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Zusammenfassung 

Die vorliegende Arbeit befasst sich mit optisch versorgten Sensornetzwerken. In optisch 

versorgten Sensornetzwerken werden sowohl die Datensignale als auch die notwendige 

Versorgungsleistung der Sensorknoten über Glasfasern übertragen. Neben grundsätzlichen 

theoretischen Betrachtungen werden verschiedene Arten von Sensornetzwerken vorgestellt 

und untersucht. Die Art der jeweiligen Sensorapplikation entscheidet maßgeblich über 

Datenaufkommen, Komplexität und Energieverbrauch. Eine breite Spanne von Anwendungen 

wird demonstriert, um das Einsatzpotential solcher Netzwerke aufzuzeigen. Zusätzlich zum 

physischen Aufbau von Sensornetzwerken wird ein neues Kommunikationsprotokoll 

vorgestellt, das speziell auf optisch versorgte Sensornetzwerke angepasst ist. 

Die alleinige Glasfaserverbindung zwischen der Basisstation und den Sensorknoten des 

Sensornetzwerks bringt einzigartige Vorteile mit sich: keine galvanische Kopplung, keine 

Störemission selbst bei hohen Datenraten, geringe Anfälligkeit gegenüber elektro-

magnetischer Störstrahlung und Einsatzmöglichkeit in Hochspannungseinrichtungen und 

explosionsgefährdeten Bereichen. Heutige Glasfasern haben eine geringe Dämpfung von nur 

0,15 dB/km bei einer Wellenlänge ,55 μm  . Dies ermöglicht den Bau von weiträumigen 

Sensornetzwerken. Die Entwicklung von kostengünstigen Hochleistungslasern, effizienten 

photovoltaischen Wandlern und energiesparsamer und dennoch leistungsfähiger Elektronik 

während der letzten Jahre, haben die Weiterentwicklung von optisch versorgten Sensorknoten 

und -netzwerken gefördert. 

In dieser Arbeit werden solche Sensornetzwerke näher untersucht. Geeignete 

Anwendungsbeispiele werden identifiziert und Prototypen für diverse optisch versorgte 

Sensorknoten werden vorgestellt. Dabei werden Knoten gezeigt, die sehr stark 

unterschiedliche Leistungsaufnahmen sowie Datenaufkommen besitzen. Des Weiteren werden 

die dazugehörigen Basisstationen vorgestellt. Diese Stationen müssen zum einen die Knoten 

mit Energie versorgen, zum anderen aber auch die Sensordaten entgegennehmen, anzeigen 

und speichern. Das eingesetzte Protokoll, das die Kommunikation zwischen Basisstation und 

Knoten regelt, ist auf die Topologie des Netzwerks abgestimmt. Es ermöglicht hohe 

Energieeinsparpotentiale, besonders bei Sensorknoten, die nur gelegentlich auftretende 

Messaufgaben übernehmen müssen. 

 

Die photovoltaischen Wandler, die benötigt werden um die einfallende optische Leistung in 

elektrische Leistung zu wandeln, sowie deren elektronische Beschaltung wurden speziell für 

die unterschiedlichen Sensorapplikationen angepasst. Entscheidend bei der Auswahl der 

Komponenten und der Beschaltung war die mittlere Leistung, die im Wandler umgesetzt wird. 

Sensorknoten, die beispielsweise nur gelegentlich Temperatur- und Helligkeitswerte 

aufnehmen, können mit wenigen Mikrowatt mittlerer Leistung versorgt werden. Hingegen 

benötigen Knoten, die Videoinformationen aufnehmen und übertragen, mehr als 100 mW. Um 

die Ausgangsspannung des Wandlers an die benötigten Pegel für die elektronischen 

Komponenten anzupassen, werden Serienschaltungen von Wandlern untersucht und 
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eingesetzt. Außerdem werden unterschiedliche Laser und Glasfasern für optisch versorgte 

Sensornetzwerke untersucht.  

 

Unterschiedliche Implementierungen von Sensorknoten werden vorgestellt. En detail werden 

zwei stark unterschiedliche Knoten gezeigt. 

Mit einer Leistungsaufnahme von 160 mW kann ein Knoten betrieben werden, dessen 

Videomodul 12,5 Bilder pro Sekunde in VGA-Auflösung aufnehmen und zur Basisstation 

schicken kann. Dazu wird der unkomprimierte Datenstrom von 160 Mbit/s einem direkt 

modulierbarem Laser aufgeprägt. Neben Sensorik umfasst dieser Knoten auch Aktorik. Zwei 

von der Basisstation aus gesteuerte Servomotoren können das Videomodul bewegen. Die 

Distanz zwischen Basisstation und Knoten beträgt 200 m und wird mit Multimode-Fasern 

überbrückt. 

Im Gegensatz zum Videoknoten haben Sensorknoten, die nur gelegentlich Temperatur, 

Helligkeit oder Signalleistungspegel messen, eine extrem niedrige mittlere elektrische 

Leistungsaufnahme von 2 µW. Die Leistungsaufnahme kann stark reduziert werden, da der 

Knoten nur selten zeitliche kurze Mess- und Kommunikationsaufgaben übernehmen muss. 

Der Knoten wird daher die längste Zeit in unterschiedlichen Inaktiv-Modi betrieben, was zu 

einer äußerst geringen mittleren Leistungsaufnahme führt. Die Entfernung zwischen 

Basisstation und Knoten kann dabei mehr als 10 km betragen. 

 

Basisstationen, welche die jeweiligen Sensorknoten mit Energie versorgen und deren Daten in 

Empfang nehmen, werden ebenfalls vorgestellt und diskutiert. 

Beim Videoknoten werden die empfangenen Bilddaten von einem Field programmable 

gate array (FPGA) komprimiert und auf einer lokal betriebenen Webseite angezeigt. Ebenfalls 

kann auf der Webseite die Position des Videomoduls im Sensorknoten verändert werden. 

Dazu werden die entsprechenden Steuerinformation auf den Versorgungslaser aufmoduliert 

und im Knoten ausgelesen und ausgewertet. 

Für die Sensorknoten mit geringer Leistungsaufnahme wird eine kompakte USB-versorgte 

Basisstation verwendet. Über den USB-Anschluss werden gleichzeitig die Sensordaten an 

einen Computer übermittelt. 

 

Ein neues Kommunikationsprotokoll, das den Anforderungen eines optisch versorgten 

Sensornetzwerks entspricht, wird vorgestellt. In Netzwerken, die mehrere Sensorknoten 

beinhalten, werden passive Verzweiger eingesetzt, um die Knoten mit einer Punkt-zu-

Multipunkt-Verbindung an die Basisstation anzuschließen. Diese faseroptischen Verzweiger 

verteilen Signale von der Basis an alle Knoten, Signale von den Knoten hingegen werden nur 

zur Basis übertragen. Energie-effiziente Carrier sense multiple access (CSMA) Protokolle, 

bekannt von drahtlosen Sensornetzwerken, eignen sich daher nicht für fasergebundene 

Netzwerke. Bei dem hier neu entwickelten Protokoll übernimmt die Basisstation die 

vollständige Kontrolle über das Kommunikationsmedium und teilt den Knoten Zeitschlitze 

zu. Knoten, die sich die meiste Zeit in Inaktiv-Modi befinden, werden durch spezielle Signale 

resynchronisiert und abgefragt. Resynchronisation ist notwendig, da im energie-effizientesten 
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Inaktiv-Modus der Knoten den Synchronismus mit der Basisstation aufgrund des dann 

unpräzisen Taktgebers verliert. 

 

Als Anwendungsbeispiel wurden mehrere der Niedrigenergie-Knoten in ein faseroptisches 

Kommunikationsnetzwerk integriert. Die Knoten liefern dem Betreiber mehr Einzelheiten 

über das Netzwerk als mit klassischer Reflektrometrie möglich wäre. In diesen Netzwerken 

werden passive Verzweiger eingesetzt. Bei Messungen der reflektierten Leistung ergeben sich 

bezüglich der Position der Reflexionsstelle wegen der passiven Verzweiger mehrdeutige 

Resultate. Die Auflösung ist schlecht aufgrund der hohen Verzweigerdämpfung. Erfolgreiche 

Datenabfrage der Knoten bei zeitgleicher Datenkommunikation im Netzwerk wird erfolgreich 

gezeigt. 

 

Unterschiedliche Basisstationen zusammen mit ihren dazugehörigen Sensorknoten bilden 

verschiedene Arten von optisch versorgten Netzwerken. Ergebnisse darüber wurden in 

verschiedenen Zeitschriften veröffentlicht [J1], [J3] – [J5] und bei internationalen 

Fachkonferenzen [C1] – [C9] vorgestellt.  

 

 





 

 

Achievements of the Present Work 

In this thesis, fiber-optically powered sensor networks have been investigated. Advantageous 

application fields have been identified and appropriate prototypes of different sensor nodes 

were developed, set up and characterized. Broad spans of power consumptions and data rates 

of the respective nodes were covered. Base stations to gather and display the information 

collected by the nodes and to supply the sensor nodes have been set up, too. Further, a special 

protocol taking into account passive optical fiber networks characteristics as well as different 

needs of different nodes has been developed. Improvements in power consumption of the 

nodes enabled through the special communication protocol were exploited. 

In the following, we give a concise overview of the main achievements. 

 

Studies on Optical Power Supplying: In general, sensor nodes have very different needs in 

power consumption and data throughput. Both strongly depend on the application. Here, 

simple temperature measuring nodes and complex video capturing nodes are presented. 

Average power consumptions span from few microwatts to several hundred milliwatt. For 

each node, the optical power supply was adapted to guarantee optimum performance. For 

this purpose, different photovoltaic power converters as well as lasers were selected and 

studied. Aside from the converter itself, the electrical circuiting of several converters and 

the appropriate impedance matching were studied to optimize the conversion efficiency 

especially for small optical powers. Different fiber types and different multiplexing 

techniques for power and data signals were implemented. 

Sensor Node Design: Different sensor nodes were developed, set up and characterized. 

First, a group of nodes with an average power consumption of less than 2 µW is shown. 

Minimum power consumption is achieved by putting the nodes most of the time in an 

energy-saving sleep mode. A newly developed protocol allows addressability although 

sensors in sleep mode use inaccurate but energy-efficient clock sources.  

Second, a node comprising a video module and servomotors for moving the module is 

presented. The power consumption of this node was measured to be 160 mW. The 

servomotors were controlled by the base station. Control signals were modulated on the 

high-power laser and detected in the node. 

Base Station Design: Appropriate base stations for the above described nodes were set up. 

First, the base station for the low-power sensor nodes handled communication with the 

fiber-attached nodes autonomously and sent the gathered information via the network to a 

computer.  

Second, a base station was developed for the node for capturing video data. The base 

station receives, processes and displays the video stream. The commands for controlling 

the servomotors in the node were also input there. 
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Studies and Developments in Protocols: Networks were composed of a base station and one 

or several sensor nodes. Passive power splitters were used to connect several nodes to one 

base station. These power splitters allow all nodes to listen to the base station. Signals from 

the node to the base station cannot be detected by other nodes. So, standard energy-

efficient carrier sense multiple access (CSMA) protocols fail for organizing 

communication in such networks. Therefore, a newly developed protocol is presented 

combining random and scheduled access, so that the base station takes over full control of 

the communication. Occasionally polled sensors are re-synchronized with a special polling 

procedure which allows these nodes to stay in their most energy-efficient mode for the 

longest period of time. This operation mode leads to a loss of synchronism due to an 

inaccurate clock source used hereby. The protocol has been published in [J4]. 

Base station, nodes and protocol together were assembled in different network configuration 

to meet different application needs, namely: 

Monitor Devices in Access Networks: One group of sensor nodes was integrated in a gigabit 

passive optical network (GPON) testbed for providing enhanced monitoring 

functionalities. Monitoring fiber failures with reflectometry measurements could suffer 

ambiguity and high losses due to high splitting ratios of the signals. These issues are 

solved with small versatile devices which operate independently from a power line at any 

point in the network. The monitoring procedure was run in-service and did not show a 

negative effect on the communication signals. [J1], [C3], [C4], [C7] 

Sensor Devices in Fiber Networks: The nodes perform simple operations like measuring 

temperature, brightness and acceleration, and send the gathered information to a base 

station. Average power consumption of the nodes is reduced to less than 2 µW. The base 

station was powered by a standard USB port. It handled communication with the fiber-

attached nodes autonomously and sent the gathered information to a computer. Power and 

data signals were transported over up to 10 km single mode fiber at wavelengths around 

1550 nm. [J4], [C1], [C5], [C6] 

Bidirectional Video System: This node comprises a video module and servomotors for 

moving the module. The 12.5 frames per second in VGA resolution are processed in a field 

programmable gate array (FPGA) and sent to a base station with a resulting data rate of 

160 Mbit/s. The power consumption was measured to be 160 mW. This power was 

provided by a high-power laser at a wavelength of 808 nm. The servomotors were 

controlled by the base station. Control signals were modulated on the high-power laser and 

detected in the node. The generated data from the video module were transmitted to the 

base station. Another FPGA was deployed in the base station to receive, process and 

display the video stream on an interactive website. On the website also the commands for 

the servomotors were input. Base station and node were connected via 200 m of multimode 

fiber. [J3], [J5], [C2], [C8], [C9] 

 



 

 

Summary 

In optically powered networks, both communication signals and power for remotely located 

sensor nodes are transmitted over an optical fiber. Optical powering is a key enabler for a new 

generation of autonomous multifunctional intelligent subscriber and sensor networks with a 

broad range of monitoring and communication functions related to security of homes and 

public spaces, of roads, bridges and personal health as well as to general-purpose 

communications, to name just a few. One can also envisage optical powering of short-range 

passive optical networks (PON) comprising distributed link-supervision.  

Key features of optically powered networks are node operation without local power 

supplies or batteries, operation with negligible susceptibility to electromagnetic noise and 

lightning due to galvanic isolation between nodes and base stations, operation in electrostatic 

discharge-sensitive environments, and operation without electromagnetic radiation from wires 

even at high and highest data rates. Last but not least it should be mentioned that optical fibers 

have very small attenuation, e. g., 0.15 dB / km for standard singlemode fibers. This opens the 

application field even for large network area coverage.  

Despite the advantages of such networks, it is only in most recent years that advance 

towards inexpensive high-power lasers, highly efficient opto-electric converters and, most 

importantly, the advent of low-power high-performance electronics have alleviated the 

problem of limited local electric energy. 

In this thesis, different kind of optically powered devices and networks are investigated 

and demonstrated with prototypes for thoroughly selected applications. The successfully 

implemented prototypes cover a broad span of power consumptions and data rates. Reduction 

in power consumption enabled by a newly developed protocol is exploited.  

The thesis is structured as follows. In Chapter 1, the principle of optical powering is 

introduced and a short review is given. The fundamentals of communication protocols for 

networks with a shared medium are discussed. 

In Chapter 2, the necessary theoretical background for opto-electronic power conversion is 

discussed. Physical and electrical aspects are addressed. 

Chapter 3 comprises theoretical and measured results for a newly developed 

communication protocol. The protocol is tailored for the needs of an optically powered 

network. Aside from the special aspects of the fiber as a communication medium, 

heterogeneous sensor nodes of the network are taken into account. Heterogeneity results from 

different sensors attached at the respective node and manifests itself in transmitted data 

volume, priority, and latency. A combination of random and scheduled access allows handling 

of the heterogeneous nodes. Ratios between active and inactive periods down to 
510
 are 

demonstrated and result in an expected mean power consumption of a few microwatt. This 

research has been published in [J4]. 

One group of nodes was built with focus on minimal power consumption, and the results 

are discussed in Chapter 4. The mean electrical power consumption is reduced to less than 



viii Summary 

 

 

2 µW. Different types of sensors can be attached via digital and analog interfaces. The opto-

electronic power conversion for supplying the node is optimized for powers in the microwatt 

range. The low-power nodes are proposed as new monitoring devices for an optical 

communication access network. A laboratory trial shows successful operation of the 

monitoring devices along with the communication network devices. Further applications of 

these monitoring devices in telecommunication networks are discussed with respect to the 

network topology. This research has been published in scientific journal papers [J1], [J3] –   

[J5], at international conferences [C1] – [C9] and in a patent [P2].  

In Chapter 5, a sensor node with high power consumption and high data volume is shown. 

The attached sensor is a VGA camera module having a resolution of 640 480  pixels. With a 

power consumption of 160 mW, this node is able to capture 12.5 frames per second 

generating a data stream of 160 Mbit/s which is directly modulated on a laser and sent back to 

a base station. The base station hosts a true-time JPEG encoder and a webserver both realized 

on a field programmable gate array (FPGA). The captured video stream is displayed as 

Motion JPEG stream on an interactive website hosted on the webserver. Aside from the 

camera module, the node is equipped with servo drives to move the camera module. The 

drives are controlled via manual input at the interactive website. 

Finally, an outlook on future research is provided. 



 

 

1 Sensor Devices and Networks 

This chapter first gives a general overview over different sensors that can be deployed, and 

how they differ in power consumption and in amount of data they deliver. Most important in a 

sensor network is the individual sensor node which will be discussed afterwards. Then, a brief 

look in former results of optically powered sensing will be taken. Networks consisting of 

several nodes and a base station will be introduced with focus on the possible heterogeneity of 

the nodes. Finally, existing protocols for communication and sensor networks will be 

reviewed. Especially, a closer look on energy-efficient protocols know from wireless sensor 

networks will be taken. 

1.1 Fields of Application for Sensors 

Environmental Sensors 

Sensors measuring environmental parameters like temperature, brightness, humidity, 

acceleration, noise, voltage or current are called environmental sensors. These types of 

sensors normally have low power consumption (< 30 mW) and deliver data at low speed 

(< 100 kbit/s).  

Still Picture Monitoring 

The power consumption and the output data rate of image sensors is much larger than for 

environmental sensors. Image monitoring means the capturing and transmission of a few 

images per minute up to one image per second, so that only slowly varying processes can be 

monitored. Equipped with additional environmental sensors, a more complex sensor platform 

can be built up. For instance, an image could be taken if one of the environmental sensors 

detects unusual conditions. The average power consumption then can be as low as for 

environmental sensors if an energy buffer is integrated and the duty cycle for the image sensor 

is chosen properly.  

Motion Picture Monitoring 

In case the frame rate exceeds one image per second, the term video surveillance describes the 

application best. Power consumption and data rate increase significantly as the image sensor 

and the data logic need continuous powering. Power efficient systems are operated with 

130 mW [38].  

Actuators 

Sensor nodes can be equipped with additional actuators. This opens another broad field of 

applications. In surveillance, the actuators can be used to redirect the image sensor’s view, 

thereby enlarging the controlled area. Magnification and focus of the image sensor also can be 

changed. These actions can be controlled by the sensor node itself, by the base station or by 
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the user at the base station. The latter cases need a communication link from base station to 

sensor node. In an optically powered system this can be easily realized by modulating the 

supply laser to encode data on it. 

Power consumption of actuators often exceeds the power consumption of the sensing and 

the communication electronics. On the other hand, mechanical movement is not performed 

continuously at the sensor node, and the necessary energy might be buffered in accumulators 

or capacitors. 

Radio Frequency (RF) Access Points 

Different RF communication standards like WLAN [39], Bluetooth [40], ZigBee [41], GSM 

[42], UMTS [43] or LTE [44] can be transported over the optical link. The link also allows 

bridging large distances for power supply. The link ends in an optically powered node, where 

the signals are converted back into the RF domain and sent out through an attached antenna.  

Robots 

Finally, a combination of powerful logic circuits, different sensors and actuators gives the 

possibility to build an autonomously acting robot which is supplied from an optical cable and 

sends back its acquired information over the same cable. Such kind of robots can be used in 

areas where only a fiber connection would be feasible like in high-voltage installations, 

discharge-sensitive environments, and RF sensitive or RF polluted areas. 

1.2 Optically Powered Devices 

In Fig. 1.1 a schematic drawing of an optically powered sensor node and of a base station is 

shown. A laser located in a conventionally powered base station sends light through a fiber to 

the node. In the node, this light is converted back into electrical power which supplies (red 

arrows) electronics, sensors, and maybe even actuators. Data (blue arrows) gained from the 

sensors are transmitted back to the base station via an optical transmitter. The base station 

converts the optical data back into electrical signals. Both, power and data are converted from 

electronics (depicted with a green background) to photonics (yellow background) and vice 

versa. The connection between base station and node is just a glass fiber realizing a perfect 

galvanic isolation.  
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Fig. 1.1 Optically powered sensor node with base station. A laser located in an electrically powered base 

station sends light through a fiber to the node (red). In the node, this light is converted back into electrical 

power which supplies (also red) electronics, sensors, and actuators. Data (blue arrows) interrogated from 

the sensors are transmitted back to the base station via an optical transmitter, are received in the base 

station and converted back into electrical signals. Both, power and data are converted from electronics 

(depicted with a green background) to photonics (yellow background) and vice versa. 

As optically powered devices operate without local power supplies or batteries, they can be 

deployed in discharge-sensitive environments. Furthermore, due to galvanic isolation such 

devices show negligible susceptibility to electromagnetic interference and lightning. Large 

distances can be bridged as a standard singlemode fiber has very small attenuation of only 

0.15 dB/km. Although optically supplied, electrical power is available in the remote sensor 

node, and most of the common sensors can be operated. These sensors rely on an electrical 

power supply and return the sensor output as analog or digital electrical signal, or the desired 

quantity is transformed into an electrically measurable quantity. Thus, optically powered 

networks profit both from the unique advantages of a fiber as transport medium for energy 

and information, as well as from the variety of sensors available in electronics. 

