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Abstract. In this paper we study controlled Piecewise Deterministic
Markov Processes with finite time horizon and unbounded rewards. Us-
ing an embedding procedure we reduce these problems to discrete-time
Markov Decision Processes. Under some continuity and compactness con-
ditions we establish the existence of an optimal policy and show that the
value function is the unique solution of the Bellman equation. It is re-
markable that this statement is true for unbounded rewards and without
any contraction assumptions. Further conditions imply the existence of
optimal nonrelaxed controls. We highlight our findings by two examples
from financial mathematics.
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1 Introduction

In this paper we deal with optimization problems where the state process is
a Piecewise Deterministic Markov Process (PDMP). These processes evolve
through random jumps at random time points while the behavior between jumps
is governed by an ordinary differential equation. They form a general and im-
portant class of non-diffusions. It is assumed that both the jump behavior as
well as the drift behavior between jumps can be controlled. Hence this leads to
a control problem in continuous-time which can be tackled for example via the
Hamilton-Jacobi-Bellman equation. However, since the evolution between jumps
is deterministic these problems can also be reduced to a discrete-time Markov
Decision Process (MDP) where however the action space is now a function space.
Since this will turn out to be a Borel space we can treat these problems with gen-
eral MDP methods. More precisely we will restrict the presentation to problems
with finite time horizon and we will establish two main theorems (Theorem 2
and 3) which state that under some continuity and compactness conditions the
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2 Bäuerle, Rieder

value function of the Piecewise Deterministic Markov Decision Process is the
unique fixed point of a dynamic programming operator. The reward function is
allowed to be unbounded, and we work with bounding functions and a weighted
supremum norm.

A first systematic study of controlled PDMP is done in [13, 14]. The idea of
reducing the control problems of this type to an MDP is due to [21]. For a recent
paper on this topic see [1]. In [22, 23] optimality conditions are given in a weak
form based on a continuous-time approach. Davis introduced the name Piecewise
Deterministic Markov Process (see e.g. [7]) and summarized the state of the art
in his book [8]. [19] and [10] extended the existing results to unbounded reward
problems. They impose certain assumptions on the drift which imply (using
a time transformation) the existence of optimal nonrelaxed controls. Relaxed
controls are known from deterministic control and allow to define a topology on
the action space (Young topology) which simplifies the task to have a compact
action space and continuous functions at the same time. It is well-know that
concavity conditions imply the existence of optimal nonrelaxed controls (see e.g.
[9], [2]). An important subclass of PDMPs (with uncontrolled drift) is the control
of continuous-time Markov Chains (for a recent book on this topic see [11]).

There has been a renewed interest into PDMPs recently, in particular as
far as applications in finance, insurance and queueing are concerned. For ap-
plications in insurance see in particular [19] and the monograph [20]. [16] used
the reduction technique to solve a hedging problem in a continuous-time jump
market (with uncontrolled drift). A utility maximization problem in a PDMP
financial market is treated in [3]. Such financial markets are extensively studied
in [15]. Applications in queueing can be found e.g. in [17], [2] and [18].

The paper is organized as follows: In the next section we introduce our PDMP
optimization problem with finite time horizon. This problem is then reduced in
Section 3 to a discrete-time MDP. We introduce relaxed controls and show the
existence of an optimal policy within this class and that the value function is
the unique solution of the Bellman equation. Moreover, we show that in the case
of uncontrolled drift or in the case of concavity assumptions, the optimal policy
can be found in the smaller class of nonrelaxed controls. In the last section
we provide two examples from finance: One example is the maximization of
expected terminal wealth in a PDMP financial market and the second example
is the liquidation of a large amount of shares in so-called dark pools.

2 Piecewise Deterministic Markov Decision Processes

In this first section we introduce the problem of controlling a Piecewise Deter-
ministic Markov process (PDMP) with finite time horizon T where we restrict to
a simple formulation in order to highlight the solution procedure in the following
sections. We assume that the state space E of the process is a Borel subset of
Rd and actions can be taken from the control action space U which is assumed
to be a Borel subset of a Polish space. The stochastic evolution of the PDMP is
based on a marked point process (Tn, Zn), where (Tn) is the increasing sequence
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of jump time points of a Poisson process with fixed rate λ > 0. At these time
points the PDMP may also jump. The marks (Zn) describe the post jump states.
We set T0 := 0. Between the jump times Tn and Tn+1 the process is described
by a deterministic flow which is constructed from a given drift function µ(x, u)
(see below). A stochastic kernel Q from E × U to E describes the distribution
of the jump goals, i.e. Q(B|x, u) is the probability that the process jumps in the
set B given the state x ∈ E immediately before the jump and the control action
u ∈ U at the jump time.

At time Tn the evolution of the process up to time Tn+1 is known to the
decision maker who can therefore fix the control action for Tn + t < Tn+1 by
choosing some

α ∈ A := {α : R+ → U measurable }. (1)

It is known that A becomes a Borel space if A is endowed with the coarsest
σ-algebra such that

α 7→
∫ ∞

0

e−tw
(
t, αt

)
dt

is measurable for all bounded and measurable functions w : R+ × U → R (see
e.g. [21]).

We assume that for all α ∈ A there exists a unique solution φα
t (x) ∈ E of

the initial value problem

dxt = µ(xt, αt)dt, x0 = x ∈ E.

Then φα
t (x) is the state of the piecewise deterministic process at time Tn + t <

Tn+1 if Zn = x. It is assumed that φα
t (x) is measurable in (x, α) and continuous

in t.
We restrict here to Markovian policies (or piecewise open loop policies) π =

(πt) which are defined by a sequence of measurable functions fn : R+ × E → A
such that

πt = fn(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1].

