The Karlsruhe Series on
Software Design
and Quality

8

Scientific
Publishing

Lucia Happe

Configurable Software Performance Completions
through Higher-Order Model Transformations

The Karlsruhe Series on Software Design and Quality
Volume 8

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Configurable Software Performance
Completions through Higher-Order
Model Transformations

by
Lucia Happe

ST #sining

Dissertation, Karlsruher Institut fur Technologie (KIT)

Fakultat fur Informatik

Tag der mundlichen Prifung: 10. November 2011

Referenten: Prof. Dr. Ralf H. Reussner, Assist.-Prof. Petr Hnetynka PhD.

Impressum

gg(l Scientific

Publishing
Karlsruher Institut fur Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

This document - excluding the cover - is licensed under the
BY s

Creative Commons Attribution-Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http:/lcreativecommons.orgl/licenses/by-sa/3.0/de/

@@@@ The cover page is licensed under the Creative Commons
AT Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Print on Demand 2014

ISSN 1867-0067
ISBN 978-3-86644-990-9

Abstract

Performance is one of the key quality attributes of a software system and
is crucial for its success. Software performance engineering (SPE) sup-
ports developers and architects in building responsive and resource effi-
cient applications. During early development stages, performance predic-
tions based on architecture models allow the evaluation of design alter-
natives, capacity planning, and the identification of potential bottlenecks.
To provide accurate performance predictions, such models have to include
low-level details, for example, about the underlying middleware or design
patterns used. Including such low-level details conflicts with the abstract
architecture paradigm. It leads to significant modelling effort for software
architects and requires detailed knowledge about the modelled system.

Model-Driven Software Development (MDSD) can solve this conflict
and include the necessary details using model transformations. However,
such transformations have to cope with the complexity of today’s architec-
ture models. Additionally, lower levels (infrastructure or implementation)
are variable in many cases. The effect of such variability on performance
must be captured in the transformations. Current MDSD technologies can
support variability of transformations only to a limited extend.

In literature, completions allow the inclusion of low-level details into
high level prediction models. However, they are not fully automated, are
not variable and configurable, and make limited use of MDSD technolo-
gies. Related solutions introducing variability in MDSD typically deal
with model instances only. As a consequence, model transformations be-

come very complex and hard to understand, develop, and maintain. To

overcome this problem, we have to introduce variability to transformations
themselves, which is not supported by current transformation languages.

In this thesis, we propose an advanced concept for model transforma-
tions closing the gap between abstract architecture models and low-level
details. For this purpose, we extend existing MDSD techniques by vari-
ability of transformations. Our approach, called CHILIES, moves the man-
agement of variability to a higher abstraction level. We enable variability
of transformations using generators based on the presented Higher-Order
Transformation (HOT) patterns. HOT patterns target different goals, such
as template instantiation or transformation fragment composition. We ap-
plied our approach to the domain of SPE to complete prediction models. In
this thesis, we developed a completion library that allows to reuse expert
knowledge and to improve the accuracy of performance predictions.

The validation of our approach addresses the improvement of prediction
accuracy by completions and the complexity of their transformations. We
evaluated the prediction accuracy of the completions developed in the scope
of this thesis in several case studies by comparing performance prediction
results to measurements on real implementations. Our results imply that
the prediction accuracy can be increased significantly when completions
are applied to a software performance model. Furthermore, we compared
the complexity of manually implemented transformations to transforma-
tions developed with our CHILIES framework. The results suggest that
transformations developed using CHILIES are less complex and more fo-

cussed as they allow to manage variability more efficiently.

Acknowledgments

I enjoyed the work on my thesis so much especially because of the people
who accompanied me. This thesis would not be possible without constant
support, guidance and encouragement provided to me by my colleagues,
friends and immediate family members. They helped me to overcome daily
obstacles during this, sometimes hard, but always enjoyable period of my
life.

I want to begin with the most important and very patient witness of my
life. Jens, this work would not have been possible without your love and en-
couradgement you always have for me. I am happy (happe :)) to have such
a beautiful family with you and I am very grateful for our little daughter
Natalie. I want to mention here as well the unconditional support, love and
motivation that my parents gave me. They are accompaning me from the
beginning and they are my biggest fans. With you standing behind me noth-
ing can go wrong. Matko, my lovely brother, I want to thank you for your
lasting support, love and inspiration. You all make my life worth living. I
love you and I am grateful to have you all!

Fundamental for this work and my research was guidance and support
from Prof. Dr. Ralf Reussner, who gave me thorough guidance for my
dissertation and taught me the principles of good research. Thank you from
whole heart for your patience and for being the best advisor I ever met
(far beyond PhD thesis). You gave me motivation to accomplish my goals,
constructive critic and helpfull feedback. You provoked me to be better
and better in everything I do. Moreover, I thank you for the exeptional and

stable research enviroment full of team-spirit that you created.

iii

In this environment I could meet my PhD-fellows and visiting researchers
who accommpanied my research. Many of you happen to be wonderfull
friends and an irreplaceable part of my life far beyond PhD research. De-
spite the male-dominated profession, I have to mention at first number of
women: Bara, who has unfalling endurance in support and fine-tunning
research ideas, Anne, who I love to have discussions with, Catia, who
brought energy and even more fun in our research. Girls, thank you for the
great time we had! When mentioning support and endurance, I'm thinking
of Thomas Goldschmidt, who was a grey eminence behind my work and
guided my first experiments in the MDSD world. Thomas, thank you for
your support!

Moreover, I worked with many great people from various projects at
the Charles University in Prague and at the University of Karlsruhe (TH).
From the Charles University, I would like to thank all members of D3S
Group, in particular, I would like to thank Petr Hnetynka for supervising
this thesis and for his detailed and constructive comments. Furthermore,
I want to thank Jan Kofroni, Lubomir Bulej, Tom4s Bures, Petr Tuma and
FrantisSek P14sil for their support and motivating discussions. At the Uni-
versity of Karlsruhe (TH), the people from the SDQ group strongly con-
tributed to this work. Especially, I would like to thank: Heiko Koziolek,
Steffen Becker, Klaus Krogmann, Michael Kuperberg, Erik Burger, Jorg
Henss, Franz Brosch, Martin Kiister, Michael Hauck, Matthias Huber, An-
dreas Rentschler, Max Kramer und Philipp Merkle for their valuable feed-
back, constructive discussions and unforgettable collaboration. During the
course of this work, I supervised the bachelor or diploma theses of Misha
Strittmatter and Christian Vogel whose contributions are also part of this
work. Many thanks to both of you! Misha, I really enjoyed, and still enjoy,
working with you. I would also like to thank all students I had the pleasure
to work with: Georg Hinkel, Christian Heupel, Florian Klein, Christian
Harnisch, Christoph Kurrat and Thomas Schuischel.

Furthermore, I have been lucky to work with number of researchers
who inspired and motivated me. Big thanks to Raffacla Mirandola, Do-
rina Petriu, Colin Atkinson and Alberto Avritzer. Alberto, thank you for
introducing me into the world of smart-grids and energy distribution, it is
pleasure to work with you!

Last but not least, I would like to mention, a german-czekoslovakian col-
laboration during the Check/Czech evenings with my colleagues Barbora
Buhnova, Jan Kofron and Jens Happe who were the main ingredience for
the great time we had together.

Karlsruhe, August 2012

Contents

1. Introductiono oL oL 1
1.1. Research Questions 4
1.2. Scientific Contributions 6
1.3. Structureo 12

2. Foundations, 15
2.1. Model-driven Software Development 16

2.1.1. Basic Artefactsof MDSD 17
2.1.2. Evolution of model transformation processes 27
2.2. Model-driven Software Performance Engineering 35
2.2.1. CBSE Development Process 37
2.2.2. Palladio Component Model (PCM) 39
2.2.3. Platform Completions 43
2.2.4. Software Performance Cockpit 45

3. Model Completions 49

3.1. Model Completionsand MDSD 50
3.1.1. Model Completion Concept 54
3.1.2. Scientific Challenges in the MDSD context 58

3.2. Model Completionsand MDSPE 60
3.2.1. MDSPE Application Scenario. 61
3.2.2. Performance Completions 63
3.2.3. Scientific Challenges in the MDSPE context 65

3.3. Completions in CBSE Development process 66
3.3.1. Running Example 69

vii

Contents

viii

3.3.2. Completion-based Domain Engineering
3.3.3. Completion-based Software Engineering

34, Summary

Variability Management using Higher-Order
Transformations, ..
4.1. Problem Domain
4.1.1. Increasing Expressive Power of Metamodels
4.1.2. Supporting Transformation Variability
4.2. Introduction of the CHILIES Approach.
4.2.1. Scientific Contributions of this Chapter
4.2.2. Software Product Lines for Transformations
4.2.3. Transformation Variability
4.2.4. Formalisation
4.3. CHILIES: Higher-Order Transformation Patterns
43.1. Motivation
4.3.2. Higher-Order Transformations
433. Notation
4.4. Routine HOT Pattern
4.4.1. Definition
4.4.2. Completions Support: Generation of a Routine
Transformation Frame
443, Summary
4.5. Composite HOT Pattern
45.1. Definition o L.
4.5.2. Completions Support: Generation of a Completion
Transformation
453, Summary
4.6. Template HOT Pattern
4.6.1. Definition

Contents

4.6.2. Completions Support: Generation of

Transformation Fragments using Templates 159
4.63. Summary 174
4.7. CHILIES: Chains of HOT patterns 174
48. Discussion 178
49. Summary 181
. Completions for Software Performance Engineering . . 183
5.1. Motivation 183
5.2. Structured Completion Library for Conflict Reduction . . . 186
5.2.1. Formalisation 187
5.2.2. Method for Reduction of Completion Validity
Conflicts 190
5.2.3. Method for Resolution of Completion Quality
Conflicts 195
5.3. Completion Library: Concurrency design patterns 203
5.3.1. Motivation 203
5.3.2. Categorisation of concurrency design patterns . . . 205
5.3.3. Component Completions 207
5.3.4. Connector Completions 221
5.3.5. Infrastructure Completions 233
S54. Discussion 238
5.5. Summaryl 239

. Model Transformation Analysis: Evaluating

Maintainability 241
6.1. Motivation L 242
6.2. ProblemDomain 244
6.3. Metrics Definition 246

6.3.1. Automated Metrics 246

6.3.2. Manually Gathered Metrics 252
6.4. Computation of Metrics 256

ix

Contents

6.5. Discussion o 258
6.6. Summary 258
7. Validation 261
7.1. Validation Goals 262
7.1.1. Validation Type I: Accuracy Validation 262
7.1.2. Validation Type II: Applicability Validation 264
7.1.3. Validation Type III: Cost/Benefit Validation 267

7.2. Improving Prediction Accuracy using Performance
Completions 268
7.2.1. Type I: Prediction Accuracy 268
7.2.2. Type I: Completion Composition and Ordering . . . 292
7.2.3. Type II Validation: Applicability Evaluation 306
7.3. Summary 317
8. RelatedWork 319
8.1. Model Transformation Engineering 320
8.1.1. Development of Transformations for Reuse 320
8.1.2. Development of Transformations with Reuse 323
8.1.3. Quality Metrics for Model Transformations 330
8.2. Platform Completions for Software Performance Engineering332
83. Summary 340
9. Conclusion 345
9.1. Summary 345
9.2. Limitations 352
9.3. Open Questions and Future Work 353
9.3.1. Future work in the MDSPE context 353
9.3.2. Future work in the MDSD context 355

A. State Dependence in Software Performance Evaluation 361
A.0.3. Challenges of Stateful Analysis 363

Contents

A.0.4. Stateful Component-Based Systems (SCBSs)
A.0.5. Specifics of CBSs with Respect to a State
A.l1. State Categorisationfor CBSs.
A.1.1. Component-Specific State
A.1.2. System-Specific State
A.1.3. User-Specific State
A.2. Performance Model for SCBSs
A.2.1. State of the Art Evaluation
A.2.2. Palladio Component Model (PCM)
A.3. Outline of the Approach
A.3.1. Quantification of Performance Impact
A.3.2. Quantification of Model Complexity
A.3.3. Diversity Among State Categories
A.4. State Dependency Analysis
A4.1. Protocol State
A.4.2. Internal/Global State
A.4.3. Allocation/Configuration State
A.4.4. Session/Persistent State
AS5. Discussion

A6, Summary

. Further HOT patterns
B.1. Shared Configuration HOT Pattern
B.1.1. Motivation:

B.2. Retainment Policies HOT pattern
B.2.1. Motivation:

366

Xi

Contents

B.3. Model/View Synchronization HOT pattern 401
B.3.1. Motivation: 402

B.3.2. Implementation: 402

B.3.3. Benefits and Drawbacks: 402

B.4. AnalysisHOT pattern 403
B.4.1. Motivation:, 404

B.4.2. Implementation: 404

B.4.3. Benefits and Drawbacks: 404

B.5. Future Scenarios 405

C. Examples of detailed QVT transformations 407
C.1. Message Oriented Middleware Completion 407
C.2. Pipe & Filter Connector Completion 414
Listof Figures 421
Listof Tables 427
Bibliography 429

xii

1. Introduction

For successful and effective software development, the ability to predict
the impact of design decisions in early development stages is crucial. De-
sign decision can influence quality properties, e.g., performance, of soft-
ware systems. Using predictions, potential problems, such as bottlenecks
and long delays, can be detected early avoiding costly redesigns or re-
implementations in later stages. Williams and Smith [170] estimated the
financial benefit of software performance prediction for medium sized
project on several millions of US dollars.

In model-driven software performance engineering [6], abstract design
models are used to predict and evaluate response time, throughput, and re-
source utilisation of the target system during early development stages.In
order to provide accurate predictions, the performance models have to con-
sider the influence of the underlying platform, of the operating system, and
even of used design patterns (e.g., concurrency design patterns). The low-
level details influence performance metrics and as such are essential for
accurate predictions. The problem of missing details was already identified
by Woodside et al. [172]:

"Performance modelling is effective, but it is often costly; models are
approximate, they leave out detail that may be important, and are
difficult to validate."

Including low-level details in prediction models conflicts with the ab-
stract architecture paradigm and leads to a significant modelling effort for

software architects. Moreover, such models are very complex leading to

1. Introduction

a decreased understandability, reusability and model credibility. For ex-
ample, the middleware’s complexity and the specific knowledge on the
implementation, which is required to create the necessary models, would
increase the modelling effort dramatically. Since the low-level details can
appear in different configurations, it is hardly feasible to create such mod-
els manually. This leads to the well known conflict between variability and

automation [172]:

One of the obstacles to the adoption of performance tools is "a conflict
between automation and adaptability in that systems which are highly
automated but are difficult to change, and vice versa. As a result no tool
does the job the user needs, so the user goes and invents one. Further,
various tools all have different forms of output which makes

interoperability challenging at best."

Woodside et al. in [172] point out the leading research question of this
thesis that addresses the problem of automated inclusion of variable low-
level details into highly-abstract prediction models. The conflict between
the inclusion of low-level details into prediction models and maintaining
highly-abstract models can be addressed by Model-Driven Software Devel-
opment (MDSD). Because of the reconfigurability of the included details,
the used MDSD techniques must support variability as well.

However, MDSD approaches lack an applicable and suitable solution
for managing variability. Existing variability approaches result in a grow-
ing complexity of transformations, limited usage of configurations, and
the maintainability of transformations quickly becomes a huge problem.
Completion-based approaches described in the literature allow inclusion of
low-level details, however, they are not automated, do not support vari-
ability of completions, or they are limited to the configuration of attributes
only. These approaches suggest only simple annotation models that ex-
tend prediction models through parametrization of resource demands using

measurements on real systems (e.g., in the case of performance prediction,

2

1. Introduction

for example, number of processor cycles needed for particular activity).
They concentrate on the properties of the underlying platform and do not
consider structural changes in the architecture, such as inclusion of certain
design pattern (e.g., Replication, Barrier, Connector patterns etc.).

While most of the implementation details are not known in advance, a
rough knowledge about the design patterns that are to be used might be
available already very early. This knowledge can be exploited for further
analysis, such as performance prediction. One reason why such details are
not considered is the high level of variability in the architecture that would
be required. It is not feasible to create such models manually. Therefore,
automated tool support is crucial to build such detailed models.

In this thesis, we propose a concept of configurable model transforma-
tions to close the gap between an abstract model and low-level details
required by the modelling purpose (e.g. to provide accurate predictions
of performance). The solution, presented in this thesis, is based on the
parametrized model completions that include the details of lower levels into
high-level architectures. Model completions are realised using and extend-
ing existing model-driven technologies. They express low-level details as
reconfigurable black-box constructs and, thus, hide the model complexity
from software architects. Software architects only have to provide a con-
figuration for the modelled detail. The integration of the configured detail
is fully automated.

MDSD allows to create software families specially tailored for a certain
domain and sharing common details. The existing techniques to support
variability in the software families, however, mostly focus on the variability
of models. Hence, the transformations, from a more general family member
into a more detailed family member, define already how the model variants
look like. Thus, it is not necessary to actually create model variants, it
is enough to focus on the variants of transformations generating required

models. We take a step back and analyse broader variability scenarios in

1. Introduction

the MDSD. We shift our attention from the variability of models to the
variability of other artefacts, especially transformations.

The model transformations, sharing common parts, need to be cus-
tomised to integrate different performance-relevant details. Moreover, these
details may introduce optional extensions to metamodels. In such situa-
tion, we have to handle the variability of metamodels as well. We cre-
ated an automated support of variable transformations development using
pre-processors and generators based on, so called, Higher-Order Transfor-
mations (HOTs) [167]. The proposed approach, called CHILIES, presents
a set of HOT patterns for different variability scenarios. We use these
patterns to build a Software Product Line (SPL) [37] for completion trans-
formations. The CHILIES approach does not require heavy development
effort and allows the light weight integration of low-level details into per-
formance prediction methods.

1.1. Research Questions

In the scope of this thesis, we address research challenges from two ar-
eas: (i) Model-Driven Software Performance Engineering (MDSPE), and
(i1) Model-Driven Software Development (MDSD). More specifically, we
work on answering the following research questions:

Q1: How to include purpose-specific aspects to models in an automated
but adaptable manner inheriting its standard mechanisms and facilities,
including transformations and tools?

The goal is to automate the integration of purpose-specific aspects into
the models. The model details increase the prediction accuracy as such
more detailed models correspond better to the reality. Each aspect is encap-
sulated in a completion and can be instantiated in different variants added
to the model. Potentially, we may use any of these completions and then,
using completed models, generate the implementation, e.g. code, or to run

analyses. To support, for example, the code generation from any of these

1.1. Research Questions

models, we have to maintain the same language as the generation chain re-
quires as input. Moreover, the variability of completions results in multiple
implementations of transformations, which consist in majority of common
parts composed together with customisations based on the configuration.
Thus, the second question emerges.

Q2: How to support configuration-based variability in model transfor-
mations?

In other words, what methodology, technologies, model-driven struc-
tures of pre-processors or generators are needed to support variability? The
requirement for variability results from different goals and different set-
tings, which results in a different kinds of variability. Some of the required
variable artefacts have to be composed together, other are only instantiated
in form of templates or added as customisations of more general trans-
formations. Our solution needs to support variability in transformations
resulting from these different requirements. The answer to this question
overcomes the limitations of current transformation approaches.

Q3: How to structure the Completion Library to reduce possible conflicts
in an application of multiple completions?

The previous question deals with the management of variability in gen-
eral. In our application domain, the Model-Driven Performance Engineer-
ing (MDSPE), additional factors need to be considered. Especially, in this
domain, conflicts in a sequence of completions has an additional dimen-
sion, the dimension of quality attribute (i.e., performance). We discuss the
application of the proposed method and the structure of the completion li-
brary for MDSPE. In this context, we have to consider multiple applications
of completions and the conflicts in their application. Furthermore, transfor-
mations have certain quality properties themselves, which leads to the last
question.

Q4: How to analyse maintainability of relational transformations?

The final question deals with the evaluation of quality properties, such as

maintainability, ease-of-use or understandability, of resulting transforma-

1. Introduction

tions. We have to discuss the complexity and understandability of resulting
transformations. For this goal, we have to evaluate the metrics to quantify
quality properties of transformations.

These research questions resulted in the scientific contributions listed in
the following section.

1.2. Scientific Contributions

The following gives details on the particular contributions. The main con-
tributions of this thesis are:

Generalised Model Completions The separation of concerns is es-
sential to avoid construction of large and monolithic models, which are
hard to maintain or reuse. Reusability of such models is limited espe-
cially because such models are often designed for one purpose, as such
they do not consider possible enhancements when the purpose of the model
changes and new domain-specific details have to be introduced. For exam-
ple, a component-based architecture model could be used to predict perfor-
mance. However, the same model could be used to analyse reliability, as
well. Both of these purposes require additional domain-specific details, i.e.
performance or reliability specific implementation details.

Existing approaches do not consider model completions in general. The
idea of completions introduced by [174, 76], however, only in a form of
performance-specific annotations. These approaches do not discuss the role
of model completions in MDSD, either provide a support for completions.
Especially, they do not discuss the variability of structural changes resulting
from completion integration.

In the model-driven world, models are understood as instances conform-
ing to predefined metamodels. Each model is created for certain purpose.
Two models could have different levels of detail although they are based
on the same metamodel. Models may have even different level of detail in

1.2. Scientific Contributions

the same domain. Increasing the level of detail of a metamodel to the mag-
nitude that each aspect of the real subject could be expressed by its model
would increase complexity of metamodel in a such way that metamodel
would be unusable. Additionally, such metamodel does not support sepa-
ration of concerns by modelling only one detail at the time. Having many
metamodels on a different level of detail is also infeasible. It is impossible
to foresee all different purposes for which a model could be created and
related requirements on such models. This problem cannot be approached
on the metamodel level. It is necessary to come up with a solution on the
model level that would support the incremental completion of model in-
stances that are in each step conform to the one and the same metamodel.
We consider this approach as indirect extension of metamodel by introduc-
ing (mini-)domain specific languages for a sub-domain of one completion.
This way, we can define model pragmatics, similarly as it is possible for
programming languages. Furthermore, the proposed solution should pro-
vide support for reuse and reconfiguration of such incremental completions.

We propose a concept of model completions to close the gap between
an abstract model and low-level details required by the model’s purpose
(e.g. to provide accurate predictions of performance). Completions do
not change the metamodel, thus, all existing tools built for this modelling-
language could be reused. The core idea of this thesis is to introduce model
pragmatics that could be used on a model level to increase the level of
detail in model instances, without need to extend the metamodel directly.
Moreover, the complexity of model enhancements encapsulated in comple-
tions is hidden to the developers. They only configure the variant of the
completion on an abstract level and the integration of the completion is a
black-box operation for them. These completions are highly variable, thus
the integration of them is non-trivial task, a lot of effort is needed to im-
plement and to maintain any automated solution realizing them. We use
an approach similar to model weaving. Each completion has a DSL for its

modelled sub-domain and can be maintained individually. Together with

1. Introduction

the original metamodel, completions are interconnected into a ’lattice of
metamodels’ that could be considered as a more complete metamodel. The
idea is to allow the use of this more complete metamodel to create model
instances and later transform instances to conforming to the original meta-
model again, which allows reuse of existing tools. Because, the necessary
transformations inherit the high level of variability from completions and
the chosen variant is not known in advance, it is a higher-order problem.

This challenge is the target of the second contribution in this thesis.

CHILIES Variability Management Method The main contribution of
this thesis is a novel approach called CHILIES which automates the man-
agement of variability in transformations. The support of variability in the
definition of transformations is crucial to support completions. Although,
we apply CHILIES to support performance completions, our approach can
be used in other domains, as well.

Typically, variability approaches focus on variability of models [154, 70,
89] or propose solutions based on the model annotations [162, 12]. The
main problem of such approaches is the complexity of resulting transfor-
mations which have to consider each possible combination of configuration
options. The main advantage of our variability approach is provided by
performing the model transformation configuration automatically based on
configuration instead of models. This separation of concerns can achieve
high variability and flexibility in the development of software applications.

In this thesis, we created a Software Product Line (SPL) for model trans-
formations using Higher-Order Transformations (HOTs). A HOT compiles
a transformation model again into a transformation model. We used these
HOTs as pre-processors or generators, at load time of the transformation
(e.g. in MDSPE), executed before the actual transformation. In our ap-
proach, we use chains of HOTs where each HOT represents a different
pre-processing step. We identified different scenarios where the variabil-

ity of transformations has to be handled and specified model-driven struc-

1.2. Scientific Contributions

tures using HOTs (called HOT patterns), which can be used to build SPLs
for transformations. Based on these patterns, software engineers can build
pre-processor chains to generate transformations on demand and integrate
them into the existing model-driven process. By formalising these patterns,
we build a framework allowing the reuse of HOT specifications. The SPL
designed to support completions is a composition of three of such HOT
patterns: Routine, Composite and Template pattern.

The first one is used for synthesis of a general transformation from a
metamodel; the second one for transformation composition based on the
structure of the configuration model; the third one for the instantiation of
parametrized domain-specific templates as a partial transformation synthe-

sis.

Completion Library for Software Performance Engineering The
specification of completions requires a lot of domain-specific expert knowl-
edge (e.g. for performance prediction the knowledge about performance-
relevant implementation details). Moreover, the same activities are often
repeated, e.g. usage of the same design pattern or integration of the same
middleware platform. Therefore, we introduce a library offering reusable
completions to developers. This library is structured, as mapping sets of
completions to the roles in the development process. Thus, one develop-
ment role can configure only completions in its responsibility. Building on
the separation of concerns among the development roles is already reflected
in the design of the metamodel (e.g. in PCM), the responsibility domains of
the roles can be mapped on disjunct sets of model elements. Based on this
principle, we can reduce conflicts in a sequence of multiple completions.
Moreover, using predefined quality heuristics, we can evaluate if all per-
mutations of a completion sequence are quality equivalent. We introduced
a method to reduce and resolve conflicts in the sequence of completions.
Considering that a model could require more than one completion to be in-

tegrated, our approach can deal with chains of completion transformations.

1. Introduction

We formalise this problem and provide a solution based on a stepwise con-
flict resolution. In the first step, the conflict domain is reduced based on
the structure of the underlying metamodel. In the next step, the quality
heuristics are applied to resolve the conflict.

In addition, we introduce an initial set of completions, validated for
the Palladio Component Model [18], that allow to reuse expert knowledge
about modelling of concurrency and serve as illustration of the application
of completions. Each completion or combination of completions should
increase the prediction accuracy, i.e. reduce the deviation of prediction and
observation, to correspond better the reality. Therefore, the creation of a
completion is a challenge itself and requires detailed research of the mod-
elled aspect and its validation by comparison to the measurements on a real
system. The validation was performed in an end-to-end manner, by us-
ing the PCM workbench extensions based on CHILIES introduced in this
thesis.

To support completions, CHILIES are integrated in the Palladio Compo-
nent Model (PCM) tools. The tool takes a complete PCM instance (i.e., a
software architecture model including performance specifications) as input
and generates a new PCM instance by applying the completions defined and
configured in the source model. Such refined models are prepared for fur-
ther analyses of the performance, reliability, maintainability and cost prop-
erties. Additionally, this thesis discusses the support for automated mea-
surements and experiments to collect possible configuration options that
should be included in the configuration model. These measurements and

experiments are done on real systems [77].

Maintainability Metrics for Model Transformations Furthermore,
we discuss the quality of the HOTs and completion transformations. The
maintainability of transformations is influenced by various characteristics
- as with every programming language artifact. Code metrics are often

used to estimate code maintainability. However, most of the established

10

1.2. Scientific Contributions

metrics do not apply to declarative transformation languages (such as QVT
Relations) since they focus on imperative coding styles. Code metrics are
one way to characterize the maintainability of programs. However, the vast
majority of these metrics focus on imperative coding styles and thus cannot
be reused as-is for transformations written in declarative languages.

In this thesis, we propose a set of quality metrics to evaluate transforma-
tions written in the declarative QVT Relations language. We evaluated the
transformations’ maintainability through this set of automated metrics for
model-to-model transformations. In the analysis, the classical parametrized
model transformations are compared to the generated transformations by
HOTs.

Statefull Model-Driven Software Performance Engineering In-
tegrating rising variability of software systems in performance prediction
models is crucial to allow the widespread industrial use of performance
prediction. One of such variabilities is the dependency of system perfor-
mance on the context and history-dependent internal state of the system (or
its components). The questions that rise for current prediction models are
(1) how to include the state properties in a prediction model, and (ii) how to
balance the expressiveness and complexity of created models.

Only a few performance prediction approaches deal with modelling
states in component-based systems. Currently, there is neither a consen-
sus in the definition, nor in the method to include the state in prediction
models. For these reasons, we have conducted a state-of-the-art survey of
existing approaches addressing their expressiveness to model stateful com-
ponents. Based on the results, we introduce a classification scheme and
present the state-defining and state-dependent model parameters. We ex-
tend the Palladio Component Model (PCM), a model-based performance
prediction approach, with state-modelling capabilities, and study the per-

formance impact of modelled state.

11

1. Introduction

1.3. Structure

After the introduction provided by this chapter, this thesis is structured in

eight chapters:

12

e Chapter 2 describes the foundations necessary for this thesis. We

discuss the basic terms and gives a brief overview on the concepts
from the two main areas: Section 2.1 introduces the foundations of
MDSD and Section 2.2 the foundation of MDSPE domain.

Chapter 3 starts with a motivation and introduction of model com-
pletions in general. We locate the model completion concepts in the
MDSD and MDSPE domain. After, discussing the consequences of
model completions for the MDSD processes (e.g. MDA), we intro-
duce an completion-based MDSPE process in Section 3.3. It pro-
vides a running example and illustrates the completion-based MD-
SPE process using this example. This chapter deals with the research
question Q1: How to include purpose-specific aspects to models in
an automated but adaptable manner inheriting its standard mecha-

nisms and facilities, including transformations and tools?

Chapter 4 introduces the CHILIES approach. We discuss the appli-
cation of HOTs for different goals in Section 4.3. Furthermore, each
of the Sections 4.4, 4.5 and 4.6 gives, first, the specification of an one
HOT pattern in general and, second, the description of its implemen-
tation in the context of performance completions. Furthermore, we
introduce the composition of these three patterns providing support
for completions in the MDSPE process. The Chapter 4 presents the
solution to the research question Q2: How fo support configuration-

based variability in model transformations?

In Chapter 5 we apply model completions to the MDSPE approach
"Palladio Component Model (PCM)’. At the beginning of this chap-

ter (cf. Section 5.2.3), we discuss the reduction and resolution of

1.3. Structure

conflicts in the sequence of completion execution for the PCM meta-
model. Later, we introduce an initial library of performance com-
pletions for concurrency design patterns in Section 5.3. The chapter
introduces the results of the research question Q3: How to structure
the Completion Library to reduce possible conflicts in an application

of multiple completions?

Chapter 6 continues to evaluate the proposed variability mechanism
for transformations. This chapter introduces a set of quality metrics
that can be used to evaluate the maintainability of transformations,
especially their complexity, understandability, extendibility and ease-
of-use. This chapter answers the research question Q4: How to anal-

yse maintainability of relational transformations?

Chapter 7 shows on several case studies the validity of the contri-
butions presented in this thesis. Two case studies in Section 7.2.1
demonstrate that predictions made based on completed models re-
flect the reality in an appropriate and accurate way. In addition,
we present a case study based on the realistic Business Reporting
Scenario demonstrating the prediction accuracy in a composition of
completions. Moreover, we evaluate the method for the conflict res-
olution in Section 7.2.2. Section 7.2.3 discusses the complexity and
maintainability of the HOTs and completion transformations using
quality metrics for transformations introduced in the previous chap-

ter.

Chapter 8 discusses the current state-of-art in the related areas. The
discussion includes work from the areas of model transformation en-
gineering and platform completions for software performance engi-
neering. In addition, we summarize and compare the related ap-
proaches to the contributions introduced by this thesis and discuss
the resulting deficiencies.

13

1. Introduction

e Chapter 9 concludes this thesis. We summarize the most important
contributions presented in this thesis. Finally, we discuss the open

questions and future directions of our research.

The additional contributions of this thesis are discussed in more detail in
the Appendix, where we also introduce further HOT patterns. Moreover,
we give examples on the implementation of two completion transforma-
tions, for the MOM and Procedure Call Connector completion. The most
important contribution presented in Appendix is the set of experiments and

heuristics building a foundations for stateful SPE.

<<optional>>

Chapter 1: Chapter 2:
Introduction Foundations
<<optional>>

Appendix A: MDSD Chapter 4: MDSD Chapter 3:
Further HOT Patterns Variability Management

Model Completions
MDSD

MDSPE »
<<optional>>

Chapter 5: MDSPE Appendix B:
Completion Library Statefull SPE

l MDSPE
<<optional>>

Chapter 6: MDSD Chapter 7: Chapter 8:
Transformation Analysis Validation Related Work
Chapter 9:
Conclusion

Figure 1.1.: Chapter structure in this thesis.

The dependencies among the chapters are illustrated in Figure 1.1. The
optional chapters could be safely skipped, if the reader is familiar with
the basic MDSD and MDSPE concepts. The further chapters are divided
between the two context domains in this thesis, the MDSD and MDSPE
domain. The reader interested in the MDSD contributions could follow the
reading plan marked by the MDSD tag, analogously for the MDSPE tag.

14

2. Foundations

In this chapter, we introduce the concepts and terms from the three different
research areas on which this thesis is built on (cf. Figure 2.1). Software Per-
formance Engineering(SPE) supports developers to take the right decision
about the developed software system to fulfil their performance require-
ments. Performance prediction methods evaluate response time, through-
put, and resource utilisation of the developed systems in early development
phases. The application of SPE avoids cost, time and effort intensive re-
designs of systems later. In this work, we focus on the SPE for component-
based architectures (CB-SPE). In the component-based systems, the perfor-
mance of a whole system is determined by the performance characteristics
of individual components and their composition. Components and com-
positions are described by models specifying software system’s structure
and properties. These models serve as basis for further generation of im-
plementation skeletons (code), analysis models or simulation code. These
different generation scenarios are supported by Model-Driven Software De-
velopment (MDSD). Because design decisions about the software systems
can easily change during the development, model transformations automate
creation of different model variants and avoid effort resulting from manual
implementation.

We structured this chapter as depicted in Figure 2.1. First, Section 2.1
introduces foundations of MDSD necessary to understand concepts pre-
sented in this thesis. Second, Section 2.1.2.2 provides an overview of well-
established Generative Programming, Model-Driven Architecture (MDA)
and Software Product Line (SPL) concepts and related terms. Third, Sec-
tion 2.2 discusses MDSPE methods for component-based architectures

15

2. Foundations

Foundations:

Eoundations:

Software Performance

Performance Prediction for Component-based Systems (i.e. PCM)

CBSE Development Process Contributions:

oi
Cockpit Platform Completions Statefull CB-SPE
MDSD
Contributions:
Automated Model Completions for CBSE

Foundations: Structured Completion Library

Model-driven Software Initial set of Performance Completions

for Concurrency Design Patterns
Related Work:

Coupled Transformations and Platform

Performance Engineering
(MDSPE)

Foundations: Related Work:
Software Product Lines (SPL)
- Model-driven SPL

- Aspect-oriented SPL

Models and Metamodels

Model Transformations Contributions:

- Feature-based Transformation

Higher-Order Transformation

Patterns and their composition Transformation Variability,

Approaches

SPL for Transformations Frameworks

Quality Metrics for Transformations

Figure 2.1.: Research areas involved in this thesis.

with special focus on approaches using model transformations to derive
performance models. Finally, we provide an overview of the used Software

Performance Cockpit in Section 2.2.4.

2.1. Model-driven Software Development

Abstraction plays a central role in Model-Driven Software Development
(MDSD): it allows to separate the specification of a software system from
its implementation. The ultimate goal of the MDSD is to construct models
of higher abstraction and to translate them stepwise into models of lower
abstraction until the implementation is generated. In doing so, the imple-
mentation task (code writing) is replaced by modelling activities, such as

creating model instances, writing model transformations for different pur-

16

2.1. Model-driven Software Development

poses, or specifying other problem specific models. The following sec-
tions introduce several concepts central to the MDSD. We discuss the main
MDSD artefacts in Section 2.1.1. The first subsection shows the defini-
tions of basic terms like model and metamodel. The focus of the follow-
ing section is on model transformation techniques including discussions
on higher-order transformations. Special kinds of transformation method-
ologies, such as generative programming and software product lines, play
central role in later sections. Additionally, Section 2.1.2 discusses de-
tails of MDSD generations and their relation to Model-Driven Architecture
(MDA).

2.1.1. Basic Artefacts of MDSD

The most effective way how to understand complex real-world problems
is to build a model. Models are abstractions of the real-world problems
or elements. Raising the level of abstraction helps effectively addressing a
specific purpose, such as answering a question about the system or influ-
encing its behaviour. We can achieve this by ignoring certain details while
focusing on the relevant ones. Models are the central artefact of Model-
Driven Software Development (MDSD). MDSD is responsible for defining
the models. Moreover, MDSD is bridging the gap between these software
models on a high-level of abstraction and program code, which contains
implementation details on a very low-level of abstraction. This gap is often
very large. MDSD technologies try to automate the process of lowering the
abstraction levels. With MDSD, the ultimate aim of software engineers is
to build models on a high-level of abstraction and translate them fully auto-
matically into models of lower abstraction level (including program code).
A key MDSD artefact to achieve this are model transformations. Models
are transformed using model transformations in step-wise fashion, where

each step lowers the level of abstraction.

17

2. Foundations

2.1.1.1. Model and Metamodel

In software engineering, models are used in many ways: to predict system
qualities, reason about system properties and their changes, and tradition-
ally for communication between different software developers. Models can
be developed as a starting point to implement a system, or they can be de-
rived from an existing implementation. Despite the importance of models,
there is still no established definition. In the remainder of this thesis, we
define model as follows (based on [150, 136]):

Definition 1 Model
"A formal representation of entities and relationships in the real world (ab-

straction) with a certain correspondence (isomorphism) for a certain pur-

pose (pragmatics).”

Based on this definition, models have three main characteristics: abstrac-
tion, isomorphism, and pragmatism. Models can be described as abstrac-
tions of modelled objects, that allow engineers to reason about the object
ignoring some details while focusing on relevant ones. The selection of
the modelled details is guided by a purpose. The model represents the real
world object with certain level of correspondence, called isomorphism. Iso-
morphism is a projection of considered attributes of real-world object onto
the attributes of its model, or in other words, there is certain equivalence
between the model and the real world entity. Each model is created for
some purpose. This model pragmatism determines the level of abstraction
and isomorphism. For example, we can create a software model for the pur-
pose of behaviour protocol interoperability checks and another one for the
purpose of performance prediction. Both of the models will include entities
describing used software components and their interfaces. But, because of
the different aim of the model, the behaviour of the components will be
modelled with different level of detail. For the interoperability checks we
need to know exactly what is the functionality (behaviour protocols) pro-

18

2.1. Model-driven Software Development

vided by the component. Compared to the performance prediction model,
is the first model very detailed model of a component behaviour. For the
second purpose, it is enough to abstract the component behaviour to time
or resources needed to respond to an user request.

A model is created conforming to one modelling language. A modelling
language is defined by its metamodel which specifies the ’grammar’ for
each model (or the word’). A metamodel defines constructs that can be
used to build models and contains validity rules associated with this con-
structs. Models conforming to a metamodel follow the structure defined by
the metamodel and do not violate its validity rules. Such models are called
instances of metamodel. The modelling community around the website

metamodel.com [117] defines metamodels as follows:

Definition 2 Metamodel (metamodel.com: [117])
"A metamodel is a precise definition of the constructs and rules needed for

creating semantic models."

We understand a metamodel as a language that allows the formal rep-
resentation (model) of entities and relationships in the real world on the
certain level of abstraction. In principle, each metamodel is again a model
created on a certain level of abstraction using constructs are described by
another meta-metamodel. Two metamodels, defining constructs that can be
used to describe real world objects from the same domain, can have dif-
ferent expressive power. The metamodel definition limits a level of detail
allowed in conform model instances, that is influenced by the level of iso-
morphism and abstraction of metamodel towards the native language. For
example, two metamodels can provide constructs to describe a chair, the
first allows to express that the chair has legs, second allows to describe how
many round or angled and polished or matt legs the chair has. We can say
that metamodel definition influences isomorphism and abstraction level of

19

2. Foundations

model instances and therefore we extend the metamodel definition as fol-

lows:

Definition 3 Metamodel
"A metamodel is a precise definition of the constructs and rules within a

certain domain needed for creating semantic models on certain level of ab-

straction."

A metamodel is defined by:

e Abstract syntax, which defines elements of models and the relations
between them. This definition is independent from actual representa-
tion of these elements. For example, in programming languages, the

abstract syntax is usually represented as an abstract syntax tree.

e Static semantics, which describes properties of model elements and
relations by which the model can be validated. A common language

to express static semantics is OCL [127].

e Dynamic semantics, which describes the intention of the model con-
cepts, how to interpret valid model instances and meaning of their

elements. In most cases, it is written in prose.

e Concrete syntax, which defines the representation of abstract con-
cepts, e.g. an UML notation [124] or Java syntax. While metamodels
always have exactly one abstract syntax, multiple concrete syntaxes

are possible.

Thus, metamodels define all information necessary to build a model. For
example, the UML2 meta-model [124] defines the set of valid UML mod-
els. It defines the elements available in an UML model and their connec-
tions (syntax). Additionally, it contains the Object Constraint Language
(OCL), which allows the definition of semantic constraints. Furthermore,
each metamodel describes models from a certain problem domain. The

20

2.1. Model-driven Software Development

constructs introduced by a metamodel belong to the same domain and all
instances of this metamodel describe objects from this domain using the
allowed constructs. A metamodel is then understood as a specification lan-

guage dedicated to a particular domain. We define domain as follows:

Definition 4 Domain
"A domain is a field of study that is defined by common requirements, used

modelling constructs and rules."

The Meta Object Facility (MOF) [126] is a meta-meta-model which is
self describing and defines the constructs and rules necessary to specify
metamodels. Initially, was MOF used to model UML. Therefore, its core
concepts are similar to those available in UML class diagrams, although
they are on different meta-levels and the described concepts are different.
The MOF specification evolved to the "essential" MOF (EMOF). The re-
sulting implementation based on this standard (used in this thesis) is the
Eclipse Modelling Framework (EMF) and its meta-meta-model ECORE
(see Figure 2.2). Furthermore, the Object Constraint Language (OCL)

[127] restricts valid MOF instances and expresses their static semantics.

A
| \ \
‘ EAnnotation ‘ |ENamedElemem‘ ‘ EFactory ‘
1
\ \ [\
|ET, }T;fl ECI ifil ‘ ‘ EPackage D”‘ EEnumLiteral ‘
"AAL‘ ot on , on
T
‘ EOperation ‘ ‘ EParameter ‘ | EClass j ‘ EDataType ‘
n} o] ;
-

EStructualFeature |
on

% EReference | ‘ EAttribute }Mi

| [on

Figure 2.2.: The Ecore metamodel.

21

2. Foundations

2.1.1.2. Transformations

Because many aspects of the modelled object might be of interest, model
developers can use various modelling concepts and notations to highlight
the relevant details by the means of different views or representations. De-
velopers use transformations to move between different representations, ab-
straction levels or specialisations of models. Transformations can convert
models from one abstraction level to another (usually a less abstract one)
by adding more detail to the model. Transformations are the second major
concept of MDSD.

Insight into the topic of model transformations, explored techniques,
most common languages, and current research papers is collected in a liter-
ature study by Biehl [25]. According to his paper, typical usages of model
transformations are synthesis, integration (tool integration or model merg-
ing), analysis, simulation and optimization. He further proposes a clas-
sification scheme for model transformation problems: change of abstrac-
tion or not (vertical and horizontal transformation), change of metamodels
(endogenous and exogenous transformation), translating between techno-
logical spaces (such working contexts could be for example MOF, XML,
DBML etc.), number of involved domains (in-place transformation if only
one domain is involved), target types used (model or text), preservation of
certain model properties (semantics, behaviour or syntax).

The commonly used transformations are classified into two types: Model-
To-Model (M2M) and Model-To-Text (M2T) transformations. Furthermore,
transformations that take a number of instances of different metamodels
as input are called Y-transformations. If one of these inputs configures the
transformation itself, we call these Y-transformations mark transformations
[11]. Another special type of transformations are in-place transformations,
which use equal source and target metamodels. Additionally, these trans-
formations operate on one model. Thus, the result of the transformation is

directly stored in the model as used as input.

22

2.1. Model-driven Software Development

The source and target of a M2M transformation are models. M2M trans-
formations transform an instance of one metamodel into an instance of an-
other metamodel. These metamodels are usually instances of the same
meta-metamodel and they can be equal. A transformation is defined by
a set of transformation rules on a metamodel elements. Each rule defines
its effect using the concepts from source (or input) and target (or output)
metamodel. Thus, transformations are specific to the used metamodels.
Transformation rules are specified in special languages and are interpreted
by a transformation engine for execution. There is a wide range of different
transformation engines available, supporting different approaches such as
graph-transformations, relational, operational or hybrid transformations.

A special type of M2M transformations are such transformations where
the target model of a transformation is an extension of the source model.
Such transformations preserve large parts of the source model and adds
additional information. They are called refinement transformations [63]
and are very similar to completion transformations.

Graph-transformation approaches have the theoretical foundations in
graph grammars and as such are applied to models interpreted as graphs
of objects. The principle of such transformations is based on mapping be-
tween left-hand-side and right-hand-side patterns. When the sub-graph in
the input model matches the left-hand-side pattern the sub-graph is replaced
in the output model by the right-hand-side pattern. This process is finished
when no further left-hand-side pattern can be matched. Similar principle
is realised by relational approaches which specify transformation rules in
form of formal relations between two domain patterns [45]. The relational
transformation engine tests all available relations and updates the output
model to fulfil all the relations. The OMG Standard Query/View/Transfor-
mation (QVT) [72] specifies a QVT Relational and QVT Core languages,
both with relational semantics. In this thesis we use the QVT Relational
transformation language to implement our transformations. Furthermore,

the QVT standard introduces an operational language (QVT Operational),

23

2. Foundations

whose main difference is the explicit definition of execution sequences by
a main method from which all mapping operations are called. In con-
trast, relational transformation languages only describe the relations be-
tween input and output of a transformation in a relational (i.e., declarative)
manner (non-determinism). Finally, hybrid approaches such as the Atlas
Transformation Language (ATL) [90] combine relational and operational
approaches.

M2T transformations generate structured text (e.g., executable code)
from their input models. These transformations can be visitor- or template-
based. Using one of these approaches, M2T transformation engines create

for elements of the input model new code snippets.

QVT Relational Transformation Language QVT Relational is part
of the QVT standard [72] and describes model transformations in a declar-
ative manner. This means the transformation itself is written as a set of
relations that must be satisfied during the transformation process. As QVT
Relational is multi-directional, there is no single source and target model
but a list of so called candidate models. Each of these candidate models can
be chosen as a target of the transformation, identifying the execution direc-
tion. When the transformation is invoked in a selected execution direction

only the target model is modified so that all relations hold.

top relation ClassToTable {

1
2 cn : String;

3 prefix : String;

4 checkonly domain uml ¢ : SimpleUML::UmlClass {

5 umlNamespace = p : SimpleUML:: UmlPackage {},

6 umlKind = ’Persistent’,

7 umlName = cn

8 IE

9 enforce domain rdbms t : SimpleRDBMS::RdbmsTable {
10 rdbmsSchema = s : SimpleRDBMS: : RdbmsSchema { },
11 rdbmsName = cn,

12 rdbmsColumn = cl : SimpleRDBMS : : RdbmsColumn {

13 rdbmsName = cn + ’_tid’,

14 rdbmsType = 'NUMBER’ },

15 rdbmsKey = k : SimpleRDBMS: : RdbmsKey {

2.1. Model-driven Software Development

16 rdbmsColumn = cl : SimpleRDBMS:: RdbmsColumn{ } }
17 IE

18 when {

19 PackageToSchema(p, s);

20 }

21 where {

22 ClassToPkey(c, k);

23 prefix = cn;

24 AttributeToColumn(c, t, prefix);

25 }
26 }

Listing 2.1: Example of QVT Relational.

QVT Relational is part of the QVT standard [72] and describes model
transformations in a declarative manner. This means the transformation
itself is written as a set of relations that must be satisfied during the trans-
formation process. As QVT Relational is multi-directional, there is no sin-
gle source and target model but a list of so called candidate models. Each
of these candidate models can be chosen as a target of the transformation,
identifying the execution direction. When the transformation is invoked in
a selected execution direction only the target model is modified so that all
relations hold.

An example QVT-R relation, which matches UML class (SimpleUML: :
UmlClass) to relational database table (SimpleRDBMS: :RdbmsTable), is
given in Listing 2.1. Before we map the class to table, we have to map
the UML package to an RDBMS schema. Additionally, after the class is
mapped to the table, we have to call the relation AttributeToColumn. A
relation has two or more domains, that are given as patterns on the candidate
models. The pattern usually includes an object graph pattern, properties
and associations between objects and defines a variable binding for each
pattern match. By using the same variables in different domain patterns,
we can define the relation between candidate models. In consequence, the
target model is modified for each found pattern binding not being fulfiled
to the extent that the relation holds.

25

2. Foundations

Each relation can be marked as top-level. This means that the relation has
to hold in any case for a successful transformation, while any non-top-level
relation only has to be satisfied when directly or transitively referenced
from a where clause. A top-level relation must hold for every possible
combination of elements in the candidate models. The transformation en-
gine starts with the execution of the top-level relations and continues with
the relations demanded by the pre- and post conditions of the top-level re-
lations. Thus, non-top-level relations that are never demanded by other
relations won’t be executed at all. A relation can have when and where
clauses that specify its pre- and post-conditions. A relation only has to be
satisfied when all pre-condition relations contained in the when clause are
satisfied. In a similar manner, each relation contained in the where clause
has to be fulfiled when the relation containing the clause is fulfiled. Hence,
the when and where clauses allow for the introduction of further constraints
on the match patterns. Such constraint can be fulfilment of either a query,
an OCL-Statement or another relation.