Review on Optically Powering [J4] 

Historically, the basic idea of providing photonic energy to an optical network was realized as 

early as 1978 when an optically powered sound alerter was demonstrated at Bell Labs by 

DeLoach, Miller and Kaufman [4] for a fiber-based telephone network.One year later, the 

same laboratory reported satisfactory two-way speech transmission and vigorous sound 

alerting at the remote station with 14 mW of DC averaged laser power incident onto the fiber, 

Miller and Lawry [5], and this work was continued over the next three years [6]. A decade of 

development had passed when Kirkham and Johnston [7] from Jet Propulsion Laboratory 

provided in 1989 a brief historical review on fiber-optically powered devices along with the 

description of an optically powered data link with 1 kHz bandwidth for power system 

applications. It was ventured by Banwell et al. [8] from Bellcore in 1993 that it may be 

possible to operate conventional telephone station sets using electricity derived 

photovoltaically from light in a fiber. These authors concluded that with a power delivery to 

end-loop equipment below 30 mW for a 3.6 km loop (larger link attenuation) and 200 mW for 

a 1 km loop (smaller link attenuation) the cost of optical powering would be comparable to 

powering over copper. Further, an optically interrogated network of optically powered sensors 
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was discussed by Pember, France and Jones [9] in 1995. They stored the photogenerated 

energy locally in a capacitor and emphasized the advantage of GaAs photogenerators (30 % 

efficiency) over silicon photodiodes (15 % efficiency). Another very specialized network 

consisting of optically powered electrical accelerometers was successfully built and field-

tested by Feng [10] in 1998, while Pena et al. [11] described in 1999 an efficient power-

delivery system for an all-fiber point-to-point connection with an optoelectronic sensor unit. 

With a viewpoint to overall energy saving, Miyakawa, Tanaka, and Kurokawa [12] published 

in 2004 design approaches to integrate solar energy harvesting in a power-over-optical local-

area-network. The authors proposed a fiber optic power and signal transmission system for 

DC powering to such information tools as personal computers. Only recently, in 2007, the 

first optically powered video-link with bitrates above 100 Mbit/s was demonstrated [13].  

Key to the success of optical powered networks is an energy efficient conversion of optical 

power into electrical energy. First serious studies on power budgets of optically powered links 

were performed by Liu [14] from DIAS (UK) in 1991 concluding that GaAlAs photovoltaic 

cells had to be chosen for a highly efficient power conversion. Record conversion efficiencies 

of 50.2 % were achieved in 2001 by van Riesen, Schubert, and Bett [15] from Fraunhofer 

Institute for Solar Energy Systems (Freiburg, Germany) when illuminating GaAs photovoltaic 

cells with an intensity of 6.5 W/cm
2
 at a wavelength of 810 nm. The important influence of 

cell temperature on the conversion efficiency was emphasized by Miyakawa, Tanaka, and 

Kurokawa [16] in 2005. A most recent publication in 2008 by Werthen [17] discusses 

photovoltaic power converters (PPC) with electrical output powers over 1 W. The optimum 

light for a GaAs PPC lies in the wavelength range of 790 nm to 850 nm where various pump 

lasers with power levels as high as 5 W are available. For higher light levels above 10 W, 

InGaAs pump lasers in the range of 915 nm to 980 nm are most practical. To function with 

such lasers, the PPC also has to be made from a similar material, the bandgap of which and, 

hence, the voltage output from the PPC is less than that of GaAs devices. A PPC has been 

demonstrated with over 1 W of electrical output using a 5 W laser emitting at 960 nm. The 

authors remark correctly that at such output power levels even the remote powering of 

distributed antenna systems becomes possible.  

Conversely, power consumption can be minimized at the sensor node. Lowest power 

device operation with microwatt-power InGaAs photogenerators for lightwave networks were 

pioneered in 1997 by Giles at al. [48] for powering a remotely-located optical shutter. For this 

application a 10 V optical-to-electrical InGaAs photogenerator was reported in 1999 by 

Dentai at al. [54] from Bell Labs. 

1.3 Networks of Optically Powered Devices 

A network of optically powered sensor nodes is shown in Fig. 1.2. All nodes are connected to 

the base station via fibers and power splitters. The resulting network has a tree-like topology. 

Signals coming from the base station (red) are split up and distributed to all nodes whereas 

signals coming from the sensor nodes are directed to the base station only. As a consequence, 

all nodes share one uplink channel but it is impossible for them to check whether another 
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node is actually sending to the base station. This circumstance has to be considered when 

choosing an appropriate protocol for organizing communication between base station and 

sensor nodes. 
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Fig. 1.2 Optically powered sensor network with its base station and nodes shown in Fig. 1.1. The nodes 

are connected to the base station with fibers and passive power splitters in a tree-like network. Signals 

coming from the base station (red) are distributed to all nodes by the splitters. Data signals (blue) coming 

from the node are combined in the splitters.  

The exemplary network shown in Fig. 1.2 consists of identical sensor nodes which in 

reality is not necessarily true. A sensor network in general may consist of very different kind 

of nodes as has been discussed in Section 1.1. The nodes then differ in  

- average power consumption, 

- average daily data rate, 

- duty cycle, 

- priority, 

- and latency. 

The duty cycle   is defined as the ratio between the length of an active time period activeT

to the sum of active and inactive ( inactiveT ) periods: 

 active

active inactive

 


T

T T
 (1.1.1) 

Environmental sensors can be operated with duty cycles below 10
–3

; motion picture 

monitoring requires a duty cycle in the order of 1. Different priorities may be implemented to 

distinguish between critical and non-critical nodes in the network. Latency is very important 

in real time applications like video-conferencing but is subordinate for most other data types.  

These heterogeneous properties strongly influence the choice of the protocol. The 

following Section 1.3.1 discusses state-of-the-art media access control (MAC) protocols. 

These protocols control access to the shared communication medium, here access to the 

uplink channel. As the receiver and the transmitter consume most of the energy in a sensor 

node, their active times strongly influence the mean power consumption of a node. Switching 
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off the communication interfaces has to be controlled by the MAC protocol to maintain 

connectivity. 

1.3.1 Media Access Control (MAC) Protocols 

A typical network consisting of several nodes and a central controller is depicted in Fig. 1.3. 

The nodes and the central controller share one transmission medium. If a node sends a 

message to another node or to the central controller, the medium is captured by this node. If a 

second node sends also a message which temporally overlaps with the first one, both 

messages interfere and cannot be received properly. A control mechanism is therefore 

necessary to avoid loss of data packets due to collisions of them in the shared medium. This is 

done in a MAC protocol. The following section discusses state-of-the-art for MAC protocols. 

An overview over the numerous approaches can be found in [26]. 
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Fig. 1.3 Network consisting of a central controller and several nodes which share one transmission 

medium. 

Different techniques of sharing the medium are categorized in Fig. 1.4. In the static 

channelization approach, the single nodes get their own communication channel within the 

medium, e. g., a separate wavelength in wavelength division multiplexed networks or a fixed 

time slot in time division multiplexed networks. However, nodes generating only little traffic 

will not make efficient use of their assigned channel. This makes the channelization scheme 

optimum for networks with constant and predictable traffic flows. Since in sensor networks 

the traffic is bursty and appears randomly, the channelization approach is unsuited here. 

Rather, a dynamic media access control is needed to use the given channel resources more 

efficiently. Two basic types for dynamic media access control are in use: scheduling and 

random access. 
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Fig. 1.4 Categories for medium sharing techniques. Modified from [26]. 

1.3.1.1 Scheduling 

In scheduling approaches, access to the shared medium is organized in different ways. Here, 

two basic mechanisms of organization will be discussed: reservation and polling systems. In 

reservation systems, single nodes reserve a timeslot of fixed or variable length to capture the 

medium and transmit data. In contrast, polling systems have a fixed order. Node after node 

gets the ability to send. In both schemes, special data packets for organizing communication 

are necessary and have to be broadcasted to the nodes. 

Reservation Systems 

In reservation systems, traffic flow is organized in cycles. Each cycle begins with a 

reservation interval. Within this interval nodes can reserve a timeslot in which data will be 

transmitted. If timeslot lengths are chosen to be variable then also the length of the data 

packet has to be announced. After the reservation interval, the data transmission of the first 

registered node starts. The nodes are ordered in a fixed sequence, and send their data one by 

one according to their reservation. 

With this scheme the medium can be used very efficiently in terms of data throughput. 

Only little overhead is needed to organize the communication, and nodes can quickly access 

the medium. However, in terms of energy efficiency this protocol is not very efficient as 

nodes are permanently powered up to be ready for receiving data or for requests of data. 

Polling Systems 

In contrast to reservation systems, the nodes take turns in accessing the shared medium in a 

polling system. After having finished, the active node passes the right to transmit over to the 

consecutive node in the queue. This passing is done by polling messages. Polling systems are 

often organized by a central controller which sends out the polling messages to the nodes. 

Nodes in turn signal the controller when their transmission has finished. 

Again, only little overhead is necessary for organization, resulting in an effective data 

transmission protocol. But the nodes only know the sequence of the polling, and not the time 

when they are allowed to send. They have to stay in an active receive mode until a polling 
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message directs a node to transmit data. In terms of energy efficiency, this is a major 

drawback. 

Summary 

Scheduling protocols allow quick access to a shared medium, and offer a high possible data 

throughput. However, the prize to be paid is permanently powering the devices. Sensor 

networks often have other requirements and needs in comparison to communication networks. 

Data throughput is not their major concern, because sensor nodes irregularly generate small 

amounts of data. A fixed schedule for communication is not needed. Here, random access 

protocols are more appropriate. 

1.3.1.2 Random Access 

The scheduling techniques described above use reservations or a fixed order to organize 

access to the shared medium in the network. The necessary messages for organizing traffic 

produce additional traffic within the network and lead to delays. Instead, nodes may access 

the shared medium whenever they have data to send. Due to its stochastic character this is 

called random access. 

Nodes can send their data into the medium without sensing the carrier beforehand. A 

successful transmission to the receiver is then indicated by an acknowledge (ACK) message. 

Missing of ACK indicates a collision caused by at least one other node that sent a data packet 

at the same time. In this case the data packet is sent again. To avoid another collision with the 

second re-sending node, nodes do not re-send immediately after collision detection. They wait 

a random time until re-transmission (back-off algorithm). This very simple protocol was 

introduced already in the late 1960s and is known as ALOHA [26]. ALOHA does not try to 

avoid collisions of data packets, and under light network load, collisions are unlikely. With 

increasing load, collision probability strongly increases and protocols which avoid collisions 

are more suitable. 

Collision probability can be reduced if the node senses the carrier before sending. If the 

carrier is found to be captured by another node, sending is shifted to a later time. Such 

techniques are called carrier sense multiple access (CSMA) protocols. Collisions cannot be 

fully avoided with this scheme. A node can sense the carrier as being idle, but an already 

sending node is not detected due to propagation delay of the signal. Collision detection and 

recovery also have to be included in these protocols. Before sending the whole data packet, 

the channel is captured with a defined sequence during a so-called contention period. If no 

collision is detected in the contention period, the actual data packet will be sent. Collisions 

will not affect long data packets, only the short contention messages might be lost due to 

collisions. This generates little overhead for these protocols, but it pays out especially under 

high load conditions where collisions are more likely. 

All MAC protocols discussed up to now aimed at highest possible data throughput and 

easy accessibility to the network. Both are typical needs of a communication network. In 

contrast, sensor nodes in a sensor network irregularly generate small amounts of data and 
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maximum throughput is therefore subordinate. Furthermore, energy consumption is not 

considered as a design parameter in standard communication protocols. However, energy is 

precious in optically powered networks and the whole network needs an energy-efficient 

design. The same holds true for wireless sensor networks (WSN). Here, the nodes are often 

supplied by a battery or an energy harvester. Both energy sources have limited capacities. So 

in this field, much research efforts are made to reduce power consumption of the nodes with 

appropriate protocols. Some of these approaches will be discussed in the following section.  

MAC Protocols in Wireless Sensor Networks (WSN) 

In WSN, random access protocols are widely used. They unite easy access to a shared 

medium and handling of little but bursty traffic. There is no need of energy-consuming 

upkeep of synchronism and schedules. This fits exactly to the demands of a WSN. Many 

different protocols have been developed and refined to meet these demands, and some of them 

will be briefly discussed in the present section. A focus will be set on protocols which mainly 

address energy-efficiency in terms of efficient use of the nodes’ transceivers and logic 

circuits. An overview over the actual developments and trends in WSN MAC protocols can be 

found in [28]. 

Energy saving is done best by switching the node into a sleep mode without loosing 

synchronism. To communicate, the nodes can reactivate themselves synchronously. More 

reduction of power consumption can be achieved if synchronism can be dropped. In this case, 

another mechanism is needed to enable communication between nodes which are sleeping 

most of their time. Nodes can re-connect if one node waits in the active state until the other 

nodes also switch into the active state. The waiting node has to signal its need to transmit data 

by sending a long preamble. The other nodes wake up at regular intervals such that they 

become active at least once during the preamble, and wait until the data are sent, see Fig. 

1.5 (a). This technique is called preamble sampling and was first introduced in 2002 [30], 

[31].  

Still, a long preamble just signaling the other nodes that a message will be sent soon shows 

some disadvantages. With small duty cycles, the preamble is getting very long, and more 

energy is spent in the sending node for sending the preamble then for the data. The receiving 

nodes also waste energy with receiving the preamble signal constantly without listening to 

additional information. Furthermore, if only one node is addressed as recipient for to 

upcoming data transmission, all other nodes stay also in active mode until the end of the 

preamble. To overcome these issues, different variations of the preamble sampling techniques 

have been developed. 

Improvements can be achieved by modifying the preamble: If the recipient node is 

addressed in the preamble all other nodes can switch back to sleep mode as there is no need 

for them to wait, see Fig. 1.5 (b), [32]. This avoids unnecessary and energy-costly receiving 

time for unaddressed nodes.  



10 Chapter 1: Sensor Devices and Networks 

 

 

Wait

t

Sending 

Node

Recipient 

Node

Other 

Node

Preamble Data

DataWait

Wait

Wait

Wait

t

Data

DataWait

Wait

Wait

(a) Preamble Sampling

(b) Preamble with Recipient Info

Wait

t

Data

Data

Wait

Wait

(c) Preamble with Recipient and Time Info

Wait

Sending 

Node

Recipient 

Node

Other 

Node

Sending 

Node

Recipient 

Node

Other 

Node

Preamble

Preamble

 
Fig. 1.5 Timing charts of different MAC protocols for WSNs (a) Preamble sampling: The sending node 

waits in active state until the other nodes also switch into active state to connect with them. The sending 

node signals its necessity to transmit data by sending a long preamble. The other nodes check for the 

preamble after having switched into active mode and wait until the data are sent. (b) Preamble sampling 

with recipient information: Like in (a), but additionally the recipient node is addressed in the preamble. 

Other nodes switch back to sleep mode as there is no need for them to wait. (c) Preamble sampling with 

recipient and receiving time information: Like in (b), but additionally the receiving time is also encoded 

to the preamble. The recipient node can bridge the time until data transmission in sleep mode. Drawing 

partially taken from [28]. 

The addressed node can save energy by additional encoding of the receiving time to the 

preamble. The recipient node can bridge the time until data transmission in energy-saving 

sleep mode, see Fig. 1.5 (c), [33]. This protocol is very energy-efficient for receiving nodes, 

but not for the sending node. If the sending node is interpreted as the base station of an 

optically powered network, we find a suitable communication protocol for this kind of 

network: the protocol is very energy-efficient for the nodes, power consumption is not critical 

in the base station, and the control of communication is found to be in the base station. 

However, this protocol is not suited for networks of heterogeneous nodes. The medium is 

often blocked by preambles and high data throughput is not possible. Furthermore, only single 

nodes can be addressed in the preamble and broadcasting of data is not included. In Chapter 3, 

we present our low-energy MAC (LE-MAC) protocol which unites the capabilities of high 

data throughputs enabled by scheduling with the advantages of preamble sampling 

techniques. 
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Summary 

When building a sensor network of optically powered sensors, following aspects have to be 

considered. The optical power needs to be converted efficiently into electrical power. Average 

power consumption for a sensor ranges from few microwatt to several hundred milliwatt. 

Appropriate components and designs are needed. 

The necessary theory will be discussed in the following Chapter 2. In Chapter 3, a newly 

developed protocol for heterogeneous sensor networks will be presented. 

 

 

 





 

 

2 Converting Light in Electrical Current 

In this chapter, the fundamentals of opto-electronic power conversion will be reviewed. The 

operation principle of an illuminated photodiode will be discussed in terms of theoretical 

limitations and their cause. The dependence on the external load resistor connected to the 

photodiode will be examined, as well as possibilities to increase the output voltage by using a 

series connection of photodiodes. 

The chapter is structured as follows. First, the theory of opto-electronic power conversion 

is discussed. Numerous textbooks focus on this topic, especially on the theory of sunlight 

conversion. A fundamental overview is given by Würfel [1]. More important for this work is 

the conversion of monochromatic light into electrical energy which is mainly discussed in 

scientific journals [2], [3], [64]. Here, opto-electronic power conversion in semiconductors 

will be discussed. A nice overview over the fundamentals of semiconductor theory may be 

found in the books of Sze [18], Ashcroft [19] and Kittel [20]. As a limiting quantity for 

conversion efficiency the saturation current of the absorbing p-n junction is identified and 

discussed. 

Second, series connections of illuminated photodiodes will be introduced. They offer a 

higher output voltage as a single photodiode. Avoidable and unavoidable drawbacks of this 

method are identified. 

Photon Absorption in a Photodiode 

A photodiode is a semiconductor device with a p-n junction optimized to absorb photons. The 

current voltage characteristic of a p-n homojunction with current density J  in the junction, 

saturation current density sJ , applied voltage U , ideality factor m  and thermal voltage 

/TU kT e  with Boltzmann’s constant k , elementary charge e  and the junction’s 

temperature T  is 

 exp 1
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and results from minority carrier diffusion in the junction. The saturation current in the ideal 

diode has contributions from both electrons 
,s nJ  and holes 

,s pJ  
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with diffusion constants 
,n pD  and diffusion lengths 

,n pL  for electron and holes, and acceptor 

concentration An  in the p-type semiconductor and donor concentration Dn  in the n-type 

semiconductor. The intrinsic carrier density is in  and strongly depends on the bandgap energy 

GW
 
of the semiconductor, 
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Hereby, CN  and VN  are the effective density of states for the conduction and the valence 

band, respectively. 

Between p-type and n-type semiconductor, an electric field is generated. If a photon with 

energy  GW
 

is absorbed in the space charge region, one electron is moved from the 

conduction band to the valence band. A free electron hole pair is generated. As electron and 

hole have opposite sign of charge, the internal electric field accelerates the two carriers in 

opposite directions, so that immediate recombination is avoided. The field transports the 

electron into the n-type and the hole into the p-type semiconductor. In an outer connection 

between the two semiconductor materials (the attached load), a current can be measured. 

Light coming with optical input power 
optP  at an optical frequency f  is assumed to be 

fully absorbed in the junction with light-sensitive area F . Each photon generates one electron 

hole pair causing one elementary charge e  to flow through the outer connection. With these 

assumptions the optical input power and the generated photo current lI  are proportional, 

 
opt

Rate of photons Rate of charges ,
   

     
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l
P I

hf e
 (2.1.4) 

where h  is Planck’s constant. The proportionality constant is called sensitivity S . In reality, 

only a part of the impinging photons generate electron hole pairs. The ratio is called quantum 

efficiency   and is assigned to the sensitivity 

 
opt
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S

P hf
 (2.1.5) 

The generated photo current in the diode modifies the current voltage characteristics as 

additional current source in parallel to the diode. The equivalent circuit of an illuminated 

photodiode is shown in Fig. 2.1.  
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Fig. 2.1 Equivalent circuit of an illuminated photodiode. The generated photo current Il is modeled as an 

ideal current source. The photon absorbing p-n junction acts as diode. Leakage current may flow in 

parallel to the diode, Rp. The series resistance Rs is due to bulk resistance. Parasitic capacities are lumped 

in the capacitor Cp. Ua is the output voltage of the photodiode seen by the attached load resistance Rload. 

Leakage current may flow in parallel to the diode, indicated by a resistance 
pR  in parallel 

to the current source. The series resistance sR  is due to bulk resistance. Finally, parasitic and 

stray capacitors are lumped in the capacitance 
pC . In the application field of this thesis the 

last three mentioned components of the equivalent circuit can be neglected for the following 

reasons: Leakage currents through 
pR  are normally neglected and the internal series 

resistance sR  is in the order of 1  or even lower [22] and affects conversion efficiency only 
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for high illumination intensities. As the photodiodes mainly are used as power converters and 

operated with direct current, capacitor 
pC  can be neglected, too. 

 

Ua

Ia

Uoc

Isc

Il

Il

Il

Il

 
Fig. 2.2 Current voltage characteristic of a photodiode for different illumination powers. For one curve 

(Il = 100 µA) short circuit current Isc and open circuit voltage Uoc are marked with red circles. Taken from 

[81]. 

The output voltage aU  of the photodiode strongly depends on the load loadR  attached to the 

photodiode. In Fig. 2.2, the output current aI  is shown in dependence of the output voltage. 

For 0 V all current generated by photon absorption flows as a short circuit current scI  which 

equals the photo current 

 
sc opt . lI I SP  (2.1.6) 

If the attached loadR  is infinitely large, the photo current being a drift current must be 

compensated by an increased diffusion current. Therefore, the output voltage increases to the 

open-circuit voltage ocU , which grows logarithmically with the incident power, 

 
opt

oc ln 1 ,T

s

SP
U mU

I

 
  

 
 (2.1.7) 

where s sI FJ  is the saturation current of the photodiode. 

In Fig. 2.2, the linear (at const.aU ) and logarithmic (at 0aI ) dependence of the short 

circuit current and the open circuit voltage is illustrated. Operated at positive voltage and 

positive current, the output power a a aP U I  of the photodiode is positive and the photodiode 

generates electrical power. In this quadrant, operation of the photodiode is called photovoltaic 

(PV). Applying a negative voltage to the photodiode results in a negative power aP , and the 

photodiode consumes energy. This operation is called photoconductive and is normally used 

for detecting optical signals. Here, we focus on the photovoltaic mode of the photodiode. 

