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A JOINT STOCK AND BOND MARKET BASED ON THE HYPERBOLIC

GAUSSIAN MODEL

NICOLE BÄUERLE∗ AND ROBIN PFEIFFER∗

Abstract. In this paper, we introduce a joint bond and stock market model based on the state
price density approach as a mean to discount future payments - whether these are stochastic
dividend payments or secure repayments of government zerobonds. Based upon a recipe of
Rogers (1997), we define a state price density model, the so-called Hyperbolic Gaussian model
which allows for closed form zerobond prices and stock prices in an arbitrage-free way. It is
particularly useful for insurance applications where large time horizons are considered. We
estimate the joint factor model using the extended Kalman filter. The model we propose here is
computationally much simpler than other models which have been considered in the literature.
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1. Introduction

In order to compare stochastic cash flows, they have to be discounted which requires a stochas-
tic term structure model. Most term structure models in the literature have been developed
for banking applications (for an overview see e.g. Filipovic (2009), Cairns (2008), Musiela &
Rutkowski (2005), Rebonato (2002) or Brigo & Mercurio (2001)). For insurance companies term
structure dynamics play a central role. What is special in insurance applications is that first,
the duration of products (like life or pension insurance contracts) typically exceed the available
maturities of the currently observable term structure. Next, the insurer requires a term structure
model to discount his contractual liabilities which typically requires Monte Carlo simulation due
to the complexity. Finally life and pension insurers at least in continental Europe mainly invest
in fixed income securities. Future payoffs of insurance contracts therefore depend on intermedi-
ate returns achieved in fixed income markets and intermediate portfolio allocation which yields
path-dependence for most insurance applications.

In this paper we consider the so-called Hyperbolic Gaussian model which is a special case
of the state price density models introduced in Rogers (1997). The state price density (ςt) is
sometimes called risk-neutral density or state-price deflator and it can be used to price contingent
claims (see e.g. Duffie (1992)). If CT is the payoff of a contingent claim at time T , then its price
at time t can be defined by

Ct =
E[ςTCT |Ft]

ςt
.

In the classical Black-Scholes model with one stock and constant shortrate r, drift µ and volatility
σ, the state price density is for example given by ςt = LtB

−1
t where Bt = ert and

Lt = exp
(
− 1

2

(µ− r
σ

)2
t−

(µ− r
σ

)
Zt

)
.
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The process (Zt) is a Brownian motion and LT can be used to define the risk neutral measure
dQ
dP = LT . The price Ct at time t of a contingent claim which pays CT at time T is given by

Ct = BtEQ
[
CTB

−1
T |Ft

]
=

1

LtB
−1
t

E
[
CTLTB

−1
T |Ft

]
=

E
[
CT ςT |Ft

]
ςt

where we used the Bayes rule for the second equation. In case of a default free bond we have
CT = 1 and an explicit bond price formula essentially requires that E

[
ςT |Ft

]
can be computed.

One representative of this family is the model considered in Cairns (2004) (see also Cairns
(2008)). There

ςt :=

∫ ∞
t

φsM(t, s)ds

where φ is a deterministic function and
(
M(t, s)

)
for t ≤ s ≤ ∞ is a family of strictly positive

diffusion martingales. This model is also a special case of the Flesaker and Hughston framework
(Flesaker & Hughston (1996)), indeed this point of view is taken in Cairns (2004). For special
choices of φ and M (in particular M is taken as a function of an Ornstein-Uhlenbeck state
process), Cairns shows some properties of this model and in particular recommends it for long-
term interest rate modeling, since it provides sustained periods of both high and low interest
rates. This is of particular importance in insurance applications. Moreover, it guarantees positive
interest rates. The price of a bond at time t with maturity T in Cairns’ model is given by

P (t, T ) =

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

. (1.1)

Since the price depends on the whole path of M(t, s) this formula is computationally demanding
and slow in Monte Carlo simulations.

The main aim of our paper is to present the Hyperbolic Gaussian model as a model with
similar features but one which is very easy to implement and thus interesting for practical
purposes. We also show that the Hyperbolic Gaussian model can be extended to a joint bond
and stock market - a feature which is only theoretically possible in Cairns’ model. Indeed the
advantage of an explicit model for the state price density, like the Hyperbolic Gaussian model,
lies in avoiding the integral over the stochastic shortrate in discounting functions. This is
particularly helpful in the pricing of complex securities such as in life insurance, which typically
require Monte Carlo simulation. In that case, when e.g. a shortrate model is used, discounting
based on shortrate integrals are necessarily path dependent and the frequency of intermediate
steps is determined by the shortrate integral and hence ultimately the discounting function, not
the security to be priced and its cash flow. Using an explicit model for the state price density
implies that intermediate simulation points are determined by the security to be priced only
and hence typically far less random variables have to be used in Monte Carlo simulations based
upon the state price density. Thus, we consider here the Hyperbolic Gaussian model which on
the negative side does not guarantee positive interest rates, however is computationally much
more efficient than the model in Cairns (2004) and shows a similar behavior. Indeed, in both
models when implemented as a two-factor model, one state vector component usually coincides
with the slope of the interest curve whereas the other component coincides with the level. For a
detailed comparison of both models, including parameter estimation results and properties see
Pfeiffer (2010) (cp. also Section 4.3). Moreover, what is important for us, is that the Hyperbolic
Gaussian model can produce longer periods of low interest rates and the historical fit using the
extended Kalman filter is very good (see Section 4). Thus we think this model might be helpful
for simulation tools like DFA (dynamic financial analysis) in insurance companies. Let us note
here that also in Yao (2001) an exponential state price density has been used to derive bond
prices, option prices and foreign exchange rates.

