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NUMERICAL OPTIMIZATION OF A WAVEGUIDE TRANSITION

USING FINITE ELEMENT BEAM PROPAGATION

W. DÖRFLER AND S. FINDEISEN

Karlsruhe Institute of Technology, Department of Mathematics, D-76128 Karlsruhe, Germany

Abstract. We consider a waveguide with principal guiding direction for which the beam propagation

method is applicable. A simulation method based on a finite element method for Maxwell’s equation

with 3D Nedelec elements is developed. The power loss of the waveguide is minimised by varying a finite

number of shape parameters. We validate the method by comparing our findings to some published

results.

1. Introduction

The beam propagation method (BPM) is a tool for the simulation of waveguides with varying cross section

in the principal guiding direction. Typical examples are Y–junctions, S–shaped and tapered waveguides.

The main interest is to compute the power loss of a given wave which occurs in a waveguide transition.

At first beam propagation was used with fast Fourier transform (FFT–BPM) [Lif03, Ch. 5.2] and finite

differences (FD–BPM) [Lif03, Ch. 5.3] to solve the (scalar) Helmholtz equation. Nowadays BPM is used

with finite elements (FE–BPM) to solve the three–dimensional Maxwell problem [SGBV98]. The great

success of BPM lies in its easy implementation and speed and it has been shown that under appropriate

assumptions the beam propagation method leads to reasonable good results. Difficulties arise in fast

varying structures according to the principal guiding direction and since BPM propagates only in one

direction, neglecting back reflections [RDL81]. To weaken these assumptions is still a topic of research

(e.g. [Had92], [CL04], [SA04], [LB09]). In this article we developed a FE–BPM method for the three–

dimensional Maxwell problem and used an optimization method in order to minimize the losses of an

electromagnetic wave passing through a waveguide transition. The paper is organized as follows: First

we derive a model using the time–harmonic Maxwell equation and the fundamental assumption (1.4) in

Section 2.1, together with initial and boundary conditions (Section 2.2). In Section 3 we describe an

optimization algorithm based on the Gauß–Newton method. In order to validate our method, results are

presented showing a linear taper and a sinusoidal shaped waveguide transition in Sections 4.1 and 4.2.

Finally we used the Gauß–Newton algorithm to optimize power transmission in a S–shaped waveguide in

Section 4.3.

To fix ideas let the cross section of the waveguide be R2 with variables x, y, and the guiding direction be

the z-coordinate. We consider the waveguide between z = 0 and z = L > 0. At a fixed coordinate z it

consists of a bounded simply connected core region and a cladding as the remainder of the cross-sectional

plane, see Figure 1 (with radially symmetric, in x, y, material regions). The material properties are

described by the (relative) permittivity function (x, y, z) 7→ εr(x, y, z). For z outside [0, L] we assume
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Figure 1. Structure of a tapered waveguide.

that εr is independent of z and has a constant value εco in the core and εcl in the cladding, respectively.

We consider weakly guided modes of a frequency ω, where

kco =
ω

c

√
εco & kcl =

ω

c

√
εcl. (1.1)

In this case the electric field can be set to

E(x, y, z) = u(x, y, z)eiβz, (1.2)

with (given) propagation constant β ∈ R. Here eiβz can be understood as a fast oscillating wave moving

in z–direction, whereas u(x, y, z) is a field amplitude of slow variation in z–direction. For guided modes

β has to be real and fulfills

kco > β ≥ kcl. (1.3)

Furthermore it is assumed that the variation in direction of z is small in the sense of

∂2
zu(x, y, z) ≈ 0, (1.4)

see [Lif03, Ch. 5.1]. This allows us the possibility to reduce the problem so that it can be solved

recursively as it is shown in the next section. Notice that the beam propagation approach is only valid if

the assumptions (1.2) and (1.4) are fulfilled. Hence BPM is mainly used for long transitions with small

bends.

2. Derivation of the model

2.1. The beam propagation equation. We consider the time-harmonic Maxwell equations for the

electric field E

∇×∇×E = k2E (2.1)

(∇ = [∂x, ∂y, ∂z]
†) for the wave number

k =
ω

c

√
εr
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together with the divergence condition ∇ · (k2E) = 0. This equation will be considered on a bounded

domain Ω := QR× [0, L] ⊂ R3, QR := [−R,R]2 ⊂ R2 with R > 0 sufficiently large. The issue of boundary

conditions is postponed to the next section.

