0 0

Fork Behaviour 1 0

CallAction 1 0

VariableUsage 1 0

VariableCharacterisation 3 0

AssemblyContext 2 0

Connector 3 1

AllocationContext 2 0

Total 14 1

Table 6.6: Required Elements to Add an Additional Sink
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quire 14 new elements while using our extended meta-model requires

only one new element.

Adding a new source In this last scenario, we assume an existing con-

nection between a source and three sink components. This interaction

should be extended by integrating a new source component and con-

necting it to the already existing sink.

In analogy to the first scenario, the manual approach requires a new

RequiredOperationRole added to the source component refer-

encing the OperationInterface already defined in the Repository

model for the existing connection. Additionally, the RD-SEFF of the

source needs to be extended with an ExternalCallAction and the

required VariableUsage and -Characterisation elements. A

new source component also implies a new EndpointSource component

as each source component can be connected with a different num-

Element
Manual

Workarounds
Using the Model

Extensions

Interface / EventGroup 0 0

Signature / EventType 0 0

BasicComponent 1 0

RequiredRole 3 0

ProvidedRole 1 0

RD-SEFF 1 0

ForkAction 1 0

ForkBehaviour 1 0

Call Action 4 1

VariableUsage 4 1

VariableCharacterisation 12 3

AssemblyContext 2 0

Connector 3 1

AllocationContext 2 0

Total 35 6

Table 6.7: Required Elements for Adding a Source
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ber of sinks. The new EndpointSource component contains two Op-

erationRequiredRoles, one connected with the OperationIn-

terface representing the event and one referencing the ThreadPool

interface. The RD-SEFF includes a ForkAction with ForkedBe-

haviours as well as three ExternalCallActions. One of these ac-

tions contains a VariableUsage and three VariableCharacter-

isations to forward the event, while the remaining two actions call

the require and release operations of the ThreadPool interface. Further-

more, the component contains an OperationProvidedRole to be

connected with the source component. Several Assembly- and Al-

locationContexts as well as AssemblyConnectors are required

to describe the instantiation, composition and deployment of the com-

ponents. All created elements are listed in Table 6.7.

Using the new modelling extensions, a new SourceRole is added

to the source component and a new EmitEventAction with Vari-

ableUsage and -Characterisation elements is integrated into

the RD-SEFF. A new AssemblyEventConnector connecting the

new SourceRole with the already existing SinkRole completes the

model. Table 6.7 lists the created elements and shows that the modelling

extensions reduce the modelling effort in term of required element cre-

ations from 35 down to only 6.

Summary of Modelling Effort Reduction Table 6.8 summarises the

effort reduction that can be achieved with our approach compared to

using manual workarounds. The manual modelling approach reuses ex-

isting components as far as possible, but adding a new sink for exam-

ple requires the extension of the component splitting the control-flow

with an additional required interface and the respective specification of

the component behaviour with an additional fork. For a completely new

connection, the required effort was reduced from 59 to only 11 elements,

which is an effort reduction of 81.3%. Adding an additional sink was re-
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Change Scenario
No. of Elements

Effort Reduction
Manual Extended

New Connection 59 11 81,3%

Add Sink 14 1 92,8%

Add Source 35 6 82,8%

Table 6.8: Reduction of Modelling Effort

duced to create only one element instead of 14 with the old approach

(effort reduction 92.8%). The effort for adding an additional source was

reduced from 35 to 6 elements (effort reduction 82.8%). Although these

numbers are only rough indicators of the overall effort in terms of time

or money, they still demonstrate that the modelling effort is significantly

reduced.

6.2.6. Summary of the Traffic Monitoring Case Study

As part of the presented traffic monitoring case study, all three evalua-

tion goals established in Section 6.1 were considered. The evaluation of

the prediction accuracy showed that the prediction error for CPU utilisa-

tion and response time is less than 20% in most cases and the maximum

error of the always underestimated CPU utilisation never exceeded 25%.

With this accuracy, the performance prediction can improve the system

performance and efficiency significantly given that today’s systems are

normally over-provisioned by a factor of 2 or more [Kaplan 08].

The evaluation of multiple design alternatives in different system evo-

lution stages, demonstrated the applicability of our approach to model

and evaluate distributed EBS built on top of a decentralised peer-to-peer

middleware. Thanks to the automated prediction process (Sec. 6.2.3), the

only manual task that needs to be performed was the adaptation of the

architecture-level model. As already mentioned in the different scenar-

ios, the adaptation of the models could be done with a time effort of less
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than 30 minutes in all cases. The execution of the prediction process is

then fully automated.

To evaluate the effort reduction achieved with our process automation

in comparison to executing measurements on a test system, we compare

the required time to execute the prediction with the time required to con-

duct equivalent measurements on our test system. One simulation run,

which consists of 100000 simulated events, takes about 3 minutes on a

MacBook Pro with Core i7 processor and 8 GB RAM. Assuming the high-

est event rate of five images per camera per second, this corresponds to

a time span of 2.7 hours to collect the same amount of measurements

in the testbed. For lower event rates the required time can be a whole

day or more. Even neglecting the time required to setup the test sys-

tem, the effort reduction using the proposed modelling and prediction

approach compared to running experiments in the testbed was 98,7% or

higher. Thanks to the automated parameter variation, different load situ-

ations can be evaluated automatically in less than one hour which might

require several days of measurements on the test system to obtain the

same results.

In [Rathfelder 10a], we presented a first proof-of-concept model

demonstrating the use of manual modelling workarounds to realise a

performance model of a simplified version of the traffic monitoring sys-

tem. We compared the required modelling effort for typical modelling

activities, like adding sinks or sources, using these manual workarounds

as opposed to using the modelling extensions proposed in this thesis.

The results indicate that the presented extensions combined with our

automated model-to-model transformation reduce the modelling effort

by up to 80% compared to using the original PCM.
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6.3. SPECjms2007 Case Study

The application we consider in this case study is the SPECjms20071 stan-

dard benchmark [SPEC 07]. While the distributed traffic monitoring sys-

tem used in the previous case study is based on a decentralised peer-to-

peer based middleware, the SPECjms2007 benchmark is built on top of

a centralised MOM server supporting the JMS standard. The two case

studies are complementary and represent the two main classes of EBS

and thus allow us to demonstrate the applicability of our modelling and

prediction approach for a wide range of different EBS. The SPECjms2007

benchmark was developed by SPEC’s Java Subcommittee with the par-

ticipation of IBM, Sun, Oracle, BEA Systems, Sybase, Apache, JBoss, and

TU Darmstadt. It is designed to be representative of real-world mes-

saging applications based on a scenario in the supply chain manage-

ment domain [Sachs 09]. The benchmark workload comprises a set of

supply chain interactions between a supermarket company, its stores,

its distribution centres, and its suppliers. The interactions represent

a complex transaction mix exercising both P2P and Pub/Sub interac-

tions including one-to-one, one-to-many and many-to-many commu-

nication [Sachs 09]. The benchmark covers the major message types

used in practice including messages of different sizes and different de-

livery modes, i.e., persistent vs. non-persistent, transactional vs. non-

transactional. Due to its high complexity, mix of different types of in-

teractions, and workloads, and the involvement of different resources

(e.g. CPU, network and hard disk), SPECjms2007 provides an ideal set-

ting to further evaluate the applicability and expressiveness of our ap-

proach. Analysing the prediction accuracy, allows us to demonstrate that

our prediction approach can handle very complex scenarios with differ-

1SPECjms2007 is a trademark of the Standard Performance Evaluation Corpora-
tion (SPEC). The results or findings in this thesis have not been reviewed or ac-
cepted by SPEC, therefore no comparison nor performance inference can be made
against any published SPEC result. The official web site for SPECjms2007 is located at
http://www.spec.org/osg/jms2007.
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ent workload mixes and thus validate its applicability for realistic indus-

trial systems. After introducing the general application scenario, we pro-

vide more details on the different interactions and the workload mixture

within the benchmark.