Since pure term structure models are insufficient to simulate the asset side of an insurance
company, a major task is to extend the bond market consistently. Wilkie (1984, 1986) argues
that an insurance or pension fund model should at least incorporate consol yields, stock prices,
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dividend yield and inflation. In Wilkie (1995) the investment model is even expanded. In order
to incorporate at least a stock we use two approaches: A dividend discount approach and an
extension of the Black Scholes model. In the dividend discount approach, the stock price at
time t is interpreted as the value of all future dividends discounted at time t. Such an approach
easily fits into the state price density framework which is used to discount dividends. In a
continuous dividend paying setting this has been used in Graziano & Rogers (2006). In the
model investigated in Cairns (2004) such an approach is also possible from a theoretical point
of view however practically unfeasible due to computational limitations. For the Hyperbolic
Gaussian model on the other side it provides an arbitrage-free, implementable stock pricing
framework.

The outline of our paper is as follows: In the next section we review the state price den-
sity approach and present the Hyperbolic Gaussian model. It is based upon multidimensional
Ornstein-Uhlenbeck state processes. The special one-dimensional case can already be found as
an example in Rogers (1997) and Cairns (2008). Explicit bond-price formulas are derived as
well as zerobond rates and the shortrate. It is also shown that the family of bond prices is free
of arbitrage. Section 3 then extends this model to an arbitrage-free joint bond and stock market
model by using the dividend discount approach and an extension of the Black Scholes model.
Section 4 is dedicated to estimating the model parameters. Since we have a factor model we
use the extended Kalman filter for estimation of the model parameters in a Quasi-Maximum-
Likelihood approach. Only the implementation for the dividend discount approach is explained.
The unobservable process is the state process and the observable process is the term structure.
Since the measurement equation is nonlinear we use the extended Kalman filter. The procedure
is applied to a three-dimensional factor process and one stock using a dataset of the Federal
Reserve consisting of yields derived from the US Treasury securities and the S&P500. The
estimation results and possible problems are discussed. A short conclusion and an appendix
containing the proofs of some of the theorems in Section 2.2 completes the paper.

2. The Extended Rogers Framework and the Hyperbolic Gaussian Model

2.1. The Extended Rogers Framework. Rogers (1997) presented a generic approach to
model the state price density as a function of an underlying Markovian state vector process.
More precisely, one has to choose a continuous-time Markov process (Xt) with values in Rd and
a positive function f with domain Rd, which, together with a parameter α ∈ R provides the
state price density process (ςt) by

ςt = e−αtf(Xt), t ≥ 0.

We assume that all random variables are defined on a common probability space (Ω,F,P) where
P is the so-called pricing measure. The process (Xt) is often called state process. In what follows
let (Ft) be the filtration generated by (Xt), i.e. Ft = σ(Xs, s ≤ t). We will always assume that
the expectation of f(Xt) exists. Using the definition of ςt, the current price Ct of a contingent
claim at time t which pays CT at time T > t under the state price density approach is given by

Ct =
E [ςTCT |Ft]

ςt
= e−α(T−t)E [f(XT )CT |Xt]

f(Xt)
, (2.1)

This provides a formula which can conveniently be evaluated by Monte Carlo methods since
only the conditional distribution of XT |Xt has to be simulated. This is in contrast to shortrate
models where usually the whole shortrate path (rt) has to be simulated to obtain the discount

function
∫ T
t rsds. The price of a zerobond with maturity at time T is therefore given by

P (t, T ) = e−α(T−t)E [f(XT )|Xt]

f(Xt)
(2.2)

and hence a measurable function of the underlying state Xt. The question now is how to choose
the function f and the state vector dynamics. Several important theoretical and practical
properties restrict our choices. First, a basic requirement for applicability is that zerobond
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prices – and hence interest rates – are available in closed form. Given (2.2), this implies that
E [f(XT )|Xt] must be available in closed form. Yet another important requirement is that
interest rates are mean reverting in the sense that we want historically observed interest rates
to occur repeatedly in simulations. Following Litterman & Scheinkman (1991), we know that to
realistically model term structure dynamics, multi-dimensional state processes (Xt) are required.
Typical choices for (Xt) therefore are processes whose components are Ornstein-Uhlenbeck or
Cox-Ingersoll-Ross processes. The following theorems derive further important conditions. The
first statement can be found in Rutkowski (1997), Section 3.

Theorem 2.1. If the state price density is a supermartingale, then the term structure model is
free of arbitrage.

The next theorem links non-negativity of interest rates with the state price density (cf. also
Cairns (2008), Theorem 8.2).

Theorem 2.2. Interest rates are non-negative if and only if the state price density is a super-
martingale.

Proof. Interest rates are non-negative if and only if 1 ≥ P (t, T ) holds for all t ∈ [0, T ], hence

1 ≥ P (t, T ) =
E [ςT |Xt]

ςt
.

