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1 Introduction

Classical and Quantum Computation

In the period of a few decades, computers have conquered the world.
Once bulky and expensive machines, they have evolved into everyday
devices that fit into the smallest pocket. Today, a daunting amount of
computational power is at anyones disposal.

[tis debatable when the first computer (in a broad sense) was contrived
- the first known mechanical calculation aid, the Abacus, dates back
some 3,000 years; and first mechanical adding machines were built in
the 1600s. However all these machines were special-purpose devices,
applicable only to a very limited range of problems. The birth of the
universal computer can be fixed to the late 1930s, when Alan Turing
described a theoretical model[Tur37|] that later became known as the
Turing machine. The Church-Turing thesis[Tur39] asserts that every
effectively calculable function can be computed by such a machine.

Computability does not imply that a computation can be done effi-
ciently, i.e. that the time and memory required for the computation scales
at most polynomially with the size of the input, and in fact it turns out that
many problems of practical interest can not be efficiently calculated on a
Turing machine. Ina 1981 talk[Fey82], Richard Feynman pointed out that
the numerical simulation of quantum physics is among those problems.
The simplest argument that can be made to prove this is that the number
of matrix elements of a composite quantum system’s wave function, and
therefore the memory required to store them, increases exponentially
with the number of constituent parts. Feynman proposed to overcome
this problem by mapping the system onto a lattice of two-state quan-
tum systems, later designated qubits, with configurable nearest-neighbor
interactions, a device he calls an universal quantum simulator.
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In the course of the 1980s his idea was developed further, culminating
in the concept of the universal quantum computer. The universal quantum
computerisadevice very similar to a Turing machine butempowered with
superposition and entanglement, two distinctively quantum features. In
the quantum theory of computation, it plays the same role the Turing
machine plays in the classical theory[Deu89|. A revised version of the
Church-Turing thesis due to David Deutsch[Deu85]] concludes that it can
perfectly simulate every finitely realizable (quantum) physical system.

Like the Turing machine, the universal quantum computer is an ab-
stract concept rather than a construction blueprint of a physical device.
To describe the workings of practical computers the circuit model|[Deu89]
is more intuitive to use. It depicts the computer as a network of quan-
tum gates akin to a classical electrical circuit of logic gates, with each
gate representing a unitary transformation applied to a subset of qubits.
Only a handful of different gates, namely single qubit rotations and an
almost arbitrary two-qubit gate[Llo95], suffice to make the circuit model
universal.

By design, any classical algorithm will also run on a universal quan-
tum computer with equal efficiency. If this was the end of the story,
if quantum computation could not do significantly better than classical
computation in a problem of practical significance, no one would bother
contemplating it. Luckily, a few quantum algorithms are known to pro-
vide an exponential speedup compared to any known classical alternative.
These have spawned interest in the field and promoted the construction
of real quantum computers.

Decoherence

The main difficulty in the physical realization of quantum computers is
eliminating any undesirable interactions of its constituent qubits. Ulti-
mately, such interactions will distort the result of the computation by
altering the quantum state of the computer, a process called decoherence.
Decoherence can result from qubits interacting with their environment,
but also from the qubit interacting with other degrees of freedom of the
system comprising the qubits. This favors qubits of microscopic size, such
as photons or trapped atoms, because these tend to have few internal
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degrees of freedom and to be well isolated from their environment. Of
course, in order to operate the computer in the first place, it must be
possible to exert control on the individual qubits and establish mutual
interactions.

In this regard, superconducting qubits, such as the ones studied in
this thesis, outperform the microscopic systems. At sizes that can reach
hundreds of square micrometers, they can be designed and embedded
in an electronic circuit and manufactured complete with control lines
using standard lithograpic means. Inducing interactions between super-
conducting qubits is as simple as placing an actual wire between them.
Unfortunately, all this comes at the price of increased decoherence.

The first experiment showing coherence in a superconducting qubit,
published in 1999, saw coherent oscillations lasting up to 2 ns[NPT99].
Step by step, various experimental groups have improved this number,
working on multiple fronts. Ever new variants of superconducting qubits
have been devised, with very different modes of operation despite being
based on the same basic circuit elements (a few examples can be found in
section [2.2]). By exploiting symmetries and through enhanced shielding,
the influence of a noisy electromagnetic environment could be reduced.
The coupling to material defects has been lessened by lowering electric
fields in the places where it mattered, and the defect densities themselves
have been lowered by advancing materials and manufacturing processes.
Progress has been so tremendous[Ste11] that an equivalent of Moore’s
lawE| has been suggested for the decoherence times of superconducting
qubits[DiV12]. Atthe time of this writing, decoherence times have reached
100 ps[RGP+12] (ironically, at some expense of control over the qubit)
and further enhancements are expected.

Quantum Error Correction

Current coherence times preclude the execution even of moderately
complex algorithms and they are extremely short compared to the in-
verse error rate of classical computer memory, which is of the order of
5 x 1013 s|[SPW09], almost eighteen orders of magnitude more. Even

1Gordon Moore predicted in 1965 that the number of components in classical
integrated circuits would double every two years[Moo65|.
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this seemingly enormous time is not good enough - for 1 GB of mem-
ory, it translates to one bit flip every other hour - so error correction
mechanisms are used to boost it even further.

At first glance, error correction of qubits appears to be impossible for
two reasons. First, the destructive nature of the quantum-mechanical
measurement process means that it must be done without knowing
either their original nor their decohered states. Second, a quantum
state is a fundamentally analog quantity, being described by a number
of continuous-valued probability amplitudes. Unlike the discrete bit flips
in the classical case, errors in these amplitudes grow continuously as
time passes. Perhaps surprisingly, quantum error correction is possible
nonetheless.

Peter Shor was the first to note this and proposed an encoding scheme
of one logical qubit in nine physical qubits[Sho95|] that can perfectly
restore the original state if one of the physical qubits decoheres. The
crucial point of his idea is the realization that measuring the physical
qubits to find out if and where an error occured is not a problem - as long
as it does not reveal any information about the state of the logical qubit.
The measurement then takes care of the second problem by projecting
the initially continous-valued error onto one out of four possible discrete
outcomes. These correspond to no error and flips (180° rotations) about
the x, y or z axes, which can be corrected by applying the appropriate
unitary gate. In the following years, improved error correction codes
have been developed, of which the most notable ones are the seven qubit
code by Andrew Steane[Ste96 which maps many basic gates on the
logical qubit to simple operations on the physical qubits[Mer07], and the
surface codes based on work by Alexei Kitaev[Kit03], which have a simple
structure and are more economic when the state of a large number
of qubits is to be protected. The latter accomplish an error tolerance
of 0.75% per gate[DiV09], which is in reach of current experimental
implementations.

Towards Large-scale Quantum Computers

Having reduced the role of decoherence from a show stopper to a mere
inconvenience, the next challenge is to increase the number of qubits
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working together in a quantum processor. All devices that have been
experimentally realized so far contain no more than a handful of qubits.
While this is sufficient to demonstrate basic quantum gates and even
simple algorithms, these processors are mere toys in the big picture of
quantum computation. To do better than the highly evolved classical
computers available today, at least a few tens of interacting qubits (not
including the overhead due to error correction) are necessary.

The path to larger quantum computers poses new experimental chal-
lenges, concerning the arrangement of many interacting qubits, the place-
ment of the increasing number of control and measurement connections
and more. This thesis provides a modest contribution to this large field by
demonstrating a method to control and measure multiple qubits simul-
taneously, that can in principle be used to measure hundreds of qubits
through a single pair of wires.

The method is based on circuit quantum electrodynamics, the study
of interactions between artificial atoms (the qubits) with photons stored
in a microwave cavity. Due to these interactions, the energy required
to add a photon to the cavity depends on the state of the qubit, which
can hence be determined by scattering electromagnetic waves at the
cavity input. Many cavities with slightly different resonance frequencies
can be connected in parallel to a common microwave transmission line,
allowing an almost arbitrary number of qubits to be measured through
the line. Moreover, qubit-cavity interactions can be used to convert the
qubit state into a cavity state and back, which enables a cavity to serve
as a quantum memory or a means to transfer quantum states between
distant qubits. All these features make circuit quantum electrodynamics
a powerful architecture for quantum computation. It may become the
key element to the realization of large-scale quantum computers.
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2.1 Superconductivity and the Josephson Effect

In 2011, the physics community celebrated the 100th anniversary of
the discovery of superconductivity by H. Kammerlingh Onnes[Onn11].
Onnes found that the resistance of a number of metals vanished below a
certain, material-dependent (critical) temperature T,. Later experiments
on the persistence of circulating currents injected into (macroscopic)
superconducting rings found a lower bound of 10° years[Tin04], which
confirmed that the resistance of a superconductor was indeed exactly
Zero.

A few years later, in 1933, Meifdner and Ochsenfeld discovered the sec-
ond basic property of a superconductor, perfect diamagnetism|[MO33|].
While perfect conductance would by itself cancel any change of a mag-
netic field penetrating the superconductor by induction of eddy currents,
they found that in addition to that the superconductor would expell any
magnetic field already present when T, was crossed. The existence of
the reversible Meifdner effect proved that superconductivity was a dis-
tinct thermodynamic state[Tin04]. A description of the superconducting
state reproducing these two effects was given by F. and H. London in
1935]LL35], but it was purely phenomenological and did not explain its
microscopic origin.

Measurements of the electronic heat capacity of superconductors found
an exponential T-dependence, which indicates the presence of an energy
gap in the excitation spectrum. This discovery led to the formulation
of a microscopic theory of superconductivity by Bardeen, Cooper and
Schrieffer in 1957[BCS57]], which showed that a weak attractive force
between electrons can cause them to form a condensate of bosonic pairs
with zero total spin and momentum. The energy 2A required to break
these so-called Cooper-pairs is equal to the gap energy, and its prediction
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by the BCS theory matched the measured value. The finite energy gap
also explains the lack of resistivity, because it inhibits scattering of the
Cooper-pairs at impurities.

Both the London equations and BCS theory did not take spacial vari-
ations of the properties of the material into account. This is considered
in the Ginzburg-Landau theory of superconductivity[GL50], which was
initially formulated as a phenomenological theory but later derived from
a generalized BCS theory[Gor59]. Ginzburg and Landau declared a com-
plex parameter ¥ (#), which serves as a macroscopic wave function of the
charge carriers and an order parameter of the superconducting phase
transition. It is linked to the local density of Cooper-pairs in the material
via ng(#) = [(#)|?. The theory also introduces the coherence length &,
the characteristic length scale at which ¥ (#) may vary without excessive
increase of the thermodynamic energy of the condensate, typically a few
100 nm.

The finite coherence length implies that at the interface of a supercon-
ductor (S) and a normal metal (N) or insulator (I), some Cooper-pairs will
be present inside the non-superconducting material. Furthermore, in a
sandwich of two superconducting electrodes with a very thin interposed
N or I layer, there would be interference of the macroscopic wave func-
tions of the two superconductors. B. Josephson predicted[Jos62] that a
supercurrent

Iy = I, sin(¢) (2.1)
would flow through such a structure even in the absence of an external
voltage. I, is the maximum supercurrent that the structure can support
and depends on its geometry. ¢ = arg(y;) — arg(y,) is the difference
of the phases of the wave functions of the superconductors. Josephson
further predicted that in the presence of a voltage difference IV between
the electrodes, their phase difference would evolve according to

dp  2eV  2nV

dt  n &y
Eqns. [2.1] and [2.2] are called the first and second Josephson equations,
respectively.

If an alternating current is applied, a Josephson junction can be con-
sidered a non-linear inductor. Comparing the Josephson equations to the

(2.2)
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response of a linear inductor, V = —L dI/dt, the self-inductance L;, which
depends on the phase drop across the junction, can be derived as

@

L) = 2l cos(¢p)

(2.3)
By controlling the phase drop ¢, the inductance of the junction to be
adjusted. Unlike ordinary inductors, Josephson junctions can have a
negativeinductance. A seriesjunction canthusreduce the totalinductance
of a circuit.

The Josephson energy stored inside a junction can be derived from

Uy = [ LVdt, Eq.and Eq. yielding
Uy(¢) = Ej[1 — cos(¢)], (2.4)

with E; = hl./2e. The constant of integration was chosen such that
U;(¢) has a minimum of 0 in the case of a vanishing phase difference,
corresponding to the situation in a bulk superconductor.

The geometric structure of ajunction resembles that of a plate capacitor.
Therefore, the total energy stored in the junction must also include the
electrostatic energy of the charges stored on the capacitor plates,

QZ

T =
2C

== EC(NC - Ng)z.

Here, E; = 4e2/2C, is the Coulomb energy of a single Cooper pair stored
on the capacitor, called the charging energy. N is the integer number
of pairs that have tunneled through the junction and Ny is an externally
applied charge bias, called gate charge.

2.2 The Flux Qubit

2.2.1 Basic Types of Superconducting Qubits

As we have seen in section a qubit is a quantum system with two states
that can be distinguished by measurement. Few microscopic implemen-
tations of qubits, such as photonic and nuclear spins, are indeed naturally
occuring two-level systems. But natural two-level systems are rare and
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all other approaches rely on a nonlinear energy spectrum to isolate two
computational basis states. For the realization of a qubit in an electric
circuit, Josephson junctions are an evident choice, because they are the
only known nonlinear and nondissipative electrical components|ZB07|].
The three basic types of superconducting qubits are the charge qubit, the
phase qubit and the flux qubit.

The charge qubit or Cooper-pair box[BV]+98]); [NPT99] was the first ex-
perimentally demonstrated superconducting qubit. The computational
states of the charge qubits are states with a well-defined number of
Cooper-pairs on a superconducting island separated by a Josephson junc-
tion. In order to distinguish the charge of a single Cooper-pair, the island
must be sufficiently small, such that E; >> E; and the electrostatic term
dominates the total energy of the system. The qubit is best operated
with a half-integer gate charge, where the states [N; = Nj — %) and

[N¢ = Ng + %) are degenerate. The degeneracy is lifted by the Josephson
energy E;, which sets the frequency of the qubit transition. The Cooper-
pair box is very sensitive to charge noise and has largely been replaced
by an improved variant, the transmon qubit[SHS+07|.

Phase qubits[MNA+02]; [YHC+02] operate in the opposite regime,
E; » Ec. A phase qubit is realized as a single junction which is current-
biased. The bias current skews the cos ¢ potential with a linear term,
resulting in the so-called tilted washboard potential. The tilt is adjusted
such that only 3-10 states remain in each of the local minima of U;, which
can be approximated as anharmonic oscillators. The computational basis
can be formed by the lowest two states in any minimum. Current imple-
mentations of the phase qubit provide the bias by enclosing the junction
in a flux-biased loop, which allows improved decoupling of the qubit from
environmental noise.

Originally, the flux qubit[FPC+00] consisted also of a single junction in
a closed loop. The magnetic energy stored in the loop inductance adds a
parabolic term to the potential. At a flux bias close to ®,/2, U; has two
degenerate minima separated by a tunnel barrier. The tunneling matrix
element of the ground states of the two minima lifts their degeneracy,
the lowest two states are used as qubit states. In practise, this type of
qubit suffers from strong dephasing, because the relatively large loop

10
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Figure 2.1: Circuit schematic of a magnetically biased three-junction flux qubit.
The third junction is called the alpha junction and has an «a times lower critial
current than the other junctions.

inductance results in strong magnetic fields that couple the qubit to
the environment. This problem was solved by the three-junction flux
qubit, which essentially uses the additional junctions to replace the loop
inductance.

2.2.2 Classical Description of the Three-Junction Flux Qubit

The three-junction flux qubitf[MOL+99|, commonly simply called the flux
Qubit, consists of a superconducting ring interrupted by three Josephson
junctions, where one of the junctions is by a factor @ smaller than the other
two. Since the macroscopic wave function Y(#) = | (#)| exp(i¢ (7)) of
the superconductor must be single-valued, the phase ¢ (#) collected when
going once around the ring must be an integer multiple of 27, which
imposes the flux quantization condition,

Z ¢; + 2nf = 2nN, (2.5)

where ¢; is the phase difference across the i’'th junction, f = ®gy /Py is
the frustration of the loop generated by an external magnetic field, and N
is the number of flux quanta trapped inside the loop. A circuit schematic
of the qubit is shown in Fig.[2.1]

11
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l l l

-n/2 -m/4 0 /4 /2
1 = b2

Figure 2.2: Potential energy of a flux qubit at f = 0.5. (top) Contour plot at

a = 0.8. The qubit states are located inside the double well (dashed contours)

in the center of the plot. (bottom) Shape of the tunneling barrier in the qubit

double well at different values of a. The bottom (dash-dotted) curve is for

a = 0.5, the top (solid) curve for &« = 1.0 with steps of 0.1. The height of the

barrier between different unit cells, located at (¢4, ¢») = (0, £7) and (+m, 0)

and shown for comparison as a dotted line, is independent of a.
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Combining the potential energy stored in each junction, Eq. with
the flux quantization condition, Eq. yields the total potential energy
of the qubit loop,

U;/E; =2+ a — cos(¢q) — cos(¢z) —acos(2rf — ¢y — ¢2),  (2.6)

where E; is the Josephson energy of each of the large junctions. It is
assumed that the energy stored in the magnetic field generated by the
geometric inductance of the loop is negligible compared to the energy
stored inside the junctions. This is equivalent to the junction inductance
L, Eq. being much larger than the geometric inductance Lge, of the
qubit loop.

The potential is independent of the number of flux quanta trapped
in the loop and has two internal degrees of freedom, ¢; and ¢,. It is
2m-periodic in both, seen from Eq. or Fig. A flux qubit is formed
for 0.5 < a < 1.0, where the potential describes a lattice of isolated
double-wells, composed of two minima and a tunneling barrier along the
¢, = ¢, mod 2m axis in each (2m)? unit cell. At @ = 1, the potential
barriers between individual unit cells and the tunneling barrier between
the double wells have the same height and the system becomes effectively
two-dimensional. For @ < 0.5, the tunneling barrier vanishes completely,
resulting in a crossover from a lattice of tunneling systems to a lattice of
ordinary anharmonic oscillator potentials.

Classically, the two lowest states of the flux qubit are located at the
minima of the double wells, which are degenerate at half frustration,
f = 0.5. At the minima, the phase difference across the junctions is
(b1, P2) = £(¢*, ¢*), where ¢p* can be calculated[MOL+99] to be

1
L p— 2.
cos ¢ > (2.7)

This results in a supercurrent flowing around the loop, which differs in
sign between the two wells. Its magnitude can be calculated by plugging
Eq.[2.7]into the first Josephson relation Eq.[2.1}

, 1
Ip = Lesin(@") = e [1= . (2.8)

13
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At f different from 0.5, the magnetic moment generated by the current
circulating in the loop couples to the external magnetic field used to
bias the circuit and tilts the double well potential. In this case, the
two persistent current states are no longer degenerate and their energy
difference is

he = 2L, (D eyt — Po/2) = 2L, Do (f — 0.5). (2.9)

To describe the dynamics of the flux qubit system, the kinetic energy of
the circuit has to be taken into account. The second Josephson relation,
Eq. hints that this is equal to the energy of the charges stored on
the islands between the Josephson junctions. If the capacitances of the
islands to ground can be neglected in comparison to the capacitances
across the junctions, the kinetic energy term becomes simply

1 1/d\> . . i
“526”’1'2:5(2—13) (91 ¢2)'C‘<£§>'

A coordinate rotation from ¢; and ¢, to ¢, = (¢1 + ¢;)/2 and ¢y, =
(1 — ¢2)/2, diagonalizes the C matrix without complicating Uy,

U;/E; = 2+ a — 2 cos(¢p) cos(¢r) — acos2nf — 2¢p).

2.2.3 Quantum-Mechanical Description

From T and U, the classical Lagrangian and Hamiltonian are derived,
and by considering the classical phases and their conjugate momenta
as operators, the transition to a quantum mechanical description of the
system is made[OMT+99]. This results in the quantum Hamiltonian

By P
H=-Lt—+ +U, (2.10)
2M, ' 2My
where the momentum operators can be written as B, = —ihd/d¢, and

Bn = —ihd/d¢y,, the mass terms are M,, = 2C(®y/2m)? and M,, =
2C(1+2a)(Py/2m)? and C is the capacitance of one of the large junctions.