6.3.1. Application and Scenario

The application scenario is the supply chain management of a super-

market company where Radio-Frequency Identification (RFID) technol-

ogy is used to track the flow of goods. The participants involved are the

supermarket company, its stores, its distribution centres and its suppli-

ers. The scenario offers an excellent basis for defining interactions that

stress different subsets of the functionality offered by MOM servers sup-

porting event-based interactions, e.g., different message types as well as

both P2P and Pub/Sub communication. Moreover, it offers a natural way

to scale the workload, e.g., by scaling the number of supermarkets (hori-

zontal) or by scaling the amount of products sold per supermarket (ver-

tical). The participants involved can be grouped into the following four

roles illustrated in Figure 6.19:

1. Company Headquarters (HQ) is responsible for managing the ac-

counting of the company. The HQ monitors the flow of goods

and money in the supply chain. It manages information about the

goods and products offered in the supermarket stores and defines

the selling prices of products.

2. Supermarkets (SMs) sell goods to end customers. In the

SPECjms2007 scenario, the focus is set on the management of the

inventory of supermarkets including their warehouses. Each SM is

connected to at least one distribution centre responsible to supply

the SM with products when they run out of stock.
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Figure 6.19: Overview of the SPECjms2007 Scenario

3. Distribution Centres (DCs) supply the supermarket stores. Each

DC takes orders from SMs and if necessary orders products from

suppliers and delivers them to the SM. Additionally, DCs are re-

sponsible to provide sale statistics to the HQ.

4. Suppliers (SPs) are specialised for different sets of products, which

they supply to the DCs on demand. In contrast to SMs and DCs,

SPs are independent companies and not part of the supermarket

company. Their information systems are integrated into the sup-

ply chain management system of the supermarket company using

standardised message formats.

SPECjms2007 is implemented as a Java application comprising mul-

tiple JVMs and threads distributed across a set of client nodes. For ev-

ery destination, there is a separate Java class called Event Handler that
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encapsulates the application logic executed to process messages sent to

that destination. In addition to the event handlers, for every physical lo-

cation, a set of threads (referred to as Driver Threads) is launched to drive

the benchmark interactions that are logically started at that location.

Interactions and Workload Characterisation

The SPECjms2007 benchmark defines several interactions that represent

different types of messaging workloads stressing different aspects of the

middleware including both workloads focused on P2P as well as work-

loads focused on Pub/Sub communication. The workflow of the seven

interactions is shown in Figure 6.20-6.22. Interactions 1, 4 and 5 exercise

P2P messaging whereas Interactions 3, 6 and 7 exercise Pub/Sub messag-

ing. Interaction 2 contains both P2P and Pub/Sub communication. The

interactions involve different components as described in the following

based on the description given in [Sachs 07]:

• Interaction 1: Order/Shipment Handling between SM and DC

This interaction exercises persistent P2P messaging between the

SMs and DCs. The interaction is triggered when goods in the ware-

house of a SM are depleted and the SM has to order from its DC to

refill stock. The following steps are followed as illustrated in Fig-

ure 6.20:

1. A SM sends an order to its DC.

2. The DC sends a confirmation to the SM and ships the ordered

goods.

3. Goods are registered by RFID readers upon leaving the DC

warehouse.

4. The DC sends information about the transaction to the HQ

(sales statistics).
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SMs SM_OrderConfQ SM_ShipArrQ DC_OrderQ DCs HQ_StatsQ HQ 

Notify: Order received

OrderConf (P/T)

ShipInfo (P/T)

Notify: Shipment arrived

StatInfoOrderDC (NP/NT)

Notify: Stat. Data

DC_ShipConfQ

ShipConf (P/T)

Notify: Confirmation

DC_ShipDepQ

ShipDep (P/T)

Notify

Notify: OrderConf

Order (P/T)

Order sent from SM to DC.

Sales statistics sent from 

DC to HQ
Order confirmation sent from DC to SM.

Shipment 

registered 

upon leaving 

warehouse

Shipment from DC registered by RFID 
readers upon arrival at SM.

Shipment confirmation sent from SM to DC

(N)P=(Non-)Persistent, (N)T=(Non-)Transactional

Figure 6.20: Workflow of the SPECjms2007 Interation 1 [Sachs 09]

5. The shipment arrives at the SM and is registered by RFID

readers upon entering the SM warehouse.

6. A confirmation is sent to the DC.

• Interaction 2: Order/Shipment Handling between DC and SP

This interaction exercises persistent P2P and Pub/Sub (durable)

messaging between the DCs and SPs. The interaction is triggered

when goods in a DC are depleted and the DC has to order from a

SP to refill stock. The following steps are followed as illustrated in

Figure 6.21:

1. A DC sends a call for offers to all SPs that supply the types of

goods that need to be ordered.

2. SPs that can deliver the goods send offers to the DC.

3. Based on the offers, the DC selects a SP and sends a purchase

order to it.
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4. The SP sends a confirmation to the DC and an invoice to the

HQ. It then ships the ordered goods.

5. The shipment arrives at the DC and is registered by RFID

readers upon entering the DC’s warehouse.

6. The DC sends a delivery confirmation to the SP.

7. The DC sends transaction statistics to the HQ.

• Interaction 3: Price Updates sent from HQ to SMs

This interaction exercises persistent, durable Pub/Sub messaging

between the HQ and the SMs as illustrated in Figure 6.22. The

interaction is triggered when selling prices are changed by the

company administration. To communicate this, the company HQ

sends messages with pricing information to the SMs.

• Interaction 4: Inventory Management inside SMs

This interaction exercises persistent P2P messaging inside the

SMs. The interaction is triggered when goods leave the warehouse

of a SM (to refill a shelf). Goods are registered by RFID readers and

the local warehouse application is notified so that inventory can

be updated.

• Interaction 5: Sales Statistics sent from SMs to HQ

This interaction, which is illustrated in Figure 6.22, exercises non-

persistent P2P messaging between the SMs and the HQ. The inter-

action is triggered when a SM sends sales statistics to the HQ. HQ

can use this data as a basis for data mining in order to study cus-

tomer behaviour and provide useful information to marketing.

• Interaction 6: New Product Announcements sent from HQ to

SMs

This interaction exercises non-persistent, non-durable Pub/Sub
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Figure 6.21: Workflow of the SPECjms2007 Interation 2 [Sachs 09]
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Figure 6.22: Workflow of the SPECjms2007 Interactions 3 to 7 [Sachs 09]

messaging between the HQ and the SMs. The interaction is trig-

gered when new products are announced by the company admin-

istration. To communicate this, the HQ sends messages with prod-

uct information to the SMs selling the respective product types.

• Interaction 7: Credit Card Hot Lists sent from HQ to SMs

As illustrated in Figure 6.22, this interaction exercises non-

persistent, non-durable Pub/Sub messaging between the HQ and

the SMs. The interaction is triggered when the HQ sends credit

card hot lists to the SMs (complete list once every hour and incre-

mental updates as required).

As part of the interactions, a number of different event types with dif-

ferent characteristics (e.g., persistent vs. non-persistent, different mes-

sage types) are used. Table 6.9 gives an overview on these events and

their individual characteristics. The size of messages depends on their

content structure (e.g., the number of order lines or the number of new

products that are announced). To reflect this variation of the message

size, the benchmark driver probabilistically varies the size of the gener-

ated messages between three values, namely size A with 95% probability,
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Table 6.9: Message Types Overview [Sachs 11]

Intr. Message Type

Size (in KBytes) Delivery

A B C
Destination Prop.

