
March 29, 2010, 12:00
Draft, don’t distribute

CONTROL IMPROVEMENT FOR JUMP-DIFFUSION
PROCESSES WITH APPLICATIONS TO FINANCE

NICOLE BÄUERLE∗ AND ULRICH RIEDER‡

Abstract: We consider stochastic control problems with jump-diffusion processes
and formulate an algorithm which produces, starting from a given admissible con-
trol π, a new control with a better value. If no improvement is possible, then
π is optimal. Such an algorithm is well-known for discrete-time Markov Decision
Problems under the name Howard’s policy improvement algorithm. The idea can
be traced back to Bellman. Here we show with the help of martingale techniques
that such an algorithm can also be formulated for stochastic control problems with
jump-diffusion processes. As an application we derive some interesting results in
portfolio optimization.
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1. Introduction

For discrete-time Markov control problems (also known under the name Markov
decision problems) there exists a well-known algorithm which produces, starting
from a given admissible control π, a new control with a better value. If no im-
provement is possible, then π is optimal. This algorithm is known under the name
Howard’s policy improvement algorithm and has been proposed by Howard (see
Howard (1960)). In this paper now we consider continuous-time stochastic control
problems for jump-diffusion processes and formulate a corresponding improvement
algorithm. The idea is rather general and holds in principle for a large class of
control problems including controlled Lévy processes, given some technical condi-
tions are satisfied. Indeed related ideas can be found in Fleming and Rishel (1975)
p. 168 (in the case of diffusion processes) and Schmidli (2008) p.48 for showing
the existence of solutions of HJB equations. But both do not use the concept to
improve controls or characterize optimal policies. In order to keep the exposition
simple we restrict here to controlled jump-diffusions. Still in this case for the gen-
eral problem the usual continuity and growth conditions have to be satisfied, so
it is often easier to apply the algorithm to specific problems. For the theory of
general stochastic control problems see e.g. Fleming and Soner (1993), Yong and
Zhou (1999), Kushner and Dupuis (2001) or Øksendal and Sulem (2005).
The algorithm can be used in different ways: First it can be used to improve a
naive control which arises from ad hoc considerations. Second it can be used to
identify conditions under which a certain control is optimal.
The paper is organized as follows: In the next section we introduce the finite
horizon stochastic control problem and a number of technical assumptions. In

c©0000 (copyright holder)

1



2 N. BÄUERLE AND U. RIEDER

Section 3 we present the improvement algorithm and show its properties. We also
shortly investigate the infinite horizon problem which is not much different. In the
last section we give some applications from portfolio optimization. We consider
a jump-diffusion financial market and show that the ”invest all the money in the
bond” strategy is optimal if and only if the drift of the stock is the same as the
drift of the bond. Moreover, we prove that the CRRA-utility functions are the only
utility functions U : (0,∞) → R with U ∈ C2 where the optimal portfolio invests a
constant fraction of the wealth in the stock.

2. The Model

The method we present here is quite general and we have decided to explain it in
the framework of controlled jump-diffusion problems for the sake of readability. All
appearing processes are defined on the filtered probability space (Ω,F , (Ft), P ).
In what follows W = (W1, . . . ,Wm) is an m-dimensional Brownian motion and
N = (N1, . . . , Nl) are independent homogeneous Poisson random measures w.r.t.
(Ft). More precisely Nj(t, B) is the number of jumps of process j with size in B ∈
B, 0 /∈ B which occur up to time t. Let νj(B) = E Nj(1, B) be the corresponding
Lévy measure and

Ñj(dt, dzj) = Nj(dt, dzj)− νj(dzj)dt

the compensated Poisson random measure. The n-dimensional controlled state
process X = (X1, . . . , Xn) is given by

dXi(t) = µi(t, Xt, πt)dt +
m∑

j=1

σij(t, Xt, πt)dWj(t) + (2.1)

