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THE RELAXED INVESTOR WITH PARTIAL INFORMATION

NICOLE BÄUERLE∗, SEBASTIAN P. URBAN∗, AND LUITGARD A. M. VERAART‡

Abstract. We consider an investor in a financial market consisting of a riskless bond and
several risky assets. The price processes of the risky assets are geometric Brownian motions
where either the drifts are modelled as random variables assuming a constant volatility matrix
or the volatility matrix is considered random and drifts are assumed to be constant. The investor
is only able to observe the asset prices but not all the model parameters and hence information
is only partial. A Bayesian approach is used with known prior distributions for the random
model parameters.
We assume that the investor can only trade at discrete time points which are multiples of h > 0
and investigate the loss in expected utility of terminal wealth which is due to the fact that the
investor cannot trade and observe continuously.
It turns out that in general a discretization gap appears, i.e., for h → 0 the expected utility of
the h-investor does not converge to the expected utility of the continuous investor. This is in
contrast to results under full information in (Rogers, L.C.G. 2001. The relaxed investor and
parameter uncertainty. Finance and Stochastics, 5(2), 131-154).
We also present simple asymptotically optimal portfolio strategies for the discrete-time problem.
Our results are illustrated by some numerical examples.

Key words: Optimal investment, partial information, Bayesian approach, Markov
decision problem, discrete versus continuous trading, discretization gap.
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1. Introduction

This paper combines two lines of research which have attracted attention over the last years:
Portfolio optimization under partial information and approximation of continuous trading strate-
gies by strategies which adjust portfolio weights only in discrete time. It will turn out that some
surprising effects occur.

More precisely, we consider a standard Black-Scholes market with d risky assets and one
money market account with constant interest rate. In the first part of the paper we assume
that the drift of the risky assets is not known to the investor. Her aim is to maximize the
expected log-utility of her wealth at terminal time T > 0. We follow a Bayesian approach here.
Clearly, when the drift rates µ are chosen according to a multivariate normal prior, then the
conditional distribution of µ given the observation of the stock prices is again normal and there
exists a simple sufficient statistic. This is useful since we can apply the principle of estimation
and control to solve the portfolio problem. If the investor is able to trade in continuous-time
this problem is well-understood and can e.g. be found in Karatzas & Zhao (2001). Now let us
assume the investor is only able to observe the stock prices and adjust the portfolio at discrete
points in time which are multiples of h > 0. In practice, trading continuously is impossible and
the investor also might want to avoid transaction cost or relax and therefore reduces the trading
frequency. As in Rogers (2001), we will call her the h-investor and the optimization problem
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h-optimization problem in contrast to the continuous investor and the continuous problem. In
the case of complete information these two portfolio problems have been compared by Rogers
(2001) for power utilities. Rogers (2001) shows that in general the difference between these two
problems is small.

We will show that this is not true anymore in the case of partial observation. In general,
there remains a discretization gap, i.e., for h→ 0 the expected utility of the h-investor does not
converge to the expected utility of the continuous investor. This is due to the fact that for the
h-investor it is never optimal to short-sell stocks or the bond. Surprisingly, the h-investor does
not lose information when she observes stock prices only in discrete time, i.e., the estimators of
the drift of the h-investor and the continuous investor coincide at the discrete time points.

Furthermore, we show that the optimal trading strategy for the h-investor can be approxi-
mated by the very simple to implement “plug-in” Merton-ratio strategy, i.e., we take the Merton-
ratio and replace the unknown µ by its estimate. In Taksar & Zeng (2007) the authors studied
discrete-time portfolio problems where the drift and the volatility are driven by an unobservable
discrete-time Markov chain and used Taylor-series expansion of the utility to derive simple ap-
proximations of the optimal portfolio strategy. We instead use the knowledge of the continuous
problem to approximate the portfolio strategy.

In the second part of the paper we consider the same problem with known stock price drift
but unknown volatility matrix. The continuous investor can immediately estimate the volatility
matrix from a tiny period of observed stock prices, but this is not true for the h-investor who
obtains information only at discrete time points. In this case the h-investor looses relevant
information by discrete observation. We solve the h-optimization problem assuming that the
prior distribution of (σσ>)−1 is a Wishart-distribution. Again, for h → 0, there remains a dis-
cretization gap between the continuous expected utility and the limit of the h-expected utilities.
We propose an easy to implement portfolio strategy for the h-investor which is asymptotically
optimal for h→ 0.

By now there are quite some papers investigating portfolio problems with unknown, not
necessarily constant drift. In most papers it is either assumed that the drift is a linear, mean-
reverting diffusion or a function of a finite state Markov chain. Both cases lead to well-known,
finite-dimensional filters. Lakner (1995, 1998) uses a martingale approach to represent the
optimal terminal wealth and trading strategy. In Lakner (1995) explicit results in case of log
and power utility with constant but random drift are given, whereas in Lakner (1998) the case
of a linear diffusion is treated. Rishel (1999) uses a dynamic programming approach to solve
the linear diffusion case with power utility. Brendle (2006, 2008) slightly extends this problem
to a multivariate setting where the linear diffusion may be correlated with the stock prices and
gives results for power and exponential utility. In Zohar (2001) inverse Laplace transforms are
used to represent the optimal strategy and value function for general utility problems. Karatzas
& Zhao (2001) present a comprehensive approach via the martingale method. Moreover, there
are papers dealing with the hidden Markov-modulated drift problem. Honda (2003) investigates
the problem for two states. The general case is considered in Sass & Haussmann (2004) with
the help of the martingale approach and Malliavin calculus and in Rieder & Bäuerle (2005) by
dynamic programming focusing on power and log-utility. The latter paper also compares the
optimal portfolio strategies in the case of complete and partial information. The recent paper
Björk et al. (2010) takes a general point of view where the drift is allowed to be an arbitrary
semimartingale. Nevertheless, fairly explicit expressions for the optimal terminal wealth and the
optimal portfolio strategy are derived in the cases of log, power and exponential utility.

Pham & Quenez (2001) treat portfolio problems with partially observed stochastic volatility.
In discrete-time the portfolio problem with unobservable drift and volatility is investigated in
Taksar & Zeng (2007). Frey & Runggaldier (1999) consider hedging problems in discrete-time
with unknown volatility. An unknown jump intensity is treated in Bäuerle & Rieder (2007).

The question of approximating the (often) complicated filter and thus also the portfolio strat-
egy is tackled in Pham et al. (2005) and Corsi et al. (2008) by means of quantization techniques.



THE RELAXED INVESTOR WITH PARTIAL INFORMATION 3

The relation between continuous- and discrete-time filters is investigated in James et al. (1996).
In Gandy & Veraart (2012+) the authors study the effect of estimating parameters in optimal
investment strategies when the number of assets gets large.

For the approximation of continuous-time financial models and portfolio strategies by discrete-
time models and strategies see e.g. He (1991), Duffie & Protter (1992) or Prigent (2003). The
latter two sources consider among others general questions of convergence of stochastic integrals.
Most of the results are positive in the sense that convergence of the wealth process is obtained.
This is in contrast to our findings. In Duffie & Protter (1992) two counterexamples are given
where the processes do not convergence, but these examples are quite academic. In most cases
considered in these sources, the financial market is also approximated.