Note that f : R+×E → A is measurable if and only if there exists a measurable
function f̃ : R+ × E × R+ → U such that

f(t, x)(s) = f̃(t, x, s) for s, t ∈ R+, x ∈ E.

In the sequel we will not distinguish between f and f̃ . It can be shown that
more general policies which depend on the complete history of the process do
not increase the value of our maximization problem.

For a policy π we write π = (πt) = (fn) and

φπ
t−Tn

(Zn) := φ
fn(Tn,Zn)
t−Tn

(Zn) for t ∈ [Tn, Tn+1).

Then the piecewise deterministic process (Xt) is given by

Xt = φπ
t−Tn

(Zn) for t ∈ [Tn, Tn+1).
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Note that Zn = XTn
.

Given a policy π and an initial state x ∈ E there is a probability space
(Ω,F , IPπ

x) on which the random variables Tn and Zn are defined such that
X0 = Z0 = x and for all Borel sets C ⊂ E and t ≥ 0

IPπ
x

(
Tn+1 − Tn ≤ t, Zn+1 ∈ C | T0, Z0, . . . , Tn, Zn

)
=

= λ

∫ t

0

e−λsQ
(
C|XTn+s, πTn+s

)
ds =

= λ

∫ t

0

e−λsQ
(
C|φπ

s (Zn), fn(Tn, Zn)(s)
)
ds.

Moreover we assume that there is a measurable reward function r : E×U → R
such that r(x, u) gives the reward rate in state x if control action u is taken.
Since we consider here control problems with a finite time period [0, T ] we have
a measurable terminal reward g : E → R. We impose now the following (we set
x+ := max(x, 0))

Integrability Assumption (A):

sup
π

IEπ
x

[∫ T

0

r+(Xs, πs)ds + g+(XT )

]
< ∞, x ∈ E.

Then the expected total reward when we start at time t in state x is well-
defined for all π by

Vπ(t, x) := IEπ
tx

[∫ T

t

r(Xs, πs)ds + g(XT )

]
, x ∈ E, t ∈ [0, T ]

where IEt,x denotes the conditional expectation that Xt = x. The value function
of the Piecewise Deterministic Markov Decision Process (PDMDP) is given by

V (t, x) := sup
π

Vπ(t, x), x ∈ E, t ∈ [0, T ] (2)

where the supremum is taken over all Markovian policies.
It holds that Vπ(T, x) = g(x) = V (T, x).

Remark 1. We restrict here the presentation to the problem of maximizing the
expected integrated reward rate over a finite time interval. The theory also allows
to include instantaneous rewards at the jump time points, i.e. to look at the
objective

IEπ
x

[∫ T

0

r(Xt, πt)dt

]
+ IEπ

x

[∫ T

0

r̄(Xt−, πt)dNt

]
where the measurable function r̄ : E × U → R gives the reward for each jump
and (Nt) is the Poisson process with rate λ > 0. PDMDPs with infinite horizon
can also be treated (see e.g. [4], Chapter 8).
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The optimization problem (2) is a continuous-time control problem. However,
we can show that the value function V (t, x) can be obtained by a discrete-time
MDP. This point of view implies a number of interesting results. The first one is
that under some conditions the value function can be characterized as the unique
solution of the Bellman equation. Differentiability of the value function is not
needed in contrast to the classical continuous-time stochastic control approach.
Second, the existence of an optimal policy is rather easy to prove. Moreover, sev-
eral different computational approaches arise. Value iteration or Howard’s policy
improvement algorithm can be used to solve the continuous-time PDMDPs (see
e.g. [4]).

3 Solution via a discrete-time Markov Decision Process

We introduce here a discrete-time MDP which is equivalent to the control prob-
lem of the previous section. The idea is to look at the time points (Tn) and choose
actions α ∈ A at time Tn, since the evolution of the state process between jumps
is deterministic. For general MDP theory see e.g. [6], [12] and [4].

Now suppose a Piecewise Deterministic Markov Decision Model is given as de-
scribed in the previous section. Let us define the following infinite-stage Markov
Decision Model (E′, A, Q′, r′):

• E′ = [0, T ] × E is the state space. A state (t, x) describes the time point of
a jump and the state of the process directly after the jump.

• A is the action space. Recall that the function space A is a Borel space.
• For all Borel sets B ⊂ R+, C ⊂ E and (t, x) ∈ E′, α ∈ A, the stochastic

kernel Q′ is given by

Q′(B × C|t, x, α
)

:= λ

∫ T−t

0

e−λs1B(t + s)Q
(
C|φα

s (x), αs

)
ds. (3)

This is obviously a substochastic transition law. In order to make it stochas-
tic, we may add an artificial absorbing state ∆ to the state space and define

Q′({∆}|t, x, α
)

:= e−λ(T−t), Q′({∆}|∆, α
)

:= 1.

• The reward function r′ : E′ ×A → R is defined by

r′(t, x, α) :=
∫ T−t

0

e−λsr
(
φα

s (x), αs

)
ds + e−λ(T−t)g

(
φα

T−t(x)
)
. (4)

r′(x,∆) := 0.

In what follows we treat the problem as a substochastic problem and skip the
state ∆. As usual we define now for this discrete-time Markov Decision Model
for a policy (fn):

J ′∞(fn)(t, x) = IE(fn)
t,x

[ ∞∑
n=0

r′
(
T ′n, Z ′

n, fn(T ′n, Z ′
n)

)]
J ′∞(t, x) = sup

(fn)

J ′∞(fn)(t, x), (t, x) ∈ E′.
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where (T ′n, Z ′
n) is the corresponding state process of the MDP up to absorption

in ∆. Note that (T ′n, Z ′
n) = (Tn, Zn) as long as Tn ≤ T .