An exemplary current voltage characteristic is shown in Fig. 2.3 (a). In Fig. 2.3 (b) the 

corresponding output power is shown. For short and open circuit conditions, the output of the 

photodiode is zero. In between, the output power shows a maximum, the so-called maximum 
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power point. To extract the maximum power from the photodiode, the attached impedance has 

to be matched. At the maximum, the differential of the output power equals zero, 

  
!

, ,d d d d 0.     a a a a a m a m aP U I U I U I  (2.1.8) 

The matching condition (2.1.8) leads to 
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a m a Dm m

U U
R

I I G
 (2.1.9) 

The load resistance 
load,mR  where maximum power is taken from the photodiode equals then 

the differential resistance (= inverse of small signal conductance DG ) of the diode in the 

simplified equivalent circuit. This condition is comparable to impedance matching of a real 

current source where maximum power is taken when internal and attached resistance are 

equal. This is discussed in more detail in Appendix A.2.  

Graphically, the load matching condition Eq. (2.1.9) lies on the curve where the tangent of 

the current voltage curve (= small signal conductance DG ) and a ohmic resistance curve 

load,mR  (lines through origin) are perpendicular.  

2x Normal height, Size: h=70mm w=130mm

  

(a) (b)

 
Fig. 2.3 Output characteristics of an illuminated photodiode (a) Normalized current and (b) normalized 

power density as function of normalized output voltage Ua. The diode is illuminated with an intensity of 

10
5
 W/cm

2
.  

Efficiency /O E  of the opto-electronic power conversion is defined as 

 /

opt

.  a
O E

P

P
 (2.1.10) 

Aside from load matching, conversion efficiency can be improved by proper design of the 

photodiode. Efficiency is limited to 
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 (2.1.11) 

Sensitivity S  can be increased with a better quantum efficiency. However, improvement here 

is limited, as the quantum efficiency can not exceed 1. 
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Another possibility is decreasing the saturation current. Here, also a fundamental limit is 

given. This is discussed in more detail in Appendix A.1. Unavoidalble recombination as cause 

of the saturation current can be reduced with increasing bandgap energy GW . 

For monochromatic illumination of a photodiode, we want to give a theoretical upper limit 

of the conversion efficiency. Three assumptions are to be made. First, the saturation current is 

given by its theoretical lower bound defined by radiative recombination, see Eq. (A.18) in 

Appendix A.1, 

 2

,rad 2 3

2
exp .

  
  

 

G
s G

W
I e F kTW

c h kT
 (2.1.12) 

Second, quantum efficiency equals one, meaning absorption of all photons, 

 1.   (2.1.13) 

Third, the wavelength is chosen such, that the photon energy equals the bandgap energy to 

maximize sensitity, 

 . 
G

e e
S

hf W
 (2.1.14) 

For these theoretical assumptions, the calculated efficiency over bandgap energy GW  and 

output voltage aU  is shown in Fig. 2.4. Efficiencies of up to 90% result. Devices optimized 

for illumination with laser light at a wavelength of 810 nm show measured efficiencies of 

more than 50% [3], [23]. Conversion efficiency is reduced by reflection, ohmic losses and 

non-radiative recombination. 

 
Fig. 2.4 Theoretical efficiency of an optimum photodiode in dependence of bandgap energy Wg and 

output voltage Ua of a photodiode for an intensity of 10
5
 W/cm

2
.  

With increasing bandgap energy, also the maximum output voltage increases. An 

intermediate region is the near infrared region (0.78 – 3 µm according to ISO 20473, [24] ) 

where lasers and photodiodes are available in a broad range of power and bandgap and where 
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glass fibers show excellent performance in terms of attenuation. The corresponding bandgap 

energies in the near infrared are 1.60 – 0.42 eV. The maximum achievable voltage of 1.6 V is 

too small to run most of today’s electronic devices, thus a voltage booster is necessary. One 

possibility is an electrical series connection of several illuminated photodiodes. 

In Series Connected Photodiodes 

Before the light is converted into electrical power it can be split, and the conversion can be 

done by several single photodiodes. If the photodiodes are connected electrically in series, 

their output voltages sum up, see Fig. 2.5. This approach was investigated with multi-segment 

photodiodes in 1979 by Borden [25]. 

2x Normal height, Size: h=70mm w=130mm

Popt /N

Popt /N

1 : N

Popt

Ia,N

Ua,N

 
Fig. 2.5 The incoming optical power Popt is equally distributed by means of a 1:N splitter to N 

photodiodes where the optical power is converted to electrical power. The photodiodes are connected in 

series to achieve a higher output voltage in comparison to a single photodiode illuminated with the full 

power. 

We assume that the photodiodes are identical. As the incoming optical power 
optP  is equally 

distributed among N  photodiodes, the short circuit current 
sc,NI  of the array is smaller by a 

factor of N  in comparison to the short circuit current 
sc,1I  of a single photodiode which is 

illuminated with the full power, 

 
opt sc,1 opt

sc, opt

( )
( ) . N

P I P
I P S

N N
 (2.1.15) 

The open circuit voltages 
oc,1U  of the single photodiodes add up and define the output voltage 

oc,NU  of the photodiode array. The array has an open-circuit voltage of 
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In the case of 
opt sSP I N , the term 1 in the natural logarithm can be neglected, and the 

open-circuit voltage of the array can be expressed using the open-circuit voltage of a single 

photodiode: 

 
oc, opt oc,1 opt( ) ( ) ln N TU P NU P mU N N  (2.1.17) 
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The negative second term results from the fact that the open circuit voltage of one photodiode 

within the array is smaller than the open circuit voltage of a single photodiode receiving the 

same optical power as the whole array. Thus, 
oc,NU  is smaller than 

oc,1NU . The maximum 

available electrical output power of the array is therefore smaller than the one of a single 

photodiode, 

 
oc, sc, oc,1 sc,1 sc, ln . N N T NU I U I mU I N  (2.1.18) 

In Fig. 2.6 the calculated current (a) and power (b) as function of the normalized output 

voltage for a single photodiode and arrays of 2, 4, and 8 photodiodes are shown. When 

increasing the number of photodiodes, the output current of the array decreases linearly. The 

output voltage increases, but less than linearly. This affects also the available output power: an 

array of photodiodes delivers less power than a single photodiode for same total optical input 

power. This reduction of efficiency is unavoidable when using an array. 

 

(a) (b)

 
Fig. 2.6 Output characteristics of arrays of 1 (black), 2 (red), 4 (green) and 8 (blue) photodiodes 

(a) Normalized current and (b) normalized power as function of the normalized output voltage U. With 

increasing number of photodiodes the output current decreases and the voltage increases. The maximum 

electrical output power also decreases. 

Furthermore, efficiency may decrease due to uneven illumination or uneven sensitivities of 

the photodiodes. In the series connection shown in Fig. 2.5, the generated photo current flows 

through all photodiodes. If for any reason, one of the photodiodes generates less current than 

the other photodiodes, the current through the whole series connection decreases to the 

smallest current in the series. This has to be considered when designing an array of 

photodiodes for power conversion with high output voltage. 

 

 





 

 

3 Low-Energy Media Access Control (LE-MAC) 

Protocol 

The results of this chapter were published in [J4]: 

Optically powered fiber networks 

M. Röger, G. Böttger, M. Dreschmann, C. Klamouris, M. Huebner, A. W. Bett, 

J. Becker, W. Freude, and J. Leuthold 

in Focus Issue on Optics for Energy [invited], Optics Express, vol. 16, is. 26, 

pp. 21821–21834, Dec. 2008. Reprinted, with permission, from [J4] © 2008 

IEEE 

In this chapter, we discuss an optically powered fiber network that connects and provides 

power to a multitude of subscribers, which are attached to a central office (CO) in a combined 

star and tree-like topology. Here, subscriber means the sensor node and CO the base station of 

a network. The focus of this chapter is on energy optimized subscriber hardware in 

combination with a new and flexible low-energy medium-access control (LE-MAC) protocol, 

which enables efficient use of the optically provided energy that is transmitted to each 

subscriber. Both, energy-hungry subscribers with high network priority (as is the need for 

video conferencing) and energy-preserving subscribers having a low network priority and a 

very small duty cycle (e. g., temperature or humidity sensors), can be handled by the CO 

simultaneously.  

For an illustration, we refer first to a network of, e. g., temperature sensors. Temperature 

sensors need little power and typically are sampled only once in a while. Our LE-MAC proto-

col allows the sensors to accumulate and store energy within their idle time, then to perform a 

measurement for a short time, and to send the acquired information back. Multiple sensor 

modules are connected to one fiber. To avoid collisions of the sending sensors and to poll the 

multiple sensors on demand, the LE-MAC protocol organizes their idle and communication 

time slots.  

Scenario of an Optically Powered Heterogeneous Network 

For definiteness, we discuss exemplarily an optically powered subscriber network with 

representatives of the most important device types, see Fig. 3.1. Photonic power is distributed 

to a multitude of subscribers 
nS  ( 1,2,n N ) with different power supply and bandwidth 

requirements. 

The network consists of a line-powered intelligent central office CO (base station) with 

optical data transmitters (Tx) and data receivers (Rx) that are spatially or wavelength 

(de)multiplexed to (from) a single fiber. The CO transmitters supply data at a mean power 

level such that sufficient energy is transferred to the remotely connected devices. The sub-

scribers feature an energy head comprising data transmitters and data receivers as well as a 
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photonic-power receiver (Rp), all of which are spatially (de-)multiplexed to (from) the trans-

mitting optical fiber. 
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Fig. 3.1 Photonic network with optically powered subscribers. Optical transmitters (Tx) in the line-

powered central office (CO, base station) transmit a downstream data signal with an appropriate average 

power for remotely supplying data and optical energy to subscribers. Optical receivers (Rx) in the CO 

sense the upstream data. Remote subscribers (S1…S6) comprise – besides the data acquisition and 

communication units – a section with optical data receiver Rx, photonic-power receiver Rp (photo-

generator supplying electrical energy) and optical data transmitter Tx. A single Tx/Rx section in the CO 

can supply electrical energy to a multitude of subscriber sub-units. In the case of a video surveillance 

system (S1), sub-units would house various cameras at different locations or looking into different 

directions. Subscribers with high electrical power demand like S1 can be point-to-point connected to 

dedicated Tx/Rx units of the CO. Subscribers with lower energy demand are connected to the CO in a 

tree-like fashion and share one Tx/Rx of the CO. Such subscribers are for example voice over IP clients 

(S2), still picture cameras (S3), motion sensors (S4), smoke detectors (S5), temperature and humidity 

sensors (S6). 

In this context, the designation “central office” comprises more or less complex base 

stations (e. g., “optical line terminations” (OLT)) that provide optical power along with data 

services, and “subscriber” stands for any remote device like sensors or general-purpose 

transceivers (e. g., “optical network units” (ONU), “optical network terminations” (ONT)), 

which are able to communicate with CO via the optical network. 

Typical subscribers are compared in Table 3.1 with respect to their mean power 

consumption and their operating duty cycle. Here, duty cycle means the ratio of energy-costly 

active time periods, where measurement and communication tasks are performed, and idle 

time intervals spent in an energy saving (snooze) or even minimum-power (sleep) mode. 

 
Table 3.1 Typical mean power consumption and duty cycle of different subscribers. 

 

Mean power consumption 

low(few µW) medium (few mW) high (few 100 mW) 

D
u
ty

 

cy
cl

e low (10
-5

) Temperature Motion  

medium (10
-2

) Smoke Still picture  

high (10
0
)  Speech Video 
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In the scenario of Fig. 3.1, low and medium power subscribers like speech communication 

(S2) using the voice-over-internet protocol (VoIP), still picture cameras (S3), motion detectors 

(S4), smoke detectors (S5), temperature and humidity sensors (S6) share a common fiber 

using remotely located active or passive power splitters. If need arises, subscribers with large 

mean power consumption like video conferencing or special surveillance systems (S1) can be 

supplied by the CO individually. The CO integrates all the heterogeneous subscribers in one 

network structure, and in addition provides an interface to the world-wide communication 

network (WWW). 

The subscribers’ heterogeneity and the specific network architecture – a combined star and 

tree-like topology – have important consequences for the communication between sub-

scribers and CO: Subscriber signals can only be received by CO, and signals originating from 

CO must be broadcast to all subscribers. Therefore, a standard carrier sense protocol (for ex-

ample, an energy-efficient version [34] of a carrier sense multiple access (CSMA) protocol) is 

not able to organize the communication. This is also true for the sensor-MAC (S-MAC) 

protocol [29] or for the low-duty cycle scheduled channel polling MAC (SCP-MAC) [35], 

both of which were designed for battery-operated wireless nodes. As a consequence, the CO’s 

control unit alone has to organize the communication and all subscribers’ needs regarding 

priority, bandwidth, and expected inactive times. In the following we describe a MAC 

protocol extension that meets the requirements of heterogeneous subscribers as envisaged in 

Fig. 3.1 and Table 3.1. With respect to low duty cycle subscribers, our protocol compares 

favorably with SCP-MAC insofar, as SCP-MAC has, for a given configuration, a minimum 

duty cycle for effectively reducing the power consumption (
33 10  was demonstrated [35]), 

while our MAC protocol has not. We show experimentally that duty cycles as low as 
510
 are 

feasible, and that the lower limit for energy savings by lowering the duty cycle is given only 

by the devices’ minimum energy consumption in sleep mode (for a duty cycle approaching 

zero). 

Low-Energy Medium Access Control (LE-MAC) Protocol 

In this section we present a low-energy medium access control (LE-MAC) protocol that 

serves the needs for optically powered heterogeneous subscribers in a simple and effective 

manner. To operate all subscribers with the least possible power consumption we extend 

specifications of common medium access control (MAC) protocols with the following 

features: 

- Communication of subscribers only with CO 

- Random and scheduled medium access of subscribers 

- Quality of service with flexible assignment of priority and bandwidth 

- Polling subscribers by CO broadcast, multicast and unicast replaces carrier sense  

- Subscribers with high and low mean energy demand in one network 

- Support of energy saving snooze mode: Subscribers maintain synchronism with CO. 

- Support of minimum-energy sleep mode: Subscribers lose synchronism with CO.  

The sleep mode requires the following built-in features: 

o All communication circuitry switched off 



24 Chapter 3: Low-Energy Media Access Control (LE-MAC) Protocol 

 

 

o Autonomous wake-up needed, no external control possible 

o Quick restoration of synchronism by listening to CO’s polling at wake-up 

o Reception of CO-scheduled rendezvous time 

o Returning to snooze mode until wake-up at precise rendezvous time 

o No energy-costly data transmission to CO before rendezvous time 

o Communication with CO at rendezvous time 

o Returning to sleep mode until next autonomous wake-up 

 

The LE-MAC protocol’s timing chart schematic is given in Fig. 3.2. The CO organizes the 

communication with subscribers by broadcasting the polling signals  or , details of which 

are shown in the top row of Fig. 3.2.  

The CO’s communication protocol consists of alternating polling and Com sequences. A 

polling sequence comprises Fin, a Lstn and an Addr sequence, see . Optionally the polling 

signal might comprise a RV sequence, see . Details of the polling sequences are explained 

when discussing sequence .  

In our example, the Fin sequence stops communication between any of the subscribers and 

CO. Then, subscribers S1 and S2 require CO’s attention and send – after a random waiting 

time to minimize collisions – a request Rq to CO (broken arrows upwards). The CO then 

listens for a fixed time interval (Lstn) and acknowledges reception. At the end of the Lstn 

period the CO schedules the subscribers that have requested bandwidth. During the 

addressing interval (Addr, broken arrows downwards) the CO broadcasts addresses and 

timestamps for future unicast communication. Subsequently, the scheduled subscribers may 

communicate with the CO during the assigned communication time slot (Com, solid double 

arrow). Deferred subscribers learn by the broadcast when the next Fin or Lstn interval is to be 

expected, and can spend this idle time in an energy saving snooze mode before repeating their 

communication request Rq or listening to the next Addr information. 

So far all subscribers maintain time synchronism with the CO, even in snooze mode. For 

lowest-power subscribers a precise quartz clock could be too energy-costly, so that 

subscribers with small duty cycle (S3 and S4 in Fig. 3.2) may reside in a minimum-energy 

sleep mode. Yet, while sleeping, only an inaccurate but ultra-low power clock is running for 

waking up the device, and so time synchronism with CO is lost. These devices cannot be 

scheduled accurately over a longer period. 

A possible – but inefficient – communication with these subscribers could be as follows: A 

sleeping subscriber wakes up and either requests communication with the CO during the Lstn 

sequence, or checks the Addr sequence for scheduled communication. Since the wake-up time 

of the sleep mode subscriber is not accurate, the Addr request has to be repeated many times, 

and because sending data to the CO is energy-costly, this procedure increases the average 

power requirement of the subscriber. In addition, a considerable amount of bandwidth is 

wasted – particularly if there are many subscribers with sleep mode features. 
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Fig. 3.2 Timing chart schematic for low-energy medium access control (LE-MAC) protocol; for details, 

see main text. Due to the treelike network architecture, the central office (CO) broadcasts its messages to 

each subscriber, which can communicate only with CO, but not peer-to-peer. – Subscribers with high 

bandwidth demand (S1, S2) along with low duty cycle subscribers (S3, S4) are handled by CO via 

broadcast polling (control) signals  or , top row. Broken arrows stand for unidirectional, solid double-

arrows for bidirectional communication (Com) of subscriber and CO. Access requests (Rq) of subscribers 

are queued by CO during the polling signal’s listen interval Lstn in . Then CO decides which subscriber 

will be scheduled next and for what time interval. This is sent during the addressing interval Addr, after 

which communication can start (Com). – Low duty cycle subscribers spend most of the time in a 

minimum-energy Sleep mode that is interrupted by nearly periodically appearing wake-up intervals 

Wkup, which are initiated autonomously by the subscribers. Communication with CO is managed by 

broadcasting special polling (control) signals , top row right. During Wkup a rendezvous time stamp 

RV is sensed, a precise clock is set, and the subscribers return to a power-saving Snooze mode. At 

rendezvous time the subscribers awake, listen to be addressed, communicate with CO, and go again to 

Sleep mode. 

Therefore, a more efficient protocol is needed. In order to save both energy and 

communication bandwidth, we introduce an additional rendezvous sequence (RV), the 

purpose of which is to efficiently inform sleep mode subscribers if and when a 

communication “rendezvous” will be arranged in not too far a future. The RV sequence 

typically would be a multicast call to a whole group of subscribers. Yet, it could be unicast as 

well as being a broadcast call. The protocol then would work as follows:  

When waking up (WkUp in Fig. 3.2), subscribers S3 and S4 activate their basic receiver 

circuitry and listen for the CO’s polling. If the rendezvous signal RV is not received during 

WkUp (polling signal  in Fig. 3.2 as opposed to polling signal ), the subscribers go back 

to sleep, as is the case for S3 and S4 during their first WkUp period in Fig. 3.2. However, if 

after the Fin sequence a device receives the rendezvous signal RV (polling signal  Fig. 3.2), 
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it extracts the time stamp for the next rendezvous with CO, sets a high precision clock to the 

rendezvous time, and then goes to an energy-saving snooze mode. 

Snoozing subscribers (S3 and S4) maintain a precise quartz clock, awake exactly at 

rendezvous time and wait for being addressed by the CO. On reception of their individual 

address (broken arrows downwards), the first chosen subscriber S3 communicates with CO 

and exchanges data (solid double arrow). Having finished, S3 listens again to CO. On 

reception of a valid address other than its own (or being triggered by an internal time-out 

signal), S3 goes back to sleep mode. At this time (broken arrow downwards), S4 senses its 

own address, starts communicating with CO (solid double arrow), and ends the same way as 

formerly S3. This can be repeated for as many subscribers as needed. If a subscriber is not 

addressed or if the addressing signal is corrupted, an internal time-out mechanism sends the 

device back to sleep mode. 

Beginning with the rendezvous time, communication requests Rq from higher-priority 

subscribers are deferred until the CO decides to end the interrogation of low duty cycle 

subscribers. It is also possible that – on command of CO – low duty cycle subscribers change 

their mode of operation and become attentive of polling signals  in a manner described for 

the operation of S1 and S2, or that high priority devices fall back to low duty cycles and react 

to the rendezvous information RV in polling signals . 

The allocation of bandwidth effected with polling signals  and  is very flexible. 

Subscribers with high priority (e. g., subscriber S1 in Fig. 3.2) can be preferred to subscribers 

with low priority (e. g., subscriber S2). Communication with low duty cycle devices 

(subscribers S3 and S4) can be also arranged at the discretion of CO. Thus a low-latency 

priority-driven quality of service feature is integral part of the LE-MAC protocol. 

The most challenging part of the LE-MAC protocol is communication with low duty cycle 

subscribers that spend most of their time in sleep mode. During this time, the devices cannot 

be addressed by CO and lose time synchronism as described earlier. To validate the design of 

this part of our protocol we set up a network of four ultralow duty cycle subscribers S3  S6 

and a CO. For avoiding unnecessary complications we connected CO and subscribers by a 

wired network, the topology of which is shown in Fig. 3.3. 

CO splitter

S3
S4

S5
S6  

Fig. 3.3 Network of ultralow duty cycle subscribers S3  S6 connected to a central office CO 

The experimental CO and the subscribers were realized each with a mixed signal 

microcontroller µC from the Texas Instruments MSP430-family and powered with a supply 

voltage b 3.6VV   [36]. These µC are designed for sensor systems that capture analogue 

signals, convert them to digital values, and then process the data for transmission to a host 

system. One microcontroller serves as CO, is therefore always kept active and maintains an 
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accurate clock. The other µCs act as subscribers. The devices communicate by exchanging 

serial data via their inbuilt universal asynchronous receiver / transmitter (UART) units [37].  