This is equivalent to ςt ≥ E [ςT |Xt] and hence to (ςt) being an (Ft)-supermartingale. �

Note, though, that in Theorem 2.1 the supermartingale property of the state price density
is only a sufficient condition for obtaining an arbitrage-free market, the condition in Theorem
2.2 is necessary. If we give up the supermartingale property of (ςt), all that is required for a
term structure model is a multi-dimensional mean reverting process and a positive function f
which guarantee that E [f(XT )|Xt] is available in closed form. If no-arbitrage can be shown, we
have a viable term structure model, albeit one which allows for negative interest rates as many
currently used term structure models.

2.2. The Hyperbolic Gaussian model. In this section, we will present an arbitrage-free term
structure model which we call Hyperbolic Gaussian model in which the state price density is not
a supermartingale and hence no-arbitrage has to be shown separately.

The Hyperbolic Gaussian model is the fourth example of Rogers (1997), specified by the
choice of the function f(x) = cosh(γ′x + c) where γ ∈ Rd, c ∈ R and the state process (Xt)
which is given by the follow dynamics

dXt = κ(µ̃−Xt)dt+ CdZt (2.3)

where κ = diag(κi) ∈ Rd×d is a diagonal matrix with κ1, . . . , κd on the diagonal, µ̃ ∈ Rd, C is
a d × n matrix and Zt = (Z1

t , . . . , Z
n
t ) is an n-dimensional Brownian motion under the pricing

measure with instantaneous correlation matrix CC ′ =: ρ = (ρij). The state process therefore is
an Ornstein-Uhlenbeck process under the pricing measure. Hence the state price density formula
yields

ςt := e−αt cosh(γ′Xt + c) =
1

2
e−αt

(
exp(γ′Xt + c) + exp(−γ′Xt − c)

)
. (2.4)

To simplify notation, we introduce the real-valued process Vt := γ′Xt. From (2.3) it follows that

dVt = γ′κ(µ̃−Xt)dt+ ĈdZt (2.5)

where Ĉ := γ′C. Hence we can express the state price density as

ςt := e−αt cosh(Vt + c) =
1

2
e−αt

(
exp(Vt + c) + exp(−Vt − c)

)
. (2.6)
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An important property of Ornstein-Uhlenbeck processes is that the conditional distribution of
XT given Xt is (multivariate) normal with

E [XT |Xt] = e−κ(T−t)Xt +
(

1− e−κ(T−t)
)
µ̃ (2.7)

whereby e−κ(T−t) := diag(e−κi(T−t)) ∈ Rd×d, 1 − e−κ(T−t) := diag(1 − e−κi(T−t)) ∈ Rd×d and
conditional covariance matrix

Σ(t, T ) := Cov [XT |Xt] =

(
ρlk

κk + κl

(
1− e−(κk+κl)(T−t)

))
l,k=1,...,d

. (2.8)

Theorem 2.3. For the Hyperbolic Gaussian model as defined above, the price of a zerobond at
time t with maturity T is

P (t, T ) = e−α(T−t) cosh (E [VT |Xt] + c)

cosh(Vt + c)
e

1
2
γ′Σ(t,T )γ .

Proof. Using (2.1) with C(T ) = 1, the bond price is given by

P (t, T ) = e−α(T−t)E [f(XT )|Xt]

f(Xt)

with f(Xt) = cosh(γ′Xt + c) = cosh(Vt + c). Using the fact that XT |Xt has a (conditional)
multivariate normal distribution, we get

E [exp(VT + c)|Xt] = exp
(
E [VT + c|Xt] +

1

2
Cov [VT + c|Xt]

)
= exp

(
γ′
(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)

+ c+
1

2
γ′Σ(t, T )γ

)
.

Thus, we arrive at

E [f(XT )|Xt] = E [cosh(VT + c)|Xt]

=
1

2

[
exp

(
γ′
(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)

+ c
)

+ exp
(
−γ′

(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)
− c
)]

exp
(1

2
γ′Σ(t, T )γ

)
= cosh (E [VT |Xt] + c) exp

(1

2
γ′Σ(t, T )γ

)
which yields the result. �

From the zerobond price formula we can directly derive the nominal zerobond rates
y(t, T ) := − 1

T−t logP (t, T ) which are given in the next corollary:

Corollary 2.4. For the Hyperbolic Gaussian model, nominal zerobond rates y(t, T ) at time t
with expiry date T are given by

y(t, T ) = α− log cosh (E [VT |Xt] + c)

T − t
+

log cosh (Vt + c)

T − t
− γ′Σ(t, T )γ

2(T − t)
.

Instantaneous forward rates f(t, T ) = − ∂
∂T log (P (t, T )) and shortrates rt = f(t, t) can be derived

as well. In what follows ‖ · ‖ denotes the Euclidean norm.

