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Tag der mündlichen Prüfung: 13. Februar 2013

Referent: Prof. Dr. Karl-Heinz Waldmann

Korreferent: Prof. Dr. Andreas Geyer-Schulz

Karlsruhe 2013





Abstract

In this thesis, we discuss air cargo capacity control problems. We model these problems as

Markov decision processes because they require dynamic decisions under uncertain conditions.

Our focus is on analyzing decision models featuring structured optimal decisions on the one hand

and on developing efficient heuristics as well as bounds on the other hand. We analyze three

different decision problems:

First, we study a basic single-leg air cargo capacity control problem. The structural properties

of optimal actions have not yet been discussed in the currently available literature. We argue

that optimal decisions are not simply structured, and thus propose further decision models,

which feature an optimal control limit policy. Further, we determine feasible solutions to the

basic model by means of heuristics that are based on decomposition and approximate dynamic

programming. We also propose upper bounds on the optimal objective value.

The second problem optimizes the availability of both seats and cargo capacity on a single leg.

Controlling the availability of these resources is traditionally split up into two independent tasks

in both practice and research. We propose an integrated model that simultaneously controls the

availability of both resources. Since optimal decisions are not simply structured, we propose an

additional model, which features an optimal monotone switching curve policy. Furthermore, we

suggest a decomposition and a bid price heuristic for solving the basic integrated model. The

bid prices are obtained via a deterministic linear program, which provides an upper bound on

the optimal objective value.

In the third decision problem, the availability of cargo capacity for an entire network of flights

is optimized. Current research on network air cargo revenue management either significantly

simplifies the underlying decision problem or focuses on developing new solution techniques. We

pursue the question of how well-researched passenger network revenue management methods can

be adopted to a cargo context when capacity and capacity requirement uncertainties are ac-

counted for. Since the capacity control problem is very complex, we suggest several upper bound

problems and heuristics based on linear programming, approximate dynamic programming, and

decomposition approaches.
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Chapter 1

Introduction

Since the US government passed the law to deregulate the airline market in 1978, cost efficiency,

operating profitability, and competitive behavior have become crucial management issues (Be-

lobaba, 2009, pp. 1-2). Even though airlines have been free to set ticket prices, increasing

competition has forced them to offer low fares. In recent years, being profitable has become

difficult for airlines since operating costs, which are largely driven by the oil price and labor

costs, have increased. Furthermore, ticket prices have been low since customers have become in-

creasingly price-sensitive, and many low cost carriers have entered the market. Numerous major

carrier bankruptcies, such as United, US Airways, Delta, or Air Canada, have demonstrated that

profitably operating an airline is challenging. Pilarski (2007, p. 3) even describes the financial

situation of the airline industry to be ”between disaster and catastrophe”. Consequently, airline

management actively seeks sources for cost minimization or revenue maximization. For example,

in 2012, in order to improve annual profits by over 2 billion dollars, Lufthansa German Airlines

introduced a three-year cost cutting program (Lufthansa, 2012).

Traditionally, an airline’s strategic focus has been on carrying passengers. Transporting cargo

on combination carriers was considered rather as a byproduct. According to Rathert (2006),

”cargo has always been the misunderstood and unglamorous step-child of the airline industry”.

However, due to the described pressure on profitability, airlines have started paying increasingly

attention to potential contributions from cargo operations (see e.g. Shaw, 2004, p. 39; Sandhu &

Klabjan, 2006; Rathert, 2006; Graff, 2008; Parthasarathy, 2010). In order to improve efficiency

and customer service, the International Air Transport Association (IATA) has even funded a

non-profit industry group that defines quality standards for cargo supply chains (IATA, 2012).

Today, for many airlines, cargo has become an important source of revenue and on average

contributes 15% of total air traffic revenue (Boeing, 2013). While all airlines at least sell cargo

space on their passenger aircraft to generate additional revenue, many carriers operate an extra

fleet of pure freighters to take advantage of demand for air freight. For instance, LAN Airlines

1



1 Introduction

generates 39.3% of its total revenue from transporting cargo (LAN, 2012), and for Korean Air,

cargo accounts for 29.7% of total revenue (Korean Air, 2012).

While air freight may be up to ten times as expensive as surface transport, it offers the

advantage of speed and reliability (Shaw, 2004, pp. 40-47). Typical goods, for which air transport

is chosen, are high tech products or perishable goods like fresh fruits (MergeGlobal, 2008). In

general, the benefits of speed and reliability are crucial for companies operating global supply

chains. Production strategies such as just-in-time and just-in-sequence, which avoid any stock

building, increase the importance of a quick and highly reliable transport even further. The

increasing importance of air cargo is also reflected in past and forecasted traffic data (see Figure

1.1): Global air cargo traffic grew on average 3.7% per year between 2001 and 2011, with a drop

in demand in 2009. Annual growth is predicted as on average 5.2% until 2031, which implies that

total air traffic will triple between 2011 and 2031. According to Airbus (2011), the main growth

drivers are international trade expansion, especially to and from China, and the development

of domestic express freight in China, India, and Brazil. While demand is expected to increase

3Copyright © 2012 Boeing. All rights reserved.
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Figure 1.1: World air cargo traffic (Boeing, 2013)

significantly, air freight yields have on average declined at 4.2% per year between 1991 and 2011

(see Figure 1.2), which is owed to, among others, overcapacity and intense competition (Vinod

& Narayan, 2008).

In summary, on the supply side, in order to compensate for profit challenges in the passenger

business, airlines have started focusing on revenue opportunities from cargo. On the demand

side, air freight traffic is expected to increase significantly, but yields are low. Thus, selling the

right product to the right customer at the right time is highly important in order to capture

market demand and increase yields. This brings along the question of which decision rules to

2



1.1 Research Questions and Contributions
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Figure 1.2: Cargo yields (Boeing, 2013)

follow when selling cargo capacity to customers. Below, we provide a description of the associated

decision problem.

The Decision Problem

Consider a cargo revenue manager who receives short-term booking requests over a finite booking

horizon. A request for a shipment type is characterized by the shipment’s weight and volume

requirement, origin and destination of the freight, and its contribution margin per unit. The

aircraft (or multiple aircraft), which connects the specific origin and destination, have a limited

weight and volume capacity. When the revenue manager receives a booking request, a decision

has to be made whether the incoming request is accepted or rejected. Accepting the request

gives the airline the particular contribution margin times the shipment’s capacity requirement.

Rejecting the request implies that demand is lost, but capacity is saved for later requests. The

objective in this decision problem is to determine an acceptance policy that maximizes the overall

contribution margin. Since the cargo capacity control problem is one component of the revenue

management process, the term ’revenue’ rather than ’contribution margin’ is usually used despite

abusing the terminology.

1.1 Research Questions and Contributions

This work focuses on modeling cargo capacity control problems of airlines and determining

decision rules which maximize the revenue from selling available capacity. In general, air cargo

space can be sold based on either long-term contracts (allotments) or on a short term basis.

3



1 Introduction

We focus our research on managing short term capacity on what is known as ”spot market”.

Accordingly, we attempt to provide revenue-maximizing decision rules for decision makers who

have to decide whether an incoming short-term request, for a particular shipment, should be

accepted or rejected.

Cargo is 20 years behind the passenger business when it comes to implementing revenue man-

agement solutions (Rathert, 2006). According to Kasilingam (2011, p. 179), only a few airlines

have actually implemented revenue management systems. Thus, advanced and comprehensible

decision support tools, which are easy to implement, are required. However, translating the

capacity control problem into a mathematical model and solving it is not straightforward. In

comparison to seat inventory control, cargo capacity control is more complex, therefore making

most models computationally expensive. This is why, in cargo revenue management, research

focuses on solving the decision problem heuristically (see for instance Amaruchkul et al., 2007;

Levina et al., 2011). For a system state comprising two capacity dimensions, Xiao & Yang (2010)

provide the only study on the exact and analytical-form solution. However, the authors present

a capacity control model which is applicable in maritime rather than air cargo revenue manage-

ment. A similar study for air cargo has not yet been carried out. Given this research gap, the

first part of our work analyzes structural properties of optimal solutions for the single-leg air

cargo capacity control problem. In particular, our contributions are the following:

• We argue that the basic single-leg capacity control problem, modeled as a Markov decision

process, does not feature an optimal monotone control policy, and we provide reasons for

this finding.

• Further decision problems are modeled, using Markov decision processes, which make as-

sumptions regarding admissible actions and demand. This yields optimal monotone control

limit policies, which first, due to their comprehensible structure, are easy to understand

for revenue managers, and second, due to a reduced computational complexity, are easy to

implement.

• We propose a decomposition heuristic that provides a feasible solution to the basic capacity

control problem and offers structured decisions based on switching curves.

• In order to obtain bid prices for weight and volume, a piecewise linear approximation of

the value function is proposed. These bid prices are then used to construct a price-directed

heuristic. Furthermore, the linear program determining these bid prices provides an upper

bound on the maximum expected revenue of the basic capacity control problem.

Controlling the availability of seats and cargo capacity are traditionally two independent tasks.

Airlines justify this approach by simply assuming that passenger profitability is higher than

the equivalent cargo profitability (Kasilingam, 2011, p. 167). Independently performing the
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1.1 Research Questions and Contributions

two optimization steps certainly keeps computational complexity manageable; however, it does

clearly not maximize an airline’s overall revenue. Ideally, according to Kasilingam (2011, p.

167), airlines should control an aircraft’s overall capacity based on profitability of passengers

versus cargo and thereby set up competition between the two sources of profit. Pilon (2007) even

describes an integrated optimization as ”the ultimate prospect for revenue management”. Graff

(2008) remarks that in future, airlines need to be willing to reject passengers in favor of cargo in

order to make money even though this contradicts today’s business practices. Although the need

for an integrated optimization clearly exists, no attempt has yet been made to model the decision

problem. Due to the lack of quantitative approaches, the second part of our study proposes and

analyzes a model for integrated capacity control both of cargo capacity and passenger seats. In

detail, our contributions are:

• We formulate a basic integrated single-leg capacity control problem for cargo space and pas-

senger seats as a finite-horizon Markov decision process and analyze the optimal solutions’

structural properties.

• We propose a further decision model that makes specific assumptions regarding admissible

actions and demand. This gives us an optimal, simply structured, and comprehensible

policy.

• A decomposition heuristic is proposed which gives a feasible solution to the basic integrated

capacity control problem and offers a control policy based upon decision rules that are

monotone in capacity.

• We propose a further heuristic, which is based on bid prices obtained through a linear

program. The solution of the linear program produces an upper bound on the maximum

expected revenue of the basic capacity control problem.

Most currently available research regarding cargo revenue management focuses on single-leg

problems. There are only four studies about the network problem: These are Pak & Dekker

(2004), Luo & Shi (2006), Popescu (2006), and Levina et al. (2011). Only the latter accounts for

real-world challenges such as uncertainty in available capacity and shipments’ capacity require-

ment. Furthermore, these authors model an infinite-horizon problem and focus on developing

a new value function approximation. However, in a network context, there has not been any

attempt to adopt methods, which are thoroughly studied as well as commonly accepted in pas-

senger revenue management, while accounting for uncertainty in both capacity and capacity

requirement. Given this research deficit, in the third part of this work, we pursue the question of

how methods from passenger network revenue management can be adopted in a cargo network

context, where real-world challenges are taken into account. Specifically, our contributions can

be summarized as follows:
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• We model the capacity control problem of a carrier operating flights on a network based

on a finite-horizon Markov decision process. Three sources of uncertainty are accounted

for: First, uncertain booking request arrival; second, uncertain aircraft capacity; and third,

uncertain shipment capacity requirement.

• We extend a linear programming upper bound of Amaruchkul et al. (2007) into our network

setting and account for uncertain capacity. We further suggest a randomized as well as a

partially randomized linear programming upper bound problem.

• An affine value function approximation is proposed to obtain a method which determines

bid prices for both weight and volume units on each leg of an air cargo network; we further

discuss the structural properties of the resulting bid prices.

• We propose a decomposition approach that builds on those bid prices and show that this

method also provides an upper bound on the maximum expected revenue.

• We suggest a piecewise linear approximation of the value function, which accounts for the

state of overbooking on each leg.

1.2 Outline

All the decision models analyzed in this work cover problems that are relevant in the field of

air cargo revenue management. Hence, in Chapter 2, we provide a comprehensive introduction

to this topic. In particular, we describe major characteristics and complexities of the cargo

business and provide an introduction to the fundamentals of revenue management. Furthermore,

a comparison between passenger and cargo revenue management is provided, and a literature

review on air cargo capacity control models is presented.

The theoretical foundations for modeling, analyzing, and approximating the decision problems

are outlined in Chapter 3. We introduce Markov decision processes as special types of stochastic

dynamic decision processes. In addition, since we analyze optimal monotone control policies of

two-dimensional decision problems, the required theoretical concepts like multimodularity are

provided. Also included in this chapter is the outline of the linear programming approach to

approximate dynamic programming. We use this method to approximate the value function of

the Markov decision processes.

In Chapter 4, we analyze optimal decisions of the single-leg air cargo capacity control prob-

lem. Additionally, we propose decision models that feature an optimal monotone control policy.

Furthermore, heuristics that determine feasible solutions of the basic capacity control problem

are developed and tested using numerical experiments. We also propose upper bounds on the

maximum expected revenue of the capacity control problem and test their quality using the same

experiments.
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1.2 Outline

Chapter 5 discusses a model which simultaneously controls both cargo capacity and passenger

seats on combination carriers. We propose a further decision model that features an optimal

monotone control policy. Heuristics for solving the original decision problem and an upper

bound on the maximum expected revenue are provided. Furthermore, the bound’s quality as

well as the heuristics’ performance are assessed using numerical experiments.

In Chapter 6, we propose a model for the air cargo network capacity control problem that

accounts for uncertain capacity and capacity requirement. Since this model suffers from the curse

of dimensionality much more than the single-leg model, our focus is on developing heuristics and

upper bounds. In particular, we propose a bound and a heuristic based upon bid prices obtained

through an affine value function approximation. In order to improve the heuristic and bound,

we develop a dynamic programming decomposition approach that uses these bid prices. All

heuristics and bounds are tested using extensive numerical experiments.

Chapter 7 summarizes the studies we carried out and proposes some potential directions for

future research.
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Chapter 2

Air Cargo Revenue Management

In this chapter, we provide an overview of air cargo revenue management. In order to get an

adequate understanding of how the cargo business works, we describe the basics of air cargo

transportation in Section 2.1. An overview of the fundamentals of revenue management is pro-

vided in Section 2.2. In particular, we outline the motivation for applying revenue management

techniques and a general definition. Additionally, we present an appropriate environment for ef-

fective application and describe major components of revenue management. Section 2.3 explores

the differences between air cargo and passenger revenue management. The results highlight the

need for specific solutions for cargo revenue management. In Section 2.4, we provide an overview

of the literature covering topics concerning air cargo capacity control.

2.1 Basics of Air Cargo Transportation

In order to understand the air cargo business, it is helpful to study its supply chain. According

to Mentzer et al. (2001, p. 4), a supply chain is defined as ”a set of three or more entities (or-

ganizations or individuals) directly involved in the upstream and downstream flows of products,

services, finances, and/or information from a source to a customer”. In the air cargo business, the

source of a product is referred to as the shipper, and the customer is denoted as the consignee.

The set of entities acting between a shipper and a consignee depends on the particular supply

chain concept. There exist two basic supply chain concepts which are depicted in Figure 2.1. In

the upper concept, freight forwarders consolidate single shipments from shippers and purchase

aircraft capacity for the accumulated freight. Then, an airline hauls cargo from one airport

to another, using either a combination carrier or a pure freighter. Afterwards, forwarders are

responsible for transporting the shipments to the designated consignee. Beyond these pick-up

and delivery services, forwarders may provide inventory-related activities such as warehousing,

commissioning, or handling (Hellermann, 2006, pp. 5-6). For 2011, in terms of revenue, the
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Figure 2.1: Air cargo supply chain concepts (MergeGlobal, 2008)

world’s largest forwarders were DHL Supply Chain and Global Forwarding, Kuehne + Nagel,

and DB Schenker Logistics (Air Cargo World, 2012). According to MergeGlobal (2008), in 2007,

the top 20 forwarders consolidated almost two thirds of total carried freight. This highlights the

significant buying power of freight forwarders.

The supply chain concept that is displayed as the lower one in Figure 2.1 is comprised of only

one integrated carrier that vertically integrates the business of forwarders and (cargo) airlines.

An integrated carrier owns or exclusively controls the assets, employees, and information systems

that are necessary to provide a door-to-door service (MergeGlobal, 2008). Most integrators are

focused on air mail and package service. Thus, it is not surprising that, worldwide, the biggest

four integrators, DHL, FedEx, TNT, and UPS, control more than 80% of the global air package

market (MergeGlobal, 2008).

Since we study capacity control problems for all kinds of shipments, the supply chain concept

comprising forwarders and airlines is more relevant for us. Note that this supply chain comprises

further stakeholders such as ground handling agencies, airport operators, and trucking companies,

which we do not consider.

As already mentioned earlier, airlines usually sell their capacity in two sequential steps. First,

they sell capacity based on long-term contracts. Second, they decide how much capacity should

be available for short-term requests and sell this capacity on the spot market. While long-

term allotments are negotiated up to 12 months in advance, short term capacity is available

on the spot market from approximately 30 days prior to departure (Hellermann, 2006, p. 15).

These two types of capacity allocation reflect the nature of cargo demand: On the one hand,

there are customers who can already determine a long time in advance how much capacity

they require for transporting perishable and/or valuable goods; on the other hand, another

customer group requests express capacity if products need to be hauled in an emergency situation

(MergeGlobal, 2008). For instance, in the unforeseen event that some technical spare parts need
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to be transported from Europe to Asia within one week, air freight is the only option. According

to Billings et al. (2003), airlines sell 30 to 75% of their capacity on the spot market. For example,

Hellermann (2006, p. 15) reports for Lufthansa Cargo that on average one third of total capacity

is sold through long-term contracts. Considering Lufthansa Cargo’s 2011 load factor of 69.1%

(Lufthansa Cargo, 2012), short term bookings accounted on average for more than 50% of total

sold capacity. Thus, the spot market capacity control problem, which we consider in this work,

is highly relevant in air cargo revenue management.

When shippers or freight forwarders request capacity, depending on the particular airline,

several distribution channels may be available. First, booking requests may be submitted via an

airline’s own self-service booking portal. Second, capacity bookings may also be conducted via

cross-airline online platforms like Global Freight Exchange (Descartes, 2012).

After having provided a short introduction to the air transport business, we now turn to the

revenue management fundamentals.

2.2 Fundamentals of Revenue Management

Motivation and Definition

When service firms are constrained by capacity, financial success often depends on the manage-

ment’s ability to efficiently use capacity (Kimes, 1989). The first industry that systematically

addressed this challenge was the airline industry. This occurred after the US market had been

deregulated in the late 1970s (Kimes, 2005b). A method called revenue (yield) management was

used to profitably control capacity, which led to a great increase in revenues (see for instance

Belobaba, 1989; Smith et al., 1992). More specifically, Boyd (1998) reports that implementing a

revenue management system can improve revenues between 2 and 8 percent or even more.

In order to get an understanding of the underlying concepts of revenue management, we outline

a simple example from the airline passenger business: Consider an airline that offers two fare

classes. The low-fare ticket is associated with a 14-days advance purchase requirement, while the

high-fare ticket does not have any restrictions. The airline can achieve the maximum revenue

by selling only high-fare tickets to all customers. Since some customers are not willing to pay

the high prices, offering only high-fare tickets would yield empty seats which, due to the seats’

perishability, represent an opportunity cost. In order to sell these empty seats, the airline offers

low-fare tickets to more price-sensitive customers. Further, to avoid price-insensitive customers

to book low-fare tickets, the tickets must be associated with an advance purchase requirement.

Then, late booking, price-insensitive customers have only the one choice of ticket, which is the

high-fare ticket. Early booking, price-sensitive customers can choose between low-fare and high-

fare tickets. The airline’s objective is to determine the mix of low-fare and high-fare tickets that

maximizes total revenue.

11



2 Air Cargo Revenue Management

So far, we know that revenue management comprises methods and tools for profitably control-

ling capacity. There are many definitions available in literature, which usually take into account

a particular application. Pfeifer (1989) defines yield management in the context of airlines as

”the process by which the discount fares are allocated to scheduled flights for the purpose of bal-

ancing demand and increasing revenues”. A general definition is given by Kimes (1989): ”Yield

management is a method which can help a firm sell the right inventory unit to the right type

of customer, at the right time, and for the right price. Yield management guides the decision

of how to allocate undifferentiated units of capacity to available demand in such a way as to

maximize profit or revenue”. Note that today the term revenue management rather than yield

management is used. The reason for this terminology choice is that revenue management tech-

niques are usually applied in capital-intensive industries, and thus additional variable costs for

selling capacity are relatively small compared to the opportunity cost of unused capacity (Kimes,

1989). Using the term yield in the airline context may even be misleading. For example, if an

airline’s objective was yield (profit per seat) maximization, accepting only one single full-fare

customer would achieve this objective (Weatherford & Bodily, 1992).

For detailed introductions to revenue management, the reader is referred to Cross (1997),

Yeoman et al. (2001), Phillips (2005), as well as Talluri & van Ryzin (2004). Numerous revenue

management applications can be found in Yeoman & McMahon-Beattie (2004), Chiang et al.

(2007), and Yeoman & McMahon-Beattie (2011). The traditional areas of application are airlines,

hotels (see for instance Bitran & Mondschein, 1995; Badinelli, 2000), and the car rental industry

(e.g. Geraghty & Johnson, 1997; Haensel et al., 2012). In recent years, many new fields of

application have arisen. This includes (examples in parentheses) casino table games (Chen et

al., 2012), Internet advertising (Karmarkar & Dutta, 2012), cruise lines (Lu & Mazzarella, 2007),

golf courses (Rasekh & Yihua, 2011), car parks (Guadix et al., 2011), retail electricity (Faruqui

et al., 2009), restaurants (Kimes, 2005a), and cargo flights (Amaruchkul et al., 2007).

An Appropriate Environment for Effective Application

In order to ensure the success of implementing a revenue management system, the following

characteristics are essential (cf. Kimes, 1989). We provide examples for these conditions from

the air cargo industry and thereby show that this industry is appropriate for application.

• Relatively fixed capacity. If demand changes, it is impossible, at least in the short run,

to provide less or more capacity. For example, an airplane’s cargo capacity is restricted.

Additional capacity can only be gained by operating more aircraft.

• Perishability. Products or services which cannot be stored are perishable. This distin-

guishes the service business from manufacturing firms. In the case of cargo flights, once

the plane has departed, unused capacity is irrecoverably lost.
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• Ability to segment markets. If customers are heterogeneous, a company can segment the

market into different customer groups, each with a particular willingness to pay. On cargo

flights, the same capacity can be assigned, for instance, to a same-day express shipment or to

a standard shipment. According to Sabre (2010), based on different customer requirements,

different products are already offered at different prices.

• Sale/Booking in advance. Typically, service firms operate reservation systems that offer

customers the option to purchase products/services in advance, before actual consumption.

This offers the company some security on future revenue, but some uncertainty remains as

well, as to whether capacity could be sold more profitably in the future. Cargo capacity

can be booked in advance, which holds the challenge of accepting early booking requests

or waiting for a more profitable request, which may or may not occur in the future.

• Stochastic demand. Capacity providers are confronted with a highly fluctuating demand.

If demand was deterministic, capacity would be simply assigned to the customers with the

highest willingness to pay. Volatility in demand patterns is named as one of the major

challenges in the air cargo industry (Mardan, 2010).

• Low marginal sales cost and high marginal capacity change cost. For capacity-constrained

firms, adjusting capacity to the demand is associated with significant cost, while selling one

more capacity unit creates relatively low cost. Cargo airlines can only increase capacity

by changing their fleet which implicates large investments. On the other hand, selling one

more unit of capacity generates only marginal handling and fuel costs, which are relatively

low when compared to the aircraft’s fixed operating cost.

Klein & Steinhardt (2008, pp. 10-12) mention a further necessary condition which they describe

as integration of an external factor. This condition means that an external factor is necessary

to receive the product or service. The external factor may be the customer, some object, or

information. For example, the service of transporting air cargo can only be provided if freight

(which is the external factor) is delivered to the airport. It means, this service cannot be provided

before the freight has been delivered. This again distinguishes the service industry from the

manufacturing industry, whose products can be produced and stored some time before they are

needed.

Components of Revenue Management

Revenue management comprises several problems, all of which have been widely studied. We

give a short overview of the ones that are most important in research:

• Forecasting : The task of forecasting is to predict demand, cancellations, and no-shows

(McGill & van Ryzin, 1999; Chiang et al., 2007). The forecasts’ quality is very important
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since it directly affects the success of overbooking, capacity control, and pricing decisions.

According to Pölt (1998), a reduction of 20% in forecast errors can yield a 1% increase in

incremental revenue.

• Overbooking : This component attempts to avoid unused capacity due to cancellations and

no-shows by selling more capacity than is physically available (McGill & van Ryzin, 1999).

Thus, overbooking’s major task is to determine an appropriate level of capacity that should

be sold (in addition to the real capacity). Overbooking has the longest history and most

successful practical application of all the revenue management components (Chiang et al.,

2007).

• Pricing : Differential pricing constructs various products with associated restrictions and

prices (Belobaba, 2009, p. 78). Thus, each customer can choose a product according to

his or her willingness to pay and corresponding to his or her willingness to accept the

restrictions.

• Capacity Control : The objective of capacity control is to allocate capacity to the different

products so that the expected revenue is maximized (Chiang et al., 2007). This allocation

may be constant, or it may change over time.

In the above outlined problems, the availability of products is the strategic variable that

helps to control capacity. Further, it is implicitly assumed that if the price for a particular

product changes, the demand forecast will also change. A different approach focuses directly on

the relationship between price and demand and treats price as the strategic variable (Boyd &

Bilegan, 2003). This approach is called dynamic pricing and is used in newer revenue management

applications such as low cost airlines ticket pricing. Dynamic pricing omits the optimization step

of differential pricing and varies the resource’s price over the booking horizon (Klein & Steinhardt,

2008, p. 178). By adjusting the price, the availability of capacity is controlled. We do not

consider this approach in our work because prices of cargo products are traditionally constant.

Nevertheless, as the cargo business is continuously developing, in the future, the industry might

offer dynamic pricing opportunities. Pilon (2007) even describes it as one of the future challenges

in cargo revenue management. For more information on dynamic pricing, the reader is referred

to Rajan et al. (1992), Gallego & van Ryzin (1994), Bitran & Mondschein (1997), Bitran &

Caldentey (2003), as well as Elmaghraby & Keskinocak (2003).

The focus of our work is on capacity control, and therefore, we will not discuss the other

components any further. However, for the latest forecasting research, the interested reader is

referred to e.g. Haensel & Koole (2011), Karmarkar et al. (2011), and Fiig et al. (2012); in case

of overbooking, up to date topics can be found for instance in Erdelyi & Topaloglu (2010), Xiong

et al. (2011), and Lan et al. (2011); and for pricing, the reader is referred to e.g. Zhang et al.

(2010), Westermann & Lancaster (2011), and Zhang & Bell (2012).
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2.3 Air Cargo Revenue Management vs. Passenger Revenue

Management

The air cargo business may seem very similar to the airline passenger business. Below, we

explore the numerous fundamental differences between these two businesses, which all affect

the requirements for a revenue management system. This highlights the need for specific cargo

revenue management systems since existing solutions from the passenger business cannot be

simply transferred.

• Capacity uncertainty. While the number of passenger seats is known at every point of

the booking process, cargo capacity depends on numerous factors such as the number of

passengers, runways, weather, and fuel weight (Kasilingam, 1996). Since some of these

factors are random, cargo capacity is random as well.

• Dimensionality of capacity. Passenger seats are one-dimensional, whereas cargo capacity

is multi-dimensional, i.e. weight, volume, and container positions need to be considered

(Billings et al., 2003).

• Routing options. Passengers follow their itinerary exactly as they booked it (unless a

schedule disruption occurs). On the other hand, cargo can be shipped along any route as

long as it arrives at its destination on time (Kasilingam, 2011). Thus, multiple routing

options are available. Furthermore, other modes of transportation can be even chosen,

such as trucks (LaDue, 2004). For instance, Slager & Kapteijns (2004) reports that KLM

transports the major part of its cargo within Europe by truck.

• Long-term demand. Passengers rarely book a seat on a weekly flight half a year in advance.

On the other hand, cargo customers reserve allotments on particular flights, based on long-

term contracts (Kasilingam, 1996). This space is not available for sale on the spot market,

and the carrier has to decide how much space to sell as long-term allotments.

• Number of customers. A large number of individuals purchase passenger seats. But since

forwarders consolidate the shippers’ freight, the number of cargo customers is much smaller

(Kasilingam, 2011). Further, cargo is a business-to-business market, and carrying passen-

gers is largely a business-to-customer market (Slager & Kapteijns, 2004).

• Volatility of demand. While seasonality patterns in passenger demand occur in roughly

the same form each year, cargo demand is much more difficult to anticipate (Billings et

al., 2003). Many sources of uncertainty affect the demand for air cargo, e.g. the weather

influencing harvest times or production disruptions, which decrease a customer’s output

(Billings et al., 2003; Becker & Dill, 2007).
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• Show-up behavior. According to Becker & Dill (2007), air freight deviating from booked

capacity is more likely than passengers not showing up at departure. Further, cargo show-

up rates can be somewhere between zero and one (or even greater than one), whereas

passengers either arrive at the gate or they do not.

• Priority usage of capacity. On combination carriers, passengers have the highest priority

for using capacity, whereas cargo has the lowest priority behind fuel, crew, and passenger

bags (Slager & Kapteijns, 2004; LaDue, 2004).

• Network Utilization. Passengers usually book a return trip that brings them back to their

originating location. On the other hand, air freight is always carried one way which yields

an inhomogeneous network utilization (Becker & Dill, 2007).

• Booking period. The booking period of the spot market is very short compared to the one

of a passenger flight (Becker & Dill, 2007). According to Mardan (2010), most bookings

take place within one week to departure.

Further challenges and complexities in air cargo revenue management are described in Pilon

(2007) as well as in Becker & Wald (2010). We now turn to an overview of available literature

in the field of cargo revenue management.

2.4 Literature Review on Air Cargo Revenue Management

In order to categorize the literature on cargo revenue management, we define the following four

major components of the cargo revenue management process (partly based on Kasilingam, 2011):

(i) Forecasting. In this step, capacity available for sale, demand, and show-up rates are pre-

dicted.

(ii) Allotment allocation. The airline determines how much space should be sold based on

long-term contracts and decides which allotment requests are accepted.

(iii) Overbooking. The forecasted capacity minus the capacity sold through long-term contracts

is overbooked in order to compensate for cancellations and under-tendering.

(iv) Spot market capacity control. In this last step, the availability of capacity on the spot

market, which is the capacity determined in step (iii), is controlled so that overall revenue

is maximized. Here, decision rules for accepting and denying cargo booking requests for

particular shipment types are required.

The models we propose in this work focus on the spot market capacity control problem.

Thus, we provide a comprehensive overview of literature in this field. For literature on allot-

ment management, the reader is referred to Hellermann (2006), Gupta (2008), Amaruchkul &
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Lorchirachoonkul (2011), and Levin et al. (2012). Overbooking models for air cargo can be found

in Kasilingam (1997), Popescu et al. (2006), Wang & Kao (2008), Becker & Wald (2008), Luo et

al. (2009), and Moussawi & Cakandyildirim (2012). To our knowledge, so far, no research paper

on forecasting in the cargo context has been published in a scholarly journal.

Early studies on cargo revenue management were mainly qualitative reports on successful im-

plementations by airlines (e.g. Hendricks & Kasilingam, 1993; Slager & Kapteijns, 2004; Nielsen,

2004). Even today, the number of publications on quantitative models is low. While capacity

control problems have been widely researched in passenger revenue management, the cargo spot

market capacity control problem has not yet gained comparable attention.

The first single-leg model was proposed by Karaesmen (2001) who discusses a static model,

which is very similar to a deterministic linear program used to determine bid prices in net-

work passenger revenue management (cf. Williamson, 1992). The author considers requests for

shipments that are characterized by continuous weight and volume requirements.

The first network cargo capacity control model was proposed by Pak & Dekker (2004). The

authors assume that each request is uniquely defined by weight, volume, revenue, and flights it

uses. The problem is modeled as a static multidimensional online knapsack problem and is solved

by means of a greedy algorithm (cf. Rinnooy Kan et al., 1993). A simulation study demonstrates

that their static bid price policies outperform policies based on bid prices obtained through a

deterministic linear program.

Huang & Hsu (2005) present the first dynamic model for solving the single-leg capacity control

problem. Their underlying idea is to adapt the model of Lee & Hersh (1993) for air cargo use.

In their analysis, they view cargo capacity as one-dimensional. Further, the effect of supply

uncertainty on expected revenue is analyzed.

Luo & Shi (2006) study a static stochastic programming approach for modeling the multi-leg

capacity allocation problem under normally-distributed demand. Each shipment class is defined

by its weight, volume, profit, and legs it uses. The stochastic programming model is transferred

to a linear program by means of chance constrained programming (cf. Charnes & Cooper, 1959).

Popescu (2006) models the spot market capacity control problem for multi-leg flights. The

unique idea of the author’s approach is to decompose the problem into a large and a small cargo

capacity control subproblem which both consider weight as the only dimension. While the small

cargo subproblem is handled by a probabilistic nonlinear program, the control of large cargo

requests is formulated as a Markov decision process.

Amaruchkul et al. (2007) propose a single-leg dynamic capacity control model that uses the

number of accepted shipments of each class as the state space. Each class defines the weight

and volume distribution of its uncertain capacity requirement as well as a particular fare rate.

The authors focus on developing several heuristics and bounds: First, they propose heuristics

and bounds based on decomposing the capacity control problem into subproblems of weight and

volume. And second, bounds and heuristics based on deterministic linear programs are provided.
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Our model formulation in Chapter 6 is very close to this single-leg model. We extend the state

space to the network setting and allow for stochastic capacity, while in Amaruchkul et al. (2007)

capacity is deterministic.

Huang & Chang (2010) present a heuristic that jointly estimates the expected revenue from

both weight and volume. In order to reduce computational load, only a limited number of sample

points in the state space is evaluated. Thereby, the authors attempt to avoid inaccurate estimates

produced by decoupling weight and volume. Only in a few scenarios, this heuristic outperforms

the decomposition heuristic proposed by Amaruchkul et al. (2007).

Zhuang et al. (2011) propose a general model considering a random resource requirement

which, if only a single resource is considered, can be applied in the field of cargo capacity control.

The authors focus on exploring structural properties of a multi-class problem, where the resource

requirement of each class is uncertain. Further, the authors describe two heuristics and show in

experiments that they outperform other heuristics that ignore random capacity requirement.

Xiao & Yang (2010) analyze structural properties of a continuous-time control model with

two capacity dimensions, which they claim is applicable in cargo revenue management. The

authors prove the existence of a threshold policy; however, this only applies to a situation with

two products consuming the same capacity on one dimension but unequal capacity on the other.

Thus, this model is rather applicable in maritime cargo revenue management, where volume is

largely fixed by standard containers.

Han et al. (2010) model the booking process as a Markov chain in order to reduce the possible

number of scenarios of sold weight and volume. Revenue-maximizing bid prices are then obtained

by means of a linear mixed-integer program. The authors show that their approach outperforms

the static bid-price policy proposed by Pak & Dekker (2004).

Levina et al. (2011) present a network dynamic capacity control model which accounts for un-

certainty in both available capacity and capacity requirement. They formulate an infinite-horizon

Markov decision process, which determines capacity control decisions, while an appropriate route

for a request is found in a separate subproblem. For learning approximate control policies, a lin-

ear programming and stochastic simulation-based computational method are discussed. The

model we propose in Chapter 6 is related to this model. While Levina et al. (2011) focus on

developing a new approximation of the value function and on the complexities caused by the

routing decisions, we assume that a request clearly defines its itinerary. This view is true for

small carriers and allows us to use methods that are closer to traditional revenue management

methods.

In Chapter 5, we discuss decision models that follow an integrated approach for controlling the

availability of passenger seats and cargo capacity. With the exception of some qualitative analyses

(e.g. Graff, 2008; Pilon, 2007), there is hardly any work available dealing with this problem. In

the field of fleet assignment, Sandhu & Klabjan (2006) propose a model that takes into account

both passenger and freight demand. The authors claim that such an integrated optimization
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efficiently utilizes the overall aircraft space and generates higher overall profit. Further, Blake

(2010) reports that increasing cargo demand causes passenger ticket prices to increase. This

means, that airlines are aware of the trade-off between passengers versus cargo and obviously, in

some way, take advantage of it. However, in the field of revenue management, no quantitative

approach for an integrated control of cargo capacity and passenger seats has yet been proposed.
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Chapter 3

Theoretical Foundations

This chapter provides an overview of the theoretical concepts that we use to analyze and to solve

cargo capacity control problems. General challenges of such decision problems are, first, that

they require making time-dependent decisions under uncertainty, second, that cargo capacity

is two-dimensional, and third, that models are computationally intractable for large problem

instances. In the following three sections, we outline the methodology that we use to manage

these challenges. In Section 3.1, we introduce stochastic dynamic decision processes. As a special

type of decision processes, we consider Markov decision processes, which are used in this work to

model cargo capacity control problems. Section 3.2 provides an overview of structural properties

that are necessary to ensure optimality of monotone control in two-dimensional problems. In the

same section, we also show that two particular problems, which are relevant in cargo capacity

control, feature some of these properties. Section 3.3 outlines the linear programming approach

to approximate dynamic programming. We use this technique to determine a heuristic solution

to large-scale air cargo capacity control problems.

3.1 Stochastic Dynamic Decision Processes

Many decisions in today’s business environment do not only require one single action but rather

a sequence of actions over time. For instance, a company does not decide on the production

output of a machine once and keeps it constant thereafter; it rather has to adjust the output

in order to react to changes in the environment such as market demand. Accordingly, decision

makers face various complex sequential decision processes. Dynamic programming, as a collection

of mathematical tools to analyze such processes, evolved from the insight that sequential decision

processes share several recurring mathematical features (Denardo, 1982, p. 3).

If a system reaches a state with a particular probability which might depend on previous

states and actions, it is modeled as a stochastic dynamic decision process. A special type of such
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processes is a Markov decision process (MDP) which was first introduced by Bellman (1957).

The term ’Markov’ is used since this type of process features the Markov property, i.e. only the

present state has an impact on the future behavior of the process; if the present state is known,

the entire history of the process can be neglected (Puterman, 1994, p. 2). Since the decision

maker is able to influence a probabilistic system’s behavior by undertaking actions, her or his

goal is to determine a sequence of decisions that causes the system to perform optimally with

regard to a predefined target criterion (Puterman, 1994, p. 17).

A comprehensive overview of MDPs is provided in White (1993), Puterman (1994), Sennott

(1999), or Waldmann & Stocker (2012). An overview of real world applications of MDPs is given,

for instance, in White (1985), White (1988), and Feinberg & Shwartz (2002).

Various types of MDPs can be used depending on the specific application. In Section 3.1.1, we

introduce a framework for discrete-time models with finite planning horizon, which is adequate

for modeling (cargo) revenue management problems. Note that this decision model could be

embedded into the general framework set out by Hinderer (1970) and Schäl (1975). As an en-

hancement of finite-horizon MDPs, Section 3.1.2 outlines MDPs explicitly considering a random

environment. In revenue management, such a random environment could be uncertain demand

for booking classes.

3.1.1 Finite-Horizon Markov Decision Processes

Consider a decision maker who seeks to control a probabilistic system by undertaking actions.