Four subscriber operating modes were experimentally tried, and the total supply currents Ib 

are listed in Table 3.2. In sleep mode the µC maintains an internal low-quality (low-Q) very 

low power clock (
Sleep 0.5µAI  ), while in snooze mode an external high-quality (high-Q) 

32 768 Hz quartz crystal clock ( Snooze 1µAI  ) is active. In active mode the µC operates with a 

digitally-controlled oscillator (DCO) frequency of 8 MHz (
µC 3.5mAI  ). The internal DCO 

provides a fast turn-on clock source and stabilizes in 1 μs, however, the external quartz clock 

needs about 60 ms settling time. 
SleepI  

 

Table 3.2 Subscriber operating modes and total DC supply currents Ib for a supply voltage Vb = 3.6 V 

Subscriber modes Attributes µC current Supply current Total bI  

Sleep µC low-

power 

modes 

Low-Q clock 0.5 µA  
SleepI  0.5 µA 

Snooze High-Q clock 1 µA  SnoozeI  1 µA 

Receive µC active 

mode 

Receiver on 
3.5 mA 

 RxI  6 mA 

Transceive Transceiver on  RxTxI  11 mA 

 

In addition, the receiving mode and/or transmitting mode require external (optical) receiver 

(Rx in Fig. 3.1) and/or (optical) transmitter circuitry (Tx in Fig. 3.1) to be switched on, and 

this increases the supply current  depending on the actual Rx and Tx design  to practical 

values of Rx 6mAI   (receiving) and RxTx 11mAI   (transceiving), respectively. The 

transceiving mode comprises both an activated receiver and transmitter.  

In Fig. 3.4 we show a measured timing diagram for our experimental network Fig. 3.3 

which consists of a CO and four ultralow duty cycle subscribers S3  S6. The upper curve 

labeled CO shows the transmitter signal of the central office. For our experiments, the control 

signal  of Fig. 3.2 has been simplified and reduced to its rendezvous (RV) part, which has 

the duration TRV. Inside a period that must be smaller than the subscribers’ smallest sleeping 

time 
SleepT , the CO broadcasts to the subscribers R rendezvous signals repeated at intervals 

R Sleep /T T R . The RV signal (details see left inset of Fig. 3.4) comprises a time stamp which 

tells each listening subscriber the waiting time TSnooze that can be spent snoozing until the next 

rendezvous with CO. 
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Fig. 3.4 Measured timing chart for low-energy medium access control (LE-MAC) protocol. Four 

randomly self-activating subscribers (S3…6) synchronize and communicate with the central office CO. 

Trace CO displays the data transmitter voltage of the CO. High S36 levels indicate energy-costly 

receive or transceive (RxTx) modes, low levels mark low-power Sleep or Snooze modes. Within a time 

interval TSleep the CO polls the subscribers with rendezvous signals RV (width TRV) that repeat with a 

period TR = TSleep / R where R is a fixed number. These RV signals transmit information about the next 

rendezvous time with CO. If a sleeping subscriber becomes awake during a rendezvous signal is 

broadcast by CO, the subscriber senses the rendezvous time, starts a precise clock and goes snoozing. At 

rendezvous time all subscribers awake, wait for being addressed and exchange data with CO. An ending 

signal issued by CO sends the subscribers back sleeping. 

Each subscriber stays sleeping as long as possible for the envisaged application, and its 

CPU remains disabled for about the sleeping time TSleep. Then an internal low-Q clock 

interrupt awakes the CPU, which, having activated the external high-Q quartz clock, waits for 

60 ms until the clock has stabilized. Next the receive mode is activated for a time 
Wkup RT T , 

and the subscriber stays listening whether CO broadcasts a rendezvous signal RV, see Fig. 3.4 

trace S3. On reception of RV, the subscriber switches to an energy-saving snooze mode, 

watches its high-Q clock and activates itself precisely at the scheduled rendezvous time. If no 

valid RV signal could be decoded, the subscriber goes back sleeping. 

At rendezvous time all subscribers switch to receive mode and stay listening for their 

address to be broadcast by CO (signal details see right inset of Fig. 3.4). When for instance 

subscriber S4 recognizes its address (transition from the dark (blue) to the light (yellow) 

region in Fig. 3.4), it activates its transmitter, sends to CO whatever information was required, 

and deactivates its transmitter again (transition from the light (yellow) to the dark (blue) 

region in Fig. 3.4). If CO fails to receive the subscriber’s data, CO repeats addressing S4 a 

fixed number of times until either reception succeeds, or until the subscriber’s time-out 

mechanism sends S4 back sleeping. When CO received the subscriber’s data (or gave up 

interrogating S4), CO broadcasts the next subscriber’s address (S5 in our case), and the 

previously addressed subscriber S4 returns to sleep mode as soon as it recognizes a valid 
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address not being its own. The data exchange process repeats as described for the time 

interval 
RxTxT  that depends on the discretion of CO. Having interrogated all desired 

subscribers, CO broadcasts an End command (not marked in Fig. 3.4) thus sending the 

remaining listening subscribers to sleep mode. 

For an estimate of the subscriber’s energy consumption we determine the average supply 

currents 
bI  in the various modes assuming the following parameters, see Fig. 3.4: CO polls 

the subscribers periodically in intervals Poll 30minT  . All subscribers wake up randomly 

inside a time interval with length 
Sleep 600sT  . When polling, the CO broadcasts 20000R   

rendezvous signals with a period of 
R Sleep / 30msT T R  . Consequently, the subscribers need 

staying in receive mode for an average wake-up time of 
Wkup av R / 2 15 msT T  . At 

rendezvous time, the longest data exchange lasts RxTx 5 msT  . With these assumptions, the 

various duty cycles for wake-up, data exchange and polling times are 

 
Wkup av Sleep5 6TxRx

Wkup RxTx Poll

Sleep Sleep Poll

2.5 10 , 8.3 10 , 0.33
T TT

T T T
            (3.1.1) 

With the data provided by Table 3.2, the average supply current Ib may then be estimated, 

 
Poll Sleep Wkup Rx

1 1
Poll Sleep Snooze Wkup Rx RxTx RxTx2 2

(1 )( 2 )

( ).

bI I I

I I I I

 

  

  

   
 (3.1.2) 

There is no local minimum for the average supply current Ib as opposed to [35], only a 

lower bound 
b low Sleep 0.5µAI I   if the duty cycles approach zero, 

Wkup RxTx Poll, , 0     for 

Wkup av TxRx Sleep Poll,T T T T  . For the realistic operating parameters chosen in Eq. (3.1.2), all 

subscriber modes as listed in Table 3.2 contribute about equally (some 
710 A

) to the total 

average supply current. It amounts to b 0.86µAI  , hardly more than its lower bound Ib low. 

With a supply voltage of b 3.6VV   the average electrical power per subscriber is 3 µW.  

Our low-energy medium access control protocol is designed specifically for optically 

powered devices. For demonstration purposes some of the above described functionalities 

have been chosen. The following Chapter 4 shows results of a network of optically powered 

senor nodes and a possible application scenario in a fiber communication network. Different 

sensors, from simple temperature measurements to ambitious video streaming, combined with 

actuators like servo drives are discussed in Chapter 5.  

 

 

 





 

 

4 Applications with Low Power and Low Bandwidth 

Demand 

The following section discusses results of optically powered sensor networks consisting of 

different low-power sensor nodes. A special application scenario like monitoring of an optical 

access network will be discussed in Section 4.1, as well as general issues in Section 4.2. 

These results have been published in [C4], [J1],[C1], [S2], [S6] – [S8]. 

4.1 Advanced Monitor Device in Access Networks 

The results of this section were partially published in [C4] and studied in a Bachelor Thesis 

and in a Project Report [S2], [S6]. 

The prevailing access network technology will be based on extended-reach passive optical 

networks (PON) combined with wavelength division multiplexing (WDM) techniques. Such 

networks connect cabinets, buildings or even homes to a central office (CO) and are denoted 

as fiber-to-the-x systems (FTTx with x = C, B, H for cabinet, building, home). They are 

expected to reduce cost in the optical access range, and to provide significantly increased data 

rates. For the operators and subscribers, network availability as well as network security will 

become increasingly important, and operators ask for solutions to monitor and protect their 

infrastructure on the physical layer [73] – [76]. 

ONTi

CO splitter 1:64
ONTi+1

DDi

DDi+1

28 dB

 
Fig. 4.1 Demarcation devices DDi () in an FTTx network for monitoring the operator-subscriber 

interface to ONTi. Figure reprinted from [C4] © 2010 OSA. 

At so-called demarcation points different optical network segments have to be separated to 

define the responsibilities of operator and subscriber. For a PON system operator, there is 

presently no means available to assure proper performance of a fiber link up to the customer 

premises unless an active optical network termination (ONT) is attached to the line. 

Therefore, we propose using a traffic-transparent energy-autarkic demarcation device (DD), 

which is located at the demarcation point (see Fig. 4.1) and can be interrogated by the CO 

[73], [77]. 

An energy-autarkic DD could draw its energy either from a long-life (20 years) battery, or 

from optically transmitted energy transmitted via one dedicated wavelength channel to a large 

number of DD [72]. In both cases the electrical power requirements need be minimum. 

Here, we describe a low-energy DD supplied with a 5 µW optical power channel or a long-life 

battery, and an appropriate protocol. The DD is transparent for data traffic, but responds to a 

low-bitrate control signal which the CO superimposes to the optical data stream. 
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The demarcation device connects the CO via the operator’s network with the subscribers’ 

premises, see Fig. 4.2. The CO sends pay-load data (3 dBm) to the subscriber (26 dBm) at a 

wavelength 
data . In addition, this signal carries a low-bitrate intensity modulation 

(modulation depth 10 %,  1 Mbit/s, UART protocol), by which the CO transmits control data 

to the DD. The perturbation caused by the control data is small enough to avoid frame loss at 

the ONT as was confirmed by true-traffic measurements. A 5 %-tap connects the data stream 

to a low-noise receiver (Rx, 37 dBm), which decodes the control data. A directly modulated 

laser transmitter (Tx, 3 dBm, 
DD ) sends information back to the CO via another 5 %-tap. 

All units are operated by a low-power microcontroller (µC). 

 

µC
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Supply
Rx Tx
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Premises

From

CO
x x data

data

data

[pow]

[pow] DD

x
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Fig. 4.2 Block diagram of the DD. The DD is placed before the customer’s premises and taps out 5 % of 

the data signal to receive (Rx) control signals from the CO and send (Tx) status information back. A 

microcontroller (µC) is responsible for power management and data communication. Power can be 

delivered by an optical supply channel on a dedicated wavelength pow  which will be fully coupled out by 

a WDM coupler or by a long-life battery. Figure reprinted from [C4] © 2010 OSA. 

Receiver Circuit 

Being addressable is necessary for the DD to exchange data with the CO. Therefore a receiver 

circuit was designed to detect the control signal. This signal is encoded as small amplitude 

perturbation on the downstream signal going from the CO to the customer. A modulation 

depth of 5 – 10 % does not yet cause additional frame loss in the downstream signal [78]. The 

resulting total input power for the receiver ranges between 80 nW and 2.5 µW and signal 

photo currents will be between 4 and 125 nA assuming the sensitivity of the photodiode to be 

1 mA/mW. The photo currents have to be converted and amplified to voltage signals and fed 

to the microcontroller. The microcontroller needs voltage signals with several 100 mV voltage 

swing to extract the binary encoded data. The bandwidth of the receiver needs to be at least 

1 MHz and the current consumption should not exceed 10 mA to meet hard efficiency 

constraints. 
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Fig. 4.3 Receiver circuit consisting of transimpedance amplifier (TIA), inverting voltage amplifiers (VV), 

and Schmitt trigger circuit. Decision thresholds of the Schmitt trigger can be chosen with two 

potentiometers. 

A circuit fulfilling all above mentioned needs is shown in Fig. 4.3. It consists of a 

transimpedance amplifier (TIA), to inverting voltage amplifiers (VV) and a Schmitt trigger 

circuit. The voltage divider in front of the TIA shifts the operation point of the TIA to 1 V. 

This is necessary as only an asymmetric power supply for the operational amplifiers is 

available. Additionally, the voltage divider increases the transimpedance to a total of 498 kΩ . 

The VV show together an amplification of 100. The Schmitt trigger adapts the incoming 

signal to the voltage levels of the microcontroller and guarantees sharp edges.  

 
Fig. 4.4 Transfer function of the TIA, measured and simulated with different capacitances in the feedback 

of the TIA. Measurement (solid lines) and simulations (symbols) show good agreement within tolerances.  

The capacitor in the feedback loop of the TIA in Fig. 4.3 is necessary for stable operation 

of this amplifier stage. However, this capacitor limits the bandwidth of the amplifier and has 

therefore to be chosen as small as possible. Simulations performed with Cadence® Pspice® 
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[79] and measurements for different capacitances are shown in Fig. 4.4 and show good 

agreement within tolerances and the very small values of the used capacitors.  

Measurement results for the whole circuit are shown in Fig. 4.5. The transfer function of 

the receiver circuit is depicted in (a). The photodiode was illuminated with 80 nW (-41 dBm) 

optical power with a sinusoidal modulated with a depth of 10 % to the downstream signal at 

1.24 Gbit/s and a pseudo random bit sequence (PRBS) of length of 72 1 . Upper cutoff 

frequency is determined to 1.7 MHz. This cutoff results from the deployed low-power 

operational amplifiers and the chosen amplification. The lower cutoff frequency of 25 kHz is 

due to the AC coupling of the different amplification stages. The chosen capacitance of the 

coupling capacitors is a compromise between short switch-on delay and small lower cutoff 

frequency. The noise floor is depicted in grey. Main contributor to the noise is the TIA as first 

amplifier in a cascade of amplifiers [80]. Fig. 4.5 (b) shows the output signal of the VV in the 

case that the sinusoidal is replaced by a square-wave signal with a frequency of 500 kHz. This 

corresponds to a 1010… bit sequence at the target bit rate of 1 Mbit/s. 
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Fig. 4.5 Measurements on the performance of the receiver circuit at 80 nW total input power (a) Transfer 

function (red, solid) and noise level (grey, dashed). The inset shows the output voltage of VV at an optical 

input power of 5 nW. The input signal was a square-wave signal with 500 kHz with 10 % modulation 

depth. (b) Same as inset but with total optical power of 80 nW. 

The receiver performance also depends on the downstream signal from CO to customers. 

The receiver works error-free within the specified dynamic range if the downstream is chosen 

to 1.24 Gbit/s with a PRBS of length 72 1 . In Fig. 4.6 the effect of a longer, 312 1 , PRBS 

can be seen. The noise amplitude has increased significantly. Fig. 4.6 (a) shows the voltage 

signal at an optical power of 8 nW to the photodiode, again 10 % modulation depth with a 

500 kHz square-wave signal. Sensitivity limit is reached as the signal to noise ratio (SNR) 

equals 1. Fig. 4.6 (b) is taken at an optical input power of 80 nW with the same modulation. A 

SNR of 10.7 results, corresponding to a bit error probability of 
45 10  assuming Gaussian 

distributed noise [81]. The control signal data consisting of only few bytes thus can be 

transmitted with a very small error probability.  
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Fig. 4.6 PRBS of length 312 1  in the downstream signal. The downstream signal was modulated with a 

500 kHz square-wave signal and 10 % modulation depth. (a) At an optical input power of 8 nW, the 

sensitivity limit is reached. (b) With 80 nW optical input power SNR exceeds 10. 

The influence of the PRBS length in the downstream signal on the control signal has been 

investigated further. The downstream signal lies in the GHz region but also contains power in 

the MHz region. The length of the PRBS affects the power distribution within the signal 

spectrum and hence effects the receiver performance. The results are shown in Fig. 4.7, where 

the effective value of the noise in dependence of the PRBS length is depicted in (a). With 

increasing PRBS length the downstream signal spectrum is moving into the receiver amplifier 

passband region becoming visible as increase in noise amplitude. This effect saturates for 

lengths above 112 1 .  

(a) (b)

 
Fig. 4.7 Influence of the PRBS length on the control signal (a) With increasing length the downstream 

signal spectrum moves into the receiver passband region. (b) A decreasing data rate of the downstream 

signal has the same effect. 

In the same way the data rate of the downstream signal affects the receiver performance. 

With increasing data rate the influence on the receiver decreases. This can be seen in Fig. 4.7 

(b) where the effective value of the noise is depicted over the data rate. 



36 Chapter 4: Applications with Low Power and Low Bandwidth Demand 

 

 

Transmitter Circuit 

The acquired data of the demarcation device and status reports have to be sent to the CO and 

are therefore modulated on a laser. The deployed data rate of 1 Mbit/s is rather slow for 

optical components. External modulators are not necessary, the lasers can be directly 

modulated meaning to imprint the data in the laser forward current. For different application 

scenarios two different kinds of laser were used: a vertical cavity surface emitting laser 

(VCSEL) with an emission wavelength of around 1550 nm [82] and distributed feedback 

(DFB) laser with an emission wavelength of 1490 nm [83]. The developed driver electronics 

for both lasers are shown in Fig. 4.8. 
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Fig. 4.8 Driver circuits for two different kinds of lasers (a) The data signal coming from the transmitter 

port (Tx) of the microcontroller is inverted and switches a transistor to drive current through the DFB 

laser. Two resistors limit the drive current and a transmitter enable signal TxEn switches the driver on or 

off. (b) The small currents to drive a VCSEL can be directly sourced by the data output port (Tx). The 

resistor limits the drive current. 

The forward current to drive the VCSEL is in the range of only 7 to 9 mA and can be 

directly sourced by the data output port (Tx) of the microcontroller. Only an additional 

resistor is necessary to limit the drive current, see Fig. 4.8 (b). In contrast, the DFB laser 

needs drive currents in the range of 20 to 25 mA. The microcontroller is not capable to handle 

such currents through its data port. The driver electronic is shown in Fig. 4.8 (a). The data 

signal is inverted and controls the base of a bipolar transistor. Inversion is necessary as the 

idle state of the universal asynchronous receive transmit (UART) protocol is logic high and 

the laser has to be switched off in idle state to save energy. The transmitter enable port (TxEn) 

switches the driver on or off. The collector current through Q2 is the drive current for the laser 

and is limited by two resistors. The resistor R4, connected to the emitter, protects as current 

feedback resistor the laser from destructive overcurrent. Loss currents in the off state of the 

driver are kept at a minimum by resistors in the signal paths to Tx and TxEn. 

Demonstrator 

The above described circuits for receiver and transmitter have been brought together with the 

microcontroller on a printed circuit board (PCB). Power for this demonstrator of a 
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demarcation device was drawn out of a long-life battery attached to the circuit board. Two 

photographs of the PCB are shown in Fig. 4.9 with the functional blocks marked.  

(b) Logic

Receiver amplifier

Laser 

driver

Battery holder

(a)

 
Fig. 4.9 Photographs of the printed circuit boards for a demonstrator of a demarcation device (a) The 

long-life battery is fixed on the bottom side. (b) The top side carries the electronic circuits for logic, laser 

driver (shown here for the DFB laser) and receiver. 

The PCB were equipped with the opto-electronic components laser- and photodiode and 

integrated in a special housing. Schematics and PCB layouts for both realizations can be 

found in Appendix A.3. The housing was designed in a way to fit on a standard wall outlet to 

prove that such a demarcation device can be easily installed in every household. Two 

photographs of the demarcation device are shown in Fig. 4.10, where (a) shows the PCB with 

connected electro-optic components. The cover of PCB, Fig. 4.10 (b), carries the passive 

optical components like the couplers and splices. A fiber connector for the customer’s 

network hardware is also included in the housing. 

(b)(a)

 
Fig. 4.10 Photographs of the demarcation device demonstrator (a) PCB with connected laser- and 

photodiode (b) The cover of the PCB carries the passive optical components coupler and splices. 

Customer’s network hardware will be linked at the green E2000 connector. 

Optical Power Supply for the Demarcation Device 

A single photodiode (PD) illuminated with a power of 
opt 5 μWP   at a wavelength of 

pow 1550 nm   (frequency 
powf ) delivers an open-circuit voltage 

,1ocU  of about 400 mV. To 

increase this voltage we use N  nominally identical PD connected in series. The incoming 
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light illuminates all PD with equal powers 
optP N . The single-PD open-circuit voltages 

,1ocU  

add up to the N-PD open-circuit voltage 
,oc NU , see Eq. (2.1.7) and Eq. (2.1.17): 
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, ln 1 lnoc N T T
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S P
U N mU mU N N

I

 
     

 
 (4.1.1) 

The short-circuit photo current of each PD is 
sc, optNI SP N . The measured current-voltage 

characteristics of a series connection of 4 to 8 photodiodes is shown in Fig. 4.11 for a total 

illumination power of 
opt 5 μW ( 23 dBm)P   . We used PD with a very low saturation current 

0.3 nAsI   and a high sensitivity 0.9 A WS   at nm  .  

 
Fig. 4.11 Current-voltage characteristics of 4 to 8 PD with saturation current Is = 0.3 nA in an optically 

parallel and electrically serial connection. Total illumination power was Popt = 5 µW. The grey-shaded 

rectangle marks the supply power region for the DD. Figure reprinted from [C4] © 2010 OSA. 

With increasing N the output voltage increases and the output current decreases. For 

operating the DD a current 0.4 μA  and a voltage 1.7 V  are required, marked as grey-

shaded rectangle. A number of 6N   PD matches the DD requirements “
opt 5 μWP  ” 

optimally. Fig. 4.12 shows the single-photodiode open-circuit voltage 
,1ocU  calculated from 

measured open-circuit voltages of a series connections of 4 to 8 photodiodes as a function of 

the total optical power 
optP . The curves virtually coincide, thereby proving Eq. (4.1.1) correct. 

The importance in choosing PD with low 
sI  is demonstrated with two additional curves in 

Fig. 4.12 for 0.03 nA, 3 nAsI  . The smaller 
sI , the larger 

,oc NU  becomes (dashed curve), 

and thus the available electrical power increases. 
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Fig. 4.12 Single photodiode open circuit voltage Uoc,1 in dependence of optical power. Uoc,1 is calculated 

from measured Uoc,N assuming mUT = 50 mV. For comparison, Uoc,1 is calculated for Is = 0.03 nA (dashed 

line) and Is = 3 nA (dotted line). Figure reprinted from [C4] © 2010 OSA. 