Beyond that, a target domain can be marked as checkonly, i.e. the target
domain model is only checked for consistency and not modified. Besides
this, relations are marked as enforce by default, thus insisting on the appli-
cation of model changes for relations that do not hold.

To visualize QVT transformations the QVT specification defines a graph-
ical representation for a relation. This should make it more intuitive to see
and understand a transformation. To make the diagrams more readable,
when objects are typed, only the actual name of the type is written. The
complete package name would be very long in most cases. In Figure 2.3
one can see the ClassToTable relation from the last example in graphical
notation.

Transformation diagrams are mainly based on standard UML class dia-
grams. At some points they extend the class diagrams with new symbols.
One new key symbol is the hexagon with the two arrows at the left and at

the right. On each limb you can find the name of the models involved in

26

2.1. Model-driven Software Development

ClassToTable

— <<domain>>
t : RdbmsTable

— <<domain>> uml : SimpleUML rdbms: SimpleRDBMS

© umicl rdbmsSchema = s
c : Um ass rdbmsName = name

k : RdbmsKey

col : RdbmsColumn

umlKind = "Persistent’ C E
umlName = name

when

PackageToSchema (p, s)

where

ClassToPKey(c, k)

Figure 2.3.: Graphical representation of a QVT relation.

this relation and their corresponding metamodels. Below the arrow a "C"
or "E" symbolizes if a model is only checked or if the relation is enforced.
Domains or objects are pictured as rectangles, domain are labeled with the
keyword domain. This rest of the symbol is the same as in a class diagram.
In the upper part of the rectangle there is the name of the object and its
type. In the lower part attributes or constraints that the object has to fulfil
can be specified. If an object contains other objects they are not written
as attributes. They are pictured below in their own rectangle, and are con-
nected to the containing element with a line. At the bottom of a relation
optional boxes for the when or the where clause can be attached.

2.1.2. Evolution of model transformation processes

The crucial role of transformations for the MDSD is visible on the evolution
of transformation processes, which shows that only through extended usage
of transformations it was possible for model-driven techniques to become
an integral part of software development. The evolution of model-driven

technologies and architectures can be summarized in three generations.

27

2. Foundations

2.1.2.1. First Generation of MDSD Technologies

This generation is the beginning of modelling, where programming abstrac-
tions (e.g., packages, interfaces) are embedded in the code and provided in
a form of, for example, programming libraries. A software architecture
design exists only in the heads of developers. This situation is, however,
inadequate for large, changing teams and for management of software evo-
lution. Therefore, models were used as a mean to communicate ideas about
an architecture. In the first generation, models are used in the role of pro-
gram documentation or code visualization (e.g., UML class diagrams) but
are difficult to maintain. However, they helped to increase software quality.
These models are essentially diagrams, because of their low-level of ab-
straction. These diagrams are tightly coupled with code and provide addi-
tional means to view and edit at code level. In this generation, MDSD tools
were mostly graphical environments helping to draw diagrams. Some of
the tools were capable of reverse-engineering code to diagrams, or of cre-
ating code skeletons from class diagrams and other implementation-level

diagrams (e.g. IBM Rational Software Architect).

2.1.2.2. Second Generation of MDSD Technologies

In the second generation, the automation of forward engineering is the main
goal. This generation introduces standard and process guidelines under the
name of Model-Driven Architecture (MDA) [125]. MDSD Tools made sig-
nificant step to generate code comparable to hand-crafted implementation.
Models include sufficient detail to enable the generation of an implementa-
tion. Most of the model-to-code transformations are template-based, they
apply a series of templates on models and map them to code. Many tools
also support round-trip engineering and allow synchronising models and
implementations during the software evolution. With the second genera-
tion of MDSD technologies, the use of models in software development

became much wider accepted. Models are an integral part of the software

28

2.1. Model-driven Software Development

engineering process. This led to the development of libraries of transfor-
mations to accomplish several activities automatically, similar to the first

generation of documentation [167].

Generative programming The idea of generative techniques has al-
ready been applied in compiler construction where programs written in a
programming language are transformed by compilers into executable code.
The main difference is that compilers usually process a fixed set of pro-
gramming languages and generate code for fixed amount of processors.
Model-driven techniques allow to specify custom metamodels and trans-
formations. Thus, on the model level, it is possible to have any number of
metamodels and transformations.

Czarnecki and Eisenecker [46] introduced generator options in their book
on Generative Programming which is a predecessor of today’s MDA para-
digm. They used so called feature diagrams to capture different variants in
the possible output of code generators. Feature diagrams model all valid
combinations of a set of features called (feature) configuration where a sin-
gle feature stands for a certain option in the respective input domain. Their
work is applied in area of product line engineering [109] especially for do-

main modelling and domain variance analysis using feature diagrams.

Feature
Diagram

Legend
& or
M:ndtatory 2pt':’na| . exclusive or
eature eature e mandatory
O optional

‘ Option 1 ‘ ‘ Option 2 ‘

Feature 1 ‘ ‘ Feature 2 ‘ FeatureS‘

Figure 2.4.: Example of a feature diagram.

Feature diagrams are used to formally capture variabilities of a target
domain. Each feature represents an aspect of the target domain. The rela-

tionships between features capture additional constraints limiting combina-

29

2. Foundations

tions of features. Some features may require other features as prerequisites
or be mutually exclusive with other features. An example of feature dia-
gram is illustrated in Figure 2.4. An instance of feature diagram is called a
feature configuration and represents choices of active features. Czarnecki
and Eisenecker use feature diagrams to parametrise generators. In this the-
sis, we use feature diagrams to parametrise model transformations. Simple
and intuitive structure of feature diagrams bears the advantage of having
a model for the possible transformation parameters which introduces the
configuration options in terms easily understandable by software architects
and captures the variability in the transformation mapping in a focused way.

Model-Driven Architecture Model-driven software development pro-
cesses like the OMG’s Model-Driven Architecture (MDA) [125] leverage
the role of models in software development. In MDA, models serve as in-
put for a series of transformations which at the end generate the system’s
implementation. Each of these transformations maps models of higher ab-
straction to models of lower abstraction. The system’s implementation rep-
resents the lowest level of abstraction.

According to the MDA process, the first model to create is an abstract
model of the business domain, the computation independent model (CIM).
Based on this model, developers create a model of the system under de-
velopment without using any details of the technical platform. This model
is called platform independent model (PIM) (cf. Figure 2.5). Automatic
model-2-model (M2M) transformations refine this model by adding imple-
mentation details of particular platforms. The term platform is a broad
concept in this context. For example, it can define the type of the realisa-
tion (database application, workflow management, etc.) or a specific imple-
mentation of a technical concept like different industrial component models
(.NET, CORBA, Java EE). Furthermore, a platform can refer to implemen-
tation dependent details like different types of configuration files depending

on a particular middleware selection. A model which depends on such de-

30

2.1. Model-driven Software Development

tails is a platform specific model (PSM, cf. Figure 2.5) with respect to a
particular platform. The amount of additional platform-dependent infor-
mation may vary depending on the purpose of transformation step. There
are many such transformation steps possible, each adding certain aspects of
the target platform.

Mark Model 1

Mark Model 2 Mark Model 3

Figure 2.5.: MDA models and transformations.

In Figure 2.5, the refinement process is distributed among a number of
transformations forming a transformation chain. Each transformation takes
the output of the previous one and adds its own specific details. When
refining high-level concepts of transformations into concepts on lower ab-
straction levels, different alternatives may be available. For example, if
different applications communicate via messaging, different patterns for
realising the message channels can be used, e.g., with or without guaran-
teed delivery. If developers want their transformations to be flexible, they
can parameterise them allowing transformation users to decide on mapping
alternatives themselves. The OMG’s MDA standard allows transformation
parametrisation by so called mark model instances.

In MDA terminology, mark models are input models which tell trans-
formations where, and how, platform-specific details should be added to
computation-independent models. Mark models are models dedicated to
reference entities of input models and to decorate these referenced enti-
ties with a platform description model, usually specifying configuration
options.

Mark models allow users of transformations to decide on mapping vari-
ations themselves by choosing from different options. Thus, mark models

encapsulate different variants of target models. Depending on the mark

31

2. Foundations

model, the transformation generates the result model. For example, a trans-
formation from UML classes to database tables can depend on a configu-
ration of a mark model to generate different types of tables. Using UML
stereotypes, we can create marks on the transformed elements. The stereo-
types <relational>> or <object>> will result in different type of ta-
bles being generated.

In their book, Vélter and Stahl [167] consider MDA application to be
impractical, especially because of missing tool support. However, the work
of Becker [11] demonstrates that parametrisation of transformations can
be applied successfully. The biggest disadvantage of mark models and
transformations parametrised by mark models is the maintainability and
very hard extendibility of such approach. To provide necessary flexibil-
ity the transformation developer has to foresee all possible options in mark
model and parametrise the transformation accordingly (implement a struc-
ture similar switch statement from JAVA). Moreover, when new feature is
introduced transformation has to be adapted. We demonstrate in this thesis
transformation parametrisation approach which does not require transfor-
mation adaptations and we compare our approach to the concept of mark
models.

Software Product Lines If there are commonalities between software
systems, developers implement the same functionality multiple times in
different projects. Software Product Lines (SPLs) [37] standardise such
commonalities using domain models to capture the core concepts. SPLs
promote planned asset reuse, automation, and composition of large prod-
ucts from smaller parts. The reusable parts are called features in SPL ter-
minology. Each feature represents an increment in functionality. The im-
plementation of a feature extends then the core software system in one or
more places.

The development process of an SPL consists of two phases: domain and

software engineering. The goal of the domain engineering phase is to de-

32

2.1. Model-driven Software Development

scribe and develop the common and variable parts. During the software
engineering phase, these parts are assembled to build the final product.
SPLs can be implemented using a compositional and annotative approach
[37]. In the compositional approach, developers implement each feature
as independent module. These modules are then composed at compile- or
deployment-time. For the annotative approach, they implement features
with some form of annotations of the core common part (or source code).
Which is very similar to the #ifdef and #endif statements that surround
feature code of C/C++ preprocessors. These two approaches are the basic
concepts of SPLs. More advanced approaches using generative, model-
driven or aspect-oriented techniques to support SPLs fall in one of these
categories. Our approach is compositional (from a transformation genera-

tion point of view) and annotative (from a application model point of view).

2.1.2.3. Third Generation of MDSD Technologies

In the third generation of MDSD technologies, transformations are subject
of manipulation as well. This is summarized by the statement of Bézivin at
al. [23]: "In MDSD, everything is a model". Every artefact of the MDSD
process can be interpreted (manually or automatically) as a model. Models
and transformations are still a central part of the software development pro-
cess. Furthermore, they start to become an integral part of the developed
system as first-class elements of the runtime architecture. As part of the de-
veloped system, transformations can be themselves generated and handled
by model-driven development, like traditional programs. A wide set of ap-
plications for such technologies appeared involving transformations in the
roles of both manipulation program and manipulated object. Transforma-
tions are taking on different tasks in the development process, besides code
generation and documentation. Transformations can, for example, evalu-
ate code quality or generate test cases. A fourth generation of MDSD may

involve transformations that take over program logic at runtime.

33

2. Foundations

The concepts introduced in this thesis contribute to the processes of the
third MDSD generation. In the following, we discuss the main tool to real-

ize our goal, higher-order model transformations.

Higher-Order Transformations Transformations are very complex as
they can form transformation chains, be highly configurable or require addi-
tional inputs. A shift of knowledge is observable, as more and more logic is
implemented in transformations rather than platform-dependent code. With
larger projects, developers not only have to face larger models, but also
transformations of higher complexity. Transformations can be represented
by a transformation models conforming to a transformation metamodel.
However, not all frameworks provide transformation metamodels. In this
work, we refer to the Medini QVT framework [88] which contains an im-
plementation of QVT Relational transformation language. While in most
languages, Higher-Order Rules are not supported as first class entities (rules
cannot be declared through expressions) in some languages, like ATL and
QVT, transformations are able to operate on transformations, which are rep-
resented as models. As such, transformations can be manipulated equally
as any other model. Transformations can be created, modified or analysed
by transformations. The ability to treat transformations as subjects of other
transformations allows to fully exploit the power of transformation concept,
abstraction levels and complex model-driven structures.

Transformations that operate on transformations are called Higher-Order
Transformations (HOTs). Tisi et al. [158] understand a HOT as a model
transformation such that its input and/or output models are again transfor-
mations. In their work, Tisi et al. describe a typical schema of HOTs, which

consists of three operations:

1. Transformation injection: The textual representation of the transfor-
mation rules is read and translated into a model representation con-

forming to the transformation metamodel.

34

2.2. Model-driven Software Performance Engineering

2. Higher-order transformation: The transformation model is the in-
put of a model transformation that produces another transformation
model. The input, output and HOT transformation models are all

instances of the same metamodel.

3. Transformation extraction: The serialization of the output transfor-
mation model back to a textual transformation specification is per-

formed.

In our work, the transformation injection (reading of textual syntax or
parsing) and extraction (model-to-text transformation or so called pretty-
printer) are not considered as a part of a HOT. These steps are only ex-
plicitly necessary when the framework does not provide support for them.
Note, that in our case, the framework provides injection itself. However,
since it does not provide extraction, we developed a pretty-printer as a last
step before executing a generated transformation. We consider the transfor-

mation extraction as technical detail.

2.2. Model-driven Software Performance Engineering

During the last years, many approaches dealing with performance pre-
diction and measurement have been introduced [6, 98]. In the area of
Component-Based Software Engineering (CBSE), systems are build out of
reusable black-box components (implementing sets of services) intercon-
nected to a component architecture. The modelling of the system is done at
a high level of abstraction. One idea behind CBSE is to increase component
re-use. Specialised component performance prediction and measurement
approaches introduce modelling languages with the aim to understand the
performance (i.e. response time, throughput, resource utilisation) of a full
architecture based on code-specific performance properties of individual
components.

It is generally accepted that performance is a pervasive quality of soft-

ware systems. Everything affects it, from the software itself to all under-

35

2. Foundations

lying layers, such as operating system, middleware, hardware, communi-
cation networks, etc. [172]. The factors influencing the performance of a
software component are difficult to analyse because they depend not only
on the component implementation, but also on its usage, deployment and
environmental context of the component (see figure 2.6), and occur at dif-
ferent stages of component and system life cycle. A design-time perfor-
mance prediction requires plenty of details about all influencing factors to
be sufficiently accurate [172, 76]. The approach introduced in this thesis
is a contribution to ease development of accurate performance models of

component-based architectures.

Internal State

Usage O Component i Required
Profile Ij\> Implementation Services

T

Deployment Platform
(Resource Contention)

Figure 2.6.: Performance-influencing factors.

In the following sections, we describe the CBSE development process
and involved development roles (see Section 2.2.1). We extend this devel-
opment process in Section 3.3. Section 2.2.2 describes the Palladio Com-
ponent Model (PCM), which is used in this thesis to express performance
models and predict quality properties of component-based architectures
(especially performance). The initial approaches for platform completions
are summarized in Section 2.2.3. These approaches were inspiration for the
first idea of model completions as introduced in this thesis. Finally, Section
2.2.4 presents basics of the Software Performance Cockpit (SoPeCo) used
to calibrate PCM models.

36

2.2. Model-driven Software Performance Engineering

2.2.1. CBSE Development Process

In the following, we give some details on CBSE development process and
the participating roles [102]. The presented development process is based
on the specification by Cheesman and Daniels [31]. They introduced a pro-
cess consisting of following steps: (1) Requirements analysis, producing
a business concept model and use cases; (2) Specification, describing the
overall architecture, business interfaces and components with their inter-
faces; (3) Provisioning, creating component implementations or purchasing
components matching specification from third parties; (4) Assembly, creat-
ing deployable application by wiring components according to the architec-
ture description; (5) Test, testing application according to use case models;
and (6) Deployment, installing application in its target environment.

The division of work targeted by CBSE is enforced by structuring the
modelling task to four independent languages reflecting the responsibilities
of the four different developer roles (cf. Figure 2.7). We can we distin-
guish following types of developer roles involved in producing artefacts of

a software system:

e Component developers are responsible for the specification of com-
ponents, interfaces, and data types. They implement and describe
components and their behaviour in abstract, parametrised way. Com-
ponents are generally specified via provided (implement services by
component) and required (used services by component) interfaces,
which describe the contract between a client requiring a service and
a server providing the service. Interfaces consist of a list of signa-
tures specifying services, which is very similar to the Corba Interface
Definition Language (IDL) [129].

e Software architects compose the component specifications into an ar-
chitectural model. They create assembly connectors, which connect

required interfaces of components to compatible provided interfaces

37

2. Foundations

of other components. They usually do not deal with component in-

ternals, but instead fully rely on the specifications supplied by the

component developers. Furthermore, software architects define the

system boundaries and expose some of the provided interfaces to be

accessible by users.

e System deployers model the resource environment (e.g., CPUs, net-

work links) and allocate the components in the architectural model to

the resources. Resources have different attributes, such as processing

rates or scheduling policies.

e Finally, domain experts are familiar with the customers or users of

the system. They specify the system-level usage model describing

critical usage scenarios as well as typical parameter values.

<<Component Developer>>

Component Specifications.

Assembly Model

e [T

Allocation Model

Usage Model
<<User>>
o

.
I

\ -
A] / K\\

¥

A_,/’
QoS Evaluation
» Model

Figure 2.7.: Roles in CBSE development process [19].

The complete system model is then composed from these partial mod-

els specified by each developer role. The field of study targeted by this

thesis is defined by domain-specific languages for component-based archi-

38

2.2. Model-driven Software Performance Engineering

tectures (e.g. Palladio Component Model) that is composed of specific sub-
domains mapping described development roles. The specific enhancing
attributes of modelled architectures are described by orthogonal technical
sub-domains. We are interested in the technical sub-domains of particular
quality attributes, especially performance. Therefore, in the following we

will describe specifics of PCM with focus on performance.

2.2.2. Palladio Component Model (PCM)

In the following, we introduce the technologies and architectural languages
for specifying software architectures and their extra-functional properties.
We apply our approach in the domain of performance engineering. For this
purpose, we use a performance prediction approach called Palladio Com-
ponent Model (PCM) [135, 100, 18]. The PCM is a modelling language
specifically designed for performance prediction of component-based sys-
tems, with an automatic transformation into a discrete-event simulation of
generalised queuing networks. Its available tool support (PCM Bench) al-
lows performance engineers to predict various performance metrics, includ-
ing the response time, throughput and resource utilization. All three prop-
erties are reported as random variables with probability distribution over
possible values together with their likelihood. The response time is ex-
pressed in given time units (e.g., seconds), throughput in number of service
calls or data amount per time unit (e.g., kilobytes per second), and resource
utilization in the number of jobs currently occupying the resource.

Figure 2.8 illustrates a system model with performance annotations in
PCM. It consists of four models created by four developer roles in a para-
metric way, which allows the models to be updated independently of each
other. Component developers specify the behaviour and performance prop-
erties of components, software architects combine components into com-
ponent assembly with defined system interfaces, system deployers define

execution environment and allocation of software components to system

39

2. Foundations

o ccimplementss> e <Implements>»---——rrwmrmrroe

]| - €]
S Service 2 —(——=0— Service 2
e ot Behaviour Behaviour
st | [T Component 1 Component 2 R)
Resource ?‘ Service 3 —(———>0—{ Senice 3 Input Input:
Demand Senvice 1 - Lz z
0.01 Cycles = 3 L
i Resource
Q £ Software Architect \ Demand

T =0.0001

<<uses>>
|

Resource Container 1

= N

Resource Container 2

\
; cPy HD

5,

cru | [Ho
Resourc

J
L 9
J
| Dermand=

; e
N A i L
Tnput. /Z [Tnput =
z % o } Q ount I, 00002
22Xk 22X |

P(X=1)=10

—~ P(Y=0)=01 Rate=1000 i @ @
@ P(Y=3=0.7 Scheduler=FIFQ_] et =200 @ @
P(Y=5)=02 ”‘E i
7 andwiath =
Component Developer 1 Domain Expert 1t Mo Y System Deployer Component Developer 2

Figure 2.8.: Illustration of a PCM model.

resources, and domain experts specify the scenarios of system usage that
drives system execution. Thanks to the responsibility separation, roles re-
sponsible for the models of the architecture elements can be easily identi-
fied in a PCM model.

Software components are the core entities of the PCM. Each component
provides and requires services defined by its interfaces. For each provided
service, an abstract behavioural specification called Resource Demanding-
Service Effect Specification (RD-SEFF) is created. RD-SEFFs model the
usage of required services by a component (i.e., external calls), and the con-
sumption of resources during component-internal processing (i.e., internal
actions). This description has the form of an annotated control flow graph.
Basic components can be composed to composite components, which add
hierarchy to the component models. Basic and composite components as-
sembled to form a system by binding required interfaces of one component
to the provided interface of another component. These bindings are speci-
fied by assembly connectors. Interfaces are first class entities in the PCM,
consist of multiple service signatures, and follow the CORBA IDL syntax.

Component specifications in the PCM are parametrised for their later en-
vironment. Component developers can annotate external calls as well as
control flow constructs with parameter dependencies. These dependencies

cover influences of required services, different soft- and hardware envi-

40

2.2. Model-driven Software Performance Engineering

ronments, as well as different input parameters of provided services. This
allows the model to be adjusted for different system-level usage profiles.
Parameter values can be of different type (e.g., string, int, real, composite)
and can be characterised with random values to express the uncertainty.

Similar to UML activities, RD-SEFFs consist of three types of actions:
Internal actions, external service calls, and control flow nodes.

Internal actions model resource demands and abstract from computa-
tions performed inside a component. For performance prediction, compo-
nent developers need to specify demands of internal actions to resources,
like CPUs or hard disks. Demands can depend on parameters passed to a
service or return values of external service calls.

External service calls represent invocations by a component of the ser-
vices of other components. For each external service call, component de-
velopers can specify performance-relevant information about the service’s
parameters. For example, the size of a collection passed to a service can sig-
nificantly influences its execution time, while the actual values have only
little effect. Modelling only the size of the collection keeps the specification
understandable and the model analysable. Apart from input parameters, the
PCM also deals with return values of external service calls. Note that ex-
ternal service calls are always synchronous in the PCM, i.e., the execution
is blocked until a call returns. This is necessary to consider the effect of
return values on performance. A combination of external service calls and
fork actions (that allow the parallel execution) can introduce asynchronous
communication into the model. However, such models are too complex and
require high development effort. In such scenarios model-driven technolo-
gies can increase effectiveness of development.

Control flow elements allow component developers to specify branches,
loops, and forks of the control flow.

Branches represent “exclusive or” splits of the control flow, where only
one of the alternatives can be taken. In the PCM, the choice can either be

probabilistic or determined by a guard. In the first case, each alternative

41

2. Foundations

has an associated probability giving the likelihood of its execution. In the
latter case, boolean expressions on the service’s input parameters guard
each alternative. With a stochastic specification of the input parameters,
the guards are evaluated to probabilities.

Loops model the repetitive execution of a part of the control flow. A
probability mass function specifies the number of loop iterations. For ex-
ample, a loop might execute 5 times with a probability of 0.7 and 10 times
with a probability of 0.3. The number of loop iterations can depend on the
service’s input parameters.

Forks split the control flow into multiple concurrently executing threads.
The control flow of each thread is modelled by a so-called forked behaviour.
The main control flow only waits for forked behaviours that are marked as
synchronised. Its execution continues as soon as all synchronised forked
behaviours finished their execution. The asynchronous fork action spawns
a new thread and immediately continues the execution of the main control
flow. This models an asynchronous service call in the PCM.

In the PCM, parameter characterisations [100] abstractly specify input
and output parameters of component services with a focus on performance-
relevant aspects. For example, the PCM allows to define the VALUE, BY-
TESIZE, NUMBER_OF_ELEMENTS, or TYPE of a parameter. The character-
isations can be stochastic, e.g., the byte size of a data container can be

specified by a probability mass function:

data.BYTESIZE = IntPMF[(1000;0.8) (2000;0.2)]

where IntPMF is a probability mass function over the domain of integers.
The example specifies that data has a size of 1000 bytes with probability

0.8 and a size of 2000 with probability 0.2.
Stochastic expressions model data flow based on parameter characterisa-

tions. For example, the stochastic expression

result.BYTESIZE = data.BYTESIZE * 0.6

42

2.2. Model-driven Software Performance Engineering

specifies that a compression algorithm reduces the size of data to 60%.
Stochastic expressions support arithmetic operations (x,—,+,/,...) as well
as logical operations for boolean expressions (==,>,<,AND,0OR,...) on ran-
dom variables.

Finally, resource containers model the hardware environment in the
PCM. They represent nodes, e.g., servers or client computers, on which
components can be allocated. They provide a set of processing resources,
such as CPUs and hard disks, that can be used by the hosted components.
Processing resources can employ scheduling disciplines such as processor
sharing or first-come-first-served.

Valid PCM models are input, for example, for a model-to-text transfor-
mation that maps the architectural model into a discrete-event simulation
or other analysis. The PCM could be used to predicts various performance
metrics and it supports further analysis of design decisions or trade-off
analysis, using automated optimisation approach PerOpteryx [96], which
can be used to improve the architecture considering even multiple quality

attributes.

2.2.3. Platform Completions

When doing performance predictions in early development stages, the soft-
ware model has to be kept on a high level of abstraction. Moreover, during
early development stages, most implementation details are not yet known.
By contrast, detailed information on the system is necessary to determine
the performance of the modelled architecture correctly. The complexity
and the specific knowledge about the implementation required to create the
necessary models would dramatically increase the modelling effort. The
complexity of such models reduces the variability of the design models
and, thus, increase the effort to evaluate and compare design alternatives.
However, detailed information about the system is necessary to determine

the performance of the modelled architecture correctly.

43

2. Foundations

<<references>> | Annotation Completion
Model Library

< ises>>

Extended
Software
Architecture

Software
Architecture

<<transforms>>

Figure 2.9.: Transformation integrating performance completions.

Performance completions, as envisioned by Woodside [173, 174], are
one possibility to close this gap. They are components added to the pre-
diction model that add performance-relevant details to a performance pre-
diction model, but which are not of interest when designing the system’s
application logic. For example, details about the design patterns or plat-
form are not included within the design model and therefore should be
added by completions. These performance completions extend the soft-
ware model with annotations (or rules) whose extensions (such as addi-
tional components, execution environments, or communication design pat-
terns) are added to the original software architecture.

Figure 2.9 shows how performance completions can be realized using the
MDA concepts. Elements of a software architecture model, such as compo-
nents or connectors, are annotated by elements of a mark model using, for
example, feature diagrams. Mark models annotate elements in the archi-
tecture which are to be completed and provide the necessary configuration
options. For example, if a connector is to be replaced by message-passing
the mark model can provide information about the type of the messaging
channel, e.g., using guaranteed delivery. Model-to-model transformations
take the necessary components from the completion library, adjust them to
the configuration, and insert them in the software architecture prediction
model. The result of the transformation is an architecture model whose
annotated elements have been expanded to its detailed performance speci-

fications. This step of model completion has to be automated.

44

2.2. Model-driven Software Performance Engineering

2.2.4. Software Performance Cockpit

The Software Performance Cockpit is an extensible framework to ease, sys-
temize and automate the tasks required to evaluate a software-system’s per-
formance. A performance analyst simply specifies the desired measurement
scenario and the Software Performance Cockpit then runs these measure-
ments automatically using automated orchestration of analysed software.
It enables experts of different aspects of performance evaluation (i.e. set-
ting up the test-environment, measure data, analyse data, and export per-
formance models) to model their requirements at one single point of con-
figuration. When started, the framework executes a series of performance-
tests, collects measurement data, analyses the collected data, and exports
analysed functional dependencies as performance-models. Expert roles il-

lustrating the Software Performance Cockpit approach, are:

o Software Experts provide domain-specific knowledge for the soft-
ware used in the evaluation-process (based on a GQM plan). For
each software, they know its requirements, its functionality and its
configurable and measurable parameters. They additionally provide
knowledge about how to use the software. They specify how it must

be configured and how it can be controlled.

o System Administrators set up the test-environment and deploy the

software required for the system under test’s performance-evaluation.

o Performance Analysts are experts in the process of performance-
evaluation. They determine strategies to efficiently configure a series
of experiments in such a way as to gain meaningful measurement-
data within as few experiments as possible. Once the measured data
has been analysed, Performance Analysts know how to interpret and
present the analysis-results with respect to the tested system’s perfor-

mance.

45

2. Foundations

e Analysis Experts provide knowledge in the area of data-analysis.
They specify the algorithms to calculate possible dependencies be-

tween the system’s parameter-configuration and its performance.

In this thesis, we use this approach to calibrate performance models,
hence, the performance evaluation requires a large effort to set up systems
and knowledge required to conduct performance evaluations is in many
cases very system specific. We ease the process of completion develop-

ment by utilisation of automated performance evaluation methods.

The Goal/Question/Metric Approach: When measurements are to
be conducted in order to evaluate the performance of a system, they must
follow a certain strategy to minimize the required number of performed ex-
periments and to provide meaningful results. Goal/Question/Metric (GQM)
was introduced by Basili et al. [7] as an approach to allow systematic mea-
surements. They emphasise the importance of measurements to be goal-

oriented in order to be efficient.

Goal 1 Goal 2

Question J [Question] [Question J [Question] [Question]

[Metric] [Metric } [Metric] [Metric] [Metric] [Metric]

Figure 2.10.: Hierarchy of a GQM-Model [7].

46

2.2. Model-driven Software Performance Engineering

A GQM-instance is a hierarchically structured model consisting of three

levels:

e On the - conceptional - first level, a set of Goals is defined. Goals
are specified in a certain context, which is determined by an issue,
a purpose, an object to measure, and the viewpoint from which the
goal is defined. The objects of measurement can be products (e.g.
documents or programs), processes (i.e. software-related processes
like testing or programming), or resources (e.g. hardware-resources

or personnel)

e The second level is considered as the operational level. A set of
Questions is defined to refine the goals and to qualify the objects

of measurement with respect to a certain issue of quality.

e On the - qualitative - third level, Metrics are specified to allow a
quantitative way of answering the questions. Metrics are considered
to either be objective or subjective. Objective metrics are indepen-
dent from the Goals’ viewpoint (e.g. LOC of a .class file), where
subjective metrics do depend on the goal’s viewpoint (e.g. the read-
ability of a text).

The structure of a GQM-plan is shown in Figure 2.10. In order to achieve
a Goal, it is associated to a set of Questions. Each Question itself is associ-
ated to a set of Metrics. As the graphic shows, a Question does not have to
be associated to every specified Metric; however, one Metric can be associ-
ated to multiple Questions. The relations between Goals and Questions are
analogue. With respect to the approach’s goal-orientation, building a GQM-
model follows a top-down fashion. The interpretation of measurement-data

is done in the opposite direction.

47

3. Model Completions

In the previous chapter, we summarized the foundations of this work. These
foundations are the starting point we build on to support completions of
models in the Model-Driven Software Performance Engineering (MDSPE).

The leading challenge this chapter is dealing with is: How to include
purpose-specific aspects to models in an automated but adaptable man-
ner inheriting its standard mechanisms and facilities, including transfor-
mations and tools?

With this objective, we have to consider the well known conflict be-
tween automation and adaptability of systems [172]. The systems which
are highly automated are difficult to change, and vice versa. We introduce
a solution based on an automated and configurable model completions. We
embed completions to the classical Model-Driven Software Development
(MDSD) process and discuss their relationship to the well-known model re-
finement principle. The following sections describe the particular concepts
needed for model completions and apply automated completions to enhance
the MDSPE. We illustrate the creation process of completion and its usage
on the running example. To automate completions we build on advanced
model-driven techniques, such as Higher-Order Transformations (HOTs),
which in our approach adapt transformations realising completions. Then
we introduce the realisation of completions using HOTs in Chapter 4. Go-
ing on with the running example, we incrementally build a first completion,
which is also part of a completion library, introduced in Chapter 5.

The remainder of this chapter will be organized as follows. Section 3.1
introduces the main contribution of this chapter: the generalised Model

Completion concept covering the integration of purpose-specific aspects

49

3. Model Completions

as a part of the MDSD processes. As we introduce Model Completion
concept, we discuss and complete the view on the MDSD processes and
their applications. Moreover, in the section 3.2 we discuss completion-
based extension of the MDSPE process for component-based architectures.
This section is followed by a description of completion-based development

process for component-based models for MDSPE.

3.1. Model Completions and MDSD

In model-driven software development (MDSD), we can distinguish two
directions of software development. First - vertical direction, the models
of systems are built on different levels of abstraction. Abstraction involves
the extraction of system properties according to some purpose. Thus, ab-
straction filters and reduces the initial amount of information that is not
needed with respect to the model purpose. Refinement is the inverse op-
eration to abstraction ([46], page 734). Refinement adds more details to
abstract models, for example towards the implementation.

Second - horizontal direction, which is specializing general models to-
wards a more domain-specific model (e.g., software architecture model
for performance prediction) by adding more domain-specific details to the
model. A typical example for specialization is adding concrete values to
parametrized model elements. Every model is created with a specific pur-
pose in mind. Typically, one writes a model to either document an existing
system, specify a system to be implemented, analyse quality properties of
the system, execute simulations or to provide predictions. The purpose of
the model determines the domain to specialize for. With the purpose of
quality prediction, the domain we have to orient on is a domain of the par-
ticular quality attribute (e.g., performance or reliability). Within the process
of purpose model specialization, domain specific aspects of the model have

to be included.

50

3.1. Model Completions and MDSD

Because models are often abstract and general at the same time, special-
ization and refinement might be combined. Typically, specialization and
refinement activities are realized by domain experts manually. In this the-
sis, we use model transformations to refine and specialise models. For each
model these transformations could be executed on the way to the purpose-
specific model either in horizontal (specialization) or in vertical (refine-
ment) manner (cf. Figure 3.1). A related concept was introduced in [137].

These orthogonal software development activities, as described above,
are basic building blocks of MDSD. Both types of activities are in this
thesis understood as series of transformations with a goal to automate as
much of them as possible. The transformations executed in a direction of
more concrete model, so called vertical transformations ([46], page 335),
represent software implementation. The transformations executed on the
same abstraction level, so called horizontal transformations ([46], page
335), represent purpose-specific completion of models. In this thesis, we
focus on the horizontal direction. An example of vertical transformation is
the model-to-text transformation in the ProtoCom Project, transforming a
PCM model to a Java Prototype [15]. An example of horizontal transforma-
tion is the model-to-model transformation adding performance annotations
to a general model.

Using these basic building blocks, we can build more complex MDSD
processes. The vertical direction of development (left hand side of Fig-
ure 3.2) is best illustrated by well-known levels of Model-Driven Archi-
tecture (MDA), which builds on the chain of refinements starting from
requirements on a software product and targeting implementation of a fi-
nal software product. First, MDA refines the requirements model towards
Computation-Independent Model (CIM), then from CIM to a Platform-
Independent Model (PIM) and further to a Platform-Specific Model (PSM).
These levels define software implementation process. Finally, the last re-
finement step maps the PSM to an implementation (code), model-driven

tests and to a deployment of the final software product [134]. In MDA, the

51

3. Model Completions

Specialization

Abs Abs'®

Generalization

Refinement
Abstraction

Conc

Figure 3.1.: Transformations in the Model-Driven Software Development
(MDSD)[46].

chain of transformations is executed completely from the top-level (CIM)
to the bottom (Code). Whenever the requirements change, only the top-
level model is adjusted and all subsequent models and artefacts are newly
generated. In the theory (cf. Figure 3.2), we design an abstract model Abs
that captures requirements on the system and we refine it to a more concrete
models until implementation Conc. However, there are aspects of the real
world activities that conflict with the idea of step-wise model refinement
towards implementation.

In the contrary to the theory, model development is an incremental pro-
cess in practice (right hand side of Figure 3.2). Since requirements on the
system are evolving over time or new requirements are introduced, new
purpose-specific aspects need to be included in different purpose-specific
models. For different purpose different purpose-specific models on the
same abstraction level are created. Orthogonally to the refinement, the
developers introduce horizontal activities to perform refactorings, to exe-
cute migrations, to apply domain-specific optimizations, and to weave new
purpose-specific aspects into the model. Today, developers must rely on
their instinct and experience to decide how detailed models are needed.

They perform manual adjustments of their models to fit required purpose.

52

3.1. Model Completions and MDSD

This ad-hoc model development may result in models that are either too
abstract or too detailed for their purpose. Consequently, the models grow
more complex because of the mix of low-level details and high-level ab-
stractions. Often metamodels do not have enough expressive power to al-
low modelling of required aspects directly and new metamodel elements
have to be introduced. When the metamodel changes, the chain of vertical
refinements is not reusable or, in contrary, when the metamodel is fixed,
the domain-specific development decisions towards model purpose could
be limited. In the first case, the vertical transformations realizing the refine-
ment chain need to be adapted after each metamodel change. Furthermore,
with growing complexity of metamodels more and more development ef-
fort is needed to adapt existing transformations. Therefore, any change of
metamodel is expensive and developers try to avoid it through introducing
model "hacks" and manual designing of very complex models. The effort
to avoid metamodel extension often leads to lost of traceability in design

decisions, poorly understandable and maintainable models.

3 3

' '

Abs Abs

H
~—|—%

(e
o
=]
I3}
()
o
=1
o

Figure 3.2.: Software development using MDSD.

In any case, it is hard to follow the relationship of created abstract model
(Abs) to the desired specialised model (Abs’, Figure 3.2). Having a de-

tailed look on the (typically manual) activities developers realize towards

53

3. Model Completions

purpose-specific model (Abs’) shows that models specialized for certain
purpose are obtained by specializing general abstractions that were de-
signed to be used in more than one domain. For example, a general con-
nector abstraction is specialized as remote procedure call connector, further
specialising steps could be adding middleware abstraction and identifying
platform dependency (using .Net or J2EE middleware). Such specialized
model is needed to solve particular problem, e.g. predicting performance
characteristics of a system using modelled connector.

We had a closer look at such processes (right hand side of Figure 3.2)
in development of PCM models and we can distinguish independent and
focused development activities towards an abstract model (Abs’). The re-
sulting model, Abs’, is specified to the necessary detail and specialized for
a particular problem domain. Such model is typically created manually.
The goal of this thesis is to provide structured and automated approach to
support developers to create purpose-specific models. We implement these
activities as the vertical transformations resulting in the purpose-specific
model. These purpose-specific transformations are called completion trans-
formations. Completions increase the specialisation of the model to the
required level. Additionally, the completions open a way to decrease devel-
opment effort through automation and manageability of model complexity.
Moreover, development effort is decreased by reusable nature of comple-
tions. The complexity of models is encapsulated in and hidden by abstract
definition of completions. In the following sections, we discuss purpose-

specific completions and related scientific challenges.

3.1.1. Model Completion Concept

We understand purpose-specific model as a model on a such level of spe-
cialisation that it includes enough detailed information to serve its purpose.
For example, a performance prediction model should include performance-
relevant details of a middleware platform to provide accurate predictions.

54

3.1. Model Completions and MDSD

The goal is to arrive at the sweet-point, where the model is as abstract as
possible and as specialized as necessary. We define the suitability of the
model to fulfil its purpose by the level of model completeness. One model
can target more than one purpose. For each model purpose different level
of model completeness can be necessary.

Definition 5 Completeness

Model completeness is a quality criterion for models specified by the par-
ticular level of detail and correspondence to the modelled entity. Moreover,
the level of detail and correspondence are highly dependent on intended
purpose of the model.

Initially, it is not possible to quantify model completeness, because it is
a purpose-specific quality. The completeness of the model can be evaluated
only in the context of the model purpose and its application domain. Con-
sidering models for performance prediction, the prediction accuracy can
be used as a metric to evaluate model completeness. The model providing
more accurate prediction is in MDSPE domain considered as more com-
plete as a model resulting in less accurate predictions. Dependent on the
application domain the completeness metric changes. For example, models
used as documentation could be evaluated based on their understandability,
or models used for code generation could be evaluated based on the addi-
tional development effort after code generation needed towards executable
code. In this thesis, we discuss the completeness of performance prediction
models, therefore, we adapt the definition of completeness for the domain

of performance prediction.

Definition 6 Completeness of Performance Prediction Models
Model completeness is a quality criterion for performance prediction mod-

els specified by the particular level of implementation detail and correspon-
dence to the real software system. Moreover, the level of detail and corre-

spondence determine the accuracy of the performance prediction.

55

3. Model Completions

As mentioned before, the model-driven software development consists
of a number of activities, some of vertical (towards implementation), some
horizontal (improvement of completeness) nature. For simplicity, let us as-
sume that vertical activities decrease/increase the level of abstraction, but
that horizontal maintain the level of abstraction, being concerned mostly
with activities such as weaving new purpose-specific aspects into the model.
The motivation to maintain the level of abstraction is twofold: (i) sep-
aration of concerns: to maintain the models in the responsibility of the
same development role on the same abstract level and develop complex
domain-specific completions in isolation by a special development role on
the level of lower abstraction; and (ii) maintainability: to avoid adapta-
tions of transformations resulting from metamodel extensions to by able to
model domain-specific aspects.

We can extract a pattern in these development activities, with implemen-
tation activities going vertically and purpose-specific completion going hor-
izontally, as illustrated on Figure 3.3. This incremental pattern is a typical
scenario for application of model completions. In this structure the model
Abs" is considered as the most complete one. Considering this pattern,
when the purpose of model creation was, for example, performance pre-
diction the Abs” on Figure 3.3 would provide the most accurate predictions
and the Conc” would be closest to real implementation.

Metamodel
o Iy A

Abs » Abs* » Abs"

Legend

---» conforms to
—» transformation

Conc—— »Conc'—» Conc"

Figure 3.3.: Model Completion concept.

56

3.1. Model Completions and MDSD

In the following, we will focus on the horizontal activities, or so called
completions, of this concept. As illustrated on the Figure 3.3 these activi-
ties have very interesting properties when the input model, Abs or Abs’, and
output models, Abs’ or Abs”, of transformations are conform to the same
metamodel. The metamodel is a language that allows a formal represen-
tation (model) of entities and relationships in the real world on the certain
level of abstraction. Initially, the level of correspondence and abstraction
in the description of real-world entities is given by completeness or expres-
sive power of the metamodel specification. The need for adjustment and
customization is not only reserved for models. It also arises for metamod-
els. Metamodels often do not fulfil requirements for special purpose and it
is desirable to use a specifically tailored metamodel language. Developers
have to extend metamodel by an embedding of required purpose-specific
elements. As mentioned before this approach has its disadvantages. The
special properties of completions open a way to increase the expressive
power of the metamodels indirectly on the model instance level. With the
help of completions it is possible to extend the model with purpose-specific
aspects, that metamodel does not support directly. Completions add new
aspects into the model instance using the language of the meta-(or abstract-

)level recursively. Then, we define completions as follows:

Definition 7 Model Completion

A model completion is a configurable purpose-specific transformation in-
creasing model completeness while maintaining the language of the ab-

stract level.

This is an informal definition of completion necessary to discuss the MD-
SPE process studied in this chapter. Completions are formally defined and
described in more detail later in Section 4.2.4. With this definition of com-
pletions it is possible to reuse the existing transformation chain towards

implementation even for the purpose-specific completed model as its in-

57

3. Model Completions

put. Additionally, completions hide the complexity of the purpose-specific
extension, allow configuration of aspect variants and encapsulate domain-
specific expert knowledge. As a consequence completion-based evolution
of models following the design decisions about implementation on the level
of abstract models allows to create purpose-specific models in a traceable
way even without the need of domain-specific expert knowledge. Further-
more, the completions that are focusing on their own aspect can be indi-
vidually maintained, and at the same time interconnected, building an en-
riched metamodel. In other words, each metamodel could be enriched by
a domain-specific language dealing with a particular aspect (or view) of a
system. The introduced completions have special properties that are very
interesting for our application domain. In Section 3.2, we apply the model

completions in the MDSPE domain.

3.1.2. Scientific Challenges in the MDSD context

In this chapter, we summarize scientific challenges related to MDSD, which
are as follows:

e Closing the semantic gap between an abstract model and low-
level details: The conflict between the level of abstraction required
from a high-level abstract model and a level of detail required to fit
the purpose of the model (e.g., performance prediction) makes it hard
for developers to create models they need. Additionally, the required
details are often very complex and variable. Inclusion of all required
details is in many cases not feasible. The necessary details increase
the model complexity in a such way that the model is not usable, un-
derstandable, and trustworthy anymore. We deal with this challenge
in Section 3.1.1, where we propose the idea of completions on the ab-
stract metamodel level. The realisation of this approach is described
in Section 4.7 and formalised in Section 4.2.4.

58

3.1. Model Completions and MDSD

e Hiding complexity and reusing expert knowledge: The comple-
tions are used on the abstract level although they encapsulate and
hide the complexity of low-level details requiring expert-knowledge.
As such they can be used by developers without the required expert
knowledge. Therefore, a suitable specification of completions on the
abstract level that allows their reuse is very important. Additionally,
we have to allow different completions to be used independently, so
that the developer or user of one completion does not have to know all
other completions that may be used on the models. We discuss this
challenge further and create a reusable completion library in Chapter
5.

e Reusing existing transformation chains: Automation of model
completions allows reusing existing refinement chains in model-
driven development process, e.g. generative transformation chains
towards implementation (Conc in Figure 3.3), at any point of the
incremental completion. This requires that all the completions trans-
form their input model towards the input model of the refinement
chain without changing or extending modelling language defined by
metamodel. The completion concept (Section 3.1.1) addresses this
challenge, this pattern uses the same metamodel language for the
extensions given by completions as for the input model. Thus, the
target model is conform to the same metamodel. By this approach,
the metamodel language is maintained unchanged and refinement
chain can be reused. The realisation of completions is discussed in
Section 4.7.

e Support of variability: By their nature completions are very vari-
able and as such a lot of effort is needed to implement and to maintain
any automation solution realizing them. The support of variability in
the definition of completions and their transformations is crucial for
this approach. Because the variability of completions mirrors in the

59

3. Model Completions

variability of their transformations, this challenge is actually address-
ing issue of transformation variability. This is the most challenging
issue identified in this chapter that the implementation of comple-
tions has to deal with. The support for variability in the transforma-

tions definition is discussed in a separate Chapter 4.

In the following section, we will introduce MDSPE application domain

for completions and summarize challenges related to this domain.

3.2. Model Completions and MDSPE

Model-Driven Software Performance Engineering (MDSPE) supports soft-
ware developers to identify potential performance problems, such as bot-
tlenecks, in their software systems within the design phase. The concepts
of MDSPE (surveyed in [6]) are based on the core idea of Software Perfor-
mance Engineering (SPE) introduced by Connie Smith [147]. SPE enables
the early performance evaluation of software systems. For this purpose,
SPE integrates performance predictions directly in the software develop-
ment process. It bridges the gap between architecture centric models used
by developers and formal performance models. In SPE, performance eval-
uation of software systems is achieved on the basis of simple models [147]
that are mapped to well-established performance modelling techniques and
thus are made easily accessible for software architects and developers.

In such early stages of the software life-cycle, only little information is
available about the system’s implementation and execution environment.
However, these details are crucial for accurate predictions. Often, detailed
information on the execution environment (e.g., design patterns, middle-
ware, database, operating system, processor architecture) is required to
get meaningful predictions. The previously introduced completions close
the gap between available high-level models and required low-level de-
tails. Model-driven technologies can be exploited to add such performance-

relevant details to high-level architectural specifications. Using model-

60

3.2. Model Completions and MDSPE

driven technologies, completions can include details of the implementation
and execution environment into abstract performance prediction models.
In the following section, we discuss the integration of completions into the

classical MDSPE process.

3.2.1. MDSPE Application Scenario

As mentioned before, the classical MDSPE uses model-driven techniques
to close the gap between architecture centric models used by software ar-
chitects and formal performance models. For this purpose, existing ap-
proaches provide transformations from architecture centric models, used by
developers, to formal performance models (overview in [20]), such as Lay-
ered Queueing Networks (LQN), Stochastic Petri Nets (SPN), or Stochastic
Process Algebras (SPA)(c.f. Figure 3.4).

“OML ~Queing Networks ~Response Time
+SPT profile - Stoch. Process Algebra - Throughput
+Marte profile - Stoch. Petri Nets - Resource Utilisation

T
| | |
Software Model "e’fn:’:"*lﬂw F'r:dw:mn
Transform lodel Solve esults

Feedback

Tool Support

Figure 3.4.: Model-driven Software Performance Engineering (MDSPE).

In this thesis, we extend the classical SPE process by introducing com-
pletions. Figure 3.5 illustrates the extended process of MDSPE with com-
pletions. In this process, software architects describe their system in a lan-
guage specific to their domain (such as UML [124], UML-SPT profile [124]
or MARTE [128]). Alternatively, they can use architecture description lan-
guages specialised for performance evaluation, like the Palladio Compo-
nent Model (PCM) [18].

We extend existing SPE process and provide tool support allowing soft-
ware architects and developers to annotate their models with completions,

61

3. Model Completions

more exactly with chosen variant of completion. Thus, in the first step,
they annotate software models with configurations of performance-relevant
aspects using completions. These annotations encapsulate performance-
relevant details, which are necessary for the model to provide more ac-
curate performance predictions. They can decide, where to apply certain
completion and with which particular configuration.