Our paper is organized as follows: In the next section we introduce the financial market with
unknown drift. In Section 3 we review the continuous-time optimization problem, followed by
the h-optimization problem in Section 4. In both cases the aim is to maximize the expected log-
utility of the investor’s wealth. Afterwards we establish in Section 5 the comparison between the
continuous and the h-optimization problem. We show that there remains a discretization gap
between the optimal value of the problems for h→ 0 and construct a simple but asymptotically
optimal portfolio strategy for the h-investor. In Section 6 we investigate the same optimization
problem with known drift but unknown volatility. We proceed in the same way as before, i.e.,
we first show that there exists a discretization gap and construct a simple but asymptotically
optimal portfolio strategy for the h-investor. This case differs from the first one since the
h-investor with unknown volatility loses information by the discrete observation of the stock
prices. In Section 7 we provide some numerical results and give additional insight in the size
and sensitivity of the discretization gap. We also discuss in the case of unknown volatility to
which extend the loss of information can be blamed for the distance to the continuous investor.
The paper ends with a conclusion.

2. A First Financial Market Model

We consider a financial market with finite time horizon 0 < T < ∞. Let (Ω,F ,P) be the
underlying probability space on which we consider a d-dimensional Brownian motion W =
(W 1

t , . . . ,W
d
t ). We suppose that there are d risky assets and one riskless bond with the following

dynamics for t ∈ [0, T ]. The price process S0
t of the riskless bond is given by

S0
t := ert,

where r ≥ 0 denotes the deterministic interest rate. The price process Sit of the risky asset
i, i = 1, . . . , d, satisfies the stochastic differential equation

dSit = Sit

(
µidt+

d∑
j=1

σijdW
j
t

)
,

where µ = (µ1, . . . , µd)
> ∈ Rd and σ = (σij) ∈ Rd×d+ is assumed to be non-singular and we set

Si0 = 1.
In the first part of the paper we assume that the drift-vector µ is not known to the in-

vestor, however, the initial distribution Q0 of µ is known. We choose a d-variate normal
distribution Q0 := Nd(µ0,Σ0) and assume the drift to be independent of W . By FS :=
(σ (Su , 0 ≤ u ≤ t))t∈[0,T ] we denote the filtration obtained by observing the stock prices St =

(S1
t , . . . , S

d
t )>, a sub-filtration of

Fµ,S := (σ (µ, Su , 0 ≤ u ≤ t))t∈[0,T ] = (σ (µ,Wu , 0 ≤ u ≤ t))t∈[0,T ] .

3. Continuous-time Optimization

In a continuous-time setup, an investor with initial capital x > 0 chooses a trading strategy
π = (πt)t∈[0,T ]. We allow short-selling the stock and the bond, thus πt = (π1(t), . . . , πd(t))

> ∈ Rd,
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where πi(t) denotes the fraction of wealth invested in stock i at time t and 1 := (1, . . . , 1)> ∈ Rd.
The wealth process satisfies the stochastic differential equation

dXπ
t = Xπ

t

(
r + π>t

(
µ− r1

))
dt+Xπ

t π
>
t σdWt, Xπ

0 = x. (3.1)

We only consider admissible trading strategies, i.e., strategies from the set

A := {π : [0, T ]× Ω→ Rd : π is measurable, self-financing, FS-adapted

and satisfies

∫ T

0
‖π(s)‖2ds <∞ a.s.}.

The investor aims to maximize her expected logarithmic utility of terminal wealth. We define

Jπ(x) := Ex log (Xπ
T ) ,

and the aim is to find

J(x) := sup
π∈A

Jπ(x), (3.2)

where Ex is the conditional expectation given X0 = x. Note that π in (3.1) has to be adapted
w.r.t. FS , but not w.r.t. FS,µ which makes the problem “non-standard”. However, it is well-
known that such a problem can be solved by the principle of estimation and control which works
as follows: First, note that for t ∈ [0, T ]

logSit = logSi0 +
(
µi −

1

2

d∑
j=1

σ2ij

)
t+

d∑
j=1

σijW
j
t .

Hence, when we denote Zt := µt + σWt for t ≥ 0 and σi := (σi1, . . . , σid), i = 1, . . . , d, we can
write

logSit = logSi0 + Zit −
1

2
‖σi‖2t

and obtain that FS = FZ , i.e., the filtration generated by the stock prices is the same as the
filtration generated by the process Z = (Zt). Next, we define for t ∈ [0, T ] the estimator

µ̂t := E
[
µ | FSt

]
,

which is the conditional expectation of µ given the stock prices until time t. The evolution of
(µ̂t) is given by the so-called Kalman-Bucy filter on the “signal” µ and “observation” σ−1Zt.
When we define Σ := (σσ>), then it can be shown that

µ̂t =
(
Σ−10 + tΣ−1

)−1(
Σ−10 µ0 + Σ−1Zt

)
. (3.3)

More details on the derivation can be found in Bain & Crisan (2009) and Fristedt et al. (2007).
We can now introduce the innovation process (Vt) by

dVt = σ−1(dZt − µ̂tdt).

Using Lévy’s characterization of the Brownian motion it is possible to show that (Vt) is an FS-
Brownian motion under the given probability measure P. Moreover, the stochastic differential
equation for the wealth can be rewritten as

dXπ
t = Xπ

t

(
r + π>t

(
µ− r1

))
dt+Xπ

t π
>
t σdWt

= Xπ
t

(
r + π>t

(
µ̂t − r1

))
dt+Xπ

t π
>
t σdVt, (3.4)

which reduces the stochastic control problem with partial observation to one with complete
observation, since all processes in (3.4) are FS-adapted. An explicit solution of (3.4) is given by

Xπ
t = x exp

(∫ t

0

(
r + π>s (µ̂s − r1)− 1

2
π>s Σπs

)
ds+

∫ t

0
π>s σdVs

)
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and, given that the local martingale
∫
π>σdV is a true martingale, we obtain for an investor

with logarithmic utility that

Jπ(x) = Ex logXπ
T = log(x) + Ex

[∫ T

0

(
r + π>s (µ̂s − r1)− 1

2
π>s Σπsds

)]
. (3.5)

It is now easy to see and has e.g. been shown by Karatzas & Zhao (2001) that the simple strategy

π∗t = Σ−1(µ̂t − r1) (3.6)

is an optimal portfolio strategy for the investor with logarithmic utility.
When short-selling is not allowed, we maximize (3.5) over all π which are elements of

A := {π ∈ A | πt ∈ D ∀t ∈ [0, T ]}, where D := {x ∈ [0, 1]d : x>1 ≤ 1}.

I.e., we consider the value function

Jnss(x) := sup
π∈A

E log(Xπ
T ),

where nss denotes no short-selling. The optimal portfolio strategy is here denoted by π = (πt),
where πt is the (unique) solution of{

a>(µ̂t − r1)− 1
2a
>Σa→ max

a ∈ D.
(3.7)

In dimension d = 1, if π∗t 6∈ [0, 1], we simply have to shift π∗t from (3.6) to the nearest boundary
of the interval [0, 1]. For d ≥ 2 this is in general not true. For a comprehensive treatment of
constraint portfolio problems see Cvitanić & Karatzas (1992) and Karatzas & Zhao (2001). Also
note that the pointwise maximization in (3.7) leads to an FS-progressively measurable strategy
(cf. Cvitanić & Karatzas (1992)).