Distributing the optical power on an even number of photodiodes can be done by discrete 

coupler-PD combinations. More advantageous, and required for an odd number, the discrete 

PD are replaced by sectored integrated PD. Very good results in saturation current and output 

voltage have been reported [54]. 

Different approaches for delivering the power to the demarcation devices are feasible and 

depend on the actual network topology. Such topologies and realizations of demarcation 

devices are discussed in the following subsections. 

4.1.1 Access Network Scenarios 

The following results will be submitted for publication: 

In-service Monitoring of PON Access Networks with Powerline 

Independent Devices 

M. Roeger, B. Hiba, J. Hehmann, M. Straub, H. Schmuck, M. Hedrich, T. 

Pfeiffer, C. Koos, J. Leuthold, W. Freude 

4.1.1.1 Remote Powering  

The necessary optical power has to be delivered through the optical distribution network 

(ODN). Different topologies for the network are possible. A change in topology influences the 

ODN loss (GPON, [55]), and affects the available power for the DD. Thus, the actual design 

of a DD has to be adapted to the network topology. Both, topologies and designs, will be 

discussed in the following subsections. 

Power Broadcast and Data Broadcast 

A DD in a TDM-PON must run at low supply power levels, as in a TDM-PON all signals 

coming from the OLT are split up among all ONTs in the network, see Fig. 4.13. Optical 

power provided by a laser diode (LD) at a wavelength 
p  is also split up, multiplexed along 

with the downlink TDM data at 
d , and distributed over the whole network for supplying 



40 Chapter 4: Applications with Low Power and Low Bandwidth Demand 

 

 

energy to the DD. The DD extracts power at 
p  and converts it with a photodiode array to a 

supply current for the DD. For downstream and upstream data signals at 
d  and 

u , 

respectively, the DD is transparent. Only a small percentage of data power is coupled out by a 

5 %-tap for receiving (Rx) control signals. Another tap allows to transmit DD (Tx) data in the 

reverse direction. Due to the splitting of optical supply power, the available energy at the DD 

is too low to perform complex measurements or to run actuators. More advanced wavelength-

selective splitting techniques in the PON may overcome this limitation. 
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Fig. 4.13 TDM-PON with optically powered DD. One additional laser (LD) in the OLT operating at an 

extra wavelength λp provides power for all DDs within a PON. A WDM coupler couples the power at λp 

to the DD and feeds several photodiodes connected in series supplying electrical energy to the DD. The 

DD is transparent for upstream λu and downstream λd signals of the access network, but absorbs the power 

at wavelength λp. The DD reports its signals back on wavelength λr. An additional photodiode (PD) in the 

OLT detects the DD feedback. Basically, the GPON transceiver and the PD could be directly connected to 

the fiber network via the WDM coupler. However, for a better comparison with the arrangements in Fig. 

4.16 and Fig. 4.22, which work without the power supplying laser LD, the splitter is kept in place. 

Power Selective and Data Selective 

An alternative to a special power supply laser would be to use the data signal itself for 

supplying energy to a DD. In a WDM-PON each ONT uses its dedicated wavelength for 

upstream (
ui ) and downstream (

di ) signaling, see Fig. 4.14. For avoiding unnecessary loss, 

the splitting of the feeder line to multiple ONT can be done with a cyclic arrayed waveguide 

grating (cAWG, [56]) having much smaller loss (6 dB for an 8-port-cAWG) than a 

conventional power splitter (11 dB for a 1:8 splitter). With this scheme much more power is 

available at the customer’s premises and supplying the DD by tapping the downstream signal 

and using only one photodiode for power conversion becomes feasible. However, this solution 

is costly as for each ONT a dedicated transceiver is needed in the OLT. 
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Fig. 4.14 WDM-PON with optically powered DD. In the WDM-PON much more power is available at 

the ONT. The DD uses 80 % of the downstream signal to supply its own operating energy. Cyclic arrayed 

waveguide gratings (cAWG) multiplex the up- and downstream signals in the OLT and route them in the 

router module to the ONTs. Each ONT is connected to its own transceiver (TRx) in the WDM OLT. 

Power Selective and Data Broadcast 

A combination of TDM-PON and WDM-PON can overcome both the power and cost issue. A 

TDM approach is used for communication between CO and ONT, and a tunable laser together 

with a WDM filter delivers power to each DD sequentially. To this end, the passive power 

splitter of Fig. 4.13 is replaced by a combination of a passive splitter and a WDM filter, see 

Fig. 4.15. Together with a tunable laser in the OLT selective remote powering of the DD is 

feasible. The optical splitter/filter module distributes the communication downstream 

wavelength 
d  to all ONTs just like a conventional passive power splitter. The same holds 

true for the upstream wavelength 
u . Furthermore, the splitter/router module distributes the 

optical power of the tunable laser in the OLT (wavelength 
pn ) to only one output port. Such 

splitter/router modules have recently been built in form of an integrated dual function arrayed 

waveguide grating [57], and as optical power combiner/wavelength demultiplexing modules 

in planar lightwave circuit technology [58]. On each output port one ONT is attached, with a 

series-connected DD for monitoring purposes. The DD, see Fig. 4.15, is supplied with light 

from the tunable OLT laser, whereas it is transparent for upstream and downstream signals. In 

a PON based on such a splitter/router module, the whole output power of the tunable laser in 

the OLT is delivered to one DD. All other DD in the same PON remain unpowered. 
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Fig. 4.15 TDM-PON: Optically powered demarcation device (DD) in a PON with WDM overlay for 

selective powering. Light of a tunable laser diode (LD) in the OLT (tuning range λ1 - λN) is multiplexed 

with the conventional GPON signals into a transport fiber and connected to the splitter/router module. 

This module does a power splitting of the GPON signals and routes the light of the tunable laser to only 

one of its output ports. In the DD addressed by the specific choice of the tunable LD wavelength, this 

light is fully coupled out to supply the DD. 

The special splitter/router module used in this selective remote powering system can be 

further useful for optical time domain reflectometry (OTDR) measurements. With the tunable 

laser as source for an OTDR system, each branch of the PON can be measured independently 

of the other branches avoiding ambiguous results and high losses caused by passive power 

splitters [59]. As all signals coming from the tunable laser are filtered by the DDs, OTDR 

measurements can be run in-service without affecting the data traffic. 

4.1.1.2 Local Powering  

Instead of supplying the power by optics, a local energy source might be used. Connecting the 

DD to the power grid would severely limit the range of possible applications. In addition, 

with a power consumption of a few µW it seems to be unjustified to connect the DD to the 

power grid. As an alternative, the necessary energy might be harvested from the environment. 

However, a solar cell would need occasional illumination, a thermoelectric generator needs a 

temperature gradient, and harvesters for mechanical energy require moving parts. This 

excludes operation in dark compartments or rooms where a DD would be most likely 

deployed. 

However, with a long-life lithium battery (e.g. Saft, LS 14250, 1.1 Ah, 3.6 V, ½AA size 

[27]) as power supply for the DD shown in Fig. 4.16, the necessary power can be supplied for 

significantly more than 10 years. A disadvantage is the need for replacement. Advantageous is 

the very compact setup and the straight forward power supply design. No additional 

modifications in the network are necessary. 



4.1 Advanced Monitor Device in Access Networks 43 

 

 

ONT

Splitter Module

DD1

DDN

ONT
: WDM : Splitter

GPON (λd ,λu)

OLT

PD
λr

UDD,r

 

µC

Rx Tx

From 

Premises

From

CO

d

d

d

DD

r

5 %5 %

u
u

r

 
Fig. 4.16 TDM-PON with battery powered DD. No WDM components are necessary if the DD is 

supplied by a battery. This monitoring setup is fully compatible to standard PON techniques. 

4.1.2 Access Network Measurements 

The following results will be submitted for publication: 

In-service Monitoring of PON Access Networks with Powerline 

Independent Devices 

M. Roeger, B. Hiba, J. Hehmann, M. Straub, H. Schmuck, M. Hedrich, T. 

Pfeiffer, C. Koos, J. Leuthold, W. Freude 

In this section we discuss the implementation of the various demarcation devices. We begin 

the section with discussing how to realize the power converter, and then continue to show the 

implementations of the remote and locally powered DDs. 

Efficiency of Opto-Electronic and DC/DC Boost Converters 

To power the DD we require a minimum supply in the µW range. This power can be provided 

optically. However, a photovoltaic power converter typically does not provide the minimum 

supply voltage of 1.7 V needed for electronics. We therefore either need a photodiode array 

operating optically in parallel and connected electrically in series, or a DC/DC booster must 

be employed. We will subsequently discuss both options. 

The optical power for the DD can either be derived from the optical data signal, or from an 

additional laser in the OLT. The laser could operate at an extra wavelength and must provide 

sufficient power for all DDs within a standard PON. Assuming a maximum ODN loss of 

30 dB (GPON, Class C [55]) and an output power of the extra laser of +8 dBm, a total of 

 –22 dBm (
opt 6.3μWP  ) is available for powering a DD. 

The open circuit voltage provided by a single photodiode (PD) illuminated with 
optP  is 

[18], see also (2.1.7), 

 
opt

oc,1 opt T

s

( ) ln 1 .
SP

U P mU
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 
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 
 (4.1.2) 

This gives 400 mV for a PD illuminated at a wavelength of 
pow 1550nm   (frequency 

powf ) with a PD sensitivity 
pow/ ( ) 0.9A/WS e hf   (quantum efficiency  , Planck’s 
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constant h ), saturation current 
s 0.3nAI  , ideality factor m  and the thermal voltage 

T /U kT e  (Boltzmann constant k , temperature T , elementary charge e ). We used PDs with 

a very low saturation current 
sI  and a high sensitivity S  at 

pow 1550nm  . The short circuit 

current 
sc,1I , see also (2.1.6), 

 
sc,1 opt opt( ) ,I P SP  (4.1.3) 

which is in the order of 6 µA for 6.3μWoptP  . 

An efficient way to increase the voltage is to use N  nominally identical PDs connected in 

series. The incoming light is split up and illuminates all PDs with equal powers 
opt /P N . By 

connecting N  PDs in series, the single-PD open-circuit voltages 
oc,1U  increases to 

oc,NU , 

whereas the short-circuit photocurrent of the PD array 
sc,NI  decreases, 
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 (4.1.4) 

The measured current-voltage characteristics of a series connection of 4 to 8 photodiodes is 

shown in Fig. 4.17 for a total illumination power of 
opt 6.3μW ( 22dBm)P   . When 

increasing N , the output open circuit voltage increases, and the output short circuit current 

decreases. For operating the microcontroller of the DD, a minimum current of 0.55 µA and a 

minimum voltage of 1.7 V are required. This operation region is marked by a grey-shaded 

rectangle in Fig. 4.17 (a). It can be seen that for 6N   or 7N  , the PDs generate sufficient 

current and voltage to supply the DD. In Fig. 4.17 (b) the measured electrical output power 

and the conversion efficiency of the photodiode arrays are shown. When increasing the 

number of photodiodes, the maximum available output power decreases. This results from the 

logarithmic voltage drop when decreasing the power incident onto a photodiode. The 

efficiency drops from 22 % for an array of 4 PDs to 14 % for 8 PDs. Not shown in the graph 

is the conversion efficiency of a single photodiode which has been measured to be 30 %. 



4.1 Advanced Monitor Device in Access Networks 45 

 

 

(a)

(b)

 
Fig. 4.17 Output current and power vs. output voltage of arrays with 4 to 8 photodiodes illuminated in 

parallel with a total optical power of 6.3 µW, and connected electrically in series. (a) With the number of 

photodiodes the open circuit voltage increases, whereas the short circuit current decreases. The grey 

shaded region marks currents and voltages needed to run the µC electronics. (b) Electrical output power 

and conversion efficiency from different PD arrays. When increasing the number of photodiodes, the 

maximum output decreases and conversion efficiency drops from 22 % to 14 %. 

Another way to increase the output voltage is by using a DC/DC boost converter circuit. 

DC/DC boost converters are commonly used for upconversion of low DC voltages to higher 

DC supply voltages. Unfortunately, they are extremely inefficient for conversion of ultra-

small powers. 

The network scenarios discussed in 4.1.1 show that we must be able to handle power levels 

of as little as a few µW. In Table 4.1 power efficiencies for two low power DC/DC converters 

(TPS61201 from Texas Instruments and LTC3105 from Linear Technology) at different 

operation points are collected from the converter datasheets. These devices are capable to 

boost the output voltage of a single photodiode efficiently from 400 mV to 2 V. However, 

efficiency strongly depends on the input voltage and the attached load. With decreasing load, 

the efficiency drops significantly. The minimum output current specified for TPS61201 is 

0.1 mA where efficiency already drops to 35 %. For LTC3015, an efficiency of 28 % results at 

an output current of 0.02 mA. Decreasing the output current even further would result in a 

drastic loss of efficiency. Such poor conversion efficiency would apply for the times where 

the DD is in sleep mode, thereby consuming less than 1 µA. As a consequence, energy 

accumulation in a storage device would not be possible. Note that the efficiency of the booster 

has to be multiplied with the efficiency of the single photodiode (30 %) to get the overall 

efficiency. 
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Table 4.1 Efficiencies of DC/DC boost converters 

Operation (Vout = 3.3 V all) TPS61201 [60] LTC3105 [61] 

Optimum  (Vin = 1.0 V, Iout = 10 mA) 62 % 80 % 

Low output power (Vin = 1.0 V, Iout = 0.1 mA) 35 % 58 % 

Low input voltage (Vin = 0.6 V, Iout = 10 mA) 63 % 65 % 

Low input power (Vin = 0.6 V, Iout = 0.02 mA) – 28 % 

 

Thus, for upconverting the voltage resulting from small available optical powers, the method 

of using several photodiodes connected electrically in series is more efficient. However, it is 

more expensive as a larger number or more complex optical components are needed. If the 

available optical power is high, a single photodiode in combination with a DC/DC boost 

converter can be used for supplying the DD. 

4.1.2.1 Remote Powering 

In this section we discuss results from implementations of the power broadcasting approach, 

the power-selective (both discussed in 4.1.1.1), and the battery powered DD approaches 

(discussed in 4.1.1.2).  

Power Broadcast and Data Broadcast 

At the beginning of Section 4.1.2 it has already been shown that an optical power 

opt 6.3 μWP  illuminating an electrical series connection of 6 photodiodes results in a 

photocurrent and a voltage that is sufficient to run the DD in low-power mode.   

Another important fact is the initial startup procedure which has to be considered in the 

design. In the initial state of the DD the storage capacitor 
SC  is discharged and shows zero 

voltage, see Fig. 4.18. The illuminated photodiodes start to charge the capacitor so that its 

voltage slowly increases. A microcontroller (µC) is connected to 
SC  and operates with a 

voltage below the specified minimum (here 1.7 V), therefore runs in an undefined operating 

mode and can consume a current of up to several milliampere. So, during the initial charging 

period when the capacitor voltage increases from 0 to 1.7 V, the microcontroller has to stay 

disconnected. Connecting µC and 
SC  has to be done by an extra circuit which supervises the 

voltage at 
SC . Such voltage supervisor ICs are readily available. Here, a LTC2935 [62] was 

used which has a selectable switching voltage and excels with a very low current consumption 

of only 500 nA at 2 V. The output port switches to high if the input exceeds a given threshold. 

An inbuilt hysteresis avoids instable states. The initial start procedure of the sensor node is 

then as follows: The voltage supervisor is connected to the storage capacitor whereas the 

microcontroller is not, see Fig. 4.18 (a). If the voltage at 
SC  has reached the minimum voltage 

of 1.7 V needed for running the microcontroller, the voltage supervisor connects the 

microcontroller to 
SC . The microcontroller in turn disconnects the supervisor to keep power 

consumption at a minimum, see Fig. 4.18 (b). The power management is now fully done by 
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the microcontroller. The surplus of energy after the start-up period is stored in 
SC , and the DD 

can decide on its different operating modes. 
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Fig. 4.18  Switching scheme in the initial startup procedure (a) The necessary microcontroller (µC) 

operating voltage of 1.7 V is not yet reached, a voltage supervisor (VS) is connected to an energy storage 

capacitor CS. (b) When the voltage at CS reaches 1.7 V, the VS connects CS and µC, which in turn 

disconnects the VS. 

Power Selective and Data Broadcast 

In power selective schemes much more power is available at the DD site, and more complex 

sensing applications become feasible. Even actuators could be operated. For demonstration 

purposes a prototype DD has been built which connects and disconnects an ONT physically 

from the network. The DD features a micro-electromechanical system (MEMS) switch, see 

Fig. 4.19. 
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Fig. 4.19  Block diagram of the optically powered DD. The optical supply channel (P = 3.5 dBm) is 

tapped by a WDM coupler and fed to a photodiode. Its output voltage is boosted by a first DC/DC 

converter to 2.2 V supplying a microcontroller (µC) and charging a capacitor CS. Control signals sent 

from OLT to DD are encoded in the supply power duration. To receive the control signals, the µC 

monitors with its analog-to-digital converter (ADC) the output voltage of the PD and detects whether the 

supply channel is switched on or off. One important control signal serves to disconnect the ONT from the 

network with a built-in switch. The necessary switching energy is also taken from CS. The capacitor’s 

voltage is boosted by another DC/DC converter. Both, converter and switch, are controlled by general 

input/output ports (I/O) of the µC. Ch1 to Ch4 mark measurement points with signals shown in Fig. 4.20. 

To demonstrate this feature, we operate the DD with a wavelength of 
p 1550nmi  and an 

optical input power of 3.5 dBm using a tunable external cavity laser. This relatively large 

amount of input power when detected with a single photodiode suffices to drive a DC/DC 

boost converter which provides the necessary voltage for running the DD’s electronics. At 

several measurement points the voltages were recorded and are plotted in Fig. 4.20 as a 

function of time, illustrating the operating principle of the DD. The photodiode in the DD 
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delivers a voltage of 0.5 V (Ch1, yellow) when illuminated with an optical power of 3.5 dBm. 

The PD output voltage is boosted by a DC/DC converter to supply the µC with a voltage of 

2.2 V (Ch2, red). After sensing that the supply channel has been switched off, the µC 

processes the control signal “connect” (Ch3, blue). Here, the control signal is encoded in the 

supply duration of the DD. Additional addressing signals are not necessary as for the 

“selective-power” scheme under discussion only a single DD is powered at a time. 

Subsequently, a second DC/DC boost converter is started to supply the MEMS switch, which 

in turn changes its switching state (Ch4, green), and disconnects (or connects in this case) the 

attached ONT and the network. 

5 s/div

process 

command

 
Fig. 4.20  Connecting an ONT to the network via the DD of Fig. 4.19. The photodiode delivers a voltage 

of 0.5 V (Ch1, yellow) under illumination with an optical power of 3.5 dBm. This voltage is boosted by a 

DC/DC converter to supply the µC with a voltage of 2.2 V (Ch2, red). After sensing that the supply 

channel has been switched off, the µC processes this control signal (Ch3, blue). As a consequence a 

second DC/DC boost converter starts supplying power to the MEMS switch, which in turn changes its 

switching state (C4, green) thus disconnecting (or connecting in this case) the attached ONT to the 

network. 

4.1.2.2 Local Powering 

As a second possibility, a battery powered DD can be placed close to the customer’s premises. 

We developed a prototype of such a device. Its exploded view is shown in Fig. 4.21. It 

consists of a housing which can be attached to a standard flush-mounted wall outlet. The fiber 

coming from the optical distribution network (ODN) passes the wall outlet and is connected 

with a splice to the fibers in the DD. The optical and electrical components are placed 

separately in different planes of the housing. The customer’s ONT can be connected with a 

standard E2000 connector at the DD to the PON.  
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Fig. 4.21  Exploded view of a housing for a battery powered DD. The optical components like fibers, 

splices, and couplers are separated from the electronics (not shown) in the housing. The housing is 

attached to a standard flush-mounted wall outlet. The housing also includes an optical standard E2000 

connector for attaching the ONT. 

Three battery powered prototypes were successfully integrated and tested in a GPON 

testbed shown in Fig. 4.22. The testbed consists of one optical line termination (OLT) 

transceiver which was upgraded to communicate with the DD. The downstream GPON laser 

sends control signals to the DD as a small perturbation (1 Mbit/s NRZ, modulation depth 

10 %) of the GPON signal. This perturbation does not yet cause frame loss at the ONT, as it 

only occupies a small part of the downstream electrical signal spectrum [78]. An additional 

photodiode (PD) receiver in the OLT detects the control signals received from the DD and 

converts them to an inverted, electrical signal 
DD,rU . The OLT connects via several splitters 

and fibers of different length to two optical network terminations (ONT). Each ONT is 

connected through a DD to the network. Standard GPON traffic with a pseudo-random bit 

sequence of length 72 1  as payload was transmitted from the OLT to the ONT, 

simultaneously polling the DD. The polling procedure showed no effect on the GPON 

transmission.  
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Fig. 4.22  Setup drawing of the GPON testbed. The OLT transceiver polls the three integrated DD while 

handling GPON traffic with two attached ONTs. Payload of the GPON was a pseudo-random bit 

sequence with a length of 2
7
-1. Different splitting ratios and fiber lengths are used to ensure a realistic 

application scenario. The response signals coming from the DDs are detected with an additional 

photodiode (PD) in the OLT transceiver and converted into an inverted, electrical signal UDD,r. 

In Fig. 4.23 the result of the test in the network is shown. A LabView interface is used for 

controlling the OLT. The measured received signals 
DD,rU  from the DD are read out and 

plotted via the LabView interface, a screenshot of which is shown in Fig. 4.23. The inverted 

response signals can be seen as downward spikes in the trace. The different power levels 

originate from different path losses for the different DD in the exemplary PON. An inset 

enlarges the right-most DD signal and reveals the single bits of the NRZ response. 
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Fig. 4.23  Inverted receiver output voltage UDD,r showing measured response signals of three polled DD 

in the GPON testbed of Fig. 4.22. The OLT requests the DD subsequently to send a response. The three 

groups of downward spikes correspond to the signals of the DD. The different power levels originate 

from different path losses in the exemplary PON. In the box one NRZ response signal is enlarged. It 

consists of 20 bits at a bitrate of 1 Mbit/s. 