+
l∑

j=1

∫
γij(t, Xt−, πt−, zj)Ñj(dt, dzj)

for i = 1, . . . , n where π = (πt) is a càdlàg (Ft)-adapted control process with values
in D ⊂ Rd. We say that π is admissible and write π ∈ A(t, x) if Xt = x and (2.1)
has a unique strong solution. In this section we will investigate a control problem
with finite time horizon T > 0. Let us denote E := [0, T ] × Rn. The coefficient
functions are given by µ : E ×D → Rn, σ : E ×D → Rn×m, γij : E ×D × R → R
and are supposed to be continuous in t and x. We will also use the notation γ(j) :=
(γ1j , . . . , γnj), j = 1, . . . , l. The function we want to maximize is for π ∈ A(t, x)
given by

Jπ(t, x) := Et,x

[∫ T

t

g(s,Xs, πs)ds + h(XT )

]
, (t, x) ∈ E

where Et,x[·] = E[·|Xt = x] and g : E×D → R is the running reward and h : Rn → R
the terminal reward. Both functions are assumed to be continuous. Note that
Jπ(T, x) = h(x) for all π. The value function is denoted by

J(t, x) = sup
π∈A(t,x)

Jπ(t, x), (t, x) ∈ E.

It is well-known (see Øksendal and Sulem (2005)) that under some mild conditions
the optimal control π∗ = (π∗t ) can be found among the Markov controls, i.e. there
exists a feedback function π∗ : E → D such that π∗t = π∗(t,X∗

t ) where X∗ is the
corresponding state process. With an abuse of notation we will write π for the
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control process as well as for the feedback function. The correct notion should
always be clear from the context. We assume that

sup
π∈A(t,x)

Et,x

[∫ T

t

|g(s,Xs, πs)|ds + |h(XT )|

]
< ∞. (2.2)

The generator of the state process is for v ∈ C1,2 and (t, x) ∈ E, u ∈ D given by

Av(t, x, u) := vt(t, x) +
n∑

i=1

vxi
(t, x)µi(t, x, u) +

1
2

n∑
i,j=1

(σσT )ij(t, x, u)vxixj
(t, x) +

+
l∑

j=1

∫ (
v
(
t, x + γ(j)(t, x, u, zj)

)
− v(t, x)−∇xv(t, x)γ(j)(t, x, u, zj)

)
νj(dzj).

Let π, π̂ ∈ A(t, x) and suppose X̂ is the state process which belongs to π̂. The
following assumption is important in applying the Dynkin formula later:

Et,x

[
h(X̂T ) +

∫ T

0

‖AJπ(s, X̂s, π̂s)‖+ ‖σT (s, X̂s, π̂s)∇xJπ(s, X̂s)‖2 +

+
∫ k∑

j=1

|Jπ
(
s, X̂s + γ(j)(s, X̂s, π̂s, zj)

)
− Jπ(s, X̂s)|2νj(dzj)ds

]
< ∞. (2.3)

We will refer to it when necessary.

3. Improvement of Controls

Given an admissible control π, the following algorithm constructs a new control π̂
with a higher value and if an improvement is not possible, then we can conclude
that π is optimal. The algorithm is as follows:

Control Improvement Algorithm:
(a) Suppose π is an admissible control and the corresponding value function

satisfies Jπ ∈ C1,2(E).
(b) Define a new feedback function π̂(t, x) such that it maximizes

u 7→ g(t, x, u) +AJπ(t, x, u), u ∈ D

for all (t, x) ∈ E and suppose that π̂(t, x) defines an admissible control π̂t :=
π̂(t, X̂t). If π(t, x) is among the maximum points, then set π̂(t, x) := π(t, x).

The new control π̂ has the following properties:

Theorem 3.1. Let I := {(t, x) ∈ E : g(t, x, π̂(t, x)) + AJπ(t, x, π̂(t, x)) > 0} and
suppose π̂ satisfies (2.3).

a) If I 6= ∅, then J π̂(t, x) ≥ Jπ(t, x) for all (t, x) ∈ E and J π̂(t, x) > Jπ(t, x)
for (t, x) ∈ I.

b) If I = ∅ then π̂ is an optimal control.

