
Institute of Mechanics

Continuum mechanical modeling

of processing induced initial anisotropy

in the finite strain deformation
of amorphous thermoplastic polymers

15. International Conference on

Deformation, Yield and Fracture of Polymers

Kerkrade, April 2012

Philipp Hempel, Matthias Kotlik, Thomas Seelig

Institute of Mechanics

Kaiserstr. 12

D-76131 Karlsruhe

Tel.: +49 (0) 721/ 608-42071

Fax: +49 (0) 721/608-47990

E-Mail: info@ifm.kit.edu

www.ifm.uni-karlsruhe.de



Continuum mechanical modeling of processing induced initial
anisotropy in the finite strain deformation of amorphous

thermoplastic polymers

P. Hempel, M. Kotlik, Th. Seelig

Institute of Mechanics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany

Summary: This work deals with modeling the mechanical behavior of

thermoplastic polymers in the finite strain regime over a wide range of

temperatures. Thereby, special emphasis is put on the incorporation of

an initial anisotropy in terms of ”frozen-in” molecular orientation which

results from a preceding manufacturing process. A computational exam-

ple is discussed which considers an injection molded plate undergoing

inhomogeneous deformation (buckling) during re-heating.

Introduction

Manufacturing processes of amorphous thermoplastic polymers at elevated temperatures (e.g.

injection molding) and subsequent rapid cooling result in an anisotropic microstructure due to

”frozen-in” molecular orientation [5]. This state of pre-orientation in the solid material affects

the subsequent finite strain deformation behavior in terms flow strength and hardening and may

give rise to stress-free deformations of a component during re-heating.

This ”memory-effect” can be observed at the injection molded plate in Fig. 1a. After uniformly

heating the plate above the glass transition temperature it deforms and buckles due to the pre-

oriented microstructure (Fig. 1c). To get some indication of the microstructure one can use po-

larized light to visualize (via birefringence) regions with high molecular orientation and residual

stress (Fig. 1b).

a) b) c)

Figure 1: a) Injection molded plate, b) plate under polarized light, c) deformed plate after re-

heating above glass transition temperature

The aim of this work is to model the mechanical behavior of thermoplastic polymers in the finite

strain regime over a wide range of temperatures (above glass transition) with consideration of a

processing induced initial anisotropy. Therefore, experimental test data at different temperatures

and strain rates are necessary in order to describe the stress-strain response correctly. Uniaxial

tension tests on PMMA at different strain rates and temperatures (below and above glass transi-

tion which for PMMA is Tg ≈ 105◦ C) were performed. These tension tests were evaluated using

digital image correlation [4] which allows to measure local strain fields needed to determine the



true stress-strain response of the material (Fig. 2). At moderate temperatures the material shows

a glassy behavior with an elastic regime followed by inelastic deformation including progressive

hardening. At higher temperatures, near to or above the glass transition, the material is in the

rubbery state. Elastic strains then are much larger and the separation of elastic and inelastic

deformation is less obvious. Furthermore, a rate dependency is observed which is more pro-

nounced at high temperatures so that the glass transition is not a fixed temperature but is rate

dependent as well.

a)
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−3
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−1
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−1

Figure 2: Uniaxial tension tests at different temperatures and strain rates: a) ε̇ = 10−3s−1, b)

ε̇ = 10−1s−1

Continuum mechanical modeling

The material model presented here is based on that developed by Boyce and co-workers [1-3].

Starting with the kinematics, the widely used multiplicative split of the deformation gradient into

an elastic and plastic part is utilized

F = F
e
F

p (1)

where F
p defines the stress free configuration after elastic unloading (referred to as the interme-

diate configuration). Physically, F
p describes permanent molecular orientation in the material.

In order to include an initial anisotropy, the inelastic deformation gradient is complemented by

an initial deformation gradient F
i (= V

i) so that the network deformation tensor F
n is defined as

[2]

F
n
= F

p
F

i . (2)

This network deformation tensor is used in the following to describe the entropic resistance of

the molecular network against plastic flow (see below).