Summary 

We proposed and demonstrated a new concept for monitoring passive optical networks where 

OTDR techniques are not feasible. The optically or battery powered monitoring DDs are 

composed of standard low-cost components. Supplying power to the off-grid DDs was 

identified as the most critical task, and feasible DD designs for different topologies of the 

access network were discussed. As exemplary monitor functionality, we implemented an 

availability test for a link associated unambiguously with the customer’s site. In addition, we 

demonstrated that a customer’s network access can be enabled or disabled remotely by the 

CO. Other monitoring functions — like measuring optical power levels at the customer’s site 

or the DD’s battery status — are easily implemented in the electronic part of the DD. Polling 

of the DD and information requests can be run in-service using our new LE-MAC protocol, 

and does not affect GPON traffic. This easy-to-implement and inexpensive design is a 

promising candidate for monitoring future access networks. 
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4.2 Sensor Devices in Fiber Networks 

The results of this section were partially published in [C1] and studied in two Bachelor Theses 

[S7], [S8]. 

Energy is a precious resource, and telecommunication networks tend to demand more of it 

due to the fast growing traffic volume, so energy efficiency becomes an important issue [84]. 

Much energy is wasted by devices which are fully powered up without having traffic to deal 

with. The easiest and most efficient way to save energy is to switch off network devices or 

components which are currently not in use [85]. Because switched-off, “sleeping” devices are 

not listening to requests and cannot be addressed; appropriate protocols need to re-establish 

the communication channel first. 

Here, we describe a protocol which handles the communication with continuously active 

and with temporarily sleeping network elements [72]. For low duty-cycle sensors, sleep 

modes can be exploited efficiently, so that the average power consumption can be decreased 

to a level where even optically powering of network elements becomes feasible. As an 

example, we demonstrate a long-range optical network of sensors, where only 16 µW optical 

power per sensor node is sufficient for its operation. Such networks are of interest if galvanic 

connections must be avoided, or if a local electrical power supply does not seem appropriate. 

Sensor Node 1
Rx
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Sensor 

Node 3
Base Station

Rx
Tx

Sensor 

Node 2

Sensor 

Node 4
 

Fig. 4.24 Example network with base station (BS) and sensor nodes Si. Nodes communicate only with 

BS. Figure reprinted from [C1] © 2011 OSA 

In an experimental setup with electrically connected sensor nodes, Fig. 4.24we checked the 

operation of the LE-MAC protocol. An ARM STR-E912 evaluation board acted as base 

station, four boards equipped with MSP430-F2234 µC represented sensor nodes [36]. The 

boards where directly connected over their UART ports. The effective co-existence of sensor 

nodes with high availability (duty cycle 1) and low availability (duty cycle 3×10
5

) within one 

network was successfully demonstrated. Settings in the exemplary network were: 

- Data rate: 1 Mbit/s 

- TLstn: 2 ms 

- TCom: 5…10 ms 

- TSleep: 60 s 

- Packet size: 30 byte 
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4.2.1 Optically Powered Sensor Network 

When a protocol can handle loss of synchronism, so that network elements can employ 

lowest-power sleep modes, even optically supplied power can suffice to operate a sensor 

node. In Fig. 4.25 (a), an optically powered sensor network is sketched. The base station (BS), 

responsible for data collection and energy supply, comprises a standard DFB laser (

1510 nm  , 
,max 6 dBmBS   ). The laser operates continuously (CW) and provides the 

nodes with the necessary optical power. The CW light is slightly modulated (modulation 

depth 10%) for transmitting the necessary protocol data to the sensor nodes. Three sensor 

nodes are connected to the base station via an optical 1:8 splitter. One of the nodes is remotely 

connected via a 10 km standard singlemode fiber (SMF28). The data collected by the BS are 

read with a standard USB connection and visualized on a PC. The USB connection also 

supplies electrical power to the base station, so that the whole sensor network is powered and 

controlled by one USB port. 
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Fig. 4.25 Optically powered sensor network (a) Drawing of the sensor network consisting of a base 

station electrically connected to a PC and optically connected to three sensor nodes via a 1:8 splitter. (b) 

Block diagram of a sensor node with opto-electronic power conversion, multiple communication 

interfaces and power management functionalities. Figure reprinted from [C1] © 2011 OSA 

In Fig. 4.25 (b) a block diagram of an optically powered sensor node is shown. The 

incoming light with a power of 16 µW (–18 dBm) is distributed by a 1:8 splitter to 6+1 

photodiodes [54]. The upper six photodiodes supply electrical energy to the node. Each 

photodiode provides a voltage of 0.35 V generated out of –29 dBm optical power. As the 

photodiodes are connected in series, they deliver up to 2 V for the microcontroller (µC). A 

470 µF capacitor acts as energy storage, and is charged by the photodiode array. In sleep and 

snooze mode the surplus of electrical power coming from the photodiode array charges the 

storage capacitor, whereas in active periods the capacitor is partially discharged by 0.1 V. For 

one Si in sleep mode, the current consumption was measured to be 550 nA. Recharging the 

capacitor after an active period of 1.5 ms takes 8 min. The voltage at the capacitor slowly 

increases with time. However, the µC does not reliably operate at startup, where supply 

voltages are very low and only slowly increasing, therefore an auxiliary device, a so-called 

voltage supervisor (VS) is needed. When the voltage at the storage capacitor reaches 2 V, the 

VS switches the µC power on. Then the µC switches the VS off. The complete power 

management now remains with the µC. If the sensor node needs to connect to the base station, 

a DC/DC boost converter is started and delivers (for a limited time period) a fixed output 
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voltage of 3.3 V supplying the receiver circuitry (Rx). The Rx photodiode is connected to the 

seventh port of the 1:8 splitter and receives the BS control signals. Sensor data are transmitted 

back to the base station with a directly modulated VCSEL diode (Tx, 1310 nm  , 

out 2 0.5 dBmP    ). It is connected to the eighth port of the splitter. Both Rx and Tx use 

the UART port of the µC. 

The open circuit voltage of the photodiode defines the maximum charge voltage for the 

storage capacitor and increases logarithmically with the optical input power. The sensitivity of 

the receiver circuitry is therefore influenced twofold by the input power: Directly by the 

optical control signal power, and indirectly because Rx is supplied by the DC/DC boost 

converter which is losing stability with a decrease of optical input power, resulting in a 

decreased input voltage for the DC/DC converter. Fig. 4.26 displays the measured frame error 

ratio (FER) in dependence of the optical input power. The strong increase of the FER for 

opt 21.7 dBmP    results from instable operation of the DC/DC boost converter. As the node 

is normally supplied with an optical power of –18 dBm, a margin of 3 dB is left. Input powers 

of more than -13.8 dBm drive the receiver amplifier into saturation, and strong signal 

distortion occurs. In between, the FER drops below 
64 10 . 

below 4·10
-6

 
Fig. 4.26 Measured frame error ratio depending on the optical input power. Figure reprinted from [C1] 

© 2011 OSA 

The sensor node can be equipped with a number of different sensors. The node provides 

3.3 V supply voltage as well as digital (I²C, SPI) and analog sensor interfaces. In our network, 

the three nodes where equipped with a temperature, an acceleration and a light sensor, 

respectively. With a minimum input power of –18 dBm per sensor node, 24 dB are available 

as distribution loss. This corresponds to a maximum splitting of 1:128 including 2 dB excess 

loss, or up to 120 km of standard SMF. 

4.2.2 Low-power Electronic Circuits 

The whole sensor node is not operated continuously as many kind of sensor information are 

only polled once within, e. g., 10 minutes. Thus, the node is only active for a short period of 

time to gather data, receive commands from its base station and to send acquired and 

requested data back. For simple sensors this period can last only few milliseconds whereas the 

rest of the time the node stores the energy delivered via the supply channel. The sleep mode 
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current consumption of the microcontroller dominates the need and is significantly smaller 

than the maximum current of 1.4 µA delivered by the photodiode array.  

The whole node operates most efficiently if in sleep mode unused components like sensors, 

receiver and transmitter are disconnected from the power supply. The necessary electronic 

switches and further electronic components for an energy-efficient node are discussed in the 

following paragraphs. 

Voltage Supervisor 

In the initial state of the sensor node the storage capacitor is discharged and shows a voltage 

of zero. The illuminated photodiodes start to charge the capacitor and so that its voltage 

slowly increases. A microcontroller operated with a voltage below the specified minimum 

(here 1.8 V) runs in an undefined mode and can consume up to several milliampere. During 

the initial time where the storage capacitor voltage increases from 0 to 1.8 V, the 

microcontroller has to be disconnected. Connecting the microcontroller to the storage has to 

be done by another circuit which supervises the charge voltage. Exploiting a breakthrough in 

a Zener diode would not result in the needed abrupt transition. Specially for this purpose 

voltage supervisor ICs are designed. Here, a LTC2935 [62] was used which has a selectable 

switching voltage and stands out with a very low current consumption of only 500 nA at 2 V. 

The photodiode array delivers a maximum of 1.4 µA. 900 nA are left for charging the 

capacitor and for compensating losses. The output port switches digitally to high if the input 

exceeds the given threshold. An inbuilt hysteresis avoids instable states.  

The initial start procedure of the sensor node is than as follows. The voltage supervisor is 

connected to the storage whereas the microcontroller is not. If the storage has reached the 

minimum voltage needed for running the microcontroller, the voltage supervisor connects the 

microcontroller to the storage. The microcontroller in turn disconnects the supervisor to keep 

power consumption at a minimum. The power management is now fully done by the 

microcontroller.  

Switches 

The key component in the power management is the switch to connect and disconnect parts of 

the circuit to the supply voltage. The switch may be placed between supply and load, a so-

called highside switch, or between load and ground, a so-called lowside switch.  

NPN transistors as common-emitter amplifier are good for implementing lowside switches, 

but need to be placed to each ground connection which rules out usage in complex circuits. 

Therefore highside switches were implemented for controlling the power supply of the 

microcontroller and the DC/DC boost converter. 

A switch needs to have a low on-resistance and a high off-resistance. A FET might offer 

both, but only if driven with enough voltage. As only voltages in the range of some volt are 

available, a low on-resistance cannot be achieved. Off-resistances in the range of 100 GΩ  are 

feasible. A bipolar transistor can be driven with voltages around 0.7 V and has a low on-

resistance. A PNP transistor as highside switch on a positive voltage supply leads to a voltage 

drop of only 50 mV in the supply path. Thus, the implemented highside switches were set up 
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of a bipolar transistor and a FET: the bipolar transistor to control the supply path with only 

little losses and the FET to block the bipolar effectively. 

During the start-up process the microcontroller is unpowered. All its output ports are then 

at ground potential. All power switches therefore have to be in the off-state to avoid unwanted 

loading of the storage capacitor. This defines the switch polarity: ground at the switch’s input 

has to result in the off-state. 

µC2 V

in

RB

 
Fig. 4.27 Switch consisting of a bipolar junction and a field effect transistor (FET). The bipolar 

component switches the supply current and shows little losses even if operated with small voltages. The 

FET shows very high impedance in the off state minimizing the leakage current through the switch in the 

off state. 

In Fig. 4.27 a schematic of the implemented switch is shown. A high signal at the input (in) 

makes the FET conducting and enables a base current in the bipolar to flow. The base current 

is limited by the resistor BR . The base current 
BI  has to be large enough to enable the 

necessary collector current 
CI  to the microcontroller to flow. The current consumption of the 

microcontroller varies between 1 µA in sleep and 1.6 mA in active mode. The current 

amplification /C BI I   of the employed transistor is 500 [86]. In active mode the 

microcontroller needs a supply current 
μC,activeI of 1.6 mA [36]. The maximum resistance 

B,activeR  for supplying the active microcontroller can be calculated to  

 B,active

,active μC,active

2 V 0.7 V 2 V 0.7 V
406 kΩ

/ 

 
  

B

R
I I

. (4.1.5) 

The base current would then be 
,active μC,active / μΑ  BI I , which exceeds the current 

consumption of the microcontroller in sleep mode 
μC,sleep 1μΑI . Therefore another switch is 

needed for maintaining power connection in sleep. For this switch the maximum resistance at 

the base results to 

 B,sleep

,sleep μC,sleep

2 V 0.7 V 2 V 0.7 V
650 MΩ

/ 

 
  

B

R
I I

. (4.1.6) 

In both cases the resistance of the open FET was neglected with respect to the resistor BR  

and the voltage drop over the base emitter junction in the bipolar transistor was assumed to be 

0.7 V. In the implementation the resistances were chosen to 
B,active 500 k R  and 

B,sleep 25 M R . 

The base current represents a loss. In active mode, a current of 

,active B,active1.3 V / 2.6 μΑ BI R  is lost. The active microcontroller consumes 1.6 mA, 
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outnumbering the base current loss by a factor of more than 600. In sleep mode, a current of 

,sleep sleep1.3 V / 52 nΑ BI R  has to be compared with 
μC,sleep 1μΑI  resulting in an efficiency 

of 95 %. 

A low signal at the input in Fig. 4.27 pulls the resistance of the FET in the GΩ  range and 

the base current is blocked [87]. The bipolar transistor is then also blocked, and the switch is 

in off-state. 

An additional small capacitor with a capacitance in the pF range, in parallel to BR , 

decreases switching time to less than 1 ns.  

The combined PNP FET switch is also used to disconnect the DC/DC boost converter from 

the storage capacitor. The converter supplies the receiver circuit, the transmitter and sensors. 

Several 10 mA are expected so the base resistor for this switch was set to 20 kΩ . 

The switch Q1 in Fig. 4.28 in front of the microcontroller is connected to different base 

resistors. Depending on the actual operation mode the optimum base current can be chosen. 

This is needed during the start-up sequence. 

Start Up Sequence 

At the initial start the energy storage capacitor SC  is empty and all voltages in the system are 

zero. After starting the optical power supply, the storage capacitor is slowly charged and its 

voltage rises. To avoid unwanted loading of the storage all circuits but the voltage supervisor 

are disconnected with switches Q1 and Q2, see Fig. 4.28. If the voltage supervisor (VS) 

detects the minimum voltage of 1.8 V its output switches from 0 to 1.3 V. FET Q3 opens and 

the PNP transistor Q1 connects the microcontroller to the power source. The small resistance 

activeR  at Q3 allows active operation of the microcontroller at 8 MHz clock speed. After the 

initialization the microcontroller switches Q4 to high. The microcontroller now keeps its 

supply path open and the voltage supervisor is disconnected from the power supply setting the 

base potential of Q2 high. Having finished all assigned operations, the microcontroller is 

ready for energy-saving sleep mode. To save energy in the switch itself Q4, is blocked setting 

its gate potential to ground and Q5’s gate potential to high. Q5 is connected to 
B,sleepR  

allowing enough current to supply the microcontroller in sleep mode. After the sleep period 

the microcontroller switches autonomously in active mode. To cover the higher demand on 

power, Q4 is opened again during active times. The input of the microcontroller is 

additionally buffered with a 200 nF capacitor BC .  
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Fig. 4.28 Start-up electronic for the optically powered sensor node. The PNP transistor Q1 can be 

switched into conducting state by three independent FET (Q3 to Q5) with different resistors. Q1 connects 

the photodiode array and the energy storage capacitor CS to the microcontroller (µC), Q2 to the voltage 

supervisor (VS). The microcontroller supply is additionally buffered with an buffer capacitor CB. 

Current Measurement of the Start-up Electronic 

The current consumption in dependence of the applied voltage during the start-up sequence 

was measured at room temperature and is shown in Fig. 4.29 (a). The storage capacitor was 

not connected. The threshold of the voltage supervisor was set to its maximum value of 

2.56 V. This assures that the microcontroller stays shut down during the measurement.  

(a) (b)

 
Fig. 4.29 Current consumption of (a) the whole start up electronic for increasing input voltage U at room 

temperature and (b) of the voltage supervisor, taken from the datasheet [62]. A comparison shows that the 

current consumption of the start-up electronics is dominated by the voltage supervisor. The three switches 

are only responsible for a small amount. 

In Fig. 4.29 (b) the current consumption of the voltage supervisor is shown, taken from 

[62]. A comparison shows that in the start-up sequence the total current consumption is 

dominated by the voltage supervisor. Above 0.7 V the current increases rapidly to about 

500 nA same as the voltage supervisor. The switches connected to the supply channel do not 
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contribute significantly. The 1.9 V threshold is reached after 34 minutes with a total optical 

input power of 18 dBm  (15.8 µW) to the sensor unit. 

Microcontroller [36] 

For energy saving the microcontroller can be operated in different low power modes (LPM). 

With increasing level of the LPM more and more functionalities are disabled. In LPM3 only 

an auxiliary clock is maintained which allows the microcontroller to reactivate itself after a 

programmed time. The auxiliary clock can be sourced by two different oscillators: an internal 

voltage controlled oscillator (“very-low-power low-frequency oscillator, VLO) and an 

external quartz oscillator. With the VLO the current consumption is only 
µC,LPM3 300 nAI  

but the frequency drift can be up to several percent (0.5% per K). With the external quartz 20 

ppm accuracy is feasible but current consumption increases to 900 nA. Reactivation from 

LPM3 into the active mode takes less than 1 µs. 

Energy Storage 

For calculating the total power budget the internal losses in the storage capacitor have to be 

considered. This storage is the largest capacitor in the sensor unit and leakage currents of 

electrolyte capacitor are proportional to its capacitance [88]. However leakage currents are of 

often not specified precisely, therefore the leakage current of the nominal low-leakage 

capacitor was measured. The capacitor with capacitance C  under test was initially charged to 

0 10 VU   and the capacitor voltage was measured over time. Internal leakage mechanisms 

let an internal current flow which results in loss of charge and voltage at the capacitor over 

time.  

  
Fig. 4.30 Leakage of an electrolyte capacitor (left axis) Measured voltage over time, depicted in black, 

and (right axis) calculated leakage current thereof, depicted in red, of a charged capacitor [88]. The 

capacitor was charged with 10 V and the capacitor voltage was measured over time. Internal leakage 

mechanisms let an internal current flow which results in loss of charge and voltage at the capacitor. 
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Voltage measurements were performed with a voltmeter showing an input impedance of 

10 GΩ . The voltage drop over time is shown Fig. 4.30 in black. As expected the voltage 

drops exponentially over time, 

 0( ) .



t

RCU t U e  (4.1.7) 

The internal leakage mechanism is modeled here as a resistance R  which is in parallel to the 

capacitor. From the measured voltage over time the resistance can be calculated to 13.9 MΩ . 

The measurement error coming from the current flow through the voltmeter can be neglected 

as the internal resistance of the capacitor is about a factor of 1000 smaller than the one of the 

voltmeter. Also the internal leakage current leakI  can be calculated from the voltage drop over 

time, 

 leak
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( ) .

 
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 

Q U t
I t C

t t
 (4.1.8) 

In Fig. 4.30 the calculated leakage current is depicted in red. The maximum charge voltage is 

expected to be 2 V. For this voltage the leakage current can be read out to be 150 nA.  

An upper bound of the total current consumption of the sensor node in its energy saving 

LPM3 can be estimated by the sum of microcontroller supply current 
µC,LPM3I , switch current 

switchI , and leakage current leakI  in the storage capacitor, 

 

LPM3 µC,LPM3 switch leak

300 nA 52 nA 150 nA

502 nA.

  

  



I I I I

 (4.1.9) 

At a total optical input power of –18 dBm to the sensor node, the diode array delivers a 

maximum current of 1.4 µA. This shows that in LPM3 the surplus of current charges the 

capacitor which than can be partially discharged in an active phase. 

Total Power Budget 

In different operation modes of the sensor node, different subsystems are powered up (like 

DC/DC boosters, receiver, transmitter, or attached sensors), or they run in different operation 

modes (like the microcontroller). For the different operation modes the respective current 

consumption measured at 2 V input voltage are listed in Table 4.2.  

 

Table 4.2 Current consumption of the sensor node in different operation modes measured at an input 

voltage of 2 V 

Operation Mode Current Consumption 

µC clocked by VLO (LPM3, Sleep mode) 0.55 µA 

µC clocked by external quartz (Snooze mode) 1.00 µA 

µC active (8 MHz) 1.58 mA 

µC active (8 MHz) + DC/DC booster (no load) 1.88 mA 

µC active (8 MHz) + DC/DC booster + Rx 11.10 mA 

µC active (8 MHz) + DC/DC booster + Tx (operated in CW) 11.26 mA 
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Attachable Sensors 

The chosen microcontroller can handle different digital interfaces and also offers an analog 

input. In order to design a flexible system the sensors were not directly soldered to the node. 

Sensors can be connected via pin headers to the digital or analog input of the microcontroller. 

Beside the data ports, pins for power supply are also provided. To prove the flexibility of the 

system three sensor submounts equipped with different sensors were designed. Different 

interfaces as well as different measurements were realized and are listed in Table 4.3. 

 

Table 4.3 Different sensors attached via different interfaces to the sensor node. 

Sensor type Interface Current Consumption Manufacturer Product Identifier 

Temperature SPI 0.5 mA Maxim DS1722 [89] 

Acceleration I²C 2.3 mA Memsic MXC6202xJ/K [90] 

Light Analog 2.5 mA Avago APDS-9003 [91] 

 

Demonstrator 

The full electronic circuits (schematics as well as layouts) can be found in Appendix A.4. 

Three demonstrators were set up and a photography of one of them can be seen in Fig. 4.31 

together with the sensor submounts. Fig. 4.31 (a) shows the sensor node. Via the connector at 

top left, the node is attached to the network. The optical input signal is split up at the optical 

splitter (bottom) and distributed equally to seven photodiodes. Photodiodes and splitter are 

connected with the couplers on the left hand side of the board. On the eighth port of the 

splitter the laser is connected. In the middle of the aluminum plate the electronics of the 

sensor node is hosted. 

(a) (b)

 
Fig. 4.31 Photograph of the (a) optically powered sensor node and (b) the attachable sensor submounts.  

