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Abstract 

The goal of the present thesis is to develop an innovative fluidic diode for the boiling water reactor 
KERENA of AREVA. This component, called the passive outflow reducer, must limit the loss of coolant 
in one flow direction, the backward direction, after the break of a large pipe connected to the reactor 
pressure vessel. In the opposite flow direction, the forward direction, the pressure loss in this 
component must be minimized not to jeopardize emergency core cooling. Finally, the passive outflow 
reducer must be compact and perform without moving part. 
 
Vortex diodes are developed to achieve high ratios between the backward and forward flow 
resistances. For this purpose, they produce a strong swirl in the backward direction. After the 
postulated break of this large pipe, the coolant is moderately subcooled or saturated. Under these 
conditions, the efficiency of the vortex diodes is adversely affected because the swirl they produce is 
degraded by two-phase effects. 
 
Therefore, the innovative passive outflow reducer design developed in the framework of this Ph. D. 
does not rely on swirl. It consists of profiled channels composed of two Venturi nozzles. The loss of 
coolant is reduced by enforcing energy dissipation and vaporization with the first nozzle and efficient 
choking of the two-phase mixture in the second nozzle where low sound speed and density are 
encountered. 
 
A compact and robust component is achieved by parallel arrangement of multiple identical double 
Venturi-nozzle channels. For the KERENA reactor, 37 channels are proposed. This yields a cluster 
with 250mm diameter and 900mm length which conveniently fits into the heavy duty reactor pressure 
vessel nozzle assuring no failure of the passive outflow reducer. 
 
A three-dimensional cavitation code is developed to describe the flow behavior of this innovative fluidic 
diode in the backward and forward directions under cavitating conditions. The stochastic-field method 
developed by Valiño is adapted to cavitating flows to combine the advantages of Euler and Euler-
Lagrange formulations. With this stochastic-field cavitation model, the various shapes of the bubble 
size spectrum are captured and the stochastic processes are treated in a fully Euler manner, and thus 
without excessive computational demand and complex algorithms. 
 
Large eddy simulations of the proposed passive outflow reducer design demonstrate the capability of 
the new modeling approach. 
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Kurzfassung 

Fluidische Diode für kritische Zwei-Phasen-Gemische 
 
Ziel der vorliegenden Arbeit ist es, eine innovative passive fluidische Diode ohne bewegliche Teile für 
den Siedewasserreaktor KERENA von AREVA zu entwickeln. Diese Komponente, der sogenannte 
passive Rückflussbegrenzer, limitiert den Kühlmittelverlust in rückwärtiger Strömungsrichtung nach 
dem postuliertem Bruch einer an dem Reaktordruckbehälter angeschlossen großen Leitung. In der 
entgegengesetzten Strömungsrichtung, der Vorwärtsrichtung, muss der Druckverlust in dieser 
Komponente minimiert werden, um  die Notkühlung des Reaktorkerns nicht zu mindern. 
 
Um ein hohes Verhältnis zwischen Vorwärts- und Rückwärtsströmungswiderstand zu erreichen, 
werden Wirbeldioden entwickelt. Diese Dioden erzeugen einen starken Drall, der den 
Rückwärtsströmungswiderstand erhöht. Nach dem postulierten Bruch der großen Leitung im KERENA 
Reaktor ist das Kühlmittel moderat unterkühlt oder gesättigt. Unter diesen Bedingungen verschlechtert 
sich die Effizienz der Wirbeldiode, da der Drall durch zweiphasige Effekte vermindert wird.  
 
Daher ist ein innovativer Rückflussbegrenzer im Rahmen dieser Doktorarbeit entwickelt worden, der 
nicht auf Drall beruht. Der innovative Rückflussbegrenzer ist eine parallele Anordnung von profilierten 
Strömungskanälen, bestehend aus je zwei aufeinanderfolgenden Venturi-Düsen. Der Verlust von 
Kühlmittel wird durch Energiedissipation und Verdampfung in der ersten Düse und effiziente Sperrung 
des Zwei-Phasen-Gemisches in der zweiten Düse, wo geringe Schallgeschwindigkeit und Dichte 
auftreten, erzielt. 
 
Die parallele Anordnung mehrerer identischer Strömungskanäle ermöglicht eine kompakte und 
robuste Bauweise. Für die KERENA Reaktor werden 37 Kanäle vorgeschlagen. Daraus ergibt sich ein 
Block mit 250mm Durchmesser und 900mm Länge, der in dem robusten 
Reaktordruckbehälteranschluss passt und sicherstellt, dass der Rückflussbegrenzer nicht ausfallen 
kann. 
 
Ein dreidimensionales Kavitationsmodell wurde entwickelt, um das Strömungsverhalten dieser 
innovativen fluidischen Diode in der vorwärts und rückwärts Richtungen unter kavitierenden 
Bedingungen zu beschreiben. Die stochastische Feldmethode von Valiño wurde für Kavitation 
erweitert, um die Vorteile von Euler und Euler-Lagrange Formulierungen zu kombinieren. Mit diesem 
Stochastischenfelderkavitationsmodell, sind die verschiedenen Formen des Blasengrößespektrums 
erfasst und die stochastischen Prozesse werden vollständig in einem Eulerschen Rahmen, und somit 
ohne übermäßige Rechenleistung und komplexe Algorithmen, behandelt. 
 
Large-Eddy Simulationen der vorgeschlagenen passiven Rückflussbegrenzer demonstrieren die 
Leistungsfähigkeit des neuen Modellierungsansatzes. 
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1 Introduction 

1.1 Background 

The accident of Fukushima in 2011 has strengthened the discussion about safety in nuclear power 
stations. Following an earthquake, reactor shut down was automatically actuated and emergency 
generators started to control electronics and coolant systems. Due to a tsunami, reactor’s power grid 
connection was broken and the room containing the emergency generators was flooded. As a result, 
those generators ceased working and the pumps could not circulate coolant water in the core. The 
core started to overheat. External assistance was hindered by flooding and earthquake damage. In 
spite of the existing safety system, radioactive release was not avoided. Actually this accident 
demonstrates that the technology of the 40 years old Fukushima nuclear power station was outdated 
and that active safety system alone cannot assure safety requirements.  

1.1.1 KERENA reactor 

Increased safety and reduced costs are achieved in the boiling water reactor (BWR) KERENA with a 
smart combination of active and passive safety systems. The passive safety systems use physical 
phenomena such as gravity and natural energy exchange to perform their designated safety functions 
without electrical power or active actuation by instrumentation and control (I&C) systems. This 
combination of active and passive systems is able to provide a protection of the core without operator 
intervention for three days. Furthermore, it reduces the costs and complexities in comparison to 
today’s active safety systems. 
 
The KERENA BWR of AREVA is a mid-capacity generation 3+ BWR. Its net electrical output is 1250 
MWe by design. Mid capacity power stations represent a good compromise between reduced 
operating and capital costs and electrical network stability. The main components and operating mode 
of the KERENA BWR are illustrated schematically in Figure 1-1. Saturated steam is produced in 
KERENA reactor core (1). It is routed through the high-pressure turbine (3) and the moisture 
separator/reheater (4) to the low pressure turbine (3). Due to the expansion of the steam, the turbines 
rotate and drive the generator (10). The steam leaving the low-pressure turbine condenses in the main 
condensers (5). The condensate returns to the reactor by condensate (6) and feedwater pumps (8) via 
a condensate cleanup system and a feedwater heating train (7).  
 

 
Figure 1-1: Basic diagram of the KERENA reactor [1]. 
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1.1.2 Emergency condenser system 

One of the passive safety systems of the KERENA reactor is the emergency condenser (EC) system. 
The EC system is an innovative concept. It passively removes excess heat and in particular the decay 
heat from the reactor pressure vessel (RPV) during transients and loss of coolant accidents (LOCA) 
without supplementary water inventory loss.  
 
The EC system consists of four identical sub-systems which are spatially separated and can operate 
independently from one another. Each of them is composed of a condenser, of a steam supply line, 
and of a condensate return line. The steam supply line connects the RPV to the condenser and the 
condensate return line connects the condenser back to the RPV. 
 
The condenser (Figure 1-2) is composed of a pre-chamber and a U-tube bundle. The pre-chamber is 
located in the drywell and separated into two parts. The upper-part, the steam distributor, collects the 
steam coming from the steam supply line and distributes it through a tube sheet to the U-tube bundle. 
The lower part is called the condensate collector since it collects the condensate coming from the EC 
U-tube bundle and conveys it to the condensate return line. The tubes are inclined so that the 
condensate is automatically gathered into the lower part. The entire U-tube bundle is located inside 
the core flooding pool which is filled with cold water. 

 
Figure 1-2: Parts of an emergency condenser sub-system: condenser (steam distributor, condensate 
collector, U-tube bundle), steam supply line, condensate return line. 

 
The actuation of the EC system relies on the principle of the communicating tubes. Water levels in EC 
loop and on RPV side adjust themselves so that the resulting geodetic pressures equalize. 
 
Figure 1-3 illustrates the operating modes of one EC sub-system. During power operation (Figure 1-3 
on the left), water level in RPV, and thus in EC loop, is high. Steam is not in contact with the cold 
condenser tubes. No heat exchange occurs between the EC and the core flooding pool. No heat is 
removed from the RPV. In contrast, transient involving drop in water level and LOCA (Figure 1-3 on 
the right) induce the decrease of the water level in the EC train. Vapor gets into contact with the cold 
EC tubes and condensates. In the core flooding pool, water heats up and may vaporize. The 
condensate returns back to the RPV by gravity. The EC passively becomes active and heat is 
released from the RPV to the core flooding pool without loss of coolant. 

 
Figure 1-3: Operating modes of one of the emergency condenser sub-systems [1]. During power 
operation (left), no heat transfer occurs in the emergency condenser tubes. During transients involving 
drop in RPV water level and LOCA, steam condenses in the condenser tubes. Heat is removed from the 
RPV without supplementary water inventory loss. 
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Thus, the EC System does not change the water inventory inside the RPV in opposition to systems 
which limit and reduce pressure by removing coolant from the RPV. The KERENA reactor remains 
operating in case of incidental scenarios with small transients avoiding an emergency shutdown of the 
reactor (scram). 
 
To highlight the role of the EC during large transients and LOCA in the KERENA reactor [2], three 
incidental scenarios are worth considering. 
 
In the first scenario, the main heat sink (e.g. river, sea, lake, or cooling tower) is not available. The 
pressure increases in the RPV and a scram is actuated by the plant protection system. Rod insertion 
in the boiling fluid yields the collapse of the bubbles. RPV water level decreases and the EC system 
starts to operate. Then, RPV water level is monitored by the mass flow of either the feed water or 
clean up system such that EC heat removal matches the decreasing decay heat. In this manner, the 
RPV pressure stays constant at a nominal value. 
 
In the second scenario, neither the main heat sink, nor the feed water is available. Large amount of 
heat must be removed shortly after the scram and EC capacity is not sufficient. At least one safety 
relief valve is opened to further reduce RPV pressure. Steam is released and EC water level 
decreases. After some time, the decay heat is smaller than EC heat removal and the reactor is 
depressurized without any further need of safety relief valve and thus loss of coolant. 
 
The last scenario represents a LOCA. Scram and loss of coolant lower RPV and EC water levels. The 
EC begins to remove heat from the RPV thereby reducing the RPV pressure. The loss of coolant in 
the leak triggered by the pressure difference existing between the RPV and the containment also 
weakens. For small leakages, the pressure release is so fast that water can be pumped from the 
pressure suppression chambers (Figure 1-4) into the RPV to compensate the loss of coolant before 
safety relief valves are actuated. Thus, any supplementary loss of coolant is avoided. For severe 
leakages, safety relief valves are actuated. The loss of coolant in these valves also reduces by the 
action of the EC on the RPV pressure. 

 
Figure 1-4: Containment and internals of the KERENA reactor [1]. 
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1.1.3 Passive outflow reducer 

The EC system is directly connected to the RPV. The failure of a part of the EC system must also be 
considered as a design accident. Three design accidents require consideration: the break or leakage 
of one condenser tube, of the steam supply line and of the EC condensate return line. 
 
In case of the break or leakage of one condenser tube, the loss of coolant is not large and the other 
pipes of the bundle still work correctly. Thus, the RPV coolant inventory and the EC heat removal 
capacity are not significantly affected. 
 
After the break or leakage of the steam supply line, the EC train is completely affected. To reduce the 
loss of coolant, a Venturi nozzle is positioned in the RPV nozzle at the beginning of the steam supply 
line. Parallel to that, the RPV pressure decreases fast since steam discharges from the broken pipe 
and the remaining three EC trains still work properly. Thus, active and passive core flooding can be 
actuated at low pressure before cladding heat up. 
 
The accident involving the break or leakage of the EC condensate return line is similar to that of the 
steam supply line break. However, in contrast to the aforementioned scenario, the EC condensate 
return lines are connected at a low elevation just above the top of the core to increase EC loop 
geodetic pressure. As a result, the coolant is still moderately subcooled or at saturation. This is 
disadvantageous for two reasons. First, coolant mass flux is very high. It can exceed by several orders 
of magnitude vapor mass flux. Second, the loss of coolant does not induce a RPV pressure release as 
it would be the case with the loss of vapor. Pressure gradients remain large between downcomer and 
containment. Furthermore, the EC condensate return line is large to limit the flow resistance in the EC 
system loop. A component, called the passive outflow reducer (POR), is required to significantly limit 
the mass flow under these conditions. 
The POR must be a compact and efficient fluidic diode. It has to fulfill conflicting requirements. First, 
the POR must be compact (length<1m, diameter<250mm) and perform passively without moving part. 
In this manner, the POR can be positioned in the heavy duty RPV nozzle of the EC condensate return 
line. The failure of the POR itself during KERENA operational conditions can be ruled out. Second, the 
POR must produce high pressure loss in one flow direction, called the backward direction. In this 
direction, represented on Figure 1-5 on the left, the coolant streams out of the RPV into the 
containment following the break of the EC condensate return line. Finally, the flow resistance in the 
POR in the opposite flow direction, called the forward direction, should be minimized not to jeopardize 
emergency core cooling. This operating mode is shown on Figure 1-5 on the right. The coolant flows 
from the EC to the RPV. High flow resistance would reduce EC heat removal capacity by increasing 
the water level in the EC tubes. 
 

 
Figure 1-5: Operating modes of the POR. In case of the break of the EC condensate return line (left), the 
flow resistance in the POR must be high to limit the loss of coolant. This flow direction is called the 
backward direction. During emergency core cooling (right), the coolant flows from the EC into the RPV. In 
this flow direction, called the forward direction, the hydraulic loss must be minimized not to jeopardize 
EC heat removal capacity.  

1.1.3.1 Requirement in the backward direction 

In the backward flow direction, the POR must limit the loss of coolant following the break of the EC 
condensate return line. In this context, the most severe accident scenario is the two-full break of this 
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pipe. The thermohydraulic analysis of this event is performed in [3]. It indicates that the loss of coolant 
from the RPV should not exceed 50 tons during the first 1000 seconds. Otherwise cladding heat up 
could be observed. Void fraction, temperature and pressure in the downcomer at EC condensate 
return line height are also given in [3]. Their temporal evolution is represented for the first 1000 
seconds following the break of the EC condensate return line in Figure 1-6. 
.  

 
Figure 1-6: Boundary conditions at the inlet of the POR in the KERENA reactor after the break of the EC 
condensate return line. Pressure (top left), void (top right), subcooling (bottom) [3]. 

1.1.3.2 Requirement in the forward direction 

In the opposite flow direction, the POR pressure loss must be minimized. All transients and LOCA of 
the KERENA reactor are examined in [3] to estimate the maximum authorized POR flow resistance 
during emergency core cooling. In the critical scenario, the mass of coolant is 45 kg/s at RPV pressure 
75 bar. This critical scenario is mastered as long as the POR pressure loss does not exceed 15 kPa. 

1.1.4 Vortex diodes 

Vortex diodes are used [4] and developed in the nuclear industry to achieve passively and without 
moving part high ratios between backward and forward direction pressure losses (e.g. [5]; [6]). An 
example of a vortex diode is given on Figure 1-7. The flow direction is the backward direction when 
the coolant enters the vortex diode through the tangential ports (Figure 1-7, left). In the forward 
direction, the coolant enters the vortex diode through the axial port (Figure 1-7, right). 

 
Figure 1-7: Principle of a vortex diode. Left: flow in the backward direction; right: flow in the forward 
direction. 

1.1.4.1 Single-phase flow behavior 

In incompressible single-phase flows, their principle is well known. The large flow resistance in the 
backward direction (Figure 1-7, Left) is produced by strong vortices induced in the vortex chamber. In 

a vortex diode with a vortex chamber of radius 1r , the mass flow m  entering the tangential ports is 

converted into a swirl 1S rm  (Figure 1-8).  
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Figure 1-8: Principle of a vortex diode in the backward direction. The mass flow at the inlets is m . The 

mass flow in the axial port is composed of the throughflow m  and a recirculation flow revm
. 1r  is the 

radius of the vortex chamber; 2r  is the radius of the axial port. 

 
In a rough approximation the swirl is conserved down to the outlet of the vortex diode. There, the 

radius is 
2 1r r . Consequently, the peripheral velocities increase as 

1 2r r  and the friction loss 

accordingly. Moreover, due to the swirl, the pressure is smaller in the vortex core than in the periphery 
of the axial port. A large zone of reverse flow occurs on the vortex axis. This reverse flow reduces the 

effective cross section. It also causes a reverse mass flow 
revm  to enter in the geometry through the 

axial port. Then, the total mass flow leaving the geometry through the effective cross section is 

revm m . Both the larger flow rate and the reduced effective cross section yield very large flow 

resistance. The flow resistance increases with swirl amplitude. 
 
In the forward direction (Figure 1-7, right), no swirl is induced and the flow resistance is relatively 
lower. 

1.1.4.2 Two-phase flow behavior 

However, the efficiency of the vortex diode may decrease in the presence of a two-phase mixture. The 
swirl or the recirculation zones are reduced: 
o Previous experiments [7] indicate that the performance of vortex diodes in the backward direction 

deteriorate with compressibility. Tests with steam and air in [7] or wet steam [8] show that choking 
is delayed and accompanied with a reduction of the fluidic diode resistance. The authors 
speculate that the aerodynamic blockage is swept out of the axial port as the flow becomes 
compressible. 

o Results of  [8] indicate that water slugs present at higher wetness lead to the destruction of the 
vortex decreasing the resistance of the vortex diode. 

o Heuristic arguments in [9] explain that the expansion of the mixture at the outlet of the tangential 
ports destructs the vortex. 

o The pressure in the core region cannot decrease below saturation pressure. If the flow already is 

at saturated conditions, the recirculation flow revm  is minimal. 

Moreover, the mixture is no longer homogeneous at the choking cross section. If, in particular, a film of 
water is formed, the mass flux increases drastically. 

1.2 Scope of the present study 

The coolant leaving the RPV is moderately subcooled and saturated after the break of the EC 
condensate return line (Figure 1-6).A vortex diode may be less attractive under these conditions than 
with strongly subcooled coolant. 
 
Hence, in the framework of the Ph. D., a fluidic diode for critical two-phase flows is developed. It relies 
on cavitation and efficient choking, instead of swirl. This fluidic diode is adapted to the KERENA 
boundary conditions to fulfill the POR requirements and, thus, is called the POR design or the POR in 
the present work. This POR design is composed of 37 parallel double-nozzle channels (Figure 1-9). 
These channels are shaped to achieve the following requirements: 

 In the backward direction (red arrow on Figure 1-9), the POR passively limits the loss of 
coolant following the break of the EC condensate return line without moving part. For this 
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purpose, cavitation and energy dissipation are enforced in the first nozzle and the flow chokes 
in the second nozzle, where low sound speed and density are encountered. 

 In the forward direction, i.e. during emergency core cooling, (blue arrow on Figure 1-9), the 
flow resistance is minimal. 

 
The parallel channels lead to a short and compact component (length < 1m, diameter<250mm). 

 

 
Figure 1-9: Longitudinal section of the fluidic diode adapted to KERENA reactor boundary conditions. In 
that case, the diode is called POR and consists of 37 channels (blue); material (grey).  

 
Due to the simplicity of this geometry, the POR can be designed with standard system codes in the 
backward direction and computational fluid dynamics (CFD) codes in the forward direction. 
 
After this innovative design was validated by experimental tests, the next objective of the Ph. D. thesis 
consists in developing a novel cavitation model using the stochastic-field method [10]. 
 
The simulation of cavitating flows is a challenging problem both in terms of modeling the physics and 
developing robust numerical methodologies. Such flows are characterized by considerable variations 
of the local density and involve thermodynamic phase transition. They also are inherently stochastic 
[11]. The turbulence interacts with the vaporous cavities and the bubble size probability density 
function (pdf) and nuclei number density pdf have large variance [12]; [13]. Consequently, the physical 
processes such as inter-phase transfers, breakup and collapse which depend upon the turbulence, 
number and size of vaporous cavities are fluctuating substantially. This is particularly important for 
nucleus growth which is highly non-linear: growth is unbounded for sufficiently large nuclei and is 
inhibited for small nuclei.  
 
In spite of intensive research, available cavitation models are problem and geometry specific. They 
must be fitted to experimental results and thus are only valid for a small range of operating conditions 
and geometries. Therefore, in this thesis, emphasis is given on developing a cavitation model 
adequate for the simulation of cavitating flows with very different flow conditions. As an example, the 
POR flow behavior is investigated in both flow directions with this novel cavitation model. To achieve 
this objective, the present formulation distinguishes from available approaches in three different ways.  
 
First, instead of following the individual cavities in a Lagrangian framework or the mixture in the 
Eulerian framework we can model the highly non-linear cavitation process using probability density 
functions (pdf) and pdf transport models (Figure 1-10). Pdf models are common to describe stochastic 
processes such as the random walk of gas molecules. As an example, relaxation to equilibrium of a 
fluid consisting of gas molecules is obtained from statistical mechanics in the so-called Boltzmann 
equation which was derived by Boltzmann in 1872. This Boltzmann equation represents the prototype 
of a pdf transport equation. In chemical reactions, pdf methods are commonly used to close the highly 
non-linear chemical source term. For this purpose, Dopazo and O’Brien [14] introduced the transport 
equation of the composition joint-pdf. Although the pdf transport equations are derived in an Eulerian 
framework, their solution generally is achieved by following particles with a Lagrangian solver in 
combination with Monte-Carlo methods (e.g. Pope [15] in combustion). These particles carry 
information on the flow properties. An Eulerian solver is needed to exploit particles statistical 
information. In combustion, typically an Eulerian solver is used for the flow equations, e.g. for the 
pressure. The coupling in an Eulerian-Lagrangian solver is complex due to the necessity to locate 
Lagrangian particles in the Eulerian numerical mesh. Moreover the Lagrangian method is very 
expensive for a good statistic and convergence. To avoid the cost and complexity of Euler-Lagrangian 
techniques, Valiño [10] developed the stochastic-field method to solve the pdf  in a fully Eulerian 
framework. This new formulation has recently gained substantial interest (e.g., [16], [17], [18], [19]). In 
this paper, a novel cavitation model based on this stochastic-field method is derived to simulate 
cavitating flows. The pdf transport equation of the bubble-size pdf is solved in an Eulerian framework 
avoiding the complex and expensive coupling of an Eulerian-Lagrangian solver. 

Forward 

direction 

Backward 

direction 
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Figure 1-10: Historical context of the proposed stochastic-field cavitation model: In statistical mechanics 
the pdf ansatz was introduced in the 19

th
 century by Boltzmann so that pdf transport models and 

corresponding numerical techniques have matured in this field. Cavitation originates from an Euler-
Lagrangian point of view and currently develops in the direction of pure Eulerian pdf models. Eulerian 
and Lagrangian models are framed in blue and red, respectively. 

 
Thus, the proposed cavitation model combines the advantages of Euler and Lagrange solvers in a 
pure Euler formulation. The probability density function of the vapor mass fraction is solved to capture 
the bubble size spectrum in a fully Euler framework. The wide range of bubble size spectra present at 
different locations can be described without excessive computational demand. Stochastic processes 
and highly non-linear, radius dependent phenomena can be accounted for using existing physical 
models available for Lagrange techniques, presumed pdf or binning methods. This cavitation model 
represents the first application of the stochastic-field method in multi-phase flows to capture bubble 
size spectra in that manner. 
 
Second, the interfacial mass transfer mechanism is developed to include thermal, inertial and water 
quality effects. 
 
Finally, the equations of state of the water-vapor mixture and constitutive relations are defined to 
reproduce the physics of the thermodynamic phase change.  
 
The flow conditions in the backward direction are particularly demanding for the numerical code. Very 
large pressure, temperature and density gradients are encountered. With available commercial 
software (CFX, Fluent, Star-CCM+), no solution could be obtained. Significant modification in their 
code would have been required. First, the pressure, temperature and density gradients are so large 
that the codes become unstable. Second, the equations of state of the water-vapor mixture are not 
implemented. Finally, the vapor mass fraction must remain strictly positive. This requirement can not 
be achieved solely with a source term in the vapor mass fraction transport equation. The pressure 
variations encountered during the transient phase, i.e. before a statistical stationary solution is 
obtained, are very large. As a result, the vapor mass fraction becomes negative and the code 
diverges. For these reasons, the model is implemented in the state-of-the-art density-based solver 
SPARC [20] developed at the Karlsruhe Institute of Technology (Campus South). This code is able to 
cope with highly compressible flows and the necessary physical models can be implemented.  
 
Thus, the present thesis has two main objectives: 
 Presentation of this innovative multi-channel POR design;  
 Presentation of this novel cavitation stochastic-field model. 
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1.3 Outline of the present study 

The first chapters of this thesis summarize theoretical and numerical concepts applied in this thesis: 
 
 Chapter physics: Coolant properties in the KERENA POR are radically different in both directions. 

In the forward direction, pressure variations are small and the coolant is supposed to remain in a 
liquid state. In the opposite direction water expands from RPV to containment pressure and 
reaches saturation conditions. Both single-phase and two-phase phenomena are of interest and 
must be considered to develop the POR design and analyze its fluidic behavior. The chapter 
physics introduces the relevant characteristics and properties of single and two-phase flows. 

 Chapter cavitation: Cavitation is of first importance for the POR design. In the forward direction it 
has to be avoided. Otherwise pressure loss would increase drastically and may jeopardize EC 
heat removal capability. In contrast, cavitation is desired to reduce the mass flow in the backward 
direction. The chapter cavitation focuses on the physical description of the cavitation process.  

 Chapter numerical modeling: The numerical analysis of the POR design requires some 
prerequisite on numerical modeling in single-phase, two-phase and cavitating flows. The chapter 
numerical modeling presents the theoretical background on the numerical techniques which are 
employed in this thesis. 

 Chapter stochastic: The novel cavitation model aims to account for cavitation-turbulence 
interaction and to reproduce the bubble size spectra by introducing stochastic models. This 
chapter is dedicated to give basic prerequisite on probabilistic processes and stochastic 
equations and to describe one established Lagrange technique for solving velocity-composition 
and composition probability density function transport equations. 

 
The following chapters describe the development, validation and analysis of the POR design and the 
development of the proposed cavitation model: 
 
 Chapter development POR: The chapter development POR concentrates on the description of 

the development of the POR design. The numerical calculations performed to develop the POR 
are portrayed. 

 Chapter performance tests: Although the design of the POR is possible with standard system 
codes in the BACKWARD direction, available codes are limited in several respects. They do not 
address directly three-dimensional effects and disregards possible mechanical, thermal or 
thermodynamic non-equilibrium. To validate the principle of the POR and analyze its fluidic 
behavior in both directions, experiments were performed at AREVA Technical Center in Karlstein 
under realistic boundary conditions. In the backward direction, the loss of coolant through four 
different channel designs was measured to assess the influence of the size and number of 
nozzles (one or two). In the other flow direction, the flow resistance of three different channel 
designs was measured to estimate the impact of the opening angles of the diffusers. The chapter 
performance tests outlines the setup and the results of these experiments. 

 Chapter stochastic-field cavitation model: To gain more insight into the POR flow behavior, a 
cavitation model with stochastic fields is proposed in the framework of this thesis. The 
mathematical formulation of this cavitation model and validation results are presented in this 
chapter. 

 Chapter POR analysis: Finally the code is used to analyze the flow behavior of one channel of 
the POR under cavitating conditions. The numerical results are discussed in the chapter POR 
analysis. Large eddy simulations (LES) are performed to predict the turbulent fluctuations.  

 
Subsequently the results of the Ph. D. are summarized and discussed in the last section. 
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2 Physics 

Coolant properties in the KERENA POR are radically different in both directions. In the forward 
direction, pressure variations are small and the coolant is supposed to remain in a liquid state. In the 
opposite direction water expands from RPV to containment pressure and reaches saturation 
conditions. Both single-phase and two-phase phenomena are of interest and must be considered to 
develop the POR design and analyze its fluidic behavior. This chapter introduces the relevant 
characteristics and properties of single and two-phase flows. 

2.1 Single phase flows 

In this chapter, governing equations and properties of single-phase flows are described in sect. 2.1.1 
and sect. 2.1.2, respectively. These are prerequisite for the design and analysis of the POR geometry 
during emergency core cooling.  

2.1.1 Governing equations 

As the characteristic macroscopic quantities are much bigger than the mean free path of the 
molecules ( =5 10

-8
 m for air [21]) in all applications of our interest, the fluid can be described in 

terms of continuum mechanics: flow properties such as velocity vector  1 2 3, ,u u uu , pressure p, 

density   and temperature T  can be considered to be continuous functions in space  1 2 3, ,x x xx  

and time t.  

2.1.1.1 Equations of state 

An equation of state is a thermodynamic equation describing the state of matter under a given set of 
physical conditions. An equation of state between p ,   and T  is a called thermal equation of state. 

For instance 

p T gR        (2.1) 

defines an ideal gas, where 
gR  is the gas constant. When the caloric quantities, specific internal 

energy e , specific enthalpy h , or specific entropy s are expressed as dependent variables such as 

 ,e e h s , the equation of state is called caloric equation of state. 

 
The specific heat capacities at constant volume cv and at constant pressure cp are then defined by 

v

v

e
c

T

 
  

 
and 

p

p

h
c

T

 
  

 
.      (2.2) 

Another important thermodynamic quantity is the speed of sound c. It represents the speed at which 
pressure waves propagate in the medium. The speed of sound is related to the change in pressure 
and density of the substance during an isentropic process: 

2

s

p
c



 
  

 
.       (2.3) 

2.1.1.2 Conservation equations 

The basic assumption of continuum mechanics is that the same equations of state are valid for a 
material at rest or in motion. For instance it means that the internal energy of a fluid particle can be 
expressed purely as a function of density and entropy, not depending on motion, deformation or 
position of the particle. 
 
A set of conservation equations of mass, momentum, energy, and any scalar Y  representing the 
concentration of the species, completely describes the thermodynamic state of a fluid. In the 
framework of continuum mechanics, it can be written in differential form as: 
 
Continuity equation: 
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    0
t
 


 


u .            (2.4) 

Momentum equation also called first Cauchy’s equation of motion: 

    0
t
  


    


u u u F T ;        (2.5) 

where  1 2 3, ,f f fF  is the total volume force and  ijT  is the stress tensor. 

The stress tensor is generally divided into two parts: 

ij ij ijp     ;          (2.6) 

the first part being the hydrostatic part and 
ij  the deviatoric stress tensor. The angular momentum 

equation indicates that the stress tensor and the deviatoric stress tensor are symmetric: 

ij ji  ;                (2.7) 

ij ji  .                (2.8) 

The transport equation of the specific total internal energy  

21

2
E e  u       (2.9) 

is given by: 

      0E E
t
  


      


u F u T u q ;     (2.10) 

where 
1 2 3( , , )q q qq  is the heat flux density. The energy equation can be expressed equivalently in 

terms of enthalpy or temperature. 
 
The conservation law of a scalar property Y reads: 

       Y Y S Y
t
 


   


u j ;       (2.11) 

where 
1 2 3( , , )j j jj  is the flux vector of Y  and  S Y  the scalar property source term. 

2.1.1.3 Constitutive laws 

The conservation transport equations (2.4), (2.5), (2.10) and (2.11) are generally valid for any solid or 
fluid. The prescription of material dependent constitutive laws describing the interactions between 
stress tensor and motion, between heat flux density and temperature; and between the scalar flux 
vector and the concentration Y; specialize them to a given material. 
 
The simplest constitutive law for the stress tensor of a viscous fluid is a linear dependence of the 

components  ij  of the stress tensor T  upon the components  ije of the deformation tensor S : 

* 2ij ij kk ij ijp e e        ;               (2.12) 

where the deformation tensor components are defined as: 

1

2

j i

ij

i j

u u
e

x x

  
  

   

.            (2.13) 

The quantities *  and   are material-dependent scalar functions of thermodynamic quantities, e. g.  

 ,p T  ;       (2.14) 

and must be experimentally determined. 
 
Fluids characterized by this constitutive property are called Newtonian fluids. In spite of its simplicity, 
this constitutive law describes remarkably well most technical fluids (including almost all gases [air, 
vapor, etc.] and liquids [water, oil, etc.], but also mixtures). 
 
According to Stokes [22] 

* 2

3
   ;                 (2.15) 

which means that the deviatoric stress tensor  ij  does not contribute to the mean normal stress and 

its components ij  are: 
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2
2

3
ij kk ij ije e      .            (2.16) 

The kinematic viscosity   is the dynamic viscosity   scaled by the density  : 





 .              (2.17) 

For an isotropic material, the constitutive law of the heat flux vector q can also be expressed by a 
linear dependence upon the temperature gradient: 

i T

i

T
q

x



 


;                (2.18) 

where
T  is a positive function of the thermodynamic properties and is named the thermal conductivity. 

Experiments indicate that this relationship, also known as the Fourier law, reproduces very accurately 
the real material behavior. 
 
A constitutive law is also needed to represent the flux vector j of any scalar. A gradient diffusion 
hypothesis is the simplest relationship: 

i Y

i

Y
j D

x



 


;        (2.19) 

where 
YD , the coefficient of diffusion is positive so that the quantity associated with Y  is transported 

down the gradient intensity. 

2.1.1.4 Navier-Stokes equations 

Equations (2.4), (2.5) and (2.10) restricted to Newtonian fluids with the constitutive relations (2.16), 
(2.18) and (2.19) become the Navier-stokes equations. 

2.1.1.5 Boundary conditions 

To close the system of equations, initial and boundary conditions must be prescribed. The most 
common boundary in single-phase flows is an impenetrable wall. 
 

At this boundary, experiments show that the velocity vector 
w

u  of Newtonian fluids at the wall 

matches the velocity vector of the wall wu : 

ww
u u .              (2.20) 

2.1.2 Characteristics of single-phase flows 

2.1.2.1 Fluid properties 

2.1.2.1.1 Gas 

Molecules in a gas are widely separated. For many applications the average distance is so large that 
both the attractive force between the molecules and their volume are completely negligible. The 
molecules move freely with the exception of occasional collisions [23]. In this case one speaks of an 
ideal gas and its equation of state can be deduced from kinetic considerations. 
 
The thermal equation of state reads: 

p T gR .                (2.21) 

The specific internal energy and enthalpy of a thermal ideal gas are function of the temperature only: 

vde c dT                (2.22) 

and 

pdh c dT .                (2.23) 

Departure from the ideal gas law arises when the distance between the molecules decreases. In that 
case, molecules interaction and finite volume cannot be neglected anymore since they do affect the 
macroscopic behavior of the gas (see sect. 2.2.1.1). To account for these effects, corrections of the 
ideal gas relation were derived. One of the simplest models is the Van der Waals equation of state: 
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 2

a
p v b T

v

 
   

 
gR ;              (2.24) 

with v  being the specific volume, a  a correction term to account for molecular forces and b  to 

account for the finite molecule size. 
 
For a caloric ideal gas, specific heat capacities are constant so that: 

ve c T                 (2.25) 

and 

ph c T .               (2.26) 

In many engineering applications, this assumption is valid. However, heat capacities increase at large 
temperatures due to the activation of other degrees of freedom (rotation, vibration) of the molecules.  
 
For an ideal gas, the speed of sound can be written as: 

c T gR ;       (2.27) 

with  , called the isentropic expansion factor, being the ratio of the specific heat capacities: 

p

v

c

c
  .                (2.28) 

 
In a gas, the transport of momentum, energy and species is achieved primarily by the displacement 
and the collisions of the randomly moving gas particles. The random motion of the particles (Figure 
2-1; left), also called Brownian motion, is driven by thermal agitation and successive collisions 
between molecules. The characteristic quantities of this process are particles kinetic energy, or 

equivalently particles root-mean-square velocity u ; mean free path  , corresponding to the mean 

distance between two collisions (Figure 2-1; right); and mean time   between two collisions. 

 

                           
 
Figure 2-1: Typical Brownian motion of a gas particle (left); the mean free path is the mean value of all 
distances covered by any particle between two collisions (right). 

 
Expressions of these quantities can be obtained for an ideal gas from the gas kinetic theory. The root-
mean-square velocity is related to the temperature T , the gas molar mass M  and the universal gas 

constant 1 18.3145 J K mol R  as follows [24]:  

3 T

M
u

R
.                   (2.29) 

The mean free path is related to the temperature T , the Avogadro constant 23 16.022 10  mol AN , 

the pressure p , the collision cross section c  and  the universal gas constant R  as follows [24]:  

2 c

T

p





R

AN
.          (2.30) 

The mean time between two collisions is given by: 


 

u
.                 (2.31) 

Statistical considerations indicate that the diffusion coefficients of momentum and temperature,   and 

T  respectively, are related to the characteristics of the Brownian motion ( u  and  ) [25], [26]:  

1

2
   u ;         (2.32) 
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T vc   u ;        (2.33) 

with 
vc  being the specific heat capacity. Since the gas molecules are widely separated, the mean free 

path, thus the diffusion coefficients (eq. (2.32) and (2.33)), are large. 
 
The Schmidt number associated to the scalar property Y : 

viscous diffusion rate

molecular diffusion rate
Y

YD





  ;            (2.34) 

defining the ratio of viscous to molecular diffusion, is generally taken to be unity [23].  
 

Experimental values (IAPWS [27]) of the thermodynamic properties of water vapor at 1p bar and 

110T C   are given in Table 2-1. 

 

 Experimental values (p=1bar; T=110°C) 

c 479.3 m/s 

vc  2040.0 J/(kg K) 

pc  1528.1 J/(kg K) 

gR  461.6 J/(mol K) 

  1.26 10
-5

 kg/(m s) 
  0.57 kg/m³ 
  2.21 10

-5
 m²/s 

T  0.026 W/(m K) 

  1.33 

h 2700 kJ/kg 
Table 2-1: Experimental values (IAPWS[27]) of thermodynamic properties of water vapor at p=1bar and 
T=110°C. 

2.1.2.1.2 Liquid 

A liquid is a condensed matter. In contrast to a gas, molecules are continually within the strong 
attractive forces of their neighbors. For non-polar substances, these attractive forces generally resume 
to the weak electrostatic attraction, also called London forces, which arises when neighboring 
molecules form temporally dipoles due to the deformation of the orbit of their electron layer [28]. For 
substances containing hydrogen atoms such as water, a supplementary and stronger attractive force, 
called hydrogen bond, exists [29]. Molecules cannot arbitrary be close due to a repulsive 
intermolecular force resulting from the Pauli Exclusion Principle [30]. The corresponding qualitative 
behavior of intermolecular potential energy as a function of the intermolecular distance is represented 
on Figure 2-2: The repulsive force dominates at very small intermolecular distances, while attractive 
forces prevail at larger distances. In contrast to gas where the intermolecular distance is so large that 
the potential energy is negligible in comparison to their kinetic energy, kinetic energy of liquid 
molecules is not sufficient for the molecules to escape from the attraction of their neighbors. 
 

 
Figure 2-2: Potential energy of two particles as a function of the intermolecular distance. 
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Due to these intermolecular forces, density sensitivity to pressure variation is very low. According to 
(2.3), the speed of sound is thus very large. 
 
No simple model exists to describe accurately liquids equation of state over large application ranges. 
Simple models such as the Tait ([31]; eq. (2.35)) or the Tamman ([32]; eq. (2.36)) equation of state are 
limited to short application ranges but are often used for water due to their simplicity. 
 
The Tait equation of state is given by: 

0 0

Tn

T

T

p B

p B





 
  

  
;       (2.35) 

where the subscript 0 refers to normal conditions;  1 T Tn B  is the compressibility coefficient, and 
TB

=304.9MPa and 
Tn =7.15 in the case of water. The Tamman equation of state ([32]) reads: 

 T T Tp p K T T   ;           (2.36) 

with ,T Tp T  and 
TK  being constants derived by Tamman. 

 
In a liquid, the molecules are close together. The mean free path is smaller than in a gas and the 
attractive intermolecular forces tend to reduce the mobility of the molecules. As a result, the diffusion 
processes driven by particles Brownian motion are weak. In contrast, direct exchange of energy 
between molecules lying within each other’s force field is enhanced. While momentum and species 
transport coefficients are relatively low, thermal conductivity remains comparatively high. Similarly to 
gas, the Schmidt number is generally assumed to be unity [23] in liquids. 
 
Experimental values (IAPWS [27]) of the thermodynamic properties of water are given in Table 2-2. 
 

 Experimental values (p=1bar; T=90°C) 

c 1552.8 m/s 

vc  4205.0 J/(kg K) 

pc  3818.7 J/(kg K) 

  3.14 10
-4

 kg/(m s) 
  965.32 kg/m³ 
  3.26 10

-7
 m²/s 

T  0.67 W/(m K) 

h  380 kJ/kg 

Table 2-2: Experimental values (IAPWS [27]) of thermodynamic properties of water at p=1bar and T=90°C. 

2.1.2.2 Turbulence 

In most engineering applications, the flow is not laminar. The Reynolds number Re  defined by 

inertial force
Re

viscous force

uL


  ;               (2.37) 

where L , u ,   and   are the characteristic geometrical length and characteristic flow and fluid 

properties, is so high that viscous forces are not able to damp out hydrodynamic instabilities 
developing at the walls [33] or caused by the stretching of filament vortices [34] in the bulk. The flow is 
turbulent and presents typical symptoms: Disorder and efficient mixing. 

2.1.2.2.1 Disorder 

Flow fields such as velocity vector u, pressure p, density   and temperature T exhibit chaotic 

behaviors which are never reproducible in detail (Figure 2-3 left and middle). Although details are not 
reproducible, flow fields averaged over large time may be very well defined and stable (Figure 2-3 
right). 
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Figure 2-3: Representation of the turbulent velocity profile observed in a pipe at two arbitrary instants 
(left and middle) and superposition of several velocity profiles observed in the same pipe at different 
times (right).  
 

Therefore, a usual method to gain insight into turbulent flows is to decompose the physical quantities 
into mean, denoted here with a bar, and fluctuating parts, indicated here with a prime. It is the so-
called Reynolds decomposition [35]: 

1 1 1u u u  ; 
2 2 2u u u  ; 

3 3 3u u u  ; p p p  ; '    , 'T T T  , etc.   (2.38) 

The mean value f  of the variable f  may be obtained from a time-averaging: 

   
0 1

01

1
,

t t

t

f x f x t dt
t



  ;              (2.39) 

where the averaging is performed over a time interval sufficiently large so that the maximum period of 
the turbulent fluctuations is exceeded [35]; or from an ensemble-averaging: 

       
1

1
, ,

N

N
f x f x t f x t

N





           (2.40) 

of N independent realizations (repetition of an experiment).  ( ) ,f x t  is the value of one of the 

realizations. The mean-value obtained from the ensemble-averaging is also a random variable for a 
finite number N of realizations but tends towards the expectation value in the limit of N  : 

     , lim , ,
N NN

f x t f x t f x t


  ;           (2.41) 

according to the central limit theorem [36]. 
 
Frequency analysis of the velocity fluctuations 'u  in the mean flow direction is generally performed to 

estimate the contribution  EF n  of the frequencies between En  and E En dn  to the fluctuations. Since 

turbulent flows fields are generally decomposed into sums of turbulent eddies,  EF n  is also the 

contribution of the eddies with frequencies between En  and E En dn . Referring to the Taylor 

hypothesis [37] which assumes an equivalence between spatial and temporal frequency (wave 

number Ek  vs. En ), this subset of eddies is equivalent to the one with sizes between 

 2 1 E EE
k dk k   and 2

E
k . 

Experimental results [38] indicate that the spectrum is continuous from the large structures (low wave 
numbers) to the smallest eddies. The former have the size of the characteristic geometrical length (the 
diameter for a pipe). The latter are as small as the Kolmogorov length scale  

1
3 4

Kl




 
  
 

;                (2.42) 

where   is the energy dissipation rate of the turbulent kinetic energy 

 2 2 2

1 2 3

1
' ' '

2
k u u u   .           (2.43) 

The revolution time of the smallest eddies is 
1

2

Kt




 
  
 

.                (2.44) 

[39] first stated that energy transfer between the eddies of different sizes is not random but follow the 
energy cascade principle: the mean flow only feeds the bigger eddies with energy; these large eddies 

then transfer their energy to smaller eddies (larger wave number Ek ) and so on until the smallest 

eddies dissipate the energy due to viscous forces. 

2.1.2.2.2 Efficient mixing 

The chaotic motion of the fluid particles greatly increases momentum, energy and species transport. 



Physics 

 

 
 

20 
 

  

 

Considering an (idealized) incompressible turbulent flow whose velocity field is  1 2,u uu , it is 

possible to estimate the momentum flow through the infinitesimal surface dA  of normal y  during the 

time dt  [33]. Since the fluid mass flowing through dA  during dt  is 
2dA u dt , the x-component of the 

momentum flow is 
1 2dA u u . 

 
Figure 2-4: Momentum flux through infinitesimal surface dA in a turbulent flow [33]. 

 
Using the Reynolds decomposition, the average of the x-component of the momentum flow is given 
by: 

 1 2 1 2 1 2dA u u dA u u u u     .               (2.45) 

Eq. (2.45) indicates that the average momentum exchange increases due to the turbulent fluctuations 
in comparison to non-fluctuating (laminar) conditions. As a result, according to Newton’s second law, a 

supplementary stress 
12   arises: 

12 1 2u u     .        (2.46) 

For a simple shear flow (see Figure 2-4), it can easily be shown that this force is non–zero: Positive 

turbulent cross flow (
2 0u  ) transfers momentum from low to high momentum laden particles; which 

tends to slow down the fastest molecules ( 1 0u  ). On the contrary, negative turbulent cross flow (

2 0u  ) transfers momentum from fast to slow particles; which tends to accelerate the slowest 

molecules ( 1 0u  ). The fluctuations u  and v  are correlated and the average of their product is 

strictly negative ( 1 2 0u u   ) [33]. 

 
Turbulent motion is responsible for the complex character of the flow resistance in complex 
geometries. On the one hand, the transition from laminar to turbulent regime leads to flow resistance 
increase since supplementary shear forces appear between the fluid particles. This is typically 
observed in simple pipes [40]. On the other hand, momentum exchange between fluid layers 
energizes the turbulent boundary layers. Thus, turbulent layers are able to affront larger adverse 
pressure gradient than laminar boundary layers thereby avoiding or reducing flow detachment and 
pressure head [33]. 
 
More generally, mixing is considerably enhanced by the turbulent fluctuations since these fluctuations 
advect fluid particles exponentially far from one another in time. As a result, fluid layers having similar 
properties are deformed: their interfacial area increases dramatically and fluid properties gradients 
tend to be accentuated, both increasing the rate of molecular mixing. This phenomenon of coarse-
grained homogeneization is clearly distinct from molecular mixing in such that it does not occur on a 
molecular level. To illustrate this two distinct processes (coarse-grained homogeneization and 
molecular mixing), one may consider chemical species which are present in well defined globules with 
small interfacial area at an initial stage (Figure 2-5, bottom, left). The globules are stirred and strained 
under the action of the turbulent eddies and deform (Figure 2-5, bottom, from left to right); their 
interfacial area grows exponentially: this is the coarse-grained homogeneization characteristic of 
turbulent flows. In contrast, the molecular mixing occurs at the interface between the globules and the 
remaining fluid at a molecular level due to particles Brownian motion and species gradient (Figure 2-5 
top). 
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Figure 2-5: Schematic representation of molecular mixing (top) and coarse-grained homogeneization 
(bottom) in turbulent flows. 

2.1.2.3 Compressibility 

A fluid is said to be incompressible when the rate of change of the density   following the motion is 

zero, that is, 

0
D

Dt


 .               (2.47) 

Using the equation of state  ,p p s , the variation of the density can be expressed according to the 

variations of pressure and entropy in a dimensionless formulation [41]: 

2 2

1 1 1L D L Dp L p Ds

U Dt U Dt U s Dtc c 



  

 
    

;            (2.48) 

where L  and U  are the characteristic length and velocity. The flow is incompressible when both 

terms on the right hand side of eq. (2.48) are zero.  
 
The first and second terms represent density variation due to pressure variation and heat supply, 
respectively. The second term is negligible for adiabatic processes. The first term is only negligible 
when the speed of sound c is sufficiently large in respect to the pressure variation, which is more likely 
to happen in a liquid than in a gas. 
 
A major consequence of flow compressibility is that pressure information travels relative to the medium 
at finite velocity c. For instance in a one-dimensional flow with uniform velocity u, pressure waves 
propagate in the upstream direction at c u  and in the downstream direction at c u .  

 
For internal flows, this manifests by the choking of the flow at the smallest cross section when the 
pressure difference between inlet and outlet exceeds a critical value. In this case, the velocity of the 
fluid reaches sound speed at the smallest cross section. No information can travel upstream: the mass 
flow and the pressure at the choking cross section do not depend upon downstream pressure 
anymore [42]. 
 
The phenomenon can be accurately described by considering the steady-state conservation equations 

of a frictionless compressible fluid in a one-dimensional pipe with varying cross section  A x . The 

mass conservation equation (2.4) derived with respect to the longitudinal coordinate x  becomes: 

1 1 1
0

du dA d

u dx A dx dx




   .               (2.49) 

For an isentropic flow, the definition of the speed of sound (2.3) reads: 

2 dp
c

d
 .               (2.50) 

The momentum equation (2.5) in the flow direction is: 

u p
u

x x


 
 

 
.       (2.51) 

Introducing the Mach number M : 

inertial force

compressibility force

u
M

c
  ;         (2.52) 
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the combination of equations (2.49) with (2.51) reads: 

 21 1
1

du dA
M

u dx A dx
   .       (2.53) 

For subsonic flows ( 1M   at the inlet), the velocity increases in the converging part of the pipe and 

decreases in the diverging part. Since the derivative dA dx  vanishes at the smallest cross section, 

either the velocity reaches a maximum 0du dx   or the Mach number M equals 1. For supersonic 

flows, the opposite behavior is observed. The possible flow configurations in a convergent-divergent 
are describes in [41]. 
 
The flow configurations happen according to the pressure ratio between inlet and outlet. Starting from 
a low pressure ratio and subsonic flow at the inlet of the nozzle, the flow remains subsonic in the 
entire nozzle. Increasing the pressure ratio leads to the acceleration of the flow until M is one at the 
smallest cross section. Decreasing further the downstream pressure does not lead to either mass flow 

increase, or pressure decrease at the choking cross section. The mass flow M in the pipe remains 
equal to the critical mass flow  

* * * *M c A ;         (2.54) 

where the asterisk characterizes values of density and sound speed at the choking cross section *A . 

2.2 Two phase flows 

This chapter presents the governing equations and properties of two-phase flows in sect. 2.2.1 and 
sect. 2.2.2, respectively. This theoretical background is needed for the design and analysis of POR 
geometry in particular in backward direction and for the development of the cavitation model. Indeed, 
after the break of EC condensate return line, the coolant expands from RPV to containment pressure. 
Going from subcooled conditions during the first minutes following the break to saturated conditions 
afterwards, the coolant vaporizes in the POR. In the opposite direction, vaporization in the POR 
design should be avoided. Otherwise hydraulic resistance would reduce EC heat removal capacity.  

2.2.1 Governing equations 

2.2.1.1 Equations of state  

A given material exists in three phases – solid, liquid and gas – depending upon its thermodynamic 
state (Figure 2-6). Changing the thermodynamic state may lead to a phase transition where the 
existing phase disappears at the benefit of the other phase.  