Because of high-variability of completions and requirement for support
for rapid evolution of prediction models, the integration of completions
and evolution of models is automated by transformations. The goal is to
diminish manual effort, during the development phase, in the highest pos-
sible extent; therefore, the transformations integrating completions have to
be automatically generated based on the actual configuration. This trans-
formation generation phase is further discussed in Chapter 4. Using re-
sulting transformation is then software model transformed into completed
software model. Completions hide the complexity of the full model from
software architects when showing only the abstract annotations. They sup-
port reusing performance-related expert knowledge. This firts step can be
repeated until all required aspects are included.

In the second step, other performance-relevant quantitative information
can be included, such as model calibration based on the measurements.
This step serves developers to include additional details about implementa-
tion or details that should be considered only when other model representa-
tion is generated, such us executable code, simulation code or performance
models. To derive performance metrics from software models, the software
model is transformed into a performance model as shown in Figure 3.5.
The annotated software models are transformed to analytical performance
models with resource demands based on model calibration and solved para-
metric resource demands.

Finally, the solution of the performance models by analytical or simulation-
based methods yields various performance metrics for the system under

study, such as response times, throughput, and resource utilisation. The

62

3.2. Model Completions and MDSPE

1
“OML ~Design Patterp, [~ UML Platform ~Queing Networks “Response Time
+SPTprofile || comptetion ¢| - Thread Pool || +SPT proﬁlee Platform -0s - Stoch. Process Algebra | | - Throughput)

+ Marte profile - Middleware + Marte profil Model - Processor - Stoch. Petri Nets - Resource Utilisatiol

7
/// ///

Calibrate

2
s
I
5
S c Performance Prediction
Software Model » » >
Transform Software Model Transform Model Solve Results

L J

Feedback

Tool Support

Figure 3.5.: MDSPE with completions.

biggest advantage of completions application in this context is that the spe-
cialized models are conform to the same metamodel, or, in the terminology
of MDSPE, use the same architecture description language. As such, the
transformation to the performance model does not need to know about the
changes, or completions, realised on its input model and can be reused
completely.

At last, the results are fed back into the initial software model. This
enables software architects to reconfigure implementation details and inter-
pret the effect of different design or allocation decisions on the system’s
performance and to plan capacities of the application’s hardware and soft-
ware environment. In practice, tools encapsulate the transformation and

solution of the models and hide their complexity (cf. Figure 3.5).

3.2.2. Performance Completions

In this section, we discuss necessary parts of performance completions.
Figure 3.6 sketches the idea of performance completions. The core con-
cept of completions is the separation of structural and quantitative informa-
tion. The first part is an architecture-specific part that is newly generated
for each completion configuration and the second part is an architecture-
independent part that models the consumption of resources and is newly
measured for each platform. The architecture-specific part consists of com-
ponents and subsystems. The architecture-independent part are resource
demands for specific platform for which the completion was created.

63

3. Model Completions

The architecture-specific part is defined in Completion Structural Skele-
ton that reflects, for example the Thread Pool’s general (performance-
relevant) behaviour. The skeletons are structurally similar for different
platforms, but their resource demands may vary. However, the skeleton de-
fines the common structure of the performance completion, it depends on
the actual configuration and it has to be newly generated for each configu-
ration. Important part of structural information is the configuration itself.
It specifies possible options and their impact on the performance. The
completion developer has to identify effect of each configuration on the
completions structure and express the model change in a form of structural

skeleton.

Quantitative information Structural information

I
I

Data
Analysis !
I
I

Modeling
Measurement Parametric Completion Configuration
Results Resource Structural Effects
Demands Skeletons

Measurements Integration Structural

. Analysis
Test Driver Platform-specific Configuration

Completion

Figure 3.6.: Concept overview of performance completions.

The architecture-independent part is expressed in a form of Parametric
Resource Demands. Completions are parametric with respect to resource
demands of the platform. Therefore, completions are adjusted for each
platform. To capture the quantitative information for particular platform,
software architects execute Test Drivers that take necessary measurements.
Based on Measurement Results, software architects can determine realistic
resource demands for complex platforms, such as Thread Pool implemen-
tation in .Net or J2EE application servers on Windows or Linux platform.
The software architects then analyse the measurement results and derive

platform-specific Parametric Resource Demands. For example, software

64

3.2. Model Completions and MDSPE

architects can capture the effect of number of threads on resource demands
for a specific Thread Pool implementation. They perform data analyses that
result the approximated functional dependency of resource demands on the
number of threads.

The integration of the Completion Model Skeletons and Parametric Re-
source Demands yields the Platform-specific Completion. The platform
specific resource demands are attached to their corresponding actions of the
model skeletons that structurally model the completion’s behaviour. The
combination of parametric resource demands and model skeletons yields
a complete performance model for the specific target platform. Because,
extraction of quantitative and structural information for completion is non-
trivial task and requires a lot of expert knowledge, the best way is to sys-
tematize and to automate the completion design and development process.
Ideally, the analyses during this process are performed fully automatically.
In the following, we describe the design and development process for per-

formance completions in greater detail.

3.2.3. Scientific Challenges in the MDSPE context

The application of completions, in the domain of MDSPE, bears particular

domain specific challenges:

e Accuracy of performance prediction: Each completion or combi-
nation of completions should increase prediction accuracy, i.e. re-
duce the deviation of prediction and observation, corresponding bet-
ter the reality. Therefore, the creation of a completion is challenge
itself and requires detailed research of the modelled aspect. The ap-
plication of completions can increase/decrease resulting performance
metrics and influence visible dependencies in resulting performance
metrics. The impact of a completion on the performance has to be

formalized and clearly stated. We will formalize completions in

65

3. Model Completions

Chapter 5 and discuss the performance impact of introduced com-

pletions in Chapter 7.

e Completion calibration: The automated measurements and analy-
sis that are needed to calibrate the completions is a research field on
its own. We do not contribute in this thesis to this research field.
Completion approach, however, shows the integration of automated
measurements and analysis into the overall MDSPE process. The
completion developers use existing measurement frameworks (e.g.,
the Software Performance Cockpit [169]) to calibrate their models.
The resulting challenge is then reduced to the integration of perfor-
mance results into the completions and architecture-centric models.
We discuss integration of automated measurements and parametri-
sation of performance models in the completion-based development

process in Section 3.3.2.

e Composition of performance abstractions: The composition of
completions is a challenging question, especially because of the ap-
plication domain, where the performance quality attribute can be in-
fluenced by completion composition. We have to analyse if applica-
tion of completions in different order results in models equal consid-

ering their performance. We discuss this topic in Chapter 5.

3.3. Completions in CBSE Development process

In Chapter 2, we discussed the CBSE Development process. Based on this
process, we introduce two additional development roles. The role of com-
pletion developer, who creates the completions and registers them with the
library, and the role of completion user, who actually uses completions and
integrates them into architecture models. Any of the classical CBSE roles
can take the position of completion user during the whole CBSE develop-

ment process.

66

3.3. Completions in CBSE Development process

Generally, the presented completion-based development process is very
similar to those with the common goal of reusability and customizability.
Our process is focused on reuse of process artefacts, especially those spec-
ifying configuration models of completions. The goal of the process is to
provide necessary artefacts to automatically generate completion transfor-
mations. The overview of this process is illustrated in Figure 3.7 with the

most important automated step pointed out by the stripes.

Completion Developer Completion User

Documentation
Domain Analysis
Platform-specific
Completion Data

Data
Completion Design

Initial Completion

‘Completion Validation
Inf

Assumptions

Software Model
Development /
Requirements Analysis

Requirements

Model Annotation /
Completion Configuration

I‘

i
Completion Transformation.
L Genetaion
|

Transformation Software
Model

¥
Completion Execution
Completed
> Software
Modol
Legend
— ity —> input
dependency

Figure 3.7.: Completion-based development process overview.

1

Mappings

Missing

Validated
Completion

Completion Implementation

Reusable
Completion

Completion
Library

We can separate the completion-based process into two phases, first the
domain engineering, where the tasks of completion developer are located,
and second software engineering, which is specified by tasks of completion
user. In the domain engineering phase the reusable and configurable com-
pletions are specified. The initial part is domain analysis consisting of the
extraction and analysis of possible features and their combinations in the
completion. Completions encapsulate possible design decisions that result

from requirements on the software. Typically at the beginning of devel-

67

3. Model Completions

opment, there is only an abstract idea about these requirements. Towards
later development phases, these incomplete, variable and contradictory re-
quirements could change. The domain analysis task has the main goal to
recognize and analyse possible requirements on the software and to define
allowed combinations among them. This analysis defines the first step at-
tempting to design a new reconfigurable construct that could be used in
software design. This helps to reduce the risk of a complete redesign of
software models in the case of major changes in requirements. Once the
possible requirements are determined they should by analysed and clearly
stated. For this purpose, the configuration model is used, where the possi-
ble requirements are specified as configurations of features belonging to a
completion.

The next step, the completion design defines how configuration options,
so called features, and their combinations affect the final software model.
Here it is necessary to determine the dependency among different config-
uration properties, the model structure and the model elements’ attribute
values. The result of the completion design step is an extension of the pre-
defined configuration model by feature interdependencies and documenta-
tion how the features map to the software model changes.

After identifying possible completion features, feature interdependen-
cies and resulting changes of software model based on these features, we
validate the initial configuration model by comparison with the real world
implementation. This step is called completion validation and consists of
a set of experiments and measurements on the prediction model and corre-
sponding implementation. When the results of measurements and predic-
tion correspond with required accuracy the implementation of completion
can start. In other case, we have to look for and analyse missing assump-
tions and influences.

Step completion implementation represents the activity of developing ac-
tual reusable completion. Therefore, it is necessary to formalise the model

changes resulting from feature choice and create the final configuration

68

3.3. Completions in CBSE Development process

model. Followed by registration into the library and offering it to the actual
users.

The phase of the software engineering includes actual software model de-
velopment and requirements analysis. The task model annotation and com-
pletion configuration benefits of reusable constructs defined by completion
developer. The completion users can annotate their models by completion
instances and attach particular configurations to them. The main goal of
this step is to make sure that the software model will meet the requirements
defined for the product, as well as ensuring that future requirements can be
addressed.

The most important step included in the process is the completion trans-
formation generation. Here, we apply the approach presented in Chapter
4. The generated transformation is then applied (completion execution) to
the input software model resulting in the completed software model. In the
following, we discuss the completion-based development process in detail

and illustrate each step on a running example.

3.3.1. Running Example

This section introduces our running example, that is used throughout this
thesis. Moreover, we motivate the choice of the running example.

Today, many applications (e.g., Web servers, Database servers) are de-
signed to process a large number of short tasks that arrive from some remote
source (using for example messaging, HTTP, FTP). In the case of server ap-
plications, processing of each task is short-lived and the amount of requests
is large. The Thread Pool design pattern offers a solution to the thread
management and is widely used by many multi-threaded applications. The
point of the Thread Pool is to avoid a creation of a lot of threads for short
tasks. The Thread Pool pattern reuses each thread for multiple tasks. The
main advantages are in allowing of the process to continue while waiting

for slow operations such as I/O-intensive tasks, and exploiting the avail-

69

3. Model Completions

ability of multiple processors. In the running example, we focus on the
Thread Pool model since most of server applications are built around pro-
cessing large number of short requests, which require low-overhead mech-
anism with resource management and timing predictability. Additionally,
the Thread Pool design pattern promises performance increase and realistic
optimization of resource usage. Especially, the importance of this pattern
for performance prediction motivated our choice to use it as a running ex-
ample.

In the following, we go through the steps of the completion-based de-
velopment process and incrementally develop a completion for the Thread
Pool design pattern. First, we analyse the structure of the Thread Pool
design pattern and discuss performance-related characteristics of this pat-
tern. Second, a brief discussion about the variety of Thread Pool imple-
mentations and their characteristics takes place. Afterwards, we discuss the
performance measurements of Thread Pool from the literature showing im-
portance of this pattern. Finally, we present the Thread Pool configuration
model that will serve further as running example to illustrate the process
of automated completion integration. The running example itself results in
the definition of a reusable completion for the Thread Pool design pattern.
This completion will be included in the completion library and is one of the

contributions of this thesis.

3.3.2. Completion-based Domain Engineering

At the beginning of Chapter 3.3, we gave an overview of the completion-
based development process. The detailed description of the tasks included
in this process is goal of this section (cf., Figure 3.8). We give overview
on the usage of model-driven techniques in combination with performance

analysis and prediction methods.

70

3.3. Completions in CBSE Development process

3.3.2.1. Domain Analysis

The goal of domain analysis (cf., Figure 3.8a) is to understand the perfor-
mance of software systems. In the analysis, we focus on a particular im-
plementation detail and its performance properties. The detail that is object
of the study in this step is an implementation of particular performance-
relevant aspect, such as a design pattern (e.g., Thread Pool) or middleware
platform. However, modelling performance-relevant aspects is not always
possible when dealing with used third-party- and legacy-software. Such
software is used as a black-box component in implementations of complex
systems. The necessary amount of time to model this software may out-
weigh the advantage of performance prediction at design time. Addition-
ally, required information about the system’s structure and other properties
might not be easily to gather. A way to integrate such kind of software into
performance-model is the path of documentation recherché, trying to find
out about its properties by testing and analysing its performance in a con-
trolled environment. We systematically evaluate the studied system’s per-
formance in relation to its configuration and usage. Such process requires
a lot of experience and detailed expertise in the field of benchmarking, data
aggregation and analysis methods. In this initial step of completion de-
velopment, we assume that we have a framework supporting systematic
performance evaluation available. In our approach, we use the Software
Performance Cockpit [169], that is a framework to systemize and automate
the tasks required to evaluate performance of software systems.

First, we identify the performance-relevant features of studied aspect,
based on documentation and other functional or parameter descriptions.
This domain-specific knowledge is used in evaluation process. For each
detail, we have to identify its configurable and measurable parameters and
their dependencies. Additionally, to start experiments and measurements
knowledge about the testing environment is needed. We have to specify the

platform for the completion. The resulting completions are then platform-

71

3. Model Completions

dependent and we can provide number of versions of one completion for
different platforms.

For chosen system setting, based on the documentation recherché and/or
resulting assumptions we create GQM plan for the systematic experiments.
At this point, the measurement frameworks, like the Software Performance
Cockpit, take over and drive performance evaluation based on the GQM
plan. The Software Performance Cockpit provides a language to describe
experiment design based on the GQM plan. It is able to determine efficient
series of experiments to get the most meaningful measurement-data within
as few experiments as possible. The measured data are later used to refine
and to focus the experiment design on the most promising configurations.
The data analysis algorithms are used to calculate possible dependencies
between parameter configurations and performance of the system under the
test. The Software Performance Cockpit executes following steps: it runs
the actual experiment, collects) and (aggregates data). We described the
integration of the Software Performance Cockpit into the completion de-
velopment process in [77]. During the data collection step, we measure the
influence of performance-relevant parameters for the studied system in its
target execution environment. The collected data is used to infer (parame-
ters of) a prediction model.

We use statistical inference techniques [79] and genetic optimization, to
derive the influence of a studied aspect’s usage on its performance. Statis-
tical inference of performance metrics does not require specific knowledge
of the internal structure of the system under study. However, statistical in-
ference can require assumptions on the kind of functional dependency of
input (independent) and output (dependent) variables. The inference ap-
proaches mainly differ in their degree of model assumptions. For example,
linear regression makes rather strong assumptions on the model underly-
ing the observations (they are linear) while the nearest neighbour estimator
makes no assumptions at all. Most other statistical estimators lie between

both extremes. Methods with stronger assumptions, in general, need less

72

3.3. Completions in CBSE Development process

data to provide reliable estimates, if the assumptions are correct. Methods
with less assumptions are more flexible, but require more data. These anal-
ysis methods are supported by the Software Performance Cockpit. The task
of completion developer is to extract enough variables and needed assump-
tions about their dependences (when available) to realise the analysis.

The last step of domain analysis is the data analysis. In this step, we
formalize the quantitative information needed for completion as described
in Figure 3.7. The aspect models inferred in the previous step are later by
completion design integrated into software performance models to predict
their effect on the overall performance of the system. We use the Palladio
Component Model (PCM) in combination with performance completions to
evaluate the performance of the system under study. The PCM is well suited
for our purposes since it captures the effect of different input parameters on
software performance. Stochastic expressions of the PCM can be used to
directly include the functions resulting from the statistical analysis into the
components of a performance completion. In the data analysis step, we
select data necessary for later completion design and express them in the
understandable form. In our case, we use the form of stochastic expressions
for resource demands in the PCM. The resource demands are platform-
specific and have to be determined for each platform and for each execution
environment. Determined resource demands are used to parametrise and

calibrate the completions in the later steps.

73

3. Model Completions

SISay1 8y} 4O sNo04 ﬁ

‘uonejusws|dw| uonajdwo) (p)

Aresqn
uoneidwioy

uoneiduog efqesney

swdojareq
spay3
suodo uoneinByueY

"uBisaq |9poIAl uona|duwio) (q)

(¥) (€)

woneidwoo et
Su0ndo uoeiByuoo o) ,
aimpnas oS o Budden /
/

ubisaq

uojalNS Uoneidwo

t
opony
uonenBloD /

uopeayusp| uoneinByuod

adunssy pue seouony |
1100 2y0ads ORI

‘1odofoaop uonedwod oy Jo syse], 'g ¢ 21

rr—

fueigr uoneidwioy

1y e]

pusms]

uonaidwo aiqesnay

‘uoliepljeA uoia|dwo) (d)

(@) (¥

suopdunssy
pue saovanyul Uofduo)
Bussin paiepien

4 }

7 wtuea

sisfeuy uewoq

—|

e T

Ei

woneawadL)
sinsey 1opoI 1531,
1 I

usisoq iopo
1501 poseqruoneLo0
om el
P TANV

7 -

‘sishjeuy urewoq (e)

UBiseq juewadx3

ueid WoO

(uawkoldop
pue asempiey)
uoneoyoeds uiojeld

uny uewuedx3

1 -7
A vv uogeuswa|dw uonsidwog

,
A mwv P — uonepiep uopeidwon sbadden .

P B e T W)

, {

.
.
.

$ - e . -

| uonebeibby eleq
(1) ,

7 oy 100 ejleq

wondssaq spoues

Uonewawnaon

74

3.3. Completions in CBSE Development process

3.3.2.2. Running Example: Thread Pool Domain Analysis

Thread Pool: Structure The Thread Pool design pattern belongs to the
group of resource management patterns and is used to increase performance
of the application. The implementation of Thread Pool pattern can be il-
lustrated on an example of simple e-Commerce-Application, where cus-
tomers shop in a product catalogue. The application is implemented with
EJB-Technology as client-server application. Clients use Web-Browsers
to communicate with Java-Servlet-Engine in parallel. The business logic of
the application is implemented in the server component. The server compo-
nent is connected via Java Database Connection (JDBS) with the database.
The product catalogue mirrors current state of the database. The server
component connects with the database for each client request and executes
necessary SQL request. The results of the SQL request are then propagated
to the client’s Web-Browser. The Thread Pool is implemented to manage
many instances of the same resource, in this case the managed resources
are JDBS connections to the database. The pooling concept allows usage
(acquire) of the resource instance and their reuse when the instance was
set free (release). The Thread Pool creates number of resource instances
(threads) in advance and manages a waiting queue for incoming requests
that have not assigned free thread yet. A typical usage scenario for Thread
Pool is when there are many more tasks than threads and the Thread Pool
mostly executes on a single computer. As soon as a thread completes its
task (or number of tasks, dependent on Thread Pool capacity) it will ac-
cept the next task from the queue of waiting tasks until all tasks have been
completed. The thread is then returned to the pool until there are new tasks
available. The behaviour of a Thread Pool (with capacity of 3 threads) is
illustrated by the Petri net in Figure 3.9.

Thread Pool: Performance-relevant influences and assump-

tions Within this step we study other research works with focus on

75

3. Model Completions

incoming Waiting

Task Queue

acquire

Thread Pool
(capacity = 3)

Task
Processing

release

Completed
Tasks Queue

Figure 3.9.: A sample Thread Pool of capacity = 3 with waiting tasks and completed
tasks.

Thread Pool performance and analyse implementations of Thread Pool.
This recherché provides excessive data, which are basis for the later exper-
iment design. In the following, we provide short exemplary related work
analysis.

In the literature, there are works analysing the influence of Thread Pool
on performance. Shiping Chen and Ian Gorton [32] have identified Thread
Pool size as one of the configurable system parameters that are important
for achieving maximal throughput. The implementation of a Thread Pool
has a prominent impact on the performance due to its ability to limit the
level of concurrency in the system [33]. The most important parameter that
can be tuned to provide the best performance is the capacity of the Thread
Pool. An excessive number of threads leads to waste of memory and needed
context-switching among the threads also decreases performance. There-
fore, in some Thread Pool variants the number of threads can be dynamic,
based on the number of waiting tasks. Some software providers decided
about static size of a Thread Pool in their products, for example in .Net
framework by default the Thread Pool has 25 threads per processor. Such

a static Thread Pool with fixed pool size, is supported by latest version of

76

3.3. Completions in CBSE Development process

Java JDK 7 [131]. This Thread Pool variant always has a specified number
of threads available. Tasks, from an internal queue that holds waiting tasks,
are appointed to the threads from the pool, whenever there are more active

tasks than active threads.

Thread Pool: GQM plan In order to conduct systematic evaluation of
the studied aspect, goals, questions and metrics must be defined to allow
a quantification of the system’s performance. Using performance metrics
(e.g., response time, throughput, utilisation) and configuration parameters
(e.g., arrival-rate, number of threads), we can formulate the experiment
questions, scenarios and hypotheses. In the following, we give an example
of a question in the GQM plan with the observed metrics identification:

QUESTION Q: Does a greater number of threads in a Thread Pool imply
an increased performance? The focus of question Q lies in the evaluation
of a possible correlation between the number of used threads and the Thread
Pool’s performance.

SCENARIO S: In Scenario S, we use simple Thread Pool variant with
variable number of threads in a pool. The total workload is set to reach
a Thread Pool utilisation of 80%, which we choose to maximize the rep-
resentativeness of collected results. The advantage of using Thread Pool
could be observed at high loads, when we can study the effects of thread
concurrency and scheduling. Therefore, we hold during the experiments a
constant utilisation of the Thread Pool at 80% at least.

HYPOTHESIS H: The Thread Pool performance is expected to grow until
the number of threads is higher as number of CPUs in the system. Hy-
pothesis H1 is based on the assumption that, for a constant workload, an
increased number of threads implies increased performance until the in-
creased number of resource-conflicts appears. For example, the resource-
conflicts appear in a case of CPU-intensive requests, when the number of
threads is higher as number of CPUs. However, this is more complex for

I/O-intensive requests, which compete for other resource (HDD) that can

77

3. Model Completions

be a bottleneck even before a CPU. in this case additional experiment is
needed.

METRICS M: Response time, Throughput

Thread Pool: Results from measurements and experiments:
To illustrate results of the measurement of such experiments, we use the
results of a study thesis by Achraf El Ghazi [62]. He analysed and mea-
sured the performance of the Thread Pool pattern. His performance ex-
periment evaluated CPU- and I/O intensive requests. His experiments for
I/0 and CPU intensive requests resulted in a dependency specification of
request execution time on different parameters. For example, in the case
of CPU-intensive requests, the execution time depends on: thread service
time, request arrival rate, the number of requests in system, maximal size
of the Thread Pool, and size of time slice in the OS scheduler configura-
tion. To collect the necessary data for calibration of models he measured
EJB 3.0 application using GlassFish V2 B41 application server, thus his
measurements are specific for this platform. Figure 3.10 represents the
measurement results of request execution time relative to the first point in
time when the request execution started. The request arrival time in this
experiment was 1100 ms and maximal Thread Pool size was 1000 threads.
The graph shows a monotone increase of the execution time for the first
36% of the requests. The following requests yield a stable execution time
of 30 to 40 seconds.

Thread Pool: Platform-specific Completion Data The results of
experiments are then input for specification of platform-specific completion
data as used in this thesis. The analysis of the data yields functional de-
pendences between different Thread Pool parameters, workload, and other
system settings. In our example, the request execution time depends on the
request arrival rate (Workflow:ArrivalRate.VALUE), the thread execu-
tion time (ThreadExecutionTime.VALUE), the maximal Thread Pool size
(PoolSize.VALUE), the number of requests in the system (defined for a

78

3.3. Completions in CBSE Development process

40000

30000

20000

10000

5

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
102 3 4 5 6 7 B 9 10 1 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

Max= 43449.922, Min= 1206.159, AVG= 27776.781144, Median= 32155.51, SD= 10643.1964428698, Var= 113277630.521516

T
2 %

Figure 3.10.: Example of experiment results [62].

closed workflow as Workflow:PopulationSize.VALUE) and the config-
uration of OS scheduler (TimeSliceSize.VALUE). Based on this observa-

tion, we can define resource demand on CPU as:

1 [(ThreadExecutionTime .VALUE

TimeSliceSize.VALUE

s«min (Workflow:PopulationSize.VALUE,PoolSize.VALUE+ 1)

*TimeSliceSize.VALUE

)

Moreover, based on the previous studies we can identify default or even

close to optimal Thread Pool configurations, for example:

PoolSize.Size = ReplicaCount.VALUE+1,

that defines an optimal number of threads parametrised by number of CPU

replicas for CPU-intensive requests.

79

3. Model Completions

3.3.2.3. Completion Design

In this section, we introduce details of the completion design (cf., Figure
3.8b). We describe the structural part of completion and its development.
The concept of quantitative and structural information separation in the
completion design was introduced in Section 3.2.2. Moreover, completion
design step integrates the quantitative information needed for completion
resulting from previous domain analysis step.

As first to design a completion, we have to create the configuration model
and the structural skeleton. For this purpose, we use feature diagrams (see
Section 4.5.2.1). We extract performance-relevant attributes of the studied

aspect as features in a feature diagram.

Configuration Model: Feature diagrams define all valid combinations
of application property values, or features. One feature defines a certain
option in the considered domain. Actual chosen combinations of features
are called configurations (feature configurations). Feature diagrams are hi-
erarchical decomposition of features including information if a feature is
mandatory, alternative or optional. We use extended feature diagram, that
is discussed in detail in Section 4.5.2.1.

Using feature diagrams as configuration models brings the advantage of
having a focused and less-complex configuration method understandable by
all of the roles in development process. Such feature-based configuration
method can be mapped to individual model changes and allows generation
of completion transformations. The concept of generation of completion
transformations is discussed in Chapter 4. In the following section, we will

illustrate the step of feature model specification on the running example.

Completion Structural Skeleton: The separation of concerns in soft-
ware modelling avoids the construction of large and monolithic models,
which could be difficult to handle, maintain and reuse. However, having

different models describing different aspects requires their integration into

80

3.3. Completions in CBSE Development process

a final model that represents the entire domain. In previous steps, we al-
ready identified one part of modelled domain, the quantitative information
about the completion. To complete the design of completion we have to
specify required information about the structure. The design phase yields
completion model skeletons that capture the structure of the completion.
The completion model skeleton specifies a set of necessary components,
and their behaviour, building the structure of completion. The skeletons
only abstractly model the structure and behaviour without any resource de-
mands. All possible variants of completion are captured by its structural
skeleton.

We use model weaving to select a subset of the components needed for
a particular completion variant based on the current configuration. There
is no accepted definition of model weaving, we consider it as the fine-
grained relationships between completion configuration and skeleton mod-
els. Based on these relationships and correspondences between the consid-
ered model parts, we avoid to have large skeleton models for capturing all
the variants of the aspect. The completion developer has to have a clear
overview about these mappings, that represent model changes required to-

wards completed software model.

3.3.2.4. Running Example: Thread Pool Completion Design

Thread Pool: Configuration Model Based on the previous discus-
sion, we extracted important performance-relevant features of Thread Pool
pattern in a form of feature diagram. These features summarize different
configuration options of the thread management implementation based on

this pattern. The resulting feature diagram is illustrated in Figure 3.11

Java-specific Thread Pool feature diagram: For the purpose of the
running example, we simplified the feature model for Thread Pool design
pattern. The simplified version is based on the features supported by the
last Java JDK (1.6). The Java platform is designed to support concurrent

81

3. Model Completions

ThreadPool

Optimization

Properties
. . Direct
Static ‘ ‘ Dynamic ‘ Unbounded ‘ Bounded Legend
‘ Handoffs e or
./l . exclusive or
< . e mandatory
‘ Pool Size Keepldle Core Pool ‘ Maximum KeepAlive o0 optional

Time Size Pool Size Time

Figure 3.11.: The configuration model of Thread Pool design pattern (used for the
running example).

programming and includes high-level concurrency APIs. The concurrency
support is implemented in the java.util.concurrent packages. The
feature model in Figure 3.11, that will be used as a running example, col-
lects Thread Pool implementation options supported by Java platform. To
validate this model, we will compare the prediction results with the mea-
sured results later in the thesis.

The valid Thread Pool configuration includes the mandatory feature Op-
timization Properties. This feature may define either a static or a dynamic
Thread Pool variant. The exclusive selection is indicated by the excludes
constraints between both features. Each of these features have to have a
number of threads specified. This is either a static pool size or, for the
dynamic feature, a core and a maximum number of threads. Additionally,
software architect has a possibility to specify the time after which an idle
thread in a static pool should be returned to the pool (or "sleep"), avoiding
waste of resources by busy waiting. Similarly, for a dynamic Thread Pool
he can specify, by KeepAliveTime, when an idle thread should be destruc-
ted. This provides a means of reducing resource consumption when the
pool is not being actively used. If the pool becomes more active later, new
threads will be constructed.

Lastly, an important attribute is the queueing strategy in a waiting queue,
because use of this queue interacts with pool sizing. There are three differ-

82

3.3. Completions in CBSE Development process

ent strategies for queueing. Direct handoffs is a default choice for a work
queue that hands off tasks to threads without otherwise holding them. Here,
an attempt to queue a task will fail if no threads are immediately avail-
able to run it, so a new thread is required to be constructed. Unbounded
queue will cause new tasks to wait in the queue when all threads are busy.
Bounded queue helps prevent resource exhaustion when used with finite
maximum pool sizes, but can be more difficult to tune and control. Queue
sizes and maximum pool sizes may be traded off for each other: Using
large queues and small pools minimizes CPU usage, OS resources, and
context-switching overhead, but can lead to artificially low throughput. If
tasks frequently block (for example if they are I/O-intensive), a system may
be able to schedule time for more threads than you otherwise allow. Use
of small queues generally requires larger pool sizes, which keeps CPUs
busier, but may encounter unacceptable scheduling overhead, which also

decreases throughput.

Thread Pool: Structural Completion Skeleton We designed an ab-
straction of the Thread Pool pattern (cf., Figure 3.12) for the purpose of
performance prediction. The pattern abstraction is a version of a Leader-
Follower pattern, where one particular thread takes the role of the leader
and waits for the next request. All other threads are either followers (i.e.,
queued) or leaders (i.e. processing requests). To model this pattern we can
easily use one Thread Pool component with a size equal the capacity of the
system. The overview about the required changes (e.g., adding/removing
components) of the model helps completion developer with later imple-
mentation. Therefore, he is required to first model per hand a completion
skeleton for each feature and validate them. Based on these analysis he can
choose appropriate abstraction and implement the change mappings. In
Figure 5.21 the mappings, for one simplified variant, are illustrated by ar-
rows. The semantic of these arrows is addition of the selected components,

interfaces, methods or values to the model. To integrate a Thread Pool ab-

83

3. Model Completions

ThreadPool
Optimization i
Properties :
1

Wamg
Queue

()

. ; Direct
‘ Static ’nl ‘ Dynamic ‘ Handoffs Unbounded ‘ Bounded ‘
: ! :
1 1
. Keepldle 1Core Pool Maximum KeepAlive
Pool Size X | . - :
Time 1 Size Pool Size ime
{ N=Pool Size : :
""""" 3 | 1
-------------------- i~=1 Il
4 t t
H T T
V.V !
1
£ !
1
ThreadPool <K--------------~ ':
Pool:size=N
E—

acquire)\J __________.
release() !
.

Client £ {%, Wrapper@ —9@— Server & —Cff%

Figure 3.12.: The structural completion skeleton of Thread Pool design pattern.

straction into the model we have to add the Wrapper and the Thread Pool
components to the model. This basic structure of the skeleton is created
from the root feature. The child features then add the behaviour specifica-

tions (e.g., SEFFs) and parameters to the components (e.g., PoolSize).

3.3.2.5. Completion Validation

To validate the initial completion (cf., Figure 3.8d), we create a test model
and correspondent implementation of modelled aspect in a real system. Us-
ing the test model we realize a set of simulations (e.g., using PCM simula-
tion framework) to predict system’s performance. Furthermore, by measur-
ing the implementation we get a real performance data about the system.

The measurements are again executed automatically taking an advantage

84

3.3. Completions in CBSE Development process

of support provided by the Software Performance Cockpit (see the domain
analysis step). In order to ensure that the completion model captures and
correctly models all relevant parameters, developers compare predictions
and measurements. Based on the outcome of the comparison, it might be
necessary to execute further experiments to evaluate observed deviations
of predictions and measurements. In such case, the developers extend the
domain analysis and the completion design to the required level. When
the desired degree of accuracy is reached, developer can start to implement
generic and reusable completion.

3.3.2.6. Running Example: Thread Pool Completion Validation

To validate the Thread Pool completion, developers need to compare dif-
ferent predictions and measurements of execution times for different con-
figurations. Additionally, they can compare different Thread Pool variants
even when available other thread management strategies, such as Thread
Pool versus the Thread-Per-Request model.

In the Thread Pool example, we discussed measurement results for re-
quest execution time depending on the start time a request is initially exe-
cuted. In this experiment the request arrival time was 1100 ms and maximal
Thread Pool size was 1000 threads. Using our Thread Pool model, we can
execute simulations with the same system settings. The prediction results
can be then compared to the measurements as illustrated in Figure 3.13. Itis
visible from these graphs that the model allows to predict the behaviour of
Thread Pool with very good accuracy (see Table 3.1). For the first 49,6% of
the requests, before the Thread Pool stabilised, the prediction error is high-
est. For later requests, the predicted execution time (30,00 s) is very close to
the mean value of the measurement results (27,77 s). The mean value of ex-
ecution time was predicted with the prediction error smaller than 10%. The
prediction results promise more accurate predictions when the additional

effects on Thread Pool performance are considered (see Section 5.3.5).

85

3. Model Completions

FepEas

i)
4

(a) Measurement results

Figure 3.13.: Example of Thread Pool model validation [62].

(b) Prediction results

|

H Mean [ms] \ Max [ms] \ Min [ms] ‘

Prediction 30004.72_| 36170.00 | 1140.00
Measurement || 27776.78 | 43449.92 | 1206.15
[Eror[%] || 742 | 1675 | 548 |

Table 3.1.: Example of the evaluation of prediction accuracy [62].

3.3.2.7. Completion Implementation

The goal of this step (cf., Figure 3.8e) is to implement generic and reusable
completion, that can be registered into the completion library and used by
the performance analysts. Each of the introduced completion features could
have additional information attached as, for example, fragments of code.
In the completion design step, we define how features and their combi-
nations affect the software model. We defined mappings specifying the
dependences among different feature configurations, the model structure
and the elements’ attribute values. The result of this step is an extension
of the pre-defined feature diagram by dependences and documentation how
the features map to the software model changes. We call these extension

feature effects, they make clear which feature triggers which change.

86

3.3. Completions in CBSE Development process

Definition 8 Feature Effect
Feature effect is a formal representation of a isolated model change result-

ing from feature selection.

To formalise and implement feature effect, we have to develop actual
transformation fragments, which encode the change to the software model.
The result of this activity is a feature model, that is extended by the annota-
tions in a form of model-to-model transformation fragments. In this work,
we use to implement transformation fragments the OMG QVT-Relations
transformation language.

When the completion is validated and the feature effects are developed,
the developers can parametrise the performance completion. Therefore,
they derive the parametric resource (e.g., dependency of default number of
threads on the number of CPUs, etc.) demands for the completion compo-
nents and adjust the feature effects to integrate into the completed model
these demands or static calibrations (e.g., measured platform-specific net-
work overhead) , if necessary. The parametrisations and calibrations are

integrated into the model by the feature effects.

3.3.2.8. Running Example: Thread Pool Completion
Implementation

As presented in previous section, the nodes of the feature diagram are an-
notated with feature effects, implemented as transformation fragments. We
illustrate the feature effects implementation on the running example (cf.,
Figure 3.14). The effect of Thread Pool feature is depict by the relation
TP and creates necessary components (simplified in Figure 3.14). The result
of this feature effect is the creation of component TP. The effect of Static
feature TP_Static has a when-dependency to the parent effect TP. When
the component TP exists, the TP_Static feature can be used to statically
configure the size of the Thread Pool and set the default value. Hence, the

transformation fragment belonging to the the feature Pool size refers to

87

3. Model Completions

top relation TP (

top. relatl?n TE_Static checkonly domain in p :
: I

ThreadPool |~

Waiting
Queue

Optimization
Properties

Dynamic ng"rjgftfs Unbounded Bounded Legend
& or
A\ exclusive or
o mandatory
o optional

| Keepldle Core Pool Maximum KeepAlive
Time Size Pool Size Time

Pool Size

Figure 3.14.: Example of feature effects implemented as fragments of
transformations.

the free variable declared in the TP_Static fragment of feature Static and
overrides the default value. Additionally, transformation fragments can in-
tegrate quantitative information into the completion transformation, which
addition is straightforward in the fragment implementation. We will discuss

the transformation fragments in a more detail in Chapter 4.5.

3.3.3. Completion-based Software Engineering

In this section, we discuss the role of completion user and how he/she can
take advantage of the developed completion from completion library. The
phases of the software engineering include actual software model develop-
ment and requirements analysis. Starting with the requirements on the soft-
ware system, the model developers create a software model and meet cor-
respondent design decisions. The task model annotation benefits from the
reusable completion defined by domain engineering. When model develop-
ers find a suitable model completion supporting their design decision, the
model can be annotated with the configuration of this completion. Model
developers attach required configurations to the model elements where they
plan to apply chosen completion. The main goal of this step is to make sure

88

3.3. Completions in CBSE Development process

the software application will meet the requirements defined for the prod-
uct, as well as ensuring that future requirements and design decisions can
be addressed.

Requirements

J— i

Software Model
Development /
Requirements Analysis

T

esign Decisions

Model Annotation /
Completion Configuration

Completion
Library

T
Completion
Instance

T
Transformation Software
! Model

Completion Execution {4/

Completed
Software

Model

Figure 3.15.: Tasks of the completion user.

The most important step is the completion transformation generation.
Realisation of this step is a topic of the whole following Chapter 4. The
generated transformation is then applied (completion execution) to the in-
put software model and results in the completed software model. The com-
pleted model is then directly passed to the existing simulation or analysis

frameworks and provides more accurate and more complete predictions.

Running Example: Using Thread Pool Completion The software
deployer role from the CBSE development process can use the Thread Pool
completion as annotation to the resource container. Each user of the com-
pletion has to create a correspondent feature configuration. The actual fea-
ture configuration based on the Thread Pool feature diagram is illustrated by
check(selected feature) and cross(eliminated feature) -marks. For such Fig-
ure 3.16 additionally depicts one possible configuration of a Thread Pool.

This feature configuration defines a simple static implementation of Thread

89

3. Model Completions

Pool with the size of 32 threads treating all incoming tasks with the same

priority.

ThreadPool

Optimization

Waiting |
Properties ¢ w

4

Direct J

Handoffsq U”bound%L Bounded\J’ Legend

% xzor

exclusive or

‘ Static

| Dynamic, ‘

mandatory

.
Keepldle CorePooI‘ Maximum KeepAlive o optional
Pool Size ;‘ Time i size ¢ |, Pco\S\zg‘\L Time ‘v
size:int =32 N

Figure 3.16.: Thread Pool feature configuration.

3.4. Summary

The main contribution of this chapter is the generalisation of the Model
Completion concept and its integration into the MDSPE process. In this
chapter, we discussed relationship of model completions to MDSD and
MDSPE processes. To put model completions into practice, we introduced
a general process to design and apply performance completions in the MD-
SPE. The design of completion-based development process for MDSPE
was presented in the invited talk on the EPEW 2010 and published in [93].

The completion developers define completions based on abstract speci-
fications and design patterns and, thus, parametrise over the platform and
vendor-specific properties of different platforms. In our development pro-
cess, we automate the measurement data collection using Software Per-
formance Cockpit. The resulting parametrised completions allow software
architects to instantiate the completion for their target platform and anno-
tate their models. The performance completions represent powerful tool to
analyse performance of software using complex design patterns and plat-
forms (e.g., application servers). We describe details of the particular steps

90

3.4. Summary

Section 6.3

Section 6.3.3

Section 8.2.1

Section 5.5-6
Section 6.3.3-5

Section 6.2

Completion Developer

Completion User

Documertation
é Domain Analysis

Platform-specific
Completion Data

Completion Design

Initial Completion

Completion Validation

Validated
Completion

Completion Implementation

Reusable
Completion

Design Decisions
Software Model
Development /
Requirements Analysis
Requiremens

Model Annotation /
Completion Configuration

I4

Completion
Instance

Cormpletion Transformation

Generation’

T
Transformation

Completion Execution

l

i

é} Section 4.3

Q Section 8.3
@ Section 5.8

Software
todol

Q Section 8.3

Completed
F——» Software
Model

=

|
Completion
Library

Legend
3 actvity —> input

dependency

Figure 3.17.: Pointers to the detailed description of particular development steps.

during the completion development process in separate sections later within

this thesis.

Figure 3.17 gives an overview about the structure of this thesis and point-

ers to the chapters where details to the particular steps of the completion-

based development process can be found. In the following chapter, we deal

with the automated integration of completions and management of their

variability using Higher-Order Transformations (HOTs).

91

4. Variability Management using
Higher-Order Transformations

In the previous chapter, we introduced the concept of Model Completions
and its application in MDSPE. We discussed the main challenge related to
completions in the MDSD context, which is the variability support. The re-
quirement for variability results from the reconfigurability of completions.
The model elements to be completed are determined by this configuration.
The completions are implemented as model-to-model transformations. Be-
cause, it is not feasible to implement a transformation for each combination
of configuration options, the variability of completions should be mirrored
in the variability of their transformations.

The leading challenge of this chapter is:

How to support configuration-based variability in model transforma-
tions?

The remainder of this chapter will be organized as follows. Section 4.1
introduces the problem domain. The main contribution of this chapter,
CHILIES approach, is discussed in Section 4.2. Section 4.3 introduces the
principle of Higher-Order Transformations (HOTs) and the idea of HOT
patterns definition. The patterns used to support completions are described
in Sections 4.4, 4.5 and 4.6. The composition of these patterns is discussed
in Section 4.7. At last, we summarize the assumptions and limitations in

Section 4.8, and conclude this chapter in Section 4.9.

93

4. Variability Management using Higher-Order Transformations

4.1. Problem Domain

In this chapter, we deal with the problem of variability management in
transformations given a fixed input model. The variability of transforma-
tion results from two sources: First, the requirement to increase expressive
power of metamodels through particular model elements originating from
domain-specific languages. Second, the requirement to include variable
parts into the transformations and adapt their functionality. In the both
cases, the changes of requirements on the software product (e.g. changed
application domain, or required more detailed model) result in the changes
of the transformations. In the following, we discuss both of the cases in

more detail.

4.1.1. Increasing Expressive Power of Metamodels

The language features, such as programming language pragmatics [145],
have clearly a huge impact on the developers ability to write clear, concise
and maintainable code. A typical example of language pragmatics is the
foreach statement in Java [131]. Analogous aspects apply to modelling
languages, especially in the case of very large and complex systems. To
increase usability of model-driven techniques we need modelling pragmat-
ics that support efficient model design, too. Often developers claim that the
metamodel is not suitable for the purpose of a particular model, that some
other metamodel is more powerful. Although, in a sense of expressiveness
two metamodel-based languages can be equivalent, both can be used for
the same goal, even if it is not straightforward and the models would be too
complex, and can be suitable to express anything written in the other. The
most important factor contributing to the expressive power of the meta-
model are features of abstraction. The modelling pragmatics support the
developer to overcome the complexity of the model by abstraction.

As discussed in the previous chapter, in some scenarios, metamodels do
not have enough expressive power to allow modelling of all required details.

94

4.1. Problem Domain

For this purpose new metamodel elements have to be introduced which re-
quires adapting all transformations based on the metamodel. The required
development effort for these adaptations depends on the complexity of the
metamodel changes and the transformations. MDSD focuses on the reuse
of existing models and supports different transformation chains and tool-
ing working on the same model. Changes of the modelling language with
each new purpose of models and related adaptation of their transforma-
tions is against this reuse principle. Our goal is to avoid or minimize these
adaptations and support extension of metamodels through introduction of

modelling pragmatics in a form of completions.

Extended Metamodel
Metamodel Domain- Metamodel
specific
D aspect ; Z D
«conforms-toy! [«conforms-to» 3
SourceModel | ' I [|\| Target Model

(LT

Figure 4.1.: Introduction of new domain-specific aspects to the metamodel by a
completion transformation.

Completions increase the expressive power of metamodels indirectly on
the model instance level, thus on the metamodel level the same language
is maintained (cf., Figure 4.1). They add new domain-specific aspects into
the model instance using the same language of the meta-(or abstract-)level,
thus they allow an incremental and indirect extension of metamodel through
the completion transformations. Such domain-specific aspects can be de-
scribed by suitable domain-specific languages that introduce new elements
into the host language and could be later transformed to subsystems con-

form to the original host metamodel.

95

4. Variability Management using Higher-Order Transformations

We express these domain-specific languages in a form of a feature dia-
gram. Based on the choice of features from the feature diagram the com-
pletion transformation extends the model instance with new aspects from
the domain described by the feature diagram. Each completion extends the
model by a new concept, that is constructed using existing elements of the
host metamodel. This way, we can bridge different domains. Variability,
in this case, means that transformation generates different output models,
based on the application domain. Because of the aspect’s configurability,
the transformations realising these extensions should be derived automati-
cally. We call these transformations completion transformations. The result
is that the applicability of the metamodel increases, using the new meta-
model language features supporting abstractions it is easier to create mod-

els and the creation of completion transformations is automated.

4.1.2. Supporting Transformation Variability

Classical MDSD approaches face the non-trivial task how to implement
transformations creating target models sharing common core, but differen-
tiating by variable parts. Typically, given a fixed source model, there would
be one possible target model. In practice, however, different features can
be required. For instance, the design decision whether or not to integrate a
certain design pattern (e.g., Thread Pool), could change. Variability, in this
case, means that transformations generate different output models, based
on additional annotation and/or configuration models passed to the trans-
formation. The configuration of the transformation or the transformation
itself has to be adapted to integrate different design decisions.

Thus, the main challenge to support model completions in MDSD is their
high degree of variability. Each implementation detail can have many con-
figuration options which may change the structure and behaviour of related
abstractions. For example, Message-Oriented Middleware (MOM) plat-

forms are highly configurable to meet customer needs. The MOM config-

96

4.1. Problem Domain

uration includes, for instance, durable subscription or guaranteed delivery.
These configuration options influence performance and, thus, have to be
mirrored by the transformation that realizes the completion.

One solution would be to implement one transformation for each com-
bination of configuration options. Another solution would be to attach one
additional input model to the transformation. The most commonly used
way to configure model transformations is by means of external annotations
to a source model. So called mark models [11] are used to provide config-
uration details that are specific to the source model. This mark model is
considered as an additional input for the transformation on the model level.

However, this way of transformation configuration is not always prefer-
able. Both solutions have to deal with the problem that a high effort is
needed to implement and to maintain their transformations. Regarding the
first option, it is straightforward that it is not feasible to implement a trans-
formation for each combination of configuration options. Already with 12
binary configuration options, (with only boolean value possible) we would
have to implement 4096 (or 212y transformation variants. However, even
the second solution has to deal with many problems. In the case of mark
model usage, the transformation is tightly-coupled to the configuration.
Thus, when we want to change configuration options, remove them or to
introduce a new ones, we have to change the transformation itself. The
developer of such a transformation has to consider dependencies between
configuration options, which can become very complex.

There are cases where this configuration mostly depends on externally
defined properties (i.e., source model independent) and is not specific to
special model elements. In this case the configuration happens on a higher
level of abstraction. Thus, the decision about used variability is made in
later stages (e.g. when transformation is applied) and requires late variabil-
ity binding, during so called load time of transformation. Moreover, used
elements (ie. configuration models, transformations, etc.) should support

software developers (i.e., completion users) managing variability. There-

97

4. Variability Management using Higher-Order Transformations

fore, it is much more appropriate to decouple the configuration and the
actual model. Starting with the same source model, we can get different
target models depending on the configuration. Additionally, there is a need
to define the configuration model as reusable construct. The configura-
tion model encapsulates domain-specific expert knowledge and as such it
would be beneficial to support its reuse in different contexts. For example,
the configuration could be read by other development tools and used inde-
pendently from the original software model. Thus, the configuration model
should be specified on a more generic metamodel-independent level.
Additionally, the code of the mark transformation is polluted with code
reading and handling the configuration. The configuration management
code grows with the complexity of configuration into complex decision
trees. Consequently, using mark models the maintainability of the trans-
formations decreases when the configuration model’s complexity grows.
Transformations with such complex constructs are not only very hard to
maintain and to understand, but moreover writing a transformation that con-
siders all possible combinations of selected configuration options or intro-
ducing new configuration option, is very tedious and error-prone. Thus, the
maintainability of transformations is one more reason to decouple config-
uration model and transformation. In our application domain, the explicit
support of variability in the definition of completions and their transforma-

tions is crucial for their application in software performance engineering.