Fig. 4.31 (b) shows three attachable submounts. From top to bottom the boards carrying an 

SPI temperature sensor [89], an I²C acceleration sensor [90], and an analog light sensor [91]. 
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4.2.3 Applications with Low Power and Low Bandwidth 

Sensor networks are increasingly deployed for home automation, facility management, 

monitoring the structural integrity of buildings and bridges, and high-voltage applications. As 

a power supply is needed for nearly all kind of sensors, unwired sensors need an inbuilt 

energy source like a battery, or have to harvest their energy from their environment. Thus, a 

limitation of lifetime or application area results. Instead of supplying power by electric 

wiring, our sensor nodes are supplied by optical power delivered in a fiber, which is required 

anyway for the data exchange with the base station. This enables operation with negligible 

susceptibility to electromagnetic interference and lightning due to the galvanic isolation 

between sensor nodes and base station. Likewise, operation in a discharge-sensitive 

environment and operation without electromagnetic radiation from wires even at high and 

highest data rates become feasible. Furthermore, the low loss of optical fibers enables to 

bridge large distances between sensors and controlling base station. Emphasis is on low 

power consumption for this kind of sensor nodes to achieve long reach, to meet security 

aspects, and to lower costs. 

A recently emerging and very promising application field for such optically powered 

sensor networks is the envisaged smart power grid. As generation and consumption of 

electrical power will strongly vary in time, storage and routing of electrical energy will be 

mandatory. Therefore, measuring of the available and needed power as well as monitoring of 

the components of the power grid will strongly gain importance [92]. Small optically powered 

sensor nodes are promising candidates for simplifying this task by offering sufficient 

bandwidth, long reach, and perfect galvanic isolation. Future monitoring devices combine 

low- and high-latency services which can be handled favorably by the LE-MAC protocol. 

Another application of optically powered devices can be found in telecommunications. At so-

called demarcation points, a traffic-transparent energy-autarkic sensor (demarcation device) is 

placed. It can be interrogated by the central office to monitor the link performance 

independently of an attached ONT [93]. 

 

 

 





 

 

5 Applications with High Power and High 

Bandwidth Demand 

In the following sections, results of an optically powered video link are discussed. The results 

in Section 5.1 have been published in 2008 [J5]. Further developments in electronics and 

optics led to improvements which were studied in the Diploma Thesis of Michael 

Dreschmann in 2009 [S10] and published as conference contribution in 2010 [C2]. These 

results are presented in Section 5.2. 

5.1 Video Transmission System without Control Channel 

An Optically Powered Video Camera Link 

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A.W. Bett, 

T. Kueng, J. Becker, W. Freude, and J. Leuthold 

in IEEE Photonics Technology Letters, vol. 20, pp. 39–41, January 1, 2008. 

Reprinted, with permission, from [J5] © 2008 IEEE  

An optically powered camera sensor link is demonstrated. Power and data are transmitted 

over a 62.5-µm multimode glass fiber. Uncompressed video with 640 480  pixels resolution 

is streamed continuously at 100 Mb/s as soon as the fiber is illuminated with sufficient optical 

power. No energy has to be stored at the sensor location in batteries with limited capacities 

and lifetimes. Inexpensive fiber optics and low-power state-of-the-art electronics are used to 

make > 100 mW available at sites which have no direct access to an electrical network. There 

is a complete electrical isolation between the remote camera unit and a base station. 

A landmark paper in the late 1970s suggested and demonstrated optically powered speech 

communication [45]. In this scheme, the power to drive remote sensors or communication 

units is transmitted along with data, ideally over a single optical fiber. An inherent advantage 

of optically powered systems is the small susceptibility to electromagnetic noise and 

lightning, and their suitability in discharge-sensitive environments. 

Early optically powered sensor systems were operated with lowest speed analog or digital 

optical signals in order to cope with the few milliwatts of available optical power [45] – [47]. 

For instance, high-voltage installations have been monitored by means of an optical signal 

[47]. In other implementations microelectromechanical systems were activated optically to 

perform remote switching [48], or splitting ratios of couplers in optical communication 

networks were adjusted [49]. A unidirectional transmission of data at 22.5 Mb/s was 

demonstrated, powered optically by a compact disc laser diode (LD) [50], and also local area 

network applications have been tested [51], [52]. More recently, photovoltaic (PV) converters 

in series have been used to provide higher voltage swings, and thus allow more complex 

electronic circuits [53], [54]. However, so far, due to power limitations, demonstrations were 

restricted to very simple functions. Demanding applications that require sampling, generation, 
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and transmission of moderate digital bit streams have not been realized. In this section, we 

report online remote optically powered video sensing and streaming with a video graphics 

array resolution at 100 Mb/s. Using an optimized single-cell PV converter, we drive state-of-

the-art electronics with voltages around 0.80 V. A serialization of converter cells is not 

required, keeping the converter costs low. Full-color video transmission at 15 frames per 

second is demonstrated. The sensor platform is easily configurable to host a multitude of other 

physical sensors. 

System Configuration 

A schematic of the optically powered video camera is shown in Fig. 5.1. The base station and 

remote camera unit are connected with a single gradient-index multimode fiber (GI-MMF, 

62.5-µm single core by OFS-Optics). All power required for the operation of the remote unit 

is supplied by a high-power LD at the base station [see Fig. 5.1 (left)]. The high-power LD 

provides up to 1-W fiber-coupled optical power at 810-nm wavelength, for which sources 

have become very reliable and inexpensive. The uplink data channel for transmitting a video 

stream from the optically driven remote unit transmits at 1310 nm. Power and data channels 

are combined into the single fiber connecting base station and remote unit by respective 

810 nm/1310 nm thin-film-filter-based wavelength-division couplers. A downlink channel for 

controlling the remote unit does not exist. 

 
Fig. 5.1 Schematic of data and power transmission over fiber. An 810-nm wavelength LD in the base 

station drives remote unit electronics via a PV converter cell. Data acquired on the remote unit are 

encoded on a 1310-nm LD (Tx), and coupled into the same fiber supplying the power. Received video 

data are decoded in the base station with an FPGA. Data are transmitted in one direction only. Other 

abbreviations, see text. 

A key component of the remote unit is a fiber-illuminated PV converter [Fig. 5.1 (right)]. 

Details of the opto-electrical conversion are discussed in the following section. The converter 

cell output voltage is raised and stabilized with an electrical–electrical voltage converter 

(direct current DC–DC booster). This way complex electronics assembled on the remote unit 

can be operated at a standard 2.5-V voltage level. Electronics in the remote unit consist of a 

low-power complementary metal-oxide semiconductor (CMOS) camera sensor, a complex 

programmable logic device (CPLD) for serializing 8-bit-parallel camera data, and a 16-bit 

general purpose microcontroller (µC) storing initialization routines. Data acquired and 

processed on the remote unit are directly modulated at 100 Mb/s onto the 1310-nm data 
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channel LD. Details on data acquisition, transmission, and decoding are given in a later 

section. 

The optical attenuation in the fiber channel is 2.3 dB for an exemplary 200-m fiber link 

between base station and remote unit. This number includes the 810/1310-nm wavelength-

multiplexing coupler losses that contribute 0.6 dB each, fiber attenuation at 810 nm in the 

order of less than 0.8 dB for 200-m distance, fiber splices and connector losses that account 

for another 0.3 dB. For camera link operation the remote unit circuits require an electrical 

power of 103 mW at 2.5 V. The electrical–electrical voltage conversion from 0.8 V of the PV 

cell is > 75%. With this load attached, the actual optical–electrical PV conversion takes place 

with 33 % efficiency. Factoring in all transmission and conversion losses, a total of 670 mW 

fiber-coupled power needs to be launched in the base station. 

PV Operation of Remote Unit 

All electrical energy required for the remote unit sensor circuitry is supplied by a miniaturized 

PV cell as depicted and characterized in Fig. 5.2. The single-cell GaAs-based PV converter is 

optimized for illumination with 810-nm wavelength, and supplies an open circuit voltage of 

1.15 VocU  . Fig. 5.2 (b) shows an enlarged view of the active area of the cell (1 mm 

diameter). Width and height of the top electrode grid fingers were optimized to minimize 

shading losses while efficiently collecting photo currents. The single-cell design is tolerant to 

partial illumination, unlike converter configurations serializing multiple cells. Keeping a 

single-cell layout also reduces the number of processing and connectorization steps. The 

circular cell design is well matched to illumination from fibers, its active area may be exposed 

to optical power densities up to 50 W/cm. This is typically 500 times higher than in 

conventional, large-scale PVs. Opto-electrical conversion maximally is 50 % for a power 

density of 6.5 W/cm² (open circuit case, no load attached). Comparable power conversion 

efficiencies in similar material systems have been reported in the past, the record being 56 % 

with an external quantum efficiency > 90 % [63]. The PV cell used in this setup was designed 

and processed by Fraunhofer ISE (Institute for Solar Energy Systems). For details on the 

metal–organic vapor-phase epitaxy layer structure, refer to [64]. 

 
Fig. 5.2 (a) Unmounted single-cell PV converter with a diameter of 1 mm; (b) enlarged view of cell 

mounted on a metal casing. (c) Remotely available converted electrical power for four optical 

illumination levels. O/E conversion efficiencies given for maximum power extraction. 
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The electrical power as a function of the PV cell voltage for different optical input powers 

are plotted in Fig. 5.2 (c). The curves are obtained by sweeping an external load resistance 

from short circuit ( 0LR   to open circuit ( )LR  . The plot shows that for an 

illumination with 400 mW of optical power (50 W/cm), a total of up to 133 mW electrical 

power can be harvested. To run the device at its optimum conversion efficiency, it needs to be 

operated at a load resistance around 5LR   . The PV cell voltage then is 0.8 V, which is 

sufficient to start up the oscillator-stage of the electrical–electrical converter (DC–DC 

booster). The respective opto-electrical (O/E) conversion efficiency at this best operation 

point then becomes 33 %. Higher O/E conversion efficiencies can be attained for smaller 

illumination levels. With reduced illumination, there is less internal thermal heating and in 

consequence inner resistance decreases [64]. 

Video Data Acquisition and Transmission 

At the location of the remote unit, a full-color video signal is acquired and digitized by a low-

power CMOS camera chip. The continuous video stream has a resolution of 15 frames per 

second and 640 480  pixels (8-bit uncompressed red/green/blue data). The camera chip 

consumes 40 mW at a clock cycle of 12.5 MHz. A low-power microcontroller (Texas 

Instruments MSP430 series [36]) initializes the camera chip over an I²C interface (intelligent 

interface controller). Video data from the eight digital output ports of the camera chip are then 

aggregated at 100 Mb/s and Manchester-encoded with an XOR stage in a complex 

programmable logic device (128 cell CPLD Xilinx Cool-Runner). The CPLD together with an 

external clock oscillator is estimated to dissipate another 40 mW. The encoded signal then 

directly modulates a 1310-nm wavelength LD. The LD is operated slightly above its low 

threshold current of 10 mA, and couples 2 mW of optical power into the fiber. 

 
Fig. 5.3 Optically powered remote unit with connecting fiber at bottom right. All electronics in the unit 

are driven after O/E conversion by the high-efficiency PV converter (PV cell). 

A wavelength of 1310 nm was chosen for the data transmission because at > 100-nm 

distance from the 810-nm power channel it can be easily separated with inexpensive, thin-

filter-based wavelength-division couplers. Attenuation for the used MMF at 1310 nm is 

merely 0.5 dB/ km . Transmitting data at 100 Mb/s over 200 m uses a fraction of the 

specified 580 MHz km  fiber-bandwidth-length product, but requires using GI fiber instead 

of step-index fiber [51]. We did not observe detrimental effects from guiding power and data 
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channels in the same fiber. Given the 62.5-µm core, power densities remain moderate, and are 

uncritical even for fiber connectors. An optically powered remote unit prototype is shown in 

Fig. 5.3. The PV cell for O/E power conversion is mounted on a metal bracket for thermal 

dissipation. 

 
Fig. 5.4 (a) Base station receiver diode connected to IO-ports of an FPGA-board sampling and decoding 

video data. (b) Eye diagram of decoded data after 200 m fiber length. (c) Optically powered video 

transmission viewed in a 640 480  pixel window on a laptop computer display. 

After transmission through the optical fiber link, data are detected at the base station with a 

standard receiver diode [see Fig. 5.4 (a)]. The dynamic input range of the receiver reaches 

from –3 to –38 dBm. With a data signal power of approximately –3 dBm in the base station 

before the receiver there is ample system margin. Thin-film filters in the couplers easily 

realize an isolation of > 30 dB between power and data channels, required for avoiding 

crosstalk into the data channel [52]. Bit-error-rate tests were conducted and showed error-free 

performance. A clear and open eye diagram as received under the above conditions is shown 

in Fig. 5.4 (b). Synchronization of the video stream is guaranteed by sending and detecting 

control frames. For clock extraction, the 100-Mb/s data are sampled with 2 Gbit/s on 

differential-input ports of a field-programmable gate-array (FPGA) board (Xilinx Spartan 2). 

The Manchester signal is decoded on the board, video information color-converted and 

buffered in graphics memory for viewing on displays as in Fig. 5.4 (c). 

Conclusion 

We have demonstrated an optically powered video camera link that allows acquiring and 

communicating a 100-Mb/s video stream over hundreds of meters distance. The remote unit 

and base station are connected by a single multimode glass fiber that is immune to 

electromagnetic noise or power surges. Effectively, 133 mW electrical power were made 

available on the remote unit by means of a miniaturized PV converter cell. It was shown that 

complex, programmable sensor circuitry may be operated. At present, a point-to-point 

connection has been realized. Any common passive optical network topology, however, can 

be implemented. Identifying sensor nodes in such networks would be simple, because unique 

addresses can be stored in electronic memory. This is less costly than, e.g., using fiber Bragg-

gratings in all-optical sensor networks. The general sensor platform is well suited for sensor 

applications in hazardous and electrically sensitive environments. The used components are 
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inexpensive, with further potential in cost and size reduction. Transmitting power and data 

over a single-core MMF proved to be uncritical, permitting high-data-rate light-weight 

installations. With ever-evolving electronics, we expect to see an increase of processing 

power and a further growth of sensor complexity, which makes the “power-over-fiber” 

scheme even more attractive. 

5.2 Video Transmission System with Control Channel 

Reconfigurable hardware for power-over-fiber applications 

M. Dreschmann, M. Hübner, M. Röger, O. Sander, C. Klamouris, J. Becker, 

W. Freude, and J. Leuthold 

in Proc. 20th International Conference on Field Programmable Logic and 

Applications (FPL), Milano, Italy, August 2010. Reprinted, with permission, 

from [C2] © 2010 IEEE 

The above described system has been developed further and the results of this development 

were published in 2010 [C2]. Most important improvements are a new photovoltaic converter 

delivering up to 2 V under high power illumination, the installation of a downlink data 

channel from base station to remote unit, an increase in the uplink data rate from remote unit 

to base station to 160 Mbit/s, and the equipment of the remote unit with servo motors to 

manipulate the camera module. Steering of the camera module is done via a web interface 

hosted in the base station, which sends the manipulation commands via the optical downlink 

communication channel to the remote unit.   

System Overview 

The optically powered remote platform is connected to the base station by an optical fiber 

which carries power in form of light and control data from the base station to the sensor 

(downlink), and by a second fiber for the transmission of video and further telemetric data 

back to the base station (uplink) as illustrated in Fig. 5.5. With the help of wavelength splitters 

it is also possible to carry both optical signals over one fiber as we demonstrated in [65]. 
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Fig. 5.5 System overview  

The remote platform shown in Fig. 5.6 consists of two printed circuit boards (PCB) 

connected by high density connectors. The lower PCB holds the optical interfaces and the 
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signal processing components, namely an MSP430 microcontroller and an Actel Igloo field-

programmable gate array (FPGA). The upper PCB serves as the actual platform for the 

complementary metal-oxide semiconductor (CMOS) video sensor and the motors. So the 

sensor and actuator types can be changed easily for tailoring the sensor platform to different 

applications. Due to the fine granular reconfigurability of the Actel Igloo FPGA a wide range 

of types of sensors and actuators may be connected directly omitting the need for power 

consuming interface circuits. 

 

 
Fig. 5.6 Optically powered sensor platform  

The base station transmits energy and control data to the remote platform and receives 

video and telemetric data from it. The signal processing part of the base station is based on a 

Xilinx Virtex-5 FPGA which holds a LEON-3 system-on-chip from Gaisler Research [66]. 

The digital hardware of the remote platform and the base station need appropriate interfaces 

to the glass fibers connecting both platforms. These analog frontends are described in the next 

section. 

Analog Front-Ends 

Fig. 5.7 shows a simplified version of the interface circuit used to connect the downlink glass 

fiber to the base station’s FPGA. Basically the circuit provides an adjustable current source 

which drives a high power laser diode (HP-laser diode) whose optical output power is 

transmitted to the remote platform via the glass fiber. Additionally the laser diode current and 

therefore its output intensity can be modulated by a data signal which is generated by the 

FPGA. 
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Fig. 5.7 Laser driver at the base station  

To provide the necessary power to the remote sensor, a laser diode with an optical output 

power of up to 1.5 W is used. However, for a testbed with 200 m of fiber between base station 

and sensor we only needed 800 mW of optical output power to provide 320 mW of electrical 

power to the sensor platform. For an optical output of 800 mW, the laser diode needs a current 

of approximately 1.8 A which is regulated by operational amplifier OP1 in conjunction with 

transistor T1 and shunt resistor R1. The digital control data signal is amplified by the 

transistors T3 and T4 and then coupled capacitively into the main laser diode current by C2. 

Due to the capacitive coupling a DC-free line code like Manchester needs to be used. The 

74HCT04 inverters accomplish the level shift from the FPGA outputs operating at 3.3 V to a 

voltage of 6 V used by the rest of the modulation circuit. 

At the remote platform the signal of the downlink fiber is received by a photovoltaic 

converter (PVC) and needs to be separated back into its power and its data component. This is 

done by an LC filter circuit as illustrated in Fig. 5.8. 

The power component is isolated by inductor L1 and charges a 50 F gold-cap capacitor. 

Depending on the actual load, this primary input voltage of the remote module is in the range 

between 1.8 and 2.2 V. The gold-cap capacitor acts as an energy reservoir to supply the 

actuators with up to two watts of power upon request. The data signal which is modulated on 

the power signal of the downlink is extracted by capacitor C2 and amplified by a subsequent 

transimpedance amplifier and a comparator. Its output is subsequently processed by the Actel 

Igloo FPGA located at the remote platform. 
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Fig. 5.8 Optically powered sensor platform – receiver frontend 

Experiments showed that a square wave signal of up to 200 kHz may be transmitted via the 

downlink. The limitation in speed is due to restrictions of the PVC and the high power laser 

diode at the base station. If a higher data rate is required for the downlink, this can be 

achieved by a separate optical link. However, the control data carried by the downlink is only 

required to transmit desired positions for the actuators and some configuration options for the 

camera sensor and hence the bandwidth still is sufficient. To further increase the transmission 

reliability a Manchester encoded signal of only 100 kbit/s is used. 

The contrary is true for the uplink where the uncompressed video stream data from the 

camera sensor need to be transmitted. For that purpose at least 128 Mbit/s are necessary. Data 

is transmitted with an 8B10B line coding so that the resulting bit rate equals to 160 Mbit/s. 

Because the uplink does not need to transmit power, a standard optical transmitter and 

receiver pair suitable for the desired data rate could be used. 

The primary input voltage of approximately 2 V is only appropriate to power the MSP430 

of the remote platform. The FPGA and further components like the camera sensor and the 

actuators need other voltage levels and better voltage stability. These voltages are generated 

by a set of switching mode power converters. For the FPGA and the camera sensor they 

provide a stabilized output of 1.5 and 2.5 V, respectively. A 5 V output to power the actuators 

is generated upon request. Because costs of the optical components strongly depend on the 

amount of optically transferred power, high efficiency of the power supply circuits at the 

remote platform is very important. The used converters from TI (TPS61030 [67] and 

TPS62000 [68]) provide a very high efficiency of up to 96 %. 

Remote Platform 

Besides the analog front end of the remote platform, an Actel Igloo FPGA (AGL250VQ100, 

[69]) and a MSP430 microcontroller from TI (MSP430F149, [36]) are required to handle the 

signal processing at the optically powered remote platform. They are connected to the actual 

camera sensor (OV7640 from Omnivision [70]) and the actuators which are two small servo 

motors. 
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The microcontroller is responsible for the power management on the remote sensor 

platform and controls the switching mode power converters and hence the power distribution 

to the other parts of the sensor. Furthermore its integrated analog-digital converter is used to 

monitor all power supply voltage levels and its pulse width modulation channels control the 

movement of the servo motors used to change the position of the camera sensor. 

The main responsibility of the FPGA located in the remote platform is receiving the video 

data from the camera sensor and transmitting them to the base station. The FPGA also 

decodes the incoming control data from the base station, which is received by the analog front 

end. The output of the CMOS sensor is a 4:2:2 chroma subsampled YCbCr signal with 8 bit 

resolution per component which is directly sent to the base station. The FPGA is controlled by 

the microcontroller over a serial peripheral interface (SPI) connection and allows the 

controller to receive the control data and insert command responses and telemetric data into 

the uplink data stream. The relationship between microcontroller and FPGA is illustrated in 

Fig. 5.9. 
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Fig. 5.9 Signal processing of the remote sensor platform 

The data transfer between the base station and the remote platform is packet based. The 

packet structure is identical for downlink and uplink. A preamble of four bytes is followed by 

a length code of two bytes, a two byte type code, up to 65534 data bytes and a 32 bit cyclic 

redundancy check (CRC). The distinction between different types of data is done by the type 

code as listed in Table 5.1. 