 
Figure 2-6: Schematic representation of water phase diagram  ,p T . 

 
The isothermal condensation of a gas can be described on a microscopic scale as follows. The ideal 
gas law can accurately describe the gas behavior when the distance between the particles is 
sufficient. At higher pressure for a given temperature, the intermolecular potential energy gain in 
importance and cannot be neglected in comparison to the kinetic energy of the particles. The gas 
behavior departs from the ideal model (sect. 2.1.2.1.1). When the distance between the molecules 
further reduces, intermolecular forces become so strong that some molecules cannot escape from the 
interaction forces of their neighbors and start to aggregate. They form a new phase: the liquid phase. 
Following this agglomeration, the average distance between the molecules still moving freely 
increases and the pressure decreases compensating the pressure increase required to bring the 
molecules together. After some time, both phases reach a new thermodynamic equilibrium. Continuing 
to reduce the average distance between the molecules increases the proportion of the liquid phase 
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until the whole gas phase has condensed. Any further increase in pressure only yields very small 
density variation. 
 
The isothermal condensation process is only possible at temperatures situated between triple-point 
and critical-point temperature. At lower temperature, thermal agitation is so low that particles 
aggregate in form of a solid. At temperatures above the critical-point temperature, fluid and gas 
phases cannot be distinguished: phase densities are equal and phase interface disappears. 
 
Phases coexisting in equilibrium, i.e. having the same pressure (mechanical equilibrium), the same 
temperature (thermal equilibrium) and the same single-phase chemical potentials (thermodynamic 

equilibrium) [43], can be represented in  ,p v  and equivalent phase diagrams (e.g.  ,h s ,  ,T s , etc.). 

 
Actually, phases in mechanical equilibrium share the same pressure only when their interface is a flat 
surface. In contrast to molecules situated inside the fluid phase, molecules at the interface with 
another phase (gas or solid) are not submitted to intermolecular forces equally from all sides. The 
attraction is higher in the direction of the liquid. On a macroscopic scale, this phenomenon manifests 
by a supplementary force, the surface tension, and a discontinuity in the pressure field. For a spherical 

dispersed phase, the pressure jump between dispersed phase pressure 
dp  and continuous phase 

pressure 
cp  can be easily expressed with the radius R  of the dispersed phase and the surface 

tension  : 

2
d cp p

R


  .       (2.55) 

It is the so-called Laplace equation which indicates that the mechanical equilibrium 
d cp p  is only 

valid for R  . 

 

The gas-liquid interface increases the internal energy 
TE  of the system by E . E  is proportional to 

the surface 
iA  of the interface:              

iE A  .               (2.56) 

Thus, 
TE  consists of the internal energy 

lE  and 
gE  of the liquid and gas phase, respectively; and of 

the interface energy E : 

T l gE E E E   .          (2.57) 

The particular case of thermodynamic equilibrium occurs when both phases have evolved so that their 
chemical potentials are equal. The opposite particular case is a metastable single phase: pressure 
and temperature correspond to the two-phase domain but the phase is still stable against small 
perturbations. For example, water can withstand lower pressures than saturation pressure without 
vaporizing with sufficient care [44]. Only large perturbations lead to the formation of large cluster of the 
other phase.  During the growth of the clusters, the chemical potentials of both phases evolve until 
they attain the same value corresponding to the stable two-phase state. 
 
As will be described in chapter cavitation, highly metastable states are not common in engineering 
applications due to the presence of impurities in the medium (dissolved gas, particles, etc.). These 
impurities facilitate the formation of clusters of the other phase. However the finite time of growth of 
the clusters still induces a finite time-period where thermodynamic equilibrium is not realized. This is 
particularly important for fast transients such as flashing [45], [46] or boiling crisis [43].  

2.2.1.2 Conservation equations 

The local instantaneous equations of a two-phase Newtonian mixture flow are obtained in the same 
way as for a single-phase flow. The governing equations are the Navier-Stokes equations [47] of both 

phases. The subscript k indicates which phase k is involved in the balance (e.g. 1,2k   for liquid and 

gas phases, respectively). The six equations are:  
 
Two mass equations 

  0k

k k
t





 


u  , 1,2k  ;      (2.58) 

two momentum equations 

    0k k k k k k k
t
  


    


u u u F T  , 1,2k  ;    (2.59) 
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and two total energy equations 

      0k k k k k k k k k kE E
t
  


      


u F u T u q , 1,2k  ;    (2.60) 

where 
kT , F  and 

kq  denote stress tensor, volume force vector and heat flux in the phase k.  

2.2.1.3 Boundary conditions 

[47] derived the jump conditions existing at the interface of the two phases:  
 
Mass jump condition: 

   1 1 1 2 2 2 0i i      u u n u u n ;     (2.61) 

momentum jump condition: 

   1 1 1 1 2 1 1 2 2 12i sH          u u n u u n T n T n ;    (2.62) 

where  1 1s    n n  is the surface gradient operator [48], 
1

1

2
sH    n  is the mean curvature of the 

interface, and the subscript i  stands for the flow fields at the interface. In this expression, and the rest 

of the present work, surface tension variation due to temperature gradient is neglected.  
 
Total energy jump condition: 

                               2 2

1 1 1 1 1 2 2 2 2 2

1 1

2 2
i ie e 

   
         

   
u u n u u u n u  

     1 1 2 2 1 1 1 2 2 2 12 0s iH              q n q n n T u n T u n u .   (2.63) 

2.2.2 Characteristics of two-phase flows 

2.2.2.1 Interfacial exchange 

The physical properties of the two phases may differ significantly, sometimes by several orders of 
magnitude. See for example Table 3, where density ratios: 

l

g






  ;                (2.64) 

viscosity ratios: 

l

g






  ;                (2.65) 

and specific heat capacity ratios: 

   
pC p pl g

c c            (2.66) 

of steam and water are given at three different temperatures in Table 2-3. 
 

Experimental values at 
saturation conditions 

T=10°C T=100°C T=290°C 

l

g






   10630 1600 19 

l

g






   138 23 5 

 
 p

p l

C

p g

c

c
   2.21 2.03 0.98 

Table 2-3: Density, viscosity and specific heat capacity ratios for water and steam at T=10°C, T=100°C and 
T=290°C (Experimental values (IAPWS)[27]). 

 
As a result, the phases tend to acquire different velocities and temperatures and to occupy the flow 
domain differently. This leads to mass, momentum and energy exchanges between the phases at the 
interface (see equations (2.61) to (2.63)) which strongly depend on the area and on the morphological 
configuration of the interface. Many correlations exist for spherical particles or bubbles (see chapter 
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cavitation) but it becomes very difficult to model these inter-phase transfers for more general 
interfaces. Furthermore the topological configuration of the interface itself is influenced by phase 
exchanges turning the analysis of two-phase flows is enormously complicated in comparison to the 
analysis of single-phase flows. Hence, for the sake of convenient simplification, the two-phase flows 
are often defined in terms of characteristic “flow patterns”. 

2.2.2.2 Flow pattern 

The flow patterns, or regimes, have been extensively analyzed in pipes.  Since Baker [49], flow maps 
are drawn to represent the occurrence of the different flow regimes as a function of the superficial 

velocities 
,s ku  of the phases (or a dimensionless form of the superficial velocities); where the 

superficial velocity of the phase k  is defined by: 

,

k k

s k

k

M V
u

A A
  ;         (2.67) 

where 
kM  is the mass flow rate,  

kV  is the volume flow rate and 
k  the density of the phase k ; and A 

is the cross section of the pipe. 
 
Typical flow patterns in vertical pipes are represented schematically in Figure 2-7. For example, 
bubbly flows are observed in pipes for sufficiently high water mass flux. Another type of flow regime is 
the stratified flow (Figure 2-8) where the liquid and the gas are well separated. It is observed at low 
liquid and gas mass flux in horizontal pipes [50].  
 

 
Figure 2-7: Two-phase flow regimes in vertical pipes [51]. 

 
Figure 2-8: Two-phase flow regimes in horizontal pipes [51]. 

 
The transition between two flow regimes is related to interface instabilities (sect 2.2.2.4.2).  

2.2.2.3 Flow resistance 

Due to inter-phase momentum transfers, pressure drops in multi-phase flows are increased in 
comparison to single-phase flows. For very simple geometries, such as pipes, correlations are 
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available to account for the flow resistance increase. These correlations are function of flow 
parameters such as flow pattern, mass flux, void fraction and relative velocities; and of fluid properties, 
such as density or viscosity. [52] derived a correlation (eq. (2.69) and Table 2-4) for the two-phase 

multiplier 2

LO  which relates the two-phase pressure drop 
,2fr Ph

dp

dz 

 
 
 

to the liquid single-phase friction 

pressure drop 
,fr l

dp

dz

 
 
 

 along the pipe axis: 

2

,2 ,

LO

fr Ph fr l

dp dp

dz dz




   
   

   
.            (2.68) 

In a pipe with vaporization, 2

LO  is related to the vapor mass fraction Y  such as: 

   
0.92 2 0.9 1.81 1 1LO BY Y Y       

 
;            (2.69) 

with 
0.5 0.1

gl

g l



 

   
      

  

;            (2.70) 

where the coefficient B depends upon   and the mass flux 
cG  in ways given by Table 2-4. 

 

 
Table 2-4: Values of the coefficient B entering the correlation of [52] for the two-phase pressure loss as a 

function of   (eq. (2.70)) and mass flux cG . 

 

It should be noted that 2 1LO  . 

2.2.2.4 Unsteadiness 

Most multi-component flows are highly unsteady flows. In addition to the turbulent fluctuations 
developing inside each phase (sect 2.1.2.2 and sect 2.2.2.4.1), instabilities may arise at the liquid-gas 
interface (sect 2.2.2.4.2). Thus, the interface itself and the liquid-gas repartition are characterized by 
strong fluctuations. Parallel to these microscopic manifestations of unsteadiness, macroscopic 
instabilities also are likely to occur in two-phase systems (sect 2.2.2.4.3). 

2.2.2.4.1 Turbulence 

Turbulence in two-phase flows is a very challenging topic and strongly depends on the flow pattern. 
For instance, in applications where both phases are well separated, such as stratified flows, some 
turbulence structures are still generated at the walls and in the bulk as if the phases were alone. The 
influence of the other phase manifests at the interface. There, the existing turbulent structures impinge 
and are modified; and new structures develop due to the interfacial shear stresses [53]. In applications 
where one of the phases is dispersed, turbulence in the continuous phase may be enhanced or 
reduced [54]. While the energy required to accelerate the dispersed phase tends to attenuate the 
turbulent fluctuations of the continuous phase, the instabilities in the wake of these particles enhance 
this turbulence. 
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2.2.2.4.2 Instabilities of the liquid-gas interface 

For many gas-liquid flows and in particular for steam-water processes [55], instabilities at the interface 
are crucial. They develop when destabilizing forces such as velocity difference (Kelvin-Helmholtz 
instability [56]) and gravity (Rayleigh-Taylor instability [57]) overcome the stabilizing effect of the 
surface tension. Even small perturbations are accentuated thereby modifying the morphological 
configuration of the interface. A good example of the consequences of such interfacial instabilities is 
the fragmentation of droplets due to, among others, velocity difference between wave crests and 
surrounding medium [58].  

2.2.2.4.3 Instabilities of two-phase systems 

Two-phase systems instabilities are undesirable because they induce large-scale fluctuations which 
degrade system control and performance. Following the proposal of Boure et al [59], two-phase 
systems instabilities can be classified into static and dynamic instabilities. During static instabilities 
(e.g. Ledinegg instabilities, flow distribution instabilities, pressure drop instabilities), the system tends 

to jump between two equilibrium states ( p and p on Figure 2-9; p  being unstable) due to the 

particular S-shape steady-state pressure-drop-flow-rate characteristic (Figure 2-9) that two-phase flow 
channels occasionally exhibit. In contrast, dynamic instabilities are characterized by the multiple 
feedbacks between flow rate, vapor generation rate and pressure drop. The most common type of 
dynamic instabilities in BWR is the density-wave instability. In this case, the presence of void waves 
delays the negative feedback mechanism of pressure drop on mass flow rate (an increase in pressure 
drop usually triggers a decrease in mass flow rate). With appropriate phase delay, the feedback 
mechanism may become positive and the perturbations (mass flow, pressure drop, void waves) 
become self-sustained.  

 
Figure 2-9: Solid line: S-shape pressure-drop-flow-rate characteristic encountered in some two-phase 
flow systems (internal characteristic); dashed line: pump characteristic (external characteristic); stable (

p , p ) and unstable ( p ) equilibrium. 

2.2.2.5 Phase indicator 

To completely characterize a two-phase flow field, the location of the interface between the phases 
has to be known. For this purpose, a binary scalar, the phase indicator or phase density function, 
usually is introduced to specify which phase is present at the location x  and at a time t. This function 

 ,kP x t  is defined as: 

1   if  is in phase 

0             otherwise
k

k
P


 


x
 .      (2.71) 

As a result of the large- and small-scale instabilities, the phase indicator function is generally highly 
fluctuating in time and space; which complicates experimental measurement and numerical 
calculations (chapter numerical modeling).  
 
For a gas-liquid flow, the phase-indicator, or rather the presence of liquid or gas, can be measured 
with miniature resistive probes [60], optical sensors [61] or hot-wire anemometers [62].  
 
When the phase indicator of the gas phase is averaged – over the time, over a geometrical domain 
(cross section, volume) or over an ensemble of measurements – it is called void fraction  .  
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Sometimes the liquid volume fraction 
l  is introduced. In this context, the gas void fraction is 

g  and 

both quantities are related in a two-phase flow by 

1l g   .               (2.72) 

2.2.2.6 Compressibility 

Two-phase mixtures are easily compressible media. The analytical derivation of the density variation 
relative to a pressure variation can exemplarily be accomplished for bubbly flows where all particles of 
the disperse phase are assumed to have the same radius R . Using the definition of sound speed (eq. 
(2.3)) and considering the void fraction  , the sound speed c , the density   and the pressure 

variation p  of the dispersed phase (subscript d) and of the continuous phase (subscript c) as well as 

the mass transferred m  from the continuous to the dispersed phase following the pressure variation; 

and the surface tension  ;  the speed of sound c in the media can be expressed as [12]: 
1

2 2 2 2 2 2 2

1 1 1 2 2
1

3 3

c d

c d cc c d d d c d d d

m

pc c c c R c R

    

       


    

         
     

.        (2.73) 

 
Neglecting the mass transfer and the surface tension, equation (2.73) reduces to: 

 
1

2 2 2

1 c d

d d c c

c c d dc c c

 
   

 



 
   

 
.        (2.74) 

In accordance with experimental results [63], equation (2.74) reveals that the speed of sound in a 
liquid-gas mixture is much smaller than in one of its constituents (Figure 2-10).  
 

 
Figure 2-10: Speed of sound of a homogeneous bubbly flow water-steam mixture at p=1 bar, p=50 bar and 
p=75 bar, as a function of the void fraction at saturation conditions calculated with eq. (2.74) [12]. 

 
Taking into account phase change, the speed of sound is further reduced [31]. 
 
Thus, in two-phase flows, it is very common to reach large Mach numbers. Hence, choking flows are 
likely to happen in internal geometries. Furthermore, according to equation (2.54), the critical mass 

flow *M  of a gas-liquid mixture is much smaller than that of the corresponding pure gas or liquid. 
 
It should be mentioned in this regard that equation (2.54) may not directly be transposable to a two-
phase choked flow, for, in contrast to single-phase flow which chokes at the smallest geometrical 
cross section (eq. (2.53)), a gas-liquid mixture is expected to choke at the smallest effective cross 
section [64], [65]. The position and size of this effective cross section is primarily affected by the 
interfacial coupling terms – that is, mass, momentum, and energy transfers. Furthermore the speed of 
sound depends upon the local void repartition (equation (2.73)), which may be inhomogeneous; and 
the propagation of the pressure waves may be significantly altered by interferences with bubbles [66]. 
Experimental observations indicate that two consecutives critical cross sections can be observed in 
two-phase flows, whereby only the first one limits the mass flow [67]. In spite of these differences with 
single-phase flows, it still is observed that the pressure at the mass flow limiting cross section remains 
independent of the downstream pressure under two-phase choking conditions. 
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3 Cavitation 

The chapter cavitation introduces the governing equations and characteristics of cavitating flows in 
sections 3.1 and 3.2, respectively. On the one hand, this theoretical background is useful to develop 
the cavitation model. On the other hand, it provides an informative basis to apprehend under which 
flow conditions cavitation may be encountered in the POR, and, should the situation arise, what would 
be the consequences on the POR flow behavior. 

3.1 Governing equations 

3.1.1 Thermodynamics 

Cavitation is the formation of vaporous cavities in a liquid caused by a pressure drop. Void creation 
starts at weak places in the fluid medium, called nuclei. If the nuclei available for the phase change 
are only ephemeral voids due to the thermal motion, cavitation is called homogeneous. In this case, 

very large tensile strengths 
sat crp p  are achieved. The tensile strength indicates at which local 

tension
satp p  the first macroscopic manifestation of cavitation is observed. This type of cavitation 

occurs only in very pure liquid. Otherwise, another kind of nuclei is present. These nuclei are air and 
vapor bubbles, either free in the flow or trapped in crevices at the surface of walls or dirt particles 
(Figure 3-1). Due to their presence, the liquid cannot withstand large tensile strength and the growth of 
void happens for local pressure around saturation pressure. It is the most common occurrence of 
cavitation in engineering applications. It is named heterogeneous cavitation and it will be described in 
detail in this section. 
 

    
Figure 3-1: Typical impurities, also called cavitation nuclei, encountered in water. 

 
The microscopic mechanism of cavitation can be described for an isothermal expansion as follows. 
The liquid phase is stretched and the average distance between the molecules increases. When the 

specific volume of the fluid is large enough (  , 0sat lv T  on Figure 3-2), some void creates inside the 

liquid phase which are gradually filled with fluid molecules able to escape from the diminishing 
attractive forces of their neighbors due to their thermal agitation. The molecules which can then move 
freely and independently from the other molecules inside the void form the gas phase. Following the 
filling of the voids with these molecules, the pressure rises compensating the pressure drop required 
to stretch the fluid. Thus, the intermolecular distances in the fluid reduce. After some time, both 
phases reach a new thermodynamic equilibrium.  
 
The process is strongly endothermic, for energy is required to separate the fluid molecules from the 

attractive forces of their neighbors. This energy is the specific latent heat of vaporization l . An 

isothermal cavitation process ( 0T const ; solid line in Figure 3-2) is only possible when energy is 

supplied to the system from the environment. Most cavitation phenomena encountered in engineering 

applications are actually better approximated by an adiabatic process ( 0Q  ; dashed line in  Figure 

3-2). The fluid itself has to furnish the energy. The temperature of the system tends to decrease (

1 0T T ). 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=an&trestr=0x8002
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=informative&trestr=0x8002
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=basis&trestr=0x8002
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Figure 3-2: Representation of isotherm (
0T const ; solid line) and adiabatic ( 0Q  ; dashed line) 

cavitation in phase-diagram  ,p v .  

 
A pressure drop has a second effect on the void fraction. Not only it increases the vapor mass fraction 

Y  but it also strongly decreases the gas-to-liquid density ratio 
g l  . Thus, the void fraction  , 

related to this gas-to-liquid density ratio and Y  according to: 

 1
g

l

l

Y

Y Y S








 

;            (3.1) 

where 

g

l

l

u
S

u
        (3.2) 

is the velocity ratio between the phases; increases even though there is no interfacial mass transfer. 

3.1.2 Conservation equation 

In most engineering applications, the fluid is not at rest. Mechanical rotation or potential energy 
triggers the motion of the liquid. A pressure drop is induced where the fluid streamlines contract or 
inside vortices. At sufficiently low pressures the flow is cavitating. This is named hydrodynamic 
cavitation. 
 
Hydrodynamic cavitation is a very complex phenomenon. The description of the flow must not only 
account for the formation of the vaporous cavities but also for their position, motion and interaction 
with the other vaporous cavities and with the liquid phase. For large void fractions, the effect the 
cavities have on the stretching of the fluid must be accounted for. Due to the large gas-to-fluid density 
ratio, small volumes of liquid are replaced by large volumes of gas during the vaporization process; 
initiating large deformations of fluid streamlines. Furthermore, hydrodynamic cavitation forms an 
inherently stochastic process since it is primarily governed by turbulence and by the probability density 
functions (pdf) of cavitation nuclei number density n  and cavitation nuclei size R  (Figure 3-3). 

 
Figure 3-3: Schematic representation of probability density functions (pdf) of nuclei number density (left) 

and cavitation nuclei size (right); 0n  and 0R  being mean nuclei density number and mean nuclei radius, 

respectively. 

 
In cavitating flows, the gas phase generally is assumed to be dispersed in the continuous liquid phase. 
Each cavity can be characterized by one geometry parameter   (  can be the cavity equivalent 

radius R , surface or volume), the velocity of their center of mass gu  and their mean temperature gT . 

Due to the stochastic nature of cavitating flows, a stochastic approach is required to capture these 
characteristics for the whole dispersed population. In this context, a fairly general method is to solve a 
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Boltzmann type equation for the distribution function  , , , ,g gf t T x u . By definition g gf d d d dT x u  is 

the probable number of cavities at time t in the phase elementary volume 
sp g gdV d d d dT x u  around 

the point  , , ,g gTx u . 

 

The cavities number density is affected by break-up  , , , , ,break g gS t T f x u  and coalescence 

 , , , , ,coal g gS t T f x u  processes. It increases due to breakup and decreases due to coalescence. 

Parallel to that, the cavities with geometry parameter  , velocity 
gu  and temperature 

gT  at a position 

x  and at a time t, grow or collapse according to R , are submitted to forces 
,g iF  and are cooled or 

heated. Consequently, they are located at the position dx x  at a time t+dt and their geometry 

parameter is d  , their velocity 
g gdu u  and their temperature 

g gT dT .  In analogy to sprays in 

combustion [68], under these conditions, the temporal evolution of the density function f   in the 

phase-space is given by: 

       ,g g i g

break coal

g g

f f R f T ff
S S

t T

   




   
     

    

u F

x u
.    (3.3) 

Expressions for the different terms in equation (3.3) are generally available from experimental results 
for spherical bubbles. They will be discussed in the next sections. 

3.1.2.1 Nuclei size distribution 

In heterogeneous cavitation, the tensile strength of the liquid 
sat crp p  significantly decreases in 

presence of air and gas bubbles. Several experimental techniques have been developed to measure 
nuclei size and concentration. Results of coulter counter [69], [70], acoustic and light scattering  
techniques [71], liquid holograms [70] or cavitation susceptibility meter [72] indicate that liquid nuclei 
are strongly polydispersed. Their size can range over several orders of magnitude from micrometers to 
millimeters. Furthermore the nuclei population can vary significantly from one test facility to the other 
[73]. 
 

Analytical expressions have been suggested to represent the nuclei number density  n R  [74], [75]. 

For instance, a lognormal function is proposed in [74]: 

 

2

00

2
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exp
22 RR

R
Rn

n R
R 

  
  
   

 
 
 

;          (3.4) 

where 0n  is the nuclei concentration, R  is the cavitation nuclei radius; and R  and 0R  represent 

variance and mean value of the nuclei size distribution, respectively.  
 

According to their definition,  n R  and f   are related by: 

   
1

lim , , , ,g g g g
t

t

n R f t T d d dT dt
t

 


 
 

  
   

   
  x u x u         (3.5) 

for R  , so that  n R has to be considered as an averaged quantity [13]. 

 
Since the nuclei density strongly affects cavitation inception (see sect . 3.2.1), [76] derived a scaling 

law between the number of nuclei in the test loop 0,testn  and the number of nuclei present under 

realistic conditions 0, pln  to account for water quality effects: 

3

0,

0,

pl test

test pl

n L

n L

 
  
 
 

.           (3.6) 

In equation (3.6), plL  and testL  are the characteristic lengths of the model and of the prototype, 

respectively. Practically it is very difficult to precisely estimate the nuclei concentration. 
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3.1.2.2 Bubble dynamic 

3.1.2.2.1 Mechanical equilibrium 

The mechanical equilibrium condition of a spherical nucleus can be obtained from the force balance of 

an infinitely thin control volume containing a segment of gas-liquid interface of surface 
iA . The forces 

exerted by the surrounding fluid 
ip A
 and by the surface tension F  are balanced by the force 

exerted by the gas and vapor inside the nucleus 
B ip A : 

i B ip A F p A   .           (3.7) 

The Young-Laplace equation indicates that the surface tension   increases the pressure acting on 

the nucleus owing to its interface curvature. This capillary pressure p , and thus the force F , is 

related to the nucleus radius R  and the surface tension: 

2
i iF P A A

R
 


  .              (3.8) 

The pressure 
Bp  inside the nucleus is the sum of the partial pressures 

gp  and 
Gp  of all vaporous and 

gaseous species present: 

B g Gp p p  .          (3.9) 

The vapor phase is assumed to be saturated at all times. Thus, the vapor pressure 
gp  is the vapor’s 

saturation pressure  

  g sat bp p T ;                                                                       (3.10) 

where 
bT  is bubble’s temperature. The pressure 

Gp  of the residual gas is treated as an ideal gas in 

most cases: 

34
3

G b

G

m T
p

R


GR
.         (3.11) 

In that case, the mechanical equilibrium condition (3.7) for a spherical nucleus reads: 

 
3

2

4
3

G b
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e e

m T
p T p

R R




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GR
.      (3.12) 

In eq. (3.12), eR  is the radius of the nucleus at equilibrium. 

3.1.2.2.2 Nucleus activation 

According to eq. (3.12), the radius of a spherical nucleus is not uniquely determined for given mass 

 
0Gm  of contaminant gas, bubble temperature bT , surface tension   and pressure p . Nuclei with 

two different radii 1R  and 2R  could be present in the fluid for pressures above the critical pressure 

4 3

9

8

cr sat

G b

p p
m T





 

GR
.              (3.13) 

However, the mechanical equilibrium of the nuclei larger than the critical radius 2 crR R : 

9

8

G b

cr

m T
R




GR
        (3.14) 

is unstable. These larger nuclei actually do not exist. In contrast, nuclei, whose radius 1R  is smaller 

than crR , are stable. They consistently reach another equilibrium radius when p  is slowly decreased 

and remains above crp . When p  is further decreased below crp , the nucleus is not able to find a 

new mechanical equilibrium. The nucleus is activated. Figure 3-4 represents stable and unstable radii 

for given mass  
0Gm  of contaminant gas, temperature bT , and surface tension  .  
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Figure 3-4: Stable 

1R  and unstable 
2R  nuclei equilibrium radius at a pressure p

 below critical pressure 

crp  for an assumed constant contaminant gas mass  
0Gm .  

 

Following this analysis, water with large content of dissolved gas 
Gm  possesses bigger nuclei than 

water with low dissolved gas content. 

3.1.2.2.3 Rayleigh-Plesset equation 

Once activated, vaporous cavities may grow and collapse according to the variation of fluid pressure 

p
. Cavity’s dynamics can be deduced from the combination of the mass continuity and the 

momentum equation of the liquid phase. 
 
In the surrounding incompressible fluid, fluid particles volume remains unaffected by bubble radius R  

variation. Thus, if we consider one concentric fluid layer around the cavity defined by any two radii 
1R  

and 2R  ( 2 1R R R  ), this fluid layer expands and contracts, as the bubble grows and shrinks, but its 

volume is conserved. The volume conservation translates into the following differential relation for the 

two radii 1R R  and 2R r : 

   2 24 4l lR R r r    .      (3.15) 

For the fluid layer to be stretched and thinned, work is done by pressure force and energy dissipated 
by viscous forces. Balancing the driving force with the radial momentum and the dissipative forces of 
an infinitesimal thin fluid layer yields the following differential equation: 

2
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1 1 2
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p u u u u
u r

r t r r rr r




       
      

      
.     (3.16) 

Integrating eq. (3.16) from the radius R  to a radius sufficiently large so that the fluid there is at rest, 
and using eq. (3.15), one obtains: 

23

2

R

l

p p
R RR



  ;              (3.17) 

where Rp  is the pressure at the cavity interface on the fluid side. 

 

Rp  can be obtained from the force balance of an infinitely thin control volume containing a segment of 

gas-liquid interface. The expression is very similar to eq. (3.7) except that, in this case, a viscous force 

4 l dR
F A

R dt



            (3.18) 

opposes resistance to radius’ variation. The pressure at the interface on the fluid side is: 

R sat G

F F
p p p

A A
     .      (3.19) 

Both equations (3.17) and (3.19) lead to the generalized Rayleigh-Plesset equation for bubble 
dynamics [77]: 
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 

GR
.   (3.20) 

In contrast to nuclei activation where mass of contaminant gas and surface tension are crucial, cavity 
growth and collapse are primarily controlled by the external varying pressure (first term on the left 

hand side).  An external pressure p  below saturation pressure leads to an increase of bubble radius 

R  whereas its increase above the saturation pressure yields the collapse of the cavities. For large 
cavities thermal effects (second term on the left) play also a crucial role. The fluid cools down during 
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bubble growth, for it supplies the energy required for the vaporization. A boundary layer of cold fluid 
develops at the periphery of the cavity. Due to the small heat capacity of the gas, the temperature in 
the gas phase adapts almost immediately to this temperature variation and the saturation pressure 
decreases. The growth rate is reduced and called thermally controlled. 

3.1.2.2.3.1 Effect of mass diffusion 

To solve the Rayleigh-Plesset equation, it is required to know the mass 
Gm  of dissolved gas present in 

the cavity. In this context, it is useful to consider the diffusive equilibrium of a nucleus. This equilibrium 

condition is given by Henry’s law:    
G G Gco H p ;                 (3.21) 

where 
Gco  is the concentration of dissolved gas and 

GH  the Henry’s law constant which depends 

upon solute and solvent species; and temperature. 
Gp  is defined in eq. (3.11). 

 
[31] demonstrate that mechanical eq. (3.12) and diffusive eq. (3.21) equilibrium are always unstable: 
bubbles always tend to grow or resorb. An estimate of the characteristic time, also called the total 
resorption time, of air diffusion in absence of surface tension and negligible thickness of the 
concentration boundary layer is given in [78] by:  

2

0

2

g

res

G s

R

D co co









.               (3.22) 

In this expression, 
0R  is the initial bubble radius, 

sco  is the initial concentration of dissolved gas, co
 

is the concentration of dissolved gas at saturation and 
GD  is the coefficient of diffusivity of the gas in 

the water. Mass diffusion effects are negligible in most situations [31], [45]. In that case, the mass of 

dissolved gas Gm  can be assumed to be constant. In contrast, in some particular applications such as 

acoustic cavitation [79], [80], the mass diffusion equation of the concentration  ,co r t  of gas in the 

liquid at time t and distance r  should be solved. In spherical coordinates, this equation reads [12]: 
2
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t dt r r r rr

      
    

     
;      (3.23) 

with GD  being the gas mass diffusivity in water and 0R  the initial bubble radius. 

3.1.2.2.3.2 Thermal effect 

During the growth of the bubble, the fluid provides some energy to overcome the molecular forces so 

that the bubble temperature bT  differs from liquid temperature T  at infinity (see section 3.1.2.2.3). To 

account accurately for this thermal effect in the bubble dynamics, the Rayleigh-Plesset equation must 
be solved with the heat diffusion equation in a coupled manner [12]. In this context, the heat diffusion 
equation is expressed in spherical coordinates: 

2
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t dt r r r rr
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;         (3.24) 

with 
,T l  being the thermal diffusivity of the liquid and 0R  the bubble radius; and the heat supplied to 

the bubble by the fluid at the interface is related to bubble growth rate: 
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

 

 
  
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.        (3.25) 

In eq. (3.25), ,T l  and l  are liquid thermal conductivity and latent heat, respectively. 

3.1.2.2.3.3 Influence of other bubbles 

[81] first proposed to modify the Rayleigh-Plesset equation eq. (3.20) to account for the presence of 
other bubbles. For this purpose, they introduce a bubble cluster radius R , which represents the 
distance over which bubbles may interact with each other. Assuming that the number density n  of 

bubbles is constant, that all bubbles have the same radius R  and neglecting viscous damping, 
surface tension and thermal effects, the modified Rayleigh-Plesset equation reads: 
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In [82] and [83], the bubble cluster radius is related to the radius of the bubbles within the cluster as: 
R R   ;      (3.27) 

where 1const  . 

3.1.2.2.3.4 Viscosity of the fluid 

For very viscous fluid, [84] introduced an alternative definition of the onset of cavitation accounting not 
only for the normal stresses but also for the shear stresses acting on the fluid elements. In this theory, 

liquid breakdown may occur when the maximum of the principal component 
ii  of the stress tensor 

2jk jk l jkp e      exceeds the saturation vapor pressure: 

 max ii satp   .      (3.28) 

3.1.2.2.3.5 Deformation 

Although complex, the Rayleigh-Plesset equation has been derived for spherical bubbles and is a 
priori only valid for these particular bubbles. A criterion to assess when bubbles may deform due to 

their acceleration u  or growth and collapse R  can be found in [31]: 

 
2

3uR uR
R


  .         (3.29) 

This relation indicates that bubbles deform when the maximum pressure difference due to u  or R  

between two points on the interface is larger than the characteristic pressure difference 2 R . 

Surface instabilities may also cause the deformation of bubble’s surface [12]. 

3.1.2.2.3.6 Bubble collapse 

For slow pressure variations, the bubble growth rate is able to follow the pressure signal. In contrast 
for quick pressure variations, the bubble may continue to grow even in the compression phase due to 
the inertia of the fluid. In that case, the collapse of the bubble may become highly non-linear. Gas and 
vapor inside the cavity get strongly compressed, the bubble quickly rebounds and expands and goes 
through a series of secondary compressions and expansions of diminishing amplitudes [85]. 
 
Bubble collapse is associated with very high pressures, temperatures and velocities [86]. The 

asymptotic value of the pressure peak maxp  is derived in [23]: 
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;      (3.30) 

where p  is pressure at infinity, maxR  bubble maximal (initial) radius, min 0R   bubble minimal (final) 

radius and satp  saturation pressure. Due to the high velocity of the bubble boundary near the end of 

the collapse, compressibility effects could play a non-negligible role [23]. For example, [87] indicates 
that the lifetime of the bubble is increased due to water compressibility. Furthermore, pressure waves 
are observed [88] to propagate outwards, which could influence the dynamics of other bubbles or 
damage structure surfaces. 

3.1.2.3 Coalescence 

Coalescence is caused by the collision of particles. Several expressions exist for the collision 

frequency cg  [45]. One of them is expressed with the bubble diameter bD , the void fraction  , the 

maximum packing concentration max 0.52   and the bubble relative velocity relU  [89]:  
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.         (3.31) 

The frequency becomes infinite when void fraction reaches the maximum packing concentration 

max 0.52  . If the collisions are mainly attributed to the turbulent fluctuations, relU  is defined as [90]: 
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In eq. (3.32), 
l  is the turbulent dissipation rate in the liquid phase and 

amC  is the added mass 

coefficient for which algebraic expressions are derived in [13]. 
 

Not all collisions lead to coalescence. The probability 
colP  that a collision results in coalescence is 

related to the film drainage time 
drt  (time needed for the film of water situated between the bubbles to 

be drained) and the bubbles interaction time 
int  by: 
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.      (3.33) 

 

In this expression (3.33), 
drt  and 

int  are defined as [90]: 
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where 
drk  is a model constant which usually has a value of 0.5 [45] and   is the surface tension.  

3.1.2.4 Break-up 

Breakup occurs when deformation forces (e.g. velocity fluctuations) exceed confinement forces 
(typically surface tension  ). Experimental results [91] with water indicate that the frequency of 

breakup is a function of bubble diameter 
bD , water density 

l , surface tension   and liquid turbulent 

energy dissipation rate l : 

 
2

3 12
l b

l b

b g

b

D
D

g K
D

 




 ;      (3.36) 

with   =8.2 and 
gK  =0.25. Bubbles with a diameter smaller than 

 
3 5 2 51.26c lD               (3.37) 

do not breakup [91]. These cavities are too small to be disturbed by the velocity fluctuations. 

3.1.2.5 Forces  

Due to velocity, density, and pressure gradients existing between and within the phases, dispersed 
bubbles are submitted to numerous surface and volume forces. Most of them are summarized in Table 
3-1 with their dependence on bubble radius R  and on phases’ relative velocity difference u ; their 

direction; their origin and the associated mechanism. Analytical expressions of some of these forces 
are given in appendix A.  

Force Radius 
dependency 

u  

dependency 

direction origin Mechanism 

Drag R², CD u² Tends to uc Slip Viscous, surface tension 

Added mass R³ u Tends to uc Density 
difference 

Displacement of 
surrounding fluid 

Buoyancy R³ No Opposite to 
gravity 

Density 
difference 

 

Wall 
lubrification 

R² u² Repulsive No-slip 
condition 

Pressure difference on 
both side of the bubble 

Wall 
deformation 

R no Repulsive Deformation of 
the bubble 

Pressure difference due to 
deformation 

Pressure 
gradient 

R³ no Opposite to 
pressure 
gradient 

Pressure 
gradient 

 

History R² u  Viscous effect Force due to lagging 
boundary layer 

development, temporal 
delay 
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Volume 
variation 

R³ u Tends to uc, if 

growth 

Mass transfer Momentum transfer due to 
mass exchange 

Lift R³ u² Normal to 
rotation of fluid 

Rotation of 
continuous 

phase 

Pressure difference on 
bubbles’ wall due to 

vorticity 

Marangoni R² No Opposite to 
surface tension 

gradient 

Surface 
tension 
gradient 

 

Turbulent 
dispersion 

   Concentration 
gradient 

 

Table 3-1: Forces on dispersed bubbles with their dependence on bubble radius R  and on phases’ 

relative velocity difference u ; their direction; their origin and the associated mechanism; 
cu  being the 

continuous phase velocity 

3.1.2.6 Heat exchange 

Temperature differences arise between fluid and gas phases during cavitation (sect. 3.1.2.2.3.2). As a 
result, heat transfer occurs between the phases. 
 
One heat transfer mechanism is conduction. This mechanism is already discussed in sect. 3.1.2.2.3.2: 
The conduction can be estimated by solving the fluid temperature equation and the Rayleigh-Plesset 
equation in a coupled manner.  
 
For bubbles in motion, heat transfer also occurs by convection. Exact estimation of interfacial heat 

exchange in this case is even more complicated. Correlations are required. The heat transfer 
bq  is 

assumed to be proportional to the temperature difference existing between the bubble and the 
surrounding fluid: 

 ( )b b b fq k T T   .      (3.38) 

The coefficient of proportionality bk  generally is expressed with the liquid thermal conductivity 
,T l  and 

the diameter bD  of the bubble as: 

 
,T l

b

b

k Nu
D


 .               (3.39) 

In eq. (3.39), Nu  is the Nusselt number. One correlation of the Nusselt number for a spherical bubble 

reads [92]: 
0.5 0.32 0.6Re Pr 0 Re 200 0 250Nu for Pe      .    (3.40) 

In eq. (3.40), Pr  and Pe  are two dimensionless numbers called Prandtl and Peclet number, 

respectively. They are defined with the characteristic flow properties as: 

viscous diffusion rate
Pr

thermal diffusion rate

p

T

c 


  ;      (3.41) 

convection rate
P Pr Re

thermal diffusion rate
e   .     (3.42) 

 

3.2 Characteristics of cavitating flows 

3.2.1 Cavitation inception 

Cavitation inception is primarily affected by the non cavitating pressure field [11]. Cavitating flows are 
observed when the local static pressure is below the saturation pressure of the fluid. This 
phenomenon is commonly caused by the acceleration of the fluid around solid bodies in external flows 

or in contractions in internal flows. Hereby the pressure p , temperature T  and velocity U  of the 

upstream flow are decisive for the occurrence or non-occurrence of cavitation. p  imposes the overall 

pressure in the flow. When sufficiently large, the static pressure remains above saturation pressure 

 satp T  everywhere in the flow. No cavitation occurs. T  determines the value of the saturation 

pressure  satp T . For sufficient subcooling (   0satT p T   ),  satp T  is small enough so that the 
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static pressure remains above saturation conditions everywhere in the flow. No phase-change occurs. 

For sufficiently large U
, the acceleration results in a large pressure drop leading to static pressures 

below the saturation pressure. Cavitation is observed. Thus, a dimensionless number commonly used 

to characterize cavitation inception is the cavitation inception number 
ic  defined as the particular 

value of the cavitation number c , 

 
1 2

satp p T
c

U




 




 ;          (3.43) 

for which nucleation first occurs.  
 
However, cavitation inception cannot accurately be described only by mean flow quantities and one 
dimensionless number. Boundary-layer development [93], turbulent pressure fluctuations [94] and 

water quality [12] also have an influence on the onset of cavitation. For example, 
ic  differs from one 

test facility to the other for the same geometry at same Reynolds numbers  [12]. 

3.2.2 Cavitation patterns 

Cavitation can appear in several macroscopic forms called cavitation patterns. On blades and in 
nozzles, these cavitations patterns are generally categorized into four categories: transient isolated 
bubbles, attached or sheet cavities, cloud cavitation and supercavities. These flow patterns are 
described for a hydrofoil in sections 3.2.2.1 to 3.2.2.4. These descriptions are taken from [31] to a 
large extent. In submerged jets, another macroscopic form of cavitation arises; which is called shear 
cavitation. For developed turbulent flow conditions, at given temperature and given fluid properties, the 
cavitation number mainly determines the nature and extension of the cavitation pattern [95]. For 
complex geometries, more than one of these cavitation patterns can occur simultaneously. 

3.2.2.1 Transient isolated bubbles 

The first manifestation of cavitation is largely influenced by the development of the boundary layer. 
Transient isolated bubbles are observed on blades at low angle of attack and large nuclei 
concentration [31] when the boundary layer is laminar whereas clusters of micro-sized vapor bubbles 
can be detected at larger attack angles for turbulent boundary layers [93]. The bubbles are large 
nuclei which start to cavitate in the low-pressure region (which may be the core of turbulent eddies in 
turbulent boundary layers) and are then convected downstream in higher pressure regions where they 
collapse (Figure 3-5). 

 
Figure 3-5: Schematic representation of transient isolated cavitation bubbles (solid line) on a hydrofoil 
(blue). 

3.2.2.2 Sheet cavitation 

At large angles of attack or with low nuclei concentrations, cavitation onsets as an attached cavity 
downstream of the laminar boundary layer detachment. In turbulent boundary layers, the transient 
isolated bubbles are replaced by an attached cavitation sheet when the cavitation numbers reduces 
[93]. The attached cavity is made up of individual bubbles or consist of a vapor-filled cavity [96]. For 
geometries with a sharp edge the sheet cavity is fixed by the geometrical singularity. In the absence of 
such an element, the location of the cavity is not a priori known and will depend on surface tension 
effects, laminar-to-turbulent transitions and water quality [31]. 
 
The closure of the cavity region is characterized by a re-entrant jet (Figure 3-6). For thin cavities, the 
re-entrant jet is generally weak due to its interaction with the downward mean flow. The flow is stable 
and unsteadiness is limited to a small region in the rear part of the cavity. The unsteadiness of the 
wake is associated to high turbulent fluctuations. For thicker cavities, the momentum of the re-entrant 
jet is generally higher such that this re-entrant jet may reach the front section of the cavity [31]. 
 

 
Figure 3-6: Schematic representation of sheet cavitation (solid line) on a hydrofoil (blue). 
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3.2.2.3 Cloud cavitation  

When the impulse of the re-entrant jet is sufficient, a part of the attached cavity is separated, entrained 
by the downward flow and broken-up into smaller vapor bubbles and cavitating filaments (Figure 3-7). 
Meanwhile the part of the cavity which is still attached at the wall develops and grows until a new re-
entrant jet forms and leads again to the separation of another shedding cavity. This manifestation is 
called cloud cavitation [31]. 

 
Figure 3-7: Schematic representation of cloud cavitation (solid line) on a hydrofoil (blue) at two instants: 
full cavity is attached (left); part of the cavity is convected downstream (right). 

3.2.2.4 Supercavitation 

For sufficiently low cavitation numbers, the pressure distribution on the foil produces cavities which are 
so long that they do not reattach on the wall anymore but close in the bulk of the flow (see Figure 3-8). 
These cavities are called supercavities. 
 
The rear-part of supercavities is highly unstable with two concurring phenomena: a re-entrant jet tends 
to confine vapor inside the cavity while vapor and excess liquid are entrained by vortices [31]. 
 

 
Figure 3-8: Schematic representation of supercavitation (solid line) on a hydrofoil (blue). 

3.2.2.5 Shear cavitation 

In submerged jets and in the wakes behind blunt bodies, vortical structures may develop [97]. As a 
result of the rotation of the fluid volumes, the instantaneous fluctuating pressure level may drop and 
differ significantly from the mean pressure [98], [99]. When the pressure in these eddies is sufficiently 
low during a sufficient time, nuclei grow and cavitation is observed. Industrial applications where this 
type of cavitation is encountered are, for example, boat propulsion or discharge control valves. 
Inception of shear cavitation depends primarily on the structure of the non-cavitating flow, and water 
quality [100]. Shear cavitation has a non-negligible influence on the unsteadiness of the flow. For 
example, cavitation may affect the frequency of vortex shedding [101]. 

3.2.3 Effects of cavitation 

Common examples of industrial components where cavitation occurs are pump impellers, bends and 
pipes. There cavitation is often undesirable since jets shock waves induced by bubble collapse are 
strong enough to produce significant noise and vibration and even damage walls. Furthermore larger 
flow resistance or two-phase instabilities may be encountered. However in some particular 
applications in the fields of medicine, water treatment or textile manufacturing, cavitation is a powerful 
tool to fragment or destruct molecules non-intrusively. 

3.2.3.1 Surface damage 

The bubble collapse close to a wall is characterized by high-velocity re-entrant jets directed towards 
the solid wall [102]. These jets, and the very high pressures and temperatures associated with bubble 
collapse (sect 3.1.2.2.3.6) may cause important surface damage (e.g. in pumps [103] and spillways 
[104]), noise and vibration [105].  Surface damage, noise and vibration are typically encountered with 
transient isolated bubbles or in the wake of sheet cavities and cloud cavitation due to the collapse of 
the numerous bubbles [31]. 
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3.2.3.2 Performance breakdown 

Cavitation is also undesired when it is accompanied by the alteration of the performance of the 
system.  
On hydrofoils [106], performance reduction is intimately related to the existence and extension of 
cavitating regions. The lift is lowered since the pressure on the suction side does not decrease below 
saturation pressure. Moreover, the drag increases as a result of two-phase momentum transfers. 
 
In nozzles, cavitation affects the flow resistance according to two mechanisms. The first mechanism 
consists in increased energy dissipation due to interfacial exchanges. The second phenomenon is 
encountered when the cavitation sheet occupies the whole cross section (Figure 3-9, (a), bottom). In 
that case, the flow may choke [95] and the flow resistance drastically increases. The following section 
summarizes the main results found in [95]. 
 
In the framework of cavitating nozzles, the cavitation number commonly  is defined as [107], [108]: 

 

2

satp p T
K

p p


 







.          (3.44) 

In eq. (3.44), p
 and 

2p  are the pressures at the inlet and outlet of the nozzle, respectively (see 

Figure 3-9). 
 

The effect of this cavitation number K (eq. (3.44)) on the size 
cavL  of the cavity is represented 

schematically in Figure 3-9, (b), top. The first manifestation of cavitation occurs at 
iK . The length of 

the cavity grows with decreasing cavitation number. At 
scK K  , the cavitation sheet extends down 

to the outlet. The cavity tends to occupy the whole cross section with further decrease of the cavitation 
number.  
 

To illustrate the effect of choking on the performance of the nozzle, the discharge coefficient dC  (eq. 

(3.45)) of the nozzle is represented as a function of the cavitation number K (eq. (3.44)) in Figure 

3-9, c, bottom. The discharge coefficient dC  usually is introduced to characterize the performance of a 

nozzle [95]. This coefficient is defined with the nozzle cross section A ,  the mass flow rate M  and the 
pressure difference existing between inlet and outlet, as: 

 22
d

M
C

A p p 




.           (3.45) 

While cavL  evolves with K  from iK  to scK , the performance of the nozzle significantly degrades 

when K  decreases below a geometry-dependent critical cavitation number cK  [ cK K  ; Figure 

3-9, (a) bottom; and Figure 3-9, (c)]. cK  may be smaller than scK . This performance degradation 

occurs when the entire cross section is filled with vapor. In that case, the pressure in the nozzle can 

not decrease below saturation pressure. Nozzle pressure and mass flow rate M  are independent of 

outlet pressure 2p . Under these conditions, dC  and K  are related as [109]: 

dC K ;        (3.46) 

indicated by a parable on Figure 3-9, (c). 
 
At larger cavitation number, the nozzle is only partially field with vapor [Figure 3-9, (a), top and middle; 

and Figure 3-9, (b)]. Nozzle pressure and outlet pressure 2p  are identical and the discharge 

coefficient becomes relatively independent of the cavitation number. Instead the Reynolds number 
effect predominantly affects nozzle performance [109]. This regime is shown on Figure 3-9, (c) by a 
straight line. 
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Figure 3-9: Average length of the cavitation region 

cavL , (a) and (b); and discharge coefficient 
dC , in 

relation to cavitation number K  in a straight nozzle [95].  

3.2.3.3 Instabilities 

In similarity to other two-phase flows, flow instabilities are another characteristic of cavitating flows. 
These instabilities can be localized in small regions of the flow, for example in the wake of thin 
cavities, thereby affecting the flow structures only locally. They can also involve the entire hydraulic 
system, typically when long cavities close in a region of small adverse pressure. In that case, even 
small pressure perturbations can significantly modify the attachment of the cavity which, in turn, 
impacts the pressure field in the system so that an oscillating system develops: Pressure increase 
yields large cavity length reduction; this, in turn, leads to a large reduction of flow blockage and 
momentum exchange; which finally cause the pressure to decrease in the system. The cavity grows 
again until the pressure increases again and the phenomenon repeats [31]. This is the typical process 
involved in cavitation surge [110]. 

3.2.3.4 Acoustic cavitation 

The enormous temperatures and pressures released during bubble collapse can be utilized in many 
engineering fields (Medicine[111], [112], textile manufacturing [113], [114], or water treatment [115]) to 
fragment or destruct molecules; or to clean surfaces. For this purpose, growth and collapse of 
microscopic spherical bubbles are triggered by acoustic waves.   
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4 Numerical modeling 

While the theoretical background on single-phase, two-phase and cavitating flows is presented in the 
preceding chapters ‘physics’ and ‘cavitation’, the present chapter ‘numerical modeling’ describes 
established numerical techniques and models available to simulate these flows. These techniques and 
models are introduced for system codes and CFD codes since both are used for the development and 
analysis of the POR design. For instance, the POR flow rate in the backward direction is estimated 
with a system code; while the POR flow resistance during emergency core cooling is calculated with a 
CFD code. 
 
First, the theoretical prerequisite on numerical techniques is outlined in section 4.1. Then, section 4.2 
focuses on the models used in this work to simulate single-phase flows both with system and CFD 
codes. Section 4.3 describes the modeling of two-phase flows in system and CFD codes. Section 4.4 
outlines three correlations available to predict the mass flux of coolant in pipes or breaks. One of these 
correlations is the homogeneous equilibrium model (HEM). The HEM is used for the design and 
analysis of the POR. Since bubbles’ polydispersity is an important characteristic of cavitating flows, 
section 4.5 summarizes some modeling strategies currently available in CFD codes to account for it. 
Thereby none of these strategies is used in the present work. In section 4.6, the emphasis shifts onto 
the current techniques employed in the simulation of cavitating flows in CFD codes.  

4.1 Numeric 

The fluid dynamic governing equations (e.g. eq. (4.136), (4.139) and (4.144) in two phase flows) are 
highly non-linear partial differential equations (ODE) which cannot be solved analytically for complex 
geometries. A robust and efficient technique to solve these ODE anyway is to transform them into a 
system of algebraic equations which can be easily solved by numerical techniques. For this purpose, 
the flow variables are only calculated at discrete points in the flow domain and discrete times. The 
characteristic distance between two points is the mesh size  ; while the characteristic time increment 
is the time step t .  