4.2. Introduction of the CHILIES Approach

In this thesis, we focus on variability management in transformations based
on configuration models. We use feature diagrams to express configura-
tions. Transformations can then be based on the very same feature dia-
gram to apply the appropriate changes to a model according to currently
selected features. For this purpose, specific parts of a transformation are

activated depending on the selected features. However, transformations

98

4.2. Introduction of the CHILIES Approach

parametrized by configuration require substantial development effort. In
our approach, we allow transformation developers to focus on the actual
transformation logic. They specify transformation fragments for each fea-
ture in the configuration model separately. Thus, the development effort
is decreased through separation of concerns. Based on the selected com-
bination of features, a Higher Order Transformation (HOT) generates the
specific completion transformation. The direct manipulation of transfor-
mations depending on a given configuration makes the relation between
configuration and transformation explicit.

In the proposed approach, we lift the configuration model to a higher ab-
straction level. Therefore, the transformation fragments do not get polluted
with code that is only responsible for checking the actual feature configura-
tion. Furthermore, as the binding of fragments and features is more explicit,
this alleviates the complexity of transformation evolution as every feature
has a clear mapping to the parts of the transformation, which are related
to it. We generate an executable completion transformation from a config-
uration defined by a feature diagram in a number of steps. Each of these
pre-processing steps has a specific goal.

CHILIES approach defines the pre-processing steps necessary to gener-
ate transformations as general patterns that can be composed together to
build an SPL for transformations. These patterns describe the necessary
elements, such as models and transformations, to achieve particular goals.
Composing these patterns, in this work we focus on the Routine, the Com-
posite and the Template pattern, we can create an SPL with more complex
goals. Completion transformations are generated based on these patterns.
However, we used the CHILIES approach to systematically support vari-
ability of completion transformations, completions are only one applica-
tion domain and the presented approach could be applied in other contexts
as well. The CHILIES approach will be further discussed in the following

sections. We start with summarizing the main contributions in more detail.

99

4. Variability Management using Higher-Order Transformations

4.2.1. Scientific Contributions of this Chapter

The main contribution of this chapter is located in the MDSD context and

can be summarised as follows:

CHILIES Transformation Variability Management method: SPLs

100

are used to build a family of products, which are subject to vari-
ability. Variability should be managed, that is specified, modelled
and implemented in a maintainable and effective way. For model-
transformations, variability is defined by a varying set of features
integrated in the final transformation. Various approaches [71, 167]
show that SPLs can be implemented using MDSD techniques. In this
thesis, we created a SPL for model transformations using Higher-
Order Transformations (HOTs). Based on the different usage scenar-
ios, where HOT's with different goals could be applied, we identified
building blocks, which can be used to build SPLs for transformations.
The SPL for transformations works in combination with feature di-
agram and transformation fragments. The transformation fragments
are selected mirroring the corresponding configuration. The specific

sub-contributions are:

Higher-order transformation patterns: The used transformation
generators are written as HOTs that are building blocks of the
SPL for transformations. A HOT compiles the transformation
model again into a transformation model. We used these HOT's
as pre-processors, at load time of the transformation (e.g. in
MDSPE), executed before the actual transformation. In our ap-
proach, we use chains of HOTs where each HOT represents
a different pre-processing step. We identified a set of higher-
order transformation patterns formalizing different goals for the
application of HOTs. Based on these patterns, software engi-
neers can build pre-processor chains to generate transforma-

tions on demand and integrate them into the existing model-

4.2. Introduction of the CHILIES Approach

driven process. By formalising these patterns, we build a frame-
work allowing the reuse of HOT specifications. The main ob-
jective of our solution is to manage variability efficiently. Com-
posing the HOT patterns, we developed an advanced MDSD in-
frastructure. Our approach can also be applied to other MDSD
infrastructures with a need to manage variability. We defined a
set of usage guidelines and Higher-Order Transformation pat-
terns, that are recipes and building blocks for using and building
a similar infrastructure. Further, we present three patterns as an
example illustrating our approach. The whole set of HOT pat-
terns is described in Appendix B. In this chapter, we introduce
only the HOT patterns used to support completions in more de-

tail:

1. Routine pattern: Our experience with development of com-
plex transformations shows that a lot of routine work is
needed to specify usable transformations. To decrease de-
velopment effort, we propose a generative method to take
the routine work from developers. We automate genera-
tion of routine activities as copying, multiplying elements
or flattening of the models. Using Routine pattern we can
generate a frame, which in the most cases, only copies
model elements. The frame can be then a basis for integrat-

ing customisations and creating transformation variants.

2. Composite pattern: Today’s transformation languages do
not support the composition and reuse of transformations
sufficiently. To create a transformation from fragments we
have to compose the relevant fragments and resolve their
dependencies. In this thesis, we introduce an approach for
transformation composition using additional information

provided by feature diagrams. This approach defines and

101

4. Variability Management using Higher-Order Transformations

implements a set of constraints to compose transformation
fragments based on their position in a tree structure of fea-

ture diagrams.

3. Template pattern: Transformations often have a similar
structure differing only in parameter values and applica-
tion context. To achieve this, our solution supports mod-
ularity by using modular constructs (e.g. templates) as
much as possible. Furthermore, modularity can improve
reusability of transformations. In this thesis, we introduce
a method for the automated instantiation of transformation
templates. Additionally, we provide an initial set of trans-
formation templates for common transformation parts in
the domain of CBSE.

4.2.2. Software Product Lines for Transformations

A Software Product Line (SPL) is a set of systems with well-defined com-
monalities and variabilities [37]. The most important aspect of an SPL is
the management of variability. Using the concepts of SPLs, software de-
velopers and architects can build a family of products which are subject
to variability. In this thesis, we apply SPLs for transformations to com-
pletions in the domain of component-based software software engineering.
Although the injection of completions into the model is straightforward, the
development of the completion transformation is an non-trivial task. The
transformations depend on the configurations and, therefore, are subject to
the variability themselves.

To provide variability support in transformation definitions, we studied
the design of SPLs. In our approach, we introduce a variability modelling
concept for model transformations. We create an SPL for transformations
that generates variants of model transformations, for example, comple-

tion transformations as illustrated in Figure 4.2. The SPL for transfor-

102

4.2. Introduction of the CHILIES Approach

mations is used to generate completion transformations executed in the
horizontal direction of the Model Completion concept. The goal is to
fully automate the transformation generation. The SPL reads configura-
tions (Configy,...,Configy) and generates the required transformations.
The configuration of the variable parts determines the transformation to be
generated and, thus, the product. The illustrated approach provides method-
ologies to capture and reuse the common parts of transformations and also
provide techniques to manage the variable parts of a transformation.

The process of building an SPL consists of two phases: domain engi-
neering and software engineering [37]. These phases can be mapped to the
tasks of the roles Completion Developer and Completion User introduced
in Chapter 3.3. In the domain engineering phase, all the common parts of
a transformation are identified and implemented. Additionally, models that
describe the variable parts (in our approach feature models and feature ef-
fects) and their relations are created. These models represent the variable
parts of a (completion) transformation. The development of transforma-
tions has to be done systematically, with the focus on their reusability. In
the case of completion transformations encapsulate domain knowledge that
can be (re)used in different contexts. This means that the developed trans-
formations have to be generic and independent from an input model. In the
software engineering phase, the transformations (which have been created
during the domain engineering phase) are selected, configured and applied
to a software system.

The CHILIES approach realises an SPL for model transformations using
MDSD technologies. MDSD is one approach to cope with the challenges of
product line engineering [123]. We propose HOTs as generally applicable
variability modelling concept for transformations. The combined concepts
of SPL and MDSD enable the automated generation of customizable trans-
formations. Our SPL built with MDSD technologies is a sequence of HOTs
each of which addresses a different part of the transformation generation

process (e.g., generating a copy transformation that is extended by other

103

4. Variability Management using Higher-Order Transformations

SPL for transformations

|

rea d.
read,
readI

enerate
generate

completion completion
transformation transformation

Figure 4.2.: SPL for model transformations generating completion transformations.

HOTs). The transformation sequence, and its elements (ie. models and
meta models) can be regarded as a software platform. A family of products
can be automatically generated using different customizations. In this sce-
nario, the product of our SPL is again a transformation. The Higher-Order
Transformation Patterns (described in Section 4.3) give further insights into

the implementation of our SPL for transformation development.

4.2.3. Transformation Variability

Variability is one of the core aspects of Software Product Lines. In the
context of SPLs for transformations, we can distinguish different types of
variability. In this section, we discuss the relevant variability types and their

manifestation in transformations.

Specifying variability Transformations of one family of products usu-

ally have many common parts, although they can carry significant differ-

104

4.2. Introduction of the CHILIES Approach

ences. Typically, these differences define the variation points. We under-

stand variant and variation point as follows:

Definition 9 Variant and Variation Point
One variation choice, defined by one configuration instance, is called vari-

ant. A group of all possible product variants defines a variation point.

In the running example described in Section 3.3.1, one variant is a static
Thread pool with a pool size of 32 threads, defined by the feature config-
uration shown in Figure 3.16. We use the concept and notation of feature
diagrams to model variation points and corresponding feature configura-
tions to specify variants. The resulting model can include more than one
variant that origin from the same (in different location in model) or differ-
ent variation points. The syntax and semantics of the used feature diagrams
is specified by a metamodel that is introduced in Section 4.5.2.1.

Feature diagrams allow an independent definition of variability. In large
development projects, the complexity of variability can easily overwhelm
developers. The benefit of using a separate definition of variability is clearly
visible in such projects. A feature diagram-based definition of variability
in a form of a tree allows to, when necessary, hide a variation point or dive
in a variation point and implement it in separation. Thus, developers can
work on the system using different views on the system with the required
level of detail. The implementation of the selected feature configurations
is then realized automatically as a transformation or generator that expands
all the required details and their configurations in the target model.

Moreover, by using feature diagrams we allow easy configuration of vari-
ants, by choosing from several configuration alternatives. Constraints be-
tween the alternatives limit the choices to valid combinations. Such vari-
ability specification is simple and easy to use. Transformation developers
do not need to learn complex formalisms, they simply select a set of op-

tions.

105

4. Variability Management using Higher-Order Transformations

Characteristics of Variability The type of variability considered in
this thesis is source model independent and source metamodel dependent.
Source model independent means that the feature effects are only defining
mapping between the feature and the realisation of this feature by elements
conform to the source metamodel. Thus, there is no mapping needed be-
tween the feature effect and the source model. The realisation of feature
effects is source model independent. However, feature effects are applied
to and transform elements of the source metamodel. As such, feature ef-
fects depend on the source metamodel.

Variability of Completions In the previous chapter, we discussed per-
formance completions. The variability of completion manifests as follows
(cf., Figure 4.3): (i) in completions many configuration options have pa-
rameters (P1, P2) that can be varied. Precisely, the parameters are stored in
feature effects of the feature diagram. One part variability implementation
is resolving these parametrisations. A variant is constructed by providing
values (V1) to these parameters (e.g., Pool:size=32). This variability is
limited only on the locations where the parameters are defined.

In the next step (ii) the annotated (or other relevant) model element
(called pivot element) from the source model is removed and on its place
is the required detailed model subsystem (e.g., completion instance) in-
jected. The completion instance is composed from resolved feature effects
(black triangles in Figure 4.3), corresponding the feature configuration. The
feature effects are illustrated in Figure 4.3 by triangles with parameters
(P1,P2) and as composed triangles with resolved parameters (V1) in the
target model.

The feature effects correspond to the elements (e.g. component, con-
nectors), that are defined by the used metamodel and could be instantiated
into a model. The implementation of the model-to-model transformation
realizing this correspondence is implemented in declarative transformation

language QVT-Relations. A feature model defines the variation point. A

106

4.2. Introduction of the CHILIES Approach

Source Model Target Model

Configuration

Completion
Instance

annotates

Feature VA1
effects

Figure 4.3.: Variability implementation with configuration.

feature configuration is a driver of the transformation and defines one vari-

ant.

4.2.4. Formalisation

This section captures the idea of variable transformations for model com-
pletions formally. We formalize the essential terms of the completion con-
cept beginning with definition of models, transformations and transforma-
tion chains. Based on these initial definitions, we introduce a formalisation

of model completions and completion transformations.

4.2.4.1. Basic Terms

Models and Metamodels: Let MM be a metamodel, expressed as an in-
stance of some meta-metamodel MMM. For example, the PCM metamodel
is an EMOF instance. An instance of the metamodel is a model defined
as M. Then the set of all valid model instances that are conform to this

metamodel MM is defined as follows:
conf(MM) = {M|M is conform to MM}

Applied to the PCM, this definition allows to specify a valid model conform
to the PCM metamodel as M € conf(PCM), where PCM € conf(EMOF).

107

4. Variability Management using Higher-Order Transformations

Model Transformations: Let ¢ be a function, which maps an instance

of a source metamodel MMj to an instance of the target metamodel MMr:
t:conf(MMg) — conf(MMry), where VMy € conf(MMr)

= IM; € conf(MMs)
1(Ms) = My

For example, consider a transformation:
IPCM2SOFA - conf(PCM) — conf(SOFA)

tpcmasora maps instances of the PCM to instances of SOFA metamodel.
Model Completion: Let ¢ be a function, which is a left-total relation,
thus every source model is associated with one or more target models.
Thus, ¢ maps instances of a source metamodel Mg € conf(MMs) to a set
of target models (P), which are instances of the target metamodel My €
conf(MMr):
¢ conf(MMs) — P(conf(MMr))

In the following, we specify the applied completion by the description ¢
above the transition arrow (—).

The exact target domain of the completion is defined by its purpose. In
the following, we understand source model My as a set of model elements
(i.e., links between elements and attributes are transformed implicitly). The
definition of completion does not force ¢ to map every element of Mg to an
element (or number of elements) of M7. Therefore, we can define a source
model Mg as a subset of M that is mapped to Mr.

Functions mapping only a subset of the source model are called partial
functions, which allow to specify relations between two domains. More-
over, starting with the same source model and using two different comple-

tions (or only two different configurations of one completion) the trans-

108

4.2. Introduction of the CHILIES Approach

formation can result in two different targets. However, such completion
definition is not enough to support the implementation of our completion-
based processes. To support such processes, we it has to be possible to
map every model M7 to at most one model Ms. Thus, we need additional
variability specification. Therefore in the following, we define a suitable
variation specification allowing unambiguous definition of completions.
Completion Specifics: In case of completions, the source model Mg and
the target model My are instances of the same metamodel (MMg = MMy):

Mg € conf(MM) N My € conf(MM)

Thus, the relation between source and target model is (i) reflexive (Mg 5
M), when for ¢ was any pivot element identified; (i) asymmetric (Mg —
My # My < M), for each ¢; and (iii) transitive (Ms it My, AM7, e My, =
Mg c# My,), for ¢; # cj A ¢ij = ciocj (where ’o’ defines a composition of
transformation in a sequence). Such a relation is called partial order and
formalizes the intuitive concept of ordering, sequencing, and arrangement
of the elements in a set of completions. We discuss sequences of comple-
tions in Chapter 5.

Further, we focus on the definition of the completions and the variability
in the completion transformation ("c"). The goal is to define completion
transformations that associate one, and only one, target to any particular

input.

4.2.4.2. Variability Management

Variation Points and Variations: In this thesis, we deal with variability
where, for a given fixed source model Mg and a transformation #, a finite
set of possible variants v should be derivable. A set of all possible variants
P(V) of one variation point V is defined as:

V = {v|v € conf(MMr)}

109

4. Variability Management using Higher-Order Transformations

In the completion approach, one completion c defines at least one varia-
tion point (a completion can define multiple variation points in one software
architecture). All possible variation points are members of C = {¢;|i € I'}.
The set C denotes a finite set of available completions, called completion
library. Furthermore, the set V; with i € I:

v, C{vlljedy

denotes a countable set of possible variants for one completion c;.

To continue with our example, the variation point defined by completion

CThreadManagement 1S

V _{ T Pyatic TPd_vnamic
ThreadManagement — VThreadManagement’ VThreadManagement’

T hreadPerRequest SingleBackgroundT hread }
ThreadManagement® * T hreadManagement

Variant Composition: In the following, we use an operator < to specify
the variant composition. The < operator introduces variants into any source
model and weaves model elements defined by the completion variant into
the source model. The semantics of the < operator are represented by the
relationship that exists between the variant model and the source model.

More formally the semantics of < operator is defined as follows:
Q:conf(MMs) x P(V) = Mr,whereMr C conf(MMr).

Variation Implementation: Each v] can be implemented as a transfor-
mation that realises the variant composition and constructs one variant of

Ms € conf(MMs) by weaving an instance (v{) of variation point c;:

1 conf(MMs) % conf(MMy) : conf(MMs) <1v{

110

4.2. Introduction of the CHILIES Approach

Applying one variation of a completion, €.2. CTpreadManagement» T€SUILS

in a composition of the source model and the configured variant, e.g.

VTP static
CT hreadManagement *

Each variant of a completion could be applied to a number of elements
in the source model. The pivot element defines a type of model element the
completion can be applied to. Applied to the PCM, this definition allows to
specify, for example, completions applicable to connectors, components or
resource containers (also called infrastructure).

Model Elements: As the application domain of our approach is CBSE,
we identified possible pivot elements. Let E = Ecopmp U Econn U Ejprrq be
the set of model elements (identified in the source model) of three types:
components, connectors and infrastructures, respectively. Each of the sets
is finite (possibly empty). Each ¢; can be applied to a model element e € Ej,
where s = comp,conn,infra, and realise necessary model changes until
variant vlj reached. If vlj is again a set of valid model elements (which does
not need to be the case), e is removed and replaced with v{ inE.

Since t is a function, which has at most one corresponding result in
the target domain per element in the source domain, more parameters are
needed to be able unambiguous generation of the result. This yields an
idea to extend the function ¢ so that it would accept an additional input of
,i.e., the configuration model. We use feature diagrams as configuration
model. Thus, the additional input is fd € FD, where FD is a set of fea-
ture diagrams. Each completion is then defined as a tuple of the metamodel

element type e (so called pivot element), and a feature diagram fd:

c;i = (e, fd;)

A feature diagram defines a configuration metamodel, for example,
f dThreadManagement is a metamodel for the domain of CThreadManagement » its
instance is a specific configuration fc € conf(fdrpreaamanagement) (€.2.,
which defines one variant vrp, ;). The fdrireaamanagemen: itself is an in-

111

4. Variability Management using Higher-Order Transformations

stance of a metamodel for feature diagrams MMrp, fdrpreadmanagement €
conf(MMpgp).

Variability management with a Mark Transformation: One option to
support variability, transformations can be parametrised by a configuration
model. Such transformations are called mark transformations as explained
in Chapter 2. We formalise mark transformations as follows. Let t* be a
transformation, which maps an instance of a source metamodel MM and an
instance of a configuration metamodel MMcy, (e.g. metamodel of feature
diagrams) to an instance of the target metamodel MMr:

M2 conf(MMs) x conf(MMc y) — conf(MMr)

Thus, for one source model Ms € conf(MMs) and one configuration in-
stance M f € conf(MMc) the transformation derives one target model
Mr € conf(MMr).

For example, consider a transformation:

t%MthreadMng : COI’lf(PCM) X conf(dehreadManagement) — COI’lf(PCM)

mapping instances of the PCM and a Thread Pool configuration to new in-
stances of the PCM. The transformation takes T hread M anagement-specific
aspects as configuration.

Because the mark transformations depend on the mark model and the
source model, the transformations have to implement a mapping for each
possible configuration. To reduce the complexity of mark transformations
we use higher-order transformations introduced in the following.

(HOT

Higher-Order Transformation A higher-order transformation isa

transformation whose target and/or source model are again transformations.

tHOT

Thus, in general maps an instance of a transformation metamodel

MM7ansy to an instance of the transformation metamodel MMr 4

tgeorlgral o conf(MMrransy) — conf(MMtranss)

112

4.2. Introduction of the CHILIES Approach

This type of transformations is especially useful for transformation manip-
ulations, such as modification, insertion or merges. In the case of com-
pletions, we generate the completion transformation from the configuration
model. Thus, 79T maps an instance of a configuration metamodel MMcy,
to an instance of the transformation metamodel MMt 4 -

1O conf(MMc y) — conf(MMgansy)

Variability management with a Completion Transformation: Let ¢
be a completion transformation, which maps an instance of a source meta-
model MMy and applies completion c to it. The target model is an instance
of the target metamodel MM7. The ¢€ transformation is created by a higher-
order transformation /97 | The transformation t°T maps an instance of a
configuration metamodel MMcy, to an instance of the target metamodel, in
this case it is a transformation metamodel MM7,4,s¢ and generates required

completion transformation 7<:
HOT . conf(MMcy,) — 1€, where 1€ € conf(MMransy)

€1 conf(MMyg) 5 conf(MMr)

Thus, for one configuration model MMcy, the higher-order transformation
19T derives one transformation variant ¢€.

For example, consider a transformation:

HOT . c . eme;
t : dehreadManagement — tEPCMAT hreadManagement

CPCM<T hreadManagement
—

tCPCM<1Threadewgement : COnf(PCM) COnf(PCM)

mapping instances of the PCM to instances of PCM metamodel. The trans-
formation ¢PCM<ThreadManagement js generated already considering the
SdrhreadManagemens and its configuration. The transformation implements

only chosen the ThreadManagement-specific aspects and description how

113

4. Variability Management using Higher-Order Transformations

to instantiate these aspects in resulting PCM models. The configuration
instance of fdrpreadManagement 15 Used to generate tghreadManagemem.

Now, we can define a completion transformation as follows. Each variant
v{ € V; (defined by an instance of a configuration metamodel MMcy,) can

be implemented by a completion transformation:

¢ ij
N conf(MMs) = conf(MMs)

i

constructing a one variant of Mg (Mg < vl-) using variation point c;.

4.2.4.3. Transformation Chains

In this section, we discuss sequences of transformations, that represent an
ordered chain of model-to-model transformations. We focus on sequences
of higher-order transformations that build a software product line for trans-
formations. Sequences of completion transformations are discussed in
Chapter 5.

Chains of Transformations: Are ordered set of transformations #;. The
t; transformations are executed sequentially with #; being the first and #,
being the last transformation. The source model of transformation #; is
Ms = M; € conf(MM;) and the target model is M7 = M; 1| € conf(MM;4):

ti: conf(MM;) — conf(MM;;)
The chain of transformations ¢* is then executed as follows:
£ conf(MM;) 2> conf(MMis,) i ILN conf(MM, 1)

Chains of Higher-Order Transformations (HOTs) An example of a
classical chain of transformations is a chain of higher-order transforma-
tions t;,r. Let Tyor be an ordered set of HOTs. Similarly as chains of

classical model transformations, the members of the HOT chain generate a

114

4.3. CHILIES: Higher-Order Transformation Patterns

model, which is then input to the next HOT transformation. In the case of

completions, we express t;,r as follows:

thor © conf(MMryanss;) — conf(MMrransy,.,) -~ — conf(MMranss,. |),

In the completion approach HOTs take as an input model a configuration
model conf(MMcy,) or a transformation conf (MMt yanss), or even a meta-
model MM € conf(MMM) could be an input for a HOT. These HOTs are
then executed sequentially to derive the required completion transforma-

tion. We introduce the HOT chain in the following sections.

4.3. CHILIES: Higher-Order Transformation Patterns

With the growing trust in MDSD, projects of greater complexity and size
are developed based on the model-driven paradigm. Since the technology
for executing transformations, especially written in high-level, declarative
transformation languages, is of very recent date, there is very little knowl-
edge available on how to write such transformations (see Chapter 8).

As mentioned above the goal of this chapter is to provide software devel-
opers with an automated method to manage variability in transformations.
We assume that developers have identified possible variation points relevant
for their goal (e.g. performance prediction). Starting with these variation
points, we aim to generate the corresponding transformation variants real-
ising the related design decisions. For this purpose, we build an SPL for
transformations from building blocks called HOT patterns. These patterns
are reusable in different contexts and for different MDSD projects. The
HOT patterns define a body of knowledge on transformation engineering
and they introduce a number of useful guidelines for generation of com-

plex transformations.

115

4. Variability Management using Higher-Order Transformations

4.3.1. Motivation

Principles for the development of model transformations are crucial for the
success of MDSD. The importance of model transformations is compara-
ble to the importance of compilers for high-level programming languages.
The development of transformations currently takes place on a low-level of
abstraction, lacking appropriate reuse mechanisms. The support of large
transformation scenarios is still missing [171, 153], since the methods, pat-
terns, and building blocks for their development are not available.

The young field of transformation engineering needs principles for reuse
and modularity similar as for classical programming languages. Structured
Programming was introduced as a means to facilitate reuse, maintainabil-
ity, and to ease understanding. Similarly, most transformation languages
provide language constructs to define modules, many of them even sup-
port rule inheritance. Meta-programming is a programming paradigm with
the intend to write highly complex programs concisely by implementing
software on a higher level of abstraction. Model-driven engineering is
strongly related to meta-programming [9]. Meta-programming is about
writing programs operating on programs as first-class entities, and model-
driven engineering is about modelling transformations which operate on
models as first-class entities. The same fact accounts to Generative Pro-
gramming, where configurable generators are build capable of creating pro-
grams within one specific domain. Today’s MDSD paradigm embodies
many ideas of Generative Programming. Domain Engineering, or Product
Line Engineering is a process to systematically reuse domain knowledge,
with the objective of factoring out shared assets of a family of systems.

In more complex scenarios transformations can be specialized more than
once, for instance as more purpose-specific information becomes available.
This specialization can happen at different stages through the lifetime of a
transformation. Subsequently, the transformation should create a substan-

tial part of the final software product. Often the parts of the software are

116

4.3. CHILIES: Higher-Order Transformation Patterns

expressed in a domain-specific language (DSL) that is better suited to the
problem at hand than a general purpose programming language. The us-
age of DSL’s promises a shorter time-to-market, higher quality, reusability,
maintainability, portability, and interoperability. The reason is especially
the encapsulation of domain knowledge and improved communication with
domain experts through DSLs. A shift of knowledge is observable, as more
and more logic is implemented in transformations (Chapter 8). With larger
projects, developers not only have to face larger models, but also transfor-
mations of higher complexity.

One way to cope with the aforementioned challenges is to apply the
ideas of model-driven engineering to its own artefacts again. This imme-
diately leads us to raising the abstraction level even further with Higher-
Order-Transformations (HOTs), i.e. transformations which operate on
transformation(-model)s. The required transformations are generated and
manipulated by a HOT. This generation results in a more efficient trans-
formation code and generation overhead is minimal. Generated code can
be involved in further transformation generation and can itself generate

transformations, providing full multi stage capabilities.

4.3.2. Higher-Order Transformations

Transformations are an integral part of the developed system as first-class
elements of the model-driven architecture. As such, they can be themselves
generated and handled by MDSD, exactly like traditional programs. This
allows reusing MDSD tools and methods to generate new one (since trans-
formations of transformations can be transformed themselves). A wide set
of applications for such technologies appeared involving transformations
in the roles of both manipulating program and manipulated object. Such
transformations are called Higher-Order Transformations (HOTs). We de-
fine HOTS as follows:

117

4. Variability Management using Higher-Order Transformations

Definition 10 Higher-Order Transformations

A Higher-Order Transformation is a model transformation manipulating or
generating transformation models. The input and/or output models of such

transformation are again transformations models.

In the recent past, a number of approaches appeared where HOTs are
incorporated as a means to solve various problems in the model-driven do-
main [161, 158, 68]. Many application scenarios for HOTs explained in
these papers are based on similar patterns. Classifying all these scenarios
in a precise manner can, first of all, help to find new patterns, for example
by improving, synthesising, abstracting or refining existing ones. Further-
more, it can also help to detect shortcomings of transformation languages.
Last but not least, a set of scenarios can help designers incorporating HOT
techniques in future MDE architectures. Initial contributions [158] in this
area classify HOTs according to different categories such as synthesis, anal-
ysis, etc. However, these patterns build only very low-level primitives and
a deeper insight into the area of application as well as practical experi-
ences with complex generator structures are not gathered, yet. Examples
of such applications are synthesis of transformations from a source other
as transformation, as applied in [68]. Other applications are analyses of
transformations, as well as modification and composition of transformation
from a number of input transformations.

In this section, we present a set of Higher-Order Transformation Patterns
(HOT patterns) for transformation generation that allow manipulating and
generating transformations on lower levels of abstraction. These patterns
realise more complex goals and are solutions to reoccurring problems in
transformation engineering. In our implementation, the transformation ma-
nipulation primitives are provided through a library of patterns rather than
as a language extension, allowing a more robust and maintainable approach
than language extensions. The HOT patterns foster reuse and abstraction

allowing for larger transformation scenarios and better overview over com-

118

4.3. CHILIES: Higher-Order Transformation Patterns

plex model-driven systems. Moreover, we provide an implementation of
these patterns to realise Model Completions, which serve as an application
scenario for the HOT patterns. We realize the Model Completion approach
composing together three of the HOT patterns. Additional HOT patterns
identified during our work can be found in Appendix B. These patterns

encapsulate our experience with the application of HOTs.

4.3.3. Notation

In [158], Tisi etal. give a valuable overview on application scenarios for
HOTs. Their paper proposes a coarse classification of HOTs into what they
call base patterns. Base patterns make applications of HOTs distinguish-
able by the types and characteristics of their input and output models. The
four base patterns are synthesis, analysis, composition, and modification.
At least one input model or one output model needs to be a transforma-
tion model, otherwise we are dealing with ordinary transformations. We
consider these patterns as basic primitives and we classify our scenarios
representing more complex patterns according to these primitives.

L]
e
]

(a) Synthesis (b) Analysis (c) Composition

L]
(Olge&
]

(d) Modification

-0 O —

model transformation transformation model input / output

Figure 4.4.: Patterns of higher-order transformations (according to [158]).

119

4. Variability Management using Higher-Order Transformations

Figure 4.4 illustrates all four patterns following Yourdon & Coad’s no-
tation [38] of data flow diagrams (DFDs), displaying models as external
entities (rectangles) and transformations as processes (circles). We use the
same notation to illustrate HOT patterns. Thus, a transformation model,
being a model (rectangle) and a transformation/process (circle) at the same
time, is depicted as a circle surrounded by a rectangle.

To document the HOT patterns, we use a fixed notation inspired by
Gamma et al. [59], consisting of the following elements: the name of
the pattern, motivation for the pattern including the class of problems that
the pattern solves, specification of the solution using the QVT Relations
language including implementation details and discussion of benefits and

drawbacks regarding the pattern’s applicability.

4.4. Routine HOT Pattern

Transformation developers often have to implement repeatedly functional-
ity, such as copy routines, multiplying, referencing, mappings, markings
or flattening of models. However, many transformation languages (e.g.,
QVT-R, ATL) lack support for such default rules. Thus, transformation de-
velopers need to define these rules explicitly. It is a significant amount of
work particularly for completion transformations which, for example, copy
large parts of a model. We propose a generator pattern to derive generic

rules for given metamodels.

4.4.1. Definition

Name: Routine HOT pattern

Motivation: Writing a model-to-model transformation can be a tedious
task. Our experience with development of complex transformations shows

that a lot of routine work is needed to specify usable transformations. Most

transformations contain certain routine principles that frequently occur.

120

4.4. Routine HOT Pattern

Only after implementing these routine parts, it is possible to realise the
initial goal of the transformation. More specifically, to implement model
customisation, we first have to copy the necessary model elements before
integrating customisations. Although in-place transformations are useful
to describe this type of model changes, there are several reasons to prefer
the creation of a new models. First, in some scenarios, the source model
needs to be preserved. For example, in MDSPE developers typically use
the source model for a wide range of purposes, this source model offers a
highly-abstract view on the system, which is crucial to allow experts from
different domains to work with this model. Moreover, the customisations
of this model need to be propagated to the different purpose-specific mod-
els. Thus, starting with the same source model we have to create different
purpose-specific and customised target models. As consequence, the traces
between source model and target model become more explicit. Finally, we
are not restricted to endogenous transformations (i.e., transformations with
the source and target model in the same language), as in-place transforma-
tion are. In such scenarios, we can not avoid routine copies (or mappings)
of model elements. To alleviate from this issue, the Routine pattern takes
advantage of the fact that the metamodel is also a model at the same time.
Thus, from the metamodel as input the HOT generates a transformation that
creates a required model, for example an exact copy of a given instance of
that metamodel.

To decrease development effort, we propose a generative method to take
away the routine work from developers. We automate the generation of rou-
tine activities such as copying, multiplying elements or flattening of mod-
els. Using the Routine pattern we can generate a frame, which in most
cases only copies model elements. This frame can then be used as a basis
to integrate customisations and create transformation variants.

Specification of the Routine pattern was motivated by the need to im-
plement a set of frequently occurring patterns in transformations. The ba-

sic transformation patterns (Mapping, Refinement, Abstraction, Duality and

121

4. Variability Management using Higher-Order Transformations

Flattening) that frequently occur in model-to-model transformations were
introduced by Iacob, Steen and Heerink in [87]. The patterns Mapping, Ab-
straction, Flattening are typical applications for the HOT Routine pattern.
Model transformations realising these patterns do not introduce new seman-
tic or duality to the model instances and, therefore, they can be synthesised
for any metamodel language without any additional expert knowledge. Pat-
terns such as Refinement or Duality require additional information about the
semantic of the target model and as such they can not be generated simply
from the metamodel. The additional patterns (identified by us), which suit
as very fortunate application scenarios, are Copying or Marking. For the
creation of the transformation frame, that is basis for the customisation of
transformations, the last two patterns are especially important, therefore we
focus on these patterns in a more detail (see Section 4.4.2).

MAPPING: The goal of this pattern is to establish a one-to-one rela-
tions between elements from the source model and elements from the target
model. Mapping is used when the source and target models are conform to
different metamodels. This pattern is the only one assuming that the source
and target metamodel are not equal. As such this pattern as only one re-
quires additional mapping model that specifies the mapping between two
metamodel languages. Because of the intuitive importance of this base pat-
tern it is the most implemented pattern in existing MDSD tools. Most of
the tools, for example [111, 90], require to specify the mapping model us-
ing a graphical user interface. Based on the resulting mapping model a
transformation is generated. This transformation then maps any instance of
the source metamodel to a corresponding instance of the target metamodel.

The generated mapping rules are specified as follows:

top relation XYMapping {
nm: String;
enforce domain source x: X {context = cl: XContext {}, name = nm};

when {ContextMapping(cl,c2);}
}

1
2
3
4 enforce domain target y: Y {context = c2: YContext {}, name = nm};
5
6

122

4.4. Routine HOT Pattern

Listing 4.1: Mapping transformation rule (based on [87]).

This bidirectional mapping specifies that some element x of type X is re-
lated to some element y of type Y, when their parent contexts are related
as defined by another mapping relation ContextMapping and their names
are equal. For example, using this pattern we can map a BasicComponent
defined in the PCM metamodel to a Component defined in the SOFA meta-
model using this base pattern. Thus, we can translate any model in one
syntax (e.g., PCM) into another syntax (e.g., SOFA) using mapping trans-
formations.

In the following, it is assumed that the source and target model are con-
form to the same metamodel, i.e. we implement endogenous transforma-
tions. Thus, the generated transformations would be a modifier of the model
instances to fulfil a particular goal.

ABSTRACTION: This pattern abstracts from model elements in the source
model while keeping the incidence relations of its model elements [87] and,
thus, from specific information in the models. The abstraction pattern can,
for example, be used to remove subtypes that carry additional information
from a model. In a meta-model for component-based software architecture,
we can, for example, remove the distinction between basic components
and composite components which both are specialisations of components.
The generalised abstraction rule, where X is a subtype of abstract type

ModelElement, is specified as follows:

top relation XAbstraction {

checkonly domain source x: X {
inlncidence = in : Incidence { name = nm_in: String, source = ssl:ModelElement{}},
outIncidence = out : Incidence { name = nm_out: String, target = tt1:ModelElement{}}};

name = nm_in + nm_out, source = ss2:ModelElement{}, target = tt2:ModelElement{ } };
when {Mapping(ss1,ss2);Mapping(ttl,tt2)}
}

1
2
3
4
5 enforce domain target e: ModelElement {
6
7
8

Listing 4.2: Abstraction transformation rule (based on [87]).

123

4. Variability Management using Higher-Order Transformations

FLATTENING: This pattern removes the hierarchy from the source model.
The reason to create hierarchical models is usually the understandability of
the models, however, in order to generate code based on such models or
formally analyse them it may be necessary to flatten the model. For ex-
ample, in component-based models ComposedComponents contain a set of
BasicComponents. All the components are either BasicComponents or
ComposedComponents. The goal of the flattening pattern is to create mod-
els only containing BasicComponents, removing the model’s hierarchy.

The generalised flattening rule is specified as follows:

top relation XFlattening{

checkonly domain source c¢_x: Composite_X {context = c: Composite_Context {}};
enforce domain target x: X {};

when {XMapping(c,x) or XFlattening(c,x);}

}

top relation XMapping{
nm: String;
checkonly domain source x1: X {name = nm, context = cl: Context {}};

© ® N AN L A W N -

enforce domain target x2: X {name = nm, context = c2: Context {}};
11 when {XMapping(cl,c2) or XFlattening(cl,c2);}
12 }

5

Listing 4.3: Flattening transformation rule (based on [87]).

The transformation strategy is to map all the Composite_X elements
to the simple X elements in the target model. The relation is created by
XMapping or XFlattening when the context was composite itself.

COPYING AND MARKING: The Model Copier pattern introduces means
to overcome the lacking support for in-place transformation and a copy op-
erator in QVT Relations (QVT-R). Such transformations keep most model
elements as they are while adding, removing or modifying only specific en-
tities. QVT-R does not support a way to easily create such transformations
as there is no in-place transformation or copy operator available.

QVT-R does not support default copies. In contrast to QVT-R, QVT
Operational Mappings (QVT-O) provides a deep copy operation that can

be used within imperative mapping rules. The Atlas Transformation Lan-

124

4.4. Routine HOT Pattern

guage (ATL) even supports a special mode that allows the transformation
programmer to specify that a transformation should be run as a refinement
transformation. This means that all elements are copied by default while
those elements that are matched by transformation rules within the actual
transformation are not. Triple Graph Grammars (TGG) [144] naturally sup-
port in-place transformations. To be able to implement refinement scenar-
ios with QVT-R more efficiently we introduced the automated creation of a
default copy transformation using the Routine pattern. The generated copy
and marker rules are specified as follows:

1 top relation XCopy{

2 checkonly domain source x: X {name = nm, context = c: Context {}};

3 enforce domain target copied_x: X {name = nm, context = copied_c: Context {}};
4 where {XMark(x,copied_x);

5 ContextMark(c,copied_c); }

6

7

8

9

}

relation XMark{
checkonly domain source x: X {};
10 checkonly domain target copied_x: X {};

n }

Listing 4.4: Copy and Marker transformation rules (based on [68]).

The first relation in the Listing 4.4 is a copy relation, which simply
matches an instance of required type in the source model and enforces (i.e.,
creates) a corresponding instance of this type in the target model. It is
a top relation and as such is applied to every instance of this type in the
source model. In the where clause of this relation, a so-called the marker
relation is called. A marker relation is a non-top relation that can only be
called from the where clause of a copy rule after the particular element was
copied. By this principle, marker relations indicates which elements have

already been copied.

Implementation: The base patterns introduced above can be used to

specify a routine transformation for an arbitrary metamodel. The patterns

125

4. Variability Management using Higher-Order Transformations

are generic with respect to the metamodel and therefore they can be di-
rectly generated from a given metamodel. In this section, we investigate
the structure of the model-driven generator and its used elements (models,
metamodels and transformations). Figure 4.5 illustrates the implementation
of the generator. Figure 4.5(a) shows the case where the source and the tar-
get metamodel are not equal. In this case, we may need an additional map-
ping model Map to implement the mapping pattern. Figure 4.5(b) shows
the setting when the source and target metamodel are equal. In this case,
the only input for the HOT is the metamodel. Based on the metamodel, we
can generate a copy transformation that serves as a frame for later, more

complex transformations..

input ! : input

MM, MM,
..... oo L
N N

2l Sl

Sl output G

g g
21 21

IS <

8! 8!

o

(a) Routine with non-equal (b) Routine with equal source and target
source and target metamodel — metamodel

Figure 4.5.: Routine HOT pattern.

To implement the copy and mark pattern, the HOT generates a copy
transformation from a metamodel as follows (cf. Figure 4.5): First, the
HOT creates one rule for each metaclass which copies the respective in-

stance model element and another helper rule marking it as copied. Copy

126

4.4. Routine HOT Pattern

rules use marker rules [88] to ensuring exactly one copy. Accordingly, the
HOT creates similar rules for attributes and relations.

Once the copy transformation exists, we need a mechanism to override
rules for elements which should be left out (i.e. deleted), added, or modified
for the implementation of a transformation. Transformation engineers can
declare such rules separately or weave them into the transformation defin-
ing the copy rules using another HOT. Alternatively, it is possible to use

QVT-R’s native rule overriding mechanism.

Benefits and Drawbacks: The routine pattern takes the development
effort from developers and automates the generation of frequently used
transformation frames. By implementing the abstraction or flattening pat-
terns, we can provide model versions with different levels of abstraction.
Developers can use these transformations to prepare their models for anal-
ysis or code generation.

The most significant benefit is the incrementability. As the metamodel
evolves and new entities are introduced HOTs can incrementally add rou-
tine rules and, thus, keep transformations up to date. If necessary, trans-
formation engineers can adapt the generated transformation in an iterative
way. Traceability, originally provided by the underlying language frame-
work, can be utilised in a beneficial way to support any subsequent cus-
tomisation process: the trace model of the HOT is able to indicate those
parts that did change since the last run.

Although, throughout this thesis, we use routine pattern only to generate

copy rules, this pattern is applicable to derive other rule types too.

4.4.2. Completions Support: Generation of a Routine
Transformation Frame

The completion transformations copy large parts of a source model, this is
a tremendous task. Since QVT Relations does not support default copies,

a completion definition needs to specify copies explicitly. In this section,

127

4. Variability Management using Higher-Order Transformations

we investigate copies in QVT Relations. First, we use the generic patterns

for copy rules. Second, we provide a way to generate the definition of a

copy transformation for a given metamodel. The generation is specified as

a higher-order transformation. Finally, we explore several ways to derive a

completion from a generated copy transformation.

transformation Ecore2copyQVT (m ecore, oclstdlib: ecore, qvt: QVTRelation) {
2 top relation Package2Transformation {

3 n:String;

4 checkonly domain mm ePackage: ecore::EPackage {
5 name = n

6 he

8 enforce domain qvt t: QVTRelation:: Relational Transformation {

9 name = 'Copy’ + n,

10 modelParameter = sourceMM: QVTBase: : TypedModel {
11 name = ’source’,

12 usedPackage = uPackage: ecore::EPackage{}
13),

14 modelParameter = targetMM: QVTBase: : TypedModel {
15 name = ’target’,

16 usedPackage = uPackage: ecore::EPackage{}
17 }

18 I8

19 when {

20 ePackage. eContainer (). oclIsUndefined ();

21 }

22 where {

23 uPackage = ePackage;

24 MarkTypedModel (sourceMM, targetMM) ;

25 MarkTransformation(t);

26 }

27 }

)
=3

relation MarkTypedModel { ... }
relation MarkTransformation { ... }

w
=)

32 top relation Class2CopyRelation { ...}
33 top relation SubClass2MarkerCalllnWhen { ... }

35 top relation Class2MarkerRelation { ... }

36 top relation Attribute2Relation { ... }

37 top relation Reference2Relation { ... }

38 top relation ExternalReference2Relation { ... }

4.4. Routine HOT Pattern

39 top relation MarkBooleanType { ... }
40
4

relation Class2Domain { ... }

42 relation Attribute2Template { ... }
43 relation Reference2Template { ... }
44 relation Class2MarkerCall { ... }

45 relation Class2MarkerCalllnPattern { ... }

@

Listing 4.5: Overall structure of the Routine HOT (based on [68]).

In the completion approach we embed a special DSL for completions
into host language. We exploit the fact that a large part of the completions
could be expressed relying on the facilities of the host language. In our sce-
nario the host language is defined by the PCM metamodel. Macros were
often used for this purpose. Embedding a DSL into an existing host lan-
guage allows inheriting its standard mechanisms and facilities, including
transformations and tools. Each DSL is specified as an individual feature
model.

To integrate model instances conform to the DSL defined for the partic-
ular completion, we have to implement completion transformation. Using
HOT patterns and chains built by these patterns we generate completion
transformations. The first step of this generation is creation of a routine
transformation frame providing a copier functionality.

The generator for a copier transformation was introduced in [68]. We
discuss the implementation for the purpose of completion transformations.
The Routine HOT is written in QVT Relational and captures the patterns
discussed in the previous section. The source model of the Routine HOT
can be any Ecore metamodel and the output model is a QVT Relational
transformation. For this purpose, the Routine HOT requires the Ecore meta-
metamodel, the OCL standard library, and the QVT Relational metamodel.
After executing the Routine HOT the model of the routine transformation is
created. In our case, it is the copy transformation, implementing the Copy-
ing and Marking pattern. The resulting transformation model is expressed

in its abstract syntax (of the QVT-R metamodel) and can be used directly

129

4. Variability Management using Higher-Order Transformations

Input
Metamodel

Metamodel

1 top relation Class2CopyRelation {
2 souroeMM, tangetMM : GV TR : TypedMocdel;)
3 checkonly domain mmn eClass: ecore::EClass {
1 ePackage = ePackage: ecore::EPadkage {},
5 rame=n : String{}
6 abstract = false —only conerete classes get a copy relation
7 L
8
+—s= enforce domain qvt rel: Relation {
/ 1 rame = cPackage.mame + '_’ +n + Copy’,
11 isTopLevel = true,
12 : :Variable {},
13 variable = targetVar: ocl::ecore::Variable {},
T _domain = sourceDom: QVTRelation: : RelationDomain {
(15 isCheckable = true c
16 : 59
{——————— _domain = tagetDom: QVTRalation: : RelationDomain { °%h
14 18 isEnforceable = true 6 E
19 o .5
20 _transformation — transfo: QVTRoktion:: Relational Transformation {}, o u%
f-rr————— _where = wherePattern: QVTHo: :Pattern { S 2
/ 2 predicate — pred: QVTR=:: Predicate T ®
23 conditionExpression = markerCall: QVTRaation: : RelationCallExp {} ~
u 3
25 }
2 L
2
28 when {
2 Package2 Transformation(rootPackage(ePackage), transfo) or
30 MarkTransformation(transfo) ;
3t MarkTypedModd(somroeMM, tanse VM) ;
32 }
33 where {
a4 Class2Domain(smmeMM, eClass, source’, sourceVar, sourceDom);
35 Clas2Domain(targeeMM, oClass, target’, targetVar, targetDom);
36 Class2MarkerCall(eClass, sourceVar, targetVar, markerCall)
ar }
8 1
c
- 1 top relation XCopy{ 2 g
. % @ty dr (e e B e, e = e @ SRS
;c:>3 enforce domain target copiedx: X {mame —nm, context — copied_c: Context {}}: O &
p 4 where MXMak(x, copiedx);

ContextMark{c,copied_c);}

5
8}

Figure 4.6.: Generating a copy relation (based on [68]).

130

4.4. Routine HOT Pattern

in this form for further manipulation. However, for the execution we use a
simple pretty printer to generate its textual syntax.

The overall Routine HOT works basically analogously to the patterns
shown in the previous section. The overview through the basic generator
structure is shown in Listing 4.5. As shown there, a copy transformation
is generated (c.f. Package2Transformation) for each package in the
metamodel. The remaining relations of the Routine HOT generate relations
of the copy transformation.

In the following, we discuss the most important parts of the Routine
HOT implementation. The relation Class2CopyRelation generates a
copy relation for each non-abstract metaclass. For each subclass the re-
lation SubClass2MarkerCallInWhen adds a negated call to the corre-
sponding marker relation to the when clause of the created copy relation.
Then, the marker relation for each metaclass is generated by the rela-
tion Class2MarkerRelation. Additionally, we have to create a copy
relation for each attribute and reference as well. This is done by the
relations Attribute2Relation and Reference2Relation. The de-
tails of this generation are discussed in [68]. In the following, we fo-
cus on the implementation of the relations Class2CopyRelation and
Class2MarkerRelation and their mapping to the base patterns from Sec-
tion 4.4.1.

Figure 4.6 illustrates the generation of copy relations from metaclasses
within one metamodel package. For each relation, a where clause is created
and the corresponding marker relation is called. Furthermore, the necessary
domain patterns to match the source and target constructs are created by the
Class2Domain relation.

Figure 4.7 shows relation generating the marker pattern that is created
for all metaclasses including abstract ones. That results in a call from the
where clause to mark relation of the superclass. Similarly, we can generate
routine transformations based on the other patterns introduced in the pre-

vious section. Figure 4.8 illustrates the generation of the abstraction rules

131

4. Variability Management using Higher-Order Transformations

ePackage

X

eClass « \

Input
Metamodel

Metamodel

1 top relation Class2MarkerRelation {
2 scuroeMM, targetMM: QVTHee: : TypedModd;)
3 checkonly domain mm eClass: ecore::EClass {

a ePackage = ePackage: ecore::EPackag {},
ing(}

mme = n

L
enforce domain qvt rel: Relation {

s me = cPackage.rame + 7.7+ n+ Ma’,
/ a isTopLevel — false,
10 variable = sourceVar: ocl::ecore::V
1 variable = targetVar: ocl::ecore::V. .
= domain = souroeDom: QVTRelation: :RelationDomain {
/ 18 isCheckable = true o g
1 I ko=
fte—————— _domain = targetDom: QVTRelation: :RelationDomain { <]
/ 16 isCheckablo = truo QE
17 g T L
18 _transformation = transfo: QVTReltion:: Relational Transformation {}., 52
19 where = wherePattern: QVTHse: :Pattern {} %’ S
20 |4 =
21 when { =
22 Package? Transformation(rootPackage(ePackage) , transfo) or
23 MarkTransformation(transfo) ;
2 MarkTypodhoddfsouresMM, tangeMM) ;
a5
26 where {
o Class?Domain(soureMM, eClass, *source’, sourceVar, sourceDom):
28 Clas2Domain(targetMM, eClass, ’target’ , targetVar, tangetDom);
20 eClass.eSuperTypes = forAll(st | Clas2MarkerCallinPattern(st,
0 sourceVar, targetVar, wherePattern)):
31 }
32 }
c
5 - S
~ C 1 relation XMark{ E =
2 checkonly domain source x: X {}: =0
- 3 checkonly domain target copiedx: X {}; x
4}

Figure 4.7.: Generating a marker relation (based on [68]).