4. The h-Optimization Problem

Here we suppose that the investor observes the stock prices only at discrete times which are
multiples of h > 0 and rebalances her portfolio only at these time points. We refer to this
investor as the h-investor. To simplify the presentation we require that N := T/h ∈ N. We
define

R̃in := exp
(
µih−

1

2

d∑
j=1

σ2ijh+

d∑
j=1

σij
(
W j
nh −W

j
(n−1)h

))
(4.1)

for n = 1, . . . , N and i = 1, . . . , d and obtain Sinh =
∏n
k=1 R̃

i
k. In what follows we write

Rin :=
R̃in
erh
− 1,

Z̃in := µih+

d∑
j=1

σij
(
W j
nh −W

j
(n−1)h

) d
= µih+

d∑
j=1

σijε
j
n

√
h,

where εn = (ε1n, . . . , ε
d
n)> and ε1, ε2, . . . , εN are i.i.d. random vectors from a multivariate normal

distribution Nd(0, I). Thus, we have Z̃n = (Z̃1
n, . . . , Z̃

d
n)>

d
= µh + σεn

√
h, where

d
= denotes

equality in distribution. The conditional distribution of Z̃n given µ = m is denoted by QZ̃(·|m).

Obviously, we have QZ̃(·|m) = Nd(mh,Σh).
Let FR :=

(
σ(R1, . . . , Rn)

)
n∈{0,1,...,N} be the filtration generated by (R1, . . . , Rn). The

portfolio strategies for the h-investor are now FR-adapted stochastic processes α = (αn) =(
(α1

n, . . . , α
d
n)>
)
n∈{0,...,N−1}. In what follows the interpretation of αin will always be the fraction
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of wealth invested in the i-th stock at time step n. Once the h-investor has chosen a portfolio
strategy, the wealth at time nh under this strategy satisfies

Xα
hn = erhXα

h(n−1)(1 + α>n−1Rn).

The set of strategies of the h-investor is given by

Ah := {α = (αn)n∈{0,1,...,N−1}
∣∣αn : Ω→ Rd, αn is FRn −measurable∀n, α is self-financing}.

Note that we set log(x) := −∞ if x ≤ 0. With this agreement it is obvious that an optimal
portfolio strategy is found among the strategies α with αn ∈ D.

The h-investor’s value function is then defined by

Jh0 (x) := sup
α∈Ah

Ex log(Xα
T ), (4.2)

where x > 0 is the initial wealth. It is now well-known that problem (4.2) can be solved by using
the theory of (Bayesian) Markov Decision Problems, see e.g. (Bäuerle & Rieder, 2011, Chapter
5). In order to set up the filtered Markov Decision Problem we have to enlarge the state space
by the conditional distribution of the unknown parameter given the observation of the stock
prices up to this time. If we denote the conditional distribution of µ given the observations
(z̃1, . . . , z̃n) by µ(·|z̃1, . . . , z̃n), it is a classical result of statistics, see e.g. (DeGroot, 1970, p.

175) that Q0 = Nd(µ0,Σ0) is a conjugate prior distribution to QZ̃(·|m) = Nd(mh,Σh) and we
obtain with ¯̃zn := 1

n

∑n
k=1 z̃k :

µ(·|z̃1, . . . , z̃n) = Nd
((

Σ−10 + nhΣ−1
)−1(

Σ−10 µ0 + nΣ−1 ¯̃zn
)
,
(
Σ−10 + hnΣ−1

)−1)
.

Obviously, (
∑n

k=1 z̃k, n) is a sufficient statistic for µ(·|z̃1, . . . , z̃n). Thus we will also write µ(·|s, n)

where s =
∑n

k=1 z̃k. For n = 0, . . . , N and a portfolio strategy α = (αn) ∈ Ah, we define the
n-th step value function

Jhn,α(x, s) := E
[

log(Xα
Nh)

∣∣∣ Xnh = x,
n∑
k=1

Z̃k = s
]
,

Jhn (x, s) := sup
α∈Ah

Jhn,α(x, s).

(4.3)

Note that the probability measure underlying the expectation in (4.3) is induced by Q0 and the

transition probabilities of the Markov Decision Process
(
Xnh,

∑n
k=1 Z̃k

)
, i.e., it is essentially

induced by Q0 and QZ̃(·|m).
Problem (4.2) can now be solved recursively via the Bellman equation

Jhn (x, s) = sup
a∈D

{∫∫
Jhn+1

(
erhx

(
1+a>ẑ

)
, (s+z̃)

)
QZ̃(dz̃|m)µ(dm|s, n)

}
,

where ẑi := exp
(
z̃i − 1

2‖σ
i‖2h− rh

)
− 1.

Theorem 4.1. a) The value function for the h-investor is for n = 0, 1, . . . , N given by

Jhn (x, s) = log(x) + dn(s), (x, s) ∈ R>0 × R,

where the dn satisfy the following recursion

dN (s) := 0,

dn(s) = rh+ sup
a∈D

{∫ ∫
log
(
1 + a>ẑ

)
QZ̃(dz̃|m)µ(dm|s, n)

}
+

∫ ∫
dn+1(s+ z̃)QZ̃(dz̃|m)µ(dm|s, n). (4.4)

The value function of the problem is given by Jh0 (x) = Jh0 (x, 0) where µ(·|0, 0) = Q0(·).
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b) The optimal amounts which are invested in the stocks at time step n when Xnh = x and

Z̃1 + . . .+ Z̃n = s are given by

f∗n(x, s) = α∗n(s)x, x > 0,

where α∗n(s) is the maximizer of (4.4) and denotes the optimal proportions. The optimal
portfolio strategy is constructed through the application of the maximizers.

This can be proved by induction along the lines of (Bäuerle & Rieder, 2011, Theorem 6.1.1)
and we therefore skip the proof.

The optimal strategy is given by the maximum points in (4.4) and denoted by α∗ but is not
available in closed form. In the next section we propose a portfolio strategy which is suboptimal
however “simple” and performs for h→ 0 asymptotically as well as the optimal strategy.

5. Comparison between the Continuous and the h-Investor

In this section we compare the performance of the continuous investor with the performance
of the h-investor.

5.1. Comparison of Information. First we compare the relevant information of both in-
vestors. The continuous investor uses the estimator (µ̂t) whereas the h-investor uses
(µ(·|z̃1, . . . , z̃n)). We obtain for t = nh, that

µ̂t =
(
Σ−10 + tΣ−1

)−1(
Σ−10 µ0 + Σ−1Zt

)
=

∫
mµ
(
dm
∣∣∣ n∑
k=1

Z̃k,
t

h

)
.

Thus, the h-investor has the same estimator at the rebalancing points as the continuous investor.
For general results concerning discretization of filter processes see James et al. (1996).

Let us now discuss the different results for the situations with and without short-selling
constraints.

5.2. No Short-selling. We consider first the problem where the continuous investor is not
allowed to short sell the stocks or the bond. Obviously, we have Jh0 (x) ≤ Jnss(x). On the other
hand consider the portfolio strategy α = (αn)n∈{0,1,...,N−1} given by αn := πnh, recalling the
optimal strategy π for the continuous investor obliging short-selling constraints. It is admissible
for the h-investor since it depends on the history only through µ̂nh. We obtain, that for h→ 0
the expected log-utility of the h-investor using the optimal strategy of the continuous investor
with short-selling constraints only at discrete points in time, converges to the expected log-utility
of the continuous investor with short-selling constraints:

Theorem 5.1. With π and α as above it holds

lim
h→0

Jh0,α(x, 0) = Jnssπ (x) = Jnss(x), x > 0.