 
The transformation of a (system of) ODE into a (system of) algebraic equation(s) is called 
discretization. The discretization process involves the discretization of the computational domain into 
elementary control volumes, also called cells; and the discretization of the equations in space and 
time. 
 
Different discretization techniques exist. Typically, finite-difference techniques [116] are used in 
system codes [117]. In CFD codes the finite volume method prevails since its formulation preserve 
local and, consequently, global mass conservation [118]. Nevertheless, the discretization process and 
the resolution of the resulting system of algebraic equations are very similar in finite-difference and 
finite-volume techniques. Hence, only the finite-volume approach will be presented in this work. 

4.1.1 Discretization of the computational domain 

The computational cells completely fill the computational domain without overlapping each other. Each 

cell P is characterized by its centroid px , its volume PV , its faces f  and its neighbors N . The 

centroid px  is defined by: 

  0

P

p

V

dV  x x .           (4.1) 

The faces of the control volume are associated with a face area vector 
fS . 

fS  points outwards from 

the cell, is normal to the cell and has the magnitude equal to the area of the face. 

4.1.2 Discretization of a transport equation 

A standard equation in fluid dynamics is the transport equation of a scalar property Y : 

     
source termconvective term diffusion term

temporal derivative

Y

Y
Y D Y S Y

t


 


   


u .     (4.2) 
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Since the flow fields are only known at discrete points 
px  and 

Nx  (
Nx  being the centroid of the 

neighboring cells), and discrete time t  and t t ; equation (4.2) does not need to be satisfied locally 

and instantaneously. Equation (4.2) only needs to be satisfied over the control volume 
PV  around the 

point P and over the time increment t  around the time t: 

     
source termconvective term diffusion term

temporal derivative
p

t t

Y

t V

Y
Y D Y S Y

t


 


 

 
    

 
 

  u .         (4.3) 

4.1.2.1 Discretization in space 

The spatial discretization consists in expressing the volume average of each physical process 
(temporal derivative, convective term, diffusion term, source term) as a function of the available 
discrete flow variables: 

 1 , , , , , , , , ,

p

p p p p p N N N N N

V

Y
g p T Y p T Y

t


 





u u ;    (4.4) 

   2 , , , , , , , , ,

p

p p p p p N N N N N

V

Y g p T Y p T Y    u u u ;       (4.5) 

   3 , , , , , , , , ,

p

Y p p p p p N N N N N

V

D Y g p T Y p T Y     u u ;        (4.6) 

   4 , , , , , , , , ,

p

p p p p p N N N N N

V

S Y g p T Y p T Y  u u .     (4.7) 

The functions 1g , 2g , 3g  and 4g  are not unique but depend on the interpolation of the available 

values at the cell surfaces (Figure 4-1). They strongly impact code accuracy, stability and efficiency. 
 

 
Figure 4-1: Representation of two computational cells P and N. Fluid properties are calculated in cell 

centroids Px  and Nx , and interpolated at the cell surface center 
fx . 

 
Taking the diffusion term as an example, it is possible to express equation (4.6) with the Gauss 
theorem [119]: 

       . .

p

Y Y Yf f f
f fV

D Y dV D Y D Y         S S .          (4.8) 

In eq. (4.8),  .
f

YS  represents the scalar product of the gradient Y  with the face area vector 
fS  

and  
f

  is the value of the flow property   at the surface center fx . Since  .
f

YS  and  Y f
D  are 

not directly available, they must be interpolated from the resolved quantities p , N , pY  and NY . 

 

The central differencing scheme (CD) calculates the property  
f

Y  at the center fx  of the cell surface 

by interpolation of the values at the cells P  and N  which share the surface. Thereby, the ratio of the 

distances 
f Nx x  and P Nx x : 

f N

ds

P N

f





x x

x x
            (4.9) 

is used as a weighting factor. Thus, the value  
f

Y  at surface center is given by: 

   1ds P ds Nf
Y f Y f Y   .      (4.10) 

For a mesh with constant mesh size  , equation (4.10) reduces to: 

 
2

P N

f

Y Y
Y


 .           (4.11) 
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The CD scheme obtains the gradient  
f

Y  at the cell surface from 
PY  and 

NY . For example, in the x-

direction, 
f

dY

dx

 
 
 

is calculated according to: 

P N

f

Y YdY

dx

 
 

 
 .           (4.12) 

Considering the Taylor expansion of the function Y  at the point 
fx , it can be shown that the 

approximation (4.12) is second order accurate for a constant mesh size  , i.e. the error scales with 
the square of the mesh size  : 

     
2 3

2 3 3

2 3

1 1 1
2 2 2
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P N

f

f f f

Y Y dY d Y d Y
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dx dx dx

      
                       
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   (4.13) 
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3

3 3 2

3

1 1
2

3

P N

f ff

Y Y dY d Y dY
o O

dx dxdx
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             

        

.  (4.14) 

[120]  demonstrates that the accuracy of CD remains second order even on non-uniform meshes. The 
mesh size   has a significant impact on the accuracy of the solution. The discretization error is 
reduced by the use of finer meshes.  
 
Second order accurate schemes represent a good compromise between accuracy, efficiency and 
stability. Higher order accurate schemes such as QUICK [121], involve more neighbors, and thus 
impose larger computational requirement; and are generally less stable; while lower order accurate 
schemes, such as upwind scheme [122], are more stable but the discretization errors are excessive. 

4.1.2.2 Discretization in time 

For the sake of clarity, the flow field quantities introduced in sect. 4.1.2.1 are given without indication 
on which time step the values refer to. Actually, considering the simplest case, two sets of quantities 
have to be considered: the “old” quantities defined at time t n t   ( t being the time step) which are 

available from the precedent time step n ; and the “new” quantities defined at time  1t t n t     

which have to be calculated during the present time step 1n . Equation (4.3) has to be expressed 

with old, denoted by the superscript ( )n ; or new quantities, denoted by the superscript  1n ; or both. 

 
Several formulations are used in CFD codes to discretize the equations in time. Some of them – the 
Euler-explicit, the Euler-implicit and the Runge-Kutta scheme – are presented in this section. For the 
sake of clarity, all the flow variables at the exception of the scalar property Y  are assumed to be 
constant and the processes are assumed to be linear in Y . Under this assumption and introducing the 

matrix dM  to represent the spatial discretization operator and the vector Y  consisting of the discrete 

values PY  of Y  in all computational cells, the spatial discretization of the physical processes (e.g. eq. 

(4.5) to (4.7)) in the transport equation of the scalar property can be expressed as: 

 d
YM .           (4.15) 

With this notation, the Euler-explicit discretization scheme is: 

 
t t

nd d

t

dt t



  Y YM M ;                  (4.16) 

and the Euler-implicit discretization scheme is: 

 1
t t

nd d

t

dt t




  Y YM M .           (4.17) 

Both formulations are first order accurate. The error is proportional to t .  

For the temporal derivative, the integration results in: 

 
 

 
 

 1

p p

t t t t
n n

P P P P

t V t V

Y
dV Y dV dt Y V Y V

t t


  

 


  
   
  
 

    .        (4.18) 
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Both Euler-implicit and Euler-explicit schemes can be used to discretize different processes in the 

same equation. Introducing the matrixes 
1

dM  and 
2

dM  associated to the spatial discretization of the 

processes discretized explicitely and implicitely in time, respectively, a general expression of the 
discrete form of equation (4.3) reads: 

          1 1

1 2

n n n nd dV t
     

 
Y Y Y YM M .           (4.19) 

Similarly to the grid size  , the time step t  has an influence on code accuracy.  

 
To reduce the discretization errors, higher order schemes are available. For example, the explicit four-

stage Runge-Kutta scheme is fourth-order accurate. Introducing a spatial discretization operator dM  

including the constant density, this scheme can be written for eq. (4.3) as: 

 
 

0

n
Y Y ;               (4.20) 

     1 0 0
2

dt
Y V Y V Y


  M ;             (4.21) 

     2 0 1
2

dt
Y V Y V Y


  M ;             (4.22) 

     3 0 2
2

dt
Y V Y V Y


  M ;             (4.23) 

            4 0 0 1 2 3
2 2

6

d d d dt
Y V Y V Y Y Y Y


    M M M M ;           (4.24) 

 
 

1

4

n
Y Y


 ;                 (4.25) 

where the superscript  n  denotes the time level n t  and the subscript  i  the internal iteration i . 

4.1.3 Influence of discretization errors 

During the transformation of the partial differential governing equations (e.g. (4.2)) into an algebraic 
system of equations (e.g. (4.19)), numerical discretization errors are introduced. As an example, the 
discretization error which arises from the approximation of the diffusive term (eq. (4.8)) is derived for 
the second order accurate CD scheme in sect. 4.1.2.1. 

4.1.3.1 Dissipative errors 

First order accurate schemes produce discretization errors which behave similarly to diffusive terms: 
these discretization errors smear out flow variable gradients. In this context, it is common to evaluate 

the numerical diffusion tensor N  associated with the discretization operator [119]. For example, [119] 

shows that the numerical diffusion tensor  N UD
  of the upwind differencing [118] on a uniform mesh 

simplifies to: 

   
1

2
N UD f

  u .         (4.26) 

Similarly, [119] derives the numerical diffusion tensor  N EI
  of the Euler-implicit temporal 

discretization. This numerical diffusion tensor is given by: 

 
2

2
N EI

t



  u .      (4.27) 

Instead, the numerical diffusion tensor  N EE
  of the Euler-explicit temporal discretization reads: 

 
2

2
N EE

t



   u .        (4.28) 

 
On non-orthogonal meshes, the order of discretization of the numerical schemes may be violated due 
to supplementary approximations. Typically, mesh skewness introduces dissipative error ([119], eq. 

(4.29) for the convection term) since the approximation of the flux is valid at if , intersection of p Nx x  

with cell surface, and not at surface center fx  (see Figure 4-2). 
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Figure 4-2: Schematic representation of mesh skewness. 

 

The numerical diffusion tensor  N sk
  arising as a result of this inaccuracy is derived in [119] for the 

convection term and reads, with 
f i m x f : 

   N sk f
  u m .           (4.29) 

4.1.3.2 Dispersive errors 

In contrast, the discretization errors of the second order accurate CD scheme are dispersive. They 
may get amplified into instabilities especially in region of large gradients (e.g. pressure shocks, 
stagnation region). In that case, the solution is characterized by large oscillations and unbounded 
scalars [119]. 

4.1.3.3 Artificial dissipation 

To maintain the stability of the code when the fluxes are obtained with the CD scheme, artificial 
dissipation terms are usually included in the viscous calculations. They prevent oscillations near 

shocks or stagnation points. For example, the operator H  of the artificial dissipation is defined in 

[123] by [here given in two dimensions with coordinates  1 2,x x ]: 

   
1 1 2 2

2 4 2 4

x x x xY Y   H H H H H .            (4.30) 

1

2

xH  and 
1

4

xH  are given by:  

  
1 1 1

22

1 2, 1 2, ,x x i j i j x i jY Y   H ;       (4.31) 

and 
  

1 1 1 1 1

44

1 2, 1 2, ,x x i j i j x x x i jY Y     H ;          (4.32) 

where i  and j  are associated with the 1x  and 2x  directions; and 
1x

  and 
1x

  are forward and 

backward difference operators in the 1x  direction. 
2

2

xH  and 
2

4

xH  have a similar expression. Thereby, 

the 2x  coordinate replaces the 1x  coordinate. 

The variable scaling factor   is defined as: 

   
1 11 2,

, 1,

1

2
i j x x

i j i j




     
  

;       (4.33) 

and 

1 1 1x x x   ;      (4.34) 

 
1 1 21x x x



    ;      (4.35) 

where 
1x

 and 
2x are defined as: 

1 1x u c   ;      (4.36) 

2 2x u c   ;       (4.37) 

c  is the speed of sound; and the exponent   is generally between 0 and 1. The coefficients  2
  and 

 4
  use the pressure as a sensor for shocks and stagnation points: 

     2 2

1 2, 1, , 1, 2,max , , ,i j i j i j i j i jK        ;         (4.38) 

1, , 1,

,

1, , 1,

2

2

i j i j i j

i j

i j i j i j

p p p

p p p


 

 

 


 
;             (4.39) 

      4 4 2

1 2, 1 2,max 0,i j i jK  
  
 

;      (4.40) 
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where  2
K  and  4

K  are model constants.  

4.1.4 Solvers 

4.1.4.1 Explicit solvers 

The algebraic equations (4.19) can be solved directly by time-marching with a fully-explicit scheme, 
even if it was strongly non-linear. This is computationally advantageous since it is not necessary to 
inverse very large non-linear matrices; which requires much memory and costly techniques. 
 
However, the stability of explicit schemes is limited to small time step t : the information should not 

travel over more than one cell per time step. This requirement can be formulated according to the 
Courant-Friedrichs-Lewy ( CFL ) number defined by 

maxU t
CFL




Δ
;         (4.41) 

where 
maxU  is the maximal velocity (flow velocity u  for pressure-based solvers or wave front velocity 

u c  for density-based solvers – see sect. 4.1.5); and Δ  is the length vector between the centroids of 

the cell P  and of the neighbor cell N . The CFL  number must be smaller than a problem dependent 

critical CFL  number 
cCFL  for which the calculation becomes unstable: 

1cCFL CFL  .        (4.42) 

Similarly, the von Neumann stability analysis indicates that diffusion processes impose a limit on the 
affordable time step. For example, the stability condition of the transport equation of a scalar property 
(eq. (4.2)) without convection and discretized with an explicit Euler method and CD, reads : 

2

1

2

YD t



.       (4.43) 

For other equations or discretization schemes, the value on the right hand side of the inequality (4.43) 

may differ from 1 2 ; and YD  may be replaced by the momentum diffusion coefficient  . 

 
Thus, the time step in explicit calculations has to satisfy: 

2

max

min ,c vNCFL
t

U





  
   

 
;      (4.44) 

where vN  is a constant of order one. 

4.1.4.2 Implicit solvers 

The discretization in time is presented in section 4.1.2.2 assuming linear processes. A more general 
algebraic equation contains linear and non-linear terms. In this context, for fully- and semi-implicit 

numerical schemes, the algebraic equation (4.19) can be written in the matrix form with D  and D  

discretization operators: 

   1 1,n n n nY Y Y Y  D D .             (4.45) 

Since the direct solution of a non-linear equation is very inefficient for large matrices, the matrix D  is 

generally linearized around nY : 

   1,n n n nY Y Y Y D D .           (4.46) 

Typically, the convective term in the Navier-Stokes equations is expressed with the known fluxes. 

Then, eq. (4.46) is solved iteratively. For this purpose the matrix D  is split into two operators 1D  and 

2D  which satisfies 

1 2 D D D .       (4.47) 

The decomposition is not unique and largely influences the convergence of the iterative scheme: 
1

0

n n

pY Y

  ;                          (4.48) 

   1 1 1

1 1 2

n n n

p pY Y Y  


  
 

D D D ;      (4.49) 

1 1n n

p NY Y 

 .          (4.50) 
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p  is the internal iteration incremented from 0 to N  at fixed time step n . The value N of the iteration 

counter p  in eq. (4.50) satisfies an abort criterion. For example, the variation 1 1

1

n n

N NY Y 

   is smaller 

than a user-defined truncation error 
it : 

1 1

1

n n

N N itY Y  

   .          (4.51) 

In comparison to explicit schemes, the supplementary cost for the iterative process is compensated by 
the larger affordable time step, which is advantageous for long transients. 

4.1.5 Solvers for coupled equations 

The basic ideas of the discretization of a transport equation and the resolution of the resulting 
algebraic equation are presented in the preceding sections. The approach remains very similar for 
several equations. Nevertheless, the governing equations of single and two-phase flows are coupled. 
It is necessary to use dedicated numerical techniques to treat correspondingly the system of algebraic 
equations. 

4.1.5.1 Segregated solvers 

One approach is to solve the model equations sequentially. This technique is valid for processes 
where energy and momentum equations’ coupling is weak. This is the basic idea of the segregated 
solvers (SIMPLE, SIMPLEC, PISO, etc.), also called pressure-based solvers. For example, the semi-
implicit method for pressure linked equations (SIMPLE [124]) proceeds as follows: First the velocity 
field is calculated from the momentum equation. Thereby, the pressure gradient is estimated with the 
flow variable of the previous iteration (“old” value). Second, the pressure equation is formulated with 
the available velocity field and solved to obtain the new pressure distribution. Finally, the velocities are 
corrected with the new pressure distribution to satisfy the continuity equation. New fluxes are 
calculated for the next iteration. The number of correction steps required to achieve an arbitrarily 
precision is often problem and mesh specific.  
 
Originally developed for incompressible flows, whose velocity field is divergence free, these pressure-
based solvers have been adapted to compressible flows and in particular to two-phase flows. In 
essence, successive pressure corrections are used to adjust velocities and densities until the required 
conservation relation is satisfied [125]. 
 
These solvers have two major drawbacks. First, the conservative form of the governing equations is 
not strictly satisfied. This creates numerical difficulties and loss of accuracy near step gradients [126]. 
Second, only slow convergence rates are achieved [127]. 

4.1.5.2 Coupled solvers 

When the interaction between the phases is very strong, or the processes have short time scales, 
coupled solvers are preferable [125]. Developed for compressible flows by the aerospace community, 
the density-based algorithms solve density, momentum and energy governing equations as a vector of 

equations. Cast in integral Cartesian form for an arbitrary control volume cellV  with differential surface 

area dA , the system of governing equations of a single phase flow reads: 

 
cell f cell

u

V V

dV d dV
t


   

   
S

W F G A H ;           (4.52) 

where the vectors W , uF  and G  are defined as: 

1

2

3

u

u

u

E











 
 
  

  
 
 
  

W , 

1 1

2 2

3 3

u

u p

u p

u p

E p











 
 


  

  
 
 

  

u

u x

F u x

u x

u u

, 

0

xi

yi

zi

ij iu

 
 
 
 

  
 
 

  

τ

τG

τ

τ q

;         (4.53) 

and the vector H  contains source terms. 
 
The system of partial differential equations (4.52) can be discretized in a fully-explicit manner and 
advanced in time with a time-marching scheme. High order accurate temporal discretization scheme 
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such as the fourth-order accurate Runge-Kutta scheme are generally used for this purpose. The time 

step is chosen according to eq. (4.44) with maxU u c  , being the maximal speed at which information 

travels. 
 
The pressure and the temperature are computed from the equation of state (eos) with the 
conservative variables. 
 
Supplementary equations, such as scalar property transport equations, are solved in a segregated 
manner. 
 
Implicit unsteady formulations and steady formulations are other schemes available with density-
based solvers. In these cases, the system of equations is linearized and solved by matrix inversion for 
implicit schemes; whereas the explicit time stepping and the explicit steady formulations use the pre-
conditioning technique [92]; and the so-called dual-time stepping schemes. 

4.1.6 Modeling of the boundary conditions 

To reduce the computational effort, it is advantageous to limit the extent of the computational domain 
as much as possible. Thereby the type and the position of the boundaries largely influence the 
accuracy of the numerical results [128] and the stability of the code. 
 
The spatial discretization of the governing equations is described in sect. 4.1.2.1 for internal cells, i.e. 
computational cells situated inside the fluid domain: the flow variables and their gradients at cell faces 

(e.g.  
f

Y  and 
f

dY

dx

 
 
 

) are interpolated from neighboring cells. There, the number of neighbors 

involved depends on the numerical scheme. In contrast, boundary cells, i.e. located at the boundaries, 
are missing one or more neighboring fluid cells. To use the same algorithm for boundary cells as for 
internal cells, supplementary cells, called halo cells, are commonly introduced. The number of halo 
cells depends on the discretization scheme. With the CD scheme, the halo cells mirror the first layer of 
cells near the boundary against the boundary face (Figure 4-3 right). Halo cells are used similarly to 
fluid cells except that flow variable values are not calculated but imposed at their centroid. 
 

 
Figure 4-3: Schematic representation of fluid cell (left) and boundary cell (right) with CD scheme. 

 
The value prescribed at the centroid of the halo cells depends on the boundary conditions. Typical 
boundary conditions can be categorized into wall (with no-slip or slip conditions), inlet (velocity and 
temperature profiles, mass flow, total pressure), symmetry, far field, and outlet (outflow, static 
pressure, and zero gradients). Boundary conditions which are used in this work (no-slip walls, velocity, 
mass flow and total pressure inlet, and outflow and static pressure outlet) will be described hereafter. 

4.1.6.1 Walls with no-slip conditions 

4.1.6.1.1 Momentum equation 

The no-slip condition is valid at the wall for viscous fluid. In this case, the fluid has no velocity relative 

to the wall. Its velocity 
w

u  matches the wall velocity wu : 

ww
u u .       (4.54) 
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4.1.6.1.1.1 Boundary layer resolution 

Assuming the wall is not moving (
w u 0 ), the condition (4.54) is obtained by imposing the velocity 

Hu  

at the centroid of the halo cell. With the CD scheme, the velocity 
Hu  is given by: 

H P u u ;       (4.55) 

where 
Pu  is the velocity vector at point P , the centroid of the first computational cell near the wall 

(Figure 4-4). 

 
Figure 4-4: Wall treatment with no-slip condition and non-moving wall for the momentum equations. 

 
The specification of the velocity is also used to calculate the velocity gradient at the wall. This velocity 

gradient is needed to obtain the wall shear stress 
W  as follows: 

W

W

du

dy
 

 
  

 
.          (4.56) 

For turbulent flows, wall shear stress calculation according to (4.56) is exact when the first 
computational cell is situated inside the viscous sublayer (see Figure 4-5). In this case, the flow is said 
to be resolved up to the wall. The viscous sublayer is dominated by viscous effects. It extends from 

the wall ( 0y  ) to 5y   where y  is the non-dimensional wall distance defined as: 

wy u
y 



  ;         (4.57) 

u  being the friction velocity given by: 

Wu



  .         (4.58) 

4.1.6.1.1.2 Wall functions 

With high Reynolds number flows, the requirement 5Py   (
Py  being the non-dimensional distance 

from the wall of the first cell) is very demanding. It implies a large number of cells (see Figure 4-6 right) 
and small discretization sizes (both spatial and temporal); and generally increases the stiffness of the 
equation system to be solved.  

 
Figure 4-5: Representation of the non-dimensional velocity profile u

 in relation to the non-dimensional 

wall distance y
 in a developed turbulent boundary layer. 

 
To avoid the drawbacks of resolving up to the wall, it is possible under certain flow conditions to use 
wall functions. These wall functions present a universal character deduced from dimensional analysis 
[33] and validated by experiments. When the flow under consideration fulfills underlying assumptions 
[129]: 
 flow field variation is predominantly normal to the wall; 
 pressure gradients and body forces are negligible; 
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 shear stress and velocity vectors are parallel and unidirectional throughout the layer; 
 turbulence energy production and dissipation are balanced; 
 there is a linear variation of turbulence length scale; 
standard wall functions are used to estimate the wall shear stress. In this framework, the first 
computational cell is bigger (Figure 4-6 left) since it is situated in the fully turbulent layer which 

extends from 70y   to 300y  (see Figure 4-5). In this layer, the non-dimensional velocity u  

defined as: 

u
u

u

  ;       (4.59) 

and the distance to the wall y  (eq. (4.57)) are related according to the logarithmic law:  

1
lnu y C



    .            (4.60) 

In eq. (4.60) the constants are 0.41   and 5.0C  . Then, the wall shear stress 
W  is obtained by 

solving iteratively eq. (4.60) replacing u  from eq. (4.59) with 
Pu , the velocity of the first computational 

cell at the wall, and 
wy  from eq. (4.57) with 

,w Py , the distance from the wall of the first computational 

cell. 

 
Figure 4-6: Representation of the meshes needed with wall functions (left) and resolution up to the wall 

(right); 
Py  is the distance from the wall of the first computational cell centroid. 

 
The wall shear stress is also needed for the calculation of the turbulent properties when wall functions 
are used (see 4.1.6.1.3).  

4.1.6.1.1.3 All- y  wall treatment 

In commercial software, the “all- y  wall treatment” is available to combine the advantages of both 

techniques for complex geometries: The code determines which technique has to be utilized 
(boundary resolution or wall functions) depending on the distance from the wall of the first 
computational cell. Thus, it is possible to refine the mesh in regions characterized by flow detachment, 
stagnation, etc., so that the governing equations are solved down to wall; while the number of cells 
can be reduced in other regions by the use of wall functions.  

4.1.6.1.2 Temperature equation 

For the temperature equation, two conditions may be specified at the wall: wall heat flux or wall 

temperature. In the simulations presented here, the wall is adiabatic, i.e. wall heat flux Wq   through the 

boundary face is zero: 

W q 0 .       (4.61) 

According to Fourier’s law with constant thermal conductivity, the relation (4.61) is equivalent to: 
T  0 .       (4.62) 

This second relation (4.62) is satisfied by imposing the temperature of the first computational cell near 
the wall at the centroid of the halo cell. 

4.1.6.1.3 Turbulent equations 

The turbulent fluctuations vanish at the wall. Turbulent kinetic energy, specific dissipation rate and 
eddy viscosity are set to zero at the wall by mirroring their value from the boundary cells into the halo 
cells when the flow is resolved down to the wall. 
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In contrast, with wall functions, the first cell is situated in the fully-turbulent layer. Assuming a linear 

dependence of k  and   with wall distance would be too crude. Instead wall functions were derived to 

relate the turbulent kinetic energy and the specific dissipation rate with the distance from the wall. The 

values 
Pk  and 

P  in the first computational cell are estimated from wall shear stress and distance 

from the wall; and imposed such as: 
2

*

,

P

w P

u
k

y




 ;       (4.63) 

*

,

P

w P

u

y


 

 .       (4.64) 

In eq. (4.63) and (4.64), *  is a model constant. 

4.1.6.2 Inlet and outlet 

Inlet and outlet must reproduce the hyperbolic character of the Navier-Stokes equations. In this 
context, the number of variables to impose at the inlet of the computational domain is given by the 
number of positive local eigenvalues while the number of variables to impose at the outlet is given by 
the number of negative local eigenvalues. Here the local eigenvalues are defined by u , u c  and 

u c , with u  and c  being the local velocity and sound speed, respectively. For the calculation of the 

POR flow behavior, 4 variables are prescribed at the inlet and one at the outlet since subsonic 
conditions are encountered. The quantities which are not prescribed are extrapolated from the internal 
computational cells, generally assuming zero gradients between internal and boundary cells. 

4.1.6.2.1 Inlet 

4.1.6.2.1.1 Velocity inlet 

One possible inlet boundary condition is the velocity inlet condition. In this case, velocity and 
temperature are prescribed at the inlet while density is extrapolated from the internal cells. If needed, 
turbulent parameters, chemical species or void fraction are imposed.  

4.1.6.2.1.2 Mass flow inlet 

Another possibility is to impose the mass flow and the temperature at the inlet of the computational 
domain. For an incompressible calculation, it is equivalent to the velocity inlet. 

4.1.6.2.1.3 Total pressure inlet 

Often total pressure and temperature are known at the inlet while the mass flow is a result of the 
calculation. Total stagnation pressure, total stagnation temperature and flow direction must be 
prescribed at the inlet.  

4.1.6.2.2 Outlet 

4.1.6.2.2.1 Outflow outlet 

Outflow conditions can only be used in incompressible calculation when velocity or mass flow is 
prescribed at the inlet. A zero diffusion flux is applied to all variables at the outflow cells while an 
overall mass balance correction assures the conservation of mass.  

4.1.6.2.2.2 Static pressure outlet  

Generally, pressure outlet is known and specified at the outlet of the computational domain. Other flow 
variables are extrapolated from the internal cells using zero diffusion fluxes. 

4.2 Modeling of single-phase flows 

In system and CFD codes, the flow variables are only known at discrete points in time and space. 
Information on the flow variables is unavailable at any other position or time. Thus, the variations of 
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the flow variables over length scales smaller than the grid size and time scales smaller than the time 
step are unresolved.  
 
The smallest length and time scales of the fluctuations in a single-phase turbulent flow are the 

Kolmogorov length 
Kl  and time 

Kt , respectively. From a dimensional analysis, it is possible to 

estimate the number of cells required to resolve these fluctuations. In a turbulent flow of Reynolds 

number Re , this number of cells is of order 9 4Re  [37].  

 
In spite of the drastic increase in computer resources during the last decades, this requirement is still 
beyond current computing capability in engineering applications. Small length and time scales cannot 
be fully resolved. Therefore, the discretized equations must be completed with models which 
represent the effect of this unresolved information. 

4.2.1 System codes 

For calculations involving long geometries and/or long transients, e.g. safety analysis in a nuclear 
plant reactor, it is common to discretize the equations over one-dimensional longitudinal sections. 
Processes such as friction, turbulence and heat transfer, which depend upon transverse gradients, 
must be formulated in terms of empirical transfer coefficients. These coefficients, also called 
correlations, must be expressed with the known quantities, i.e. the bulk properties. Experiments, 
available experimental data [40] or accurate numerical calculations are required to derive the 
correlations. 
  
The one-dimensional conservation equations of a single-phase flow read [51]: 
Mass conservation equation: 

0A M
t z


 

 
 

.      (4.65) 

Momentum equation: 
2

sinw g

M
M A p P Ag

t z A z
  



  
    

  
.        (4.66) 

Energy equation: 

w w

M M
A E ME p P Pq A Q

t z z A
  

 

  
     

  
.    (4.67) 

In these equations, A is the cross section, M uA  the mass flow rate, P  the pipe perimeter, w  the 

Q wall friction coefficient, 
g  the angle existing between pipe and gravity field g , wq  the heat transfer 

coefficient and   the heat source term (see Figure 4-7). 

 
Figure 4-7: Representation of a single-phase flow in a pipe [51]. 

 
Wall friction and heat transfer coefficients must be modeled with bulk properties. A typical correlation 
for the wall friction is: 

 
1

Re
8

w f u u  ;         (4.68) 

where the function  Ref  of the Reynolds number Re  is calculated according to some assumptions 

on the flow conditions (turbulent or laminar), on the properties of the wall (roughness), etc. For 
example, the correlation of Hagen-Poiseuille [130]: 

 
64

Re
Re

f        (4.69) 
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is used for laminar flows. In contrast, the friction loss of a turbulent flow in a pipe of diameter D  and 

roughness 
r  is better described by the correlation of Colebrook [131]: 

   

1 2.51
2log

3.7Re Re Re

r

Df f

 
   
 
 

.         (4.70) 

A correlation to model the turbulent heat transfer in a pipe of diameter D  of a fluid of thermal 

conductivity 
T  is: 

 w w wq k T T  ;       (4.71) 

with 

T

wk Nu
D


 ;                (4.72) 

and [132] 
0.8 1 30.023Re PrNu  .        (4.73) 

 
For more complex geometries than simple pipes, another form of hydraulic resistance is encountered 
as a consequence of flow detachment, swirls, etc.: the form loss. Similarly to friction loss, correlations 
must be supplied to the system code to account for it. 
 
The dissipation of energy downstream of a sudden enlargement is also a transverse process. To 
account for this phenomenon, a correlation must also be supplied. Considering the Carnot diffuser 
(see Figure 4-8, [133]), the flow detaches from the wall and large recirculation zones develop yielding 

high energy dissipation. The pressure recovery from section 1 to 2 is only partial and the pressure 
2p  

at section 2 is lower than it would have been if no energy had been dissipated. 
 

 
Figure 4-8: Carnot diffuser: Sudden expansion from cross section 1A  to 2A . 

 
For this simple configuration, an analytical expression exists [133] to estimate the hydraulic loss given 

two cross sections 1A  and 2A , and a velocity 1u  at the smallest cross section 1A : 

2

1

2 2
1

1

2

Ap

A
u



 
  
 

.         (4.74) 

In eq. (4.74), p  represents the difference between the (ideal) total and the Carnot diffuser pressure 

recovery. 
 
A dimensionless number  , called the pressure loss coefficient, generally is introduced to represent 

the flow resistance. This coefficient is defined as the ratio between the pressure loss and dynamic 
pressure: 

2

2

p

u





 .                 (4.75) 

4.2.2 Computational fluid dynamics codes 

Correlations are needed in system codes to represent the effect of transverse processes. When 
experimental data are not available for the specific flow conditions and geometry, an alternative to 
perform costly experiments is to use Computational Fluid Dynamic (CFD) codes. In CFD codes, the 
computational domain is discretized over small three dimensional computational cells. More 
information about the flow variables is known. However all scales of the turbulent fluctuations cannot 
be resolved. Models are supplied to represent the effect of these fluctuations. 



Numerical modeling 

 

 
 

56 
 

  

4.2.2.1 Reynolds-averaged Navier-Stokes equations 

In Reynolds-averaged Navier-Stokes simulations (RANS), the governing equations are time-averaged. 
They read: 

  0i

i

u
t x




 
 

 
;      (4.76) 
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;     (4.77) 

    j ij j i
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;    (4.78) 

       i i

i i

Y u Y j S Y
t x x
 

  
   

  
.     (4.79) 

Assuming constant density    and using the Reynolds decomposition (chapter physics), the 

system of eq. (4.76) to (4.79) becomes: 
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.     (4.83) 

The first terms on the right-hand side of these equations represent the turbulent fluxes of momentum, 
energy and scalar property, respectively, 

i j i j i ju u u u u u       ;      (4.84) 

i i iu E u E u E       ;      (4.85) 

i i iu Y u Y u Y       .     (4.86) 

They are not known and must be modeled: it is the closure problem.  
 
The turbulent fluxes represent the effect of the turbulent fluctuations on the mean flow. Since one 
remarkable effect of the chaotic motion is to greatly increase the mixing of the fluid properties, the 
turbulent fluxes often are treated in analogy with the molecular diffusion processes. 
 

For example, the turbulent momentum fluxes i ju u   , also called (apparent) Reynolds stresses, are 

represented by a linear constitutive relationship with the mean flow straining field: 

ji

i j t

j i

uu
u u

x x
 

 
    

   

;                    (4.87) 

where t , the turbulent eddy viscosity, is modeled. The modeling of t  distinguishes the numerous 

so-called (linear) eddy viscosity models (e.g. Baldwin-Lomax [134], Cebeci-Smith [135], Spalart-

Alamaras [136], k   [137], k   [138]). 

 
In the same manner, enhanced temperature and species mixing generally are approximated by a 
gradient hypothesis which mimics the molecular processes. Introducing the positive turbulent thermal 

conductivity  T t
  and turbulent mass diffusivity  Y t

D , the turbulent fluxes of energy and scalar 

property are given by: 

 i T t
u e T      ;                  (4.88) 

 i Y t
u Y D Y     .        (4.89) 

Instead of solving supplementary equations to determine these turbulent quantities, CFD codes 
commonly relate them to the momentum mixing diffusivity such as: 
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 
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c 
  ;             (4.90) 
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Y t
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D


 
 .              (4.91) 

In these expressions, Prt  and  Y t
  are turbulent Prandtl and turbulent Schmidt numbers, 

respectively. Most of the time, these non-dimensional terms are assumed to be constant in time and 
space and equal for temperature and all other scalar properties. This assumption is very crude [139] 
but very attractive due to its simplicity. 
 
A major flaw of these linear eddy viscosity models is that turbulence is by definition isotropic. Flows 
characterized by anisotropic turbulence such as impinging, swirl and curved flows cannot be exactly 
predicted. Therefore, intensive research is carried out to develop anisotropic eddy viscosity models 
[140].  
 
Another modeling approach inside the RANS framework is the Reynolds Stress Model equations. 
Transport equations of the Reynolds stresses are solved [141]. Although this approach is very 
promising, the modeling of unknown terms arising in these equations is difficult and calibration of 
model constants is, until now, only achieved for specific flows and operational ranges. 
 
In the next two sections, the turbulent eddy viscosity models which are used in this work are outlined. 

4.2.2.1.1 Spalart-Allmaras model 

The Spalart-Allmaras model [136] solves the transport equation of a modified form t  of the kinematic 

viscosity 
t t   . Both quantities, 

t  and 
t , are related by a damping function 1f  such as: 

1t t f  .                 (4.92) 

The damping function 1f   is defined as: 
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;           (4.93) 

with 1C  being a model constant.  

The transport equation of the modified viscosity t  reads 
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In eq. (4.94), 
t

G


 and 
t

Y


 represents the production and dissipation of t , respectively; and 
t

  and 

2bC  are two model constants. The production term is given by: 

1
t

b tG C S


 ;          (4.95) 

where 1bC  is a model constant and S  is: 
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wy  being the distance to the wall,   the Karman constant, 2f  is defined by: 
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and 

 2 ij ijS    ;            (4.98) 
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ij  being the rotation tensor: 
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The dissipation term is given by: 
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1wC ,
2wC , 

3wC  are other model constants. 

 
Numerical values of the model constants are summarized in Table 4-1. 
 

1bC  
2bC  
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 
 

(4.104) 

0.3 2.0 7.1 0.41 

Table 4-1: Numerical values of the model constants in the Spalart-Allmaras model [136]. 

4.2.2.1.2 k   SST model 

Another eddy viscosity model is the k   SST model [142]. This two-equation model solves the 

transport equations of the turbulent kinetic energy k  (eq. (4.109)) and the scaled specific dissipation 

rate *k    (eq. (4.111)), with * 0.09  . The eddy viscosity is calculated with k  and   according 

to: 

 
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 


 ;          (4.105) 

where 1 0.31a   is a model constant, S  is an invariant measure of the strain rate and 2F  a blending 

function defined as: 
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wy  being the distance to the wall. In the framework of the k   SST model, the expression of the 

Reynolds stresses eq. (4.87) is replaced by: 
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The transport equation of the turbulent kinetic energy reads: 
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where kP  is defined as: 
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and 
k  is a model constant. The transport equation of the specific dissipation rate is: 

 2 24 t
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;                       (4.111) 

with  ,  ,   being other model constants. 

The k   SST model combines the advantages of two other two-equation eddy viscosity models, the 

k   and the k   models. Its blends the coefficients  2 2 2 2, , ,k kC       of the k   away from 

the wall to those  1 1 1 1, , ,k kC       of the k   close to the wall with a blending function 
1F  

defined as: 

 4

1 1tanh argF  ;            (4.112) 
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Thus, the coefficients  , , ,SST kC      of the k   SST model are given by: 

 1 11SST k kC FC F C     .        (4.115) 

 
Numerical values of the model constants are summarized in Table 4-2. 
 

1  2  
1  

2  1  2  1k  2k  

5 9  0.44  3 40  0.0828  0.5  0.856  0.85  1  

Table 4-2: Numerical values of the model constants in the k   SST model [142]. 

4.2.2.2 Large eddy simulations 

In large eddy simulations (LES), the governing equations are spatially filtered: only the turbulent 
fluctuations which are larger than the filter width are resolved. In general the filter width matches the 
grid size. It is possible to apply a supplementary (larger) spatial-filter if particular mathematical or 
physical properties of the filtering are desired (e.g. [143], [144]). Calculations using filtered equations 
are called LES since the large scales are resolved. This approach supposes that the cells are 
sufficiently small to resolve the large turbulent scales [37]. Hence, the computation cost is quite larger 
than in RANS. 
 
Mathematically the spatial filtering supposes a filter function G  positive definite with characteristic filter 

width  . The spatial filter of a function f  is then defined as its convolution with G  according to 

      , '; ', 'f t G f t d


  x x x x x x ;      (4.116) 

where   is the entire flow domain. The variable f  is decomposed into a filtered, also called 

unresolved or sub-grid, variable 'f  and a resolved variable f . 

 
The filtered governing equations have exactly the same form as equations (4.80) to (4.83); but the bar 
now denotes spatial-filtering instead of time-averaging. Therefore, fluxes (4.84) to (4.86) are also 
present in the filtered equations and must be modeled. In contrast to the RANS approach, however, 
they only represent the turbulent transport due to the sub-grid fluctuations. This is particularly 
advantageous since the effect of these sub-grid fluctuations on the momentum transport are easier to 
model than the effect of the larger scale fluctuations. Simple sub-grid scale models in the momentum 
equations suffice to find good agreement [145]. 
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The monotone integrated large eddy simulation (MILES [146]) approach and the Smagorinsky-Lilly 
model [147] are two common approaches to model the turbulent fluxes. The Smagorinsky-Lilly model 

represents the effect of the turbulent fluctuations by a subgrid-scale viscosity 
sgs  defined as: 

 
2

sgs sC S   ;      (4.117) 

where 

 
1

3
cellV  ;              (4.118) 

2 ij ijS e e ;                (4.119) 

and 
sC  is a model constant. In contrast, the MILES approach assumes that the numerical dissipation 

is sufficient to represent the subgrid-scale effects. 
 
Similarly to eddy viscosity models, it commonly is assumed that enhanced scalar property mixing due 
to the turbulent fluctuations can be approximated by a gradient hypothesis. Introducing the positive 

sub-grid thermal conductivity  T sgs
  and mass diffusivity  Y sgs

D , the turbulent fluxes of energy and 

scalar property are given by: 

 i T sgs
u e T      ;            (4.120) 

 i Y sgs
u Y D Y     .             (4.121) 

Instead of solving supplementary equations to determine  T sgs
  and  Y sgs

D , CFD codes commonly 

relate them to the sub-grid scale viscosity such as: 

 
Pr

p sgs

T sgs

sgs

c 
  ;       (4.122) 

 
 

sgs

Y sgs

Y sgs

D


 
 .        (4.123) 

In these expressions, Prsgs
 and  Y sgs

  are sub-grid Prandtl and Schmidt numbers, respectively. Most 

of the time, these variables are assumed to be constant in time and space and equal for temperature 
and all scalar properties. This assumption is crude but very attractive due to its simplicity. 
  
Since only mean values are interesting for the design of engineering components, the results of a LES 

are ensemble-averaged at the end of the calculations. The ensemble-averaged mean value 
N

  of 

any flow field  , is computed according to: 

 

1

1 N
i

N
iN

 


  ;       (4.124) 

where  i  is one realization of  .  

4.3 Modeling of two-phase flows 

4.3.1 Definition and properties 

As discussed in chap. physics, the determination of the position of the interface between the two 
phases is crucial to accurately predict mixture macroscopic behavior. This task is particularly 
challenging for two reasons: On one hand, the interfacial configuration is influenced by interfacial 
transfers, which, in turn, are impacted by the interfacial morphology. On the other hand, length and 
time scales of two-phase mixtures are very disparate. For instance in cavitating flows, nuclei size may 
be as small as (or even smaller than) a few micrometers whereas macroscopic manifestations such as 
cavitation sheets are also observed. Furthermore, the interface is liable to instabilities and, thus, 
strongly fluctuating in time and space. 
 

Recalling the phase indicator kP  introduced in chap. physics, the goal of the numerical calculations is 

to specify this function in time and space. For very simple flow conditions and very simple geometries, 
the one-fluid method is designed to capture or track the interface in time and space (e.g. [148], [149]). 
In this framework, all structures are described by at least a few computational cells. This requirement 
has also consequences on the affordable time-step due to the Courant-Friedrichs-Lewy criterion (sect. 
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4.1). For industrial applications, the number of cells and the time of the calculations would be 
prohibitive – imagine at least 4 cells for each cavitation nuclei (Figure 4-9 left). As a consequence, all 
structures cannot be described: only scales which are sufficiently large can be resolved whereas the 
rest of the scales are ensemble-, volume- and/or time-averaged (Figure 4-9 right). The averaging 
elements (e.g. time) is assumed to be large enough to smooth out the local variations of the properties 
but sufficiently small in comparison to the characteristic variation (e.g. time constant of bulk flow 
unsteadiness). 

 
Figure 4-9: Illustration of one-fluid (bottom left) and averaged (bottom right) formulations of a dispersed 
flow (top): four gas bubbles (white) are dispersed in water (blue); numerical grid lines (solid lines). 

 

In particular, the position of the interface, and thus the phase indicator 
kP , is only known in averaged:

kP , where the averaging operator  represent time-, space- and/or ensemble-averaging. In this 

chapter, k  is g  for the gas phase and  l  for the liquid phase. 

 

In the time-averaging framework,  0kP x  corresponds to the fraction of time spent by the phase k  at 

the position 
0x  during the averaging time; in the volume-averaging framework,  0kP t  represents the 

volume fraction occupied by phase k at time 
0t  in the averaging volume; while  0kP x  is the probability 

of finding the phase k  at the position 0x  in ensemble averaging.  

 

kP  commonly is called the “volume” fraction k  of the phase k : 

k kP  .              (4.125) 

In this thesis, the void fraction   is the “volume” fraction of the gas phase: 

 
g  .                                                                         (4.126) 

More generally, for any function F  associated with two-phase flows and assumed to be continuously 

differentiable everywhere except at the interface, a function kF  can be defined as: 

   0 0, ,k kF x t P x t F   
   

 
0 0

0

,    if x ,  k   

0                if x ,  k 

F x t t

t

 

 

.    (4.127) 

The average of the function F  is F . Using the phase density function kP  as a weighting function, the 

phase-average 
kF  reads: 

k k k

k

kk

P F F
F

P 
  .           (4.128) 

A simple relation exists between average F  and phase-average quantities 
kF  

l l

k k k

k g k g

F F F
 

   .             (4.129) 

The mass weighted mean value   and k of the variable per unit mass   are defined by: 

ˆ





  ;       (4.130) 

and 
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ˆ k k k k

k

k k

   


 
  .             (4.131) 

From the definition of the mass weighted mean values, one has 
l

k k

k g

  


 ;          (4.132) 

so that  

ˆ ˆ

ˆ

l l

k k k k

k g k g

l l

k k

k g k g

  



  

 

 

 

 

 
.      (4.133) 

The fluctuating component can be uniquely defined such as: 

k k kF F F   .       (4.134) 

It obeys 

0kF   .       (4.135) 

4.3.1.1 Governing equations 

[150], [47] and [151] derived the averaged two-phase flow governing equations for time-, space-, and 
phase-averaging. All averaged equations have a very similar structure. Only the physical interpretation 
of the unresolved terms appearing in these equations differs. The time-averaging formulation [150] will 
be presented below. 
 
Mass balance 

 ˆk k

k k k km
t

 
 


 


u ,  k = g .. l ;        (4.136) 

with 

 
1 1

k k k k i

j ni

m
t u


 

    
  
 n u u ;     (4.137) 

and 

0
l

k

k g

m


 .       (4.138) 

Momentum balance 

     ˆ ˆˆ ˆ Tk k k

k k k k k k k k k k k k kp
t

 
     

        
  

u
u u T T F M , k = g .. l ;   (4.139) 

with 

 
1 1

k k k k i k k

j nit u


 
         

M n u u u T ;             (4.140) 

 
1 1

2m g s

j ni

H
t u

 
 

  
  
M n ;     (4.141) 

T

k k k k   T u u  ;       (4.142) 

and 

0
l

k m

k g

 M M .      (4.143) 

Energy balance 

   
2 2

,

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆe e
2 2

Tkk kk

k k k k k k k k k k k k k k k k k Q kS
t
       
                                   

u u
u q q T u F u , k = g .. l ;   (4.144) 

with  

 
2

,

1 1

2

k

Q k k k k i k k k k

j ni

S e
t u


    

          
      


u
n u u T u q ;          (4.145) 
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 ,

1 1
2Q m g s i

j ni

S H
t u

 
 

       
 n u ;                       (4.146) 

2

2

T k

k k k k k kk k ke p
 
        

 

u
q u T u u ;         (4.147) 

 
2

ˆ ˆe
2

k

k ke


 
v

;                   (4.148) 

and 

, , 0
l

Q k Q m

k g

S S


  .      (4.149) 

In these expressions, 
niu  is the normal velocity of the interface: 

ni iu  u n ;             (4.150) 

where n  is the interface normal and 
iu  is the velocity of the interface. 

In the time-averaging framework, the instantaneous equations are averaged over the time t . During 

t , the gas-liquid interface passes a certain number of time at the location 
0x  under consideration. 

The index of summation j  in eq. (4.137), (4.140), (4.141), (4.145) and (4.146) represents the j -th 

passage of the interface at the location 
0x  during the averaging time. 

km , 
kM , mM , 

,Q kS  and 
,Q mS  

result from the presence of the interface within the averaging time. 
km  represent the interfacial mass 

transfer; 
kM  and 

mM  are the momentum sources; and 
,Q kS  and 

,Q mS  are energy sources. T

kT  and 

T

kq  represent the statistical effect of two-phase and turbulent fluctuations on resolved momentum and 

specific total energy.  

4.3.1.2 Constitutive equations 

The averaging of the fluctuations has not only an impact on the conservation equations but also on the 
constitutive equations. [150] proposes following expressions. 

The mass fraction kY  of the phase k is given by 

k k k k k

k

m
g g l l

Y
    

    
  


;      (4.151) 

with 
l

m k k

k g

  


 .       (4.152) 

The mixture energy is given by:  

ˆ

ˆ

l

k k k l
k g

m k k

k gm

e

e Y e

 







 


 .            (4.153) 

The mixture molecular diffusion flux J  can be defined as 
l

k k

k g




J J .       (4.154) 

In eq. (4.154) k k J T  is the momentum molecular flux; and k k k k  J q T u  is the heat molecular flux. 

The mixture mass center of velocity can be defined as: 

ˆ

ˆ

l

k k k l
k g

m k k

k gm

Y

 







 




u

u u ;           (4.155) 

and the mixture pressure as: 
l

m k k

k g

p p


 .       (4.156) 
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4.3.1.3 Equation of state 

[150] also derived the averaged equation of state corresponding to the specific internal energy 

 ,k k k ke e s  . 

They indicate that, in general, a simple equation of state in terms of averaged quantities does not exist 

because the relation between specific internal energy ˆ
ke , entropy ˆ

ks  and density 
k  is impacted by 

the effects of the fluctuations and by the interfacial transfers. This last element had already been 
mentioned for the determination of the speed of sound in a bubbly mixture in chap. physics.  

4.3.1.4 Modeling of two-phase flows 

km , 
kM , 

mM , 
,Q kS , 

,Q mS , T

kT  and T

kq  arise from the averaging of the two-phase governing equations. 

These terms are expressed exactly in terms of local and instantaneous quantities. These local and 
instantaneous quantities are not available. Models with averaged quantities are required to represent 

km , 
kM , 

mM , 
,Q kS , 

,Q mS , T

kT  and T

kq . The modeling of most of these terms is very complicated. 

When algebraic expressions fail to satisfyingly represent interfacial and fluctuation effect, 
supplementary transport equations, such as particles number density transport equation [150], may be 
introduced in the calculation.  
 
An alternative approach consists in considering both phases to be a continuum instead of two-
interpenetrating phases. In this framework, only the three conservation equations of the mixture and 
the continuity equation of the gas phase need to be solved. Many, but not all, interfacial terms cancel 
out. This is the drift-flux model. Further assumptions on the tight-coupling of the phases, such as 
mechanical, thermal and thermodynamic equilibrium, reduce the drift-flux model to the homogeneous 
model. 

4.3.2 System codes 

In system codes, the equations are averaged over large computational cells. The terms arising from 
this averaging are extremely difficult to model. Indeed, the effect of many scales have to be modeled 
and the large scales are usually more difficult to characterize [152]. Therefore, in system codes, the 
modeling of the unresolved terms would be far too complicate and the strategy is rather 
phenomenological. This strategy consists in solving averaged equations whose left-hand side remains 
identical to eq. (4.136), (4.139) and (4.144), but equations right-hand side only incorporates ad-hoc 
models based on physical sounding but principally tuned to fit experimental results. 

4.3.2.1 6-equations model 

The most sophisticated two-phase flow modeling in commercial system codes is the 6-equation model. 
The phases are interpenetrating (Figure 4-10). The conservation equations of both phases are solved.  
 