132

4.4. Routine HOT Pattern

for all classes in the metamodel. All subclasses will be replaced by their

corresponding superclass after executing generated relation.

4.4.3. Summary

Using the HOT Routine pattern, we can generate transformation frames
necessary for the integration of the customisations. In our case, the re-
sulting transformation frame for a completion is generated from the PCM

metamodel. Listing 4.6 shows a fragment from this transformation frame.

1 transformation CopyPCM_Fame(source: pcm, target: pcm) {
2 relation MarkBasicComponent {

3 checkonly domain source sourceBasicComponent:pcm: : repository : : BasicComponent{ };
4 checkonly domain target targetBasicComponent:pem:: repository : : BasicComponent{ };
5 where {

6 MarkImplementationComponentType(sourceBasicComponent, targetBasicComponent);
7 }

10 top relation CopyBasicComponent {
11 checkonly domain source sourceBasicComponent:pcm: : repository :: BasicComponent{ };
enforce domain target targetBasicComponent:pcm: : repository : : BasicComponent{ };

13 where {

14 MarkBasicComponent(sourceBasicComponent, targetBasicComponent);
15 }

16 }

17

18

19

20 }

Listing 4.6: The transformation frame for copying of PCM models

To generate more complex transformations, the next HOT in a chain can
inject customisation (i.e., transformation fragments) in a transformation
frame. The injection is controlled by a configuration model that specifies
the activated features as well as necessary input parameters. Additionally,
we have to define exception rules for the model elements that must not
be copied. For example, as explained above, the completions annotate so

called pivot elements. These elements are replaced by the customisations

133

4. Variability Management using Higher-Order Transformations

X
1 eSuperClass « N\

ePackage ‘ [r
X

eClass

Metamodel

10
11
12
13
14
15

15

20

21
22

1 top relation Class2A bstractionRelation {

2 somoeMM, tangetMM : CATBxe: : TypadModdl; /
3 checkonly domain nm superClass: ecore::EClass {

eSubTypes = subClass: ecore::FClass {}
ePackage = ePackage: ecare::EPacag {},
. mme =n : String{}

= enforce domam qvt rel: Relation {

+n + "Abstraction’,

rame = ePackage.reme + '
isTopLevel = true,

argetVard: ocl:zecore::Variable {}

Tt _domain = sourceDom: QVTRelation: : RelationDomain {

—
—
r

isCheckable = true

1

T _ddomain = targetlJom: QVTRelation: : RelationDomain {

isEnforceable = true

I
—transformation = transfo: QVIRelation:: Relational Transformation {}.

23— _when = whenPattern: QVTBue: : Pattern {

predicate = pred: (VTi::Predicate {
conditionExpression = mappingCalli: QVTRelation:: RelationCallExp {}
conditionExpression = mappingCall?: QVTRektion: : RelationCallExp {}

1
}
b
when {
Package? Transformation(rootPackage(ePackage) , transfo) or
MarkTransformationtransfo) ;
Maek TypedModd(someMM, targetMM) 2
1
where {

Class?Domain(soureMM, eClass, "sourc
Class2Domain(targetMM, eClass, target’, targetVar, targetDom

134

-

1 top relation XAbstraction {
checkonly domain source x: X {

2
3
4
5
[}

&

inTncidence = in : Incidence { rame = nm in: String, source = ss1:ModelFlement{}},
outIncidence = out : Incidence { name = nmow: String, target = ttl:ModdFlement{}}};

enforce domain target e: ModelElement {

when {Mapping(ss1,ss52);Mapping(ttl , e

I

name = nmun + nmout, source = s52:ModdElement{}, target = t82:ModelFlement{}};

Figure 4.8.: Generating an abstraction relation.

Input
Metamodel

Higher-order
Transformation

Abstraction

Relation

4.5. Composite HOT Pattern

and on their place we integrate more detailed subsystems. Thus, the next
HOT could modify the generate frame itself. For this purpose, the most nat-
ural possibility to introduce exception rules is to manually introduce rules
that are called instead of the overwritten ones. Another, option is to cre-
ate a set of exception rules and use a simple HOT to integrate these in the
generated frame.

In case of completions these exceptions are rather simple. The pivot
elements that can be annotated by completion are only of three types. Ap-
plied to the PCM, completions are applicable to connectors, components
or resource containers (also called infrastructure). Thus, we have only
three types of simple exception rules. For example, an exception rule for
a basic component would be an top-level relation that overrides the gen-
erated CopyBasicComponent rule and marks the component with a tag
isAnnotated = true as already copied. After this step, would the ex-
ception rule calls the original CopyBasicComponent rule to copy all other
components.

The Routine pattern is used to generate completion transformation as a
first pre-processing step. Into the resulting transformation frame we inte-
grate feature effects defined by the completion configuration. The next
pattern called Composite HOT is dealing with the issue of customisa-
tion of transformations and follows the Routine HOT in the chain of pre-

processors.

4.5. Composite HOT Pattern

Model-driven application engineering builds on the concept of model trans-
formations that have to be customised for different purposes. With existing
MDSD tools, application developers need to define customisation transfor-
mations manually, including all possible configuration combinations. Due
to the high number of possible initial requirements, such a development

method is costly and means significant effort. Currently, there is a lack

135

4. Variability Management using Higher-Order Transformations

of automated support for integrating these configuration decisions into the
development process of transformations.

To address these issues, we introduce the Composite pattern that weaves
additional customisations into transformations. In many cases, these cus-
tomisation are highly variable and configurable.

In Chapter 3 we discussed the Model Completion concept. In the fol-
lowing, we introduce a novel approach for automated feature-model-based
generation of completion transformations. For this purpose, we introduce
the Composite HOT pattern that can be used to build generators composing

transformation fragments depending on configuration.

4.5.1. Definition

Name: Composite HOT pattern In many domains, requirements re-
garding the final software product are constantly evolving. Customisations
that are based on these requirements are a foundation for the creation of
product variations and have to be integrated in transformations. Require-
ment of customisation introduces demands for highly efficient and low-
complexity reconfiguration methods.

In our application scenario, we use feature diagrams to express config-
urations. The completion transformation is based on this feature diagram.
Using the completion configuration on the abstract level we can generate
transformations to complete the models with completions on the lower level
of abstraction. Thus, we customise our models for the performance predic-
tion.

Although our proposed approach has a wide range of application do-
mains, we further investigate opportunities in the component-based ap-
plications domain (see Section 4.5.2). To illustrate the application of the
presented pattern, we use the Thread Pool running example introduced in
Chapter 3.3.1.

136

4.5. Composite HOT Pattern

Motivation: Required completions could occur in different configura-
tion variants (e.g., middleware configuration). The most frequent way to
configure model transformations is by means of external annotations to a
source model, i.e., mark models. Mark models are used to provide config-
uration details that are specific to the source model. However, this way of
transformation configuration is not preferable in our scenario. The details

of the Model Completion concept and its motivation are further discussed

MM Completion Library

,,\«conforms—to»

e — woniolims=2o» _ _ . _

: 7 ;
1 v !

/
Abs é) Abs' @ Abs*
&

in Chapter 3.

HOT

Conc

oA

Figure 4.9.: Overview of Model Completion concept.

In our scenario, configuration happens on a higher level of abstraction.
In this case, configuration itself is a definition (or model) of the transfor-
mation on the lower level of abstraction. The Composite pattern decouples
the source model and the configuration. The configuration is then source
metamodel-independent and can be reused in different contexts. Such con-
figuration allows to define independent completion transformations that are
building blocks used to realise the same completion activities in different

contexts as illustrated in Figure 4.9.

Implementation: The implementation of the Composite pattern con-

sists of two steps: (i) first, we have to implement a reusable and config-

137

4. Variability Management using Higher-Order Transformations

urable construct encapsulating a required variation point, which can be, for
example, a completion registered in a completion library; (ii) second, we
need a HOT able to compose necessary transformation fragments (defined
for the variation point) and integrate them into one transformation (cf. Fig-
ure 4.9).

Figure 4.10 shows the structure of this pattern in more detail. On the
metamodel level, we define variation points VP in the form of configu-
ration models (in our case, feature diagrams) conform to the configuration
metamodel MMy p (feature diagram metamodel). Each configuration model
encapsulates a set of transformation fragments 7TF mapping the configu-
ration options (features). These transformation fragments are transforma-
tions themselves, as such they are conform to the transformation metamodel
MMy and require references to the source and target domain. The source
and target domain are defined by the source MM; and target metamodel
MM,. Similarly as the Routine pattern, the Composite pattern has a variant
with an equal source and target metamodel. In this case, the source and
target domain are defined by the same metamodel. On the model level of
this pattern, we can instantiate variants Var conform to the variation point
metamodel VP. Starting with a variant Var a HOT generates a comple-
tion transformation 7. This HOT merges transformation fragments to the

resulting transformation.

Benefits and Drawbacks: Performing the model transformation con-
figuration automatically based on external configurations instead of models
separates the development of variable construct from the actual model. This
separation of concerns can achieve high variability and flexibility in the de-
velopment of software applications. The required transformation fragments
do not get polluted with code that is only responsible for checking the ac-
tual feature configuration. Furthermore, as the binding of fragments and
features is more explicit this alleviates the complexity of transformation

evolution.

138

4.5. Composite HOT Pattern

source domain

~
MMyp MMy
A A
| |
1 A A
MM, VP *. TF :targetdomain MM,
A A A Metamodel level
PR | : ... MOdelleveI
Var
input

Legend
— > association
= conforms to
—» input/output

«conforms-to»

«conforms-to»

ES
\ 4
v
&

Figure 4.10.: Composite HOT pattern with non-equal source and target metamodel.

The main advantage of using HOTS in this scenario is that developers can
focus on the impact of one selected feature on the model at a time and de-
velop transformation rules for this feature only, they are not concerned with
all the feature combinations and their dependencies. Using conventional
transformation development, the developer has to consider all the possi-
ble configuration combinations and check the state of features (selected or
eliminated) by accessing the configuration model from the respective trans-
formation rules. Even later in development, the dependencies (where- and
when-clause) between the relations need to be resolved manually. Our ap-
proach solves these dependencies by the transformation generation based
on defined relations and constraints in the feature model. Additionally, the
generated transformations are more structured and therefore better under-
standable.

Despite the advantages in simplifying the configuration of transforma-
tions with our feature model based approach there are also some drawbacks

139

4. Variability Management using Higher-Order Transformations

that need to be discussed. One problem arises when the feature configura-
tion is changed and the target model needs to be updated according to the
newly woven transformation. The transformation traces that were stored
during the last transformation execution will potentially become invalid as
the structure of the transformation may have changed significantly. Incre-
mental updates (which are mostly based on the transformation’s trace links)
then are impossible. However, this problem only occurs if the transforma-
tion engine uses typed traces that are specific to the transformation that
created them. Generic trace links pose less problems to the approach.
Another drawback of applying HOTs in this scenario is the debuggabil-
ity of the transformation. The debugger of the transformation engine will
execute and observe only the generated and woven transformation. Hence,
a transformation developer will need to understand the generated transfor-
mation in order to be able to debug it. A specialised debugger would be

needed if debugging should be possible on the configuration level.

4.5.2. Completions Support: Generation of a Completion
Transformation

ﬂompletion Transformatio“

Routine Copy&Mark
Metamodel HOT Culesj
Configuration Composite Completion Exception

HOT \Rules Rules

Figure 4.11.: Building elements of completion transformation using Routine and
Composite pattern.

The basis for a completion transformation is a copy transformation gen-

erated by the Model Copier pattern. The parts of the model that are com-

140

4.5. Composite HOT Pattern

pleted by the configured transformation will then replace the standard copy
rules for the corresponding metamodel element. The composition process
of the transformation fragments based on a feature selection that follows
here is realised using a HOT (cf. Figure 4.9). The integration of comple-
tion transformation and the optional exception rules into the frame of copy
transformation is illustrated in Figure 4.11.

In the following, we discuss the used configuration model and its meta-
model. Further, we introduce the fragment composition principle and its

implementation as a higher-order transformation.

4.5.2.1. Metamodel of the Extended Feature Model

Feature models are hierarchical decomposition of features including infor-
mation whether a feature is mandatory, alternative or optional. The features
could be user-visible characteristics of the application, for example evolu-
tion of application variants in product lines or more specific optimisations
for better performance.

The metamodel of the used feature diagrams is illustrated in Figure 7.1.
To be able to use feature diagrams to configure transformations, we ex-
tended the feature diagrams introduced in [46].

The extensions to the feature model metamodel make it possible to add
transformation rules as annotations to the features. These extensions to
the used metamodel are depicted in Figure 7.1. The most important, even
quite non-intrusive extension, was the addition of a reference from the
Feature to the Relation class the QVT Relational metamodel. This al-
lows to annotate transformation fragments to features. As we also want to
allow the specification of variable values through feature configurations we
additionally added a reference to the OperationCallExp from the OCL

k)

metamodel. This allows features to refer to the ’=’-operation from the

OCL Standard Library and thus assigning values to variables that are e.g.,

141

4. Variability Management using Higher-Order Transformations

present in parent features. The third extension was the addition of so called

’DisambiguationRules’ which are explained in Section 4.5.2.2.

T type : AttributeTypes | chirelation

|| ChildRelation
I

p.*
i attributes
_El FeatureDiagra > E| FeatureGroup H Simple
I T min : Elnt
3 max : EInt
rootFeature
constraints 1.1
0.% 2..% children
source 1. Feature 0.*
b msngatorychildren

optionalChildren

[Constraint
T - target 1..*
5 description : EString

selectedFeatures
0..1

[RequiredConstraint |5 ExcludesConstrain variablef\ssignments
l_q—'i I% 0..%

I | 1] T OperationCallExp &
(from ecore)

disambiguationRules
0.* 0,.* 0.4
< <enumeration> variableAssignments .
2 AttributeTypes| relations
i iguati . Relation (o]
|1 Disambiguation! relations M
7 0..* | = isToplLevel : EBoolean

Figure 4.12.: Extensions to the Feature Model Metamodel.

Furthermore, the feature model could include feature composition con-
straints, that indicate which feature combinations are valid and which are
not. These constraints can either be hard (depends or excludes con-
straints) or weak (default values or allowed override). We will refer to

this constraints further in Section 4.5.2.2.
4.5.2.2. Feature-based Composition of Transformation
Fragments

Transformation Fragments in the Feature Model Tree: The divide-
and-conquer paradigm is an essential strategy for the development of trans-

formations with variability and in fact for the resolution of variability prob-

142

4.5. Composite HOT Pattern

lems in general. Dividing the variability domain in partial tasks focusing
on an one aspect of the model at a time decreases the complexity. As pre-
sented in Section 4.5.2.1, the nodes of the feature diagram are annotated
with transformation fragments. The transformation fragments implement
always only one aspect of the variability. The ability of the compositional
approach to produce complex transformations from smaller units allows to

compose these variability aspects and create different transformation vari-

ants.
ThreadPool 7
— . top relation TP {
Opt'm'za_“on checkonly domain in p :
Properties . ? Component {}
top relation TP Static (enforce domain out s:TP {
varSize : Integer; b
checkonly domain in p : -)
Component {};
enforce domain out s:TP { Statlc
size = varSize; -
Ti -
when |
TP (p,s) i
) -
where (TP Size
varSize = 100; --default sizeint=32 I
} = -
}

TP Static.varSize = size; M

>

Figure 4.13.: Simplified transformation fragments for the running example.

There are two ways how to implement the transformation fragments. The
language standards for model transformations offers two dialects: relational
language and operational language. Each one of these dialects can be used
in isolation. Combining of these approaches results in a hybrid transfor-
mation approach. We can implement transformation fragments in a strictly
declarative or in a hybrid manner. The hybrid transformation fragments can

call black-box operations implemented in an operational language between

143

4. Variability Management using Higher-Order Transformations

the rules in relations. This can be used, for example, to manipulate used
variables more directly, or to trace the execution flow in the relations. Thus,
hybrid implementations are defined externally as relational and internally
use operational constructs.

For simplicity, we will consider only transformation fragments imple-
mented in strictly declarative manner. The important advantage of using
these declarative features over operational, is that they allow a high de-
gree of decoupling between the different aspects of variability. In a strictly
declarative rule-based approach to model-transformation, the transforma-
tion is defined by a predicate, relating the models before and after the
transformation. For the composition paradigm, it is required to define the

transformation fragments 7F as follows:

Definition 11 Relational Transformation Fragments

A transformation fragment 7F is a non-empty set of relational rules RR

that are defined as tuple:
RR = (Var,Map, Pre, Post),

where Var is a set of local variables, Map a set of mappings, Pre a set of
necessary preconditions and Post postconditions. The preconditions and
postconditions are rule references and can refer to the rules that are defined
in other fragments, this property distinguishes a fragment from a transfor-

mation.

Furthermore, as we create a transformation by composing transforma-
tion fragments, for such transformation should hold that all the references
in preconditions and postconditions of a relation are resolved. Let res de-
note a function that resolves a reference in a precondition or postcondition,
i.e. that return the referenced model element for a given precondition or
postcondition (res(x) = RR € T : x points to RR). Then, we define such

transformation as follows:

144

4.5. Composite HOT Pattern

Definition 12 Fragment-based Transformation

A fragment-based transformation 7 is a non-empty set of transformation
fragments TF', for which holds:

VRR; € T Vpre € RR.Pre 3RR; € T : res(pre) = RR; N

VRR; € T Vpost € RR.Post 3RR; € T : res(post) = RR;

Although the transformation fragments are implemented using declara-
tive transformation language, we support software engineers with a view
on the transformation, its variants, and its execution order at a highly ab-
stract manner. The used feature diagrams allow to control execution or-
der through the structure of the feature tree. The tree structure is used to
compose fragments and resolve their dependencies, thus it defines the ex-
ecution order. At this abstract level software engineers can influence the
transformation execution, without fighting with maintainability overhead
resulting from a verbose declarative transformation definition. The declar-
ative structure of the targeted QVT Relations transformation engine makes
the composition possible without having to deal with issues regarding the
operational ordering of the rules. Moreover, studies in the area of program
comprehension [43] show that visualising the program structure in form of
a tree helps the understandability and developers can better focus on the
development of isolated features.

We distinguish two types of transformation composition. External com-
position deals with chaining separate model transformations together by
passing models from one transformation to another; we discuss this type of
composition more in Chapter 5. Internal composition composes two model
transformation definitions into one new model transformation, which typi-
cally requires knowledge of the transformation language. The latter method

requires the model transformations that will be composed to be expressed in

145

4. Variability Management using Higher-Order Transformations

the same language. The Composite pattern focuses on internal composition
of transformation fragments into an one rule-based model transformation.

The composition of transformation fragments based on the feature dia-
gram is language-independent and can be used for any relational transfor-
mation specification (such as QVT Relational or ATL). The feature trees
capture the essence of a transformation’s modular structure. By its hier-
archy, the feature model represents a general structure of the transforma-
tion abstracting from language-specific details. For example, the hybrid
implementation of a transformation fragment using operational constructs
internally would not have influence on the composition. This composition
technique can be used for other languages than QVT, as long as the transfor-
mation language has the concepts of rules and modules that contain those
rules. QVT Relations is such a transformation language, therefore we use
this language to implement Composite pattern.

Since it has to be possible to compose those fragments together to a sin-
gle transformation, there are several constraints on the way the transfor-
mation fragments are specified. Those constraints result mainly from the
structure of the feature model and the patterns, which can occur in such
a structure. As the composition of transformation fragments follows the
structure of the feature tree, the HOT weaves the transformation fragments
into the final transformation based on the set of composition constraints
considering position and type (e.g., optional or mandatory) of the related
feature in a tree. We discuss necessary constraints in the following section.

Constraints for the Transformation Composition: According to
the different kinds of relations that can occur between features in a fea-
ture model (cf., Figure 4.13, adapted and with feature Dispatcher added
for the purposes of constraints explanation), different constraints apply for
the transformation fragments that are annotated to the features. These con-
straints are guidelines for the composition. Constraints C; (C; to Cs) de-

scribe the rules that have to be obeyed when annotating transformation

146

4.5. Composite HOT Pattern

fragments to a specific feature. Furthermore, these constraints serve as
basis for the generation of the resulting transformation. We use the run-
ning example to explain the different constraints. Figure 4.13 illustrates the
annotated feature diagram for Thread Pool.

Constraint Cy: The basic shape of a feature model is that of a tree. Fea-
tures can have sub-features forming a parent-child relationship. A child-
feature can only be activated, if its parent feature is activated. For the
scope of the transformation fragments that are attached to the child node
this means that the children’s rules may reference those of the parent within

it’s when- and where-clauses.

Definition 13 Ancestor Function
An ancestor function f4 of transformation fragment TF is defined as fol-

lows:

TF, if TF belongs to the root feature,
TFU f4(TFp), otherwise, where T Fp is parent of TF.

A parent T Fp is a transformation fragment belonging to the parent feature
Fp of the feature F holding TF (F € Fp.children).

Definition 14 C;: Relation access for child features
For each relation RR € TF holds:

res(RR.Pre) C fo(TF) Ares(RR.Post) C f4(TF)

EXAMPLE: In the running example this pattern is depicted in Figure
4.13 this pattern occurs between the ThreadPool and the Static feature.
The transformation fragment of the Static feature TP_Static has a when-
dependency to the transformation fragment TP of its transitive parent Thread-

Pool. Listings 4.7 and 4.8 show how the child feature can call the relation

147

4. Variability Management using Higher-Order Transformations

defined by a transformation fragment of the parent feature (see relation

CreateThreadPoolComponent).

1 transformation ThreadPoolRoot (source: pcm, target: pem) {
2

3 top relation CreateThreadPoolComponent {

4

5 checkonly domain source sourceRepository:pcm:: repository :: Repository {
6 1B

7

8 enforce domain target targetBasicComponent:pcm: : repository : : BasicComponent{
9 entityName = "ThreadPool’,

10

11 hs

12 when {

13 Createl ThreadPoolInterface (sourceRepository, threadPoolInterface);
14 }

15 where {

16

17 }

18 }

19

20 top relation CreatelThreadPoollnterface {

21

22 }

Listing 4.7: Transformation fragment for the feature ThreadPool

1 transformation ThreadPoolRoot (source: pcm, target: pcm) {

3 top relation CreateThreadPoolComponent_Static {

4

5 checkonly domain source sourceBasicComponent:pem: : repository : : BasicComponent{
6 entityName = ’ThreadPool’

7 b

8

9 enforce domain target targetBasicComponent:pcm: : repository : : BasicComponent{
10 entityName = ’ThreadPool’,

11 providedRoles_InterfaceProvidingEntity = providedRole : pcm::repository:
12 :ProvidedRole {
13 N

14 serviceEffectSpecifications__BasicComponent = acquire : pem::seff:
15 :ResourceDemandingSEFF {

16 .},

17 serviceEffectSpecifications__BasicComponent = release : pem:: seff:
18 :ResourceDemandingSEFF {

4.5. Composite HOT Pattern

19 U

20 passiveResource_BasicComponent = threadPoolResource : pem::repository:
21 :PassiveResource {

22 entityName = ’ThreadPool’ ,

23 capacity_PassiveResource = ThreadPoolSize : pcm::core::PCMRandomVariable {
24 specification = *100°

25 }

26 }

27 IE

28 when {

29 CreateThreadPoolComponent(sourceBasicComponent, targetBasicComponent);
30 Createl ThreadPoollnterface Acquire (sourceRepository,

31 threadPoollnterfaceAcquire);

32 CreatelThreadPoolInterfaceRelease(sourceRepository,

33 threadPoollInterfaceRelease);

34 }

35 where {

36

37 }

38 }

39

40 relation CreatelThreadPoollnterfaceAcquire {

41

4 }

43 relation CreateIThreadPoollnterfaceRelease {

44

5}

Listing 4.8: Transformation fragment for the feature ThreadPool.Static

Constraint Cp: Additionally to the access to when- and where-clauses it
is possible for transformation fragments of child rules to control the assign-

ment of free variables of their parents.

Definition 15 C,: Variable assignment for child features
For each relation RR € TF holds:

RR.Var C f4(TF)

EXAMPLE: See figure 4.13 and listing 4.9 for an application of C; and
C,. Feature TP Size can be used to statically configure the size of the

149

4. Variability Management using Higher-Order Transformations

thread pool. Hence, the transformation fragment refers to the free vari-
able declared in the TP_Static fragment of feature Static (for the sake
of simplicity a simple path notation with the fragment’s name as prefix
is used to denote the referred relation). This way the value specified in
the feature configuration (size = 32) ends up in the assignment within the
where-clause of the resulting generated transformation. Listing 4.10 shows

abnother value assignment for the variable ThreadPoolSize.

1 —Resulting composed transformation
2 top relation TP_Static {

3 varSize : Integer;

4 checkonly domain in p : Component {};
5 enforce domain out s : TP {

6 size = varSize; };

7 when{ TP(p, s) }; — Application of CI
8 where { s = 32; } — Application of C2
9 }

Listing 4.9: Example transformation fragments (C;,C3)

1 transformation ThreadPoolRoot (source: pcm, target: pem) {
2
3 top relation CreateThreadPoolComponent_Static_PoolSize {

5 checkonly domain source sourceBasicComponent:pcm: : repository : : BasicComponent{
6 entityName = ’ThreadPool’

7 1B

8

9 enforce domain target targetPassiveResource:pcm::repository ::PassiveResource{
10 capacity_PassiveResource = ThreadPoolSize : pem::core: :PCMRandomVariable {

11 specification = ’32’

15}

Listing 4.10: Transformation fragment for the feature
ThreadPool.Static.PoolSize

Constraint Cs3: Feature models distinguish between mandatory and op-
tional features. As mandatory features are always activated it is possible

to reference rules of mandatory features of (transitive) parents within child

150

4.5. Composite HOT Pattern

rules. This means that even siblings can use each other’s rules within their
when- and where-clauses if both of them are mandatory within their parent

feature.

Definition 16 Cs: Inheritance of mandatory features
For each relation RR € TF UT Fs, where T Fs is a fragment belonging to the

sibling feature, holds:
RR.Var C fo(TF)U fa(TFy)

res(RR.Pre) C fa(TF)U fa(TFs) Ares(RR.Post) C fa(TF)U fa(TFs),

if both of the features F and Fy are mandatory.

EXAMPLE: The fragments of the Dispatcher feature presented in Thread
Pool feature model can reference fragments of the Optimization Properties
feature.

Constraint C4: In addition to the parent-child relationship, a feature can
depend on other features within the feature tree. Such dependencies are
modelled as depends-relationships. For the scope of the transformation
rules of the dependent feature this results in an import of the rules of the re-
quired feature and its scope (that is computed using C; to C3). All imported
rules may then again be used in when- and where-clauses of the current
transformation rules.

As counterpart to depends, excludes inhibits a concurrent activation of
two features. As both features can then never be activated at the same time

an interference of their transformation fragments is also impossible.

151

4. Variability Management using Higher-Order Transformations

Definition 17 C,: Referencing through constraints - DEPENDS
For each relation RR € TF and a fragment T Fp related to the TF by de-

pends-relationship, holds:
RR.Var C f4(TF)U f4(TFp)

res(RR.Pre) C fa(TF)U fa(TFp) Ares(RR.Post) C fa(TF)U fa(TFp)

Definition 18 C4: Referencing through constraints - EXCLUDES
For each relation RR € TF and a fragment T Fg, related to TF by excludes-

relationship, holds:
ifTFeTthenTFp ¢ T

EXAMPLE: In the thread pool example (Figure 4.13) this pattern would
apply for fragments of the Dispatcher feature referencing relations from
the Thread Borrowing feature.

Constraint Cs: An exclusive-or between sub-features poses no problem,
as they may never occur at the same time and thus their transformation
rules can never interfere which each other. A more challenging construct is
the inclusive-or relationship. Features connected within such a relationship
may occur in an arbitrary combination.

To be able to specify this disambiguation, special disambiguation rules
were introduced into the feature metamodel (cf. Figure 7.1). The disam-
biguation is configured by defining one DisambiguationRule for each
combination of features that should be treated exceptionally. Within the
DisambiguationRule the combination is specified by assigning the fea-
tures for which the rule applies to the selectedFeatures reference. In
theory it would be possible to make a transitive selection of inclusive-or-ed
children. However, in the current version of the approach this is not sup-

ported. Therefore, a constraint (see listing 4.11) applies to the selection of

152

4.5. Composite HOT Pattern

features, restricting the possible selection to direct children of the current

feature.

self.selectedFeatures—>forAll(f |

1
2 if self.disambiguatedFeature.childRelation.

3 ocllsTypeOf(featuremodel : : FeatureGroup) then

4 self.childRelation.oclAsType(featureModel : : FeatureGroup).
5 children—>includes(f)

6 else —then its a Simple relation

7 self.childRelation.oclAsType(featureModel : : Simple).

8 optionalChildren—>includes (f)

9 endif

10)

Listing 4.11: Constraint on DisambiguationRule

Definition 19 Cs: Disambiguation of inclusive-or
For each set of transformation fragments Srr = TF{,TF,,...,TFy, where

fragments are in inclusive-or relationship, holds:

Sp CSrrASp eT,

where Sp is a disambiguation set specified by a disambiguation rule Rp €
Fp. Feature Fp is shared parent of TFi AT, \--- ATFy

EXAMPLE: In the thread pool example such different combination possi-
bilities could occur with the Optimization Properties feature: Either Thread-
Pool Policy, Static or Dynamic, a combination of them (excluding Static or
Dynamic selected at the same time, due to the excludes relationship be-
tween them) or none of them could be selected. Each possibility results in

a different transformation rule in the generated transformation.

153

4. Variability Management using Higher-Order Transformations

4.5.2.3. Implementation of HOT for Composition of
Transformation Fragments

The first input for this HOT is a feature diagram with mapped transforma-
tion fragments, these fragments are used by for the actual transformation
generation. The second input is the actual feature configuration, which
defines the selected features and values of attributes. For composition of
completion transformation 7, is responsible HOT that merges fragments so
that composition holds previously introduced constraints on transformation

fragments.

1 transformation Ecore2copyQVT (feat: featureconfig, qvt: QVTRelation, pcm: ecore) {
2

3 top relation Config2Transformation {...}

4 relation MarkTypedModel {...}

5 relation MarkTransformation {...}

6

7 /*

8 x CI:

9 x Copy the relations from each selected feature
10 */

11 top relation SelectedFeatureRelation2Relation {

12 n : String;

13 checkonly domain feat selectedFeature: featureconfig::ConfigNode {
14 configState = featureconfig::ConfigState : :SHBCTED,

15 origin = originFeature : featuremodel::Feature {

16 name = n,

17 relations = featureRel : QVTRelation:: Relation {} }

18 Bs

19 enforce domain qvt targetRel: Relation {

20 _transformation=transfo:QVTRelation: : Relational Transformation {}

21 I8
22 when { MarkTransformation(transfo); }

23 where { MarkFeatureRelation(originFeature, targetRel);
24 CopyRelation(featureRel, targetRel); }

25}

26

27 /%

28 x C2:

29 x Copy the assignments from each selected feature

30 */

31 top relation SelectedFeatureVariableAssignment2VariableAssignment {
32 n : String;

154

4.5. Composite HOT Pattern

33 checkonly domain feat selectedFeature: featureconfig::ConfigNode {
34 configState = featureconfig::ConfigState : :SHLECTED,

35 origin = originFeature : featuremodel::Feature {

36 name = n,

37 variableAssignments = assignment : OperationCallExp {},

38 parentRelation = parentRel : featuremodel:: ChildRelation {
39 parent = parentFeature : featuremodel::Feature {} }
40 }

41 }s

42 enforce domain qvt targetRel: Relation {

43 _transformation=transfo : QVTRelation: : Relational Transformation {},
44 _where = whereClause : QVIBas:: Pattern {

45 predicate = pred : QVIBase::Predicate {

46 conditionExpression =

47 copiedAssignment : ocl::ecore::OperationCallExp {}
48 }

49 }

50 }s

51 when { MarkTransformation(transfo);

52 MarkFeatureRelation(parentFeature, targetRel); }

53 where { CopyAssignment(assignment, copiedAssignment); }

54}

55 relation CopyRelation {...}

56 relation CopyAssignment {...}

57 relation MarkFeatureRelation {...}

Listing 4.12: HOT for transformation fragments composition (C; and ().

The HOT for composition of transformation fragments that follow con-
straints C; and C; is shown in listing 4.12. It weaves the transforma-
tion fragments of the selected features into the final transformation. The
transformation is based on a generated copy transformation for QVT Rela-
tional itself (see Routine pattern in Section 4.4). The copy rules (such as
CopyAssignment or CopyRelation) are used to copy the rules that are
specified by the transformation fragments on the selected features. Rela-
tion SelectedFeatureRelation2Relation is responsible for matching
features that are optional from the feature model and copying the annotated
transformation relations to the final transformation. A corresponding re-

lation MandatoryFeatureRelation2Relation is provided to match all

155

4. Variability Management using Higher-Order Transformations

mandatory features which do not need to be selected explicitly. Similar

HOTs are provided for the weaving process of constraints C3 to Cs.

4.5.3. Summary

Using the introduced transformation generation technique based on the
Composite HOT pattern, we can generate a transformation variants that
include selected customisations into the transformations. The Composite
pattern allows to generate completion transformations and decrease the de-
velopment effort resulting as a consequence of the variability. To fully au-
tomate generation of completion transformations we have to combine both
of the introduced patterns HOT Routine and HOT Composite. Moreover,
we can automate the development of the transformation fragments using
the Template pattern introduced in the following section.

Despite the advantages in simplifying the configuration of transforma-
tions with our approach based on feature model, there are also some draw-
backs that need to be discussed. One problem arises when the feature con-
figuration is changed and the target model needs to be updated according
to the newly woven transformation. The transformation traces that were
stored during the last transformation execution will potentially become in-
valid as the structure of the transformation may have changed significantly.
Incremental updates (which are mostly based on the transformation’s trace
links) are then impossible. However, this problem only occurs if the trans-
formation engine uses typed traces that are specific to the transformation

that created them. Generic trace links pose no problem to the approach.

4.6. Template HOT Pattern

Model transformations are a major instrument of model-driven software de-
velopment used in various contexts. Especially in relational transformation
approaches, the structuring of transformations depends to a large extent on

the structure of the source models and the generated artefacts. In many

156

4.6. Template HOT Pattern

cases, similar code is written for transformations that deal with the same
source or target metamodel. Writing such transformations can be simpli-
fied significantly if re-occurring parts within the transformation rules can
be specified in a reusable way.

Current approaches to transformation development include means for
transformation reuse as well as inheritance. However, modularisation along
the boundaries of different parts of domain metamodels is still lacking. Fur-
thermore, the possibilities to reuse transformation fragments that re-occur
in multiple transformations is limited. We introduce a Template HOT pat-
tern to support usage of domain-specific templates for transformations with
well-defined instantiation points, so called hooks. Transformation tem-
plates enable a modular specification of transformations and thus yield a
simpler definition of transformations that can be grasped more easily and
developed more efficiently.

In addition, we present a set of transformation templates in the context
of the MDSPE for component-based software architectures. The specified
templates give insight into the application of the presented pattern for dif-

ferent domains.

4.6.1. Definition

Name: Template HOT pattern

Motivation: Transformations are mainly determined by the source- and
target-domains on which they operate. The structure of a transformation
depends to a large extent on the structure of its source and target models.
Furthermore, domain-specific patterns for the creation of a target model
may occur multiple times in a transformation leading to large parts of du-
plicated transformation code. In many cases, transformations require anno-
tations [63, 120] which software engineers attach to individual elements of
a model. Annotations specify which elements are to be refined by subse-

quent transformations. Such annotations and the underlying model are then

157

4. Variability Management using Higher-Order Transformations

transformed into a target model [63]. Writing such transformations can be
simplified significantly if re-occurring parts within the transformation rules
can be reused.

However, there is little experience available about how to design and im-
plement transformations using modern relational transformation languages.
One reason for this is the fact that model transformations are written in lan-
guages of very recent date (e.g. QVT Version 1.0 was published in 2008)
[72, 90]. Therefore, a basis of formalised knowledge and experience with
model transformation development is not yet available at a broad basis.
First initiatives for transformation design template specification focused on
generic patterns [87] for model transformations. Although these patterns
define a ground to build on, they do not exploit domain-specific knowledge
of the transformation’s source and target models. For example, they do not
make use of design patterns that are often part of software models.

The Template pattern is based on our experience with the implementa-
tion of transformations used for customizing software architectures. We
observed that configurable model transformations follow certain patterns
defined by the domain of their metamodels. The approach introduced in
this thesis allows reusing and customizing transformation parts. Transfor-
mation templates are based on known design patterns and enable a modular
specification of completion transformations. They yield simpler definitions
of transformations that can be grasped more easily and developed more
efficiently. Thus, the Template pattern can increase reuseability and modu-
larization of transformations.

The Template pattern is an analogy to templates in established program-
ming languages, such as C++. For example, developers can can write meta-
programs using C++ templates that are executed during compilation. This
technique can be used to perform code selection and code generation at

compile time. In the following, we describe the pattern in more detail.

158

4.6. Template HOT Pattern

Implementation: The Template pattern takes advantage of the possi-
bility to reuse transformation parts to further automate transformation de-
velopment. Transformation templates are parametrised and contain well-
defined instantiation points. They are instantiated during load-time of a
transformation.

Figure 4.14 shows the structure of the pattern. Transformation templates
(Tmp) are stored in a template library. New customisation rules can be
specified instantiating (7'/nst) and composing the existing templates. Fur-
thermore, templates are configurable by a set of parameter values of their
instantiation points. The template instantiation process presented is realised
using a HOT (cf. Figure 4.14). It creates template instances, merges the
transformation using the instances and creates a transformation based on
the actual configuration given by the template configuration model. Fur-
ther parts of the HOT are responsible for binding the instantiation points of
the templates to the elements from the actual template configuration. The
implementation of Template pattern is discussed in Section 4.6.2.4 in more
detail.

Benefits and Drawbacks: This scenario allows to specify reusable
transformation templates that occur in transformation development for spe-
cific metamodels. Based on these templates, model transformations can
then be generated using HOTs. This results in a creation of a SPL for
transformations. Therefore, we also exploit the advantages of SPLs, i.e.,
improved reusability and easier creation of new members of a SPL. Simi-
larly as in the previous pattern, one particular drawback of our approach is

the debuggability of the transformation.
4.6.2. Completions Support: Generation of Transformation
Fragments using Templates

In this section, we describe the realisation of the Template pattern to support

completions, furthermore, this solution was published in the MDI Models

159

4. Variability Management using Higher-Order Transformations

source domain target domain

—> association
---» conforms to
—» input/output

output

@

Figure 4.14.: Template HOT pattern.

«conforms-to»
«conforms-to»

E_
A 4
A 4
El_

ﬂompletion Transformatioﬁ
Metamodel —b@ Co;;yﬁel\gark
Configuration 4@ 5 Cogﬂ:;i} Ex;ﬁlpet;on
At)
Template
HOT
Template

Figure 4.15.: Building elements of completion transformation using Routine, Com-
posite and Template HOT pattern.

160

4.6. Template HOT Pattern

2010 proceedings [92]. To support transformation developers, we provide
a set of templates for reoccurring transformation patterns. The instantiation
of the templates is realised using a HOT (cf. Figure 4.15). In the following,
we discuss the implementation of this pattern for the purpose of comple-

tions.

4.6.2.1. Configuration-aware Transformation Templates

The automated generation of completion transformations presented by the
Composite pattern significantly reduces the effort needed to specify such
transformations. However, the customisation rules implemented as trans-
formation fragments still tend to contain a large set of similar elements,
especially for architectural models. Therefore, we propose transformation
templates as an additional mean to ease the specification of completion

transformations.

Adaptor

A

Figure 4.16.: Introduction of simple templates for component-based architectures
based on the running example.

Figure 4.16 illustrates the set of templates we have identified so far for
the running example. A Coupled Adaptor allows sender and receiver to

adapt their interfaces to the same standard and, for example, use the same

161

4. Variability Management using Higher-Order Transformations

middleware. This template can be used in the case of completion by cou-
pled actions, such as encryption and decryption, or composition and de-
composition. The Synchroniser is used when a component has to acquire
a lock before accessing a certain service and release a lock when finished.
Same synchronisation pattern could be observed in the case of dependent
actions. In the example, this template is used for the wrapper component
to acquire locks through the thread pool interface. An Active Component
template is used to model a component with a complex internal behaviour.
This template refines the model with an element introducing independent
behaviour branch. An additional wrapper is provided for the functionality
defined as an internal action of the component behaviour. To provide, for
example, a queue for competing consumers the Lock template is used. This
template possesses a semaphore element and can be used when introducing
a state holding element to the model. The Monitor template is applied to
the component to provide a wrapper for simple monitor functionality, such
as a timer. The last template introduces new functionality into the model
and could be independently required by already existing model elements.
In following section, we describe the adaptor template, as a representa-
tive, in more detail. To document the transformation templates, we use a
standard description schema for templates defined in [59] and [87]. This in-
cludes the following information: the name of the template, the goal of the
template, the motivation for the template, the specification of the template
using the QVT-Relations language, applicability defines constraints for the

usage of a template and an example in which the template is applied.

4.6.2.2. The Adaptor template

In this section, we illustrate the concepts introduced above with the exam-
ple of the adaptor pattern [59]. For the application within a completion
transformation, further details concerning the specific metamodel are nec-

essary.

162

4.6. Template HOT Pattern

NAME: Adaptor

GOAL: Change the provided or required service interface.

MOTIVATION: When new functionality is needed in an architecture (for
example message filtering), its implementation could result in a change of
a service’s signature (or input or return parameters). The adaptation of
the interface is considered as a configurable change and allows developers
to define changed attributes without the need to reimplement the whole
transformation for the integration.

SPECIFICATION: The adaptor template is specified by a relation that
creates an Adaptor component which requires the interface provided by
the adapted component and provides the interface required by the calling
component. Additionally, based on a designer defined method mapping,
it requires or provides a modified interface to another component in the
system. As illustrated in Listing 4.13, an adaptorComponent is created

with the modified interface targetInterface in the target domain .

1 transformation CBSE_Adaptor (source: CBSE target: CBSE) {

2 top relation Adaptor_template_CreateAdaptor {

3 checkonly domain source sourcelnterface:{ —adapted interface

4 <fromInterface: TemplateInstantiationPoint>

5 he

6 checkonly domain source targetInterface:{

7 <toInterface: TemplateInstantiationPoint>

8 b

9 enforce domain target adaptorComponent: {

10 name = <adaptorName: LiteralExpInstantiationPoint> —uame

11 requiredRoles = reqRole:RequiredRole{

12 requiredInterface = sourcelnterface }

13 providedRoles = provRole:ProvidedRole{ —modified interface
14 providedInterface = targetInterface }

15 serviceEffectSpecifications = —behavior specification
16 seff: ServiceEffectSpecification{ ... }

Listing 4.13: Template Specification of the Adaptor template.

163

4. Variability Management using Higher-Order Transformations

APPLICABILITY: The applicability of templates defines constraints for
the usage of a template. For the Adaptor template such a constraint is de-
fined by the requirement that a instantiation point should be of type inter-
face.

EXAMPLE: An example of an Adaptor is shown in Figure 4.16. This
Adaptor provides an interface to the receiver and adapts its required in-
terface to communicate with used middleware (Active Component) and re-
quire a lock for each request. This lock models the thread pool size used

for the communication.

Template Goal Instantiation Point
(Hook)
Delegator Provides a wrapper for a required or provided interface and Interface

delegates additional information without adjusting the signature.

Coupled Adapts two interfaces allowing their communication. Or in a case of | Interface
Adaptor/Delegator | delegation to allow them to use communication connection
together without changing their signatures.

Synchroniser Provides an interface requiring a software resource (thread pool, Interface
queue or semaphore).

Lock Models a component providing a passive software resource (thread Passive Resource
pool, queue, semaphore).

Active Provides a with its own, il control flow Component
thread.

Monitor Adds a controller or monitor (e.g., mutex to all method calls Internal action

allowing only a single thread to access the component at one time.)

Table 4.1.: CBSE Transformation Templates.

Additional examples illustrating the instantiation point approach for
model transformation templates are given in Table 4.1. The instantiation
point types map known element types for specification of component-based
architectures (e.g. components, interfaces, signatures, resources, etc.). A
detailed description of these templates is provided in Section 4.6.2.5.

4.6.2.3. Metamodel for the Templates Definition

To define a framework supporting the definition and configuration of trans-
formation templates, we need to describe them and their instantiation in a
general way. This description is provided by means of a metamodel intro-
duced in this section and illustrated by Figure 4.17.

164

4.6. Template HOT Pattern

Z] Description B TemplateLibrary
T goal : EString T domain : EString
T motivation : EString | 1.1

description
H OCLExpression|0..1

applicability
1.1

0.1ytemplates relationTemplaty
E Template 0.5 E QVTRelation
dependencies
El TemplateConfi instanceOf ..
.* |, instantiationPoints
I

instantiationPoints

0.*

E InstantiationPointinstanc

Lyt

E TemplatelnstantiationPointlnstanc% t [E QuTTemplateExp]|

[1.1 |
] [

!] H LiteralExplnstantiationPoin:

t "
B DomainlnstamiahonPointInstancdﬁAQ QVTRelationDomain|
| <
[] [

t -
[LiteralExpInstantiationPointlnstancd i1 E Estring 1.1
. ¢

I B DomainInstanﬂationPoin‘

Figure 4.17.: The metamodel for the transformation templates.

As a main element of the transformation templates metamodel, we in-
troduce the Template element. This element represents the concept of a
transformation template in our terminology and defines a reconfigurable
and reusable transformation fragment for the model transformation gener-
ation. The Description of a template contains a definition of the Goal
of the template as well as a textual Motivation for the Template def-
inition. Each Template defines the applicability, or usage scenarios, by
specifying an OCL Constraint. To be able to apply a template in a cer-
tain context, this constraint needs to evaluate to true. The Template
element refers to a set of Relations from the QVT Relational meta-
model. These relations form the basis of the template as they will be
parametrised by InstantiationPoints as defined below. Furthermore,
the Template definition contains a set of InstantiationPoints. These
instantiation points define possibilities for variations within the basic rela-
tions. A InstantiationPoint is defined by a reference to either a tem-

plate expression (TemplateExp) or relation domain (RelationDomain).

165

4. Variability Management using Higher-Order Transformations

These points are defined by subclasses of InstantiationPoint named
TemplateInstantiationPoint,DomainInstantiationPoint, and Literal-
InstantiationPoint (for the specification of variable literals within a
template).

The association dependencies of the Template class expresses depen-
dencies between transformation templates. Defined transformation tem-
plates depend on each other and therefore these constructs need access to
results of required transformation templates.

In complex cases, the dependencies on a design template definition or its
instance could mix. However this type of variations defines very complex
transformation templates relations. The fine granular model provided by the
introduced metamodel allows a low-effort definition of such dependencies.
This is possible by the fine granular InstantiationPoint definitions and
their sharing.

The binding of a template to an actual transformation fragment is done
as soon as the template is referenced within an actual transformation frag-
ment that is defined for a concrete feature model. The actual application of
the transformation template is defined by the TemplateConfig. For each
defined InstantiationPoint the template configuration includes Instan-
tiationPointInstances which bind the InstantiationPoint to actual templates
or relation domains specifications. InstantiationPointInstances can be as-
signed to multiple InstantiationPoints stemming from different transforma-
tion templates. This yields the possibility to combine transformation tem-
plates to build more complex model variations.

4.6.2.4. Implementation of HOT for Model Template
Instantiation

The instantiation process presented in Listing 4.15 is realized using a HOT.
It merges the transformation using the templates and creates a transforma-
tion based on the actual configuration given by the template configuration

model.

166

4.6. Template HOT Pattern

1 transformation templateInstantiation(source:templateDefinition,

2 config:templateDefinition, target: QVTRelation)

3 extends CopyQVTRelation {

4 top relation Library2Transformation {

5 n:String;

6 checkonly domain source templateLib: templateLibrary {

7 _domain = n };

8 enforce domain target t: QVTRelation::RelationalTransformation {
9 name = n + '_templateInstantiation” };

10 where { MarkTargetTransformation(t); }

13 relation MarkTargetTransformation {

14 checkonly domain target t:QVTRelation:: RelationalTransformation{};
15 }

16

17 top relation AddTypedModels {

18 checkonly domain source templateRep: templateRepository {

19 modelParameter =mm: QVIBase:: TypedModel { } };

20 enforce domain target t: QVTRelation::RelationalTransformation {
21 modelParameter = mmCopy: QVIBase: : TypedModel { } };

22 when { Repository2Transformation(templateRep, t);

23 Mark_QVTBase_TypedModel(mm mmCopy); }

24 }

25

26 top relation IntegrateRelations {

27 n:EString;

28 checkonly domain source templateConfig:

29 templateDefinition : : templateConfig {

30 instanceOf = template : templateDefinition::template {

31 name = n,

32 templateRelations = templateRel : QVTRelation: : Relation {}
33 }

34 }s

35 enforce domain target targetRelation: QVTRelation: : Relation {
36 name = n + '_template_’ + templateRel.name ,

37 _transformation = t : QVIBas:: Transformation {}

38 he

39 when { MarkTargetTransformation(t);

40 Mark_QVTRelation_Relation(templateRel, targetRelation); }
41 }

42

43}

Listing 4.14: Higher-order transformation for instantiating templates.