(95%) (4%) (1%)

1

order Object 2.02 7.39 41.29 Queue (DC) P, T

orderConf Object 0.22 1.67 10.83 Queue (SM) P, T

shipDep Text 1.28 8.76 55.95 Queue (DC) P, T

statInfoOrder Stream 1.12 8.59 55.79 Queue (HQ) NP, NT

shipInfo Text 1.74 7.10 41.01 Queue (SM) P, T

shipConf Object 0.81 2.73 14.83 Queue (DC) P, T

2

callForOffer Text 1.35 7.06 36.52 Topic (HQ) P, T

offer Text 1.69 9.65 50.71 Queue (DC) P, T

pOrder Text 1.86 9.85 51.07 Queue (SP) P, T

pOrderConf Text 2.07 9.79 49.56 Queue (DC) P, T

invoice Text 1.70 7.92 39.95 Queue (HQ) P, T

pShipInfo Text 0.98 3.62 17.26 Queue (DC) P, T

pShipConf Text 1.01 3.65 17.29 Queue (SP) P, T

statInfoShip Stream 1.02 3.68 17.38 Queue (HQ) NP, NT

3 priceUpdate Map 0.24 0.24 0.24 Topic (HQ) P, T

4 inventoryInfo Text 1.48 10.22 49.03 Queue (SM) P, T

5 statInfo Object Avg=5.27 Queue (HQ) NP, NT

6 product-
Announcement

Stream 1.21 2.80 10.51 Topic (HQ) NP, NT

7 creditCardHL Stream 1.01 8.49 50.00 Topic (HQ) NP, NT
(N)P=(Non-)Persistent, (N)T=(Non-)Transactional

size B with 4% probability, and size C with 1% probability. A linear func-

tion is used to determine the size of a new message:

Si ze(m) = Xm,T ·am +bm , with T ∈ {A,B ,C }

The coefficients am and bm have fixed values defined as part of the

benchmark specification, while the values of the matrix Xm,T can be con-

figured by the user running the benchmark. There are two exceptions of

this variation mechanism. The priceUpdatemessages of Interaction3
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always have a constant size that cannot be changed and the statIn-

foSMmessages used in Interaction 5 are configured using two sizing pa-

rameters Xm,T and Ym,T . More details on the message size configuration

and the values of the different coefficients can be found in [Sachs 11]. Ta-

ble 6.9 lists the message sizes used in our benchmark configuration. The

size of statInfoSM varies between 4.7 and 24.78 KBytes. As its size

depends on two parameters, the table only lists the average values. The

sizes of the messages used in the various interactions have been chosen

to reflect typical message sizes in real-life applications.

SPECjms2007 was developed to support performance and scalability

analysis of MOM systems. It allows to scale the system and its workload

in two dimensions. In the horizontal scaling, the number of participat-

ing SMs, DCs and SPs and thus the number of destinations in the form

of topics and queues is increased while the message rate per destina-

tion is kept constant. In the vertical scaling, the number of messages

per destination is increased, while the number of queues and topics is

kept constant. The SPECjms2007 benchmark provides two configurable

topologies (horizontal and vertical topology) that support the analysis of

the two scaling dimensions [Sachs 11]. In both topologies, a central pa-

rameter called BASE is used to specify and vary the load on the system.

The rate (λi ) at which each interaction is initiated is calculated using the

following equation:

λi = B ASE · ci

In this case study, we intentionally slightly deviate from the standard

vertical topology to avoid presenting performance results that may be

compared against standard SPECjms2007 results. The latter is prohibited

by the SPECjms2007 run and reporting rules. Table 6.10 lists the factors

that are required to calculate the individual interaction rates based on

the value of the BASE parameter. The selected topology is based on the

vertical topology with 10 SMs, 2 DCs, 1 HQ and 2 SPs.
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Table 6.10: Interaction Scaling Factor

c1 c2 c3 c4 c5 c6 c7

0.761905 0.213332 0.05 1.621622 5.77200 0.142315 0.102564

6.3.2. Architecture-level Model for Performance Evaluation

The architecture-level model of the SPECjms2007 benchmark consists of

the following sub-models.

Component Repository

Figure 6.23 provides an overview on the Component Repository used the

SPECjms2007 case study. For the sake of clarity, the illustration omits

some elements, like component parameters, service effect specifica-

tions, or passive resources that are part of the graphical views provided

by the PCM modelling tool. For each of the 19 messages used within

the different interactions and listed in Table 6.9, we defined an individ-

ual event type. The different participants in the interactions, namely

HQ, SM, DC, and SP are modelled as individual components. For each

component, we specified the source and sink roles referring to the event

type that can be emitted or received by the component. The focus of

SPECjms2007 is on the evaluation of the underlying communication

middleware. Therefore, in contrast to the traffic monitoring case study,

the business logic of the different component implementations is sim-

plified to reduce the influences of the component implementations on

the overall system performance. For this reason, the RD-SEFF specifying

the event handling do not include any resource demands. Nevertheless,

they reflect the control flow of the interactions as described in the previ-

ous section and include one or more EventEmitActions to instanti-

ate and emit events like theShipConf event that is sent in response to a

receivedShipInfo event. In order to enable a centralised configuration

of the events’ characteristics, the components include individual Com-
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Figure 6.23: Component Repository of the SPECjms2007 Case Study

ponentParameters for each event they emit. Similarly to the traf-

fic monitoring case study, we defined additional OperationInter-

faces for each interaction that are later used to connect the compo-

nents with the Usage Model.

Middleware Repository

The SPECjms2007 benchmark is focused on evaluating the performance

and scalability of the MOM server implementations, thus the specifica-

tion and calibration of the Middleware Repository is an important factor

of the accuracy of our performance prediction models. For each event

type, we measured the resource demands for CPU and HDD resources
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Table 6.11: Event-specific Resource Demands on the Middleware Server [ms]

CPU HDD

Intr. Message Size A Size B Size C Size A Size B Size C

1

orderConf 0.973 0.987 1.846 0.081 0.067 0.146

statInfoOrder 0.053 0.112 0.242 na

shipInfo 0.616 1.170 2.501 0.051 0.080 0.198

shipDep 0.539 1.148 2.494 0.045 0.078 0.198

order 0.838 0.948 1.833 0.065 0.069 0.145

shipConf 0.390 0.365 0.663 0.032 0.025 0.053

2

callForOffers 0.343 0.403 0.946 0.045 0.077 0.117

callForOffers
Notification

0.130 0.153 0.359 0.017 0.029 0.044

offer 0.452 0.831 1.945 0.033 0.056 0.176

pOrder 0.921 1.097 2.580 0.121 0.209 0.318

pShipConf 0.406 0.500 0.873 0.066 0.078 0.108

statInfoShip 0.053 0.112 0.242 na

pOrderConf 1.025 1.090 2.504 0.134 0.208 0.309

invoice 0.842 0.882 2.018 0.110 0.168 0.249

pShipInfo 0.485 0.403 0.872 0.064 0.077 0.108

3
priceUpdate 0.501 0.118

priceUpdate
Notification

0.458 0.027

4 inventoryInfo 0.895 1.447 2.985 0.068 0.140 0.267

5 statInfo 0.444 na

6
product-
Announcement

0.164 0.177 0.168 na

product-
Announcement
Notification

0.034 0.024 0.177 na

7
creditCardHL 0.096 0.364 0.430 na

creditCardHL
Notification

0.039 0.144 0.841 na
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on the client and server side. In case of Pub/Sub communication, we dif-

ferentiate between the resource demands caused by the event received

from the source and the resource demands induced by the notifications

sent to the subscribed sinks. We estimated the demands by running the

interactions in isolation and measuring the utilisation of the respective

resources using Operating System (OS) tools on the sender, middleware

and sink sides. For interactions consisting of multiple messages, the de-

mands of the individual messages were estimated by considering their

relative fraction of the whole interaction. To derive the resource de-

mands of notification messages, we repeated the experiments with dif-

ferent numbers of subscribers and used linear regression to estimate the

resource demands. Table 6.11 lists the event-specific resource demands

on CPU and HDD for the middleware server. Based on the utilisation

measurements provided by OS tools and the data provided by the mea-

surement framework of the benchmark, we could derive the resource

demands on the network resource only at the granularity of complete

interactions. Table 6.12 lists, the interaction-specific in- and outgoing

network demands.