The proof is given in the Appendix. Theorem 5.1 immediately leads to the following corollary:

Corollary 5.2. For x > 0 we obtain: limh→0 J
h
0 (x) = Jnss(x).

We see that the h-investor can perform almost as well as the continuous investor with short
selling constraints with an error which tends to zero if h→ 0. This is in line with the results in
Rogers (2001).

The optimal portfolio strategy for the h-investor is complicated and the solution of problem
(4.4) has to be computed numerically. However, it can be shown that for small h the optimal
portfolio strategy is close to the discretization of (πt). To show this let again α∗ = (α∗n(s)) be
the optimal strategy for the h-investor, i.e., the solution of problem (4.4) and define for t ∈ [0, T ]
the process

πht := α∗b t
h
c

( b th c∑
k=1

Z̃k

)
. (5.1)
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This is an admissible strategy for the continuous investor and at time points t = nh, πht cor-
responds to the optimal strategy of the h-investor. This piecewise constant strategy converges
a.s. to the optimal strategy of the continuous investor with short-selling constraints:

Theorem 5.3. With the preceding definitions it holds

lim
h→0

πht = πt P− a.s., t ∈ [0, T ].

Again, the proof can be found in the Appendix.

5.3. With Short-selling. Let us now return to the original problem (3.2) where the continuous
investor can do short-selling. As outlined before we cannot allow the h-investor to short-sell
assets (this would lead to an expected utility of −∞) which implies that a simple discretization
of the optimal portfolio strategy (3.6) in the continuous setting is not admissible for the h-
investor. Corollary 5.4 shows that the h-investor cannot in general do as well as the continuous
investor, even if h→ 0. There still remains a gap between the maximal expected utilities.

Corollary 5.4. The h-investor faces a discretization gap in the sense that

lim
h→0

(
J(x)− Jh0 (x)

)
= J(x)− Jnss(x) > 0, x > 0.

In the case of an unknown drift for the stock price and no short-selling constraints, the
situation which has been excluded in Rogers (2001), namely that π∗t /∈ [0, 1]d cannot be avoided
here. Even if the true ratio Σ−1(µ−r1) lies within [0, 1]d, there is no guarantee that its estimator
lies in [0, 1]d as well.

Hence, we encounter a somewhat surprising result where we do not have convergence of the
maximal expected utility of the h-investor to the maximal expected utility of the continuous
investor. The size of the discretization gap is discussed in Section 7.

6. Unknown Volatility

So far we have assumed that the drift µ is unknown and the volatility matrix is known. In
this section we consider the reverse situation where the drift µ is known but the volatility matrix
is unknown.

More precisely, the investor cannot observe Σ−1 = (σσ>)−1 directly but knows the initial
distribution Qvol0 of Σ−1. We choose here a d-dimensional Wishart-distribution with ν degrees

of freedom and parameter matrix Σ−10 , denoted by Qvol0 = Wd(ν,Σ
−1
0 ), i.e., there exist i.i.d.

vectors Ai ∼ Nd(0,Σ−10 ), i = 1, . . . , ν, such that Σ−1
d
=
∑ν

i=1AiA
>
i . The Wishart-distribution

is a distribution on the set of all symmetric, positive definite matrices with dimension d and is
a multivariate generalization of the χ2-distribution.

We denote by det(·) the determinant and by tr(·) the trace of a matrix. Then the density of
the d-dimensional Wishart distribution with ν degrees of freedom and parameter matrix Σ−10 is,
see e.g. (DeGroot, 1970, p. 57),

qvol0 (τ) := c(det(Σ−10 ))−
ν
2 (det(τ))

ν−d−1
2 exp

(
−1

2
tr(Σ0τ)

)
, (6.1)

where c is the normalizing constant.

6.1. The Continuous Investor with Unknown Volatility. Even if we assume that the
continuous investor does not know σσ>, then she is able to estimate it perfectly from a tiny
observation of the stock prices. To explain this, consider the quadratic covariation of logSt
which is given by

〈logSit , logSjt 〉t =
d∑

k=1

σikσjkt = σi(σj)>t = Σijt.
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This quadratic covariation can be observed since for h→ 0 it is the limit in probability of∑
k:kh≤t

(logSihk − logSih(k−1))(logSjhk − logSjh(k−1)).

Note that convergence in probability implies that there exists a subsequence which converges
P-a.s.. The optimization problem for the continuous investor is therefore

Jvol(x) := sup
π∈A

Ex log(Xπ
T ) = log(x)+sup

π
Ex
[∫ T

0
r + π>s (µ− r1)− 1

2
π>s Σπsds+

∫ T

0
π>s σdWs

]
.

One can easily see that in the case where short-selling is allowed, the optimal strategy denoted
by πvol = (πvolt ) is constant in time and given by πvolt := Σ−1(µ− r1) ∀t > 0. At t = 0, the value
of Σ−1 is not yet known, but it makes no difference at all, which value one chooses and hence
πvol0 := c̃ ∈ R. The maximal expected utility is

Jvol(x) = log(x) + rT + T sup
a∈Rd

Ex
[
a>(µ− r1)− 1

2
a>Σa

]
= log(x) + rT +

T

2
Ex
[
(µ− r1)>Σ−1(µ− r1)

]
= log(x) + rT +

νT

2
(µ− r1)>Σ−10 (µ− r1),

(6.2)

since for Σ−1 ∼ Wd(ν,Σ
−1
0 ), the expectation is given by EΣ−1 = νΣ−10 and for a vector a ∈ Rd

one obtains a>Σ−1a ∼ W1(ν, a
>Σ−10 a), see e.g. (DeGroot, 1970, p. 58).

If short-selling is excluded, the optimal strategy, denoted by πvol = (πvolt ), is still constant in
time and given by the solution of{

a>(µ− r1)− 1
2a
>Σa→ max

a ∈ D. (6.3)

We denote by

Jvol,nss(x) := sup
π∈A

Ex log(Xπ
T )

the corresponding maximal expected logarithmic utility.
We will see in the next section that the h-investor loses relevant information in this setting

and is unable to estimate the volatility as perfectly as the continuous investor.

6.2. The h-Investor with Unknown Volatility. We consider now the h-investor in the
market with unknown volatility matrix and known drift vector µ. We again require that
N = T/h ∈ N. Since the h-investor is only able to observe the stock prices at time points
{0, h, . . . , T}, she observes the random variable

Y i
n := log(R̃in) = µih−

1

2

d∑
j=1

σ2ijh+

d∑
j=1

σij
(
W j
nh −W

j
(n−1)h

)
d
= µih−

1

2

d∑
j=1

σ2ijh+

d∑
j=1

σijε
j
n

√
h,

where we used the notation from Section 4 with n = 1, . . . , N, i = 1, . . . , d and ε1, ε2, . . . , εN are
i.i.d. Nd(0, I)-distributed random vectors. The h-investor’s value function is then defined by

Jh,vol0 (x) := sup
α∈Ah

Ex log(Xα
T ), (6.4)

where the wealth Xα
T is again determined recursively in terms of the Yn.