Theorem 1. For a Markovian policy π = (fn) we have

Vπ(t, x) = J ′∞(fn)(t, x), (t, x) ∈ E′.

Moreover, it holds: V = J ′∞.

Proof. Let Hn := (T0, Z0, . . . , Tn, Zn) and Tn ≤ T . We consider only the time
point t = 0. Arbitrary time points can be treated similarly by adjusting the
notation. We obtain:

Vπ(0, x) = IEπ
x

[ ∞∑
n=0

( ∫ Tn+1∧T

Tn∧T

r(Xs, πs)ds + 1[Tn≤T<Tn+1]g(XT )
)]

=
∞∑

n=0

IEπ
x

[
IEπ

x

[∫ Tn+1∧T

Tn

r(Xs, πs)ds
∣∣∣Hn

]]

+
∞∑

n=0

IEπ
x

[
IEπ

x

[
1[Tn≤T<Tn+1]g(XT )|Hn

]]
=

∞∑
n=0

IE(fn)
x

[
r′

(
T ′n, Z ′

n, fn(T ′n, Z ′
n)

)]
since the transition kernel of (T ′n, Z ′

n) is given by (3) and r′ by (4). �

Theorem 1 implies that V (t, x) can be computed from the value function
J ′∞ of the discrete-time Markov Decision Model. Note that the Integrability As-
sumption for the Piecewise Deterministic Markov Decision Process implies that
the discrete-time Markov Decision Model is well-defined. The maximal reward
operator T is given by

(T v)(t, x) = sup
α∈A

{
e−λ(T−t)g

(
φα

T−t(x)
)

+

+
∫ T−t

0

e−λs
[
r
(
φα

s (x), αs

)
+ λ

∫
v(t + s, z)Q

(
dz|φα

s (x), αs

)]
ds

}
.

From now on we assume that U is compact. In order to prove existence of optimal
controls we need certain continuity and compactness conditions. To achieve this,
we have to enlarge the action space and we introduce

R := {α : R+ → IP(U) measurable} , (5)

the set of relaxed controls where IP(U) is the set of all probability measures on U
equipped with the σ-algebra of the Borel sets, i.e. αt can be seen as a randomized
action. The problem is to define a topology on A which allows for a compact
action space and a continuous target function - two competing aims. The set
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A of deterministic controls is a measurable subset of R in the sense that for
α ∈ A the measures αt are one-point measures on U . A suitable topology on R
is given by the so-called Young topology. Definition and important properties of
this topology are summarized in the following remark. It can be shown that the
set A of deterministic controls is dense in R with respect to the Young topology.

Remark 2 (Young Topology). The Young topology on R is the coarsest topology
such that all mappings of the form

R 3 α 7→
∫ ∞

0

∫
U

w(t, u)αt(du)dt

are continuous for all functions w : [0,∞]× U → R which are continuous in the
second argument and measurable in the first argument and satisfy∫ ∞

0

max
u∈U

|w(t, u)|dt < ∞.

We denote this class by Car(R+ × U), the so-called Carathéodory functions.
With respect to the Young topology R is a separable metric and compact Borel
space. In order to have well-defined integrals the following characterizations of
measurability are important:

(i) A function α : R+ → IP(U) is measurable if and only if

t 7→
∫
U

v(u)αt(du)

is measurable for all bounded and continuous v : U → R+.
(ii) A function f : E′ → R is measurable if and only if

(t, x) 7→
∫

R+

∫
U

w(s, u)f(t, x, s; du)ds

is measurable for all w ∈ Car(R+ × U).

Moreover, the following characterization of convergence in R is crucial for our
applications. Suppose (αn) ⊂ R and α ∈ R. Then limn→∞ αn = α if and only if

lim
n→∞

∫ ∞

0

∫
U

w(t, u)αn
t (du)dt =

∫ ∞

0

∫
U

w(t, u)αt(du)dt

for all w ∈ Car(R+ × U).

Now we have to extend the domain of functions already defined on A. In
particular we define for α ∈ R

dφα
t (x) =

∫
µ
(
φα

t (x), u
)
αt(du)dt, φα

0 (x) = x, (6)

r′(t, x, α) = e−λ(T−t)g
(
φα

T−t(x)
)

+
∫ T−t

0

e−λs

∫
r
(
φα

s (x), u
)
αs(du)ds,

Q′(B × C|t, x, α) = λ

∫ T−t

0

e−λs1B(t + s)
∫

Q
(
C|φα

s (x), u
)
αs(du)ds
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where we again assume that a unique solution of (6) exists (according to the
Theorem of Carathéodory this is the case if e.g. µ(x, u) is Lipschitz-continuous
in x uniformly in u). If α belongs to the subset A, then the definitions of φα, r′

and Q′ coincide with those we have used so far. In case α is a relaxed control
there is no physical interpretation of the model. The operator T has the following
form:

(T v)(t, x) = sup
α∈R

{
e−λ(T−t)g

(
φα

T−t(x)
)

+

+
∫ T−t

0

[
e−λs

∫ (
r
(
φα

s (x), u
)

+ λ

∫
v(t + s, z)Q

(
dz|φα

s (x), u
))

αs(du)
]
ds

}
.