The system evolves through time, where the entire time horizon T is finite. Note that we consider

T as the beginning of the planning horizon and 0 as its end. Further, the horizon is divided into

discrete decision periods with decision epochs t = T, ..., 1 representing the beginning of each

period (despite slight abuse of terminology, we will hereafter refer to the point of time where the

action is taken also as decision period or just time). Note that in t = 0 no action is taken. At

each time t, a system state s is observed, and the decision maker selects an admissible action

a ∈ A(s). An action results immediately in a one-stage reward rt(s, a) which also depends on the

current state s. Further, the system occupies a state s′ at time t− 1 with transition probability

pt(s, a, s
′). When the end of the planning horizon is reached, the decision maker receives a

terminal reward V0(s) depending on the system’s terminal state.

Accordingly, a discrete-time finite-horizon MDP is a tuple (T, S,A, pt, rt, V0) with

(i) a finite planning horizon T ∈ N0;

(ii) a finite state space S;

(iii) a finite action space A, where A(s) is the non-empty finite set of admissible actions in state

s ∈ S, with A =
⋃
s∈S A(s); further, we define the set J = {(s, a) : s ∈ S, a ∈ A(s)} ⊆ S×A;
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(iv) transition law pt : J × S → [0, 1], which specifies the probability pt(s, a, s
′) for a transition

from state s ∈ S to state s′ ∈ S at time t = T, ..., 1 if action a ∈ A(s) is chosen; note that

for s ∈ S, a ∈ A(s) and t = T, ..., 1, pt(s, a, s
′) is a discrete density function on S;

(v) a one-stage reward function rt : J → R which represents a reward rt(s, a) if at time

t = T, ..., 1 and state s ∈ S action a ∈ A(s) is chosen;

(vi) a terminal reward function V0 : S → R which corresponds to the reward V0(s) that is earned

if at time t = 0 the system is in state s ∈ S.

Note that the state space and the action space may also depend on t. For instance, a state space

might be time-dependent if the decision process starts in a particular initial state, and if in each

decision period the state space can only increase by one.

The decision maker’s objective is to choose a sequence of actions over the entire planning

horizon so that the system performs optimally with respect to a particular target criterion. The

action the decision maker should choose is specified by a decision rule. Formally, a decision rule

is a function f : S → A, which specifies the action f(s) ∈ A(s) to be taken in state s ∈ S. Let F

denote the set of decision rules. From the formulation given above, it is obvious that this kind

of decision rule requires only information about the current state rather than about the entire

history of the process, and the action to be taken is unambiguous. Note that decision rules can

also be randomized and/or history dependent, which, however, does not lead to any improvement

in the context of processes featuring the Markov property.

A policy π = (fT , ..., f1) is a sequence of decision rules ft ∈ F for each time t = T, ..., 1

specifying actions a = ft(s) to be taken at time t and in state s. We let F T denote the set of all

policies. Further, if a policy comprises only deterministic (Markovian) decision rules, it is called

a deterministic (Markovian) policy (hereafter abbreviated to ’policy’).

Since the reward of the system in each state is uncertain, sequences of random variables have

to be compared in order to evaluate the performance of different policies. Below, we introduce

an optimality criterion which allows us to compare policies based on the expected value of the

sum of one-stage rewards (cf. Waldmann & Stocker, 2012, pp. 149-150).

The Total Reward Criterion

We assume that a decision maker seeks to maximize the total reward over the entire planning

horizon. Since the system evolves stochastically, the total reward itself is random. Therefore, we

consider sT , sT−1, ..., s0 as realizations of the random variables S̃T , S̃T−1, ..., S̃0 which describe

the state process. The total reward under policy π ∈ F T is also random and can be computed as

Rπ :=
T∑
t=1

rt(S̃t, ft(S̃t)) + V0(S̃0).
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In order to find an optimal policy, expected values of Rπ, i.e. Eπ [Rπ], may be compared for

all different policies π ∈ F T . Since Rπ is a function of S̃T , ..., S̃0, we can define a probability

measure Pπ on (S̃T+1) with

Pπ(S̃T = sT , ..., S̃0 = s0) = P (S̃T = sT ) · pT (sT , fT (sT ), sT−1) · ... · p1(s1, f1(s1), s0).

Accordingly, Eπ is the expectation of Rπ with respect to Pπ.

Now consider a decision maker who seeks to maximize the total reward of a system that is in

a particular initial state ŝ ∈ S. Then, if policy π ∈ F T is followed starting from state ŝ ∈ S,

Eπ [Rπ] is replaced by the conditional expected total reward Eπ
[
Rπ|S̃T = ŝ

]
=: VT,π(ŝ).

Now the target is to find a policy π∗ that maximizes the expected total reward starting in

state ŝ. That is

VT,π∗(ŝ) = sup
π∈FT

VT,π(ŝ) =: VT (ŝ). (3.1)

If a policy π∗ fulfills the property in (3.1), it is called optimal. Further, we call the expected total

reward at time t and state s ∈ S the value function of the MDP which is defined as

Vt(s) := sup
π∈FT

Vt,π(s) ∀s ∈ S, t = T, ..., 1.

Note that the existence of an optimal policy is ensured since we consider an MDP with a finite

state space and a finite set of admissible actions (Puterman, 1994, p. 90).

The maximum expected reward and optimal policies at each time t and state s can be deter-

mined by means of an optimality equation. A proof of the following theorem can be found in

Puterman (1994, p. 92).

Theorem 3.1. VT is the unique solution to the optimality equation

Vt(s) = max
a∈A(s)

{
rt(s, a) +

∑
s′∈S

pt(s, a, s
′)Vt−1(s′)

}
∀s ∈ S, (3.2)

which can be obtained for t = T, ..., 1 recursively when the terminal value is V0. Furthermore,

each policy π = (fT , fT−1, ..., f1) formed by actions a = ft(s) ∈ F maximizing the right hand side

of (3.2) is optimal.

The optimality equation finds for each time t and state s the action that maximizes the right

hand side. Since the set of admissible actions is assumed to be finite, we can determine the

maximum rather than the supremum. Further, note that there may be several optimal policies.

We now turn to a technique that determines an optimal solution of the optimality equation

efficiently.
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Backward Induction

An intuitive way to find an optimal policy is to enumerate and compare all policies π ∈ F T , which

would be very time-consuming. A more efficient solution technique for discrete-time finite-horizon

MDPs is backward induction. The algorithm, which we present below, starts with the terminal

reward function and determines backwards for t = 1, ..., T an action that maximizes the right

hand side of the optimality equation (cf. Puterman, 1994, p. 92).

Step 1 Set t = 0 and V ′(s) = V0(s) for all s ∈ S.

Step 2 Set t = t+ 1, V (s) = V ′(s), and determine V ′(s) for every s ∈ S by solving

V ′(s) = max
a∈A(s)

{
rt(s, a) +

∑
s′∈S

pt(s, a, s
′)V (s′)

}
. (3.3)

Set f∗t (s) as an action maximizing the right hand side of (3.3).

Step 3 If t = T , set VT (s) = V ′(s) for all s ∈ S, and then stop. Otherwise return to step 2.

This algorithm determines the maximum expected reward and optimal actions for all s ∈ S at

each time t = T, ..., 1. Optimal policies are obtained by building a sequence of decision rules

f∗t (s). Note that the algorithm given above stores only one optimal action per system state at

a particular time. Thus, it does not provide multiple policies generating the same maximum

expected reward.

The optimal policy that is determined through this procedure will give decision support to

a decision maker. Depending on the specific decision problem, optimal actions may follow a

particular pattern. Below, we discuss policies that feature such specific structures.

Structured Policies

The previous results show that only optimal decision rules f∗t (s) need to be considered when

controlling a system. We are now interested in optimal policies that do not have to be determined

for all possible values of s ∈ S and t = T, ..., 1 since they feature a simply structured form. A

class of policies fulfilling this condition is what we call structured policies.

A well-known example of a structured policy is the (s,S) policy in dynamic inventory problems

(cf. Axsäter, 2006, pp. 49-50). Its decision rule is: If inventory is above the level s, do not order;

and if inventory is below the level s, order a quantity so that the inventory level becomes S. In

this example, only two values are necessary in order to determine actions.

A decision problem featuring an optimal structured policy is generally desirable. According to

Glasserman & Yao (1994, p. 449), identifying optimal controls for MDPs is even computationally

infeasible in general if no particular structure can be determined. Furthermore, Powell (2007,
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p. 64) describes the identification of structured policies as ”[o]ne of the most dramatic success

stories from the study of Markov decision processes”. In summary, optimal structured policies

are very important since they yield (Puterman, 1994, p. 103)

(i) a decreased storage requirement,

(ii) a reduction of computational effort since specialized algorithms can be applied to determine

optimal policies,

(iii) a high acceptance by decision makers due to the policy’s comprehensibility, and

(iv) an ease of implementation due to less complex decision rules.

Monotone policies are a special kind of structured policies. They comprise decision rules that

have a monotone relation to the current state. That is, for example, an optimal action changes

from a to a+ 1 if the state increases. In our work, we are focused on a special type of monotone

policies which is defined below.

Definition 3.1. Suppose in each state s ∈ S the set of admissible actions is A(s) = {a1, a2}.
A Markov policy is called control limit policy if one action is optimal when the current state is

below a particular threshold, and the other action is optimal when the current state is equal to

or greater than this threshold. We call such a threshold control limit.

Accordingly, such a policy comprises a sequence of decision rules fT , fT−1, ..., f1 with

ft(s) =

a1 s < s∗t

a2 s ≥ s∗t ,

and s∗t as the control limit. The term ’control limit rule’ was first introduced by Ignall & Kolesar

(1974), whereas Yadin & Naor (1963) reported the first control limit policy already earlier.

Further, this special form of policy plays an important role in revenue management and is quite

easy to obtain in passenger capacity control models (see for instance Lautenbacher & Stidham,

1999).

The concept of control limit policies does only apply to systems with a one-dimensional sys-

tem state. In Section 3.2, we provide the theoretical concepts that are necessary to prove the

optimality of monotone policies if the system state is two-dimensional.

3.1.2 Finite-Horizon Markov Decision Processes in a Random Environment

An MDP in a random environment is an enhancement of a standard MDP. It is assumed that the

sequential decision process is exposed to a randomly evolving environment. A general overview

of MDPs in a random environment is provided in Waldmann (1981). Applications of this type
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of decision process can be found, for instance, in Waldmann (1983), Waldmann (1984), Helm &

Waldmann (1984), Waldmann (1998), and Hinderer & Waldmann (2001).

We consider a special type of MDPs in a random environment, where the environment is

represented by a Markov chain. Such an MDP’s peculiarity is that an exogenous process is

observed, which can be described by a Markov chain with state space E and transition probability

p̃t(ε, ε
′) with ε, ε′ ∈ E. We assume that the external process may affect the behavior of the system;

however, the decision maker is not able to influence the external process by undertaking actions.

The MDP has a two-dimensional state space which comprises a system state on the one hand

and an environmental state on the other hand. Without loss of generality, we assume that the

environment has an impact on one-stage rewards and on transition probabilities.

The capacity control process in cargo revenue management can be modeled as an MDP with

an external Markov chain: The remaining space represents the system state, and the requested

shipment class (which is a Markovian demand) is an exogenous stochastic process which is not

influenced by the accept/reject decision. Further, if a request is accepted, its size determines the

gained revenue. The transition probability of the Markov chain is the probability of a request

for a particular shipment class in the next period.

The general decision problem is as follows: A decision maker observes a system state s and an

environmental state ε at a particular time t. Based on this information, action a from the set of

admissible actions A(s, ε) is chosen. This results in a reward rt(s, ε, a) which depends on both

the current system and environmental state. Further, the system takes a value s′ at t − 1 with

probability pt(s, ε, a, s
′) if the current state is (s, ε) and action a is taken. The environmental

process evolves independently of the system and is at time t − 1 in state ε′ with transition

probability p̃t(ε, ε
′).

In our setting, a finite-horizon MDP in a random environment is a tuple (T, S,E,A, pt, p̃t, rt, V0)

with

(i) a finite planning horizon T ∈ N0;

(ii) an extended finite state space S × E;

(iii) a finite action space A; A(s, ε) is the non-empty finite set of admissible actions in state s ∈ S
and ε ∈ E with A =

⋃
s∈S,ε∈E A(s, ε); J̃ = {(s, ε, a) : s ∈ S, ε ∈ E, a ∈ A(s, ε)} ⊆ S×E×A;

(iv) a transition law pt : J̃ × S → [0, 1], which specifies the probability pt(s, ε, a, s
′) for a

transition from system state s ∈ S and environmental state ε ∈ E to state s′ ∈ S at time

t = T, ..., 1 if action a ∈ A(s, ε) is chosen; for s ∈ S, ε ∈ E, a ∈ A(s, ε) and t = T, ..., 1,

pt(s, ε, a, s
′) is a discrete density function on S;

(v) a transition law p̃t : E×E → [0, 1], which represents the probability p̃t(ε, ε
′) for a transition

from environmental state ε ∈ E to ε′ ∈ E; for a fixed ε ∈ E, p̃t(ε, ε
′) is a discrete density

function on E;
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(vi) a one-stage reward function rt : J̃ → R, which represents the reward rt(s, ε, a) if at time

t = T, ..., 1, in system state s ∈ S and in environmental state ε ∈ E action a ∈ A(s, ε) is

chosen;

(vii) a terminal reward function V0 : S × E → R which corresponds to the reward V0(s, ε) that

is earned if at time t = 0 the system is in state s and ε.

As in the model without an external process, the maximum total expected reward, if the system

is in state (s, ε) and t decision periods are remaining, is the unique solution to the optimality

equation

Vt(s, ε) = max
a∈A(s,ε)

{
rt(s, ε, a) +

∑
s′∈S

∑
ε′∈E

pt(s, ε, a, s
′)p̃t(ε, ε

′)Vt−1(s′, ε′)

}
. (3.4)

We now outline a very popular application of MDPs exposed to an external Markov chain,

which can be found in the field of revenue management. The optimality equation, in its standard

form as stated in (3.4), is given in Talluri & van Ryzin (2004, p. 654). In their model, the

requested booking class (here state ε) as well as the number of remaining seats (here state s)

are observed at the same time, and a decision is made based on this information. Moreover,

the authors propose a different form of the optimality equation which determines the maximum

expected reward before the environmental state is observed. This alternative formulation is called

the observable-disturbance form, which we outline below.

In a revenue management context, the probability that a request for a particular booking class

arrives at time t is assumed to be independent of the requested booking class at time t + 1.

Therefore, we define p̂t−1(ε′) := p̃t(ε, ε
′) for all ε ∈ E and t = T, ..., 1. We further define the

operator

Ĥtu(s) :=
∑
e∈E

p̂t(ε)u(s, ε)

for an arbitrary real-valued function u on S × E. Then, we can rewrite the optimality equation

(3.4) as

Vt(s, ε) = max
a∈A(s,ε)

{
rt(s, ε, a) +

∑
s′∈S

pt(s, ε, a, s
′)Ĥt−1Vt−1(s′)

}
. (3.5)

Rewriting this in observable-disturbance form, which is simply taking expectations on both sides

of the optimality equation, yields

ĤtVt(s) =
∑
e∈E

p̂t(ε) max
a∈A(s,ε)

{
rt(s, ε, a) +

∑
s′∈S

pt(s, ε, a, s
′)Ĥt−1Vt−1(s′)

}
. (3.6)

28



3.2 Optimal Monotone Control in Two-Dimensional Problems

According to Talluri & van Ryzin (2004), the underlying decision process of this optimality

equation can be described as follows: First, a state s is observed but ε is unknown. At this point,

one determines the maximum expected reward. Afterwards, a booking class ε is observed, the

optimal decision is made, and the system moves to state s′.

The form (3.6) is usually presented for revenue management models in literature. The benefit

of the observable-disturbance form is that it decreases the MDP’s state space since the number

of booking classes does not have to be considered. Note, however, that this does not decrease

the number of optimal actions because they depend on time, system state, and environmental

state. Note further that (3.5) and (3.6) determine identical optimal actions since the maximum

functions in both optimality equations are identical.

We now turn to the concepts that are necessary to show that a two-dimensional decision

problem features an optimal monotone policy.

3.2 Optimal Monotone Control in Two-Dimensional Problems

The importance of structured policies was already highlighted in Section 3.1.1. In case of a one-

dimensional state space, well-known concepts like concavity or convexity ensure the optimality of

monotone policies (see for example Helm & Waldmann, 1984). On the other hand, the sufficient

conditions for the existence of two-dimensional optimal monotone policies are more complex.

Optimal monotone control in two-dimensional problems has been studied in numerous fields

of application. It first appeared in the context of queuing systems, see e.g. Hajek (1984),

Ghoneim & Stidham (1985), Weber & Stidham (1987), Veatch & Wein (1992), and Stidham &

Weber (1993). Two-dimensional monotone control has also been researched in production and

manufacturing, for instance by Veatch & Wein (1994), Ha (1997a), Ha (1997b), Ha (2000), Carr

& Duenyas (2000), and Benjaafar et al. (2010). Further studies have been conducted in health

care management, e.g. by Green et al. (2006), and in revenue management, see You (1999),

Savin et al. (2005), Morton (2006), and Chen et al. (2010).

Section 3.2.1 provides an overview of the conditions that yield optimal monotone policies in

two-dimensional problems. Furthermore, we show in Section 3.2.2 that two particular problems,

which are relevant in cargo capacity control, feature some of these properties which ensure the

existence of optimal monotone control policies.

3.2.1 Two-Dimensional Structural Concepts

We already introduced a control limit policy in case of a one-dimensional system state. Now

consider a state space comprising two dimensions (say S1 × S2). Then a control limit is not

a particular state s∗ any more but rather a function of the other dimension, which we call a

switching curve.
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Definition 3.2. (cf. Lewis, 2001). Suppose in each state (s1, s2) ∈ S1×S2 the set of admissible

actions is A(s) = {a1, a2}. A deterministic Markov policy is called switching curve policy if some

curve (i.e. a function) separates S1 × S2 into two adjacent regions. Then one action is optimal

for states below the curve, and the other action is optimal for states above the curve. If the

curve is monotone, a policy is called monotone switching curve policy.

An example of a monotone switching curve policy is shown in Figure 3.1.

1s

2s

)( 12 ss

1a

0a

Figure 3.1: A switching curve

We now turn to the necessary and sufficient conditions for the optimality of monotone switching

curve policies. These conditions are given by the concept of multimodularity, which comprises

two individual structural properties. All properties that may be related to multimodularity are

outlined below.

Definition 3.3. (Zhuang & Li, 2010). Let l : Z2 → R be a real-valued function and e1 := (1, 0)

as well as e2 := (0, 1). Let further x ∈ Z2 and j, k ∈ {1, 2}, j 6= k.

(i) l(x) is supermodular (submodular) in j and k if

l(x)− l(x− ej) ≤ (≥)l(x + ek)− l(x− ej + ek).

(ii) l(x) is superconcave (subconvex ) in j and k if both

l(x)− l(x− ej) ≤ (≥)l(x− ej − ek)− l(x− 2ej − ek) and

l(x)− l(x− ek) ≤ (≥)l(x− ej − ek)− l(x− ej − 2ek).
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(iii) l(x) is subconcave (superconvex ) in j and k if both

l(x + ej)− l(x) ≤ (≥)l(x + ek)− l(x− ej + ek) and

l(x + ek)− l(x) ≤ (≥)l(x + ej)− l(x + ej − ek).

(iv) l(x) is componentwise concave (convex ) in j if

l(x)− l(x− ej) ≤ (≥)l(x− ej)− l(x− 2ej).

Before we outline the relationship between multimodularity and these concepts in the two-

dimensional case, we derive multimodularity for n dimensions by means of the following defini-

tions. Note that we assume the decision maker seeks to maximize total expected reward. Thus,

we consider multimodularity in the context of concavity.

Definition 3.4. (Altman et al., 2003). A matrix D of size (n + 1) × n and of rank n is called

multimodular if the rows of the matrix define n + 1 vectors (g0, g1, ..., gn) satisfying g0 + g1 +

...+ gn = 0.

Definition 3.5. (Altman et al., 2003, Definition 17). The mesh MD associated with the multi-

modular matrix D is the set of all points {
∑n

i=0 θigi, θi ∈ Z}.

Definition 3.6. (cf. Altman et al., 2003, Definition 20). A function l : MD → R is D-

multimodular in the context of concavity if and only if for all x ∈MD and 0 ≤ j, k ≤ n,

l(x + gj) + l(x + gk) ≤ l(x) + l(x + gj + gk). (3.7)

This definition implies that the vectors g determine how a state x may change. Thus, each

row vector in D represents a particular transition. Further, note that D-multimodularity can be

defined in the context of convexity which would require to reverse the inequality in (3.7).

From now on, we limit this general definition of D-multimodularity to two dimensions and

to row vectors with entries -1, 0, or 1 (thus, MD is Z2). We consider this specified definition

since we require multimodularity of MDPs having only a two-dimensional system state and with

transitions that are bounded by the unity vector. That means, we only need to consider the

following two multimodular matrices (Zhuang & Li, 2012, cf. ).

Ds =

 1 0

−1 1

0 −1

 , Dc =

 1 0

−1 −1

0 1


Note that we might as well consider −Ds and −Dc, which would yield the same result that is

derived next.
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The difference between these multimodular bases allows us to characterize two-dimensional

decision problems (cf. Zhuang & Li, 2012). Each row vector in Ds and Dc represents a specific

transition. In particular, the second row vector indicates the most important property of the

base: (−1, 1) in Ds corresponds to the event of transferring resources from one dimension to

the other. For instance, in case of two queues, a waiting customer can be transferred from one

queue to the other. This possible transition indicates substitutability of the two dimensions of

the state space. On the other hand, (−1,−1) in Dc corresponds to the event of decreasing both

dimensions of the state space to the same extent and at the same time. In case of two queues, this

would be to accept one customers from both queues at the same time. This transition indicates

complementarity of resources.

This insight allows us to characterize two-dimensional MDPs according to substitutability and

complementarity of system states. Below, we categorize multimodularity according to substi-

tutability and complementarity of resources. Hereafter, we will use this categorization rather

than referring to multimodularity with respect to a particular base D.

Multimodularity in the Context of Substitutability

In case of substitutable resources, only Ds needs to be considered as a multimodular base.

Then, it is easy to show that (3.7) reduces to three different inequalities that are equal to the

inequalities in the definition of submodularity and subconcavity. This result is outlined in the

following lemma (cf. Zhuang & Li, 2010).

Proposition 3.1. A real-valued function l : Z2 → R is multimodular in the context of substi-

tutability if and only if l is submodular and subconcave. Furthermore, any multimodular function

is componentwise concave.

This proposition applies to decision problems maximizing the objective value (i.e. in the

context of concavity). A parallel definition of multimodularity can be given for systems that

minimize the objective value. As an example, consider a server that admits only one request

from two different queues while seeking to minimize cost. In this case, the necessary and sufficient

conditions for multimodularity are supermodularity and superconvexity since (3.7) is reversed.

Multimodularity in the Context of Complementarity

In case of complementary resources, Dc is the only multimodular base that needs to be considered.

Then, it is easy to show that (3.7) reduces to supermodularity and superconcavity as outlined

below.

Proposition 3.2. A real-valued function l : Z2 → R is multimodular in the context of comple-

mentarity if and only if l is supermodular and superconcave. Furthermore, any multimodular

function is componentwise concave.
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Again, an analogue proposition exists in the context of convexity (minimization of objective

value). Then, the necessary and sufficient conditions for multimodularity are submodularity and

subconvexity.

In summary, multimodularity ensures that the differences in value over two states are horizon-

tally, vertically, and diagonally monotone over state variables (Zhuang & Li, 2010). An overview

of the introduced concepts is provided in Table 3.1.

Objective Resources’ relationship Structural properties Example

Maximization Substitutability Submodularity & Green et al. (2006)
subconcavity

Minimization Substitutability Supermodularity & Hajek (1984)
superconvexity

Maximization Complementarity Supermodularity & Morton (2006)
superconcavity

Minimization Complementarity Submodularity & Benjaafar et al. (2010)
subconvexity

Table 3.1: Overview of multimodularity in different contexts

3.2.2 Two-Dimensional Structural Properties of Particular Problems

In this section, we prove that multimodularity is preserved under two particular operators that

are relevant in the decision models we will analyze later. The following lemma will help us to

conduct the proofs efficiently.

Lemma 3.1. (Zhuang & Li, 2010) Let {νj , ηj , ν̃j , η̃j : j = 1, ..., n} be four arbitrary real sequences.

Assume that for any j and k, there exist z1, z2 ∈ {1, ..., n} so that

νj − ηz1 ≤ ν̃z2 − η̃k. (3.8)

Then the following inequality holds:

max{ν1, ..., νn} −max{η1, ..., ηn} ≤ max{ν̃1, ..., ν̃n} −max{η̃1, ..., η̃n}.

Proof. We denote νmax, ηmax, ν̃max, η̃max as the maximum element of each sequence. According

to the assumption, there exist z1, z2 ∈ {1, ..., n} so that

νmax − ηz1 ≤ ν̃z2 − η̃max.
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Further, we have for every z1 ∈ {1, ..., n} that νmax − ηmax ≤ νmax − ηz1 and for every z2 ∈
{1, ..., n} that ν̃z2 − η̃max ≤ ν̃max − η̃max. It follows that

νmax − ηmax ≤ ν̃max − η̃max.

Zhuang & Li (2010) describe this lemma as an alternative to the theory of ordered optimal

solutions developed by Topkis (1978) and Glasserman & Yao (1994), which can also be applied

to show the existence of optimal monotone policies.

We now show that multimodularity is preserved under a particular operator.

Proposition 3.3. If l(x) : Z2 → R is multimodular, and if x1 and x2 are complementary

resources, the operator Ul̃(x, ι) : Z2 → R is also multimodular where

Ul̃(x, ι) = max
a∈{0,1}

{arι + l(x− a)}

for x = (x1, x2), rι ∈ R+
0 , ι ∈ N0, and a = (a, a).

Proof. Since we assume that l(x) is multimodular and resources are complements, l(x) is super-

modular and superconcave. We first show that Ul̃(x, ι) is supermodular. Thus, we need to proof

that for distinct j, k ∈ {1, 2} and some ι ∈ N0,

Ul̃(x, ι)− Ul̃(x− ej , ι) ≤ Ul̃(x + ek, ι)− Ul̃(x− ej + ek, ι). (3.9)

(3.9) is equivalent to

max
a1∈{0,1}

{a1rι + l(x− a1)} − max
a2∈{0,1}

{a2rι + l(x− ej − a2)}

≤ max
a3∈{0,1}

{a3rι + l(x + ek − a3)} − max
a4∈{0,1}

{a4rι + l(x− ej + ek − a4)} .

In order to prove supermodularity, we enumerate the combinations of optimal values for Ul̃(x, ι)

and Ul̃(x−ej+ek, ι) and find feasible values for Ul̃(x−ej , ι) and Ul̃(x+ek, ι) so that (3.8) holds.

For a1 = a4, the proof simply follows from supermodularity when setting a1 = a2 = a3 = a4. We

further have to consider the cases a1 < a4 and a1 > a4.
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(i) If a1 = 0 and a4 = 1, set a2 = 0 and a3 = 1, which yields

a1rι + l(x− a1)− a2rι − l(x− ej − a2)

=l(x)− l(x− ej)

=l(x + ej + ek − a3)− l(x + ek − a4)

≤l(x + ek − a3)− l(x− ej + ek − a4)

=l(x + ek − a3) + a3rι − l(x− ej + ek − a4)− a4rι,

where the inequality follows from componentwise concavity.

(ii) If a1 = 1 and a4 = 0, set a2 = 0 and a3 = 1, which yields

a1rι + l(x− a1)− a2rι − l(x− ej − a2)

=l(x− ej − ek) + rι − l(x− ej)

≤l(x) + rι − l(x + ek)

=l(x + ej + ek − a3) + rι − l(x + ek − a4)

≤l(x + ek − a3) + rι − l(x− ej + ek − a4)

=l(x + ek − a3) + a3rι − l(x− ej + ek − a4)− a4rι,

where the first inequality follows from superconcavity. Note that we multiplied the in-

equality in the definition of superconcavity by -1. The second inequality follows from

componentwise concavity. According to Lemma 3.1, Ul̃(x, ι) is supermodular in x1 and x2

for ι ∈ N0.

We now prove that Ul̃(x, ι) is superconcave, i.e. for distinct j, k ∈ {1, 2} and ι ∈ N0,

Ul̃(x, ι)− Ul̃(x− ej , ι) ≤ Ul̃(x− ej − ek, ι)− Ul̃(x− 2ej − ek, ι) and (3.10)

Ul̃(x, ι)− Ul̃(x− ek, ι) ≤ Ul̃(x− ej − ek, ι)− Ul̃(x− ej − 2ek, ι). (3.11)

(3.10) is equivalent to

max
a1∈{0,1}

{a1rι + l(x− a1)} − max
a2∈{0,1}

{a2rι + l(x− ej − a2)}

≤ max
a3∈{0,1}

{a3rι + l(x− ej − ek − a3)} − max
a4∈{0,1}

{a4rι + l(x− 2ej − ek − a4)} .

We enumerate the combinations of optimal values for Ul̃(x, ι) and Ul̃(x − 2ej − ek, ι) and find

feasible values for Ul̃(x− ej , ι) and Ul̃(x− ej − ek, ι) so that (3.8) holds. In case of a1 = a4, the

proof follows from superconcavity with a1 = a2 = a3 = a4. Consider the remaining two cases:
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(i) If a1 = 0 and a4 = 1, set a2 = 0 and a3 = 1, which yields

a1rι + l(x− a1)− a2rι − l(x− ej − a2)

=l(x)− l(x− ej)

≤l(x− ej − ek)− l(x− 2ej − ek)

≤l(x− 2ej − 2ek)− l(x− 3ej − 2ek)

=l(x− ej − ek − a3)− l(x− 2ej − ek − a4)

=l(x− ej − ek − a3) + a3rι − l(x− 2ej − ek − a4)− a4rι,

where both inequalities follow from superconcavity.

(ii) If a1 = 1 and a4 = 0, set a3 = 0 and a2 = 1. Then, we have

a1rι + l(x− a1)− a2rι − l(x− ej − a2)

=l(x− ej − ek)− l(x− 2ej − ek)

=a3rι + l(x− ej − ek − a3)− a4rι − l(x− 2ej − ek − a4).

The proof of the second case of superconcavity, (3.11), can be done analogously. Thus, ac-

cording to Lemma 3.1, Ul̃(x, ι) is superconcave in x1 and x2 for ι ∈ N0. In combination with

supermodularity Ul̃(x, ι) is multimodular in x1 and x2.

Now we prove that the following operator preserves multimodularity.

Proposition 3.4. If l(x) : Z2 → R is multimodular, and if x1 and x2 are complementary

resources, the operator Uj l̃(x, ι) : Z2 → R is also multimodular where

Uj l̃(x, ι) = max
a∈{0,...,nι}

{arι + l(x− aej)}, j ∈ {1, 2}

for x = (x1, x2), rι ∈ R+
0 , ι ∈ N0, and nι ∈ N.

Proof. Since l(x) is multimodular and resources are complements, l(x) is supermodular and

superconcave. We start showing that supermodularity is preserved under the operator Uj . Thus,

we need to prove that for distinct j, k ∈ {1, 2} and ι ∈ N0

Uj l̃(x, ι)− Uj l̃(x− ej , ι) ≤ Uj l̃(x + ek, ι)− Uj l̃(x− ej + ek, ι), (3.12)
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which is equivalent to

max
a1∈{0,...,nι}

{a1rι + l(x− a1ej)} − max
a2∈{0,...,nι}

{a2rι + l(x− ej − a2ej)}

≤ max
a3∈{0,...,nι}

{a3rι + l(x + ek − a3ej)} − max
a4∈{0,...,nι}

{a4rι + l(x− ej + ek − a4ej)} .

Note that we also have to prove Uk l̃(x, ι)− Uk l̃(x− ej , ι) ≤ Uk l̃(x + ek, ι)− Uk l̃(x− ej + ek, ι);

however, this inequality can be rearranged to (3.12) with transformed x. Thus, the proof works

analogously and is omitted. Below, we enumerate the combinations of optimal values for Uj l̃(x, ι)

and Uj l̃(x−ej+ek, ι) and find feasible values for Uj l̃(x−ej , ι) and Uj l̃(x+ek, ι) so that (3.8) holds.

The proof for a1 = a4 follows simply from supermodularity when setting a1 = a2 = a3 = a4.

Further, the following two cases have to be considered.

(i) If nι ≥ a1 > a4, set a2 = a1 − 1 and a3 = a4 + 1, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ej − a2ej)

=l(x− a1ej)− l(x− a1ej) + rι

=rι

=l(x + ek − a3ej)− l(x + ek − a3ej) + rι

=l(x + ek − a3ej) + a3rι − l(x− ej + ek − a4ej)− a4rι.

(ii) If a1 < a4 ≤ nι, set a2 = a1 and a3 = a4, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ej − a2ej)

=l(x− a1ej)− l(x− ej − a1ej)

≤l(x + ek − a1ej)− l(x− ej + ek − a1ej)

≤l(x− ej + ek − a1ej)− l(x− 2ej + ek − a1ej)

...

≤l(x + ek − (a4 − a1)ej − a1ej)− l(x− ej + ek − (a4 − a1)ej − a1ej)

=l(x + ek − a3ej) + a3rι − l(x− ej + ek − a4ej)− a4rι,

where the first inequality follows from supermodularity. All other inequalities follow from

componentwise concavity (which is applied (a4 − a1) times). According to Lemma 3.1,

Uj l̃(x, ι) is supermodular in x1 and x2 for j ∈ {1, 2} and ι ∈ N0.

We next prove that superconcavity is preserved under Uj l̃(x, ι), i.e. for distinct j, k ∈ {1, 2}
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and some ι ∈ N0,

Uj l̃(x, ι)− Uj l̃(x− ej , ι) ≤ Uj l̃(x− ej − ek, ι)− Uj l̃(x− 2ej − ek, ι) and (3.13)

Uj l̃(x, ι)− Uj l̃(x− ek, ι) ≤ Uj l̃(x− ej − ek, ι)− Uj l̃(x− ej − 2ek, ι). (3.14)

Note that we might as well prove superconcavity when using Uk instead of Uj in the above

inequalities, which would give the same result that is derived below. (3.13) is equivalent to

max
a1∈{0,...,nι}

{a1rι + l(x− a1ej)} − max
a2∈{0,...,nι}

{a2rι + l(x− ej − a2ej)}

≤ max
a3∈{0,...,nι}

{a3rι + l(x− ej − ek − a3ej)} − max
a4∈{0,...,n}

{a4rι + l(x− 2ej − ek − a4ej)} .

We enumerate the combinations of optimal values for Uj l̃(x, ι) and Uj l̃(x− 2ej − ek, ι) and find

feasible values for Uj l̃(x−ej , ι) and Uj l̃(x−ej−ek, ι) so that (3.8) holds. For a1 = a4, the proof

follows from superconcavity when setting a1 = a2 = a3 = a4. Now consider the remaining cases:

(i) If nι ≥ a1 > a4, set a2 = a1 − 1 and a3 = a4 + 1, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ej − a2ej)

=l(x− a1ej)− l(x− a1ej) + rι

=rι

=l(x− 2ej − ek − a4ej)− l(x− 2ej − ek − a4ej) + rι

=l(x− ej − ek − a3ej) + a3rι − l(x− 2ej − ek − a4ej)− a4rι.

(ii) If a1 < a4 ≤ nι, set a2 = a1 and a3 = a4, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ej − a2ej)

=l(x− a1ej)− l(x− ej − a1ej)

≤l(x− ej − ek − a1ej)− l(x− 2ej − ek − a1ej)

≤l(x− 2ej − ek − a1ej)− l(x− 3ej − ek − a1ej)

...

≤l(x− ej − ek − (a4 − a1)ej − a1ej)− l(x− 2ej − ek − (a4 − a1)ej − a1ej)

=l(x− ej − ek − a3ej) + a3rι − l(x− 2ej − ek − a4ej)− a4rι,

where the first inequality follows from superconcavity. All other inequalities follow from

componentwise concavity (which is applied (a4 − a1) times).

Unlike in the case of Ul̃(x, ι), here the second part of superconcavity cannot be simply proven
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analogously. (3.14) is equivalent to

max
a1∈{0,...,nι}

{a1rι + l(x− a1ej)} − max
a2∈{0,...,nι}

{a2rι + l(x− ek − a2ej)}

≤ max
a3∈{0,...,nι}

{a3rι + l(x− ej − ek − a3ej)} − max
a4∈{0,...,nι}

{a4rι + l(x− ej − 2ek − a4ej)} .

We enumerate the combinations of optimal values for Uj l̃(x, ι) and Uj l̃(x− ej − 2ek, ι) and find

feasible values for Uj l̃(x−ek, ι) and Uj l̃(x−ej−ek, ι) so that (3.8) holds. The proof for a1 = a4

follows from superconcavity when setting a1 = a2 = a3 = a4. The following two cases need to be

considered:

(i) If nι ≥ a1 > a4, set a2 = a1 and a3 = a4, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ek − a2ej)

=l(x− a1ej)− l(x− ek − a1ej)

≤l(x + ej − a1ej)− l(x + ej − ek − a1ej)

...

≤l(x + (a1 − a4)ej − a1ej)− l(x + (a1 − a4)ej − ek − a1ej)

=l(x− a4ej)− l(x− ek − a4ej)

≤l(x− ej − ek − a4ej)− l(x− ej − 2ek − a4ej)

=l(x− ej − ek − a3ej) + a3rι − l(x− ej − 2ek − a4ej)− a4rι.

Note that the first two inequalities follow from supermodularity (which is applied (a1− a4)

times). The last inequality follows from superconcavity.

(ii) If a1 < a4 ≤ nι, set a2 = a1 + 1 and a3 = a4 − 1, which yields

a1rι + l(x− a1ej)− a2rι − l(x− ek − a2ej)

=l(x− a1ej)− l(x− ej − ek − a1ej)− rι
≤l(x− ej − a1ej)− l(x− 2ej − ek − a1ej)− rι

...

≤l(x− (a4 − a1)ej − a1ej)− l(x− ej − ek − (a4 − a1)ej − a1ej)− rι
=l(x− a4ej)− l(x− ej − ek − a4ej)− rι
≤l(x− ek − a4ej)− l(x− ej − 2ek − a4ej)− rι
=l(x− ej − ek − a3ej) + a3rι − l(x− ej − 2ek − a4ej)− a4rι.

The first inequalities follow from superconcavity (which is applied (a4 − a1) times). Here
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we rearranged the inequality in the original definition. The last inequality also follows from

superconcavity using the same rearranged definition.

According to Lemma 3.1, Uj l̃(x, ι) is superconcave in x1 and x2. In combination with supermod-

ularity, it follows that Uj l̃(x, ι) is multimodular in x1 and x2 for j ∈ {1, 2} and ι ∈ N0.

We now turn to a technique that approximates the value function in order to reduce the model’s

complexity. This makes the decision model tractable in case of large-scale problem instances.

3.3 The Linear Programming Approach to Approximate Dynamic

Programming

In order to solve multi-dimensional problems prevailing in cargo capacity control, we apply ap-

proximate dynamic programming. General introductions and overviews of approximate dynamic

programming are given by Bertsekas & Tsitsiklis (1996), Bertsekas (2005), and Powell (2007).

These authors focus on adaptively approximating the value function by means of simulations. We

propose solution approaches that do not require simulation but solve an optimization problem di-

rectly. This is related to the linear programming approach for dynamic programs (cf. Puterman,

1994, pp. 223-231). Schweitzer & Seidmann (1985) first considered the idea to approximate the

value function in the linear programming formulation by a linear combination of other functions.