Corollary 2.5. For the Hyperbolic Gaussian model, the shortrate is given by

rt = α− γ′κ(µ̃−Xt) tanh(Vt + c)− 1

2
‖Ĉ‖2

and instantaneous forward rates f(t, T ) are given by

f(t, T ) = α− tanh(E[VT |Xt] + c)γ′κe−κ(T−t)(Xt − µ̃) + γ′e−κ(T−t)ρe−κ(T−t)γ
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Proof. By definition we obtain

f(t, T ) = − ∂

∂T
log (P (t, T ))

= − ∂

∂T
log

(
e−α(T−t) cosh(E[VT |Xt] + c)

cosh(Vt + c)
e

1
2
γ′Σ(t,T )γ

)
= − ∂

∂T

(
−α(T − t) + log (cosh(E[VT |Xt] + c)) +

1

2
γ′Σ(t, T )γ

)
= α− tanh(E[VT |Xt] + c)γ′κe−κ(T−t)(Xt − µ̃) +

1

2
γ′e−κ(T−t)ρe−κ(T−t)γ

and

rt = f(t, t) = α− tanh(Vt + c)γ′κ(Xt − µ̃)− 1

2
‖Ĉ‖2

which yields the result. �

We can see from the shortrate that the Hyperbolic Gaussian model allows for negative interest
rates. Nevertheless, the probability of negative interest rates is small due to non-linearity of
the function f in the state process and the state process itself being conditionally normal. The
higher α, the lower the conditional probability of negative interest rates, so that we would prefer
model estimates with high α. However, α has a direct economic interpretation which might
bound α and hence shape the probability of negative interest rates.

Theorem 2.6. The parameter α equals the asymptotic long rate limT→∞ y(t, T ).

Proof. Since limT→∞ E [XT |Xt] = µ̃ and since log and cosh are continuous and cosh ≥ 1 we
obtain directly limT→∞ y(t, T ) = α. �

The asymptotic long rate is very influential for long-term applications as it determines long-term
discounting functions. As can be seen in Yao (1999), it is constant for many currently used term
structure models, particularly also the affine model framework (see Duffie & Kan (1996) and Dai
& Singleton (2000)). Note that in most models the constant asymptotic long rate is a function of
several model parameters, which makes sensitivity analysis with respect to the asymptotic long
rate impossible, whereas the Hyperbolic Gaussian model allows for such sensitivity analysis. As
the Hyperbolic Gaussian model also allows for an expansion to stock market dynamics, it is
particularly interesting for long-term usage in pension or insurance applications which require
long-term discounting.

Since the state price density in the Hyperbolic Gaussian model is in general not a super-
martingale, it does not follow from standard literature that it is free of arbitrage. The proof of
the following theorem can be found in the appendix.

Theorem 2.7. For the Hyperbolic Gaussian model as defined above, the bond market is free of
arbitrage.

Remark 2.8. Note that the proof of Theorem 2.7 implies that the market price of risk is given
by Λ(Vt) = tanh(Vt + c)Ĉ and thus bounded. It can be used to define an equivalent martingale
measure Q which does not depend on the time to maturity and to define a corresponding Q-

Brownian motion (ZQ
t ).

Finally note here that the Bond price formula in Theorem 2.3 is very easy to implement
since it only requires the simulation of Xt which is normally distributed. This is in contrast to
formula (1.1) used by Cairns which is computationally demanding. Moreover, it has been shown
in Pfeiffer (2010) that both models have similar properties (though Cairns model guarantees
positive interest rates). Hence for practical purposes the Hyperbolic Gaussian model seems to
be superior.
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3. Joint Bond and Stock Market

We extend now the Hyperbolic Gaussian bond model to include a stock. This is done by
two different approaches: The dividend discount approach and a simple extension of the Black
Scholes model.

3.1. The Dividend Discount Approach. In the dividend discount approach one assumes
that the stock pays (random) dividends at deterministic, discrete time points 0 ≤ τ1 < τ2 < . . .
with τn → ∞ for n → ∞. More precisely we denote the dividend paid at time τn by Dτn ≥ 0.
The stock can then be interpreted as a portfolio of infinitely many securities which pay Dτn at
times τn. Hence

St =
∑
τn≥t

E [ςτnDτn |Ft]
ςt

. (3.1)

This approach can be traced back to Gordon (1959). A continuous version in the state price
density approach can be found in Graziano & Rogers (2006).

Remark 3.1. It is important to note that due to dividend payments, we have to distinguish
between the stock price and the wealth of a stock holder, which includes dividends already paid.
For example the wealth of an investor at time T who bought the stock at time t is given by

WT = ST +
∑

t≤τn≤T

ςτn
ςT
Dτn

For implementation of the joint stock and bond market model using the dividend discount
approach, we have to specify the dividend payment process (Dt) depending on the state process
(Xt) in such a way that the expectation E [ςτnDτn |Ft] in (3.1) can be calculated in closed form.
Furthermore, we require dividends to be non-negative and we implement an expected dividend
growth over time to compensate for inflation, as company income from which dividends are to
be paid should be inflation protected. An intuitive proposal defines

Dt = D(t,Xt) := exp(c̄+ µ̄t+ (γD)′Xt), (3.2)

for constants c̄ ∈ R, µ̄ ∈ R and γD ∈ Rd. This specification guarantees positive dividends, varying
around an exponential trend defined by µ̄. This dividend growth trend is introduced to capture
the assumption of company income being adapted to rising prices. Unlike nominal bonds, stock
holders therefore hold some protection against inflation implemented by the growth trend µ̄.
The factor c̄ is a multiplicative scaling factor for stock prices and dividends, which proved to be
necessary in implementations but which is omitted in further theoretical considerations.