10 N. BÄUERLE, S. P. URBAN, AND L. A. M. VERAART

We are interested in the posterior distribution of the unknown matrix Σ−1. The conditional
distribution of the vector Yn given σσ> = τ is denoted by QY (·|τ) and clearly

QY (·|τ) = Nd(m(τ), τh), m(τ) := (µ− 1

2
(τ11 . . . , τdd)

>)h.

Given observations (y1, . . . , yn), the corresponding likelihood function is therefore

l(y1, . . . , yn|τ−1) :=
1

((2π)d det(hτ))
n
2

exp

(
− 1

2h

n∑
i=1

(yi−m(τ))>τ−1(yi−m(τ))

)
.

The exponential can be simplified by taking the trace:

n∑
i=1

(yi −m(τ))>τ−1(yi −m(τ)) = tr

(
n∑
i=1

(yi −m(τ))>τ−1(yi −m(τ))

)

= tr

(
n∑
i=1

(yi −m(τ))(yi −m(τ))>τ−1

)
=tr

((
n∑
i=1

yiy
>
i − 2

n∑
i=1

yim(τ)> + nm(τ)m(τ)>

)
τ−1

)
.

Hence we see that (
∑n

i=1 yiy
>
i ,
∑n

i=1 yi, n) is a sufficient statistic for (y1, . . . , yn). The posterior

density of Σ−1 given (y1, . . . , yd) is then proportional to l(y1, . . . , yn|Σ−1)qvol0 (Σ−1), where the
prior density qvol0 was specified in (6.1). We denote by Σ−1(·|y1, . . . , yn) the posterior distribution
of Σ−1 given (y1, . . . , yn). We will also use the notation Σ−1(·|u, v, n) where u =

∑n
i=1 yiy

>
i ,

v =
∑n

i=1 yi.

For n = 0, . . . , N and a portfolio strategy (αn) ∈ Ah we can now define the n-th step value
function with unknown volatility similarly to Section 4 by

Jh,voln,α (x, (u, v)) := E
[

log(Xα
Nh)

∣∣∣ Xnh = x,
n∑
i=1

YiY
>
i = u,

n∑
i=1

Yi = v
]
,

Jh,voln (x, (u, v)) := sup
α∈Ah

Jh,voln,α (x, (u, v)).

The value function can again be determined recursively:

Jh,voln (x, (u, v)) = sup
a∈D

{∫∫
Jh,voln+1

(
erhx

(
1+a>ẑ

)
, (u+ yy>, v + y)

)
QY (dy|τ−1)Σ−1(dτ |u, v, n)

}
,

where ẑi = exp(yi−hr)− 1. The next theorem follows again from (Bäuerle & Rieder, 2011, Th.
6.1.1) and we will therefore skip the proof.

Theorem 6.1. a) The value function for the h-investor is given by

Jh,voln (x, (u, v)) = log(x) + dvoln (u, v), (u, v) ∈ Rd×d+ × Rd, n ∈ N, x > 0,

where the dvoln satisfy the following recursion

dvolN (u, v) := 0,

dvoln (u, v) = rh+ sup
a∈D

{∫ ∫
log
(
1 + a>ẑ

)
QY (dy|τ−1)Σ−1(dτ |u, v, n)

}
+

∫ ∫
dvoln+1(u+ yy>, v + y)QY (dy|τ−1)Σ−1(dτ |u, v, n). (6.5)

The value function of the problem is given by Jh,vol0 (x) = Jh,vol0 (x, (0, 0)),
where Σ−1(·|0, 0, 0) = Qvol0 (·).

b) The optimal amounts which are invested in the stocks are given by

fvoln (x, (u, v)) = αvoln (u, v)x, x ≥ 0,

where αvoln (u, v) is the maximizer of (6.5) and denotes the optimal proportions. The
optimal portfolio strategy is constructed through the application of the maximizers.
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6.3. Comparison between Continuous and h-Investor with Unknown Volatility.

6.3.1. Comparison of Information. As we have discussed before, the continuous investor can
estimate Σ perfectly from a very short observation of the stock price and from this time onwards
works under full information. For the h-investor, however, this is not the case. The h-investor
updates her estimator of Σ at discrete time points but does not work under full information.

This is a remarkable contrast to the situation where the drift was unknown and where the
h-investor did not suffer a loss in information compared to the continuous investor.

6.3.2. A Simple and Almost Optimal Strategy for the h-Investor. We have seen before that
the optimal strategy of the h-investor can theoretically be described, however the practical
implementation is difficult. So it is reasonable to look for an admissible “simple” strategy which
is almost optimal. In contrast to the case of unknown drift, however, the h-investor is unable
to implement the strategy of the continuous investor (in discrete-time) since the continuous
investor works almost immediately under full information.

To simplify the presentation we assume that T = 2Ñh, Ñ ∈ N, i.e., N = 2Ñ . We propose now
to update the strategy at even multiples of h only and use the difference of the two observations
during the time interval ((2n− 2)h, 2nh] given by

Ỹn := Y2n − Y2n−1 = σ(ε2n − ε2n−1)
√
h

for n = 1, . . . , Ñ . The advantage of doing this is that Ỹ1, . . . , ỸÑ are now i.i.d. and obviously

the distribution of Ỹn given σσ> = τ is QỸ (·|τ) := Nd(0, 2τh). Now we are in a classical
situation with normally distributed observations with unknown covariance matrix. In this case
the Wishart-distribution is a conjugate prior and hence, if we assume that the initial distribution
of Σ−1 = (σσ>)−1 is Qvol0 = Wd(ν,Σ

−1
0 ), then the conditional distribution of Σ−1 given the

observations (ỹ1, . . . , ỹn) is also a Wishart-distribution, namely

Wd

(
ν + n,

(
Σ0 +

1

2h

n∑
k=1

ỹkỹ
>
k

)−1)
,

see (DeGroot, 1970, p.176–177). Obviously, (
∑n

k=1 ỹkỹ
>
k , n) is a sufficient statistic for Σ−1.

Moreover, the conditional expectation of Σ−1 given
∑n

k=1 ỸkỸ
>
k = s is

Σ̂−1,h(s, n) := E

[
Σ−1

∣∣ n∑
k=1

Ỹk = s

]
= (ν + n)

(
Σ0 +

1

2h
s
)−1

(6.6)

for n = 1, . . . , Ñ . For n = 0 we set Σ̂−1,h(s, 0) := νΣ−10 .

Similarly, we can also derive the conditional expectation of Σ given
∑n

k=1 ỸkỸ
>
k = s, see e.g.

(von Rosen, 1988, Theorem 3.1):

Σ̂h(s, n) := E

[
Σ
∣∣ n∑
k=1

Ỹk = s

]
=

1

ν + n− d− 1

(
Σ0 +

1

2h
s
)

for n = 1, . . . , Ñ and Σ̂h(s, 0) := 1
ν−d−1Σ0. This conditional expectation can be used to define

an admissible strategy for the h-investor by replacing Σ with Σ̂h in the optimal strategy for the
continuous investor.