Inserting (1.2) for E and using (1.4) and ez = [0, 0, 1]†, ∇⊥ = [∂x, ∂y, 0]†, we obtain for the function

(x, y, z) 7→ u(x, y, z) ∈ H(curl; Ω) := {v : Ω→ R3 : v,∇× v square integrable over Ω} the equations

− β2 ez × ez × u + iβ
(
∇⊥ × ez × u + ez ×∇⊥ × u

)
+∇⊥ ×∇⊥ × u + 2iβ ez × ez × ∂zu +∇⊥ × ez × ∂zu + ez ×∇⊥ × ∂zu (2.2)

= k2u

(note a× b× c ≡ a× (b× c)). Now we multiply (2.2) with v for arbitrary v ∈ V(Ω) := {v ∈ H(curl; Ω) :

n× v = 0 on ∂QR × [0, L]}, integrate by parts over Ω and thereby get the weak equation

β2

∫
Ω

(ez × u) · ez × v + iβ

∫
Ω

(
ez × u · ∇⊥ × v −∇⊥ × u · ez × v

)
+

∫
Ω

(
∇⊥ × u · ∇⊥ × v − k2u · v

)
= 2iβ

∫
Ω

ez × ∂zu · ez × v −
∫

Ω

(
ez × ∂zu · ∇⊥ × v −∇⊥ × ∂zu · ez × v

)
.

Introducing the sesqui-linear forms

kz(u,v) =

∫
Ω

(
∇⊥ × u · ∇⊥ × v − k2u · v

)
,

g(u,v) =

∫
Ω

(
ez × u · ∇⊥ × v −∇⊥ × u · ez × v

)
,

m(u,v) =

∫
Ω

(
ez × u · ez × v

)
,

equation (2.2) is expressed in variational form by

β2m(u,v) + iβ g(u,v) + kz(u,v) = 2iβ m(∂zu,v)− g(∂zu,v) (2.3)

for all v ∈ V(Ω).

For discretisation we use a curl-conforming finite element method [Mon03, Ch. 6.3] which ensures that the

divergence condition is satisfied in a weak sense: We decompose our three dimensional finite computational

domain Ω into rectangular hexahedra. Our approximation space Vh is a subset of the piecewise trilinear

functions that are globally in H(curl; Ω) (Nedéléc edge elements). It contains the gradients of the piecewise

trilinear functions, i. e. the functions vh ∈ Vh that can be expressed as vh = ∇qh with qh ∈ Qh ⊂
H1(Ω) = {q : Ω → R : q,∇q square integrable over Ω} [Mon03, Thm. 6.12]. By using this in the weak

formulation of (2.1) one receives that ∫
Ω

k2E · ∇qh = 0

for all qh ∈ Qh, which is the weak formulation of the divergence condition.

The basis of this approximation space Vh is denoted by {ϕν : ν = 1, . . . , N}. The nodes of the basis

are located in the centers of the edges. Our aim is to find a vector U = [αν ]ν=1,N ∈ CN such that

u =
∑N
ν=1 ανϕν solves (2.3) for all v ∈ Vh.

We choose Nz ∈ N and define the Nz + 2 points zi := i4z, for i = −1, . . . , Nz, with interval length

4z := L/Nz (the first interval will be needed for initial conditions). Then we decompose the set Ω

into Nz + 1 slices Ωi := [−R,R]2 × [zi−1, zi) for i = 0, . . . , Nz. The nodes of the chosen edge element
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discretisation are either located at z = zi or z = zi−1/2 := (zi + zi−1)/2, for i = 0, . . . , Nz, as mentioned

above.

We number the basis elements of this finite element space such that degrees of freedom with nodes

located at the same coordinate zi are grouped together, i. e. ϕi,j is the j-th basis function with node

in QR × {zi} for j = 1, . . . ,M , while degrees of freedom located at nodes in QR × {zi−1/2} are denoted

as ϕi− 1
2 ,j

′ for j′ = 1, . . . ,M ′. Hence our approximation space is spanned by the set
{
ϕi,j ,ϕi− 1