De Farias & Van Roy (2003) discuss the quality of the performance of such approximations.

The linear programming approach to approximate dynamic programming has been applied in

various fields of research. In passenger revenue management, Adelman (2007) was the first to ap-

proximate the value function. He proposes an affine approximation to compute time-dependent

bid prices. Topaloglu & Tong (2011) further analyze the model of Adelman (2007) to make the

solution feasible even for large networks. When considering customer choice behavior in network

revenue management, value function approximations are used in Zhang & Adelman (2009) as

well as in Meissner & Strauss (2012). Kunnumkal & Talluri (2011) establish a connection be-

tween piecewise linear approximations and Lagrangian approximations, as discussed in Topaloglu

(2009).

Other fields where the linear programming approach to approximate dynamic programming

is applied are, among others, inventory routing (e.g. Adelman, 2003), health care management

(e.g. Patrick et al., 2008), and cargo capacity control (e.g. Levina et al., 2011).

In this section, we first introduce the linear programming approach for dynamic programs.

Building on that, the value function approximation is discussed.
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Linear Programming Approach for Dynamic Programs

In Section 3.1.1, we introduced backward induction as a technique for determining a solution of

a finite-horizon MDP. A further way is to compute the value function by a linear program (LP).

The underlying idea of this approach is as follows: If V̂τ (s) is a feasible solution to (3.2) for some

s ∈ S and some τ = T, ..., 1, and if

V̂τ (s) ≥ max
a∈A(s)

{
rτ (s, a) +

∑
s′∈S

pτ (s, a, s′)V̂τ−1(s′)

}
, (3.15)

then V̂τ (s) is an upper bound on the optimal value function Vτ (s) (Puterman, 1994, p. 223).

Thus, the optimal value satisfying Vτ (s) = maxa∈A(s){rτ (s, a) +
∑

s′∈S pτ (s, a, s′)Vτ−1(s′)} is the

smallest value V̂τ (s) that satisfies (3.15). From this result, one can formulate the following LP

that determines the optimal value functions Vτ (s) at time τ for all s ∈ S (cf. Puterman, 1994,

p. 223):

(P0) min
V̂τ ,...,V̂1

∑
s∈S

V̂τ (s) (3.16)

s.t. V̂t(s) ≥ rt(s, a) +
∑
s′∈S

pt(s, a, s
′)V̂t−1(s′) ∀s ∈ S, a ∈ A(s), t = τ, ..., 1 (3.17)

V̂t(s) ∈ R ∀s ∈ S, t = τ, ..., 1. (3.18)

Note that V̂0(s) = V0(s) is given for all s ∈ S and does not have to be determined in

the LP. Note further that for some s ∈ S and t = T, ..., 1, Vτ (s) = maxa∈A(s){rτ (s, a) +∑
s′∈S pτ (s, a, s′)Vτ−1(s′)} implies that Vτ (s) ≥ rτ (s, a) +

∑
s′∈S pτ (s, a, s′)Vτ−1(s′) for all a ∈

A(s). It follows that Vt(s) is a feasible solution of (P0).

Below, we provide a proof for the fact that any feasible solution to (P0) provides indeed an

upper bound on the optimal objective value in (3.2)(based on Adelman, 2007).

Proposition 3.5. Suppose Vt(s) solves the optimality equation in (3.2) for some t = T, ..., 1 and

s ∈ S. If V̂t(s) is a feasible solution to (P0), it follows that V̂t(s) ≥ Vt(s).

Proof. The proof follows by induction. For τ = 1, (3.17) reads for all s ∈ S, a ∈ A(s)

V̂1(s) ≥ r1(s, a) +
∑
s′∈S

p1(s, a, s′)V̂0(s′).

This implies that for all s ∈ S, we have

V̂1(s) ≥ max
a∈A(s)

{
r1(s, a) +

∑
s′∈S

p1(s, a, s′)V̂0(s′)

}
= V1(s).
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This is true since V0 ≡ V̂0. Now assume the assertion holds for all τ = 1, ..., t and consider (3.17)

for τ = t+ 1. Then, we have

V̂t+1(s) ≥ rt+1(s, a) +
∑
s′∈S

pt+1(s, a, s′)V̂t(s
′) ∀s ∈ S, a ∈ A(s)

≥ rt+1(s, a) +
∑
s′∈S

pt+1(s, a, s′)Vt(s
′) ∀s ∈ S, a ∈ A(s)

≥ max
a∈A(s)

{
rt+1(s, a) +

∑
s′∈S

pt+1(s, a, s′)Vt(s
′)

}
∀s ∈ S

= Vt+1(s) ∀s ∈ S.

The inequality in the second line follows from the induction assumption. The next inequality

uses the fact that if the inequality in the second line holds for all a ∈ A(s), it holds in particular

for the a ∈ A(s) that maximizes the right hand side.

Linear programming is traditionally not considered as a solution technique for finite-horizon

MDPs because the problem features an excessive number of constraints and variables making it

very expensive to solve. We now introduce a technique that makes the LP tractable.

Value Function Approximation

The optimization problem (3.16)-(3.18) gives a solution to the optimality equation (3.2), however,

the problem becomes computationally intractable for large-scale problems due to the curse of

dimensionality (this term was introduced by Bellman, 1957). In order to reduce the problem’s

dimensionality, Schweitzer & Seidmann (1985) were the first to propose an approximation of the

value function by a linear combination of multiple basis functions. For the MDP introduced in

this chapter, an approximation of the value function by n basis functions would be

Vt(s) ≈
n∑
i=1

αt,ihi(s) ∀s ∈ S, t = T, ..., 0, (3.19)

with basis functions hi(s) and approximation parameters αt,i which weight the i-th basis function

at time t. Note that n is chosen so that n < Smax with Smax as the number of possible states.

If n was equal to Smax, the approximation would be as complex as the original value function.

Plugging approximation (3.19) into (P0) yields

(P) min
α

∑
s∈S

n∑
i=1

ατ,ihi(s) (3.20)
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s.t.

n∑
i=1

αt,ihi(s) ≥ rt(s, a) +
∑
s′∈S

pt(s, a, s
′)

n∑
i=1

αt−1,ihi(s
′) ∀s ∈ S, a ∈ A(s), t = τ, ..., 1

(3.21)

αt,i ∈ R ∀t = τ, ..., 1, i = 1, ..., n, (3.22)

with given α0,i, for all i = 1, ..., n, which approximate the terminal reward function.

Note that (P) is feasible if one of the basis functions is a constant function (Schweitzer &

Seidmann, 1985). For example, if h1(s) = 1 for all s ∈ S, a feasible solution is

α1,1 = max
s∈S,a∈A(s)

{
r1(s, a) +

∑
s′∈S

p1(s, a, s′)
n∑
i=1

α0,ihi(s
′)

}
,

αt,1 = max
s∈S,a∈A(s)

{
rt(s, a) +

∑
s′∈S

pt(s, a, s
′)αt−1,1

}
∀t = τ, ..., 2,

αt,i = 0 ∀i 6= 1, t = τ, ..., 1.

Further, the objective function in (3.20) is bounded below: In Proposition 3.5, we showed that

any feasible solution to (P0) is an upper bound on the optimal objective value in (3.2). Since

(P) provides a feasible solution to (P0), it follows that any feasible solution to (P) provides an

upper bound on the optimal objective, too.

Feasibility in combination with boundedness yields that (P) and its dual (which is outlined

below) have finite optima. Further, note that we reduced (P0), which features Smax× τ decision

variables, to a problem with n× τ decision variables. Depending on the size of n, this makes the

problem tractable.

The dual formulation is usually computationally preferable since it has fewer constraints than

the primal formulation (Schweitzer & Seidmann, 1985). The dual of (P) is

(D) max
X

∑
1≤t≤τ,s∈S,a∈A(s)

Xt,s,art(s, a) (3.23)

s.t.
∑

s∈S,a∈A(s)

Xt,s,ahi(s)

=


∑
s∈S

hi(s) t = τ, i = 1, ..., n∑
s∈S,a∈A(s)

Xt+1,s,a
∑
s′∈S

pt+1(s, a, s′)hi(s
′) 1 ≤ t < τ, i = 1, ..., n

(3.24)

Xt,s,a ≥ 0 t = τ, ..., 1, s ∈ S, a ∈ A(s). (3.25)

An important relation between primal and dual optimal solutions is given by the complemen-
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tary slackness conditions, which we will use later to prove structural properties. These conditions

are outlined next for the above introduced primal and dual formulation (for a proof, see Bertsimas

& Tsitsiklis, 1997, pp. 151-152).

Theorem 3.2. Let α and X be feasible solutions to the primal and the dual problem, respectively.

α and X are optimal solutions for the two respective problems if and only if

(i) Xt,s,a

[
n∑
i=1

αt,ihi(s)− rt(s, a)−
∑
s′∈S

pt(s, a, s
′)

n∑
i=1

αt−1,ihi(s
′)

]
= 0 ∀1 ≤ t ≤ τ, s ∈ S, a ∈

A(s),

(ii) αt,i

[∑
s∈S

hi(s)−
∑

s∈S,a∈A(s)

Xt,s,ahi(s)

]
= 0 ∀t = τ, i = 1, ..., n,

(iii) αt,i

[ ∑
s∈S,a∈A(s)

Xt+1,s,a
∑
s′∈S

pt+1(s, a, s′)hi(s
′)−

∑
s∈S,a∈A(s)

Xt,s,ahi(s)

]
= 0 ∀1 ≤ t < τ, i =

1, ..., n.

The first condition ensures that the dual variable Xt,s,a is zero unless the corresponding con-

straint of the primal problem is active. We say that a constraint is active if its left hand side

equals its right hand side. Bertsimas & Tsitsiklis (1997) give an intuitive explanation of such a

condition: If a constraint is not active at an optimal solution, it can be removed from the prob-

lem without affecting the objective value. Thus, there is no point in associating a non-negative

shadow price with such a constraint, and hence the dual variable Xt,s,a will be zero. Note that

the second and the third condition are automatically satisfied by every feasible solution to (D).

In summary, the linear programming approach to approximate dynamic programming gives an

upper bound on the maximum expected reward on the one hand and parameters approximating

the value function on the other hand. These parameters can be used to construct heuristic

decision rules; for instance, a heuristic decision rule is obtained by substituting the value function

for the approximation in the original decision rule. We will follow this approach in the next

chapters.
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Chapter 4

Single-Leg Cargo Capacity Control

In this chapter, we propose and analyze single-leg capacity control models by means of the

methodology that was introduced in the previous chapter. A basic capacity control model for

carriers operating flights on single legs is outlined in Section 4.1. The shortcoming of this model

is the fact that its optimal policy does not feature a monotone structure and is therefore not

comprehensible. A further consequence of the lack of structure is that, for large problems,

the model is computationally intractable. Therefore, we propose in Section 4.2 two particular

capacity control models which feature an optimal simply structured control policy. These models

make specific assumptions regarding the market demand and the options of dealing with requests.

In Section 4.3, we suggest several heuristics that can be applied even if these specific assumption

are not fulfilled. Our heuristics provide decision rules that are easy to obtain and can thus be

used, even for large problems, to determine a solution to the basic model. In the same section,

we provide two bounds on the maximum expected revenue. Section 4.4 demonstrates, by means

of numerical experiments, how well the heuristics perform. Most of the ideas in this chapter are

based on Hoffmann (2013).

4.1 Basic Capacity Control Model

We consider a carrier that operates flights on single legs and does not offer connecting flights.

Consequently, capacity on each leg is controlled independently of any other leg. An aircraft on

a particular leg has a remaining weight capacity cw ∈ Cw = {0, 1, ...,Cw} and volume capacity

cv ∈ Cv = {0, 1, ...,Cv}. We let Cw and Cv denote the aircraft’s deterministic total weight

and volume capacity, respectively. Note that the term ’capacity’ in this context means capacity

available on the spot market (i.e. total capacity minus capacity sold through long-term contracts).

Over a booking horizon of T time periods, the carrier may receive in each period a short-term

booking request for a particular shipment class i ∈ I = {0, ...,m}. A shipment class is a
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4 Single-Leg Cargo Capacity Control

combination of a shipment category, which has a specific weight and volume requirement, and

a particular per unit contribution margin. Thus, each shipment class is characterized by its

weight and volume requirement wi ∈ N0 and vi ∈ N0, respectively, and its per unit contribution

margin ϕi ≥ 0 (which we hereafter refer to as revenue despite abusing the terminology). Note

that a difference in revenue may occur due to special treatment like express shipping, cooling, or

special care for hazardous goods. Class i = 0 represents the event of no arriving request, where

we define w0 = ∞, v0 = ∞, and ϕ0 = 0. As is common in a revenue management context, we

count time backwards with time period T denoting the beginning of the booking process and

t = 0 representing the departure of the aircraft. At each time t = T, ..., 0, the probability of an

arriving request for a shipment class i is denoted by qt,i ≥ 0. The probability that no request

arrives is given by qt,0 = 1−
∑m

i=1 qt,i ≥ 0. We further define q0,0 = 1 and q0,i = 0 for i = 1, ...,m.

This means, no request arrives at t = 0. We assume that the arrival process follows a Poisson

process, which we approximate by a Bernoulli experiment at each discrete time t. Thus, the

probability for an arriving request at time t is
∑m

i=1 qt,i. Choosing T sufficiently large ensures

that the probability of more than one arrival per time period can be neglected. We further

assume that the demand for a particular shipment class is independent of, first, the demand for

all other classes, and second, the availability of other classes. Another assumption is that neither

cancellations nor no-shows occur. Hence, overbooking is not necessary. Further, customers are

assumed to be myopic, and thus strategic behavior is not accounted for.

In each period, in which a request is observed, the decision maker has to decide if the incoming

request is accepted or rejected. We assume that at the time the decision is made, the weight

and volume requirement of the shipment class is known. Thus, acceptance of a request gives a

revenue ϕi max{wi, vi/ϑ}, where ϑ denotes a constant representing the ratio of volume to weight

of a standard shipment (usually 6000 cm3/kg). The expression max{wi, vi/ϑ} is referred to as

chargeable weight and vi/ϑ as dimensional weight. Rejected demand is lost.

The risk-neutral decision maker faces the problem of whether to generate revenue by accepting

a request or saving capacity for later requests that might generate higher revenue. The objective

is to identify an optimal control policy that maximizes the total expected revenue over the

entire booking horizon. This can be reduced to solving the optimality equation of the following

finite-horizon MDP (T, S,E,A, pt, rt, V0) with:

(i) Planning horizon T ∈ N0, indexed by t.

(ii) State space S × E = (Cw × Cv)× I.

The state space comprises remaining weight and volume as system states and the requested

shipment class as an environmental state.

(iii) Action space A ∈ {0, 1} indicates whether a request is denied or accepted. The set of

admissible actions is defined as
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4.1 Basic Capacity Control Model

A(cw, cv, i) :=

{0, 1} cw ≥ wi, cv ≥ vi, i ∈ I

{0} otherwise.

(iv) Transition law pt(cw, cv, i, a, cw − awi, cv − avi, i′) = qt−1,i′

for all t = T, ..., 1, cw ∈ Cw, cv ∈ Cv, i, i′ ∈ I, and a ∈ A(cw, cv, i). Note that the transition

probability is independent of the current state and action. It only represents the probability

of a booking request for class i′ arriving at time t− 1.

(v) One-stage reward function rt(cw, cv, i, a) = aϕi max{wi, vi/ϑ} =: aρi

for all t = T, ..., 1, cw ∈ Cw, cv ∈ Cv, i ∈ I, and a ∈ A(cw, cv, i).

(vi) Terminal reward function V0 ≡ 0

We let the terminal reward be zero since we do not account for overbooking in this model.

The maximum expected revenue at time t = T, ..., 1 given remaining capacity cw ∈ Cw, cv ∈ Cv
and a request for shipment class i ∈ I is the unique solution to the optimality equation

Vt(cw, cv, i) = max
a∈A(cw,cv ,i)

{
aρi +

m∑
i′=0

qt−1,i′Vt−1(cw − awi, cv − avi, i′)

}
. (4.1)

For an arbitrary real-valued function u on Cw × Cv × I, we define the operator H as

Htu(cw, cv) :=

m∑
i=0

qt,iu(cw, cv, i) ∀t = T, ..., 0.

Accordingly, we can rewrite (4.1) as:

Vt(cw, cv, i) = max
a∈A(cw,cv ,i)

{aρi +Ht−1Vt−1(cw − awi, cv − avi)}. (4.2)

The observable-disturbance form (cf. Section 3.1.2) of (4.2) is

HtVt(cw, cv) =
m∑
i=0

qt,i max
a∈A(cw,cv ,i)

{aρi +Ht−1Vt−1(cw − awi, cv − avi)}. (4.3)

We will use the maximum expected revenue determined by the optimality equation in observable-

disturbance form later in our numerical experiments. For the following analysis of the decision

model, we consider the form given in (4.2).

Instead of considering non-negative capacities and restricting admissible actions, we can also

allow for negative capacities, define admissible actions A ≡ {0, 1}, and define Vt(cw, cv, i) =

−T maxi∈I{ρi} for all t = T, ..., 0 if min{cw, cv} < 0. Using this alternative formulation, we can
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4 Single-Leg Cargo Capacity Control

write (4.2) for cw ≥ 0, cv ≥ 0, and i ∈ I as

Vt(cw, cv, i) = max{ρi +Ht−1Vt−1(cw − wi, cv − vi), Ht−1Vt−1(cw, cv)}.

If a booking request for shipment class i is accepted at time t, the expected revenue is ρi +

Ht−1Vt−1(cw − wi, cv − vi). If the request is rejected, the expected revenue is Ht−1Vt−1(cw, cv).

Accordingly, the optimal decision rule in t given a request for shipment class i ∈ I is

f∗t (cw, cv, i) =

1 ρi ≥ Ht−1Vt−1(cw, cv)−Ht−1Vt−1(cw − wi, cv − vi), cw ≥ 0, cv ≥ 0

0 otherwise.
(4.4)

That means, a request is accepted if sufficient capacity is remaining and if revenue ρi is greater

than the opportunity cost of the amount of weight and volume that is required by the requested

shipment class (i.e. Ht−1Vt−1(cw, cv) −Ht−1Vt−1(cw − wi, cv − vi) =: δt−1(cw, cv, i)). Note that

if insufficient capacity is remaining or class i = 0 is requested, opportunity cost is larger than

revenue. Thus, such requests are rejected.

In order to determine optimal actions at time t, all values Ht−1Vt−1(cw, cv) for cw ≥ 0 and

cv ≥ 0 need to be computed. This is the major drawback of this model because determining

optimal actions for real world problems (e.g. a freighter having a capacity of 590 m3 and 92,000

kg) is computationally intractable. One way to reduce computational load is to identify monotone

policies (cf. Section 3.1.1). In passenger revenue management, a well-known approach is to

explore whether opportunity cost is monotone in capacity or time. If this is proven to be true,

the optimal control policy follows a control limit policy that indicates when to switch from

accepting to rejecting a request. However, as is shown next, opportunity cost in the basic cargo

capacity control model is neither monotone in capacity nor in time.

Non-Monotone Behavior

Proposition 4.1. δt(cw, cv, i) is not monotone in cw and neither in cv for (cw, cv, i) ∈ Cw×Cv×I
and t = T − 1, ..., 0.

The following counterexample for monotonicity of opportunity cost in weight shows that the

proposition holds. An analog example for non-monotone behavior in volume can be easily con-

structed.

Example 4.1. Consider an aircraft with a remaining capacity of 5 weight and 6 volume units

(cw = 5, cv = 6). In the last two decision periods, requests for two different shipment classes

may arrive: Shipment class 1 requires 5 weight and 3 volume units (w1 = 5, v1 = 3) and gives a

revenue ϕ1 = 1.0, whereas shipment class 2 requires 6 weight and 3 volume units (w2 = 6, v2 = 3)

and gives a revenue ϕ2 = 1.2. The probability of a request for class 1 and 2 is qt,1 = 0.1 and
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4.1 Basic Capacity Control Model

qt,2 = 0.9, respectively, for t ∈ {1, 2}. For the sake of simplicity, we let ϑ = 1. Now assume that

in period 2 a request for shipment class 1 arrives (with ρ1 = 5), and the decision maker has to

decide whether to accept or to reject the request. For a remaining capacity of cw = 5 and cv = 6,

the request should be accepted since ρ1 > δ1(5, 6, 1) = q1,1ρ1 = 0.5. If the remaining capacity

was cw = 8 and cv = 6, the request should be rejected since the opportunity cost for accepting

it (δ1(8, 6, 1) = q1,1ρ1 + q1,2ρ2=6.98) is greater than the revenue that could be generated at

t = 2. For a remaining capacity of cw = 11 and cv = 6, the request should be accepted because

ρ1 > δ1(11, 6, 1) = 0. This example demonstrates that as remaining weight increases, the optimal

action changes from accepting to rejecting and back to accepting the request. The reasons is

that opportunity cost first increases and then decreases. Figure 4.1 shows the non-monotone

behavior of opportunity cost in weight for this example.
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Figure 4.1: Non-monotone behavior of opportunity cost in weight

This phenomenon occurs because of two reasons: First, requests featuring different sizes com-

pete for multiple and scarce resources. And second, requests have to be entirely accepted or

denied. If resources are plentiful (cw = 11), competition between different requests does not ex-

ist since accepting a class-1 request would leave sufficient capacity for accommodating a request

for either class 1 or class 2 in period 1. Thus, a class-1 request should be accepted. As less weight

remains (cw = 8), competition is created, and a class-1 request should be denied because accept-

ing it would lower available capacity, so that a larger high-value request could not be accepted in

period 1. As even less capacity is available (cw = 5), competition vanishes. Rejecting a class-1

request is then pointless since it would not yield sufficient capacity for accepting a class-2 request
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during the remaining periods. Thus, the request should be accepted. Generally speaking, the

higher the probability of a large high-value request arriving at the end of a booking period (q1,2

in this example), the more likely is a situation with non-monotone opportunity cost.

Proposition 4.2. δt(cw, cv, i) is not monotone in time for (cw, cv, i) ∈ Cw × Cv × I.

The following example will demonstrate the proposition’s validity.

Example 4.2. Consider an aircraft with a remaining capacity of 10 weight and 6 volume units

(cw = 10, cv = 6). The same shipment classes as in the previous example may be requested, i.e.

(w1 = 5, v1 = 3) with ϕ1 = 1.0 and (w2 = 6, v2 = 3) with ϕ2 = 1.2. We again assume that

ϑ = 1. The arrival probabilities are now given by qt,1 = 0.3 and qt,2 = 0.7 for all t = T, ..., 1. We

consider an observed request for shipment class 1 with ρ1 = 5. In t = 1, the request is accepted

since ρ1 > δ0(10, 6, 1) = 0. In t = 2, the request is denied because the revenue which would

be generated through acceptance is lower than the opportunity cost associated with class 1, i.e.

δ1(10, 6, 1) = q1,2ρ2 = 5.04. The decision changes again in t = 3, where the request is accepted

since ρ1 > δ2(10, 6, 1) with δ2(10, 6, 1) = q2,1(q1,1ρ1 + q1,2ρ2) + q2,2ρ2− q2,1ρ1− q2,2q1,1ρ1 = 4.452.

Accordingly, the opportunity cost is not monotone in time in this example, and thus a monotone

policy based on time is not optimal. Figure 4.2 displays the opportunity cost’s non-monotone

behavior in time.
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Figure 4.2: Non-monotone behavior of opportunity cost in time

This example shows that a class-1 request should be accepted very close to departure (period

1) as this is the last opportunity to generate revenue. Further, the request should also be
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4.2 Capacity Control Models featuring Structured Control Policies

accepted earlier in the booking process (period 3) when it is likely that another class-1 request

might occur, and accepting two class-1 requests would generate a higher revenue than accepting

a single class-2 request. However, as departure comes closer (period 2), an arrival of another

class-1 request becomes less likely. Thus, the decision maker rejects the request in order to save

capacity for a more likely arriving class-2 request. This suggests that a non-monotone behavior

occurs if the probability and revenue of a class-1 request is neither too small nor too large. If the

arrival probability was too large, it would still be profitable to accept a class-1 request closer to

departure (period 2). If the probability was too small, it would be rejected in any period except

just before departure. Transferring the results of Maddah et al. (2010) to our example, a non-

monotone behavior in time is observed if the following relationship holds (assuming stationary

request probabilities qi):

1 + q1

1 + q1 + q1q2 − q2
1

q2ρ2 < ρ1 < q2ρ2.

The reason for the non-monotone behavior in time and remaining capacity is related to the

difficulties caused by accepting several units at once. Numerous authors remark that, if requests

comprising multiple units must be entirely accepted (usually referred to as batch arrivals), im-

portant monotonicity structures do not exist. This implies that a monotone policy may not be

optimal. Models considering requests with multiple units can be found in Deb & Serfozo (1973),

Weiss (1979), Lee & Hersh (1993), Kleywegt & Papastavrou (2001), Walczak (2001), Brumelle &

Walczak (2003), and Walczak (2006). Papastavrou et al. (1996) provide some properties of the

arrival probabilities of batches in the one-dimensional case so that opportunity cost is monotone

in time and capacity.

We now turn to capacity control models that feature monotone opportunity costs. In the

following section, we propose two models that are very similar to the basic control model but

make some assumptions which yield an optimal monotone policy.

4.2 Capacity Control Models featuring Structured Control Policies

On the one hand, we highlighted in Section 3.1.1 the importance of structured decision rules.

On the other hand, we have shown in the previous section that the optimal policy of the cargo

capacity control problem is neither monotone in capacity nor in time. Therefore, our motivation

in this section is to develop decision models that feature a simply structured optimal acceptance

policy.

We first present a model which we hereafter refer to as M1. One underlying idea of this

decision model is to consider cargo capacity as one-dimensional, i.e. decisions are made based on

either available volume or weight. This approach is reasonable if the expected ratio of capacity

to demand is much lower for one capacity dimension than for the other. For instance, if mainly
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flowers are carried on a leg, the aircraft is very likely to have sufficient weight capacity but too

little volume capacity. Thus, the volume capacity-demand ratio is much lower than the weight

capacity-demand ratio. In this situation, the remaining weight is not important for making

acceptance decisions and thus can be neglected. Based on past and forecasted demand data on

a leg, the decision maker can choose which cargo dimension to consider as the model’s state

space. Then, capacity requirement of all shipment classes is also considered as one-dimensional.

A further characteristic of M1 is that it allows for requests to be partially accepted. This

assumption may contradict some airlines’ business practices. However, there are two reasons

why such an approach might be still reasonable. First, a revenue manager generally has the

option to sell only a part of the actual requested capacity. Second, freight forwarders often use

only a part of the originally requested capacity without being penalized (Luo et al., 2009). By

accepting only a part of a request, the gap between requested and eventually used capacity might

be decreased, and thus more capacity would be available for other requests.

In M1, we again consider a carrier that operates flights on single legs. Now an aircraft on

a particular leg has a remaining cargo capacity c ∈ C = {0, ...,C}, and we let C denote the

aircraft’s total capacity. Further, each shipment class that may be requested is characterized by

its capacity requirement γi ∈ N0 and its per unit revenue ϕi ≥ 0. Similarly as in the basic model,

we define γ0 =∞ and ϕ0 = 0. All other notations are equal to the notation of the basic model.

Further, except allowing for partial acceptance, we make the same assumptions as in the basic

model.

Again, our objective is to identify an optimal control policy that maximizes the expected rev-

enue. This can be achieved by solving the optimality equations of an MDP (T, S,E,A, pt, rt, V
M1

0 )

with:

(i) Planning horizon T ∈ N0.

(ii) State space S × E = C × I.

(iii) Action space A ⊂ N0 with a ∈ A as the number of accepted capacity units. The set of

admissible actions is defined as A(c, i) := {0, ...,min{γi, c}} for all c ∈ C and i ∈ I.

If the capacity requirement γi of the requested shipment class i is lower than the remaining

capacity c, the entire request or any part of it can be accepted. However, if the inventory

level is lower than the capacity requirement, the number of accepted capacity units must

not exceed remaining capacity.

(iv) Transition law pt(c, i, a, c− a, i′) = qt−1,i′

for all t = T, ..., 1, c ∈ C, i, i′ ∈ I, and a ∈ A(c, i).

(v) One-stage reward function rt(c, i, a) = aϕi

for all t = T, ..., 1, c ∈ C, i ∈ I, and a ∈ A(c, i).
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(vi) Terminal reward function VM1
0 ≡ 0.

The maximum expected revenue at time t = T, ..., 1 given remaining capacity c ∈ C and a request

for shipment class i ∈ I is the unique solution to the optimality equation

VM1
t (c, i) = max

a∈A(c,i)

{
aϕi +

m∑
i′=0

qt−1,i′V
M1
t−1 (c− a, i′)

}
. (4.5)

Using the operator Ĥtu(c) :=
∑m

i=0 qt,iu(c, i) for an arbitrary real-valued function u on C × I,

we can restate (4.5) as

VM1
t (c, i) = max

a∈A(c,i)

{
aϕi + Ĥt−1V

M1
t−1 (c− a)

}
.

Below, we explore the structural properties of M1. Before a statement on the characteristics

of the optimal policy can be given, some necessary properties need to be provided.

Lemma 4.1. VM1
t (c, i) is non-decreasing in c for all i ∈ I and t = T, ..., 0.

Proof. The proof follows by induction on t. Since VM1
0 ≡ 0, the assertion holds for t = 0.

Now assume that VM1
t (c, i) is non-decreasing in c for t ≥ 0 and for all i ∈ I. Further, let

a∗i = f∗t+1(c − 1, i) (with c > 0), i.e. a∗i is the optimal action at t + 1 if c − 1 capacity units are

remaining and class i is requested. Since a∗i ∈ A(c − 1, i), it follows that a∗i ∈ A(c, i). Now we

prove the supposition for t+ 1. For fixed c > 0 and i ∈ I, we have

VM1
t+1 (c, i)− VM1

t+1 (c− 1, i)

= max
a∈A(c,i)

{aϕi + ĤtV
M1
t (c− a)} − max

a∈A(c−1,i)
{aϕi + ĤtV

M1
t (c− 1− a)}

≥ĤtV
M1
t (c− a∗i )− ĤtV

M1
t (c− 1− a∗i )

≥0.

The last step follows from the induction assumption and from the fact that a convex combination

of non-decreasing functions is non-decreasing as well.

Lemma 4.2. Let h : N0 → R be defined by

h(s) := max
a∈A(s)

{r(a) + h̃(s− a)}, (4.6)

with

• h̃ : N0 → R is concave

• r : N0 → R is concave
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• A(s) = {a ∈ N0 | n1(s) ≤ a ≤ n2(s)}, s ∈ N0

• n1 is non-decreasing and convex

• n2 is non-decreasing and concave

• n2(s+ 1) ≤ n2(s) + 1, s ∈ N0.

Let further f(s), s ∈ N0, be the action maximizing the right hand side of (4.6). Then, we have

(i) f(s) ≤ f(s+ 1) ≤ f(s) + 1 and

(ii) h(s) is concave in s.

Proof. See Appendix A.

Lemma 4.3. VM1
t (c, i) is non-decreasing and concave in c for all i ∈ I and t = T, ..., 0.

Proof. The proof follows by induction on t. Since VM1
0 ≡ 0, VM1

0 (c, i) is concave in c, and thus

the assertion holds for t = 0. Now assume VM1
t (c, i) is concave in c for all i ∈ I and some t ≥ 0.

At t+ 1, we have

VM1
t+1 (c, i) = max

a∈A(c,i)
{aϕi + ĤtV

M1
t (c− a)}. (4.7)

The induction assumption in combination with the fact that a convex combination of concave

functions is also concave yields that ĤtV
M1
t (c− a) is concave in c. Thus, we can apply Lemma

4.2 to (4.7), which yields concavity of VM1
t+1 (c) in c. Monotonicity of VM1

t (c, i) in c was already

shown in Lemma 4.1, which completes the proof.

We now have the necessary and sufficient conditions for ensuring that the optimal policy of

M1 follows a monotone policy.

Theorem 4.1. The optimal policy of M1 is a control limit policy π∗ = (f∗T , f
∗
T−1, ..., f

∗
1 ) with

decision rules

f∗t (c, i) =

0 c ≤ c∗(t, i)

min{γi, c− c∗(t, i)} c > c∗(t, i),

with control limits c∗(t, i) = max
{
c > 0 : ϕi < Ĥt−1V

M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1)

}
and c∗(t, i) = 0

if the set is empty.

Proof. Since VM1
t (c, i) is concave in c for all t = T, ..., 0, ĤtV

M1
t (c) is also concave in c as a

convex combination of concave functions. Concavity implies that

Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1) ≤ Ĥt−1V

M1
t−1 (c− 1)− Ĥt−1V

M1
t−1 (c− 2).
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That means, Ĥt−1V
M1
t−1 (c) − Ĥt−1V

M1
t−1 (c − 1) is non-increasing in c which ensures the existence

of the control limits

c∗(t, i) = max{c > 0 : ϕi < Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1)}. (4.8)

Now fix c ∈ C, i ∈ I, t > 0, and let d ∈ N0. Let a be the largest a ∈ A(c, i) that maximizes

the right hand side of (4.5) in t. Then, we have

aϕi + Ĥt−1V
M1
t−1 (c− a) ≥ dϕi + Ĥt−1V

M1
t−1 (c− d) for a > d ≥ 0, and

aϕi + Ĥt−1V
M1
t−1 (c− a) > dϕi + Ĥt−1V

M1
t−1 (c− d) for a < d ≤ min{γi, c}.

Since Ĥt−1V
M1
t−1 (c) is concave in c, we can rewrite the above inequalities as

aϕi + Ĥt−1V
M1
t−1 (c− a) ≥ (a− 1)ϕi + Ĥt−1V

M1
t−1 (c− a+ 1),

aϕi + Ĥt−1V
M1
t−1 (c− a) > (a+ 1)ϕi + Ĥt−1V

M1
t−1 (c− a− 1),

where the expression reduces to the first (second) equation if a = min{γi, c} (a = 0). This can

be rearranged as

ϕi ≥ Ĥt−1V
M1
t−1 (c− a+ 1)− Ĥt−1V

M1
t−1 (c− a), (4.9)

ϕi < Ĥt−1V
M1
t−1 (c− a)− Ĥt−1V

M1
t−1 (c− a− 1). (4.10)

Applying (4.8) to the above inequalities yields that c∗(t, i) = c − a. For c ≤ c∗(t, i), it follows

that the optimal action is a = 0. For all c > c∗(t, i), we have a = c− c∗(t, i). The optimal action

is only limited by the request size γi. Thus, we have a = min{γi, c− c∗(t, i)} if c > c∗(t, i).

The optimal policy of M1 reveals that smaller portions of requests should be accepted as

remaining capacity decreases (assuming constant time). This result is intuitive since a part of

the capacity should be saved for later requests that may have a higher value. Note that c∗(t, i) has

a similar interpretation as time-dependent protection levels, which are used as control instruments

in passenger revenue management: A control limit c∗(t, i) tells a revenue manager that given a

request in time period t for a shipment class i ∈ I, an amount of c∗(t, i) capacity units should be

protected for later bookings.

A further characteristic of M1 is that the control limits can be structured with respect to time.

Proposition 4.3. The control limits c∗(t, i) are non-decreasing in t for i ∈ I.

Proof. In order to prove this proposition, we have to show that opportunity cost ĤtV
M1
t (c) −

ĤtV
M1
t (c− 1) is non-decreasing in time (for c > 0). We fix c ∈ C with c > 0 as well as t > 0 and

define a∗i = f∗t (c− 1, i) as the optimal action depending on i ∈ I at time t if c− 1 capacity units
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are remaining. Note that for all i ∈ I we have a∗i ∈ A(c− 1, i) and a∗i ∈ A(c, i). Then, it follows

∆cĤtV
M1
t (c) := ĤtV

M1
t (c)− ĤtV

M1
t (c− 1)

=
∑
i∈I

qt,i

[
max

a∈A(c,i)

{
aϕi + Ĥt−1V

M1
t−1 (c− a)

}
− max
a∈A(c−1,i)

{
aϕi + Ĥt−1V

M1
t−1 (c− 1− a)

}]
≥
∑
i∈I

qt,i

[
Ĥt−1V

M1
t−1 (c− a∗i )− Ĥt−1V

M1
t−1 (c− 1− a∗i )

]
≥∆cĤt−1V

M1
t−1 (c).

The last inequality follows from concavity of Ĥt−1V
M1
t−1 (c) in c.

Since the control limits are non-increasing as departure approaches (assuming constant capac-

ity), this result reveals that greater portions of requests should be accepted close to departure.

This characteristic of M1 is reasonable since the less time is remaining until departure, the less

likely is the arrival of a request which may generate revenue. Thus, a revenue manager should

take advantage of remaining opportunities to sell capacity.

The following property of M1 gives further information on the control limits’ structure.

Proposition 4.4. For t = T, ..., 1, we have c∗(t, i1) ≤ c∗(t, i2) with ϕi1 ≥ ϕi2 and i1, i2 ∈ I.

Proof. Consider two shipment classes i1 and i2 with ϕi1 ≥ ϕi2 . From Lemma 4.3 we know that

Ĥt−1V
M1
t−1 (c) is concave which implies that Ĥt−1V

M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1) is non-increasing in c.

This means that the maximum capacity level c that satisfies ϕi1 < Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c−

1) cannot be greater than the maximum capacity level that satisfies ϕi2 < Ĥt−1V
M1
t−1 (c) −

Ĥt−1V
M1
t−1 (c− 1). Therefore, it follows that c∗(t, i1) ≤ c∗(t, i2).

This result’s interpretation is that the higher the per unit revenue of a request, the greater is

the portion of the request that should be accepted. Note that the requests’ size does not affect

this result since M1 allows for partial acceptance.

Since it is only necessary to compute control limits c∗(t, i) in order to determine optimal

actions and because the state space is one-dimensional, the computational load of M1 is reduced

compared to the basic capacity control model. Furthermore, the intuitive structures offered by

M1 make the acceptance policy comprehensible for revenue managers. This might yield a higher

acceptance of decision support systems in practice.

Since M1 considers only one capacity dimension, a loss in accuracy occurs if neither loose cargo

nor dense cargo is exclusively requested. Below, we study a further decision model which does

not focus on a single resource. This model is applicable if requested shipments mainly feature

the weight-volume ratio of a standard shipment.
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A Decision Model for Standard Shipments

This decision model (which is hereafter referred to as M2 ) is similar to M1, which we described

in the previous section. The differences to M1 are the following: First, in M2, we consider

two capacity dimensions rather than one. Second, partially accepting requests is allowed, where

the set of admissible actions is defined so that it is only possible to accept an equal number

of capacity units of both resources. Third, we let the system state comprise remaining weight

cw ∈ Cw = {0, ...,Cw} as well as dimensional weight c̃v ∈ C̃v = {0, ..., bCv/ϑc}. Consequently, a

decision lowers the system state by the same amount of weight and dimensional weight units. If

largely standard shipments are requested, M2 will allow accepting any part of a request while

exactly accounting for both capacity dimensions.

Note that the state space can be chosen arbitrarily in the way that multiples or fractions of

weight and volume units can be considered. That means, if requested shipments are expected to

follow a particular pattern regarding the weight-volume ratio, the state space can be chosen to

represent this pattern, too.

We make the same assumptions in M2 as in the basic model except allowing for partial ac-

ceptance. The objective of M2 is to determine an optimal policy that maximizes total expected

revenue. This can be modeled by means of an MDP (T, S,E,A, pt, rt, V
M2

0 ) with:

(i) Planning horizon T ∈ N0.

(ii) State space S × E = (Cw × C̃v)× I.