 

Table 5.1 Packet types 

Packet Type Description 

0x0000 – 0x01DF Video Data 

0x01E0 End-of-Frame Marker 
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Packet Type Description 

0x1000 Audio Data 

0xF000 Command Data 

0xFFFF Filler Packet 

 

As one can see, there are 480 different packet types for video data. Each type corresponds 

to one line of the video frame which has a resolution of 640 480  pixels. The data of 

640 pixels from one line is transmitted in one packet. Because of the 4:2:2 chroma 

subsampling, one pixel occupies two bytes and therefore 1280 data bytes are required per line 

and video packet. 

The frame coder shown in Fig. 5.9 is responsible for the formation of the miscellaneous 

data packets from Table 5.1. Besides the video data also command data and audio data 

coming from the MSP430 via SPI is processed. If no data is ready to be transferred, the frame 

coder inserts filler packets. They contain dummy data and thus ensure that the uplink does not 

get idle. This is necessary, because the analog receiver circuit at the base station needs some 

microseconds to recover its optimal operation conditions after a longer idle time thus resulting 

in data corruption. 

Base Station 

The signal processing part of the base station is based on a Xilinx Virtex-5 FPGA 

(XC5VLX110T, [71]) which holds a LEON-3 system-on-chip (SoC) from Gaisler Research 

[66]. The SoC is mainly build of the LEON-3 CPU core, a DDR2 memory controller (to 

access 256 MB of external RAM provided by the ML509 board), an Ethernet controller, a 

VGA controller and an UART from the LEON-3 library (see Fig. 5.10). Two additional 

modules, a module for the communication with the sensor platform and a hardware JPEG 

encoder where implemented newly. 
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Fig. 5.10 SoC overview of the base station  

Evaluation 

Table 5.2 shows the power consumption of the individual components of the remote platform. 

The Actel Igloo FPGA only consumes 80 mW. When the servo motors are inactive, the whole 



74 Chapter 5: Applications with High Power and High Bandwidth Demand 

 

 

sensor platform requires 160 mW of electrical power. Because in total 320 mW arrive at the 

platform, another 160 mW are available to charge the gold-cap capacitor. 

 

Table 5.2 Power consumption of the remote platform 

Component Power consumption 

MSP430  1 mW 

Analog Front End (RX)  0.5 mW 

Actel Igloo FPGA  80 mW 

CMOS Sensor  50 mW 

Analog Front End (TX)  20 mW 

Servo motors (max)  1800 mW 

Total (with motors inactive)  160 mW 

 

Some typical performance data of the demonstrator is illustrated in Table 5.3. The actual 

video frame rate is limited to 12.5 frames/s due to a layout error at the sensor PCB. However, 

the general capability of the demonstrator to process up to 25 frames/s was verified by a test 

image generator implemented in the Actel Igloo FPGA. 

 

Table 5.3 Performance of different components and data links 

Component / Data Link Performance 

Downlink  100.5 kbit/s 

Uplink (effective)  128.5 Mbit/s 

Uplink (line)  160.5 Mbit/s 

Video frame rate (actual)  12.5 frames/s 

Video frame rate (max)  12.5 frames/s 

LEON-3 SoC operating frequency  120.5 MHz 

JPEG Encoder (@ 120 MHz, 640x480)  12.5 frames/s 

 

Table 5.4 shows the logic occupation of the utilized FPGAs. Both have still enough free 

resources for further enhancements. 

 

Table 5.4 Logic occupation of the utilized FPGAs in the remote platform (Actel) and in the base station 

(Virtex 5) 

Component Logic Occupation 

Actel Igloo FPGA  2,539 Core Cells (41 %) 

Virtex 5 FPGA  15,713 V5-Slices (22 %) 
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Conclusion and Future Work 

Our system demonstrates that it is possible to assemble an optical powered video camera 

system which is as powerful as ordinary systems but also comprises the typical advantages of 

pure optical powered systems like an advanced robustness to electromagnetic interferences. 

The optically transferred power is not only sufficient to operate a CMOS video sensor and 

transmission logic but also allows us to drive actuators which are able to move the sensor. 

The experiment further shows, that parallel working, FPGA based hardware has 

advantages over a traditional approach with low power processors. Additionally, the hardware 

can be used to reduce the communication effort by including preprocessing functionality. This 

could be e.g. filters for image processing or pattern recognition algorithms. With this 

functionality the remote sensor could detect a predefined scenario in the pictures and send a 

message to the base station which could be useful for surveillance cameras. Due to the fact 

that reconfigurable hardware can be re-used with other algorithms, the functionality on the 

sensor can be reconfigured if required. This flexibility enables a high degree of freedom for 

the camera approach which then can be deployed in different applications. 

While there is a wide potential to improve the presented sensor platform as well as the base 

station in terms of power consumption, performance and usability, future work will also 

include the design of more complex optical powered networks with a wider spectrum of 

sensor types as mentioned in [72]. Such an advanced network would include several sensors 

which are operated simultaneously in the network as well as optical splitters and switches to 

optically connect the different sensors to a base station. The splitters and switches allow the 

distribution of power and communication bandwidth to the sensors depending on their actual 

needs. This requires also new communication protocols and advanced power management 

techniques at the involved remote sensor platforms and the base station. 

 





 

 

Summary and Future Work 

Optically powered sensor networks are a promising solution for sensor networks where 

standard electrical wiring or wireless techniques fail.  

In this thesis, optically powered sensor networks have been investigated. Advantageous 

application fields have been identified and appropriate prototypes of different sensor nodes 

were developed, set up and characterized. Broad spans of power consumptions and data rates 

of the respective nodes were covered. Base stations to gather and display the information 

collected by the nodes and to supply the sensor nodes have been set up, too. Further, a special 

protocol taking into account passive optical fiber networks characteristics as well as different 

needs of different nodes has been developed. Improvements in power consumption of the 

nodes enabled through the special communication protocol were exploited. 

 

Studies on Optical Power Supplying: For each node, the optical power supply was adapted 

to guarantee optimum performance. Different photovoltaic power converters as well as 

lasers were studied. Further, the circuiting of several converters was studied to optimize the 

power conversion efficiency especially for small optical powers.  

In future, multi-segment photovoltaic converters optimized for small illumination power 

would allow for a more compact design of the sensor node. Decreases of the saturation 

current would lead to significant improvements in conversion efficiency. Even integration 

of a laser into the converter is possible. With all optical components integrated into a single 

housing inexpensive and compact sensor nodes are feasible. 

 

Sensor Node and Base Station Design: Different sensor nodes were developed, set up and 

characterized. A node comprising a video module and servomotors for moving the module 

and nodes performing simple operations like measuring temperature, brightness and 

acceleration were presented. Appropriate base stations were set up also.  

Electronics – of which the sensor nodes and base station are mainly set up – are a rapidly 

evolving field. Supply power of logic circuits and sensors go on reducing, whereas 

performance is increasing. So in future, sensor nodes may be operated with less power or 

will perform more complex operations. Together with more compact optical components 

the design becomes less complex and optically powered sensor networks might become 

commercially available in the near future. Even new application fields may be opened up 

where electronics sensors are not yet available. 

 

This work was supported by the BMBF joint project “Components for Optical Monitoring of 

Access Networks (COMAN)”, funded by the German Ministry of Education and Research. 

 

 





 

 

A. Appendix 

A.1. Lower Limit for the Saturation Current of a Diode 

The efficiency of photovoltaic conversion is influenced by numerous parameters. Many of 

them can be optimized by an appropriate choice of structure, material and operating condition. 

Nevertheless, some of these factors are limited by physical constraints, e.g., by the saturation 

current of a diode. The smaller the saturation current of a photodiode is, the larger its open-

circuit voltage and therefore its conversion efficiency becomes, see Eq. (2.1.11). In the 

following section, the ultimate lower limit for the saturation current will be derived. It results 

from a detailed balance between emitting and absorbing photons in thermodynamic 

equilibrium [21]. The radiation of a black body in thermal equilibrium is described by 

Planck’s law, which in the following will be applied to the radiative generation and 

recombination of carriers in a p-n junction [1]. 

Planck’s law can easily be derived from photons (indexed with  ) captured in a cavity in 

vacuum with dimensions xL , 
yL  and zL  and of volume V  

 .  x y zL L L V  (A.1) 

Since the photons are localized in the cavity, their momentum p  of the states gets quantized 

in multiples of  

 , , and ,     x y z

x y z

h h h
p p p

L L L
 (A.2) 

where h  is Plank’s constant. A single state occupies in momentum space a volume of 
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Each state in momentum space belongs to 2 photon states coming from two orthogonal states 

of polarization. The spectral density of photons ( )n W  in the cavity in an energy interval 

hf W  to dW W , where f  is the frequency, depends further on the density of states 

( )D W  and their distribution function ( )f W  

 ( ) ( ) ( ).  n W D W f W  (A.4) 

Photons have an integral spin and thus the Bose-Einstein distribution gives the average 

number of photons per mode of the electromagnetic field having energy W hf  

 
1

( ) .

exp 1
 

 
 

 

f W
W

kT

 (A.5) 

The quantity k  is Boltzmann’s constant, and T  is the absolute temperature of the photon gas. 

To calculate the density of states ( )D W  we need the number of states ( )N W  
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From Eq. (A.3) we only know the momentum space a state occupies. This has to be 

transformed in energies. For photons, we find with the velocity of light c  in vacuum 

 .hf c p  (A.7) 

So, the number of states ( )N W  is given by the spherical volume in momentum space with 

radius p  divided by the volume for one state given in Eq. (A.3) multiplied by 2 for the 

polarization state, 
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Inserting Eq. (A.6), Eq. (A.8) and Eq. (A.5) into Eq. (A.4) one finds the spectral density of 

photons (unit 31 m J ) 
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The spectral energy density ( )E W  (unit  3J m J ) results by multiplying ( )n W
 
with the 

photon energy 
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The black body radiates isotropically and the energy travels with the velocity of light c . The 

radidated spectral intensity ( )U W  (unit 2W m J ) is then 
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The black body emits intensity 
,H ( )U W  into halfspace H 2  , where   is the angle 

with respect to the normal of the emission area and   is the azimuth angle,
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A diode in thermal equilibrium emits and absorbs the same number of photons from and to 

a halfspace which is at the same temperature as the diode [21]. Emission of photons happens 

by spontaneous recombination of electron hole pairs with rate 0r , absorption by generation of 

electron hole rate with rate 0g . In equilibrium, the rates are equal and are connected to the 

intrinsic carrier density in  over the coefficient B  for radiative ecombination, 

 2

0 0 .  ig r Bn  (A.13) 

Only photons with energy  GW W  are capable to generate electron hole pairs. For the 

generation rate follows 
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In equilibrium, the electron concentration n  in the conduction band and the hole 

concentration p  in the valence band are connected by the law of mass action ( in  is the 

intrinsic density), 

 2. inp n  (A.15) 

In non-equilibrium, the law of mass action is modified by an exponential factor 
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with equivalent voltage U  and thermal voltage /TU kT e , where e  is the elementary charge. 

This modification also affects the recombination rate r  in non-equilibrium 
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Recombination of electrons and holes is the cause for the reverse current and so the reverse 

current density 
radJ  (unit 2A m )for radiative recombination can be calculated to  
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with saturation current density ,radsJ . This minimum reverse current is unavoidable in p-n 

junctions. Calculating the reverse current ,rad ,rads sI J F  for an area 2(40 µm)F  using 

Eq. (A.18) yields 4.4 fA. Standard InGaAs pin photodiodes [94] with 40 µm in diameter show 

a reverse current of 30 pA. Non-radiative recombination processes which were not taken into 

account in the above calculations lead to a reverse current of real devices which is four orders 

of magnitude larger than the theoretical minimum. 

 

  

                                                 

 

 
1
 This formula for the recombination rate is an approximation which only holds when the Boltzmann 

approximation applies. Here, in the case of photodiodes employed as photovoltaic converters, this a very good 

approximation. Details and an exact derivation can be found in [1]. 
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A.2. Impedance Matching 

Impedance matching means that the maximum power is extracted from a given source. In Fig. 

A.1 two sources are depicted for comparison: a real current source (a) and an idealized 

photodiode (b). The real current source consists of an ideal current source with an internal 

resistor iR  connected in parallel. The source current 
qI  splits up into the loss current iRI  

through iR  and the current through the attached load LRI . In the idealized photodiode instead 

of an internal resistor a diode is connected parallel to the ideal current source. The diode 

represents the p-n junction in which light is absorbed and the photo current is generated. In 

the equivalent circuit of the photodiode the source current 
qI  equals the generated photo 

current. 

Iq D RL

(a) (b)

ID

IRL

Iq RL

IRi

IRL

Ri UU

 
Fig. A.1 Equivalent circuits of a real current source and an idealized photodiode. (a) The real current 

source consists of an ideal current source with an internal resistor Ri in parallel. The source current Iq 

splits up into the loss current IRi through Ri and the current through the attached load IRL. (b) In the 

idealized photodiode instead of an internal resistor a diode is connected parallel to the ideal current 

source. 

The loss mechanisms in these sources – the internal resistor in the real current source and 

the diode in the photodiode – limit the power efficiency of the sources. Efficiency   is 

defined as ratio between power LRP given to the load and total power totP  

 L L

tot L i

  


R R

R R

P P

P P P
 (A.19) 

The output voltage and current depend on the attached load. Short circuiting ( L 0R ) gives 

an output voltage of 0 and the source current is flowing completely through the load. For an 

open circuit ( L  R ) the whole current flows internally and the voltage at the output gets 

maximum. 

The output current in dependence of the output voltage U  for the real current source is 

shown in Fig. A.2 (a). At a real current source the output current LRI  drops linearly with the 

voltage whereas the internal loss current iRI  increases. The calculated output power dissipated 

in the load LRP  and in the internal resistor iRP  calculated from (a) over output voltage U  are 

shown in Fig. A.2 (c). The power given to the load shows a maximum where both powers are 

equal. This means efficiency is only 50%. The total emitted power of the current source totP  is 

also depicted and grows linearly with the voltage.  
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(a) (b)

(c) (d)

 
Fig. A.2 Output current and power in dependence of the output voltage for the circuits shown in Fig. A.1. 

(a) At a real current source the output current IRL drops linearly with the voltage whereas the internal loss 

current IRi increases. (b) At a photodiode the exponential dependence between voltage and current of the 

pn-junction ID is visible. (c) Calculated power dissipated in the load PRL and in the internal resistor PRi, 

calculated from (a). The power given to the load shows a maximum where both powers are equal. This 

means efficiency is only 50%. The total emitted power of the current source Ptot is also depicted and 

grows linearly with the voltage. (d) In the photodiode also exists a maximum for the given power PRL to 

the load. But here, efficiency is significantly higher than in comparison to (c). 

In Fig. A.2 (b) the output current in dependence of the output voltage U  for the idealized 

photodiode is shown. The exponential dependence between voltage and current through the 

p-n junction DI  is visible. In the photodiode exists also a maximum for the given power LRP  to 

the load which is depicted in Fig. A.2 (d). But here, efficiency is significantly higher than in 

comparison to (c). Reason for this can found in the current voltage characteristic of a diode. A 

forward biased diode needs some few 100 mV until a current can efficiently flow. This can be 

seen as kink in the current-voltage plot. Operated beneath the kink the output current of the 

photodiode stays constant whereas the voltage grows linearly. As a consequence, the 

photodiode is a very efficient power source.  
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A.3. Demarcation Device 

Schematics and layouts of the battery powered demarcation devices which were discussed in 

Section 4.1 are presented here. Two realizations were discussed: one with a VCSEL and one 

with a DFB laser in the transmitter. 

Schematics 

 
Fig. A.3 Logic circuits consisting of microcontroller (MSP430F22x4), Joint Test Action Group (JTAG) 

programming and debugging interface, and manual reset switch S1. Circuits used in Section 4.1. 

(a) (b)  

Fig. A.4 (a) Schmitt-Trigger as comparator. Two potentiometers allow individual adjustment of hysteresis 

and threshold. (b) Connectors for the battery. Both circuits used in Section 4.1. 
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Fig. A.5 Receiver consisting of photodiode, transimpedance amplifier and dual voltage amplifier. The 

output signal of the voltage amplifier is routed to the comparator input (COMP-IN). Both circuits used 

and discussed in more detail in Section 4.1. 

 

(a)      (b)  

Fig. A.6 Transmitter with driver stage for (a) the DFB laser and (b) the VCSEL. Both circuits used and 

discussed in more detail in Section 4.1. 
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Layouts 

(a)   (b)  

Fig. A.7 Layout of demarcation device electronics with a DFB laser as transmitter in (a) top and (b) 

bottom view, circuits shown in Fig. A.3 - Fig. A.6. 

 

(a)   (b)  

Fig. A.8 Layout of demarcation device electronics with a VCSEL as transmitter in (a) top and (b) bottom 

view, circuits shown in Fig. A.3 - Fig. A.6. 

  



A.4 Optically Powered Sensor Node 87 

 

 

A.4. Optically Powered Sensor Node 

Schematic and layout of the optically powered sensor node which was discussed in Section 

4.2 are listed here.  

 

Schematic 

 
Fig. A.9 Logic circuits consisting of microcontroller (MSP430F2410IP), JTAG programming and 

debugging interface, driver stage for the transmitter, digital sensor interface, dual inline switch, analog 

sensor interface, and manual reset switch S1. Circuits used in Section 4.2.2. 
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Fig. A.10 Receiver consisting of selectable photodiode, transimpedance amplifier, dual voltage amplifier 

with gain suppression, and comparator. Circuits used in Section 4.2.2. 

 

 
Fig. A.11 Power supply consisting of photodiode array, voltage supervisor, switches for power supplies, 

and DC/DC boost converter. Circuits used in Section 4.2.2. 
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Layout 

 
Fig. A.12 Layout of the sensor node electronics in top view, circuits shown in Fig. A.9 - Fig. A.11. 

 
Fig. A.13 Layout of the sensor node electronics in bottom view, circuits shown in Fig. A.9 - Fig. A.11. 
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A.5. Constants 

 346.626 068 10 Jsh    (A.19) 

 191.60217646 10 Ce    (A.19) 

 
12

0

As
8.854188 10

Vm
    (A.19) 

 
0 0

1 m
299792458

s
c

 
   (A.19) 

 
23 J

1.3806488 10
K

k    (A.20) 
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Glossary 

Acronyms 

AC Alternating current 

ACK Acknowledge 

ADC Analog-to-digital converter 

Addr Addressing interval 

BS Base station 

cAWG Cyclic arrayed waveguide grating 

CMOS Complementary metal-oxide semiconductor 

CO Central office 

Com Communication interval 

CPLD Complex programmable logic device 

CRC Cyclic redundancy check 

CSMA Carrier sense multiple access 

CW Continuous-wave 

DC Direct current 

DCO Digitally-controlled oscillator 

DD Demarcation device 

DFB Distributed feedback 

FER Frame error ratio 

FET Field-effect transistor 

FPGA Field programmable gate array 

FTTx Fiber-to-the-x systems with x = C, B, H for cabinet, building, home 

GI Gradient-index  

GSM Groupe spécial mobile 

GPON Gigabit passive optical network 

high-Q High-quality 

HP High power 

I²C Inter-integrated circuit 

IO Input/output 

ISO International organization for standardization 

JPEG Joint photographic experts group 

JTAG Joint Test Action Group (IEEE standard 1149.1) 

LD Laser diode 

LE-MAC Low-energy MAC 

low-Q Low-quality 

LPM Low power modes 

Lstn Listen interval 
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LTE Long term evolution 

MAC Media access control 

MEMS Micro-electromechanical system 

MMF Multimode fiber 

NPN Bipolar junction transistor with doping profile n-p-n 

NRZ Non-return to zero 

O/E Opto-electrical 

ODN Optical distribution network 

OLT Optical line termination 

ONU Optical network unit 

ONT Optical network termination 

OP Operational amplifier 

OTDR Optical time domain reflectometry 

PCB Printed circuit board 

PD Photodiode 

PNP Bipolar junction transistor with doping profile p-n-p 

PON Passive optical network 

PPC Photovoltaic power converter 

PRBS Pseudo random bit sequence 

PV Photovoltaic 

PVC PV converter 

RAM Random access memory 

RF Radio frequency 

Rp Photonic-power receiver 

Rq Request 

RV Rendezvous sequence 

Rx Receiver 

S-MAC Sensor MAC 

SCP-MAC Scheduled channel polling MAC 

SMF Singlemode fiber 

SNR Signal to noise ratio 

SoC System-on-chip 

SPI Serial peripheral interface 

TDM Time division multiplexing 

TIA Transimpedance amplifier 

Tx Transmitter 

TxEn Transmitter enable 

UART Universal asynchronous receiver / transmitter 

UMTS Universal mobile telecommunications system 

USB Universal serial bus 

VCSEL Vertical cavitiy surface emitting laser 

VGA Video graphics array 
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VLO Very-low-power low-frequency oscillator 

VoIP Voice-over-internet protocol 

VS Voltage supervisor 

VV Voltage amplifer 

WDM Wavelength division multiplexing 

WkUp Waking up 

WLAN Wireless local area network 

WSN Wireless sensor network 

WWW World wide web 

YCbCr Luma component, blue-difference and red-difference chroma component. 

µC Microcontroller 
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In optically powered networks, both, communication signals and power for 
remotely located sensor nodes, are transmitted over an optical fiber. Optical 
powering is a key enabler for a new generation of energy-autarkic multifunctio-
nal intelligent subscriber and sensor networks with a broad range of monitoring 
and communication functions related to security of homes and public spaces, of 
roads, bridges and personal health as well as to general-purpose communica-
tions. One can also envisage optical powering of shortrange passive optical net-
works comprising distributed link-supervision. 

Key features of optically powered networks are node operation without local 
power supplies or batteries as well as operation with negligible susceptibility to 
electro-magnetic interference and to lightning. Due to galvanic isolation be-
tween nodes and base stations, operation in electrostatic discharge-sensitive 
environments and operation without electromagnetic radiation from wires 
even at high and highest data rates become possible. 

In this book, different kinds of optically powered devices and networks are investi-
gated. Selected applications are demonstrated. The successfully implemented 
prototypes cover a broad span of power consumptions and data rates. With a 
newly developed protocol, a monitor node can be operated with an optical 
supply power of only 5 μW.
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