2 ,j
′ :

i = 0, . . . , Nz, j = 1, . . . ,M, j′ = 1, . . . ,M ′
}

and we receive corresponding coefficient vectors Ui =

[αi,j ]j=1,...,M ∈ CM and Ui− 1
2

= [αi− 1
2 ,j

′ ]j=1,...,M ′ ∈ CM ′
, respectively. Finally, we approximate the

first order derivatives in z–direction by the forward and backward difference quotients ∂zϕi−1,j , ∂zϕi,j ≈
(ϕi,j −ϕi−1,j)/4z and ∂zϕi− 3

2 ,j
, ∂zϕi− 1

2 ,j
≈ (ϕi− 1

2 ,j
−ϕi− 3

2 ,j
)/4z, respectively, and neglect the second

order derivatives according to (1.4). By inserting this approach into our variational form (2.3) and testing

with ϕi,j ,ϕi−1/2,j′ for i, j, j′ as above, we end up with a system of equations

D0 E1 0 . . . . . . . . .

0 D1 E2
. . . . . . . . .

. . .
. . .

. . .
. . .

. . . . . .

. . . . . .
. . . DNz−2 ENz−1 0

. . . . . . . . . 0 DNz−1 ENz





Ũ0

Ũ1

...

ŨNz−1

ŨNz


= 0, (2.4)

with Di := 4zAi + 2B, Ei := 4zAi − 2B, where the matrices Ai, B ∈ CM+M ′,M+M ′
and vectors

Ũi, Ũi+1 ∈ CM+M ′
are defined by

Ai :=

[ [
ai; l,j

]
jl

[
ai; l′,j

]
jl′[

ai−1/2; l,j′
]
j′l

[
ai−1/2; l′,j′

]
j′l′

]
, B :=

[ [
bl,j
]
jl

[
bl′,j

]
jl′[

bl,j′
]
j′l

[
bl′,j′

]
j′l′

]
,

Ũi :=

[
Ui

Ui− 1
2

]
=

[ [
αi,j
]
j[

αi− 1
2 ,j

′

]
j′

]
,

and the matrix entries are given by

ai;j,l := β2m(ϕi,l,ϕi,j) + iβg(ϕi,l,ϕi,j) + ki(ϕi,l,ϕi,j), bj,l := 2iβm(ϕi,l,ϕi,j)− g(ϕi,l,ϕi,j).

The notation ai;.,. expresses the fact that the bilinear form a depends on i via k. The bilinear form b,

however, does not depend on i.

Since the unknown sub-vector Ũi+1 only depends on Ũi, (2.4) can be solved recursively for given Ũ0

(provided in Section 2.2). This recursion yields the beam propagation equation(
B − 1

2
4zAi

)
Ũi =

(
B +

1

2
4zAi−1

)
Ũi−1 for all i = 1, . . . , Nz. (2.5)

Thus we have to solve a system of equations in each of the Nz steps. For the chosen finite element

method, the resulting (M + M ′) × (M + M ′)-systems are sparse, that means the number of non-zero

entries is only proportional to M +M ′.

For computation we used the deal.II-library (Differential Equations Analysis Library [BHK07]). The

resulting systems where solved by using the Generalized Minimal Residual Method (GMRES) and in-

complete LU-decomposition as a preconditioner (ILU). The method was chosen from the PETSc-library

(Portable, Extensible Toolkit for Scientific Computation [BBB+12]). For the termination of the algorithm

we have chosen a tolerance of 10−10 for the residual in the euclidian norm. The number of iterations was

usually below 20, so that we did not use a restart.
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We observed an experimental second order convergence in the L2(QR)3–norm, which is also used to

compute the transmitted power, see Section 2.3. Since there is no exact solution available, we used an

extrapolation technique to estimate the error.

2.2. Initial and boundary conditions. The input waveguide is the part of the structure for z ≤
0, while the output waveguide is the part for z ≥ L. In both parts εr, and thus k, is assumed to

be independent on z. The input waveguide is excited by one of it’s eigenmodes with corresponding

propagating constant βin. It can be obtained by inserting the z-invariant ansatz

E(x, y, z) = ψin(x, y)eiβinz

into the time-harmonic Maxwell equation (2.1). This leads to the equation

∇βin ×∇βin ×ψin(x, y) = k2(x, y)ψin(x, y) (2.6)

for ψin : R2 → C3, where ∇βin
= [∂x, ∂y, iβin]† is a modified gradient operator. The aim is to find values

for βin ∈ R that admit existence of nontrivial solutions ψin of (2.6), that is we have to solve an eigenvalue

problem where βin appears quadratically.