6.3.3. No Short-selling. Consider now the optimization problem{
a>(µ− r1)− 1

2a
>Σ̂h(s, n)a→ max

a ∈ D (6.7)

and denote the maximizer by αh,voln (s). We define a portfolio strategy by

πh,volt := αh,volb t
2h
c

( b t2h c∑
k=1

ỸkỸ
>
k

)
.
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When we consider (πh,volt ) only at time points nh, then we obtain an admissible strategy for the
h-investor. For general t ∈ [0, T ] it is admissible for the continuous investor and converges to
the optimal strategy of the continuous investor with no short-selling restriction:

Theorem 6.2. For t ∈ [0, T ] we obtain limh→0 π
h,vol
t = πvol.

The proof can be found in the Appendix.

Finally, when we denote by αh,vol = (αh,vol) the discretization of πh,volt , we obtain the following
theorem.

Theorem 6.3. For x > 0 we obtain limh→0 J
h,vol
0,αh,vol

(
x, (0, 0)

)
= Jvol,nss(x).

A proof is given in the Appendix. The theorem tells us that for small time steps h, the
h-investor can choose the simpler strategy αh,vol which is close to being optimal.

Again we obtain convergence of the h-investor’s value function to the value function of the
continuous investor with short-selling restriction as h→ 0:

Corollary 6.4. For x > 0 we obtain limh→0 J
h,vol
0 (x) = Jvol,nss(x).

We give a short proof in the Appendix.

6.3.4. With Short-selling. If we allow short-selling for the continuous investor we again observe
a discretization gap between the expected utilities of the h-investor and the continuous investor:

Corollary 6.5. For x > 0 we obtain limh→0

(
Jvol(x)− Jh,vol0 (x)

)
= Jvol(x)− Jvol,nss(x) > 0.

7. Numerical Examples

In this section we illustrate our theoretical results by some numerical examples and investigate
the speed of convergence of some of our convergence results. We also give examples for the
discretization gap. We consider a market with one stock, i.e., d = 1, time horizon T = 1 year
and interest rate r = log(1.03). The investor’s initial capital is set to x = 1.

7.1. Unknown Drift. We first consider the situation where the drift µ is unknown and sampled
from a N1(µ0, σ

2
0)-distribution with µ0 = log(1.05), σ20 = 1

3µ0 unless stated otherwise. The
known volatility is chosen to be σ = 0.3.

The expected log-utility of the continuously trading investor is known analytically, see
Karatzas & Zhao (2001), and for our choice of market parameters it is J(1) = E[log(Xπ∗

1 )] ≈
0.0389. This can be used as an upper bound on the expected utility of the continuously trading
investor with short-selling constraints and on that of the h-investor.

In order to get an impression about the loss which is due to the incomplete information
we derive the expected utility of an investor who knows µ and can therefore implement the
strategy (µ − r)/σ2. This strategy is obviously not FS-adapted and therefore not admissible.
The corresponding expected utility is known analytically and given by

Jdrift,known(x) := log(x) + rT +
T

2σ2
(σ20 + (µ0 − r)2).

For our choice of parameters we obtain Jdrift,known(1) ≈ 0.1220. We see that the difference in
expected utility between an investor with full and one with partial information is severe. In the
following we focus on admissible strategies.

7.1.1. Comparison of Expected Utilities. For different values of h, we investigate the difference
between the expected utility of an h-investor using her optimal strategy Jh0 (1) and Jh0,α(1, 0)
which is the expected utility of an h-investor using the discretization of the optimal solution
of the continuous investor with short selling constraints (denoted by αn in Theorem 5.1). We
computed the expected utilities by Monte Carlo methods and solved the optimization problem
(4.4) by numerical optimization. We used 1.500.000 replications to derive Jh0,α(1, 0), 300.000

replications for N = 2, 4, 6 and 85.000 replications for N = 8 to derive Jh0 (1). The smaller
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Table 1. Results of MC simulations of the expected terminal utility of the h-
investor for different values of N = 1

h using first the lower-bound strategy α and
second the optimal strategy α∗.

N Jh0,α(1, 0) Jh0 (1)

2 0.0351 0.0352
4 0.0361 0.0361
6 0.0363 0.0365
8 0.0365 0.0366

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

0.039

0.0395

0.04

time lag h

ex
pe

cte
d u

tilit
y

 

 

continuous upper bound
lower bound values

Figure 1. Expected utilities Jh0,α(1, 0) (lower bound values) and J(1) (continu-

ous upper bound) for various time lags h.

number of replications in the latter case was necessary, since a numerical optimization has to
be carried out at each time step, which resulted in a longer running time. The results are
presented in Table 1. We observe that the expected utility increases with N , i.e., more frequent
portfolio adjustments increase the expected utility. The simple strategy α which just discretizes
the optimal continuous solution with short-selling constraints results only in a slightly lower
expected utility than using the optimal solution.

From Theorem 5.1 we know, that limh→0 J
h
0,α(1, 0) = Jnss(1) and obviously Jnss(1) ≤ J(1).

Figure 1 shows Jh0,α(1, 0) for different values of h and compares it to J(1). We clearly find the
discretization gap as stated in Corollary 5.4. The h-investor’s value function only converges to
Jnss(1) and not to J(1).

Figure 2 illustrates the sensitivity of the discretization gap to the time horizon T and the
variance of the prior distribution. We plot J(1) and Jnss(1). One clearly finds a loss in terminal
utility when having to obey short-selling restrictions, its magnitude increasing with a longer
time horizon or a higher variance of the prior.

7.1.2. Comparison of Strategies. In Figure 3 we plot the h-investor’s optimal strategy α∗n(s) for

fixed n and various values of s =
∑n

k=1 Z̃k = Znh representing different observation scenarios.
The same plot contains also the approximating strategy αn using the same s = Znh. One can
easily see from (3.3) that for s = Znh = 0 the approximating strategy converges to µ0−r

σ2 for
h → 0. Moreover, for fixed s = Znh 6= 0, µ̂nh converges to ±∞ for h → 0 and the sign does
depend on the value of s. Hence, since short-selling is excluded, the corresponding strategies
will converge to either 0 or 1 for h → 0, if s 6= 0. Note, that if s = Znh was not fixed we
would always find that µ̂nh → 0 as h→ 0. The main purpose of this figure, however, is to show
that the two strategies are almost identical even for larger values of h. Hence, in practice, the
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{14 ,

1
2 , 1}, µ0 = log(1.05) and σ20 ∈ { 1

12µ0,
1
3µ0, µ0}, represented by the colours

blue, green and red.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time lag h

str
ate

gy
 va

lue
s

 

 

s = 1
s = 0.5
s = 0.25
s = 0
s = −0.5
(µ

0
 − r) / σ2

Figure 3. Comparison of the h-investor’s optimal strategy α∗n(s) and the ap-
proximating strategy αn for n = 10, for different values of the sufficient statistic

s =
∑n

k=1 Z̃k = Znh and different time lags h. For every colour-coded combina-
tion the straight line gives the value of α∗n(s), while the dotted curve represents
αn.

approximating strategy can be very useful since it is available in closed form and is reasonably
close to the optimal strategy.

7.2. Unknown Volatility. In contrast to the previous setting, we now assume that the drift is
a known constant and the volatility is the unobservable random variable. We set µ = log(1.05)
and Σ−1 ∼ W1(ν,Σ

−1
0 ). We choose six different parameter combinations for ν,Σ−10 as specified

in Table 2. In scenario A, B and C we have E[Σ−1] = νΣ−10 = 12.5, while in D, E and F
E[Σ−1] = 50.