167

4. Variability Management using Higher-Order Transformations

The first step of the Template Instantiation is the creation of a copy of the
relations that were specified within the template. Therefore, we use a gen-
erated copy transformation for the QVT-Relations metamodel. The Mark-
QVTRelationRelation relation that is used here is a part of this generated
transformation. Using this, it is possible to retrieve the copied instance of
a given original relation. For each class in the corresponding metamodel
such a relation exists. The template instantiation transformation extends
this copy transformation. Repository2Transformation creates a new
transformation that will then contain the configured templates. Further-
more, AddTypedModels adds the model parameter of the transformation to
the transformation as they were specified in the template repository. Each
used and configured template is then added to the newly generated transfor-
mation by the IntegrateRelations relation. All other template relations
that were copied from the template repository by the copy transformation
will be ignored.

Further parts of the HOT are responsible for binding the instantiation
points of the templates to the elements from the actual template configura-
tion. Listing 4.15 shows the necessary relations for binding a Template-

InstantiationPoint.

1 top relation BindTemplateInstantiationPoint {

2 n:EString;

3 instantiationPointBindings : OrderedSet(InstantiationPoint);

4 checkonly domain source instantiationPoint :

templateDefinition:: TemplateInstantiationPoint{

%)

6 name = n,
7 relationTemplate = relationTemplate : QVTRelation:: Relation {},

8 template = instantiationTemplate : QVTTemplate: : TemplateExp {}

9 1B

10 checkonly domain config instantiationPointInstance :

11 templateDefinition :: TemplateInstantiationPointInstance{
12 bindsTo = instantiationPointBindings,

13 template = instanceTemplate : QVTTemplate: : TemplateExp {}

14 I8

15 enforce domain target targetTemplate: QVTTemplate: : TemplateExp { IS
16 when { Mark QVTTemplate TemplateExp(instanceTemplate, targetTemplate);
17 instantiationPointBindings—includes(instantiationPoint); }

4.6. Template HOT Pattern

18 where {
19 Mark_QVTTemplate_TemplateExp(instantiationTemplate, targetTemplate); }
20 }

21

Listing 4.15: Binding of template variation points.

An extension to the generated QVT-R copy transformation is made by
overriding the generated copy relations for those elements that may be in-
stantiation points in the templates. In the example above this would be all
copy relations that inherit from TemplateExp. Listing 4.16 shows how this
is done for the ObjectTemplateExp. This extension will cause the copy
transformation to omit all TemplateExp that are instantiation points dur-
ing the copy process. For each binding that is configured in the template
configuration the BindTemplateVariationPoint relation in Listing 4.15
will call the Mark_QVTTemplate_TemplateExp relation. Due to the func-
tionality of the copy transformation this will cause the copy relations to
treat the substituted template as the copy of the original and will assign it
to all points in the template’s copy where the original template was used.

The copy transformations are created applying the Routine pattern.

1 —Override the Generated Copy Rule:

2 top relation Copy_QVTTemplate_ObjectTemplateExp

3 overrides Copy_QVTTemplate_ObjectTemplateExp{

4 checkonly domain source instantiationPoint:

5 templateDefinition:: TemplateInstantiationPoint{

6 template = instantiationTemplate : QVTTemplate: : TemplateExp {} };
7 checkonly domain source sourceObjectTemplateExp:

8 QVTTemplate: : ObjectTemplateExp{ };

9 enforce domain target targetObjectTemplateExp:

10 QVTTemplate: : ObjectTemplateExp{ };

11 when { not (sourceObjectTemplateExp = instantiationTemplate); }
12 where {

13 Mark_QVTTemplate_ObjectTemplateExp(

14 sourceObjectTemplateExp, targetObjectTemplateExp); }

Listing 4.16: Overriding Copy Rules.

169

4. Variability Management using Higher-Order Transformations

4.6.2.5. Further Transformation Templates

The Delegator Template GOAL: Provide a wrapper for a required or
provided interface and delegate its functionality based on the unchanged
signature.

MOTIVATION: A delegator can be used for example, when for each
request a semaphore lock should be asked to allow access the semaphore
provider service before allowing the request to reach the interface.

SPECIFICATION: This template is specified by a relation that creates a
delegator component that requires or provides delegated interface to other
components in the system. Additionally a delegator could request services
from other components. This template could be used to generated the initial

structures for this.

transformation CBSE_Delegator (source: CBSE target: (BSE) {

1
2

3 top relation Delegator_template_CreateDelegator {

4 checkonly domain source delegatedInterface:{

5 };

6 enforce domain target delegatorComponent: {

7 name = <delegatorName: LiteralExpVariationPoint>
8 requiredRoles = reqRole:RequiredRole{

9 requiredInterface = delegatedInterface }

10 providedRoles = provRole:ProvidedRole{

11 providedInterface = delegatedInterface }
12 serviceEffectSpecifications =

13 seff:ServiceEffectSpecification{...}

14 }

15 }

16 }

Listing 4.17: Template Specification of the Delegator template.

APPLICABILITY: For the Delegator template it is required that a in-

stantiation point is not of type interface.

170

4.6. Template HOT Pattern

EXAMPLE: The example of a Delegator is shown in Figure 4.16 as
an additional template. This Delegator provides interfaces to the request

receiver with the same interface.

The Coupled Adaptor/Delegator template GoOAL: To adapt two
interfaces and to allow their communication. Or, in a case of delegation,
to allow them to use communication connection together without changing
their provided functionality.

MOTIVATION: When it is needed to build a connector between two
communicating components or to build a chain of delegators to access cer-
tain external functionality in a certain state of message delivery.

SPECIFICATION: This template is specified by a relation that creates
two Delegator or Adaptor components that mirror their adapted or dele-
gated interface.

APPLICABILITY: For the Adaptor/Delegator template is required that
instantiation point should/shouldn’t be of type interface.

EXAMPLE: The example of a Coupled Adaptor is shown in Figure 4.16.

This construct allows sender and receiver to use the same active component.

The Synchroniser template GoOAL: To provide an interface requir-
ing a software resource (thread pool, queue or semaphore).

MOTIVATION: When component has to acquire a lock before accessing
a certain service and release a lock when finished.

SPECIFICATION: This template is specified by a relation that extends
in a model already existing component with an interface requiring an ex-
ternal service providing acquire() and release() on a lock resource holded
be called component. This specification implies an existence of an Lock

manager in a system.

transformation CBSE_Synchroniser(source: CBSE, target: CBSE) {

1
2

3 top relation Synchroniser_template_CreateSynchroniser {
4 checkonly domain source synchronizedInterface:{

171

4. Variability Management using Higher-Order Transformations

5 i

6 enforce domain target synchroniserComponent: {

7 name = <synchroniserName: LiteralExpInstantiationPoint>

8 requiredRoles = reqRole:RequiredRole{

9 requiredInterface = synchronizedInterface,

10 requiredInterface = <ockName: TemplateInstantiationPoint> }
11 providedRoles = provRole:ProvidedRole{

12 providedInterface = synchronizedInterface }

13 serviceEffectSpecifications =

14 seff:ServiceEffectSpecification{ ... }

Listing 4.18: Template Specification of Synchroniser template.

APPLICABILITY: For the Synchroniser template is required that instan-
tiation point should be of type LockManagerReference.

EXAMPLE: The example of a Synchroniser is shown in Figure 4.16 and
illustrated by extention to receiver adaptor component with an additional

synchronisation interface.

The Active component template GoOAL: To provide a wrapper for
a functionality defined as internal action of a component behaviour.

MOTIVATION: When it is needed to model a component with a complex
internal behaviour.

SPECIFICATION: This template is specified by a relation that creates
an Active component that requires or provides a delegated interface to the
another components, depending on a developer specification. In case of
this template is the template only a frame for implementation, it is the most
complex template with no restrictions on instantiation points.

APPLICABILITY: There are no restrictions for this template. Conse-
quently this template requires higher user interaction to implement.

EXAMPLE: The example of a Active component is shown in Figure 4.16
and illustrated by a shared component, providing a common functionality

(e.g. middleware).

172

4.6. Template HOT Pattern

The Lock manager template GoOAL: To model a component provid-
ing a passive software resource (thread pool, queue, semaphore).
MOTIVATION: When a synchronization mechanism based on a lock
strategy is used in a system.
SPECIFICATION: This template is specified by a relation that creates
Lock component that provides an interface with two signatures acquire()

and release() on its internal passive resource.

transformation CBSE LockManager (source: CBSE, target: CBSE) {

1
2

3 top relation LockManager_template_CreateLock {

4 checkonly domain source appRepository:{

5 };

6 enforce domain target lockComponent: {

7 name = <lockName: LiteralExpInstantiationPoint>
8 requiredRoles = reqRole:RequiredRole{ }

9 providedRoles = provRole:ProvidedRole{

10 providedInterface = lockInterface }

11 serviceEffectSpecifications = acquireLock

12 seff:ServiceEffectSpecification{ ... }

13 serviceEffectSpecifications = releaseLock

14 seff:ServiceEffectSpecification{ ... }

15 passiveResource = lock{

16 <lock: TemplateInstantiationPoint> }

Listing 4.19: Template Specification of Lock manager template.

APPLICABILITY: For the Lock manager template is required that the
instantiation point is of type passiveResource.
EXAMPLE: The example of a Lock is shown in Figure 4.16. This lock

manager provides, for example, a queue for competing consumers.

The Monitor template GoAL: To provide a wrapper for simple mon-
itor functionality.

MOTIVATION: When it is needed to model a component that only gains
and stores data, or provides some timing control. For example a clock com-

ponent required by a connector or accessing middleware, providing a con-

173

4. Variability Management using Higher-Order Transformations

trol interface externally to set a clock and providing an interface internally
for other components in assembly to ask a clock.

SPECIFICATION: This template is specified by a relation that creates a
Monitor component that requires or provides a delegated interface to the
another component. This component has only a simple internal action de-
fined and is creating processing delay through computation.

APPLICABILITY: For the Monitor template is required that variation
point should be of type internal action.

EXAMPLE: The example of a Monitor is shown in Figure 4.16 as an
additional template. This monitor provides, for example, a clock for a con-

nector.

4.6.3. Summary

The introduced HOT Template Instantiation pattern allows to build a classi-
cal SPL for transformations using template-based approach. The Template
Instantiation pattern allows to automate development and supports reuse of
transformation fragments in completion-based approaches. In the follow-
ing section, we will shortly discuss other HOT patterns and later using here
introduced patterns we will build a chain of HOT patterns to fully support
model completions.

4.7. CHILIES: Chains of HOT patterns

In some complex scenarios, it is useful to compose multiple HOT patterns
in a chain. Figure 4.18 shows an example of such a composition where a
transformation is generated using all three introduced patterns: (i) HOT;
Routine generates a frame (copy rules), (ii)) HOT, Composite overrides
some of the copy rules and adds custom rules dependent on configura-
tion, (iii) HOT3 Template overrides some of the rules and adds template

instances.

174

4.7. CHILIES: Chains of HOT patterns

!
| Metamodel level

Al Al Model level
H o

=l 3

g| (é)l Legend

g, S| | —> association
5 S

£ output output €| | -—-» conforms to
gl gl —>» input/output
s, ~1

M » M

Figure 4.18.: Chain of HOT patterns: HOT; - Routine, HOT- Composite, HOT3-
Template

Similarly, a deeper view on the process of completion generation (c.f.
Figure 4.19) shows the dependencies and connections between the concepts
introduced above. The process depends on the specification of several in-
puts for HOTs, which build the HOT Chain.

The transformation fragment composition is realized using a Model
Completion HOT, illustrated on a Figure 4.19. The first input is a Feature
Model with attached Transformation Fragments (Custom Rules). These
fragments are used by a Composite HOT for the actual transformation gen-
eration. It merges the transformation fragments that are annotated to the
feature model nodes together creating the final completion transformation.
The second input is the actual Feature Configuration, which defines which
features are selected as well as the values of feature attributes. In contrast
to an in-place transformation, a completion transformation may also be
specified to create a new model where the completions are applied. In this
case, the completion transformation extends a copy transformation (Frame)
generated by the Routine HOT. As we rely on QVT Relations for the im-

175

4. Variability Management using Higher-Order Transformations

plementation of our transformations which does not provide native support
for copy transformations, we use the Routine HOT to automatically create
a copy transformation from the metamodel of the application model. The
Composite HOT includes the Transformation Fragments into the generated
copy transformation. Custom rules will then replace the standard copy rules
for the corresponding metamodel element.

The goal of the templates is to ease the custom rules development. This is
achieved through instantiation of Transformation Templates from Template
Library on a place of transformation fragments in the feature model. Trans-
formation templates are stored in a Template Library (cf. Figure 4.19). New
Custom Rules can be specified instantiating and composing the existing
Templates. Furthermore, templates are configurable by a set of parameter
values. Based on the template and its configuration, the Template HOT
creates Template Instances and adds the necessary rules to the completion
transformation.

The result of the HOT Chain is a Completion Transformation that when
applied to an Architectural Model generates the corresponding Completed
Architectural Model. The line Meta-Level Boundary separates the genera-
tion of the transformation (domain engineering phase) and its application

(software engineering phase).

176

4.7. CHILIES: Chains of HOT patterns

onreudds uonedrddy G4SN ut suonsdwo)) [opoIN Hoddns 03 ureyd JOH :'61°% 2In3L]

177

pajesauab HIIIJ\-HII\
rF————————————————— al AN fouspuadop € — “wioysuel aanoe)|
! ! uoneuw.lojsuel | ndinosindu; <€— (“wuio;
I | ysuel; jo)jepow [
1 [9POW [BJNJOB)IYDIY pale|dwo) ——m— < SPOJA [edn}osyoL
__v_>__ YoIy pal9) O_ uopadwo) ISPON | Yoy s
IIIIIIIIIIIIIIIII - \
|||||||||||||||||||| AN \\Illl||||||||||||||||||||
i e Alepunog [aAa7-Blay
Indu———-
ndjno

g I

)

) U0t [1|
ureyd 1OH <€ ~~

ndur ~_
’ Al L]

seouesu| g i L_____ "
ajejdwa | f uojewIojsuRl] | / 4o Soueisul
||||4|||| i t Ko “ / sjuswbeiy Aieigr]
! / uonewIosUBL| areidwa
Juod 10H / ndur
uonenuesu| LOH aunnoy ! A spuspe | SOINY WOJSND
Adoo oje|dwa | i
awel A J
uoneinByuo) aunjesy f————— > |oPOIN 8injesy
uleyD uonewloysuel | 40 sousisul

JaplQ-1aybiH

uopeinbyuo)

4. Variability Management using Higher-Order Transformations

4.8. Discussion

In the following, we discuss the assumptions and limitations of the contri-
butions presented in this chapter. The experience in the area of HOT ap-
plications is still missing since transformations on higher abstraction levels
are not extensively used so far. Despite the advantages in simplifying the
development of variable transformations with HOT patterns, there are also

some limitations that need to be discussed.

Complexity of HOTs Creating a HOT is not an easy task. Especially
as the HOT engineer has to think on two different levels using probably the
same language constructs. Developers need to get accustomed to thinking
on a meta-level, and write/modify abstract syntax. HOTSs naturally have
a higher complexity coming along with power of abstraction. Therefore,
development of HOTs can be error prone and should only be conducted by

experienced transformation engineers.

Debuggability This issue is not a new one, as it occurs whenever soft-
ware language artefacts are subject to automated modification. In these
cases, debugging can be a problem. Developers work and develop on a
certain development version of an artefact (either also a transformation or
some other artefact, for example configuration, from which a transforma-
tion will be derived). However, the debugger of the transformation engine
will execute and observe only the generated and woven transformation.
Hence, a transformation developer will need to understand the generated
transformation in order to be able to debug it. This can lead to confusion
and additional effort for understanding these modifications when the devel-
oper needs to debug the transformation. To alleviate this issue, a debugger
that is capable of mapping the debug information to the higher level artefact
is required. A specialised debugger would be needed if debugging should

be possible on the meta level.

178

4.8. Discussion

Routine HOT pattern This pattern is currently only implemented for
the Ecore metamodels. The Routine HOT requires an Ecore metamodel
on input and generates a QVT-R transformation on output. However, the
extension of this HOT for other relational transformation languages is only

a question of implementation.

Composite HOT pattern The assumption, we took by this HOT pat-
tern is that all transformation fragments are composable. Although, the
composability of relational transformations is straight-forward in compari-
son to the operation languages, we require a valid design of feature model
on input. The valid design of feature model is described in the following

section.

Valid design of feature model The constraints for composition of
transformation fragments in the Composite HOT pattern require a valid fea-
ture model to function correctly. A valid feature model does not include:

e Nested inclusive-OR structures — such structures increase the com-
plexity of disambiguation rules exponentially, because the related
fragments have to consider all possible combinations of all nested
features in the inclusive-OR sub-tree. Our assumption is that such
structures result from invalid identification of relations between fea-

tures by domain analyst during modelling of the domain.

e Cyclic/Negated dependencies — the usage of the constraints in the
feature model is limited and does not allow to create cyclic or negated
dependencies between two features, thus, two DEPENDS-constraints
in opposite direction or two constraints, one EXCLUDE and one DE-

PENDS, between two features are not allowed.

e Incomplete relations in feature effects — the relations in feature ef-
fects are required to be complete, thus, include everything (e.g.,

all opening and closing brackets) needed for their valid execution

179

4. Variability Management using Higher-Order Transformations

in a transformation engine, only missing parts could be pre/post-
conditions or variables, which are parametrised and do not danger

the relations validity.

Usage of declarative transformations The declarative transforma-
tion definition is easily extendible with additional features, therefore, we
limit our approach to this family of languages. This is achieved by separa-
tion of concerns and usage of declarative code as much as possible (min-
imizing usage of imperative code). Declarative code is very suitable for
generative approaches. In our approach, we follow the philosophy of mod-

ular and declarative transformation rules with implicit execution order.

Template HOT pattern The Template pattern builds on the existence
of templates for certain domain, in our case CBSE domain. The templates
we introduced help to create parts of the models, but some of them have to
be completed manually, for example the internal behaviour of the Adaptor
template. We do not consider the templates applicable in general, they are
dependent on a domain and a purpose of the model. The generality of the

templates is out of scope for this thesis.

Composability of HOTs The usage of QVT-R to implement HOTs and
completion transformations is motivated by the special properties of rela-
tional languages, especially composability. There are various approaches
to support model transformation composability, either they are based on
internal or external composition of transformations. An transformation im-
plemented in relational transformation language consists of a number of
mapping rules. These mappings may be combined by calling, or other fa-
cilities, such as inheritance, merge and disjunction. These strategies are
used for internal composition of transformations. The composition of trans-
formations as black-box artefacts is called external composition. We limit

our approach to the external composition of HOTs to form a transforma-

180

4.9. Summary

tion chain. The internal or rule-based composition was not considered in
this work. In the case of transformation chain, the composition is straight-
forward with assumption that the interfaces fit. We assume that the HOTs
are implemented in a such way that they can be composed together (i.e.,
output of previous HOT is of the same type as input of the next one). In
addition, it would be suitable to have possibility to to pass parameters to the
transformations and the possibility to retrieve the output of a transformation

and to pass as input to the consequent transformation.

4.9. Summary

In this chapter, we introduced a set of HOT patterns to solve different goals
as a part of complex model-driven processes. Despite their complexity,
HOTs have the potential of solving problems in an efficient way. Espe-
cially when a lot of variability needs to be managed within a transformation
project, lifting this variability to a higher level can ease the development of
otherwise complex transformations (see patterns 4.5 and 4.6). HOT's enable
a better separation of concerns and therefore better maintainability of the
employed transformations. In scenarios where a large amount of manual
effort for a relatively simple task can be avoided, HOTs also unfold their
potential (see Section 4.4). Here, otherwise tedious and error prone tasks
can be easily automated using a HOT-based approach.

Furthermore, we described the automated support of completion trans-
formation development using the presented HOT patterns. Using this ap-
proach the transformation generation phase in the Completion-based Soft-
ware Engineering (see Chapter 3) is fully automated. In the next chapter,
we focus on the realisation of the completion library. Additionally, we dis-

cuss the execution of completions in sequences.

181

5. Completions for Software Performance
Engineering

In the previous two chapters, we discussed the Model Completion Concept
and its realisation through composing HOT patterns for different goals. In
this chapter, we discuss integration of completions in the Completion Li-
brary. The structure and usage of this library is the main topic of this
chapter. The structure of the Completion Library supports reduction of ap-
plication conflicts in the sequence of completions. Moreover, we introduce
a set of completions for MDSPE. This initial set of completions is focused
on the concurrency design patterns and targeted to support developers to
create complex models of concurrent systems.

The leading challenge of this chapter is:

How to structure the Completion Library to reduce possible conflicts in
an application of multiple completions?

The remainder of this chapter will be organized as follows. Section 5.1
introduces the application context and motivates the structuring of the Com-
pletion Library. In Section 5.2.3 we describe the method for the reduction
and resolution of conflicts in application of multiple completions. In ad-
dition, Section 5.3 presents an initial set of completions for concurrency
design patterns. We discuss limitation of presented approach in Section 5.4
and, finally, we summarize the contributions in Section 5.5.

5.1. Motivation

Completions transparently integrate low-level details that affect a system’s

quality (e.g. performance impact of compression or encryption configu-

183

5. Completions for Software Performance Engineering

ration) into component-based architectural models, using model-to-model
transformations. When multiple completions are to be applied, the neces-
sary completion transformations are executed in a chain. In such scenarios,
application conflicts (i.e., compression before encryption influences result-
ing data volume, and the other way around) between different completions
are likely. The dependencies among completions define where and when
certain completions can be woven into the model. The execution order of
the completions may affect the target model in a way that the following
completions are not applicable any more or that the analysis results are al-
tered. Therefore, the application order of completions must be determined
unambiguously in order to reduce such conflicts. Problems of conflicting
transformations and their application order have already been addressed in
the area of model-driven development [82]. However, in the domain of soft-
ware performance engineering, quality attributes captured by the architec-
tural models have to be considered as an additional dimension of conflict.
The execution order of a set of completions can affect the quality predic-
tions for the resulting architectural models. Thus, the knowledge about the
quality impact of a particular order of completions can be used to resolve
conflicts and to identify the suitable order in which completions have to be
applied to achieve the best overall quality of the system.

One approach to handle conflicts is that software architects decide on the
suitable transformation order manually. However, this approach is time-
consuming, can be error-prone, and is likely to result in suboptimal de-
signs. Especially, with growing number of completions the complexity of
this decision grows. Therefore, a semi-automated and structured solution
supporting software architects should reduce these conflicts in completion
order and help with their resolution.

We define a systematic approach to identify, reduce or avoid conflicts
between completions that are applied to the same model. The technique
reduces conflicts, based on the development role separation and locally op-

timises the order of completions in a sequence. For this purpose, we clarify

184

5.1. Motivation

the roles in the development process responsible for specific completions,
when additional information to reduce conflicts is necessary. The principle
of development role separation is mirrored in the structure of the comple-
tion library. Furthermore, in Section 7 we validate this approach by apply-
ing it to an architecture model of a component-based business information
system and analyse the impact of different sequences of completions.

The main scientific contribution of this chapter is located in the MDSPE
context and can be summarised as follows:

Structured Completion Library for Software Performance

Engineering

e Reusing expert knowledge: The decisions about the required
steps going from an abstract model Abs (cf., Figure 3.2), based
on a set of initial requirements, to an abstract model Abs’,
suitable for required purpose (e.g. performance prediction),
requires a lot of domain-specific expert knowledge (e.g. for
performance prediction it is knowledge about performance-
relevant implementation details). Additionally, the same activi-
ties are often repeated, e.g. usage of the same design pattern or
integration of the same middleware platform. Standardization
of possible design decisions in a form of reusable constructs
(e.g., completions) allows reusing and tracing design decisions.
This allows to build a ’Performance Knowledge Base’ as envi-
sioned by Woodside et al. [172]. Design decision are explicitly
modelled as a part of a development already on the abstract
level, and mapped to the requirements. Models with trace to
design decisions considering even implementation details not
only provide better predictions, but can help to document man-
agerial decisions (e.g. which middleware will be used) on the
abstract level. Therefore, we provide a support for completion

library where completion encapsulating expert-knowledge can

185

5. Completions for Software Performance Engineering

be registered. In addition, we provide a initial set of comple-
tions, which allow to reuse expert knowledge about modelling

of the concurrency design patterns.

e Completion conflict reduction: Because multiple application
of completions on the same model could can lead to conflicts in
their application, we developed a completion reduction method.
Completions are realised as model transformations. Comple-
tion transformations executed in a sequence may not permit or
require certain changes specified by a following transformation,
in other words, the following transformation would not be ap-
plicable. We call such conflict a validity conflict. In addition
in the SPE domain, the order of completions in a sequence can
influence the results of predictions, thus, two permutations in
a sequence can provide different results. We call this kind of
conflict a quality conflict. Therefore, we designed a structured
library of completions that supports reduction and resolution of
these conflicts. Our method for conflict reduction builds on the
relation between the transformations and the metamodel. The

quality conflicts are resolved with the help of quality heuristics.

5.2. Structured Completion Library for Conflict Reduction

Model Completions are implemented as model-to-model transformations
and as such they inherit all their properties. One specific property of model
transformations is their connection to the metamodel they are developed
for, the, so called, metamodel coverage (see Section 6). By studying the
metamodel coverage of transformations it is possible to identify which
model elements are modified by the transformations.

Our observation is that metamodels are often structured. It is a good
practice to structure metamodels into packages grouping together semantically-

related elements. This package structure often follows the separation of

186

5.2. Structured Completion Library for Conflict Reduction

concerns principle, for example, the structure of packages in the PCM
metamodel follows the domains of the CBSE development roles introduced
in Section 2.2.1, where each development role has a separate package set.
When it is possible to identify such separation in a structure of metamodel,
then it is possible to identify transformations covering only these separate
domains. For example, a completion applied by a system architect can
modify only instances of model elements belonging to the domain of sys-
tem architect and therefore such completion is not in conflict with comple-
tion applied by a component developer. This simple idea could be applied
to manage any transformations developed for a structured metamodel. We
apply this idea to reduce conflicts of completions for performance engi-
neering and we use the PCM metamodel for this goal.

The introduced approach for reducing and resolving conflicts between
executed performance completions builds on a few systematic steps. First,
we identify responsibility domains for the CBSE development roles in
PCM. Second, we minimize the conflicting set and, third, we resolve re-
maining conflicts using quality-based heuristics. These heuristics give an
indication of most advantageous sequence, however, because we analyse
the sequences only locally and not in a context of whole system, the final
resolution step requires an interaction from user, who has to deal only with
small reduced set of conflicting completions. In the following, we describe
the problem of conflicts between executed performance completions on the

model level formally.

5.2.1. Formalisation

In the previous chapter, we discussed formalisation of model completions,

related transformations and their variants. In this part of formalisation, we

summarize necessary definitions and focus on the chains of completions.
Before completing a model element, the completion is instantiated ac-

cording to a selected variant. Possible variants of a c7preadManagement COM-

187

5. Completions for Software Performance Engineering

i ; TPy
pletion can be for instance v,

hreadManagement *

The instantiation results into a
completion transformation
tCPCMThreadManagement which can finally be applied to a pivot element. After
application of a completion transformation we create a valid model element
(or subsystem). Thus, the next completion can be applied and multiple ap-
plications of different completions in a completion chain is possible.

Let now C = {¢;|i € I'} be a finite set of available completions, that we
call a completion library. Then, V; is a countable set of possible variants v{
for one completion c¢; (Section 4.2.4). For example, the Vi,¢in, of a com-

pletion c¢jocring (enhancing a component A with a critical section locking

scoped _ double—checked strategized

Viocking? Viocking > Viocking }. Each variant

strategy) is Viocking =
is realised as a completion transformation € that integrates chosen vlj into
the source model. The transformation is generated based on a configura-
tion and completion definition including specification of pivot element and
feature diagram (c; = (e, fd;), see Section 4.2.4).

This section discusses a sequences of transformations, that represent an
ordered chain of completion transformations, as presented for model-to-
model transformations in Section 4.2.4. As mentioned above, each model
element e € E (for the definition of E see Section 4.2.4) can be enhanced by
multiple applications of (different) completions, i.e. a chain of completion
transformations.

Consistent Set of Completions: For the purpose of completion chain
definition, we define a set of possible completion variations (or completion

instances) in a chain as
Ccl={v|ielvl eV},

and limit that a completion set CS C Cl is consistent only if each completion

in CS occurs in at most one variation, thus

Vv{,vieCS:i#k#v{;évi

188

5.2. Structured Completion Library for Conflict Reduction

Chains of Completion Transformations: Thus, given a consistent com-

pletion set CS C CI, a completion chain cc over CS is defined as
€C = i) 0€j)0...0C;,,Cj; € CS,

where "o’ defines an external composition of transformations in form of a
chain of transformations. The chain of transformations ¢, is then executed
as follows:

c ¢ c
tr.: conf(MM) tl—l>conf(MM) g tl# conf(MM),

cec
where tg instantiates ci; € CcS

Note that not all sequences of execution of a completion set C'S on a given
element e need to be valid for the system model. Some of the completion
chains cc over CS may result in an invalid set of model elements cc(e), not
satisfying a given set of validity constraints. Such constraints can be speci-
fied in terms of rules or grammars, and can be verified on both the resulting
elements cc(e) and the completion order cc = ¢;, 0¢j, ©...0 CiysCi; € CS,
since some of the orders can be a priori forbidden. In our formalization, we
use CC(CS, e) to denote the set of all valid completion chains over CS for
element e.

For example, the set CI for the completion cjocking 18 defined as CI =
{v}f}fgii, if’c'jgf;_‘fhe‘?ked, ;Zi‘;ﬁ;‘;’zed}, and a consistent completion set can be
CS=0,CS= {vjzzlfjg} or others. When we assume CS includes an ad-

ditional completion configuration of the completion ¢pegsaging, €.8. CS =

scoped connJ N ; ; i i i
{Vlocking: Vmessaging }» We would identify two possible completion chains

conn_1:N scoped scoped conn_1:N

messaging vlocktng and e = oV

L=y = vlmkmg messaging*

Completion Conflicts: Based on previous definitions, a completion
chain cc; is an ordered set of completion transformations < tlc,tzc , ...,tg >
,i € I. The completion chain cc; is in conflict with ccj;i, j € I, when an

order of completion execution in cc; # cc; and the validity of the model

189

5. Completions for Software Performance Engineering

structure (validity conflict) or the result of analysis (quality conflict) is dif-
ferent for each of the chain definitions.

Finally, we say that a set of all completion chains over CC is conflicting
on the element e € E, if there are two completion chains cc;,cc; € CC such
that

O(ceife)) # Qlecj(e)),

where Q is a quality function, e a pivot element, and cc(e) an element e
completed by a completion chain cc applied to the model. Here, Q speci-
fies the quality semantics of the set of model elements cc;(e), resp. ccj(e),
which result from e after applying all the completion configurations in cc;
(resp. ccj) to it, in the left-to-right order. Note that, we are interested to
apply the definition only to the sets of valid completion chains CC(CS,e)
over a consistent completion set CS and model element e € E, but for the
reason of generality, we define it for a wider domain (any set of completion

chains).

5.2.2. Method for Reduction of Completion Validity Conflicts

This section introduces the method to minimize the conflicting set in a se-
quence of completions. To reduce possible conflict between completions,
we have to investigate, for each new completion, its dependencies to other
completions already registered in the library. We reflect the need for iden-
tification and reduction of conflicts by introducing three levels of conflict

reduction:

1. Roles and Responsibilities Separation: The first resolution ques-
tion is "Who is able to provide all necessary information to use and
configure the completion?". The selected role in the development
process has to have all necessary input data to specify the comple-
tion’s configuration during software design. Furthermore, he/she has
to profit from completion usage. Ideally, the assignment of comple-

tions to roles will lead to identification of disjointed sets of com-

190

5.2. Structured Completion Library for Conflict Reduction

pletions. Each role is only responsible for the completions in one

disjointed set.

Each time a new completion is introduced, we analyse its dependen-
cies to other already known completions. Therefore, we focus on a
related group of completions where conflicts are more likely. This
way, possible conflicts are limited to the completions in responsibil-
ity of one role. Additionally, separation of concerns based on the
roles in the development process creates a hierarchy (identifying do-
mains of concern) in the metamodel of used architecture description

language.

To focus our reasoning, we categorise completions based on the
metamodel elements they could be assigned to. This way we reduce
possible conflicts on a metamodel level. The proposed categorisation
maps the roles in the CBSE development process [102] to groups of
completions. It is best practice in metamodel design to structure the
metamodel considering the development process the metamodel will
used in and the different subdomains or technology domains. This
allows to identify independent parts of the metamodel in competence
of one development role. The metamodel part that belongs to one
development role is called cluster. This is illustrated by a hierarchy

of packages in the PCM metamodel in Figure 5.1.

The goal of this step is to identify sets of completions where conflicts
are possible. Based on the metamodel structure, we can identify com-
pletion transformations their input and output model are created from
instances of metamodel elements belonging to two different clusters.
Therefore, two such transformations could not result in a validity
conflict. In Figure 5.1 the transformations 73 and 7 are in conflict,
because they modify model elements from the same cluster. The
transformation 7 is an example of a limitation of the introduced res-

olution approach, we do not allow completions to change a model

191

5. Completions for Software Performance Engineering

in a responsibility of other role. This way, we define disjunct sets of
completions C;. For each two completions ¢; € C;and ¢; € Cj;C; # C;
conflicts are not possible. Only in a case of completions located in the
same metamodel cluster, conflicts are possible. In this case, we have

to proceed to the next level and further specify affected elements.

Metamodel Transformations
Domain Analyst
<cepackoger» w)
usagemodel ‘ ‘
Software Architect
ors [core [S n G
connectors core system
Component Developer

<<ePackage>> | _ <<ePackage>>
protocol repository

<<ePackage>> | <<ePackage>>
parameter seff

=] [
%%
=] =]

System Deployer

<<ePackage>>
<<ePackage>> 8 <<ePackage>>
rrrrrr resource <

resource type allocation
environment

=]
©
=]

Figure 5.1.: A role hierarchy in the PCM metamodel.

2. Conflicting Model Elements Identification: If conflicts can oc-

192

cur, we further analyse the question "Which model elements are af-
fected?". For this purpose we have to know how the completions are
modelled and at which places of the architecture they can be applied.
We can identify affected elements as a difference between source and
target model. Identified elements specify more exact locations where

conflicts may occur.
The evaluation of completion chain cc for conflict-potential is a func-
tion

¢0:T—S,

5.2. Structured Completion Library for Conflict Reduction

where domain S is the set of possible conflicting instances of meta-
model elements. For example, when evaluating order in a sequence
of completions for locking and stateful wrapper (both of them should
be applied to the same component) we identify on the model level the
possible conflict set that includes all elements needed in component
and its behavior definition. This results in further separation of con-
flict domains and decreasing the number of completions that could
introduce conflict on a model level. We define sets of potentially

conflicting completions (conflict space):
ConflictSpace := {t;,t;}

where i # j and ¢; potentially conflicts with #; on a model element e €
S, where S is a set of conflicting elements orthogonal to the hierarchy

from the previous level.

Since we apply completions to component-based software systems,
we identify the model elements of component-based architectures
that can be refined, and discuss the completions applied to them.
We assume three types of model elements (the main architectural
elements of CBSE) that can be completed: components, connec-
tors, and the infrastructure. Thus, for our domain we can define

S = {component, connector, infrastructure}.

While there may be many component and connector elements in the
model, there is always at most one infrastructure element to consider
from a completions point of view. All these model elements are as-
sumed to be independent for the completions, i.e. the order of com-
pleting two different elements within the model does not influence
the result. In the following, we describe the model settings, to which

we frame our problem.

Components are black-box (or sometimes grey-box) entities charac-

terized by the services they provide to others and the services they

193

5. Completions for Software Performance Engineering

194

require from third parties. In our approach, we can deal with com-
ponents in two ways. In the first case, we assume that components
are entirely black-box. Thus, completion-based model refinements
are not allowed to change the internals of the components (or its ser-
vices). Instead, completions attach wrappers to the components that
delegate the same interfaces (require and provide the same services
as the original component) and include additional quality-relevant
details to the service specification. In the second case, we assume
that components are grey-box and their behaviour is captured on an
abstract level by a behaviour specification. Completions must not
change a component’s behaviour with respect to its functionality.
However, they may extend the behaviour specification so that only
its non-functional properties are affected. For example, a completion
can add a particular locking strategy to a critical section around a

component’s behavioural specification.

Connectors define communication links among components and mo-
del interaction of components along these links. Additionally, the
communication between remote components can be configured thro-
ugh connector properties. A connector can have a complex inter-
nal structure and implement non-trivial interaction logic. Therefore,
the connector layer can be viewed as a net of independent connec-
tor subsystems connecting the components. The connector comple-
tions integrate independent connector subsystems into the architec-
ture. These connector subsystems do not change the connector model
from the view of interacting components. As such connector subsys-

tem could be considered as independent.

The hardware environment forms the system’s infrastructure and is
typically understood as a separate layer of a component-based archi-
tecture, underlying the component assembly. Thanks to this, infras-

tructure completions integrate usage of services provided by lower-

5.2. Structured Completion Library for Conflict Reduction

layers of software stack, and hence allow to adjust the environment

independently.

After this resolution step is the resulting set of completions is min-
imized on completions applied by the same role to the same model

element. Thus, we proceed to the last level of conflict resolution.

. Completion Dependencies Identification: At the end, we need to
answer the question "What are the dependencies to other comple-
tions from the same conflict space?”. From the previous levels, that
already identified the roles and model element types the completions
enhance, we get a reduced set of completions. Further, we need
to identify their intersections (affected model elements) on instance
level. At this point a interaction with user is required, hence, the ap-
plication of completion is system specific from this point on. Users
can generalise dependencies between completions by definition of
mutual exclusion or require relationships in a completion specifica-
tion in the time of completion registration. Our assumption at this
point is that remaining set of completions applied by the same role to
the same instance of model element is so small that it is possible to

resolve the validity conflicts manually.

The presented approach allows to reduce and avoid model completions

conflicts on a model-level (Conflicting Model Elements Identification) or

meta-model level (Roles and Responsibilities Separation). Thus, the com-

plexity of conflicts is decreased (avoiding non-determinism of conflicts

similar as in graph grammars). The effort for manual conflict resolution

is minimised on a small set of model elements and the number of cases

when the resolution of validity conflict cannot be automated.

5.2.3. Method for Resolution of Completion Quality Conflicts

To allow the reasoning about completion order, we need to decide on the

abstraction filter that allows us to identify the preferred completion order,

195

5. Completions for Software Performance Engineering

based on the evaluation of the architectures resulting from the application
of the completions. In our case, we employ a performance-driven view on
the system model.

Performance is a pervasive quality of software systems, everything af-
fects it [173], from the software itself to all underlying layers, such as oper-
ating system, middleware, hardware, communication networks, etc. Within
the domain of performance engineering, we focus on the response time,
throughput and resource utilization as the main quality properties. These
properties can be related to the identified architectural elements as follows.
Components are characterized by the response time and throughput of the
services they provide, and partially by the resource utilization during their
execution. Connectors are characterized by the response time of the com-
munication over the connectors, and the throughput and utilization of the
link they employ. The infrastructure is characterized by the utilization of
the resources that form the infrastructure. The contribution of this section
is then the examination of the order of completions in a completion chain,
which could be optimised and used to improve the design of future system
or for fine-tuning quality attributes of the system during development.

For the domain of component-based performance models, this section
defines the quality function Q employed by the heuristics for the resolu-
tion of completion conflict, and justifies the locally-oriented definition of
a completion conflict. The justification is based on the understanding of
performance interdependence of completed model elements. Finally, the
observations are compiled into a method of completion order definition and

conflict resolution within this context.

5.2.3.1. Quality Heuristics

In the following, we study the performance semantics of completions based
on the quality heuristics for the completed elements. The performance se-

mantics of a completion is defined as the completion’s impact on the com-

196

5.2. Structured Completion Library for Conflict Reduction

pleted element’s performance (observation of a decrease in response time
or utilisation, and an increase in throughput has a positive impact on a per-
formance). To this end, we define quality functions used to evaluate dif-
ferent completions. We specify three quality functions for the three model
elements that can be annotated with completions in component-based ar-
chitectures. These quality functions specify heuristics for identification of
a completion’s performance impact, based on local evaluation. The exact
performance evaluation with a global quality function would in large-scale
systems be hardly feasible. For our problem, the locally defined functions
(dependent on a single element) provide already enough information to de-
cide about the performance semantic of the completion even for large-scale
systems. The completions are locally applied (to specific model element)
therefore this assumption holds. However, the optimisation of system-
specific changes is the focus of multi-variant optimisation, such as [113].
In this work, we do not consider such change scenarios.

As defined in Section 5.2.3, the quality function Q : E — R quantifies the
quality of system components, connectors and the infrastructure, based on
their performance impact, which is under our performance abstraction the
primary metric for our architecture. Note that, the conflict definition relies
on two simplifications, which are worth to be discussed. First, it relies on
purely quantitative characterization of system model, not taking the result-
ing model structure into account. The reason for this lies in the employed
abstraction of viewing the system model through its performance proper-
ties. Our experience shows that if the structural changes introduced to the
model are significant, then they either result in an invalid set of model el-
ements (and hence are detected during constraint checking), or influence
the performance properties of the model, and hence are detected with Q
anyway. Second, it localizes the conflicts only among completion chains
executed on the same model element e € E, disregarding from the depen-
dencies on other elements in E. Thus, it provides only an indication (the

accuracy of the values is not guaranteed) of the most suitable chain based

197

5. Completions for Software Performance Engineering

on the direction of the heuristic. However, because of the locality princi-
ple our method provides a user with a short localised tests, which do not
require to run overall system analysis.

Let E = Ecomp U Econn U Ejy rrq be the set of model elements represent-
ing components, connectors and infrastructures identified in system model.
Then, the quality function Q : E — R is based on the type of its argument.
The positive semantic of this function is in the direction of smaller values
and is defined as follows.

Component Quality Function:

rt(s;)
Ve € Ecomp : Q(e) =)
b () Sigs thp(si)

where S is the set of services provided by component e, rz(s;) is the mean
response time of service s;, and thp(s;) is the mean throughput of service
s;. We do not include service utilisation of underlying system resources
in the component quality function, because it is highly dependent on the
infrastructure level. This way we hold the quality function independent of
the remaining elements, while still characterizing component quality from
the user point of view.

Connector Quality Function:

rt(e)

Econn : = T
ve<s Q) thp(link)

where link is a communication resource (network) used by connector
e, thp(link) is the mean throughput of the link, and r#(link) is the mean
response time of the communication over the connector (round-trip), de-
pendent on the communicating components. Note that, this definition is
independent of the usage of the connector by the connected components.
The connector usage is defined by the communicating components. There-
fore their quality function has to be defined before.

Infrastructure Quality Function:

198

5.2. Structured Completion Library for Conflict Reduction

Ve € Einfrq : Q(e) = Z ut (r;),

ri€R

where R is the set of available infrastructure resources, and uz(r;) the

mean utilisation of a given resource.

5.2.3.2. Interdependence of Model Elements

The three types of model elements are in component-based performance
models understood as layers, with the infrastructure on the bottom, connec-
tors in the middle, and components on the top. Based on this layering, the
accuracy of performance prediction is determined by the depth of informa-
tion inclusion, starting from the component layer, possibly including the
connector layer, and sometimes even the infrastructure layer. This implies
the interdependence among the layers, which is with respect to performance
completion only bottom-up. In particular, the components are completed
independently of the connectors and the infrastructure, connectors comple-
tions may be dependent on components, and the infrastructure completions
can be dependent on both the connectors and components.

Thanks to the nature of completions applied to the different types of
model elements (components, connectors and infrastructure), which con-
cern only the internals of the elements, we can claim the completion in-
dependence between elements of different types. In other words, having
two elements of different types, e.g. a component e,y and a connector
econn, We can decide independently of the most suitable completion chain
for ecomp and for ecp,. The order of choosing the completion chains for
the two elements does not matter. Within each layer, we can see relative
independence of the elements (of the same type). Having two components
ecompl and ecomp2, Where ecopp) requires a service provided by ecomp2, we
may first need to resolve completion conflicts in ecqyp2 to have enough in-
formation to decide on the optimal completion order for eyup1. This is

71 (si)

implied by the quality quantification Q(ecomp1) = Ly;es Tl defined over

199

5. Completions for Software Performance Engineering

the performance qualities of component’s provided services s; € S, i.e. rt(s;)
and thp(s;), which are in PCM defined in a parametric way based on the
resource demands of the services.

At the connector layer, the connector usage is defined by the communi-
cating components. Therefore, completions of connectors could influence
the decision on the component layer. However, it only changes the ratio not
the performance semantic of the completion. The completion independence
of connectors (occupying the connector layer) is guaranteed simply from
the non-existence of direct connections between connectors, and thanks to
the nature of connector completions, which touch only the internals of the
connectors. The same argument holds for the infrastructure layer that con-
sists of a set of resource containers or nodes. Completions applied to one
resource container cannot affect completions applied to another resource
container.

This is however the issue only for component elements, which are inter-
connected via their interfaces. Having the idea of component reusability
in mind, we consider components as black-box elements. Throughout the
completion process we can take advantage of these component-based prop-
erties. Additionally, the components use the services (e.g., communication
link) provided to them by connector. As such we first optimise the compo-
nents and only later connectors completion chain. Connector elements are
independent due to their nature of not relying on the rest of the architecture,
and there is always only one infrastructure element, hence having nothing
to be in conflict with.

Based on the above, we adopt the following order of completing the ele-

ments in a system model:

1. Component layer: Components are independent of all elements in
the remaining two layers of the system model (connectors and the infras-
tructure), but are dependent on the components required by their provided

services. To evaluate the quality of the services, we first need to know

200

5.2. Structured Completion Library for Conflict Reduction

the quality of required services that hence need to be completed and eval-
vated first. For this reason, we first connect the components into a call
tree (starting in the user interface), and then complete the components in a
bottom-up fashion, starting from leafs and finishing in the root. If the call
graph contains cycles, then the completion orders for the individual com-
ponents can be detected in an iterative way, starting with a seed of random
(but valid) completion chain for each component, and iteratively optimising
the dependent components, propagating the already computed performance

values from the previous iteration.

2. Connector layer: Connectors can be completed independently of
each other. They may however be influenced by the component elements
whose communication they mediate. Therefore, the completions of con-
nectors should follow after the completions of components.

3. Infrastructure layer: Last, the infrastructure completes the target
model. The infrastructure provides physical services for connectors and
components (such as middleware). So it represents the lowest-level details
that should be added to the model last. Therefore, we apply infrastructure
completions in the order from the highest to the lowest layer of software

stack.

5.2.3.3. Conflict Resolution for an Individual Element

In the ideal case, the completion set CS intended to be applied on a model
element e € E is not conflicting. Then, we can choose any valid completion
chain (permutation order) over CS, and apply the completions according
to that order. If it is not the case, the idea behind the method of conflict
resolution (chain selection) is the following.

If a completion set CS is conflicting, then we select the completion chain
cc over CS with the minimal value of Q(cc(e)) (with the best performance)

and return it as the result to the software architect. This is a suggestion to

201

5. Completions for Software Performance Engineering

the software architect. He/She can choose between proposed completions
chains with defined performance semantics (increasing/decreasing perfor-
mance), however, possibility to change the completion order depends on
the chains supported by the used platform. The completion-chain selection
problem can be understood as a single-criteria optimization of completion-
configuration order with constraints. The constraints define the architec-
tural validity of the configuration order (completion chain) for the given
model element, and the objective function is given by our quality function
Q that is minimized. Existing algorithms can be employed to solve this
problem, including popular heuristic-search techniques, which traverse the
space of all candidates (permutations of the given completion set) taking the
constraints into account (excluding invalid completion chains), and search
for a (near-)optimal candidate to minimize the quality-function value.
Pivot Element of a Transformation If v{ yields not only a single model
element but a set of model elements, we identify the element that resembles
the starting point of the next transformation, i.e., the pivot element of a
transformation. We assume that, for each completion that is to be applied
in a chain, its pivot element has been defined explicitly. In the following,
we describe the rule of thumb how the pivot element of a transformation

can be identified for component, connector, and infrastructure completions.

e Component Completions build a hierarchy of wrapped components.
Thus, the next completion is to be applied to the highest wrapper in
this hierarchy. The pivot element of a component completion is the

outer wrapper introduced by the completion.

e Connector Completions always consist of an operation and its inver-
sion (e.g., marshaling and demarshaling). Both operations are (or
can be) represented by separate components linked by a newly intro-
duced connector. This connector is the pivot element of the connector

completion.

202

5.3. Completion Library: Concurrency design patterns

o Infrastructure Completions affect multiple connectors or components
in one container. The container itself is never changed and thus re-

mains a constant pivot element.

5.3. Completion Library: Concurrency design patterns

Predicting the performance of software systems is especially challenging if
software components communicate based on a complex interaction pattern.
Such interaction is defined by concurrency, message-based communication,
and synchronisation patterns. In the following, we investigate some of these
patterns. We discuss the integration of performance abstractions in a form
of completions on the place of connectors or to enhance components or
connectors. First, we discuss the group of concurency design patterns in
general. Second, we give examples of completions in each sub-group of
patterns. We motivate each of the introduced examples and further discuss

its feature diagram and sketch the skeleton design of the completion.