Using the same technique as in Section 2.1, equation (2.6) can be rewritten in variational form as

β2
inm(ψin,v) + iβing(ψin,v) + k(ψin,v) = 0 for all v ∈ V(QR).

This equation is discretised as follows: We pose the problem on QR × [z−1, z0] with the technique of

the previous section (on the same mesh in the x, y-plane) and with periodic boundary conditions in

z-direction. This leads to a system of equations

β2
inMU in + iβinGU

in +KU in = 0, (2.7)

for the vector U in containing the expansion coefficients in the finite element basis and where the matrices

M,G,K ∈ CN,N are defined by

M :=
[
m(ϕν′ ,ϕν)

]
ν,ν′ , G :=

[
g(ϕν′ ,ϕν)

]
ν,ν′ , K :=

[
k(ϕν′ ,ϕν)

]
ν,ν′ .

To improve the accuracy and to avoid unphysical reflections from the boundary ∂QR we used a perfectly

matched layer (PML) [Ged96] near ∂QR. This technique is also used in setting up the matrices Ai and

B in the previous section.

The quadratic eigenvalue problem (2.7) was solved by a linearisation technique as described in [BDD+00,

Ch. 9]. To solve the linear eigenvalue problem we used an iterative Krylov–Schur solver, chosen from

the SLEPc-library [CRRT12]. In this way a discrete set of modes ψin and corresponding propagating

constants βin of the input waveguide are computed, where a numbering is introduced that is based on

the ordering β
(1)
in ≥ β

(2)
in ≥ . . . . Since modes are unique up to scaling and multiplicity they have to be

organized to form an orthonormal set in L2(QR)3. The same computations are done to obtain the modes

ψout and corresponding propagating constants βout of the output waveguide (that is, we do the analogous

computation on QR × [zNz, zNz +4z]). Note that (1.3) has to be fulfilled for guided modes. Since our

waveguides are weakly guiding, β(n) := (β
(n)
in + β

(n)
out)/2 is taken as an approximation. In our case we set

U in := ψ
(1)
in and β := β(1) = (β

(1)
in + β

(1)
out)/2, since we are interested in the behaviour of the first guided

mode.

Applying the same numbering as before, we can write Ũ0 = [U in
0 , U

in
−1/2] and this provides us with the

initial conditions for the iteration (2.5).
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2.3. Power losses. The modes of the input and the output waveguide computed in the previous section

can be used to approximate the power loss during a waveguide transition, see [BL82]. Let ψ
(n)
in and ψ

(n)
out

be the n-th mode of the input and output waveguide, respectively. Then the output field uout = u(·, ·, L),

which is the computed solution u at z = L, can be written as a linear combination of the output modes

uout =
∑
`

a`ψ
(`)
out with a` :=

∫
QR

uout ·ψ(`)
out ∈ C. (2.8)

Hence the power transmitted from the first into the n-th mode is given by

P1,n :=
∣∣∣ ∫
QR

ψ
(1)
in · anψ

(n)
out

∣∣∣2 = |an|2
∣∣∣ ∫
QR

ψ
(1)
in ·ψ

(n)
out

∣∣∣2. (2.9)

In the following we specify the transmitted Power by 100P1,n in %.

3. Optimization approach

3.1. Optimization problem. In this section we describe the optimization of a transition between two

waveguides with radial symmetry. Let the radius of the core be rin at the input (z = 0) and rout at the

output (z = L). The radius of the waveguide is given by a function r : [0, L]→ R>0 with r(0) = rin and

r(L) = rout.

Optimization model. The optimization model is given by

(i) a nodal grid z = {ξ0 = 0, ξ1, ξ2, . . . , ξM , ξM+1 = L},
(ii) model values m ∈M ⊂ RM , here ml = r(ξl) for i = 1, . . . ,M ,

with extensions m0 := r(0), mM+1 := r(L),

(iii) an interpolated profile z 7→ Φ(z) with Φ(ξl) = ml for l = 0, . . . ,M + 1.

m(ξl) gives the location of the material boundary at a point ξl. Notice that optimization algorithms

without regularisation become unstable if the wavelength λ is larger than the discretisation of the nodal

grid [EF01]. In the set M we will also formulate restrictions on reasonable connections. For example

we will include boundary conditions m0, mM+1 and a condition of the type 0 < mmin ≤ ml ≤ mmax <

diam(Ω)/2. Φ is used to get interpolated values Φ(z) for z ∈ [0, L] in the boundary value problems of

Section 2.