In the Markov Decision Model with relaxed controls the decision maker can
thus do at least as well as in the case without relaxed controls. When we denote
by Jrel

∞ the corresponding value function we obtain

Jrel
∞ (t, x) ≥ J ′∞(t, x) = V (t, x), (t, x) ∈ E′.

We will show that these value functions are equal under some conditions (cp.
Theorem 3). Next we introduce the notion of a bounding function for the PDMDP:

Definition 1. A measurable function b : E → R+ is called a bounding function
for the Piecewise Deterministic Markov Decision Model, if there exist constants
cr, cg, cQ, cφ ∈ R+ such that

(i) |r(x, u)| ≤ crb(x) for all (x, u) ∈ E × U .
(ii) |g(x)| ≤ cgb(x) for all x ∈ E.
(iii)

∫
b(z)Q(dz|x, u) ≤ cQb(x) for all (x, u) ∈ E × U .

(iv) b
(
φα

t (x)
)
≤ cφb(x) for all (t, x, α) ∈ E′ ×R.

If b is a bounding function for the PDMDP, then

b(t, x) := b(x)eγ(T−t) for γ ≥ 0

is a bounding function for the discrete-time MDP (with and without relaxed
controls), since

|r′(t, x, α)| ≤ b(t, x)cφ

(cr

λ
+ cg

)
∫

b(s, z)Q′(d(s, z)|t, x, α) ≤ b(t, x)cQcφ
λ

λ + γ

(
1− e−(λ+γ)T

)
.

For a measurable v : E′ → R we denote the weighted supremum norm by

‖v‖b := sup
(t,x)∈E′

|v(t, x)|
b(t, x)

(with the convention 0
0 := 0) and define the set

IBb := {v : E′ → R | v is measurable and ‖v‖b < ∞}.
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Moreover, let us define

αb := sup
(t,x,α)∈E′×R

∫
b(s, z)Q′(d(s, z)|t, x, α)

b(t, x)
.

From the preceding considerations it follows that

αb ≤ cQcφ
λ

λ + γ

(
1− e−(λ+γ)T

)
.

Hence when a bounding function exists, we have αb < 1 for γ large. From now
on we assume that αb < 1. The existence of a bounding function then implies

sup
π

IEπ
tx

[ ∞∑
k=n

∣∣r′(T ′k, Z ′
k, fk(T ′k, Z ′

k)
)∣∣] ≤ αn

b

1− αb
b(t, x), (t, x) ∈ E′,

which means that the discrete-time MDP (with and without relaxed controls) is
contracting. Moreover, it holds

‖T v − T w‖b ≤ αb‖v − w‖b, v, w ∈ IBb.

We introduce next the following

Continuity and Compactness Assumptions:

(i) U is compact.
(ii) (t, x, α) 7→ φα

t (x) is continuous on E′ ×R.
(iii) (x, u) 7→

∫
v(z)Q(dz|x, u) is continuous for all continuous v on E with

|v(x)| ≤ cvb(x) for some cv ≥ 0.
(iv) (x, u) 7→ r(x, u) is continuous.
(v) x 7→ g(x) is continuous.

It is possible to weaken the continuity assumptions to upper semicontinuity
(see e.g. the recent book [4]).

Lemma 1. Let b(x) be a continuous bounding function and (t, x, α) 7→ φα
t (x) be

continuous. Let w : E′ × U → R be continuous with |w(t, x, u)| ≤ cwb(t, x) for
some cw ≥ 0. Then

(t, x, α) 7→
∫ T−t

0

e−λs

(∫
w

(
t + s, φα

s (x), u)αs(du)
)

ds

is continuous on E′ ×R.

Proof. First we prove that the function

W (t, x, α) :=
∫ T−t

0

e−λs

(∫
w

(
t + s, φα

s (x), u
)
αs(du)

)
ds
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is bounded and continuous if w is bounded and continuous. Boundedness is obvi-
ous. Now suppose (tn, xn, αn) → (t, x, α). Let wn(s, u) := w

(
tn + s, φαn

s (xn), u
)

and w(s, u) := w
(
t + s, φα

s (x), u
)
. We consider with an := min{T − t, T − tn}

and bn := max{T − t, T − tn}:

|W (tn, xn, αn)−W (t, x, α)| ≤

≤
∣∣∣ ∫ bn

an

e−λs

∫
wn(s, u)αn

s (du)ds
∣∣∣ +

+
∫ T−t

0

e−λs

∫
|wn(s, u)− w(s, u)

)
|αn

s (du)ds +

+
∣∣∣ ∫ T−t

0

e−λs

∫
w(s, u)αn

s (du)ds−
∫ T−t

0

e−λs

∫
w(s, u)αs(du)ds

∣∣∣.
The first term on the right-hand side converges to zero for n → ∞ since the
integrand is bounded. The second term can be further bounded by∫ T−t

0

e−λs sup
u∈U

|wn(s, u)− w(s, u)|ds

which converges to zero for n → ∞ due to dominated convergence and the
continuity of φ and w. The last term converges to zero in view of the definition
of convergence w.r.t. the Young topology and the fact that w is continuous.