The eigenenergies and eigenstates of this Hamiltonian can be found
in a phase basis by truncating H to a discrete grid of points in (¢, ¢,)

14



2.2 The Flux Qubit

40.0

30.0

20.0

WoF~—~y{_

" T

energy in GHz

-10.0 ] ] ] ] ]
048 0.49 0.5 0.51 0.52
magnetic frustration
T T i i T]
2
7 -~
/s :\\
g ol 4 b M i
s ° W
7/
\\\/ /
'g [T ] 0 o I
30 33 0 3
bp $p

Figure 2.3: Numerical simulation of the steady-state properties of a flux qubit.
The parameters are E; = 140 GHz, E; = 2.8 GHzand a = 0.645. (top) Energies
of the five lowest-lying states of the Hamiltonian. At half frustration, the transition
energy between the ground state and the first excited state reaches a minimum
of A = 5.9 GHz. The second excited state is 17 GHz higher than the first excited
state, making the truncation to two ‘qubit’ states very accurate. (bottom) Wave
functions of the qubit ground and first excited states at half frustration. The
ground state is a symmetric combination of the two persistent current states,
the first excited state is an asymmetric combination. Both states have zero net
circulating currents. Solid contours denote Ry > 0, dashed contours Ry < 0.
The distance between contours is 0.025.
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space and numerical diagonalization of the resulting Hamiltonian matrix,
where effects of the other unit cells are included by considering periodic
boundary conditions. Alternatively, the problem can be treated in the
charge basis by limiting the number of charges that can be on each island,
which are naturally discrete. In this case, the basis states are plane
waves in ¢, and ¢,,. The phase basis solutions are plotted vs. magnetic
frustration of the qubit loop in Fig. for the design parameters of one
of the manufactured qubits.

Athalf frustration, the qubit potential is symmetric and the two classical
persistent current states are degenerate. In the quantum-mechanical
description, this degeneracy is lifted by hybridization of the persistent
current states due to the finite height of the tunneling barrier. The
height of the tunneling barrier is defined by the geometry of the qubit
junctions, and so the hybridization energy, which is at the same time
the minimum transition energy between the qubit states, is fixed during
device fabrication. This energy is commonly called the qubit gap and
labelled A4, in reference to the terminology used in the description of
tunneling systems.

Not too far from half frustration, the coupling of the current circulating
in the loop adds an additional term called the asymmetry energy he.
This is essentially the same as the classical asymmetry, Eq. with the
classical I, replaced by the expectation value of the circulating current
for the relevant states.

Far from half frustration, multiple quantum states are allowed in the
lower well that are energetically below the ground state of the higher well,
and the classical persistent current states can no longer be identified with
the two qubit states.

2.2.4 Truncation to two Levels

From Fig.[2.3] it can be seen that the energy required to access the second
excited state is several times larger than the transition energy between
the ground and first excited states in the vincinity of half frustration.
Thus, a flux qubit is approximated very well by its two lowest states. A
two-level Hamiltonian can be constructed from the gap and asymmetry

16
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Figure 2.4: Numerical simulation of the persistent current in the qubit loop for
the ground and first excited states of a flux qubit. At f = 0.5, both states are
an equal superposition of the classical clockwise and counter-clockwise states

and the net circulating current vanishes. The parameters are E; = 140 GHz,
E; = 2.8GHz and a = 0.645.

parameters derived in the previous section, taking the persistent current
states as the basis states. It reads
f=ps 4 hes (e B 2.11
= — —€ = — .
S0 +5ea, =2 (3 ) (211)
where o, and o, are the first and third Pauli matrices.

This Hamiltonian is diagonalized by a unitary rotation around the y
axis,

2~ _ [ cOSO sin6
U = exp(i66y) = (_ <ind cos 9), (2.12)
by anangle oftan 26 = A/e. Inthe rotated basis, the Hamiltonian becomes

N h
H=U'AU = ?/Az + €2, (2.13)

where the qubit transition frequency is identified as w, = VA? + €2.
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The qubit states, written in the circulating current basis, are

[Ty = cos@|l) +sin@|r) (2.14)
[{) = —sinO|l) + cos O]r). (2.15)

Atthe symmetry point, 8§ = +m /4 and both qubitstatesare superpositions
of the clockwise and counter-clockwise persistent current states with
equal probability amplitudes, resulting in zero net current flowing in
the loop in both states. At large asymmetries, 8 — 0 and the qubit
states become equal to the persistent current states. In Fig. the
expectation values of the circulating current for the two lowest state of
the full Hamiltonian, Eq.[2.10] are plotted.

2.2.5 Driven Qubit

An external drive can be introduced to the qubit by inductive coupling to
a microwave field. The microwave signal presents an oscillating magnetic
field to the qubit, which periodically perturbes the asymmetry energy. It
is thus proportional to a g, operator in the basis of the persistent current
states,

- A _
Hgrive = 5 cos(wgt + )6, (2.16)

where A is the amplitude of the drive. The drive is rotated into the qubit
eigenbasis by application of the unitary transformation Eq.

H UtH 4riveU 4 (wgt + )[—A + = ]
drive = drivelU = 7 COS(Wg @ Oy Oz|-
Vi Vi 2 wq wq zZ

The qubit+driving Hamiltonian can be further simplyfied by a transfor-
mation into a frame rotating with the drive, by U = exp(iwgto,). Due to
the explicit time-dependence of this transformation, an additional term in
the transformed Hamiltonian is required to preserve the time-evolution
of the system in the rotating basis, H' = UT(t)HU(¢t) + ihUT (t)dU(t)/dt.
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2.2 The Flux Qubit

After simplification, the transformed Hamiltonian of the driven system
becomes

1
H' =Eh(wq — wg)o,+

A A
——[cosQwgyt + @) + cos(p)] o, +
4 Wq

%ii [sin(2wgt + @) — sin(p)] gy +
Wq

A €

Ew_q cos(wgyt + @)oy,,
which is still explicitly dependent on time.

If the driving frequency is close to the qubit frequency, it can be argued
that the time-dependent terms in H' will average out over one period
of the slow dynamics of the qubit in the rotating frame and can thus be
dropped. This is simplification is called the rotating wave approximation
and yields

1
HRWA _ Eh(wq — wy)o, + o cos(@) oy + isin(@) gy |.
q

The Schrodinger equation associated with this time-independent Hamil-
tonian is solved by U(t) = exp(—iHt/#), which is nothing more than a
rotation of the qubit state vector in three dimensions,

AA
) [0, )
U(t) = —iQt-3/2), Q=| 22 g , 2.17
(t) = exp(—iQt - 6/2) T sin(¢p) (2.17)
Cl)q — Wy
where Q defines the rotation axis and ha /2 is the angular momentum
operator of a spin 1/2 system.
When the drive is resonant with the qubit transition frequency, the

state vector describes rotations around the x or y axis depending on the
starting phase of the drive. The rotation frequency,

O =|0] = AA/2RPw, (2.18)
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Figure 2.5: The Bloch Sphere. Pure ensembles are represented by a point on the
surface of the sphere, mixed ensembles by a point in its interior. The azimuthal
angle 0 describes the energy content of the system, the polar angle ¢ the relative
phase between the ground and excited state components.

is known as the Rabi frequency. When the drive is off-resonant, the state
vector additionally precesses around the quantization axis of the rotating
frame, and the rotation frequency is increased to

Q= J(AA/thwq)z + (wg — wg)’, (2.19)

called the generalized Rabi frequency. A qubitinitially inits ground state | T
)thatis driven off-resonantly will never reach the excited state |l), because
the rotation axis is tilted towards the z axis. By explicitly evaluating the
rotation matrix corresponding to @, the minimum projection on the z axis
can be found to be,

2
_ 2 [ AA
(wg — wq) ( 2hoy )

5
_ 2 AA
(@q =0 + (50

(02)min = (2.20)

2.2.6 Bloch Sphere

The Bloch sphere[NCO04] is an intuitive tool to visualize the evolution of
the state vector of a two-level quantum system. Any such state can be
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2.2 The Flux Qubit

described by a superposition [) = a|T)+S]|!), where @ and 8 are complex
numbers. Because |a|? + |#|?> = 1 must hold to insure normalization and
because global phase factors of a wave function have no physical meaning,
only two parameters remain,

[p) = e~i/2 cos(8/2)|1) + e'?/2 sin(8/2)|1),

which can be understood as the azimuthal and polar angles of a point
on the surface of a sphere, Fig. The Bloch vectors corresponding to
the eigenstates | I,x) and | I, y) of the o, and o, operators point, quite
naturally, along the x and y axes.

The Bloch sphere can also visualize the density operator of an ensemble
of two-level systems. The density operator of an ensemble of pure states
is constructed p = Y; p;|i)(i|, where p; is the probability of finding the
system in state |i). Because this operator is Hermitian and the sum of the
probabilities of finding the system in any of the states must be one, the
operator can be decomposed into

1
p=§(ao+17-3), (2.21)

where g is the identity operator of a two-state system and 7 is a vector
in R3 with 72 < 1, known as the Bloch vector. p describes a pure state,
p? = p,ifand only if 7 is a unit vector and consequently represents a point
on the sphere. Mixed states are associated with points in the interior of
the sphere. The components r; of 7 are equal to the ensemble averages
(0;) = Tr (pa;) of the spin vector.

2.2.7 Qubit in a Dissipative Environment

In a closed system, the time-evolution of the density operator of a
quantum-mechanical system is governed by the von Neumann equa-
tion[Sha94|

dp(t)

[
o = h [H(©), p(D)]. (2.22)
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For a two-level system (qubit) with a density operator in the form Eq.[2.21]
and the general time-dependent Hamiltonian H(t) = Q(t) - ha /2, the von
Neumann equation simplifies to

<g—f>.&=(ﬁx7)-

where the identity (¢ - 3)(b - &) = (@ - b)oy + iG - (@ X b) was used and
both sides were multiplied by 2. If 72 = 1 (p describes a pure state),
Eq. generates a rotation of the state vector identical to the rotation
induced by the propagator Eq.[2.17]

The most general way to model a qubit coupled to its environment is by
including the environmental and interaction terms in the system density
operator pi,r and Hamiltonian H,;. In most, if notall, interesting cases the
solution of this task is infeasible both analytically and numerically. Under
a number of conditions|Kos72[|; [Lin76], this problem can be solved in a
less computationally expensive way by explicitly adding dissipation terms
to Eq.[2.22] The resulting equation is known as the Kossakowski-Lindblad
equation or Lindblad master equation,

g, (2.23)

d ' 1
_’; (tt) = —% [H®).p(O) + 5 Z Lnp(t) (2:24)

where p = Tr ¢ny (Ptot), H = Tr eny(Hiot), and
Lnp(t) = 2C,p()CE — p(O)CHCy — ClCp (D).

Coherent processes introduced by the environment are included in the
reduced Hamiltonian H, incoherent processes are described by the L,.
The operators C,, = \/¥,A,, are called collapse operators, with A,, being
the operators through which the system interacts with its environment
and y,, being interaction rates.

In the case of a qubit, energy relaxation is modeled by the lowering
operator, C; = /y;0_ and dephasing, being caused by fluctuations of the
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2.2 The Flux Qubit

level splitting, is modeled by Cy = | /y40,. Explicit evaluation of the L,
for a density matrix in the form Eq. yields, after some algebra,

1
Eryoy + (1, — 1)02]

Lyp = —vgp [rxax + ryay] .

1
Lip=—n [Erxgx +

From these expressions, one can already see that relaxation affects all
three spin components while dephasing affects only the x and y compo-
nents.

In the case of the qubit Eq.[2.23] the Lindblad master equation reads

(g-i)-(?:(ﬁx?)-&

"1 41
[( > + y¢> T 0y + (7 + y¢> 1oy +y1(; — Doy |. (2.25)

When separated into the three spacial components by calculating the
ensemble averages (o;), Eq.[2.25reduces to the Bloch equations[Blo46],

oM . M
5 = V(M X B)y — ==
oM, . . M,
W =y(M X B)y - T_2 (2.26)
oM M, — M,

z S >
=y(M X B), —

T, '’

of a spin 1/2 particle in a magnetic field if M = yZ = yh(d)/2 and
B = —Q/y, where y is the gyromagnetic ratio, are identified. The effect
of the dissipation terms is obvious in this form. The 1/T, terms in
the first two equations result in an exponential decay of the x and y
components of the spin expectation value towards 0 with a time constant
of T,. After an infinite time, a single measurement in these directions will
return +#/2 with equal probability. The 1/T; term in the last equation
results in a decay of the z component of the spin towards My /y with time
constant T;. By not including excitation terms in the Lindblad equation
zero temperature and a T; decay towards the spin up state was assumed,
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and thus My, = y#h/2. Further comparison of Eqns.[2.25|and [2.26| shows
that the longitudinal relaxation time T; is the inverse of the interaction
rate y; and the transversal relaxation time T, = y; 1 = (y,/2 + y¢)‘1 is
a combination of both rates. In the absence of pure dephasing yy is zero
and the transversal relaxation time becomes T, = 2T;.

2.3 Microwave Resonators

Microwave resonators are the second basic component used in this work.
Resonators are linear resonant circuits built from resistors, inductors and
capacitors that form an harmonic oscillator. In electrical circuits, their
main use is filtering - close to resonance, they pass or block signals in
a chosen frequency range. In qubit circuits, this property can be used
to reject environmental noise. Resonators also store energy in their
inductor and capacitor. This is exploited in quantum information devices
to store qubit states and transfer them between different qubits that
are connected to the same resonator. In this section, the steady-state
electronic properties of microwave resonators will be reviewed from a
classical point of view. The dynamics of qubit-resonator systems in the
quantum regime will be discussed in the following section[2.4]

2.3.1 Series and Parallel Resonant Circuits

Close to its resonant frequency, the electrical response of any resonator
can be modeled by either a serial or a parallel combination of a resistor
R, inductor L and capacitor C. Schematics of these two cases are shown
in Fig.[2.6]a) and b).

The impedance Z seen at the terminals of a series RLC circuit depends
on the frequency of the input signal according to

1
Z=R+iwlL—-i—:. 2.27
iw i ( )
The expression for parallel RLC circuits is very similar if the admittance
Y = Z~! instead of the impedance of the device is considered,

Z‘l—1 '1+'C 2.28
=R le iw (2.28)
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Figure 2.6: Schematics of a) a series RLC circuit, b) a parallel RLC circuit and c) a
circuit connected to an external load.

In both cases, resonance occurs at wy = 1/VLC, where Z becomes real.

An important parameter of a resonant circuit is its quality factor Q.
Higher Q means lower loss and increased lifetime of photons inside the
resonator. It is defined as|Poz05|

energy stored in the resonator

S
|

rate of energy loss from the resonator’

To be useful in applications, the resonator must be coupled to some
external circuitry, depicted as a load resistor R; in Fig. c). One
distinguishes between loss caused by dissipation inside the resonator
and loss due to the coupling. Loss caused by dissipation inside the
resonator is characterized by the “internal” or “unloaded” quality factor
Qo- Loss caused by the coupling is characterized by the “external” quality
quality factor Q.. The combined loss is characterized by the “loaded”,
quality factor Q;. Evidently, @, can be calculated from Q. = Q51 + Q;*.
The ratio between @, and Q,, the is known as the coupling factor k. Using
K, the conversion between the various Qs is achieved by Q, = kQ, =
(k+1)Q;. Inthe cases of k < 1,k = 1 and k > 1, the resonator is called
undercoupled, critically coupled and overcoupled, respectively.

At resonance, the average energy stored in the inductor and capacitor
are equal and their total equals E = L(I?) = C(V/?). Inthe model circuits of
Fig.[2.6] internal loss is affected by dissipation inside the internal resistor,
W = R(I3) = (Vi2)/R, and external loss by dissipation inside the load
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resistor. In the case of series RLC circuits, the currents I; and I are equal,
and the internal and external quality factors and the coupling factors are
_wol 1 _ wol q R 599
G="f =ppe Q=g ad k=p (229
In the case of parallel RLC circuits, the voltages V; and Vi are equal,
resulting in
R; R

d = —.
ool an K R,

For |w — wy| < wy, the expressions|2.27|and[2.28| can be simplified to

R
Qo = a)_OL = woRC, Qe =

. W — o ,
Z=R|1+2iQ, = R(1 + 2iQy96) (2.30)
0
in the case of series circuits and
;1 W — Wy 1 )
0

in the case of parallel circuits. In these expressions, the normalized
frequency deviation from resonance § = (w — wg)/wy was introduced. In
both cases, the expression for lossy resonators can be obtained from the
corresponding expressions for lossless resonators (not explicitly shown)
through the substitution of wy by wy(1 + i/2Q,). It is often useful to
express Eqns. and in terms of the load impedance R, and the
quality factors Q, and Q,, as these quantities are more easily accessible
by measurement,

Z~R, <% + 2iQe6>, (2.32)
Qo
iy (e
77~ o <Qo + 21Q66>. (2.33)

2.3.2 Transmission Lines

In DC electronics, awire is justa conductor that connects two components,
equalizing the voltages on both ends wire. At high frequencies, this is no
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L R’
PP
GI — !

Figure 2.7: Lumped element model of a piece of transmission line. L' and C’
define the characteristic impedance of the line, R’ and G’ introduce conductor
and dielectric loss.

longer true: once the length of a wire becomes a considerable fraction of
the wave length of the electrical signal it carries, the variation of current
and voltage along it must be considered, it becomes a circuit component.
In microwave engineering, a wire (or rather a pair of wires where one is
the voltage reference for the other) is called a transmission line and has a
variety of uses apart from simply carrying a signal between components.
Among other things, it can be used as a phase shifter, impedance converter,
filter and, as we will see, a resonator. In fact, the lowest-loss resonators
that can be realized in planar circuits are based on superconducting
transmission lines.

Electromagnetic waves propagate along a transmission line according
to the Telegrapher’s equations[Poz05],

av(z) A
Fraiaie (R"+iwlHI(2),

dl(z) _ G+ i
PRl (G"+iwCHV(2),

where R’ and L' are the resistance and inductance of the line per unit

length, and C' and G' are the capacitance and conductance of the signal

conductor to the reference conductor of the line, as shown in Fig.[2.7]
These two equations are solved simultaneously by plane waves

V(2) =V, exp(—yz) + Vy exp(y2),
I1(2) =Ig exp(—yz) — Iy exp(yz), (2.34)

where

y=a+if =R +iwl)(G +iwC)
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is called the complex propagation constant. Its real part a represents
voltage loss through dissipation in the resistors R’ and leakage of current
to the ground conductor through G'. Its imaginary part S is the wave
vector of the electromagnetic radiation on the line. In the case of alossless
line

W
o= B=wVl'C" = wv,=1/NLC (2.35)
p

yields the phase velocity on the line.
The ratio of voltage to current that the line requires a wave travelling
in a certain direction to have is its characteristic impedance,

VO+_V0—_Z R tiol 536
I I 70T G +iwC” (2:36)

If a load with an impedance of Z; is attached to the end of the line, it
defines a boundary condition for the wave which can cause reflections.
The amplitude of these reflections is given by the voltage reflection
coefficient,

W . Z—Z

A r= 7L+ Zy
which can be derived from Kirchhoff’s laws. In the special cases of an
open or shorted line, the voltage reflection coefficient will be +1 or —1
respectively, indicating perfect reflection with a phase shift of zero or .
Aload that satisfies Z; = Z, is called a matched load and does not cause
any reflections.

The superposition of the waves travelling forward and the reflected
waves travelling backward results in an impedance that varies with the
length [ of line between the source and load according to the transmission
line impedance equation,

(2.37)

Z; + Zytanhyl

zZ = ZOZO + Z, tanhyl’

(2.38)
2.3.3 Transmission Line Resonators

If multiple boundary conditions are introduced on a line, standing waves
form between the points of reflection. Transmission line resonators with
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P

Figure 2.8: Schematic of a capacitively coupled 1/4 resonator.

high quality factors are built from a piece of line which is either open or
shorted on both ends, insuring a voltage reflection coefficient very close
to +1. Half-wave resonators have two identical boundary conditions,
both ends shorted to ground or open, allowing standing waves with
a length of 4, = 2l/(k + 1), k € Ny. Quarter-wave resonators have
converse boundary conditions, one open and one shorted end, supporting
Ay = 4l/(2k + 1).