(iii) Action space A ⊂ N0 with a ∈ A as the number of both accepted weight and dimensional

weight units. The set of admissible actions is defined as

Â(cw, c̃v, i) := {0, ...,min {γ̃i, cw, c̃v}} for all cw ∈ Cw and c̃v ∈ C̃v with γ̃i := min{wi, vi/ϑ}.
This definition implies that any part of a request can be accepted, where the number of

accepted capacity units is bounded by, first, the capacity dimension featuring the lowest

inventory level (min{cw, c̃v}), and second, the lowest capacity requirement (γ̃i).

(iv) Transition law

pt(cw, c̃v, i, a, cw − a, c̃v − a, i′) = qt−1,i′

for all t = T, ..., 1, cw ∈ Cw, c̃v ∈ C̃v, i, i′ ∈ I, and a ∈ Â(cw, c̃v, i).

(v) One-stage reward function rt(cw, c̃v, i, a) = ϕia

for all t = T, ..., 1, cw ∈ Cw, c̃v ∈ C̃v, i ∈ I, and a ∈ Â(cw, c̃v, i).

(vi) Terminal reward function VM2
0 ≡ 0.

The maximum expected revenue at time t = T, ..., 1, given remaining capacity (cw, c̃v) ∈ Cw× C̃v
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and a request for shipment class i ∈ I, is the unique solution to the optimality equation

VM2
t (cw, c̃v, i) = max

a∈Â(cw,c̃v ,i)

{
ϕia+

m∑
i′=0

qt−1,i′V
M2
t−1 (cw − a, c̃v − a, i′)

}
. (4.11)

Even though the system state is two-dimensional, the set of admissible actions causes M2 to

simplify to M1 with a slightly different set of admissible actions.

Proposition 4.5. For cw ≤ c̃v, M2 is equal to M1 with optimality equation

VM1
t (cw, i) = max

a∈A(cw,i)
{ϕia+ Ĥt−1V

M1
t−1 (cw − a)}

for cw ∈ Cw, i ∈ I, t = T, ..., 1 and with A(cw, i) := {0, ...,min{cw, γ̃i}}. Further, for cw ≥ c̃v,

M2 is equal to M1 with

VM1
t (c̃v, i) = max

a∈A(c̃v ,i)
{ϕia+ Ĥt−1V

M1
t−1 (c̃v − a)}

for c̃v ∈ C̃v, i ∈ I, t = T, ..., 1 and with A(c̃v, i) := {0, ...,min{c̃v, γ̃i}}.

Proof. If we have cw ≤ c̃v, c̃v does never affect any action. Accordingly, Â(cw, c̃v, i) reduces to

A(cw, i) = {0, ...,min{cw, γ̃i}}. Furthermore, this also implies that once cw ≤ c̃v, c̃v can never be

lower than cw, i.e. volume can never be the bottleneck. Therefore, only cw must be considered

as a state variable, and M2 reduces to M1 with a different set of admissible actions. The proof

for the second part of the proposition follows analogously. Note that the total available capacity,

Cw and C̃v, already determines which capacity dimension can be neglected.

Since M2 is equal to M1 with different admissible actions, its optimal policy features the same

structures as the one of M1.

Theorem 4.2. The optimal policy of M2 is a control limit policy π∗ = (f∗T , f
∗
T−1, ..., f

∗
1 ) with

decision rules,

(i) if cw ≤ c̃v,

f∗t (cw, i) =

0 cw ≤ c∗w(t, i)

min{γ̃i, cw − c∗w(t, i)} cw > c∗w(t, i),

with control limits c∗w(t, i) = max{cw > 0 : ϕi < Ĥt−1V
M1
t−1 (cw) − Ĥt−1V

M1
t−1 (cw − 1)} and

c∗w(t, i) = 0 if the set is empty.

(ii) if c̃v ≤ cw,

f∗t (c̃v, i) =

0 c̃v ≤ c̃∗v(t, i)

min{γ̃i, c̃v − c̃∗v(t, i)} c̃v > c̃∗v(t, i),
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with control limits c̃∗v(t, i) = max{c̃v > 0 : ϕi < Ĥt−1V
M1
t−1 (c̃v) − Ĥt−1V

M1
t−1 (c̃v − 1)} and

c̃∗v(t, i) = 0 if the set is empty.

The proof of this theorem can be done analogously to the one of Theorem 4.1 and is thus omitted.

Note that the properties in Propositions 4.3 and 4.4 also hold for the control limits outlined

above. Therefore, the interpretation of all structural properties of M1 apply as well to M2. Since

these structures alleviate computational load, M2 is able to solve large-scale problem instances

very efficiently.

One might argue that the option to accept parts of a request contradicts the practice of several

cargo carriers. If the only options are to entirely reject or to accept a request, one has to apply

the basic capacity control model. As we already outlined, determining an optimal policy of a

real-world problem might be computationally intractable in this case. Therefore, we propose

heuristics in the next section that provide acceptance decisions which are easy to obtain.

4.3 Heuristics and Bounds

Our motivation for developing heuristics is that the basic capacity control problem suffers from

the curse of dimensionality for large problems. The heuristics we propose provide control policies

which are easy to obtain and have a low storage requirement. Since the maximum expected

revenue cannot be determined for large problems either, we propose two different upper bounds.

Comparing these bounds to the maximum expected revenue in our numerical experiments allows

us to make a statement on the bounds’ quality.

In this section, we propose three different heuristics. First, we outline the approach introduced

by Amaruchkul et al. (2007) that just decomposes the underlying MDP into weight and volume

subproblems. This heuristic is among the best for solving the single-leg cargo capacity control

problem. Further, this approach provides also an upper bound on the optimal objective value.

Second, we propose a new decomposition heuristic that is based on the insights gained from

M1 yielding a comprehensible decision rule. Third, we describe a heuristic based on a piecewise

linear value function approximation. This approach provides an upper bound on the maximum

expected revenue.

Heuristic based on Decomposition (HD)

This heuristic was first proposed by Amaruchkul et al. (2007) who applied it to a single-leg cargo

capacity control problem which accounts for uncertain capacity requirement and overbooking.

HD can also be used to determine a policy for the basic capacity control problem when overbook-

ing and uncertain shipment capacity requirement are neglected. The heuristic’s major idea is to

split the two-dimensional MDP into two subproblems, one with weight as state space (indicated

by superscript w), the other having volume as state space (indicated by superscript v). Since
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total revenue depends on both weight and volume, a one-dimensional revenue function for each

capacity dimension has to be approximated in the subproblems. The revenue in each subproblem

generated by accepting a request is defined as follows:

ρwi := ϕiwi

ρvi := ρi − ϕiwi.

Accordingly, accepting a request for class i in the weight subproblem generates a revenue ρwi ,

which is defined as the revenue per chargeable weight unit times the weight requirement of class i.

The revenue generated in the volume subproblem is equal to the difference between total revenue

of i and the revenue of i in the weight subproblem. That means, accepting a request in the volume

subproblem gives only revenue if dimensional weight is greater than weight. According to this

definition, weight is the primary dimension, whereas volume is the supplementary dimension.

The weight subproblem is formulated as an MDP with one-dimensional system state cw and

the following optimality equation for all cw ∈ Cw, i ∈ I, and t = T, ..., 1:

V HD,w
t (cw, i) = max

a∈Ā(cw,i)

{
aρwi + Ĥt−1V

HD,w
t−1 (cw − awi)

}
with Ā(cw, i) := {0} if cw < wi and Ā(cw, i) := {0, 1} otherwise. Likewise, the volume subprob-

lem’s optimality equation with cv as its system state can be formulated for all cv ∈ Cv, i ∈ I,

and t = T, ..., 1:

V HD,v
t (cv, i) = max

a∈Ā(cv ,i)

{
aρvi + Ĥt−1V

HD,v
t−1 (cv − avi)

}
.

Note that we do not consider overbooking and thus let both terminal values V HD,w
0 (cw, i) and

V HD,v
0 (cv, i) be equal to zero for cw ∈ Cw, cv ∈ Cv, and i ∈ I.

The decision rule of HD is to accept a request for shipment class i ∈ I at time t given remaining

capacity cw ≥ wi and cv ≥ vi if

ρi ≥
[
Ĥt−1V

HD,w
t−1 (cw)− Ĥt−1V

HD,w
t−1 (cw − wi)

]
+
[
Ĥt−1V

HD,v
t−1 (cv)− Ĥt−1V

HD,v
t−1 (cv − vi)

]
.

Thus, the exact opportunity cost is approximated by the sum of the opportunity costs of the

weight and the volume subproblem. We see from this result that it is necessary to compute all

ĤtV
HD,w
t (cw) for any combination of t and cw and all ĤtV

HD,v
t (cv) for any combination of t and

cv in order to determine decision rules.

The sum of the maximum expected revenue of both subproblems gives an upper bound on the

total maximum expected revenue determined in the basic capacity control model. This is stated

in the following proposition (based on Amaruchkul et al., 2007).
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Proposition 4.6. For any t = T, ..., 0, cw ∈ Cw, cv ∈ Cv, and i ∈ I, we have Vt(cw, cv, i) ≤
V HD,w
t (cw, i) + V HD,v

t (cv, i).

Proof. The proof follows by induction on t. For t = 0, we have V0(cw, cv, i) = V HD,w
0 (cw, i) =

V HD,v
0 (cv, i) = 0 for all cw ∈ Cw, cv ∈ Cv, and i ∈ I. Thus, the proposition holds for t = 0. Now

assume the assertion holds for some t ≥ 0. Further, note that ρi = ρwi + ρvi . For t + 1, we then

have for any cw ∈ Cw, cv ∈ Cv, and i ∈ I

Vt+1(cw, cv, i)

= max
a∈A(cw,cv ,i)

{ρia+HtVt(cw − awi, cv − avi)}

= max
a∈A(cw,cv ,i)

{(ρwi + ρvi )a+HtVt(cw − awi, cv − avi)}

≤ max
a∈A(cw,cv ,i)

{
(ρwi + ρvi )a+ ĤtV

HD,w
t (cw − awi) + ĤtV

HD,v
t (cv − avi)

}
≤ max

a∈A(cw,cv ,i)

{
ρwi a+ ĤtV

HD,w
t (cw − awi)

}
+ max
a∈A(cw,cv ,i)

{
ρvi a+ ĤtV

HD,v
t (cv − avi)

}
≤ max

a∈Ā(cw,i)

{
ρwi a+ ĤtV

HD,w
t (cw − awi)

}
+ max
a∈Ā(cv ,i)

{
ρvi a+ ĤtV

HD,v
t (cv − avi)

}
= V HD,w

t+1 (cw, i) + V HD,v
t+1 (cv, i).

The first inequality follows from the induction assumption and the second from subadditivity of

the maximum function. The third inequality follows from the fact that A(cw, cv, i) ⊂ Ā(cw, i)

and A(cw, cv, i) ⊂ Ā(cv, i).

Note that this proposition is also valid if the optimality equation is written in observable-

disturbance form. In this case, we define the upper bound given by the subproblems as zACG :=

ĤTV
HD,w
T (Cw)+ĤTV

HD,v
T (Cv) (subscripts representing the initial letters of Amaruchkul, Cooper,

and Gupta).

Heuristic based on Decomposition and Partial Acceptance (HDP)

This heuristic decomposes the two-dimensional MDP into two subproblems as done in HD. More-

over, the major idea is to pretend any part of a request can be accepted. By pretending partial

acceptance, we obtain concavity of each subproblem’s value function in its capacity dimension.

Note that this assumption is only made in the subproblems. The resulting heuristic control

policy accepts or denies requests only in their entirety.

Decomposing the problem is associated with the question of how to assign revenue that is

generated by accepting parts of a request to the weight and volume subproblem. We allocate
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revenues generated by accepting one capacity unit as follows:

ϕwi := ϕi (4.12)

ϕvi := ϕi

(
vi
ϑ − wi

)
vi

1{ viϑ >wi} = ϕi

(
1

ϑ
− wi
vi

)
1{ viϑ >wi}. (4.13)

The revenue generated by accepting one weight unit in the weight subproblem (4.12) is equal to

the class i’s revenue per chargeable weight unit. The revenue in the volume subproblem (4.13) is

equal to the difference between the standard ratio of weight to volume and the particular ratio

of the requested class times its per unit revenue. The term 1{B} in (4.13) is an indicator function

which is equal to 1 if the expression B is true. Thus, accepting one volume unit in the volume

subproblem only generates revenue if dimensional weight is greater than weight. According to

this definition, weight is the primary dimension, whereas volume is the supplementary dimension.

The whole expression in (4.13) can be considered as the additional revenue from accepting one

volume unit of shipment class i. Consider the following example in order to get a better idea of

how total revenue is partitioned and assigned to the subproblems. Accepting shipment class i

with ϕi = 1.2, wi = 45, and vi = 30 generates a revenue ϕi max {wi, vi/ϑ} = 60. In the weight

subproblem, the generated revenue from accepting one capacity unit is ϕwi = 1.2. On the other

hand, the generated revenue in the volume subproblem is ϕvi = 1.2(1.67 − 1.5)1{50>45} = 0.2.

That means, the sum of the revenues from accepting the entire request is 1.2×45+0.2×30 = 60,

which is equal to the total revenue. The difference is that additional revenue in the volume

subproblem is only generated if dimensional weight exceeds actual weight.

The weight subproblem is a one-dimensional MDP like M1 with system state cw. It features

the following optimality equation for all cw ∈ Cw, i ∈ I, and t = T, ..., 1:

VM1,w
t (cw, i) = max

a∈A(cw,i)

{
aϕwi + Ĥt−1V

M1,w
t−1 (cw − a)

}
.

Likewise, we can formulate the volume subproblem’s optimality equation for all cv ∈ Cv, i ∈ I,

and t = T, ..., 1.

VM1,v
t (cv, i) = max

a∈A(cv ,i)

{
aϕvi + Ĥt−1V

M1,v
t−1 (cv − a)

}
.

Again, both terminal values VM1,w
0 (cw, i) and VM1,v

0 (cv, i) are equal to zero for all cw ∈ Cw,

cv ∈ Cv, and i ∈ I.

The heuristic decision rule based on HDP is to accept a request for shipment class i ∈ I at
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time t when cw ≥ wi weight and cv ≥ vi volume is remaining and if

ρi ≥
[
Ĥt−1V

M1,w
t−1 (cw)− Ĥt−1V

M1,w
t−1 (cw − wi)

]
︸ ︷︷ ︸

=δt−1(cw,i)

+

[
Ĥt−1V

M1,v
t−1 (cv)− Ĥt−1V

M1,v
t−1 (cv − vi)

]
.︸ ︷︷ ︸

=δt−1(cv ,i)

That means, a request is accepted if sufficient capacity is remaining and if opportunity cost of the

weight subproblem plus opportunity cost of the volume subproblem is lower than the generated

revenue. At first glance, it seems necessary to compute all ĤtV
M1,w
t (cw) for any combination of

t and cw and all ĤtV
M1,v
t (cv) for any combination of t and cv in order to determine heuristic

decisions. However, due to the value functions’ special structure, computational load can be

reduced. We know from M1 that VM1,w
t (cw) and VM1,v

t (cv) are concave and non-decreasing

in their capacity dimension which implies that the opportunity costs δt(cw, i) and δt(cv, i), as

differences in VM1, are non-increasing in cw and cv, respectively. Therefore, we can formulate

heuristic policies based on HDP as control limit policies with respect to weight or volume.

Moreover, since δt(cw, i) + δt(cv, i) is non-increasing in both cw and cv, these control limits

are functions of cw and cv giving switching curves.

Proposition 4.7. The heuristic policy based on HDP is a monotone (non-increasing) switching

curve policy π = (fT , fT−1, ..., f1) with decision rules

ft(cw, cv, i) =

1 cw > cw(t, cv, i), cw ≥ wi, cv ≥ vi
0 otherwise

and with switching curves cw(t, cv, i) = max{cw ≥ wi : ρi < δt−1(cw, i) + δt−1(cv, i), cv ≥ vi},
which are non-increasing in cv. If the set is empty, we define cw(t, cv, i) = 0.

The proof of this proposition follows directly from concavity of ĤtV
M1,w
t (cw) and ĤtV

M1,v
t (cv).

Note that an analog policy can be formulated for volume with switching curves cv(t, cw, i). The

interpretation of this policy is that a request tends to be accepted, the more weight and/or

volume is remaining.

Due to this special structure, only switching curves need to be determined in order to derive

decisions. Since δt−1(cw, i) = Ĥt−1V
M1,w
t−1 (cw) − Ĥt−1V

M1,w
t−1 (cw − wi) is monotone in cw, not

all values for Ĥt−1V
M1,w
t−1 (cw) have to be determined. This alleviates computational load signif-

icantly. Further, switching curves are much easier to implement and more comprehensible for

revenue managers.
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Heuristic based on Piecewise Linear Value Function Approximation (HPL)

Next, we propose a heuristic that is based on the linear programming approach to approximate

dynamic programming as introduced in Section 3.3. We know that the maximum expected

revenue can be computed by a linear program. For this purpose, we define a := (a0, a1, ..., am)

with ai as the action taken if class i is requested. We further define A(cw, cv) := {a ∈ {0} ×
{0, 1}m : cw ≥ aiwi, cv ≥ aivi} for all cw ∈ Cw = {0, ...,Cw} and cv ∈ Cv = {0, ...,Cv}.
We consider time-dependent system states Cw,t := {max{0,Cw − (T − t)wmax}, ...,Cw} and

Cv,t := {max{0,Cv − (T − t)vmax}, ...,Cv} with wmax := maxi∈I{wi} and vmax := maxi∈I{vi} as

the maximum weight and volume requirement, respectively. Note that we can use time-dependent

system states here since we start with an initial system state. Thus, not all combinations of weight

and volume can be realized in every decision period. More specifically, the remaining weight and

volume in period t must be at least as high as the total available weight and volume minus (T−t)
times the maximum capacity requirement in weight and volume, respectively.

We can determine the maximum expected revenue at time T starting with capacity Cw and

Cv by means of the following linear program:

(L) min
HTVT ,...,H1V1

HTVT (Cw,Cv)

s.t. HtVt(cw, cv)−
∑
i∈I

qt,iHt−1Vt−1(cw − aiwi, cv − aivi)

≥
∑
i∈I

qt,iρiai ∀t = T, ..., 1, cw ∈ Cw,t, cv ∈ Cv,t,a ∈ A(cw, cv)

HtVt(cw, cv) ∈ R ∀t = T, ..., 1, cw ∈ Cw,t, cv ∈ Cv,t.

Note that we could simplify the problem by allowing only non-negative decision variables. Since

terminal and one-stage rewards are non-negative, the value function has to be non-negative, too.

Now we approximate the value function by simpler functions in order to reduce its complexity.

While a linear value function approximation is very common in currently available literature

(e.g. Adelman, 2007 and Patrick et al., 2008), we use a piecewise linear approximation scheme

in order to better reflect the value function’s curvature. The underlying idea is that the value

of remaining capacity is differently approximated depending on whether it is above or below

a particular threshold. For weight, this threshold is c̄w < Cw, and for volume it is c̄v < Cv.

Accordingly, we approximate the value function (in observable-disturbance form) in the following

way for all (cw, cv) ∈ Cw × Cv and t = T, ..., 1:

HtVt(cw, cv) ≈ ψt+αw,tcw + βw,t(cw − c̄w)1{cw>c̄w}

+αv,tcv + βv,t(cv − c̄v)1{cv>c̄v}
(4.14)

with approximation parameters ψ, α, and β. In this approximation scheme, αw,t and αv,t measure
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the marginal value in period t of a remaining weight and volume unit that is equal to or below

c̄w and c̄v, respectively. αw,t + βw,t and αv,t + βv,t measure the marginal value in period t of a

weight and volume unit that is above c̄w and c̄v, respectively. ψt is a constant offset.

In order to determine the approximation parameters required for making decisions, we apply

the linear programming approach to approximate dynamic programming. Plugging approxima-

tion (4.14) into (L) (with ψ0 = 0, αw,0 = βw,0 = 0, αv,0 = βv,0 = 0) yields

(P1) min
α,β,ψ

ψT + αw,TCw + βw,T (Cw − c̄w) + αv,TCv + βv,T (Cv − c̄v)

s.t. ψt + αw,tcw + βw,t(cw − c̄w)1{cw>c̄w} + αv,tcv + βv,t(cv − c̄v)1{cv>c̄v}
−
∑
i∈I

qt,i
[
ψt−1 + αw,t−1(cw − aiwi) + βw,t−1(cw − aiwi − c̄w)1{cw−aiwi>c̄w}

+αv,t−1(cv − aivi) + βv,t−1(cv − aivi − c̄v)1{cv−aivi>c̄v}
]

≥
∑
i∈I

qt,iρiai ∀t = T, ..., 1, cw ∈ Cw,t, cv ∈ Cv,t,a ∈ A(cw, cv)

αw,t, βw,t, αv,t, βv,t, ψt ∈ R ∀t = T, ..., 1.

Note that we do not allow only non-negative decision variables here since a combination of nega-

tive and positive approximation parameters can also approximate a non-negative value function.

The dual of (P1) is

(D1) max
∑

1≤t≤T,cw∈Cw,t,cv∈Cv,t,a∈A(cw,cv)

Xt,cw,cv ,a

∑
i∈I

qt,iρiai (4.15)

s.t.
∑

cw,cv ,a

Xt,cw,cv ,acw

=


Cw t = T∑
cw,cv ,a

Xt+1,cw,cv ,a
∑
i∈I

qt+1,i(cw − aiwi) 1 ≤ t < T

(4.16)

∑
cw,cv ,a

Xt,cw,cv ,acv

=


Cv t = T∑
cw,cv ,a

Xt+1,cw,cv ,a
∑
i∈I

qt+1,i(cv − aivi) 1 ≤ t < T

(4.17)

∑
cw,cv ,a

Xt,cw,cv ,a(cw − c̄w)1{cw>c̄w}

=


Cw − c̄w t = T∑
cw,cv ,a

Xt+1,cw,cv ,a
∑
i∈I

qt+1,i(cw − aiwi − c̄w)1{cw−aiwi>c̄w} 1 ≤ t < T

(4.18)
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∑
cw,cv ,a

Xt,cw,cv ,a(cv − c̄v)1{cv>c̄v}

=


Cv − c̄v t = T∑
cw,cv ,a

Xt+1,cw,cv ,a
∑
i∈I

qt+1,i(cv − aivi − c̄v)1{cv−aivi>c̄v} 1 ≤ t < T

(4.19)

∑
cw,cv ,a

Xt,cw,cv ,a

=


1 t = T∑
cw,cv ,a

Xt+1,cw,cv ,a 1 ≤ t < T

(4.20)

Xt,cw,cv ,a ≥ 0 ∀1 ≤ t ≤ T, cw ∈ Cw,t, cv ∈ Cv,t,a ∈ A(cw, cv) (4.21)

Note that constraint (4.20) can be simply replaced by∑
cw,cv ,a

Xt,cw,cv ,a = 1 1 ≤ t ≤ T. (4.22)

Note that for an optimal solution, we have for each combination of cw ∈ Cw,t and cv ∈ Cv,t a

vector of actions (a0, ..., am) with X∗t,cw,cv ,a > 0 (cf. Waldmann & Stocker, 2012, p. 163). This

in combination with (4.22) and (4.21) allows us to interpret the optimal solution X∗t,cw,cv ,a as the

probability of choosing actions a = (a0, ..., am) ∈ A(cw, cv) in state (cw, cv) at time t. Further,

constraints (4.16)-(4.19) ensure that the remaining capacity at time t equals the capacity at time

t + 1 minus the capacity sold in that period. Thus, this optimization problem maximizes total

expected revenue in (4.15) subject to flow-balance constraints for weight and volume.

(P1) and (D1) give a feasible solution to (L), and we know from Proposition 3.5 that any

feasible solution of (L) gives an upper bound on the maximum expected reward of the underlying

MDP. Thus, with zPL as the optimal objective value of (P1)-(D1), we can state the following

proposition.

Proposition 4.8. We have zPL ≥ HTVT (Cw,Cv).

That is, by determining the approximation parameters required for HPL, we obtain an upper

bound on the maximum expected revenue when the optimality equation is written in observable-

disturbance form.

(P1) is a linear problem with only 5 × T decision variables but a very large number of con-

straints. Accordingly, (D1) features only 5 × T constraints but a large number of decision

variables. Thus, an appropriate solution approach is to solve (D1) by using column generation.

The general idea of column generation is to start with a subset of all variables and add, during

an iterative process, further variables that increase the objective value. Thereby, a reduced op-

timization problem can be considered. For an introduction to column generation, the reader is
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referred to Bertsimas & Tsitsiklis (1997, Chapter 6). We have the following pricing subproblem

(PS) for fixed t, which maximizes the reduced revenue of variable Xt,cw,cv ,a.

(PS) max
cw,cv ,a

∑
i∈I

qt,i [ρiai + ψt−1

+αw,t−1(cw − aiwi) + βw,t−1(cw − aiwi − c̄w)1{cw−aiwi>c̄w}

+αv,t−1(cv − aivi) + βv,t−1(cv − aivi − c̄v)1{cv−aivi>c̄v}
]

− ψt − αw,tcw − βw,t(cw − c̄w)1{cw>c̄w} − αv,tcv − βv,t(cv − c̄v)1{cv>c̄v}
s.t. cw ∈ Cw,t, cv ∈ Cv,t,a ∈ A(cw, cv)

Note that the piecewise linear approximation causes the pricing subproblem to be non-linear.

Therefore, we need to introduce a number of auxiliary variables and constraints in order to obtain

the following equivalent linear problem.

(PS’) max
cw,cv ,a,ς,χ

∑
i∈I

qt,i [ρiai + ψt−1 + αw,t−1(cw − aiwi) + βw,t−1χw,i

+αv,t−1(cv − aivi) + βv,t−1χv,i]− ψt − αw,tcw − βw,tχw,0 − αv,tcv − βv,tχv,0

s.t. cw − aiwi − c̄w ≤ ςw,iM ∀i ∈ I

cw − aiwi − c̄w ≥ −(1− ςw,i)M ∀i ∈ I

cv − aivi − c̄v ≤ ςv,iM ∀i ∈ I

cv − aivi − c̄v ≥ −(1− ςv,i)M ∀i ∈ I

χw,i ≤Mςw,i ∀i ∈ I

χw,i ≤ cw − aiwi − c̄w + (1− ςw,i)M ∀i ∈ I

χw,i ≥ cw − aiwi − c̄w ∀i ∈ I

χv,i ≤Mςv,i ∀i ∈ I

χv,i ≤ cv − aivi − c̄v + (1− ςv,i)M ∀i ∈ I

χv,i ≥ cv − aivi − c̄v ∀i ∈ I

cw, χw,i ∈ Cw,t ∀i ∈ I

cv, χv,i ∈ Cv,t ∀i ∈ I

ςw,i, ςv,i ∈ {0, 1} ∀i ∈ I

a ∈ A(cw, cv)

with M as a very large integer.

(PS’) maximizes the reduced revenue of a variable Xt,cw,cv ,a, which is the approximated ex-

pected revenue from accepting a shipment class less the approximated expected revenue from
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rejecting it. According to the complementary slackness condition (see Theorem 3.2), a variable

can only be part of the optimal solution if the associated constraint is active; in other words, the

associated reduced revenue has to be zero. Thus, if the reduced revenue is greater than zero, a

solution containing the associated variable is not optimal. This relationship is used by column

generation. The solution process is as follows:

(i) Use an initial feasible solution to (D1), which is cw = Cw, cv = Cv, and a = ~0 for all t (i.e.

offer nothing) to create an initial set of variables; then solve (D1).

(ii) Use dual prices of (D1) as input for (PS’) and solve (PS’) for all t.

(iii) If the objective value of (PS’) is greater than zero, the solution determined in (i) is not

optimal. In other words, a constraint in the primal problem is violated. Thus, add the

variable that is associated with the violated constraint to the existing set of variables for

(D1).

(iv) Solve (D1) with updated set of variables.

(v) If the sum of the objective values of (PS’) from step (ii) is lower than a particular optimality

tolerance times the objective value of (D1), an optimal solution is determined. Otherwise

go back to step (ii).

The heuristic decision rule under this value function approximation is as follows:

ft(cw, cv, i) =



1 ρi ≥ αw,t−1wi + αv,t−1vi

+βw,t−1

[
(cw − c̄w)1{cw>c̄w} − (cw − wi − c̄w)1{cw−wi>c̄w}

]
+βv,t−1

[
(cv − c̄v)1{cv>c̄v} − (cv − vi − c̄v)1{cv−vi>c̄v}

]
,

cw ≥ wi, cv ≥ vi
0 otherwise.

The interpretation of this decision rule is as follows: Accept a request if its revenue is at least

as high as the sum of the value of required weight and volume. If remaining capacity is below

the threshold, the capacity requirement is weighted by α. If remaining capacity is above the

threshold, the value is corrected by β. If remaining capacity is above the threshold before the

request is accepted and below the threshold afterwards, the capacity requirement is weighted by

β and α for units above the threshold and by α for units below the threshold. HPL applies this

decision rule in the booking process.

In the following numerical experiments, we address the question of how well all proposed

heuristics perform.
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4.4 Numerical Experiments

In this section, we assess the quality of the described heuristics HD, HDP, and HPL. Additionally,

we test a first-come-first-served policy (FCFS) which accepts requests as long as capacity is

available. The approximation parameters in HPL are computed with c̄w = Cw/2 and c̄v = Cv/2.

As a benchmark for the heuristics’ achieved revenue over the simulated booking processes, we

use the maximum average revenue determined in (4.3). We computed this value by means of

a HP XC3000 high performance computer. We compare the upper bounds zPL and zACG to

the maximum expected revenue in order to make a statement on the bounds’ quality. Initially,

we present a numerical study that uses the data set provided in Huang & Chang (2010). The

second study uses a modification of this data set which contains classes featuring a non-standard

weight-volume ratio. All experiments were conducted on an Intel Core2 Quad CPU at 2.83

GHz and 8 GB RAM. In order to obtain the approximation parameters in HPL, we solved the

linear program by means of Gurobi 5.0 (Gurobi Optimization, 2012). In the column generation

procedure we used an optimality tolerance of 1%.

Setting 1: Base Case

The data set we consider contains shipment categories b = 1, ..., 9 that all have a different weight

and volume requirement wb, vb as shown in Table 4.1.

Category b 1 2 3 4 5 6 7 8 9

Weight requirement wb (kg) 80 160 400 100 200 500 100 200 500
Volume requirement vb (×104 cm3) 60 120 300 60 120 300 50 100 250

Table 4.1: Weight and volume requirement of shipment categories

Categories 1-3 represent loose cargo since the ratio of volume to weight is greater than the

one of a standard shipment (0.6 × 104 cm3/kg). Categories 7-9 represent dense cargo for the

opposite reason. Categories 4-6 feature the volume-weight ratio of a standard shipment. In

each time period t, either a shipment with revenue per chargeable weight ϕ or no shipment is

requested. Table 4.2 shows the probabilities for incoming requests with revenue ϕ. Note that

the probability for high-value requests increases as departure approaches. Given a shipment

Revenue Request probabilities in periods
ϕ 1-20 21-40 41-60

1.2 0.25 0.1667 0.10
1.0 0.15 0.1666 0.15
0.8 0.10 0.1667 0.25

Table 4.2: Request probabilities for different revenues per chargeable weight
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request, the probability that the shipment belongs to a particular category is constant in time

as displayed in Table 4.3. We assume that the observed category is independent of the observed

Category b 1-3 4 5 6 7-9

Request probability 0.0833 0.1667 0.1668 0.1667 0.0833

Table 4.3: Request probabilities for shipment categories

per-unit revenue. Thus, the request probability for a particular class i = (b, ϕ) at time t (i.e.

qt,i) equals the probability of observing a revenue per chargeable weight ϕ multiplied by the

probability of observing a category b request at this time. For example, the probability for an

arrival of a class with ϕ = 1.0 and b = 4 at t = 45 is 0.1667× 0.15 = 0.025. Accepting a request

for class i gives a revenue of ϕi max{wi, vi/ϑ} with ϑ = 0.6. Note that for i = 0, the request

probability is qt,0 = 1 −
∑m

i=1 qt,i. Thus, the probability for no request is 0.5 in each period.

Combining nine shipment categories and three different revenues per chargeable weight results

in 27 shipment classes that are considered in these experiments.

We consider a booking horizon of T = 60 time periods. Further, multiplying capacity require-

ments by request probabilities over the entire booking horizon yields expected demand in weight

and volume of Dw=7600 kg and Dv=4600×104 cm3, respectively. This corresponds to approx-

imately 19% of a Boeing 757-200 freighter’s payload and cargo volume (Boeing, 2012). While

total demand is given, we let total available capacity (Cw,Cv) vary in order to demonstrate the

heuristics’ performance for different capacity-demand ratios. We test different ratios for weight

restricted, volume restricted, and both weight and volume restricted flights.

In order to determine the performance of our heuristics, we repeatedly simulated the arrival

process and computed the average revenue gained in the selling process over all simulation runs.

In order to obtain reliable results, we simulated 100,000 booking processes. Figure 4.3 displays the

heuristics’ performance relative to the maximum expected revenue for flights that are restricted

with respect to both weight and volume (i.e. Cw/Dw=Cv/Dv). One major finding is that the

heuristics’ performance relative to FCFS increases as less capacity is available. This result is

intuitive since the optimal control policy in a situation with sufficient capacity is to simply accept

every request. This policy becomes worse as less capacity is available. Another observation

is that all heuristics (except FCFS) are quite close to the maximum expected revenue for all

capacity-demand ratios. Further, HD and HDP outperform HPL for slightly restricted flights.

On the other hand, if a flight is heavily restricted (Cw/Dw=Cv/Dv < 0.6), HPL performs as well

as the other heuristics. The observed slight disadvantage of HDP relative to HD is caused by

approximating actual non-monotone opportunity cost through monotone functions.

Figure 4.4 summarizes the heuristics’ performance for flights with sufficient volume and scarce

weight. Observe that, for all capacity-demand ratios, HDP and HD do better than all other

heuristics. Since they both have a priority on weight, they demonstrate a strong performance if
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Figure 4.3: Heuristics’ performance for both weight and volume restricted flights
(relative to maximum expected revenue)
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Figure 4.4: Heuristics’ performance for weight restricted flights
(relative to maximum expected revenue)
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weight is the valuable resource. Another observation is that HPL performs quite well and is not

very sensitive to the availability of weight.

Figure 4.5 shows the percent difference of the heuristics’ achieved revenue relative to the

maximum expected revenue when sufficient weight is available and volume is the bottleneck.

Observe that HPL performs significantly better than HD and HDP. The reason for the poor
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Figure 4.5: Heuristics’ performance for volume restricted flights
(relative to maximum expected revenue)

performance of heuristics based on decomposition is that opportunity cost is miscalculated when

volume is scarce since the availability of volume does not at all affect the calculation of weight

opportunity cost. Further, the change in supplementary volume opportunity cost does not have

a significant impact on the heuristics’ decision. Thus, total opportunity cost is too low, which

leads to excessive acceptance of requests. HPL does not feature this drawback since it does not

prioritize a capacity dimension. Thus, its performance is approximately the same as in case of

insufficient weight as well as in case of flights that are both weight and volume restricted.

Tables 4.4, 4.5, and 4.6 report the relative difference between the upper bounds and the

maximum expected revenue. If both weight and volume capacity is less than expected demand,

zPL’s quality is approximately constant, and zACG becomes less tight as capacity decreases (see

Table 4.4). If either weight or volume capacity is insufficient, it can be observed that zPL becomes

tighter as available capacity decreases, whereas zACG becomes less tight (see Tables 4.5 and 4.6).

Further, zACG shows a better quality than zPL for most scenarios of weight restricted flights
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(see Table 4.5). If very little weight is available, zPL is again tighter than zACG. The quality

of zACG in case of volume restricted flights is particularly poor due to the already mentioned

shortcomings of ACG (see Table 4.6).

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 106.42 100.98
0.9 0.9 105.00 101.50
0.8 0.8 104.89 102.06
0.7 0.7 104.78 102.79
0.6 0.6 104.95 103.98
0.5 0.5 104.83 105.39
0.4 0.4 105.07 106.96

Table 4.4: Upper bound quality depending on both available weight and volume
(relative to maximum expected revenue)

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 106.42 100.98
0.9 1.0 104.02 100.52
0.8 1.0 103.74 100.78
0.7 1.0 104.06 101.12
0.6 1.0 103.04 102.08
0.5 1.0 103.00 103.41
0.4 1.0 103.81 104.69

Table 4.5: Upper bound quality depending on available weight
(relative to maximum expected revenue)

In summary, this example demonstrates that HPL provides a very constant and reliable per-

formance. While HPL is not sensitive to the availability of a particular capacity dimension, HD’s

and HDP’s performance significantly depends on the particular capacity-demand scenario. Thus,

HD and HDP are only appropriate if the short capacity dimension is known in advance. Further,

for all tested capacity-demand ratios, the upper bound zPL features a very good quality.

Setting 2: Non-Standard Capacity Requirement

In these experiments, we modify the previously presented data in the way that we change the

resource requirement of shipment categories 2 and 7, as shown in Table 4.7 (changes in bold).

Now the data set contains two shipment classes that have a capacity requirement with a weight-

volume ratio which we hereafter refer to as ”non-standard”. All other data remains unchanged.

These changes result in an expected demand in weight and volume of Dw=9000 kg and

Dv=6000×104 cm3, respectively. We conducted the same experiments as described in the previ-

ous section. For weight and volume restricted flights (see Figure 4.6), we discover the following
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4 Single-Leg Cargo Capacity Control

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 106.42 100.98
1.0 0.9 104.06 107.02
1.0 0.8 103.76 116.62
1.0 0.7 104.05 129.28
1.0 0.6 103.37 146.60
1.0 0.5 103.19 171.40
1.0 0.4 103.91 208.03

Table 4.6: Upper bound quality depending on available volume
(relative to maximum expected revenue)

Category 1 2 3 4 5 6 7 8 9

Weight requirement (× 10 kg) 80 160 400 100 200 500 660 200 500
Volume requirement (× 105 cm3) 60 680 300 60 120 300 50 100 250

Table 4.7: Non-standard capacity requirement - weight and volume of shipment categories

differences to the situation without non-standard capacity requirement: First, observe that HD

and HDP are inferior to HPL if capacity is scarce. This result demonstrates the disadvantage

of prioritizing a capacity dimension if capacity requirement is extremely uneven. For instance,

if a class has a very high volume requirement, accepting it in the volume subproblem gives lit-

tle revenue for a large decrease in remaining volume. Thus, it is likely to be rejected yielding

miscalculated opportunity cost in the decision rule.

Observe that now HDP outperforms HD. Since the characteristics of HD and HDP do not offer

an intuitive explanation for this observation, a detailed investigation is necessary. A closer look

at the opportunity cost of both heuristics shows that volume opportunity cost of HDP is signifi-

cantly higher than HD’s volume opportunity cost for all shipment classes that feature a standard

capacity requirement. This observation cannot be made when the data set does not contain

non-standard shipments. This result suggests that HD underestimates volume opportunity cost

of regular shipments yielding a worse performance compared to the case without non-standard

shipments. This result is confirmed by Figure 4.7 which shows a comparison between the basic

model’s, HD’s, and HDP’s opportunity cost for a particular regular shipment class. Moreover,

the figure provides a further explanation why HDP outperforms HD. Observe that HD tends to

overestimate opportunity cost significantly when remaining capacity is just sufficient to accom-

modate an additional shipment with non-standard capacity requirement (approximately when

remaining volume is 700, 1400, and 2100). HDP does not feature such ”peaks” since opportunity

cost is monotone. The effect of overestimating opportunity cost for particular values of remaining

volume additionally contributes to the bad performance of HD compared to HDP.