5.3.1. Motivation

Parallel programs are generally complex, hard to understand and rise im-
plementation and modelling effort. Lee [107] discussed the problems and
complexity of parallel programs. Despite all the difficulties, the deploy-
ment of concurrency concepts in software systems is the most important
possibility to increase performance. To simplify implementation and mod-
elling of parallel software is one of the most important questions of software
engineering.

Today, in the world of multicore processors, the development of paral-
lel software is more and more important. The threads and processes could
be divided between available cores and allow efficient usage of the under-
lying hardware [155]. Software developers and software users get double
(at least in theory) computation power by adding a second core. Similarly,

the performance should rise by processors with four or eight cores. How-

203

5. Completions for Software Performance Engineering

ever, this promised performance increase it is not for free. Programs run-
ning on multicore processors have to be specifically structured to use the
promised advantages. The whole architecture should allow for the compu-
tation or whole parts of architecture to run in parallel on the available cores.
So the software architectures should be designed using parallel structures.
Although, introduction of parallel execution promises increase in perfor-
mance, the development effort for this increase is high. Additionally, in
some cases the performance increase is not so big as expected. Therefore,
it is important to test influence of concurrency on performance in advance.
Design-time prediction of performance with concurrency allows software
architects to make good decisions and identify where introduction of con-
currency is necessary to increase performance and where the increase of
performance would be too small in comparison to required development
effort.

In the area of performance prediction the models of parallel software are
very complex as well. For accurate prediction detailed models are neces-
sary. Such models include already expert knowledge and low-level imple-
mentation details. Often creation of such models in early design time is
impossible or only realisable with a lot of effort. The main idea to solve
this problems is to simplify and refine performance predictions with help
of model-driven performance completions. Sutter and Larus [155] already
identified the need for higher abstractions for concurrency and in this way
to simplify the development of parallel programs. This could be done with a
help of model constructs, such as completions, that encapsulate the knowl-
edge about behaviour and performance parameters of concurrency design
patterns. The design patterns for concurrency reduce the complexity, make
the systems more understandable and modelling simpler. Hence, design
patterns describe generic solutions for known software design problems.
This way they help developers to design more effective and robust soft-

ware.

204

5.3. Completion Library: Concurrency design patterns

Even though it might be known that a certain pattern influences the qual-
ity of a system [143, 51], the extend of the effect in a certain scenario
is unknown. Furthermore, a design pattern may affect several quality at-
tributes. For example, replication increases the availability of a service, but
does not impact its performance directly. If multiple patterns are combined
to enhance quality, synchronise components, or ensure data consistency,
their overall effect cannot be assessed manually. Schmidt et al. [143] de-
scribed the most important design patterns for parallel software. They iden-
tified service configuration, service call, event-management, concurrency
and synchronisation as most important tasks for design and implementa-
tion of parallel and distributed systems.

In this chapter we analyse concurrency design patterns based on their
applicability in component-based architectures. Furthermore, for some of
them completion construct are introduced and integrated in PCM. We use
model-driven performance prediction techniques to evaluate the influence
of concurrency patterns on the quality of a software architecture. Addi-
tionally, in the following section, we apply our approach for completion
conflict reduction to concurrency design patterns.

5.3.2. Categorisation of concurrency design patterns

In our approach, we simplify the design and the development of concur-
rent software architectures by completions for concurrency design patterns.
We provide predefined parametrized performance completions based on a
knowledge about concurrency design patterns and their implementation de-
tails. In general, design patterns provide enough information to allow accu-
rate performance predictions. Patterns for concurrent and distributed sys-
tems address multiple aspects, such as synchronisation, communication,
and Quality of Service (QoS). For example, the patterns MonitorObject
[143], Thread-Safe Interface [143], Guarded Call [51], and Rendezvous

[51] provide different means for synchronisation and communication. Pat-

205

5. Completions for Software Performance Engineering

terns like Half-Sync/Half-Async, Leader Followers, Reactor, and Proactor
as described Schmidt et. al. [143] are used in servers to efficiently dis-
patch and process concurrent requests. Furthermore, Replication and Load
Balancing are employed to enhance different QoS attributes in distributed
systems.

We apply the conflict reduction method to this group of design patterns.
For this purpose, we categorise the design patterns in the conflict groups
using the levels of conflict reduction introduced in Section 5.2.3. The cat-
egorisation of design patterns based on a development roles and their re-
sponsibilities separation builds the basis for reduction and avoidance of
conflicts. Additionally, based on this categorisation software developers
can select suitable patterns for certain problem domain without detailed
knowledge about their structure. DWe categorised concurrency design pat-
terns according to the development roles, that most likely will use them (see
Table 5.1).

Event-based Synchronisation Concurrency Message-oriented
communication communication

Scoped Locking

Ellaieeizedhockine Thread-specific Storage

Thread-safe Interface

Component Developer Monitor Object Messaging Endpoints
Double-checked Locking A
Optimisation Eeeleatio]
Rendezvous/Barrier
Message Channel
. Asynchronous I .

Software Architect Completion Token Pipeline Message Routing

Message Endpoints
Active Object

Reactor
Half-Sync/Half-Async
System Deployer Proactor Message Bus
Leaders Followers
Acceptor-Connector
Thread Pool

Table 5.1.: Roles and Responsibilities Separation: Mapping design patterns to de-
velopment roles.

206

5.3. Completion Library: Concurrency design patterns

Component Completions: The category Component Developer includes
patterns used for a definition of basic thread-safe components. These pat-
terns solve the issues related to parallel usage of the component provided
service, for example, data inconsistency. Here, the patterns supporting data
concurrency so that task could be executed in parallel on all elements of the
same data structure. This type of concurrency is called data concurrency
and especially patterns for synchronisation deal with this type of concur-
rency.

Connector Completions: The category Software Architect consists of
patterns for specification of component interactions, such as coordination
and optimisation of communication between components. It is so called
pipeline concurrency, when data should be handled one after other by a
number of tasks, where parts of the data could be handled by different tasks
at the same time. We can distinguish linear (Pipe and Filter), non-linear
(Pipe and Filter Pattern with Distributors and Aggregators) or special (Pro-
ducer/Consumer Pattern with synchronisation) types of pipeline.

Infrastructure Completions: The category System Deployer subsumes
patterns that are used to build middleware platforms for concurrent soft-
ware systems. For example, the concurrent processing of requests by an
application server can be realised by a Leader/Follower pattern. So called
task concurrency patterns in this category are allowing that some task could
be executed in parallel, that mean the task will be executed in a number of
threads.

There exist many different parallel patterns, in this work, representants

of these patterns were chosen and completions were specified for them.

5.3.3. Component Completions

The first group of the completions is defined based on design patterns
that affect model elements describing component behaviour. These pat-

terns complete behaviour by integrating new actions (e.g. external call,

207

5. Completions for Software Performance Engineering

acquire or release) into the component’s control flow, or they create wrap-
pers around the completed component and delegate its interfaces so that the
change of the component is externally invisible (e.g. Replication pattern or
State Manager). For example, all design patterns for synchronisation and
thread-safety belong to this group, e.g., Locks, Monitors, State Managers
or the Barrier pattern. In the following, we evaluate the Replication pattern

and introduce completion for this pattern.

5.3.3.1. Replication Completion

We analysed replication completion in [34], where we created a model of
this completion and provided simulation experiments using different con-
figuration options of replication. This section is based on results of these

experiments.

Motivation There are two purposes for replication, thus having multi-
ple component instances of one component: improving a software system’s
performance and reliability. The goal of replication is, first, improving re-
sponse times for incoming requests, as these can be assigned to different
replicas, in effect handling several requests in parallel, and second, improv-
ing reliability, by assigning the tasks of failed replica to one of its identical

copies.

Figure 5.2.: Replication Pattern.

In Replication pattern (cf., Figure 5.2), the clients send their requests to,
and also get their responses returned from, the Front-End Manager only.

How their requests are handled by the Front-End Manager and the replicas

208

5.3. Completion Library: Concurrency design patterns

is transparent to the clients. A Front-End Manager can provide shorter
response times for its clients by distributing the incoming requests among
the available replicas. When the Front-End Manager receives a request
from a client, it multicasts this request to all replicas. The replicas process
the request, and send a reply back to the Front-End Manager, which in turn
gathers the replies and selects a final response for the client.

There are two basic modes of request handling: active replication and
passive replication. When all redundant replicas process each request, we
call it active replication, or the requests are directed only to a single replica,
and the other servers act as backup, then we call it passive replication. The
second mode is sometimes called primary-backup replication [147]. In con-
trast to active replication, there is only one primary replica. It is the only
replica that gets the request from the Front-End Manager, and also the only
replica that sends a reply. This reply is sent back to the Front-End Manager
and additionally to the other replicas. The other replicas just update their
state to keep the entire system consistent. Replicas may be stateful or state-
less. If stateful, after a change in one replica has been detected, all other
replicas must be updated to ensure consistency.

Replication Completion: Feature Diagram Further, we studied
quality effects of replication with the goal to extract feature diagram, which
builds a basis to implement replication completion. Replication intuitively
improves reliability. Additionally, load-balancing can improve perfor-
mance between number of replicas.

However, because of a huge amount of routine work (e.g., copying) when
modelling replication the cost of the model may increase and maintainabil-
ity may be decreased due to higher complexity of the model. Therefore, is
especially important to automate replication mechanism. However, while
we identified that replication configuration (except replica count) has very
minimal impact on performance, there is still a lot of effort needed to cre-

ate models of replication, especially because of changes of topology and

209

5. Completions for Software Performance Engineering

needed copies of a large number of elements. Therefore, we created a com-
pletion that automates this effort. Impact on performance of this completion
is evaluated in following.

Based on the domain analysis, we identified features influencing perfor-
mance and created feature diagram for replication completion. The feature
diagram (cf., Figure 5.4) contains all configuration options, which we as-
sume to have an influence on the quality properties of a system.

In replication feature diagram the Replica Count property defines how
many identical copies of the component, which is to be replicated, should
be created. The results of the simulations reflect the benefit of balancing
system load among replicas in real-world systems. The system is able to
generate answers faster, the more replicas are available, which is shown by
the averages and medians of the response times, as seen in Figure 5.3 (i.e.,
voting 1 to 5 active replicas).

The more stress the usage scenario puts the system under, the more
clearly you can see how the system scales. Considering the minimal usage
scenario, the addition of a replica to the system makes not much difference.
For the balanced usage scenario, the advantage of additional replicas be-
gins to show. Compared to a system using a single replica, one with five
replicas can generate a reply in less than half the time. Eventually, the sys-
tem response time is noticeably reduced for the demanding usage scenario,
demonstrated by the system becoming almost 4 times as fast the more repli-
cas it has available.

From the identified options, Load Balancing and Replica Count are
straightforward additions. Which replica is chosen to process a request
can be decided for every single request, or for all requests per client. We
model the per-request choice only. Different strategies for the load balanc-
ing decision are available, namely "Random", "Round Robin" and "First
Available". A Front-End Manager using the "Random" strategy chooses
one replica randomly for each received request, which will then process it.

While not optimal, this strategy offers a significant increase in performance.

210

5.3. Completion Library: Concurrency design patterns

Response Time Averages

25

2
0y
5 15
8
g
5]
8
173
S v
o
2 w0
IS
v
5 ‘\‘_\L v 2
L = = i -0
0
1 of 5 voting 2 of 5 voting 3 of 5 voting 4 of 5 voting 5 of 5 voting
Replicas
& Minimal 0= Balanced V- Demanding
usage usage usage

Figure 5.3.: Random Load Balancing: Graphical comparison of the response time
averages for three differently demanding usage scenarios.

With the "Round Robin" strategy, the Front-End Manager defines an order
on its available replicas. Following this order, every request is forwarded
to the currently selected replica, and the next replica is selected, one after
another. With the "First Available" load balancing strategy, a Front-End
Manager assigns each client to a randomly chosen replica. All requests
received from an assigned client are then always processed by the same
replica. In the case of the last two strategies, the Front-End Manager needs
to keep track of the current state of its replicas.

In the distributed variant of replication, a new resource container is cre-
ated for every replica of the component. These resource containers get the
same processing resource specifications as the resource container that con-
tains the original component. We replicate homogeneously (i.e., together
with all components on it, leading to identical server replicas) to make the
system more manageable and the overview easier. On the other hand, if

local replication is chosen, the already existing processing resources are

211

5. Completions for Software Performance Engineering

Replication

Multicast

Load
Balancing

Voting
Strategy

Replica
Count

‘ Availaible

Round Robin

‘ Random ‘ ‘ Nof M ‘ ‘ Prioritised ‘ ‘ Basic ‘ ‘ Reliable

Legend 4
~&. or

e mandatory
o optional

Figure 5.4.: Feature diagram for the replication design pattern.

multiplicated inside the original resource container. This is done as many
times as the replica count option specifies, so that every local replica has its
own exclusive set of resources.

We also added the Voting Strategy to our feature diagram. We think the
voting strategy is a major factor for reliability. This becomes important for
safety-critical systems, which we also want to allow to be simulated. A
common application of the "N of M" voting strategy is absolute majority
voting. Taking a system with five replicas as example, an absolute majority
is achieved when three identical responses are returned, and the Front-End
Manager may already send the response to the client without waiting for the
remaining two replicas. However, we can support an arbitrary number of
required answers without additional effort. This may be of use for a system
architect who needs less certainty than a total majority, or who needs an
even higher certainty of the correctness of the gathered answers. The basic
idea behind the rules for N of M voting is using a counting semaphore,
stopping the main execution thread until enough replicas have finished and
replied. Additionally, we need to insert a mutex, so that each thread can
use the semaphore exclusively, undisturbed from other threads. Otherwise,
it would be possible that race conditions occur. When evaluating the N
of M voting strategy, we determined that the number of required answers
influenced performance. Factoring the influence of the replica count into

the voting strategy, both N and M are important options.

212

5.3. Completion Library: Concurrency design patterns

The choice of the multicast type concerns data consistency among repli-
cas. When basic multicast is chosen, nothing needs to be changed in the
models. In this mode, requests are forwarded from the Front-End Manager
to all replicas without taking any steps to ensure data consistency.

Reliable multicast, however, is implemented using acknowledgements in
actual systems. A replica sends an acknowledgement back to the Front-End
Manager when it received a request. The Front-End Manager can thereby
verify that all replicas received the request successfully. Therefore, ac-
knowledgements improve the reliability of the communication between the
Front-End Manager and its replicas, at the expense of increased network
traffic. We can model this by adding the usage of a network resource, while

changes to other models are not necessary.

Replica Voting oo | Multicast |
~ Count Strategy \
O\ -

-

F_irs_t Round Robin N of M Prioritised
Availaible

T

‘ Basic ‘ ‘ Reliable ‘

i
|
i
i
i
i
i
;
Rl
{ N

>/Prol}abilislic Br‘anch mﬂ@m

"o
~N [Q
; '9{ acquire)9] ServerN J>] release . H
H : H
H e i H
é. > .%(acquire)%(Server2)9] release)>© am}ulm%@i
'9(acquire H Server1 }9{ release P@ H
- J
T
(

N

N LA L . .
H Server1]
1

Server2

]
|
|
1
|
I
I
|
|
1
|
1
1
|
'
|
|
|
|
|
'
|
1
1
|
|
|
'
|
1
|
|
1
|
1
1
|
|

Glient & —(—0+ Front-End) - —

RequiredReplies=N

N=Required Replies !

ServerN

T

Figure 5.5.: Replication Completion Skeleton.

213

5. Completions for Software Performance Engineering

Replication Completion: Completion Design In PCM a compo-
nent instance can be replicated in two ways: first, on the assembly layer,
i.e. a component instance in two different contexts is composed to build
the system; second, on the deployment layer, i.e. a component instance is
mapped to several deployment contexts. The replication on the deployment
layer is invisible in the systems structure. Therefore, software (e.g., paral-
lelizable software) that could gain advantage from the replication can not be
tested for it properly. Another point about deployment layer replication is
that all the replicas are actually copies, concerning the functionality, quality
properties and deployment environment. The replication on the assembly
layer does not implicitly mean this level of equality between replicas. In
some scenarios where, for example, the most performant replica has high-
est priority, it is appreciated when this information propagates to the sys-
tem architect as well. Therefore, we implemented only the replication on
assembly level, anyhow, it is conceptually very similar to realise replication
on the deployment level.

When a component should be replicated, first, a Front-End Manager
component is inserted into the system (cf. Figure 5.5). Second, the repli-
cated component is copied a number of times, as defined by the value of the
replica count. Front-End Manager shall manage the requests that formerly
were sent to the replicated component directly, therefore, it provides the
same interface as the replicated component. Furthermore, the Front-End
Manager requires the same interface a number of times, determined by the
value of the replica count, so that it can forward the requests to the replicas.

In the system diagram, the replica count determines how many replicated
components and connectors to them are created. Furthermore, the repli-
cated components can require services from other components. We can
deal with these required components twofold: first, all the required compo-
nents as replicated too; second, only the selected component is replicated.
In our solution, all components that provide a service used by the replicated

components are replicated as well, such could become a bottleneck for the

214

5.3. Completion Library: Concurrency design patterns

system, if they resided on the original, local resource container. Without
replicating these components as well, each would be accessed by all repli-
cas concurrently, provoking system overload. However, we assume that
there is small number of these required components (not more as two) and
we replicate only components originally located in the same resource con-
tainer. This approach, however, should be further evaluated, which is out
of scope of this work.

Another important point is that we can replicate these additional com-
ponents without additional changes, because all components are originally
stateless in the PCM. Would they be stateful, we would have to ensure syn-
chronisation and data consistency via additional constructs. The stateful
extension of this completion is required at this point, similarly as it was
done of the MOM completion in Section 7.2.1, this is part of the planned
future work.

Based on the option distributed or local for the replica location, a new re-
source container is created for every replica of the component or the already
existing processing resources are multiplicated inside the original resource
container. This is done as many times as the replica count option specifies,
so that every local replica has its own exclusive set of resources. The cre-
ated resource containers get the same processing resource specifications as
the resource container that contains the original component.

The voting strategy is simulated with the passive resource of capacity
equal to the required number of replies from replicas. Each replica releases
the passive resource when finished. The Front-End has to acquire the whole
capacity of this resource before sending reply to the client. Thus, the wait-
ing for the replicas to finish is simulated.

The load balancing strategy is simulated by a probabilistic branch where
number of branches is determined by the value of the replica count. In each
branch one replica is called. The model of "Random" strategy is straightfor-
ward, for example, when we have 2 replicas each of the branches gets the

probability of 50%. The model of "First available" and "Round robin" re-

215

5. Completions for Software Performance Engineering

quires stateful extention. However, because experiments [55] showed a lit-
tle difference between these strategies we model these strategies with simi-
lar model as for the "Random" strategy. For exact model of these strategies

we plan the stateful extention in the future.

Replication Completion: Summary We identified the features of
replication that are included in the feature model and modelled with the
means the PCM provides. These features were evaluated on a relevant im-
pact on performance of a simulated architecture. Additionally, we imple-
mented a completion in a form of feature model with related transformation
fragments.

The future work for the replication completion includes to evaluate the
other alternatives to active replication, such as passive replication with a
primary replica or stateful replicas. Another area for future work is mod-
elling and evaluating local replication. This should become possible once
the implementation of multicore support in the PCM is completed, that
means utilising multiple processing resource definitions of the same type in

one resource container.

5.3.3.2. State Manager

We analysed the stateful components and implemented stateful extension to
the MOM completion, which is further explained and validated in Section
7.2.1. This completion was then implemented using the technique intro-
duced in Section 7.2.1 and resulting transformation is evaluated in Section
7.2.3. In this section, we introduce necessary changes and extensions to
the PCM allowing modelling of stateful components. In Appendix A, we
further discuss stateful performance engineering and related concepts. Be-
cause this completion is not an explicit construct available to the users, a
State Manager is in current PCM used only as extension of existing comple-

tion, we do not introduce a feature diagram. The reason for this decision (in

216

5.3. Completion Library: Concurrency design patterns

PCM) is the possible complexity of stateful models that would be allowed,

if the stateful concepts were available explicitly.

Motivation In the following, we give an example for the influence of
state on software performance which is taken from the area of message
based systems. In particular, we are interested in the delivery time (time
from sending a message until it is received) of messages send within a trans-
action. Messaging systems, which implement the Java Message Service
standard [74], explicitly support transactions for messages. The transac-
tions guarantee that all messages are delivered to all receivers in the order
they have been send. To achieve such a behaviour, Sun’s JMS implemen-
tation MessageQueue 4.1 [1] waits for all incoming messages of a transac-

tion and, then, delivers them sequentially. Figure 5.6 shows the measured

il

2000 4000 6000
n-th Received Message

14

0.8 1.0 1.2
| |

Delivery Time [sec]

0.6
|

0.4

Figure 5.6.: Time series of a transaction with 1000 messages per transaction set.

delivery times for a series of transactions with 1000 messages each (the
sender initiates a new transaction (as part of a session), passes 1000 mes-
sages to the MOM, and finally, commits the transaction). All messages

arrive within the first 0.4 seconds and are delivered sequentially within the

217

5. Completions for Software Performance Engineering

next second. This behaviour leads to delivery times of 0.4 seconds at min-
imum. The delivery times grow linearly until the transaction is completed.
In this example, the position of a message in the transaction set determines
its delivery time. Thus, the measured delivery times are not independent
and identically distributed but strongly depend on the number (and size) of
messages that have already been sent. As a consequence, to predict perfor-
mance accuratelly we need to keep track of the messages that are part of a
transaction. Additionally, the periodical utilisation of resources (e.g., CPU)
influences performance. To model such a behaviour, we need a notion of

state as part of our performance model.

State Manager: Completion Desigh In the MOM Completion in-
troduced in [76] the transactional delivery is not supported, because of re-
quirement on the PCM that prohibits to use stateful components because
of complexity issues. We decided to extend MOM Completion so that the
usage of stateful components will be hidden. The Statefull Manager will be
inserted by the transformation into the target model as an wrapper around
previously stateless component. This wrapper will then manage calls to the
methods of the component based on the state value.

We extended the component behaviour model of the PCM (the SEFF) to
allow the modelling of component internal state. With this extension, also
system specific global state (cf. Appendix A) can be modelled by adding a
blackboard component that makes its internal state available to other com-
ponents in the system. Only two additions to the PCM metamodel are re-
quired to model component internal state and global system state. First,
we declare a set of state variables for a component. Only a declared state
variables can be used within a SEFF. Second, we add a SetStateAction
to the SEFF, which allows to set the state variable to a given expression.
Input data of the SEFF, other state variable values and the previous state
variable value can be used in the expression. Now, the state variable can be

218

5.3. Completion Library: Concurrency design patterns

Messaging

Channel

Point-to-Point
Channel

Competing
Consumers

Publish-Subscribe
Channel

Legend 4

& Exclusive OR
Subscriber
® Mandatory Feature

Optional Feature

H Guarded Branch

isTh I e i

@>{ setstate J%[callServerJ%[commitTransaction }9@ <):| oH-(Cso

: [VALUE=state + 1] [transactionSize==state] : i

i H sran;

QTransac(ion:false W J

Transaction
Size

R TELTETEETEEN

Figure 5.7.: MOM Completion Skeleton for transactional delivery.

used in branch conditions or resource demands as a parameter. The use of
PCM Stateful extension is illustrated in section 7.2.1.

Figure 5.8 illustrates the PCM extension. Assume a Component A
processing data. It performs clean-up task after each Megabyte of pro-
cessed data. Thus, it keeps track of the amount of data processed. In
the model, we store the limit of 1 MB in a component parameter named
dataLimitInMB.VALUE, defining component configuration state. We de-
clare a state variable processData.VALUE and initialise it with the value
0, defining component internal state. The SEFF of the component is shown
in a state-chart-like notation in the figure. First, we modelled a Set-
StateAction to add the currently processed amount of data (available
as inputData.BYTESIZE) to the processData.VALUE variable. Then,
the data is processed in the InternalAction process. We omitted the re-
source demands for brevity. After processing the data, we check whether
a clean-up is required in the BranchAction. If processData.VALUE >=
dataLimitInMB.VALUE, we do the clean-up of 1 MB and set back the state

219

5. Completions for Software Performance Engineering

w [<<State>> |

<<SetStateAction>> | processedData.VALUE =0 |

processedData.VALUE =
processedData.VALUE + l <<ComponentParam>> l
inputDate. BYTESIZE / 10%6 [dataLimitinMB.VALUE = 1 _|

<< InternalAction >>
process (?
\

<<GuardedBranchAction>>

processedData.VALUE >= processedData.VALUE <
dataLimitinMB.VALUE dataLimitinMB.VALUE

*

<<InternalAction>>
cleanUp

]

<<SetStateAction>>
processedData.VALUE =
processedData.VALUE -

dataLimitinMB.VALUE

\@é) /

Figure 5.8.: Example stateful SEFF.

to processData.VALUE - dataLimitInMB.VALUE. The second branch is
empty.

State Manager: Summary An extended PCM model can be analysed
with the extended version of the SimuCom simulation presented in [18] to
obtain the performance metrics. At simulation runtime, each component
is instantiated and holds its state variables. When a SetStateAction is
evaluated, its expression is evaluated and stored in the state variable. If
BranchActions and InternalActions access state variables, the value
is retrieved. The extension increases the expression power of SEFFs and
allows programming, although the language does not become Turing com-
plete (all loops are bounded). As multiple requests to the system are anal-
ysed concurrently, we can encounter race conditions and resulting unex-

pected behaviour. In our example above, race conditions are excluded be-

220

5.3. Completion Library: Concurrency design patterns

cause the branch condition and SetStateAction are evaluated in the same
simulation event (no time passes in simulation). However, in general, if a
resource demand is executed between reading the state in a BranchAction
and setting the state in one of the branches, both actions are executed in
separate simulation events. Here, a second request to the component could
read or change the state in between, leading to race conditions.

With the extended state modelling, steady-state behaviour is not guar-
anteed any more. While this limits analysability, it also can help to detect
problems in a software design. For example, assume a system service that
becomes the more expensive the more requests have been served. Then,
the response time of the system will ever increase ("The Ramp’ antipat-
tern [147]) and no steady state can be reached. With the extended state
modelling, this performance antipatterns can be detected in the simulation
results.

5.3.4. Connector Completions

Assembly connectors [165, 12] are the most complex type of model ele-
ments that can be enhanced by completions. For connectors, several per-
formance completions can be applied on one connector instance so that
their order has to be determined.

The first kind of completion provides details about the type of the con-
nector, i.e, whether it is 1:1, 1:n, or n:1. Connectors of type 1:1 are typical
message passing or RPC style connectors which connect a single client
component instance to a single server component instance. In case of 1:n
connectors, a single client component sends requests to a set of server com-
ponents which is semantically the case for server replication scenarios or
voting based server queries. Finally, n:1 connectors are the usual case of n
clients instances talking to a thread-safe server instance.

Orthogonal to the type of the connector, connector performance com-

pletions also include details about the processing of the communication

221

5. Completions for Software Performance Engineering

T

sender €] Receiver &
Middleware Middleware

P [l o0
Aeje;:‘i’ DeMarshalling [—(-

Middleware System

Platform-specific Middleware Components

Figure 5.9.: Connector Middleware Completion [76].

(synchronous or asynchronous) in the participating middleware layers as il-
lustrated in Figure 5.9 [76]. Here we find services for message marshaling,
message encryption, call authentication, message compression, etc. For
these types of message processing steps, existing performance completions
insert a completion component for each processing step. However, the or-
der of these services is important because of the differences in the data
flow involved. For example, the size of the message to be sent over the
network is different if the message’s body is first encrypted and then com-
pressed versus an initial compression followed by a subsequent encryption
step. Hence, for the processing steps the order of application of a set of
performance completions does matter and needs clarification. We analyse
this issue further in Section 7.2.2.

Connector completions rely on introduced components which reflect
the performance related behaviour of the used middleware. As a conse-
quence, these middleware components implement both, the resource de-
mand caused by the middleware’s processing but also the data transforma-
tions they perform on the message to be sent over the network. Note, that
in some usecases the size of the message is not of major interest for the
overall performance of the network link. In such cases, the data transfor-
mations become neglectable and consequently also the order of applying
the corresponding performance completions does not matter any more.

As a result of the discussion of connector completions, we can conclude

that we need at least two types of annotations. The first annotation class

222

5.3. Completion Library: Concurrency design patterns

determines the connector kind and defines the exact implementation se-
mantics of 1:1, 1:n, and n:1 connectors, e.g., whether voting or replication
is used for a 1:n connector. The second class of annotations defines the pre-
and post-processing details of the messages used by the connector for re-
mote communication. Here, the annotation gives details about marshaling,
encryption, compression, etc. A clear definition of the order in which such
completions are added to the performance model is necessary to get ac-
curate performance predictions from the refined performance model. This
section gives details on how to build more complex connectors, based on
an abstraction inspired by Pipe&Filter pattern.

5.3.4.1. Pipe&Filter Connector

In this section, we present the architecture of performance abstractions for
connectors, the feature diagrams we developed and finally the architecture
we implemented in transformations for the PCM. This section is based on

our work presented in [119].

Motivation Because, we aim to model only performance abstractions of
connectors we can abstract from the functional details and concentrate on
the performance-relevant dependencies. In general, from a performance
point of view connector is a chain of components producing a load depen-
dent on the size of data to send. The exact functionality of connectors is
not of the interest for the performance prediction. Therefore, it is possible
to model connector as a chain of activities whose performance determines
the performance of the whole connector. The performance of the connector
then depends only on the properties of transferred data (such as data byte-
size). In such highly abstract connector model we can simplify connector
on two types of activities: buffering of transferred data and computation
or I/O activities with the data. Which is very similar to the Pipes & Filters
pattern, which is an architecture pattern for data stream processing systems.

The connectors’s task is then divided into several independent incremental

223

5. Completions for Software Performance Engineering

processing steps (filters) connected by pipes, altogether forming a pipeline.

Client Role Processing Step Server Role

/ / \
Y J y

=
L]

O—QO—I Pipe ﬂ|—(ig'—| Filleru|—(o H_C

Figure 5.10.: Mapping the connectors on the abstractions in the performance model.

In our case the scope will be connectors and their tasks. We will use
pipes and filters to model connectors which in turn are assembled using ba-
sic constructs provided by PCM. The main advantage would be high level
of abstraction and low-complexity of the composition of independent tasks
in connector. We build all the connector variants from the basic constructs,
e.g. pipes and (active/passive) filters. The connectors will be variable
considering non-functional properties and other aspects of communication.
The advantage of our approach is that we need to compose multiple in-
stances of two simple building blocks (pipe and filters) and calibrate them
with performance data. In addition, our approach to build performance ab-
stractions of connectors simplifies the generation technique because it is
enough to have a few of reusable fragments of transformations (in our case
three: pipe, active and passive filter) that could be composed to generate
the connector (cf., Figure 5.10). The connectors we modelled within the
PCM are based on [30].

The settings in which a particular connector can be used are determined
by its topology. Four different topology types can be distinguished [30] as
shown in Figure 5.11.

224

5.3. Completion Library: Concurrency design patterns

OyaO

Procedure Call

C full duplex C
11

Blackboard

Streaming

Figure 5.11.: Connector Layout.

The Procedure Call Connector features unidirectional communication
from multiple client components (c) to one server component (s). It oper-
ates in both a synchronous and an asynchronous call mode. However, its
influence on the performance is significant, the communication of multiple
client components with a single server component (n:1 relationship) can be
modelled.

The Messaging Connector has a typical star layout. In the middle there is
the distributor unit (d). A component can be connected as sender, receiver
or both. It operates only in an asynchronous mode.

The Streaming Connector comes in two variants. The Full Duplex im-
plementation features bidirectional point to point communication for two
coequal components. The Half Duplex variant limits communication to one
direction with one writer component (w) whilst enabling multiple receiver-
s/readers (r). As is the nature of streaming transactions they are processed
in an asynchronous mode.

The Blackboard Connector has a star shaped layout similar to the mes-
saging connector. In the middle there is the black board storage (bb). Every
component is attached to the connector by a provided and a required inter-

face. Through the required interface it can send write and read requests

225

5. Completions for Software Performance Engineering

to the storage. Write requests are processed asynchronously while read
requests operate synchronously. Through the provided interface the compo-

nents can be notified about changes to the blackboard.

Pipe&Filter Connector: Procedure Call Feature Diagram In the
following, we introduce in more detail the structure of Procedure Call Con-
nector. The architecture of this connector is shown in Figure 5.12. The
connector is divided in two deployment units, one for the client and one
for the server side. They are allocated to the resource containers of their
respective component. The simplest form is the point to point connection
from one client to one server, thus also featuring only one client and one

server deployment unit. In general, multiple clients are possible.

client role
lient interceptor
lient adaptor
tub
keleton
ynchronizer
transaction manager
erver adaptor
erver interceptor
erver role

m&%{}@@@@

client deployment unit server deployment unit

Cl

Gl

S

S

)

S

S
S

a) connector architecture

- i
Q (=%
= o @ - < @ 2
E g S 8 3 e} =
? = a 2 2 a c
g 2 = E= 3 s g
o ‘(;)‘ Q o { 15}
= c [} @ = [}
o S @ 7] 7] @ 7]
marshaller marshaller
b) stub architecture c) skeleton architecture

Figure 5.12.: Procedure Call connector architecture [30].

226

5.3. Completion Library: Concurrency design patterns

When considering the individual elements from which the connector (cf.,
Figure 5.12) is composed, many of them can be mapped directly to the
abstractions based using simple pipes and filter components.

The client adaptor maps to a single filter in our model. Its resource
demands are configurable over a feature diagram. The Stub, the next ele-
ment of the connector, is a composed element consisting of smaller tasks,
from them the distributor and encryptor/decryptor are of interest to us. In
our model the encryptor/decryptor is also realized by a filter. The distrib-
utor is resembled by a filter with multiple required interfaces. Its SEFF
does not contain resource demands, but chooses which required interface
or interfaces the outgoing call shall invoke. The first element in the server
deployment unit is the skelefon, which is again a composed element and
the counterpart to the stub. From its subelements the encryptor/decryptor
define a coupled pair of filters in our model. The synchronizer is used to
establish the beginning of a critical section. Usually it is used to guard
code which is not thread safe. In these cases the capacity for the critical
section will be set to one. It is also possible to choose another value if
the resource, the critical section guards, has a higher capacity. The next
element manages transactions. This functionality is already covered by the
Middleware completion. In our model there is a placeholder which is refer-
enced by the transaction feature in the feature diagram. The server adapter
and interceptor are analogous to their client counterparts. The Intercep-
tor implements the Monitoring feature, which allows to interrupt passing
calls. In our model it resembles a special filter component with an addi-
tional required interface through which it sends the call before passing it
along down the connector. Intended for profiling (creation of statistics) the
interceptor can be used very flexibly, making it an all-purpose processing
step.

Our feature model is shown in Figure 5.13. The node labelled rarget
connections resembles a list of all assembly connectors which are to be

merged into this connector. As it can be annotated with multiple values, it

227

5. Completions for Software Performance Engineering

Buffer Size
(x2)

Procedure
Call

Transactions .o g

Critical Section Capacity
Server Worker
Management

Buffer
Size (x2)

Target g

Connections II
Synch I
Asynch

I

Distribution

Enabled

‘ Adaption ‘ ‘ I ion ‘

- .
‘ Remote ‘ Local WP Size
| Client | | Server | | Client | | Server |
l))

(Filter) (Filter) (Interception)

(Interception Legend

& or

A exclusive or
(Coupled) (Replication) (Coupled) e mandatory
o optional

| Encryption | | Replication | |Compression|

Figure 5.13.: Procedure Call Feature Diagram.

is illustrated as multi node. Only assembly connectors of the same interface
are allowed. The other multi node labelled synch/asynch configures if calls
should be performed in the synchronous or asynchronous mode. It does
that for each method signature within the used interface. It does only make
sense to activate the asynchronous mode for a method with no return value
or if the return value is not used by the callee. As soon as there is at least
one method, operating in the synchronous mode, some subtrees have to be
duplicated. This is because the synchronous calls travel through the con-
nector twice. By duplicating the trees resource demands, worker pools, data
size changes and buffering capacity can be configured two times. When-
ever a node and all of its child nodes have to be duplicated it is indicated by
a (x2).

The server worker management subtree configures the buffering capac-
ity of the last pipe and if the server should be connected to the connectors
worker management. By enabling it, a BoundedSinkAdapter is used
instead of the normal SinkAdapter. When it is disabled, the buffer ca-
pacity has no effect on calls travelling to the sink, because it accepts all
calls instantly. However the second buffering capacity very well has effect
on returning calls. This is not reflected in the feature diagram, because it

228

5.3. Completion Library: Concurrency design patterns

would have made the diagram even more confusing. The critical section
feature adds the synchronizer component to the connector. When select-
ing it, the number of calls which are allowed to enter the section has to be
chosen. The transaction feature is set in grey because it refers to another
completion as mentioned before.

Filter (x2)
per H .
‘ Method ‘ WP Size

Buffer
Size

‘ Manual ‘ ‘ Lib: ‘
Bytesize

Resource
Demand

‘ Modification

Figure 5.14.: Filter Subtree.

The adaption feature can be enabled for either the client, server or both.
Deploying both adapters may be necessary due to communication methods
or the use of middleware. Because the adapters are implemented by simple
filters, the filter subtree (cf. Figure 5.14) is referenced for both adapters.
The fact that a node represents a subtree is illustrated through a thicker
frame. Per filter the worker pool size and the buffer sizes of the pipe in
front of the adapter have to be set. Also per filter the resource demand and
byte size change has to be configured for every method. It is possible to
choose these from a library with predefined formulas. However the library
is not supported by our work, but can be retrieved from the work of Becker
etal. [10, 14].

Compression is a feature a coupled feature in the feature diagram (cf.,
Figure 5.13). The feature node references the subtree for coupled activities
which can be found in Figure 5.15. It merges two filter subtrees into one,

because some values appear twice. For example if the connector operates in

229

5. Completions for Software Performance Engineering

Server

Coupled (x2)
WP Size
per
Method Server
Buffer Size

‘ Manual ‘ ‘ Lib ‘

N

‘ Application ‘ ‘ Reversion ‘

—\ [~

Resource Bytesize Resource Bytesize
Demand Modification Demand Modification

Client
WP Size

Client
Buffer Size

Figure 5.15.: Coupled Activity Subtree.

synchronous mode, the values (resource demands and data size change) for
the compression would be configured once for the first filter and again for
the second filter (for returning calls). The feature is implemented by simple
filters and is intended to reduce the size of the calls data before sending it
over the network. When it is enabled, it adds one filter to the client and
one to the server deployment unit of the connector. The worker pool size
of these filters and the capacity of their pipes can be configured separately,
as shown in the coupled activities subtree. The compression method can be
either set manually or retrieved out of a predefined library. It can be config-
ured individually for each method which the connector supports. However
we cannot support such a library in the scope of this work, so the node is
set in gray. Note that it is possible to add special parameters to the call
(e.g. entropy). These can be used in the compression formulas to achieve a
more accurate prediction than solely though data size consideration. Mid-
dleware completions may contain compression completions. This has to be
considered by the connector completion developer, so that no conflicts be-
tween these completions arise. The encryption feature is also realized as a
coupled activity. The configuration is analogous to that of the compression

feature.

230

5.3. Completion Library: Concurrency design patterns

Replication

‘ Buffer ‘ Distributor

Container Count Size (x2) WP Size (x2)

‘ Resource

‘ Replication

Figure 5.16.: Replication Subtree.

The replication subtree references the replication completion, which was
already introduced in Section 5.3.3. The replication and connector comple-
tions should be linked in the Completion Library, so that they can be applied
together and do not conflict. Compression, encryption and replication only
make sense, if the connector is not located within one resource container,
because this means that calls have to travel over a network connection. The
connection quality feature is not included in our feature model. This is
because the architecture of the connector does not influence the connec-
tion quality. In the PCM the connection quality is defined by the resource

environment.

Pipe&Filter Connector: Procedure Call Completion Design In
the following, we discuss the structural elements creating completion skele-
ton. These structures map the features introduced by the feature diagram.
The architecture of the full featured client deployment unit is shown in Fig-
ure 5.18. For the sake of clarity we did not include the worker management.
Each pipe is configured over the feature of the filter to its right. The client
unit fans out at the distributor. Exemplarily it is illustrated with three out-
going interfaces. It is only contained, if replication is enabled; i.e. there is
more than one server.

A more detailed view of how the distributor is connected to the worker

management of all adjacent pipes can be found in Figure 5.17. We called

231

5. Completions for Software Performance Engineering

- Vv :
& £
6— Filter —

O— Distributor —C

6| Fiter T C
\ k |

Figure 5.17.: Distributor Worker Management.

the filter which handles encryption and decryption cryptor. It is possible for

the client unit to be completely empty, if none of its features are selected.

Client k()

mﬁewﬂﬂw

Interceptor Adapter

\L Tt Sen/_er
e mame] Telmae] T

Compressor Distribulor\(\ Cryptor
cee

Figure 5.18.: Procedure Call Connector Client Unit.

Figure 5.19 shows a fully featured server deployment unit. Each con-
nected client unit gets its own pipe. This has to be considered because
the first processing step can vary, dependent on the selected features. The
syncher marks the beginning of the critical section. It takes the place of a
pipe and its buffering capacity is determined by the feature configuration of
the following processing step. When operating in the asynchronous mode,
the SEFFs of the pipes which follow the syncher must not fork the call.
However it may be possible to shift the syncher in the direction of the sink

232

5.3. Completion Library: Concurrency design patterns

as long as the single processing steps are thread safe. The minimal server

unit consists only out of the sink and its pipe.

=
Client

Units \ E E E
"o alep o] el o] T
. / Cryptor Compressor Syncher Transaction
£ g] g g]
] 3 o] T
Server
- Component
Adaptor Interceptor (J\ Sink

ee e

Figure 5.19.: Procedure Call Connector Server Unit.

Pipe&Filter Connector: Summary In this section a connector com-
pletion (Procedure Call Connector), its feature diagram and architecture de-
sign, was discussed. The concept of Pipe&Filter abstractions for connectors
simplifies the design of models. It provides an overall concept for compo-
sition of connectors from simple building blocks suitable for performance
prediction. The resulting connectors model very accurately blocking effects
(limitation of concurrency) in connectors, simple asynchronous communi-
cation and when they are calibrated the predictions using these models are
very accurate (cf., Section 7.2.2). In addition, the transformations inte-
grating these connectors could easily reuse transformations fragments (cf.,
Appendix C).

5.3.5. Infrastructure Completions

Today, many applications (e.g., Web servers, Database servers) are de-
signed to process a large number of short tasks that arrive from some remote

source (using for example messaging, HTTP, FTP). In the case of server ap-

233

5. Completions for Software Performance Engineering

plications, processing of each task is short-lived and the amount of requests
is large. The infrastructure completions introduce possibilities how to man-
age incoming tasks based on different threading models. We discuss the

performance of these models.

Thread-Per-Request model A simple model to deal with incoming
tasks would be to create a new thread each time a request arrives and pro-
cess the request in this thread. The Thread-Per-Request model has a signif-
icant disadvantage in producing overhead when creating a new thread for
each request. A server will spend more time and consume more system
resources creating and destroying threads than it would processing actual
requests. As a consequence the cost of creation could significantly hamper
performance. Additionally, each active thread consumes resources (CPU,
Memory). Too many active threads (in one JVM or Application Server)
could result in excessive memory consumption and the system could run
out of memory. To prevent such problems, applications need some means
to limit number of requests processed at the same time. The Thread-Per-
Request model is suitable when the frequency of task creation is low and
the mean task execution time is high. However, there are other ways how
to support use of multiple threads within a server application, as described
in the following.

Single-Background-Thread model Another common threading model
introduces a single background thread and request queue for tasks of a cer-
tain type, which is not suitable for long-running tasks or for high-priority
tasks where predictability is important. With the Single-Background-Thread
model executing of asynchronous I/O-intensive operations is difficult. Ad-
ditionally, this model is not optimal on multi-core systems because of its
limited parallelizability.

234

5.3. Completion Library: Concurrency design patterns

Thread Managment

ThreadPool
Waiting
Queue

Unbounded

Single-background Thread

ThreadPerRequest
Max Optimization
Threads Properties

‘ Static ‘ Dynamic

ThreadPool
Policy

Priority
Lanes

Thread
Borrowing

N depends™”

Direct

Handoffs Bounded

‘ Parity ‘

‘ Dispatcher ‘

Priority

Specified

Maximum
Pool Size

Core Pool

Keepldie
Ti Size

ime

KeepAlive
Time

Legend
. or
o exclusive or

Pool Size

e mandatory
o optional

Figure 5.20.: The generic configuration model of thread management strategies.

Thread Pool model The Thread Pool design pattern offers a solution
to the problem of thread creation, management and destruction overhead,
and the problem of excessive resource usage. The point of the Thread Pool
is to avoid creating lots of threads for short tasks. The Thread Pool pat-
tern reuses each thread for multiple tasks. This way the overhead needed
for thread creation is spread over many tasks. Additionally, because thread
already exists when a request arrives, the delay introduced by thread cre-
ation is eliminated and request is serviced immediately. Thread Pools are
widely used by many multi-threaded applications. The main advantages are
allowing processing to continue while waiting for slow operations such as
I/O-intensive tasks, and exploiting the availability of multiple processors.

However, usage of Thread Pool deals with certain risks.

Thread Management: Feature Diagram Based on the previous dis-
cussion, we extracted important performance-relevant features of thread
management in a form of feature diagram. These features summarize differ-
ent configuration options of the thread management implementation. The
resulting feature diagram is illustrated in Figure 5.20

The software architect has a possibility to decide between Thread-Per-

Request, Single-Background-Thread or Thread Pool model. The features in

235

5. Completions for Software Performance Engineering

the Thread Pool subtree are described already in Section 3.3.2.4. For the
Single-Background-Thread model is an important configuration attribute
the size of the request queue. These patterns have a prominent impact on the
performance due to its ability to limit the level of concurrency in the system.
The Thread-Per-Request model separates the processing of incoming and
outgoing requests and for each direction we can define a maximal capacity
of the system. This completion belongs to the infrastructure completions,
for which we allow only one of these completions per resource container,
consequently, no conflicts are possible.

Thread Managment

i
i
| -
i X Direct
1 ‘ Static }»\‘ ‘ Dynamic Hanboffs | | Unbounded | | Bounded
' i X T N=Max Threads
! i ST S — e mmeeoSTEEIEEEEEL
i] i
H pool Size | | Keepldie | [iCore Pool | [Maximum | [KeepAlive
Fomomommees ~ Time | Size Pool Size Time
! ! {N=Pool Size | |
) i "
,,,,,,,,,,,,, iiiiiiviiiie - enupiiit]
' .
i T
V. 1
]
£] | [l
ThreadPool_IN i€------ Anmmmmm e H ThreadPool_OUT
Poolsize=N Pool:size=N

N &1} £ 8] o our]<--2-
Wrapper | Server i Wrapper G

Figure 5.21.: The structural completion skeleton of Thread Management.

Thread Management: Design Dispatching and the management of
threads are addressed by a set of patterns dealing with thread management
and the infrastructure’s support for concurrency. Therefore, completions
for dispatching annotate resource containers to which necessary compo-

nents can be allocated. From the perspective of performance prediction,

236

5.3. Completion Library: Concurrency design patterns

these patterns can be abstracted as variations of the Thread Pool pattern.
We designed performance component-based abstractions for thread man-
agement patterns: (cf., Figure 5.21) i.) Single-Background-Thread: The
abstraction realises synchronous communication. This pattern could be ab-
stracted as Thread Pool with a size of one thread for a client; ii.) Thread-
Per-Request: The pattern separates the processing of incoming and outgo-
ing requests. For each type there is a distinct pool of worker threads. There-
fore, we can abstract the pattern as incoming and outgoing Thread Pool cou-
ple with a size equal the capacity of the system; and iii.) Thread Pool: The
pattern abstraction is a version of a Leader-Follower pattern where one par-
ticular thread takes the role of the leader and waits for the next request. All
other threads are either queued (i.e., followers) or processing requests (i.e.
workers). To model this pattern we can easily use one Thread Pool compo-
nent with a size equal the capacity of the system. The overview about the
required changes (e.g., adding/removing components) of the model helps
completion developer with later implementation. Therefore, he is required
to first model per hand a completion skeleton for each feature and validate
them. Based on these analysis he can choose appropriate abstraction and
implement the change mappings. In Figure 5.21 the mappings are illus-
trated by arrows. The semantic of these arrows is addition of the selected

components, interfaces, methods or values to the model.

Thread Management: Summary In this thesis, we focused on the
Thread Pool completion, which is used as a running example. The val-
idation of Thread Pool completion is provided in Section 7.2.1. In ad-
dition, different implementation of the transformations integrating Thread

Pool completion are discussed in Section 7.2.3.

237

5. Completions for Software Performance Engineering

5.4. Discussion

In the following, we discuss the assumptions and limitations of the contri-

butions presented in this chapter.

Structured Metamodel The strongest assumption of the introduced
approach is that we expect the metamodel to be designed with a certain
structure in mind. However, the current state-of-art in MDSD does not pro-
vide a standard set of best practices for metamodel design. Metamodels are
mostly designed on demand, without clear guidelines for design and in ad-
hoc manner. We showed that structured design of metamodel can support
other engineering processes using this metamodel language. Thus, we see
here a great potential for future research.

Size of the conflicting set We assume that the conflicting set after the
conflict reduction is so small that it is possible to resolve remaining con-
flicts manually. As the principle of separation of concerns already divides
different completions in a responsibility of different roles, thus, comple-
tions in one group are semantically very similar, we do not expect a huge
number of choices from a number of completions for one role and one ele-
ment. For example, it is not reasonable to deploy one component using two
different messaging middleware completions. Thus, it is very likely that

the remaining group of completions would be rather small.