Consider apiece of transmission line with propagation constanty = a+
i thatis shorted to ground at one end, similar to Fig,2.8[but not coupled to
external circuitry. A shorted end corresponds to aload impedance Z; = 0
in Eq. simplifying the normalized input impedance z = Z(l)/Z, to

z = tanh(yl)
tanh(al) + i tanh(B1)
~ 1+ itanh(al) tan(Bl)
1 — itanh(al) cot(pI)
tanh(al) — i cot(Bl)

We take the length [ of the line to be 4/4 and study the response close
to its first resonance wy. Using the dispersion relation Eq.[2.35 we can
rewrite Bl in terms of w and wy = v, /21,

ﬁlzw_lzw_mwl:z(Hm)

vy vy vy 2 wo

which allows an expansion of cot(8l) = —n(w — wy)/2wy. In the case of

alow-loss line @ < 1 and tanh(al) = al hold additionally, and therefore
1

T al+in(w — wy) /2w,
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This has the same form as the impedance of a lumped parallel RLC
resonator. The parameters of the equivalent circuit can be found by
comparing the above equation with Eq.[2.3TJand using Eqns.[2.35]and[2.36}

Z, | _ 4% _ 8Ll o cl 230
Cal’ C nw, w2’  4weZ, 2 (2.39)

Consider now a 4/4 piece of transmission line that is shorted at one
end and coupled to a driving circuit through a capacitor C, at the other
end. To simplify the presentation, the line is assumed to be lossless.
The normalized impedance of the series connection of capacitor and
transmission line is

Z=—=1l|tan— — —|,
Zy v, b

Z [ wl 1

where we introduced the normalized admittance b, = wC.Z, of the
coupling capacitor and used the dispersion relation Eq. Resonance
occurs when Imz = 0, at the solutions w, of tan(wl/v,) = bz'. The
response close to resonance can be found by expanding z in a Taylor
series around w,,,

dz
z = z(wy) + <%> (w — wp) + 0(w?).

For the lowest resonant frequency,
dz l wol 1 T 2

<—> = '[— <1+tan2 —°>+ ]:i—[b;2+—b;1+1],
dw w=wy v vy wob, 2wy 4

where a weak coupling of the resonator to the circuit, b, < 1, correspond-
ing to a nearly open end, and consequently w, ~ mv,/2l was assumed.
Keeping only the b7 ? term, the normalized impedance simplifies to

T w— wy
2b2 wy

zZ=i
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which is equal to the impedance of a series RLC circuit, Eq. [2.30] In
contrast to the uncoupled resonator, which looks like a parallel RLC
circuit at resonance, the capacitively coupled resonator loads the driving
circuit like a series RLC circuit.

As mentioned in section [2.3.1] internal loss can be added for high-Q
resonators by replacing wg = wg(1 +i/2Q,),

I LT W — Wy

X ——til——,
4Q0bg ZbCZ Wy

(2.40)

which is equal to the Eq.[2.30} if R in that equation is identified with
/4b%Q,.

2.3.4 Circuit Characterization using S Parameters

The behavior of linear electrical networks with multiple two-terminal
pairs, called ports, can be described in a variety of ways. In the previous
section, a description using the impedance seen at the terminals of a
single-port network, relating voltage to current at the input, was used.
Using the definition V; = Z;;1;, this concept extends naturally to a network
with multiple ports. By inverting this relation, I; = Y;;V;, one can also
characterize the network in terms of admittances. These two definitions
are equivalent, and the impedance and admittance matrices are linked by
Y = Z~1. While the Z and Y matrices provide an intuitive understanding of
the network, their accurate measurement poses difficulties at microwave
frequencies.

An alternative characterization of a multiport network that can be more
easily measured is through its scattering parameters. The scattering
description ties the amplitudes and phases of waves originating from
the network to waves incident on the network and can be formulated in
terms of voltage waves, current waves or a mixture of both. The complex
voltage amplitudes V,~ of waves originating from port i are tied to the
amplitudes Vj+ incident on port j of the network by the scattering matrix
SviaV~ = SijVj+. Matrix element S;; is found by measuring V;* while
driving V;~ and making sure that there are no incident waves on the other
ports. This also means that waves originating from the other ports must

31



2 Building Blocks

[
1 Zg 2

Figure 2.9: Schematic of an impedance Z; shunting a transmission line to ground.

not be reflected back to the port, which is realized by terminating them
with matched loads.
In the simple case of a single-port network,

Vi =Sul’,

S11 is equal to the voltage reflection coefficient I, Eq. introduced in
the previous section. In case of a two-port network,

<v1‘>= S11 512> Vf)
23 Sa1 S22 J\Vo"

S11 and S5, are the reflection coefficients at port one and two when the
other port is terminated with a matched load and S,; and S, are the
transmission coefficients from port one to port two and vice versa. It can
be shown that S matrices of reciprocal networks are symmetric and those
of lossless networks are unitary.

The Z, Y and S parameters are equivalent inasmuch as any of these
matrices can be calculated from any other one. Our theoretical models
are typically formulated in terms of impedances, but the measurement
equipment records the S parameters. In the case of two-port networks,
the conversion from Z to S is realized by[Poz05],

S11 = [(Z11 = Z0)(Z22 + Z0) — Z12221]1 /DZ

Si2 = 2Z1,Zy/AZ

So1 = 2Z51Zy/AZ (2.41)
S22 = [(Z11 + Zo)(Z22 — Zo) — Z12Z21] /AZ

AZ = (Z11+ Z0)(Zaz +Zo) — Z12Z71

An interesting special case is the response of a transmission line with
a shunt impedance to ground. The characteristic impedance of the line is
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Zy and the shunt impedance is Z;. The Z matrix of this network is simply
Zi1 =213 = Zy = Zyy, = Z. Using Eqns. the scattering matrix of
the shunt becomes

-1
Sy =Sy,=——— 2.42
11 22 14+ ZZS/ZO ( )
1
S12=S31=—"%7> 2.43
12 21 1+ ZO/ZZS ( )

2.3.5 Resonator Characterization

Acircuittopology involving asingle feedline with multiple resonant shunts
is very suitable to characterize a large number of high-Q resonators simul-
taneously. For our experiments, we designed a series of 1/4 transmission
line resonators capacitively coupled to a common line. The response of a
single such resonator coupled to a feedline can be derived by combining

Eq.[2.30|with Eqns.[2.42]and [2.43]

Soi=1+S..=1 , 2.44
21 Tou +1+2r+4ir008 (2.44)

wherer = R/Z, is the loss resistance normalized to the impedance of the
feedline. Using Eq.[2.29] this can be expressed in terms of the loaded and
internal quality factors,

Q' +2i6

S
2707+ 28

(2.45)

These expressions for S;; and S,; could be fitted against measured
data to find the quality and coupling factors of each resonator. However
these factors can also be extracted from the measurements of only a few
points on the response curve[KG83|); [BR04].

A measurement of the amplitude of the minimum of transmission at
resonance yields x,

2r 1 1— Sy,

2T v r 14k T TS, (2.46)

r
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Figure 2.10: Transmission amplitude and phase response of a feedline shunted
by a resonator. If k > 1, the loaded (unloaded) quality factor can be determined
by measuring the 3 dB bandwidth from the top (bottom) of the amplitude graph.
The transmitted phase at the loaded and unloaded 3 dB points is equal. Plot
parameters are Qo = 20000, Q, = 4000, resulting in Q;, = 3333 and k = 5.

where Eq. was used and R; was identified with Z,/2 because the
shunt is connected to two parts of the feedline in parallel.

The internal quality factor Q is equal to the inverse normalized band-
width of the resonance curve at the point where the dissipated power in
the internal resistance is half of its value at resonance. The half-power
points are found when the reactance (the imaginary part of Eq. of
the resonator is equal to its loss resistance (the real part of Eq.[2.30]), and
hence at

1- Ser

S =S
[S21, 21, 1+ S5,

argSyq, = iarctan( > (2.47)

1 +S§1r'

In the case of overcoupled resonators with k¥ > 1 the S§1T term in the

denominator can be neglected and the bandwidth measured at v/2 times
or 3dB above the minimum [S4_|.
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The loaded quality factor is found as the inverse normalized bandwidth
at the points where the reactance of the resonator is equal to R + R}, at

1453,
2

S21,

Sy, | = L
1S2, | s

, argS,;, = tarctan < ) . (2.48)

In the case of overcoupled resonators, the S,; term in |S,4,| is again
negligible and the bandwidth can be measured at 1//2 times or 3 dB
below the baseline of unity transmission. The loss rate Q;! to the
external circuit is best determined from

Q' =01 -0t (2.49)

and is equal to the total loss rate Q; ! in the limit of strongly overcoupled
resonators.

The points where the various quality factors are measured are shown
schematically in Fig. Analog expressions can be derived for S, if
the resonators are to be measured in reflection instead of transmission.

2.3.6 Parameters of Superconducting Transmission Lines

The most common transmission line geometries used in qubit circuits are
the microstrip, stripline and coplanar types.

The microstrip[Poz05], is builtjust from a single conducting strip which
is backed by a ground plane at a controlled distance, typically at the back
side of the chip substrate. The signal and ground conductors being on
different sides of the substrate allows layouts of many circuit elements,
such as branches and couplers, on a single signal layer. Because width is
roughly equal to the thickness of the substrate at an impedance of 50 ()
on silicon, microstrips tend to be bulkier than other geometries. This also
increases the spatial extent of their electric and magnetic fields, favoring
crosstalk and making the housing a part of the circuit.

The latter two handicaps are avoided by the stripline, which adds
a second substrate and groundplane to the circuit, confining the fields
between the two grounds. Due to the second substrate, it is more complex
to manufacture.
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Figure 2.11: Sketch of a coplanar waveguide geometry.

In a coplanar geometry, shown in Fig.[2.11} the signal and two ground
strips reside in the same layer. The structures can be made arbitrarily
small by reducing the lateral distance between the signal and ground
strips, which keeps the electromagnetic fields local although they are not
explicitly confined. Because of these features, all our resonators are based
on coplanar transmission lines.

Assuming that the signal strip is narrow compared to the height of the
substrate and the distance to the housing, the parameters of a coplanar

line are approximated by[Sim01],

K (ko)
C' = degeoss —2,
0Ceff K(ko)
, _ Mo K(kp)
V= Ry (2.50)

7 = L_' _ _HoC K (kg)

00 Ayees Kk’

with kg = W/(W + 2G), ki = /1 — k2 and K being complete elliptic

integrals of the first kind, and €. = (€, + 1)/2 being the effective

dielectric constant defining the speed of signal propagation along the
line.

A typical CPW used in our experiments may have a center strip width
of W = 20 pum and gap widths of G = 11 um between the center strip and
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ground planes and be situated on top of a Silicon substrate with e, = 11.9.
This results in ' = 155fF/mm, L' = 425 pH/mm and a characteristic
impedance of 50 Q.

The above geometric inductance and capacitance store energy in mag-
netic and electric fields and a polarization of the substrate. Additionally,
energy can be stored in the motional degrees of freedom of the charge
carriers. In normal metals, the scattering time of the carriers is too short
to store and retrieve a significant amount of kinetic energy. In supercon-
ductors, however, scattering of the Cooper pairs is suppressed by a lack
of low-energy states due to the energy gap, giving rise to an additional
“kinetic” inductance term.

Inserting a harmonic time dependence into the first London equa-
tion[LL35]| yields

E= iw#oli ]75:

where 4, is the London penetration depth. Integrating this equation over
a slab of superconductor with length [ and cross-section Wd results in

221
V= iw%]s = iwLl,.

Since the currentis delayed by 90° with respect to the voltage, the fraction
can be interpreted as an inductance[Wiin05|.

For Nb films and at Millikelvin temperatures, a typical value for 4; is
90 nm[Hyp08]. For the above geometry, kinetic inductance contributes
an additional L}, = L/l = 3 pH/mm at a film thickness of 150 nm. This
affects arelative frequency shift of 3-10~2 of transmission line resonators,
which is not significant for the design of our circuits.

The penetration depth changes with the temperature of the sample,
following A(T) = A(0)/y/1 — (T/T,)*[|EHO00]. This causes a noticeable
frequency difference between LHe temperature (= T,./2) and Millikelvin
measurements but does not affect temperature resolved measurements
below 1K.

37



2 Building Blocks

2.4 Circuit Quantum Electrodynamics

2.4.1 Interaction of Light and Matter

Quantum electrodynamics, QED for short, is the quantum version of
classical electrodynamics. It describes the interaction of particles with
an electromagnetic field. QED is best known for its extremely accurate
predictions of atomic properties such as the gyromagnetic ratio of the
free electron[KF48] and the Lamb shift of the Hydrogen atom[LR47].

Cavity QED is a subset of QED that is concerned with the interaction
of matter with light confined in a cavity. The presence of the cavity
walls selects an infinite but discrete set of modes that can interact with a
trapped atom. Choosing the right parameters, a single relevant mode of
the field and a single relevant atomic transition can be selected, resulting
in a system characterized by the Jaynes-Cummings model[JC63].

For a cavity QED system to be interesting for quantum information
processing, it must reach the so-called strong coupling limit. In this limit,
the lifetimes of the atomic state, the photonic state and the strength of the
atom-cavity interaction are large enough so that the atomic and photonic
states can be coherently exchanged through a process called vacuum Rabi
oscillations. Using this process, an entanglement of the atom and cavity
can be created and transferred to a second atom passing through the
cavity at a later time. Also, the non-resonant interaction allows a weak
measurement of the cavity state by observing the state of the atom and
vice versa|RHO1].

Finally, circuit QED is a special realization of cavity QED. Where cavity
QED employs a three dimensional cavity and a beam of single atoms flying
through it, circuit QED uses a (typically two dimensional) cavity realized
by patterning a superconducting thin film and a superconducting qubit
next to it. This approach generally makes it easier to reach large coupling
strengths and therefore faster operation times, but suffers from the lower
lifetimes of artificial atoms in a solid-state environment when compared
to free single atoms[BHW+04]. In princple however, cavity QED could also
be used as a bridge between superconducting qubits and natural atoms,
if both were coupled to the same cavity mode.
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2.4.2 Coupling of Transmission Line Resonators to Flux Qubits

The most straightforward way to couple a flux qubit to a transmission
line resonator is by coupling the magnetic fields generated by the qubit
and resonator. Viewed from the perspective of the qubit, the coupled
resonator introduces a driving field that is proportional to g, in the basis
ofthe persistent current states. The treatment of this interaction is similar
to the discussion of section[2.2.5} with the difference that the driving field
isitselfa quantized field generated by the current operator of the relevant
mode of the resonator instead of a classical field.

An inductive qubit-resonator coupling is a magnetic dipole interaction
of the magnetic moment y, of the persistent current flowing around the
qubit loop with the magnetic field B, generated by the resonator at the
qubit site. This adds a potential energy term U, = —ugB, = [,A4B;
to the system, where I, is the persistent current flowing around the
qubit loop and 4, is the loop area. In terms of the mutual inductance
M, , = BrAg4/I,, defined as the magnetic flux that enters the qubit loop
per unit current in the resonator, it becomes Ujpe = =My 1, ;-

Eachmode of the resonator, represented by its lumped element model, is
described as a separate linear harmonic oscillator with Hamiltonian H, =
hwy (a,tak + 1/2). The charge on the lumped capacitor is defined by the
position operatorx = Qg (a,t +a;) and the current in the inductor by the
momentum operator p;, = iIo,k(a,Tf —ay). Qo and Iy are the zero-point
charge and current fluctuations and can be calculated classically from

Q%,/2C = 1%, /2L = hawy /2. (2.51)

M, , and Iy are sufficient to determine the coupling to a lumped
element resonator, but in the case of the transmission line resonator the
mode-dependent distribution of the zero-point current has to be taken
into account. The solutions for the voltage and current waves, Eq.
on a quarter-wave resonator in a lossless line shorted at z = 0 are

Vo (2) = Zolg sin[(2k + 1)pz],
Iox(z) = —Igx cos [(2k + 1)Bz].

Any mode shows a current maximum at the shorted end at z = 0 and
a minimum at the open end at z = A/4, and the harmonics show k
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additional current minima and maxima. Typically, qubits are placed close
to a maximum of the current distribution for maximum coupling, but
other locations may be desired for example to realize a certain hierarchy
of coupling strengths to different modes of the resonator.

Taking only a single relevant mode into account and identifying I,
with the zero-point current at the qubit site, the interaction Hamiltonian
between the qubit and resonator takes the form

Hine = My gLy1gi(a’ — a) 6,

in the persistent current basis of the qubit. The unitary rotation described
by Eq. transforms H;,, into the energy eigenbasis of the qubit,

] A €
Hine = My 4lploi(a’ — a) [h—wqax + h—wqaz] . (2.52)
Using the mixing angle 6, defined in[2.12} the Hamiltonian becomes
Hint = My gIplo i(a® — a) [sin(26) 0, + cos(26)a,] .

Atthe qubitsymmetry pointf = +m /2 and the couplingis purely transver-
sal, allowing a photon exchange between the qubitand the coupled system.
With increasing asymmetry, the coupling acquires an additional longitu-
dinal component, which allows the realization of a controlled phase gate.
For large asymmetries, the transversal coupling diminishes and only the
longitudinal coupling is relevant. The product of constants

hg = M, 4,1, (2.53)
is called the bare coupling energy. The actual transversal coupling is
hg = hgsin(26) (2.54)

and changes with the asymmetry of the qubit.
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2.4.3 The Jaynes-Cummings Hamiltonian

The quantum Hamiltonian of a cavity QED system is[SZ97|,
H =Hcavity + Hqubit + Hine + Hye + Hy,
1
Hcavity =hwr(a1-a + E):

Hqubit =hwq0-zr
Hine =hg (0, — 0_)(a — a). (2.55)

Here, w, is the angular oscillation frequency of the relevant cavity mode,
hw, is the energy difference of the two qubit levels and hg describes
the strength of interactions between the cavity and qubit subsystems.
The terms H,. and H,, mediate relaxation and dephasing of the cavity and
qubit, respectively, through coupling to an external bath. The transversal
component of the interaction term Egq. found for the flux qubit
can be transformed into H;,; of the Jaynes-Cummings model using the
identity 0, = o, + o_ and a rotation. The interaction Hamiltonian is
commonly simplified using the rotating wave approximation, equivalent
to dropping the o,a’ and o_a terms of the product, with the same
arguments made for adriven qubitin section[2.2] The resultinginteraction
term Hip = hg(o,a + o_a’) can be interpreted as a coherent exchange
of excitations between the qubit and cavity.

Exact diagonalization of the Jaynes-Cummings Hamiltonian in the ro-
tating wave approximation and with the decoherence terms H, and H,
neglected yields the gound state |T, 0) and dressed states|[BHW+04

|[+,n) = cosI, |, n) +sind,|T,n+ 1),
|—,n) =—sinY,[{,n) + cosI,|T,n + 1).

Here, | I,n) = | T) @ |n) are the basis states of the bare qubit and cavity

system(s) and
2gvn +1

rq

tan(29,) =

is a mixing angle between the two subsystems. The parameter w,, =
wg — wy is the detuning of the atom from the cavity and is a key parameter
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Figure 2.12: Energy levels of the Jaynes-Cummings Hamiltonian in the dispersive
regime, w4 > g. The transition frequency between two adjacent cavity levels
is increased or decreased by the coupling to the qubit depending on the qubit
state. The energy difference between the qubit states also changes linearly with
increasing cavity photon numbers.

of the dynamics of the system. The eigenenergies corresponding to these
states are

hwrq
Ero = —
1,0 2’
h
Eip=(n+ Dho, + E\/ﬁlgz(n + 1) + wéq. (2.56)

In the limit of vanishing detuning, w,, = 0, of the uncoupled system,
the |+,7n) and |—,n) states would be degenerate, but in the interacting
system this degeneracy is lifted by Q = 2gvn + 1. At the same time, the
basis states dressed states |t,n) are equal superpositions of the |{,n)
and |T,n + 1) states with opposite phases and vice versa. Therefore, an
initial state prepared as |{,n) will evolve into | T,n + 1) and back at a
rate of (0/2m, which is called the vacuum Rabi frequency. Because of the
vn + 1 term in the Rabi frequency, the time required to exchange the one
excitation becomes smaller with increasing number of excitations inside
the cavity.

In the opposite limit of large detuning, w,, > g, the dressed states
become equivalent to the basis states of the uncoupled system with first
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order corrections in g/w,q. The expansion of the energy levels, to
first order in w4, provides more insight into this regime.

On one hand, the coupling term renormalizes the transition frequency
between the qubit ground and excited states[AT55],

hg?
2n+1), (2.57)
rq

E+,Tl - E—,Tl—l = h(l)q +

which is called the ac Stark or ac Zeeman shift depending on whether g
arises from electric or magnetic interaction, respectively. A fit of the qubit
transition frequency versus the driving power of the cavity can be used to
calibrate the driving necessary to occupy the cavity with a desired average
photon number. Because the photon loss rate of the cavity is proportional
to the number of photons inside the cavity, the relation between the two
is linear.

On the other hand, the term also introduces a shift of the transition
frequency between successive cavity levels,

hg?
Ein—Eyn-1 =ho, + ,
(l)rq
hg?
E_,—E_,_1=hw,— , (2.58)
) ) Wrq

which depends on the state of the qubit.