Now let w be continuous with |w| ≤ cwb. Then wb(t, x, u) := w(t, x, u) −
cwb(t, x) ≤ 0 and continuous. According to Lemma 7.14 in [6], there exists a
sequence (wb

n) of bounded and continuous functions with (wb
n) ↓ wb. From the

first part of the proof we know that

Wn(t, x, α) :=
∫ T−t

0

e−λs

(∫
wb

n

(
t + s, φα

s (x), u
)
αs(du)

)
ds

is bounded and continuous and decreases for n →∞ against

W (t, x, α)− cw

∫ T−t

0

e−λsb
(
t + s, φα

s (x)
)
ds

which is thus upper semicontinuous. Since b is a continuous bounding function,
it follows from generalized dominated convergence that

(t, x, α) 7→
∫ T−t

0

e−λsb
(
t + s, φα

s (x)
)
ds

is continuous which implies that W is upper semicontinuous. Considering the
function wb(t, x, u) := −cwb(t, x) − w(t, x, u) ≤ 0 in the same way we obtain
that W is lower semicontinuous, thus W is continuous. �

Now we are able to formulate the main results for the control problem (with
relaxed controls). Denote

Cb(E′) := {v ∈ IBb | v is continuous }.
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Theorem 2. Suppose the Piecewise Deterministic Markov Decision Process has
a continuous bounding function b and the continuity and compactness assump-
tions are satisfied. Then it holds:

a) Jrel
∞ ∈ Cb(E′) and Jrel

∞ is the unique fixed point of T in Cb(E′).
b) There exists an optimal relaxed control π∗ = (π∗t ) such that

π∗t = f(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1]

for a measurable control function f : E′ → R.

Proof. Recall from Remark 2 that R is compact. Then it follows from Lemma 1
that

(t, x, α) 7→ r′(t, x, α) +
∫

v(s, z)Q′(d(s, z)|t, x, α)

is continuous for v ∈ Cb(E′). This implies that T : Cb(E′) → Cb(E′). Moreover
Cb(E′) is a closed subset of the Banach space IBb. Hence the statement follows
with Banach’s fixed point theorem (see also Theorem 7.3.6 in [4]). �

Note that the optimal control π∗t takes values in IP(U). In applications the
existence of optimal nonrelaxed controls is more interesting. Here we are able to
prove the following result:

Theorem 3. Suppose the Piecewise Deterministic Markov Decision Process has
a continuous bounding function b and the continuity and compactness assump-
tions are satisfied. If φα

t (x) is independent of α (uncontrolled flow) or if U is
convex, µ(x, u) linear in u and

u 7→ r(x, u) + λ

∫
Jrel
∞ (t, z)Q(dz|x, u)

is concave on U , then there exists an optimal nonrelaxed policy π∗ = (π∗t ) such
that

π∗t = f(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1]

for a measurable control function f : E′ → A. Note that π∗t takes values in U and
that V = J ′∞ = Jrel

∞ . In particular, V is the unique fixed point of T in Cb(E′).

Proof. For v ∈ Cb(E′) define

w(t, x, u) := r(x, u) + λ

∫
v(t, z)Q(dz|x, u), (t, x) ∈ E′, u ∈ U .

Then

(Lv)(t, x, α) := e−λ(T−t)g
(
φα

T−t(x)
)

+
∫ T−t

0

e−λs

∫
U

w
(
t + s, φα

s (x), u)αs(du)ds

and
(T v)(t, x) = sup

α∈R
(Lv)(t, x, α).



12 Bäuerle, Rieder

a) Let φα
t (x) be independent of α (uncontrolled flow). There exists a measurable

function f̃ : E′ → U such that

w
(
t, x, f̃(t, x)

)
= sup

u∈U
w(t, x, u), (t, x) ∈ E′.

Define f(t, x)(s) := f̃
(
t+s, φs(x)

)
for s ≥ 0. Then f : E′ → A is measurable

and it is easily shown (by a pointwise maximization) that

sup
α∈R

(Lv)(t, x, α) = e−λ(T−t)g
(
φT−t(x)

)
+

∫ T−t

0

e−λsw
(
t + s, φs(x), f(t, x)(s)

)
ds

= (Lv)
(
t, x, f(t, x)

)
, (t, x) ∈ E′.

Hence the statements follow as in the proof of Theorem 2.
b) Let u 7→ w(t, x, u) be concave on U . There exists a measurable function

frel : E′ → R such that

sup
α∈R

(Lv)(t, x, α) = (Lv)
(
t, x, frel(t, x)

)
, (t, x) ∈ E′.

Define f(t, x) :=
∫
U ufrel(t, x)(du) for (t, x) ∈ E′. Then f(t, x) ∈ A since U

is convex, and f : E′ → A is measurable. Moreover, since the drift µ(x, u) is
linear in u we obtain φα

t = φᾱ
t with ᾱt :=

∫
uαt(du). From the concavity of

w(t, x, ·) we conclude

(Lv)(t, x, α) ≤ e−λ(T−t)g
(
φα

T−t(x)
)
+

∫
e−λsw

(
t+s, φᾱ

s (x), ᾱs

)
ds = (Lv)(t, x, ᾱ)

and hence

sup
α∈R

(Lv)(t, x, α) = (Lv)
(
t, x, f(t, x)

)
, (t, x) ∈ E′.

For v = Jrel
∞ , the (nonrelaxed) control function f is a maximizer of Jrel

∞ ,
hence optimal and V (t, x) = Jrel

∞ (t, x). �

4 Applications

In this section we consider two applications in mathematical finance.

4.1 Terminal Wealth Problem

We consider a special class of continuous-time financial markets where asset
dynamics follow a PDMP: Suppose there is a Poisson process N = (Nt) with
rate λ > 0 and a sequence of independent and identically distributed random
vectors (marks) (Yn) with values in (−1,∞)d. The Yn are assumed to have a
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distribution QY and to be independent of (Nt). Thus, we can define the Rd-
valued compound Poisson process

Ct :=
Nt∑

n=1

Yn.