Mass conservation equations: 
Gas phase 

g g g gA M m A
t z


 

 
 

.     (4.157) 

Liquid phase 

l l l lA M m A
t z


 

 
 

.      (4.158) 

Momentum conservation equations: 
 
Gas phase: 

2

sin
g

g g g i ig g wg g g g g i

g g

M
M A p P P A g m Au

t z A z
   



  
      

  
;                    (4.159) 

Liquid phase: 
2

sinl

l l l i il l wl l l g l i

l l

M
M A p P P A g m Au

t z A z
   



  
      

  
.   (4.160) 
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Energy conservation equations: 
 
Gas phase: 

g g

g g g g g g g wg g wg i ig g g g

g g g

M M
A E M E p P P q Pq A Q m Al

t z z A
  

 

  
       

  
;  (4.161) 

Liquid phase: 

l l

l l l l l l l wl l wl i il l l l

l l l

M M
A E M E p P Pq Pq A Q m Al

t z z A
  

 

  
       

  
.       (4.162) 

 

In these equations, 
iu  is the interfacial velocity; 

ig  and 
il  the shear stresses in the gas and liquid 

phase at the interface; 
gP  and 

lP   the perimeter of the pipe in contact with the gas and liquid phase, 

respectively; l  the specific latent heat; 
gp  and 

lp  the pressure in the gas phase and liquid phase, 

respectively; 
wgq  and 

wlq  the heat flux in the gas phase and liquid phase at the wall, respectively; 
iP  

the interfacial perimeter; and 
igq  and 

ilq  the heat flux in the gas phase and liquid phase at the 

interface, respectively (see Figure 4-10). 

 
Figure 4-10: Flow variables and geometrical parameters introduced in the 6-equation model [51]. 

 
The flow variables appearing in these equations satisfy the following relations: 

g

g

A

A
   ;             (4.163) 

1 lA

A
  ;           (4.164) 

gM
Y

M
 ;         (4.165) 

1 lM
Y

M
  ;          (4.166) 

0g lm m  ;          (4.167) 

0ig il   ;          (4.168) 

g lP P P  .          (4.169) 

For a given geometry, A, P and 
g  are known and it is commonly assumed that both phases share the 

same pressure g lp p p  . The densities are updated as a function of the pressure and enthalpies. 

Equations (4.157) to (4.162) are solved to obtain the temporal evolution of the longitudinal repartition 

of  M z ,  p z ,  Y z ,  z ,  gE z  and  lE z . Empirical correlations are required for the unknown 

quantities gm , ig , wg , wl , igq , wgq , wlq , gP  and iP . 

 

For instance, the correlation (4.68) is still valid for wg  or wl . One correlation for the shear stress in 

the gas phase at the interface ig  can be expressed as: 

    (1 ) 1 1
ig i

i F is F ib ia id

P
F R F R E F F EF

A


           .   (4.170) 

The coefficients FR , iaF , ibF , idF  and isF  are functions of the flow regime (annular, droplet, bubbly 

flow) and complex function of velocity, void fraction, gravity, surface tension, etc. [153], [154].  
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The modeling of these transfer terms is particularly complex. The models must not only accurately 
represent the physical processes but also assure that the system of equation is well-posed [125]. 

4.3.2.2 Drift flux model 

An approximate formulation of the 6-equation model consists in considering the two phases to be a 
continuum (Figure 4-11) which is governed by its own conservation equations. These conservation 
equations are obtained by summing mass, momentum and energy conservation equations of both 
phases. In this way, the system of equations (4.157) to (4.162) reduces to the system of governing 
equations of the mixture: it is the so-called drift flux model. 

 
Figure 4-11: Flow variables and geometrical parameters introduced in the drift-flux model [51]. 

 
Mass conservation equation: 

1
0m M

t A z


 
 

 
.      (4.171) 

Momentum conservation equation: 
21 1

sinwm

m g

I

PM p
M g

A t A z A z A


 



  
    

  
.    (4.172) 

Energy conservation equation: 

   
1 w i

m m ig il m

Pq Pp
h Mh q q Q

t A z t A A


  
     

  
.      (4.173) 

In eq. (4.172), wl  is the mean wall shear stress. In eq. (4.173) wq  is the mean wall heat flux (see 

Figure 4-11). m , I  and mh  can be expressed as follows:   

 1m g l      ;      (4.174) 

 

 

22 11

1I g l

YY

   


 


;     (4.175) 

 1m g g l lh h h     .       (4.176) 

 
With this formulation most interfacial transfer terms cancel out. Nevertheless, it is still possible to 
account for mechanical, thermal and thermodynamic non-equilibrium. The mechanical non-equilibrium 
is taken into account by providing a correlation for the relative motion of the phases: 

, , , ,
g g l g

g l

l l l

u u f g
   

 
  

 
   

 
.     (4.177) 

In this manner, the drift velocities 
gjU  and 

ljU  are defined as: 

  1gj g lU u u   ;      (4.178) 

and 

 lj g lU u u   .      (4.179) 

These drift-velocities are used to derive the velocity lu  and gu  of the liquid and gas phase, 

respectively, from the calculated mixture center-of-mass velocity mu : 

1

g

l m gj

l

u u U


 
 


;     (4.180) 

l

g m gj

m

u u U



  .      (4.181) 
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Thermal non-equilibrium is accounted for with empirical correlations for 
igq  and 

ilq . Finally the gas 

mass conservation equation is usually introduced to represent the thermodynamic non-equilibrium of 
the mixture: 

   
1 1 g l

g g m gj g

m

A u A U m
t A z A z

 
   



   
   

    
.    (4.182) 

 

A correlation for 
gm  must be provided. Other empirical correlations are supplied for the unknown 

quantities 
wm  and 

wq . For a given geometry, A, P and   are known. Equations (4.171) to (4.182) are 

solved to obtain the temporal evolution of the longitudinal repartition of  M z ,  p z ,  mh z  and  Y z .  

 
Although velocity and temperature differences are supplied externally, this formulation has two 
advantages in comparison to the 6-equation model: 
1 - Fewer interfacial terms have to be modeled thereby reducing the risk of inaccurate modeling; 
2 - The system of equations is more stable [64]. 

4.3.2.3 Homogeneous model 

Assumptions of mixture thermal and mechanical equilibrium can further simplify the system of 
equations without losing much accuracy for bubbly or droplet flows, when the dispersed phase is finely 

dispersed. In that case, both phases share the same temperature and the same velocity: 
igq  and 

ilq  

are identically zero and the drift velocity vanishes. 
 
When the mass transfer is assumed to occur infinitely fast in comparison to the characteristic 
residence time of a fluid particle, no equation for the gas phase (4.182) is required. Y  can be derived 

from available thermodynamic quantities (e.g.  p z  and mixture enthalpy mh ). This model is called the 

homogeneous model. Under these assumptions, the void fraction   is obtained by: 
1

1
1

g

l

Y

Y








 
  
 

;           (4.183) 

the homogeneous densities introduced in section 4.3.2.1 are equal: 

m I H    ;       (4.184) 

and the conservation equations become: 
Mass conservation equation: 

1
0H M

t A z


 
 

 
.           (4.185) 

Momentum conservation equation: 
21 1

sinwm

H

H

PM p
M g

A t A z A z A


 



  
    

  
.     (4.186) 

Energy conservation equation: 

 
1 w

m m H

Pqp
h Mh Q

t A z t A


  
   

  
.          (4.187) 

Correlations such as presented in sect. 4.2.1 are available to model wm . 

4.3.2.4 Particles density conservation equation 

Two-phase flow governing equations derived until now (e.g. eq. (4.157) to (4.162)) account for the 
transport mechanisms of mass, momentum and energy. Unfortunately, they give no direct information 
on the structure of the two-phase flow. In most codes, the flow structure is estimated according to flow 
maps. Some other codes introduce supplementary transport equations for this purpose. Typically, 
codes dedicated to applications where one phase can be considered to be dispersed in the other 
continuous phase (e.g. flashing [155]) solve a transport equation of the number density n  of dispersed 

particles (Figure 4-12). 
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Figure 4-12: Representation of one computational cell in a two-phase flow simulation with transport 

equations of the volume fraction 
d  and the number 

dn  of particles. The evaluation of the particle radius 

dR , and thus of mass, momentum and heat transfers, is eased.  

Knowledge on the number density n  is advantageous because the radius 
dR  of the particles 

assumed to be spherical is related to n  and the volume fraction 
d  of the dispersed phase as follows: 

1 3
3

4

d

dR
n





 
  
 

.          (4.188) 

 

In flows with dispersed particles, all processes (forces, mass and heat exchange) are related to 
dR . 

Thus, they can be much better described within this approach. For example, the drag force acting on 
one particle is (see chapter cavitation): 

 21

2
D D c d c d c dC R   F u u u u .     (4.189) 

The drag force 
df  acting on the dispersed phase per unit volume is then exactly (under the 

aforementioned assumptions): 

 2

2
d D c d c d c d

n
C R   f u u u u .     (4.190) 

The conservation equation of n  is derived from the conservation equation of the cavity distribution 

function introduced in chap. cavitation by integration over all particles sizes, velocities and 
temperatures and averaging over the computational cell. One phenomenological formulation of the 
conservation equation of n  reads [156]: 

 
1

d wn bn

n
nu A S S

t A z

 
  

 
.      (4.191) 

In eq. (4.191), wnS  and bnS  represent the activation of the particles at the wall and in the bulk, 

respectively; and du  is the velocity of the dispersed phase. Correlations for wnS  and bnS  can be found 

e.g. in [155], [45], [157] or [158]. 

4.3.3 CFD codes 

In contrast to system codes, CFD codes are able to capture three dimensional effects. The terms to be 
modeled are directly derived from the averaging operation (see equations (4.136) to (4.144)) rather 
than obtained from pure phenomenological considerations. However the different approaches in CFD 
codes are basically the same as encountered in system codes: the 6-equation model, also called 
interpenetrating media formulation, is the most sophisticated model, the homogeneous model where 
the phases are assumed to be in equilibrium the simplest one and the drift flux model is situated in 
between. In this thesis, only the drift flux model is used. Thus the description restricts to the drift flux 
formulation in CFD codes. The readers can refer to [150], [47] for more information about the other 
formulations. 
 
Similarly to system codes which include particles number density conservation equation, CFD codes 
can handle supplementary transport equations to describe the interfacial structure (e.g. in section 
4.3.3.2). Approaches found in the literature to describe the polydispersity of the particles such as 
multi-group, presumed-pdf and direct quadrature method of moments are described later in section 
4.5. 

4.3.3.1 Drift flux model 

An approximate formulation of the 6-equation model (equations (4.136) to (4.144)) consists in 
considering the two phases to be a continuum. The conservation equations of this continuum are 
obtained by summing mass, momentum and energy equations of both phases: the system of 
equations (4.136) to (4.144) reduces to the governing equations of the mixture: 
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Mixture continuity equation 

  0m

m m
t





 


u .     (4.192) 

Mixture momentum equation 

   T Dm m

m m m m m m mp
t


 


       



u
u u T T T F M .   (4.193) 

 
 
 
Mixture total energy equation 
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    ,m m m m m m Q mp S     u T u F u .                (4.194) 

To account for the thermodynamic non-equilibrium, the gas continuity equation is solved: 

   g

g m g g gmm
t


 


  


u U .        (4.195) 

The terms arising in these equations are defined as: 
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.                 (4.209) 

If the surface tension effect are neglected, 
mM  vanishes and there is no direct interfacial terms in the 

mixture momentum equation. Considering a constant body force, we have: 

ˆ
k k m  F F F F .          (4.210) 

The diffusion velocity of each phase 
kmU  is the relative velocity with respect to the mass center of the 

mixture: 

km k m U u u .         (4.211) 

In similarity to system codes (eq. (4.177)), a constitutive relation for 
l gu u  must be provided. 

The terms D
T  and D

q  arise from the fluctuation of the interface about the mean [150]. 

 
For the modeling of the different terms, the reader can refer to [150]. A simplified form of these 
equations is obtained when the mechanical and thermal non-equilibrium, gravity and the surface 
tension are supposed negligible. In this case, the system of equation reduces to: 
Mixture continuity equation 

  0m
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


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
u .             (4.212) 

Mixture momentum equation 
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Mixture total energy equation 
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Both phases commonly share the same pressure. To account for the thermodynamic non-equilibrium, 
the gas continuity equation is solved: 

 g

g m gm
t





 


u .               (4.215) 

Constitutive properties of the mixture must also be modeled. [150] proposes for the mixture viscosity 

 1m g l      .             (4.216) 

Other models for the mixture viscosity exist such as [159]: 

  1 1 2.5m g l        .       (4.217) 

4.3.3.2 Particles density transport equations 

Knowledge on the two-phase flow structure enables to describe more accurately the interfacial mass, 
momentum and heat transfers. Similarly to system codes, CFD codes introduce supplementary 
transport equations for this purpose. Most of the available formulations rely on the particle density 

distribution  , , , ,d df t T x u  already introduced in chap. cavitation where the subscript d  represents 

here the dispersed phase. Except with Lagrange techniques (see sect. 4.6.1), it is common to utilize a 

marginal particle density distribution  , ,f t  x  integrated over all velocities and temperatures: 

   
,

, , , , , ,
d d

d d d d
T

f t f t T d dT   ux x u u  ;             (4.218) 

and to introduce averaged velocities d mu u  and temperatures 
d mT T .  

Basically the governing equation of the marginal particle density distribution exists in two forms 
depending on the interpretation of the dispersed particles. If the particles represent the entire particle 

population,  , ,f t  x  is governed by:  

   
m

break coal

R fff
S S

t






    

  

u

x
;             (4.219) 

where break-up 

   
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and coalescence 

   
,

, , , , , , , ,
d d

coal coal d d d d
u T

S t f S t T f d dT    x x u u  

contribute to the modification of the particles distribution. 
 
In contrast, if the particles represent the “activated” particles, it is necessary to incorporate another 

source term  , , ,phS t f x  in the particle density number equation to account for nuclei activation: 
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x
.     (4.220) 

Taking V   and integrating equation (4.219) or (4.220) over all bubble size, the particles number 

density transport equation can also be introduced in CFD codes: 
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or 
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where 
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V

V

n t f t V dV x x ;      (4.223) 

and 
pmu  is the average local particle velocity weighted by the particle number. 

pmu  is defined as: 
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.      (4.224) 

The modeling of the source terms breakS  , coalS   and 
phS  is simplified by assuming particular flow 

conditions and processes (e.g. coalescence and break-up are binary processes [150]). 

4.4 Modeling of critical two-phase mass flux 

In nuclear and chemical reactor safety, the accurate prediction of the leakage mass flow rate through 
pipes and breaks is crucial. Despite numerous experimental and theoretical analyses, the modeling 
and estimation of this leakage mass flow rate is still challenging. No model exists for complex 
geometries and uncertainties remain, such as non-equilibrium effects. However, some models show 
good agreement with experimental data for specific geometries and fluid properties.  
 
For example, 
 the Bernoulli model is adapted for the prediction of the mass flux in short geometries with very 

strongly subcooled coolant; 
 the homogeneous equilibrium model (HEM) is accurate to calculate the mass flow rate in long 

geometries; 
 the “Henry and Fauske” model gives satisfying agreement with experimental results for short 

geometries and moderately subcooled or saturated coolant. 
 
In this description, the geometries are pipes or breaks. They are said to be long when the ratio 
between their length L  and the diameter D  of their smallest cross section is larger than 20 or 30. 
Another geometrical parameter entering the critical mass flux models usually is the single-phase 
pressure loss  . 

 
Figure 4-13 represents the parameters involved in the calculation of the mass flux in pipes and breaks. 
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Figure 4-13: Representation of the parameters involved in the calculation of the mass flux in pipes and 
breaks. 
 

Basically, the task of the model is to determine the mass flow rate M  leaving the pressure vessel 

given a stagnation pressure 
0p , a backpressure 

1p  and thermodynamic properties such as 

temperature and vapor content. Most models disregard the influence of the cross section A  of the 

geometry upon the mass flux 
cG  defined as: 

c

M
G

A
 .       (4.225) 

Thus, the model calculates the mass flux 
cG  and M  is obtained from 

cG  according to (4.225).  

 

When the flow is critical, the pressure  tp  at geometry’s throat is independent of the backpressure 
1p . 

4.4.1 Bernoulli model 

The Bernoulli model is adapted for the prediction of the mass flux in short geometries with very 
strongly subcooled coolant. Under these conditions, vaporization does not occur. The coolant is still in 
a liquid state at the smallest cross section. Thus, the speed of sound in the coolant is very high. Even 

at very high-pressure differences between the pressure vessel 0p  and the backpressure 1p , critical 

conditions do not occur. The mass flux cG  is obtained from the Bernoulli equation. Since the throat 

pressure tp  is the backpressure 
1p , this equation reads: 

2

0 1

1

2

cG
p p


  .         (4.226) 

The density   is assumed constant. cG  is such that: 

 0 12cG p p  .           (4.227) 

In adiabatic irreversible flows, the single-phase pressure drop coefficient   is introduced to account 

for the pressure loss: 

 
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
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
.           (4.228) 

4.4.2 Homogenous equilibrium model 

The HEM model assumes mechanical, thermal and thermodynamic equilibrium of the two-phase 
mixture. 
 
In geometries where the single-phase pressure loss coefficient   is assumed to be negligible, the flow 

is treated as an isentropic flow. The mass flux cG  is obtained from the two following equations: 

 The first law of thermodynamics for an adiabatic flow, with the specific enthalpy h  and the specific 

volume v  is: 

2 2

0 2 2

1

2
ch h G v  .        (4.229) 

 The second law of thermodynamics with the specific entropy s  reads: 

0 2s s .              (4.230) 

In these equations, the subscript 0 refers to stagnation conditions and subscript 2 refers to the section 
2 as indicated on Figure 4-14, top. The position of section 2 coincides with the throat of the geometry. 
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In contrast, in geometries where the single-phase pressure loss is not negligible, the flow is assumed 
to be isentropic only until section 2 as indicated on Figure 4-14, bottom. In this case, the position of 
section 2 is situated inside the geometry directly downstream of the inlet. Downstream of section 2, 

the flow is irreversible. The mass flux 
cG  is obtained from the three following equations: 

 First law of thermodynamics for an adiabatic flow, with the specific enthalpy h  and the specific 

volume v  is: 

2 2

0 2 2

1

2
ch h G v  .      (4.231) 

 Second law of thermodynamics with the specific entropy s  reads: 

0 2s s .            (4.232) 

 The momentum equation is integrated along the geometry from the pressure 
2p  to the throat 

pressure tp  to account for the energy dissipated inside the geometry:  

2 2
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p

dv

dpG
dp

v


 
 

 
  .            (4.233) 

  is the single-phase pressure drop coefficient from the section 2 to geometry’s throat. 

 

 
Figure 4-14: Assumptions of the HEM in critical two-phase mass flow rate calculations. 

 

The system of equations (4.229) to (4.230) or (4.231) to (4.233) is solved numerically varying tp  until 

cG  reaches its maximum value *

c cG G . If the resulting tp  happens to be smaller than 1p , the flow is 

not critical and the calculation is performed again with 
1

tp p  [160]. 

 
A comparison with experimental data indicates that [160]: 
- The HEM with  -value = 0 always conservatively predicts mass flux for geometries characterized 

by a small  -value and by a ratio L D  larger than 20..30.  

- The HEM very accurately predicts the critical mass flux for a wide range of flow (from strongly 

subcooled flow to flow with quality 0Y  up to 0.2) if the geometry is characterized by a large  -

value. 

In contrast, the HEM underpredicts the critical mass flux for geometries with L D -ratios smaller than 

20..30 when the coolant is subcooled ( 0..40sat coolantT T T K    ) or saturated with small quality (

0 0..0.2Y  ). In this case, the non-equilibrium “Henry and Fauske” model is recommended. 

4.4.3 Henry and Fauske model 

For shorter geometries and low vapor content, the vaporization process only partly occurs ([45], [117]) 
upstream of the choking section. The inter-phase mass transfer has not enough time to complete and 
the vapor content at the throat differs from equilibrium conditions: it is the so-called flashing delay. The 
non-equilibrium Henry-Fauske model accounts for this thermodynamic non-equilibrium with a model 
parameter [161]. In this way, it gives satisfying agreement with experiments [160] for short geometries. 

4.5 Modeling of polydisperse flows 

Polydisperse flows, in contrast to monodisperse flows, are characterized by particles of differing sizes 
(see Figure 4-15). 
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Figure 4-15: Representation of monodisperse (left) and polydisperse (right) flow;  n R  being the 

particles number density in relation to particles radius R . 

 
Since most interfacial processes depend on the size of the particles, it is advantageous to be able to 
capture the polydispersity of the flow and to treat separately particles of different size and shape. For 
this purpose, several techniques have been developed in CFD codes. Some of them are described in 
the next paragraphs. Basically, the goal of these techniques is to obtain the particles number density 

 n R , where R  is the radius of the particles. When the particles number density is accurately 

estimated, calculation of interfacial mass, momentum and heat transfers is greatly improved. For 
example, the drag force per unit volume acting on the continuous phase, which is the contribution from 
all droplets, can be written as: 

      2

0

1

2
c c c d c d DC R n R R dR 



    f u u u u .           (4.234) 

4.5.1 Multi-group approach 

In the multi-group approaches, the particles are distributed into classes, also called “bins” according to 
their mass, volume or diameter (Figure 4-16). The particles in each class are assumed to be identical 
and non-interacting with each other. Thus, a representative particle is associated to each class. For 
each class, it is possible to solve a transport equation in which interactions with the other classes are 
taken into account. 
 
For instance, the model MUSIG [92], uses the population balance equations (4.221) of the number 

density in a modified form.  ,n m t  is the number of particles of mass m  at time t. The transport 

equation of  ,n m t  is given by: 

 
   

,
, , B B C C

n m t
n m t m t B D B D

t


      

u .    (4.235) 

BB , BD , CB  and CD  respectively represent birth rate due to breakup of larger particles, death rate 

due to breakup into smaller particles, birth rate due to coalescence of smaller particles, and death rate 
due to coalescence with other particles. These rates are expressed by specific breakup or 
coalescence rates. For example, 

   , , ,B br m

m

B g m n t d  


  ;      (4.236) 

where  , ,br mg m  represents the rate at which particles of mass m  break into particles of mass   and 

m  . In the MUSIG model, the particles are distributed according to their mass into the bins. All 

particles in the bin i  are assumed to have the same mass im . Thus, the particles of the bin i  have a 

mass between 1 2im   and 1 2im   and the number density in  of particles in the bin i  is given by: 

   
1

2

1
2

,

i

i

m

i

m

n t n m t dm





  .              (4.237) 

in  and im  are related with the total volume fraction i  of the particles present in the bin i  as: 

 

i i g im n   .       (4.238) 
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The governing equation of the size fraction 

i

i

g

f



        (4.239) 

is given by: 

   g g i g g g i if f S
t
   


 


u .        (4.240) 

In eq. (4.240), all groups are assumed to share the same density 
g  and velocity 

gu . The source term 

iS  represents the coalescence and breakup processes of thebin i : 

i Bi Bi Ci CiS B D B D    .               (4.241) 

For example, 
BiB  is the breakup of larger particles becoming particles of the bin i : 

   
1

2

1
2

, ,, ,
i

i

m
i

Bi i B i br m j i j g g br m j i j
m

j i j i j

m
B m B dm m g m m N g m m f

m
 



  

 
    

 
 

  .    (4.242) 

Expression for  , ,br m j ig m m  and other frequencies needed to solve eq. (4.240) can be found in [92]. 

 
Figure 4-16: Representation of the multi-group approach MUSIG. Approximation of the particle number 

density distribution function (red line) in relation to particles diameter D  by several bins (here 5) ranging 

from 
minD  to 

maxD . The intergroup transfers occur due to breakup and coalescence. 

 

The segmentation in N  classes is performed by the user a priori, specifying the maximum maxD  and 

minimum diameter minD  of the particles. The gain in accuracy resulting from the introduction of several 

equations may be balanced by the difficulty of inter-group transfers modeling and higher 
computational cost. 

4.5.2 Presumed pdf approach 

Although multi-group models are more complex (modeling of the intergroup transfers) and 
computationally more expensive (supplementary equations are solved), they are attractive in 
comparison to “one-group approach”. Particles of different sizes, which behave quite differently, can 
be treated separately. The polydispersity of the particles can be simulated. This is particularly 
important in engineering applications such as cavitation or sprays (e.g. [90], [162], [163]). 
 
An alternative to account for the polydispersity of the particles is to follow the presumed probability 
density function (pdf) approach (Figure 4-17). In this framework, the particle distribution is assumed to 
have a particular pdf at any location in the flow domain and at any time – typically a gamma or a log-
normal pdf. Correspondingly to this presumed pdf, the transport equations of a family of conserved 

scalars ˆS  are derived and solved. The ˆS  is known as the ‘intensity of dispersion’ [164]. It is related 

to the ̂ ’th moment of the particle size pdf. Solving for the ˆS ’s permits to reconstruct the local particle 

pdf, from which other information such as mass transfer may be derived. 
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Figure 4-17: Representation of the presumed pdf approach. A particular pdf is assumed at any location in 

the flow domain and at any time for the particle probability density distribution function  bP D  (red line). 

The parameters of  bP D  are mean diameter 
0D  and variance 

bD  at the inlet of the computational 

domain (1). According to the ‘intensity of dispersion’ [164] ˆS  transport equations, the mean diameter 

evolves to 
0D  and the variance  to 

bD   at another location in the flow (2). 

 

For a given particle size pdf  bP D , ˆS  is defined as: 

   ˆ

ˆ ˆ

0

b b bS n P D D d D nM

 



  ;      (4.243) 

where n is the particle number density, 
bD  the particle diameter and ˆM  the ̂ ’th distribution moment. 

According to this definition, 

0S n ;             (4.244) 

1 ,b mS nD ;              (4.245) 

2

4 ia
S


 ;              (4.246) 

0

6
S 


 ;               (4.247) 

where 
,b mD  is the mean diameter; ia  is the interfacial area concentration and   is the particles 

volume fraction. 

The governing equation for ˆS  is: 

 ˆ

ˆ ˆ ˆ ˆ ˆ1 1
ˆ

S
S R S

t



      


  


u ;      (4.248) 

where 

     

   

ˆ

0
ˆ

ˆ

0

b b b b

b b b

P D R D D d D
R

P D D d D













      (4.249) 

is the weighted averaged growth, and 

     

   
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ˆ
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b b b b

b b b

P D D D d D

P D D d D














u
u       (4.250) 

is the weighted averaged velocity.  bR D  and  bDu  are growth and velocity of the particles of size 

bD , respectively. To evaluate the source term ̂ ,  bP D  has to be known. 

 

If the pdf depends on two parameters 0D  and 
bD , the distribution is uniquely defined by a 

combination of two moments ˆS . For instance, for a log-normal pdf: 

       
2

1
2

0
0

2 exp ln 2
b b

b
b D D

D
P D D

D
 

       
   

;           (4.251) 

bD  is obtained from: 
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




  
   
   

          (4.252) 

and then, 
0D  is calculated by inverting: 

   
2

ˆ 3 2

ˆ 0

6
ˆexp 9

2

bD
S D











  

  
  

.    (4.253) 

The success of this technique relies on the adoption of an appropriate – if any – form of the pdf [162] 

and on the modeling of the source term ̂  [13]. 

4.5.3 Direct quadrature method of moments 

Originated from [165], the direct quadrature method of moments (DQMOM) is a technique whose 

basic idea is to approximate the density number  bn D  by a summation of N  Dirac delta functions 

[166]: 

 
1

N

b q b q

q

n D D d 


  
  ;               (4.254) 

where q  is the weight of the delta function centered at the characteristic particle diameter qd  (see 

Figure 4-18 for a simple example).  

 
Figure 4-18: Approximation of the density number  bn D  by a summation of 3 Dirac delta functions. q  

 1..3q   are the weight of the delta functions centered at the characteristic particle diameter qd  

 1..3q  . 

 

The balance equation of the density number function  bn D  reads [167]: 

 
   

b

b

b D b

n D
n D S D

t


   

u ;    (4.255) 

where  bS D  is the size-dependent source for coalescence and breakup and 
bDu  is the mean velocity 

of bubbles of size bD . To evaluate 
bDu , a constitutive relation is supplied or supplementary transport 

equations are solved [168]. By definition of 
bDu , the mean velocity of bubbles of size qd  is 

qdu , also 

noted 
qd qu u  in the rest of this paragraph. 

 

Inserting eq. (4.254) in eq. (4.255), the transport equations of the N  weights q  and the N  weighted 

abscissas q q qd   are obtained: 

 
q

q

q q S
t







 


u ,  1,..,q N ;        (4.256) 

 
q

q

q q S
t







 


u , 1,..,q N ;      (4.257) 

where the source terms 
q

S  and 
q

S  satisfy: 

  1

1 1

1
k

q q

N N
k k

mq q

q q

k d S k d S S 



 

    ,  0,..,2 1k N  ;    (4.258) 

with 



Numerical modeling 

 

 
 

78 
 

  

   
0

k

k
m b b bS D S D d D



  .           (4.259) 

Equation (4.258) forms a linear system which, recast in a matrix form, reads: 
Ax b ;              (4.260) 

with 

 k

qCdA ;               (4.261) 

C  being a constant, and  

1 1
... ...

N N
S S S S   



   x ;              (4.262) 

0 2 1
...

Nm mS S




 
 

b .          (4.263) 

x  is obtained by inverting the system of equation (4.260): 

-1x A b ;             (4.264) 

and the transport equations (4.256) and (4.257) are solved. 
 

Eq. (4.256) and (4.257) can also be formulated in terms of particle volume fraction q  and effective 

diameter q qd [169]: 

         2 3

2 3q qq g q g q g q g qd S d S
t

 

 
     


  


u , 1,..,q N ;    (4.265) 

and 

    3 42

3 2q qq g q q g q q g q g qd d d S d S
t

 

 
     


  


u  , 1,..,q N .              (4.266) 

Breakup and coalescence models are recast into the DQMOM frame to evaluate (4.259). 

4.6 Modeling of cavitation 

Cavitation is essentially a three dimensional unsteady phenomenon, whose length scales range down 
to some micrometers, and primarily influenced by the development of the boundary layer and of free 
shear vortices (chap. cavitation). Its analysis is bound to fail in a system code where all information on 
the transverse processes is lost (sect. 4.2.1). At best, in a system code, it is possible to implement a 
correlation derived from experiments or CFD calculations to account for the effect of punctual 
cavitation on the behavior of a large and complex system (e.g. nuclear reactor plant or test section). 
 
Although more appropriate, CFD codes are also limited to some extent and some information is lost 
(sect. 4.2.2). Assumptions on the flow conditions help to simplify the modeling of the governing 
equations. For cavitation, it is common to assume the gas phase to be finely dispersed in form of 
spherical cavities in the continuous liquid phase. This characteristic can be used to derive simplified 
governing equations of the mixture in an Euler frame. It is also possible to follow another technique, 
called Euler-Lagrange formulation, where the cavities are tracked with a Lagrange solver and the 
governing equations of the liquid phase are solved in an Euler framework. 

4.6.1 Euler-Lagrange formulation 

The density distribution function conservation equation defined in chap. cavitation describes the 

evolution of the cavity distribution function  , , , ,b bf t T x u . For the sake of convenience,   is taken to 

be the radius R  of the cavities in the rest of this section. 
 
Until now, this equation was cast in an Euler framework where the flow fields are function of time and 
space. For this purpose, the density function conservation equation was reduced to the density 
number transport equation by averaging over the cavities and introducing averaged radius, velocities 
and temperatures. 
To avoid the loss of information on cavities’ size, velocity and temperature, an alternative technique is 
to follow a large number of cavities. It is the so-called Lagrange technique (Figure 4-19). The 
dispersed phase particles are tracked from their birth (arrival in computational domain, result of 
coalescence/break-up) to their death (leaving the computational domain, result of coalescence / 
break-up). The trajectory eq. (4.267), the momentum balance eq. (4.268) and the single-bubble 
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dynamic eq. (4.269), typically the Rayleigh-Plesset equation [170] or one of its modified forms (e.g., 
[171]), are solved for individual bubbles: 

b

b

d

dt


x
u ;       (4.267) 

b

b b

d
m

dt


u
F ;          (4.268) 

dR
R

dt
 ;       (4.269) 

b

b

dT
T

dt
  .       (4.270) 

Generally equation (4.270) is not considered in cavitating flows. The variation of the temperature at 
low pressures and low void fractions is negligible. The forces, the bubble dynamic, the break-up and 
the coalescence are described by adequate terms in the equations (4.267) to (4.270), typically those 
introduced in chap. cavitation sect. 1.1.2.3. Apart from the statistical error, the solution obtained from 
the system of cavities is equivalent to the solution of the density distribution function conservation 
equation. 

 
Figure 4-19: Illustration of the Euler-Lagrange approach in cavitating flows. Bubble’s position 

bx  is 

tracked from bubble’s birth [The size of three bubbles (in green) is sampled here according to the pdf 

( )n R  at the inlet of the computational domain] to bubble’s death [The death of the bubble is represented 

here by the breakup of the bubble (in red) into two cavities. The resulting two bubbles are sampled from 

the pdf 3 ( )n R ]. Bubble’s velocity bu  and growth R  are calculated along bubble’s path. An Euler solver 

solves the Navier-Stokes equations of the liquid phase (blue). 

 
The description of cavitation with Monte-Carlo codes based on Lagrange techniques (e.g. [172], [173]) 
is attractive. The stochastic nature and the particle size dependence of the physical processes can be 
easily captured. The size of the cavitation nuclei is randomly sampled from a presumed pdf. The 

turbulent motion of the bubble is accounted for by assuming that the velocity bu  consists of a mean 

and a turbulent fluctuation 

b b b
 u u u ;       (4.271) 

where b
u  is sampled from a Gaussian distribution [172]. Bubble’s break-up and coalescence are 

controlled by local quantities, e.g. bubble’s size and bubble’s velocity. Thereby the break-up, the 
coalescence and daughter bubble’s size are sampled from prescribed pdf. 
Coupled to the Lagrange solver which tracks the bubbles along their trajectory, an Euler solver solves 
the Navier-Stokes equations of the continuous liquid phase (basically eq. (4.136) to (4.144) with 
appropriate simplifications). This Euler solver also evaluates additional flow variables, e.g., turbulence 

or liquid phase velocity. By ensemble-averaging the Lagrange quantities of the cellN  bubbles present 

in each Euler computational cell, the statistical information of the Lagrange solver is exploited. For an 
infinite number of bubbles, the mean value of any function of the flow variables, including any non-
linearity, becomes exact so that no modeling is required. 
 
Fluid properties are evaluated with an Euler solver. Generally turbulence is predicted within the RANS 
approach. Liquid instantaneous and local quantities, e.g. the liquid pressure, are not available for the 
Lagrange solver. 
 
The physical modeling of some processes is required. A typical example of the modeling of averaged 
quantities is the modeling of the pressure fluctuations in cavitating flows. These fluctuations generally 
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are considered to be proportional to
2

'u , the constant of proportionality 
tC  being determined semi-

empirically: 
2 2

' tp C   u .         (4.272) 

In case of isotropic turbulence, Hinze [174] proposed 
tC =0.7; while for turbulent shear flows, the 

coefficient 
tC  is larger [31]. Then the effective liquid pressure is estimated by: 

   
2

3
t l lp t p t C k   .               (4.273) 

Furthermore, the particle position  , ,p p p px y zx  generally does not coincide with the Euler grid point 

 , ,cell l m nx y zx  (Figure 4-20). The interpolation of the Euler flow fields at the Lagrange particle 

positions are based on the use of local approximations. Typically, the velocity  , , ,f p p px y z tu  of the 

fluid at the particle position  , ,p p p px y zx  is expressed as a weighted summation over the grid 

(whose grid points coordinates are 
lx , 

my  and 
nz ). The basis functions 

lf , 
mg  and 

nh  and the 

coefficients a  are introduced for this purpose [125]. Thus, 
fu  is estimated by: 

         , , , , , ,
l m n

f p p p l m n l p m p n p

x y z

x y z t a x y z t f x g y h zu .    (4.274) 

This interpolation is associated to additional operations and interpolation errors, which are strongly 
affected by the choice of the basis functions and coefficients. For parallel computation, the coupling is 
even more difficult and usually associated with very poor performance due to imbalanced particle 
concentration in the flow [175], [176].  

 
Figure 4-20: Interpolation in Euler-Lagrange simulations: Velocity field  ,f cell iu x  of the fluid phase is 

known at the Euler grid points but unknown at the particle position px .  

 
To represent the properties of the whole population [177] and have a sufficiently smooth void-fraction 
profile to assure convergence of the Euler solver [178], the number of bubbles must be large. To 
increase the statistic representativeness of the results, stochastic statistic approximation methods 
such as the discrete bubble model can be used. In this case, the total bubble population is 
represented by a number of parcels, each containing a large number of identical non-interacting 
bubbles, and the trajectory and momentum equations are solved for each parcel. In spite of this 
amelioration, Euler-Lagrange simulation of coupled multiphase flows with strong interaction between 
the continuous fluid phase and the dispersed particle phase belongs to the application with the highest 
demand on computational resources. They generally are used for two-phase flows with low void 
fractions.  

4.6.2 Euler formulation 

In the Euler formulation, the flow variables are expressed as flow fields which are function of time and 
space. In cavitating flows, this formulation requires the averaging of the bubbles properties over the 
bubble population. Thus, information on the bubble size pdf and on the velocities of the different 
bubbles is not available without further ado. In spite of this inaccuracy, this approach is advantageous 
for two reasons. First, Euler simulations require modest computational resources in comparison to 
Euler-Lagrange calculations. Second, Euler codes are very robust. 
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In cavitating flows, water and vapor are usually assumed to be in mechanical and thermal equilibrium 
since bubbles are finely dispersed in the liquid phase. Water and vapor share same velocity, pressure 
and temperature. They are treated as a continuum. In this framework, two models exist to describe the 
water-vapor mixture: the drift flux model and the homogeneous model. The distinction between both 
models relies on the treatment of the thermodynamic behavior of the mixture. The drift flux accounts 
for the thermodynamic non-equilibrium by solving the transport equation of the vapor mass fraction 
whereas the homogeneous model estimates the void fraction from mixture properties (energy, 
pressure, etc.).  

4.6.2.1 Homogeneous model 

The homogeneous model supposes that the interfacial mass transfer is infinitely fast. Under this 
assumption, the local pressure has an instantaneous effect on the density of the mixture. Thus, in this 
model, the density can be expressed as a function of the pressure [95]: 
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   
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   
    
    

.        (4.275) 

In eq. (4.275), 
,l sp  is the pressure at which the liquid starts to turn into vapor and mc  is the speed of 

sound of the mixture; both being model constants which are tuned to fit experimental results. An 
alternative is to obtain the void fraction   from mixture properties, typically mixture internal energy 

e   per unit volume [179] (eq. (4.276)) or mixture density [180] (eq. (4.277)): 
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;             (4.276) 

or 
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sat l sat g

 

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
.       (4.277) 

 
Although this modeling cannot describe liquid quality effects and metastable conditions, it is often 
used in numerical simulations due to its simplicity. 

4.6.2.2 Rayleigh-Plesset 

The drift flux model considers the finite growth rate of the cavities by introducing the void fraction 
transport equation (eq. (4.215)). The source term of this supplementary equation represents the 

interfacial mass transfer gm . gm  (see eq. (4.278)) involves local and instantaneous quantities such as 

interface surface, velocities etc. which are not available: 

 
1 1

g g g g i

j ni

m
t u


 

    
  
 n u u .     (4.278) 

The modeling of gm  with resolved quantities is required. In cavitating flows, this modeling usually is 

based on the Rayleigh-Plesset equation. 
 

In this context, the source term gm  reflect the fact that the vapor phase consists of a finite number of 

vaporous cavities. The gas phase commonly is represented by 0n  monodisperse bubbles, i.e. they all 

have the same radius 0R . The vapor void fraction g  is then given by: 

3

0 0

4

3
g n R


  .       (4.279) 

gm  is easily obtained from 0R  when the variation of 0n  and g  are disregarded. In that case, the 

mass transfer gm  is given by: 

  3 2 0

0 0 0 0

4
4

3
g g g g g

dRd d
m n R n R

dt dt dt


    

 
   

 
.           (4.280) 
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In general, the growth rate 
0dR dt  of 

0R  is derived from a simplified form of the Rayleigh-Plesset 

equation where the inertial, thermal and surface effects are neglected. Under these assumptions, 0dR

dt
 

is given by: 

0 ( )2

3

sat l ldR p T p

dt 


  for ( ) 0sat l lp T p  ;     

0
( )2

3

sat l lp T pdR

dt 


   for ( ) 0sat l lp T p  .     (4.281) 

Thus, the mass transfer eq. (4.280) reduces to: 

                                         2

0 0

( )2
4

3

sat l l

g g

p T p
m n R 




  for ( ) 0sat l lp T p  ;               

2

0 0

( )2
4

3

sat l l

g g

p T p
m n R 




   for ( ) 0sat l lp T p  ;           (4.282) 

where 
0R  and 

0n  are model parameters. 

 
The Rayleigh-Plesset equation is generally used in this simplified form because its full expression is 
not adapted to Euler codes. An additional solver is needed to resolve the acceleration term and 
bubbles radius is not a Euler conserved quantity. Moreover, the timescale of the Rayleigh-Plesset 
equation differs significantly from the macroscopic time-scale. 
 

Although 
gm  is derived on equivalent physical grounding for all models based on the Rayleigh-Plesset 

equation, many differing expressions exist for this term in the literature. Some (e.g. [181]) considers 

0n  to be defined per unit of water volume instead of mixture volume; others (e.g. [182], [95]) modify 
0n  

to take into account coalescence or flow conditions; while (e.g. [183], [171]) integrate a velocity 
potential to represent the influence of other cavities on bubbles growth. Usually growth and collapse 

(eq. (4.282)) are also scaled by ad-hoc coefficients 
vapC  and condC  [e.g. [92]]. The model parameters 

0R , 0n , 
vapC  and condC  vary from one application to the other to palliate the inaccuracy of the physical 

model. Vaporization and condensation rates 
gm  may differ by several orders of magnitude [95]. 

 
One promising strategy to improve the modeling and to renounce to ad-hoc coefficients is to consider 
the polydispersity of the bubble distribution. A first attempt can be found in [184] where the DQMOM 
(sect. 4.5.3) is introduced to simulate cloud cavitation. 
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5 Probability density function approach 

The proposed cavitation model aims to account for cavitation-turbulence interaction and to reproduce 
the bubble size spectrum by introducing stochastic models. This technique is based on the proposition 
of Valiño [10] to solve the modeled composition probability density function (pdf) transport equation. 
Before this technique is discussed in chapter stochastic-field cavitation model, the present chapter is 
dedicated to give basic prerequisite on probabilistic processes (section 5.1) and stochastic equations 
(section 5.2), to indicate when stochastic modeling is adequate (section 5.3) and to present exact and 
modeled pdf transport equations of fluid dynamics (section 5.4). Section 5.4 is of particular interest 
since it presents the modeled composition pdf equation which is solved in the cavitation model. Finally 
in section 5.5, one established Lagrange technique for solving the velocity-composition and 
composition pdf transport equations is described. Other properties of random variables and stochastic 
processes are given in appendix B. 

5.1 Stochastic processes 

5.1.1 Introduction 

In turbulent flows, the flow variables (e.g. T ) are highly fluctuating quantities. Measurement under the 
same flow conditions at the same location but at different times, or repetitions of the measurement 
under the same flow conditions at the same location and at the same time, does not deliver a single 

value 
0T  but a range of values 

min maxT T T  . 

 
Figure 5-1: Schematic representation of the turbulent mixing of two fluid layers (left), one being hot (

maxT ), 

the other cold ( minT ); time-evolution of the temperature (middle); and temperature pdf (right) at the 

location marked by a cross. 

 
The flow variables are better described in terms of statistics. 

5.1.1.1 Cumulative distribution function 

For instance, considering the measurement is performed a sufficient number of times at the same 

location 1x  and at the same time 1t , it is possible to estimate the probability for 1 1( , )T x t  to take a value 

below 1T : 

 1 1 1( , )P T x t T .        (5.1) 

Varying 1T  from minT  to maxT , we obtain the distribution function  
1 1( , )T x tF T  of the random variable 

1 1( , )T x t , defined as: 

   
1 1( , ) 1 1 1 1( , )T x tF T P T x t T  .     (5.2) 

5.1.1.2 Probability density function 

Under the same assumptions, it is also possible to estimate the probability for 1( )T t  to take a value 

between 1T  and 1T dT  (  1 1 1 1( , )P T T x t T dT   ). For dT  sufficiently small and varying 1T  from minT  

to maxT , we obtain the probability density function  
1 1( , )T x tf T  of the random variable 1 1( , )T x t .  

1 1( , )T x tf T  

is the derivative of the distribution function  
1 1( , )T x tF T : 

 
 

1 1

1 1

( , ) 1

( , ) 1

T x t

T x t

dF T
f T

dT
 .     (5.3) 

In this context, we are dealing with first order statistics in time and space since only one time and one 
point are considered in the statistics. 
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5.1.1.3 Higher order statistics 

If we want to have a finer description of the flow variable, it is possible to repeat a measurement under 

the same flow conditions at the same location 
1x  but at two different times 

1t  and 
2t ; and to estimate 

the probability for 
1 1( , )T x t  to take a value below 

1T ; while 
2( )T t  takes a value below 

2T . This analysis 

results in second order statistics. 
 

Without further assumption on ( , )T x t , this procedure should be repeated for the nth  order distribution 

or density function for any n  and time 
1,..., nt t  to obtain the complete description of the stochastic 

process 
1( , )T x t . 

5.1.2 Definition and notation 

5.1.2.1 Stochastic variable 

The flow variable  is a stochastic process  at any point  in the flow; i.e. a family of time 

functions  where each member  is determined by the outcome  of an experiment 

 and evolves according to some rule  [185]. 

 

For a specific location , the stochastic process  has four meanings [185] (Figure 5-2): 

1- a family of time functions (  variable,  variable) 

2- a single time function (  variable,  fixed) 

3- a random variable (  fixed,  variable) 

4- a number (  fixed,  fixed) 

 

 

Figure 5-2: Schematic representation of the stochastic process  with the time evolution of three 

member functions. 

 

For a specific location  and time ,  is a random variable. The distribution  and 

density function  of this random variable will in general depend on  and . Therefore, 

denoting by , or simply  when there is no risk of confusion, the distribution of the 

stochastic process ; we have: 

.      (5.4) 

Given a position  and a time ,  is the probability of the event  consisting of all 

outcomes  such that at the specified time and location , the functions  do not exceed the 

given number . 
 

The corresponding probability density function (pdf)  (or ) is obtained by 

differentiating with respect to : 

.              (5.5) 

T 1( , )x tT
1x

1( , , )iT x t  1( , , )iT x t  i

E

1x 1( , )x tT

t
i

t
i

t
i

t
i

1( , )x tT

x t ( , )x tT  ( , )T x tF T

 ( , )T x tf T x t

 ; ,F T x t
T

 ; ,F T x t

 ,x tT

    ; , ,F T x t P x t T T

x t  ; ,F T x t   ,x t TT

i t x  ,x tT
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 ; ,f T x t
T

 ; ,f T x t
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 
 ; ,
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F T x t

f T x t
T



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5.1.2.2 Joint statistics 

Considering the two random variables  and  given a position  and a time ,  the joint-

distribution  is the probability of the event  . The joint-pdf 

, (or ),  is such that the probability of the event 

 for  and  is . 

 
These definitions can be extended to an arbitrary number of stochastic processes; typically scalar 
properties such as chemical species mass fractions. 

5.1.3 Markov process 

To reduce the complexity of statistical modeling, stochastic processes are generally assumed to be 
Markov processes: their statistical properties in the future are uniquely determined from the present 

regardless of the past; they have no memory [186]. In terms of probability, the stochastic process 

is a Markov process if for every  and : 

.    (5.6) 

 

This property permits to calculate all higher-order statistics when the initial pdf  and the 

conditional density function , also called transitional density function; are known. The 

transitional density function represents the probability for  to take a value  at a time  assuming 

that the value of at a time  was . 

5.1.3.1 White noise 

The Gaussian white noise is a particular Markov process. It is stationary, i.e. its density function  

is time-independent: 

;       (5.7) 

and its autocorrelation function  is zero everywhere except for . Figure 5-3 represents 

one member function of the white noise process . 

 

Figure 5-3: Schematic representation of a member function of the white noise process . 

5.1.3.2 Random walk 

Another simple Markov process  is the random walk. This process can be defined as follows 

[185]: every  seconds, the next step of finite fixed length  is tossed: if the outcome is head then 

the step is to the right, otherwise to the left. Thus, each function  has a staircase form with 

discontinuities at the points . Figure 5-4 represents one member function  of the random 

walk process . 

 
Figure 5-4: Representation of one realization  of the random walk process . 

( , )x tT ( , )x tV x t

 , ; ,F T V x t
TV      , ,x t T x t V  T V

 , ; ,f T V x t
TV

 , ; ,f T V x t

     , ,T x t T dT V x t V dV      T V 0dT  0dV   , ; ,f T V x t dTdV

( )tx

n
1 2... nt t t 

1 1 1( ) ( ),.., ( ) ( ) ( )n n n n n nP t x t t P t x t          x x x x x

0 0( ; )f x t

1 1 0 0( ; ; )f x t x t

( )tx 1x 1t

( )tx 0t 0x

( , )f x t

( , ) ( )f x t f x

1 2( , )R t t 1 2t t

ξ

ξ

( )tx

T s

( , )t x

t nT 1( , )t x

( )tx

1( , )t x ( )tx



Probability density function approach 

 

 
 

86 
 

  

5.1.3.3 Wiener-Levy process 

The Wiener-Levy process , also known as Brownian motion, is the limiting case of the random 

walk where the size step  and the time step  both tend to zero such that: 

.       (5.8) 

In eq. (5.8),  is a constant value. It can be shown that this process ( , where   is a 

random walk and (5.8) is satisfied) is a family of continuous functions. Figure 5-5 represents four 

member functions of the Wiener-Levy process . 

 
Figure 5-5: Representation of four member functions of the Wiener-Levy process . 

 

The Wiener-Levy process  is also a Markov process. Its expectation value is zero and its 

variance is : 

;       (5.9) 

.       (5.10) 

Furthermore,  is normally distributed such that its density function is given by: 

.      (5.11) 

As a Gaussian process, the Wiener-Levy process is completely determined by its mean value and its 
covariance. 
 

For the rest of this chapter, it is important to note that, if  is a white noise, the stochastic process 

      (5.12) 

is a Wiener-Levy process. 

5.2 Stochastic equations 

5.2.1 Master equation 

A Markov-process  can be completely determine by its initial pdf  and its transition density 

function . However, these functions cannot be chosen arbitrarily; they must satisfy a.o. 

the Chapman-Kolmogorov equation [187]: 

.    (5.13) 

This equation states that the probability to go from  to  is the sum over all intermediate 

. A graphical representation of eq. (5.13)  [188] is given on Figure 5-6 where the probability to 

go from  to  where  is a interval of  is the sum over all intermediate . 
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Figure 5-6: Illustration of the Chapman-Kolmogorov equation [188]. 

 
A differential form of this relation (5.13) is the Master equation [187]: 

.   (5.14) 

In equation (5.14),  is defined as the transition rate, the probability per time unit, for a 

transition from  to  at time .  has to be known from a physical context. The Master-

equation provides the evolution of the density function  with prescribed initial pdf . 

 
The Master equation can be interpreted as a local balance for the probability density [187]. For 

example, the conditional density function , , of the random walk (step 

length ) at the level  increases due to the transition from levels  to level  but decreases 

following the opposite transition. Furthermore, the probability to be at the level  and  is 

 and , respectively. Thus, the variation of  is given by: 

;  (5.15) 

where ; ;  and  (Figure 

5-7). Clearly, (5.15) is the discrete form of the Master equation (5.14) for a one-step process. 
 

 
Figure 5-7: Schematic representation of a one-step jump process with transition rate  and  [187]. 

5.2.2 Fokker-Planck equation 

The Master equation is particularly well suited for birth and death problems; e.g. to investigate 
properties at a molecular level in gas dynamics. Larger scales are considered in fluid dynamics and an 

approximation of the Master equation for small transition step  generally is more adequate. This 

approximation called the Fokker-Planck equation (FPE) is obtained from a Taylor expansion (named 

Kramers-Moyal in this particular application) of the Master equation about  until second order terms 

[189]. 
 