2.4.4 Dispersive Readout

The state-dependent shift Eq.[2.58| of the cavity transition frequency can
be used to determine the qubit state. This so-called dispersive readout
is realized by driving the cavity with microwave radiation and observing
the reflected or transmitted waves.

From the classical treatment of resonators in section[2.3] it is clear that
the amplitude and phase of microwaves scattered at a cavity depends
strongly on the normalized frequency difference § of the driving and
resonance frequencies. To determine whether the resonator is shifted up
or down in frequency, that is, to determine the state of the qubit, it is thus
sufficient to measure the amplitude or phase of a single element of the
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Figure 2.13: Classical interpretation of dispersive readout. The cavity is probed by
a microwave signal and the amplitude or phase of an element of the transmitted
or reflected signal is measured. If the dispersive shift is of the order of a line
width or more, an amplitude measurement at one of the dispersively shifted
frequencies gives the largest contrast. If the dispersive shift is much smaller
than the line width, the phase signal at the bare cavity frequency is measured
instead.

scattering matrix at a fixed frequency. Which type of measurement yields
the best readout contrast depends on the coupling layout of the resonator
to the readout line and the loss rates of the resonator. The case of a
resonator connected to the readout line in series is treated in [BHW+04]].
Here, we consider instead the case of a resonant shunt connected to a
feedline.

The response of the feedline measured in reflection is essentially equal
to the response of a series connected resonator measured in transmission.
The width of the resonance peak is determined by the total loss rate
K, = w/Q; (notto be confused with the dimensionless coupling factor «).
Ifx;, < gz/qu, the peaks representing the two qubit states are separated.
Measuring at one of the shifted frequencies gives close to perfect reflection
in one state and low reflection in the other state. If k; > gz/qu, the
two peaks overlap and the amplitude contrast diminishes. In this case, a
measurement of the reflected phase at the bare resonator frequency w, is
more appropriate. If the feedline is measured in transmission, the width
of the transmission dip is k; = w/Qy, which is much smaller than k; in
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the case of an overcoupled resonator, so that an amplitude measurement
at one of the shifted frequencies is optimal. These amplitude and phase
measurements are compared schematically in Fig.[2.13]

The driving of the cavity can be modeled quantum-mechanically by

plugging
g _A® .
drive = 5~ [a exp(—iwt) + a exp(lwt)] (2.59)

into the total Hamiltonian. Here, A(t) is the amplitude and envelope of the
readout pulse and w is the driving frequency. The rate of state transitions
under this driving can be derived by treating H 4.ive as a perturbation to
the Jaynes-Cummings Hamiltonian and evaluating the transition matrix
elements,

g

|<i:n + 1|Hdrive|$: Tl)| ~
Wrq

|<i'n + 1|Hdrive|i' n)l ~

NIESENIES

The first transition, describing a bit-flip processes, is suppressed by
g/wrq with increasing detuning. The second transition, corresponding
to the addition or subtraction of a photon to or from the cavity, is not
suppressed. In both cases, the assumption n < ngj; = wfq/4g2 was
used when expanding cos 8, and sin 6,,.

In this limit, the Hamiltonian Eq. can be expanded[BHW+04] in

g/ wrq

sl Za) o £)
~ h| w, + g, lata+ 5|\ wg+— | 0, (2.60)
Wrq 2 Wrq

Dispersive readout probes g, via the dispersive shift (gz/qu)az -afa.
This term commutes with o0,, so no uncertainty relation applies and the
measurement of one of the quantities does not influence the other. In
the absence of disspiation, g, additionally commutes with H, so it is a
constant of motion. These two properties together insure that repeated
measurements give the same result, making dispersive readouta so-called
quantum non-demolition readout.

However, any measurement, even a non-demolition measurement, has
some backaction on the quantum state of the qubit. When the cavity is
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populated with photons in order to determine its shift, the frequency of the
qubittransitionis modulated and fluctuations of the cavity photon number
dephase the qubit. In the standard realization of circuit QED, a serially
connected cavity with input and output capacitors, it was shown that the
dephasing rate exceeds the quantum limit by a factor of two[BHW+04]
if only the photons leaving the cavity through the output capacitor are
collected by the detector. This statement also holds in the present case
of a cavity shunting a feedline, because the voltage wave emitted by the
cavity travels in both directions of the line.

The amplitude of the waves emitted by the cavity is found by consid-
ering its power loss Pres = K E into the feedline, where E = hw,ata is
the energy stored in the cavity (neglecting zero-point fluctuations) and
Ko = wy/ Q. istheloss rate through the coupling capacitor. From the point
ofview of the resonator, the two halves of the feedline are connected in par-
allel, presenting an impedance of Z, /2 and making Pros = |Vies|?/(Zo/2).
The voltage V.5 output by the cavity can thus be related to the cavity
operators,

(Vies) = VhwrkeZy/2(a).

IfV;* is the driving voltage applied at the feedline input, the total reflected
and transmitted voltages emitted from the input and output ports are
Vo = Vies and V,- = Vi* + Vi, respectively. In the steady-state of
an overcoupled resonator, I,- = 0 at resonance (Eq. and thus
Vies = _V1+-

The mean steady-state population of the resonator resulting from clas-
sical driving voltage can be calculated from E = L |I,.s|%. Expressing the
current I} = V¥ /(Z + Z,/2) in terms of the input voltage V;* and using
[2.29|to express L in terms of Z, and Q,, the stored energy can be written

E=2IV1+|2 Q7 Qz?
Zoke 1+ 462Q%

where § is the normalized detuning of the resonator frequency including
any shifts. By solving this expression for |V;*], the voltage that must be
applied to reach a desired cavity photon number can be determined. It is
important to note that the energy stored in the cavity and therefore the
number of photons decreases with (1 + 452Q%)~! as the drive is detuned
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from the center frequency of the cavity. Additional drives present on the
feedline that are a few loaded linewidths from the center frequency do
not cause an appreciable occupation of the cavity and do therefore not
contribute to the dephasing of the qubit.

In the absence of relaxation, the Schrédinger equation of Eq.
including the driving term Eq. can be solved analytically to find
the time evolution the expectation value of Vi.s(t). In the presence of
relaxation V 4(t) can be calculated by setting up the Master equation of
the Hamiltonian and integrating it numerically for a given initial density
matrix. Figure[2.14shows simulated time traces of the cavity occupation
numbers, in-phase and quadrature output voltages for the qubit in the
ground and excited states.

2.5 Frequency-Division Multiplexing

2.5.1 Comparison of Multiplexing Techniques

Multiplexing is a method to transmit several logical communication chan-
nels over a single physical medium. A variety of multiplexing schemes
exist, whose applicability depends on the characteristics of the signals
to be transmitted, such as their bandwidth and digital or analog nature.
The most widely used schemes are time-division multiplexing, frequency-
division multiplexing and code-division multiplexing.

For digital signals, time-division multiplexing is the most straightfor-
ward approach. Several low-bitrate input channels are switched on and
off the output channel in a round-robin fashion, with the rate of switching
defining the bitrate on the output channel. To multiplex N inputs onto a
single outputs, the switching rate must be atleast N times larger than the
bitrate of the individual inputs. Obvious drawbacks of time-division are
that the signals at the inputs can not be sampled simultaneously without
additional data buffers and that it is hard to implement for continuous
analog signals, which would involve a compression of the signals in the
time-domain.

In contrast, frequency-division multiplexing can easily combine contin-
uous-time signals into a single medium. Frequency-division multiplexing
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Figure 2.14: Numerical simulation of the Jaynes-Cummings model with driving
at the dispersively shifted cavity frequency (left) and the bare cavity frequeny
(right). The solid (dashed) lines are the responses for the qubit in the ground
(excited) state. The driving pulse starts at O ns and ends at 508ns with 4ns
tanh rise and fall. System parameters are w,/2m = 8 GHz, w,/2m = 10 GHz,
g/2m = 100 MHz and Q. = 1500. For the simulation, the Lindblad Master
equation[Lin76| solver of the QuTiP package[JNN12| was used.
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Figure 2.15: Comparison of a) Time-division (TDM), b) Code-division (CDM)
and c) Frequency-division (FDM) multiplexing. The channel signals are added
and transmitted over a common medium. TDM uses individual time slots for
each channel. CDM uses basis functions that are orthogonal with respect to
a convenient inner product. FDM uses different frequency sines, equivalent to
frequency slots. TDM and FDM can be considered special cases of CDM.

combines several low-frequency inputs by shifting each of the inputs in
the frequency domain by a different offset frequency and subsequent
summing of the shifted inputs. The channel data is regained by frequency
shifting in the reverse direction and filtering out of the frequencies that
are associated with the other channels. For frequency-division to work,
the bandwidth of the input signals has to be bounded, otherwise the
channels are no longer separable. To multiplex all inputs, the bandwidth
available in the output medium must be atleast the sum of the bandwidths
of all input signals. The requirement of bandwidth-limited inputs also
restricts the time resolution, which is the main drawback of the system.

Code-division multiplexing combines several analog input channels by
multiplication with channel-specific function or digital input channels
by multiplication with a channel-specific sequence of bits (code) and
subsequent addition. The input data is retrieved by calculating the inner
product of the sum signal with each of the channel codes. The design of
the code defines the performance of this system. If orthogonal channel
codes are used, there is no cross-correlation between the codes and thus
no crosstalk between the channels. In this case, the minimum bitrate on
the output medium must be the sum of the bitrates of the input channels.

49



2 Building Blocks
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Figure 2.16: Circuit schematic of a frequency-division multiplexing readout sys-
tem for qubits. Multiple microwave cavities with different center frequencies
are shunting a common feedline. Each cavity is coupled to an individual qubit.
Dispersive Jaynes-Cummings interaction shifts the cavity, frequency-modulating
the state of the qubit onto the cavity.

Other codes can operate with a lower capacity output medium but will
sometimes fail to reproduce the input data correctly.

2.5.2 Multiplexed Dispersive Readout System

For qubit readout, we chose to implement a frequency-division multiplex-
ing technique based on circuit QED. A number of microwave resonators
with slightly different freuencies are attached to a common feedline, as
shown in Fig. Each resonator is coupled to a single qubit, forming
a Jaynes-Cummings system. The systems are operated in the disper-
sive regime and the frequency shifts of the resonators are used as qubit
readouts. For a single resonator, this technique is explained in detail in
section[2.4.4]

This kind of frequency-division multiplexing is very suitable for qubit
readout, because being a frequency-domain method, it allows a simul-
taneous and continuous-time measurement of the states of all qubits
multiplexed on the line. In addition, dispersive readout can be used with
any type of superconducting qubit and is even the sole readout technique
available for transmon qubits[KYG+07|.

2.5.3 Crosstalk and Minimum Channel Bandwidth

In a multiplexed transmitter-receiver system, interference between dif-
ferent channelsis called adjacent channel interference or simply crosstalk.
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Like noise, crosstalk deteriorates the signal-to-noise ratio of a channel, in
this context also called signal-to-interference ratio. In extreme cases, the
deterioration may be large enough so that the channel data can no longer
be decoded correctly, so any multiplexing system must be designed to
keep crosstalk at manageable levels. In a frequency-division multiplex-
ing system, crosstalk is caused by spectral components transmitted on a
channel that are outside the allocated bandwidth and assigned instead to
another channel.

In communications systems, interference is quantified by the ratio of
interference power to signal power in a channel. If a multiplexed qubit
readout system is measured in reflection, this definition can be used
directly. The readoutresonators, being passive devices, do not themselves
generate a signal, but transmit a part of the externally generated probe
power to the receiver due to reflection. Using the scattering matrix, the
signal power introduced by readout resonator i probed at frequency w is

Psignal,i = [S11(w; wi)lz Pprobe-

Assuming that the probe power is the same for all channels, neglecting in-
terference of the reflected waves and multiple reflections, the interference
power in channel i is simply the sum of all individual contributions,

Pinterference,i = Z |511(w; wj)lz Pprobe-

VE!

The signal to interference ratio is the quotient of the signal and interfer-
ence powers,
|S11(w; w))]?
Yjei 1S11(w; )%
If the channel is probed on resonance, which is typical if a phase-sensitive

readout is performed, and the resonator is overcoupled, S (w;; ;) — 1.
The expression simplifies further to

(S/I)reﬂ,i =

-1

S/Dreni = | Y 1Sua(@swpl? | (2:61)

JET
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If the multiplexed readout system is measured in transmission, each of
the resonators removes energy from the signal seen at the receiver due to
reflection or absorption. In this situation, the signal-to-interference ratio
can be defined to mean the ratio of the power removed from the signal
and the transmitted probe power. Again ignoring multiple reflections and
interference of reflected waves, the power remaining after transmission
along the off-channel resonators is

Ptransmitted,i = 1_[ |S21 (w; wj)lz Pprobe-

Jj#i

The power removed from the feedline is Py rope — Prransmitted Which yields
a signal-to-interference ratio of

Hj¢i |521(w; (‘—)j)lz
1 =114 1S21(w; 0p)|?

(S/Dtrans;i = (2.62)

In both cases, calculation of the signal to interference ratio amounts
to finding the scattering matrices of the readout resonators. Because
of the qubit dynamics, the effective bandwidth of each readout channel
may be somewhat larger than what is expected from considering only the
resonatorinastaticsituation. In the following, the key factors determining
the bandwidth requirement for each channel will be reviewed.

Resonator Quality Factor

Using Eq. and the identity @y = (1 + k)@, from section the
coefficients Eq..[2.44{of transmission and reflection of the feedline through

each coupled resonator can be rewritten as

¢ 1= Sy,
71 42i0,6

Sa1, +2iQ.8

S21= =T
1+2iQ,6

and
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Figure 2.17: Signal-to-interference ratio of a N-channel readout system vs.
frequency spacing between the resonators. The solid/dashed line represents a
reflection/transmission measurement. A coupling ratio of k = 10 was used. In
an n-channel system, the S/I ratio scales approximately as (Z?zl 1/i%)71,

For a two-channel device, the interference introduced into the first
channel by the second channel, from Eqns.[2.6T]and [2.62] is

(S/Dref, 2ch = 1S11(8)|72 » 1+ 4Qf6%  or

_ |521(6) |2 - 2 o2
(S/I)trans, 2ch 1— |521(5)|2 ~ 4QL5 :
In both expressions, § = §w/w, is the channel spacing normalized to the
center frequency of the interfering channel. The summand 1 present only
in the reflection case results from the fact that the power reflected from
two resonators at identical frequencies is equal, yielding a S/I ratio of 1
(0 dB). In the transmission case, the second resonator removes the signal
power completely, resulting in S/I = 0 (—oo dB).
For an n-channel device with equal frequency difference between the
resonators, the argument § becomes 6j = j§. In the limitof Q;, 8 > 1, the
sum of Eq.[2.61]is readily evaluated, yielding

n—-1 -1

1
(S/I)reﬂ, nch = ]_2 (S/I)reﬂ, 2ch-

j=1
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For large n, the sum converges to m2/6 ~ 1.64. The product of Eq.
is more involved. Numerical simulations show a scaling equal to the
reflection case. Numerically simulated S/I ratios for N = 2 and N = 100

are plotted in Fig.

Dispersive Shift

The dispersive shift effectively creates two realizations of each resonator,
at (angular) frequencies of w, + g*/w,, (Eq.. The channel spacing
demanded by the resonator quality factor can simply be increased by
g? /wrq to accomodate for the shift. In the case of dispersive shifts large
compared to the loaded resonator linewidth, a channel may be assigned
to each of the realizations, increasing the number of channels to 2N for
an N qubit system.

Measurement Pulse Duration

The maximum time available to measure the state of a qubit is deter-
mined by its energy decay time constant T;. The uncertainty principle
of the Fourier transform|[Pin02]] and analogous theorems for other time-
frequency transforms impose a lower limit on the bandwidth of a limited-
time signal. In case of the Fourier transform, the minimum time-bandwith
product is obtained by a Gaussian-shaped pulse,

t2
V(t) X exp <_W>
N o’ w?
V(w) < exp (— > )

If the width of the time-domain signal is taken to be equal to be the
standard deviation m = ¢ ofthe distribution, the bandwidthinrad-s~?!
is 1/0 and the bandwidth in Hz is 1/(2ma). Ata measurement time of only
100 ns, this results in a bandwidth requirement of 1.6 MHz, which does
not in practice limit the number of resonators that can be multiplexed.
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2.5 Frequency-Division Multiplexing

Frequency Modulation Sidebands

A resonator used for dispersive readout loaded with many photons may
be described like a classical harmonic oscillator with a modulated eigen-
frequency. The voltage over the capacitor of the resonator must solve

d? d

U + 2yw, —U(0) + [0, + 0a(a) O U®) = 0,

dt de

where w, is the bare resonance frequency, y is the coefficient of damping
and wp = gz/qu is the magnitude of the dispersive shift. In the limit of

an undamped oscillator and under the condition that %(O’Z) & wy(t), this
differential equation is solved by a frequency-modulated voltage signal,

U(t) = Uy cos [wrt + wp ft(az)(r)dr].
0

If we take (g,)(t) to be sinusoidal with frequency w,,, the spectrum of
the frequency-modulated signal shows components at w, + jw,,[Car22],

U(t) =Jo(m) [cos(w,t)] —
J1 (m) [Sin(wr + wm)t - Sin(wr - wm)t] -
Jo(m) [cos(w, + 2wyt — cos(w, — 2wp)t] +
(2.63)

where J; are Bessel functions of the first kind and m = wp/wy, is called
the modulation index. The modulation index and thus the bandwidth
requirement per channel depends on the frequency of the time evolution
of the qubit during readout. If the qubit transition is not driven during
the readout, the modulation frequency w,, is determined by the T, -decay
of the qubit. An exponential decay with time constant T; transforms into
a Lorentzian with a single-sided half-amplitude bandwidth of 1/T;, which
can be used as w,,. The total bandwith requirement can then be found by
finding the number of sidebands with an amplitude that is larger than a
chosen interference goal.

A first approximation for the bandwidth required per readout channel
is a rule of thumb commonly attributed to J. R. Carson|Car22], which
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states that 98% of the spectral power contained in U(t) is inside a band
of width

Aw = 2(wp + wiy)

around the carrier frequency w,. Because the spectrum is symmetric with
respectto w,, the interference introduced into a neighboring channel with
distance Aw is smaller than —20 dB.
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3 Experimental Setup and Technique

3.1 Sample Design and Fabrication

3.1.1 Sample Design

All measurements presented in this thesis were performed on a single
sample, labeled 10/-SPM]5.Designed to demonstrate multiplexed readout,
it was kept as simple as possible. The 10 x 5mm? chip, shown in Fig.,
contains a single 50 Q coplanar transmission line of width W = 150 um
and ¢ = 83 um along its long edge. Seven A/4 transmission line res-
onators with W = 20 um and ¢ = 11 um are located in the center of
the chip with a horizontal spacing of 1 mm. The geometric length of the
resonators varies from 3132 pm to 2892 um in steps of 40 um. Resonance
frequencies range from 9.3 GHz for the longest up to 10.25 GHz for the
shortest resonator in steps of approximately 150 MHz. The inductance
and capacitance of the equivalent LC circuits (Eqns. and are
L = 1.05nH and C = 235 fF, respectively. At the open (lower) end, the
resonators are capacitively coupled to the feedline using elbow couplers,
shown in Fig.[3.1d. The couplers have a bend radius of 150 pm, coupling
length of 350 um and a remaining feedline ground plane width of 5 um.
This geometry was simulated to result in an external quality factor of
about 1,500. At the upper end, the resonators are tapered to W = 1 um
and G = 8 pm, and shorted to ground, as seen in Fig.[3.1p and c.
Athree-junction flux qubitislocated in one of the gaps between the inner
conductor and ground plane close to the shorted end of each resonator.
The two identical junctions of each qubit have an area of 700 X 200 nm?, a
design critical current of 280 nA and capacitance of 4.9fF. The qubits were
laid out for a minimum transition frequencies A from 6.9 GHz to 7.9 GHz,
corresponding to « factors between 0.629 and 0.646. The persistent
current predicted for this configuration (Eq.[2.8)) is 170 nA. The qubits
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(@) The complete chip. Seven 1/4 resonators are capacitively coupled to a
common feedline at the lower edge. The feedline carries combined resonator
probe tones and qubit manipulation pulses. (b) Shorted (upper) end of one
of the resonators. A grid of holes patterned onto the superconducting film
pins Abrikosov vortices[Abr57] to stabilize magnetic bias fields and and reduce
dissipation. The two dark squares are markers to align the Nb and Al structures.
(c) One of the flux qubits. The qubit are located near the shorted end of the
resonator to maximize the mutual inductance between the qubit and resonator.
(d) An elbow-shaped capacitor coupling the resonator to the feedline.
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3.1 Sample Design and Fabrication

are inductively coupled to the resonators, with the qubit loops of size
7 x 16 um? and resonator having a mutual inductance of 6 pH. Combined
with the resonator zero-point current of I..c = /hf/L = 80nA, the
estimated bare coupling energy (Eq.[2.53)) is about 125 MHz. The qubits
are galvanically decoupled from the resonator, making the fabrication of
the qubitsindependentfromthe fabrication ofthe feedline and resonators.