By (Ck
t ) we denote the k-th component of this process. We suppose that we have

d risky assets and one riskless bond with the following dynamics for t ∈ [0, T ]:

• The price process (S0
t ) of the riskless bond is given by

S0
t := eρt,

where r ≥ 0 denotes the continuous interest rate.
• The price processes (Sk

t ) of the risky assets k = 1, . . . , d satisfy the stochastic
differential equation:

dSk
t = Sk

t−
(
µkdt + dCk

t

)
where µk ∈ R are given constants. The initial prices Sk

0 are assumed to be
strictly positive.

In this financial market, the price processes show a deterministic evolution
between jumps and the jumps occur at Poisson epochs and have random sizes.
If we denote again by 0 := T0 < T1 < T2 < . . . the jump time points of the
Poisson process and if t ∈ [Tn, Tn+1), then for k = 1, . . . , d

Sk
t = Sk

Tn
exp

(
µk(t− Tn)

)
.

At the time of a jump we have

Sk
Tn
− Sk

Tn− = Sk
Tn−Y k

n .

Thus, Y k
n gives the relative jump height of asset k at the n-th jump. Since

Y k
n > −1 almost surely, our asset prices stay positive. Note that the distribution

QY might well have probability mass on points Y kek, k = 1, . . . , d where ek is
the k-th unit vector. The assets are allowed to have common jumps - a way of
modeling dependence.

Now we want to invest into this financial market. To ensure that the wealth
process stays positive we do not allow short-sellings. Thus, the portfolio strategy
can be given in terms of fractions of invested capital. In what follows, an admis-
sible portfolio strategy π = (πt) is given as a Markovian policy (see Section 2)
with values in U := {u ∈ Rd | u ≥ 0, u · e ≤ 1} (we denote e = (1, . . . , 1) and
x · y the scalar product), where πt = (π1

t , . . . , πd
t ) gives the fractions of wealth

invested in the stocks at time t. The quantity 1−πt · e is the fraction invested in
the bond, thus the portfolio is self-financing. The dynamics of the wealth process
is

dXt = Xt−

(
ρdt + πt · (µ̄− ρe)dt + πtdCt

)
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where µ̄ := (µ1, . . . , µd) ∈ Rd. The wealth process is a controlled PDMP with
µ(x, u) := x(ρ + u · (µ̄− ρe)), and hence φα

t (x) = xe
R t
0 (ρ+αs·(µ̄−ρe))ds. We obtain

the following explicit expression for the wealth process:

Xt = x0 exp
( ∫ t

0

(
ρ + πs · (µ̄− ρe)

)
ds

) Nt∏
j=1

(
1 + πTj · Yj

)
.

The aim of the investor is now to maximize her expected utility of the terminal
wealth. Thus, we denote by U : (0,∞) → R+ a strictly increasing and strictly
concave utility function and define for a policy π and (t, x) ∈ E′ := [0, T ]×(0,∞):

Vπ(t, x) := IEπ
t,xU(XT )

the expected utility of terminal wealth. The maximal expected utility is given
by

V (t, x) := sup
π

Vπ(t, x).

Obviously we have Vπ(T, x) = U(x) = V (T, x). Throughout we assume that∫
‖y‖QY (dy) < ∞ where for x ∈ Rd, ‖x‖ := |x1|+ . . . + |xd|. This implies that

V is well-defined. This problem has been considered in [3].
It follows now directly from Section 3 that the corresponding discrete-time

Markov Decision Process has transition kernel

Q′(B × C | t, x, α
)

:= λ

∫ T−t

0

e−λs

∫
1B(t + s)1C

(
φα

s (x)
(
1 + αs · y

))
QY (dy)ds

and the one-stage reward function

r′
(
t, x, α

)
:= e−λ(T−t)U

(
φα

T−t(x)
)
.

In this model the dynamic programming operator has the form

(T v)(t, x) = sup
α∈A

{
e−λ(T−t)U

(
φα

T−t(x)
)

+λ

∫ T−t

0

e−λs

∫
v
(
t + s, φα

s (x)
(
1 + αs · y

))
QY (dy)ds

}
.

Since U is concave it can be bounded by a linear function and thus the discrete-
time MDP (with and without relaxed controls) has a bounding function b given
by

b(t, x) := eγ(T−t)(1 + x), (t, x) ∈ E′

for γ ≥ 0, and αb < 1 if γ is large enough (see Section 3). Let us define

IM cv := {v ∈ Cb(E′) | v(t, x) is concave and increasing in x and decreasing in t}.

Note that the continuity and compactness conditions are satisfied. In particular,
U is compact and convex, (t, x, α) 7→ φα

t (x) is continuous, b(x) is continuous and
µ(x, u) is linear in u. Then we obtain from Theorem 2 and Theorem 3:
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Theorem 4. The following statements hold for the terminal wealth problem:

a) The value function V (t, x) is the unique fixed point of T in IM cv.
b) There exists an optimal (nonrelaxed) portfolio strategy π∗ = (π∗t ) such that

π∗t = f(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1]

for a measurable f : E′ → A.

For further properties of the value function see [3].

Example 1 (Power utility). Let U(x) := xβ with 0 < β < 1. In this case we
obtain the explicit solution:

V (t, x) = xβeδ(T−t), (t, x) ∈ E′

π∗t ≡ u∗, t ∈ [0, T ]

where u∗ is the maximum point of

u 7→ βu · (µ̄− ρe) + λ

∫
(1 + u · y)βQY (dy)

on U and δ := βρ− λ + βu∗ · (µ̄− ρe) + λ
∫

(1 + u∗ · y)βQY (dy).