Minimisation problem. For given z,M, Φ and n find suitable model values m∗, such that the function

m 7→ J (m) :=
1

2
|1− P1,n(m)|2

is minimised, i. e.,

J (m∗) = min
m∈M

J (m). (3.1)

3.2. Gauß–Newton method. Starting from m(0) ∈ M, we computed a sequence of approximations

m(k) for k > 0 by the Gauß–Newton method [DS96, Kap. 10.2] [NW99, Kap. 10.3]. It is derived by

replacing, in step k, the functional J in the minimization problem (3.1) by the linear part of it’s Taylor

series at m(k), which results in the following definition of the next iterate m(k+1)

J (m(k+1)) = min
m∈M

1

2

∣∣1− P1,n(m(k))− Jk,n(m−m(k))
∣∣2, (3.2)



Numerical Optimization of a Waveguide Transition 7

with Jk,n := ∇P1,n(m(k)) ∈ R1,M . Assuming that the first derivative vanishes in the minimum m(k+1),

we set the gradient of the function on the right in (3.2) to zero and obtain the relation

Jk,n
(
m(k+1) −m(k)

)
= 1− P1,n(m(k)) (3.3)

for k ≥ 0. If we let m(k+1) −m(k) = s(k) ∼ JTk,n ∈ RM,1, we easily find

s(k) =
1− P1,n(m(k))

|Jk,n|2
JTk,n.

This minimization step is refined by introducing a suitable damping parameter α(k) and setting

m(k+1) = m(k) + α(k)s(k).

This parameter α(k) results from a step size control which is chosen to ensure that the so called Armijo–

Goldstein condition [DS96, Kap. 6.3] [NW99, Kap. 3.1]

J (m(k+1)) ≤ J (m(k))− µα(k)
∣∣∇J (m(k)) (m(k+1) −m(k))

∣∣ (3.4)

holds for m(k+1) for some given µ ∈ (0, 1) (e. g. µ = 0.5). To get a suitable value for α(k) we used

the Armijo step size control : Starting with α(k,0) = 2α(k−1) (to allow coarsening) we check m(k,l) =

m(k) + α(k,l)s(k) ∈M and whether (3.4) holds for m(k,l) to stop the iteration on l with m(k+1) = m(k,l)

and α(k+1) = α(k,l), or continue with α(k,l+1) = α(k,l)/2 and l→ l + 1.

To obtain the gradients in this algorithm, actually Jk,n, we used difference quotients ∂lP1,n(m) ≈
(P1,n(m + hel)− P1,n(m))/h, where el is the l-th euclidian unit vector.

4. Examples

4.1. Linear taper. The first example is used to validate our method with the results of Hermansson

et al. [HYD83]. We considered two radially symmetric waveguides with different diameter, which were

connected by a linear taper with transition length L. For the computation of the input wave, we solved

an eigenvalue problem (2.7) for βin, U in, and the corresponding one for βout, U
out, with N = 41730

degrees of freedom on the computational domain Ω = [−35 µm, 35 µm]2 × [−0.625 µm, 0.625 µm]. This

domain was surrounded by a perfectly matched layer (PML) of thickness 5 µm in xy-direction. The taper

was discretised with Nz = 160 nodes in z–direction. Moreover, we considered the first guided mode with

wavelength λ = 1 µm in a waveguide with a parabolic index of refraction profile n :=
√
εr,

n(x, y, z) =

nco

(
1− 0.06

(√x2+y2

r(z)

)2)1/2

for
√
x2 + y2 ≤ r(z),

ncl for
√
x2 + y2 > r(z).

The refractive indices are ncl = 1.5, nco = ncl/
√

0.94 ≈ 1.547 and r(z) is the radius of the waveguide

at z. Hence the waveguide is weakly guiding since (1.1) is fulfilled. The radius of the input and output

waveguide was rin = 5 µm and rout = 30 µm. In what follows we show results for two different transition

lengths L = 100 µm and L = 200 µm.