The chip does not contain additional microwave inputs to manipulate
nor coils to magnetically bias individual qubits. While this minimalistic
approach results in a cleaner microwave response, it necessitates the use
of external bias coils in the sample holder to control the operating points
of the qubits.

Refer to Fig.[2.16/on page[50|for an electrical schematic of the sample.

3.1.2 Fabrication Technique

All samples were fabricated in the cleanroom facilities at IPHT Jena in
a two-step process. In the first step, a 200 nm Niobium thin film was
deposited on an undoped silicon substrate and patterned using electron
beam lithography and CF, reactive ion etching. All coarse structures,
such as the resonators and the feedline shown in Fig. [3.1(a), were fab-
ricated in this step. The fine structures, the qubit loops and Josephson
junctions, were deposted using the two-angle shadow evaporation tech-
nique[Nie74]; [Dol77].

In shadow evaporation, a stack of two different layers of photoresist is
used to suspend a mask a few 100 nm over the substrate. Subsequently,
two layers of metal are evaporated onto the sample at opposite angles to
the normal of the substrate. If two holes in the mask are close enough,
the projection of the first hole in the first evaporation will overlap with
the projection of the second hole in the second evaporation. If oxygen is
allowed into the chamber between the evaporations, an oxide layer forms
between the metal layers, making the overlapping areas S/I/S tunnel
contacts. An electron micrograph of such a contact on one of our chips
is shown in Figure[3.2] The shadow evaporation method is very suitable
to accurately produce very small Josephson junctions. However, the
maximum junction size is limited by the stability of the bridges between
the holes in the mask and can not exceed a few pm.
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219.0nm 218.8nm

IPHT LEI 50KV X30,000 100nm WD 12.0mm

Figure 3.2: Electron micrograph of two Al/AlO, /Al Josephson junctions fabri-
cated using the shadow evaporation technique. Aluminium was evaporated at
angles of +30° to the normal of the plane. The first evaporation was done
from the lower edge of the image, the second from the upper edge. The two
light squares are the Josephson junctions. The designed junction overlap was
700 x 200 nm?.

3.2 Cryogenic Environment

3.2.1 Sample Holder

We use cylindric sample compartments milled from copper with an inner
diameter of 28 mm and inner height of 5 mm, shown in Fig.[3.3] Its overall
designis similar to the holders used by the quantum information groups at
Yale university[[Cho10] and ETH Ziirich[Qsi]. The compartment features
a fixed top part with through-holes for up to eight SMP-type microwave
connectors and a groove into which a solenoid can be wound. Samples
are installed on printed circuit boards (PCBs) fixed to a removable bottom
'lid’ that is screwed to the fixed part of the holder.

The PCBs can be customized for each experiment, and can hold chips
up to a maximum total area of approximately 15 mm by 15mm. The
boards used were produced by a commercial foundry[Hug] on RT/duroid
6010[Rog|] substrate, which has a nominal dielectric constant of 10.2 at
room temperature which is increases by about 20% at 4 K and is in very
good agreement with the dielectric constant of the Si substrates, 11.6,
used for the samples. This material choice results in matched transitions
between the board and chip having similar dimensions on both sides,
different only due to the different thicknesses of the conducting layer of
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3.2 Cryogenic Environment

Figure 3.3: Photograph of the cryogenic sample compartment. The external coil
wound around the box is used to supply a homogeneous flux bias to the qubits. A
ring of holes close to the center holds the gradient coils (see section[3.2.2) which
are not installed here. The SMP-type microwave connectors are threepartite to
provide a low missmatch even when the PCB is not perfectly aligned. The small
loop terminating the microwave cable in the center of the picture, used to supply
nanosecond flux pulses to the qubits, was only present in one of the runs.

Figure 3.4: Photograph of a PCB with a sample mounted. The PCB has an outer
diameter of 29 mm and a chip mounting area of 10.2 X 5.2 mm. Four coplanar
lines can be used to transmit microwaves to and from the chip, but only two
of them are required for this experiment. The coplanar lines are terminated
with SMP-type connectors, which mate with connectors at the top of the sample
compartment. The regular grid of holes are feedthroughs shorting together the
ground planes at the front and back side of the PCB and also the otherwise
disconnected ground planes at the top of the PCB. A large number of Al wire
bonds from the chip to the PCB insure a low-impedance connection of the chip
and PCB ground planes. Additionally, up to 24 DC connections are available,
which can be contacted by pin headers soldered the back of the PCB.
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35um on the PCB and 0.2 um on the chip. In the coplanar structures
used, a change of thickness influences mostly the capacitance between
the inner conductor and ground planes, resulting in an a few ohms lower
impedance of the same geometry on the PCB compared to the chip, which
was corrected by modified trace widths. Microwave signals are coupled
to the PCB through surface-mount 90° SMB connectors mating with their
counterpartsinthe top part ofthe sample holder and additional DC signals
are connected by means of header connectors soldered to the back side
of the PCBs and routed through holes in the lid. A photograph of the PCB
used in this experiment is presented in Fig.

To protect the samples from external magnetic fields, a combination of
a highly permeable outer shield and a superconducting inner shield was
used. The outer shield made from Cryoperm attenuates outside fields, and
the inner lead shield freezes the remaining field upon transition through
its critical temperature. This ensures that fluctuating external fields does
not cause fluctuations of the flux bias of the qubits.

3.2.2 Flux Biasing

In all single qubit experiments, the qubits were biased by a 1,500 turn
superconducting NbTi solenoid wound around the exterior of the sample
compartment. Each qubit sits in a closed loop formed by the central
conductor of its readout resonator and the ground plane. Once the
sample is superconducting, flux quantization precludes a net flux from
entering the loop. The qubits can still be biased however, if the magnetic
field inside theloop isinhomogeneous and the fluxes penetrating different
parts of the loop sum up to zero. It is thus no surprise that the observed
mutual inductances between the solenoid and qubits do not agree with
the magnetic field distribution associated with a free solenoid. The
experimentally measured mutual inductances, summarized in Table
on page[81} increase with increasing distance of each qubit from the edge
of the chip, suggesting that they are biased predominantly by screening
currents on the ground plane. In addition, each qubit sees arandom offset
flux that changes each time the temperature of the sample goes through
the critical temperature of the Nb film and is likely caused by Abrikosov
vortices trapped in the film.
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Figure 3.5: Arrangement of the bias coils. The main (m) coil is wrapped around
the exterior of the sample box. Intermediate (i) size and small (s) coils are screwed
to the fixed part of the sample box between the microwave feedthroughs.
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To simultaneously operate multiple qubits at their sweet spot, addi-
tional bias coils are required. Three intermediate-size and five small
gradient coils were screwed to the inside of the sample compartment to
simultaneously bias several qubits at their symmetry points. Their ar-
rangement is sketched in Fig.[3.5] Changing the bias of a single qubit while
leaving the others at fixed bias values is complicated by the fact that each
coil couples to all qubits. A function to automatically measure the mutual
inductance matrix between the coils and qubits was implemented in the
measurement software. Using the inverted mutual inductance matrix, the
bias of up to four qubits could be individually controlled.

An additional high-frequency bias coil, made from a piece of coaxial
cable by cutting back the outer conductor, bending the inner conductor
and soldering it to the outer conductor, was used in some of the runs.It
was placed in the center of the sample compartment, as shown in Fig.[3.3]

3.2.3 Wiring and Filtering

The experimental wiring inside the dilution refrigerator consists of only
three coaxial cables carrying high-frequency signals to and from the
sample and up to nine twisted pairs providing static flux biases to the
qubits, shown in Figure (3.6

To reduce the amount of high-frequency noise sent to the sample,
the microwave input line feeding the readout resonators and qubits is

63



3 Experimental Setup and Technique

microwave in  slow bias fast bias microwave out

} -20dB +25dB

4.2K

e

S _} -20dBE T Nb cable
— L
=
B O 8-12GHz
> _J 20dB = >20dB
g { ) Isolation
o

Sample Compartment f 8.4GHz

Figure 3.6: Experimental wiring inside the dilution refrigerator.

heavily attenuated. Without attenuation, the noise power fed from a
50 Q-terminated device at room temperature into the 50 () feedline of
the sample is equal to P = kgTAf, where Af is the bandwidth of the
line[Joh28]]; [Nyg28]. An attenuator placed at one of the lower temper-
ature stages feeds roughly the noise power of such a termination at the
lower temperature in addition to the attenuated noise coming from its
input. Therefore, at least one attenuator must be installed at the lowest
temperature stage and its attenuation should be at least equal to the ratio
of the temperature of the input termination and the temperature of the
attenuator. We added attenuators of 20 dB at each at the 4.2 K, 1.6 K and
30 mK stages, maintaining this ratio and at the same time dissipating most
of the power at the 4.2 K stage where the cooling power of the dilution
refrigerator is greatest. Additional attenuation of about 10 dB, dependent
on frequency and temperature, comes from the fact that the input line
is manufactured from a stainless steel coaxial cable, which trades good
high-frequency transmission for low thermal conductivity.

Other than in the input line, attenuation of the output line is not a viable
option because the power sent into the output line can not be increased
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arbitrarily to counter attenuation. Instead, noise coming through the
outputline in the reverse direction is removed by a series of two Pamtech
XTE1238K cryogenic circulators with an isolation of 20 dB each in the
band between 8 and 12 GHz, and lower frequency noise is rejected by
a Mini-Circuits VHF-8400+ high-pass filter with a cutoff frequency of
8.4 GHz. The fast bias line does not include any filtering, because it is very
loosely coupled to the sample, which translates into a large impedance
missmatch between the line and the sample.

Signals coming from the sample are transmitted through a low-loss
superconducting coaxial cable to a cryogenic HEMT amplifier at the 4.2 K
stage with G; = 26dB gain and an equivalent noise temperature of
T; = 10K. The cryogenic amplifier is followed by two Mini-Circuits
ZVA-183-5+[Min] room temperature amplifiers with G, 3 = 26 dB gain
each and equivalent noise temperatures of T3 = 600K. The noise
temperature of the complete amplification chain, calculated by Friis’
formula[Fri44], is

Tooise = T1+T5/G1+Ts/(G1G,) = 10K+15K+0.01K ~ 115K, (3.1)

dominated by the cryogenic amplifier. The amplification chain adds a
total thermal noise power of

Proise = kgTk/2m = 1.6 X 10-15w

within the 10 MHz bandwidth of a typical readout cavity. A 10 GHz cavity
populated with a single photon on average loses

Pioss = hw,k/2 =~ 0.2 X 107> W (3.2)

to each half of the feedline. Thus, in the single photon regime, the
amplification chain adds 8 noise photons to each signal photon.

Noise in the slow bias lines is reduced by LC lowpass filters in a
configuration, with a cutoff frequency of 250 kHz at 4.2 K.

3.3 Steady-State Readout

The experiments presented in section}4.1|involve the the measurement of
the amplitude and phase of a microwave signal transmitted through the
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Figure 3.7: Room-temperature microwave setup used for measurements of
steady-state properties.

Cryostat

sample with respect to various parameters such as the applied magnetic
flux, probe and excitation frequencies and powers. In contrast to the
experiments in the following chapters, they do not require time resolution
and can thus be performed with little extra hardware. In addition to the
general-purpose part of the experimental setup already discussed, we
use a commercial Anritsu VectorStar MS4642A[Anr| network analyzer,
designed to measure transmission and reflection of continuous wave
signals between 70 kHz to 20 GHz through and from a device. Except
for probe frequency sweeps, the sweep parameter is controlled by the
measurement computer and single data points are retrieved from the
network analyzer via a digital interface. Noise in the measured signal
can be reduced by choosing appropriate parameters of digital band-pass
filters and averaging functions implemented inside the device. Where
an additional microwave tone is necessary to manipulate the qubits,
it is combined with the signal of the network analyzer using a Narda
4226-20 directional coupler, where the probe tone is sent through the
-20dB coupled port, the manipulation tone is sent through the output
port and the refrigerator input is connected to the input port. The
complete room-temperature microwave setup is shown in Figure
This configuration is optimized to yield highest excitation power at the
cost of probe power, which is suggested by the fact that at its resonance
frequency, which is equal to the probe frequency, even a low excitation
power loads the resonator with many photons, but at the qubit transition
frequency, which is far from resonance, its small coupling capacitance to
the feedline and large impedance isolate the qubit.
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3.4 Time-Resolved Readout and Manipulation

The observation of the state evolution of a qubit system is limited by en-
ergyrelaxation and dephasing. In superconducting circuits, the timescales
of relaxation and dephasing are typically microseconds, but can also be
tens of nanoseconds. The electronics used to manipulate and read out
the qubit state must operate faster than that to resolve qubit dynamics.
Because both qubit manipulation and dispersive readout are based
on microwave pulses, the two subsystems are composed of very similar
equipment. In the manipulation system, fast digital-to-analog converters
(DACs) with sub-nanosecond resolution output pulse envelopes, which
are modulated onto continuous-wave microwaves using mixers. In the
readout system, DACs provide short multitone bursts up to a few hundred
megahertz which are shifted into the resonator band by the same mixers.

3.4.1 Microwave Mixers

A basic frequency mixer is an analog multiplier with two signal inputs
and one product output. We use passive, double-balanced diode mixers,
which are also known as ring modulators, because their main components
are four fast-switching diodes that are arranged in a ring, as shown in
Fig. Two ports, the “local oscillator” (LO) and the “radio frequency”
(RF), are transformer-coupled to the ring, such that two pairs diodes are
between the two terminals of each port and only one diode separates one
port from the other. The third port, the “intermediate frequency” (IF)
port, is connected to a tap in the middle of each transformer. Any port
can be an input or output, but because of this construction the LO and
RF ports have a high-pass characteristic while the IF port has a low-pass
characteristic.

If a frequency mixer is used for pulse modulation, the unmodulated
input tone is connected to the LO (or RF) port and the pulse envelope
is connected to the IF port. Once the voltage at the IF port exceeds two
times the threshold voltage of the diodes, one pair of diodes switches to
the conducting state, connecting the LO and RF ports. If the sign of the IF
voltage is inverted, the other pair of diodes switches, rotating the phase
of the signal passing between LO and RF by 180 degrees. The better
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Figure 3.8: Circuit schematic of a double-balanced diode mixer. The inputs
at LO and IF are multiplied to produce RF. Mixers can be used for amplitude
modulation or frequency conversion. See main text for a detailed description.

the symmetry of the transformers and diodes, the lower the amplitude
of unmixed input signals seen at the output port. The Marki Microwave
M8-0420[Mar] mixers used for pulse modulation have a typical isolation
of 40 dB between the LO and RF ports, equal to a maximum on-off output
voltage ratio of 102, and a switching time of 250 ps. While other types
of switches, such as pin diode switches, reach higher isolations of 60 dB
and more, they require switching times of the order of 100 ns, which is
too slow for qubit manipulation pulses.

If used for frequency conversion, a microwave tone strong enough to
switch the diodes is applied to the LO port. As the phase of the drive
evolves over time, the LO signal periodically switches one or the other
pair of diodes into the conducting state, inverting the voltage of the signal
passed between [F and RF. The output is thus a product of a square wave
with fundamental frequency of f1,o and the second input applied to either
the IF or RF port. Because square waves only show odd harmonics, the
spurious frequencies introduced by multiplication start around 3f},o and
can easily be filtered. If the mixer is used as an up-converter, the second
input is connected to the IF port, producing an output of f1,o + fir at the
RF port. If the mixer is used as a down-converter, the second input is
connected to the RF port, producing and output of |f1 o — frr| at the IF
port. An arbitrary number of frequency components can be applied to
the RF and IF ports, but not to the LO port.
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Figure 3.9: Block schematic of a two-quadrature mixer.

A two-quadrature or “IQ”-mixer is a four-port device that is a combi-
nation of two mixers and a phase shifter, see Fig.[3.9] The input supplied
to the LO port is split and fed to the two mixers with a phase difference of
90 degrees. The first mixer multiplies the signal applied to the “in-phase”
(I) port with the unshifted LO signal and the second mixer multiplies the
signal at the “quadature” (Q) port with the phase-shifted LO. The sum of
the two mixer RF outputs is passed to the RF output of the composite
device.

The sum Isin(2nfot) + Q cos(2mf1ot) of outputs of the two in-
ternal mixers can be rewritten as +/I? + Q?sin(2nf ot + @) where
¢ = arctan(Q/I) (+m). An IQ mixer can be thus be used as a phase
modulator by applying different amplitude DC inputs to I and Q. It can
also be used as a single sideband mixer by applying phase shifted inputs
of equal frequency fir to I and Q, such that either the mixing product
frLo + fir or fLo — fir is cancelled from the sum. Like a regular mixer,
an IQ mixer can be used in reverse to measure the phase difference of
microwaves applied to LO and RF or to separate the upper and lower
sidebands of an RF signal.

3.4.2 Qubit Readout

For the dispersive readout of a single qubit, a microwave generator and a
two-quadrature mixer are sufficient. The microwave generator provides
continuous wave signal at the bare frequency of the readout cavity that
is split by a power divider. One part of the signal is provided to the
local oscillator port of the mixer mixer as a reference and the other
one is transmitted through the sample and input to the RF port of the
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mixer. In this so-called homodyne configuration, the I and Q outputs are
constant DC voltages, and their ratio encodes the phase difference of the
transmitted and reference signals. As the transmitted phase depends on
the dispersive shift of the readout cavity and the dispersive shift of the
cavity depends on the state of the qubit, I and Q switch between two
sets of constant voltages as the qubit switches between its ground and
excited states. Because an excited state qubit will inevitably decay to its
ground state due to energy relaxation, the I and Q outputs are voltage
pulses with a duration of the order of T; that decay to the ground state
voltages. The voltage pulses can either be recorded using an analog
integrator and a low-speed data acquisition system or using a moderately
fast (0(1/T;)) analog to digital converter. A setup like this was used for
qubit characterization until a high-speed ADC was available.

To read out N qubits, N microwave tones at the frequencies of the read-
out cavities must be transmitted through the sample and their individual
amplitude changes and phase shifts detected. For small N, the homodyne
setup for a single qubit could simply be multiplied by the number of
qubits, but even for moderate N this quickly becomes impractical. Our
readout setup, shown in Fig.[3.10} uses software-defined radio techniques
to simultaneously generate an arbitrary number of readout tones.

A measurement computer generates two digital waveforms, the first
representing a sum of N sine functions and the second representing a
sum of N cosine functions, with equal amplitudes and frequencies of
fi = fresi — fLo, Where f1 ¢ is a freely chosen reference frequency. These
so-called baseband waveforms are output by a Tektronix AWG7062B
10 bit 6 GS/s DAC[Tek] (2010 and 2011 experiments) or a UCSB GHzDAC
14 bit 1 GS/s DAC[Ghz|] (2012 experiments) and fed into the Iand Q inputs
of a Marki Microwave 1Q-0618[Mar| quadrature mixer. The special choice
ofand Q waveforms operates the mixer as a single-sideband upconverter,
producing mixing products at fes; = fLo + f; and suppressing the image
frequencies at fig — f;- Any frequency within two times the analog
bandwidth of the DACs around f} can be individually generated. The
spurious free bandwidth is two times that achieved which a conventional
mixer, which would produce two sidebands that are mirror images of
each other.
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Figure 3.10: Room-temperature microwave setup for simultaneous readout
of multiple qubits. A dual-channel digital to analog converter generates a
baseband signal with one frequency component per qubit to be read out. This
is up-converted to the band of the readout cavity by the first IQ mixer, creating
the probe signal. Attenuators between the DAC and mixer dampen reflections
from the mixer inputs. The qubit manipulation signal is generated separately
and combined with the probe signal using a directional coupler. The directional
coupler maximizes the amplitude of the manipulation signal while reducing the
amplitude of the probe signal. This is reasonable because the manipulation
signal is off-resonant with the readout cavities through which it must pass to
reach the qubits. After the combined signal is transmitted through the cryogenic
setup including the sample, it returns to the detection section. The detection
section starts with an isolator to suppress reflections between the cryogenic
and room-temperature amplifiers. The following high-pass filter ensures that
the room-temperature amplifiers are not saturated by thermal noise from the
cryostat. A second IQ mixer converts the transmitted signal back to baseband
frequencies. Low-pass filters in | and Q cut noise above and below the band of
the readout cavities and double as anti-aliasing filters. After a final amplification
stage, the baseband signal is recorded by a fast two-channel ADC.