The difference between the heuristics’ performance and the maximum expected revenue for
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Figure 4.6: Heuristics’ performance for both weight and volume restricted flights
(relative to maximum expected revenue)
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4 Single-Leg Cargo Capacity Control

weight restricted flights is depicted in Figure 4.8. Again, HDP outperforms HD as observed in

0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

90

95

100

Capacity-demand ratio

M
ea
n
re
v
en
u
e
re
la
ti
v
e
to

m
a
x
im

u
m

ex
p
.
re
v
en
u
e
(%

)

 

 

HD

HDP

HPL

FCFS

Figure 4.8: Heuristics’ performance for weight restricted flights
(relative to maximum expected revenue)

the previous setting, and HPL performs well. The explanation for both observations is analog to

the ones given in the case of equally restricted flights. The observations of HDP outperforming

HD and HPL performing well can also be made for volume restricted flights (see Figure 4.9).

Tables 4.8, 4.9, and 4.10 summarize the relative difference between the upper bounds and the

maximum expected revenue. The same observations as in the base case can be made. The only

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 108.23 105.36
0.9 0.9 108.27 107.45
0.8 0.8 108.84 109.40
0.7 0.7 109.39 111.65
0.6 0.6 110.01 114.37
0.5 0.5 110.74 117.07
0.4 0.4 111.72 120.22

Table 4.8: Upper bound quality depending on both available weight and volume
(relative to maximum expected revenue)

difference is that if both weight and volume is scarce, zPL’s quality slightly decreases as available

capacity decreases (see Table 4.8). However, zPL’s overall quality is very good.
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Figure 4.9: Heuristics’ performance for volume restricted flights
(relative to maximum expected revenue)

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 108.23 105.36
0.9 1.0 106.69 103.99
0.8 1.0 105.13 102.91
0.7 1.0 104.60 102.43
0.6 1.0 103.33 102.70
0.5 1.0 103.05 103.40
0.4 1.0 103.45 104.29

Table 4.9: Upper bound quality depending on available weight
(relative to maximum expected revenue)

Cw/Dw Cv/Dv
zPL

HTVT (Cw,Cv) % zACG
HTVT (Cw,Cv) %

1.0 1.0 108.23 105.36
1.0 0.9 106.32 109.99
1.0 0.8 104.86 117.07
1.0 0.7 104.64 126.64
1.0 0.6 103.72 138.96
1.0 0.5 103.26 155.40
1.0 0.4 103.66 177.71

Table 4.10: Upper bound quality depending on available volume
(relative to maximum expected revenue)
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4 Single-Leg Cargo Capacity Control

In summary, HPL gives in most scenarios the highest revenue in the presence of shipments hav-

ing a non-standard capacity requirement. Further, HDP outperforms HD for all tested scenarios.

Even though HD and HDP perform well for weight restricted flights, their overall performance

is lower than the one of HPL. Furthermore, zPL gives a good upper bound on the maximum

expected revenue.
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Chapter 5

Integrated Capacity Control of Cargo

Space and Passenger Seats

In this chapter, we model the decision problem that maximizes the total revenue from selling

both cargo space and passenger seats. Thus, the whole aircraft’s capacity is controlled. Note that

this implies that passenger demand can be rejected in favor of cargo. In Section 5.1, we propose

a basic integrated decision model for simultaneously controlling a combination carrier’s cargo

and seat capacity. Since this model does not offer monotone optimal decision rules, we propose

a further decision model in Section 5.2 that makes specific assumptions and thereby provides a

simply structured optimal control policy. Section 5.3 outlines two different heuristics that can

be applied to determine a solution to the basic decision model, which suffers from the curse of

dimensionality. Further, we provide an upper bound on the maximum expected revenue of the

basic model. In Section 5.4, the heuristics’ performance and the bound’s quality are assessed

using numerical experiments.

5.1 Basic Integrated Capacity Control Model

We consider an airline that operates flights on single legs like in Chapter 4. Contrary to the cargo

capacity control models, we now take into account the entire capacity of an aircraft, that is both

passenger seats on the upper deck and cargo space on the lower deck. A combination carrier

on a particular leg has a remaining weight capacity cw ∈ Cw = {0, 1, ...,Cw}, volume capacity

cv ∈ Cv = {0, 1, ...,Cv}, and seats cs ∈ Cs = {0, 1, ...,Cs}. While Cw and Cv denote the aircraft’s

total weight and volume capacity, respectively, Cs represents the total number of passenger seats.

In each of T decision periods, at most one request for either a particular cargo shipment class

i ∈ Ic = {1, ...,m1}, or for a particular passenger booking class i ∈ Is = {m1 + 1, ...,m2}, or no

request may arrive. We let i = 0 represent the event of no arriving request. Like in the cargo
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5 Integrated Capacity Control of Cargo Space and Passenger Seats

capacity control models, each shipment class i ∈ Ic is characterized by its weight and volume

requirement wi ∈ N0 and vi ∈ N0, respectively, and its per unit revenue ϕi ≥ 0. For i = 0, we

define w0 = ∞, v0 = ∞, and ϕ0 = 0. Each passenger booking class i ∈ Is requires exactly one

seat, and we define the seat requirement as σi := 1 if i ∈ Is and σi := 0 otherwise. A passenger

booking class is further characterized by revenue per seat ϕi ≥ 0 and a particular weight and

volume requirement wi ∈ N0 and vi ∈ N0, respectively, which is assumed to be constant for all

i ∈ Is. Note that a passenger requires weight due to his or her body weight and luggage, and

the volume requirement is only caused by luggage. If an aircraft is equipped with a particular

luggage compartment, which cannot be used by other cargo shipments, volume requirement can

be neglected. Further, note that we denote the per-unit revenue of both passenger and cargo

requests as ϕ. In case of a cargo request the unit is one chargeable weight unit, and in case of a

passenger request the unit is one seat.

We count time backwards with time period T denoting the beginning of the booking process

and t = 0 representing the departure of the aircraft. We choose T sufficiently large to ensure

that the probability of more than one arrival per time period can be neglected. At each time

t = T, ..., 0, the probability of an arriving class-i request is denoted by qt,i ≥ 0. The probability

that no request arrives is given by qt,0 = 1−
∑m2

i=1 qt,i ≥ 0. We further define q0,0 = 1 and q0,i = 0

for i = 1, ...,m2. That means, no request arrives at t = 0.

In each period, in which a request for i ∈ Î = {0, ...,m2} is observed, the decision maker has to

decide if the incoming request is accepted or rejected. We assume that at the time the decision

is made, weight and volume requirement is known. Thus, accepting a request for a shipment

class i = 1, ...,m1 gives a revenue ϕi max{wi, vi/ϑ}, where ϑ denotes a constant representing the

ratio of volume to weight of a standard shipment. Further, accepting a request for a passenger

booking class i = m1 + 1, ...,m2 yields a revenue ϕi which is the price of class i.

We make the same assumptions as in the basic model in the previous chapter, which are

the following: Demand is independent between booking classes, demand is independent of the

availability of other classes, the arrival process follows a (discretized) Poisson process, neither

cancellations nor no-shows occur (thus, overbooking is not required), the decision maker is risk-

neutral, customers do not behave strategically and request only single-leg flights. In this model,

we make the additional assumption that passenger group bookings do not occur. That is, at

most one seat is requested within one decision period.

The decision problem that needs to be solved is the following: The decision maker faces

the problem of whether to generate revenue by accepting a request or saving capacity for later

requests that may have a higher revenue. This problem implies that the revenue manager has

to decide whether to deny passenger requests in order to save weight and volume for later high-

value cargo bookings. The objective is to identify an optimal control policy that maximizes total

expected revenue over the entire booking horizon. This can be reduced to solving the optimality

equation of the following finite-horizon MDP (T, S,E,A, pt, rt, V0) with:
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5.1 Basic Integrated Capacity Control Model

(i) Planning horizon T ∈ N0, indexed by t.

(ii) State space S × E = (Cw × Cv × Cs)× Î
with Î = {0, ...,m2}. The state space comprises remaining weight, volume, and seats

as system states (all integer values) and the requested shipment or booking class as an

environmental state.

(iii) Action space A ∈ {0, 1} indicates whether a request is rejected or accepted. The set of

admissible actions is defined as

A(cw, cv, cs, i) :=

{0, 1} cw ≥ wi, cv ≥ vi, cs ≥ σi, i ∈ Î

{0} otherwise.

(iv) Transition law pt(cw, cv, cs, i, a, cw − awi, cv − avi, cs − aσi, i′) = qt−1,i′

for all t = T, ..., 1, cw ∈ Cw, cv ∈ Cv, cs ∈ Cs, i, i
′ ∈ Î, and a ∈ A(cw, cv, cs, i). That

means, the transition probability represents the probability of a class-i′ request arriving in

the next decision period.

(v) One-stage reward function

rt(cw, cv, cs, i, a) = aρi :=

aϕi max{wi, vi/ϑ} 0 ≤ i ≤ m1

aϕi m1 < i ≤ m2

for all t = T, ..., 1, cw ∈ Cw, cv ∈ Cv, cs ∈ Cs, i ∈ Î, and a ∈ A(cw, cv, cs, i).

(vi) Terminal reward function V0 ≡ 0.

The maximum expected revenue in t = T, ..., 1, given remaining capacity cw ∈ Cw, cv ∈ Cv,

cs ∈ Cs and a request for i ∈ Î, is the unique solution to the optimality equation

Vt(cw, cv, cs, i) = max
a∈A(cw,cv ,cs,i)

aρi +
∑
i′∈Î

qt−1,i′Vt−1(cw − awi, cv − avi, cs − aσi, i′)

 . (5.1)

For an arbitrary real-valued function u on Cw × Cv × Cs × Î, we define the operator Q as

Qtu(cw, cv, cs) :=
∑
i∈Î

qt,iu(cw, cv, cs, i) ∀t = T, ..., 0.

Then, we can write (5.1) as

Vt(cw, cv, cs, i) = max
a∈A(cw,cv ,cs,i)

{aρi +Qt−1Vt−1(cw − awi, cv − avi, cs − aσi)} . (5.2)
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The observable-disturbance form of (5.2) is

QtVt(cw, cv, cs) =
∑
i∈Î

qt,i max
a∈A(cw,cv ,cs,i)

{aρi +Qt−1Vt−1(cw − awi, cv − avi, cs − aσi)} . (5.3)

The maximum expected revenue determined in (5.3) will be used later in the numerical experi-

ments.

Instead of considering non-negative capacities and restricting admissible actions, we can also

allow for negative capacities, define admissible actions A ≡ {0, 1}, and define Vt(cw, cv, cs, i) =

−T maxi∈Î{ρi} for all t = T, ..., 0 if min{cw, cv, cs} < 0. Using this alternative formulation, we

can write (5.2) for cw ≥ 0, cv ≥ 0, cs ≥ 0, and i ∈ Î as

Vt(cw, cv, cs, i) = max {ρi +Qt−1Vt−1(cw − wi, cv − vi, cs − σi), Qt−1Vt−1(cw, cv, cs)} . (5.4)

The optimal decision rule can be directly inferred: If a request for i ∈ Î is accepted at time t,

the expected revenue is ρi + Qt−1Vt−1(cw − wi, cv − vi, cs − σi). If it is rejected, the expected

revenue is Qt−1Vt−1(cw, cv, cs). Thus, the optimal decision rule in t is

f∗t (cw, cv, cs, i) =


1 ρi ≥ Qt−1Vt−1(cw, cv, cs)−Qt−1Vt−1(cw − wi, cv − vi, cs − σi),

cw ≥ 0, cv ≥ 0, cs ≥ 0, i ∈ Î

0 otherwise.

That means, a request is accepted if its revenue is at least as high as the opportunity cost

of the capacity the request requires. If insufficient capacity is available, opportunity cost is

infinitely large. For the ease of notation, we define δt−1(cw, cv, cs, i) := Qt−1Vt−1(cw, cv, cs) −
Qt−1Vt−1(cw−wi, cv−vi, cs−σi). Note that in order to determine optimal actions in t, all values

Qt−1Vt−1(cw, cv, cs) for cw ≥ 0, cv ≥ 0, and cs ≥ 0 are required. Determining these values for

real world problems is computationally infeasible. For example, consider 60 time periods and

an A320 combination carrier having 150 seats and approximately a cargo capacity of 32 m3 and

total payload of 16600 kg. In this example, 4.8×109 different values need to be computed. As we

remarked earlier, a potential way out of this curse of dimensionality might be the identification

of monotone policies. Unfortunately, since opportunity cost is not monotone, the integrated

capacity control model does not feature an optimal control policy which is structured with

respect to capacity or time. This is outlined below.

Proposition 5.1. δt(cw, cv, cs, i) is not monotone in cw, neither in cv, and neither in cs for

(cw, cv, cs, i) ∈ Cw × Cv × Cs × Î and t = T − 1, ..., 0.

Due to the same reasons given for the cargo capacity control model in Section 4.1, opportunity

cost is neither monotone in cw nor in cv. A similar example as in the pure cargo case can be
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easily constructed. Moreover, opportunity cost is not monotone in cs as the following example

demonstrates.

Example 5.1. Consider a combination carrier with remaining capacity of cw = 3, cv = 3,

and cs = 3. In each period a request for one of three different request classes arrives. Classes

1 and 2 are cargo booking classes with ϕ1 = ϕ2 = 9, w1 = v1 = 1, w2 = v2 = 2, qt,1 =

0.01, and qt,2 = 0.89 for all t = T, ..., 1. Class 3 is a passenger booking class with ϕ3 = 16,

w3 = v3 = 1, and qt,3 = 0.1 for all t = T, ..., 1. For the sake of simplicity, we let ϑ = 1.

Accordingly, we have ρ1 = 9, ρ2 = 18, and ρ3 = 16. Now consider the opportunity cost of a

class-3 request in period t = 4, which is required if a decision is made at t = 5. This is computed

as δ4(3, 3, 3, 3) = Q4V4(3, 3, 3)−Q4V4(2, 2, 2) = 5.3767. Now assume only 2 seats are remaining,

i.e. cs = 2. We expect opportunity cost not to decrease since capacity becomes more valuable

if it is scarce. Indeed, opportunity cost is δ4(3, 3, 2, 3) = 5.7254. Now assume only one seat is

remaining (cs = 1). We again expect opportunity cost not to decrease; however, it is computed

as δ4(3, 3, 1, 3) = 5.7243. That means, opportunity cost decreases even though less capacity is

available.

The reason for the observed non-monotonicity is that cargo requests have to be accepted in

their entirety. This is also the reason for the non-monotone behavior in time.

Proposition 5.2. δt(cw, cv, cs, i) is not monotone in time for (cw, cv, cs, i) ∈ Cw ×Cv ×Cs × Î.

Example 4.2 in Section 4.1 can be considered as a special case for the integrated capacity control

model when assuming no customer requests arrive. This demonstrates the above proposition’s

validity.

We now turn to an integrated capacity control model that features an optimal monotone policy.

5.2 A Capacity Control Model featuring a Structured Control Policy

The decision model introduced in the previous section is very complex since its system state

comprises three dimensions. Further, the model lacks a monotone optimal policy which could

potentially decrease computational complexity. Thus, we propose a decision model in this section

which overcomes these drawbacks. We refer to this decision model hereafter as M̃ .

In M̃, we make the following assumptions: Cargo capacity is assumed to be one-dimensional

as done in M1. We already mentioned in Section 4.2 that this approach is reasonable if the

expected ratio of capacity to demand is much lower for one capacity dimension than for the

other one (e.g. an aircraft carrying largely flowers). A further assumption we make in this model

is that cargo requests can be partially accepted. This assumption is not unrealistic for the same

reasons given for the cargo capacity control model M1. We also assume that a passenger request
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requires exactly one cargo unit. This can be easily achieved by adjusting the cargo space’s scale.

Furthermore, we make the same assumptions as in the basic integrated model.

We again consider a carrier that operates flights on single legs. Now a combination carrier

has a remaining cargo capacity c ∈ C = {0, 1, , ...,C} with C as the aircraft’s total capacity. It

further has a number of remaining seats cs ∈ Cs = {0, 1, ...,Cs}. Each cargo shipment class,

which may be requested, is characterized by its capacity requirement γi ∈ N0 and its per unit

revenue ϕi ≥ 0. Further, we define γ0 = 0 and ϕ0 = 0. The cargo capacity requirement of a

passenger request is defined as γi := 1 for all i ∈ Is. All other notations are equal to the notation

of the basic model described in the previous section.

In each period, in which a passenger request arrives, the decision maker has to decide if the

incoming request is accepted or rejected. Accepting a passenger request for class i ∈ Is yields

a revenue ϕi. In case of an arriving cargo request, the decision maker has to decide which part

of the request to accept. Accepting an amount of a capacity units of a request i ∈ Ic gives a

revenue ϕia.

The objective is to identify an optimal acceptance policy that maximizes the total expected

revenue over the entire booking horizon. This can be reduced to solving the optimality equation

of the following finite-horizon MDP (T, S,E,A, pt, rt, Ṽ0) with:

(i) Planning horizon T ∈ N0.

(ii) State space S × E = (C × Cs)× Î.

(iii) Action space A ⊂ N0 with a ∈ A as the number of accepted capacity units in case of a cargo

request and the accept/reject decision in case of a passenger request. The set of admissible

actions is defined as

A(c, cs, i) :=


{0, ...,min{c, γi}} i ∈ {0, ...,m1}, c ∈ C, cs ∈ Cs
{0, 1} i ∈ {m1 + 1, ...,m2}, c ≥ 1, cs ≥ 1

{0} otherwise.

(iv) Transition law pt(c, cs, i, a, c− a, cs − aσi, i′) = qt−1,i′

for all t = T, ..., 1, c ∈ C, cs ∈ Cs, i, i′ ∈ Î, and a ∈ A(c, cs, i).

(v) One-stage reward function rt(c, cs, i, a) = aϕi

for all t = T, ..., 1, c ∈ C, cs ∈ Cs, i ∈ Î, and a ∈ A(c, cs, i).

(vi) Terminal reward function Ṽ0 ≡ 0.

The maximum expected revenue at time t = T, ..., 1, given remaining capacity c ∈ C, cs ∈ Cs
and a request for class i ∈ Î, is the unique solution to the optimality equation

Ṽt(c, cs, i) = max
a∈A(c,cs,i)

aϕi +
∑
i′∈Î

qt−1,i′ Ṽt−1(c− a, cs − aσi, i′)

 . (5.5)
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Using the operator Q̃tu(c, cs) :=
∑

i∈Î qt,iu(c, cs, i) for any real-valued function u defined on

C × Cs × Î and t = T, ..., 0, we can write (5.5) as

Ṽt(c, cs, i) = max
a∈A(c,cs,i)

{
aϕi + Q̃t−1Ṽt−1(c− a, cs − aσi)

}
.

We now explore structural properties of M̃, which lead to the optimal policy.

Structural Properties

Lemma 5.1. For all i ∈ Î and t = T, ..., 0, we have

(i) Ṽt(c, cs, i) is non-decreasing in c for all cs ∈ Cs,

(ii) Ṽt(c, cs, i) is non-decreasing in cs for all c ∈ C.

Proof. The proof can be done analogously to the one of Lemma 4.1.

Due to the two-dimensional system state and the chosen set of admissible actions, the value

function is multimodular in cargo capacity and seats as stated below.

Lemma 5.2. For any t = T, ..., 0 and i ∈ Î, Ṽt(c, cs, i) is multimodular in c and cs in the context

of concavity. Thus, Ṽt(c, cs, i) is supermodular and superconcave in c and cs.

Proof. See Appendix A.

Even though M̃’s system state is two-dimensional, it reduces to one dimension once cargo

capacity becomes the bottleneck. The reason for this characteristic is that from this point on,

capacity is always shorter than the number of remaining seats. In other words, there are more

seats remaining than could be sold. Thus, the number of seats will never affect the acceptance

decision.

Proposition 5.3. For c ≤ cs, M̃ reduces to M1 with optimality equation

VM1
t (c, i) = max

a∈A(c,i)

{
ϕia+ Ĥt−1V

M1
t−1 (c− a)

}
for all i ∈ Î, t = T, ..., 1, and set of admissible actions A(c, i) = {0, ...,min{c, γi}}.

Proof. The proof can be done analogously to the one of Proposition 4.5.

We are now able to formulate the decision model’s optimal policy. For the sake of exposition,

we distinguish between cargo and passenger requests and describe the policy in two different

theorems.
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Theorem 5.1. The optimal policy of M̃ is a structured policy π∗ = (f∗T , f
∗
T−1, ..., f

∗
1 ) with deci-

sion rules,

(i) if c > cs and i ∈ {0, ...,m1},

f∗t (c, cs, i) =

0 c ≤ c∗(t, cs, i)

min{γi, c− c∗(t, cs, i)} c > c∗(t, cs, i),

with switching curves c∗(t, cs, i) = max{c > 0 : ϕi < Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs)},
which are non-decreasing in cs, and with c∗(t, cs, i) = 0 if the set is empty;

(ii) if c ≤ cs and i ∈ {0, ...,m1},

f∗t (c, i) =

0 c ≤ c∗(t, i)

min{γi, c− c∗(t, i)} c > c∗(t, i),

with control limits c∗(t, i) = max{c > 0 : ϕi < Ĥt−1V
M1
t−1 (c) − Ĥt−1V

M1
t−1 (c − 1)} and

c∗(t, i) = 0 if the set is empty.

Proof. We start with the case c > cs. Since Ṽt(c, cs, i) is multimodular in c and cs for t = T, ..., 0

and i ∈ {0, ...,m1}, Q̃tṼt(c, cs) is multimodular, too. This does also imply concavity in c, which

is (for c ≥ 2)

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs) ≤ Q̃t−1Ṽt−1(c− 1, cs)− Q̃t−1Ṽt−1(c− 2, cs).

That means, Q̃t−1Ṽt−1(c, cs)−Q̃t−1Ṽt−1(c−1, cs) is non-increasing in c. Thus, there are thresholds

c∗(t, i) = max{c > 0 : ϕi < Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs)}. (5.6)

Now fix c ∈ C, cs ∈ Cs, t > 0, i ∈ {0, ...,m1} and let d ∈ N0. If an action a is the largest

a ∈ A(c, cs, i) that maximizes the right hand side of (5.5) in t, we have

aϕi + Q̃t−1Ṽt−1(c− a, cs) ≥ dϕi + Q̃t−1Ṽt−1(c− d, cs) for a > d ≥ 0, and

aϕi + Q̃t−1Ṽt−1(c− a, cs) > dϕi + Q̃t−1Ṽt−1(c− d, cs) for a < d ≤ γi.

Since Q̃t−1Ṽt−1 is concave, we can rewrite the above inequalities as

aϕi + Q̃t−1Ṽt−1(c− a, cs) ≥ (a− 1)ϕi + Q̃t−1Ṽt−1(c− (a− 1), cs)

aϕi + Q̃t−1Ṽt−1(c− a, cs) > (a+ 1)ϕi + Q̃t−1Ṽt−1(c− (a+ 1), cs),

where the expression reduces to the first (second) equation if a = γi (a = 0). This can be
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rearranged as

ϕi ≥ Q̃t−1Ṽt−1(c− a+ 1, cs)− Q̃t−1Ṽt−1(c− a, cs) (5.7)

ϕi < Q̃t−1Ṽt−1(c− a, cs)− Q̃t−1Ṽt−1(c− a− 1, cs). (5.8)

Applying (5.6) to the above inequalities yields that c∗(t, i) = c − a. For c ≤ c∗(t, i), it follows

that the optimal action is a = 0. For all c > c∗(t, i), we have a = c− c∗(t, i). The optimal action

is only limited by the request size γi. Thus, we have a = min{γi, c− c∗(t, i)} if c > c∗(t, i).

Moreover, supermodularity of Q̃t−1Ṽt−1(c, cs) gives (for c ≥ 1)

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs) ≤ Q̃t−1Ṽt−1(c, cs + 1)− Q̃t−1Ṽt−1(c− 1, cs + 1)

Thus, Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs) is non-decreasing in cs. Consequently, the thresholds

c∗(t, i) are also non-decreasing in cs and can thus be extended to monotone switching curves

c∗(t, cs, i).

The proof for c ≤ cs is analog to the proof of Theorem 4.1.

For an example of the described policy, see Figure 5.1. We can use this example to interpret

c

sc

1a

0a

2a

Figure 5.1: Example for a switching curve in case of a cargo request

the switching curves’ shape. For c > cs, the decision rule says that a greater fraction of a request
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should be accepted the more cargo capacity is remaining. The decision rule also suggests that

less capacity should be sold the more seats are remaining. That is, if there are still a lot of

seats available for sale, cargo capacity should be saved so that these seats can be sold later in

the booking process. If c < cs, decisions are independent of the number of remaining seats since

more seats are remaining than could be sold. The decision rule then says that more units of a

cargo request should be accepted the more capacity is remaining.

We now turn to the optimal policy in case a passenger request arrives.

Theorem 5.2. The optimal policy of M̃ is a structured policy π∗ = (f∗T , f
∗
T−1, ..., f

∗
1 ) with deci-

sion rules,

(i) if c > cs and i ∈ {m1 + 1, ...,m2},

f∗t (c, cs, i) =

0 cs ≤ c∗s(t, c, i)

1 cs > c∗s(t, c, i),

with switching curves c∗s(t, c, i) = max{cs > 0 : ϕi < Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs −
1)}, which are non-increasing in c > 0, and with c∗s(t, c, i) = 0 if the set is empty;

(ii) if c ≤ cs and i ∈ {m1 + 1, ...,m2},

f∗t (c, i) =

0 c ≤ c∗(t, i)

1 c > c∗(t, i),

with control limits c∗(t, i) = max{c > 0 : ϕi < Ĥt−1V
M1
t−1 (c) − Ĥt−1V

M1
t−1 (c − 1)} and

c∗(t, i) = 0 if the set is empty.

Proof. We begin the proof for the case c > cs: Since Ṽt(c, cs, i) is multimodular in c and cs,

Q̃t−1Ṽt−1(c, cs) is also multimodular for t = T, ..., 1. It follows from superconcavity that (for

c ≥ 1 and cs ≥ 2)

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c, cs − 1) ≤ Q̃t−1Ṽt−1(c− 1, cs − 1)− Q̃t−1Ṽt−1(c− 1, cs − 2),

which can be rearranged as

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1) ≤ Q̃t−1Ṽt−1(c, cs − 1)− Q̃t−1Ṽt−1(c− 1, cs − 2).

That means, Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1) is non-increasing in cs. Accordingly, there

exist thresholds

c∗s(t, i) := max{cs > 0 : ϕi < Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1)} (5.9)
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for all i ∈ {m1 + 1, ...,m2} and t = T, ..., 1. If a request for class i ∈ {m1 + 1, ...,m2} arrives at

t, action a = 1 is optimal for cs > c∗s(t, i), and a = 0 is optimal for cs ≤ c∗s(t, i).
Furthermore, superconcavity implies that (for c ≥ 2 and cs ≥ 1)

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs) ≤ Q̃t−1Ṽt−1(c− 1, cs − 1)− Q̃t−1Ṽt−1(c− 2, cs − 1),

which can be rearranged as

Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1) ≤ Q̃t−1Ṽt−1(c− 1, cs)− Q̃t−1Ṽt−1(c− 2, cs − 1).

That means, Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1) is also non-increasing in c. Consequently,

the thresholds c∗s(t, i) can be extended to switching curves c∗s(t, c, i) which are non-increasing in

c.

We now consider the case for c ≤ cs. It follows from concavity of Ĥt−1V
M1
t−1 (c) in c (for c ≥ 2)

Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1) ≤ Ĥt−1V

M1
t−1 (c− 1)− Ĥt−1V

M1
t−1 (c− 2)

That means, Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1) is non-increasing in c, which ensures the existence

of the thresholds

c∗(t, i) := max{c > 0 : ϕi < Ĥt−1V
M1
t−1 (c)− Ĥt−1V

M1
t−1 (c− 1)},

and with c∗(t, i) = 0 if the set is empty. If a request for class i ∈ {m1 + 1, ...,m2} arrives at time

t, action a = 1 is optimal for c > c∗(t, i), and a = 0 is optimal for c ≤ c∗(t, i).

In order to get an idea of the switching curves’ shape, see Figure 5.2 as an example. This figure

does also help to interpret the optimal policy. Consider first the area c > cs. The policy suggests

that if many seats are remaining, a passenger request should be accepted. That means, if only a

few seats are remaining, capacity is saved for later passenger requests. This reflects the typical

rationale in revenue management which is to save capacity for later requests which might have

a higher revenue. Further, if much cargo capacity is remaining, a passenger request should be

accepted. That is, if cargo capacity is scarce, passenger requests tend to be rejected in order to

save capacity for profitable cargo requests. For c ≤ cs, decisions are independent of the number

of available seats because there are more seats remaining than could be sold. The decision rule

says that a passenger request should be accepted if much cargo capacity is remaining.

Note that we might as well define switching curves c∗(t, cs, i), which are non-increasing in cs,

and define optimal decisions based on them.

The optimal policy can also be structured with respect to time. In order to show this, we need

the following lemma.
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c

sc

1a

0a

Figure 5.2: Example for a switching curve in case of a passenger request

Lemma 5.3. For all c ∈ C, cs ∈ Cs, a∗i = f∗t+1(c, cs, i) for some i ∈ Î, and t = T − 1, ..., 0, we

have

Q̃tṼt(c, cs)− Q̃tṼt(c− 1, cs − 1) ≤ Q̃tṼt(c− a∗i , cs − a∗iσi)− Q̃tṼt(c− 1− a∗i , cs − 1− a∗iσi).
(5.10)

Proof. It is easy to see that (5.10) holds for a∗i = 0. We now consider (5.10) for some i 6= 0,

a∗i > 0, and t ≥ 0:

(i) For cargo requests (i ∈ Ic), it follows from subconcavity that

Q̃tṼt(c, cs)− Q̃tṼt(c− 1, cs − 1) ≤ Q̃tṼt(c− 1, cs)− Q̃tṼt(c− 2, cs − 1)

≤ Q̃tṼt(c− 2, cs)− Q̃tṼt(c− 3, cs − 1)

...

≤ Q̃tṼt(c− a∗, cs)− Q̃tṼt(c− 1− a∗, cs − 1).

(ii) For passenger requests (i ∈ Is), the only action greater zero is a∗i = 1. It follows from
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subconcavity that

Q̃tṼt(c, cs)− Q̃tṼt(c− 1, cs − 1) ≤ Q̃tṼt(c− 1, cs)− Q̃tṼt(c− 2, cs − 1)

≤ Q̃tṼt(c− 1, cs − 1)− Q̃tṼt(c− 2, cs − 2).

The two cases together complete the proof.

Proposition 5.4. For any i ∈ {m1 + 1, ...,m2} and c > cs, the switching curves c∗s(t, c, i) are

non-decreasing in t.

Proof. In order to prove this proposition, we have to show that opportunity cost Q̃tṼt(c, cs) −
Q̃tṼt(c−1, cs−1) is non-decreasing in time. We fix c > 0 and cs > 0 as well as t > 0. Further, we

let a∗i = f∗t (c−1, cs−1, i) be the optimal action at time t if class i ∈ Î is requested, c−1 capacity

and cs − 1 seats are remaining. Note that we have a∗i ∈ A(c− 1, cs − 1, i) and a∗i ∈ A(c, cs, i). It

follows that

Q̃tṼt(c, cs)− Q̃tṼt(c− 1, cs − 1)

=
∑
i∈Î

qt,i

[
max

a∈A(c,cs,i)

{
aϕi + Q̃t−1Ṽt−1(c− a, cs − aσi)

}
− max
a∈A(c−1,cs−1,i)

{
aϕi + Q̃t−1Ṽt−1(c− 1− a, cs − 1− aσi)

}]
≥
∑
i∈Î

qt,i

[
Q̃t−1Ṽt−1(c− a∗i , cs − a∗iσi)− Q̃t−1Ṽt−1(c− 1− a∗i , cs − 1− a∗iσi)

]
≥Q̃t−1Ṽt−1(c, cs)− Q̃t−1Ṽt−1(c− 1, cs − 1).

The last inequality follows from Lemma 5.3. Accordingly, the switching curves c∗s(t, c, i) are

non-decreasing in time.

Proposition 5.5. For any i ∈ {0, ...,m1} and c > cs, the switching curves c∗(t, cs, i) are non-

decreasing in t.

Proof. The proof can be done analogously to the one shown above, but the last inequality follows

from concavity.

Note that for c ≤ cs, the control limits c∗(t, i) are also non-decreasing in time as it was shown

in Proposition 4.3. This property implies that requests (or parts of them) should be accepted as

departure approaches.

The policy can be further characterized by the following property.
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Proposition 5.6. For t = T, ..., 1 we have c∗(t, cs, i1) ≤ c∗(t, cs, i2) with ϕi1 ≥ ϕi2 and i1, i2 ∈
{0, ...,m1}. Further, for t = T, ..., 1, we have c∗s(t, c, i1) ≤ c∗s(t, c, i2) with ϕi1 ≥ ϕi2 and i1, i2 ∈
{m1 + 1, ...,m2}.

Proof. The proof can be done analogously to the one of Proposition 4.4.

Note that this property applies as well to the control limits c∗(t, i) for c ≤ cs (cf. Proposition

4.4). The implication of this property is that a request with a higher revenue is rather (partially)

accepted than a request having a lower revenue.

The model M̃ provides a very comprehensible decision rule, which increases acceptance of the

model in practice. However, if an airline’s business policy only allows for entirely accepting

requests or if both weight and volume have to be considered, M̃ cannot be applied. For this

case, we provide, in the next section, two efficient heuristics that can be applied to determine a

solution to the basic model outlined in Section 5.1.

5.3 Heuristics and Bounds

Optimal policies of the basic integrated capacity control model cannot be determined directly for

real-world problems. Since the system state is three-dimensional, the model suffers from the curse

of dimensionality. Thus, we provide two different heuristics that efficiently find feasible solutions.

The first heuristic decomposes the decision problem into three one-dimensional subproblems and

allows for partially accepting cargo requests. This yields that the heuristic’s decision rule is

simply structured. The second heuristics makes decisions based on bid prices for weight, volume,

and seats, which are determined by a deterministic linear program. This linear program provides

an upper bound on the maximum expected revenue.

Heuristic based on Decomposition into Three Subproblems (HD3)

This heuristic decomposes the three-dimensional MDP into three one-dimensional subproblems.

Thereby, the well-known passenger capacity control problem is obtained. Further, the two cargo

subproblems are almost identical to the ones described in Section 4.3. The difference is the way

the revenue generated by accepting one unit of a request is allocated among the subproblems.

This is outlined below.

ϕwi :=

ϕ̄ i ∈ Is
ϕi otherwise

ϕvi :=

ϕi
( viϑ −wi)

vi
1{ viϑ >wi} = ϕi

(
1
ϑ −

wi
vi

)
1{ viϑ >wi} i ∈ Ic

0 otherwise
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ϕsi :=

max{ϕi − ϕ̄wi, 0} i ∈ Is
0 otherwise

with ϕ̄ = (
∑T

t=1

∑
i∈Ic qt,iϕi)/(

∑T
t=1

∑
i∈Ic qt,i) as the expected average revenue per chargeable

weight unit over all cargo requests. This allocation implies that a passenger request generates

revenue in both the seat subproblem and in the weight subproblem. This ensures that a passenger

request is not always rejected in the weight subproblem; note that this would happen if its

acceptance did not generate revenue. We only account for passengers requiring cargo capacity

in the weight subproblem because weight requirement is relatively high compared to volume

requirement.

All subproblems can be formulated as an MDP of the form of M1 as described in Section 4.2.

Thus, the weight subproblem has the following optimality equation for all cw ∈ Cw, i ∈ Î, and

t = T, ..., 1:

VM1,w
t (cw, i) = max

a∈A(cw,i)

{
aϕwi + Ĥt−1V

M1,w
t−1 (cw − a)

}
.

The volume subproblem’s optimality equation is for all cv ∈ Cv, i ∈ Î, and t = T, ..., 1

VM1,v
t (cv, i) = max

a∈A(cv ,i)

{
aϕvi + Ĥt−1V

M1,v
t−1 (cv − a)

}
.

And the seat subproblem’s optimality equation for all cs ∈ Cs, i ∈ Î, and t = T, ..., 1 is

VM1,s
t (cs, i) = max

a∈A(cs,i)

{
aϕsi + Ĥt−1V

M1,s
t−1 (cs − a)

}
.

In the seat subproblem, we have A(cs, i) = {0, ...,min{σi, cs}. We set all terminal values of the

subproblems to zero since we do not consider overbooking.

The decision rule based on HD3 says that a request for shipment type i ∈ Î should be accepted

at time t when cw ≥ wi, cv ≥ vi, and cs ≥ σi weight, volume, and seats, respectively, are

remaining and if

ρi ≥
[
Ĥt−1V

M1,w
t−1 (cw)− Ĥt−1V

M1,w
t−1 (cw − wi)

]
︸ ︷︷ ︸

=δt−1(cw,i)

+
[
Ĥt−1V

M1,v
t−1 (cv)− Ĥt−1V

M1,v
t−1 (cv − vi)

]
︸ ︷︷ ︸

=δt−1(cv ,i)

+
[
Ĥt−1V

M1,s
t−1 (cs)− Ĥt−1V

M1,s
t−1 (cs − σi)

]
.︸ ︷︷ ︸

=δt−1(cs,i)

This decision rule suggests that a cargo request is accepted if sufficient capacity is available
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and if the generated revenue is at least as high as the opportunity cost of the weight plus the

opportunity cost of the volume subproblem. Further, a passenger request should be accepted if

at least one seat is remaining and if the sum of the opportunity costs of all three subproblems is

not greater than the price associated with the booking class.

We know from Section 4.3 that the opportunity costs δt(cw, i), δt(cv, i), and δt(cs, i) are non-

increasing in cw, cv, and cs, respectively. This monotonicity property applies as well to the sum

of the opportunity costs, δt(cw, i) + δt(cv, i) + δt(cs, i). This allows us to make a statement on

the structure of the policy based on HD3.

Proposition 5.7. The heuristic policy based on HD3 is a structured policy π = (fT , fT−1, ..., f1)

with decision rules

ft(cw, cv, cs, i) =

1 cs > cs(t, cw, cv, i), cw ≥ wi, cv ≥ vi, cs ≥ σi
0 otherwise

and with thresholds cs(t, cw, cv, i) = max{cs > 0 : ρi < δt−1(cw, i) + δt−1(cv, i) + δt−1(cs, i), cw ≥
wi, cv ≥ vi} which are non-increasing in cw and cv. If the set is empty, we define cs(t, cw, cv, i) = 0

for all i ∈ Is and cs(t, cw, cv, i) = −1 for all i ∈ Ic.

Note that the policy based on this heuristic might as well be defined with respect to volume

or weight. Note further that the thresholds depend on two variables, and thus the concept of

switching curves is not applicable in this context. The interpretation of the policy is that, first,

if many seats are remaining, a request should be accepted, and second, if much cargo capacity

(weight and/or volume) is remaining, a request should be accepted. Note that this contradicts

the optimal policy of M̃ which saves cargo capacity if a lot of seats are remaining in order to sell

these seats at a later time. This contradiction is caused by the decomposition of the state space.

Heuristic based on Bid Prices (HBP)

The capacity control problem can be simplified by considering the number of incoming requests

for each class over the entire booking horizon as deterministic. Letting them be equal to the

expected number of requests, the decision problem is then to maximize the revenue from accepting

requests subject to the available capacity. Allowing for partially accepting requests (both cargo

and passengers), this yields the following LP:

(BP) max
y

m2∑
i=1

yiρi (5.11)

s.t.

m2∑
i=1

yiwi ≤ Cw (5.12)
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m2∑
i=1

yivi ≤ Cv (5.13)

m2∑
i=m1+1

yi ≤ Cs (5.14)

yi ≤
T∑
t=1

qt,i ∀i = 1, ...,m2 (5.15)

yi ≥ 0 ∀i = 1, ...,m2. (5.16)

Let zBP denote the maximum objective value of the optimization problem. It gives an upper

bound on the maximum expected revenue determined in (5.3).