Figure 4 illustrates the distribution of Σ−1(µ−r) by showing corresponding histograms for all
6 scenarios. If Σ−1(µ− r) is used as a trading strategy within the first 3 scenarios, the no short-
selling restriction is satisfied with a very high probability. In the scenarios D, E, F, however,
being constrained to no short-selling or not makes a notable difference. The red vertical line in
Figure 4 indicates the upper bound 1 on Σ−1(µ − r) which is in place as soon as short-selling
constraints are imposed. For D, E, F we observe a significant proportion of the probability mass
outside the [0, 1] interval.
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Table 2. Market scenarios for the prior distribution of Σ−1.

scenario ν Σ−10

A 250 1/20
B 25 1/2
C 4 25/8
D 250 1/5
E 25 2
F 4 25/2

0 0.5 1 1.50

100

200

300

400

500

(a) Scenario A

0 0.5 1 1.50
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500

(b) Scenario B
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(c) Scenario C

0 1 2 3 4 50
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(d) Scenario D
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100

200

300

400

500

(e) Scenario E
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(f) Scenario F

Figure 4. Histogram obtained by simulating Σ−1(µ− r) for all 6 scenarios.

Again, we are interested in the discretization gap. We can easily compute Jvol, the expected
utility of the continuous investor without short-selling constraints, since this is available in closed
form, see (6.2).

The optimal solution to the h-investor’s problem with unknown volatility is difficult to cal-
culate, but we can use some approximations:
When trading continuously, the volatility can be determined with any desired precision over an
arbitrary small compact interval, thus the continuous investor will invest optimally when holding
Merton’s ratio Σ−1(µ − r) in the stock. Applying this strategy in discrete time is denoted by
αvol,known,N , where N = T/h. Restricting it to no short-selling leads to a strategy denoted by
αvol,known,N . These strategies are obviously not FR-adapted and therefore not admissible for
the h-investor, but they are useful for our comparisons.

We also consider the following strategies which are admissible for the h-investor since the
unknown Σ−1 is replaced by the estimator defined in (6.6):

αvol,est,Nn (s) := Σ̂−1,h(s,
⌊n

2

⌋
)(µ− r),

αvol,est,Nn (s) := max{0,min{1, Σ̂−1,h(s,
⌊n

2

⌋
)(µ− r)}},

where n = 0, 1, . . . , N − 1 and the latter obeys short-selling restrictions. Here s denotes again
the value of the sufficient statistic. By Monte Carlo simulation (2 Million replications) we have
found the results given in Table 3.

Clearly and as expected, taking into account additional information gives an advantage to
the investor. Additional information is particularly useful if the estimator is not very precise
yet due to a high variance of the prior.
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Table 3. Expected terminal utility for strategies with either estimated or known
parameter Σ−1 for different N and different scenarios.

N = 4 N = 200 N = 2000 continuous

Jh,vol0,α

(
1, (0, 0)

)
Jh,vol0,α

(
1, (0, 0)

)
Jh,vol0,α

(
1, (0, 0)

)
Jvol(1)

α αvol,est,4 αvol,known,4 αvol,est,200 αvol,known,200 αvol,est,2000 αvol,known,2000 π

A 0.03181 0.03183 0.03182 0.03184 0.03185 0.03186 0.03187
B 0.03164 0.03182 0.03177 0.03184 0.03185 0.03186 0.03187
C 0.02984 0.03183 0.03165 0.03183 0.03182 0.03184 0.03187

Standard deviations of Jh,vol0,α

(
1, (0, 0)

)
∈ [0.000048, 0.000065] for A, B, C. -

D 0.03868 0.03874 0.03868 0.03873 0.03874 0.03876 0.03880
E 0.03799 0.03853 0.03835 0.03853 0.03852 0.03856 0.03880
F 0.03144 0.03763 0.03723 0.03759 0.03757 0.03761 0.03880

Standard deviations of Jh,vol0,α

(
1, (0, 0)

)
∈ [0.000076, 0.000127] for D, E, F. -

Table 4. Discretization gap Jvol(1) − Jh,vol
0,αvol,known,2000

(1, (0, 0)), dif-

ference between continuous and discrete trading for continuous ob-

servations Jh,vol
0,αvol,known,2000

(1, (0, 0)) − Jh,vol
0,αvol,known,4

(1, (0, 0)), and differ-

ence between continuous and discrete observations for discrete trading

Jh,vol
0,αvol,known,4

(1, (0, 0))− Jh,vol
0,αvol,est,4

(1, (0, 0)).

scen. discretization gap cont. - disc. trading cont. - disc. observations
with cont. observations with disc. trading

A 0.00001 0.00003 0.00002
B 0.00001 0.00004 0.00018
C 0.00003 0.00001 0.00199

D 0.00004 0.00002 0.00006
E 0.00024 0.00003 0.00054
F 0.00119 0.00098 0.00619

Table 4 shows the discretization gap for unknown volatility. Since Jvol,nss(1) is not available

in closed form, we approximate it by Jh,vol
0,αvol,known,2000

(1, (0, 0)) which can be justified by Theorem

6.3. We find that the discretization gap is small in scenarios A-C. Moreover, it is still within
the size of the standard deviation of our estimator. This result is not too surprising, given that
the no short-selling restriction in these scenarios is satisfied with a very high probability anyway
and hence the difference between Jvol(1) and Jvol,nss(s) is expected to be small.

The situation is very different in scenarios D-F. Even if we account for the standard deviation
of the estimator, the discretization gap is clearly there and becomes more obvious when we move
from D to F . In these scenarios the no short-selling restriction is usually not automatically
satisfied and therefore these results seem natural.

Next we compare the difference between continuous and discrete trading assuming that we

have continuous observations. We compare Jh,vol
0,αvol,known,2000

(1, (0, 0)) as an approximation for

continuous trading with Jh,vol
0,αvol,known,4

(1, (0, 0)) which represents discrete trading. We find that

the difference is rather small.
The story is very different if we account for the different information of the discrete and

the continuous investor. We compare Jh,vol
0,αvol,known,4

(1, (0, 0)), i.e., the expected utility of the

h-investor who was told the volatility, with Jh,vol
0,αvol,est,4

(1, (0, 0)) which is the expected utility she

gains from using the 2-step-volatility estimator defined in (6.6). The difference in expected utility
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is severe. Given that N = 4, the estimator for the volatility is only based on two observations
and therefore not very precise yet. Therefore the loss in expected utility is large.

Generally, we find that if the volatility is unknown the information loss is the main problem
for the h-investor.

8. Conclusion

We have derived optimal trading strategies for an investor who can only trade at discrete time
points and does not observe all market parameters. We have provided a detailed comparison
between the h-investor and the continuous investor regarding their optimal strategies and their
expected utilities.

For unknown drift, we have proved that the estimators of the drift of the continuous and the
h-investor coincide at the discrete trading times. The expected utility of the h-investor, however,
does not converge to the expected utility of the continuous investor for h → 0. This is due to
the fact that the h-investor’s optimal strategy excludes short-selling whereas for the continuous
investor this is not the case. The arising discretization gap is just the difference between the
expected utility of the continuous investors with and without short-selling constraints.