As illustrated in Figure 6.24, the Middleware Repository consists

of three components providing the five middleware interfaces. The

JMSSource components provides the interface handleSourcePort

reflecting the event processing and resource consumption on the source

side. The RD-SEFF implementing the interface contains a BranchAc-

tion with several GuardedBranchTransissions one for each

event type. Within these branches the event-specific resource demands

Table 6.12: Interaction-specific Network Demands [ms]

Interaction 1 2 3 4 5 6 7

LAN
In 4.097 2.564 5.467 15.584 12.782 65.127 42.117

Out 4.014 2.222 2.287 15.172 12.781 7.979 5.218
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Figure 6.24: Middleware Repository of the SPECjms2007 Case Study

for CPU and HDD are specified. Similarly, the JMSSink component

more precisely the RD-SEFF implementing the handleSinkPort op-

eration includes the event-specific resource demands induced on the

sink side. The JMSServer component, which represents the event pro-

cessing within the JMS server, needs to distinguish between the resource

demands induced by a message received from sources and the mes-

sages sent to the subscribed sinks. Especially in the case of Pub/Sub

communication, this separation is essential, as the resource demands

for forwarding messages to the subscribed sinks depend on the number

of connected sinks. The RD-SEFF implementing the handleSource-

Communication interface includes event type and size dependent re-

source demands for CPU and HDD required for processing the message

received from the respective source. Furthermore, it includes the de-

mands on the LAN resource representing the inbound network traffic.

The RD-SEFF implementing the handleSinkCommunication inter-
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face contains the resource demands required for delivering the message

to one of the subscribed sinks. In analogy to the other RD-SEFFs, we

use a combination of BranchAction with GuardedBranchTran-

sissions to model the event-specific resource demands. We use an

exponential distribution function E xp(λ) with 1/λ= D to specify the re-

source demand D . The expressiveness of the StoEx language allows us

to specify messagesize-dependent resource demands within an Inter-

nalAction using the ?-operator. As an example, the following expres-

sion shows the specification of the CPU demands induced for processing

the inventoryInfo message:

(event.TYPE=="A" ? Exp(1.11732844):0) +

(event.TYPE=="B" ? Exp(0.691085):0) +

(event.TYPE=="C" ? Exp(0.33500838):0)

System Model

Corresponding to the SPECjms2007 system topology, we instantiated the

components SM, DC, HQ, and SPwithin the System Model. For each Pub-

/Sub communication, we defined a dedicated EventChannel. For the

sake of clarity, Figure 6.25 only shows an excerpt from the System Model

covering Interactions 1 and 3. In case of P2P communication, the event

connector directly connects sinks and sources, while in case of Pub/Sub

communication, we first defined aEventChannel and then connected

the respective sources and sinks with this channel.

Resource Environment and Allocation Model

The Resource Environment consists of several ResourceContainers.

We defined the available resources according to the hardware available in

our experimental environment, depicted in Figure 6.26. For example, the

ResourceContainer hosting the middleware server contains aPro-

cessingResource representing the CPU with processor sharing on 8
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Figure 6.25: System Model Covering Interaction 1 and 3

cores as scheduling strategy. The LAN and HDD resources are modelled

asProcessingResourceswith first-come-first-serve (FCFS) schedul-

ing. As all resource demands are specified in milliseconds, we set the

processing rate of all resources to 1000 working units per second. In the

allocation model, we deployed the different component instances of the

system (HQ, SMs, DCs, and SPs) on ResourceContainers match-

ing the deployment of the benchmark in our experimental environment.

All EventChannels are allocated on the central middleware server.

The deployment of the middleware specific-components is automati-

cally generated by the transformation described in Chapter 5.

271



6. Validation

!"#$#%&'%&$
!"#"$%&'()""*+,)-".)'+"!/00"123"
45"16"789:"$";8;"78*<"="
>?+@'AB"!==0";)(C)("5$D?,"

416?,"

#()*+,-.//0$1&2'%&$
*69"#0EF=";)(C)("
$"#"!%&'()"*+,)-".)'+"0/F"123"
45"16:"5";8;"78*<"4="
<)D?G+"H?+I#"!/5/!5"

#()*+,-$.//0$1&2'%&$
;I+"J?()".$$$="#5$";)(C)("
$"#"$%&'()"KL,)('+"E0F5"!/0"123"
5$"16"789:"E#4$5"16"78*<"4="
<)D?G+"H?+I#"!/5/!5"

#()*+,-.//0$1&2'%&$
;I+";LG(M"N+,)(L(?B)"OF4!="
E%&'()"O!"4/!"123"
0!"16"789:"!#4$5"16"78*<"="
;'-G(?B"4="4=P=E"";Q87&"

Figure 6.26: Experimental Environment of the SPECjms2007 Benchmark

Usage Model

The Usage Model contains a dedicatedUsageProfile for each interac-

tion. Each of these UsageProfiles includes a call of one of the trigger

interfaces specified within the Repository Model. Using separateUsage-

Profiles enables us to specify individual rates for each interaction or

completely deactivate them if necessary.

6.3.3. Prediction Accuracy Evaluation

As already mentioned, we use a slightly adapted system topology to avoid

presenting performance results that may be compared against standard

SPECjms2007 results, which is prohibited by the SPECjms2007 run and

reporting rules. We use a topology based on the benchmark’s vertical

topology with the number of DC and HQ instances each set to 10. With

the aim to evaluate the accuracy of the model predictions individually

for P2P and Pub/Sub communication but also for mixed workloads, we

defined the following scenarios as combinations of the different bench-

mark interactions:

• Scenario 1: A mix of all seven interactions exercising both P2P and

Pub/Sub messaging.
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Table 6.13: Scenario Transaction Mix

Sc. 1 Sc. 2 Sc. 3

In Out Overall

N
o.

o
fM

sg
. P2P

P/T 49.2% 40.7% 44.6% 21.0% -

NP/NT 47.2% 39.0% 42.8% 79.0% -

Pub/Sub
P/T 1.8% 6.0% 4.1% - 17.0%

NP/NT 1.7% 14.2% 8.5% - 83.0%

Overall
P/T 51.1% 46.7% 48.7% 21.0% 17.0%

NT/NP 48.9% 53.3% 51.3% 79.0% 83.0%

Tr
af

fi
c

P2P
P/T 32.2% 29.5% 30.8% 11.0% -

NP/NT 66.6 % 61.0% 63.5% 89.0% -

Pub/Sub
P/T 0.5% 2.3% 1.6% - 3.0%

NP/NT 0.8% 7.2% 4.1% - 97.0%

Overall
P/T 32.7% 31.8% 32.4% 11.0% 3.0%

NT/NP 67.3% 68.2% 67.6% 89.0% 97.0%

A
vg

.S
iz

e
(i

n
K

B
yt

es
)

P2P
P/T 2.13 2.31 -

NP/NT 4.59 5.27 -

Pub/Sub
P/T 1.11 - 0.24

NP/NT 1.49 - 1.49

Overall
P/T 2.00 2.31 0.24

NT/NP 3.76 5.27 1.49
For Scenario 2 & 3: In = Out

• Scenario 2: A mix of Interactions 4 and 5 focused on P2P messag-

ing.

• Scenario 3: A mix of Interactions 3, 6 and 7 focused on Pub/Sub

messaging.

Table 6.13 and Figure 6.27 provide a detailed workload characterisation

of the three scenarios to illustrate the differences in terms of transaction

mix and message size distribution.