4.2 Trade Execution in Illiquid Markets

Suppose we have an agent who wants to sell a large amount of shares during a
given time interval. Placing a large order in an order book will certainly lead to a
price impact. Moreover in traditional markets, other participants may examine
the order book and see the intention of the agent and then may try to trade
against her. As a consequence it is recently possible to trade in dark pools where
there is no order book and orders are matched electronically. This reduces the
risk of adverse price manipulations but on the other hand may lead to lower
liquidity since there is no market-maker. This problem has been considered in
[5] but solved with different methods.

We will set-up a simple mathematical model to describe this situation. Sup-
pose that the agent has initially x0 ∈ N0 shares and is able to sell them in blocks
only at the jump time points of a Poisson process to account for illiquidity. The
execution horizon is T . All shares which have not been sold until time T will be
placed at a traditional market and the order will be executed at once. The cost
of selling a shares is given by C(a) where C : N0 → R+ is strictly increasing and
strictly convex and satisfies C(0) = 0. Note that strictly convex means that

C(x)− C(x− 1) < C(x + 1)− C(x), x ∈ N. (7)

The cost function C can be interpreted as a market depth function. Obviously
this implies that it is better to sell small blocks, however if there are no trading
epochs arriving anymore this will yield a large amount of shares which have to
be liquidated at time T .
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Let us now formalize this optimization problem: Suppose N = (Nt) is a
Poisson-process with fixed intensity λ > 0 and jump time points 0 = T0 < T1 <
T2 < . . .. A control process π = (πt) = (fn) is defined as in Section 2 where πt

denotes the number of shares the agent would like to sell at time t, i.e. U := N0.
This order is only executed if t is also a jump time-point of the Poisson process.
The state process (Xt) represents the number of shares which still have to be
sold. Thus, if (πt) is a control process we obtain

Xt = x0 −
∫ t

0

πsdNs

where πt ≤ Xt has to be satisfied for all t ∈ [0, T ]. A control process with this
property is called admissible. The problem is now to minimize the value function

Vπ(t, x) = IEπ
tx

[∫ T

t

C(πs)dNs + C(XT )

]
,

i.e. to find
V (t, x) = inf

π
Vπ(t, x), (t, x) ∈ [0, T ]× N0 =: E′

where the infimum is taken over all admissible Markovian policies.
Obviously this control problem is a controlled PDMDP. Since φα

t (x) = x
the flow is uncontrolled and we may consider this problem also as a controlled
CTMC (cf. [11]). We will solve it by a discrete-time MDP along the lines in
Section 3. Let us denote

A := {α : R+ → N0 measurable }

and D(x) := {α ∈ A | αt ≤ x for all t ≥ 0} and D := {(t, x, α) ∈ E′ × A|α ∈
D(x)}. In contrast to the previous section we have a restriction on the actions
here but this will be easy to handle. We obtain now for a Markovian policy
π = (πt) = (fn) that

Vπ(t, x) = IEπ
tx

[∫ T

t

C(πs)dNs + C(XT )

]

=
∞∑

n=1

IEπ
tx

[
c
(
T ′n, Z ′

n, fn(T ′n, Z ′
n)

)]
,

where for (t, x, α) ∈ D

c(t, x, α) :=
∫ T−t

0

λe−λsC(αs)ds + e−λ(T−t)C(x). (8)

Thus we can consider the discrete-time MDP with the substochastic transi-
tion kernel Q′

Q′(B × C | t, x, α
)

:=
∫ T−t

0

λe−λs1B(t + s)1C(x− αs)ds
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and one-stage reward function r′
(
t, x, α

)
:= −c

(
t, x, α

)
where c is given in (8).

Theorem 1 implies that V = J ′∞ and that an optimal policy of the discrete-time
MDP defines an optimal control process for the PDMDP.

The function b(t, x) := C(x), (t, x) ∈ E′ is a bounding function for the
discrete-time MDP and αb < 1 since

|r′
(
t, x, α

)
| ≤

∫ T−t

0

λe−λsC(x)ds + e−λ(T−t)C(x) = C(x)

and

αb = sup
(t,x,α)∈D

∫ T−t

0
λe−λsC(x− αs)ds

C(x)
≤ 1− e−λT < 1.

Properties of the value function V (t, x) which can immediately be seen are:

V (t, x) ≤ C(x) and V (t, 0) = 0 and V (T, x) = C(x).

Now the dynamic programming operator T reads for v ∈ IBb:

(T v)(t, x) = inf
α∈D(x)


T−t∫
0

λe−λs
(
C(αs) + v(t + s, x− αs)

)
ds + e−λ(T−t)C(x)


=

∫ T−t

0

λe−λs min
a∈{0,...,x}

(
C(a) + v(t + s, x− a)

)
ds + e−λ(T−t)C(x).

Since the drift of the PDMDP cannot be controlled, it is not necessary to consider
relaxed controls (cp. Theorem 3). Let us denote by

f∗(t, x) := argmina∈{0,...,x}

(
C(a) + v(t, x− a)

)
, (t, x) ∈ E′ (9)

the smallest minimizer of the right-hand side. Define

IM cx :=
{

v ∈ Cb(E′) | v(t, x) ≤ C(x), v(t, 0) = 0, v is increasing in t, x

and convex in x
}

.