From an implementation point of view, it is important to note that our choice of (Dt) allows
for closed form solutions for the prices of dividend-paying securities, as the product of the two
lognormally distributed variables Dt and ςt is again lognormally distributed. The current price
Snt of the stochastic dividend Dτn to be paid at time τn therefore is available in closed form by1

ςtS
n
t = E [ςτnDτn |Xt]

= exp

(
−ατn + µ̄τn + (γD)′ E [Xτn |Xt] +

1

2

(
γ′Σ(t, τn)γ + (γD)′Σ(t, τn)γD

))
cosh

(
c+ γ′ E [Xτn |Xt] + γ′Σ(t, τn)γD

)
(3.3)

which defines a stock price process by equation (3.1). We assume that the sum in (3.1) converges.
This is e.g. the case when κi ≥ 0, α ≥ µ̄ and τn = n which are realistic assumptions. It remains
now to prove that the joint Hyperbolic Gaussian bond and stock market model is free of arbitrage.
The proof of the next theorem can be found in the appendix.

1Note that the same definition of the dividend payment process may also be used to expand Rogers (1997)
first and second examples which specify f(x) := expx and f(x) := exp (c + x′Qx), respectively.
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Theorem 3.2. For the Hyperbolic Gaussian model with the stock price process (St) defined as
the infinite sum of discounted dividends with payoffs given by(3.2), the joint bond and stock
market is free of arbitrage.

3.2. Extension of Black Scholes Model. Another simple possibility to obtain an arbitrage-
free joint bond and stock market is to use the classical Black Scholes model for the (non-dividend
paying) stock and assume that under the risk neutral measure Q (cf. Remark 2.8), the drift of
the stock is given by the shortrate of the Hyperbolic Gaussian model in Corollary 2.5, i.e.

dSt = St
(
rtdt+ σTCdZQ

t

)
.

By construction this yields an arbitrage-free market. An example for this approach may be
found in Albrecht (2007), where a one-factor Vasicek model is used for the shortrate and a
Black-Scholes model for the stock dynamics. Since the stock price is a stochastic exponential,
it is also possible to derive an explicit formula for (St).

4. Estimation

For estimation and risk-management, the physical measure is required. Whereas we are
essentially free to specify the market price of risk and hence the physical measure, a standard
approach derives the physical measure in such a way that the state process follows similar
dynamics under both the physical measure and the measure typically used for pricing. For the
Hyperbolic Gaussian model, this implies that the state process under the physical measure P̃
should follow Ornstein-Uhlenbeck dynamics as under the pricing measure. Using Girsanov’s
theorem with

dP̃
dP

= E
( ∫ ·

0
ΛP̃,P(Xs)dZs

)
where E is the stochastic exponential we know that

dZ P̃
t = dZt + ΛP̃,P(Xt)dt

is a Brownian motion w.r.t. P̃. Thus,

dXt = κ(µ̃−Xt)dt+ CdZt

=
(
− CΛP̃,P(Xt) + κµ̃− κXt

)
dt+ CdZ P̃

t ,

implies

κµ
!

= −CΛP̃,P(Xt) + κµ̃

so ΛP̃,P(Xt) := C−1κ(µ̃ − µ). As this drift correction term is constant, the Novikov condition
is fulfilled and both measures are equivalent. Note that alternative specifications might provide
better historical fit and in particular superior term premiums, see for example Duffee (2002).

4.1. Estimation by Extended Kalman Filter. We estimated both models with the extended
Kalman filter. Since the approach is similar for the Black Scholes model, we restrict our presen-
tation to the first model. A detailed description for the second model can be found in Pfeiffer
(2010). The Hyperbolic Gaussian model allows for implementation of the extended Kalman
filter for estimation of the model parameters in a Quasi-Maximum-Likelihood approach. The
state process (Xt) is the hidden process and the nominal zero bond rates (Yt) are observed for
different maturities as well as the stock. For a general introduction to the Kalman filter, see
e.g. Harvey (1991) or Kellerhals (2001). Using a discrete time grid and the standard notation
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FYt = σ
(
{Y0, Y1, . . . , Yt}

)
, t ∈ N and

Xt|t := E[Xt|FYt ]

Xt|t−1 := E[Xt|FYt−1]

Σt|t := E
[
(Xt −Xt|t−1)(Xt −Xt|t−1)′|FYt

]
Σt|t−1 := E

[
(Xt −Xt|t−1)(Xt −Xt|t−1)′|FYt−1

]
,

the transition equations are given by

Xt|t−1 = e−κXt−1|t−1 + (1− e−κ)µ, (4.1)

and

Σt|t−1 = e−κΣt−1|t−1e
−κ +Q(θ). (4.2)

where θ denotes the vector of model parameters and the covariance matrix Q(θ) is given by
(compare equation (2.8))

Q(θ) =

(
ρlk

κk + κl

(
1− e−(κk+κl)

))
l,k=1,...,d

.

The measurement equation is defined by

Yt =


yM (t, t+ σ1)

...
yM (t, t+ σn)

SM (t)

 =


g1(Xt; θ)

...
gn(Xt; θ)
gn+1(Xt; θ)

+


ε
(1)
t (θ)

...

ε
(n)
t (θ)

ε
(n+1)
t (θ)


where yM (t, t + σi) is the interest rate observed in the market with time to maturity σi, i =
1, . . . , n and SM (t) is the observed stock price in the market at time t. The function gi, i =
1, . . . , n is given by

gi(Xt; θ) = α− log cosh (γ′E[Xt+σi |Xt])

σi
+

log cosh (γ′Xt + c)

σi
− γ′Σ(t, t+ σi)γ

σi
.