Proof. Suppose π is an admissible control with state process X and the correspond-
ing value function satisfies Jπ ∈ C1,2(E). The process M t,π defined for s ∈ [t, T ]
by

M t,π
s :=

∫ s

t

g(r, Xr, πr)dr + Jπ(s,Xs)
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is a martingale for all t and π. This is easily seen since (2.2) holds and for t ≤ s <
τ ≤ T we obtain:

Jπ(s,Xs) = E
[∫ τ

s

g(r, Xr, πr)dr + Jπ(τ,Xτ )
∣∣∣Fs

]
.

An application of Itô’s Lemma to the process X and the function Jπ yields:

dMτ,π
t = g(t, Xt, πt)dt + dJπ(t, Xt)

= g(t, Xt, πt)dt +AJπ(t,Xt, πt)dt + Jπ
x (t, Xt)σ(t, Xt, πt)dWt

+
∫

R
Jπ

(
t, Xt− + γ(t, Xt, πt, z)

)
− Jπ(t, Xt−)Ñ(dt, dz).

Since Mτ,π is a martingale we must have

g(t, x, π(t, x)) +AJπ(t, x, π(t, x)) = 0 (3.1)

for all (t, x) where π(t, x) is the feedback control of π. Next suppose π̂ is obtained
by the algorithm and satisfies the stated properties. In particular X̂ is the state
process derived by π̂. An application of the Dynkin formula (see e.g. Øksendal and
Sulem (2005) Theorem 1.24 and note that (2.3) holds) to the process X̂ and the
function Jπ yields:

Et,x[Jπ(T, X̂T )]− Jπ(t, x) = Et,x

[ ∫ T

t

AJπ(s, X̂s, π̂s)ds
]

≥ −Et,x

[ ∫ T

t

g(s, X̂s, π̂s)ds
]

where the inequality follows from (3.1) and the fact that π̂ maximizes this expres-
sion. Arranging terms and noting that Jπ(T, X̂T ) = h(X̂T ) we obtain:

J π̂(t, x) ≥ Jπ(t, x), (t, x) ∈ E.

The inequality is strict if (t, x) ∈ I, since then g(t, x, π̂(t, x))+AJπ(t, x, π̂(t, x)) > 0
and due to the continuity assumptions on g and Jπ and its derivatives and the con-
tinuity of t 7→ X̂t in a small time intervall with positive probability, this inequality
is also satisfied in an environment of (t, x) with positive probability which yields
part a).
If I = ∅, i.e. no improvement is possible, then π̂ = π. Let π̃ ∈ A(t, x) be an
arbitrary admissible control with state process X̃. Since

g(t, x, π̃(t, x)) +AJπ(t, x, π̃(t, x)) ≤ 0,

the process Y t,π̃ defined for s ∈ [t, T ] by

Y t,π̃
s :=

∫ s

t

g(r, X̃r, π̃r)dr + Jπ(s, X̃s)

is a supermartingale for all t and π̃. Hence

Jπ(t, x) = Et,x[Y t,π̃
t ] ≥ Et,x[Y t,π̃

T ]

= Et,x

[ ∫ T

t

g(r, X̃r, π̃r)dr + Jπ(T, X̃T )
]

= J π̃(t, x)

and π̂ = π is optimal. �
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Remark 3.2. The statement in Theorem 3.1 indeed implies that I = ∅ if and
only if π̂ is an optimal control. This makes it possible to characterize within a
parametric model the optimality of certain controls. Moreover, it is easily shown
that I = ∅ if and only if π̂(t, x) maximizes

u 7→ g(t, x, u) +AJ(t, x, u), u ∈ D

for all (t, x) ∈ E.

Now suppose (πk)k∈N is a sequence of admissible controls which are generated by
the algorithm satisfying (2.3) together with the corresponding value functions (Jk)
where Jk := Jπk

. Since Jk(t, x) is increasing in k the limit J∞ := limk→∞ Jk

obviously exists. We obtain the following result:

Theorem 3.3. Suppose that the following assumptions are satisfied:
(i) limk→∞ Jk =: J∞ ∈ C1,2 and Jk

t → J∞t , Jk
x → J∞x , Jk

xx → J∞xx uniformly
on E and J∞ satisfies (2.3) for all π ∈ A(t, x).