Proposition 5.8. We have QTVT (Cw,Cv,Cs) ≤ zBP .

Proof. The proof can be done very similarly to the proof of Proposition 2 in Amaruchkul et al.

(2007) and is thus omitted.

We denote the dual variables of (5.12), (5.13), and (5.14) as λw, λv, and λs which are interpreted

as the marginal value (bid price) of one weight unit, volume unit, and seat, respectively. These

bid prices can be utilized to construct the following heuristic decision rule at time t:

ft(cw, cv, cs, i) =

1 ρi ≥ λwwi + λvvi + λsσi, cw ≥ wi, cv ≥ vi, cs ≥ σi
0 otherwise.

Note that this approach is very similar to the deterministic linear programming approach that

is used in passenger network revenue management (see Talluri & van Ryzin, 2004, pp. 93-95).

The decision rule’s advantage is that it is very comprehensible, and the bid prices can be obtained

easily. However, it is not time-dependent and does not consider remaining capacity. The following

numerical experiments demonstrate its performance compared to the decomposition heuristic.

5.4 Numerical Experiments

We now assess the quality of HD3 and HBP. Further, the revenue of one more heuristic is

evaluated. This heuristic accepts cargo as long as sufficient capacity is available, and it accepts

passenger requests according to the optimal policy of the one-dimensional passenger decision

problem. This heuristic is hereafter referred to as IFCFS since it integrates a cargo first-come-

first-served policy and optimal passenger acceptance decisions. As a benchmark for the heuristics’

achieved revenue over the simulated booking processes, we use the maximum expected revenue

as determined in (5.3). This value was computed by means of a HP XC3000 high performance

computer. Further, the upper bound zBP is compared to the maximum expected revenue in
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order to assess its quality. All experiments were conducted on an Intel Core2 Quad CPU at 2.83

GHz and 8 GB RAM. In order to obtain the bid prices for HBP, we solved the linear program

by means of Gurobi 5.0 (Gurobi Optimization, 2012).

In the experiments, we use the same shipment categories as in Section 4.4 (see Table 4.1).

Thus, we consider shipment categories b = 1, ..., 9 that all have a different weight and volume

requirement wb, vb. In each time period, either a shipment with revenue per chargeable weight

ϕ, a passenger seat with revenue ϕ, or neither a shipment nor a seat is requested. Table 5.1

outlines the probabilities for an incoming request with a per unit revenue ϕ. The rationale

Cargo requests Request probabilities
Revenue Period 1-10 Period 11-20 Period 21-30 Period 31-40

1.2 0.25 0.1667 0.04 0
1.0 0.15 0.1666 0.06 0
0.8 0.1 0.1667 0.1 0

Passenger requests
Revenue

140 0.035 0.03 0.03 0.04
130 0.035 0.03 0.03 0.04
120 0.035 0.03 0.03 0.04
110 0.03 0.03 0.03 0.04
100 0.03 0.03 0.036 0.06
90 0.03 0.03 0.036 0.06
80 0.02 0.025 0.036 0.06
70 0.02 0.025 0.036 0.08
60 0.015 0.02 0.036 0.08

Table 5.1: Request probabilities for different revenues

behind this setting is that it is more likely that a passenger rather than a cargo request arrives

at the beginning of the booking period. On the other hand, close to departure the arrival of

a cargo request becomes more likely. Note that the probability of no arrival is 0.25 and 0.5 in

periods 1-20 and 21-40, respectively. Further, note that the probability for high-value requests

increases as departure approaches.

Given a cargo request, the probability that an incoming request belongs to a particular category

is the same as in the cargo experiments (see Table 4.3). If a passenger request is observed, it

belongs to category b = 10, which requires one seat, 100 kg, and 10 ×104 cm3. The request

probability for a particular class i = (b, ϕ) at time t equals the probability of observing a revenue

ϕ multiplied by the probability of observing a category b request at this time (since we assume

independence between requested categories and per-unit revenues). For example, the probability

of an arrival of a cargo shipment class with ϕ = 0.8 and b = 8 at t = 10 is 0.0833×0.1 = 0.00833.

The probability for an arrival of a passenger booking class with ϕ = 110 at t = 35 equals
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the probability of the revenue at this time, which is 0.04 since only one passenger category is

considered. Accepting a request for class i ∈ Ic gives a revenue of ϕi max{wi, vi/ϑ} with ϑ = 0.6.

Accepting a request for class i ∈ Is gives a revenue of ϕi.

We consider a booking horizon of T = 40 time periods. Multiplying capacity requirements by

request probabilities over the entire booking horizon yields expected demand in weight, volume,

and seats of Dw=4340 kg, Dv=1970×104 cm3, and Ds=13, respectively. We let total available

capacity (Cw,Cv,Cs) vary in order to assess the heuristics’ performance for different capacity-

demand ratios. These ratios represent two different scenarios: First, a flight that is both weight

and volume restricted, and second, a flight that is restricted with respect to weight, volume, and

passenger seats.

In order to determine the performance of our heuristics, we repeatedly simulated the arrival

process and computed the average revenue gained in the selling process over all simulation runs.

In order to obtain reliable results, we simulated 100,000 booking processes. The heuristics’

performance relative to the maximum expected revenue in case of a both weight and volume

restricted flight is display in Figure 5.3. Observe that HD3 outperforms HBP and IFCFS for
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Figure 5.3: Heuristics’ performance for both weight and volume restricted flights
(relative to maximum expected revenue)

all capacity-demand ratios lower than 1. Furthermore, the performance of HD3 is relatively

constant and revenues are very close to the maximum expected revenue for all scenarios. Another

observation is that the performance of IFCFS decreases as less capacity is available which can be
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5 Integrated Capacity Control of Cargo Space and Passenger Seats

explained by the poor performance of a cargo first-come-first-served policy in case of insufficient

capacity. Further, HBP’s performance does also become worse as less capacity is available. Our

explanation for this observation is that the inventory-insensitivity causes HBP to perform badly

if capacity is scarce.

The numerical results for flights that offer too few passenger seats relative to demand as well

as insufficient weight and volume are summarized in Figure 5.4. Here we keep weight and volume

capacity constant (Cw/Dw ≈ Cv/Dv ≈ 0.7) and let the number of available seats vary. We choose

a situation where cargo capacity is scarce since otherwise cargo capacity control would not yield

a benefit. Again HD3 demonstrates the best overall performance of all tested heuristics with
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Figure 5.4: Heuristics’ performance for weight, volume and passenger restricted flights
(relative to maximum expected revenue)

revenues very close to the maximum expected revenue. Another observation is that HD3 and

HBP perform worse as fewer seats are available, whereas IFCFS performs better under such

conditions. This is caused by the fact that IFCFS focuses on passenger capacity control, which

is particularly important in case of an insufficient number of available seats. In this case, IFCFS

can even balance the disadvantage from accepting cargo based on a first-come-first-served policy.

Tables 5.2 and 5.3 show the relative difference between zBP and the maximum expected revenue

for different capacity-demand ratios. For weight and volume restricted flights (see Table 5.2),

observe that the upper bound’s quality is relatively constant and even tends to become better if

less capacity is available. Thus, the upper bound is quite a good approximation of the maximum

expected revenue under these conditions. For a flight that is restricted in all capacity dimensions
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5.4 Numerical Experiments

Total capacity zBP
QTVT (Cw,Cv ,Cs)

%
Cw Cv Cs
4340 1970 13 113.44
3906 1773 13 111.63
3472 1576 13 111.25
3038 1379 13 111.07
2604 1182 13 109.98
2170 985 13 111.04
1736 788 13 111.29

Table 5.2: Upper bound quality depending on both available weight and volume
(relative to maximum expected revenue)

Total capacity zBP
QTVT (Cw,Cv ,Cs)

%
Cw Cv Cs
2400 1380 13 107.99
2400 1380 11 108.07
2400 1380 9 108.37
2400 1380 7 109.16
2400 1380 5 110.72
2400 1380 3 112.90
2400 1380 1 115.15

Table 5.3: Upper bound quality depending on available seats
(relative to maximum expected revenue)
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5 Integrated Capacity Control of Cargo Space and Passenger Seats

(see Table 5.3), the upper bound becomes less tight if fewer seats are available. In this situation,

the maximum expected revenue decreases since very few profitable passenger requests can be

accepted, and capacity has to be sold alternatively to cargo requests. (BP) sells this free capacity

selectively to the most profitable cargo requests and thus achieves a higher revenue. This is in

particular possible since parts of high-value requests can be accepted at the end of the booking

horizon even if capacity is insufficient to accept entire requests.

In summary, HD3 performs very well for all tested scenarios and achieves revenues that are

very close to optimal. However, note that HD3 features the same shortcomings as HDP in the

cargo capacity control experiments in case of volume restricted flights. On the other hand, it

is particularly strong for weight-restricted flights. Further, HBP performs quite well if capacity

is ample. IFCFS’s performance is only comparable to the performance of the other heuristics if

the number of total seats is very low or capacity is sufficient to accommodate expected demand.

The upper bound we proposed demonstrates a good quality, especially if capacity is ample.
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Chapter 6

Network Cargo Capacity Control

In Chapter 4, we already analyzed the single-leg cargo capacity control problem. Since we focused

on simply structured policies of the basic problem, we neglected some practical challenges. In this

chapter, we attempt to model a cargo capacity control problem that accounts for as many practi-

cal challenges as possible. This yields the following differences to the discussed single-leg model:

First, we consider a network of flights rather than a single leg. Second, we allow for uncertain

aircraft capacity and for an uncertain shipment capacity requirement. Third, in order to handle

these uncertainties, we allow for overbooking. All these aspects imply a tremendous increase in

complexity compared to the single-leg model, which is already computationally intractable for

large problems. Therefore, our focus in this chapter is, on the one hand, on determining upper

bounds on the maximum expected revenue, and on the other hand, on developing heuristics that

determine feasible solutions to the decision problem.

In Section 6.1, we outline the network cargo capacity control model. In Section 6.2, we propose

several bounds on the maximum expected revenue that are all based on linear programs. Section

6.3 provides an approximate dynamic programming approach to the network capacity control

problem. An affine value function approximation and its structural properties as well as a

piecewise linear approximation are proposed. As a further way of determining heuristic decision

rules, a dynamic programming decomposition approach is discussed in Section 6.4. In Section

6.5, we assess the quality of the proposed bounds and the performance of the heuristics using

numerical experiments.

The notation we use in this chapter deviates slightly from the notation we used in the previous

chapters. First, we let the value function in this chapter be denoted by G since V represents the

random volume requirement of shipments. Second, l represents a particular leg in this chapter,

whereas it denoted a two-dimensional function in the third chapter.
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6 Network Cargo Capacity Control

6.1 Capacity Control Model

Consider a cargo carrier operating flights on a network. An aircraft’s cargo capacity on each

leg l ∈ L = {1, ...,L} is represented by the random vector (Kw
l ,K

v
l ), in which Kw

l denotes the

random variable describing the maximum weight that can be transported on leg l and Kv
l the

maximum volume, respectively. Over a booking horizon of T time periods, the carrier may receive

short-term booking requests for shipment classes i ∈ I = {0, ...,m}. Each class is characterized

by its uncertain weight and volume requirement, its per unit contribution margin, and the legs

it requests. We count time backwards with time period T denoting the first period of the selling

process and t = 0 representing the departure of the freighters in the network. We assume that

the arrival process follows a Poisson process, which is approximated by Bernoulli experiments.

Choosing T as a sufficiently large number ensures that the probability of more than one arrival per

time period can be neglected. In each period t = T, ..., 0, we denote the probability of an arrival

of a booking request from class i by qt,i ≥ 0. The probability that no request arrives is given by

qt,0 = 1−
∑m

i=1 qt,i ≥ 0. We further define q0,0 = 1 and q0,i = 0 for i = 1, ...,m. That means, no

request arrives at t = 0. Like in the previous chapters, we make the following assumptions that

are common in revenue management: First, customers do not behave strategically. Second, the

decision maker is risk-neutral. Third, demand is independent between shipment classes and also

independent of the availability of other classes.

In each period, in which a request is observed, a decision has to be made if the incoming request

is accepted or rejected for transportation by the carrier. We assume that at the time the decision

is made, the actual weight and volume of the requested class is only known in distribution. We

denote the weight and volume that a class of type i requires at the time of departure by random

variables Wi and Vi. It is common industry practice to only charge the weight and volume

that were actually used. In particular, a contribution margin ϕi (which we hereafter refer to as

revenue) is earned per chargeable weight unit of class i, and chargeable weight units are given

by max{Wi, Vi/ϑ}, where ϑ is a constant representing the volume-weight ratio of a standard

shipment. Rejected demand is lost. Class i = 0 represents the event of no arriving request, and

we define P (W0 = 0) = 1, P (V0 = 0) = 1, and ϕ0 = 0.

Note that we need to keep track of the number of accepted shipments of each booking class

over time since their distribution of weight and volume might differ and realizations are only

observed at departure. We denote the number of accepted class-i requests as ci ∈ N0.

Since the capacity, the required weight, and the required volume by a class are uncertain,

overbooking is allowed. Following Amaruchkul et al. (2007), we penalize overselling, i.e. the event

that at the time of departure more weight or volume was sold than capacity became available,

by non-negative per unit offloading cost φwl and φvl for oversold weight and volume on leg l,

respectively. This approach is reasonable since a flight might be oversold in only one dimension,

while units of the other dimension are still available. While this is a huge simplification of the
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6.1 Capacity Control Model

actual offloading problem, Luo et al. (2009) report that this assumption can be found in cargo

revenue management practice.

The objective of this decision problem is to identify an optimal control policy that maximizes

the total expected revenue over the entire booking horizon. This can be reduced to solving the

optimality equation of the following finite-horizon MDP (T, S,E,A, pt, rt, G̃0) with:

(i) Planning horizon T ∈ N0, indexed by t.

(ii) State space S × E = Ct × I
with Ct := {(c1, ..., cm) ∈ Nm0 :

∑m
i=1 ci ≤ T − t, ∀0 ≤ t ≤ T}. The state space comprises

the number of accepted requests of each class as system states and the currently requested

class as an environmental state. The upper bound of the state space is a consequence of

the assumption that at most one request can be accepted per period. Thus, the sum of all

accepted requests cannot be greater than the number of elapsed decision periods.

(iii) Action space A ∈ {0, 1} indicates whether a request is denied or accepted. The set of

admissible actions is defined as A(c, i) := {0, 1} for all c ∈ Ct and i ∈ I. Since the set

of admissible actions is independent of the current state, we define A(i) := A(c, i) for all

i ∈ I and c ∈ Ct.

(iv) Transition law pt(c, i, a, c + aei, i
′) = qt−1,i′

for all t = T, ..., 1, c ∈ Ct, i, i
′ ∈ I, and a ∈ A(i). ei is an m-dimensional vector, where

the i-th entry is one and all other entries are zero. We define e0 as the m-dimensional zero

vector.

(v) One-stage reward function rt(c, i, a) = aEWi,Vi [ϕi max{Wi, Vi/ϑ}] =: aρi

for all t = T, ..., 1, c ∈ Ct, i ∈ I, and a ∈ A(i).

(vi) Terminal reward function

G̃0(c, i′) = −
∑
l∈L

EW ,V ,Kw,Kv

φwl
∑
i∈I(l)

Wici −Kw
l

+

+ φvl

∑
i∈I(l)

Vici −Kv
l

+
for all c ∈ C0 and i′ ∈ I with I(l) denoting the set of classes that request leg l. We

define W = (W1, ...,Wm) and V = (V1, ..., Vm) as the vector of random weight and volume

requirement, respectively. Further, let Kw and Kv be a vector of capacities for weight and

volume, respectively, on all legs l ∈ L. Note that we allow for any general distributions

of actual weights, volumes, and capacities. In particular, weights and volumes might be

dependent. However, we assume that capacity is independent of both weight and volume

requirement.
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6 Network Cargo Capacity Control

Note that one could also account for additional loading restrictions, such as limited positions

for certain pallets or containers, by introducing additional non-decreasing penalty functions per

leg. For the sake of simplicity, we consider only weight and volume restrictions on a leg hereafter.

Let G̃t(c, i) denote the maximum expected revenue that can be gained in periods t to departure

by accepting additional requests given that c ∈ Ct requests have already been accepted and class

i ∈ I is currently requested. This is the unique solution to the following optimality equation of

the MDP:

G̃t(c, i) = max
a∈A(i)

{
ρia+

∑
i′∈I

qt−1,i′G̃t−1(c + aei, i
′)

}
. (6.1)

Accordingly, if a class-i request is accepted, a revenue ρi will be generated and the system state

will be increased by 1 in dimension i. If a request is rejected or no request arrives, no revenue

will be generated and the system state will remain unchanged.

In order to reduce the MDP’s large system state, we use the observable-disturbance form of

(6.1) hereafter. That is, we define Gt(c) :=
∑

i∈I qt,iG̃t(c, i) for all t = T, ..., 0 and c ∈ Ct and

write

Gt(c) =
∑
i∈I

qt,i max{ρi +Gt−1(c + ei), Gt−1(c)}. (6.2)

If a booking request for shipment class i ∈ I is accepted at time t, the expected revenue is

ρi + Gt−1(c + ei). If the request is rejected, the expected revenue is Gt−1(c). Accordingly, the

optimal decision rule in t, in state c ∈ Ct, and if shipment class i ∈ I is requested, is

f∗t (c, i) =

1 ρi ≥ Gt−1(c)−Gt−1(c + ei)

0 otherwise.
(6.3)

The difference Gt−1(c) − Gt−1(c + ei) can be interpreted as the opportunity cost of the cargo

space a class-i request requires. It is the difference in the maximum expected revenue that can

be gained by accepting additional requests in future time periods when a request for class i is

rejected minus the maximum expected revenue when it is accepted. The decision rule says that

a request should only be accepted if its revenue is at least as big as its opportunity cost.

In this setting GT (0) yields the maximum expected revenue that can be gained within the

booking process if the freighter is initially empty. Although, in general, the initial state of

freighters is given by the quantities sold through long-term contracts, we will assume that the

freighters are empty when the booking process starts (c = 0). This is done for the ease of

exposition only, an extension to a general initial state is straightforward.

Due to the curse of dimensionality, determining the exact values of Gt(c), which are needed

for finding out optimal decisions, is computationally infeasible. Even single-leg problems are

intractable as we already showed in Chapter 4. In passenger network revenue management,
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6.2 Upper Bounds based on Linear Programming

several approaches to obtain heuristics and upper bounds on GT (0) are well known. In the

following sections, we will discuss how and if results from this stream of literature carry over to

cargo revenue management. In the next section, we apply linear programming approaches to our

decision problem in order to determine upper bounds.

6.2 Upper Bounds based on Linear Programming

One rather crude simplification to make the above problem tractable would be to replace all

random variables by their expected values (cf. heuristic HBP in Section 5.3). Instead of solving

an MDP, the resulting problem would simply determine how many shipments of which class

should be accepted under the condition that the number of accepted requests must be less than

or equal to expected demand. The objective is to maximize expected revenue from accepted

requests minus expected overbooking cost.

Allowing for partial (i.e. non-integer) acceptance of yi requests from class i ∈ I\{0} yields the

following optimization problem:

(DLP) max
y

m∑
i=1

ρiyi −
∑
l∈L

φwl
∑
i∈I(l)

w̄iyi − k̄wl

+

+ φvl

∑
i∈I(l)

v̄iyi − k̄vl

+
s.t. yi ≤

T∑
t=1

qt,i ∀i = 1, ...,m

yi ≥ 0 ∀i = 1, ...,m

with w̄i = E [Wi], v̄i = E [Vi], k̄
w
l = E [Kw

l ], and k̄vl = E [Kv
l ].

Although this problem is non-linear in the formulation given above, it can easily be trans-

formed to a linear problem by introducing additional variables ζwl ≥ 0 and ζvl ≥ 0, replacing(∑
i∈I(l) w̄iyi − k̄wl

)+
and

(∑
i∈I(l) v̄iyi − k̄vl

)+
respectively in (DLP), and adding the following

constraints ∑
i∈I(l)

w̄iyi − k̄wl ≤ ζwl (6.4)

∑
i∈I(l)

v̄iyi − k̄vl ≤ ζvl (6.5)

for all legs l ∈ L.

Let zDLP denote the maximum objective value of (DLP). This problem is a straightforward

extension of the upper bound problem given in Proposition 2 of Amaruchkul et al. (2007) to a

network model accounting for uncertain capacity. Amaruchkul et al. (2007) interpret the dual

variables of (6.4) and (6.5) as the bid prices of one weight and volume unit, respectively, on leg
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l. We denote those values by λwl and λvl , respectively. Note that this problem is very similar to

approaches for computing passenger bid prices based on solving a deterministic linear program,

which is traditional in network revenue management (cf. Talluri & van Ryzin, 1998, pp. 93-95)

and was recently extended to overbooking by Kunnumkal et al. (2012).

To incorporate stochastic information in the deterministic linear program, a randomized linear

programming approach is common in passenger network revenue management and well known

to provide a tighter bound than (DLP), see Talluri & van Ryzin (1999) and Kunnumkal et al.

(2012). The underlying idea is that the expected values in (DLP) are replaced by random vectors.

Let D = (Dit) be a random matrix with Dit ∈ {0, 1} describing the incoming requests of different

classes over time with P (Dit = 1) = qt,i. Denoting a realization of D by d = (dit)i=1,...,m,t=T,...,1,

a value dit = 1 indicates that a class-i request arrived at time t. By assumption, we have∑m
i=1 dit ∈ {0, 1} for all t. We denote realizations of the random variables by their corresponding

lower case letters. Then, the optimal control given a realization of demand, capacities, and

capacity requirements is given by

(RLP) %(d,w,v,kw,kv) = max
y

m∑
i=1

ϕi max{wi, vi/ϑ}yi

−
∑
l∈L

φwl
∑
i∈I(l)

wiyi − kwl

+

+ φvl

∑
i∈I(l)

viyi − kvl

+
s.t. yi ≤

T∑
t=1

dit ∀i = 1, ...,m

yi ≥ 0 ∀i = 1, ...,m.

Note that this problem represents a full information problem since complete knowledge about

all incoming demand and capacities is used in the maximization. The maximum expected rev-

enue under full information is then given by ED,W ,V ,Kw,Kv [%(D,W ,V ,Kw,Kv)]. Denote this

quantity by zRLP . Although zRLP is difficult to calculate directly, it can easily be obtained, e.g.

by Monte Carlo simulation (for an introduction to Monte Carlo simulation, see Rubinstein &

Kroese, 2008).

In a passenger revenue management context, Kunnumkal et al. (2012) also introduce a partially

randomized linear program, which only replaces a selection of expected values by their random

variables. Let (PLP) be the problem with revenues, capacities, as well as required weights and
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volumes equal to their expected values and with a random demand vector, i.e.

(PLP) κ(d) = max
y

m∑
i=1

ρiyi −
∑
l∈L

φwl
∑
i∈I(l)

w̄iyi − k̄wl

+

+ φvl

∑
i∈I(l)

v̄iyi − k̄vl

+
s.t. yi ≤

T∑
t=1

dit ∀i = 1, ...,m

yi ≥ 0 ∀i = 1, ...,m

and zPLP = E[κ(D)].

The following theorem shows that all of the problems introduced above, zDLP , zRLP , and

zPLP give an upper bound on the maximum expected total revenue. Unlike in passenger revenue

management, zRLP does not always provide a tighter bound than zDLP . But zPLP can be shown

to be tighter than zDLP in general.

Theorem 6.1. GT (0) ≤ zPLP ≤ zDLP . Further, GT (0) ≤ zRLP . In general, zRLP might be a

tighter or a looser upper bound than zDLP or zPLP .

Proof. Let (A∗0t, ..., A
∗
mt) denote the vectors maximizing the right hand side of (6.2) depending

on the realization of (D,W ,V ,Kw,Kv) at time t (we drop the direct dependence of A∗it for

notational simplicity). Given this, the total number of accepted requests from class i 6= 0 given

those optimal actions is
∑T

t=1A
∗
itDit.

Denote the optimal solution to (PLP) depending on (D) by Y PLP
i . Given a realization of (D),∑T

t=1A
∗
itDit is a feasible solution to (PLP). Combining this insight with Jensen’s inequality, we

have

GT (0)

= ED,W ,V ,Kw,Kv

 m∑
i=1

ϕi max

{
Wi,

Vi
ϑ

} T∑
t=1

A∗itDit −
∑
l∈L

φwl
∑
i∈I(l)

Wi

T∑
t=1

A∗itDit −Kw
l

+

+φvl

∑
i∈I(l)

Vi

T∑
t=1

A∗itDit −Kv
l

+
= ED

[
m∑
i=1

ρi

T∑
t=1

A∗itDit

]
−
∑
l∈L

ED,W ,V ,Kw,Kv

φwl
∑
i∈I(l)

Wi

T∑
t=1

A∗itDit −Kw
l

+

+φvl

∑
i∈I(l)

Vi

T∑
t=1

A∗itDit −Kv
l

+
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≤ ED

 m∑
i=1

ρi

T∑
t=1

A∗itDit −
∑
l∈L

φwl
∑
i∈I(l)

w̄i

T∑
t=1

A∗itDit − k̄wl

+

+φvl

∑
i∈I(l)

v̄i

T∑
t=1

A∗itDit − k̄vl

+
≤ ED

 m∑
i=1

ρiY
PLP
i −

∑
l∈L

φwl
∑
i∈I(l)

w̄iY
PLP
i − k̄wl

+

+ φvl

∑
i∈I(l)

v̄iY
PLP
i − k̄vl

+
= E[κ(D)] = zPLP .

Since κ(d) is a concave function, Jensen’s inequality yields

zPLP = E[κ(D)] ≤ κ(E[D]) = zDLP .

Summarizing the above, we have GT (0) ≤ zPLP ≤ zDLP . Now, consider the fully randomized

linear program. We have

GT (0)

= ED,W ,V ,Kw,Kv

 m∑
i=1

ϕi max{Wi,
Vi
ϑ
}

T∑
t=1

A∗itDit −
∑
l∈L

φwl
∑
i∈I(l)

Wi

T∑
t=1

A∗itDit −Kw
l

+

+φvl

∑
i∈I(l)

Vi

T∑
t=1

A∗itDit −Kv
l

+
≤ ED,W ,V ,Kw,Kv

 m∑
i=1

ϕi max{Wi, Vi/ϑ}Y RLP
i −

∑
l∈L

φwl
∑
i∈I(l)

WiY
RLP
i −Kw

l

+

+φvl

∑
i∈I(l)

ViY
RLP
i −Kv

l

+
= ED,W ,V ,Kw,Kv [%(D,W ,V ,Kw,Kv)] = zRLP .

At this point, it is unclear if zRLP is a tighter or a looser bound than zPLP or zDLP . To

see that in general, zRLP is neither tighter nor looser than the other two bounds, consider the

following two examples.

Example 6.1. Take T = 5, L = 1, m = 1, qt,1 = 1 for t = 1, ..., 5, ϑ = 1, P (V1 = 100) = 1,

P (W1 = 2) = 0.5 = 1 − P (W1 = 98), P (Kv
1 = 100) = 1, P (Kw

1 = 10) = 1, ϕ1 = 1, φv1 = 0,
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φw1 = 100 so that w̄1 = 50, v̄1 = 100, k̄w1 = 10, k̄v1 = 100. In this case, DLP and PLP solve

max
0≤y≤5

100y − 100(50y − 10)+

with y∗ = 1/5 and zDLP = zPLP = 100/5 = 20.

RLP, on the other hand, solves the problem for two possible sample paths, each of which

happen with a probability of 0.5. Simplifying the problems of those two sample paths gives:

Sample 1: w1 = 2 : max
0≤ỹ≤5

100ỹ − 100(2ỹ − 10)+

Sample 2: w1 = 98 : max
0≤ŷ≤5

100ŷ − 100(98ŷ − 10)+.

We have ỹ∗ = 5 and ŷ∗ = 10/98 giving zRLP = 0.5 × 100 × (5 + 10/98) > 20 = zDLP = zPLP .

As a consequence of this example, zRLP can be even looser than zDLP .

Example 6.2. To have an example showing that zRLP might produce a bound that is tighter

than zPLP or zDLP , take the data from Example 1 but change the booking horizon to T = 1 and

the capacity for weight to P (Kw
1 = 50) = 1, with k̄w1 = 50. In this case, DLP and PLP solve

max
0≤y≤1

100y − 100(50y − 50)+

with y∗ = 1 and zDLP = zPLP = 100.

As before, RLP solves the problem for two possible sample paths, each of which happen with

a probability of 0.5. This gives

Sample 1: w1 = 2 : max
0≤ỹ≤1

100ỹ − 100(2ỹ − 50)+

Sample 2: w1 = 98 : max
0≤ŷ≤1

100ŷ − 100(98ŷ − 50)+.

We have ỹ∗ = 1 and ŷ∗ = 50/98 giving zRLP = 0.5 × 100 × (1 + 50/98) < 100 = zDLP = zPLP .

As a consequence of this example, zRLP can be tighter than zPLP .

We turn to an alternative, popular approach to determine upper bounds and bid prices in

passenger revenue management, which is approximate dynamic programming.

6.3 An Approximate Dynamic Programming Approach

In this section, we propose an affine value function approximation in order to make the capacity

control problem tractable. The approximation’s structural properties are analyzed in Section
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6.3.1. An enhanced approximation scheme that uses piecewise linear functions is proposed in

Section 6.3.2.

A standard approach in approximate dynamic programming is to approximate the value func-

tion by a function that is affine in the state space. If we approximate the value of one unit of

weight at time t on leg l by αwl,t and the value of one unit of volume at time t on leg l by αvl,t,

the approximation parameters can be interpreted as bid prices for weight and volume units on a

particular leg and at a particular time. An intuitive decision rule would accept a class-i request

if its revenue is at least as big as the sum of the bid prices of its requested weight and volume in

the next period, i.e.
∑

l∈L(i)[α
w
l,t−1w̄i + αvl,t−1v̄i], where L(i) is the set of legs that are requested

by class i ∈ I (for i = 0, we define L(i) = ∅). This is in case of an arriving class-i request in

period t > 1

ft(i) =


1 ρi ≥

∑
l∈L(i)

[
αwl,t−1w̄i + αvl,t−1v̄i

]
0 otherwise.

(6.6)

We refer to the sum of all bid prices of a particular class i ∈ I,
∑

l∈L(i)

[
αwl,t−1w̄i + αvl,t−1v̄i

]
,

as approximated opportunity cost. In order to obtain the decision rules in (6.6), we approximate

Gt(c) and Gt(c + ei) in (6.3) for all t = T, ..., 1 and c ∈ Ct by

Gt(c) ≈ ψt −
∑
l∈L

αwl,t ∑
i∈I(l)

ciw̄i + αvl,t
∑
i∈I(l)

civ̄i

 , (6.7)

with ψt as a constant offset in period t.

Offloading cost incurs in the last period only. To approximate the terminal values, we use the

expected values of capacities and capacity requirements, that is

G0(c) ≈ −
∑
l∈L

φwl
∑
i∈I(l)

w̄ici − k̄wl

+

+ φvl

∑
i∈I(l)

v̄ici − k̄vl

+ . (6.8)

Given optimality equations (6.2), we outlined in Section 3.3 that the maximum expected

revenue at time T can be computed by solving the following LP:

(P̃) min
GT (c),...,G1(c)

GT (0)

s.t. Gt(c)−
∑
i∈I

qt,iGt−1(c + aiei) ≥
∑
i∈I

qt,iρiai ∀c ∈ Ct, 1 ≤ t ≤ T,a ∈ A

Gt(c) ≥ 0 ∀c ∈ Ct, 1 ≤ t ≤ T,

where we define a := (a0, a1, ..., am) with ai as the action depending on the requested class i.
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We further define A = A(0)× ...×A(m) with A(0) = {0}. Even though accepting or rejecting a

request for i = 0 yields the same result, we set A(0) = {0} in order to decrease the problem size.

Further, note that we do not sum over all states in the objective function as done in Section 3.3

since we have an initial state and time-dependent states.

Plugging approximations (6.7) and (6.8) into (P̃) yields

(PAFA) min
ψ,αw,αv

ψT (6.9)

s.t. ψt − ψt−1 −
∑
l∈L

(αwl,t − αwl,t−1)
∑
i∈I(l)

ciw̄i + (αvl,t − αvl,t−1)
∑
i∈I(l)

civ̄i


+
∑
i∈I

qt,iai

 ∑
l∈L(i)

(w̄iα
w
l,t−1 + v̄iα

v
l,t−1)− ρi

 ≥ 0 ∀c ∈ Ct, 2 ≤ t ≤ T,a ∈ A

(6.10)

ψ1 −
∑
l∈L

αwl,1 ∑
i∈I(l)

ciw̄i + αvl,1
∑
i∈I(l)

civ̄i

+
∑
i′∈I

q1,i′
∑
l∈Lφwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
≥
∑
i∈I

q1,iρiai ∀c ∈ C1,a ∈ A

(6.11)

ψt, α
w
l,t, α

v
l,t ∈ R ∀1 ≤ t ≤ T, l ∈ L. (6.12)

The above problem still has the same amount of constraints as (P̃) but only T +2L×T variables.

In order to analyze structural properties in more detail and to solve the problem via column

generation, its dual formulation, (DAFA), is presented below.

(DAFA) max
X

∑
1≤t≤T,c∈Ct,a∈A

Xt,c,a

∑
i∈I

qt,iρiai −
∑

c∈C1,a∈A
X1,c,a

∑
i′∈I

q1,i′
∑
l∈Lφwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+ (6.13)

s.t.
∑

c∈Ct,a∈A
Xt,c,a

∑
i∈I(l)

ciw̄i

=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i∈I(l)

(ci + qt+1,iai)w̄i ∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

(6.14)
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∑
c∈Ct,a∈A

Xt,c,a

∑
i∈I(l)

civ̄i

=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i∈I(l)

(ci + qt+1,iai)v̄i ∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

(6.15)

∑
c∈Ct,a∈A

Xt,c,a =


∑

c∈Ct+1,a∈A
Xt+1,c,a ∀1 ≤ t < T

1 t = T

(6.16)

Xt,c,a ≥ 0 ∀1 ≤ t ≤ T, c ∈ Ct,a ∈ A. (6.17)

Note that the second part of constraints (6.14) and (6.15) can be eliminated since CT = {0}m.

Further, constraint (6.16) can be replaced by∑
c∈Ct,a∈A

Xt,c,a = 1 ∀1 ≤ t ≤ T. (6.18)

Interpreting Xt,c,a as state-action probabilities, constraint (6.14) enforces that the expected

weight booked t time periods before departure equals the expected weight booked t + 1 time

periods before departure plus the weight sold within that time period. Constraint (6.15) en-

forces the same for volume. This dual hence maximizes the expected revenue minus expected

overbooking cost subject to flow balance constraints for weight and volume.

Strong duality ensures that the objective value of (PAFA) equals the objective value of (DAFA).

We will denote this optimal value by zAFA, which gives a tighter bound than the upper bound

problem (DLP).

Theorem 6.2. Any feasible solution to (DAFA) yields a feasible solution to (DLP) having a

greater or equal objective value. Hence GT (0) ≤ zAFA ≤ zDLP .

Proof. The first inequality follows from Proposition 1 in Adelman (2007): One can show that

any feasible solution to (P̃) is an upper bound on the maximum expected revenue determined

by (6.2). Since (PAFA) provides a feasible solution to (P̃), we have zAFA ≥ GT (0). Thus, this

approximate LP determines the lowest upper bound of the form (6.7) on the maximum expected

revenue and the inequality follows.

In order to prove the second inequality, we define yi :=
∑

t>0,c∈Ct,a∈A qt,iaiXt,c,a, for all i ∈ I.

Applying (6.18) to this definition yields

0 ≤ yi =
∑

t>0,c∈Ct,a∈A
qt,iaiXt,c,a =

T∑
t=1

qt,i
∑

c∈Ct,a∈A
aiXt,c,a

≤
T∑
t=1

qt,i
∑

c∈Ct,a∈A
Xt,c,a ≤

T∑
t=1

qt,i ∀i ∈ I.

112



6.3 An Approximate Dynamic Programming Approach

As a consequence, any feasible solution to (DAFA) gives a feasible solution to (DLP). We will

now show that the objective value of (DLP) is greater than or equal to the objective value of

(DAFA) for any feasible solution.

Considering the definition of yi, the first term of (6.13) becomes

m∑
i=1

yiρi.

Now consider the second term of (6.13) representing overbooking cost. Since both (
∑

i∈I(l)(ci+

ai′1{i=i′})w̄i − k̄wl )+ and (
∑

i∈I(l)(ci + ai′1{i=i′})v̄i − k̄vl )+ are convex in c and in a, and because

Xt,c,a as well as qt,i can be considered as probability distributions, we can repeatedly apply

Jensen’s inequality to obtain

∑
c∈C1,a∈A

X1,c,a

∑
i′∈I

q1,i′
∑
l∈L

φwl
∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
≥

∑
c∈C1,a∈A

X1,c,a

∑
l∈L

φwl
∑
i∈I(l)

(ci + q1,iai)w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + q1,iai)v̄i − k̄vl

+
≥
∑
l∈L

φwl
 ∑

c∈C1,a∈A
X1,c,a

∑
i∈I(l)

(ci + q1,iai)w̄i −
∑

c∈C1,a∈A
X1,c,ak̄

w
l

+

+φvl

 ∑
c∈C1,a∈A

X1,c,a

∑
i∈I(l)

(ci + q1,iai)v̄i −
∑

c∈C1,a∈A
X1,c,ak̄

v
l

+ .
(6.19)

Further, fixing i and summing constraint (6.14) over t yields∑
t,c,a

Xt,c,a

∑
i∈I(l)

ciw̄i =
∑
t,c,a

Xt+1,c,a

∑
i∈I(l)

(ci + qt+1,iai)w̄i ∀l ∈ L.

Rearranging terms yields∑
c,a

X1,c,a

∑
i∈I(l)

ciw̄i =
∑
t,c,a

Xt+1,c,a

∑
i∈I(l)

qt+1,iaiw̄i ∀l ∈ L.
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By applying the definition of yi, we can write∑
c,a

X1,c,a

∑
i∈I(l)

ciw̄i =
∑
i∈I(l)

yiw̄i −
∑
c,a

X1,c,a

∑
i∈I(l)

q1,iaiw̄i ∀l ∈ L.

It follows that ∑
i∈I(l)

yiw̄i =
∑
c,a

X1,c,a

∑
i∈I(l)

(ci + q1,iai)w̄i ∀l ∈ L. (6.20)

Similarly, constraint (6.15) yields∑
i∈I(l)

yiv̄i =
∑
c,a

X1,c,a

∑
i∈I(l)

(ci + q1,iai)v̄i ∀l ∈ L. (6.21)

Using (6.20) and (6.21) gives that the last two lines in (6.19) are equal to

∑
l∈L

φwl
∑
i∈I(l)

yiw̄i − k̄wl

+

+ φvl

∑
i∈I(l)

yiv̄i − k̄vl

+ .
This proves that the objective of (DLP) cannot be lower than the objective value of (DAFA) for

any feasible solution X. Accordingly, every feasible solution of (DAFA) can be transformed to

a feasible solution of (DLP) yielding a greater or equal objective value. As a consequence, the

maximization problem (DAFA) yields a lower upper bound.

Next, we provide an analysis of structural properties of the approximation parameters.