The Fokker-Planck equation of the conditional density function  reads: 

.   (5.16) 

The corresponding equation for the marginal pdf  is simply  [189]: 

.    (5.17) 

0 0 0 0 0 0( ; ; ) ( , ) ( ; ; ) ( , ) ( ; ; )f x t x t w x x t f x t x t dx w x x t f x t x t dx
t


     

  

( , )w x x t

x x x t ( , )w x x t

( , )f x t ( , 0)f x t 

0 0 0 0( ; , ) ( ; , )f x t x t f ns t n s t n

s n 1n n

n 1n

0 0( ; , )f ns t n s t 0 0(( 1) ; , )f n s t n s t 0 0( ; , )f ns t n s t

       0 0 0 0 0 0 0 0( ; , ) ( 1) 1 , , ( 1) 1 , , ( ) ( ) ( , , )f ns t n s t w n f n s t n s t w n f n s t n s t w n w n f ns t n s t
t

   


        
 

( 1) ( 1)w n n w n   ( 1) ( 1)w n n w n   ( 1 ) ( )w n n w n  ( 1 ) ( )w n n w n 

w w

x x

x

 0 0; ,f x t x t

       
2

0 0 0 0 0 02

1
; , , ; , , ( ; , )

2
f x t x t A x t f x t x t B x t f x t x t

t x x

  
         

 ;f x t

       
2

2

1
; , ; , ( ; )

2
f x t A x t f x t B x t f x t

t x x

  
          



Probability density function approach 

 

 
 

88 
 

  

The first and second terms on the right hand side represent the drift and the diffusion of the density 
function, respectively [190]. 
 
The correspondence Master equation / FPE can be illustrated by the correspondence random walk / 
Wiener-Levy process. Considering the example of section 5.1.3.2, the random walk transition 

probability per unit time is . Introducing this quantity into the Master eq. (5.15) and 

expanding the resulting expression up to second order in  for small , one obtains the following FPE  

[190]: 

.                (5.18) 

Introducing  such as eq. (5.8) is satisfied (infinitely small time and length steps), eq. (5.18) becomes 
the diffusion equation: 

;            (5.19) 

whose solution is the Wiener-Levy process: 

.        (5.20) 

Figure 5-8 represents the probability density function of a Wiener-Levy process at four different times. 

 
Figure 5-8: Probability density function of a Wiener-Levy process at four different times. 

5.2.3 Ito formulation 

For complex geometries or complex FPE, the Ito formulation is generally more practicable. Basis for 
the Ito stochastic differential equation (SDE) is the Langevin SDE consisting of an ordinary differential 
equation (ODE) in which a rapidly and irregularly fluctuating random function of time occurs. Typically 
in the form: 

;      (5.21) 

where  is the variable of interest,  and  are known functions and  is the rapidly 

fluctuating quantity idealized as a white noise (sect. 5.1.3.1). 
 
From a mathematical point of view, (5.21) is not very satisfactory  [190]. An integral formulation using 

property (5.12) of the Wiener-Levy process  is more rigorous. One of these integral formulations 

is the Ito formulation. In this framework,  obeys the Ito SDE written as  [190]: 

;      (5.22) 

if for all  and  

.            (5.23) 

It can be shown that the Ito SDE 

       (5.24) 

is equivalent to the FPE (5.17)  [190]. 
 
This is advantageous because Monte-Carlo procedures [190] can be employed to solve the Ito SDE. 
For example, the Cauchy-Euler method can be used to construct a solution (Figure 5-9). Considering 

the discretized form of the SDE (5.22) at the mesh of points  ( ): 

;      (5.25) 
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where ,  and ;  is calculated from  by adding a 

deterministic term  and a stochastic term . 

 

Figure 5-9: Construction of one solution of the Ito SDE  with the Cauchy-

Euler method. 

 
The solution is obtained for sufficiently small time step and repeated for an infinite number of 
trajectories. The statistic of the trajectories governed by (5.24) provides an equivalent statistical 
information as delivered by the analytical solution of (5.17). 

From this analysis, the physical meaning of terms  and  in the FPE can be better 

described:  corresponds to a deterministic drift; while the diffusion term  represents 

the stochastic fluctuations. 
 
As an example, the diffusion eq. (5.19) proposed in its FPE formulation is equivalent to the Ito SDE: 

.       (5.26) 

Eq. (5.26) represents the trajectory  of Brownian particles agitated through the turbulent velocity 

field (if  is the turbulent diffusion coefficient) or thermal fluctuations (if  is the molecular diffusion 
coefficient) and deviated as a result of collision with the other particles. 
 
Figure 5-10 illustrates the correspondence between the Master equation, the Fokker-Planck equation 
and the Ito formulation. 

 
 
Figure 5-10: Illustration of the relation between Master equation (fig. on the left: random walk), Fokker-
Planck equation (fig. on the top right: analytical solution of diffusion equation – density function of 
Wiener-Levy process) and Ito formulation (fig. on the bottom right: four particle trajectories of eq. (5.26)). 

5.3 Modeling with stochastic processes 

5.3.1 Principle 

A dynamical system generally is governed by processes with very different time scales. If the Master 
equation or FPE associated to the system is not already known, random fluctuations commonly are 

( )i itx x 1i i it t t    1 ( )i i it t  w w w
1ix ix

 ,i i ia t tx  ,i i ib t x w

     , ,d a t dt b t d t x x x w

 ( ),A t tx  ( ),B t tx

 ( ),A t tx  ( ),B t tx

 2d Dd tx w

( )tx

D D



Probability density function approach 

 

 
 

90 
 

  

introduced in system’s ODE to represent variables which are much faster than the variables of 
interest. The ODE becomes a SDE which can be interpreted as an Ito SDE. 
 
Then, it is possible either to solve the Ito SDE, for example with Monte-Carlo techniques, or to solve 
the corresponding FPE if an analytical solution exists. This modeling is also called adiabatic 
elimination since it is equivalent to assume that the slow variable remains constant during the 
relaxation of the fast variable [190]. 

5.3.2 Example 

For example, considering the Brownian motion of particles (eq. (5.26)) due to thermal motion, the 

variable of interest is the position  of the particles. The velocity varies very fast between two 

collisions and is generally unobservable. Particles velocity is replaced by a white noise process. 

5.3.3 Limitation 

In contrast to the molecular motion, the modeling of the turbulent motion with a Markovian process 
requires more attention. Modeling of the velocity by a fast varying process is valid as long as the 

observation times  are much larger than the characteristic time scale  of the velocity  of the 

particles [186]: 

;       (5.27) 

where  is defined as the integral of the normalized autocorrelation  of  (see Figure 5-11, 

[186]): 

.          (5.28) 

 
Figure 5-11: Illustration of the normalized autocorrelation function  of particle velocity,  being the 

integral time scale [186]. 

 
As long as eq. (5.27) is satisfied, the process is observed in its diffusive regime and the coefficient of 

turbulent diffusion  in homogeneous turbulence can be related to the variance and characteristic 

time of the velocity field  [186]: 

.       (5.29) 

In contrast, when the observation time do no longer satisfy eq. (5.27), it is erroneous to represent the 
velocity by random fluctuations. If no model exist elsewhere, it is necessary to solve the governing 
equation of the particle velocity. In that case, Thomson [191] showed that the most general form of the 
velocity equation is an Ito SDE: 

;      (5.30) 

where  is the universal constant derived by Kolmogorov [192] and  is the mean turbulent 

dissipation rate. 
 
In this probabilistic model, the acceleration is considered to be an external variable varying faster than 

 and thus represented by random fluctuations.  is obtained by integration in time and its 

variance becomes 

.      (5.31) 

For , eq. (5.31) provides the diffusion regime with: 
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;       (5.32) 

while for smaller time, eq. (5.31) indicates the particles have essentially a straight-line motion [189]: 

.             (5.33) 

These results are valid as long as the observation time is larger than the acceleration characteristic 
time: 

.          (5.34) 

In equation (5.34),  is the normalized autocorrelation of the particle acceleration. 

5.4 Pdf transport equations 

5.4.1 Principle 

We have seen in chapter numerical modeling that, in spite of the drastic increase in computer 
resources during the last decades, local and instantaneous equations in high-Reynolds flows require 
resolution of small length and time scales beyond current computing capability. Averaging is required, 
i.e., time-averaging in Reynolds-Averaged Navier-Stokes Simulations (RANS) or spatial-filtering in 

Large Eddy Simulations (LES). This averaging leads to open terms for any non-linear process  

function of the flow variable , since: 

.                      (5.35) 

In eq. (5.35),  represents the averaging operator. Closure of open terms exploits mean (RANS) or 

filtered (LES) quantities to reproduce the effect of the unresolved scales. 

5.4.1.1 Stochastic model 

Many years of intensive turbulence research emphasize the challenge of closing highly non-linear 
terms. Therefore, the strategy of the pdf transport method introduced by Dopazo and O’Brien [14] is 
different. To avoid the loss of information due to the averaging, the flow field variables are represented 
by stochastic processes. The joint-pdf transport equation (5.40) or (5.42) of these stochastic 
processes is modeled and solved; thereby reproducing the statistics of the original governing 
equations. 
 
This technique is very attractive since one has access to all moments (see moments in appendix B) of 
the quantities involved in the pdf (typically velocities and/or scalar properties) so that a.o. non-linear 
source terms appear in closed form and do not need modeling (see expectation value in appendix B). 

5.4.1.2 Velocity-composition vs. composition pdf 

Basically, two pdf transport equations can be found in the literature. If one is concerned with velocity 
and scalar composition statistics, the pdf transport equation of the velocity-composition joint-pdf 

 is derived. If, in contrast, only composition statistics is of interest, the pdf transport 

equation of the composition joint-pdf  is derived. 

 
In these expressions, vectors of stochastic processes are introduced. The components of these 

vectors are stochastic processes. For a given position  and given time ,  is the stochastic 

velocity vector. Its components ,  are stochastic processes. The same applies for  

the scalar properties vector. For a given position  and given time , each of its components , 

,   being the number of scalars, is a stochastic process. 

 

In this context,  is the probability of the event: 

;        (5.36) 
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for  where  and ; at position  and time . 

 
However, all flow information, typically pressure, is not obtained with the velocity-composition joint-pdf 
or the composition joint-pdf. Other equations need to be solved in parallel. One common approach is 
to use an Euler solver for this purpose. 

5.4.2 Derivation 

The transport equation of the one-point one-time joint-pdf  is obtained by averaging the 

material derivative of the so called fine-grained velocity-composition (first order) pdf . 

 is defined as [193]: 

;     (5.37) 

where  is the number of scalar properties . Thus,  is a -dimensional delta 

function at  in the  sample space, at every position  and time . 

 

 is very useful since it possesses the two properties: 

;           (5.38) 

;        (5.39) 

 being an arbitrary function. Definition and properties of the conditional average are given in 

appendix B. 

5.4.3 Velocity-composition joint-pdf transport equation 

The transport equation of the one-point one-time velocity-composition joint-pdf  reads 

[193]: 

 

 

.   (5.40) 

In contrast to the classical approach where the Navier-Stokes equations are averaged, the calculation 

of the pdf transport equation permits to obtain all moments of the processes  and . 

 
In this context, term 1 which represents the change of rate and convection of the pdf, can be 
calculated with known flow variables and does not require modeling. Term 2 represents the effect of 

the mean pressure on the pdf. This term is also known because the mean pressure  can be 

calculated according to the following Poisson equation [189]: 

;         (5.41) 

where all flow variables are known. Term 3 represents the source term of the scalar properties 
equation. It is closed since all flow variables are known. Thus, any source term, including any non-
linearity can be calculated without modeling. This is one of the great advantages of the method. Term 
4 represents the conditional expectations of the viscous terms and the fluctuating pressure. A model is 
required to account for this term. Term 5 represents the conditional expectation of the scalar molecular 
transfer. A model is also required to account for this term. 
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Term 4 and 5 must be modeled with known flow variables because the joint-pdf  provides 

no information on the gradient of the fluctuating pressure, of the viscous terms and of the scalar 
properties. For these terms to be closed in a pdf approach, one should come up with a closure 
equation for higher-order pdf [186]. 

5.4.4 Composition pdf transport equation 

Integration of eq. (5.40) over the velocities provides the one-point one-time pdf transport equation of 

the composition pdf  [193]: 

.       (5.42) 

In that case, all moments of the process  are known but the pdf equation does not provide any 

information on the moments of the velocity field . The first moment (mean velocity  of 

components , ) and, as we will see later, information on the turbulent scales are supposed 

to be obtained elsewhere, e.g., with an Euler solver. 
 
In this context, term 6 which represents the change of rate and convection of the pdf, can be 
calculated with known flow variables and does not require modeling. Term 7 represents the source 
term of the scalar equation. It is closed since the statistic of the scalars is known. Thus, the source 
term in the scalar equations, including any non-linearity, can be calculated without modeling. This is 
one of the great advantages of the method. Term 8 represents the conditional expectation of the 

fluctuating velocity, which is not available from the composition pdf . A model is required to 

account for this term. Term 9 represents the conditional expectation of the scalar molecular transfer. A 
model is also required to account for this term. 

5.4.5 Modeling of open terms 

In this thesis’ framework, the composition pdf is of particular interest. Thus, models description will 
only be discussed in the context of the composition pdf; while the reader is invited to refer to 
established material  (e.g. [189]) for more information on the velocity-composition joint-pdf. 

5.4.5.1 Turbulent transport 

The composition pdf only provides information on the statistic of the scalar properties. The conditional 
average of the velocity fluctuations is not available and must be modeled. Commonly, a gradient 
hypothesis is used to represent the effect of these fluctuations on the transport of the scalar pdf. Thus, 
in a RANS approach, term 8 is modeled as follows  [193]: 

;      (5.43) 

where  is the turbulent scalar diffusivity; while in a LES calculation, the modeling of term 8 is: 

;      (5.44) 

where  is the sub-grid scalar diffusivity. Eq. (5.43) and (5.44) are modeled equations denoted 

by equal superscript “m”. 
 

As discussed in chapter numerical modeling,  and  generally are assumed to scale with 

the eddy viscosity. Turbulent and sub-grid viscosity are not provided by the composition pdf transport 
equation. Other equations need to be solved (e.g. RANS equations with adequate turbulent modeling 
or LES equations with adequate sub-grid turbulence modeling). 
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5.4.5.2 Molecular transport 

Probably the weakest element in the pdf approach is that term 9 in eq. (5.42): 

              (5.45) 

representing the transport of the pdf under the action of molecular diffusivity is not known: The 
conditional expectation of the scalar molecular transfer is not available since the pdf contains only 
one-point statistics. A model is thus required to account for this term. 
 
Modeling of (5.45) is quite complicated. Indeed, molecular mixing occurs at the smallest length scales 
[194] and has a two-fold action [193]: it disperses the scalar in the physical space while it decreases 
scalar variance in the composition space (Figure 5-12). 
 

 
Figure 5-12: Illustration of molecular mixing: dispersion in the physical space (left) and variance 
reduction in the composition space (right). 

 
A model for (5.45) should fulfill several criteria (e.g. [189], [195]). Among others, the mean value of the 
scalar property should not be modified; the variance of the scalar property must decrease; and the pdf 
should relax to Gaussianity in homogeneous turbulence. 
 
The dispersion in the physical space generally is caused by the mean scalar molecular flux [193]. It 
commonly is modeled by a deterministic molecular diffusion term: 

.        (5.46) 

 
In contrast, variance reduction in the composition space is due to the fluctuating scalar molecular 
transport [193]. In this thesis, the interaction by exchange with the mean (IEM), also called return-to-
the-mean model, is used to model this phenomenon as follows: 

.        (5.47) 

Scalar fluctuations relax to the mean value  of the components  of .  is the relaxation time 

which usually scales with the turbulent time scale : 

;        (5.48) 

where  is a model constant. 

 

Turbulent time scale  is not provided by the composition pdf equation. Other equations are solved; 

for instance LES equations, where  is the sub-grid mixing time scale defined as [152]: 

.             (5.49) 
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The IEM simulates flow realization interaction through mean fields and not through direct flow 
realizations interaction (such as in Curl model [15]). Despite its simplicity, it possesses the three most 
essential characteristics of a mixing model [193]: the mean value of the scalar property is not modified; 
the variance of the scalar property decays; and the scalar remains bounded. 

5.5 Lagrange approach for pdf equations 

5.5.1 Monte-Carlo Lagrange 

Both velocity-composition and composition pdf transport eq. (5.40) and (5.42) are FPE. Since 
analytical expressions are in general not available, the usual technique developed in [15] is to 
consider the equivalent Ito formulation. A Lagrange solver is employed with Monte-Carlo techniques to 
follow notional particles which carry flow information according to the specific stochastic Ito SDE. The 
Monte-Carlo technique is particularly well suited for such complex problems in multi-dimensional 
spaces. 

5.5.2 Particle equations for the composition-pdf 

Using eq. (5.43) [or (5.44)], eq. (5.46) and eq. (5.47) in eq. (5.42) to model term 8 and 9, respectively, 
the modeled composition pdf is defined by: 

;               (5.50) 

where  is the combined molecular and turbulent scalar diffusivity. 

 
Equivalence between FPE and Ito formulation allows solving the modeled composition pdf (5.50) with 
Langrange techniques. In this context, the pdf is represented by  notional particles at each Euler 

computational nodes. The particles are modified at each time step to simulate the FPE (5.50). The 

notional particles are characterized by their mass, their position , velocity  and scalar 

properties  in a composition pdf. With standard stochastic methods [189], the governing 

equations of these notional particles can be derived from the pdf equation (5.50). 
 

The trajectory  of a notional particle is given by [193]: 

, ;          (5.51) 

and the scalar property  evolves according to [193]: 

.         (5.52) 

The asterisk refers to any notional particle,  is a time increment, and  a Wiener process which 

reflects the random walk due to turbulence. 

5.5.3 Euler solver 

In parallel, a Euler solver is used to describe the fluid system by its Euler velocity and pressure field, 

and , respectively; and to gather the statistical information needed for the particle 

trajectories (Figure 5-13), for example the mean density . For the composition pdf eq. (5.42), the 

Euler solver must also deliver information on turbulent scales (see sect. 5.4.5). 
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Figure 5-13: Coupling Lagrange (particles) and Euler solver (mesh) for a composition pdf within the pdf 
transport method. 

5.5.4 Euler-Lagrange coupling 

Similarly to Lagrange techniques used in cavitating flows, one of the biggest difficulties in the 
Lagrange pdf method results from the coupling between Lagrange and Euler solver. Complex 
algorithms for the interpolation and averaging of the flow variables must be developed as well as to 
ensure consistency between both formulations. The next paragraphs describe some characteristic of 
Euler-Lagrange solver coupling in the Lagrange pdf transport method. 

5.5.4.1 Binning 

In the pdf approach, the Euler mesh usually is used for the binning of the particles. This binning 
process is based on spatial proximity. 

5.5.4.2 Interpolation error 

In general particle position does not coincide with Euler control volume centroid (Figure 5-13), so that 
particle variables must be interpolated onto the Euler mesh. Truncation and approximation errors 
arise; which limits the accuracy of the numerical schemes to be first order accurate in time and space 
[196]. 

5.5.4.3 Statistical error 

The ensemble-averaging is performed over the particles present in the Euler control volume. It would 
provide an exact estimation of the mean value if the number of particles was infinite. In practice, a 
compromise between accuracy and efficiency must be found since the computational cost increases 

approximately linearly with the number of particles. Thus, the statistical error is of order ,  with 

 being the number of particles present inside the control volume [193]. 

5.5.4.4 Code stability 

The number of particles has also an influence on the stability of the code. Noise can be critical for the 
convergence of the Euler solver, and thus of the whole calculation. It is desirable to have 
approximately the same number of particles in each computational cell, independently of the cell 
volume, to ensure an approximately uniform distribution of statistical error [193]. 
 
The optimal number of particles is obtained with specialized algorithms. It can be improved for steady 
problems with internal loops and iterations between Lagrange and Euler solver. For unsteady 
problems, there is no other solution than increasing the number of particles and setting very small time 
step to ensure code stability [194]. 

5.5.4.5 Consistency 

Since, in the framework of this method, Euler and Lagrange solvers provide some information twice 
(e.g. velocity in the velocity-composition pdf equation approach); it is essential to verify that both 
solvers deliver the same information. For instance, it must be ensured that the mean continuity and 
momentum equation are also satisfied by the velocity field of the particles. This need of consistency 
does not only translate into supplementary constraints on the particle system but also on the 
numerical schemes [193]. 
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6 Development of the passive outflow reducer 

The preceding chapters provide an informative basis about the physical processes affecting the 
passive outflow reducer (POR) flow behavior; and about the numerical models used in the POR 
analysis and the cavitation model development. The present chapter concentrates on the description 
of the development of the POR design. First, a short introduction (section 6.1) recalls the background 
of the POR. Then, section 6.2 and 6.3 depict the numerical calculations performed to develop the 
POR in backward and forward directions, respectively. Finally, section 6.4 explains the way how a 
compact design is obtained.  

6.1 Introduction 

In the boiling water reactor KERENA, increased safety and reduced costs are achieved with a smart 
combination of active and passive safety systems. One of these passive systems is the emergency 
condenser (EC). The EC passively removes excess heat and in particular the decay heat from the 
reactor pressure vessel (RPV) during transients and loss of coolant accidents (LOCA) without 
supplementary water inventory loss. 
 
Water level in the EC condenser tubes is coupled to RPV water level according to the principle of 
communicating tubes. During a LOCA or a transient with RPV water level drop, EC water level sinks 
and steam gets in contact with the cold condenser surface. In this way, heat is removed passively 
through steam condensation. The condensate returns to the RPV through the EC condensate return 
line. A break of this EC return line must be considered as a design accident. The POR is crucial to 
ensure that the KERENA reactor returns to a stable and safe state in case of this accident scenario. 
 
The POR is positioned in the reactor nozzle at the end of the EC condensate return line. It limits the 
loss of coolant from the RPV passively without moving part before other passive and active systems 
refill the core with coolant. The requirements concerning the POR are conflicting. On the one hand, 
the mass flow leaving the RPV has to be limited in case of the break of the EC condensate return line. 
On the other hand, POR flow resistance in the opposite flow direction, from the EC to the RPV, should 

not decrease EC heat removal capacity. Furthermore, the component must be compact ( < 1m, 
diameter<250mm) and easily manufactured. 
 
In the framework of this Ph. D., a new POR design composed of 37 parallel double-nozzle channels 
(Figure 1-9) is developed. The system is first designed to provide sufficient flow resistance in the 
backward direction (red arrow on Figure 1-9) using a system code (section 6.2). Afterwards, it is 
optimized to minimize the flow resistance in the forward direction (blue arrow on Figure 1-9) with CFD 
software (section 6.3). Both requirements can be fulfilled with one single pipe of about 6 meters 
length. In order to assure compactness of the component, this parallel disposition is developed 
(section 6.4).  

 
Figure 6-1: Longitudinal section of POR - 37 channels (blue); material (grey).  

6.2 Backward direction 

In the backward direction, the objective is to design a geometry limiting the coolant loss to 50 tons 
during the first 1000 seconds after the double-ended break of the EC condensate return line. Hereby, 
the boundary conditions at the POR inlet are known from a safety analysis calculation of the KERENA 
reactor [3] (see chapter introduction). 
 
The first step consists in choosing an adequate numerical tool to calculate the leakage flow rate. As 
discussed in the chapter numerical modeling, no universal model exists to calculate this flow rate but 
some models show good agreement with experimental data for specific geometries and fluid 
properties: The Bernoulli model provides good results for short geometries with a very strongly 
subcooled coolant; the homogeneous equilibrium model (HEM) correctly predicts the mass flow rates 
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in long geometries for a wide range of flow conditions; and the “Henry-Fauske” model is 
recommended for short geometries with moderately subcooled or saturated coolant. Here, “long 

geometry” signifies that the length  of this geometry is at least 20 or 30 times larger than the 

diameter  of the choking cross section of the geometry. 
 
A comparison of the mass flow rates predicted by these three models indicates that the mass flow 
rate, at given boundary conditions, calculated with the HEM is lower than with the other models. This 
comparison suggests that the outflow rates are lower in long geometries than in short geometries. This 
observation has two consequences for the POR design: First, the POR geometry is designed as to be 
a long geometry; second, the HEM is used to calculate the leakage mass flow rate in the POR. 
 
According to the HEM, the mass flow rate is determined by the area of the choking cross section and 
the single-phase pressure loss coefficient ( -value) upstream of this cross section. A design with a 

large choking cross section fulfills the LOCA requirement as long as the single-phase pressure loss 
upstream of this cross section is sufficient. In the POR design, a large cross section is advantageous 
since it minimizes the flow resistance during emergency core cooling. To produce a sufficient single-
phase pressure loss upstream of the POR choking cross section, the idea is to place a sudden 
enlargement, also called a Carnot diffuser (Figure 6-2). 
 

 
Figure 6-2: Principle of the POR design in the backward direction: a Carnot diffuser positioned upstream 
of the choking cross section (red). 

 
The Carnot diffuser is a simple single-phase fluidic diode. In contrast to a straight pipe, it produces 
larger pressure loss in one direction than in the opposite direction. An analytical expression of the 
Carnot diffuser pressure loss coefficient exists (see chapter numerical modeling). According to this 
expression, it is possible to achieve  with a sudden expansion from DN77 to DN180. This is 

particularly advantageous since the HEM calculation indicates that the LOCA requirement is mastered 
with a choking nozzle DN77 and a single-phase pressure loss coefficient  upstream. 

 
In the Carnot diffuser, energy is dissipated primarily in the recirculation zones downstream of the 
expansion. Hence, the choking cross section is positioned sufficiently far from the expansion to ensure 
that these recirculation zones, and thus the pressure loss, are not reduced. Theoretically the pipe 

situated between the expansion and the choking cross section must be  long, whereby  is the 

smallest diameter of the Carnot diffuser [40]. 
 
Finally, for a valid design calculation (choking cross section DN77 and  upstream of this cross 

section), one must ensure that the flow effectively chokes in the assumed choking cross section (red 
cross section on Figure 6-2). To rule out the occurrence of choking in the smallest cross section of the 
Carnot diffuser, the following model implemented into a FORTRAN program is developed for 
geometries consisting of two consecutive small cross sections with an intermediate enlargement 
(Figure 6-3). 
 

 
Figure 6-3: Modeling of geometries consisting of two small cross sections (1 and 2); pressure loss 

coefficients upstream of the cross sections 1 and 2 are  and , respectively; mass flow rates in cross 

sections 1 and 2 are  and , respectively; ,  and  are total pressures at geometry inlet, 

between the smallest cross sections and geometry outlet, respectively.   
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In this model, the intermediate pressure  establishing between the nozzles is varied according to 

the secant method [197] until the mass flow rates  and  in cross sections 1 and 2, respectively, 

become equal (Figure 6-4 (a)). Fluid properties (void fraction , temperature , etc.) between the 

nozzles are updated according to the value of the pressure . For a prescribed ,  and  are 

calculated according to HEM (Figure 6-4 (b)). Thereby, the pressure loss is assumed to arise from the 

friction at pipe walls. Hence,  and  are estimated with the Colebrook correlation (see chapter 

numerical modeling). The HEM correlation distinguishes between choked and non-choked flow. For 

this purpose, HEM calculates the critical pressures  and  corresponding to stagnation 

pressures  and , respectively, and compare them to the outlet pressures. Taking the first nozzle 

as an example,   signifies choking. In the non-choked flow ( ), the mass flow rate  

also depends on backpressure . 

 

                                                                                                   
Figure 6-4: Flow diagram of the routines used to estimate critical cross sections in a serial arrangement 

of two cross sections. On the left: variation of  according to secant method [197]. The variation is 

stopped when mass flow rates difference is smaller than a prescribed . On the right: estimation of 

mass flow rates  and  in both sections with HEM.  

 

As an example, mass flow rates  and  are given as a function of the varying pressure  in 

Figure 6-5. Under critical conditions,  is equal to the critical mass flow rate  and independent 

of the pressure . Under sub-critical conditions, , indicated by  in Figure 6-5, depends on 

. The intersection of the curves gives the calculated flow conditions: pressure  establishing 

within the enlargement and  the resulting mass flow rate.  
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Figure 6-5: Mass flow rates  and  as a function of the varying pressure ;  under critical 

conditions  is independent of the pressure  whereas it depends on  under sub-critical 

conditions  ; curves intersection gives calculate flow conditions: pressure  establishing 

between the cross sections and  resulting mass flow rate. 

 
For the particular case displayed on Figure 6-5, the flow is subcritical in the first cross section and 
critical in the second cross section although the first cross section is 2.25 times smaller than the 
second cross section. Since this phenomenon is observed under all KERENA LOCA conditions for two 
identical cross sections, it is assumed that, for a design with two identical cross sections, choking 
takes place in the second cross section. 

6.3 Forward direction 

Safety analysis calculations [3] indicate that the POR flow resistance must not exceed 15 kPa at 

 and system pressure 75bar to guarantee adequate EC heat removal for the KERENA 

reactor to return to a safe and stable state for all KERENA transients and LOCA. According to the 
LOCA calculation with the HEM (section 6.2), a long geometry with a choking cross section DN77 and 
an enlargement from a pipe DN77 to a pipe DN180 masters the LOCA (Figure 6-2). Typically, a 
geometry consisting of a Carnot diffuser followed by an abrupt contraction (Figure 6-6) fulfills these 
geometrical requirements. However, the flow resistance in the forward direction is equally high and 
exceeds the KERENA POR requirement during emergency core cooling. 
 

 
Figure 6-6: Geometry fulfilling backward requirement: Carnot diffuser and abrupt contraction. 

 
The Carnot diffuser also generates large form loss in the counter direction which is known as “Borda 
opening” pressure loss [133]. To reduce forward direction flow resistance, it is necessary to modify the 
shape of the Carnot diffuser to avoid a flow detachment in the forward direction. One possibility is to 
replace the Carnot diffuser by a short Venturi-nozzle (Figure 6-7). With this design modification, flow 
detachment and pressure loss are strongly reduced during emergency core cooling. 

 
Figure 6-7: Schematic representation of fluid streamlines in an abrupt contraction (top) and a short 
Venturi-nozzle (bottom); flow detachment and pressure loss are strongly reduced in the Venturi-nozzle.  
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However, in the backward direction, the pressure loss downstream of a Venturi-nozzle is lower than 
downstream of a Carnot diffuser. Estimated with a CFD calculation, the pressure loss coefficient of a 

Venturi-nozzle in the backward direction amounts to . To fulfill the LOCA requirement with 

this pressure loss coefficient, the HEM shows that the smallest cross section must be further reduced 
to DN75. To increase conservatism, the smallest and largest sections are designed DN74 and 200, 
respectively.  
 
Thus, a geometry consisting of two consecutive Venturi nozzles (Figure 6-8), called double-nozzle or 
double Venturi-nozzle design in the rest of this thesis, also satisfies the LOCA requirement. Its 
smallest and largest cross sections are DN74 and 200, respectively.  

 
Figure 6-8: Design with two consecutive Venturi nozzles (called double-nozzle or double Venturi-nozzle 
design in the rest of this thesis). 

 
Transition sections are necessary between the tubes of diameter DN74 and the tubes of diameter 
DN200 (see Figure 6-8). Optimizing the shape of this double-nozzle design in the forward direction 

primarily consists in finding the optimal convergence and opening angles  (see Figure 6-9) of 

these transition sections. 
 

 
Figure 6-9: Characteristic dimensions for transition sections such as diffusers and contractions. 

 
This optimal angle represents the best compromise between friction and form losses (Figure 6-10). 

For small , the cross sectional area is smaller in averaged. Thus, the friction loss coefficient  is 

high. In contrast, for large , the flow detaches and the turbulence is enhanced. The form loss 

coefficient  is large. The optimal convergence/opening angle , yields a minimal total flow 

resistance coefficient . 

 
Figure 6-10: Schematic representation of total , friction , and form  loss coefficients in a diffuser 

in relation to its opening angle ;  being the opening angle at which total flow resistance coefficient 

is minimal. 

 

Unfortunately,  is largely affected by upstream flow conditions such as shape of the boundaries, 

boundary layer thickness, shape of the velocity profile, degree of turbulence, flow regime both in the 
boundary layer and in the main flow; and flow compressibility [40]. For example, a tube with constant 
cross section positioned directly upstream of the diffuser inlet tends to thicken the boundary layer, and 
thus enhances the risk of flow detachment. The resulting flow resistance increase depends on the 

0.4LOCA 

opt 

 fr



exp opt



 fr exp

 opt

opt



Development of the passive outflow reducer 

 

 
 

102 
 

  

length of the tube positioned upstream of the diffuser but also on the diffuser opening angle. This 
phenomenon is illustrated on Figure 6-11. The pressure loss coefficient through a diffuser without 

straight tube is ; while the same diffuser has a pressure loss coefficient  when a straight tube is 

positioned upstream of its inlet. The ratio  defined as 

       (6.1) 

is formed to assess the influence of the straight tube on the flow resistance in the diffuser. Figure 6-11 
summarizes data from [40] for diffusers with opening angle =4° (blue), =8° (red) and =12° 

(green). The flow resistance in a diffuser with an opening angle of 12° is more than doubled at low 
Reynolds number when a straight tube is positioned upstream of its inlet. The length of the straight 

tube in this example is , where  is the diameter of the smallest cross section.  

 
Figure 6-11: Representation of , proportionality factor between the pressure losses in diffusers without 

and with straight tube for three opening angles  =4° (blue), =8° (red) and =12° (green). 

 
The downstream flow conditions also influence the optimal opening angle. In the KERENA reactor, the 
POR is positioned inside the RPV nozzle. The downward flow of the downcomer may yield flow 
detachment in the second diffuser if this angle is too large. 
 
In this context, three-dimensional calculations are necessary to optimize the geometry. CFD 
simulations are carried out with the commercial software STAR-CCM+. The numerical domain 
consists of a double-nozzle geometry connected to a vessel with downward flow.  
 
The setup of the CFD calculations is summarized in the following: 

- Turbulence is predicted with  SST model of Menter [142]. This turbulence model combines 

advantages of  model near walls and of  model in flow bulk. 

- The “All ” wall treatment switching from viscous sublayer resolution to wall functions according 

to -values is adopted to reduce computation time. Since the geometry is designed to avoid flow 

detachment, the error associated with wall law functions should be limited. 
- A steady, segregated solver is employed. 
- Water is considered to have constant density and constant temperature. 
- The mesh consists of trimmed cells [129] in the bulk and of prism cells [129] near the walls (Figure 

6-12). An analysis of the sensitivity of the results on mesh size shows that the discretization errors 
are in an acceptable range (The difference between the pressure losses calculated on this mesh 
and on a twice finer mesh is maximum 3%). 

- To speed up the calculations, a 60° channel section with periodic boundary conditions is analyzed 
instead of the complete cross section. Although the flow resistance can be underestimated in this 
configuration, a sensitivity analysis indicates that the error is limited to about 6%. Therefore, it is 
neglected during this basic design phase. 

- Boundary conditions: The flow at the inlet has a constant velocity profile; flow variables are 
extrapolated from the computational domain at geometry outlet; no-slip condition at the walls and 
periodic boundary conditions on the lateral sides of the 60° channel section are imposed. 
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Figure 6-12: Section of the mesh used for the design of the POR in the forward direction. 

 
Resulting from this optimization phase, the double-nozzle design consists of the following parts 
(Figure 6-13): 

- the inlet section (I) homogenizes the flow; 
- the contractions (II and V) limits flow resistance and static pressure decrease. They are based 

on the 5
th
 order polynomial found in [198]. This contraction minimizes boundary layer 

thickness so that the flow is less liable to detach in the diffuser. This shape also limits the 
static pressure decrease occurring at the smallest cross sections. This is advantageous to 
avoid cavitation. 

- the diffusers (III and VI) avoid flow detachment and high friction loss with 7° opening angle; 
- the cylinder (VII) and the contraction (VIII) assure that the flow in the diffuser (VI) does not 

detach due to the downward flow of the downcomer. 
 

 
Figure 6-13: Flow sections of a double-nozzle design [inlet (I), outlet (VIII), contractions (II and V) and 
diffusers (III and VI)]. 

 
The CFD calculation indicates that this optimized double-nozzle fulfills the requirement in the forward 
direction. The calculated pressure loss amounts to 12.5kPa at POR design point (45kg/s at 75bar). 

6.4 Size reduction 

Calculations performed in sections 6.2 and 6.3 indicate that a POR consisting of a single channel with 
2 optimized Venturi-nozzles DN74 and a long intermediate pipe DN200 satisfies the requirements in 
backward and forward directions. However, with a length of about 6 m, this design is too long. 
 
As a consequence, the following more compact design is developed. The idea is to increase the 

number of channels to , to downscale each of them by , and to connect them in parallel. This 

results into: 

- All the cross section areas of the channels are divided by . 

- The minimal total cross section remains DN74. 
- The pressure loss coefficient approximately remains the same in each channel. 

- The mass flow rate in each channel is divided by . 

 

This geometry with  parallel channels downscaled by  has two equivalent minimal cross sections 

DN74 and the same pressure loss. It can therefore meet LOCA requirement as well. 
 
To position the POR in the RPV nozzle, the POR must be shorter than one meter. Scaling it from six to 
one meter implies to increase the number of pipes to 6² = 36, whereby each pipe has smallest cross 
sections DN12.17. A honeycomb-like disposition with 37 channels is proposed for the new design (see 
Figure 6-14). 
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Figure 6-14: Honeycomb-like disposition with 37 channels. 

 
This yields a cluster with 250mm diameter and 900mm length which conveniently fits into the heavy 
duty reactor pressure vessel nozzle assuring no failure of the passive outflow reducer. 
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7 Performance tests 

To validate the principle of the POR design and analyze its fluidic behavior in both directions, 
experiments are performed at AREVA Technical Center in Karlstein under realistic boundary 
conditions. In the backward direction, the loss of coolant through four different channel designs is 
measured to assess the influence of the size and number of smallest cross sections. In the other flow 
direction, the flow resistance of three different channel designs is measured to estimate the impact of 
the opening angles of the diffusers. This chapter performance tests outlines the setup and the results 
of the experiments. Backward and forward directions are treated separately in section 7.2 and 7.3, 
respectively. In section 7.4, the experimental results are exploited to calculate the performance factor 
of the POR. Principal information and outlook of this chapter are given in section 7.5. 

7.1 Introduction 

The new POR design is developed with numerical tools. The HEM is used to estimate the loss of 
coolant occurring after the break of the EC condensate return line. Single-phase CFD calculations are 
exploited to minimize the flow resistance during emergency core cooling. Since these models are 
limited in several respects (see chapter numerical modeling), experiments are performed in both 
directions under realistic plant conditions to validate the POR design at AREVA Technical Center in 
Karlstein ([199]; [200]). 

7.2 Backward direction 

The POR is designed to meet the functional requirement in the backward direction with the HEM 
correlation. The HEM very accurately predicts the critical mass flux for a wide range of flow conditions 

(from strongly subcooled flow to flow with quality 
0Y  up to 0.2) when the geometry is characterized by 

a large  - value [160]. However this modeling does not address directly three-dimensional effects and 

disregards possible mechanical, thermal or thermodynamic non-equilibrium. Furthermore, it does not 
reproduce unsteady phenomena. For instance, calculations performed with an unsteady 6-equation 
system code (RELAP) indicate that, under certain flow conditions, both nozzles interact giving birth to 
strong mass flow oscillations at low frequency ( 1Hz ) (Figure 7-1). 

 
Figure 7-1: Graphical representation of the result of a transient RELAP calculation with inlet pressure 
60.4bar and outlet pressure 1bar: the double-nozzle design is colored with void fraction. Strong mass 
flow oscillations are encountered at steady boundary conditions: (top): very low mass flow at time 3.5s, 
(bottom) high mass flow at time 8.2s.   

 
In this context, experiments are required to validate the POR design, i.e. to answer the following 
questions: 

- What is the real benefit of positioning a first small cross section upstream of the choking cross 
section in the backward direction? 

- Which smallest cross section area is required to sufficiently limit the loss of coolant for the 
KERENA reactor to remain in a safe and stable state after the break of the EC condensate 
return line? 

- Do mass flow oscillations occur as a result of small cross sections interaction? 
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Experiments shall also be exploited to develop a correlation which can be implemented in the safety 
analysis code RELAP to represent the effect of the POR on the KERENA reactor transients (section 
7.2.2.4); and to validate a new cavitation model (chap. stochastic-field cavitation model). 

7.2.1 Experimental setup 

To investigate the general fluid dynamic behavior of double-nozzle channels, four different geometries 
are tested in the backward direction (Table 7-1): The double-nozzle channels A and B; and the single-
nozzle channels C and D. Geometry A is one channel of the KERENA POR; geometry B is similar but 
with smaller smallest cross sections. Geometry C and D have the same smallest cross section but the 
straight tube downstream of this cross section is longer in geometry D than in geometry C. 
 

 
Table 7-1: Geometries tested in the backward direction. 
 
To ease the experimental setup between tests, the geometries consist of interchangeable modules 
which are assembled leak-proof. Photographs (Figure 7-2) show two of these modules. The 
transverse pipes are ports for pressure and temperature sensors. 
 

    
Figure 7-2: Photographs of two of the interchangeable modules assembled leak-proof to form the tested 
geometries; transverse pipes are ports for pressure and temperature sensors. 

 
The experimental setup [199] used to simulate the backward conditions consists of an accumulator 
tank which discharges hot water through the geometries into a condensation pool. A schematic 
representation of the experimental setup is given on Figure 7-3. 

 
Figure 7-3: Schematic representation of the experimental setup in the backward direction; 1: accumulator 
tank, 2: connection tank, 3: tested geometry, 4: servo valve, 5: condensation pool. 
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Pressure in the accumulator tank (1) is imposed by the pressurizer tank (6). The geometry (3) which is 
tested is connected upstream to a connection tank (2). The test begins when the servo valve (4) 
opens. Water flows from the accumulator tank through the geometry into a condensation tank (5). The 
thermo-fluidic conditions present in the downcomer after the break of the EC return line are 
reproduced at the inlet of the geometries in the tank (2) at quasi steady-state conditions. A photograph 
of the experimental test stand is presented on Figure 7-4. The isolating coat around the nozzle is 
removed for the photograph. 
 

 
Figure 7-4: Photograph of the experimental test stand in the backward direction; isolating coat envelops 
the connection tank but is removed from around the nozzle.  

 
The four geometries are tested at different pressures (from 5 to 75 bar) and temperatures (from 3K to 
40K subcooling). The break mass flow rate is estimated with the temporal variation of the mass of the 
condensation pool. Pressure (p), pressure difference (dp) and temperature (T) are measured among 
others along the channels (Figure 7-4). 

7.2.2 Experimental results 

For none of the tests, high amplitude low frequency mass flow oscillations are observed. Thus, the 
instabilities monitored in the system code calculations (Figure 7-1) have no physical but numerical 
origins. No interaction occurs between the smallest cross sections and POR flow rates and loads 
remain constant under given boundary conditions. 

7.2.2.1 Pressure distribution 

A typical pressure distribution along a double-nozzle channel is given on Figure 7-5. 

 
Figure 7-5: Pressure distribution along a double-nozzle channel. 

 
In the first section (up to 200mm), wall shear friction and entrance form loss slightly decrease the static 
pressure. A larger static pressure drop occurs in the contraction (350mm) mainly due to a dynamic 
pressure rise. Downstream of the expansion (between 350 and 500mm) the pressure recovery occurs 
only partially because the flow detaches from the wall and large amounts of energy are dissipated in 
the recirculation zones. In the second contraction, static pressure fall is amplified which suggests that 
larger void content, and thus larger velocities and larger flow resistance, are involved. Downstream of 
the second cross section, no pressure recovery is observed and the pressure remains at saturation 
conditions. 
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7.2.2.2 Influence of inlet pressure 

A comparison of this pressure distribution (red curve on Figure 7-6) with the one of a test at lower inlet 
pressure (orange curve on Figure 7-6) indicates that, in this particular case, inlet pressure does not 
significantly modify the static pressure evolution. A closer look at the data points out that pressure 
gradients are smaller at lower inlet pressure. This suggests that the mass flow is lower. Available 
mass flow measurements confirm this assumption: Mass flows measured during the first and second 
tests are 4.2 and 3.8 kg/s, respectively. 

 
Figure 7-6: Pressure distribution along a double-nozzle channel at two different inlet pressures. 

7.2.2.3 Influence of inlet temperature 

Comparison between pressure distributions and mass flow rates of the first test (red curve on Figure 

7-7; 4.2kg/sM  ) with those of a third test (blue curve on Figure 7-7; 7.3kg/sM  ) proves that a lower 

pressure at the inlet does not necessarily imply a lower mass flow rate. Despite a lower inlet pressure, 
the mass flow rate is larger during the third test than during the first test. 
 
In fact, the experimental results of these two tests illustrate the impact of coolant subcooling on the 
magnitude of the critical two-phase mass flow rates. The subcooling is larger during the third test (

40KT  ) than during the first test ( 9KT  ). Due to the larger coolant subcooling, coolant 

vaporization is mitigated upstream of the choking cross section. As a result, the flow resistance arising 
from two-phase interactions is reduced and the speed of sound at the choking cross section is larger. 
These two phenomena contribute to the larger critical flow rate. 

 
Figure 7-7: Pressure distribution along a double-nozzle channel at two different inlet pressures and 
subcooling. 

7.2.2.4 Mass flow rate 

As illustrated by the former paragraphs, an adequate representation of the experimental results 
addresses both inlet pressure and inlet subcooling. Same inlet pressure but different subcooling may 
induce large discrepancies between critical two-phase flow rates. 
 
Since the POR and each of its double-nozzle channels are developed with the HEM correlation, this 
correlation should describe the flow characteristic of channel A and B correctly. One assumption of 
this model is that the mixture has enough time, and thus the geometry is long enough, to relax to 
equilibrium. If the geometry is too short, water and steam are not in equilibrium and the measured 
mass flow is larger than expected. 
 
The experimental results for the four geometries are displayed in Figure 7-8 as a function of inlet 
pressure. The mass flow rates are normalized by the theoretical mass flow rate predicted by the HEM 
at same inlet pressure and subcooling. This normalization has the advantage that consequences of 
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inlet subcooling on mass flow rate are accounted for. Since the HEM accurately predicts the mass flow 
rate through long straight pipes, the ordinate also gives the ratio between the experimental (through 
the tested geometries) and the theoretical mass flow rate through a long pipe with constant cross 
section. The cross section of this pipe with constant cross section equals the smallest cross section of 
the tested geometries. A ratio which is bigger than one indicates that the mass flow rate is larger 
through the tested geometry than through a long pipe with constant cross section. 

 
Figure 7-8: Ratio between the experimental mass flow rate measured through the geometries and the 
theoretical mass flow rate calculated through a long pipe with constant cross section. 
 
Mass flow rates through the single-nozzle designs C and D are much bigger than what would be 
expected through a long pipe with constant cross section. In contrast mass flow rates through the 
double-nozzle designs A and B are smaller. From Figure 7-8 it is qualitatively obvious that the use of 
double-nozzle designs helps reducing the mass flow rate resulting from the break of the EC return line 
in comparison to single-nozzle designs. 
 
Quantitative information on the total loss of coolant through a double-nozzle design is obtained when 
the pressure loss coefficient   used within the HEM is tuned to fit experimental results. For example 

HEM with 0.1   reproduces all experimental results for the design A. This suggests that the fluidic 

behavior of A is well described by the HEM with 0.1  . Thus, the HEM with 0.1   can be used to 

estimate the total coolant loss through the channel A during the whole LOCA (Boundary conditions are 
extracted from safety analysis calculations for the KERENA reactor [3]). 
 
An extrapolation to 37 identical pipes indicates that the new POR design masters the LOCA 
requirement (Figure 7-9). Figure 7-9 also shows that the loss of coolant can be reduced up to 50% by 
the use of a double-nozzle design instead of a single-nozzle design. 

 
Figure 7-9: Pressure evolution in the downcomer at POR inlet (blue curve); and integral loss of coolant 
with POR (red curve) and with 37 parallel single-nozzle channels (green curve); during the first 1000s after 
the break of the EC condensate return line. 

7.3 Forward direction 

The POR is designed to limit the flow resistance in the forward direction with single-phase constant-
density CFD simulations since water flows mostly with large subcooling from the EC into the POR. The 
effects of the turbulent fluctuations on the mean flow are modeled within the RANS approach. For 
attached flow, such as encountered in straight pipes and contractions or diffusers with small angles, 
RANS models are known to be very reliable. However, they often fail to correctly predict detaching 
flows. As a result of turbulence modeling uncertainties, these flows may be described as non-
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detaching flows in the calculation. In this case, the calculated flow resistance is largely underestimated 
and does not correspond to reality at all. This is troublesome for the POR development since it is not 
possible to determine precisely which opening angle is optimal for the POR diffusers. This optimal 
angle is sufficiently large for the POR geometry to be short and the friction loss minimized but 
sufficiently small for the flow not to detach. To estimate accurately the correct opening angle, a 
double-nozzle design is tested alternatively with three different diffuser opening angles. Tests are 
performed under realistic plant conditions for two of these geometries. With the other geometry, 
experiments are carried out at lower pressures and temperatures. Experimental results should also be 
useful to validate CFD calculations [201]. 
 
To assess the risk of cavitation and the impact of cavitation on the POR fluidic behavior in the forward 
direction, one test is also performed at high mass flow rate and very low subcooling. Experimental 
results concerning this experiment are treated in section 7.3.2.3 separately from the other 
experimental data and shall be exploited to validate the new cavitation model (chap. POR analysis).  

7.3.1 Experimental setup 

For the tests in the forward direction, three different geometries (Table 7-2) are alternatively inserted in 
the existing KATHY loop [199]. Geometry A is one channel of the POR; while geometries B and C 
possess diffusers with smaller and larger opening angles, respectively.  
 

 
Table 7-2: Geometries tested in the forward direction. 

 
The flow resistance in the channels is measured at imposed mass flow rates. Geometries A and B are 
tested under realistic plant conditions (at the exception of the test performed to evaluate the impact of 
cavitation on POR flow behavior): Inlet pressure ranges from 10 to 75 bars; while inlet subcooling 
spans from -3 to -7K. The geometry C is tested with cold coolant at 10 bars. The experimental setup 
dedicated to the tests in the EC direction is described on Figure 7-10. The pump (1) enforced a steady 
state mass flow through the geometry (3). The temperature is regulated by the heat exchanger (2) and 
the pressure by the pressurizer tank (5). The tank (4) is connected at the outlet of the channel to 
simulate the downcomer. Pressure (p), pressure difference (dp) and temperature (T) are measured 
along the geometry. 
 

 
Figure 7-10: Schematic representation of the experimental setup in the forward direction; 1: pump, 2: heat 
exchanger, 3: tested geometry, 4: connection tank, 5: pressurizer tank. 
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7.3.2 Experimental results 

7.3.2.1 Flow behavior of POR channel 

7.3.2.1.1 Pressure loss 

A graphical representation of the experimental results obtained with geometry A at POR design point 
and two other flow conditions at 75bar is displayed in Figure 7-11. The flow resistance is given as a 
function of the mass flow rate.  

 
Figure 7-11: Measured pressure drop (diamond) at POR design point (dashed circle) and two other flow 
conditions at 75 bar; the solid line represents the maximum permissible pressure drop at design point 
mass flow.   

 
Assuming that the coolant distributes homogeneously in the 37 channels, the flow resistance at design 

point is obtained from experimental data for geometry A at 45 37 kg/s 1.22kg/sM    and 75 bar. In 

this case the pressure loss is 13,9kPa, i.e. below the maximal authorized flow resistance of 15kPa. 
Hence, the POR design fulfills the requirement in the forward direction. 

7.3.2.1.2 Pressure loss coefficient 

The flow resistance induced in the EC system loop tends to decrease EC heat removal capacity. To 
account for the effect of the POR pressure drop on KERENA transients and LOCA, it is necessary to 
estimate the POR flow resistance under all possible flow conditions. Analysis of available experimental 
data on geometry A suggests that a constant pressure loss coefficient 0.20   (related to the smallest 

cross section) conservatively represents the POR pressure loss during all measured flow conditions 
(Figure 7-12). 