(ii) µ, σ and γ are bounded, i.e. there exists a K > 0 such that |µ|, |σ|, |γ| ≤ K.
Let π be a control defined by the maximizer of J∞ as in step (b) of the algorithm.
Then J = J∞ and π is optimal.

Proof. In what follows we write Xk instead of Xπk

. From the previous proof we
know that for (t, x) ∈ E:

Jk(t, x) = Jk−1(t, x) + Et,x

[ ∫ T

t

g(s,Xk
s , πk

s ) +AJk−1(s,Xk
s , πk

s )ds
]

= Jk−1(t, x) + Et,x

[ ∫ T

t

sup
u∈D

{g(s,Xk
s , u) +AJk−1(s,Xk

s , u)}ds
]
.

Letting k →∞ we obtain

lim
k→∞

Et,x

[ ∫ T

t

sup
u∈D

{g(s,Xk
s , u) +AJk−1(s,Xk

s , u)}ds
]

= 0. (3.2)

Now we claim that J∞ satisfies the HJB equation, i.e.

sup
u∈D

{g(t, x, u) +AJ∞(t, x, u)} = 0, (t, x, u) ∈ E ×D

which then implies the statement. This statement is shown by contradiction: Sup-
pose there exists a (t, x) ∈ E such that

g(t, x, u∗) +AJ∞(t, x, u∗) = ε1 > 0 (3.3)

for an u∗ ∈ D. By assumption (i) we can choose k0 and ε1 � ε2 > 0 such that for
all k ≥ k0:

max{|J∞ − Jk|, |J∞t − Jk
t |, |J∞x − Jk

x |, |J∞xx − Jk
xx|} < ε2.

Then we obtain by our assumption (iii) that there exists an ε3 > 0 such that

g(t, x, u∗) +AJk(t, x, u∗) > ε3 > 0, ∀k ≥ k0.

But this is a contradiction to (3.2) which can be seen as follows: By construction
we know that a.s.:

sup
u∈D

{g(s,Xk
s , u) +AJk−1(s,Xk

s , u)} ≥ 0.
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Moreover, it follows again from assumption (iii) that there exist δ1, δ2, δ3 > 0 such
that for all policies π

P0,x(Xπ
s ∈ Uδ1(x) for all 0 ≤ s ≤ δ2) > δ3.

Hence the continuity of (t, x) 7→ g(t, x, u∗) +AJk(t, x, u∗) together with (i) implies
that besides (3.3) the expression is also positive with positive probability for all
k ≥ k0 in a small time interval when we insert the state process Xk. �

The problem can be treated similar when T is replaced by a stopping time τ . Let
us now consider a problem with infinite horizon, i.e. we want to maximize

Jπ(t, x) := Et,x

[∫ ∞

t

g(s,Xs, πs)ds

]
, (t, x) ∈ E.

We assume that

sup
π∈A(t,x)

Et,x

[∫ ∞

t

|g(s,Xs, πs)|ds

]
< ∞.

In principle the same improvement algorithm can be used here. We obtain the
following result:

Theorem 3.4. Let I := {(t, x) ∈ E : g(t, x, π̂(t, x)) + AJπ(t, x, π̂(t, x)) > 0} and
suppose π̂ satisfies (2.3) for all T > 0.

a) If I 6= ∅ and lim infT→∞ Et,x Jπ(T, X̂T ) ≤ 0, then J π̂(t, x) ≥ Jπ(t, x) for
all (t, x) ∈ E and J π̂(t, x) > Jπ(t, x) for (t, x) ∈ I.

b) If I = ∅ and lim supT→∞ Et,x Jπ(T, X̃T ) ≥ 0 for all π̃ ∈ A(t, x), then π is
an optimal control.

Proof. As in the proof of Theorem 3.1 we obtain

Jπ(t, x) ≤ Et,x

[ ∫ T

t

g(s, X̂s, π̂s)ds
]

+ Et,x[Jπ(T, X̂T )]

for all T > 0. Taking lim infT→∞ we obtain with dominated convergence and our
assumption that

Jπ(t, x) ≤ Et,x

[ ∫ ∞

t

g(s, X̂s, π̂s)ds
]

= J π̂(t, x).