Then we obtain:

Theorem 5. The following statements hold for the trade execution problem:

a) The value function V (t, x) is the unique fixed point of T in IM cx.
b) There exists an optimal control process π∗ = (π∗t ) such that π∗t = f∗(t, Xt)

and f∗ satisfies f∗(t, x) ≤ f∗(t, x + 1) ≤ f∗(t, x) + 1, and (Xt) is the corre-
sponding number of share process.
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Proof. We show that T : IM cx → IM cx and that for v ∈ IM cx, the minimizer f∗

as defined in (9) has the properties f∗(t, x) ≤ f∗(t, x + 1) ≤ f∗(t, x) + 1.
Let v ∈ IM cx. Since v(t, 0) = 0 we obtain T v ≤ C. That T v(t, 0) = 0

is obvious. The continuity of (t, x) 7→ T v(t, x) follows immediately from the
definition of T . We next prove that T v is increasing in x, i.e. T v(t, x) ≤ T v(t, x+
1), x ∈ N. This can be seen since

C(a) + v(t + s, x− a) ≤ C(a) + v(t + s, x + 1− a), for a = 0, . . . , x

C(x) + v(t + s, 0) ≤ C(x + 1) + v(t + s, 0).

Next we show that T v is increasing in t. In what follows we write

G(t, x) := min
a∈{0,...,x}

(
C(a) + v(t, x− a)

)
.

Let t ≥ t′ and consider

T v(t, x)− T v(t′, x) =
∫ T−t

0

λe−λs
(
G(t + s, x)−G(t′ + s, x)

)
ds +

+
∫ T−t′

T−t

λe−λs
(
C(x)−G(t′ + s, x)

)
ds.

Let a∗ = f∗(t + s, x) then we obtain

G(t+ s, x)−G(t′+ s, x) ≥ C(a∗)+ v(t+ s, x−a∗)−C(a∗)− v(t′+ s, x−a∗) ≥ 0

and we obviously have

C(x)−G(t′ + s, x) ≥ C(x)− C(x)− v(t′ + s, 0) = 0

which implies that T v is increasing in t.
Next we show that f∗(t, x+1) ≤ f∗(t, x)+1. If f∗(t, x) = x the statement is

clear, so suppose a∗ := f∗(t, x) ≤ x− 1. Now suppose there exists an a > a∗ + 1
with

C(a) + v(t, x + 1− a) < C(a∗ + 1) + v(t, x + 1− (a∗ + 1)).

This implies

C(a− 1)− C(a∗) < C(a)− C(a∗ + 1) < v(t, x− a∗)− v(t, x + 1− a)

and hence

C(a− 1) + v(t, x− (a− 1)) < C(a∗) + v(t, x− a∗)

which contradicts the definition of a∗.
The remaining two statements T v(t, y+1)−T v(t, y) ≥ T v(t, y)−T v(t, y−1)

and f∗(t, y + 1) ≥ f∗(t, y) for y ∈ N are simultaneously shown by induction on
y. For y = 1 we have

T v(t, 2)− T v(t, 1) ≥ T v(t, 1)− T v(t, 0)
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and f∗(t, 2) = 1 = f∗(t, 1). Suppose the statement is true for y = 1, . . . , x − 1.
Let a∗ = f∗(t, x) ≥ 1. Suppose there exists an 0 < a < a∗ (an easy argument
gives us that a = 0 cannot be optimal) with

C(a) + v(t, x + 1− a) ≤ C(a∗) + v(t, x + 1− a∗).

This implies that

C(a∗)− C(a) ≥ v(t, x + 1− a)− v(t, x + 1− a∗) ≥ v(t, x− a)− v(t, x− a∗)

where the last inequality follows from the induction hypothesis. Hence we con-
clude that

C(a∗) + v(t, x− a∗) ≥ C(a) + v(t, x− a)

which is a contradiction to the definition of a∗ and we obtain f∗(t, x + 1) ≥
f∗(t, x). Now we have to show that T v(t, x+1)−T v(t, x) ≥ T v(t, x)−T v(t, x−1).
Due to the convexity of C the statement is true when

G(t, x + 1)−G(t, x) ≥ G(t, x)−G(t, x− 1).

Let us denote f∗(t, x) =: a∗ > 0 and b∗ = f∗(t, x − 1). Then b∗ ≤ a∗ ≤ b∗ + 1,
i.e. b∗ ≥ a∗ − 1. We discern the following cases:

Case 1: f∗(t, x + 1) = a∗.
Thus we have

G(t, x)−G(t, x− 1) ≤ v(t, x− b∗)− v(t, x− 1− b∗) ≤
≤ v(t, x + 1− a∗)− v(t, x− a∗) = G(t, x + 1)−G(t, x).

Case 2: f∗(t, x + 1) = a∗ + 1.
Here we have

G(t, x)−G(t, x− 1) ≤ v(t, x− b∗)− v(t, x− 1− b∗) ≤
≤ v(t, x− a∗)− v(t, x− a∗ − 1) ≤ G(t, x + 1)−G(t, x).

IM cx is a closed subset of the Banach space IBb. Hence V (t, x) is the unique
fixed point of T in IM cx. For v = V , the control function f : E′ → A defined by

f(t, x)(s) := f∗(t + s, x) for s ≥ 0

is a minimizer of V . Then by Theorem 1 the control process π∗ = (π∗t ) is optimal
where for t ∈ (Tn, Tn+1]

π∗t = f(Tn, Zn)(t− Tn) = f∗(t, Zn) = f∗(t, Xt).

�

Remark 3. In [5] it is also shown that the optimal f∗(t, x) is increasing in t and
jumps only by sizes one, i.e. there are thresholds 0 ≤ t1(x) < t2(x) < . . . < tx(x)
such that if we have x shares we try to sell k between time tk−1(x) and tk(x).
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