71
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After passing through the cryogenic part of the setup, the transmitted
signal is high-pass filtered to remove a large part of the (amplified)
thermal noise power originating from the cryostat and amplified by two
room-temperature amplifiers. A second, identical IQ mixer converts
the signal back to baseband frequencies. The local oscillator port of
the down-converter is driven from the same source as the up-converter
to provide a stable phase reference. The LO is split by a Wilkinson
power divider with 20 dB of isolation between its output ports to prevent
leakage of the high-frequency probe signal between the generation and
detection stages. A high-pass filter installed between the two mixers
does the same to the baseband probe signal. Low-pass filters at the
I and Q outputs of the down-converter further reduce the total noise
power by limiting the detector bandwidth to the minimum required to
address all readout cavities. After a final amplification stage, I and Q are
sampled by a Spectrum M3i.2132 8bit 1 GS/s ADC board[Spe] installed
in the measurement computer. Software on the measurement computer
performs a fast Fourier transform on the sampled data to recover the
amplitude changes and phase shifts of all components of the probe signal.

The cryogenic and room temperature amplification chain is the same
used for the steady-state measurements and presented in section [3.2.3]
At readout powers in the single photon regime, the amplifiers add ap-
proximately 8 noise photons per signal photon in the bandwidth of each
resonator. The readout signal is sent as a 512 ns burst, limited by the
energy relaxation time of the qubits. In this time, approximately 32 signal
photons are transmitted from the readout cavity to the output, resulting
in a best-case signal-to-noise ratio of v/32/8 = —1.5dB. It is thus not
possible to extract the state of the qubit from a single time trace in this
configuration, averaging is required.

With the help of ultra low-noise parametric amplifiers and at larger
mean cavity occupation numbers, such a single-shot readout and even
real-time monitoring of the time evolution of a qubit’s state is possible
and has already been demonstrated for a single qubit[VSS11]. Because
parametric amplifiers are based on high-quality oscillators, they have
narrow gain bandwidths and a separate amplifier is required for each
readout cavity. If designed together with the readout cavities and inte-
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3.4 Time-Resolved Readout and Manipulation

grated on the same chip, using them may be possible and they may see
use in future experiments.

A stable phase reference is a key requirement when averaging the
transmitted AC voltage signal. In a homodyne setup, the only phase of
interest is the phase of the microwave generator. A stable reference is
guaranteed by driving the down-converter from the same source that
also generates the probe signal, the mixer output is DC. In the multi-qubit
setup, the baseband signal is a sum of several AC components, the phase
of which must be taken into account. If the baseband is generated by
a DAC, the starting phase of all components is defined by the waveform
and the phase found at the detector is constant as long as the DAC and
ADC are triggered with a constant delay. If the baseband is generated by
free-running oscillators or if the DAC can not be reliably triggered, the
baseband signal must be sampled before up-conversion and a reference
phase must be calculated from this data.

3.4.3 Qubit Manipulation

For qubitmanipulation, anumber of different setups were used depending
on the experiment and the number of qubits to be manipulated.

Ifavailable, a Tektronix AWG5014 14 bit 1.2 GS/s four channel DAC[Tek]|
was used to generate pulse envelopes. The envelopes were applied to
continuous wave microwaves generated by individual microwave sources
using various arrangements of standard and quadrature mixers, shown
in Fig. Simple pulse shapes could also be realized by a pulse gen-
erator instead of the DAC, but without the low-frequency noise rejecting
averaging described in section[3.4.5]

The simplest setup, Fig.[3.11p, uses a single mixer to gate the output
signal of a continuous wave generator. This setup is sufficient for sin-
gle qubit manipulation with moderate pulse amplitudes. Because of the
limited isolation between the ports of mixers, a small driving is always
on even when no voltage is applied to the IF port. The Marki Microwave
M8-0420[Mar] used are high-isolation mixers providing an excellent LO-
RF isolation of 40 dB, or an on-off amplitude ratio of 102. Typical on-state
Rabi frequencies realized in the experiments were in excess of 100 MHz,
resulting in off state Rabi frequencies of the order of a MHz in this setup.
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Figure 3.11: Experimental setups for qubit manipulation pulse generation. Each
microwave generator provides a single continuous wave tone at the transition
frequency of the qubit to be manipulated. The digital to analog converters output
DC pulses that are used as amplitude envelopes. 6 dB attenuators between the
DACs and mixers are used to dampen double pulses caused by reflections at
the mixer inputs. a) The most leightweight setup uses a single microwave mixer
as a switch to apply the envelope pulses to the generator output. Because of
the limited LO-RF isolation of the mixer, an appreciable qubit drive is present
in the off state of the mixer. b) Two mixers can be daisy-chained to lower the
driving amplitude in the off state. A low-pass filter in the IF path avoids leakage
of the generator tone caused by relatively low LO-IF and IF-RF isolations. c)
Using a quadrature mixer and two DAC outputs, the amplitude and phase of the
manipulation pulse can be controlled. This allows a free choice of the rotation
axis of a Rabi drive in the x/y plane. d) Up to four microwave generators,
DAC outputs and mixers are used for the multi-qubit experiments. Attenuators
between the DACs and mixers have been omitted from the figure.
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This introduces a significant probability of a state flip within the readout
window of 512 ns.

The improved setup in Fig.[3.11b cascades two mixers to increase the
on-off amplitude ratio to 10%. The off state Rabi frequency is reduced to
a few kHz, which causes negligible errors.

The setup in Fig. [3.11f uses a quadrature mixer to control both the
amplitude and phase of the manipulation signal. With a standard mixer,
the rotation axis of the qubit drive is fixed to the x axis. The phase control
offered by an 1Q mixer allows one to choose any rotation axis in the x/y
on a per-pulse basis. Rotations around the z axis require a change of the
level splitting of the qubit, which can be effected by pulsing the flux bias
of the qubit from a third DAC channel.

For simultaneous manipulation of multiple qubits, an extra microwave
generator and mixer was used for each qubit, as shown in Fig.[3.11} The
outputs of all mixers were combined by an AtlanTecRF BPD-040180-4
four-port power divider[Atl]. In principle, multi-qubit manipulation could
also be done using the same SDR techniques used for multiplexed readout.
This requires a very fast DAC with an analog bandwidth that is large
enough to access the transition frequencies of all qubits. Due to the large
spread of our qubits’ frequencies from 2 GHz to 6.5 GHz, this was not
implemented.

3.4.4 Timing and Synchronization

The timing of the experiments was controlled by an Aglilent 81130A
two-channel pulse generator[Agi]. The first channel was used to trigger
the DACs creating the qubit excitation signal. The second channel was
used to trigger the readout DACs and ADCs. The pulse generator was
phase-locked to a 10 MHz reference signal which was common to the
DACs and ADCs and the pulse generator.

The excitation and probe pulses were aligned by transmitting a large-
amplitude excitation in the readout band, such that it could be acquired
without averaging. This was possible because the sample is transparent
to microwaves except at the resonance frequencies of the readout cavities.
The probe pulse and ADC start were adjusted using a digital trigger delay
feature provided by the ADC card.
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Experiments were run at a rate of 10° averages per second, allowing
the qubits approximately 10 T; to relax to their ground states between
repetitions. The readout signal being a 512 ns burst, about 50 MB of data
were generated per 8bit 1 GS/s channel per second. Because Fourier
transform and calculation of the mean are both linear operations, they
commute and the more compute-intensive FFT was carried out on the
averaged time-traces. Finally, the transmitted amplitude and phase were
calculated from the complex Fourier coefficients.

3.4.5 Averaging with Low-frequency Noise Rejection

The dilution refrigerator used for all experiments being located in a
4th floor room without air-conditioning, the measured transmission was
subject to drifts on timescales of minutes and hours due to temperature
changes inside the laboratory affecting the cable delay.

Standard measurement protocols that use a per point averaging ap-
proach, where statistics for each data point are aquired before going to
the next data point, are susceptible to these low-frequency drifts. Each
pointis affected by the drift accumulated from the start of the experiment
until the measurement of the point.

An alternative is a per trace averaging approach. Here, the experimental
parameters are changed on each repetition until a single measurement
has been performed for each data point, completing a trace. More traces
are recorded until sufficient statistics have been measured for all data
points. This approach is more robust to drifts and low-frequency noise,
because all points are equally affected.

Per trace averaging is used in all experiments where only pulse pa-
rameters need to be changed. Pulse waveforms for each parameter set
are loaded into the manipulation DAC, which is set up to advance to the
next waveform every time it is triggered, every 10 pus. The readout ADC
is synchronized with the DAC, so that each acquisition can be sorted into
the correct bin. A complete trace is finished after a few ms, rejecting noise
at frequencies below a few hundred Hz.

The measurement software displays the average over all traces in a
periodically updated plot. Partial averages over the traces acquired in the
course of a few seconds are shown in a separate plot and also saved to
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Figure 3.12: Detection of low-frequency drifts and dropouts. Each vertical line
of the left plot is a mean over 1,000 traces acquired in the course of a few
seconds. Phase drifts, if present, can be detected as a change in color in the x
direction of the plot. Around average 15,000 and 90,000, two dropouts of the
signal can be seen. The right plot shows the mean over all measurements.

disk. From the partial averages, drifts can be detected and dropouts can
automatically be removed. Figure shows a plot of partial averages
next to the mean over all measurements.
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4 Experimental Results

4.1 Steady-State Qubit and Resonator Measurements

4.1.1 Sample Characterization

Readout Resonators

The first measurement performed on any new sample once it has reached
its operating temperature of a few Millikelvins is a frequency sweep of

the network analyzer at zero external flux bias, shown in Figure[4.1} Due

to the design of the resonators as an array of notch filters on a shared
feedline, a minimum of transmission is seen at the resonance frequency

of each resonator.

From the shape of each resonance peak, losses @, internal to the
resonator and the losses Q. due to the coupling to the feedline can be

determined using equations and from section [2.3.5] as shown

in Table[4.1]
device  resonance  Qoxt Qo (runl) Qq (run3)
1 9313 MHz 2,000 37,000 39,000
2 9458 MHz 1,500 79,000 19,000
3 9614 MHz 1,500 32,000 200,000
4 9773MHz 1,500 23,000 61,000
5 9934 MHz 1,500 58,000 35,000
6 10094 MHz 1,000 17,000 72,000
7 10262 MHz 750 7,500 4,300

Table 4.1: Resonance frequencies and quality factors of the readout resonators

measured at 30 mK.
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Figure 4.1: Transmission of sample 10J-SPMJ5 at zero flux bias.

The internal quality factors are different each time the sample is cooled
down, which can be attributed to Abrikosov vortices trapped close to
the resonator. Superconductivity is suppressed in the core of a vortex,
and a movement of vortices induced by the radio frequency field of the
oscillator leads to dissipation|[SHD+09|. The magnitude of this dissipation
depends on the vortex count and position. The internal quality factor of
resonator #7 is worse than the others, because its resonance frequency
is close to a box resonance of the sample holder, which supports a mode
at 10.35 GHz into which the resonator can radiate energy.

Bias Calibration

The transition frequencies of flux qubits are far detuned from the cavity
frequencies for all fluxes except a narrow range of a few m®, close to
half frustration of the qubit loop. As the dispersive shift, Eq. is
proportional to (w, — a)q)‘l, the inverse difference between the cavity
and qubit frequencies, it becomes negligibly small at zero flux bias and
the observed cavity resonance frequencies measured are the bare cavity
frequencies. As discussed in section |2.4.4} at these frequencies the qubit
state is encoded into the phase of the signal transmitted through the
sample. Bias calibration for all qubits is done by measuring transmission
ateach bare resonance while sweeping the flux bias over a range of several
®, using the external coil wound around the sample holder.
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Figure 4.2: Transmission amplitude and phase through the feedline at the
resonance frequency of resonator #5. (left) A coarse scan is used to determine
the current needed to increase the flux through the qubit loop by ®,. (right)
From a fine scan, the exact position of the symmetry point can be extracted. The
two steep slopes are at the positions of anticrossings between the qubit and its
readout resonator.

From a coarse magnetic field scan, shown in Fig.[4.2} the mutual induc-
tance M; ¢4 of the bias coil and qubits can be extracted. The transition
frequency of the qubits is periodic in flux with a period of &, and so is
the phase of the transmitted probe signal. By calculating the period of the
phase response with respect to the current applied to the bias coil, we
find that M; o4 increases by 33% from qubit #1 to qubit #7. The absolute
values of M; ¢4 can be found in Table

device | 1 2 3 4 5 6 7| unit
period | 398 334 305 281 264 254 252 | pA
Miexe | 52 62 68 74 78 81 82| pH

Table 4.2: Mutual inductance of each qubit and the external bias coil.

In the absence of a superconducting film, the mutual inductance be-
tween the coil and qubits on the chip is expected to be maximum for qubit
#4, which is located closest to the symmetry axis of the sample holder,
shielding and bias coil, and decrease towards both the higher and lower
qubit numbers. In the presence of the superconducting film, however, the
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Figure 4.3: Transmission amplitude through the feedline in a range of frequencies
close to the resonance frequency of resonator #5. At £9.4 m®, the sign of
the dispersive shift changes because of the qubit transition frequency passing
through the resonance frequency of the readout cavity.

flux bias is generated by screening currents on the film and depends on
the distance of the qubit from the edge of the ground plane.

Zooming in on one of the peaks measured during the measurement
of the mutual inductance reveals that they are double-peaks that are
symmetric with respect to their central point. This point corresponds
to a half-integer frustration of the flux qubit, with respect to which its
energy levels are symmetric. The double-peak structure is only present
when the minimum transition frequency A of the qubit is designed below
the resonance of the readout cavity, and marks the points where the qubit
transition frequency and cavity resonance cross each other.

Qubit-Resonator Anticrossings

In figure[4.3] the transmission amplitude of resonator #5 vs. the external
flux bias and probe frequency is shown. From this plot it can be seen
clearly that not only the transmitted phase but the position of the mini-
mum of the absorption dip, which is equal to the resonant frequency of
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4.1 Steady-State Qubit and Resonator Measurements

this cavity, changes with the applied flux. With the qubit being in the
ground state during the whole experiment, the microwave tone probes
the transitions |—,n) < |—,n + 1) between different resonator photon
number states of the Jaynes-Cummings Hamiltonian. The dashed line
represents the theoretical prediction Eq.[2.58]of the transition frequency
E_n4+1 — E_5 inthe dispersive limit, w4 > g. Itis in close agreement to
the experimentally obtained data throughout the plot. In principle, the
bias dependence of the resonator frequency provides an indirect mea-
surement of the frequency of the qubit transition and the qubit-resonator
coupling energy g. In practice this is complicated by the weak photon-
number dependence of the shift and the fact that g decreases from the
symmetry point to the anticrossing points according to Eq.[2.54|because
of the changing mixing angle.

4.1.2 Two-Tone Qubit Spectroscopy
Low-Power Spectroscopy

The transition frequency of the qubit can be measured directly using
two-tone spectroscopy. In addition to the probe tone at the cavity photon
number transition, a second microwave (spectroscopy) tone is transmit-
ted to the system. If this tone is close the |—,n) & |+,n) transition
of the Jaynes-Cummings Hamiltonian, it acts as a Rabi drive and causes
periodic oscillations between the qubit states. This causes a modulation
of the instantaneous frequency of the readout resonator with the Rabi
frequency Q given by Eq.[2.19] The spectrum of the frequency-modulated
resonator has sidebands at w, + jQ with amplitudes of J;(m), where
m = wy/Q and w, is the dispersive shift of the resonator. For Q < w,,
many closely spaced sidebands are present - the spectrum is spread in
the interval [w, — wp, W, + wp]. For Q > w,, only Jo(m) is nonzero and
the resonator appears at its bare frequency. In both cases, changes of
the transmitted amplitude or phase at the dispersively shifted and bare
resonance frequencies indicates a coincidence of the qubit transition and
spectroscopy tone frequencies. Transitions to higher levels outside the
qubit subspace can also be detected this way.
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Figure 4.4: Spectra of the seven qubits. Dark color indicates a phase response
of the cavity. The dashed black lines represent fits to the expected progression
Eq. The horizontal lines are caused by the spectroscopy tone exciting the

resonator directly.
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By sweeping the external flux bias and the spectroscopy tone frequency,
the flux dependence of the qubit transition frequency can be mapped out.
This curve provides the gap energy A and the asymmetry energy € of the
qubit, from which the persistent current I,, in the loop can be calculated.
A depends sensitively on the geometry of the Josephson junctions of the
qubit and gives feedback on the quality of the fabrication process. I, is
one of the factors determining the strength of coupling g of the qubit
to the resonator. Alternatively, g can be calculated from the separately
measured magnitude of the dispersive shift of the resonator and A. The
parameters of the qubits found on the multiplexed sample are summarized
in Table[4.3]

device ‘ 1 2 3 4 5 6 7 ‘ unit
A 1970 6350 4400 6170 5800 5100 2000 | MHz
L 174 129 146 134 142 147 178 | nA
g 51 73 80 85 89 89 51 | MHz
T, 63 114 224 150 286 218 79 | ns

Table 4.3: Parameters of the seven qubit extracted from steady-state
measurements.

The spectra of all seven qubits including fits of their transition fre-
quencies are plotted in Figure In the plot, a dark pixel indicates a
phase response of the cavity at the corresponding combination of flux bias
and spectroscopy tone frequency. The dark horizontal lines that appear
in some plots are caused by the spectroscopy tone directly exciting the
readout cavity or interfering with the probe signal detector. Towards
the intersection points of the qubit and cavity frequencies, the contrast
diminishes. This is caused by the dispersive shift increasing to several
line widths, so that the transmission at the bare cavity frequency is no
longer affected by the resonator in any of the qubit states. The dashed
black lines are fits of the spectral line to the theoretical progression of
the qubit transition with flux, given by Eq.[2.13]

In a Jaynes-Cummings system, the interaction between the qubit and
cavity not only shifts the frequency of the cavity, but also the frequency of
the qubit. This shift is known as the Autler-Townes effect or AC Stark shift
and can be calculated using Eq.[2.57} Its magnitude is proportional to the
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Figure 4.5: (left) AC Stark shift of qubit #6. The dashed vertical lineat3x 10715 W
indicates the probe power at which the cavity is occupied by one photon on
average. The shift is linear in the probe power, and appears exponential only
because of the logarithmic power scale used in the plot. The error bars indicate
the full width at half maximum of the spectral line. (right) Theoretical mean and
standard deviation of the cavity occupation number vs. probe power, assuming
the classical probe drives the cavity to a coherent state. The broadening at low
probe powers in the experimental plot when compared to the theoretical data
is a measure for the dephasing of the qubit.

number of photons n inside the cavity and thus to the probe power applied
to the system. The color scale of Figure shows the experimentally
measured amplitude response of cavity #6 at the symmetry point of
the qubit for different probe powers (x axis) and spectroscopy tone
frequencies (y axis, offset by A). Up to probe powers of approximately
3 X 10715 W (=115 dBm), the transition frequency is independent of the
probe power, because the cavity is occupied by less than one photon on
average. This power range is known as the single photon regime. At
higher probe powers, a linear shift of the qubit frequency is visible, which
appears exponential in this plot because of the logarithmic power scale
used on the horizontal axis. Qubit spectra are measured in the single
photon regime to avoid distortion.

The width of the qubit resonance line in the spectrum is linked to the
dephasing rate of the qubit. This is because dephasing of a qubit is caused
by fluctuactions of its transition frequency, which are quantified by the
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line width in the spectrum. Deep in the single photon regime, the spectral
line width y is dominated by intrinsic dephasing of the qubit, and T, is
4w /y. At higher probe powers, the line is broadened by the variance
02 = n (assuming the cavity is driven to a coherent state) of the mean
cavity photon number n, shown as errorbars of the right plot. Because
the T, broadening follows a Lorentz distribution and the broadening
due to n follows a normal distribution, y and o,, can be separated in
high-resolution data. In lower-resolution data, y can be approximated by
assuming all distributions are gaussian and using propagation of errors,

y? g° ’

2 _ 2

= + .

total = g <a)q - a)r> On

The T, values provided in Table were calculated from fits to this
equation.