Independence of model elements We assume that independent en-
hancement of three element types (i.e., components, connectors, infrastruc-
ture) in CBSE is possible. In particular, the components are refinable inde-
pendently of the connectors and the infrastructure, connectors refinement
may be dependent on components, and the infrastructure refinement can be
dependent on both the connectors and components. This assumption has to

be further investigated. Consequently, we have to investigate the sequences

238

5.5. Summary

of the connectors and components, and cyclic component interdependen-

cies, which make the problem even more challenging.

The applicability of quality heuristics The introduced heuristics
quantify the quality of system components, connectors and the infrastruc-
ture, based on their performance impact, which is under our performance
abstraction the primary metric for our architecture. These heuristics give
indications of resulting performance increase or decrease in dependency on
some attributes (e.g., bytesize). The indications are results of local analy-
sis of completion subsystems using standard tests. Thus, the exact values
would change for a different system or a different usage profile. However,
we assume that the performance semantic of the completion remains un-
changed and the local heuristics can provide enough information to build
learned knowledge about completions and support software developer’s de-
cision about the order in completion sequence. To automate this decision
further we need to employ automated optimisation techniques, such as the
PerOpteryx approach [113].

5.5. Summary

In this chapter, we introduced a method to handle conflicts in a sequence of
completions and help software architects to decide on a suitable transfor-
mation order. The core of this method is the structure of the completion li-
brary, where completion encapsulating expert-knowledge can be registered.
The completion library allows archivation and reuse of expert-knowledge.
In addition, the initial completions for concurrency design patterns build
guidelines that help software architects to create models of parallel archi-
tectures. These design patterns are already important and very complex
part of parallel programming techniques and as such they are suitable as
application domain for completion approach.

239

5. Completions for Software Performance Engineering

In the next chapter, we discuss the quality properties of model transfor-

mations integrating introduced model abstractions.

240

6. Model Transformation Analysis:
Evaluating Maintainability

In the previous chapter, we introduced the CHILIES approach based on
HOTSs. We used a chain of HOTS to process and generate completion trans-
formations. For the success of this approach is critical that the elements
(i.e. models, metamodels and transformations) have certain quality char-
acteristics. The main artefacts of MDSD are domain-specific languages
(e.g. specified by metamodels) allowing modelling on a higher-level of ab-
straction and transformations supporting automated generation of different
target models. The prominent role of model transformations in MDSD re-
quires that they are treated as traditional software artefacts. The maintain-
ability and ease-of-use of transformations is influenced by various char-
acteristics — as with every programming language artefact. Code metrics
are often used to estimate code maintainability, because, transformations,
similarly as traditional software artefacts, should be used by different de-
velopment roles and reused in different contexts, the understandability of
transformations is of our concern. In this chapter, we focus on the main-
tainability and understandability of M2M transformations. We published
the work about code metrics for M2M transformations and their evaluation
in the proceedings of QoSA 2010 Conference: Research into Practice - Re-
ality and Gaps [91]. This chapter discusses these metrics in the context of
this thesis.

The leading challenge of this chapter is:

How to analyse maintainability of relational transformations?

Most of the established metrics do not apply to relational transformation

languages (such as QVT Relational) since they focus on imperative (e.g.

241

6. Model Transformation Analysis: Evaluating Maintainability

object-oriented) coding styles. In this chapter, we define quality metrics
for relational transformations, which can be used to analyse the structure of
HOTs and completion transformations. Furthermore, we discuss the con-
nection between the transformation and the metamodel. The connection be-
tween the transformation and the metamodel is called metamodel coverage
and is specific for transformations only, no similar property for traditional
software artefacts exists.

The remainder of this chapter is organized as follows. Section 6.1 moti-
vates our work and introduces the context of metrics application. Section
6.2 discusses the problem and general observations about the maintainabil-
ity of transformations. Section 6.3 introduces the maintainability metrics
for M2M transformations and specifies the metrics using QVT relational
metamodel. Our approach uses the Analysis HOT pattern (see Appendix
B) to automatically compute the metrics for M2M transformations imple-
mented in QVT Relational. The automated metrics collection is described
in Section 6.4. Finally, Sections 6.5 and 6.6 discuss limitations and sum-

marize the contributions of this chapter.

6.1. Motivation

Model transformations are often used to transform software architectures
into code or analysis models. Ideally, these transformations are written in
special transformation languages like QVT [72]. With an observable in-
crease in the application of Model-Driven Software Development (MDSD)
in industry and research, more and more transformations are written by
transformation engineers. Thus, an increasing set of transformation scripts
have to be maintained in the near future, i.e., they demand to be understood
by other developers, bugs need to be tracked down and removed, and en-
hancements need to be implemented because of evolving source or target

metamodels.

242

6.1. Motivation

Today there are two main streams of model-to-model transformation lan-
guages: operational (i.e. imperative) and relational (i.e. declarative) lan-
guages. For operational languages like QVT Operational, we can reuse
existing literature about software code metrics for imperative, e.g. object-
oriented, languages. However, for relational model-transformation lan-
guages like QVT Relational there is not even a comparable amount of liter-
ature.

In traditional object-oriented software development, software metrics
are used as a mean to estimate the maintainability of code [17]. The es-
timated maintainability then indicates when the code base becomes too
hard to maintain. Software developers take corrective actions like refactor-
ings [58] or code reviews to keep the code in a maintainable state. However,
these metrics do not yet exist for relational model transformation languages.
Nevertheless, some initial research targets metrics for functional program-
ming languages in general like Lisp or Haskell. Being part of the same
language family, some metrics for functional programming languages can
serve as a starting point for the definition of metrics for relational model-
transformation languages. In this work we draw upon their ideas in defining
our own set of metrics for model-transformation languages.

As an initial step towards estimating the maintainability of relational
model transformation languages, we present a set of metrics usable to get
insight into the maintainability of QVT Relations transformations. For this,
we analysed existing metrics for functional programming languages and
combined them with general code metrics (e.g. Lines of Code (LOC)) and
complemented them with our own experiences from applying QVT Rela-
tions. This set of developed metrics shall finally serve as a basis to judge
internal transformation quality and to guide the development of transfor-
mation refactorings or review checklists (i.e., a list of bad smells to look
for). The metrics are described in detail and their ranges of ’bad’ values are
characterized including a rationale explaining which type of maintainability

problem the metric detects.

243

6. Model Transformation Analysis: Evaluating Maintainability

In CHILIES approach, we used QVT Relational to implement HOTs and
completion transformation (i.e., feature effects). Hence, we studied the
metrics’ applicability and evaluated QVT Relational transformations im-
plementing model completions. This study shows that understanding of
relational transformations quickly turns out to be a difficult task. The diffi-
culties increase faster than linearly when transformation sizes increase and
single relations become more complex. As an reference example, we evalu-
ated our metrics on the standard model transformation example given by the
QVT standard specification [72]: the transformation from UML models to
entity-relationship models to show that the metrics (a) are computable and
(b) give insight into the transformation’s internal quality. The evaluation of
the completions transformations and HOTSs is described in more detail in
Section 7.2.3.

6.2. Problem Domain

The goal of our work is to quantify the maintainability of model transfor-
mations. Therefore, we start by defining suitable metrics in this context.
We identified a lack of quality metric definitions for relational transforma-
tion languages in the literature. Hence, we focus on model transforma-
tions created using QVT Relational (QVT-R), but we assume that our met-
rics can be applied to model transformations created using other relational
transformation languages as well. The main observed difference between
relational and operational languages is the fact, that operational transforma-
tion languages describe a sequence of statements to create certain output.
In contrast, relational transformation languages only describe the relations
between input and output of a transformation in a declarative manner, not
the way how it is computed (non-determinism). This results in special char-
acteristics of relational transformation languages which have to be reflected

by the metrics to be defined.

244

6.2. Problem Domain

General Observations on Maintainability of QVT-R Transforma-
tions: QVT-R can be for example applied in e.g. transformations be-
tween languages, code generation and incremental or completion transfor-
mations. One main advantage of QVT-R is its brevity and conciseness.
In the QVT-R language, the structure of transformations is mainly charac-
terised by the interdependencies of its relations. On the other hand, rela-
tions can be defined in a way so that they match overlapping sets of ele-
ments. Consequently, this increases complexity in cases when a new rela-
tion is introduced and it is influenced by other relations. For example, let
transformation 7' be defined as a set of relations R, R = {a,b,c,d}. Sup-
pose we want to extend 7 with a relation e, but e depends on a result of
a and a depends on a result of both » and ¢, while ¢ depends on d. Thus,
we first need to understand how relations a,b,c and d are related in order
to correctly include e into the transformation. In the case of more complex
transformations, it is very hard to have all dependencies in mind. Because
of this net of dependencies, it is hard to say if a new introduced relation
conflicts with other relations or influences them in an undesired way. One
possible design of relational transformation could be clustering of relations
that match or create the same element (clustering of top-level relations).
Furthermore, the identification of possible execution paths, how long they
usually are and what they depend on, is a very complex task.

In following section, we discuss a collection of metrics for relational
transformations. These metrics give a quick insight in transformation qual-
ity. Additionally, because of the declarative nature of the family of rela-
tional transformations we can define metrics to study structure and depen-
dencies between the fragments of the transformations. This technique can
be easily built on the system of preconditions and postconditions defined
for each relation. The dependency data have various useful applications
in the development and maintenance of transformations. By identifying of

dependencies between relations and avoiding cyclic dependencies, the un-

245

6. Model Transformation Analysis: Evaluating Maintainability

derstandability of transformations may increase. Also, undesired calls to

relations or relations that are never called can be easily recognised.

6.3. Metrics Definition

This section introduces metrics for measuring the quality of model transfor-
mations created using relational transformation language, such as QVT-R.
For each metric, we give a description, including a brief motivation. We
also include the rationale behind the metric giving insights in why we be-
lieve the metric indicates the maintainability of a transformation. Addition-
ally, we include a way for the computation (if possible using QVT-R and
OCL) of the introduced metrics.

6.3.1. Automated Metrics

In this section, we discuss the metrics derived for QVT-R that can be au-
tomatically computed. We identified four categories: Transformation Size
metrics, Relational metrics, Consistency metrics and Inheritance metrics.
In the following sections, we give the names, descriptions and rationales
of the automated metrics. Table 6.1 then gives the computation directions

using OCL for the presented automated metrics.

6.3.1.1. Transformation Size Metrics

The size of the transformation has an impact on the understandability of a
transformation. This metric for a whole transformation can be measured in
several ways. The number of lines of code, for instance, is a simple metric
measuring the pure code size of a transformation. This is comparable to
measuring lines of code in programming languages. Comments and blank
lines are also included in this metric. The number of code, comment and

blank lines can also be viewed separately. Used in conjunction with other

246

6.3. Metrics Definition

metrics we can derive valuable measures of a transformation, e.g. when
compared to the number of top level relations.

The number of relations is a metric that can be used to derive the degree
of fragmentation and modularisation of a transformation. Higher number
of relations can be considered better, as it is an indicator for a high de-
gree of modularisation. A high degree of modularisation can support the
maintainability of a transformation and also the reuse of a transformation
or parts of it. The number of top level relations gives a picture about the
independent parts of a transformation. A top level relation is a starting
point for a transformation and can trigger the execution of other relations.
An execution of a transformation requires all top level relations to hold.
The ratio of top level relations to non-top level relations shows the rate be-
tween independent and dependent parts of a transformation. An interesting
metric is number of starts defined by the number of top relations without
when-clause. A higher number of starts increases the number of possible
execution paths and therefore makes the transformation less maintainable.
The metric number of domains expresses the complexity of a transforma-
tion dependent on the number of match patterns. The number of domains
predicates additionally gives information about the complexity of these pat-
terns. The number of when-predicates and the number of where-predicates
defines how complex the dependency graph between relations is.

The number of metamodels in a transformation has an impact on the com-
plexity of the transformation itself and its match patterns. The size of the
metamodel (defined by a number of classes) on which the relations match
elements might also have a great impact on the structure and therefore on
the understandability and modifiability of the transformation. The larger
the metamodel the larger the set of possible instances of this metamodel.
Therefore, more combinations may have to be considered in the match pat-

terns of the relations.

247

6. Model Transformation Analysis: Evaluating Maintainability

6.3.1.2. Relational Metrics

The size of a transformation relation can be measured in different ways.
The OMG specification of QVT states that a relation has one or more do-
mains and that every domain has a domain pattern that consists of a tree of
template expressions. The size of a relation can be expressed in terms of
its number of domains or the depth of the domain patterns. Additionally,
relations can define when- and where- predicates giving pre- and postcon-
ditions. This leads to three different metrics for measuring the size of a
relation: Number of domains , Number of when/where predicates, Size
of domain pattern per domain. Another derived metric, the ratio between
the size of the relations and the number of relations might also give hints
about the maintainability of the transformation itself and shows the linear
dependency of effort needed to modify the transformation on the number
of relations. However, the direction of the metric (e.g., for better main-
tainability) remains to be evaluated. For example, having many but small
relations helps to understand the transformation punctually, for specific re-
lations. However, grasping the interconnections of many small relations is
also a tedious and error-prone task, thus leading to the conclusion that hav-
ing larger but fewer relations may be also good for maintainability. Still,
defining a functional dependency between size and number of relations in
a transformation might give hints on the maintainability of the transforma-
tion.

The metric average number of local variables per relation additionally
gives indications on the dependencies within a relation that a developer
needs to grasp when trying to understand and modify the relation. A mea-
surement for the complexity of the interconnections between relations is the
average number of arguments in the form of its domains and the number of
variables that are bound by calls to other relations in when- or where- pred-
icates. These metrics are denoted val-in and val-out. Note that in QVT-R

val-in is always the same as number of domains. A high number of val-

248

6.3. Metrics Definition

out means that a relation is strongly dependent on the context, which might
decrease the reusability of a relation.

Relations generally depend on other relations to perform their task. The
dependency of a relation R on other relations can be measured by counting
the number of times relation R uses other relations or queries. These depen-
dency metrics are denoted fan-in and fan-out, where fan-in is the number of
calls to R and fan-out is the number of relations that are called by R. A high
value of fan-in indicates that the relation is reused quite often and therefore
is highly reused or somehow more central to the overall transformation. A
high value of fan-out means that a relation uses a lot of other relations or
functions (maybe delegates functionality to library queries), again making
the relation more central. The metric number of enforce/checkonly domains
expresses a rate of change between the domains of the relation (e.g., source
and target domain). The metric expresses the number of possible match
patterns by the number of checkonly domains and the level of change pro-
vided by a relation (a number of diverse change patterns) by the number
of enforce domains. The complexity of a transformation may furthermore
be affected by the number of OCL helpers and number of lines/restricted

elements per OCL query, which encapsulate more complex behaviour.

6.3.1.3. Consistency Metrics

A high degree of inconsistency in the transformation is a reason for con-
fusion during development and may lead to reusability and transformation
completeness problems. To detect an inconsistency in a transformation we
introduce a number of consistency metrics. An example of inconsistency
could be a relation that was not completed during development. Such a
relation could be identified as a relation without domains, with only one
domain or with domains without predicates. Therefore, we defined the
metrics number of relations without domains, number of relations with sin-

gular domains and number of domains without predicates. An additional

249

6. Model Transformation Analysis: Evaluating Maintainability

metric for the detection of incomplete relations is the number of unused
variables. Unused variables pollute the code and complicate navigation
within the transformation.

The already introduced consistency metrics are easy to automate. An-
other quite generic but still interesting metric is number of clones. How-
ever, the automation of this metric is a research field by itself. This metric
identifies code duplicates, which are, as in other fields of code maintain-

ability, candidates that impact maintainability of the code.

6.3.1.4. Inheritance Metrics

QVT-R transformations can extend each other and override relations from
parents. Inheritance metrics measure the level of inheritance of the trans-

formation and its complexity.

250

6.3. Metrics Definition

"SOLIJOW PojewoIny :1°9 d[qe],

()®ZTS < ()239SSE < UOT}RTOYPOIIDIDI"
((d)sdxgTTROUOTIRTEYIORTTOD

| d)208TT02 ¢ @3edTpaxd’ (exoyn- I)SUTPNTOUT < {USYM " 1}308 mnQ-uej
I = uoTjeTeypelIsFel’ ()seduejsulre dxgrTR)UOTIRTEY u-ue,]
()ezts
4+ ()aegse + aTqerxea’ ((d)sdxgrTe)uoTIeToYIQ SIUCUMSIYSTqRTIBAIDSTTOD
| d)209TT02 < @3edTpaxd- (9I15yn - I)SUTPNTOUT ¢ {USYM " I}18S mO-TeA
SUTeWop JO ISqUNU oS uf-TeA

()9zTSs
((n)sepnToutT 0Lsputq- ()sedouejsurrre dxgeserdusy | A)3oelax +— aTqerreax

SO[qRLIEA [BO0] JO JoquINN

()@zTs < @jeoTpexd-exeym- I sajedtpaid-a1oym Jo IquUINN

()ezTs < @3eoTpead - ueym’ I soyeaIpaId-uoym Jo JoquinN

()9ZTS ¢ (OTqR}DOYDST)100TOS ¢— UTRWOP I | SUTBWOP AJUONIIYD JO JOqUINN
()9ZTS (PTqROIOFUYST)I00TOS ¢~ UTRWOP' I SUTBWIOP PIDIOJUS JO IOqUINN
()9ZTS ¢ UTRWOP" I SUTRWIOP JO JOqUINN

1uoneRy

()@2Ts + uorgeradppeuno-q sauanb 1O Jo quinN

()9ZTS ¢ IsjewRIRJTOPOW" 3

S[OPOWIBIAW JO JGUINN

(()9ZTs < aIxoym- (UOTIRTSY: :uoTyeTaI3Ab)odf1syTo0 1 + ums
|0 = 198e3uI:ums¢oTny: :oseqiab:1)esersyT + oI 3

Q19yM JO JaquInN

(()92TS < ueyn- (UOTIRToY: :UoTIeToIgAb)odf1syTo0 1 + ums
|0 = 188e3uT:ums‘aTny: :oseqiab:I1)egeI0lT ¢ ORI Y

uayM JO IoquINN

()@2Ts + (()£1dugst ¢ ueym- (woTqeTSY: :uoTqeTeIIAb)adLIsyTo0 pue
ToAeTdOIST" (WO0T3RTeY: : UoTRToYLAN) 9dLALISYT00)209TaS +— oTNI 3

SMEIS JO JqUINN

()92Ts ¢ (ToA9TdOLST" (WOT3RTeY: : UoTIRToYLAN) 9dAISYT20)209TaS — 8N 2

suoneax [249] doy jo requinN

()®2ZTS <— aTna"3

SUONE[AI JO JqUINN]

) UOIJRULIOJSURI],

uorssaidxa DO

QuieN

251

6. Model Transformation Analysis: Evaluating Maintainability

The balance metric shows size and distribution of transformation func-
tionality between children. This metric is calculated as the ratio between
a number of relations, domains and equations per child transformation in
comparison to the average.

In a similar way as in object-oriented programming the dependency of
children on their parents can be measured by counting the number of tran-
sitive parents per child and number of direct/transitive children per parent.
Based on these metrics and the fan-in and fan-out metrics we can get a view
of the dependencies between relations in the different transformations (cre-
ate a dependency graph). The metric number of overrides gives information
on how many relations from a parent transformation were overridden by a
child relations. The larger this value gets, the more effort has to be invested
into understanding which parts of the transformation hierarchy are actually
used (combination of non-overridden (inherited), overridden and additional

non-inherited parts).

6.3.2. Manually Gathered Metrics

In the following, we describe metrics that are not gathered fully auto-
mated, but require manual or semi-automated analysis to determine the

actual value of a metric.

6.3.2.1. Similarity of Relations (frequent patterns)

The Similarity of relations (frequent patterns) indicates how many similar
patterns can be found in a transformation. A large part of the complexity
of a transformation and of an abstract model of the transformation comes
through the need to understand patterns that occur within these models. The
more complex a transformation is, the harder it is to maintain it. Thus, to
be able to grasp the complexity of transformations, we propose to emulate
human information processing through pattern mining on models. Human

analysis of software products is conducted either top-down or bottom-up

252

6.3. Metrics Definition

according to [116]. Using a top-down approach, the analyst tries to apply
his/her knowledge about design and domain to classify the software prod-
uct under analysis. In order to do this he/she tries to gain an overview of the
whole application. Developers can then successively pick selected software
segments and determine their relevance for his current mental model of the
software. Using a bottom-up approach, the analyst will start reading com-
ments of source code or other software artifacts. The control flow of certain
sections will then be inspected sequentially and arbitrary selected variables
will be traced throughout the flow. Especially in declarative transformation
languages, this is a difficult task as there is no explicit control flow. The
information gained will be integrated to a mental software model which is
the opposite to the top-down approach.

Masak [116] notes that top-down analysis is being conducted more often
by experts whereas bottom-up analysis is being used more often by novice
analysts. These findings give strong indication that experts may have ab-
stract mental patterns at hand which are being used for analysing the soft-
ware product whereas novices must resort to documentation. If analysabil-
ity is measured in terms of time to analyse parts of a software product, the
required time will be low if the analysed parts dominantly adhere to the
expert’s patterns. On the other hand the time will be very high, if the expert
can apply only a few of his/her patterns or the software heavily differs from
patterns known to him/her. These general observations were also stated for
visual patterns in [148] which is why we propose to incorporate them into
an analysability metric.

This metric can be computed by using the frequent pattern mining algo-
rithm presented in [105] to identify possible frequent patterns. From these
candidates the relevant patterns can be selected and their similarity can be
estimated. However, the result of these pattern mining is mostly a superset
of frequent patterns as they would be found by a human. Thus, manual
selection needs to be performed to see whether each of the most frequent

patterns is really a pattern that occurs as repeating structure in the trans-

253

6. Model Transformation Analysis: Evaluating Maintainability

formation or if it is just the result of constraints on e.g., the transformation
metamodel. For example, in QVT Relational a frequent pattern that is the
result of the language concept would be that each relation domain has a
root variable which refers to a meta-class that is contained in the package
referred to by the domains typed model (see [72] for the QVT-R meta-
model). However, this construct in inherent to QVT relations and is not
a frequent pattern that would be relevant for the analysability of a trans-
formation. Thus, this metric cannot be computed fully automatically but
needs an additional manual filter action. For example, a result of this met-
ric could be that 30% of all relations of a transformation employ a pattern
involving the matching or creation of a certain tree structure consisting of
specific types of model elements within the source or target model. As hu-
mans are pretty good in pattern matching, a developer would then be able
to recognise this combination over and over again thus helping him/her to

more easily understand these 30% of relations.

6.3.2.2. Number of Relations that Follow a Design Pattern

The Number of relations that follow a design pattern may be another impor-
tant indicator for transformation maintainability. The determination of this
metric is a tedious manual task as a design pattern is an abstract concept. It
may occur in a form that can only vaguely be identified.

The number of design patterns employed in the transformation may be
a strong indicator on how good a transformation can be understood by ex-
ternal readers. However, as the area of transformation development is still
quite immature, only few design patterns have been identified yet. To deter-
mine this metric, we need to count the number of design patterns and their
occurrences within the transformation. For example, if a transformation
uses the Flattening Pattern from Section 4.4 throughout its whole imple-
mentation and a developer knows what that pattern is used for he or she can

grasp the meaning of the transformation more easily.

254

6.3. Metrics Definition

6.3.2.3. Type Cut Through Source/Target Metamodel

As mentioned at the beginning of this chapter, the metamodel coverage
is specific for model transformations. The relation between the transfor-
mation and the metamodel is analysed through studying metamodel cover-
age. Each model transformation transforms source model which conform
to a source metamodel to a target model which conform to a target meta-
model. Some transformations transform all elements defined by the meta-
model (e.g., translation). Other transformations transform only a subset of
the metamodel elements (e.g., refinement or completion). We already used
this analysis in Chapter 5 to minimize conflicts between transformation in
a sequence of completions.

To acquire insight about the parts of metamodel covered by a transfor-
mation we propose to study a Type Cut Through Source/Target Metamodel.
The metric Type Cut Through Source/Target Metamodel represents the rate
of overlapping rules with respect to the transformation’s metamodels. The
type cut concerning a metamodel is the set of patterns that match instances
of the same parts of a metamodel. In the UML to RDBMS example from
the QVT standard (from which an excerpt is shown in Listing 2.1) the type
cut concerning the meta-class UmlClass would be all those relations that
contain a pattern that matches any UMLClass. The greater this overlap is,
the more attention has to be paid when patterns of relations are modified in
order to not lose coverage of possible instances of the metamodel.

To compute this metric we need to count the number of relations that
overlap over the same part of a metamodel. For example, Relations a, b and
¢ can all match instances of the same meta-class m. Thus the overlap rate
concerning class m would be 3. Finding type cuts that only refer to a certain
element of the metamodel, such as one meta-class m can be done straight-
forward. However, it might be more interesting for more fine-grained pat-
terns that are matched using several different relations. How such a detailed

type cut can be identified remains subject of future research.

255

6. Model Transformation Analysis: Evaluating Maintainability

6.4. Computation of Metrics

We implemented a tool set to analyse the metrics presented in Section 6.3
automatically. In the first step (cf. Figure 6.1), the transformation code
(QVT) is parsed which results in a transformation model (QVTModel).
This model can be then analysed using our maintainability metrics. The
description of metrics is given by the metrics model (MetricsQV T) on the
higher-level of abstraction. A HOT then generates transformations for ac-
tual analysis based on this metrics description. Here, we implement the
Analysis HOT pattern introduced in Appendix B. The resulting metrics
model gives information about the quality properties of the analysed trans-
formations. Using a pretty-printer, we can extract an input to other analysis
tools from the metrics model. Note that for some metrics an additional input
could be required, such as metamodels for Type Cut Through Source/Tar-
get Metamodel or models of transformation design patterns for Number of

relations that follow a design pattern.

Transformation X Metrics
Count Lines of Code
> LoC
QVT XMI XM
| ' Parse | avT Transformatlon: Metrics
—— Model ' Model
'

Metrics
v‘QVrI‘\
Figure 6.1.: Workflow for omputation of metrics.

The automated metrics described in section 6.3.1 can mostly be ex-
pressed as OCL expressions on the QVT-R meta-model. These OCL ex-
pressions can be used to count the number of elements of a specific type,
for instance the number of relations a transformation has. The expressions
have to be evaluated in the context of a transformation or a relation depend-
ing on whether a transformation local or relation-local metric is calculated.

Table 6.1 shows the OCL expressions used for calculating the metrics. To

256

6.4. Computation of Metrics

bring these metrics together, relation local metrics can be aggregated by

calculating an average.

1 query countSubExps(templ:QVTRelation: : TemplateExp) : Integer

2 |

3 if (templ.ocllsTypeOf (QVTTemplate:: ObjectTemplateExp))

4 then templ.oclAsType(QVTTemplate: : ObjectTemplateExp) . part—=iterate (p:QVTRelation:

5 :PropertyTemplateltem; acc:Integer = 1|
6 acc + countSubExps(p.value.

7 oclAsType(QVTRelation: : TemplateExp)))

8 else

9 if (templ.ocllsTypeOf (QVTTemplate:: CollectionTemplateExp))

10 then countSubExps(templ.oclIsTypeOf (QVTTemplate: : CollectionTemplateExp).
11 member. oclAsType(QVTRelation: : TemplateExp)))

12 else
13 1

14 endif
15 endif

Listing 6.1: Query function for calculating the domain predicate count.

For more complex metrics like the domain pattern tree depth it was nec-
essary to write more complex OCL query functions. Listing 6.1 shows an
OCL query function for recursively counting the nodes of a domain pattern
tree. To easily apply all metric expressions and query functions, we devel-
oped a QVT-R transformation that transforms a QVT transformation to a
special metrics model. The metrics metamodel allows for compact storage
of metrics for every relation in a transformation and for the transforma-
tion itself. Moreover, it is possible to store the aggregated values that are
also calculated by our metrics transformation. Furthermore, for measur-
ing the lines of code, we utilised common methods used for programming
languages. We distinguished whitespace, pure comment and code lines.

Figure 6.1 shows the workflow for retrieving the metrics.

257

6. Model Transformation Analysis: Evaluating Maintainability

6.5. Discussion

The definition of metrics with the goal to estimate quality attributes, such as
maintainability, always comes with the wish to indicate whether a lower or
a higher value of a metric is better or worse. However, this decision cannot
be made without a sound validation of the 'meaning’ of a metric. For exam-
ple, having a low number of relations, at first glance, seems to be good for
maintainability whereas a high number seems to be bad. On the other hand,
if these few relations are very long they may be harder to maintain that more
but smaller relations. Thus, in this chapter we only identified what could be
possible indicators that may resemble maintainability of transformations.
We intentionally did not decide, for most of our metrics, which ’direction’
of a metric is good or bad concerning maintainability. We leave it to future
work to determine and evaluate this meaning. Through empirical evalua-
tions need to be performed in order identify how meaningful each metric
is.

Furthermore, the implementation of the metrics extracting limits our ap-
proach to the transformations implemented in QVT-R. Despite, this limi-
tation is motivated by the application of these metrics to evaluate comple-
tion transformations which are implemented in QVT-R, it is obvious that
for their application in other contexts we have to generalise these metrics
further. We expect that presented metrics can be applied to other model

transformation language, however it has to by further investigated.

6.6. Summary

In this chapter, we presented an initial set of quality metrics to evaluate the
maintainability of QVT Relational transformations. However, such metrics
could be applied to different relational transformations, they play impor-
tant role when considering completion transformations. We apply proposed

metrics in Chapter 7 to compare different implementations of the comple-

258

6.6. Summary

tion transformations. Moreover, we demonstrate the use of these metrics
on a reference transformation and HOTs implementations to show their ap-
plication in real world settings.

The presented metrics help software architects to judge the maintainabil-
ity of their model transformations. Based on these judgements, software
architects can take corrective actions (like refactorings or code-reviews)
whenever they identify a decay in maintainability of their transformations.
This results in higher agility when changing metamodels of software archi-
tectures or their platforms, which together with metamodel build basis for

transformation definition.

259

7. Validation

This chapter presents the validation of the contributions presented in this
thesis. We identified two main goals for the validation: (i) to asses the
validity of the model completion as an artefact in the MDSPE process and
(ii) to evaluate the quality properties of used MDSD artefacts. We structure
the validation based on these goals.

Our hypotheses are evaluated based on different levels of validation for
prediction models as introduced by [27]. For the first goal, we validate sev-
eral aspects: we evaluate the accuracy of model-driven quality prediction
using performance completions introduced in Section 5.3. Furthermore,
we evaluate the compositionality and the ordering in a sequence of comple-
tions. For the second goal, we evaluate the understandability and maintain-
ability of the completion transformations quantitatively. In particular, we
study the maintainability of the completions and necessary HOT transfor-
mations. For this purpose, we use the approach and metrics for evaluating
maintainability of model-to-model transformations presented in Chapter 6.
Moreover, we sketch further validation studies for empirical evaluation.

This chapter is structured as follows. In Section 7.1, we discuss the vali-
dation goals. In Section 7.2.1, we study the validity of model completions
presented in Section 5.3. Furthermore, Section 7.2.2 discusses the compo-
sition of completions. In Section 7.2.3, we evaluate the maintainability of
used transformations. Section 7.3 summarizes and discusses the validation

goals.

261

7. Validation

7.1. Validation Goals

Within the validation of our approach, we study the validity of model com-
pletions and the quality properties of used MDSD artefacts. The validation
goals and derived validation questions for these two aspects are presented
below in Section 7.1.1 and Section 7.1.2 respectively. As introduced by
[27], we can validate model-driven prediction approaches on several lev-
els. We discuss these validation levels in the following and apply them to

validate our goals.

Levels of validating model-based prediction approaches In the
work of Bohme and Reussner [27], several levels for validating model-
based prediction approaches are introduced. These levels characterise vali-
dations of model-based prediction approaches. The automated completion-
based enhancements of MDSPE introduce variability and incremental com-
pletion concepts to the models. Thus, we extend the description of valida-
tion levels below to explicitly cover the model completion step as well.

7.1.1. Validation Type I: Accuracy Validation

The first level of validation (metric validation [27]) compares the prediction
results (e.g., response time) of the model-driven prediction approach to the
measured properties of the real-world subject (e.g., measured response time
of an implementation). The studied property of the prediction approach is
the accuracy of the prediction.

In the case of completion support, additional aspects are important. The
prediction approach is required to: (i) deliver more accurate predictions
using models with completions as without and it should deliver accurate
predictions for each variant of a completion that is derived based on a fea-
ture model. Moreover, when multiple completions are used, (ii) their valid

compositions should provide accurate predictions, as well.

262

7.1. Validation Goals

TYPE |I: PREDICTION ACCURACY The accuracy of performance pre-
diction approaches has been studied in several case studies, c.f. [98]. In
this work, we focus on performance and assume that the quality prediction
approaches used are valid. Thus, the goal of the validation is to evaluate
individual completions, assuming a perfect underlying prediction model.
The completion developer is responsible for the validation task during the
completion development process. Each completion has to be validated be-
fore it is registered in the completion library. We give an example how this
completion validation task can be realised and validate the completions in-
troduced in this thesis. The first question we need to answer for this purpose
is:

Q1: Can completed model provide more accurate performance predic-
tions?

To validate the accuracy of the completion in this study, we compare
the results of performance prediction based on the completed model and
the performance measurements on the real implementation. Additionally,
we study real-system properties (such as state dependency) which can be
modelled in PCM using completions. We validate three completions in this
work: (i) Statefull "Message Oriented Middleware’ (MOM), (ii) *Thread
Pool’, and (iii) "Procedure Call Connector’.

The detailed description and results of the validation can be found in Sec-
tion 7.2. We validate platform-specific completions for particular software
platforms (using particular version of middleware). In our studies, we can
demonstrate that it is possible to create meaningful completions that yield
accurate predictions. However, we do not claim that our observations are
transferable to all other platforms and software systems, due to further de-
velopments of platforms and related complex effects on performance. Cer-
tainly, this validation can be repeated for new platforms and completions

can be recalibrated.

263

7. Validation

TYPE I: COMPLETION COMPOSITION AND ORDERING In this valida-
tion step, we evaluate the compositionality and the ordering in a sequence
of completions and their accuracy in composition. We pose the second
evaluation question:

Q2: Can models be automatically completed using a multiple comple-
tions to provide more accurate performance predictions?

For this goal, we validate the composition and ordering of three comple-
tions in the Procedure Call Connector, i.e. its abstraction using Pipe&Filter
pattern. The detailed description and results of the validation can be found
in Section 7.2.

7.1.2. Validation Type II: Applicability Validation

The second level of validation addresses the applicability of model-driven
prediction approaches. The validation of applicability assesses the informa-
tion that has to be obtained to apply the approach, the creation of prediction
models, the execution of the prediction or analysis, and the interpretation
of the results.

The completion-based approach inherits the applicability properties from
the used prediction methods, or the MDSPE process integrating the com-
pletion step. Therefore, the applicability regarding required information,
model creation and results interpretation is mainly a property of the used
prediction model. However, we study the applicability of completion-
related method enhancements. We can distinguish two different levels at
which the applicability of completions has to be discussed.

Completion users have to understand the feature models to be able to
apply them to the CBA model. The questioned is, if is the specification of
configuration models using feature diagrams is appropriate. The instantia-
tion of completions happens automatically and as such is not in concern of
completion user. The completions and their feature models are created once

by experts for a specific prediction metamodel (i.e., PCM in this thesis).

264

7.1. Validation Goals

Feature models are a well known and intuitive method to illustrate decision
trees. Their applicability properties are inherited from the definition of fea-
ture model metamodel and its syntax and semantics.Feature diagram have
been used in the domain of generative programming and SPLs for more
than a decade. They have been introduced by Czarnecki et al. in [46] in
2000. The completion-related extensions of the feature model are not vis-
ible to the completion user and are necessary only for the implementation
of automated transformation generation. As such, the feature models are
considered as well-known and applicable for a completion-based approach.

The completion developer, however, has more complex task to create
a completion and register it with the completion library. Here, we build
on the very important prerequisite that the task of domain engineering is
supported by automated benchmarking approaches, such as Software Per-
formance Cockpit [169]. Having this prerequisite in mind, the collection
and analysis of measurement data is of no major concern for completion
developer. Using such automated measurement approaches, it is possible
to validate all configuration combinations, which would be a huge effort to
do manually. Since the actual domain engineering step and the completion
validation is automated, it requires no additional manual effort and inherits
its applicability properties from the measurement approach.

Instead of validating the applicability of our method in isolation, it seems
more promising and to result in more insight to conduct an empirical study
of model-based prediction method with completions and comparing it to
model-based prediction method without completion mechanism as a whole.
However, such empirical study is out of scope for this thesis and brings no
added value at this point, therefore we use established evaluation techniques
using code metrics indicating the applicability of our approach. We focus
in this evaluation on the complexity of the completion implementation. Es-
pecially, the complexity of completion transformations gives indicators on

applicability of CHILIES for completion development.

265

7. Validation

Thus, the remaining applicability aspect for the completion developer is
the ability to identify necessary model changes and implement transforma-
tion fragments. The identification of model changes is dependent on the
developer’s domain specific knowledge and as such is hard to measure or
quantify. In this validation, we focus on the understandability and com-
plexity of transformations and transformation fragments. The development
effort necessary to implement required transformations and transformation
fragments is discussed in the second goal of this validation. The complexity
and maintainability of transformations is evaluated using the metrics intro-
duced in Chapter 6. We present the validation plan and the results for this

goal in Section 7.2.

TYPE Il: COMPLEXITY COMPARISON This part of the validation dis-
cusses maintainability and applicability properties of completions, related
models and transformations. Based on code metrics and their results col-
lected for the evaluated transformations, we discuss and assess the develop-
ment effort necessary to create and maintain completions. In the following,
we pose the third evaluation question:

Q3: What are the quality, especially maintainability, properties of used
transformations?

Furthermore, we have to discuss the fragmentation of transformations
and its complexity. Therefore, we pose a forth evaluation question:

Q4: Is the complexity of transformations decreased by separation of con-
cerns in feature-related transformation fragments?

‘We use the maintainability metrics for transformations introduced in Sec-

tion 6 to evaluate these goals.

TYPE ll: EMPIRICAL STUDY As mentioned before, an empirical study
of model-based prediction method with completions as a whole is out of
scope for this thesis. We inherit the applicability properties of the used
PCM approach. A initial validation of the understandability and applicabil-

266

7.1. Validation Goals

ity of the PCM approach was conducted in two empirical studies [140, 112].
The additional validation of the remaining aspects related to completions
applicability can be derived from these studies. In both studies, partici-
pants, with background software engineering knowledge, were trained in
making quality prediction with PCM. The participants were asked to cre-
ate models, execute the prediction method and analyse results of the pre-
diction. Using PCM tools, they had to create performance abstractions,
now encapsulated in completions, by hand without any automated support.
Thus, these case studies indicate that abstractions encapsulated in comple-
tions can be understood and parametrised, reusable models can be created
by a trained user. The most significant advantage of completions is sep-
aration of concerns, reuse and automation. Completions decrease manual
development effort previously need to create the performance abstractions
of performance-related aspects. However, to quantify the decrease of devel-
opment effort using completions we have to conduct more focused studies
comparing groups of trained users building their models with and with-
out completions. More details on the conducted studies can be found in
[140, 112], including the posed questions, a detailed discussion of the re-
sults, and the threats to validity. Further validation studies for applicability

evaluation are part of the future work.

7.1.3. Validation Type lll: Cost/Benefit Validation

The third level is called "benefit validation" and is concerned with the
cost/benefit evaluation of a prediction method. In this type of validation,
the costs, resulting from usage of the method, are compared to the expected
benefit, which can be an improvement of the modelled subject, an evalu-
ation of planned alternatives, and the recognition of not favourable design
decisions. The common benefit of all prediction approaches is the reduc-
tion of effort in later development phases of the software life-cycle, such as

correction of wrong design decisions or performance problems.

267

7. Validation

To validate approaches on this level, a controlled experiment is needed
during which whole software projects have to be executed with and with-
out using the presented approach. After the development projects finish,
we can evaluate benefits resulting from completion usage. Such validation
is the most expensive level of validation (with respect to time and effort)
and, thus, is rarely executed in practice. Due to the high effort, we cannot

conduct this type of validation in the scope of this thesis.

7.2. Improving Prediction Accuracy using Performance
Completions

We claim that our approach supports developers in improving the accuracy
of quality predictions using the completed models. In this step, we assume
that developers have a software architecture model with quality annotations
(e.g., PCM) and an automated measurement framework (e.g., Software Per-
formance Cockpit) available. In this section, we present the validation set-

tings and results for the validation goals specified in the previous section.

7.2.1. Type I: Prediction Accuracy

First, we address question Q1 regarding the prediction accuracy:

Q1: Can completed model provide more accurate performance predic-
tions?

As the prediction accuracy using completions depends on the accuracy
of underlying performance prediction method, we reviewed previous work
discussing the accuracy of PCM prediction method. In the context of the
PCM, numerous case studies demonstrate that accurate prediction models
can be created [101, 103, 75, 100, 15, 18, 76, 80, 106, 86, 104]. In this work,
we do not focus on the accuracy of PCM models, but on the prediction
accuracy of specific completions.

Additionally, some of the mentioned studies [101, 75, 80, 86] use PCM

models that have been created and calibrated using measurements of the

268

7.2. Improving Prediction Accuracy using Performance Completions

studied system. Such models are validated by the comparison between the
predicted performance properties and measurements of the system. The
studies mentioned above assessed the accuracy of PCM models at hand.
They do not make a statement about the prediction accuracy of model vari-
ations without recalibration . Some of the case studies [103, 15, 18, 104,
76, 77] also discussed the issues of model variants, changed parametrisa-
tion, and calibration. Two studies [103, 15] demonstrated that it is possible
to vary parts of a model in isolation. In the case studies, a component was
added to the architecture of the initial system. The component was mea-
sured, modelled and calibrated in isolation. The predictions for the result-
ing system were successfully compared to measurements of an analogously
changed implementation.

Other two studies [18, 76] evaluated the accuracy of systems using ini-
tial MOM completion across different platforms. The effects of the mes-
saging configurations such as message size, messaging protocol, and use
of encryption and authentication were studied. The encryption and authen-
tication were measured in isolation. The performance abstractions were
weaved into the initial models, exchanged or refined model elements and
changed the systems topology. The predictions using resulting models were
successfully compared to the with measurements of real systems. These
studies demonstrate that completions can be parametrised, can be calibrated
using measurements, and are reusable in different execution contexts.

In the following sections, we discuss two completions: (i) the stateful
enhancements to the ’Message Oriented Middleware’ and (ii) the infras-
tructure completion *Thread Pool’. For each completion we discuss the
goal of the measurement, used metrics and assumptions, created models
and corresponding implementation, and the results of the comparison be-

tween measurements and prediction results.

269

7. Validation

7.2.1.1. Validation: Connector Completion ’Statefull Message
Oriented Connector’

To provide accurate predictions, performance models have to include many
low-level details. Reusable performance completions ease development of
such models and are built using the MDSPE process introduced in Section
3. In this section, we validate enhancements to the "Message Oriented Mid-
dleware’ (MOM) first introduced as manually (i.e., implemented in JAVA)
created completion by Happe et al. in [76]. In their work, the MOM Com-
pletion was validated in the context of real system, such validation here,
therefore brings no added value, instead we focus on the specific aspects of
this completion. We introduced enhancements to MOM Completion allow-
ing its automation in [93, 92]. Additionally, we introduced a State Manager
(see Section 5.3.3.2) to the internal *message transfer’ component of the
completion skeleton. Our extensions of MOM completion allow to model
transactional communication between components. From the performance
prediction point of view, we discuss especially the stateful properties of
this completion. The validation of these aspects is based on our work in
[94]. The foundations of the stateful performance engineering concept is
discussed as additional contribution of this thesis in Appendix A. Further-
more, we implemented this completion in three ways (i) manually in JAVA,
(ii) partially automated using mark model and (iii) fully automated using
transformation fragments. We discuss the advantages and complexity of

such implementations in Section 7.2.3.

SETTING: QUESTION, METRICS, ASSUMPTIONS The key challenge
of performance completion design is to find the right performance abstrac-
tion for the system under study. To identify the performance-relevant be-
haviour and factors, we employ a combination of goal-driven measure-
ments and existing knowledge about the functional system behaviour. The
process to build feature diagram, identify and implement feature effects is

270

7.2. Improving Prediction Accuracy using Performance Completions

described in Section 3.3. In this validation case study, we start with the
basic structure of the completion for message-based systems which was
introduced in [76]. In Figure 7.1, a feature model describes the possible

configurations of the MOM Completion.

Receiver

Selective
Consumer

Message
Channel

Publish-Subscribe
Channel

Competing
Consumers

Transaction
Size

Figure 7.1.: Feature Model for the MOM Completion [76].

Point-to-Point
Channel

Legend &

<. Exclusive OR Durable
Subscriber
® Mandatory Feature

O Optional Feature

The feature model captures possible configurations for a messaging sys-
tem. The configuration includes the type of Messaging Channel as well
as characteristics of the Sender and Receiver. For example, a Messaging
Channel can be configured as a Point-to-Point Channel if only a single Re-
ceiver is needed. The Message Size is a property of the Sender and ex-
presses the amount of data transferred. Furthermore, the number of Com-
peting Consumers at the Receiver’s side can be specified. The choice of
either of these features results in a change of the architectural model. The
complexity of these changes varies from setting a parameter, through struc-
tural changes, to globally changing the deployment of a whole system.

In our case study, we consider a feature configuration with the selected
features: Point-to-Point Channel, Competing Consumers, Pool Size of 4,
Transactional Client, TransactionSize of 1000 messages, and Message Size
of 1 kilobyte.

The configuration of a message-oriented middleware (e.g., a size of a
transaction) can affect the delivery time of messages [94] as illustrated in
Figure 7.2. Unfortunately, software architects cannot include these details
into their architectural models. The middleware’s complexity and the spe-

271

7. Validation

cific knowledge on the implementation (that is required to create the neces-
sary models) would increase the modelling effort dramatically. While most
of the implementation details are not known in advance, a rough knowledge
about the design patterns that are to be used might be already available.
This knowledge can be exploited for further analysis, such as performance

and reliability prediction, and for code generation.

Delivery Time [ms]
Sehed
Delivery Time [

05 "’ —
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

Message Size Message Size

(a) Persistent vs. non-persistent mes- (b) Local vs. remote message transfer.
sage transfer.

Figure 7.2.: The influence of message size on the delivery time [93, 76].

We extended the MOM Completion to include the state-dependent ef-
fects to the PCM models and allow to study their properties too. In the
following, we give an example for the influence of state on software per-
formance which is taken from the area of message based systems. In par-
ticular, we are interested in the delivery time (time from sending a mes-
sage until it is received) of messages send within a transaction. Messaging
systems, which implement the Java Message Service standard [74], explic-
itly support transactions for messages. The transactions guarantee that all
messages are delivered to all receivers in the order they have been send.
To achieve such a behaviour, Sun’s JMS implementation MessageQueue
4.1 [1] waits for all incoming messages of a transaction and, then, delivers
them sequentially.

Figure 7.3 shows the measured delivery times for a series of transac-

tions with 1000 messages each (the sender initiates a new transaction (as

272

7.2. Improving Prediction Accuracy using Performance Completions

i

2000 4000 6000
n-th Received Message

08 1.0 12 14

Delivery Time [sec]

06

04

Figure 7.3.: Time series of a transaction with 1000 messages per transaction set.

part of a session), passes 1000 messages to the MOM, and finally, commits
the transaction). All messages arrive within the first 0.4 seconds and are
delivered sequentially within the next second. This behaviour leads to de-
livery times of 0.4 seconds at minimum. The delivery times grow linearly
until the transaction is completed. In this example, the position of a mes-
sage in the transaction set determines its delivery time. Thus, the measured
delivery times are not independent and identically distributed but strongly
depend on the number (and size) of messages that have already been sent.
As a consequence, we need to keep track of the messages that are part of a
transaction. Additionally, the periodical utilisation of resources (e.g., CPU)
influences performance. To model such a behaviour, we need to extend our

model and introduce a notion of state as part of our model.

Messaging Completion

| |
I) - - B L
o ' ol oo ol e al e] e] .
R i e
| |
‘ A] i P
| ‘
- S
i |
|
|
|
|
|
|

& &

Figure 7.4.: Components of the MOM Completion [based on [77]].

273

7. Validation

IMPLEMENTATION Transactional messages are common in today’s enter-
prise applications, such as implemented by SPECjms2007 Benchmark [152].
However, the transactions used in the supply chain management supermar-
ket of the benchmark are limited to small, predefined transaction sizes. To
provide a better evaluation, we implemented an application that allows to
configure the number of messages send in one transaction following the
philosophy of SPECjms2007. We excluded external disturbances (such as
database accesses) and focussed on the evaluation of the messaging system.

For performance prediction, we extended our performance completion
for message-oriented middleware called messaging completion in the fol-
lowing [76]. The messaging completion subsumes several components that
reflect the influence of different middleware configurations such as guar-
anteed delivery, competing consumers, or selective consumers. In [76], it
was already demonstrated that the messaging completion can predict the
performance of a SPECjms2007 scenario with an accuracy of 5% to 10%.
In the subsequent paragraphs, we present an extension of our messaging
completion that enables the prediction of influences of transactions on the
delivery time of a message.

Completion for Message-oriented Middleware: Figure 7.4 shows the
components and connections that are generated by the messaging comple-
tion (see [76] for details). The completion consists of adapter compo-
nents and middleware components. The first forwards requests and calls
the middleware components that issue platform-specific resource demands.
The Marshalling component computes the message size based on the
method’s signature. The message size is passed to subsequent adapters
as an additional parameter, so that the original interface (IFoo) needs to be
extended (IFoo’). The Sender Adapter calls the Sender Mi