In Figure 2 the power of the first mode propagating in the taper is shown. It is in good agreement with

the corresponding Figures 5 and 6 in [HYD83]. The transmitted power in the first mode at the end of

the taper can be found in Table 1. The reference values were taken from the figures cited.
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transition length transmitted extrapolated

L in µm power reference values

100 88.52% 87%

200 99.24% 99%

Table 1. Transmitted power of the first mode in a linear taper in comparison to refer-

ence values obtained from [HYD83, Figs. 5, 6].
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Figure 2. Transmitted power in the first guided mode in a linear taper.

4.2. S-shaped waveguides. In this example the transition between two identical waveguides is consid-

ered. However, there is an offset between the input and output waveguide. For that reason they must be

bent and losses occur. As in the previous example we consider the first guided mode in a weakly guiding

waveguide with a parabolic index of refraction profile

n(x, y, z) =

nco

(
1− d

(√(x−f(z))2+y2

r(z)

)2)1/2

for
√

(x− f(z))2 + y2 ≤ r,

ncl for
√

(x− f(z))2 + y2 > r,

with parameters nco = 2.2 and ncl = 2.1 and d = 1 − (ncl/nco)2. In contrast to the first example the

radius r = 1.5 µm remains constant. These values are typical for waveguides made from lithium niobate

(LiNbO3). The vacuum wavelength is given by λ = 0.6328 µm and the shape function

f(z) = − b
2

sin
(2z − L

2L
π
)

for z ∈ [0, L], (4.1)

describes a transition between the input and output waveguide. Both waveguides are shifted against each

other by b = 50 µm along the x-axis. The input wave ψ
(1)
in is computed with 41730 degrees of freedom on

the computational domain Ω = [−28 µm, 28 µm]×[−4 µm, 4 µm]×[−0.25 µm, 0.25 µm], again surrounded

by a PML of thickness 4 µm in xy–direction. We use a step size of 4z = 1 µm in the beam propagation

method (2.5). The computed losses for different transition lengths L are shown in Figure 3 together with

some reference values computed by [Mar78, Fig. 6] using an analytic approximation formula. For large

L the loss is low but increases very fast when L becomes smaller. In Figure 4 the absolute value of the

E–field of the first mode is shown for L = 300 µm and L = 600 µm. In the first case the higher radiation

is clearly visible.
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Figure 3. Losses in a sinusoidal shaped transition profile and different transition lengths L
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Figure 4. Absolute value of the E–field in a sinusoidal transition and transition lengths

L = 300 µm and L = 600 µm.

4.3. Optimized S-shaped waveguides. Using a sinusoidal transition profile is not the only possibility

to connect two waveguides with an offset. In this example two other common profiles are considered

and compared with an optimized profile using our optimization method, Section 3, and the previous

sinusoidal profile. The transition length is given by L = 600 µm. The first new profile is a modified

sinusoidal profile

f(z) = − b

2π
sin

(
2z − L
L

π

)
− z

L
b+

1

2
b for all z ∈ [0, L] (4.2)

and the second one consists of two connected arcs

f(z) =

{√
R2 − z2 −R+ 1

2b for z ∈
[
0, 1

2L
]
,

−
√
R2 − (z − L)2 +R− 1

2b for z ∈
(

1
2L,L

]
,

(4.3)

with radius R = L2/(4b) + b/4, see [BL83]. For the optimization we used a model m = [m1,m2], where

mi denotes the x component of the waveguide center depending on z, m0 = b/2 and m3 = −b/2 are
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prescribed and the z-positions are z = [0, 200, 400, 600]. The model values are interpolated by cubic

splines Φ. The algorithm stops if the stopping criterion |m(k+1) −m(k)| ≤ tol = 10−3 is fulfilled.

Using different initial values of the model m, the Gauß–Newton method terminates after about 7 to 10

iterations. However, only 4 to 5 iterations are needed to reduce the loss significantly, see Figure 5. The

evolution of the optimized profile during the optimization process is shown in Figure 6. The computed

power losses for all profiles are given in Table 2. As one can see the sinusoidal profile produces already a

low loss for this configuration and can be hardly improved. But there is a great difference of about 15%

between the best and the worst profile. These results are also consistent with those of [MBB93] where a

Gauß–Newton like method had been used. In contrast to our work, the losses were computed by using

an approximation formula which depended on the slope of the profile and experimental data.

transition profile transmitted power

sinusoidal (4.1) 77.52 %

modified sinusoidal (4.2) 62.87 %

connected arcs (4.3) 70.95 %

GN-Spline-optimized 78.39 %

Table 2. Power losses for different transition profiles.
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