High-Power Spectroscopy

Low-power spectroscopy shows the first-order transitions of the Jaynes-
Cummings Hamiltonian, the cavity photon number transition and the
qubit transition, revealing qubit parameters and potential spurious cou-
plings to defect states in the sample[SLH+04]. In addition to these, certain
higher-order transitions are interesting for quantum information process-
ing, since they may be used to create qubit-qubit[LWT+06]; [PGM+12]
and qubit-photon|WSB+07] entanglement without the need to bring the
entangled subsystems into resonance. For flux qubits, this has the advan-
tage that they can be left biased at their sweet spots all the time, where
they are least sensitive to flux noise. Other types of superconducting
qubits, namely single junction transmon qubits, are fixed-frequency on
purpose to remove the frequency control as a source of decoherence.
Apart from making the cavity frequency tunable, which increases the
decoherence of the cavity, exciting sideband transitions is the only way to
entangle these qubits with cavity photons.

For quantum information processing, the “blue” sideband transition
|- n —1) & [+,n + 1) ata frequency of wpye = W + wg and the “red”
sideband transition |—,n) < [+,n) at weqg = |w, — wqy| are the most
interesting ones.
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Figure 4.6: Transitions between the energy levels of the Jaynes-Cummings
Hamiltonian seen in two-tone spectroscopy. (left) In low-power spectroscopy,
the qubit-cavity system is initially in its ground state. The energy required to
excite the system is at least fiw, or hwg, whichever is lower. k-photon transitions
are suppressed by a factor of (g/a)rq)k, where w,q = wg; — w,. (right) High
cavity probe powers result in a non-zero mean population of the cavity, allowing
a cavity photon to combine with a low energy spectroscopy photon to induce a
transition. At high spectroscopy tone powers the second order “red”” and “blue”
sideband transitions and multi-photon transitions become visible.

The spectrum of qubit #2 shown in Figure [4.7] was recorded at large
spectroscopy and probe tone amplitudes, so that the cavity is always
populated and the matrix elements of second order transitions become
sufficiently large. The red sideband transition, shown as a dashed black
line, can be clearly identified. The blue sideband transition starts at
probe frequencies of approximately 17 GHz, which is outside the range of
the plot. However, the two-photon blue sideband transition can be seen
starting from 8.5 GHz and is shown as a dash-dotted black line. The strong
driving also enables a number of other transitions, such as the two-photon
qubit transition and the two-photon red sideband transition, which have
matrix elements of comparable size. A list of identified transitions can be
found in the figure caption.

88



4.2 Serial Measurements of Qubit Dynamics

excitation frequency in GHz

2 N i \ -/- al i \I. !/ 4 7/
N k{ ,,.} 4 =kt i [ \- 7
NS NP4
0 ! TNy ! | AN !
-15 -5 5 15

flux offset in 10"3430

Figure 4.7: Spectrum of device #2 recorded with large spectroscopy and probe
tone powers showing sideband transitions. The solid black lines are single and
two-photon transitions between |—,n) and |[+,n + 1). The dashed black lines
are single and two-photon red sideband transitions between |—,n) and |+, n).
The dash-dotted black line is the two-photon blue sideband transition between
|=,n) and |+,n 4+ 2). The dotted black line is the |-, n) < |+, n — 1) transition.
The origin of the solid gray line is unclear. The horizontal dashed white line
indicates the frequency of the readout resonator.

4.2 Serial Measurements of Qubit Dynamics

4.2.1 Single Qubit Gates
Introduction

Among the list of elementary gates required to operate a quantum com-
puter are arbitrary rotations of the state vectors of individual qubits. As
shown in section|2.2.5} such rotations can be produced by driving qubits
with microwave pulses. If the amplitude and phase of the drive and the
detuning between the driving and qubit transition frequencies can be
controlled on a per-pulse basis, the general rotation operator Eq.
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can be directly implemented. If only the phase of the drive or only the
detuning can be controlled, an arbitrary rotation can be synthesized from
a sequence of three rotations[KG01] around two different axes (x-y-x,
x-z-x, ...) by expressing the rotation vector in terms of Euler angles. The
absence of flux lines allowing fast control of the qubit transition frequen-
cies therefore does not restrict our ability to produce arbitrary single
qubit gates.

Solution of the Lindblad Master Equation

Because physical qubits are subject to dissipation and dephasing, exper-
imental results are better described using the time evolution Eq. of
the density operator instead of the coherent evolution of a pure qubit state
represented by Eq. Using the fact that the Pauli matrices together
with the identity matrix g, form an orthogonal basis of the vector space
of 2 X 2 matrices, the equations for the components of the Bloch vector
can be separated and Eq.[2.25|can be reformulated as an inhomogeneous
first-order linear matrix differential equation in three dimensions,

o7 Y. -Qy 0
— = Q -y, = 7+ 0
9t z x
_Qy Q —)n V1 (41)
=M-7¥+¢C

In this equation, 7 is the Bloch vector, ; are the components of the
rotation vector Q) defined by Eq. y; is the longitudinal and y; is the
transversal relaxation rate.

The formal solution of differential equations in the form of Eq.[4.1]is

F(t) = 7. + exp(M¢) - (F(0) — 72),

where exp(Mt) is the matrix exponential of Mt and 72 = M~ - ¢ is the
steady-state solution.

If only resonant driving around the x axis, equivalent to Q,, = Q, = 0,
is considered, the equation for r;, can be separated from the equations for
7, and 7,. The equations for 75, and 7, can then be solved by expanding
the 2 X 2 matrix in Pauli matrices and using the identity exp(id - 6) =
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4.2 Serial Measurements of Qubit Dynamics

oy cos(a) + ifi - 6 sin(a), where a = |d| and i = d/a, to evaluate the
matrix exponential. Because the readout apparatus can only measure the
z component of the Bloch vector and experiments typically start with the
qubit in the ground state, we are only interested in the solution of 7,(t)
with 7,(0) = 1 and ,,(0) = 7;,(0) = 0,

r,(t) = eVt | cos(@t) + YEA sin@0)| (1 —r.) +7.,.  (42)

Eq.[4.2|describes an oscillation decaying towards a relaxation and rotation
rate dependent steady-state value

Y1Y2

= — 4.3
niv. + Q% (43)

Tez
The decay rate is the arithmetic mean of the longitudinal and transversal

decay rates,
—_ntr
y=—

The frequency of these oscillations is the Rabi frequency Eq.[2.18} shifted
to lower frequencies due to damping,

Q= /Q,Zc—yAz,

_ Y2—"
yA 2 .

(4.4)

where

Due to the relaxation rates of 1, and 7, being equal, the above equations

hold for any resonant driving if (), is replaced by Q = ’Q,Zc + Q2.

Readout Calibration

For each qubit, the readout apparatus outputs the transmission ampli-
tude and/or phase shift R of the microwave tone scattered at the qubit’s
associated readout resonator. Due to the nature of the quantum mechan-
ical measurement process, the output takes one out of two values, R, for
the qubit in the ground state and R_; for the qubit in the excited state.
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4 Experimental Results

In the absence of noise, one could perfectly discriminate between the
two values and map them to the two qubit states. In a noisy system,
the measured values are distributed stochastically with two normalized
probability density functions (PDFs) P, that peak at the output values
of the noiseless system, such that

f RPil(R) dR = Ril'

If the PDFs have a small overlap, it is possible to determine the qubit state
from a single measurement, a process called single shot readout. In the
present case of dispersive readout, the PDFs overlap almost completely
because the noise power introduced by the amplification chain exceeds
the readout signal power by one to two orders of magnitude, as discussed
in section[3.2.3] The system can thus not determine the qubit state froma
single measurement, but can only determine its ensemble average value
over many repetitions. The outcome of each repetition is drawn from one
of the two PDFs with weights equal to the probabilities p_; = (1 —1;)/2
to find the qubit in the excited stateandp; = 1—p_4 = (1 +1;)/2 to
find the qubit in the ground state, where r;, is the z component of the
Bloch vector introduced in Eq.[2.2T} The ensemble average is thus a linear
interpolant between R, and R_;,

R=| RIDAR) + PP (R)] R

=1 —-p-1)Ry +p_41R_4
R, +R_ R{—R_
_ R 1, R 1
2 2

1,

and it is sufficient to measure the response for any two different qubit
states with well known values of 7, to calibrate the whole scale. In
particular, the detailed frequency characteristics of the readout resonator
do not play a role for calibration.

The first calibration point is attained by not applying any excitation,
which amounts to leaving the qubit in its ground state, and identifying
the measured value R, with r, = 1. The second calibration point could be
found by applying a pulse that prepares the excited state of the qubit, and
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Figure 4.8: Pulse sequence of a Rabi experiment.

identifying the measured value R_; with r, = —1. This requires a careful
calibration of the pulse and is not robust against errors. Instead, the qubit
is driven for a time T > y;1,y; ! such that the measurement ensemble
is in the incoherent steady state r, ,. The value of r, , can be calculated
from Eq.[4.3]if at least two different driving amplitudes are measured or
by making the driving amplitude sufficiently large such thatr, , =0toa
good approximation.

Experimental Observation of Rabi Oscillations

To manipulate a qubit’s state, its transition frequency is first found by
two-tone spectroscopy. Subsequently, manipulation pulses of variable
duration are applied at or close to this frequency. After a few ns delay, the
readout signal is sent to the qubit to determine its state at the end of the
manipulation. The pulse sequence is depicted in Fig. By varying the
duration, amplitude, phase and frequency of the manipulation pulses, the
qubit’s response can be compared to the various theoretical predictions
made by equations[2.17|and[4.2]

The data presented in Figure shows the pulse duration and pulse
amplitude dependence of the response of qubit #2, measured at its
symmetry point. Each of the six plots on the top shows the excited
state occupation probability p_; = (1 —r;)/2 against the duration of the
driving pulse. The solid lines are fits of Eq. to the data. While the
manipulation pulse is on, the state rotates around the x axis of the Bloch
sphere, oscillating from the ground state to the excited state and back.
The total rotation angle is proportional to the duration of the excitation
pulse. According to Eq. the oscillation frequency and therefore the
total rotation angle is also proprotional to the amplitude of the excitation
pulse. Linear regression of the oscillation frequency vs. probe amplitude,
shown in the bottom plot of Fig. confirms this.
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Figure 4.9: Excitation power dependence of Rabi oscillations of Qubit #2. (top)
Individual Rabi curves for various powers. (bottom) Fit of the observed Rabi
frequency to Eq. Up to a mixer input of 0dBm, the Rabi frequency
increases linearly with excitation power, at larger powers the mixer saturates
and the amplitude delivered to the qubit is reduced.
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4.2 Serial Measurements of Qubit Dynamics

device ‘ 2 3 4 5 6 ‘ unit
w/2m | 6370 4414 6.164 5808 5.094 | GHz
y ! 309 717 220 748 388 | ns
sy 9 59 12 62 43 | ns

Table 4.4: Decay times of Rabi oscillations of qubits #2—#6 at their symmetry
points. Best result out of several measurements. See also section

Due to decoherence effects, the oscillations decay with a time constant of
7_1, where ¥, defined by Eq. is the arithmetic mean of the transversal
and longitudinal decay rates. While it is not possible to individually
determine the values of y; and y, from this type of measurement alone,
it puts an upper limit of 2y on both. The decay times Trap; = 7_1 are
summarized in Table [4.4]

Figure shows the response of qubit #2 to driving at different
frequencies. If the microwave drive is not resonant with the transition
frequency of the qubit, the rotation vector acquires an additional com-
ponent (), equal to the difference of the transition and driving (angular)
frequencies. In Rabi oscillations, this manifests itself in an increased
rotation frequency, the generalized Rabi frequency Eq.[2.19] The experi-
mentally measured oscillation frequencies as well as a fit to the hyperbolic
dependence expected from Eq.[2.19)is plotted in Fig.[4.10p. Furthermore,
the rotation axis is now tilted with respect to the x-y plane. Therefore
the qubit, initially in the ground state, can not reach the excited state.
The minimum of r, increases towards 1 as the frequency difference is
increased, plotted in Fig. including a fit of the expected minimum
Eq. to the experimental data. The decay rate of the oscillations is
found to be lowest at resonance and fall off to a constant value for large

detunings, as shown in Fig.[4.10d.

Quantum State Tomography

Since both the equations of motion Eq.[4.1T]and the initial state, the ground
state, are invariant under rotations around the z axis, changing the phase
of the microwave drive does not affect the Rabi oscillations presented in
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Figure 4.10: Off-resonant Rabi driving of qubit #2. a) Phase response of
resonator #2 while driving qubit #2 close to its transition frequency. Darker
(lighter) color indicates a lower (higher) excited state occupation probability. b)
Frequency of the oscillations vs. driving frequency. The oscillation frequency is
minimum when the driving frequency is resonant with the qubit transition and
grows as (QZ + (wq — a)d)z)l/z with increasing detuning. c) The theoretically
expected oscillation amplitude is maximum at zero detuning (rotation around
the x axis) and decreases with increasing detuning (rotation axis tilted towards
the z axis). The lower amplitude that was experimentally observed close to
resonance is due to residual driving during qubit reset and readout. d) The
oscillations decay faster towards larger detunings as the influence of y, > y;
increases.
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Figure 4.11: (left) lllustration of the evolution of the initial state (|T) + |{)) /v2
during radial state tomography. (right) Pulse sequence of the tomography
process.

the previous section. Only when a sequence of at least two pulses with
different phases is applied, this symmetry can be broken. The first pulse
defines the (rotating) reference frame of the qubit and is typically set to
be a rotation around the x axis. The second pulse rotates the spin vector
around a different axis within this reference frame.

A pulse sequence to demonstrate the effect of changing the relative
phase between two pulses is shown on the right-hand side of Figure[4.11]
To control the phase, the I and Q inputs of a two-quadrature mixer (see
section [3.4.T)) are supplied with DC pulses of variable amplitude. The
reference frame is chosen such that the I input of the mixer controls
Q,, = Qcos ¢ and the Q input controls €1, = (1 sin ¢. The first pulse, with
a duration of tprep, = 10ns, prepares the qubit by rotating it from the
ground state to the desired initial state. The total rotation angle Ot
is set by varying the amplitude on the I and @ inputs rather than the
duration of the pulse. The amplitudes required for certain (, and Q,
are separately calibrated for the I and Q channels by measuring Rabi
oscillations. The second pulse, also with a duration of t;,y, = 10ns,
rotates the state around a different axis in the x-y plane.
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The left-hand side of Figure illustrates the evolution of the Bloch
vector 7 corresponding to the initial state | T,x) = (|T) + 1)) /V2 for
different rotation axes. If direction of #* and Q coincide, # is invariant
under the rotation. The larger the angle (acutally |7/r X ﬁ/QD between
#and §, the larger is the circle described by 7 on the Bloch sphere.

Figure[4.12|demonstrates the effect of varying the amplitude and phase
of the second pulse, or, equivalently, of varying the orientation of its
rotation axis and total rotation angle for different initial states. The polar
angle represents the phase ¢ of the second pulse and the radius represents
the total rotation angle generated by the pulse, subject to calibration. The
grey scale indicates the excited state occupation probability at the end of
the second pulse, with dark colors indicating low excitation probabilities
and light colors indicating high excitation probabilities. The plots on
the left-hand side show experimentally measured data, the plots on the
right-hand side show the response expected from theory.

In Figs. and [4.12d the qubit is initialized in the ground state
and excited state, respectively. In these cases, the angle between 7 and
Q is independent of ¢, and the plots are expected to be rotationally
symmetric. The experimental data does not completely measure up to
this expectation, showing an increased (1 towards 270°. This is indicative
of the mixer producing an amplitude error in the microwave pulse, which
can be compensated for by calibrating the mixer for a larger number of
angles instead of just 0° and 90°, as done here. In Figs. and [4.12c
the qubit is initialized in the | T,y) and | T, x) states along the y and x
axis, accordingly. In these plots, the dependence of the oscillations on the
relative angle between 7 and Q can be seen.

Because the readout system can only measure the projection of the
Bloch vector on the z axis, rotations around the x and y axes are used to
find the other projections. A m/2 rotation around the x axis exchanges
the y and z axes, enabling the measurement of ;,. A /2 rotation around
the y axis exchanges the x and —z axes, enabling the measurement of r,.
The process of measuring all components of the Bloch vector 7 is called
quantum state tomography[SAM+06].
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270°

Figure 4.12: Radial state tomography of qubit #2. After preparing the qubit
state, rotations around different axes in the x-y plane are performed. Prepared
states are a) | 1), b) (|7 + |4)) /2, ¢) (1) + i) /V2, d) [{). Left-hand plots
show experimental data, right-hand plots are simulated. The color scale indicates
the excited state occupation probability (dark = low), the polar angle indicates
the direction of the rotation axis, and the radius indicates the rotation angle.
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4.2.2 Measuring Decoherence
Introduction

The longitudinal and transversal relaxation rates y; and y, or their in-
verses, the coherence times T; and T,, are the two key dynamical param-
eters characterizing the fitness of a qubit for quantum computation. y; is
a measure of how fast the excited qubit relaxes to its ground state. y, is
a measure of how fast the knowledge of the phase, the crucial difference
between quantum and classical information, is lost. The experimental
determination of y; will be detailed in the next section, different methods
to determine y, are found in the following sections.

In our case, y, is what counts for quantum computation, because it
limits the time available for operations. T; is also is important for two
reasons: First, it limits the duration of a dispersive readout, shown in
section[2.4.4} and therefore the maximum density of a frequency-division
multiplexing system. This is discussed in section Second, it limits
T, due to the inequality T, < 2T; derived in section[2.2.7]

Longitudinal Relaxation

T; is measured by applying a m pulse to the qubit and varying the de-
lay between the excitation and readout pulses, as shown in Fig.
Subsequently, Eq. is fitted to the acquired r,(t) to extract T;. If the
parameters of the w pulse are not known, because Rabi oscillations have
not been measured before, any initial state except the ground state can
be used to measure T;. The choice of a m pulse is simply a matter of
convenience, because it maximizes the contrast of the decay curve.

We measured the decay times of qubits #2 to #6 at their symmetry
points by applying a m pulse to each qubit and recording the amplitude
response of its readout resonator. Qubits #1 and #7 were not measured

manipulation J |

|<_t1'[_>|‘ t =|<treadout>|

readout

Figure 4.13: Pulse sequence of a T; measurement.
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Figure 4.14: Measurements of the T, times of qubits #2 to #6 at their symmetry
points. The x axis indicates the delay between the end of a 7 pulse exciting the
qubit and the start of the readout process.
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due to their low readout contrast which is a result of their smaller coupling
to the readout resonator and large detuning from the resonator. The T;
times of all measured qubits are about 1 us, which is a typical value for
similarly fabricated flux qubits. The measured decay curves are presented
in Figure [4.14] and the T; values extracted from the curves are listed in

Table[4.5]

device | 2 3 4 5 6 | unit
w/2m | 6370 4414 6.164 5.808 5.094 | GHz
T, | 1095 1.103 0966 0.898 0.636 | us

Table 4.5: Longitudinal relaxation times of qubits #2 to #6 measured at their
symmetry points. The values are fits to the curves presented in Fig.

Transversal Relaxation: Rabi Experiment

The result Eq. for the decay rate y of (resonant) Rabi oscillations
allows the setting of an upper bound of the transversal relaxation rate y,,
¥, < 2y. Ifthe longitudinal relaxation rate has been separately measured,
¥, can be calculated from y and y;. The advantages of this method are its
simplicity and robustness. Both measurements, Rabi and y;, require only
a single gate operation on the qubit. Pulse amplitude and duration errors
do not influence the measured ¥ and y;. The T, times of qubits #2 to #6
extracted this way are summarized in Table[4.6]

The measured y, were not well reproducible and varied by a factor of
up to three between different measurements taken within a span of one
hour. At the same time, variations of the qubit transition frequency of the
order of a few MHz could be seen, indicating an unstable flux bias. Any
bias offset from the symmetry point results in net circulating currents
around the qubitloop, which is opposite for the two basis states, as shown
in Figure External magnetic fields couple asymmetrically to the two
states, changing their energy difference and causing dephasing.

In [KMS+07|, 1/f noise in the bias flux was found to give the main
contribution to dephasing in a flux qubit. The authors found that y4 was
proportional to the bias offset A® from ®,/2. Adopting their treatment

102



4.2 Serial Measurements of Qubit Dynamics

device 2 3 4 5 6 | unit
w/2r 6.370 4.414 6.164 5.808 5.094 | GHz
7_1/2 155 358 110 274 194 | ns
T, =y, 180 531 124 641 278 | ns

Q 8.7 589 11.6 62.0 429 | MHz
7_1/2 155 244 110 165 131 | ns
T,=y;t 180 313 124 202 164 | ns
oT, 00 173 1 186 92 | ns

Table 4.6: T, times of qubits #2 to #6 at their symmetry points, calculated from
the longitudinal and Rabi decay rates in Tables[4.5|and[4.4] The first set of values
are the best results out of several measurements, the second set of values are
the mean of these measurements.

to the parameters (geometric size and persistent current) of our qubits,
a dephasing rate y, = 15MHz/m®, - A® is expected. At an offset of
250 ud, causing an increase of the qubit transition frequency by 4 MHz
from its minimum, this limits T, to 250ns. These numerical values
assume that the spectral density of flux noise is equal in [KMS+07|] and
our experiments. The high sensitivity to small offsets could very well
explain the variance of y, observed, and it emphasizes the necessity to
optimize the magnetic shielding of the qubits.