Experimental Environment

To evaluate the accuracy of our modelling and prediction approach, we

conducted an experimental analysis of the modelled application in the
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Figure 6.27: Message Size Distribution
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environment depicted in Figure 6.26. A leading commercial message-

oriented middleware platform was used as a centralised JMS server in-

stalled on a machine with two quad-core Intel Xeon 2.33 GHz CPUs and

16 GB of main memory. The server ran in a 64-bit 1.5 JVM with 8 GB of

heap space. A RAID 0 disk array comprised of four disk drives was used

for maximum performance. The JMS Server was configured to use a file-

based store for persistent messages with a 3.8 GB message buffer. The

SPECjms2007 drivers were distributed across three machines: i) one Sun

Fire X4440 x64 server with four quad-core Opteron 2.3 GHz CPUs and

64 GB of main memory, ii) one Sun Sparc Enterprise T5120 server with

one 8-core T2 1.2 GHz CPU and 32 GB of main memory and iii) one IBM

x3850 server with four dual-core Intel Xeon 3.5 GHz CPUs and 16 GB of

main memory. All machines were connected to a 1 GBit network.

Experimental Results

In each case, the model was analysed using simulations with at

least 100000 simulated transactions in each simulation run. The

SPECjms2007 benchmark provides a central parameter named B ASE to

configure the workload intensity. Figure 6.28 shows the predicted and

measured CPU utilisation of the MOM server for the considered cus-
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Figure 6.28: Server CPU Utilisation for Customised Vertical Topology
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Figure 6.29: Predicted and Measured Completion Time

tomised vertical topology when varying the B ASE between 100 and 700.

As we can see, the model predicts the server CPU utilisation very accu-

rately as the workload is scaled. In the following, we present a more de-

tailed evaluation of the three scenarios under different load intensities

considering further performance metrics such as interaction throughput

and completion time.

The detailed results for the scenarios are presented in Table 6.14 and il-

lustrated in Figure 6.29. For each scenario, we consider two workload in-

tensities corresponding to medium and high load conditions configured

using the B ASE parameter. The first scenario represents the vertical in-

teraction mix for B ASE 300 and 550, respectively. The second scenario

is a mix of Interactions 4 and 5 focused on P2P communication, while
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Table 6.14: Detailed Results for Scenario 1, 2 and 3

(a) Scenario 1

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.)

1 226.36 8.41 10.17 +/- 0.68
2 66.9 9.18 15.10 +/- 0.71
3 14.92 2.9 3.49 +/- 0.41

300 4 483.4 1.89 2.76 +/- 0.31
med. load 5 1734.7 1.79 1.97 +/- 0.27

6 43.45 0.72 1.96 +/- 0.29
7 30.65 0.87 2.10 +/- 0.24

1 418.1 25.51 25.19 +/- 2.56
2 120.15 30.12 28.27 +/- 2.05
3 26.0 6.36 7.20 +/- 0.67

550 4 887.5 5.09 7.35 +/- 0.89
high load 5 3189.4 4.94 6.52 +/- 1.13

6 81.73 3.77 3.26 +/- 0.26
7 56.9 3.89 3.67 +/- 0.34

(b) Scenario 2

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.)

600 4 977.8 1.89 2.66 +/- 0.04
med. load 5 3474.8 1.80 1.54 +/- 0.10

800 4 1289.1 2.82 3.75 +/- 0.17
high load 5 4637.62 2.75 2.62 +/- 0.20

(c) Scenario 3

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.)

6000 3 304.1 2.89 3.22 +/- 0.09
med. load 6 852.2 0.72 0.95 +/- 0.23

7 617.9 0.87 1.31 +/- 0.35
10000 3 498.3 3.81 6.75 +/- 0.30

high load 6 1418.2 1.37 1.44 +/- 0.07
7 1025.53 1.53 2.22 +/- 0.10
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the third scenario is a mix of Interactions 3, 6 and 7 focused on Pub/Sub

communication. For each scenario, the interaction rates and the aver-

age interaction completion times are shown. The interaction completion

time is defined as the time between the beginning of the interaction and

the time when the last message has been processed. The difference be-

tween the predicted and measured interaction rates was negligible (with

an error below 1%) and therefore we only show the predicted interaction

rates. For completion times, we show both, the predicted and measured

mean values, where for the latter we provide a 95% confidence interval

from 5 repetitions of each experiment. Given that the measured mean

values were computed from a large number of observations, their respec-

tive confidence intervals were quite narrow. The prediction error was less

than 25% in most cases. In the cases where the interaction completion

times were below 3 ms, e.g., for Interactions 6 and 7 in the first scenario,

the prediction error was higher. In such cases, a small absolute differ-

ence of say 1 ms between the measured and predicted values (e.g., due to

some synchronisation aspects not captured by the model) appears high

when considered as a percentage of the respective mean value given that

the latter is very low. However, when considered as an absolute value, the

error is still quite small.

Figure 6.29 depicts the predicted and measured interaction comple-

tion times for the three scenarios. The results reveal the accuracy of the

model when considering different types of messaging. For P2P messag-

ing, the modelling error is independent of whether persistent or non-

persistent messages are sent. However, for the Pub/Sub case under high

load (Scenario 3), the prediction error is much higher for the case of per-

sistent messages than for the case of non-persistent messages. In Sce-

nario 1 where all interactions are running at the same time, Interactions 1

and 2 exhibited the highest modelling error (with exception of the inter-

actions with very low completion times). This is due to the fact that each

of these interactions comprise a complex chain of multiple messages of
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different types and sizes. Finally, looking at the mean completion time

over all interactions, we see that the prediction is optimistic as the pre-

dicted completion times are lower than the measured ones. This be-

haviour is typical for performance models in general since no matter how

representative they are, they normally cannot capture all factors causing

delays in the system.

6.3.4. Summary of the SPECjms2007 Case Study

The SPECjms2007 case study demonstrates the applicability of our ap-

proach to a representative industrial supply-chain management sys-

tem. In contrast to the distributed traffic monitoring case study, the

SPECjms2007 scenario is built on top of a centralised JMS server execut-

ing a complex mix of P2P and Pub/Sub interactions with different event

types and sizes. The prediction results proved to be very accurate in

predicting the system performance, especially considering the size and

complexity of the system that was modelled. The prediction error does

not exceed 25% in most cases. As discussed above, in cases where in-

teraction completion times were below 3 ms, the relative prediction er-

ror was higher. Nevertheless, the absolute prediction error was less than

2 ms.

6.4. Further External Case Studies

Beside the two case studies presented in the previous sections, the mod-

elling abstractions and prediction techniques developed in this thesis are

currently applied in two external projects. In these projects, software

engineers, which have not directly been involved in the development of

the presented approach, apply the modelling and prediction techniques

to evaluate two different systems. This application by external users,

demonstrates the intuitive applicability of our approach and highlights

the need for performance predictions for EBS using architecture-level
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models by research and industry. In the following, we provide a short

overview of the two projects.

The first project was recently started as a cooperation between the

Forschungszentrum Informatik (FZI) and a large manufacturer for indus-

trial control systems for power plants. The goal of this project is the ap-

plication of model-based predictions based on the Palladio approach to

their large and distributed control system for power plants. The control

system has a tree-based structure. A central root server is connected to

multiple data collection and aggregation servers, which again are con-

nected to plenty of different field devices. While the central server is

responsible for visualising the collected data and providing a configu-

ration interface for the different field devices, the data collection and

aggregation servers are responsible to encapsulate the communication

with the field devices and aggregate the provided data. Each field device

is equipped with sensors specialised for a certain measuring domain.

These domains range from the flow and fill level of liquids over temper-

ature and pressure up to electrical voltage and current to mention only

some of them. Within the control system multiple different messages are

exchanged that are for example used to configure sensors, transfer mea-

sured and aggregated data but also to raise alarms if a sensor detects the

excess of a configured threshold. Such messages are exchanged between

the collection and aggregation servers and the central server but also be-

tween data collection and aggregation servers and the individual field

devices. The availability and responsiveness of the whole control system

is mission-critical as failures of the power plant can result in monetary

and physical damage, which is the reason why the manufacturer evalu-

ates model-based prediction approaches.