The function gn+1 describes the model-implied stock price and is given by

gn+1(Xt; θ) =
∑
τn>t

1

2ςt
exp(−ατn + µ̄τn)

[
exp

(
c̄+ (γD + γ)′ E[Xτn |Xt]

+
1

2
(γD + γ)′Σ(t, τn)(γD + γ)

)
+ exp

(
− c̄+ (γD − γ)′ E[Xτn |Xt] +

1

2
(γD − γ)′Σ(t, τn)(γD − γ)

)]
.

Furthermore εt(θ) = (ε
(1)
t (θ), . . . , ε

(n+1)
t (θ)) ∈ R(n+1) is a multivariate normal error term with

covariance matrix

Cov (εt) := Ht = diag
(
ν, . . . , ν, νS

)
∈ R(n+1)×(n+1)

where ν is used for the measurement errors of yields and νS for the measurement errors of the
stock price. This specification is due to the scaling difference between interest rates, roughly
varying between 0 and 0.2, and stock prices roughly varying between 100 and 1500. Individual
measurement errors for each maturity may allow for further insights, yet this benefit is made
up for by the substantially higher number of model parameters one had to estimate in this case.
For the updating step, we require the Kalman gain matrix

Kt := Σt|t−1B
′
t|t−1F

−1
t|t−1
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where Bt|t−1 is the Jacobi matrix of the non-linear measurement function g = (g1, . . . , gn+1) of
the Hyperbolic Gaussian model given by

Bt|t−1 =


∂
∂x1

g1(x, θ) . . . ∂
∂xd

g1(x; θ)
...

...
∂
∂x1

gn(x; θ) . . . ∂
∂xd

gn(x; θ)
∂
∂x1

gn+1(x; θ) . . . ∂
∂xd

gn+1(x; θ)


∣∣∣∣∣∣∣∣∣∣
x=Xt|t−1

∈ R(n+1)×d.

Note that θ = (γ, γD, µ, µ̄, κ, ρ, c, ν, νS). The required derivatives for the yield and stock price
measurements can be derived using

∂

∂xi
P (t, T ) = γiP (t, T )

[
tanh(γ′ E [XT |Xt] + c)e−κit − tanh(γ′Xt + c)

]
(4.3)

and

∂

∂xi
St = St

(
γDi e

−κi(T−t) + tanh(h(t,Xt))γie
−κi(T−t) − γi tanh(γ′Xt + c)

)
(4.4)

respectively with h(t,Xt) = E[VT |Xt] + γ′Σ(t, T )γD + c. With Ft|t−1 = Bt|t−1Σt|t−1B
′
t|t−1 +Ht,

the Kalman gain matrix can be calculated. The prediction error

vt = (yM (t, t+ σ1), . . . , yM (t, t+ σn), SMt )′ − g(Xt|t−1, θ).

yields the updating steps

Xt|t = Xt|t−1 +Ktvt

and

Σt|t = Σt|t−1 −KtBt|t−1Σt|t−1,

which concludes the filter.

For implementation, we have to cut off the infinite sum of dividend paying securities for
computational reasons. As the dividends are non-negative, even for lower interest rates an
additional (n + 1)-th dividend likely increases the stock price. Note that a positive dividend
growth trend µ̄ may compensate the discounting of future dividends, thus the current value of
expected future dividends will not necessarily decrease with higher times to maturity. In general,
we expect that cutting off dividend payments of later dates implies that early dividends will be
overestimated to make up for omitted dividends.
Not surprisingly, we found a conflicting role of the asymptotic long rate α determining long-
term discounting, and the dividend growth rate µ̄. In the joint model, estimates of both these
parameters were very unstable. Restricting α = 0.042 in our estimates resulted in better stability
of both parameters. The economic justification of the specification α = 0.042 is based on
a simplifying application of the Fisher hypothesis (Fisher (1930)), which partitions nominal
interest rates into the expected inflation rate and a real rate. Now the long-term average of the
real rate is taken as 2.2% and the expected asymptotic inflation rate is interpreted as the inflation
target of the central bank, currently 2%. The Fisher hypothesis implies that the sum of both
equals the nominal interest rate. Using historical dividend data should solve these problems,
yet due to rather small dividend payments in absolute terms the cut-off levels are necessarily
high, implying a higher computational effort for estimation. Furthermore, at least in case of US
data, each time step would require implementation of an individual dividend payment schedule
as the times between dividend payments are not necessarily constant. Finally, we want to use
stock index data, motivated by our proposition of the Hyperbolic Gaussian model for long-term
insurance applications, and the problems of irregular dividend payments are even worse for
an index or generally for a portfolio of stocks. Therefore, we omitted the inclusion of historical
dividend data. Effectively, we model a theoretical finite cash flow whose current value equals the
stock price. Omitting historical dividend payments allows for simplifying assumptions regarding
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0.25y 0.5y 1y 2y 3y 5y 7y 10y S&P500
13.7 5.0 8.6 13.3 9.2 5.9 5.5 9.9 0.7
13.8 5.2 8.7 13.3 9.6 5.6 5.5 9.7 0.9
13.4 5.4 9.0 12.7 9.9 6.0 6.0 10.7 0.8

Table 1. Historical mean absolute errors in basis points for the yields and in
ticks for the index.

frequency and regularity of dividend payment dates. We deem these simplifying assumptions
not less viable than the frequent assumption of a continuous dividend yield on stocks.