 
Figure 7-12: Measured (diamonds: 75 bar; squares: 50 bar and triangles: 25 bar) and calculated (solid 
line:  pressure loss coefficient 0.20) flow resistance in geometry A (POR channel) in relation to mass flow. 

7.3.2.2 Influence of opening angles 

Although the POR flow resistance is acceptably small, it could be advantageous to further reduce the 
flow resistance and the component length by using diffusers with larger opening angles. Diffusers with 
smaller opening angles could help reduce form losses. Although the opening angle of the diffuser is 
crucial for the flow resistance during emergency core cooling, it is expected to have only a negligible 
impact on the POR flow behavior in the backward direction. 
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7.3.2.2.1 Smaller opening angles 

The comparison between the pressure loss in geometries A and B (Figure 7-13) indicates that smaller 
opening angles yield larger flow resistance. The form loss reduction is compensated by larger friction 
losses. 

 
Figure 7-13: Measured flow resistance at 75 bar (left), 50 bar (middle) and 25 bar (right) in geometries A 
(blue) and B (red) plotted as a function of mass flow. 

7.3.2.2.2 Larger opening angles 

Since experiments with geometry A and C are performed under different flow conditions, it is 
necessary to display the experimental results in a non-dimensional form, e.g. the pressure loss 
coefficient in relation to the Reynolds number (Figure 7-14). 

 
Figure 7-14: Pressure loss coefficients in geometries A (blue) and C (green) at 75 bar (diamond) and 10 
bar (circle), respectively. 

 
At low Reynolds numbers, the flow resistance coefficient is high. Increasing the Reynolds number 
lowers the flow resistance coefficient (green arrow on Figure 7-14). At sufficiently high Reynolds 
numbers, an approximately constant pressure drop is observed (blue arrow on Figure 7-14). This 
qualitative flow behavior is close to the behavior of the friction loss in straight tubes and characteristic 
for separation-free diffusers [40]. 
 
The analysis of the flow resistance in the first and second nozzle of geometry C shows that high flow 
resistance coefficients are only detected in the first nozzle whereas pressure drop coefficients in the 
second nozzle are lower and approximately constant (Figure 7-15), although both nozzles are 
geometrically identical. 
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Figure 7-15: Flow resistance coefficients in first (blue) and second (red) nozzle of geometry C. 

 
More generally with all geometries (A, B and C), the pressure loss coefficients observed in the second 
nozzle are smaller than those measured in the first nozzle. The difference between the pressure 
losses in the first and second nozzle diminishes at high Reynolds number. The flow resistance in the 
second nozzle shows the same behavior at low Reynolds numbers as at high turbulent Reynolds 
numbers. 
 
Using data available in [40] for separation-free diffusers, the pressure drop coefficient in a theoretical 
double-nozzle design is estimated at all Reynolds numbers and compared to the experimental results 
for geometry C (Figure 7-16). The theoretical double-nozzle design is assumed to consist of two 
separation-free diffusers with opening angles of 12°. The second diffuser is supposed to have a 
constant pressure loss corresponding to fully-turbulent conditions. The comparison suggests that 
geometry C performs better than this theoretical geometry. Therefore, at high Reynolds numbers, the 
flow resistance coefficient of geometry C should also be lower than that of the theoretical geometry, 

i.e. below 0.196. Since geometry C is shorter than geometry A and its pressure loss coefficient C  is 

expected to be lower than that of geometry A ( 0.196 0.20C A    ), it could be beneficial to use 

diffusers with opening angles of 12° (geometry C) instead of 7° (geometry A) to reduce POR length 
and flow resistance. 

 
Figure 7-16: Comparison between measured pressure loss coefficient in geometry C (circle); and 
theoretical pressure loss coefficient in a double-nozzle design (solid line) estimated with data available in 
[40] for separation-free diffusers. 

 
However, Figure 7-17 indicates that the pressure loss coefficient is not only a function of the Reynolds 
number but also of the system pressure. 
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Figure 7-17: Pressure loss coefficients in geometry A (blue) and B (red) at 75 bar (diamond), 50 bar 
(square) and 25 bar (triangle). 

 
CFD calculations calibrated with the available experimental results are required to estimate the flow 
behavior of geometry C at high Reynolds numbers and high system pressures. 

7.3.2.3 Cavitation 

To assess the consequence of cavitation on the POR fluidic behavior, one test is performed with 

decreasing subcooling. The mass flow 1.8 /M kg s  is imposed at system pressure 50bar. The 

temporal variation of the pressure loss measured during this test is presented in Figure 7-18. The flow 

resistance remains almost constant until 200s at its single-phase value (
0dp dp ); after that, it starts 

to increase, first moderately (
01.4dp dp ), then drastically after 400s. 

 

Figure 7-18: Temporal evolution of the flow resistance in one POR channel with varying subcooling; 0dp
 

being the single-phase flow resistance. 

 
The moderate flow resistance increase probably occurs when the first cavities and cavitation sheets 
develop at the smallest cross section. The momentum exchange between the new vapor phase and 
the liquid phase yields the pressure drop increase observed between 200s and 400s. The drastic 
increase after 400s may be induced by the blockage of the cross section by a large cavitation sheet. 
 
To estimate under which conditions cavitation occurs in the forward direction, the temperature of the 
coolant is measured at four positions along the POR channel (Figure 7-10). These temperature 
measurements indicate that the subcooling is low and of order of the measurement uncertainty (

1.5K ) when the flow resistance increases. In that case, it is not possible to determine exactly the 

coolant subcooling corresponding to this flow resistance rise. A conservative representation of the 
experimental results is necessary and given in Figure 7-19. There, the maximal subcooling is 
displayed in yellow and the flow resistance in blue. The maximal subcooling is about 2K when the flow 
resistance starts to increase. 
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Figure 7-19: Temporal evolution of the maximal subcooling at POR inlet (yellow) and the resulting POR 
flow resistance (blue). 

7.4 Performance factor 

A fluidic diode is usually characterized by its performance factor. This performance factor 
R  is 

defined as the ratio between the resistance coefficient 
1K  in the direction where the high flow 

resistance is achieved and the resistance coefficient 
2K  in the opposite flow direction [6]: 

 1

2
R

K
K

  .                                                          (7.1) 

These resistance coefficients are defined in both directions as the ratio between the pressure 
difference existing between the inlet and the outlet of the diode and the dynamic pressure at the inlet 
of the fluidic diode [6]: 

 
2

22

inlet outletp p
K

M

A


 .                                                       (7.2) 

In eq. (7.2), inletp  and outletp  are the pressure at the inlet and outlet of the diode, respectively; A  is the 

cross section of diode’s inlet,   is the density of the fluid at diode’s inlet and M  is the mass flow rate. 

 
In the forward direction, the resistance coefficient defined as (7.2) is proportional to the single-phase 
pressure loss coefficient defined in section 7.3.2.1.2. The scaling factor between both coefficients is 
the square of the ratio between the POR inlet cross section and POR smallest cross section. Thus, 

within the POR operation range, the POR resistance coefficient in the forward direction is low ( 2K

=10.7) and approximately constant (section 7.3.2.1.2). 
 
In contrast, the POR resistance coefficient in the opposite flow direction defined as (7.2) does not 
scale with the pressure loss coefficient defined in section 7.2.2.4. Nevertheless, it can be determined 
with available experimental results. For this purpose, the pressure at the outlet of the POR channel in 
the backward direction is assumed to be the atmospheric pressure. Coolant subcooling at the inlet of 

the POR significantly affects this resistance coefficient 1K  (Figure 7-20). 1K  is high at low subcooling 

and decreases with increasing subcooling. 

 
Figure 7-20: Resistance coefficient in the backward direction of one POR channel as a function of 
coolant’s subcooling.  
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The performance factor 
R  of the POR is represented in Figure 7-21 as a function of the coolant 

subcooling. In this context, the coolant subcooling is at the inlet of the POR channel in the backward 

direction. 
R  attains remarkable values at low subcooling (70 at subcooling 4K); and decreases with 

increasing subcooling (about 15 at subcooling 21K). 

 
Figure 7-21: Performance factor of one POR channel as a function of coolant’s subcooling (subcooling in 
the backward direction). 

7.5 Conclusion 

Experiments with single channels are performed in both directions under realistic boundary conditions 
to validate the principle of the new design and to adapt the numerical tools to the geometry and flow 
conditions. 
 
Experimental results in the backward direction indicate that the double-nozzle design does reduce the 
loss of coolant in comparison to a single-nozzle design. Assuming a homogeneous distribution of the 
flow inside the 37 identical POR channels enables to extrapolate the experimental data to the POR 
design. This assumption is conservative since the flow resistance is expected to be minimal in that 
case. This extrapolation to a bundle of 37 POR channels confirms that the new POR design fulfills the 
LOCA requirement. To account for the POR in the backward direction in safety analysis codes, 
comparison with experiments suggests that the POR outflow can be represented by the HEM 
correlation with a pressure loss coefficient 0.1  .  

 
Experiments in the other flow direction show that the flow resistance in the POR is sufficiently small to 
ensure adequate heat removal by the EC system. Experimental data available at low Reynolds 
numbers and low system pressure suggests that it could be possible to further reduce the pressure 
loss and the size of the component by increasing the opening angle of the diffusers. This improvement 
should not significantly modify the POR flow behavior in the other flow direction. CFD calculations 
calibrated with available experimental results will be carried out in the forward direction to assess the 
flow behavior of a bundle of 37 identical parallel POR channels. 
 
Finally, comparison of experimental data in both flow directions shows that the ratio between the 
resistance coefficient in the backward direction and the resistance coefficient in the opposite direction 
amounts up to 70. 
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8 Stochastic-field cavitation model 

This chapter is devoted to the description, the validation and the analysis of the cavitation model 
developed during this thesis. The introduction (section 8.1) summarizes some important issues about 
cavitation, cavitation modeling and more generally numerical modeling. Section 8.1 also presents the 
major novelty of the model: the adaptation of the stochastic-field method (SFM) to cavitating flows. 
With this technique, the spectrum of the size of the vaporous cavities is obtained in a fully Euler 
framework and physical processes which were, until now, only compatible with complex and costly 
Lagrange Monte-Carlo techniques are included in the Euler calculations. Most of these issues are 
already discussed in the preceding chapters but are repeated here to clearly portray the background 
and the objectives of this novel cavitation model. Section 8.4 briefly introduces the numerical setup 
and the numerical code used to implement this cavitation model. Section 8.5 recapitulates model’s 
governing equations. Some of these equations are derived in the framework of this Ph. D. to increase 
the accuracy of available models. A particular attention is devoted to define the interfacial mass 
transfer (section 8.5.6). Section 8.6 concentrates on two validation cases found in the literature and 
discusses some properties of the stochastic-field method. 

8.1 Introduction 

8.1.1 Background 

Experimental tests were performed under realistic plant conditions (up to 75bar and 290 C ) at the 

AREVA Technical Center in Karlstein to validate the principle of an innovative fluidic diode for critical 
two-phase flows, called the passive outflow reducer (POR). They indicate that very high backward-
to-forward flow resistance ratios are achieved with the POR. Furthermore, the POR fulfills the 
requirements of the KERENA reactor in both backward and forward directions (chapter performance 
tests). 
 
Since experiments are very costly under such pressures and temperatures, the test matrix was 
simplified to the analysis of the most crucial parameters. In the backward direction, these parameters 
are the size of the minimal cross sections and the number of minimal cross sections (one or two). In 
the other flow direction, the critical parameter is the opening angle of the diffusers. All other 
parameters, e.g. the length of the pipe between the two smallest cross sections, were hold fixed 
during the experiments. 
 
The high pressure and temperature gradients complicate the measurement. First, the channels are 
made of thick walls of steel to resist to these pressure gradients. No optical measurement is 
possible. Thus, non-intrusive techniques such as particle image velocimetry (PIV) could not be used 
to obtain velocity profiles in the POR geometry. Similarly, non-intrusive methods such as gamma-
densitometry could not be used to obtain void profiles and flow patterns. The thickness of the wall 
would have significantly deteriorated the accuracy of the measurements. Second, pressure and 
temperature sensors must be able to measure under a large range of conditions. A good trade-off 
between robustness and cost of the measurement sensors are obtained at the expense of the 
accuracy. Although this accuracy is sufficient to analyze the POR flow behavior under its operating 
conditions, it was not adequate to exactly estimate when cavitation occurs in the POR in the forward 
direction (see chapter performance tests). 
 
In this context, it is of great benefit to have a numerical code. More insight into the POR flow 
behavior can be gained and the effect of other geometrical or physical parameters, such as the 
length of the POR channels, can be analyzed at a low cost. However, the requirements on a 
numerical code able to simulate the flow in both POR directions are severe. The simulation of 
cavitating and flashing flows is a challenging problem both in terms of modeling the physics and 
developing robust numerical methodologies. Such flows are inherently stochastic [11]. They primarily 
are governed by turbulence and the probability density functions (pdf) of cavitation nuclei number 
density n  and cavitation nuclei size R  have a large variance. Cavitating flows also are characterized 

by considerable variations of the local density and involve thermodynamic phase transition. 
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8.1.2 Euler vs. Euler-Lagrange method 

Two numerical techniques prevail in CFD codes for the treatment of cavitating and turbulent flows. 
One of them is the so-called Euler method; the other one is the Euler-Lagrange method. Principle, 
advantages and drawbacks of these methods are already discussed in the chapter numerical 
modeling and stochastic but are briefly repeated here for clarity. 

8.1.2.1 Euler method 

The Euler method describes the flow variables in terms of time and space dependent fields. The 
governing equations are expressed in this framework and must be averaged because the resolution of 
the small length and time scales of the flow variables is beyond current computing capability. The 

averaging leads to an open term for any non-linear process S  function of the flow variable  : 

    0S S    ;      (8.1) 

where .  represents the averaging operator. To obtain a solution of the averaged equation, the 

closure of these open terms is needed. This closure exploits mean (RANS) or filtered (LES) quantities 
to reproduce the effect of the unresolved scales. 
 
In fluid dynamics, three types of open terms generally arise from the averaging: 

- The Reynolds stresses in the momentum equations; 
- The turbulent flux of the scalar property in scalar property transport equations; and 
- The source term in scalar property transport equations. 

 
For cavitation, the source term in the vapor mass fraction conservation equation is the interfacial mass 
transfer.  
 
Models for the averaged non-linear terms in the momentum equations are available (Reynolds 
stresses). In the RANS approach, supplementary equations generally are introduced to calculate the 
eddy viscosity. In LES calculations, simple algebraic expressions are sufficient to obtain the sub-grid 
viscosity since modeled scales have short length and time scales and have less influence on the sub-
grid-flux. 
 
Usually, the transport of the scalar property by the turbulent fluctuations is modeled by a gradient-
hypothesis. The turbulent flux is proportional to the gradient of the mean scalar property. Thereby, the 
constant of proportionality is the turbulent mass diffusivity which is proportional to the turbulent 
viscosity. 
 
In contrast, models for the averaged non-linear source term in scalar property transport equations are, 
in general, not available. Many years of intensive turbulence research emphasize the challenge of 
closing these highly non-linear terms. In cavitation, an algebraic model based on mean/filtered 
quantities (usually vapor and liquid mass fractions, density and pressure) often fails to universally 
describe the effect of the fluctuations on the inter-phase mass transfer. This explains why the source 
terms of the vapor mass fraction equation found in the literature (e.g., [202], [203], [204]) may differ by 
several orders of magnitude; each model being calibrated to reproduce experimental results and thus 
adapted for specific conditions and geometry. 
 
In addition, the Euler method is not suited to incorporate stochastic processes (such as coalescence, 
breakup or nucleus size spectrum in cavitating flows).  
 
By contrast, Euler solvers are very efficient and robust (in comparison to Euler-Lagrange methods). 
They are much less demanding on computation power and system resources; and can address more 
easily compressibility and large density ratios. 

8.1.2.2 The Euler-Lagrange method 

The Euler-Lagrange method consists in the coupling of an Euler solver with a Lagrange solver. The 
Lagrange solver tracks bubbles (in cavitating flow modeling) or notional particles (in turbulent flow 
modeling). In combination, Monte-Carlo techniques are used to sample the bubbles/particles and the 
occurrence of the events impacting their life (e.g. breakup, coalescence in cavitating flows) from 
prescribed probability density functions. 
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The Euler solver solves the Navier-Stokes equations of the continuous phase and evaluates 
additional flow variables, e.g., turbulence or velocities. By ensemble-averaging the Lagrange 
quantities of the N bubbles/particles present in each Euler computational cell, statistical information 
of the Lagrange solver is exploited.  
 
Thus, the simulation with Monte-Carlo codes based on Lagrange techniques is attractive. Stochastic 
nature and particle size dependence of the physical processes occurring in cavitating flows can be 
easily captured. More generally, the Lagrange approach proves to be very successful to close highly-
non linear source terms. For an infinite number of realizations (bubbles/particles), the ensemble 
averaged of any function of the flow variables, including any non-linearity, becomes exactly the mean 
value of the function so that no modeling is required. 
 
By contrast, the Euler-Lagrange formulation is balanced by the typical Euler-Lagrange solver coupling 
difficulties.  An Euler-Lagrange simulation of coupled multiphase flow with strong interaction between 
the continuous fluid phase and the disperse particle phase is restricted due to its extreme 
computational resources demand. On the one hand, the number of bubbles/samples must be large to 
represent the properties of the whole population [177], and to assure the convergence of the Euler 
solver [178]. On the other hand, very poor performance for parallel computation can often be 
encountered in Lagrange solvers due to imbalanced particle concentration [175], [176]. Moreover, 
Euler-Lagrange solver coupling requires complex algorithms and introduces interpolation errors which 
may reduce the order of accuracy of the scheme to the first order. 

8.1.2.3 Conclusion 

Figure 8-1 represents schematically the performance of Euler and Euler-Lagrange codes for 
cavitating/turbulent flows according to their stability, efficiency and accuracy. “Notes” are given to both 
solver types. Thereby, 10 corresponds to a code perfectly robust/efficient/accurate while 0 represents 
a very bad code. The codes behave quite differently: Euler codes are stable and efficient while Euler-
Lagrange codes can describe accurately the physical processes. In contrast, Euler-Lagrange are less 
stable and very resource demanding while Euler codes may be deficient in accuracy. 

 
Figure 8-1: Illustration of the performance of Euler (blue, left) and Euler-Lagrange (green, right) codes 
according to their stability, efficiency and accuracy in the simulation of cavitating/turbulent flows. 10 
corresponds to a code perfectly robust/efficient/accurate while 0 represents a very bad code.  

8.2 Objective of the model 

The cavitation model should provide accurate results in both POR flow directions. For this purpose, 
the code must be able to cope with highly compressible flows, large void fractions and reproduce the 
stochastic nature of cavitating flows. None of the cavitation models available in the Euler or the Euler-
Lagrange formulation fulfills all criteria. 
 
The flow conditions represent severe constraints on the numerical code, in particular in the backward 
direction. Under these conditions, an Euler method is more adequate. Therefore, in this thesis, the 
emphasis is placed on the improvement of the accuracy of Euler codes in the simulation of cavitating 
flows. A novel cavitation model is proposed to combine the advantages of the Lagrange technique 
with those of the Euler technique into a fully Euler framework. With this model, it is possible to simulate 
cavitation under very differing flow conditions at affordable computational resources. 
 
Figure 8-2 illustrates this objective. The stability and efficiency of the Euler formulation in the 
simulation of cavitating flows is preserved while its accuracy is improved. 
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Figure 8-2: Illustration of the performance of the novel cavitation (red, right), Euler (blue, left and right) 
and Euler-Lagrange (green, left) codes according to their stability, efficiency and accuracy in the 
simulation of cavitating flows. 10 corresponds to a code perfectly robust/efficient/accurate while 0 
represents a very bad code. 

 
To simulate the flashing of the coolant in the backward direction, a caloric equation of state (eos) is 
derived and fluid properties are implemented as a function of the temperature over wide application 
ranges. A particular effort is undertaken to ensure that the code remains efficient and stable in spite 
of these modifications. Code efficiency is particularly important since the flow conditions (high speed, 
low compressibility) already impose very small time steps, and thus long calculation times. 
 
Numerical schemes and other physical models (e.g. turbulence) are “state-of-the-art”. The 
discretization in time is performed with the fourth stage Runge-Kutta explicit scheme. This scheme is 
fourth order accurate. The central difference scheme with artificial dissipation SWITCH [123] is used 
for the spatial discretization. This numerical scheme is second order accurate everywhere except at 
large density jumps (A modification of the sensor (eq. 1.38 in chapter numerical modeling) was 
needed to ensure code stability). 

8.3 Derivation of the model 

8.3.1 Stochastic-field method 

The cavitation model is based on the stochastic-field method (SFM) introduced by Valiño [10]. This 
technique recently has gained much interest (e.g., [205], [16], [17], [18], [19]) since it enables to solve 
the modeled composition pdf transport equation in a fully Euler framework. The modeled transport 

equation of the composition joint-pdf f

 is given by: 

   
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.   (8.2) 

In eq. (8.2), f

 is the composition joint-pdf of the (stochastic) scalar properties    , 1..N  , 

with N  the number of scalar properties;  iuu  is the mean velocity, D
  is the combined molecular 

and turbulent scalar diffusivity coefficient;  S ψ  is the source term with  ψ  being the sample 

space at every position x  and time t ; and   is the mean value of the stochastic process  . 

 
Term 1 represents the convection of the pdf. It can be calculated with known flow variables and does 
not require modeling. Term 2 is the source term of the transport equation. Any function of the 
instantaneous flow variable ψ , including any non-linearity, can be calculated without modeling. This is 

one of the great advantages of the method. Term 3 represents the effect of the turbulent fluctuating 
velocity and of the molecular transport on the dispersion of the scalar in the physical space. It is 
modeled with the gradient hypothesis. Term 4 represents the effect of the molecular transport on the 
scalar properties in the composition space modeled with the interaction by exchange with the mean 
(IEM) (chapter stochastic). 
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The basic idea of the SFM is to represent the pdf by N  stochastic fields (SF)  k k

  , 1..k N  (see 

Figure 8-3); continuous and differentiable in space and continuous in time [10]: 

     
1

1
; , , ,

N

k k

k

f t t t
N

   


         ψ x ψ x ψ x .    (8.3) 

 

Figure 8-3: Representation of the cumulative density function (CDF) of a Gaussian scalar   with three 

stochastic fields 
1 , 

2  and . These stochastic fields are equiprobable. The exact CDF is the blue solid 

line; the approximated CDF is of staircase form with three steps (in red). 

 
With standard stochastic calculus techniques, Valiño [10] derived the governing equations of these 

fields from the pdf transport equation (8.2). The governing equation of the scalar , , 

, is given by: 

.   (8.4) 

In eq. (8.4)  is the mean velocity,  is the combined molecular and turbulent diffusivity,  

is a Wiener process, independent for each spatial component  but constant in space; and  is 

the mean value of the scalars  over the  stochastic fields. 

 
The system of stochastic partial differential equations (8.4) is an Ito formulation of the Fokker-Planck 
equation (8.2). This system provides equivalent statistical information as the pdf transport equation 
(8.2).   
 
Quoting Valiño [10], “those  stochastic fields are not any particular realization of the real field, but 

constitute a stochastic system allegedly equivalent” to (8.2). “They represent possible particular scalar 
values for each value of  and ”.  

 
As in the stochastic Lagrange pdf techniques (chapter stochastic), non-linear processes, in particular 
the source terms, are closed. The estimation of mean-values becomes very accurate for a sufficient 
number of realizations. Due to the pure Euler formulation, the computational cost and the complexity 
of this method is substantially reduced in comparison to the stochastic Lagrange methods. 

8.3.2 Cavitation and stochastic fields 

8.3.2.1 Stochastic-field equations 

In the simulation of cavitating flows within an Euler approach, water and vapor are usually assumed to 
be in mechanical and thermal equilibrium. The bubbles are finely dispersed in the liquid phase. Water 
and vapor share the same velocity, pressure and temperature. They are treated as a continuum. 
Various approaches exist to define the thermodynamic behavior of the mixture (e.g. [202], [206], [207], 
[208], [209], [210], [211] or [212]). For the analysis of the POR, in particular in the backward direction, 
the consideration of the thermodynamic non-equilibrium is essential. To account for the finite time of 

cavities’ growth, the transport equation of the vapor mass fraction  is generally solved: 

;     (8.5) 

where  is the mass flux vector of  and  is the interfacial mass transfer.  
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Within the SFM, eq. (8.5) is replaced by a system of  stochastic-field equations (Eq. (8.4) with 

)  to obtain the vapor mass fraction pdf. The equation of the field , , reads: 

.  (8.6) 

The velocity  is obtained from the Navier-Stokes equations.  and  are obtained from the 

turbulence model. According to (8.3), the vapor mass fraction pdf can be obtained from the fields  
such as: 

.      (8.7) 

Then, the vapor mass fraction  is simply: 

.   (8.8) 

Any function of the flow variable , typically the source term , can be expressed with the fields 

 in exact form: 

.  (8.9) 

8.3.2.2 Benefits  

The stochastic-field cavitation model proposed in the framework of this thesis uses the SFM technique 
in two different ways to improve the accuracy of the Euler code: 
 

 First, the highly non-linear source term  present in the vapor mass fraction equation appears in 

closed form. This corresponds to the common application of the SFM which has shown very 
successful in other applications (e.g. in reacting flows).  

 
 Second, the bubble size pdf is obtained by geometrical consideration from the vapor mass fraction 

pdf. For this purpose, the vapor is assumed to be finely dispersed in the continuous water phase in 
form of a finite number of spherical cavities. This assumption is commonly made in cavitating flows.  

 
As far as the author knows, the proposed cavitation model is the first application of the SFM for the 
description of the bubble size spectrum. This application gives birth to a particularly powerful modeling 
tool in multi-phase flows in a fully Euler framework; as it will be explained in the following for cavitation. 

8.3.2.3 Conceptual framework 

In the present model, the stochastic fields represent possible particular values of the vapor mass 
fraction for each value of  and . In cavitating flows, the vapor phase consists of finely dispersed 

cavities. Thus, the vapor mass fraction can be interpreted as being the vapor mass fraction of one 
particular bubble: 

 Considering a fluid containing  cavities per unit volume, it is always possible to divide each unit 

volume into  volumes containing exactly one bubble (see Figure 8-4). 

 Then, each stochastic field represents the vapor mass fraction of one of these volumes, i.e. of 
one of the bubbles present in the unit volume. 

 
By definition (8.3), the stochastic fields are equiprobable. Each particular bubble is considered to 

represent  of the bubbles present in the unit volume. Within this framework, the radius  of each 

of these “representative” bubbles can easily be derived from the mass fraction  and the number  

of cavities per unit volume: 

.      (8.10) 
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The spectrum of the size of all possible particular bubbles for each value of  and  is obtained for a 

sufficient number of realizations.  
 

 
Figure 8-4: A unit volume of the vapor-water mixture containing  cavities can be subdivided into  

elementary units. Each of these units contains exactly one vaporous cavity. 

 
The cavity size spectrum can be used at any iteration and position to calculate accurately the physical 
processes occurring in cavitation flows. Typically, the proposed cavitation model uses the bubble size 
spectrum to estimate the mass transfer. Other non-linear phenomena such as forces can also be 
estimated with the radius pdf. 
 
This spectrum can be also applied to model the transfers occurring between the different bubbles. For 
example, the implementation of the stochastic break-up and coalescence would simply require 
estimation of break-up and coalescence frequencies. All existing physical models available for 
Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic-field 
formulation. 
 
In contrast to other Euler methods developed to obtain bubble size spectrum, the binning is dynamic 
and adapts to the flow conditions. 

8.3.3 Mass transfer 

Within the SFM, the difficulty of modeling the averaged mass transfer with averaged flow variables 
disappears.  Nevertheless, the instantaneous and local mechanism of interfacial mass transfer must 
still be provided. 
 
In cavitating flows, the Rayleigh-Plesset equation in its original version or in a modified form (chapter 
cavitation), consensually is used to represent the dynamic of the vaporous cavities. 
 
In an Euler framework, a very simplified form of the Rayleigh-Plesset equation, called the Rayleigh 
equation [213], usually is applied. Since this simplified form neglects surface tension and mass of 
dissolved gas, water quality effect can not be accounted for. In the same manner, thermal effects 
commonly are disregarded.  
 
On the contrary, the present cavitation model is based on a modified form of the Rayleigh-Plesset 
equation which takes into consideration these determinant phenomena. 

8.3.4 Summary of the model 

The pure Euler stochastic fields describing the vapor mass fraction pdf are used to close the highly 
non-linear mass exchange between water and vapor and improve the formulation of cavitation mass 
transfer mechanism. 
 
The source term is derived from the Rayleigh-Plesset equation. The vapor phase is represented by a 
finite number of vaporous cavities. The size pdf of these cavities can directly be derived from the 
vapor mass fraction pdf. The dependence of the physical processes upon the cavity size can be 
addressed. For instance, nuclei are activated only when the pressure decreases below their threshold 
pressure. Thus, small and large nuclei are activated separately. 
 
This method combines the advantages of Euler and Lagrange formulations to obtain accurate results 
with a stable and efficient numerical code. 
 

x t
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This new concept in two-phase flows is implemented into the state-of-the-art compressible code 
SPARC [20]. This density-based code can handle large density ratios and Mach numbers as 
encountered in cavitating flows. Reynolds-averaged Navier-Stokes (RANS) and Large Eddy 
Simulations (LES) are performed for the prediction of turbulence. 
 
This chapter is organized as follows. In section 8.4 and 8.5, the solver SPARC and the governing 
equations implemented in the code are presented. In section 8.6 numerical results are compared to 
experimental results and some properties of the stochastic fields are discussed. 

8.4 Solver SPARC 

It was already emphasized that the flow conditions are particularly challenging for the numerical code 
in the backward direction. The coolant expands from the high pressure vessel into the containment 
through the POR. Subcooled at the inlet of the POR; the coolant starts to vaporize inside the POR 
and chokes at the second smallest cross section. The flow is characterized by large density, 
pressure and temperature gradients; and by a strong imbalance between regions with large void 
fraction and other with almost no void fraction. 
 
Under these conditions, an Euler method appears to be adequate. However, even for an Euler 
solver, these conditions are demanding. Codes are generally adapted to specific conditions. 
Typically they are specialized for single-phase high-speed compressible flows or for two-phase low-
velocity flows; and they cannot provide any (physical) solution outside of their domain of 
specification.  
 
For the analysis of the POR, a code capable of handling two-phase high speed compressible flows is 
required. Starting from a solver specialized in single-phase high-speed compressible flows; the first 
and necessary step consists in implementing thermal and caloric eos valid for the two-phase mixture. 
This step requires important modifications of the numerical code. The access to the code of 
commercial software is limited. Therefore, the density-based code SPARC [20] is adopted for the 
calculations. 

8.5 Governing equations 

Water and vapor are assumed to be in mechanical and thermal equilibrium. They are described as a 
continuum by mixture’s three dimensional Navier-Stokes equations. This approach is acceptable in 
cavitating flows where the vapor phase is finely dispersed in the continuous water phase (at least at 
an early stage). The objective is, among others, to simulate flashing conditions. The vapor mass 
fraction pdf transport equation is included in the set of transport equations to account for the flashing 
delay.   

8.5.1 Equations of state 

In two-phase flow simulations with density-based codes, the eos basically are required to calculate the 

pressure , the temperature  (eventually the specific enthalpy ) and the vapor mass fraction  

from the conserved variables. These primitives flow variables are required in the transport equations 
and for the calculation of the constitutive properties and speed of sound.  
 
Since the calculation of primitive variables is performed at any iteration in any cells, simple analytical 
eos are advantageous. Large simulation speed up and improved code stability are expected in 
comparison to techniques which access tabulated eos and liquid-vapor thermodynamic tables. 
 

However, simple analytical eos covering the wide range of pressures (from almost  to ) and 

temperatures (from  to about ) involved are not always available in the literature. 

Furthermore caloric eos is erroneous in most cavitation models. The error associated to these caloric 
eos does not have much influence on the results at low pressures but yields unphysical results at 
larger pressures. 
 
Thus, one part of the development of the cavitation model is to collect in the literature or derive simple 
analytical eos covering the range of flow conditions occurring in both POR directions. Flow properties 
whose variation significantly impacts the numerical results are also implemented as a function of the 
temperature. 

p T h Y
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8.5.1.1 Vapor 

8.5.1.1.1 Thermal equation of state 

Similarly to other cavitation models, vapor is modeled as an ideal gas. Its thermal eos is given by: 

;       (8.11) 

with . 

8.5.1.1.2 Caloric equation of state 

Vapor may have the same specific internal energy  at two different temperatures  and 

. This characteristic is prejudicial for the stability of the code. Standard methods, typically Newton 

methods, are unable to distinguish the physical  from the unphysical  solution. The 

determination of the temperature from the specific internal energy with the numerical method may be 

wrong. The numerical solution may be  instead of . In that case, the other flow variables 

calculated with the temperature  also become unphysical. The code becomes unstable and no 

solution is obtained. In order to avoid this difficulty, the specific internal energy of the vapor is 
approximated by a simple bijective function. The temperature of vapor is uniquely defined for a given 

specific internal energy . 

 
The caloric equation of state is expressed in the form: 

.      (8.12) 

In eq. (8.12),  is a simple bijective function of : 

;     (8.13) 

where  is the critical temperature.  and  are two constants chosen such that (8.12) provides 

a good approximation of  in the domain of interest. Although better approximations exist, this 

solution has the advantage to allow fast and stable simulations. 
 

The vapor heat capacity  is assumed to be constant. 

8.5.1.2 Water 

8.5.1.2.1 Thermal equation of state 

The eos of water is described by the model of Tamman [32]: 

.               (8.14) 

In the present work, model constants  and  are set to their standard values derived by Tamman 

[32]: 

; 

. 

The model constant  is modified to fit water properties (obtained from IAPWS [27]) over large 

pressure and temperature ranges (until at least 75 bar): 

 

8.5.1.2.2 Caloric equation of state 

The derivation of the caloric eos of the water phase is based on the same principle as discussed in 

section 8.5.1.1.2 for the caloric eos of the gas phase. A simple bijective function  of : 

      (8.15) 
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is introduced to approximate liquid specific internal energy : 

.      (8.16) 

 
Although better approximations exist, this solution has the advantage to allow fast and stable 
simulations. 
 

Similarly to , vapor heat capacity  is assumed to be constant. 

8.5.1.3 Mixture 

8.5.1.3.1 Thermal equation of state 

The mixture density is expressed as a linear combination of the density,  and , of  water and 

vapor respectively, with the void fraction : 

.            (8.17) 

Following the work of [214], the eos (8.18) of a locally homogeneous gas-liquid medium is written with 
(8.11), (2.36) and (8.17) as: 

.     (8.18) 

 
The speed of sound in the mixture is derived from this equation [214]. It is displayed at three 
pressures 1bar, 50bar and 75bar in Figure 8-5. The speed of sound obtained with Brennen’s model 
[12] is also represented in Figure 8-5 with dashed lines. This model is compared to experimental 
results in [63] and show remarkable agreement. 

 
Figure 8-5: Mixture sound speed at three pressures 1bar, 50bar and 75bar. Dashed lines: model of 
Brennen [12]; solid lines: equation of state used in the simulations. 

8.5.1.3.2 Saturation conditions  

Saturation conditions (pressures and temperatures) are calculated with the polynomials of [215]. 

8.5.1.3.3 Caloric equation of state 

The contribution of the surface tension energy to the specific internal energy of the system  is 

negligible in comparison to the contribution of liquid and vapor specific internal energies,  and , 

respectively. Under this assumption, the specific internal energy  of the system consists of the 

specific internal energy  and  of the liquid and gas phase, respectively; in proportion to their 

respective mass fraction: 

.      (8.19) 

This representation enables to reproduce correctly the thermal behavior of the two-phase mixture. For 
example, an isothermal vaporization of the liquid phase in a static two-phase mixture requires heat 
from the surrounding. The internal energy of the mixture increases. A graphical representation of this 
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phenomenon is given on Figure 8-6. The specific internal energy of the mixture is calculated according 
to the caloric eos implemented in the cavitation model. When the fluid vaporizes, the vapor mass 
fraction increases. Here as an example, the vapor mass fraction increases from 0.3 to 0.5. At constant 

temperature , this vapor mass fraction rise induces an increase of the specific internal energy of the 

mixture from  to . 

 
Figure 8-6: Illustration of the effect of an isothermal vaporization on the specific internal energy  of the 

mixture at the temperature . The vapor mass fraction of the mixture increases from  to . 

 

Vapor heat capacity  and water heat capacity  are mass weighted to obtain the heat 

capacity  of the mixture: 

.     (8.20) 

8.5.2 Navier-Stokes equations 

The three dimensional Navier-Stokes equations of the water-vapor mixture are solved to simulate the 
evolution of vapor-water mixture. 
 
Continuity equation: 

.            (8.21) 

Momentum equation: 

.                          (8.22) 

Specific total energy equation: 

.             (8.23) 

In eq. (2.4) to (2.10),  is the mixture velocity,  is the mixture density,  is the mixture 

specific total energy,  is the mixture stress tensor and  is the mixture heat flux density. Gravity 

force is neglected. 
 

Expressions for  and  are given in section 8.5.3. 

8.5.3 Constitutive laws 

The water-vapor mixture is assumed to be a Newtonian fluid. The experimental determination of its 
molecular viscosity is difficult. Its molecular viscosity is largely influenced by the structures of the two-
phase flow, such as cavities radius, cavities density number, cavities shape [216]. Thus, several 
expressions exist to represent the molecular viscosity as a function of the void fraction. In this work, 
the molecular viscosity is expressed according to the formula found in [159]: 

.               (8.24) 

The viscosity of the mixture is given on Figure 8-7 as a function of the void fraction.  
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Figure 8-7: Viscosity  of the mixture as a function of the void fraction .  The viscosity  and  of 

the liquid and gas phase, respectively, are assumed to remain constant for this representation. 

 

The heat flux density  is modeled by Fourier’s law. The mixture thermal conductivity  is given by: 

;          (8.25) 

where  is the mixture Prandtl number defined as: 

;                 (8.26) 

with  and  being vapor and liquid Prandtl numbers, respectively. 

8.5.4 Turbulent velocity fluctuations 

To account for the effect of the turbulent fluctuations, both RANS and LES calculations are performed. 
Within the RANS approach, the one equation Spalart-Allmaras model is used; while the MILES and 
the High Pass Filter (HPF) Smagorinsky [217] approaches are employed in the LES simulations. 
 
LES is a promising tool to capture interaction between turbulence and cavitation. In LES simulations, 
interaction between eddies and vaporous cavities larger than the filter width are accurately captured. 
This is attractive because, in cavitation, only the slowest turbulent pressure scales are capable to 
activate the nuclei. The pressure must remain below nucleus pressure threshold during a sufficient 
time period for the nucleus to have the time to grow. 

8.5.5 Stochastic-field Method 

The stochastic-field method is presented is section 8.3.1.  equations are solved to obtain the vapor 

mass fraction pdf. The transport equation of the field , , reads: 

 .          (8.27) 

The velocity  of components , , is obtained from the Navier-Stokes equations. 

 is the relaxation time which usually is assumed to be proportional to the turbulent time scale :  

;      (8.28) 

where  is a model constant. Information on the turbulent scales  is obtained from the 

Spalart-Allmaras model in RANS calculations and from the HPF Smagorinsky model [217] in LES 

calculations.  is the interfacial mass transfer. The total diffusion coefficient  consists of the 

molecular and turbulent diffusion coefficients of the scalar . For example, the molecular mass 

diffusion coefficient is  and defined with the Schmidt number  as follows: 

.      (8.29) 

The model of  is discussed in the next section. 
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8.5.6 Mass transfer modeling 

Within the SFM, the difficulty of modeling the averaged mass transfer with averaged flow variables 

disappears.  Nevertheless, the instantaneous and local mechanism  of interfacial mass transfer 

must still be provided. 
 
The Rayleigh-Plesset equation (RP) is considered to represent accurately the evolution of a spherical 
vapor bubble. However, to solve exactly this equation, temperature and gas diffusion equations should 
be solved in a coupled manner. Furthermore, in cavitating flows, the dynamic of the bubble is modified 
by the interaction with the surrounding bubbles and surrounding moving liquid. The assumptions of the 
RP may not all be valid. Moreover, an additional solver is required in Euler codes, in particular to 
account for the inertial term of the RP. Finally, the smallest time scale of the bubble dynamic is 
significantly smaller than the smallest time scale of the flow. 
 
Therefore, the model of the mass transfer mechanism remains an approximation of the real process. 
This model should represent an optimal trade-off between efficiency and accuracy. In this thesis, the 
mass transfer mechanism implemented in the code SPARC is based on the following assumptions: 
1) The vapor phase consists of a finite number of finite size cavities; 
2) The radius of the vaporous cavities evolves according to a simplified form of the RP. 

8.5.6.1 Finite number of finite size cavities 

The vapor phase consists of a finite number  of finite size cavities per unit volume of the mixture. 

 

The initial number  of cavities (nuclei) per unit volume depends on water quality. It varies from one 

test facility to the other. If no experimental data is available,  is a model constant. 

8.5.6.1.1 Correlation used in this thesis 

In this thesis, the number  of cavities per unit volume is related to the average void fraction to 

simulate coalescence and breakup: 

.    (8.30) 

A graphical representation of this expression is displayed on Figure 8-8. 

 
Figure 8-8: Number density  of cavities in relation to the average void fraction . 

 
Eq. (8.30) is a very crude representation of the phenomena of break and coalescence. A more 
accurate picture of the physics of these phenomena would be obtained by solving (a) transport 
equation(s) of the number density . 

8.5.6.1.2 Derivation of this correlation 

This expression correctly reproduces the trend of the variation of  with . It is based on a very 

simplified version of the conservation equation of the number density: 

;      (8.31) 

where  and  are breakup and coalescence sources, respectively. Correlations for  and  are 

given in the chapter cavitation. They are repeated here for convenience. 
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 Coalescence is caused by the collision of particles. Several expressions exist for the collision 

frequency  [45]. One of them is expressed with the bubble diameter , the void fraction , the 

maximum packing concentration  and the bubble relative velocity  [89]:  

.                (8.32) 

 

If the collisions are mainly attributed to the turbulent fluctuations,  is defined by [90]: 

;              (8.33) 

where  is the turbulence dissipation rate in the liquid phase and  is the added mass 

coefficient for which algebraic expressions are derived in [13]. 
 

Not all collisions lead to coalescence. The probability  that a collision results in coalescence is 

related to the film drainage time  (time needed for the film of water situated between the bubbles 

to be drained) and the bubbles interaction time .These characteristic times are defined as [90]: 

;         (8.34) 

.         (8.35) 

  The probability  that a collision results in coalescence is such that: 

.              (8.36) 

   In eq. (3.34)  is a model constant which usually has a value of 0.5 [45] and  is the surface 

tension.  
 
 The breakup of the bubbles occurs when deformation forces (e.g. velocity fluctuations) exceed 

confinement forces (typically surface tension ). In [91], Martinez-Bazan et al. indicate that bubbles 

with a diameter smaller than 

              (8.37) 

 do not breakup. 
 
For very small void fractions, the cavities are too small to be disturbed by the velocity fluctuations. 
They do not breakup (eq. (3.37)). Eq. (8.32) suggests that the frequency of collision is very weak. 
They do not coalesce. Thus, the number of cavities does not vary in time. When the void fraction 

tends to , the coalescence frequency is infinite.  represents the maximum void fraction with 

rigid spheres. However, the probability that the collision leads to coalescence reduces (eq. (8.36)). 
Moreover it can not be ruled out that cavities deform. Therefore, the number of cavities strongly 

decreased near  but not necessary equals one. For large void fractions, the probability is large to 

have only one cavity per unit volume of mixture. 

8.5.6.2 Mass transfer and SFM 

Each stochastic field  is considered to represent one particular bubble at each iteration and 

computational cell. Considering a fluid containing  bubbles per unit volume; the radius  of this 

representative bubble can be easily derived from the mass fraction : 

.          (8.38) 
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8.5.6.3 Simplified form of the Rayleigh-Plesset equation 

8.5.6.3.1 Preliminary discussion 

The original RP is derived for a single spherical bubble. The radius of the spherical bubble evolves 

according to the pressure gradient existing between bubble’s internal pressure, i.e.  ignoring 

dissolved gas and surface tension; and the pressure  in the liquid infinitely far from the bubble: 

.      (8.39) 

In Euler cavitation models, the pressure at infinity  of single-bubble theory (eq. (8.39)) is replaced 

by the average pressure  of the mixture in the cell:  

.      (8.40) 

Since this assumption may appear rather crude, this paragraph proposes a starting analysis to which 
extent this assumption is valid (Figure 8-9). 
 

The first step in this analysis is to distinguish the liquid pressure  in the cell from the liquid 

pressure  at infinity and to investigate the difference between them. For example, Fuster and 

Colonius [218] show that, for a small number of bubbles whose size is comparable to the cell size,  

differs from . The surrounding bubbles induce disturbances. Supplementary equations and 

supplementary terms in the RP are required to account for these disturbances. Nevertheless, Fuster 
and Colonius [218] indicate that when the number of small bubbles (small compared to the mesh size) 

is large, the contribution of the other bubbles is negligible and .  

 

 
Figure 8-9: Illustration of the preliminary discussion about the validity of the Rayleigh-Plesset equation in 
the present formulation. 

 
Neglecting these disturbances under all conditions, the discussion consists in comparing 

;       (8.41) 

 with 

.        (8.42) 

 
One approach to compare these two expressions (8.41) and (8.42) is to consider the correlation of 
Ishii [150] for the pressure of a two-phase mixture. This formula states that the pressure  of the 

mixture is the volume weighted pressure of both phases: 

.     (8.43) 

Expression (8.41) can be formulated with the mixture pressure  defined in (8.43) as: 

.  (8.44) 

 

From (8.44), it is observed that the error between (8.41) and (8.42) is of order . Prosperetti gives 

the same result in [219]. For small void fraction , both expressions are equivalent. In contrast, for 

larger void fraction, eq. (8.44) indicates that the implementation of the RP with the mixture pressure 

 may be inaccurate. 
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Finally it should be stressed here that the RP accounts for the thermodynamic non-equilibrium of the 
phases. Although the phases share the same pressure and the same temperature; they may have 
different chemical potentials. In that case, the mass transfer occurs between the phases as to equalize 
the potentials. Typically, the chemical potential of water becomes higher than that of vapor when the 
pressure of the mixture decrease below saturation conditions (see Figure 8-10) Thus, phase change 
starts in direction of the more stable gas phase. In the RP, this phenomenon is represented by a 
positive pressure difference: 

.      (8.45) 

Vaporization ends when the chemical potentials of both phases are equal. The phases are in 
thermodynamic equilibrium at saturation conditions (pressure and temperature). Similarly in the RP, 
vaporization stops when 

.      (8.46) 

In that case, the pressure, and thus the temperature, reaches saturation conditions.  

 
Figure 8-10: Chemical potentials of water and vapor as a function of temperature (left) and pressure 
(right). 

8.5.6.3.2 Assumptions 

A simplified form of the RP is developed. The mass transfer  is decomposed into a condensation 

part  and a vaporization part .  is defined on the interval ; while  

on the interval . 

 
Assumptions for the derivation of the model are: 

1) On bubble motion: 
a. No gravity effect 
b. Spherical symmetry 
c. Inertial effects are approximated 

2) On liquid behavior: 
a. Single component fluid 
b. Newtonian fluid 

c. Viscosity  is neglected 

3) On vapor behavior: 

a. Viscosity  is neglected 

b. Density  

c. Presence of contaminant gas mass  

d. Mass diffusion of contaminant gas neglected 
e. The vapor pressure is the saturation pressure of the mixture (temperature-dependent) 

4) On interface behavior: 
a. (Constant) surface tension is not neglected 

5) On bubbles interaction 
a. No interaction 

 
These assumptions are common for cavitation models based on the RP and implemented in Euler 
solvers except assumptions 3)c, 3)e and 4)a. 
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8.5.6.3.3 Water quality effect 

8.5.6.3.3.1 Mass of dissolved gas 

Assumptions 3)c and 4)a are used to estimate the nuclei equilibrium radius  from the steady-state 

formulation of the RP at : 

.   (8.47) 

Similarly to ,  represents water quality effects. Water with larger mass of dissolved gas is 

characterized by a larger equilibrium radius. In this work, the geometry possesses only one inlet and 
water quality is assumed to be constant. The mass of contaminant gas is assumed constant in space 

and time (assumption 3)d). The dependence of  on the temperature is neglected. The temperature 

 in eq. (8.47) is assumed to be the temperature at the inlet of the computation domain. 
 

For complex geometries with several inlets, the transport equation of the mass of dissolved gas  

could be solved to account for the mixing of fluids characterized by different qualities.  would be 

calculated in any cell according to (8.47). 
 
The interfacial mass transfer is expressed to ensure that vaporous cavities do not become smaller 
than the initial nuclei after collapse. 

8.5.6.3.3.2 Initial nucleus size spectrum 

The radius  calculated from the vapor mass fraction according to eq. (8.38) is not directly used for 
the calculation of the interfacial mass transfer. 
 
The number and the size repartition of the nuclei importantly impact the cavitation process. A simple 

routine estimates if the cavity of size  belongs to the ensemble of cavitation nuclei. In that case, the 
cavity size is sampled from a prescribed lognormal distribution. Otherwise, the cavity already is an 

activated nucleus and its radius  is not modified by the routine. 

8.5.6.3.3.3 Nuclei activation 

Assumption 4)a is important to represent the activation of the nuclei. In this cavitation model, the 

pressure must decrease below nucleus pressure threshold  to activate the nucleus. Thus, 

vaporization starts only when the pressure  is below: 

;     (8.48) 

 being the radius of the nucleus. The source term  is zero otherwise; i.e. the nucleus is 

stable.  

8.5.6.3.4 Thermal effects 

To account for thermal effects (see chapter cavitation), the saturation pressure is implemented as a 
function of the varying temperature (Assumption 3)e) (section 8.5.1.3.2). 
 
Hence, the source term in the RP is given by: 

 

correctly reduces when water vaporizes since the saturation pressure decreases. 
 
Furthermore, pressure and temperature reach the correct saturation conditions at equilibrium: 

;        (8.49) 

.        (8.50) 
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8.5.6.3.5 Inertial effect 

Inertial effects are represented in the Rayleigh-Plesset equation by the acceleration term. This term 
cannot be directly solved with an Euler code and requires an additional solver. Furthermore, the time 
scale of the bubble collapse is much smaller than that of the flow. To avoid the complexity of the 
coupling and extremely large computation times, the inertial effects are represented in the present 

formulation by a condensation parameter .  reduces the condensation rate in 

comparison to the vaporization rate. 
 
An illustration of this modeling is given on Figure 8-11. The diagram on the top represents the size of a 
single bubble moving in a fluid from abscissa x=-0.02 to x=0.16. The growth of the bubble is assumed 
to have no influence on the pressure field of the fluid. This pressure field is displayed in Figure 8-11, 
bottom. It varies along the abscissa. The bubble enters at x=-0.01 a domain where the pressure is 
below saturation pressure and starts to grow. At x=0.03 the bubble exits this region and enters a 
region where the pressure field is above the saturation pressure. Due to the inertial effects, the bubble 
does not immediately shrinks. It shrinks abruptly with a certain time delay. Then, the bubble rebounds 
until it reaches its initial value. The exact equation of this complex phenomenon is the Rayleigh-
Plesset equation (in blue on Figure 8-11). A simplification of the Rayleigh-Plesset equation is the 
Rayleigh equation. The Rayleigh equation neglects among others inertial effects. The growth 
calculated with this simple equation (black solid line on Figure 8-11) does not differ significantly from 
the growth calculated with the Rayleigh-Plesset equation. However, the collapse of the bubble is 
noticeably different. To improve the modeling avoiding a complex coupling with an additional solver, 
the condensation term of the Rayleigh equation is scaled in this cavitation model (red curve on Figure 
8-11).   