With support of the FZI, the manufacturer currently evaluates the ap-

plicability of the Palladio approach to model and analyse the control sys-

tem. As part of an initial modelling workshop, the modelling abstractions

developed in this thesis, which have been part of the official PCM release
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since version 3.3, were successfully used by a performance modelling

expert only familiar with the original PCM. The results of the workshop

highlighted the importance of modelling capabilities for event-based in-

teractions and the necessity of supporting the modelling of Pub/Sub

communication using one or multiple event channels. The manufac-

turer emphasised its interest in our modelling extensions and the devel-

oped prediction techniques. Unfortunately, due to confidentiality con-

straints, we cannot provide further details on this running project.

The second project, the contributions presented in this thesis are ap-

plied in, is the development of a solar orbiter more specific the Instru-

ment Control System (ICU) for the Energetic Particle Detector (EPD) on-

board of this orbiter [Prieto 12]. The ICU controls the EPD and commu-

nicates with the spacecraft to receive new tele-commands and to trans-

fer data collected by the EPD back to earth. Additionally, it is connected

to multiple sensors providing telemetry data and information about the

system state. The ICU is implemented on top of a real-time operat-

ing system and the communication between components is realised by

means of clocked messages. Depending on their importance, different

priorities are assigned to the messages to ensure that system critical mes-

sages like failure detections or control commands are always transferred

in time. The Space Research Group at the University of Alcalá (SRG) in

Spain extended the simulation-based prediction of Palladio with a new

priority based real-time scheduler with the aim to evaluate the software

design and the impact of different scheduling algorithms on the system

behaviour.

SRG’s first approach to model the ICU was based on the original ver-

sion of PCM. The communication channel was modelled as a central

component all components are connected to. This approach resulted

in a very complex component and the connections between individual

components were hidden in this central component and spread over

multiple RD-SEFFs. Although the performance prediction were accurate
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enough to evaluate the system design, the complexity of the model and

the effort for adapting the model to different design alternatives was very

high as this central component has to be manually adapted each time.

In a second iteration, the SRG has used the modelling extensions devel-

oped in this thesis. The different components of the ICU and the sen-

sors were directly connected using event-based interactions without ex-

plicitly modelling the communication component in the system model.

The behaviour of the communication layer in terms of different delivery

delays for messages was specified as separate middleware components.

Applying the two-step refinement transformation presented in this the-

sis automatically integrates these middleware components. Using the

developed extensions for EBS, the modelling effort could significantly

reduced. Since the two-step transformation was designed to be compat-

ible with existing prediction techniques, the SRG’s extended simulation

could directly be used without any adaptations. SRG plans to submit and

publish a report describing the case study and the application of PCM in

the next months.

6.5. Evaluation Summary

In Section 1.3, we identified the five characteristics expressiveness, ac-

curacy, efficiency, scalability, and automation as essential success crite-

ria for any model-based prediction approach. To evaluate our approach

with respect to these characteristics, we defined three evaluation goals,

which focus on the prediction capabilities and their accuracy, the appli-

cability of the introduced modelling elements, and finally the integration

and automation of the modelling and prediction techniques.

We selected two complementary real-world case studies that represent

the two major classes of EBS. The traffic monitoring case study is a re-

source intensive distributed system built on top of a decentralised peer-

to-peer middleware, while the SPECjms2007 benchmark is designed as
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a representative supply-chain scenario with a complex mix of P2P and

Pub/Sub interactions typically implemented using a centralised MOM.

In combination, the case studies cover most characteristics of EBS, which

have been introduced in Section 2.1.1, and thus can be considered as

representative for a large set of existing EBS. Applying our modelling ap-

proach to these systems demonstrates the expressiveness of the proposed

modelling abstractions for event-based interactions. Using two existing

real-world case studies with realistic workloads allows us to demonstrate

the scalability of our approach and its ability to handle systems of realis-

tic size and complexity.

To evaluate the accuracy of the prediction results, we deployed both

systems in realistic test environments. Using configureable load-drivers

that emit real-world data collected at the running system with a prede-

fined event rate, we measured resource utilisations as well as process-

ing times for different workloads. In the case of the traffic monitoring

system, we deployed and measured the system in a number of different

settings corresponding to different design alternatives. The comparison

of predicted and measured performance metrics exhibited a prediction

error of mostly less than 20% respectively 25% for the two case studies.

According to [Menascé 04], prediction errors of up to 35% are consid-

ered acceptable for capacity planning, which confirms the accuracy of

our prediction approach.

The applicability of performance modelling and evaluation based

on the original PCM, has already been shown in an empirical

study [Martens 08a, Martens 08b]. Evaluating different evolution stages

of the traffic monitoring system allows us to demonstrate the efficiency of

our modelling approach. All required modelling adaptations with excep-

tion of the initial component definition could be performed in less than

30 minutes. The use of the proposed modelling extensions in combina-

tion with the automation of the developed refinement transformations

reduced the modelling effort by up to 80%.
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The two external case studies, which have already started before fin-

ishing this thesis, highlight the high demand for architecture-level qual-

ity evaluation approaches for EBS both in industry and research. The

application by users not involved in the development of our approach

demonstrates the intuitive applicability of the developed methodology

and techniques for standard software engineers. Furthermore, these case

studies show the significant improvement in terms of effort reductions

compared to existing approaches and thus are an additional indicator

for the Type III validity of the results presented in this thesis.
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This chapter concludes with a summary of the contributions presented

in this thesis. Afterwards, we discuss ongoing and future research topics

in the area of architecture-level modelling and performance prediction

techniques for Event-based Systems (EBS).

7.1. Summary

With the growing proliferation of event-based interactions in business-

and mission-critical systems, the assurance of certain Quality-of-Service

(QoS) levels with regard to availability, performance, or scalability play

an important role. System architects require tools and methodologies

supporting them in evaluating and predicting the system behaviour and

its QoS attributes for certain situations, i.e., different design alternatives,

varying workloads as well as variable deployments and resource environ-

ments.

In this thesis, we proposed a novel modelling and prediction approach

combining architecture-level modelling of event-based interactions with

detailed and platform-aware QoS prediction techniques. The devel-

oped modelling abstractions for event-based interactions allow archi-

tects to describe EBS at the architecture-level abstracting platform- and

implementation-specific details. While being platform-independent

and hiding as much details related to the underlying communication

middleware as possible, the developed modelling abstractions still con-

tain sufficient information to enable an in-depth analysis of the system

behaviour and QoS. We developed the abstractions with the goal to be
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independent of a certain Architecture Description Language (ADL) and

thus being applicable to extend different existing ADLs for component-

based systems with support for modelling event-based interactions. In-

troducing events as first class entities enables architects to explicitly

specify events and individual source and sink ports of components. The

presented modelling approach enables to differentiate between direct

Point-to-Point (P2P) and decoupled Publish/Subscribe (Pub/Sub) com-

munication using intermediate event channels. Supporting P2P delivery

as well as different subscription models (i.e., channel-based, content-

based, and type-based), our approach allows modelling most existing

EBS and covers the major classes of EBS. Besides proposing generic mod-

elling abstractions, we applied them to the Palladio Component Model

(PCM), a mature and representative ADL for component-based systems

accompanied by multiple different QoS evaluation and prediction tech-

niques.

To enable a detailed and platform-aware QoS prediction based on

architecture-level models, we developed a two-step refinement trans-

formation method. The transformation is partitioned into a platform-

independent and a platform-specific part. In the first step, event-based

interactions are refined by integrating several components representing

different event processing stages. Using the resulting refined model as a

basis, the second transformation step integrates platform-specific com-

ponents specified in a separate middleware model. These components

encapsulate the performance relevant influence factors of the employed

transmission system. The strict separation of platform-independent and

platform-specific aspects, which is a novel aspect compared to existing

refinement approaches, simplifies the evaluation of different transmis-

sion systems in terms of their influence on the system performance, and

vice versa, it eases the evaluation of different design and deployment op-

tions as platform-specific details are abstracted at the architecture-level

and later integrated automatically. Since the refinement substitutes all
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event related elements, the resulting model is compatible to the original

ADL and can thus serve as input for all existing prediction techniques

defined for the base ADL. As part of this thesis, we implemented the two-

step refinement in the context of PCM as a model-to-model transforma-

tion. We integrated the transformation into PCM’s modelling and pre-

diction tool making it being automatically executed before running the

respective prediction technique.