6.3.1 Structural Properties

We motivated our approximation by arguing that
∑

l∈L(i)

[
αwl,t−1w̄i + αvl,t−1v̄i

]
should approxi-

mate the opportunity cost of accepting a class-i request in period t. One can show that for an

optimal solution, the approximated opportunity cost of a request is approximately constant in

time.

Theorem 6.3. For an optimal primal solution (αw∗, αv∗, ψ∗) to (PAFA), we have∑
l∈L(i)

[
αw∗l,t w̄i + αv∗l,t v̄i

]
≈
∑
l∈L(i)

[
αw∗l,t−1w̄i + αv∗l,t−1v̄i

]
& 0 ∀1 < t ≤ T, i ∈ I.

Proof. First, note that approximated opportunity cost of class i′ ∈ I in period t > 1 can be

written as
∑

l∈L(i′)

[
αw∗l,t w̄i′ + αv∗l,t v̄i′

]
. On the other hand, we can plug approximation (6.7) into

the right hand side of (6.2) for Gt(c) and Gt(c + ei′) and write approximated opportunity cost
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of class i′ in period t > 1 as

0 ≤ Gt(c)−Gt(c + ei′)

≈
∑
j∈I

qt,j max
a∈A(j)

aρj + ψ∗t−1 −
∑
l∈L

∑
i∈I(l)

(ci + a1{i=j})(α
w∗
l,t−1w̄i + αv∗l,t−1v̄i)


−
∑
j∈I

qt,j max
a∈A(j)

aρj + ψ∗t−1 −
∑
l∈L

∑
i∈I(l)

(ci + a1{i=j} + 1{i=i′})(α
w∗
l,t−1w̄i + αv∗l,t−1v̄i)


= ψ∗t−1 −

∑
l∈L

∑
i∈I(l)

ci(α
w∗
l,t−1w̄i + αv∗l,t−1v̄i) +

∑
j∈I

qt,j max
a∈A(j)

aρj − a ∑
l∈L(j)

(αw∗l,t−1w̄j + αv∗l,t−1v̄j)


− ψ∗t−1 +

∑
l∈L

∑
i∈I(l)

ci(α
w∗
l,t−1w̄i + αv∗l,t−1v̄i) +

∑
l∈L(i′)

(αw∗l,t−1w̄i′ + αv∗l,t−1v̄i′)

−
∑
j∈I

qt,j max
a∈A(j)

aρj − a ∑
l∈L(j)

(αw∗l,t−1w̄j + αv∗l,t−1v̄j)


=
∑
l∈L(i′)

(αw∗l,t−1w̄i′ + αv∗l,t−1v̄i′).

The inequality holds since Gt(c) is non-increasing in ci for all i ∈ {1, ...,m} (a proof can be

done analogously to the one of Lemma 4.1). It follows that for all 1 < t ≤ T and i′ ∈ I,∑
l∈L(i′)[α

w∗
l,t w̄i′ + αv∗l,t v̄i′ ] ≈

∑
l∈L(i′)[α

w∗
l,t−1w̄i′ + αv∗l,t−1v̄i′ ].

In the remainder of this work, we assume exact rather than approximate time-independence of

approximated opportunity cost. That is,
∑

l∈L(i)

[
αw∗l,t w̄i + αv∗l,t v̄i

]
=
∑

l∈L(i)

[
αw∗l,t−1w̄i + αv∗l,t−1v̄i

]
for all i ∈ I and t = T, ..., 2. This assumption yields that there exists an optimal solution featuring

time-independent bid prices.

Theorem 6.4. Assume an optimal solution with time-independent approximated opportunity

cost exists. Then, there also exists an optimal solution (αw∗, αv∗, ψ∗) to (PAFA) with

(i) αw∗l,t = αw∗l,t−1,

(ii) αv∗l,t = αv∗l,t−1,

(iii) ψ∗t ≥ ψ∗t−1 ≥ 0

for all 1 < t ≤ T and l ∈ L.

Proof. We first prove properties (i) and (ii) by showing that any optimal solution not satisfying

the above structure can be altered to obtain an alternative optimal solution that satisfies those

properties.
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Consider an optimal primal-dual solution X∗, (αw∗, αv∗, ψ∗). Let t′ be the smallest t > 1 with

αw∗l,t 6= αw∗l,t−1 or αv∗l,t 6= αv∗l,t−1. Now consider the alternative solution (αw′, αv′, ψ′) with

αw′l,t =

αw∗l,t ∀t 6= t′, l ∈ L

αw∗l,t−1 t = t′, l ∈ L

αv′l,t =

αv∗l,t ∀t 6= t′, l ∈ L

αv∗l,t−1 t = t′, l ∈ L

ψ′t =


ψ∗t ∀t 6= t′

ψ∗t +
∑
l∈L

[
(αw∗l,t−1 − αw∗l,t )

∑
i∈I(l)

w̄ici + (αv∗l,t−1 − αv∗l,t)
∑
i∈I(l)

v̄ici

]
t = t′.

To see that (αw′, αv′, ψ′) is a feasible solution to (PAFA), note that the only constraints in (6.10)

for which we altered any variables are those with t = t′ and t = t′ + 1. Consider t = t′ first. For

any c ∈ Ct′ and a ∈ A, this reads

ψ′t′ − ψ′t′−1 +
∑
l∈L

(αw′l,t′−1 − αw′l,t′)
∑
i∈I(l)

w̄ici + (αv′l,t′−1 − αv′l,t′)
∑
i∈I(l)

v̄ici


+
∑
j∈I

qt′,jaj

 ∑
l∈L(j)

(w̄jα
w′
l,t′−1 + v̄jα

v′
l,t′−1)− ρj


=ψ∗t′ − ψ∗t′−1 +

∑
l∈L

(αw∗l,t′−1 − αw∗l,t′)
∑
i∈I(l)

w̄ici + (αv∗l,t′−1 − αv∗l,t′)
∑
i∈I(l)

v̄ici


+
∑
j∈I

qt′,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′−1 + v̄jα

v∗
l,t′−1)− ρj

 ≥ 0, (6.22)

where the inequality follows from feasibility of (αw∗, αv∗, ψ∗).

For t = t′ + 1, (6.10) reads for any c ∈ Ct′+1 and a ∈ A

ψ′t′+1 − ψ′t′ +
∑
l∈L

(αw′l,t′ − αw′l,t′+1)
∑
i∈I(l)

w̄ici + (αv′l,t′ − αv′l,t′+1)
∑
i∈I(l)

v̄ici


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w′
l,t′ + v̄jα

v′
l,t′)− ρj


=ψ∗t′+1 − ψ∗t′ −

∑
l∈L

(αw∗l,t′−1 − αw∗l,t′)
∑
i∈I(l)

ciw̄i + (αv∗l,t′−1 − αv∗l,t′)
∑
i∈I(l)

civ̄i


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+
∑
l∈L

(αw∗l,t′−1 − αw∗l,t′+1)
∑
i∈I(l)

ciw̄i + (αv∗l,t′−1 − αv∗l,t′+1)
∑
i∈I(l)

civ̄i


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′−1 + v̄jα

v∗
l,t′−1)− ρj


=ψ∗t′+1 − ψ∗t′ −

∑
l∈L

(αw∗l,t′+1 − αw∗l,t′)
∑
i∈I(l)

ciw̄i + (αv∗l,t′+1 − αv∗l,t′)
∑
i∈I(l)

civ̄i


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′−1 + v̄jα

v∗
l,t′−1)− ρj


=ψ∗t′+1 − ψ∗t′ −

∑
l∈L

(αw∗l,t′+1 − αw∗l,t′)
∑
i∈I(l)

ciw̄i + (αv∗l,t′+1 − αv∗l,t′)
∑
i∈I(l)

civ̄i


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′ + v̄jα

v∗
l,t′)− ρj


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′−1 + v̄jα

v∗
l,t′−1)−

∑
l∈L(j)

(w̄jα
w∗
l,t′ + v̄jα

v∗
l,t′)


=ψ∗t′+1 − ψ∗t′ −

∑
l∈L

(αw∗l,t′+1 − αw∗l,t′)
∑
i∈I(l)

ciw̄i + (αv∗l,t′+1 − αv∗l,t′)
∑
i∈I(l)

civ̄i


+
∑
j∈I

qt′+1,jaj

 ∑
l∈L(j)

(w̄jα
w∗
l,t′ + v̄jα

v∗
l,t′)− ρj

 ≥ 0, (6.23)

where the last equality follows from the assumption of time-independent approximated opportu-

nity cost, and the last inequality from the feasibility of (αw∗, αv∗, ψ∗). We hence conclude that

(αw′, αv′, ψ′) is a feasible solution to (PAFA).

To see that it is an optimal solution, we check if complimentary slackness is preserved. To do

this, we need to show that for every c ∈ Ct, a ∈ A, and 1 ≤ t ≤ T with X ′t,c,a > 0, condition

(6.10) is active. Since we showed above that the reduced revenue is the same under (αw′, αv′, ψ′)

as under (αw∗, αv∗, ψ∗), it follows that the dual variables under both solutions are equal, i.e.

X ′t,c,a = X∗t,c,a for all c ∈ Ct and a ∈ A and t = t′, t′ + 1. Again, we only need to check (6.10)

for t = t′ and t = t′ + 1 since nothing was changed in the other constraints.

Consider t = t′ first. From the optimality of (αw∗, αv∗, ψ∗), we know that for c ∈ Ct′ and

a ∈ A with X∗t′,c,a > 0, (6.10) is active for (αw∗, αv∗, ψ∗). As X ′t,c,a = X∗t,c,a, it follows from

(6.22) that (6.10) is also active for the alternative solution. For t = t′+ 1, we can draw the same

conclusion from (6.23).
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Following the same steps repeatedly for larger t’s yields properties (i) and (ii).

To see (iii), choose ci = 0 and ai = 0 for all i ∈ I in constraint (6.10). It follows immediately

that ψ∗t ≥ ψ∗t−1. Doing the same in constraint (6.11) yields ψ∗1 ≥ 0 and thus ψ∗t ≥ 0 for all

1 ≤ t ≤ T . Note that this structure holds for all feasible solutions.

The result of time-independent bid prices is in contrast to the approximate dynamic program-

ming formulation for passenger revenue management suggested in Adelman (2007) where optimal

bid prices vary over time. The reason for this contrast is that we allow for overbooking within

the network formulation.

Due to Theorem 6.4 and the assumption of time-independent approximated opportunity cost,

we will drop the index t hereafter and let αw∗l and αv∗l be the optimal, time-independent bid

prices. Intuitively, one might expect αw∗l and αv∗l to be positive, just like in the passenger

counterpart in Adelman (2007). This need not be true in our cargo problem, however, as the

following example shows:

Example 6.3. Consider a network that consists of three locations and two legs (see Figure 6.1).

Both legs have the same expected capacity, i.e. k̄w1 = k̄w2 = 40 and k̄v1 = k̄v2 = 20.

A B C 
leg 1 leg 2 

Figure 6.1: Two-leg example: Network

Over a booking horizon of T = 3 periods, requests for three different classes may arrive. The

capacities of the carriers as well as the actual weight and volume of shipments of different classes

equal their expected values. For simplicity take ϑ = 1. The classes are characterized as outlined

in Table 6.1.

Period Class Expected Expected Itinerary Revenue Revenue Probability

weight volume (per unit) (total)

t i w̄i v̄i ϕi ρi qt,i

3 1 20 10 A-C 2.25 45 0.5

2 10 10 A-B 2.5 25 0.3

3 10 10 B-C 2.5 25 0.2

2 1 20 10 A-C 2.25 45 1.0

1 1 20 10 A-C 2.25 45 1.0

Table 6.1: Two-leg example: Classes and data

Classes 2 and 3 require only one leg, and class 1 requires both legs. Further, class 1 requires

the same amount of volume as the other classes but twice the amount of weight. In period 3,
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requests for all classes may arrive. In each period 2 and 1, a request for class 1 arrives with

probability 1. In each period, there may arrive at most one request in total. Further, for the

sake of simplicity, we impose very high offloading cost (take e.g. φ = 5) so that capacity is not

overbooked.

Solving (PAFA) for this example yields αw∗1 = −4.5, αw∗2 = 0, αv∗1 = 9, and αv∗2 = 4.5 with

ψ1 = ψ2 = ψ3 = 90. Hence, we know that an upper bound is zAFA = ψ3 = 90.

Using these bid prices, we obtain approximated opportunity cost for class 1 of −4.5 × 20 +

(9 + 4.5)×10 = 45. Since ρ1 = 45, our decision rule accepts a class-1 request. The approximated

opportunity costs for classes 2 and 3 are computed as −4.5× 10 + 9× 10 = 45 and 4.5× 10 = 45.

Since ρ2 = ρ3 = 25, our decision rule rejects requests for both classes.

It is easy to verify that the expected revenue from following this policy is 90 and hence equal to

the upper bound, zAFA. We can conclude that it is optimal. In this example, the optimal policy

cannot be obtained if we restricted the bid prices to non-negative values. To see this, note that

one would need values that satisfy 20(αw1 +αw2 ) + 10(αv1 +αv2) ≤ 45 for class 1, 10αw1 + 10αv1 > 25

for class 2, and 10αw2 + 10αv2 > 25 for class 3, which is impossible.

Two things are important to remark here: First, one might argue that static bid prices of

weight and volume capacity can also be obtained by determining the dual variables of (6.4) and

(6.5) from (DLP). By definition, however, those values will be non-negative. In our example,

the dual variables would be λw1 = λw2 = 0, λv1 = 2.5, and λv2 = 2. As argued above, an optimal

policy cannot be obtained with those bid prices. The approximated opportunity cost for class 1

is (2 + 2.5)× 10 = 45 but for classes 2 and 3, approximated opportunity cost is computed as 20

and 25, respectively. Consequently, the low revenue demand from classes 2 and 3 is not rejected.

Second, one might wonder why bid prices are non-negative in passenger revenue management.

In contrast to passenger revenue management, cargo revenue management considers two dimen-

sions and acceptance of multiple units. As a result, the opportunity cost Gt(c) − Gt(c + ei) of

a class i may be lower than the sum of the opportunity costs of two other classes even if these

classes require the same resource and even less total capacity.

Such a situation cannot be observed in classical passenger network revenue management since

all customers require the same amount of capacity on a flight. However, if customer choice

behavior is accounted for, Chaneton & Vulcano (2011) report optimality of negative bid prices

in passenger network revenue management. In this setting, negative bid prices serve to take

advantage of the substitution behavior of customers. That means, if customers choose between

several legs, their demand is moved to the leg that is more profitable for the airline.

Next, we outline how time-independent bid prices are obtained. We apply a column generation

procedure as already outlined in Chapter 4.
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Solution Procedure

Using Theorem 6.4, (PAFA) reduces to

(P̃AFA) min
ψ,αw,αv

ψT

s.t. ψt − ψt−1 +
∑
i′∈I

qt,i′ai′

 ∑
l∈L(i′)

(w̄i′α
w
l + v̄i′α

v
l )− ρi′

 ≥ 0 ∀2 ≤ t ≤ T,a ∈ A

ψ1 −
∑
l∈L

αwl ∑
i∈I(l)

ciw̄i + αvl
∑
i∈I(l)

civ̄i

−∑
i′∈I

q1,i′
∑
l∈Lρi′ai′ − φwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

− φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
≥ 0 ∀c ∈ C1,a ∈ A

αwl , α
v
l ∈ R ∀l ∈ L

ψt ≥ 0 ∀1 ≤ t ≤ T.

While (P̃AFA) features only a small number of decision variables (2 × L + T ), the number of

constraints is still very large (especially at t = 1). Thus, an appropriate solution approach is to

solve its dual by column generation (the dual problem, (D̃AFA), is presented in Appendix B).

We consider the pricing subproblem (S) for a given t = T, ..., 2

(S) max
a∈A

ψt−1 − ψt −
∑
i′∈I

qt,i′ai′

 ∑
l∈L(i′)

(w̄i′α
w
l + v̄i′α

v
l )− ρi′


For t = 1, the pricing subproblem is

(S1) max
a∈A,c∈C1

∑
i′∈I

q1,i′ρi′ai′ − ψ1 +
∑
l∈L

αwl ∑
i∈I(l)

ciw̄i + αvl
∑
i∈I(l)

civ̄i

−∑
i′∈I

q1,i′
∑
l∈Lφwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
(S1) features a non-linear objective due to the piecewise linear structure of offloading cost.

However, by introducing some auxiliary variables and constraints we obtain a linear objective.
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(S1*) max
a∈A,c∈C1,δw≥0,δv≥0

∑
i′∈I

q1,i′ρi′ai′ − ψ1 +
∑
l∈L

αwl ∑
i∈I(l)

ciw̄i + αvl
∑
i∈I(l)

civ̄i


−
∑
i′∈I

q1,i′
∑
l∈L

(φwl δ
w
l,i′ + φvl δ

v
l,i′)

s.t. δwl,i′ ≥
∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl ∀l ∈ L, i′ ∈ I

δvl,i′ ≥
∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl ∀l ∈ L, i′ ∈ I

The column generation procedure is the same as outlined in Section 4.3.

When the time-independent bid prices are used in (6.3), the resulting state- and time-inde-

pendent heuristic decision rule for i ∈ I and t > 1 is

f(i) =


1 ρi ≥

∑
l∈L(i)

[αwl w̄i + αvl v̄i]

0 otherwise.

In t = 1, a request is accepted if its revenue is at least as big as the associated increase in

approximated overbooking cost. We refer to the heuristic applying this decision rule as affine

approximation heuristic or AFA hereafter. While this decision rule is easy to implement, the

approximated opportunity cost is time-independent. This implies that a request for a particular

class is either accepted or denied in every decision period, which yields a static acceptance policy.

Furthermore, the policy is inventory-insensitive since the decision rules do not consider current

booking levels.

In the next section, we propose a value function approximation that attempts to overcome the

affine approximation’s shortcoming, which is time- and inventory-insensitive bid prices.

6.3.2 A Piecewise Linear Approximation

A straightforward way to improve the AFA heuristic and its bound zAFA is to allow for a more

general form of the value function approximation. One simple extension that would prevent

excessive overbooking of AFA is to approximate the value of one weight and volume unit differ-

ently depending on the capacity that is booked on a leg. That is, if leg l is not overbooked, we

approximate the value of one weight unit at time t by µwl,t and the value of one unit of volume at

time t by µvl,t. If leg l is overbooked, we approximate the value of one weight unit at time t by µ̃wl,t
and the value of one unit of volume at time t by µ̃vl,t. This gives us capacity- and time-dependent

bid prices and corresponds to the following approximation of Gt(c) in (6.2) for all t = T, ..., 1
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and c ∈ Ct:

Gt(c) ≈ψt −
∑
l∈L

µwl,t min

∑
i∈I(l)

ciw̄i, k̄
w
l

+ µvl,t min

∑
i∈I(l)

civ̄i, k̄
v
l


+µ̃wl,t

∑
i∈I(l)

ciw̄i − k̄wl

+

+ µ̃vl,t

∑
i∈I(l)

civ̄i − k̄vl

+ .
(6.24)

In t = 0, we approximate overbooking cost like we did in the affine-linear case. Approximation

(6.24) is similar to existing piecewise linear approximation schemes, e.g. in Meissner & Strauss

(2012). While these authors divide capacity into equidistant intervals and approximate the value

function in each interval by a different linear function, we use expected capacities as the point

where to switch from one linear function to the other in order to limit computational effort.

Plugging approximation (6.24) into (P̃) yields the linear problem (PPLA).

(PPLA) min
ψ,µw,µv ,µ̃w,µ̃v

ψT

s.t. ψt − ψt−1 −
∑
l∈L

µwl,t min

∑
i∈I(l)

ciw̄i, k̄
w
l

+ µvl,t min

∑
i∈I(l)

civ̄i, k̄
v
l


−
∑
i′∈I

qt,i′

µwl,t−1 min

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i, k̄
w
l


+µvl,t−1 min

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i, k̄
v
l




−
∑
l∈L

µ̃wl,t
∑
i∈I(l)

ciw̄i − k̄wl

+

+ µ̃vl,t

∑
i∈I(l)

civ̄i − k̄vl

+

−
∑
i′∈I

qt,i′

µ̃wl,t−1

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+µ̃vl,t−1

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+−∑
i′∈I

qt,i′ai′ρi′

≥ 0 ∀c ∈ Ct, 1 < t ≤ T,a ∈ A

ψ1 −
∑
l∈L

µwl,1 min

∑
i∈I(l)

ciw̄i, k̄
w
l

+ µvl,1 min

∑
i∈I(l)

civ̄i, k̄
v
l


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+µ̃wl,1

∑
i∈I(l)

ciw̄i − k̄wl

+

+ µ̃vl,1

∑
i∈I(l)

civ̄i − k̄vl

+
+
∑
i′∈I

q1,i′
∑
l∈L

φwl
∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+−∑
i′∈I

q1,i′ai′ρi′

≥ 0 ∀c ∈ C1,a ∈ A

ψt, µ
w
l,t, µ

v
l,t, µ̃

w
l,t, µ̃

v
l,t ∈ R ∀1 ≤ t ≤ T, l ∈ L.

The resulting price-directed heuristic accepts a request for class i′ ∈ I at time t > 1 if

ρi′ ≥
∑
l∈L(i′)

µwl,t−1

min

∑
i∈I(l)

(ci + 1{i=i′})w̄i, k̄
w
l

−min

∑
i∈I(l)

ciw̄i, k̄
w
l




+ µvl,t−1

min

∑
i∈I(l)

(ci + 1{i=i′})v̄i, k̄
v
l

−min

∑
i∈I(l)

civ̄i, k̄
v
l




+ µ̃wl,t−1

∑
i∈I(l)

(ci + 1{i=i′})w̄i − k̄wl

+

−

∑
i∈I(l)

ciw̄i − k̄wl

+
+ µ̃vl,t−1

∑
i∈I(l)

(ci + 1{i=i′})v̄i − k̄vl

+

−

∑
i∈I(l)

civ̄i − k̄vl

+ .
In t = 1, a request is accepted if its revenue is at least as big as the associated increase in

approximated overbooking cost (like in the affine-linear case). The heuristic that applies these

decision rules is referred to as PLA hereafter. Using this piecewise linear approximation, the

approximation parameters do, in general, vary in time. Hence, the above decision rule is time-

sensitive. The approximation parameters can be determined by solving the dual of (PPLA),

(DPLA) (presented in Appendix B), via column generation. However, many auxiliary variables

and constraints are necessary to transform the non-linear subproblem into a linear one. This

increases computational effort tremendously and only makes this problem solvable for relatively

small problem instances. (Note that in contrast to passenger revenue management, the terminal

condition increases computational effort even further.)

An important property of (PPLA) is that its optimal objective value, zPLA, provides a bound

that is at least as tight as zAFA.

Theorem 6.5. GT (0) ≤ zPLA ≤ zAFA ≤ zDLP .
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Proof. Since (PPLA) provides a feasible solution to (P̃), we have zPLA ≥ GT (0). Thus, this

approximate LP determines the lowest upper bound of the form (6.24) on the maximum expected

revenue.

In order to prove the second inequality, we show that (PAFA) is a special case of (PPLA). This

is simply achieved by setting µwl,t = µ̃wl,t = αwl,t and µvl,t = µ̃vl,t = αvl,t for all l ∈ L and 1 ≤ t ≤ T .

Then, (PPLA) reduces to (PAFA). Accordingly, any feasible solution of (PAFA) gives a feasible

solution to (PPLA). Thus, an optimal solution to (PPLA) has an objective value which is not

greater than zAFA.

In the next section, we propose a further heuristic that is time- and inventory-sensitive like

PLA. The difference is that this heuristic utilizes the time-independent bid prices from the affine-

linear approximation.

6.4 Dynamic Programming Decomposition

A different approach of value function approximation, which is popular in passenger revenue

management, is to use bid prices in a dynamic programming decomposition (cf. Talluri & van

Ryzin, 2004, Section 3.4). We outline how this approach can be adapted to our cargo setting

below.

The underlying idea of the dynamic programming decomposition heuristic is to decompose

the network MDP into weight and volume subproblems for each leg. The combination of the

one-dimensional value functions is then used to approximate the network value function for all

t = T, ..., 1 and c ∈ Ct as

Gt(c) ≈
∑
l∈L

[
Gwt,l(wl(c)) +Gvt,l(vl(c))

]
,

where wl(c) :=
∑

i∈I(l) ciw̃i converts the vector of accepted requests into expected weight on leg

l, and vl(c) :=
∑

i∈I(l) ciṽi does the same for volume. In order to preserve integrality of the state

space, we define w̃i := bw̄ic and ṽi := bv̄ic for all i ∈ I.

Denote the revenue from accepting a class-i shipment on leg l by ρwl,i in the weight subproblem

and by ρvl,i in the volume subproblem. Now, consider the single-resource MDP for weight on leg

l. In this subproblem, the maximum expected revenue, which can be obtained after w weight

units have been accepted and t time periods remain until departure, is given by

Gwt,l(w) =
∑
i∈I

qt,i max
a∈Al(i)

{
ρwl,ia+Gwt−1,l(w + aw̃i)

}
with Gw0,l(w) := −φwl E

[
(w −Kw

l )+], and with Al(i) := {0, 1} for i ∈ I and l ∈ L(i).

124



6.4 Dynamic Programming Decomposition

The volume problems are formulated likewise to obtain the maximum expected revenue that

can be obtained after v volume units have been accepted on leg l at time t, Gvl,t(v), for all legs l

and decision periods t.

Using this approximation in (6.3) gives the following heuristic decision rule depending on

t = T, ..., 1, c ∈ Ct, and i ∈ I:

ft(c, i) =


1 ρi ≥

∑
l∈L(i)

[
Gwt−1,l(wl(c)) +Gvt−1,l(vl(c))

−Gwt−1,l(wl(c) + w̃i)−Gvt−1,l(vl(c) + ṽi)
]

0 otherwise.

(6.25)

Depending on how the revenues of the subproblems, ρwl,i and ρvl,i are chosen, different dynamic

programming decomposition heuristics can be analyzed. Furthermore, the following theorem

shows that as long as the class-i revenues are split across dimensions so that the revenues of all

subproblems sum up to their true value ρi for all i ∈ I,
∑

l∈L[Gwt,l(wl(c)) +Gvt,l(vl(c))] yields an

upper bound on the maximum expected revenue.

Theorem 6.6. Let ρwl,i and ρvl,i denote the class-i revenue in a leg-l weight and volume subproblem,

respectively. If ∑
l∈L(i)

[
ρwl,i + ρvl,i

]
= ρi ∀i ∈ I,

the sum of the maximum expected revenues of the subproblems provides an upper bound on the

maximum expected revenue determined in (6.2), i.e.∑
l∈L

[
Gwt,l(wl(c)) +Gvt,l(vl(c))

]
≥ Gt(c) ∀t = T, ..., 0, c ∈ Ct.

Proof. This proof is a straightforward extension of the proof of Proposition 1 in Amaruchkul et

al. (2007). The proof follows by induction on t. In t = 0, it follows from Jensen’s inequality that

G0(c) = −
∑
l∈L

EW ,V ,Kw,Kv

φwl
∑
i∈I(l)

Wici −Kw
l

+

+ φvl

∑
i∈I(l)

Vici −Kv
l

+
≤ −

∑
l∈L

φwl E
∑

i∈I(l)

w̄ici −Kw
l

++ φvl E

∑
i∈I(l)

v̄ici −Kv
l

+
≤ −

∑
l∈L

[
φwl E

[
(wl(c)−Kw

l )+]+ φvl E
[
(vl(c)−Kv

l )+]]
=
∑
l∈L

[
Gw0,l(wl(c)) +Gv0,l(vl(c))

]
.
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Now assume that the assertion holds for 0, ..., t. For period t+ 1, we have

Gt+1(c)

=
∑
i∈I

qt+1,i max
a∈A(i)

{aρi +Gt(c + aei)}

≤
∑
i∈I

qt+1,i max
a∈A(i)

a ∑
l∈L(i)

[
ρwl,i + ρvl,i

]
+
∑
l∈L(i)

[
Gwt,l(wl(c) + aw̃i) +Gvt,l(vl(c) + aṽi)

]

+
∑
l /∈L(i)

[
Gwt,l(wl(c)) +Gvt,l(vl(c))

]
≤
∑
i∈I

qt+1,i

 ∑
l∈L(i)

[
max
a∈A(i)

{
aρwl,i +Gwt,l(wl(c) + aw̃i)

}
+ max
a∈A(i)

{
aρvl,i +Gvt,l(vl(c) + aṽi)

}]

+
∑
l /∈L(i)

[
Gwt,l(wl(c)) +Gvt,l(vl(c))

]
=
∑
l∈L

∑
i∈I

qt+1,i

[
max
a∈Al(i)

{
aρwl,i +Gwt,l(wl(c) + aw̃i)

}
+ max
a∈Al(i)

{
aρvl,i +Gvt,l(vl(c) + aṽi)

}]
=
∑
l∈L

[
Gwt+1,l(wl(c)) +Gvt+1,l(vl(c))

]
.

The first inequality follows from the induction assumption, and the second inequality follows

from the fact that a maximum is a subadditive function. The equality in the second last line

holds since the definition of Al(i) allows us to sum over all legs rather than making a difference

between legs that are requested and legs that are not requested.

Unfortunately, it is not possible to establish a connection between these bounds and zAFA in

general. Their performance highly depends on the revenues assigned to the subproblems. Below

we propose a decomposition heuristic that does this assignment by means of the bid prices for

weight and volume on each leg.

Bid-Price Based Heuristic

Amaruchkul et al. (2007) examine three possibilities, how revenue can be distributed over the

weight and volume dimension in a single-leg problem. Two of their heuristics put all the revenue

on one dimension, another and best heuristic achieves a trade-off by splitting it as ρwi = ϕiE[Wi]

and ρvi = ρi − ϕiE[Wi]. (We dropped the index l since they consider a single-leg problem.)

While the authors argue that the latter heuristic is intuitive, it is unclear why such a splitting

would perform well in scenarios where one capacity dimension is tighter than the other. Further,

it is unclear how their ideas should be extended to a network setting.
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6.4 Dynamic Programming Decomposition

This is why we suggest to assign the revenue across dimensions in a way that is proportional

to their bid prices and capacity requirements. For the weight (volume) subproblem of leg l ∈ L,

a request for a class i ∈ I in time period t = T, ..., 1 is viewed as a request to ship a weight of

w̃i (volume of ṽi) if l ∈ L(i). If
∑

l′∈L(i)[α
w
l′ w̄i + αvl′ v̄i] > 0 for i ∈ {1, ...,m}, the revenue from

shipping w̃i weight units on leg l is given by

ρwl,i = ρi ×
αwl w̄i∑

l′∈L(i)

[
αwl′ w̄i + αvl′ v̄i

] (6.26)

and the revenue from shipping ṽi volume units on leg l is given by

ρvl,i = ρi ×
αvl v̄i∑

l′∈L(i)

[
αwl′ w̄i + αvl′ v̄i

] . (6.27)

If the opportunity cost of a class was 0, we take ρiw̄i/
∑

l′∈L(i)(w̄i+ v̄i) and ρiv̄i/
∑

l′∈L(i)(w̄i+ v̄i),

respectively. For i = 0, we define ρwl,i = ρvl,i = 0. Note that we use w̄i and v̄i rather than w̃i

and ṽi when determining revenues since integrality of weight and volume is not necessary at this

point.

The intuition is that if capacity on a leg in one dimension is ample, its bid price will be 0 and

no revenue is ”needed” on this leg. More revenue should be allocated to legs and dimensions

with positive bid prices, where capacity is tight. We refer to the heuristic that applies decision

rule (6.25) with the above outlined revenues per subproblem as DPD (dynamic programming

decomposition) hereafter.

Remember that in the network setting, the bid prices for weight or volume may be negative

on some legs. While this might be desirable in an AFA control policy, as shown in Section 6.3.1,

negative single-leg revenues tend to significantly loosen the upper bound given in Theorem 6.6.

Hence, using (6.26) and (6.27) might not give a very tight upper bound.

This can be explained as follows: For a given class i, let Lw−(i) and Lv−(i) be the set of legs

with negative revenues ρwl,i and ρvl,i, respectively. Now consider a class i 6= 0 for which there is a

leg l ∈ L with ρwl,i < 0 and/or ρvl,i < 0. If we enforce
∑

l∈L(i)[ρ
w
l,i + ρvl,i] = ρi, this implies that the

sum of the bid-prices over the other legs,
∑

l∈L(i)\Lw−(i) ρ
w
l,i +

∑
l∈L(i)\Lv−(i) ρ

v
l,i will exceed the

true revenue ρi. On all weight subproblems with l ∈ Lw−(i) and all volume subproblems with

l ∈ Lv−(i), a class-i request will always be rejected, and a revenue of 0 will be gained from this.

If a class-i request is accepted on the other subproblems, the total revenue it brings will by far

exceed its actual revenue ρi.

Note that this phenomenon cannot happen if we enforce ρwl,i, ρ
v
l,i ≥ 0 for all classes i and all

legs l ∈ L(i). As a consequence, we expect a bound based on revenues as given in (6.26) and

(6.27) not to be tight in the presence of negative bid prices. We therefore suggest to scale bid
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prices to achieve non-negativity when this approach is used to obtain an upper bound and refer

to this upper bound as zDPD.

The following section assesses the quality of our proposed bounds and the performance of the

heuristics by means of numerical experiments.

6.5 Numerical Experiments

In this section, our first intention is to demonstrate the quality of the upper bounds, zDLP ,

zRLP , zPLP , zAFA, zPLA, and zDPD, which we proposed earlier. Further, we assess how well the

suggested heuristics, AFA and DPD, perform. Their performance will be compared to several

other heuristics:

• FCFS: A first-come-first-served policy;

• DLP: A price-directed heuristic with the same decision rule as AFA but with parameters

equal to the dual variables of (DLP), as suggested in Pak & Dekker (2004);

• DPD′: A decomposition heuristic with revenues split in proportion to the bid prices given

by the dual variables of (DLP); this heuristic generates a bound zDPD′ ;

• ACG: A decomposition heuristic for single-leg problems suggested in Amaruchkul et al.

(2007), which splits revenue as ρwi = ϕiE[Wi] and ρvi = ρi −ϕiE[Wi] and does not consider

uncertainty in capacity (cf. Section 4.3 where we called this heuristic HD). It determines

an upper bound zACG (Amaruchkul, Cooper, and Gupta).

Other linear programs, such as (PLP) could, of course, also be used to determine bid-prices in

the price-directed or decomposition heuristics we suggested. In our numerical studies, however,

we found that the differences between different methods to obtain bid prices seem to be small. A

comparison of the heuristics’ achieved revenue to the lowest upper bound will give us information

on the optimality gaps of the heuristics.

We first discuss a single-leg example and provide numerical results for a large-scale network

problem afterwards. All experiments were conducted on an Intel Core2 Quad CPU at 2.83 GHz

and 8 GB RAM. We used Gurobi 5.0 (Gurobi Optimization, 2012) for solving the LPs.

Single-Leg Experiments

To test our heuristics on a single-leg model, we consider an example with 24 shipment categories

as shown in Table 6.2 (taken from Amaruchkul et al., 2007). Shipments of category b = 1, ..., 24

require an uncertain weight Wb and volume Vb at the time of departure. We assume that Wb

and Vb follow a joint normal distribution with E [Wb] = w̄b, E [Vb] = v̄b, coefficient of variation

of CVd = 0.25 for both weight and volume, and coefficient of correlation of 0.8. Each category
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6.5 Numerical Experiments

Category b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mean weight w̄b (kg) 50 50 50 50 100 100 100 100 200 200 200 250 250 300 400 500 1000 1500 2500 3500 70 70 210 210

Mean volume v̄b 30 29 27 25 59 58 55 52 125 119 100 147 138 179 235 277 598 898 1488 2083 233 17 700 52

(×104 cm3)

Table 6.2: Mean weight and volume of shipment categories

can be requested with a revenue per chargeable weight ϕ ∈ {0.7, 1.0, 1.4}. Viewing a class as a

combination of category and revenue per chargeable weight, 3 × 24 = 72 different classes may

be requested. The expected revenue associated with a request for a category b and revenue per

chargeable weight ϕ is ϕEWb,Vb [Wb, Vb/ϑ] with ϑ = 0.6.

We consider a booking horizon of T = 60 decision periods. In each time period t, either a

shipment with revenue per chargeable weight ϕ or no shipment is requested. The probabilities

for incoming requests with revenue per chargeable weight ϕ are given in Table 6.3. Given a

shipment request, there is a probability of 0.072 for the event that the shipment belongs to

category b = 1, ..., 10. It is 0.04 for categories b = 11, ..., 16; 0.009 for categories b = 17, ..., 20;

and 0.001 for categories b = 21, ..., 24. We assume that the category is independent of the

requested revenue per chargeable weight. As a consequence, the request probability for class

i = (b, ϕ) in time period t, qt,i, equals the probability of observing a revenue per chargeable

weight ϕ in time period t multiplied by the probability of observing a category b request in this

time period. For instance, the probability for an arrival of a class with ϕ = 1.4 and b = 15 at

t = 10 is 0.7× 0.04 = 0.028.

Revenue Periods 1..20 Periods 21..40 Periods 41..60

0.7 0 0.4 0.7

1.0 0.2 0.2 0.2

1.4 0.7 0.4 0

no request 0.1 0 0.1

Table 6.3: Request probabilities for different revenues per chargeable weight

The weight and volume capacities of the freighter, Kw and Kv, are random variables that

follow a joint normal distribution with means k̄w and k̄v, coefficient of variation of CVk = 0.25

for both weight and volume capacity and a coefficient of correlation of 0.8. (We drop the leg

index in this single-leg model to simplify notation.)

The expected total demand in weight and volume is calculated as
∑T

t=1

∑
i∈I qt,iw̄i =: d̄w and∑T

t=1

∑
i∈I qt,iv̄i =: d̄v. Using our example data, the expected demand is d̄w = 10740 weight

units and d̄v = 7355 volume units. In the experiments, we vary mean capacities k̄w and k̄v in

order to create scenarios with a shortage of weight and/or volume capacity. The four scenarios

we consider are, (k̄w/d̄w, k̄v/d̄v) ∈ {(1.0, 1.0), (0.5, 0.5), (1.0, 0.5), (0.5, 1.0)}.
Per unit overbooking cost for both weight and volume units is assumed to be 1.2 times the
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expected revenue per unit of available capacity. Accordingly, total weight and volume offloading

cost is φw = 1.2×
∑T

t=1

∑
i∈I qt,iρi/k̄w and φv = 1.2×

∑T
t=1

∑
i∈I qt,iρi/k̄v, respectively.

Upper Bound Quality

We solved DLP to obtain zDLP and used 20,000 samples to estimate zPLP and zRLP . To obtain

zAFA, we solved (P̃AFA) by means of column generation with an optimality tolerance of 1%.

Run times were less than 10 minutes for all problem instances. We solved for zPLA by means

of column generation with the same optimality tolerance. Run times were significantly longer

(between 2-3 hours) for the piecewise linear approximation.

The bid prices obtained by the affine approximation were used to compute the value functions

of each subproblem of DPD, which gave us zDPD. Using different weights, as outlined above, we

further determined zDPD′ and zACG. Table 6.4 displays the computed upper bounds (tightest

bound in bold).

(k̄w/d̄w, k̄v/d̄v) zRLP zPLP zDLP zAFA zPLA zDPD′ zDPD zACG

(1.0,1.0) 11514.32 11972.94 12407.50 12296.80 11904.70 10277.99 10280.15 11214.86

(0.5,0.5) 7299.53 7431.58 7752.52 7687.26 7315.03 5698.50 5700.79 6931.63

(1.0,0.5) 8398.32 8427.68 8722.19 8651.99 8284.90 6612.95 6611.50 11030.13

(0.5,1.0) 7435.12 7437.52 7752.52 7687.70 7314.56 5707.35 5704.46 7116.37

Table 6.4: Upper bounds for the single-leg problem

As shown earlier, we have zPLA ≤ zAFA ≤ zDLP and zPLP ≤ zDLP . In these examples,

zRLP is smaller than zPLP although this need not be true in general. Furthermore, zRLP is

tighter than zPLA in case of unrestricted as well as both weight and volume restricted flights.