If I = ∅, i.e. no improvement is possible, then the proof is as in Theorem 3.1. �

4. Applications

In this section we show how the improvement algorithm can be used to prove some
theoretical results.
Let us consider the following portfolio optimization problem (for other financial
optimization problems see Pham (2009)): The financial market is given by one
risky asset and one riskless bond with the following dynamics for t ∈ [0, T ]:

• The price process (S0
t ) of the riskless bond is given by

S0
t := ert,

where r ≥ 0 denotes the fixed continuous interest rate.
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• The price process (St) of the risky asset satisfies the stochastic differential
equation:

dSt = St−
(
µdt + σdWt +

∫ ∞

−1

zÑ(dt, dz)
)

where µ ∈ R, σ > 0 are given constants and
∫∞
−1

zν(dz) < ∞. The initial
price Sk

0 is assumed to be fixed and strictly positive.
Note that this market is free of arbitrage. Further we suppose that our investor
has a strictly increasing and strictly concave utility function U : (0,∞) → R with
U ∈ C2, i.e. we have to make sure that Xπ

T > 0 a.s.. Thus, since the market
is free of arbitrage, we have to make sure that the wealth process stays positive
a.s. which in turn implies that we have to exclude short-sellings and we can define
portfolio strategies in terms of invested fractions of the wealth. So in what follows,
an admissible portfolio strategy is given by an (Ft)-adapted stochastic process (πt)
with values in D := [0, 1] where πt gives the fraction of wealth invested in the
stock at time t. The quantity 1− πt is the fraction invested in the bond, thus the
portfolio is self-financing. Let us denote by A(t, x) the set of all admissible portfolio
strategies when we start at time t ∈ [0, T ] with initial capital x > 0. The dynamics
of the wealth process is

dXπ
t = Xπ

t−

(
rdt + πt− · (µ− r)dt + πt−σdWt + πt−

∫ ∞

−1

zÑ(dt, dz)
)
. (4.1)

The portfolio problem is then to find

J(t, x) := sup
π∈A(t,x)

E[U(Xπ
T )|Xπ

t = x].

Note that the problem satisfies the continuity requirements of section 2.
The Arrow-Pratt measure of relative risk aversion is defined by

−xU ′′(x)
U ′(x)

.

The utility function U is a CRRA-utility function if the Arrow-Pratt measure of
relative risk aversion is constant (CRRA=constant relative risk aversion). For x >
0, define xγ = log x if γ = 0 and xγ = 1

γ xγ if γ < 1, γ 6= 0. If U is a CRRA-utility
function, then U(x) = axγ + b for appropriate constants a > 0, b ∈ R and γ < 1
and moreover

−xU ′′(x)
U ′(x)

= 1− γ.

It is well-known that if U is a CRRA-utility function, then the optimal portfolio
strategy is to invest a constant fraction π∗ in the stock (see Øksendal and Sulem
(2005), chapter 3). Now we are interested in the following two questions:

• Are there other utility functions where it is optimal to invest a constant
fraction of the wealth in the stock?

• When is the strategy ”invest all the money in the bond” optimal?
The second problem is rather easy to solve:

Theorem 4.1. Let U be an arbitrary utility function. The ”invest all the money
in the bond”-strategy is optimal if and only if µ ≤ r.
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Proof. Suppose U is an arbitrary utility function. We consider the portfolio strategy
πt ≡ 0. The corresponding value function is obviously Jπ(t, x) = U(xer(T−t)). Note
that by our assumption Jπ ∈ C1,2. This strategy is optimal if and only if it cannot
be improved by the algorithm. For an improvement we have to maximize

u 7→ AJπ(t, x, u), u ∈ [0, 1]

where the generator is given by

AJπ(t, x, u) = Jπ
t + Jπ

x x(r + u(µ− r)) +
1
2
Jπ

xxx2u2σ2 +

+
∫ ∞

−1

(
Jπ(t, x + uxz)− Jπ(t, x)− Jπ

x (t, x)uxz
)
ν(dz).