The split of the deformation gradient (1) leads to an additive decomposition of the velocity gra-

dient tensor into an elastic and plastic part L = L
e
+ L

p with the inelastic velocity gradient in the

current configuration L
p
= F

e
L̂

p
F

e−1 and in the intermediate configuration L̂
p
= Ḟ

p
F

p−1. The

latter can be decomposed as L̂
p
= D̂

p
+ Ŵ

p
with the inelastic rate of deformation tensor D̂

p
and

the inelastic spin tensor Ŵ
p
, both in the intermediate configuration. While D̂

p
is constitutively

prescribed via a flow rule, the inelastic spin tensor can be computed as Ŵ
p
=W −W[D + D̂

p
]

with the forth order tensorW once the assumption of a symmetric elastic deformation gradient

F
eT
= F

e is made [3].

The inelastic part of the rate of deformation tensor D̂
p

in the intermediate configuration is deter-

mined by the deviatoric part of the driving stress tensor Σ̂ − b̂ and the plastic shear strain rate γ̇p



according to

D̂
p
= γ̇p Σ̂

′ − b̂
′

|Σ̂′ − b̂
′|

, γ̇p
= γ̇

p

0
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(3)

with material parameters A, s, γ̇
p

0
and the temperature T .

The driving stress Σ̂− b̂ is the difference of the Mandel stress Σ̂ = det(F)F
e
σF

e−1 (with σ being

the Cauchy stress tensor) and the backstress b̂ (Fig. 3a). The backstress tensor is determined

from the Arruda-Boyce eight-chain-model [1]

b̂ =
CR
√

N

3λc

L−1

(

λc√
N

)

B̂
n

(4)

with the left Cauchy-Green tensor B̂
n
= F

n
F

nT , the inverse of the Langevin-function L, the

rubbery modulus CR, the average number N of rigid links between entanglements and the mean

chain stretch λc =

(

1

3
trB̂

n
)

1
2

. In (4) use is made of the network deformation gradient tensor F
n

(2) so that an initial backstress can be prescribed. The Cauchy stress σ depends on the elastic

left Cauchy-Green tensor B
e
= F

e
F

eT and is determined from a hyperelastic Neo-Hooke model.

In addition, the model is modified to capture a wide range of temperatures. Therefore, the shear

modulus, the material parameter A in (3) and the molecular network parameter N are taken

temperature dependent as suggested in [1]. In Fig. 3b the stress-strain response of the model is

shown in comparison with experimental data.

a) b)

Figure 3: a) Rheological model, b) stress-strain response of the model (dashed lines) and exper-

imental data (solid lines) for a strain rate of ε̇ = 0.1s−1

Computational example

As a computational example the injection molded plate shown in Fig. 1a is investigated. An

indication of the ”frozen-in” molecular orientation (and stretch) is provided by inspecting the

plate under polarized light utilizing birefringence (Fig. 1b). This is used as a first guess for

the distribution and magnitude of the initial molecular orientation where high or low values

prevail in bright or dark regions, respectively. Mapping of this information to the FE model is

accomplished by assuming a corresponding distribution of the maximum principal stretch λi
max

(eigenvalue of V
i, detVi

= 1). For simplicity five sections with different constant values of λi
max

are considered. The direction of the orientation is assumed to be radial from the injection point



(”gate”; see Fig. 1a). The plate is subjected to a temperature which is taken spatially uniform

and increases with time. With increasing temperature the material flow resistance decreases and

enables the ”frozen-in” molecular stretch (and backstress) to relax. This spatially non-uniform

re-deformation causes buckling of the plate. The deformed FE model is depicted in Fig. 3b and

shows a qualitatively good agreement with the real plate in Fig. 1c.

a) b)

Figure 4: FE analysis of injection molded plate: a) distribution of initial molecular stretch, b)

deformation after heating to 120◦ C

Conclusions

In this work a constitutive model for amorphous thermoplastic polymers is set up which incor-

porates an initial anisotropy and is able to describe the stress-strain response even above the

glass transition. The model is used successfully to simulate a re-heating process of an injection

molded plate. The resulting deformation of the plate is in good agreement with that observed in

the real experiment. The correlation between the deformation of the real plate and the deforma-

tion obtained in the simulation evidences that the assumed initial molecular orientation and its

mapping to the computational model is reasonable. However, while the flow field in the present

case is quite obvious, it is hardly conceivable that this heuristic method is applicable to more

complicated geometries. In that case one could use, for example, form filling simulations to map

the initial state of the material to the FE model. Another subject of future work is the modifi-

cation of the material model to capture the effect of strain rate dependent hardening at elevated

temperatures caused by reptation of molecules in the entanglement network.
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