 
Figure 8-11: Illustration of inertial effects. The diagram on the top represents the radius of a single bubble 
moving in a fluid from abscissa x=-0.02 to x=0.16. The growth of the bubble is assumed to have no 
influence on the pressure field. The pressure field of the fluid is displayed in the figure on the bottom. It 
varies along the abscissa. Three relations are used to estimate the growth of the bubble. Displayed in 
black, the Rayleigh equation neglects inertial effects. In blue, the Rayleigh-Plesset equation is the exact 
solution of the bubble growth. The cavitation model used in this thesis (in red) scales the condensation 
term of the Rayleigh equation to reproduce inertial effects.  

8.5.6.4 Source term 

The derivation of the source term relies on the RP. The source term of the stochastic-field vapor mass 
fraction equations can be related to the growth of the cavities: 

.   (8.51) 

In eq. (8.51), the relation between the mass fraction  and the radius : 

;     (8.52) 
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is used. Furthermore, the effect of the temporal variation of the cavity number and densities are 
neglected. 
 
Similarly, the equilibrium vapor mass fraction representing the mass fraction of the bubbles which 

have the radius  (sect. 8.5.6.3.3.1) is given by: 

.     (8.53) 

The expression for  is: 

.   (8.54) 

The expression for  is: 

 

;     (8.55) 

with 

;      (8.56) 

;   (8.57) 

where  is a model time-constant. 

8.6 Validation cases 

8.6.1 Flow patterns downstream of a sudden expansion 

8.6.1.1 Experimental setup 

The experiments of Attou et al. [67] are used to validate qualitatively the code. In these experiments, 
the phenomenon of double-choking in critical two-phase flows is investigated. A steady-state critical 
vapor-water flow is observed in a horizontal relief line. This relief line is characterized by a sudden 
enlargement of the cross section. The pressure is 6bar and the temperature ranges from subcooled to 
saturated conditions. 
 
The walls of the test section are transparent. In this manner, the flow patterns downstream of the 
enlargement can be observed. The influence of the subcooling on these flow patterns is stressed by 
the experimenters. 

8.6.1.2 Objective 

The test stand of Attou et al. [67] is a very long geometry. A quantitative validation of the cavitation 
model with these experiments would require far too long computation time. To avoid this 
inconvenience, these experimental results are used to validate only qualitatively the code. 
 
For this purpose, the influence of the subcooling on the flow pattern is investigated numerically. The 
qualitative validation consists in comparing the flow patterns obtained in the experiments and in the 
numerical calculations. 

8.6.1.3 Comparison between numerical and experimental results 

8.6.1.3.1 Fluid largely subcooled 

Attou et al. [67] first describe the characteristics of the flow pattern of a largely subcooled fluid. These 
characteristics are: 
 The streamlines of the central flow remain parallel to the pipe axis at the vicinity of the enlargement. 
 The reattachment point is located well beyond the sudden enlargement. 
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 The confined free jet pattern is axisymmetric. 
 The central flow seems conical with a small opening angle. 
 A high density of small bubbles is observed at the jet boundary. 
 
A similar flow pattern is observed in the numerical calculation under the same flow conditions (see 
Figure 8-12). 

 
Figure 8-12: Flow pattern of a largely subcooled fluid downstream of an enlargement with the cavitation 
model. Streamlines are represented by solid lines with arrows. Only one half of the enlargement is 
represented. 

8.6.1.3.2 Fluid near saturation 

In contrast, the flow pattern of a fluid near saturation downstream of an enlargement is characterized 
by [67]: 
 The streamlines of the central flow diverge strongly from the pipe axis close to the enlargement. 
 The separation zone does not exist practically. The reattachment is located at a very small distance 

from the enlargement. 
 
A similar flow pattern is observed in the numerical calculation under the same flow conditions (Figure 
8-13). 

 
Figure 8-13: Flow pattern of a fluid near saturation downstream of an enlargement with the cavitation 
model. Streamlines are represented by solid lines with arrows. Only one half of the enlargement is 
represented. 

8.6.1.3.3 Fluid at saturation  

A two-phase mixture at saturation is also investigated by Attou et al. [67]. In this case, the flow pattern 
has a similar structure as observed in subcritical incompressible flows [67]: 
 The reattachment point is situated downstream of the enlargement. 
 The composition of the separated zone and central flow are similar. 
 
A similar flow pattern is observed in the numerical calculation with a two-phase mixture (Figure 8-14). 
 

 
Figure 8-14: Flow pattern of a two-phase mixture downstream of an enlargement with the cavitation 
model. Streamlines are represented by solid lines with arrows. Only one half of the enlargement is 
represented. 
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8.6.2 Cavitation sheet 

8.6.2.1 Experimental setup 

For the validation of the code, it is advantageous to have measured void and velocity profiles. 
Experiments with detailed data in cavitation flows are rare. One available experimental study of 
cavitation with detailed information on the flow structure can be found in [220]. Thus, the experimental 
results of Barre et al. [220] are exploited to validate the novel cavitation model. In these experiments, 
an attached cavitation sheet develops in the venturi type test section CREMHYG (Institut national 
polytechnic Grenoble). The upper and lower walls of the test section are designed to reproduce 
cavitating flows on the blades of space turbopump inducers. The cross sections are rectangular and 
their sizes at inlet and throat are 50x44 mm² and 43.7x44 mm², respectively. The convergence and 
divergence angles are 4.3° and 4°, respectively. 
 
The visualization of the cavitation sheet is possible through the transparent walls on the side. The test 
section is equipped with pressure and temperature sensors as well as a double optical probe. The 
double optical probe is used to evaluate the void fraction and velocity field inside the cavity at five 
horizontal positions. 
 
A free surface tank imposes the reference pressure in the loop. The flow rate is enforced by a 
circulating pump. For the selected operating point, the pressure in the tank is =0.713bar and the 

volume flow rate is  =23.75 dm³/s. In that case, a cavity develops downstream of the contraction. 

The length  of this cavity is about 80mm. 

8.6.2.2 Previous numerical analysis 

Other numerical analyses of these experiments can be found in [179] and [221]. In both numerical 
investigations vapor and water are considered to form a compressible mixture.  In [179] the barotropic 
state law of Delannoy et al. [222] is used. Mixture’s density and local static pressure are explicitly 

linked. Turbulence is modeled by the Yang-Shih  model [223] with extended wall functions [179]. 

Steady and unsteady calculations are performed. In [221], the transport equation of the vapor mass 
fraction is solved but turbulence is neglected. 

8.6.2.3 Numerical setup 

8.6.2.3.1 Numerical mesh 

The test section is modeled with block-structured meshes. Both two-dimensional and three-
dimensional simulations are performed. The Spalart-Allmaras model is used for the two-dimensional 
analysis. The LES simulation is performed with the MILES approach for the three-dimensional 
analysis. 
 
The meshes are refined 
 at the contraction; 
 downstream of the contraction; and 
 at the walls. 
 
Far upstream and downstream of the contraction, the cells are stretched out to increase the damping 
of the disturbances. In this manner, increased code stability and faster statistical convergence are 
obtained. 
 
In RANS simulations, the mesh globally is refined until the length of the cavitation sheet remains 
similar in the mesh under consideration and in a finer mesh.  
 
In the LES calculation, the x+, y+ and z+ values of the mesh correspond to the usually recommended 
values in LES calculations [37]. The x+, y+ and z+ values are the non-dimensional sizes of the first 
cells at the wall in the flow direction, normal to the wall and transverse to the flow direction, 
respectively.  
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8.6.2.3.2 Boundary conditions 

Figure 8-15 represents the computational domain and the boundary conditions. Walls have non-slip 
conditions and are adiabatic. The temperature and the velocity components are imposed at the inlet. 
Thereby, the velocity is steady-state and normal to the boundary surface. Its magnitude is calculated 
according to the experimental volume flow rate. The pressure is prescribed at the outlet. No 
experimental data are available on the value of this pressure. The pressure is varied until a cavitation 
sheet of about 80mm is observed. 
 

 
Figure 8-15: Representation of the computational domain and boundary conditions.  is the 

position of the contraction. 

8.6.2.4 Objective 

The present investigation focuses on: 
 The behavior of the stochastic fields; 
 The validation of the cavitation model; 
 The information obtained with the stochastic-field method. 

8.6.2.5 Preliminary discussion 

8.6.2.5.1 Turbulence model and stochastic fields 

The vapor mass fraction pdf results among others from the turbulent fluctuations. Each stochastic field 
represents one realization of this pdf at every position and time; and the ensemble of the stochastic 
fields is an approximation of the vapor mass fraction pdf on the sub-grid scale. In this context, it is of 
interest to analyze the influence of the turbulence model on the stochastic fields. 
 

The transport equation of a stochastic field  is already given in section 8.3.2.1 but repeated here for 

convenience: 

.  (8.58) 

The influence of the unresolved turbulent fluctuations appears in the two modeled terms: Term 1 
represents the effect of the turbulent fluctuations on the transport of the vapor mass fraction in the 
physical space. Term 2 represents the effect of the molecular transport on the scalar properties in the 
composition space. 

8.6.2.5.1.1 Turbulent transport 

The transport of  by the turbulent fluctuations is modeled according to the gradient hypothesis. The 

combined molecular and turbulent mass diffusivity coefficient  is a measure of the mixing of the 

stochastic field  on the sub-grid scale. This coefficient is larger in RANS simulations than in LES 

simulations since all turbulent fluctuations are modeled in the RANS approach. Therefore, the 
modeled stochastic contribution 

      (8.59) 

 is expected to have more impact in a RANS simulation than in a LES calculation. 
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8.6.2.5.1.2 Molecular mixing in the composition space 

In the present implementation of the model, the turbulent time scale  is expressed with the grid size 

, the average density , the molecular viscosity and the modeled viscosity : 

.      (8.60) 

This modeling is usual in most LES calculations (e.g. [19]). In that case, the modeled viscosity  is 

the sub-grid scale viscosity . 

 

In contrast, in a RANS framework, the time scale  is the inverse of the turbulent specific dissipation 

rate : 

.           (8.61) 

Thus,  can be calculated with the turbulent kinetic energy  and the turbulent energy dissipation 

rate  or directly with the turbulent specific dissipation rate . These turbulent flow variables are 

available in the typical two-equation eddy viscosity models such as  or . However, these 

eddy viscosity models are not available in the present code for two-phase flows. Hence the model 

(8.60) is used instead with the eddy viscosity . In that case, however, the turbulent time scale 

depends on the mesh size; while all other flow variables become independent of the mesh size when 
the mesh is sufficiently fine. 

8.6.2.5.1.3 Molecular mixing and bubbles 

The IEM is used to model the molecular mixing of the vapor mass fraction. An investigation on the 
validity of this model is not included in the scope of this work. However, the mixing of bubbles may 
follow another dynamic than the mixing of chemical species. For example, the mixing of polydisperse 
bubbles does not (necessarily) induce the reduction of the variance of the bubble size pdf in a 
homogeneous turbulent flow. 

8.6.2.6 Influence of the number of stochastic fields 

As a Monte-Carlo technique, the statistical error should reduce with increasing number of fields. More 

precisely, this statistical error should be of order  with  fields. In this work, no quantitative 

estimation of the impact of the number of fields is performed under real flow conditions. However, a 
simple example is presented in this paragraph to illustrate the effect of an increase of the number of 
stochastic fields. 
 
In this simple example, five calculations are performed under the same flow conditions but with a 
number of stochastic fields differing from one calculation to the other: 

 One stochastic field in the first calculation;  
 Four stochastic fields in the second calculation; 
 Eight stochastic fields in the third calculation; 
 Sixteen stochastic fields in the fourth calculation; and 
 Twenty stochastic fields in the fifth calculation.  

 
The computational domain corresponds to the test stand of Barre et al. [220]. The flow conditions used 
in these simulations do not represent the experimental flow conditions. They are selected to illustrate 
the behavior of the stochastic fields as simply as possible. The mesh is coarse and the turbulence 
very low. In this manner, the turbulent time scale calculated according to (8.60) is very large and the 
fields relax to the mean value only after a very long time. 
 
The calculations are performed as follows. The pressure of the fluid is initialized at atmospheric 
conditions and the fluid velocity is zero. The cavities are nuclei sampled from a lognormal pdf. At time 

, water enters the computational domain with a velocity . The pressure of the fluid 

decreases after the moving liquid reaches the divergent part of the test stand. The largest nuclei are 
activated and start to grow. An attached cavitation sheet develops downstream of the smallest cross 
section. 
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The stochastic fields are monitored at a given location inside the cavitation sheet. The evolution of 
these fields is presented on Figure 8-16 for the first (left) and the fifth (right) calculations. In the first 

calculation, the stochastic field starts to grow until it attains a constant value . In the other 

simulation, only some fields grow and attain a constant value. These fields represent the large 
activated nuclei. The other fields remain sampled from the lognormal distribution. They represent the 
inactivated nuclei. 
 

 
Figure 8-16: Evolution of the stochastic fields in a simulation with one stochastic field (left) and 20 
stochastic fields (right).  

 

At any time, the mean value of the stochastic radius , , is the mean radius of the cavities in 

the cell under consideration. The comparison between the mean radiuses obtained in the five 
calculations is displayed on Figure 8-17. The mean radius attains an equilibrium size in each 
calculation. This size differs from one calculation to the other. With an increase of the number of 
stochastic fields, the mean radius tends to a constant value. The difference in the equilibrium radiuses 
is almost negligible between the fourth and fifth calculations. With eight fields the approximation of the 
mean radius is still very good while the error is large with fewer fields.  
 

 
Figure 8-17: Reduction of the statistical error with an increasing number of fields. The mean radius of the 
bubbles in a cavitation sheet is estimated with 1/4/8/16/20 stochastic fields. The arrow indicates that this 
mean value tends to a constant value with an increasing number of fields. 

8.6.2.7 Comparison between numerical and experimental results 

According to the simple example of the preceding section, eight fields represent a good compromise 
between accuracy and efficiency. Thus, in the rest of this thesis, the calculations are performed with 8 
stochastic fields to accurately capture the vapor mass fraction pdf and the bubble size spectrum at a 
reasonable cost. This number of fields is also generally recommended in the simulation of combusting 
flows. 

8.6.2.7.1 Two-dimensional simulations 

In spite of the shortcoming described in section 8.6.2.5.1.2, two-dimensional simulations are 
performed with the Spalart-Allmaras model. These simulations have the advantage to be faster than 
expensive LES calculations. 
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Two RANS simulations are performed. The first simulation reproduces the experimental conditions of 
Barre et al. [220]. The second is performed with a lower pressure outlet. As a result, the cavitation 
sheet becomes unstable at its rear end. Some results of this second calculation are discussed in 
section 8.6.2.7.1.4.  
 

In the RANS calculations, it is necessary to increase the nuclei density number to  to 

obtain numerical results in agreement with experimental data. The equilibrium vapor mass fraction is 

set to  in both calculations. 

8.6.2.7.1.1 Qualitative validation 

Similarly to the experimental results, the numerical results indicate that an attached cavitation sheet 
develops in the divergent section. In Figure 8-18, the cavitation sheet obtained in the calculation is 
shown. It is characterized by the density of the vapor-water mixture. There, a density below 900 kg/m³ 
indicates the presence of vapor. 
 

 
Figure 8-18: Numerical results for the attached cavitation sheet observed in Barre et al. [220]. The 
cavitation sheet is characterized by the vapor-water mixture density, where a density below 900kg/m³ 
indicates the presence of vapor. Streamlines are shown; vertical lines represent experimental 
measurement positions; and at the locations marked 1 and 2 bubble size pdf are numerically sampled. 

8.6.2.7.1.2 Velocity profiles 

Experimental data on the velocity field are available inside the cavitation at five longitudinal positions 
indicated by vertical lines in Figure 8-18. The calculated velocity profiles (solid lines in Figure 8-19) are 
in good quantitative agreement with the experimental results (triangles in Figure 8-19). These 
experimental results are described in [220]. There, Barre et al. [220] present their experimental data 
(blue triangles) and compare them to the results of Stutz et al. [224] (orange triangles) obtained for the 
same experiment some years before.  

 
Figure 8-19: Measured (triangles: Barre et al. [220] and Stutz et al. [224]) and calculated (solid lines) 
velocity profiles inside the cavitation sheet at the five longitudinal positions indicated by solid lines in 
Figure 8-18. 

 
Although the agreement is rather good, the calculation underestimates the flow detachment at the 
second and third position. This discrepancy is caused by the turbulence modeling. 

8.6.2.7.1.3 Void profiles 

The void profiles measured at the five longitudinal positions in the cavitation sheet indicated by the 
vertical lines in Figure 8-18 are also available in [220]. Calculated (solid line in Figure 8-20) and 
measured (blue triangle in Figure 8-20) void fraction profiles are in good quantitative agreement.  
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Figure 8-20: Measured (triangles: Barre et al. [220]) and calculated (solid lines) void fraction profiles 
inside the cavitation sheet at the five longitudinal positions indicated by solid lines in Figure 8-18. 

8.6.2.7.1.4 Bubble size spectrum 

Figure 8-21 gives an example of the evolution of the 8 radii at one location in the computational 
domain. In that case, the location is marked by 1 in Figure 8-18. 

 

Figure 8-21: Radius-size 
kR  statistical probability (time history) of the 8 stochastic fields calculated at 

location 1 in Figure 8-18. 

 
With the proposed modeling, the bubble size pdf at any location can be obtained from the evolution of 
the stochastic field. The bubble size pdf obtained at two locations in the nozzle are represented in 
Figure 8-22. On the left hand side, the pdf obtained at the location marked by 1 in Figure 8-18 is 
displayed. On the right hand side, the pdf obtained at the location marked by 2 in Figure 8-18 is 
displayed. At both positions, near Gaussian distributions are observed. 

 
Figure 8-22: Calculated bubble size pdf in a stable cavitation sheet at locations 1 (left) and 2 (right) 
marked in Figure 8-18. 

 
When reducing the outlet pressure in the numerical simulation, the cavity becomes unstable at its rear 
end. In this case, the pdf associated to the location 1 and 2 are displayed on Figure 8-23 on the left 
and Figure 8-23 on the right, respectively. The evolution of the stochastic fields (Figure 8-24) is 
strongly non-Gaussian. The turbulent fluctuations and the macroscopic cavitation sheet unsteadiness 
are superimposed. In particular, at location 1, the bubble size pdf (on Figure 8-23, left) would be better 
approximated by a 4-modal distribution. 
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Figure 8-23: Calculated bubble size pdf at locations 1 (left) and 2 (right) marked in Figure 8-18 in an 
unstable cavitation sheet. 

 
Figure 8-24: Radius-size  statistical probability (time history) of the 8 stochastic fields calculated at 
location 1 in Figure 8-18. 

8.6.2.7.1.5 Stochastic fields 

A snapshot of one of the stochastic fields is displayed in Figure 8-25 (bottom) with the corresponding 
pressure field (top). This snapshot is extracted from the calculation performed under the flow 
conditions described in [220]. In that case, the cavitation sheet is stable. The stochastic fields 
observed are also stable. 

 
Figure 8-25: Snapshot of one of the stochastic fields observed in the calculation of a stable cavitation 
sheet (bottom) and the corresponding pressure field (top). The flow direction is from the left to the right. 

 
All stochastic fields have a similar behavior. They do not immediately increase in the region where the 
pressure is below the saturation pressure (below 2400Pa). A slight delay is observed corresponding to 
the time necessary for the bubbles to grow. Then, the stochastic fields slowly decrease in the region of 
pressure above the saturation pressure. The bubbles require a finite time to collapse. 
 
The finite time of bubble collapse is also observed in the experiments (Figure 8-26). This time is 
primarily influenced by the inertial effects (section 8.5.6.3.5). 
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Figure 8-26: Experimental pressure measurement of Barre et al. [220] as a function of the distance from 
the contraction. The arrow symbolizes the domain where the cavitation sheet is observed despite 
pressures above the saturation pressure. 

8.6.2.7.2 Three-dimensional simulations 

Two dimensional calculations are performed to analyze the behavior of the stochastic fields. However, 
the time constant of the turbulent fluctuations is not physically correct and three dimensional effect are 
disregarded. The same experiment is simulated with a LES in a three-dimensional mesh.  
 

In the LES calculation, the number density is set to  and the equilibrium vapor mass 

fraction to . 

8.6.2.7.2.1 Qualitative behavior 

The same qualitative behavior is observed in the LES calculation. An attached cavitation sheet 
develops in the Venturi-like test section. The intensity of the density field is fluctuating but the length of 
the cavitation sheet remains approximately constant (Figure 8-27 and Figure 8-28). 

 
Figure 8-27: Representation of a density iso-surface ( =900kg/m³) obtained in the LES calculation of the 

stable cavitation sheet. The flow conditions and the geometry are those described in [220]. 

 

 
Figure 8-28: Numerical results of the LES calculation of an attached cavitation sheet. The cavitation sheet 
is characterized by the instantaneous density (left) and average density (right) of the vapor-water mixture. 
A density below 900kg/m³ indicates the presence of vapor. 

8.6.2.7.2.2 Velocity profile 

The calculated ensemble-averaged velocity profiles at the five longitudinal positions indicated by 
vertical lines in Figure 8-18 are in good agreement with the experimental results of Barre et al. [220] 
and Stutz et al. [224]. The calculated velocity profiles are represented by solid lines in Figure 8-29 and 
the experimental results by triangles. The flow detachment is better predicted in this LES calculation 
than in the RANS simulation presented in section 8.6.2.7.1.2. 
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Figure 8-29: Measured (triangles: Barre et al. [220] and Stutz et al. [224]) and calculated (solid lines) 
velocity profiles inside the cavitation sheet at the five longitudinal positions indicated by solid lines in 
Figure 8-18. 

8.6.2.7.2.3 Void profile 

The calculated ensemble-averaged void profiles at the five longitudinal positions indicated by vertical 
lines in Figure 8-18 are in good agreement with the experimental results of Barre et al. [220]. The 
calculated void profiles are represented by solid lines in Figure 8-30 and the experimental results by 
triangles. The void fraction is slightly over-predicted at the rear part of the cavitation sheet. 

 
Figure 8-30: Measured (triangles: Barre et al. [220]) and calculated (solid lines) void fraction profiles 
inside the cavitation sheet at the five longitudinal positions indicated by solid lines in Figure 8-18. 

8.6.2.7.2.4 Pressure profile 

Pressure measurement data are also available on the bottom side of the test stand. Both experimental 
and calculated mean pressures are compared in Figure 8-31. The agreement between both pressure 
distributions is relatively good. 

 
Figure 8-31: Comparison between measured (triangle: Barre et al. [220]) and calculated (solid line) 
pressure distribution at the bottom side of the test stand. The abscissa is 0 at the contraction. 

8.6.2.7.2.5 Bubble size spectrum 

The bubble size spectra obtained in the RANS and LES calculations can not be compared. The 
number of nuclei has a direct influence on the size of the cavities. In the RANS calculations, the initial 
number of cavities is thousand times larger than in the LES calculation. Thus, the bubbles in the 
RANS simulations are expected to have a smaller radius (see eq. (8.38)). Moreover, as it is discussed 
in sect. 8.6.2.5.1.2, the RANS simulations are performed with a turbulent time scale which does not 
correspond to the physical time scale. 
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The evolution of the stochastic fields at four different locations in the cavitation sheet is represented on 
Figure 8-32 to Figure 8-35. These four locations are marked on Figure 8-36. The bubble size spectrum 
significantly differs from one location to the other. The bubble size spectra at location 3 and 4 tend to a 
Gaussian distribution. 
 

 
Figure 8-32: Radius-size  statistical probability (time history) of the 8 stochastic fields (left) and bubble 
size spectrum (right) at the location 1 marked in Figure 8-36. 

 
Figure 8-33: Radius-size  statistical probability (time history) of the 8 stochastic fields (left) and bubble 
size spectrum (right) at the location 2 marked in Figure 8-36. 

 
Figure 8-34: Radius-size  statistical probability (time history) of the 8 stochastic fields (left) and bubble 
size spectrum (right) at the location 3 marked in Figure 8-36. 

 
Figure 8-35: Radius-size  statistical probability (time history) of the 8 stochastic fields (left) and bubble 
size spectrum (right) at the location 4 marked in Figure 8-36. 
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Figure 8-36: Average density of the vapor-water mixture. A density below 900kg/m³ indicates the presence 
of vapor. The locations marked 1, 2, 3 and 4 are the positions where the bubble size pdf are numerically 
sampled. 

8.6.2.7.2.6 Stochastic fields 

In contrast to the RANS simulations, the stochastic fields are strongly fluctuating in the LES calculation 

although the cavitation sheet is stable. Figure 8-37 shows seven snapshots of the stochastic field  

taken at different times. On these selected snapshots, the field  attains its maximal value at 
different positions in the cavitation sheet. At some instant, the largest vapor mass fraction is at the 
front end of the cavitation sheet. This phenomenon corresponds to large bubbles present near the 
contraction. Their pressure threshold is lower and they need less time to grow. At other times, the 
maximum vapor mass fraction is in the middle of the cavitation sheet or at its rear end. 
  

 

Figure 8-37: Instantaneous values of the stochastic field  at seven different times (LES calculation of a 
stable cavitation sheet).   

 

The ensemble-averaged value of this stochastic field  is given in Figure 8-38. The maximal vapor 
mass fraction is situated in the middle and at the front end of the cavitation sheet. 
 

 

Figure 8-38: Ensemble-averaged values of the stochastic field  (LES calculation of a stable cavitation 
sheet). 

 
A non-negligible amount of vapor is found further upstream than in the RANS calculations. This 
phenomenon is caused by the difference in the initial number of nuclei. The bubbles are smaller in the 
RANS calculations than in the LES calculation. As a result, their pressure threshold is lower and they 
need more time to grow. 
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9 POR analysis 

This chapter presents the numerical analysis of the passive fluidic diode, also called POR design. The 
cavitation model described in the preceding chapter is employed to investigate the flow behavior of 
one channel of the POR in both flow directions under cavitating conditions. The first section places 
emphasis on the efficiency of the double-nozzle design in the backward direction. For this purpose, 
three LES simulations are performed to analyze the effect of the first nozzle and the influence of the 
subcooling on the mass flow rate. In the second section, the analysis focuses on the opposite flow 
direction. The effect of cavitation on the pressure loss in one POR channel is investigated with the 
help of two LES calculations. 

9.1 Backward direction 

The objective of this section is three-folds. 
 First, the numerical code is validated against experimental results. For this purpose, two LES 

are performed with one channel of the POR under differing flow conditions.  
 Second, the principle of the double-nozzle design is investigated. The numerical results 

obtained with one POR channel are compared to the numerical results obtained with a single-
nozzle design. 

 Finally, the influence of the subcooling on the efficiency of the POR is analyzed. The 
numerical results of two LES calculations with differing coolant subcooling are compared. 

9.1.1 Validation of the code 

In the precedent chapter, the code is validated qualitatively with the experiments of Attou et al. [67] 
and quantitatively with the experiments of Barre et al. [220]. In this chapter, the experimental data of 
two tests performed in Karlstein are exploited to validate the code and analyze the flow behavior of the 
POR in the backward direction. 

9.1.1.1 Numerical mesh 

The computational mesh is a three-dimensional block-structured mesh consisting of about 550 000 
cells. In spite of the mesh refinement at the walls, the y+ values are larger than those usually 
recommended in LES calculations [37]. For example, y+ values up to 115 may be encountered locally. 
The mean y+ value is about 40. In contrast, the mesh is sufficiently fine to resolve the largest 
fluctuating scales in the bulk. The maximal ratio between the sub-grid scale viscosity and the laminar 
viscosity is about 7 in the computational domain. 
 
Far upstream and downstream of the smallest cross sections; the cells are stretched out to increase 
the damping of the disturbances. In this manner, increased code stability and faster statistical 
convergence are obtained. 

9.1.1.2 Boundary conditions 

Walls have non-slip conditions and are adiabatic. The total pressure and the temperature at the inlet 
and the pressure at the outlet of the double-nozzle design are known from the experiments. They are 
imposed at the boundaries of the computational domain (Figure 9-1). 

 
Figure 9-1: Representation of the computational domain and boundary conditions in the backward 
direction. x=0mm is the position of geometry inlet. 

 
The variations of the flow properties along the POR channel are presented in this section in diagrams. 
The abscissa of these diagrams represents the distance from the inlet of the geometry. As an 
example, the first smallest cross section is situated at 310mm of the inlet of the geometry and the 
second smallest cross section at 640mm (Figure 9-1).  
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The velocity is assumed to be normal to the boundary at the inlet. This modeling represents an 
approximation of the experimental conditions. Entrance pressure loss and disturbances associated to 
the sudden contraction (Figure 9-2) are neglected. 
 
 

 
Figure 9-2: Illustration of the modeling of the inlet boundary. In the numerical domain (top), the velocity is 
assumed to be normal to the inlet. In contrast, in the experiments (bottom), the inlet velocity profile is 
disturbed by the sudden contraction. 

 

In all calculations, the equilibrium vapor mass fraction is set to  and the number density to 

. This numerical setup is exactly the same as for the validation case described in chapter 

stochastic-field cavitation model. 

9.1.1.3 Turbulence model 

The High Pass Filter Smagorinsky turbulence model [217] is used for the modeling of the sub-grid 
scales. 

9.1.1.4 Numerical versus experimental results 

In the first validation case, the coolant is characterized by a subcooling of 11K. The pressure at the 
inlet is 70.3 bar and the pressure at the outlet is 22.24 bar. The resulting mass flow rate is 

. The pressure measured along the POR channel during the experiment is represented 

by squares on Figure 9-3. On the same figure, the pressure distribution obtained in the bulk with the 
proposed cavitation model is the blue solid line. 
 

 
Figure 9-3: Comparison between numerical and experimental pressure distribution along a POR channel 
in case of moderately subcooled (11K) coolant in the backward direction. 

 
The agreement between the numerical and experimental results is satisfactory. The agreement 
between measured and calculated mass flow rates is also very good since the cavitation model 

predicts a mass flow rate of  . 

 
In the second validation test, the coolant is characterized by a subcooling of 4K. The pressure at the 
inlet is 65.7 bar and the pressure at the outlet is 16.9 bar. The resulting mass flow rate is 

. Also in that case, the agreement between the numerical and experimental results is 

satisfactory. The pressure distribution along the POR design obtained in the calculation (solid line on 
Figure 9-4) is consistent with the experimental results (squares on Figure 9-4). The numerical code 

slightly overestimates the mass flow rate ( ). As a result, the static pressure decrease at 
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the first smallest cross section is also overpredicted. This static pressure decrease primarily is induced 
by an increase of the dynamic pressure. 
 

 
Figure 9-4: Comparison between numerical and experimental pressure distribution along a POR channel 
in case of slightly subcooled (4K) coolant in the backward direction. 

9.1.2 Principle of the double-nozzle design 

In the backward direction, a double-nozzle design significantly reduces the mass flow rate in 
comparison to a single-nozzle design. For the tests performed in Karlstein, this mass flow rate 
reduction ranges between 30% and 50% (chapter performance tests). 
 
To analyze precisely the mechanism yielding this mass flow reduction, two LES simulations are 
performed. The boundary conditions are identical in both simulations. However, the geometry in the 
first simulation is a single-nozzle design while the geometry in the second simulation is a double-
nozzle design.  
 
The simulation involving the double-design is already described in section 9.1.1.4. The coolant is 
characterized by a subcooling of 11K. The pressure at the inlet is 70.3 bar and the pressure at the 

outlet is 22.24 bar. The resulting mass flow rate is . The mesh used in this simulation is 

described in section 9.1.1.1.  
 
The numerical mesh used to represent the single-nozzle design possesses the same characteristics 
with fewer cells. 

9.1.2.1 Single-nozzle design 

An illustration of the computational domain used to represent the single-nozzle design is given in 

Figure 9-5. The geometry consists of one nozzle of the POR channel. 

 
Figure 9-5: Illustration of the computational domain used to represent the single-nozzle design. x=0mm 
is the position of geometry inlet. 

9.1.2.1.1 Validation 

No experimental data are available to validate this numerical calculation. However, the calculated 

mass flow rate ( ) is about 30% larger than the mass flow rate obtained with a double-

nozzle ( ) under the same flow conditions. This result matches available experimental 

data (section 9.1.2). 

9.1.2.1.2 General flow behavior 

Figure 9-6 on the left represents the distribution of the calculated pressure (blue solid line), saturation 
pressure (black solid line) and vapor mass fraction (green solid line) in the bulk along the single-nozzle 

design. The smallest cross section is situated at 310mm from the inlet. Figure 9-6 on the right 
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represents the calculated velocity (blue solid line), speed of sound (black solid line) and vapor mass 
fraction (green solid line) in the bulk along the single-nozzle design. 
 
The pressure starts to decrease in the contraction as a result of the acceleration of the fluid. At some 
point in the contraction, the pressure is below the saturation pressure. The coolant starts to vaporize. 
The fluid accelerates even more yielding a further decrease of the static pressure. This mechanism is 
self-sustained. The coolant drastically vaporizes, the velocity significantly increases and the pressure 
abruptly reduces. The vaporization of the coolant also causes a rapid drop of the speed of sound in 
the mixture. Near the smallest cross section, the coolant velocity is as high as the speed of sound. 
The flow chokes. 
 

 
Figure 9-6: Pressure (blue solid line, left), saturation pressure (black solid line, left), vapor mass fraction 
(green solid line), velocity (blue solid line, right) and sound speed (black solid line, right) in the bulk along 
a single-nozzle in case of moderately subcooled (11K) coolant. 

9.1.2.1.3 Choking 

The choking cross section does not coincide with the smallest cross section (Figure 9-7, left). 
 

 
 
Figure 9-7: Contour plot of the Mach number (left) and vapor mass fraction (right) in the single-nozzle 
design in case of moderately subcooled (11K) coolant. 

 
Apart from boundary effect, the choking cross section rather corresponds to an iso-surface of the void 
fraction (Figure 9-7, right). 
 
Although the void fraction is almost constant over the choking cross section, the other flow properties 

may significantly vary. Mean values of the calculated density , speed of sound , pressure  and 

void fraction  at the choking cross section are given in Table 9-1. 

 

 300 kg/m³ 

 118 m/s 

 30 bar 

 0.67 

Table 9-1: Mean values of the density , speed of sound , pressure  and void fraction  at the 

choking cross section of the double-nozzle design in case of moderately subcooled (11K) coolant. 

9.1.2.2 Double-nozzle design 

The flow behavior of the double-nozzle design is investigated under the same flow conditions. The 
numerical results of this calculation are presented in this section. 
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9.1.2.2.1 General flow behavior 

Figure 9-8 represents the mean pressure distribution (blue solid line), saturation pressure (black solid 
line) and vapor mass fraction (green solid line) in the bulk of the POR channel. 
 

 
Figure 9-8: Pressure (blue solid line), saturation pressure (black solid line) and vapor mass fraction 
(green solid line) in the bulk along the POR channel in case of moderately subcooled (11K) coolant in the 
backward direction. 

 
In the first section (up to 200mm), the wall shear friction slightly decreases the static pressure. A larger 
static pressure drop occurs in the contraction (310mm) mainly due to a dynamic pressure rise. 
Downstream of the expansion (between 350 and 500mm), the pressure recovery occurs only partially. 
The flow detaches from the wall and large amounts of energy dissipate in the strongly fluctuating jet 
(Figure 9-9).  

 
Figure 9-9: Instantaneous velocity field in one POR channel in case of moderately subcooled (11K) 
coolant in the backward direction. 

 
In average, the reattachment point is situated at a small distance from the enlargement (Figure 9-10). 
The pressure recovery is maximal near this reattachment point. 

 
Figure 9-10: Mean velocity field in one POR channel in case of moderately subcooled (11K) coolant in the 
backward direction. 

 
The same self-sustained mechanism is observed in the second contraction of the double-nozzle 
design as in the nozzle of the single-nozzle design. The coolant drastically vaporizes (Figure 9-8 and 
Figure 9-16), the velocity increases significantly (Figure 9-10 and Figure 9-11) and the static pressure 
fall is amplified. The vaporization of the coolant also has an effect on the speed of sound in the 
mixture (black solid line, Figure 9-11). This speed of sound drastically reduces with a vapor content 
rise (green solid line). In the second nozzle, the velocity of the coolant (blue solid line) reaches the 
speed of sound. The flow chokes.  

 
Figure 9-11: Velocity (blue solid line), sound speed (black solid line) and vapor mass fraction (green solid 
line) in the bulk along the POR channel in case of moderately subcooled (11K) coolant in the backward 
direction.  
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9.1.2.2.2 Choking 

Figure 9-12 shows the instantaneous Mach number in the second nozzle. The Mach number reaches 
one at the smallest cross section and increases downstream up to about 1.4 before it decreases to 
subsonic conditions at the outlet. In contrast to other flow properties, the location of the choking cross 
section does not fluctuate much. 

 
Figure 9-12: Instantaneous Mach number field in the second nozzle in case of moderately subcooled 
(11K) coolant in the backward direction. 

 
A close up on the second smallest cross section is given in Figure 9-13. Similarly to the single-nozzle 
design, the choking cross section does not coincide with the smallest cross section but rather with an 
iso-surface of the void fraction.  

 
Figure 9-13: Contour plot of the Mach number (left) and void fraction (right) in the second nozzle of the 
double -nozzle design in case of moderately subcooled (11K) coolant in the backward direction. 

 
Although the void fraction is almost constant over the choking cross section, the other flow properties 

may significantly vary. Mean values of the calculated density , speed of sound , pressure  and 

void fraction  at the choking cross section are given in Table 9-2. 

 

 148 kg/m³ 

 145 m/s 

 27.5 bar 

 0.84 

Table 9-2: Mean values of the density , speed of sound , pressure  and void fraction  at the 

choking cross section of the double-nozzle design in case of moderately subcooled (11K) coolant in the 
backward direction. 

9.1.2.2.3 Void generation and transport 

The coolant is characterized by a moderate subcooling (11K). In the first nozzle, vaporization only 
occurs in the core of the largest turbulent eddies (Figure 9-14). In Figure 9-14, the Q-criterion of Hunt 
[225] is used to represent these turbulent structures. 

 
Figure 9-14: Iso-surface of Q=5.e6s

-2
 colored with the vapor mass fraction in the first nozzle in case of 

moderately subcooled (11K) coolant in the backward direction. The solid lines represent the contour of 
the POR channel. 

 
In the core of these turbulent eddies, the pressure may be below the saturation pressure due to their 
rotation. As an example, Figure 9-15 shows the largest eddies on the top, the pressure field in the 
middle and the void fraction on the bottom. The largest eddies are selected here by increasing the 
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values of the Q criterion. The pressure field is blue when it is below the saturation pressure. Minimum 
pressure regions and largest eddies exactly coincide. They are denoted by white circles in the figures 
at the top and in the middle. In contrast, the regions with higher vapor content coincide only with some 
of these eddies (denoted by white circles on the bottom figure). There, the pressure is minimal. In the 
other eddies (denoted by gray circles on the bottom figure), the pressure is not sufficient to induce the 
vaporization of the coolant. Once the vapor is generated inside the intense eddies, the vapor content 
seems to follow another dynamic than that of the turbulent eddies.   

 
Figure 9-15: Q (top), pressure (middle) and vapor mass fraction (bottom) fields in a double-nozzle channel 
in case of moderately subcooled (11K) coolant in the backward direction. The regions where the pressure 
is below saturation pressure are colored in blue. 

 
The turbulent eddies generate in the shear layers at the wall and at the jet boundaries. Due to the 
strong fluctuations (Figure 9-14 and Figure 9-16, top), the mixing of the vapor is large. The vapor is 
transported transversally (Figure 9-16, top) and reaches the zone with high streamwise velocities. In 
average (Figure 9-16, down), the vapor diffuses in the transversal direction and is advected down to 
the second nozzle. 
 
The turbulent eddies dissipate at a short distance from the enlargement (Figure 9-14) and the mean 
pressure increases with the reattachment of the flow. The pressure is everywhere above the 
saturation pressure and the vapor starts to condensate.  

 
Figure 9-16: Instantaneous vapor mass fraction at three different times (top) and mean vapor mass 
fraction (bottom) in a double-nozzle channel in case of moderately subcooled (11K) coolant in the 
backward direction. 

9.1.2.2.4 Bubble size spectrum 

The proposed cavitation model enables to capture the bubble size spectrum in all computational cells. 
As an example, the bubble size spectra at the locations 1, 2 and 3 marked by a cross on Figure 9-17 
are displayed on Figure 9-18. 

 
Figure 9-17: Illustration of a POR channel with the flow direction from the left to the right. Bubble size pdf 
are numerically sampled at the locations 1, 2 and 3. 
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Figure 9-18: Calculated bubble size pdf in a POR channel in case of moderately subcooled (11K) coolant 
in the backward direction at locations 1 (top, left), 2 (top, right) and 3 (bottom) marked in Figure 9-17. 

 
At location 1, the bubbles have condensed due to the pressure recovery. They are small. In contrast, 
at location 2 and 3, the coolant vaporizes. The bubbles grow and are characterized by large radius. 
Downstream of the second smallest cross section, the bubble size spectrum is nearly Gaussian. 
 

These pdf are obtained from the radius-size  statistical probability (time history) of the 8 stochastic 

fields calculated at these locations. The time history of the radius-size  at location 2 and 3 are 
shown on Figure 9-19. 

 
Figure 9-19: Radius-size 

kR  statistical probability (time history) of the 8 stochastic fields calculated at 
locations 2 (left) and 3 (right) marked in Figure 9-17 in case of moderately subcooled (11K) coolant in the 
backward direction. 

 

In the backward direction, the local tension  is very large at these locations. All nuclei are 

activated and evolve very similarly. The fluctuation of the bubble size on the sub-grid scale is small. 

9.1.2.3 Interpretation and conclusion 

The double-nozzle design limits the critical two-phase mass flow rate by reducing the pressure and 
increasing the vapor content at the choking cross section (compare Table 9-1 and Table 9-2). 
 
Energy dissipation is enforced in the first nozzle upstream of the choking cross section. The flow 
detaches, a recirculation zone develops and strong turbulent fluctuations arise. The pressure recovery 
is limited. The static pressure decreases faster below the saturation pressure in the converging part of 
the second nozzle. Thus, coolant vaporization is enhanced. The higher vapor content in the 
contraction yields an increased fluid acceleration, and thus a larger pressure drop. This mechanism is 
self-sustained since this large pressure drop, in turn, improves the vaporization of the coolant. 
 
To illustrate the principle of the double-nozzle design, the calculated critical mass flow rate of a 
homogeneous water-vapor mixture is presented in Figure 9-20 at two different pressures as a function 

of the void fraction  at the critical cross section. There, it is assumed that the choking cross section 
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 is the smallest cross section of the POR channel. Under this assumption, the critical mass flow 

rate  is given by 

;       (9.1) 

with  being the speed of sound and  the density of the mixture averaged over this cross section. 

 
Figure 9-20: Critical mass flow rate of a homogeneous water-vapor mixture as a function of the void 

fraction *  and pressure at the choking cross section. 
*A  is the smallest cross section of the POR 

channel and 
*c  is the speed of sound in the mixture. 

 
The choking mass flow rate is lower at larger void fraction and lower pressure. In particular, an 
increase of the void fraction from 0 to 1 reduces the critical mass flow rate up to three orders of 
magnitude. A close up of Figure 9-20 is given in Figure 9-21. There, the effect of the first nozzle in a 
double-nozzle design on the flow properties at the choking cross section is materialized by a red 

arrow. In a single-nozzle design, the coolant chokes at the pressure  and the void fraction is . 

The resulting mass flow rate is . In contrast, in a double-nozzle design, the first nozzle enhances 

energy dissipation and vaporization of the coolant. The coolant chokes at the pressure  and the 

void fraction is . The resulting mass flow rate  is smaller than . 

 

 
Figure 9-21: Critical mass flow rate of a homogeneous water-vapor mixture as a function of the void 

fraction  at the choking cross section. In a double-nozzle design, the properties of the mixture at the 

choking cross section are   and , where  and  are mixture’s properties at the choking 

cross section of a single nozzle. The resulting mass flow rate  is smaller in the double-nozzle design 

than the mass flow rate  in a single-nozzle design. 

9.1.3 Effect of coolant subcooling 

The resistance coefficient of a POR channel in the backward direction is remarkably large at low 
subcooling and decreases with increasing subcooling (chapter performance tests).  
 
To investigate this phenomenon, a simulation is performed with smaller coolant subcooling (4K). This 
simulation is the second validation case presented in section 9.1.1.4. 
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9.1.3.1 Small subcooling 

9.1.3.1.1 General flow behavior 

In case of coolant with small subcooling, the vaporization of the coolant in the first smallest cross 
section occurs over the whole cross section (Figure 9-22). 

 
Figure 9-22: Mean vapor mass fraction in one POR channel in case of slightly subcooled (4K) coolant in 
the backward direction. 

 
The pressure in the bulk is below saturation conditions [see calculated pressure (blue line) and 
saturation pressure (black line) in Figure 9-23] and high vapor mass fraction are obtained [see green 
solid line in Figure 9-23] upstream of the second nozzle.  

 
Figure 9-23: Pressure (blue solid line), saturation pressure (black solid line) and vapor mass fraction 
(green solid line) in the bulk along one POR channel in case of slightly subcooled (4K) coolant in the 
backward direction. 

 
Then, the vapor is advected in the direction of the second smallest cross section by the jet coming 
from the first nozzle. This jet is very stable over a long distance. It starts to fluctuate only at a short 
distance from the beginning of the contraction of the second nozzle. Figure 9-24 shows the 
instantaneous velocity field.  

 
Figure 9-24: Instantaneous velocity field in one POR channel in case of slightly subcooled (4K) coolant in 
the backward direction. 

 
The reattachment point (compare Figure 9-10 and Figure 9-25), and thus the maximum pressure 
recovery, occurs further downstream. The cavities are advected further downstream before they 
collapse. 

 
Figure 9-25: Mean velocity field in one POR channel in case of slightly subcooled (4K) coolant in the 
backward direction. 

 
Furthermore, the recirculation zone is very long, the velocity is high and the flow reattaches inside the 
converging part of the second nozzle. These phenomena induce a very bad pressure recovery 
downstream of the first enlargement. Only a small fraction of the vapor phase condensates.  
 
The turbulent structures differ in case of coolant with small subcooling. They are primarily produced in 
the free shear layer around the jet far downstream of the enlargement. The same Q criterion for their 
graphical representation is used in Figure 9-26. However, the value of the parameter Q of the iso-
surface is lower in Figure 9-26 than in Figure 9-14. 
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Figure 9-26 Iso-surface of Q=5.e5 s

-2
 colored with vapor mass fraction in case of slightly subcooled (4K) 

coolant in the backward direction. The solid lines represent the contour of the POR channel. 

 
In the second nozzle, the phenomena are rather similar under both flow conditions. The vaporization 
induces a reduction of the speed of sound and an increase of the velocity (Figure 9-27). 
 

 
Figure 9-27: Velocity (blue solid line), sound speed (black solid line) and vapor mass fraction (green solid 
line) in the bulk along the POR channel in case of slightly subcooled (4K) coolant in the backward 
direction. 

9.1.3.1.2 Choking 

The flow chokes in the second smallest cross section (Figure 9-28). In this case, the choking cross 
section almost coincides with the smallest cross section, which is also an iso-surface of the void 
fraction. 

 
Figure 9-28: Contour plot of the Mach number (left) and void fraction (right) in the second nozzle of the 
double-nozzle design in case of slightly subcooled (4K) coolant in the backward direction. 

 
Although the void fraction is almost constant over the choking cross section, the other flow properties 

may vary. Mean values of the calculated density , speed of sound , pressure  and void 

fraction  at the choking cross section are given in Table 9-3. 

 

 155 kg/m³ 

 152 m/s 

 31 bar 

 0.84 

Table 9-3: Mean values of the density , speed of sound , pressure  and void fraction  at the 

choking cross section of the double-nozzle design in case of slightly subcooled coolant in the backward 
direction. 

9.1.3.1.3 Bubble size spectrum 

The bubble size spectra at the locations 1, 2 and 3 marked by a cross on Figure 9-17 are also 
calculated for the case of coolant with small subcooling. These spectra are displayed on Figure 9-29. 
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Figure 9-29: Calculated bubble size pdf in a POR channel at locations 1 (top, left), 2 (top, right) and 3 
(bottom) marked in Figure 9-17 in case of slightly subcooled (4K) coolant in the backward direction. 
 

In that case, the coolant strongly vaporizes at the first smallest cross section and a large amount of 
vapor is present at location 1. The bubbles have a large radius which continues to grow down to 
location 3. Similarly to the case of coolant with moderate subcooling, the bubble size spectrum at 
location 3 is near Gaussian. 
 
The stochastic fields evolve very similarly at these positions. The sub-grid fluctuations of the bubble 
size are small.  

9.1.3.2 Interpretation and conclusion 

Again, the choking mass flow rate reduces due to enhanced energy dissipation and coolant 
vaporization. 
 
The efficiency of the double-nozzle design is very large in case of coolant slightly subcooled. The 
static pressure decreases at low mass flow rate below the saturation pressure. The vaporization is 
large in the first nozzle and occurs also in the bulk. A stabilized jet develops between both nozzles. A 
large recirculation zone, high velocity and a reattachment point in the converging part of the second 
nozzle prevent from a significant pressure recovery. Therefore, vapor does not significantly condense 
and the pressure remains near or at saturation conditions. The vaporization is improved in the 
converging part of the second nozzle and the void fraction is large at the choking cross section. For 
the test simulated in this chapter with small subcooling (4K), experimental results indicate that the 
resistance coefficient is about 70 times larger in this direction than in the opposite flow direction 
(chapter performance tests). 
 
The efficiency of the double-nozzle design is lower in case of coolant moderately subcooled than in 
case of coolant slightly subcooled. The vaporization occurs in the core of turbulent eddies in the shear 
layer near the flow separation. The growth and collapse of the bubbles at this location induce 
disturbances which are drastically amplified at the expansion. The jet streaming out of the first nozzle 
is destabilized and reattaches near the enlargement. The recirculation zone is much smaller and the 
pressure recovery is larger. This pressure recovery entrains the further collapse of the bubbles. 
Nevertheless, the vaporization, the recirculation zone and the strong fluctuations enhanced the energy 
dissipation upstream of the choking cross section. Even at 11K subcooling, the pressure recovery is 
not sufficient to ensure that all bubbles collapse. The void content is larger in the second nozzle than 
without a first nozzle. Furthermore, the pressure upstream and at the choking cross section is also 
lower than in a single nozzle (section 9.1.2). In this manner, vaporization is further enhanced in the 
second nozzle. For the test simulated in this chapter with moderate subcooling, experimental results 
indicate that the resistance coefficient is about 30 times larger than in the opposite flow direction 
(chapter performance tests).  
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In this particular case, the flow properties at the choking cross section do not significantly differ 
(compare Table 9-2 and Table 9-3). Instead, increased energy dissipation and coolant vaporization 
induces the migration of the choking cross upstream in the nozzle. There, the cross section of the 
nozzle is smaller. For example, the choking cross section almost coincides with the smallest cross 
section in case of coolant with small subcooling. As a result, the area of the choking cross section, and 
thus the mass flow rate, reduce. To illustrate this phenomenon, the position of the choking cross 
section calculated in both simulations is represented on Figure 9-30. 
 

 
Figure 9-30: Position of the choking cross section calculated with moderately subcooled (11K, blue solid 
line) and slightly subcooled (4K, red solid line) coolant. This cross section migrates in direction of the 
smallest cross section (dashed line) with decreasing subcooling. 

9.2 Forward direction 

In the forward direction, two calculations are performed to analyze the effect of cavitation on the POR 
flow behavior. Both calculations are performed with a very low coolant subcooling. The first simulation 
is characterized by a coolant near saturation. The coolant is at 538K. At this temperature, the coolant 
is superheated by 1K at the outlet of the POR. In the second calculation, the coolant is at 536K. The 
coolant is subcooled by 1K at the outlet of the POR. 

9.2.1 Numerical setup 

One POR channel is represented by a three dimensional block-structured computational mesh 
consisting of about 2.8 million cells. In spite of the mesh refinement at the walls, the y+ values are 
larger than those usually recommended in LES calculations [37]. For example, y+ values up to 130 
may be encountered locally. The mean y+ value is about 60. In contrast, the mesh is sufficiently fine to 
resolve the largest fluctuating scales in the bulk. The maximal ratio between the sub-grid scale 
viscosity and the laminar viscosity is about 7 in the computational domain. Far upstream and 
downstream of the smallest cross sections; the cells are stretched out to increase the damping of the 
disturbances. In this manner, increased code stability and faster statistical convergence are obtained. 
 