Obviously u 7→ AJπ(t, x, u) is concave. Thus π∗ ≡ 0 is again a maximizer if and
only if

∂

∂u
AJπ(t, x, u)|u=0 ≤ 0. (4.2)

Differentiating we obtain:

∂

∂u
AJπ(t, x, u) = (µ− r)xJπ

x + σ2x2uJπ
xx +

+
∫ ∞

−1

(
Jπ

x (t, x + uxz)xz − Jπ
x (t, x)xz

)
ν(dz)

and (4.2) is satisfied if and only if (µ− r)xJπ
x ≤ 0. Since xJπ

x ≥ 0 it must hold that
µ ≤ r. �

Remark 4.2. Suppose now we have a Black-Scholes market, i.e. there are no
jumps in the stock price. In case µ 6= r, the first improvement of the ”invest all the
money in the bond”-strategy is then given by

π̂(t, x) = − U ′(xer(T−t))
U ′′(xer(T−t))xer(T−t)

· (µ− r)
σ2

.

It relies on the Arrow-Pratt measure of relative risk aversion

−U ′′(xer(T−t))xer(T−t)

U ′(xer(T−t))
and

(µ− r)
σ2

which is the Merton-ratio. When the utility function a CRRA-utility function, then

− U ′(xer(T−t))
U ′′(xer(T−t))xer(T−t)

=
1

1− γ

and the first improvement yields already the optimal investment strategy.

The answer to the first question is a little bit more demanding. Let us therefore
consider the special case that the Lévy measure is concentrated on (0,∞), i.e.
jumps are only upwards and that 2

∫
xν(dx) < µ − r. In this case we can allow

D := [0,∞). Under these assumptions the answer to the first question is given in
the next theorem:

Theorem 4.3. The CRRA-utility functions are the only utility functions where the
optimal portfolio invests a constant positive fraction of the wealth in the stock.
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Proof. Suppose U is an arbitrary utility function. We consider the portfolio strat-
egy which invests the constant fraction πt ≡ π > 0 in the stock and denote the
corresponding value function by Jπ. Note that

Jπ(t, x) = E U
(
x exp

(
(r + (µ− r)π − 1

2
π2σ2)(T − t) + σπWT−t +∫ T

t

∫
log(1 + πy)Ñ(ds, dy)

))
and hence Jπ ∈ C1,2. Further it follows directly that x 7→ Jπ(t, x) is strictly
increasing and strictly concave. Thus in particular Jπ

xx ≤ 0 and the mapping
u 7→ AJπ(t, x, u) is concave. Hence the strategy πt ≡ π is optimal if and only if
it cannot be improved by the algorithm. This means that Jπ and π are optimal if
and only if π is a maximum point of u 7→ AJπ(t, x, u), u ≥ 0, i.e.

(µ− r)Jπ
x + Jπ

xxσ2xπ +
∫ ∞

0

(
Jπ

x (t, x + πxz)z − Jπ
x (t, x)z

)
ν(dz) = 0 (4.3)

and we must have AJπ(t, x, π) = 0, i.e.

Jπ
t + (r + (µ− r)π)xJπ

x +
1
2
Jπ

xxσ2x2π2 +

+
∫ ∞

0

(
Jπ(t, x + πxz)− Jπ(t, x)− Jπ

x (t, x)πxz
)
ν(dz) = 0. (4.4)

Equation (4.3) is independent of t, i.e. we may set h(x) = Jπ
x (t, x) and obtain

h′(x) +
µ− r −

∫
zν(dz)

σ2xπ
h(x) = − 1

σ2xπ

∫ ∞

0

(
h(x + πxz)z

)
ν(dz) (4.5)

We claim now that under our assumption the integro-differential equation (4.5) has
a unique bounded solution on [ε,∞) for arbitrary ε > 0 with initial value h(ε) = h0.
This statement is shown in the Appendix. Now depending on the precise value of
π > 0, the solution of (4.5) (up to constants) can have two different forms. It can
either be

h(x) = xγ−1, γ < 1, γ 6= 0
in which case π is the solution of

f(π; γ) =
(
µ− r −

∫
zν(dz)

)
+ (γ − 1)σ2π +

∫ ∞

0

z(1 + πz)γ−1ν(dz) = 0.