For unknown volatility, already the estimators between the two types of investors differ. The
continuous investor can perfectly estimate the unknown volatility from a very small time frame
of available stock prices and effectively works under full information. The h-investor, however,
loses relevant information by observing the asset price at discrete time and therefore has a
disadvantage. We still observe a very similar limiting behaviour for h→ 0. Again the expected
utility of the h-investor only converges to the expected utility of the continuous investor satisfying
short-selling constraints, i.e., again the discretization gap occurs.

For both situations (unknown drift, unknown volatility, respectively) we have provided simple
strategies for the h-investor which are almost optimal, simple to implement and ensure that the
corresponding expected utility converges to the optimal expected utility.

Of course, it is also possible to combine the situation of unknown drift and unknown volatility,
but we leave this for future research.

Our results under incomplete information are in contrast to those under full information, see
Rogers (2001), where the discretization gap does not occur. Hence, we have found a natural
example in which a discretization of a continuous problem does not converge to the continuous
solution when the size of the time step approaches zero.

Proofs

Proof of Theorem 5.1. The second equality holds by definition, therefore we only need to prove
the first equality. The expected log-utility of the continuous investor can be written as:

Jnssπ (x) = Ex logX
π
T = log(x) + Ex

[∫ T

0

(
r + π>s (µ− r1)− 1

2
π>s Σπs

)
ds

]
and the expected log-utility of the h-investor is

Jh0,α(x, 0) = Ex logX
α
N = log(x) + rT +

N∑
n=1

Ex log
(
1 + α>n−1Rn

)
.

So it is obviously sufficient to show that

lim
h→0

N∑
n=1

Ex log
(
1 + α>n−1Rn

)
= Ex

[∫ T

0

(
π>s (µ− r1)− 1

2
π>s Σπs

)
ds

]
.

We first prove:

E
[

log(1 + α>n−1Rn)
]

= E
[
π>(n−1)h(µ− r1)h− 1

2
π>(n−1)hΣπ(n−1)hh

]
+ o(h).
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For a fixed time point t = (n − 1)h write α = αn−1 = πt. Using the tower property of

the conditional expectation we treat the FRn−1-measurable αn−1 as given and write Et for the

conditional expectation. Consider the function f : Rd → R defined by:

f(x1, . . . , xd) = log
(

1 +

d∑
i=1

αi(e
xi − 1)

)
.

If we set Ỹ i
n := (µi − r)h− 1

2‖σ
i‖2h+

√
hσiεn then

Et
[

log(1 + α>Rn)
]

= Etf(Ỹ 1
n , . . . , Ỹ

d
n ).

Next use a Taylor series expansion of f around 0 = (0, . . . , 0). We use the notation Dif for the
partial derivative w.r.t xi and θ ∈ (0, 1):

f(x) = f(0) +
d∑
i=1

Dif(0)xi +
1

2

d∑
i,j=1

DiDjf(0)xixj +
1

6

d∑
i,j,k=1

DiDjDkf(θx)xixjxk.

Computing the derivatives we obtain: Dif(0) = αi, DiDjf(0) = −αiαj for i 6= j and (Di)
2f(0) =

αi(1− αi). Further note that |DiDjDkf(θỸn)| ≤ 1. Thus, our statement follows, since

Et
[

log(1 + α>Rn)
]

=
d∑
i=1

αiEtỸ i
n −

1

2

d∑
i,j=1

αiαjEtỸ i
nỸ

j
n +

1

2

d∑
i=1

αiEt(Ỹ i
n)2 + o(h)

= α>(µ− r1)h− 1

2
α>Σαh+ o(h).

We obtain with dominated convergence, the fact that the constants in front of o(h) can be made
independent of n (due to stationarity) and the P-a.s. continuity of t 7→ πt that

lim
h→0

T/h∑
n=1

Ex log
(
1 + α>n−1Rn

)
=

= lim
h→0

( T/h∑
n=1

Ex
[
π>(n−1)h(µ− r1)h− 1

2
π>(n−1)hΣπ(n−1)hh

]
+

T/h∑
n=1

o(h)
)

= Ex
[

lim
h→0

T/h∑
n=1

π>(n−1)h(µ− r1)h− 1

2
π>(n−1)hΣπ(n−1)hh

]
+ lim
h→0

o(1)

= Ex
[∫ T

0
π>s (µ− r1)− 1

2
π>s Σπs, ds

]
which implies the result. �

Proof of Theorem 5.3 . Using the same Taylor expansion as in the previous proof we can write
the optimization problem in (4.4) as∫ ∫

log
(
1 + a>ẑ

)
QZ̃(dz̃|m)µ(dm|s, n) =

=

∫ ∫ ( d∑
i=1

ai
(
z̃i − 1

2
‖σi‖2h− rh

)
− 1

2

d∑
i,j=1

aiaj z̃
iz̃j +

1

2

d∑
i=1

ai‖σi‖2h
)
QZ̃(dz̃|m)µ(dm|s, n) + o(h)

=
(
a>(µ̂t − r1)− 1

2
a>Σa

)
h+ o(h).

If we define f(a) := a>(µ̂t − r1)− 1
2a
>Σa then

fh(a) =
1

h

∫ ∫
log
(
1 + a>ẑ

)
QZ̃(dz̃|m)µ(dm|s, n)
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has the property that fh → f for h → 0 and the constant in front of o(h) can be chosen
independent of a. Since D is compact, a 7→ fh(a) is continuous and strictly concave, i.e., the
maximum point of fh is unique, we obtain our statement with Theorem A.1.5 in Bäuerle &
Rieder (2011). �

Proof of Theorem 6.2. First observe that the strong law of large numbers implies

lim
h→0

Σ̂h
( b t2h c∑
k=1

ỸkỸ
>
k , b

t

2h
c
)

= lim
h→0

1

ν − d− 1 + b t2hc

(
Σ0 +

1

2h

b t
2h
c∑

k=1

ỸkỸ
>
k

)
= Σ, P-a.s..

Since the limit is independent of t, the convergence is also uniform on compact intervals of
the form [ε, T ] for ε > 0. Hence, when we denote the objective function of (6.3) by f(a) :=
a>(µ− r1)− 1

2a
>Σa and by

fh(a) := a>(µ− r1)− 1

2
a>Σ̂h

( b t2h c∑
k=1

ỸkỸ
>
k , b

t

2h
c
)
a

the objective function of (6.7), we obviously have fh → f for h → 0. Since D is compact and
a 7→ fh(a) is continuous and strictly concave, we obtain the statement with Theorem A.1.5 in
Bäuerle & Rieder (2011). �

Proof of Theorem 6.3. As in the proof of Theorem 5.1 we have

Ex log
(
1 + αh,vol>n−1 Rn

)
= Ex

[
πh,vol>(n−1)h(µ− r1)h− 1

2
πh,vol>(n−1)hΣπh,vol(n−1)hh

]
+ o(h).

Since the convergence of the portfolio strategy is uniform on intervals [ε, T ] the statement finally
follows as in Theorem 5.1. �

Proof of Corollary 6.4. With Theorem 6.3 and

Jh,vol
0,αh,vol

(x) ≤ Jh,vol0 (x) ≤ Jvol,nss(x)

we obtain the result. �
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