We evaluated our approach in the context of two representative real-

world case studies: A distributed traffic monitoring system built on

top of a peer-to-peer middleware developed for the city of Cambridge

and the official SPECjms2007 benchmark, a representative supply chain

management system using a centralised Message-Oriented Middleware

(MOM) server. We selected the case studies to be complementary and

to represent different types of EBS, i.e., distributed peer-to-peer systems

and centralised systems executing a mixture of P2P and Pub/Sub interac-

tions. Since the two case-studies represent the major classes of EBS, they

can be considered as representative for a large set of existing EBS. Fol-

lowing the developed evaluation plan, we conduct several experiments

and applied the developed methodology and framework in multiple ar-

chitecture evaluation scenarios.

The results of the evaluation showed that system variations and evo-

lutions typical for loosely coupled EBS can be reflected in architecture-

level models in less than 30 minutes. Compared to the use of manual

modelling workarounds as demonstrated in [Rathfelder 10a], the mod-

elling effort could be reduced by more than 80%. The application in dif-

ferent scenarios demonstrated that the presented modelling and predic-

tion approach can be applied at design time to evaluate and compare

different design alternatives, as well as at deployment time to analyse

different deployment options and to determine the required hardware

resources. The evaluation of the prediction accuracy highlighted that

the prediction error was less than 20% and 25% in most cases of the two
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case studies and thereby significantly better than 35%-40%, which is the

value generally considered as acceptable for model-based performance

prediction techniques [Menascé 04]. Furthermore, the application of our

approach in several external projects demonstrates the applicability and

highlights the need for architecture-level modelling and prediction tech-

niques supporting the evaluation of EBS.

7.2. Ongoing and Future Work

The results presented in this thesis form the basis for several areas of fu-

ture work. In the following overview, we summarise ongoing research

and present opportunities for future work.

Reliability and Tradeoff Analysis The presented validation of our ap-

proach focuses on the accuracy of performance predictions, however,

the general approach is not limited to performance. Recently, a new pre-

diction technique for PCM enabling reliability analysis for component-

based systems has been developed [Brosch 12]. Combining our ap-

proach with this prediction technique is a logical next step. Several trans-

mission systems support the configuration of a reliable event delivery,

however, mostly at the cost of higher resource demands and transmis-

sion overheads. Supporting a combined analysis and prediction of per-

formance and reliability aspects will allow further analysis of the trade-

offs between these properties.

Support for Embedded Systems In embedded systems, components

often interact in an asynchronous manner using event-based interac-

tions ranging from triggers and interrupts over simple sensor data val-

ues up to complex data sets. With the traffic-monitoring case study and

the application of the developed modelling and prediction techniques in

the context of a satellite control system as described in Section 6.4, we
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demonstrated the applicability of our approach in the context of embed-

ded systems. However, especially applying PCM to the satellite control

system identified several limitations of PCM in terms of its support for

embedded systems, e.g., the lack of real-time schedulers or the missing

support of additional quality attributes of particular importance in the

area of embedded system such as energy consumption. However, with

the support for modelling and evaluating event-based interactions, the

extensions presented in this thesis eliminates one of PCM’s most crucial

limitations related to the support of embedded systems, which was a pre-

requisite for starting research on topics that specifically address the area

of embedded systems.

Automated Model Extractions The presented prediction technique

requires the existence of a middleware model describing the platform-

specific components. These components have to be specified manu-

ally by a middleware expert based on benchmark results or measure-

ments conducted on test systems. Especially, the identification and

specification of parameterised resource demands is a complex task

and requires structured measurements. The Performance Cockpit ap-

proach [Westermann 11] developed by Westermann et al. supports the

identification of parameterised resource demands based on a set of au-

tomatically executed experiments. Extending the Performance Cockpit

with a standardised set of experiments combined with generic workload

drivers for event-based interactions, will enable the automated gener-

ation of platform-specific components based on reproducible experi-

ments that can be applied to different middleware implementations to

automatically derive the platform-specific middleware model.

Dynamic and Mobile Ad-hoc Systems Because of its loose coupling

between components, event-based interactions are a promising tech-

nique to implement dynamic and mobile adhoc systems. Such systems
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are used in different domains, e.g., sensor networks, car-to-car commu-

nication, or ubiquitous computing, in which interacting components dy-

namically appear and disappear. Supporting the modelling and predic-

tion of dynamic adhoc systems requires an additional modelling view to

describe the dynamics and variability of these systems. With regard to

event-based interactions, this support includes the specification of dy-

namic subscriptions that can be created and removed at run-time as

well as supporting the dynamic appearance or disappearance of event

sources and sinks. Although our approach assumes a static architecture,

it provides a basis to be extended with additional elements supporting

the modelling of dynamic architectures.

Self-aware Run-time Systems Management The Descartes Research

Group1 is working on enhancing design-time models to specify dynamic

aspects of the environment and making them an integral part of the

system [Kounev 10a]. Beside the support for modelling component-

based architectures, the Descartes Meta-Model (DMM) [Brosig 12a] pro-

vides additional views to capture run-time aspects like the integration of

online monitoring data [Brosig 12b], modelling dynamic resource land-

scapes [Huber 12a], or specifying run-time adaptations [Huber 12b]. The

loose coupling between components in EBS, simplifies the dynamic re-

location of components on different servers to handle peak loads or to

improve the system’s efficiency. For this reason, large and distributed

systems with event-based interactions provide an ideal basis for applying

self-aware system management techniques in general and the Descartes

approach in particular. Based on the modelling abstractions presented

in this thesis, we are currently extending DMM with native support for

specifying event-based interactions. Beside enabling the application of

the Descartes approach to the domain of EBS, these extensions addi-

tionally open new opportunities and research topics like for example the

1http://www.descartes-research.net
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dynamic adaptation of subscriptions to reflect component relocations

or the instantiation of event-channels and replication of components at

run-time for load balancing purposes.
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A. Remaining MOLA Transformation
Procedures

A.1. Sub-Procedure createSinkPortContexts

sinkContextP:PAssemblyContext
{composition}

@sinkRoleP:PSinkRole
{repository}

eventGroupP:PEventGroup
{repository}

compP:PRepositoryComponent
{repository}

structureP:PComposedStructure
{composition}

@sinkContextP:PAssemblyContext
{composition}

@provRoleP:POperationProvidedRole
{repository}

sinkPortContextP:PAssemblyContext
{composition}

conPortP:PAssemblyConnector
{composition}

compSinkPortP:PBasicComponent
{repository}

{entitytName=NSinkPort_N+@eventGroup.entityName}

sinkPortReqRoleP:POperationRequiredRole
{repository}

@sinkRoleP:PSinkRole
1

{repository}

@provRoleP:POperationProvidedRole
2

{repository}

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContextprovidedRoles_InterfaceProvidingEntityprovidingEntity_ProvidedRoleeventGroup__SinkRoleopp_eventGroup__SinkRole_SinkRole

parentStructure__AssemblyContext

assemblyContexts__ComposedStructure

parentStructure__AssemblyContext

assemblyContexts__ComposedStructure
opp_providingAssemblyContext_AssemblyConnector_AssemblyConnector

providingAssemblyContext_AssemblyConnector

opp_providedRole_AssemblyConnector_AssemblyConnector

providedRole_AssemblyConnector

requiringAssemblyContext_AssemblyConnector

opp_requiringAssemblyContext_AssemblyConnector_AssemblyConnector

encapsulatedComponent__AssemblyContext

opp_encapsulatedComponent__AssemblyContext_AssemblyContextopp_requiredRole_AssemblyConnector_AssemblyConnector