Note that this equation has a unique solution π(γ) on (0,∞), since f(0; γ) = µ−r >
0 and π 7→ f(π; γ) is continuous and decreasing to −∞. The other possible solution
is

h(x) =
1
x

in which case π is the solution π(0) of f(π; 0) = 0. Moreover, it is possible to
show that γ 7→ f(π; γ) is strictly increasing (as long as π 6= 0) which implies that
γ 7→ π(γ) is strictly increasing. In total we know that every π ∈ (0,∞) is the
zero of exactly one f(π; γ) which identifies γ. The functions f(π; γ) are plotted for
γ = −0.5, 0, 0.5 and parameters µ−r = 0.1,

∫
zν(dz) = 1

2 , σ2 = 0.04, ν = Unif(0, 1)
in figure 1.
Thus, the possible solutions for Jπ are given by

(a) Jπ(t, x) = a(t)
γ xγ + b(t), a(t) > 0, t ∈ [0, T ].

(b) Jπ(t, x) = a(t) log x + b(t), a(t) > 0, t ∈ [0, T ].
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0

0.1

1 2 3 4 5
pi

Figure 1. Function π 7→ f(π, γ) for γ = 0.5 (upper line), γ = 0
and γ = −0.5 (lower line).

Inserting these expressions into equation (4.4) yields in the first case b(t) ≡ b and

a(t) = exp
(
−

(
γ(r+(µ−r)π)+

1
2
γ(γ−1)σ2π2+

∫ ∞

0

(1+πz)γ−(1+γπz)ν(dz)
)
t
)
.

In the second case we obtain a(t) ≡ a and

b(t) = a
(1

2
σ2π2 − r − (µ− r)π +

∫
zπ − log(1 + πz)ν(dz)

)
t + b, b ∈ R.

Both solutions are unique up to a multiplicative constant which proves the state-
ment. �

Remark 4.4. From the proof of Theorem 4.3 it follows that the optimal portfolio
fraction π∗ = π∗(γ) is strictly increasing in γ, where 1 − γ is the Arrow-Pratt
measure of relative risk aversion of the utility function, i.e. the more risk averse
the investor is, the less she invests into the stock.

Remark 4.5. Note that the Black-Scholes market (i.e. there are no jumps in the
stock price process) is a special case of our model and hence Theorem 4.3 holds
true in this case.

5. Appendix

Proposition 5.1. The integro-differential equation (4.5) has a unique bounded
solution on [ε,∞) for arbitrary ε > 0 with initial value h(ε) = h0 > 0.
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Proof. Let IB := {v : [ε,∞) → R : v is measurable and bounded by a constant }
and for v ∈ IB let ‖ · ‖ be the supremum-norm. On IB we define the operator T by:
Tĥ is the (unique) solution of the linear differential equation

h′(x) +
µ− r −

∫
zν(dz)

σ2xπ
h(x) = − 1

σ2xπ

∫ ∞

0

(
ĥ(x + πxz)z

)
ν(dz)

on [ε,∞) with h(ε) = h0. The unique solution of this initial value problem is given
by (where we denote κ := µ−r−

R
zν(dz)

σ2π > 0):

Tĥ(x) = h0

( ε

x

)κ

− 1
xκ

1
σ2π

∫ x

ε

∫ ∞

0

ĥ
(
t(1 + πz)

)
zν(dz)tκ−1dt.

If ‖ĥ‖ ≤ L then
‖Tĥ‖ ≤ L

hence T : IB → IB and IB is a Banach space together with the supremum norm.
Finally it is possible to show that T is also contracting. This follows since by a
similar calculation as above we obtain:

‖Tĥ− Th‖ ≤ ‖ĥ− h‖
∫

zν(dz)
µ− r −

∫
zν(dz)

where
R

zν(dz)

µ−r−
R

zν(dz)
< 1 due to our assumption. Thus according to Banach’s fixed

point theorem there exists a unique solution of the initial value problem. �
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