A mass flow of 1.8kg/s is imposed at the inlet of the computational domain. There, the flow direction is 
assumed to be normal to the boundary and the temperature of the coolant is imposed. The pressure 
known from the experiments is prescribed at the outlet. These boundary conditions are shown on 
Figure 9-31. 

 
Figure 9-31: Representation of the computational domain and boundary conditions in the forward 
direction. x=0mm is the position of geometry inlet.  

 
The variations of the flow properties along the POR channel are presented in this section in diagrams. 
The abscissa of these diagrams represents the distance from the inlet of the geometry. As an 
example, the first smallest cross section is situated at 40mm of the inlet of the geometry and the 
second smallest cross section at 370mm (Figure 9-31). 
 

In all calculations, the equilibrium vapor mass fraction is set to  and the number density to 

. This numerical setup is exactly the same as for the validation case described in chapter 

stochastic-field cavitation model and for the LES calculations presented in the precedent section 9.1. 
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9.2.2 Validation of the code 

No experimental results are available to validate precisely the simulations. However, the experimental 
result presented in chapter performance tests, and repeated on Figure 9-32 for convenience, indicates 
that the pressure loss under such flow conditions drastically increases. The domain of investigation is 
represented by red arrows on this figure. 

 
Figure 9-32: Pressure loss (blue line) measured in the POR in the forward direction; corresponding 
maximal subcooling (yellow); and domain of investigation in the present simulations (red arrows). 

 
As it will be described in the following, the predicted pressure loss also is large in the simulations 
under such conditions. 

9.2.3 Near saturation 

9.2.3.1 General flow behavior 

Figure 9-33 represents the calculated pressure (blue solid line), the calculated saturation pressure 
(black solid line) and the vapor mass fraction (green solid line) in the bulk along the POR channel in 
the forward direction in case of coolant near saturation. 

 
Figure 9-33: Pressure (blue solid line), saturation pressure (black solid line) and vapor mass fraction 
(green solid line) in the bulk along one POR channel in case of saturated coolant in the forward direction. 

 
The static pressure strongly decreases in the smallest cross sections due to the acceleration of the 
fluid (see Figure 9-34). 
 

 
Figure 9-34: Velocity (blue line), vapor mass fraction (green line, left) and speed of sound (black line, 
right) in the bulk along one POR channel in case of saturated coolant in the forward direction. 
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When the coolant is near saturation at the inlet of the POR, the static pressure in the bulk reaches the 
saturation pressure at both smaller cross sections and both POR nozzles are filled with vapor (Figure 
9-35). 

 
Figure 9-35: Mean density field in one POR channel in case of saturated coolant in the forward direction. 
 
The speed of sound decreases in both nozzles (Figure 9-34, right) but, under these flow conditions, 
the velocity is significantly below the speed of sound in the mixture. The flow does not choke. 
 
Acceleration and static pressure drop accentuate in the second nozzle due to intense coolant 
vaporization. The velocity in the second nozzle reaches 27m/s while it is only 20m/s in the first nozzle 
(see Figure 9-34). 
 
Following the flow deceleration, the static pressure recovers in the diffuser and the pipes. The coolant 
condenses. This condensation is enhanced by the thermal effects: The temperature, and thus the 
saturation pressure, decreases (Figure 9-33) as a result of coolant vaporization. 

9.2.3.2 Flow resistance 

The two-phase mixture does not choke. However, the pressure loss significantly increases in 
comparison to single-phase conditions. The total pressure loss amounts 1.2bar while it is only 0.3bar 
when no vaporization occurs. 
 
The total pressure distribution in the double-nozzle design is represented on Figure 9-36. Energy is 
principally dissipated in the vicinity of the smallest cross sections and in the diffusers while dissipation 
is negligible in the straight pipes and contractions. 
 

 
Figure 9-36: Total pressure in one POR channel (top) in case of saturated coolant in the forward direction; 
and zoom on the first nozzle (middle) and second nozzle (bottom). 

 
Increased energy dissipation results from larger velocities and increased fluctuations. 
 
Larger velocities occur in regions with higher vapor content where the density is lower. As an example, 
the maximal velocity in the second nozzle is 27m/s instead of 20m/s in the first nozzle. This 
mechanism has a direct impact on the flow resistance: the pressure loss is higher in the second 
nozzle (0.7bar) than in the first nozzle (0.5bar). 
 
Larger velocities are also observed in the vicinity of the smallest cross sections. There, the growth and 
collapse of the vaporous region has a destabilizing effect on the incoming flow. The flow detaches, the 
effective cross section reduces, and a jet with higher velocities develops.  
 
The larger fluctuations (Figure 9-37) are intimately related to this flow detachment since they occur 
primarily in the bounding region of the jet. 
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Figure 9-37: Instantaneous velocity field in the second nozzle of one POR channel in case of saturated 
coolant in the forward direction.  

9.2.3.3 Bubble size spectrum 

The radius-size statistical probability (time history) of the 8 stochastic fields at three positions in the 
double-nozzle design is represented in Figure 9-38. 

  
Figure 9-38: Radius-size 

kR  statistical probability (time history) of the 8 stochastic fields calculated at 
location 1 (left), 2 (middle) and 3 (right) marked in Figure 9-39 in case of saturated coolant in the forward 
direction. 

 
These three locations are marked on Figure 9-39. Position 1 is situated in the cavitation sheet of the 
first nozzle; position 2 is at the inlet of the second nozzle and position 3 is located in the cavitation 
sheet of the second nozzle. 
 

 
Figure 9-39: Positions in the double-nozzle design where the pdf are sampled numerically in the forward 
direction. 

 
The behavior of the stochastic fields obtained in this simulation illustrates the advantage of the 
stochastic-field method.  
 
In the first nozzle, the pressure decrease is large. All nuclei are activated and grow. The fluctuation of 
the bubble size on the sub-grid scale is small. The stochastic fields behave very similarly at location 1 
(Figure 9-38, left). In contrast, in the straight pipe connecting the two nozzles, the instantaneous static 
pressure decreases below the saturation pressure only in the core of turbulent eddies. There, the 
turbulent fluctuations are low and, thus, the local tension is small. As an example, Figure 9-40 on the 
top shows the most intense eddies present in the straight pipe with the Q criterion at an arbitrary time. 
The corresponding pressure field is represented on the same Figure 9-40 on the bottom. The regions 
where the pressure in the pipe is below saturation pressure are colored in blue. 
 

 
Figure 9-40: Contour plots of the Q criterion (top) and pressure (bottom) in the straight pipe connecting 
the two nozzles in case of saturated coolant in the forward direction. The regions where the pressure is 
below saturation pressure in the pipe are colored in blue.  
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Since the local tension is small, only the largest nuclei are activated, and then grow and collapse. The 
other nuclei remain inactivated. The fluctuations of the bubble size on the sub-grid scale are large. 
The stochastic fields evolve very differently at location 2 (Figure 9-38, middle). These fluctuations 
accentuate in the second nozzle (Figure 9-38, right). 
 
The corresponding bubble size pdf are shown on Figure 9-41. 

 
Figure 9-41: Calculated bubble size pdf in a double-nozzle design at location 1 (left), 2 (middle) and 3 
(right) marked in Figure 9-39 in case of saturated coolant in the forward direction. 

 
The contour plot of some of these stochastic fields is represented on Figure 9-42. There, the 
instantaneous fields are shown on the left and the ensemble-average fields on the right. Three of the 
eight fields are given at the top while the vapor mass fraction is at the bottom. 
 

 
Figure 9-42: Instantaneous (left) and ensemble-average (right) contour plots of three stochastic fields 
(top) and of the vapor mass fraction (bottom) in the second nozzle in case of saturated coolant in the 
forward direction.  

 
While the density is characterized by a low variance in the cavitation sheet (Figure 9-43, right), the 
stochastic fields significantly fluctuate in this region (Figure 9-43, left). 

 
Figure 9-43: Non-dimensional variance of one of the stochastic field (left) and of the density (right) in the 
second nozzle in case of saturated coolant in the forward direction. 
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9.2.4 Small subcooling 

The total pressure loss calculated with a small subcooling (1K) is 0.9bar.  
 
In this simulation, coolant vaporization also occurs in both nozzles but the vapor mass fraction is much 
lower than in the preceding investigated case (Figure 9-44, green solid line). Therefore, the coolant 
has lower velocities at the smallest cross sections than in case of coolant near saturation (Figure 9-44, 
right). 

 
Figure 9-44: Pressure (blue solid line, left), saturation pressure (black solid line, left), vapor mass fraction 
(green solid line) and instantaneous velocity (blue solid line, right) in the bulk along one POR channel in 
case of slightly subcooled coolant in the forward direction. 

 
The pressure in the bulk (Figure 9-44, blue solid line) at the first smallest cross section remains above 
the saturation pressure (Figure 9-44, black solid line). 
 
In the first nozzle, the static pressure reaches saturation conditions only at the wall due to wall 
curvature. In the bulk, no vaporization is observed (Figure 9-45). 

 
Figure 9-45: Vapor mass fraction in a double-nozzle design in case of slightly subcooled coolant in the 
forward direction. 

 
Nevertheless, the flow detaches in both nozzles and energy is dissipated in the vicinity of the smallest 
cross sections and in the diffusers. As an example, the instantaneous vector field in the first nozzle is 
represented on Figure 9-46 colored with the total pressure. 

 
Figure 9-46: Instantaneous velocity field colored with the total pressure in the first nozzle of the double-
nozzle design in case of slightly subcooled coolant in the forward direction. 

9.2.5 Interpretation and conclusion 

In this section, the flow behavior of one double-nozzle design in the forward direction under cavitating 
conditions is investigated. Two LES are performed with a coolant at differing temperatures. 
 
In accordance with experimental results, the subcooling of the coolant has a major impact on the flow 
resistance. Figure 9-47 shows the resistance coefficient as a function of the subcooling. This 
subcooling is defined in reference to the outlet pressure. At very low subcooling (-1K), the resistance 
coefficient increases to 41. A temperature drop of 2K enables to reduce the resistance coefficient to 
31. The last point on Figure 9-47 at 3K subcooling is calculated with available experimental results 
without cavitation in the double-nozzle channel (Figure 9-32). Under these flow conditions, the flow 
resistance is 10.7. 
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Figure 9-47: Resistance coefficient of a double-nozzle design in the forward direction as a function of the 
subcooling.  

 
In this flow direction, cavitation increases energy dissipation according to two main mechanisms. First, 
vaporization induces a decrease of the density, and thus an increase of the velocity. This 
phenomenon is important at the smallest cross sections, in particular at very low subcooling. Second, 
growth and collapse of the vaporous regions destabilize the incoming flow at the contraction. As a 
result, the flow detaches and a jet develops. The effective cross section is smaller; the velocities, and 
thus the losses, further increase. Moreover, disturbances amplify in the bounding regions of the jet. 
Large amount of energy are dissipated. 
 
According to the simulations, the cavitation patterns, and their impact on the flow resistance, evolve 
with the reduction of the subcooling in a double-nozzle channel as follows. 
 Starting from single-phase conditions, the first manifestation of cavitation occurs at the wall in the 

second nozzle. There, the static pressure is low due to wall curvature, fluid acceleration and energy 
dissipation in the first diffuser. The flow detaches in the second nozzle and energy is dissipated 
downstream of the smallest cross section. The flow resistance increases in comparison to single-
phase conditions. 

 A further decrease of subcooling causes the coolant to vaporize further in the second nozzle. The 
velocity rises as a result of lower densities. Energy dissipation is enhanced. 

 Then, at lower subcooling, the coolant starts to vaporize inside the first nozzle at the wall. The flow 
detaches and the flow resistance further increases.  

 At saturation conditions, both nozzles are filled with vapor. The flow detaches and the velocity 
amplifies due to low densities. Energy dissipation is very large. 

 
Choking would further increase the flow resistance. However, critical conditions do not occur with a 
subcooled or saturated coolant whose mass flow rate is 1.8kg/s. Thus, in the POR design with 37 
parallel pipes, choking does not occur with a mass flow rate of 67kg/s. 
 
One-dimensional critical mass flow rate calculation indicates that the void fraction at the smallest cross 
section should be about 0.94 for this to happen (Figure 9-48, left). In the simulation with a coolant near 
saturation, the void fraction only amounts 0.3. 
 
 

 
Figure 9-48: Critical mass flow rate of a homogeneous water-vapor mixture as a function of the void 

fraction 
*  and pressure at the choking cross section. 

*A  is the smallest cross section of the POR 

channel and 
*c  is the speed of sound in the mixture. 
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9.3 Conclusion 

In this chapter, the flow behavior of a double-nozzle design is investigated in both directions under 
cavitating conditions. 
 
Three LES are performed to analyze the effect of the first smallest cross section and the influence of 
the subcooling on the critical mass flow rate in the backward direction. The calculations agree with the 
experimental results obtained in Karlstein (chapter performance tests): 
 The mass flow rate is larger in a single-nozzle design than in a double-nozzle design under the 

same flow conditions. 
 The efficiency of the double-nozzle design is very high at small subcooling. 
 The efficiency of the double-nozzle design decreases with increasing subcooling. 
The simulations also provide further insight into the mechanisms yielding the mass flow reduction: 
 Choking occurs in the second nozzle. 
 The choking cross section does not exactly coincide with the geometrical smallest cross section of 

the second nozzle. 
 The choking cross section displaces in direction of the smallest cross section at lower subcooling. 

As a result, the choking cross section, and thus the critical mass flow rate, is smaller.  
 At moderate subcooling, vaporization occurs in the first nozzle only in the core of turbulent eddies.  
 At smaller subcooling, vaporization occurs also in the bulk of the first nozzle. 
 In both cases, large amounts of energy are dissipated upstream of the choking cross section due to 

cavitation and large fluctuations. 
 Vaporization and pressure loss upstream of the choking cross section induce higher vapor content 

and lower pressure at the choking cross section. The speed of sound and the density, and thus the 
critical mass flow rate, significantly reduce. 
 

Two LES are carried out to study the effect of the subcooling on the flow resistance in the forward 
direction. The calculations match the experimental results: 
 The flow resistance drastically increases under cavitating conditions. 
 The flow resistance is very sensitive to the subcooling of the coolant. 
In addition, the numerical results help understanding the driving phenomena: 
 Under the investigated conditions, the flow resistance is not due to choking. 
 Energy primarily is dissipated in the vicinity of the smallest cross sections and in the diffusers. 
 In contrast to single-phase conditions, the flow detaches in the diffusers as a result of cavitation 
sheet’s growth and collapse. 

 Flow detachment enhances energy dissipation. The effective cross section reduces and, thus, the 
velocity increases. Furthermore, strong fluctuations develop in the bounding regions of the jet. 

 Coolant vaporization also yields larger energy dissipation because the density decreases, and thus 
the velocity rises.  

 
The numerical analysis of the POR design also demonstrates the capability of the proposed modeling 
approach. The agreement between numerical and experimental results is very satisfactory under very 
differing flow conditions. The stochastic-field cavitation model accurately reproduces the behavior of 
the polydisperse cavities. All nuclei are activated at large local tension. These large local tensions are 
typically encountered in the backward direction. By contrast, only large nuclei are activated at small 
local tension. This phenomenon occurs for instance in the pipe between the two nozzles in the forward 
direction. 
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10 Conclusion 

In the present thesis, an innovative fluidic diode for critical two-phase flows is presented. It consists of 
a short and compact bundle of parallel double-nozzle channels. This component is developed for the 
KERENA reactor. There, it limits the loss of coolant in the backward direction after the break of the EC 
condensate return line. In the opposite flow direction, the forward direction, the pressure loss in the 
component is minimized not to jeopardize emergency core cooling. 
 
The reduction of the mass flow rate in the backward direction with this design relies on the efficient 
choking of the two-phase mixture in the second Venturi-nozzle. The vaporization of the coolant and 
energy dissipation are enforced upstream of the choking cross section with the first nozzle. Then, the 
two-phase mixture chokes in the second smallest cross section at a low pressure and with high vapor 
content. Both low pressure and high vapor content yield a drastic reduction of the choking mass flow 
rate. This principle is particularly advantageous when the coolant leaving the reactor pressure vessel 
is moderately subcooled or saturated. Experiments performed in both directions under realistic 
boundary conditions at the AREVA Technical Center in Karlstein with a double-nozzle channel 
demonstrate that ratios up to 70 can be achieved between backward and forward direction resistance 
coefficients. 
 
Due to the simplicity of this innovative design, its development is possible with standard system codes 
in the backward direction and with standard CFD codes in the forward direction. The flow behavior of 
the fluidic diode is accurately described by the homogeneous equilibrium model in the backward 
direction; while single-phase CFD simulations are sufficient in the opposite flow direction since 
cavitation only occurs at very low subcooling. For the KERENA reactor, a parallel arrangement of 37 
pipes yields a component with 250mm diameter and 900mm length. This design can easily be 
adapted to similar applications. 
 
A CFD code able to simulate the flow behavior in the backward direction was not available. Therefore, 
a novel cavitation model is developed and implemented in the density-based code SPARC. This novel 
cavitation model uses the stochastic-field method developed by Valiño [10] to solve the vapor mass 
fraction pdf and capture the bubble size spectrum with stochastic Euler fields. The fluctuations of the 
vapor mass fraction and the bubble size on the sub-grid scale are resolved in a pure Euler formulation, 
and thus without excessive computational demand and complex algorithms. 
 
The interfacial mass transfer term appearing in the transport equation of the vapor mass fraction only 
requires a modeling of the mass transfer mechanism but no modeling is necessary to account for the 
fluctuations. In this context, a mechanism for the interfacial mass transfer is proposed in this work to 
account for thermal, inertial and water quality effects. Furthermore, constitutive relations and 
equations of state valid over large pressure and temperature ranges are implemented. 
 
In the present version of the code, the bubble size spectrum is used to improve the description of the 
mass transfer mechanism. Other stochastic processes and highly non-linear, radius dependent 
phenomena such as break-up and coalescence could be accounted for. The method is compatible 
with existing physical models available for Lagrange techniques, presumed pdf or binning methods. 
Therefore, this method is also very attractive for other multi-phase flows which in general possess 
similar characteristics (stochastic processes, highly non-linear interfacial exchanges, crucial 
dependence on interfacial area). 
 
Some properties of the stochastic Euler fields are analyzed and the cavitation model is validated with 
both RANS and LES calculations. The stochastic-field method adapted to cavitation shows very 
encouraging results. The various shapes of the bubble spectrum at different locations are obtained 
and the agreement between numerical and experimental results is very satisfactory. The validation 
cases are characterized by very differing flow conditions. For instance, the flow behavior of the fluidic 
diode under cavitating conditions is analyzed in both directions.  
 
Experiments with statistical data are required to further validate the code.  
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Nomenclature 

List of abbreviations 
 
BWR Boiling water reactor 
CD Central difference scheme 
CDF Cumulative density function 
CFD Computational fluid dynamics 
CFL Courant-Friedrichs-Lewy criterion 
DQMOM Direct quadrature method of moment 
EC Emergency condenser 
eos Equation of state 
FPE Fokker-Planck equation 
HEM Homogeneous equilibrium model 
HPF High pass filter 
I&C Instrumentation and control 
IEM Interaction by exchange with the mean 
LES Large eddy simulation 
LOCA Loss of coolant accident 
MILES Monotone integrated LES 
ODE Ordinary differential equation 
pdf Probability density function 
PIV Particle image velocimetry 
POR Passive outflow reducer 
RANS Reynolds-averaged Navier-Stokes equations 
RP Rayleigh-Plesset equation 
RPV Reactor pressure vessel 
scram Emergency shutdown of a nuclear reactor 
SDE Stochastic differential equation 
SIMPLE Semi-implicit method for pressure linked equations 
SF Stochastic field 
SFM Stochastic-field method 
 

Nomenclature 

Latin symbols 

 Interfacial area concentration 

 Interpolation coefficient between Euler mesh and Lagrange particle position 

 Model constant in  SST turbulence model 

 Model constant in  SST turbulence model 

 Model constant in Van der Waals equation of state 

 Surface area (cross section, bubble, interface) 

,  Drift and diffusion term in a Fokker-Planck equation 

 Matrix defined in DQMOM 

 Model constant in Van der Waals equation of state 

 Model constant in Tait equation of state 

 Vector consisting of  in DQMOM 

 Birth rate due to breakup of larger particles 

 Birth rate due to coalescence of smaller particles 

 Interval of  
 Speed of sound 

 or  Auto-covariance of a stochastic process  

 Model constant in Spalart-Allmaras turbulence model 

 Universal constant derived by Kolmogorov 
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 Condensation coefficient 

 Constant in DQMOM 

 Added mass coefficient 

 Condensation coefficient 

 Discharge coefficient 

 Drag force coefficient 

 Lift force coefficient 

 Vaporization coefficient 

 Concentration of species 

 Specific heat capacity at constant volume 

 Specific heat capacity at constant pressure 

 Model constant in Spalart-Allmaras turbulence model 

 Model constant in Spalart-Allmaras turbulence model 

 Model constant in Spalart-Allmaras turbulence model 

 Model constant in Spalart-Allmaras turbulence model 

 Model constant in Spalart-Allmaras turbulence model 

 Model constant in Smagorinsky-Lilly turbulence model 

 Constant of proportionality between pressure and velocity fluctuations 

,   Scaling factors between characteristic turbulent time scales 

 Model constants in  SST turbulence model 

 Model constants in  SST turbulence model 

 Model constants in  SST turbulence model 

 Turbulent dispersion model constant 

 Wall lubrification model constants 

 Model constant in DQMOM 

 Model constant in homogeneous cavitation model in CFD  

 Model constant in  SST turbulence model 

 Infinitesimal time increment or observation time 

 Characteristic particle diameter in DQMOM 

 Diameter (pipe, bubble) 

 Diffusion coefficient 

 Pressure difference 

 Death rate due to breakup into smaller particles 

,  Discretization operators 

 Death rate due to coalescence with other particles 

 Diffusion coefficient of  

 Turbulent diffusion coefficient of  

 Specific internal energy 

 Component  of the deformation tensor 

 Specific total energy 
 Eötvös number 

 Generic function or probability density function 

 Force per unit volume 

 Face of a control volume 

 Coordinate of intersection of segment  with cell surface 

 Drag force per unit volume acting on the dispersed phase  
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 Ratio of distance 

 Joint- probability density function of process  and  

 Transition density function 

 Cavities distribution function 

 Marginal cavities distribution function 

 Size fraction of bin  

,  Joint-pdf 

 Fine-grained pdf 

 Damping function in Spalart-Allmaras turbulence model 

 Damping function in Spalart-Allmaras turbulence model 

 Damping function in Spalart-Allmaras turbulence model 

, ,  Basis functions of interpolation between Euler mesh and Lagrange particle position 

 Total volume force 

 Joint-cumulative density function of process  and  

 Damping function in  SST turbulence model 

 Damping function in  SST turbulence model 

 Added mass force 

 Buoyancy force 

 Drag force 

 Pressure gradient force 

 History force 

 Two-phase correlation of interfacial shear stress 

, ,  and  Coefficients for the calculation of the interfacial shear stress  

 Volume variation force 

 Lift force 

 Marangoni force 

 Turbulent dispersion force 

 Wall lubrification force 

 Wall deformation force 

 Convection vector in density-based solver 

 Force or generic function or cumulative density function 

 Fluctuations of a force or generic function 

,  Gravity field 

, ,  and  Generic functions 

 Collision frequency 

 Break-up frequency 

 Break-up frequency in multi-group approach 

 Damping function in Spalart-Allmaras turbulence model 

 Filter function 
 Viscous flux vector in density-based solver 

 Mass flux 

 Production term in Spalart-Allmaras turbulence model 

 Specific enthalpy 

 Curvature 

 Source term vector in density-based solver 

 Discretization operator 

 Henry’s law constant 
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 Flux vector of specie   

 Molecular diffusion flux of momentum or heat 

 Turbulent kinetic energy 

 Model constant for drainage time  

 Ratio of pressure loss coefficient 

 Wave number of turbulent eddies 

,  Convection heat coefficient 

 Resistance coefficient 

 Cavitation number 

 Model constant in drainage time 

 Model constant in breakup frequency 

 Model constant in Tamman equation of state 

,  Model constant in artificial dissipation scheme 

 Specific latent heat 

 Kolmogorov length scale 

 Characteristic length 

 or  Mass 

 Mach number 

 Vector  

 Mass flow rate 

 Volume mass flow  

 Mass transfer in phase  

 Intergroup mass transfer from group 1 to 2 

 Vapor condensation rate  

 Gas molar mass 

 Spatial operator 

 Source in momentum equation of phase  

 Source in mixture momentum equation  

 Event 

 ’th distribution moment 

 Cavities number density or number density distribution function 
 Time step or number of pipe or number of moment 

 Avogadro constant 

 Frequency of turbulent eddies 

 Model constant in Tait equation of state 

 Polytropic exponent 

 Vector normal to the surface 

 Number of pipes 

 Number of characteristic particle diameters in DQMOM 

 Number of stochastic fields 

 Number of class in MUSIG approach 

 Number of dispersed particles 

 Nusselt number 
 Pressure 

 Internal iteration of iterative scheme 

 Pressure fluctuations 

 Peclet number 

 Prandtl number 

 Turbulent Prandtl number 

 Pressure at which cavitation is observed 
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 Pipe perimeter 

 or or  

 

Probability of the event  

 Phase indicator of phase , also called phase density function 

 Production term in the -equation 

,  Pipe perimeter in contact with gas and liquid, respectively  

 Interfacial perimeter 

 Probability of collision 

 Model constant in barotropic equation of state 

 Model constant in Tamman equation of state 

 Heat flux density 

 Apparent turbulent heat flux in phase  

 Apparent turbulent heat flux in drift model 

 Heat transfer coefficient at the wall 

,  Heat transfer coefficient of gas and liquid phase at the wall, respectively 

,  Heat transfer coefficient at the interface of gas and liquid phase, respectively 

 Heat source term 

Q Second scalar invariant of the velocity gradient tensor 

 Mean bubble growth rate in presumed pdf approach 

 Radius size 

 or   Autocorrelation of a stochastic process  

 Radial coordinate in cylindrical or spherical coordinate system 

 Bubble growth rate 

 Universal gas constant 

 Gas constant (vapor) 

 Gas constant (dissolved gas) 

 Reynolds number 

 Reynolds number related to bubble 

 Variable in Spalart-Allmaras turbulence model 

 Coefficient used in the calculation of interfacial shear stress  

 Specific entropy or size step of a random walk 

 Velocity ratio 

 Source term in the transport equation of the scalar property  

 Deformation tensor 

 Flow property in Spalart-Allmaras turbulence model 

 Flow property in Spalart-Allmaras turbulence model 

 Source term for coalescence and breakup processes 

 Source term for coalescence and breakup processes of bin  

 Surface area vector 

 Breakup source term 

 Coalescence source term 

 Marginal breakup source term 

 Marginal coalescence source term 

 Nuclei activation source term 

 Mean source term ( ) in DQMOM 
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 Source of variable  

 Intensity of dispersion ( ) 

 Source term in the transport equation of the weights  in DQMOM 

 Source term in the transport equation of the weighted abscissas  in DQMOM 

 Source term in the energy equation of the phase  

 Source term in the energy equation of the mixture 

 Nuclei activation in the bulk 

 Nuclei activation at the wall 

 Surface ratio 

 Velocity ratio 

 Schmidt number associated to scalar property  

 Time 

 Kolmogorov time scale 

 Temperature or time step of a Random walk 

 Temperature fluctuations 

 Temperature variation rate 

 Stress tensor 

 Temperature explicitly represented as a stochastic process 

 Apparent stress tensor in phase  

 Apparent stress tensor in drift-flux model 

 Model constant in Tamman equation of state 

 Velocity vector 

 Characteristic time scale of the Lagrange acceleration 

 Characteristic time scale of the Lagrange velocity 

 Velocity fluctuations vector 

 Mean velocity in the transport equation of the intensity of dispersion ( ) 

 Normalized velocity 

 or  Characteristic or bulk velocity 

 Velocity vector explicitly represented as a stochastic process 

 Superficial velocity 

 Interfacial velocity 

 Normal component of the interfacial velocity 

,  Drift velocity of gas and liquid phase, respectively 

 Drift velocity of phase  

 Volume  

 Volume flow rate 

 Volume of maximum distorted bubble 

 Volume in phase space 

 Wiener-Levy process 

 Transition rate 

 Conserved variables vector 

 Position vector 

, ,  Non-dimensional sizes of the first cells at the wall in the flow direction, normal to the 
wall and transverse to the flow direction, respectively 

, ,  Grid point coordinates 

 Vector of in DQMOM 

 Stochastic process 
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 or  Unit coordinate axis vectors 

 Scalar property or vapor mass fraction  

 Vector of discrete values of the scalar property  

 Fluctuation of  

 Dissipation term in Spalart-Allmaras turbulence model 

 Distance to the wall 

Greek symbols 

 Gas volume fraction or contraction / diffuser angle 

 Volume fraction of phase  

 Volume fraction of the characteristic particles in DQMOM 

, ,  Model constants in  SST turbulence model 

 Volume fraction of bin  

 Thermal diffusivity 

, ,  Model constants in  SST turbulence model 

 Model constant for breakup frequency 

 Model constant in  SST turbulence model 

 Isentropic expansion factor 

 Integer used in the presumed pdf approach 

 Density ratio 

 Viscosity ratio 

 Specific heat ratio 

 Numerical diffusion coefficient 

 Kronecker delta 

 Weighted abscissa in DQMOM 

 Grid size or characteristic filter width 

 Length vector between two grid centroids 

 Pressure drop 

 Bubble cluster radius 
 Time step or averaging time 

 Turbulent kinetic energy dissipation rate 

 Mass in multi-group approach 

 Wall roughness 

,  Coefficients in artificial numerical scheme 

 Truncation error in iterative scheme 

 Single phase pressure loss 
 Dynamic viscosity 

 Turbulent eddy viscosity 

 Sub-grid dynamic viscosity 

 Expectation value 

 Von Karman constant 
 Mean free path 

,  Spectral radii of the flux Jacobian matrices of the convective terms 

 Viscosity 

 Thermal conductivity 

 Turbulent thermal conductivity 

 Scaling factor in artificial dissipation scheme 

 Constant in Kubota bubble growth model 
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 Chemical potential 
 Specific volume 
 Kinematic viscosity 

 Turbulent kinematic viscosity 

 Modified form of the turbulent kinematic viscosity in Spalart-Allmaras model 

 Pressure sensor in artificial dissipation scheme 

 or  Outcome of an experiment  

 White noise 

 Density 

 Momentum density 

 Mixture density 

 Homogeneous mixture density 

 Density fluctuations 

 Surface tension 

 Collision cross section 

 or  Variance of the stochastic process  

, ,  Model constants in  SST turbulence model 

, ,  Model constants in  SST turbulence model 
 Exponent in artificial dissipation scheme 

 Model constant in Spalart-Allmaras turbulence model 

 Von Neumann constant 

 Turbulent Schmidt number associated to  

 Component  of the stress tensor 

 Cavitation number 

 Performance factor of a fluidic diode 

 Mean time between two collisions 

, ,  Characteristic turbulent time scales 

 Apparent turbulent stress 

 Wall friction coefficient 

 Wall shear stress 

 Component  of the deviatoric stress tensor 

,  Shear stress at the interface on gas and fluid side, respectively 

 Principal component  of the deviatoric stress tensor 

 Fluid / flow property 

 Angle existing between pipe and gravity field 

 Source term in governing equation of  

 Composition vector explicitly treated as a stochastic process 

 Geometry parameter 

 Coefficient in artificial dissipation scheme 

 Two-phase flow multiplier 

 Model constant in artificial dissipation scheme 

 Volume fluid/flow property 

 Shape factor 

 Component  of the rotation tensor 

 Specific dissipation rate or scaled specific dissipation rate 

 Weight of the delta functions in DQMOM 
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Indices 

Subscript 

 Reference or mean or stagnation conditions 

1, 2, etc. Cross sections or bubble group 
 Continuous phase 

 Vaporous cavity 

 Breakup 

 Cavitation sheet 
 Critical parameter 

 Control volume 

 Condensation 

 Dispersed phase 

 Drainage 

 Droplet 
 DQMOM 

 Equilibrium condition or equivalent 
 Euler explicit 
 Euler implicit 

 Cell surface 

 Friction 

 Gas phase 
 Residual gas 

 Halo cell 

 Calculated with HEM 
i, j, k Indices in x, y and z coordinate direction 

 Internal iteration  or bin  

 or  Fluid / flow properties at the interface between two phases 

 Interaction 

 ’th passage of the interface during the averaging time 

 Phase  

 Liquid phase 

 Mixture  
 Outlet in critical mass flux calculation or middle 
 Neighboring cell 

 Maximum value 

 Minimum value 
 Numerical results 

 Realistic plant conditions 

 Grid point  
 Particle 
 Characteristic particle diameter in DQMOM 

 Surface of bubble of radius  
 Saturation condition 
 Sub-grid scale 

 Skewness 

 Test conditions 

 Total 
 Upwind-scheme 

 Viscosity 
 Evaporation 

,  Coordinate abscises ,  

 Surface tension 
 Wall values 
 Characteristic values 

 Two-phase 

0

c

b

break

cav

cr

cell

cond

d

dr

D
DQM

e

EE

EI

f

fr

g

G

H

H

i i i

i int

in

j j

k k

l

m

m

N
max

min
num

pl

P P
p

q

R R
sat
sgs

sk

test

T
UD

v
vap

1x 2x 1x 2x


w



2 Ph
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Superscript 

 Discretized 

 Critical cross section or notional particle (chapter stochastic) 
 Modeled 

 Evaluated at time step  

 Throat 

 Turbulent fluctuations 

Mathematical operators 

 or  Mean value 

 Scalar product with the face area vector  

 Nabla operator 

 Forward difference operator 

 Backward difference operator 

 Surface gradient operator 

 Conditional expectation 

 or   Averaging operator 

 Phase averaging operator 

 Mass weighted averaging operator 

 Ensemble averaging of  realizations 

 or  Euclidean norm 

 

Nomenclature cavitation stochastic-field model 
 
The abbreviations and symbols used in the chapter cavitation stochastic-field model are summarized 
in this table for convenience. 

Latin symbols 

 Added mass coefficient 

 Model constant of the condensation source term 

 Specific heat capacity at constant pressure 

,  Scaling factor between velocity and scalar property turbulent time scales 

 Molecular diffusivity 

 Bubble diameter 

 Critical bubble diameter 

 Combined molecular and turbulent diffusivity 

 Specific internal energy 

 Total specific internal energy 

 Probability density function of the random variable  

 Collision frequency 

 Specific enthalpy  

 Mass flux vector of  

 Turbulent kinetic energy 

,  Model constants of the drainage time  

, ,  Functions of the temperature 

d

*
m

 n n

t

T

 E 

 .
f

S fS



1x


1x


s

N
N

amC

condC

pc

C YC

D

bD

cD

D

e

E

f
 

cg

h

j Y

k

1k drk

,v vK ,v lK
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, ,  Model constants of the caloric eos 

 Mass of dissolved gas 

 Nuclei number density 

 Initial nuclei number density 

 Number of stochastic fields 

 Number of scalar properties 

 Pressure 

 Probability of collision 

, ,  Model constants of the water eos 

 Prandtl number 
 Mixture heat flux density 

 Vaporous cavity radius 

 Gas constant (vapor) 

 Non-linear process or source term of the vapor mass fraction transport equation  

,  Evaporation and condensation term, respectively 

,  Break-up and coalescence source term, respectively 

 Source term of the scalar property transport equation 

 Time 

 Temperature 

 Mixture stress tensor 

 Velocity vector 

 Bubble relative velocity 

 Turbulent bubble relative velocity 

 Wiener process associated to the spatial component  and the stochastic field  

 Position vector 

x+, y+, z+ Non-dimensional sizes of the first cells at the wall in the flow direction, normal to the 
wall and transverse to the flow direction, respectively 

 Vapor mass fraction 

 

Greek symbols 

 Void fraction 

 Maximum packing number 

 Dirac function 

 Cell size 
 Turbulent dissipation rate 

 Statistical error 

 Dynamic viscosity 

 Thermal conductivity 

 Chemical potential 
 Density 
 Surface tension 

 Schmidt number associated to the scalar  

 Model time constant of the cavitation stochastic-field model 

, ,  Characteristic turbulent time scales 

 Vector of stochastic composition properties   

 stochastic composition property 

 Stochastic-field vector  associated to the vector  

 Stochastic field  associated to the scalar property  

 Sample space of the scalar properties 

,1vK ,2vK ,3vK

Gm

n

0n
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N

p

colP

Tp TT TK
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q
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 Turbulent specific dissipation rate 

Indices 

Subscript 

 Computational cell 

 Critical parameter 

 Drainage 

 Equilibrium  
 Gas phase 
 Interaction 

 Liquid phase 

 Modeled 

 Saturation conditions 

 Vapor mass fraction 

 Infinity 
 

Scalar property  

 
Scalar property  

Superscript 

 Stochastic field  

 



cell

cr

dr

e
g

in

l
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Appendixe A: Forces acting on bubbles dispersed in a liquid phase. 

 
 The drag force originates from viscous effects, surface tension and the difference between the 

velocities  and  of the continuous and dispersed phases, respectively:  

;      (A.1) 

where  is the density of the fluid,  is the radius of the bubble and  is a drag force coefficient. 

Several correlations exist for . For example, 
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;     (A.2) 

with 

;       (A.3) 

 bubble diameter and  the Reynolds number expressed with bubble diameter. 

[90]: 

 ;     (A.4) 

;     (A.5) 

else 

.        (A.6) 

[110]: 

.      (A.7) 

 When a bubble moves, it must also displace a mass of water which opposes a resistance to its 
motion. This force is the added mass force. Common expressions for the added mass force are: 
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;      (A.8) 

with 

;       (A.9) 

or [173]: 

.       (A.10) 

 
 Buoyancy is due to the density difference existing between the phases. 
[173]: 

;       (A.11) 

[227]: 

.       (A.12) 

 Pressure acts on the surface of the bubble and accelerates it in the direction of the pressure 
gradient: 

[90]: 
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;       (A.13) 

[173]: 

.       (A.14) 

 
 History force 
[173]: 

.     (A.15) 

 Volume variation 
[173]: 

.      (A.16) 

 Lift 
[228]: 

 ;  (A.17) 

 

and  ranging from 0.25 to .3. 

 
 Marangoni effect 
[110] : 

.       (A.18) 

 
 Turbulent dispersion force 
[92] : 

.      (A.19) 

 
In the proximity of the wall, two supplementary forces act on the bubbles.  
 Wall lubrification force  
[92]: 

;     (A.20) 

 being distance to the wall and  model constants. 

 
 Wall deformation force 
[227]: 

;        (A.21) 

with 

;      (A.22) 

and 

.        (A.23) 
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Appendix B: Definition and properties of stochastic process 

Definition and properties 

The definitions and properties described in this appendix are taken from [185] to a large extent. 

Random variable 

Mathematically, a random variable is defined according to an experiment  whose outcomes  are 

various objects belonging to the certain event .  is the field  of subsets of  called events. One 

can assign the probability  to these events. To every , a number  is assigned according to 

some rule. Thus, the function  is defined over the domain  of all outcomes and its range is a set of 
numbers. 
 

This function  is called a random variable when it satisfies: 

1- The set  is an event for any real number  and 

2- The probability of the events  and  equals zero: 

.      (B.1) 

In these expressions, the notation  represents a set consisting of all outcomes  such that: 

.       (B.2) 

Distribution and density function 

Distribution function 

Definition 

The probability of the set  is also called the distribution function and denoted by: 

       (B.3) 

or simply  when there is no risk of confusion. By definition, the distribution function satisfies: 

;          (B.4) 

;          (B.5) 

;      (B.6) 

.             (B.7) 

The last expression indicates that the distribution function is continuous from the right. 

Experimental determination 

Practically, to estimate the distribution function, an experiment is performed  times. For each 

outcome , the value of  is calculated according to the assigned rule. The number of trials such 

that  is . Then the distribution function is estimated as: 

.         (B.8) 

Density function 

Definition 

The derivative  of : 
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,             (B.9) 

or simply  , is called the probability density function (pdf). It possesses following 

characteristics: 

;          (B.10) 

.       (B.11) 

By definition,  represents the probability of the set consisting of all outcomes  such that: 

         (B.12) 

for  since 

.   (B.13) 

Experimental determination 

The density function is determined by the number of trials  such that : 

;      (B.14) 

when  is sufficiently large and  is sufficiently small. 

Expectation value 

Definition 

The expectation value  (or ) of  (also called mean value) can be expressed with its pdf 

 as: 

.      (B.15) 

Experimental determination 

Considering our experiment, the outcomes of the  trials is: 

. 

Correspondingly, the random variable  is assigned the values: 

. 

Then, the expectation value  of the random variable  generally is approximated by: 

;      (B.16) 

although it does not correspond, at a first sight, to definition (B.15). 
 

However, if  is sufficiently small, the sum of the  numbers  in (B.16) for which the 

outcome is such that  satisfies: 

        (B.17) 

since . 

According to eq. (B.14),  can be expressed with the density function: 

.       (B.18) 

Thus, 
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.     (B.19) 

Conditional distribution and density 

Definition 

Considering an event  such that 

; 

the conditional probability of an event , assuming is given by 

.      (B.20) 

The conditional distribution  and density  can be expressed as: 

;      (B.21) 

.            (B.22) 

Experimental determination 

To obtain  for an experiments with  trials, one rejects all 

outcomes  such that 

 and . 

Then,  is approximated using the procedure described in section distribution function 

considering only the remaining outcomes. 

Properties 

Interestingly, the conditional distribution and density  are also distribution and 

density function, respectively. 
 
However, they do not contain the same amount of information as the “unconditional” distribution 

 and density . Their statistics account for fewer events than the “unconditional” statistics, 

either because the events are disregarded or, more commonly, because they are unknown. A simple 
example found in [185] is reproduced here for better understanding. 
 

A fair-die is tossed and the random variable  is defined as: 

,  ;            (B.23) 

where  is an outcome of the experiment “one fair-die is tossed once” and  is the number of eye of 

the visible face for the outcome . 

 

The distribution function  of  has a staircase form and is displayed in Figure 0-1 (left). 

Considering the event ,  has still a staircase form but is “coarser” (Figure 

0-1, right).  contains less information than . 
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Figure 0-1: Representation of distribution function  (left) and conditional distribution function 

 (right) of the random variable  defined in eq. (B.23). 

Function of a random variable 

Definition 

The function , where  is a function of the real variable , is also a random variable 

(actually  must be a Baire function). The probability of the set of outcomes  such that 

 for a given number  is the distribution of the random variable : 

.     (B.24) 

Statistics 

 and its derivative 

       (B.25) 

can be estimated with  and the distribution  or density  of the random variable . 

 

However, in general, the statistics of  is not a simple function in terms of the statistics of . 

Indeed, the fundamental theorem states that 

     (B.26) 

where the  are the real roots of the equation 

 

for the given . 

Expectation value 

Definition 

Fortunately, it can be shown that the expectation value  of any function , including any 

non-linearity, simply is given by: 

.      (B.27) 

Thus, knowing the statistics (pdf) of  is sufficient to close any non-linear terms; in particular source 
terms in fluid dynamic governing equations. Furthermore, eq. (B.27) implies that any moments of a 

random variable  can be calculated as soon as its pdf is known. 
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Experimental determination 

Considering our experiment, the outcomes of the  trials is: 

. 

Correspondingly, the random variable  is assigned the values: 

. 

Then, the expectation value  of random variable  generally is approximated 

by: 

,     (B.28) 

or, equivalently, by (see eq. (B.17) and (B.18)): 

.      (B.29) 

Approximation (B.28) is intensively employed in Monte-Carlo techniques. 

Conditional expectation value 

Since the conditional density  assuming an event  is also a density function, eq. (B.27) 

can directly applied to calculate  or : 

;      (B.30) 

.        (B.31) 

Variance and moments 

The expectation value is one information on the statistics of the random variable . It can be 

considered as the center of gravity of . A more comprehensive description of the statistics of  

is obtained when other “moments” of  are known. For example, the moments  of  are defined 

as: 

.      (B.32) 

By definition,  and  . 

The central moments , and in particular , usually are also introduced to specify : 

.          (B.33) 

For instance, ,  and , where  (or simply , when there is no risk of confusion) 

is called the variance of the random variable . 

Tchebycheff inequality 

The variance is an important parameter for the description of the statistics of a random variable. It 

gives a measure of the concentration of the values of  near its expectation value . The 

Tchebycheff inequality translates this idea in terms of probability: 

, .     (B.34) 

(B.34) is true independently of the shape of the pdf. Introducing , the probability that  takes 

values in the interval  centered at  is close to 1 provided . Figure 0-2 gives 

an illustration of the Tchebycheff inequality. 
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Figure 0-2: Graphical representation of the Tchebycheff inequality: probability that the random variable  

takes values in the interval  is not dashed. 

Examples 

Normal distribution 

A normal distribution is defined by a Gaussian density function: 

;       (B.35) 

where  is the variance and  the expectation value of the random variable whose pdf is given by 

(B.35). The corresponding distribution function is 

.           (B.36) 

While, in general, expectation value and variance cannot completely describe the statistic of a random 
variable, random variables which are normally distributed are completely determined by the two 

parameters  and . 

 
Normal distributed random variables have a central importance in the law of large number and in the 
theory of stochastic process. 

Discrete distribution 

If the total number of outcomes of the experiment  is finite, then any random variable  define on its 

space is of discrete type. In that case,  is of a staircase form and  consists of a sum of 

impulse function , also called delta or Dirac function. The impulse function is defined by its 

integral property. This property reads for any  and any function  continuous at : 

.      (B.37) 

Supposing the staircase function  is discontinuous at the points  and defining by  the 

magnitude of discontinuity of  at : 

;             (B.38) 

then,  is given by: 

.             (B.39) 

Discrete distributions can be used to approximate continuous distributions. 
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Two random variables 

Joint distribution function 

Definition 

The joint distribution function  (or more simply ) of the random variable  and  

represent the probability of the set : 

.      (B.40) 

Properties 

The marginal distribution  and  of the random variable  and  can be obtained from 

 as: 

;          (B.41) 

.           (B.42) 

Joint density function 

Definition 

The joint density function  of random variable  and  is defined as the derivative of the joint 

distribution function : 

.               (B.43) 

 represents the probability of the outcomes  of the experiment such that 

 and , 

when  and  tend to 0. 

Properties 

The marginal density functions  and  are obtained from the joint-pdf  by 

differentiating eq. (B.41) and (B.42) by  and , respectively: 

;       (B.44) 

.       (B.45) 

Conditional distribution and density 

Definition 

The conditional distribution  of the random variable  assuming an event  can be 

defined for an event  expressed in terms of the random variable . Then, conditional distribution 

and density can be expressed in terms of joint and marginal distribution and density functions. 
Typically, 

;       (B.46) 

.      (B.47) 
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Conditional expected values 

Whereas  is a number depending on the value ,  is also a random 

variable defined as follows [185]: For a given experimental outcome , the random variable takes the 

value  and the random variable  is . 

 

The expected value of  equals the expected value of the random variable : 

.      (B.48) 

Correlation 

Two random variables  and  are called uncorrelated if 

.      (B.49) 

Independence 

Two random variables  and  are called independent if 

.      (B.50) 

Sum of two random variables 

If the random variables  and  are independent then the density of their sum  equals the 

convolution of their respective densities: 

.    (B.51) 

Sequence of random variables 

Definitions and properties for one and two random variables are summarized in the last sections. 
Distribution and density functions can be extended to more than two random variables. In this section, 
interesting properties of the sequence of random variables are described. 

Conditional densities 

The conditional density function  of   assuming  is 

.     (B.52) 

Independence 

The random variables  are independent if the events 

, …,  

are independent for any . In this case, the distribution and density functions satisfy: 

;     (B.53) 

.     (B.54) 

Independent random variables are generally generated by independent experiments. 

Law of large numbers 

Introducing the random variable 
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      (B.55) 

where the random variables  all have the same expectation value  and the same variance 

; it can be shown that the expectation value of  is  and its variance  is such that 

.         (B.56) 

According to the Tchebycheff inequality eq. (B.34), the probability of the events  such that 

 is: 

, .     (B.57) 

Thus, for  sufficiently large, it is almost certain that the mean value of the random variables  

takes a value near . 

Central limit theorem 

Finally, the central limit theorem indicates the random variable  tends to a normal 

curve regardless of the shape of the densities . 

Stochastic process 

Definition 

Mathematically, a stochastic process is defined according to an experiment  whose outcomes  are 

various objects belonging to the certain event . To every , a time function  is assigned 

according to some rule. Thus, the stochastic process  is a family of time functions . 

 

The stochastic process  has four meaning: 

1- a family of time functions (  variable,  variable) 

2- a single time function (  variable,  fixed) 

3- a random variable (  fixed,  variable) 

4- a number (  fixed,  fixed) 

Statistics of a stochastic process 

First order 

For a specific time ,  is a random variable. Thus, its distribution 

      (B.58) 

can be defined. It represents the probability of all outcomes  such that, at the specified time , the 

function  do not exceed the number .  is called first-order distribution of the process . 

The corresponding density is 

.      (B.59) 

Second-order statistic 

The distribution of the joint distribution of the two random variables  and , whereby  and  

are two time instances, is called second-order distribution. It is defined as: 

.     (B.60) 
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The corresponding density is given by: 

.      (B.61) 

Higher order statistic 

The  order distribution function is defined as: 

.    (B.62) 

The corresponding density is given by: 

.     (B.63) 

A real stochastic process is statistically determined if one knows its  order distribution function for 

any  and . 

Function of a stochastic process 

Expectation value 

For any given time , the stochastic process  is a random variable. As such, one can define its 

expectation value: 

;     (B.64) 

which is a function of time. 

Autocorrelation 

The autocorrelation  of a stochastic process  is the joint moment of the random variables 

 and : 

.    (B.65) 

 is a function of  and . 

 

If the stochastic process  is stationary, it can be shown that the autocorrelation function only 

depends on the time difference : 

.      (B.66) 

The autocorrelation has a maximum at the origin: 

.       (B.67) 

Autocovariance 

The autocovariance  of  is the covariance of the random variables  and : 

.     (B.68) 

The variance of the random variable  is given by: 

.      (B.69) 

Ergodicity 

Ergodicity deals with the problem of determining the statistics of a process  from a single 

observation.  is ergodic if its statistics can be determined from a single function  of the 

process. 
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For example, the mean average 

     (B.70) 

of a given stochastic process  is also a random variable. For the limit of  with  to be the 

expectation value of , its variance  must tend to zero with . 

 

Only in that case, the time average of  equal its ensemble average, i.e. its expectation value. 

 

The estimation of the autocorrelation function  with a single observation is more difficult: the 

function 

         (B.71) 

of a given stationary stochastic process  is also a random variable and knowledge of fourth-order 

moments is required [185] to ensure that the limit of  with  actually is the autocorrelation

 function of the process . 

Examples 

Example of random variables is given in chapter numerical modeling: the particle number density 
function has been presented for both monodisperse and polydisperse flows (reproduced here in 
Figure 0-3). 
 

 

Figure 0-3: Representation of the particle number density distribution function for monodisperse 

(left) and polydisperse (right) flows. 

 

Scaling these functions by the total number of particles , one obtains the function  

which possesses following characteristics: 

;       (B.72) 

.       (B.73) 

Thus,  can be considered to be a pdf; and the function  satisfying: 

;       (B.74) 

;       (B.75) 

;       (B.76) 

;      (B.77) 

and ;           (B.78) 

is its distribution function. For a given ,  represents the probability to find in the flow particles 

whose radius is smaller than or equal : 

;      (B.79) 

while,  represents the probability to find in the flow particles whose radius is between  and 
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The distribution is discontinuous for ideal monodisperse flows, while it generally is continuous for 
polydisperse flows (Figure 0-4). 

 

Figure 0-4: Representation of the cumulative density functions  for monodisperse (left) and 

polydisperse (right) flows. 
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