The components of the state process are assumed to be Ornstein-Uhlenbeck processes. These
are typically easy to be estimated, unless mean reversion is low. In that case, the (extended)
Kalman filter may be unable to derive the true value of long-term mean µ, as µ enters the
filter equations only through the transition equation (4.1) and the impact of µ in this equation
decreases with the mean reversion factor κ. Consequently, one has to examine the filtered state
process to assess the fit of µ.
In the following estimates, we restricted the long-term mean of the state process under the
pricing measure to be zero, µ̃ = 0. The extended Kalman filter is able to estimate non-restricted
µ̃ in case of the pure bond market model, although improvement of the more general model is
negligible. In the joint bond and stock market model, restricting µ̃ improved estimation speed
and stability substantially.

4.2. Estimation-Results. For estimation of interest rates, we use a three-dimensional state
process and a dataset of the Federal Reserve consisting of 0.25−, 0.5−, 1−, 2−, 3−, 5−, 7−
and 10-year yields derived from US Treasury securities from January 1984 to January 2008.
The dataset is obtained from the Federal Reserve download portal. For estimation of the stock
market we use S&P500 price index data. This reflects well the assumption that the insurance
company invests in a well diversified stock fund rather than a single stock. Furthermore, there
is no dividend jump in the data.

4.3. Results for the Dividend Discount Approach. For simplicity, we did not use dividend
data directly, but assume that the dividend payment process is semiannually and unobservable.
In practice, we are replicating a dividend payment process which implies the same price data as
the S&P500 index.

We found that the extended Kalman filter very quickly provides parameter estimates which
closely fit historical interest rates and the dynamics of the stock price, but only a few of those
provide a close fit of the absolute stock price as well. Typically, the model-implied stock price
is highly correlated to the observed stock price, yet differs in absolute value. To overcome this
drawback, a second estimation step was implemented which uses these first estimates and fits
only the parameters describing the stock price dynamics, that is γD, ρij , µ̄ and c, to the stock
price observations. The final results differ from the initial values only slightly in Loglikelihood,
yet guarantee in most cases a good historical fit of the stock price (see Figure 1). As the extended
Kalman filter provides only Quasi-ML estimates, we deem such a correcting approach as viable.
Table 2 provides three estimated parameter sets. We see that the parameter estimates still show
considerable variability, which may be due to overparametrization. Note that multiple local
maxima of the Loglikelihood function are a typical finding in complex applications. However
note that the measurement errors ν and νS for the stock are very small. Table 1 provides absolute
historical errors of the model. We see that for all estimates historical errors are extremely small,
in particular regarding the stock, and very similar across different estimated parameter sets.

We examine the filtered underlying state vector in figure 2. We find clear correlation between
one of the state factor components and the slope of the interest curve and a second state factor
component and the stock price. The third state factor is correlated to the 10-year rate. Both
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Figure 1. Model implied (blue) and historical S&P500 prices in the dividend
discount model.

γ1 γ2 γ3 γD1 γD2 γD3 µ1 µ2 µ3 µ̄ κ1 κ2 κ3

-0.47 -0.07 0.44 -0.24 -0.24 0.56 0 0.1 1.7 0 0.067 0.343 0.063
-0.02 0.03 0.23 0.23 -0.04 0.01 15.7 0.7 1.2 0 0.116 0.432 0.052
0.20 0.02 -0.16 0.72 -0.80 0.01 5.8 -0.6 1.8 0 0.012 0.473 0.058

ρ12 ρ13 ρ23 c ν νS LogL

-0.70 0.70 -0.05 0 0.0013 0.0008 12205
-0.01 -0.01 -0.47 -0.3 0.0013 0.0211 12283
-0.32 -0.53 0.69 -13.4 0.0013 0.0274 12270

Table 2. Estimates by the extended Kalman filter for the Hyperbolic Gaussian
model using US Treasury term structure data and S&P500 stock market data
from January 1984 to January 2008.

the dynamics of the level and the stock price factor provide very small mean reversion, as could
be seen in our estimates of µ2 and µ3.

4.4. Results for Black Scholes model. We implemented again a three-factor model. One
main difference between the Black-Scholes based approach and the dividend discount model
is computational speed. Whereas the dividend discount model is computationally slow, the
Black-Scholes based approach is very fast in estimation and simulation alike, since calculation
of the current stock return is computationally equivalent to computation of an interest rate
with given maturity. First note that stock returns differ substantially from interest rates in
autocorrelation and variance. To account for these differences, we implemented two approaches,
based on restrictions of the parameter vector γ. The framework presented by Albrecht (2007)
implies a pure stock market factor, which in our model would be equivalent to γ3 = 0. We
consider two model frameworks, one without restrictions on γ, which implies that the state
vector drives both stock and bond markets, and one with γ3 = 0, which implies two state vector
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Figure 2. Filtered state vector components (left) and empirical proxies of the
first principal components of the term structure.

components driving bond and stock markets, and one state vector component driving only the
stock market. Note that implementation of these restrictions is very easy, and pricing formulae
still hold.