The tightest upper bounds, however, are zDPD and zDPD′ which are almost equal and both

significantly lower than zPLA. Both bounds are also tighter than zACG for all tested scenarios.

Further, note that the quality of zACG varies significantly depending on whether weight or volume

is the tighter dimension. This disadvantage of zACG is caused by the priority on weight when

assigning revenues to the subproblems. In case of volume restricted flights, these revenues are

miscalculated since the shortness of volume is not appropriately accounted for. Prioritizing the

capacity dimension that is expected to be the bottleneck is reasonable; however, whether a flight

will be weight or volume restricted can hardly be determined several weeks in advance.

Heuristic Performance

In order to assess the performance of our heuristics, we repeatedly simulated the arrival process.

In each simulation run, we tracked the number of accepted requests of each class for each heuristic

and subtracted offloading cost from total revenue at the end of the booking horizon. In order to

obtain reliable results, we simulated 20,000 booking processes.
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6.5 Numerical Experiments

Since the decision rules of FCFS, AFA, and DLP are capacity-independent, we prevent ex-

cessive overbooking by stopping acceptance when the expected capacity is reached. Table 6.5

reports the simulated average net revenues (best performance in bold), which is total revenue

minus offloading cost.

(k̄w/d̄w, k̄v/d̄v) FCFS DLP AFA PLA DPD′ DPD ACG

(1.0,1.0) 8454.13 8882.10 8972.24 8810.37 9433.74 9432.92 9240.15

(0.5,0.5) 2264.57 4895.96 4676.93 4800.95 5144.33 5146.07 4644.28

(1.0,0.5) 3916.01 6216.62 6115.17 6158.16 6343.28 6343.49 4297.30

(0.5,1.0) 3114.46 5432.21 5457.68 5489.67 5607.55 5608.73 5411.23

Table 6.5: Simulated average net revenue in the single-leg problem

DPD and DPD′ feature almost equal revenues, and they outperform all other heuristics for all

capacity-demand ratios. Possible explanations for the fact that both heuristics outperform ACG

are, first, an improved assignment of revenues to subproblems, and second, the consideration

of uncertain capacity. The performance of DPD and DPD′ is also better than the performance

of the price-directed heuristic PLA even though the latter also features a time- and inventory-

sensitive decision rule. In all scenarios, both DPD and DPD′ perform exceptionally well, with

solution gaps between 1.7% and 9.7%.

AFA and DLP would excessively overbook if no external stopping rule was provided. The

artificial booking stop we imposed is the reason why AFA outperforms PLA for (k̄w/d̄w, k̄v/d̄v) =

(1.0, 1.0); it would be worse without. Both bid-price heuristics perform approximately equally

well in the single-leg case since both are based on non-negative static bid prices. Besides our

artificial booking stop, another possible source of inaccuracy is the use of approximated bid prices

in AFA which are obtained through column generation allowing for an optimality tolerance. Our

numerical experiments showed that a small change in bid prices may affect the acceptance policy

of AFA significantly. Note that FCFS performs relatively bad in the above scenarios since low-

value requests tend to arrive before high-value requests in the booking process. That means,

if expected demand is greater than expected capacity, FCFS yields acceptance of unprofitable

requests and does not leave sufficient capacity for accepting more profitable requests.

Network Experiments

To extend our example to a network setting, we consider a hub-and-spoke network comprising

one hub and four spokes as shown in Figure 6.2. We again consider a booking horizon of 60

decision periods. Demand is given by the same 72 classes, with the same expected weight

and volume, same revenues, and same arrival probabilities per time period, as in the single-leg

example. In contrast to the single-leg setting, the network setting requires to additionally specify

the requested legs for each class. We therefore randomly assigned an origin-destination pair to
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each class. The detailed assignment can be found in Appendix C. Again, weight and volume for

a given class follow a joint normal distribution with a correlation of 0.8. To study the impact

of increased variation in weight and volume, we consider both a ”high demand variation” and

a ”low demand variation” scenario. The low demand variation scenario is characterized by a

coefficient of variation equal to CVd = 0.1 for all classes, and it is CVd = 0.4 in the high demand

variation scenario.

Similarly, the weight and volume capacity of a freighter on leg l follows a joint normal distribu-

tion with means k̄wl and k̄vl and a coefficient of correlation of 0.8. To vary the degree of capacity

uncertainty, we consider a ”high capacity variation” scenario with a coefficient of variation of

CVk = 0.4 for weight and volume on each leg and a ”low capacity variation” scenario, where this

coefficient of variation is CVk = 0.1.

H 

A 

B 

C 

D 

Figure 6.2: Hub-and-spoke network

Total expected demand on a particular leg in weight, d̄wl , is between 1922 and 3566, and

total expected demand on a particular leg in volume, d̄vl , is between 1112 and 2063. We vary

mean capacities in order to test scenarios with flights that are not restricted, both volume and

weight restricted, only volume restricted, and only weight restricted. More specifically, we use

(k̄wl /d̄
w
l , k̄

v
l /d̄

v
l ) ∈ {(1.0, 1.0), (0.5, 0.5), (1.0, 0.5), (0.5, 1.0)} for all l ∈ L. To limit the number

of scenarios, we only consider extreme cases and use the same capacity-demand ratio on each

leg. Thus, a capacity-demand ratio of 0.5 means that on every leg demand is twice as high as

capacity. Offloading cost is calculated per leg in the same way as in the single-leg experiments.

Upper Bound Quality

Solving for the bid prices as dual variables of (P̃AFA) via column generation with an optimality

tolerance of 1%, each problem instance was solved in less than 30 minutes. (The increased

solution time is a result of the more expensive calculations to determine terminal cost in the
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network setting.) Restricting the solution time to 48 hours, we were not able to solve for zPLA in

this setting. We therefore do not report PLA results in this section. Table 6.6 gives an overview

of the upper bounds zDLP , zRLP , zPLP , zAFA, zDPD′ , and zDPD. We do not report zACG since

the approach of Amaruchkul et al. (2007) covers only single-leg problems. The tightest upper

bound in each scenario is highlighted in bold font.

CVd CVk (k̄wl /d̄
w
l , k̄

v
l /d̄

v
l ) zRLP zPLP zDLP zAFA zDPD′ zDPD

0.1 0.1 (1.0,1.0) 10270.04 10442.16 13369.70 13096.40 10420.36 9216.71

(0.5,0.5) 6934.23 7072.59 8594.52 8457.70 5890.76 5808.90

(1.0,0.5) 7132.73 7161.55 8648.54 8568.05 6013.23 6098.43

(0.5,1.0) 7105.64 7149.68 8623.46 8507.07 5967.83 6083.72

0.4 (1.0,1.0) 8813.01 10442.07 13369.70 13046.70 9439.57 7026.91

(0.5,0.5) 5924.81 7069.30 8594.52 8457.62 3929.17 3435.29

(1.0,0.5) 6423.34 7166.02 8648.54 8568.04 4243.35 4049.13

(0.5,1.0) 6408.16 7145.72 8623.46 8507.07 4192.30 4006.96

0.4 0.1 (1.0,1.0) 10652.70 11020.21 14152.80 13854.60 10852.01 9709.01

(0.5,0.5) 7162.12 7470.33 9099.83 8973.35 6202.05 6113.66

(1.0,0.5) 7613.72 7562.35 9150.54 9063.65 6331.07 6435.48

(0.5,1.0) 7580.56 7565.32 9131.74 9008.53 6297.65 6545.49

0.4 (1.0,1.0) 9229.54 11011.19 14152.80 13854.60 9698.76 7444.93

(0.5,0.5) 6219.37 7475.03 9099.83 8973.35 4084.81 3739.76

(1.0,0.5) 6860.47 7564.92 9150.54 9063.65 4460.41 4251.57

(0.5,1.0) 6823.11 7558.53 9131.74 9008.53 4428.79 4221.83

Table 6.6: Upper bounds for the network scenarios

Again we have zAFA ≤ zDLP and zPLP ≤ zDLP as proven earlier. Further, the upper bound

based on the randomized linear program, zRLP , is tighter than zAFA for all scenarios and even

tighter than zDPD′ if capacity is ample. Note that this cannot be guaranteed in general since it

need not even be tighter than zDLP . A further observation is that for low demand variability,

we have zRLP ≤ zPLP . For high demand variability, this is not always the case.

Across all scenarios, the tightest upper bound is given by either zDPD or zDPD′ , where zDPD is

tightest in the majority of scenarios considered. Observe that all upper bounds tend to decrease

if capacity uncertainty increases. The reason for this observation is that overbooked situations

occur more often if capacity uncertainty is high, which decreases total revenue. Observe further

that the upper bounds increase as uncertainty in capacity requirement increases. The reason

for this phenomenon is that the expected revenue of each request increases as the uncertainty

in capacity requirement increases. This relationship is caused by the revenue depending on the

maximum of weight and dimensional weight requirement. As weight and volume requirement are

not perfectly correlated in our example, a higher variation yields a higher maximum of weight
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and dimensional weight causing higher revenues.

Heuristic Policy Performance

To determine the revenue performance of the heuristics, we repeatedly simulated request arrivals

and tracked the number of accepted requests of each class for each heuristic. At the end of the

booking horizon, we generated the random capacities for weight and volume of all flights and

subtracted offloading cost.

In order to obtain reliable results, we ran again 20,000 simulations. Table 6.7 summarizes the

average simulated net revenue for all tested heuristics (best performance in bold). Further, we

report the solution gap, (1 − max(DPD,DPD′)
min(zDPD,zDPD′ )

), for all scenarios. As we expected, the time- and

CVd CVk (k̄wl /d̄
w
l , k̄

v
l /d̄

v
l ) FCFS DLP AFA DPD′ DPD Gap (in %)

0.1 0.1 (1.0,1.0) 8384.69 8392.73 8537.10 8688.48 8728.49 5.30

(0.5,0.5) 4378.65 4746.81 4855.73 5309.28 5329.22 8.26

(1.0,0.5) 4848.72 4773.65 4737.89 5654.19 5644.61 5.97

(0.5,1.0) 4782.51 4999.00 5014.52 5620.25 5621.97 5.80

0.4 (1.0,1.0) 5416.76 5413.94 5636.22 6254.07 6364.06 9.43

(0.5,0.5) -269.09 1780.78 1861.69 2936.11 2945.38 14.26

(1.0,0.5) 2092.29 3200.44 3158.94 3709.77 3720.58 8.11

(0.5,1.0) 2044.54 3315.53 3308.29 3723.08 3736.55 6.75

0.4 0.1 (1.0,1.0) 8262.05 8203.87 8227.76 8580.46 8610.03 11.32

(0.5,0.5) 3169.96 3972.44 3965.41 4628.77 4685.06 23.37

(1.0,0.5) 4414.66 4669.19 4675.46 5393.97 5356.15 14.80

(0.5,1.0) 4313.90 4520.81 4450.87 5319.98 5269.81 15.52

0.4 (1.0,1.0) 5402.38 5517.91 5512.03 6406.37 6482.04 12.93

(0.5,0.5) -1024.56 1936.22 1595.60 2911.58 2914.57 22.07

(1.0,0.5) 1838.03 3237.42 3140.36 3707.96 3720.39 12.49

(0.5,1.0) 1760.32 3172.07 3155.03 3700.83 3711.32 12.09

Table 6.7: Simulated average net revenue in the network scenarios

inventory-insensitive heuristics AFA, DLP, and FCFS do not achieve a competitive performance.

Observe that AFA tends to outperform DLP for low variation scenarios with CVk = CVd = 0.1.

However, as uncertainty increases, DLP tends to outperform AFA. We conjecture that AFA’s

decision rule is more selective than DLP’s decision rule since it uses negative bid prices (as shown

in Example 6.3). This may be an advantage as long as capacity and capacity requirement are not

very volatile since the bid prices are computed based on expected values. However, as uncertainty

increases, this advantage may vanish.

The heuristics based on decomposition outperform all other heuristics, where DPD achieves
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the highest revenue in most tested scenarios. The solution gap of the best heuristic varies between

5% and 23% across scenarios. Observe that the solution gap is higher for scenarios with high

uncertainty in capacity requirement. Uncertainty in capacity has a smaller effect on the policy

performance and likewise on the solution gap. The reasons why the decomposition heuristics can

handle a high CVk better than a high CVd is that they take into account random capacity in

terminal cost. Random capacity requirement is not accounted for since the state space of both

decomposition heuristics represents the expected rather than random booked capacity. Naturally,

the heuristics perform worse in scenarios with highly variable capacity requirements.

In summary, the decomposition heuristics outperform all other tested heuristics, both on single-

leg and on network problem instances. Further, our experiments reveal that a heuristic using

the time- and inventory-sensitive decision rule of the piecewise linear approximation does not

perform as good as the decomposition heuristics. This highlights the quality of the decomposition

heuristics in combination with static bid prices. All other price-directed heuristics using static bid

prices do not achieve a competitive performance. Further, all proposed linear programs as well

as the affine and the piecewise linear approximation provide an upper bound on the maximum

expected total revenue. However, the sum of the maximum expected revenues of all subproblems

of the decomposition heuristics give the tightest upper bound for most tested instances.
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Chapter 7

Conclusions

We have pointed out that, in the airline industry today, profitability issues are omnipresent.

Hence, airlines are struggling to detect sources of cost cutting and revenue improvement. Since

aircraft are capacity-constrained, a potential way to increase revenues is the application of revenue

management techniques. Even though cargo traffic is predicted to increase tremendously, very

little attention has been paid on applying revenue management methods in the air cargo industry.

In the field of cargo capacity control, even less effort has been put on doing research. Thus, we

carried out studies on different kinds of capacity control problems prevailing in air cargo revenue

management. In this chapter, we conclude our work by summarizing the results and insights of

our research. Further, we propose possible extensions of our ideas and suggest future research

directions.

7.1 Research Findings and Insights

After having given an overview of air cargo revenue management, related literature, and the

necessary theoretical concepts, we studied a single-leg capacity control model in Chapter 4. We

showed that the basic decision problem, modeled as a Markov decision process, does not fea-

ture a monotone optimal control policy, owing to the fact that cargo requires multiple capacity

units. Thus, we proposed two further decision models which allow for partially accepting re-

quests. This generalization of the decision model yields an optimal control limit policy, which is

comprehensible for revenue managers.

In case requests are not allowed to be partially accepted, we proposed several heuristics that

provide feasible solutions to the basic capacity control model, which suffers from the curse of

dimensionality for large problems. One of the heuristics is based on decomposition and features

a monotone switching curve policy. Another heuristic approximates the value function by means

of piecewise linear functions and thereby obtains bid prices for weight and volume. Further,
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the maximum objective value of the linear program, which is used to determine the bid prices,

provides an upper bound on the maximum expected revenue of the single-leg capacity control

problem. In numerical experiments, the heuristic based on the piecewise linear approximation

demonstrated the best overall performance. Further, for all tested scenarios, the upper bound

given by the underlying linear program was quite close to the maximum expected revenue. If

shipments with a non-standard capacity requirement were considered, the decomposition heuris-

tic outperformed existing heuristic approaches. However, its performance is very sensitive to the

availability of a particular capacity dimension. If it is not known in advance whether weight or

volume will be short, the decomposition heuristic is not appropriate.

In Chapter 5, we examined the problem of integrated capacity control of passenger seats and

cargo space. In particular, we formulated the single-leg decision problem as a finite-horizon

Markov decision process and analyzed the structure of its optimal decisions. Due to the same

reasons given in the case of cargo capacity control, the optimal decisions do not follow any

monotone structure. Hence, we suggested a further decision model that considers cargo capacity

as one-dimensional and allows for partially accepting cargo requests. This model features an

optimal switching curve policy, which is very intuitive and easy to implement.

The basic model, which considers two cargo dimensions and does not allow partial acceptance,

suffers from the curse of dimensionality when applied to large problems. In order to provide

feasible solutions, we proposed two different heuristics and one upper bound on the maximum

expected revenue. One heuristic decomposes the MDP’s state space into weight, volume, and seat

subproblems. The resulting heuristic policy is a structured policy with acceptance thresholds

that depend on two capacity dimensions. The other heuristic determines bid prices based on

a deterministic linear program as it is used in passenger network revenue management. The

maximum objective value of the linear program provides an upper bound on the maximum

expected revenue. In numerical experiments, the decomposition heuristic performed very well

for all tested scenarios. However, the performance of the heuristic depends on the availability of a

particular capacity dimension as in the pure cargo case. The bid price heuristic and the associated

upper bound demonstrated a good performance if a flight is not heavily capacity-constrained.

We also carried out a study for a network formulation of the cargo capacity control problem.

In our model, overbooking is allowed, and the resulting Markov decision process accounts for

uncertainty in both demand and capacity. We suggested several upper bound problems based on

linear and approximate dynamic programming. When approximating the value function by an

affine function, we showed that the approximation parameters, which we interpret as bid prices

for weight and volume on a leg, are approximately constant in time. A surprising insight is that

bid prices, obtained by this affine approximation, might be negative. We showed that negative

bid prices may result in better control policies than bid prices obtained through a deterministic

linear problem, which was suggested in previous work on cargo revenue management. As the

affine approximation’s decision rule is time- and inventory-insensitive, we proposed decomposition
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heuristics which use static bid prices and offer a time- and inventory-dependent acceptance policy.

Our numerical results show that these heuristics outperformed all other tested heuristics, both

on single-leg and on network problem instances. Further, these heuristics have the potential to

provide very tight bounds, especially in scenarios with low variation in required capacities of

accepted shipments. We also proposed a piecewise linear value function approximation which

explicitly accounts for the state of overbooking on each leg. However, the bid prices of this

heuristic are very difficult to obtain. Furthermore, our experiments revealed that a heuristic using

the time- and inventory-sensitive decision rule of the piecewise linear approximation does not

perform as good as the decomposition heuristics. This highlights the quality of the decomposition

heuristic when combined with static bid prices.

Further, both the linear programs as well as the affine and the piecewise linear approximation

provide an upper bound on the maximum expected revenue. We proved that the partially ran-

domized linear program generates a tighter upper bound than the deterministic linear program.

We also proved that the bound given by the deterministic linear program is looser than the bound

based on the affine approximation. The upper bound from the piecewise linear approximation

is even tighter than the bound obtained by an affine approximation at the expense of increased

computational complexity. Our numerical study showed, however, that the sum of the optimal

expected revenues of all subproblems of the decomposition heuristic provides the tightest upper

bound for almost all tested instances. However, the quality of this bound highly depends on the

way revenues of classes are allocated to legs and cannot be shown to outperform other approaches

in general.

7.2 Future Research Directions

Research on air cargo revenue management is still at an early stage. Therefore, there is a large

number of potential future research directions. Below, we name several of them, according to

the capacity control problems we analyzed.

Single-Leg Cargo Capacity Control

In order to obtain optimal structured control policies in our model, we had to assume partial

acceptance is allowed. If this assumption is dropped, a promising path of future research would

be to study whether certain conditions regarding the arrival process of cargo bookings can be

found that ensure the existence of an optimal switching curve policy. If these conditions are met

in reality, airlines would be more in favor of implementing a cargo revenue management system.

Overbooking, cancellations, and no-shows are not considered in our model. If these are ac-

counted for, a potential future research direction might focus on analyzing optimal decisions.

Further, a study on overbooking levels ensuring the existence of structured optimal decisions
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could be conducted. Furthermore, especially the heuristic based on the piecewise linear approx-

imation would need to be adjusted to a setting with overbooking.

We focused solely on quantity-based decisions. An interesting path of research might be to

apply dynamic pricing techniques to air cargo. Even though this contradicts today’s business

practice, low cost carriers, which already apply dynamic pricing in passenger revenue manage-

ment, may do the same for cargo.

It is common in cargo revenue management that expected revenue is maximized. However,

large freight forwarders have a significant buying power and, if requests are rejected frequently,

might just switch to a different airline. Thus, future work might incorporate the decisions’ long-

term value into the decision model. This topic has already been addressed in passenger revenue

management, but its impact is much greater in the cargo business.

Integrated Capacity Control of Cargo Space and Passenger Seats

All future research directions for the single-leg model apply as well to the integrated model.

Further, particularly interesting might be to extend the integrated capacity control model to a

network of flights. Since, in practice, passenger revenue management is applied at a network

level, an integrated model would probably find a higher acceptance if it is also done at a network

level. This would require more powerful heuristics in order to overcome the increased curse of

dimensionality.

A further promising path of research would be to approximate the value function of the inte-

grated problem (either for a single-leg or a network formulation). Determining the approximation

parameters via simulation or linear programming would give bid prices for weight, volume, and

passenger seats. By means of this information, a price-directed heuristic could be constructed,

which may yield better results than the price-directed heuristic based on the deterministic linear

program that we proposed.

Network Cargo Capacity Control

Our numerical examples showed a superiority of the decomposition heuristic’s bound which we

could not prove analytically. Future work might be aimed at finding revenue allocations for the

decomposition heuristic that can be proven to provide tight bounds and good heuristics.

One of the greatest challenges in our dynamic programming approximations is to efficiently

solve the linearized subproblems in the column generation procedure. Future research might

focus on developing advanced solution techniques for tackling this kind of problem, which arises

due to the penalty cost’s piecewise linear structure. Once this is done, one could also allow for

random capacities within the approximation, which should improve performance.

Another promising path for future research would be to extend the Lagrangian relaxation

techniques, suggested for passenger revenue management, to derive alternative, and possibly
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tighter upper bounds and better heuristics for air cargo network revenue management.

We assumed that the route a shipment travels is uniquely defined by the request. This is true

for small carriers, but it need not hold for large airlines. Thus, future work could address the

challenge of incorporating routing options into the decision problem while still applying revenue

management techniques that are well studied.

We did not account for the availability of container positions in our model. Future research

might analyze how such restrictions can be considered when controlling capacity. A promising

way is to account for them in the terminal cost function. This would require new heuristics for

solving the decision problem.

The network capacity control problem is quite similar to the capacity control problem of cruise

lines. The number of sold cabin categories is usually modeled as the system state and capacity

is given by the number of cabins and lifeboat seats. Thus, future research might study if our

proposed heuristics and bounds would carry over to cruise line revenue management.
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Appendix A

Proofs

Proof of Lemma 4.2. (i) Fix some s ∈ N0 and a∗ := f(s). Then, we have for all a ∈ A(s) and

a < a∗,

r(a) + h̃(s− a) ≤ r(a∗) + h̃(s− a∗),

and together with concavity of h̃

r(a∗)− r(a) ≥ h̃(s− a)− h̃(s− a∗)

≥ h̃(s+ 1− a)− h̃(s+ 1− a∗).

Since n1(s) ≤ n1(s+ 1), it follows that

r(a) + h̃(s+ 1− a) ≤ r(a∗) + h̃(s+ 1− a∗)

for all a ∈ A(s+ 1) and a < a∗. Thus, we have f(s) ≤ f(s+ 1).

For all a ∈ A(s) and a > a∗, it holds that

r(a) + h̃(s− a) ≤ r(a∗) + h̃(s− a∗),

and together with concavity of r

h̃(s+ 1− (a∗ + 1))− h̃(s+ 1− (a+ 1)) = h̃(s− a∗)− h̃(s− a)

≥ r(a)− r(a∗)

≥ r(a+ 1)− r(a∗ + 1).
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Since n2(s+ 1) ≤ n2(s) + 1, it follows that

r(a+ 1) + h̃(s+ 1− (a+ 1)) ≤ r(a∗ + 1) + h̃(s+ 1− (a∗ + 1)),

for all a+ 1 ∈ A(s+ 1) and a+ 1 > a∗ + 1. Thus, we have f(s+ 1) ≤ f(s) + 1.

(ii) We prove concavity of h by a case-by-case analysis:

f(s+ 2) = f(s) :

h(s+ 2)− 2h(s+ 1) + h(s) = h̃(s+ 2− a∗)− 2h̃(s+ 1− a∗) + h̃(s− a∗) ≤ 0.

f(s+ 2) = f(s) + 1 :

Let a∗ < n2(s). Due to monotonicity of n2, we have a∗, a∗ + 1 ≤ n2(s + 1). If a∗ = n2(s), it

follows from f(s + 2) = a∗ + 1 ≤ n2(s + 2) and from concavity of n2 that n2(s) < n2(s + 1) ≤
n2(s + 2). Again, we have a∗, a∗ + 1 ≤ n2(s + 1). Let now a∗ = n1(s) + k for some k ≥ 0. It

follows from the assumption that f(s + 2) = a∗ + 1 = n1(s) + k + 1 ≥ n1(s + 2), and hence

k + 1 ≥ n1(s+ 2)− n1(s). From convexity of n1, it follows that n1(s+ 1)− n1(s) ≤ bk+1
2 c, and

thus n1(s+ 1) ≤ n1(s) + bk+1
2 c ≤ n1(s) + k = a∗. Therefore, we have a∗, a∗ + 1 ∈ A(s+ 1), and

it holds that

h(s+ 2)− 2h(s+ 1) + h(s) ≤h̃(s+ 2− a∗ − 1)− h̃(s+ 1− a∗ − 1)

− h̃(s+ 1− a∗) + h̃(s− a∗)

= 0.

f(s+ 2) = f(s) + 2 :

h(s+ 2)− 2h(s+ 1) + h(s) =r(a∗ + 2)− 2r(a∗ + 1) + r(a∗)

+ h̃(s+ 2− a∗ − 2)− 2h̃(s+ 1− a∗ − 1) + h̃(s− a∗)

≤0.

Altogether, we have that h is concave.
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Proof of Lemma 5.2. In order to prove this lemma, we propose an alternative formulation of the

decision model which, however, does not change the value function’s structure. First, we allow

for negative capacities, that means we extend C to C̄ = {...,−1, 0, 1, ...,C} and Cs to C̄s =

{...,−1, 0, 1, ...,Cs}. Second, we define the set of admissible actions as A′(c, cs, i) = {0, ..., γi} for

all i ∈ Î , c ∈ C̄, cs ∈ C̄s. Third, we define the terminal reward function as

V̄0(c, cs, i) = min{c, 0}Φ + min{cs, 0}Φ =: Ψ(c, cs)

for all c ∈ C̄, cs ∈ C̄s, i ∈ Î, and with Φ := maxi∈Î{γiϕi} + 1. Fourth, we define the value

function for min{c, cs} < 0 as

V̄t(c, cs, i) = Ψ(c, cs) = max
a∈A′(c,cs,i)

{aϕi + Q̃t−1V̄t−1(c− a, cs − aσi)} (A.1)

for all t = T, ..., 1 and i ∈ Î. Note that the action maximizing the right hand side in (A.1) is

a = 0, and thus we have V̄t(c, cs, i) = Ψ(c, cs). All other notations and definitions are the same

as in M̃. We denote the maximum expected revenue in state (c, cs, i) at time t = T, ..., 0 as

V̄t(c, cs, i).

Before we prove multimodularity, we first show that V̄t(c, cs, i) = Ṽt(c, cs, i) for all c ≥ 0,

cs ≥ 0, i ∈ Î and that negative system states are never occupied. First, consider V̄t(c, cs, i) for

t = T, ..., 1, c ≥ 0, cs ≥ 0, and i ∈ {0, ...,m1}. Then, we have

V̄t(c, cs, i) = max
a∈{0,...,γi}

{
aϕi + Q̃t−1V̄t−1(c− a, cs)

}
. (A.2)

If γi ≤ c, it follows that V̄t(c, cs, i) = Ṽt(c, cs, i) since the admissible actions are identical, and

negative system states cannot be reached. Now assume c < a∗ ≤ γi with a∗ as the action

maximizing the right hand side of (A.2). Then, we have

V̄t(c, cs, i) = a∗ϕi + Q̃t−1V̄t−1(c− a∗, cs) = a∗ϕi + Ψ(c− a∗, cs)

≤ a∗ϕi + (c− a∗)Φ ≤ γiϕi + (c− a∗)Φ ≤ γiϕi −max
i∈Î
{γiϕi} − 1 < 0.

On the other hand, if a∗ ≤ c < γi, we have

V̄t(c, cs, i) = a∗ϕi + Q̃t−1V̄t−1(c− a∗, cs) ≥ 0.

Accordingly, all actions a with c < a ≤ γi are suboptimal and can thus be neglected. Therefore,

optimal actions are always in the set of admissible actions of M̃ for i ∈ {0, ...,m1}. Further,

since actions satisfying c < a ≤ γi are suboptimal, negative system states are never occupied if

class i ∈ {0, ...,m1} is requested. Now consider V̄t(c, cs, i) for t = T, ..., 1, c ≥ 0, cs ≥ 0, and
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i ∈ {m1 + 1, ...,m2}. In this case, the optimality equation is

V̄t(c, cs, i) = max
a∈{0,1}

{
aϕi + Q̃t−1V̄t−1(c− a, cs − a)

}
. (A.3)

If γi ≤ c and γi ≤ cs, it follows that V̄t(c, cs, i) = Ṽt(c, cs, i) since the admissible actions are

identical, and negative system states cannot be reached. Now assume min{c, cs} < a∗ ≤ γi (i.e.

a∗ = 1) and a∗ maximizes the right hand side of (A.3). Then, we have

V̄t(c, cs, i) = ϕi + Q̃t−1V̄t−1(c− 1, cs − 1)

= ϕi + Ψ(c− 1, cs − 1) ≤ ϕi − Φ = ϕi −max
i∈Î
{ϕi} − 1 < 0.

If a∗ ≤ min{c, cs} < γi (i.e. a∗ = 0) and a∗ maximizes the right hand side of (A.3), we have

V̄t(c, cs, i) = Q̃t−1V̄t−1(c, cs) ≥ 0.

Thus, if min{c, cs} < γi, action a = 1 is suboptimal. Therefore, if i ∈ {m1 + 1, ...,m2}, optimal

actions are always in the set of admissible actions of M̃. This also yields that negative system

states are never occupied.

For t = 0, we have V̄0(c, cs, i) = 0 for all c ≥ 0, cs ≥ 0, and i ∈ Î. Thus, for these values,

V̄0(c, cs, i) = Ṽ0(c, cs, i). Further, negative systems states are not occupied in the terminal state

for the reasons given above.

In summary, we know that V̄t(c, cs, i) = Ṽt(c, cs, i) for t = T, ..., 0, c ≥ 0, cs ≥ 0, and i ∈ Î.

Further, negative system states are not occupied. Thus, if V̄t(c, cs, i) is multimodular in c and

cs, it follows that Ṽt(c, cs, i) is also multimodular in c and cs.

We now show that V̄t(c, cs, i) is multimodular in c ∈ C̄ and cs ∈ C̄s. First note that cargo space

and passenger seats are complementary resources since they are required at the same time by

a passenger request. Thus, multimodularity is defined by supermodularity and superconcavity.

The proof follows by induction on t. We first show that V̄0(c, cs, i) = Ψ(c, cs) is multimodular.

For any i ∈ Î, V̄0(c, cs, i) is supermodular in c and cs since

V̄0(c, cs, i)− V̄0(c− 1, cs, i)

= min{c, 0}Φ−min{c− 1, 0}Φ

= min{c, 0}Φ + min{cs + 1, 0}Φ−min{c− 1, 0}Φ−min{cs + 1, 0}Φ

=V̄0(c, cs + 1, i)− V̄0(c− 1, cs + 1, i).

V̄0(c, cs, i) is superconcave in c and cs, which is shown next: For any i ∈ Î, we have

V̄0(c, cs, i)− V̄0(c− 1, cs, i)
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= min{c, 0}Φ−min{c− 1, 0}Φ

≤min{c− 1, 0}Φ−min{c− 2, 0}Φ

= min{c− 1, 0}Φ + min{cs − 1, 0}Φ−min{c− 2, 0}Φ−min{cs − 1, 0}Φ

=V̄0(c− 1, cs − 1, i)− V̄0(c− 2, cs − 1, i),

where the inequality follows from concavity of V̄0(c, cs, i), which is given by its piecewise-linear

structure. We further have

V̄0(c, cs, i)− V̄0(c, cs − 1, i)

= min{cs, 0}Φ−min{cs − 1, 0}Φ

≤min{cs − 1, 0}Φ−min{cs − 2, 0}Φ

= min{c− 1, 0}Φ + min{cs − 1, 0}Φ−min{c− 1, 0}Φ−min{cs − 2, 0}Φ

=V̄0(c− 1, cs − 1, i)− V̄0(c− 1, cs − 2, i).

Therefore, V̄0(c, cs, i) is superconcave and hence multimodular in c and cs for any i ∈ Î.

Now assume V̄t(c, cs, i) is multimodular in c and cs for some t ≥ 0 and i ∈ Î. Since supermodu-

larity and superconcavity are preserved under convex combinations, Q̃tV̄t(c, cs) is multimodular,

too. Consider now the decision period t+ 1.

For i ∈ {0, ...,m1}, c ∈ C̄, and cs ∈ C̄s, we have

V̄t+1(c, cs, i) = max
a∈{0,...,γi}

{aϕi + Q̃tV̄t(c− a, cs)}.

This is of the form

Uj l̃(x, ι) = max
a∈{0,...,nι}

{arι + l(x− aej)}

for j = 1. Since we assume that Q̃tV̄t(c, cs) is multimodular, it follows from Proposition 3.4 that

V̄t+1(c, cs, i) is multimodular in c and cs for all i ∈ {0, ...,m1}.
For i ∈ {m1 + 1, ...,m2}, c ∈ C̄, and cs ∈ C̄s, we have

V̄t+1(c, cs, i) = max
a∈{0,1}

{aϕi + Q̃tV̄t(c− a, cs − a)}.

This is of the form

Ul̃(x, ι) = max
a∈{0,1}

{arι + l(x− a)}.

Here it follows from the induction assumption and from Proposition 3.3 that V̄t+1(c, cs, i) is
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multimodular in c and cs for all i ∈ {m1 + 1, ...,m2}.
In summary, V̄t+1(c, cs, i) is multimodular in c ∈ C̄ and cs ∈ C̄s for all i ∈ Î. Hence, we can

conclude that Ṽt+1(c, cs, i) is multimodular in c ∈ C and cs ∈ Cs for i ∈ Î.

148



Appendix B

Dual Problems

The dual of (P̃AFA) is (D̃AFA):

max
X

∑
1≤t≤T,c∈Ct,a∈A

Xt,c,a

∑
i∈I

qt,iρiai −
∑

c∈C1,a∈A
X1,c,a

∑
i′∈I

q1,i′
∑
l∈Lφwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
s.t.

∑
c∈C1,a∈A

X1,c,a

∑
i∈I(l)

ciw̄i

=
∑

1<t≤T,c∈Ct,a∈A
Xt,c,a

∑
i∈I(l)

qt,iaiw̄i ∀l ∈ L

∑
c∈C1,a∈A

X1,c,a

∑
i∈I(l)

civ̄i

=
∑

1<t≤T,c∈Ct,a∈A
Xt,c,a

∑
i∈I(l)

qt,iaiv̄i ∀l ∈ L

∑
c∈Ct,a∈A

Xt,c,a =


∑

c∈Ct+1,a∈A
Xt+1,c,a ∀1 ≤ t < T

1 t = T

Xt,c,a ≥ 0 ∀1 ≤ t ≤ T, c ∈ Ct,a ∈ A.

149



B Dual Problems

The dual of (PPLA) is (DPLA):

max
X

∑
1≤t≤T,c∈Ct,a∈A

Xt,c,a

∑
i∈I

qt,iρiai −
∑

c∈C1,a∈A
X1,c,a

∑
i′∈I

q1,i′
∑
l∈Lφwl

∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

+

+ φvl

∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

+
s.t.

∑
c∈Ct,a∈A

Xt,c,a min

∑
i∈I(l)

ciw̄i, k̄
w
l


=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i′∈I

qt+1,i′ min

{ ∑
i∈I(l)

(ci + ai′1{i=i′})w̄i, k̄
w
l

}
∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

∑
c∈Ct,a∈A

Xt,c,a min

∑
i∈I(l)

civ̄i, k̄
v
l


=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i′∈I

qt+1,i′ min

{ ∑
i∈I(l)

(ci + ai′1{i=i′})v̄i, k̄
v
l

}
∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

∑
c∈Ct,a∈A

Xt,c,a

∑
i∈I(l)

ciw̄i − k̄wl

+

=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i′∈I

qt+1,i′

( ∑
i∈I(l)

(ci + ai′1{i=i′})w̄i − k̄wl

)+

∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

∑
c∈Ct,a∈A

Xt,c,a

∑
i∈I(l)

civ̄i − k̄vl

+

=


∑

c∈Ct+1,a∈A
Xt+1,c,a

∑
i′∈I

qt+1,i′

( ∑
i∈I(l)

(ci + ai′1{i=i′})v̄i − k̄vl

)+

∀l ∈ L, 1 ≤ t < T

0 ∀l ∈ L, t = T

∑
c∈Ct,a∈A

Xt,c,a =


∑

c∈Ct+1,a∈A
Xt+1,c,a ∀1 ≤ t < T

1 t = T

Xt,c,a ≥ 0 ∀1 ≤ t ≤ T, c ∈ Ct,a ∈ A.
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Appendix C

Request Classes in Network

Experiments

Class Mean Weight Mean Volume Itinerary Per-unit revenue

1 50 30 A-H 1.4

2 50 29 B-A 1.4

3 50 27 C-A 1.4

4 50 25 A-B 1.4

5 100 59 C-H 1.4

6 100 58 B-C 1.4

7 100 55 A-C 1.4

8 100 52 C-D 1.4

9 200 125 C-A 1.4

10 200 119 B-C 1.4

11 200 100 B-A 1.4

12 250 147 H-D 1.4

13 250 138 A-H 1.4

14 300 179 D-C 1.4

15 400 235 H-D 1.4

16 500 277 A-C 1.4

17 1000 598 B-A 1.4

18 1500 898 H-D 1.4

19 2500 1488 A-B 1.4

20 3500 2083 D-A 1.4

21 70 233 B-C 1.4

22 70 17 C-A 1.4

23 210 700 A-B 1.4

24 210 52 D-C 1.4
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25 50 30 C-D 0.7

26 50 29 A-C 0.7

27 50 27 C-H 0.7

28 50 25 C-B 0.7

29 100 59 A-H 0.7

30 100 58 H-D 0.7

31 100 55 A-B 0.7

32 100 52 B-C 0.7

33 200 125 C-B 0.7

34 200 119 A-D 0.7

35 200 100 C-B 0.7

36 250 147 B-A 0.7

37 250 138 A-B 0.7

38 300 179 C-H 0.7

39 400 235 D-A 0.7

40 500 277 A-H 0.7

41 1000 598 A-B 0.7

42 1500 898 C-D 0.7

43 2500 1488 D-C 0.7

44 3500 2083 B-C 0.7

45 70 233 B-C 0.7

46 70 17 D-A 0.7

47 210 700 H-D 0.7

48 210 52 A-C 0.7

49 50 30 C-H 1

50 50 29 A-D 1

51 50 27 C-B 1

52 50 25 A-B 1

53 100 59 H-D 1

54 100 58 B-A 1

55 100 55 B-C 1

56 100 52 C-H 1

57 200 125 A-H 1

58 200 119 D-A 1

59 200 100 D-C 1

60 250 147 B-C 1

61 250 138 C-D 1

62 300 179 A-C 1

63 400 235 H-D 1

64 500 277 C-H 1

65 1000 598 A-B 1

66 1500 898 D-A 1
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67 2500 1488 B-A 1

68 3500 2083 C-H 1

69 70 233 C-D 1

70 70 17 A-H 1

71 210 700 A-D 1

72 210 52 D-C 1
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