requiredRole_AssemblyConnector

requiringEntity_RequiredRole

requiredRoles_InterfaceRequiringEntity

Figure A.1: Sub Procedure createSinkPortContexts
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A.2. Middleware Integration Procedures

sourceCommCompP:PBasicComponent
{repository}

{substringfentityName,0,18M=RSourceCommunicationRR}

sourceCommProvRoleP:POperationProvidedRole
{repository}

@opIntP:POperationInterface
{repository}

sourceCommMdwCompP:PRepositoryComponent
{repository}

sourceCommMdwProvRoleP:POperationProvidedRole
{repository}

sourceCommMdwOpIntP:POperationInterface
{repository}

{entityName=RIMiddlewareSourceCommunicationRR}

@opIntP:POperationInterface
1

{repository}

assembleAndAllocateMiddlewareComponentf@sourceCommComp,P@sourceCommMdwComp,PP
@sourceCommMdwOpIntM

integrateMiddlewareCallf@sourceCommComp,P@sourceCommMdwOpIntM

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole
providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

{ELSE}

Figure A.2: Sub Procedure integrateSourceCommMiddleware
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filterCompF:FBasicComponent
{repository}

{substringMentityName,0,5w=vFiltervv}

filterProvRoleF:FOperationProvidedRole
{repository}

@opIntF:FOperationInterface
{repository}

integrateMiddlewareCallM@filterComp,F@filterMdwOpIntw

assembleAndAllocateMiddlewareComponentM@filterComp,F@filterMdwComp,F@filterMdwOpIntw

filterMdwCompF:FRepositoryComponent
{repository}

filterProvRoleF:FOperationProvidedRole
{repository}

filterMdwOpIntF:FOperationInterface
{repository}

{entityName=vIMiddlewareFiltervv}

@opIntF:FOperationInterface
1

{repository}

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole
{ELSE}

Figure A.3: Sub Procedure integrateFilterMiddleware
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@opInt=:=OperationInterface
1

{repository}

sinkCommMdwComp=:=RepositoryComponent
{repository}

sinkCommMdwProvRole=:=OperationProvidedRole
{repository}

sinkCommMdwOpInt=:=OperationInterface
{repository}

{entityName=SIMiddlewareSinkCommunicationSS}

sinkCommComp=:=BasicComponent
{repository}

{substring,entityNameA0A160=SSinkCommunicationSS}

sinkCommProvRole=:=OperationProvidedRole
{repository}

@opInt=:=OperationInterface
{repository}

integrateMiddlewareCall,@sinkCommCompA=@sinkCommMdwOpInt0

assembleAndAllocateMiddlewareComponent,@sinkCommCompA=@sinkCommMdwCompA==@sinkCommMdwOpInt0

{ELSE}

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole
providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRoleprovidedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole
providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRoleprovidedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity
providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

Figure A.4: Sub Procedure integrateSinkCommMiddleware
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@opInt0:0OperationInterface
1

{repository}

sinkPortComp0:0BasicComponent
{repository}

{substringlentityName.0.7d=)SinkPort))}

sinkPortProvRole0:0OperationProvidedRole
{repository}

@opInt0:0OperationInterface
{repository}

sinkPortMdwComp0:0RepositoryCompo...
{repository}

sinkPortMdwProvRole0:0OperationProvidedRole
{repository}

sinkPortMdwOpInt0:0OperationInterface
{repository}

{entityName=)IMiddlewareSinkPort))}

assembleAndAllocateMiddlewareComponentl@sinkPortComp.0@sinkPortMdwComp.00@sinkPortMdwOpIntd

integrateMiddlewareCalll@sinkPortComp.0@sinkPortMdwOpIntd

providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRoleopp_providedInterface__OperationProvidedRole_OperationProvidedRole

{ELSE}

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole
providedInterface__OperationProvidedRole

opp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedInterface__OperationProvidedRoleopp_providedInterface__OperationProvidedRole_OperationProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

providedRoles_InterfaceProvidingEntity

providingEntity_ProvidedRole

Figure A.5: Sub Procedure integrateSInkPortMiddleware
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Acronyms

Java EE Java Platform, Enterprise Edition

QVT-O QVT Operational Mapping Language

QVT-R QVT Relations Language

RD-SEFF Resource Demanding Service Effect

Specification

ADL Architecture Description Language

ADM2 Architecture Documentation Maturity

Model

API Application Programming Interface

ATL Atlas Transformation Language

AUTOSAR Automotive Open System Architecture

CBSE Component-based Software Engineer-

ing

CCM CORBA Component Model

CDF Cumulative Distribution Function

CEA Cambridge Event Architecture

CEP Complex Event Processing

COM Component Object Model

CORBA Common Object Request Broker Archi-

tecture

CoSMIC Component Synthesis with Model Inte-

grated Computing
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Acronyms

DC Distribution Centre

DMM Descartes Meta-Model

EBS Event-based Systems

EDA Event-Driven Architecture

EJB Enterprise JavaBeans

EMF Eclipse Modeling Framework Project

EPD Energetic Particle Detector

ER Entity Relationship

FCFS first-come-first-serve

FZI Forschungszentrum Informatik

GMF Graphical Modeling Framework

HOT Higher Order Transformation

HQ Company Headquarters

ICU Instrument Control System

IDL Interface Definition Language

iSOAMM independent SOA Maturity Model

JEDI Java Event-based Distributed Infras-

tructure

JMS Java Message Service

KIT Karlsruhe Institute of Technology

KLAPER Kernel LAnguage for PErformance and

Reliability analysis
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Acronyms

LHS left-hand-side

LITMUS Language of Interface Types for Mes-

sages in Underlying Streams

LQN Layered Queueing Network

M2M Model-2-Model

M2T Model-2-Text

MDA Model-Driven Architecture

MDE Model-driven Engineering

MDSD Model-driven Software Development

MOF Meta Object Facility

MOLA MOdel transformation LAnguage

MOM Message-Oriented Middleware

OASIS Organisation for the Advancement of

Structured Information Standards

OCL Object Constraint Language

OMG Object Management Group

OO object-oriented

OS Operating System

P2P Point-to-Point

PCM Palladio Component Model

PICML Platform-independent Component

Modeling Language

PIM platform-independent model

PIRATES Peer-to-peer Implementation of Recon-

figurable Architecture for Typed Event

Streams

PSM platform-specific model

Pub/Sub Publish/Subscribe
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Acronyms

QImPrESS Quality Impact Prediction for Evolving

Service-oriented Software

QoS Quality-of-Service

QPN Queueing Petri Net

QVT Query/View/Transformation

RFID Radio-Frequency Identification

RHS right-hand-side

RMI Remote Method Invocation

RPC Remote Procedure Call

SAMM Service Architecture Meta-Model

SCA Service Component Architecture

SIENA Scalable Internet Event Notification

Architecture

SLA Service Level Agreement

SM Supermarket

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SP Supplier

SPE Software Performance Engineering

SPEC Standard Performance Evaluation

Corporation

SRG Space Research Group at the University

of Alcalá

StoEx Stochastic Expression

TDE Transformation Definition Environ-

ment
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Acronyms

TEE Transformation Execution Environ-

ment

TIME Transport Information Monitoring En-

vironment

UML Unified Modeling Language

URL Uniform Resource Locator

VIATRA2 VIsual Automated model TRAnsforma-

tions framework

W3C World Wide Web Consortium

WS-Addressing Web Service Addressing

WS-BaseNotification Web Service Base Notification

WS-BrokeredNotification Web Service Brokered Notification

WS-Eventing Web Service Eventing

WS-Topics Web Service Topics

WSN Web Service Notification

XMI XML Metadata Interchange

XML Extensible Markup Language
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