Table 3 provides MAEs of implied yield curves. We see that restricting γ implies a poorer
term structure fit. The reason is that all three vector components contain term structure data
for general γ, whereas γ3 = 0 guarantees that the third state vector component drives stock
returns only and therefore improves stock return fit. Considering historical fit of the stock price,
we have MAEs in ticks of more than 1700 for general γ and 18 basis points for γ3 = 0. The
reason is that for γ3 = 0, the Extended Kalman filter fits Z3 to the observed stock price, whereas
with general γ a trade-off exists between fitting the stock price and the term structure. Given
the lower Loglikelihood values of the restricted approach, we can expect that the distribution of
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Assuming γ3 6= 0
0.25y 0.5y 1y 2y 3y 5y 7y 10y
5.3 4.4 5.8 5.3 4.0 3.5 4.5 5.9
5.4 4.4 5.8 5.4 4.1 3.6 4.5 5.9
5.4 4.4 5.8 5.4 4.0 3.5 4.5 5.9

Assuming γ3 = 0
12.7 5.2 8.8 12.5 8.8 6.1 5.4 9.9
12.7 5.2 8.7 12.5 8.8 6.0 5.4 9.9
12.7 5.2 8.8 12.5 8.8 6.0 5.4 9.8

Table 3. Historical mean absolute errors in basis points for the yields.

Z3 according to the filtering in the restricted case deviates from the theoretical model-implied
distribution of Z3. By definition of the model, stock returns are normally distributed, whereas
it is well known that this is not the case in reality. Therefore the good historical fit of the model
assuming γ3 = 0 does not reflect the basic problems this approach takes from the Black-Scholes
model. We expect that non-normality of stock returns is responsible for the lower Loglikelihood
values of the restricted model. A straightforward improvement of the joint model would allow
for stochastic volatility of the state vectors, thereby introducing stochastic volatility in the stock
market as well as the bond market.

4.5. Comparison. In general, stock market models may be implemented using return-based
or price-based approaches. Both approaches have their merits: banking applications typically
consider stock derivatives, which are based on stock prices rather than returns. Therefore, price-
based approaches are superior for banking applications. Once dividend payments are introduced,
however, the situation changes. To realistically implement discrete dividend payments, we re-
quire path-dependent approaches and consider reinvestment of dividends payed. In insurance
applications, reinvestment of dividends is an important task since, over the long run, dividend
returns make up a sizeable part of overall stock returns and furthermore intermediate dividend
payments provide free cash flows without the need to liquidate assets under management. The
Black Scholes model is computationally superior to the dividend discount model, yet it does not
fit historical data to the same extent as the dividend discount model.

5. Conclusion

The Hyperbolic Gaussian model is based on the state price density approach and allows for
an easy estimation of parameters and fast Monte Carlo simulation. It can also be extended
to a joint bond and stock market. Based upon its good long-term fit of both stock prices and
interest rates and the increased importance of changes in interest rates, the Hyperbolic Gaussian
model might provide a useful tool for long-term risk management like DFA due to the simple
and fast implementation of Monte Carlo simulations. It therefore could be useful for insurance
applications.

6. Appendix

The proof of Theorem 2.7 is as follows:

Proof. Using the Itô-Doeblin formula it is easy to see that the state price density

ςt =
1

2
e−αt(eVt+c + e−Vt−c)

satisfies the SDE

dςt = −αςtdt+ tanh(Vt + c)ςtdVt +
1

2
ςtd < V >t .
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Since < V >t= ‖Ĉ‖2t we obtain

dςt = ςt

(
− α+ γ′κ(µ̃−Xt) tanh(Vt + c) +

1

2
Ĉ ′Ĉ

)
dt+ ςt tanh(Vt + c)ĈdZt

In view of Corollary 2.5 we obtain

dςt = −ςtrtdt+ ςt tanh(Vt + c)ĈdZt.

Let us denote by E(X) the stochastic exponential of the process X. Since
∫ ·

0 rsds is of bounded
variation we obtain

ςt = E
(∫ ·

0
rsds

)
t
· E
(∫ ·

0
tanh(Vs + c)ĈdZs

)
t

(6.1)

= exp
(
−
∫ t

0
rsds

)
· E
(∫ ·

0
tanh(Vs + c)ĈdZs

)
t
.

If we define Bt = exp
( ∫ t

0 rsds
)

and Lt := E(
∫ ·

0 tanh(Vs + c)ĈdZs)t we obtain ςt = B−1
t Lt. Note

that since tanh is bounded, (Lt) is an (Ft)-martingale with expectation 1. Hence we can define

the probability measure Q by dQ
dP
∣∣
Ft

= Lt. Note that Q does not depend on T . From the Bayes

formula we obtain

P (t, T ) =
E[ςT |Ft]

ςt
=

E[B−1
T LT |Ft]
B−1
t Lt

= Bt EQ[B−1
T |Ft].

Hence the discounted bond price is a martingale under Q which shows that the market is free
of arbitrage. �

The proof of Theorem 3.2 is as follows:

Proof. It is sufficient to show that ς−1B−1
t E[ςτnDτn |Ft] is a Q-martingale for the same Q as in

the proof of Theorem 3.2. However, the Bayes formula again implies

E[ςτnDτn |Ft]
ςt

=
E[B−1

τn LτnDτn |Ft]
B−1
t Lt

= Bt EQ[B−1
τn Dτn |Ft]

which implies the statement. �
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