A more in-depth study of decoherence of flux qubits|[BGY+11] shows
that y is not a constant, but depends on the Rabi frequency Q. As the
driving amplitude is varied, the qubit samples the noise power spectral
density of critical current noise S (Q) and of flux noise S€(€2). y, extracted
from this measurement is thus only unambiguously defined if the Rabi
frequency at which it was measured is also given. It should be noted that
the standard Ramsey and echo experiments presented in the following
sections and more general dynamical decoupling sequences are likewise
sensitive to different parts of the noise spectrum, depending on the overall
time of the pulse sequences.
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Figure 4.15: Pulse sequence of a Ramsey T, measurement.

Transversal Relaxation: Ramsey Experiment

The transversal relaxation rate can be measured directly using a sequence
of two rotations, by means of a so-called Ramsey experiment[Ram50],
sketched in Fig. First, a m/2 pulse around the y axis (or any other
axis in the x-y plane) is applied to the qubit. The pulse turns the Bloch
vector 7 = Z of the inital state into 7 = %, on the equatorial plane of the
Bloch sphere. After some time, during which decoherence processes take
place, a second 7 /2 rotation around the same axis is applied. The second
pulse transforms the x component of 7 into the —z component and the z
component into the x component. When finally r, is measured, it contains
information on the evolution of 7, in the time interval between the two
pulses, which is an exponential decay with rate y,, as can be found from
Eq.[4.1]

Iftherotation pulses are detuned from the qubit transition, anadditional
precession of the state around the z axis takes place, which is seen as an
oscillation in the 7, projection. A fixed detuning is often employed in this
measurement, because slow oscillations, introduced by an accidential
detuning, are hard to separate from y, when fitting the experimental
curve.

Figure shows the results of a Ramsey measurement performed
on qubit #6.The qubit was resonantly driven at 5070 MHz with a Rabi
frequency of (/2w = 95.5 MHz, resulting in a duration of /2 pulses of
2.6 ns. The low measured TzRamsey time compared to Tableis aresult
of noise coupled by the unattenuated high-frequency bias line used in this
measurement run.

Figure shows Ramsey measurements performed on qubit #2 at
various detunings of the drive from the qubit transition frequency. The
expected linear dependence of the oscillation frequency on the detuning
can be seen. Discrepancies from the theoretical curve at are due to bias
instabilities.
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Figure 4.16: Ramsey experiment on qubit #6 at its symmetry point. The duration
of a /2 pulse was 2.6 ns.
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Figure 4.17: Off-resonant Ramsey experiment on qubit #2.a) Excited state
occupation probability of qubit #2 vs. driving frequency. Lighter colors indicate
higher probabilities. b) Frequency of the oscillations vs. driving frequency. The
oscillation frequency is equal to the detuning between the qubit and drive.
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Figure 4.18: Pulse sequence of an echo T, measurement.

Transversal Relaxation: Spin Echo Experiment

A Hahn spin echo measurement[Hah50|] is an improved method of mea-
suring the transversal relaxation rate of a qubit that suppresses low-
frequency noise. It uses a sequence of three pulses, shown schematically
in Figure [4.18] As in the Ramsey experiment, the first pulse, initializes
the Bloch vector to # = %, and the last pulse projects 7, onto the z axis.
The second pulse, a  pulse, inverts the sign of r,, but not ofry, effectively
inverting the sign of the polar angle of the Bloch vector. A phase acquired
during the evolution between the first and second pulses is canceled by
the evolution between the second and third pulses, given that the evolu-
tion time and precession frequencies are the same. The echo sequence
will thus cancel the effect of fluctuations of the qubit transition that are
slow on the time scale of a single repetition of the experiment, that would
otherwise degrade the average over many repetitions. It has no effect on
fluctuations on shorter time scales.

Figure shows the results of a spin echo experiment performed
on qubit #6.The qubit was resonantly driven at 5070 MHz with a Rabi
frequency of (1/2m = 95.5 MHz, resulting in a duration of 2.6 ns of the /2
pulses and 5.2 ns of the 7 pulse. The T§"® = 41.4 ns measured using the
spin echo technique is about five times larger than the TZR AmSEY — 7.9ns
measured using the simple Ramsey technique. This indicates that low

frequency noise contributes significantly to the total dephasing in this

setup. For comparison, TR3®! = 11.9 ns was also measured, and found to
coincide with T2Ramsey reasonably well.

Figure shows a spin echo experiment performed on qubit #2 at
various detunings of the driving and qubit transition frequencies. Like in
the detuned Ramsey experiment in Figure[4.10} the oscillation frequency
is equal to the detuning. The oscillations decay slower than in the Ramsey
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Figure 4.19: Spin echo experiment on qubit #6 at its symmetry point.Because
the total duration of the experiment is two times the delay between the pulses,
the decay is proportional to exp(—2t/T£°). T£h is substantially longer than
the T, extracted from the Ramsey measurement Fig. indicating that low
frequency noise significantly contributes to the total dephasing.
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Figure 4.20: Off-resonant spin echo experiment. a) Excited state occupation
probability of qubit #2 vs. driving frequency. Lighter colors indicate higher
probabilities. b) Frequency of the oscillations vs. driving frequency. The
oscillation frequency is equal to the detuning between the qubit and drive.
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experiment, indicating that the echo sequence also counteracts dephasing
in the off-resonant case.

4.3 Parallel Qubit Measurements

4.3.1 Setup and Steady-State Measurements
Setup of the Readout System

Parallel dispersive readout of multiple qubits amounts to simultaneous
probing of multiple resonators. Our readout system handles this in
a scalable manner, using a high-speed DAC combined with a conven-
tional microwave generator and a two-quadrature mixer (see Fig.
on page |71 for details about the hardware setup). The DAC is setup to
synthesize a burst containing the baseband frequencies w, /21 — f},o ofall
resonators to be probed. The following two-quadrature mixer shifts the
frequencies up by the generator frequency f| o to the actual resonance
frequencies.

Probing of all seven resonators on the sample requires a readout band-
width of w,.(#7) /21 — w,(#1)/2m = 949 MHz. By following the relative
phase of the I and Q quadratures, a two-quadrature mixer can distinguish
between positive and negative baseband frequencies, so two channels
with a bandwidth of 475 MHz each are necessary. This is easily handled
by the 6 GS/s DAC, but the analog frontend of the 1 GS/s ADC used has a
somewhat lower bandwidth, which limits the number of resonators that
can be probed simultaneously to six out of the seven on the sample. Since
the ADC used can acquire two channels only up to 500 MS/s (250 MHz),
only the I quadrature was recorded when faster sampling rates were
required. In the latter case, the receiver can no longer discriminate the
signs of the baseband frequencies, so their moduli have to be different.

To test the parallel readout, we performed a flux sweep similar to
Fig. but acquired by the multiplexing readout setup instead of a
network analyzer. The reference generator was setto f1o = 9720.3 MHz,
and the DAC was programmed to output tones at-405.7 MHz, -259.7 MHz,
-104.2 MHz, 55.3 MHz, 216.08 MHz and 375.7 MHz. After up-conversion,
this translates to the resonance frequencies of resonators #1 to #6, with
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Figure 4.21: Simultaneous measurement of the response of resonators #1 to #6
to a sweep of the main bias coil.

the dispersive shift due to every qubit at its symmetry point already taken
into account. Figure[4.21|shows the normalized amplitude response of the
acquired baseband tones to a sweep of the main bias coil. The amplitude
of each tone remains constant as long as the qubit and resonator are far
detuned, increases strongly close to the qubit-resonator avoided level
crossings, and varies weakly close to the symmetry point of each qubit,
where the slope of the transition frequency vs. magnetic flux is small.
The curves can be understood as horizontal cross-sections through the
equivalents of Fig.[4.3|for each device.

Gradient Coil Calibration

Due to a variable, cooldown-dependent offset of the flux bias seen by
each qubit, the main bias coil alone is not sufficient to bias more than
one qubit into a working regime at the same time. The simplest solution
to this issue is the addition of on-chip bias lines that provide a local flux
bias to each qubit. This has been integrated in later chip designs but
not in the original multiplexing sample, whose layout was kept as simple
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Figure 4.22: Gradient coil calibration via the bias shift of qubit #4 introduced
by gradient coil i;. The grayscale background shows the acquired curves,
whose double-peak structure originates from a spectroscopy tone at 6,189 MHz
coinciding with the qubit transition frequency. The black markers and solid line
indicate the calculated shift between the curves.

as possible. Instead, additional bias coils, arranged as shown in Fig.
were attached to the inside of the sample compartment.

The additional coils were calibrated by repeatedly sweeping the main
bias coil, changing the current through the other coil in between sweeps.
A continuous wave spectroscopy tone at a fixed frequency well above
the qubit gap was applied to the qubit to introduce a pair of symmetric
markers to the measured curve. The measurement software would then
calculate the change of the current in the main bias coil necessary to
cancel the change of magnetic flux introduced by the other coil through
cross-correlation of the traces. The software controls the whole calibra-
tion process, automatically choosing the step size between data points
depending on the error made in the previous step. This allowed for
a precise measurement of the mutual inductances of each (coil, qubit)
pair in a minimum amount of time and without sending large currents
through the coils, although their absolute values differ by two orders of
magnitude. An example calibration run is shown in Figure 4.22]
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Figure 4.23: Simultaneously measured spectra of multiple qubits. The gradient
coils are setup such that the symmetry points of qubits #2, #3 and #5 coincide
for a certain field generated by the main bias coil. A single continuous wave
microwave tone and the field of the main bias coil are swept. The readout
resonators are probed simultaneously every 10 us. In each of the plots, dark
color indicates an excitation of the corresponding qubit.

Because of the large distance between the coils and qubits, each coil
couples to every qubit. Changing the bias of a single qubit while leaving
the biases of the other qubits unchanged was done by linearly expanding
the mutual inductance functions an solving the linear equation d=M-I.
Because the components of M~ also differ by orders of magnitudes, the
biasing process had to be iterated. Using this method, it was possible to
bias up to three qubits close to their symmetry points at the same time.

Simultaneous Qubit Spectroscopy

Once the electronics for multiplexed readout and the gradient coils are
set up, the simultaneous measurement of multiple qubit spectra is as
simple as the measurement of a single spectrum, already discussed in
section[4.1.2] The spectra of qubits #2, #3 and #5, measured simultane-

ously, are shown in Figure [4.23]
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Data is acquired by the multiplexed readout setup instead of the net-
work analyzer. Because the measurement computer can not sustain the
1 GB/s of data produced by the data converters in the acquisition board,
transmission was only measured for 512 ns every 10 ps, reducing the
data rate to 51 MB/s. This duty cycle of 5% results in a 20-fold increased
measurement duration with the multiplexed readout setup compared to
the network analyzer, to obtain the same amount of statistics. Due to
the relatively large coupling Q; ! between the readout resonators and
feedline however, the averaging time is negligible compared to the time
it takes to sweep the coil and generator, and the overall duration is the
same for both acquisition methods.

All qubits were driven through the readout line from the same mi-
crowave generator. As long as the drive is not resonant with any of the
readout resonators, only a portion of 0(Q; 1) of the drive reaches each
qubit, and the interaction of the drive with one qubit has no influence on
the others.

4.3.2 Dynamics Measurements
Simultaneous Coherent Oscillations

To induce coherent oscillations in multiple qubits, it is necessary to pro-
vide microwave drives close to the transition frequency of each qubit. This
requirement ensues from Eq.[2.20] which links the o, amplitude of Rabi
oscillations to the detuning of the drive. For the parallel measurement of
qubits #2, #3 and #5 presented in Fig.[4.24] this meant driving pulses at
6365 MHz, 4400 MHz and 5822 MHz. Each frequency was generated by
an individual microwave source and gated by a mixer connected to a DAC
channel, similar to Fig.[3.11d on page[74]

The combined driving signal was applied through the readout line, so
each qubit was simultaneously driven by all three microwave tones. In
the frame of each qubit, the off-resonant tones induce rotations around
an axis in the x-y plane that is not fixed but rotates itself around the z axis
with the frequency of the detuning. The additional drivings thus result
in small oscillations at the frequencies of the detunings, superimposed
on the oscillation induced by the resonant drive. However, in Figure[4.24]
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Figure 4.24: Simultaneously measured Rabi oscillations of multiple qubits.
Driving pulses at w, = 6365 MHz, w; = 4400 MHz and ws = 5822 MHz are
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the superimposed oscillations induced into qubit #2 by the drive of qubit
#5 and vice versa can not be seen, even though their frequencies were
below the sampling limit of 600 MHz determined by the spacing of the
data points. Instead, they average out because the relative phase of the
drives is not kept fixed between repetitions.

No significant deviations were observed between the data presented
in Fig.[4.24]and the data presented earlier in Fig.[4.9] The expected linear
dependence of the oscillation frequencies on the driving amplitudes could
be reproduced. The absolute values are larger than before because of an
amplifier introduced into the excitation signal path.

Simultaneous Application of Different Sequences to Multiple Qubits

With the largest version of the qubit manipulation setup, shown in
Fig.[3.11d on page independent pulse sequences can be generated
for all qubits. Figure shows the results of such an experiment per-
formed on qubits #2, #3 and #4. Three different manipulation sequences
are combined and sent to the sample through the readout line: A Ramsey
pulse sequence, Fig at a frequency of w,/2m = 6415 MHz, close
to the transition of qubit #2. A T; sequence, Fig[4.13] at a frequency of
w3/2m = 4400 MHz, resonant with the transition of qubit #3. A Rabi
sequence, Fig[4.8] was applied at ws/2m = 5822 MHz, resonant with the
transition of qubit #5.

The overall shape of the curves is what is expected as the outcome of
the individual experiments. The T; time of 815 ns measured for qubit #3
is within 30% of the value reported in Table[4.5] The T, times of 13.6 ns of
qubit #2 and 23.9 ns (extracted using Eq.[4.4) of qubit #5 are much lower
than the values obtained previously during this run. In case of qubit #5
the culprit is most likely dephasing resulting from the flux bias being
1.1 m®, away from its symmetry point[KMS+07]. In case of qubit #2
an additional effect plays a greater role, as its spectral line, shown in
Fig. is also widened at its symmetry point. It should be noted that
spectra taken previously using the same (parallel) method did not show
this widening. Also, the readout system can not disturb the qubit states,
as it does not output any signals during the pulse sequences.
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Figure 4.25: Simultaneous execution of different sequences on qubits #2, #4 and
#5. A Ramsey T, measurement is performed on qubit #2, at w, = 6415 MHz. A
T, measurement is performed on qubit #3, at w; = 4400 MHz. A Rabi oscillation
measurement is performed on qubit #5 at ws = 5822 MHz. Fits to the curves
give T, = 13.6ns and a detuning of 20.5 MHz for qubit #2, T; = 815ns for
qubit #3 and a Rabi decay time ]7_1 = 47 ns for qubit #5.

For many simple experiments, especially for serial characterization of
qubits, the approach of sending qubit manipulation sequences through
the readout line is sufficient. When going to multi-qubit algorithms, it has
its shortcomings, because the sum of all manipulation tones is seen by
all qubits. Simultaneously performed gates mutually reduce their fidelity
once the frequency separation of the qubits becomes smaller than a few
times the Rabi frequency - fast, high-fidelity gates preclude a high packing
density and vice versa. It needs to be investigated if ideas from optimal
control theory, which have been employed to improve gate fidelity and
suppress transitions out of the qubit subspace in weakly anharmonic
qubits[CDG+10J], can reduce or completely cancel the detrimental effects
of the additional drives. A second, rather technical, weakness of the
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approach is that broadband circulators are required to stop reflections
at the input the readout amplifier from travelling back to the sample and
inducing further qubit rotations. By separating the excitation and readout
lines, with the excitation line terminating at the sample, this can be easily
avoided.
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This thesis presents a technique to simultaneously measure the state of
an arbitrary number of superconducting qubits using minimal resources,
by frequency multiplexing the qubit signals on a single transmission line.
Each qubit is furnished with an individual microwave resonator, which
experiences a state-dependent frequency pull due to the qubit-resonator
interaction. All resonators are connected to a common on-chip trans-
mission line, through which their resonance frequencies are probed and
hence the states of the qubits are read out.

With a narrow-band homodyne detection setup, which is now standard
for groups working in the field, each qubit can be separately measured.
This is already very useful, because it allows characterization of many de-
vices in a single refrigerator run, through a single line. Since microwaves
travel freely along the line outside the bandwith of the readout resonators,
several chips can even be connected in series. Serially performed char-
acterization measurements, such as qubit spectra, decay and dephasing
times, are presented in sections[4.1and [4.2]

However, the full power of the readout system lies in providing si-
multaneous and independent readouts of all qubits. When multiple
frequency components, one for every resonator to be probed, are trans-
mitted through the sample, the state of each qubit is encoded onto the
corresponding component. The experimental setup (Fig.[3.10)) developed
in this thesis borrows ideas from software-defined radio to generate and
detect signals with an arbitrary number of frequency components within
a bandwidth of about 1 GHz, thus allowing an almost arbitrary number
of qubits to be read out simultaneously. In section we present mea-
surements performed on up to six qubits in parallel using this technique.

Calculations in section [2.5|show that co-channel interference depends
mostly on the frequency difference between adjacent channels and is
almost independent of their overall number. The primary parameter
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restricting the distance between channels is the loaded linewidth of the
readout resonators, which are strongly coupled to the measurement line
in order to speed up the measurement. Accordingto the simulation results
for N = 100 channels (Fig.[2.17)), a spacing of 2 linewidths is sufficient
for interference to be less than -10 dB, and a spacing of 6.5 linewidths
further reduces interference to -20 dB. The resonators realized on our
sample have linewidths of approximately 6 MHz, theoretically allowing
80 channels per GHz of bandwidth at -10 dB crosstalk or 25 channels at
-20 dB crosstalk.

In its current implementation, the main drawback of the readout is
that it is not single shot. With noise temperatures of several Kelvins,
commercially available cryogenic amplifiers add several noise photons to
each signal photon. For a single resonator, the solution to this problem
is the use of parametric amplifiers based on Josephson junctions, which
feature a close to the quantum limited noise performance. Our circuit
is especially suited to be integrated with such an amplifier, due to the
large change of the amplitude ratio and phase of the transmitted signal,
which are proportional to the intrinsic instead of the loaded quality
factor as in standard setups. Unfortunately, the gain-bandwidth product
of typical parametric amplifiers is only a few tens of MHz, so a separate
amplifier would have to be included for each readout channel. For
many-channel systems, a bifurcation readout similar to what has been
demonstrated for transmon qubits[MOPL+09] is a more viable solution.
Through the inclusion of a Josephson junction, each readout resonator
is made nonlinear and can then be driven such that it latches the state
of the qubit. Single-shot readout becomes possible because the duration
of the readout is no longer limited by the decay time of the qubits and
the bandwidth of the detector can be reduced until the amplifier noise
is below the signal. Future improvements of the readout will aim in this
direction.

Recently, new samples that include both multiplexed readout and qubit-
qubit interactions mediated by an additional high-Q bus resonator have
been manufactured. These samples will allow the demonstration of
two-qubit quantum gates, and will be the first real quantum computer
operated at KIT.
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Zusammenfassung und Ausblick

Die vorliegende Arbeit stellt eine Methode vor, die es ermoglicht den Zu-
stand einer beliebigen Anzahl an supraleitenden Qubits mit minimalem
Aufwand an Ressourcen gleichzeitig zu bestimmen. Hierflir wird ein Fre-
quenzmultiplexverfahren verwendet, dass die Auslesesignale samtlicher
Qubits aufeiner einzelnen Hochfrequenziibertragungsleitung zusammen-
fiigt. Hierzu wird jedes Qubit mit einem Schwingkreis im Mikrowellen-
bereich kombiniert, der durch induktive Wechselwirkung mit dem Qubit
eine Verstimmung erfahrt, dessen Vorzeichen vom Zustand des Qubits
abhingt. Alle Schwingkreise werden an eine gemeinsame Ubertragungs-
leitung angeschlossen, durch die ihre Resonanzfrequenzen und damit
auch die Zustdnde aller Qubits bestimmt werden kénnen.

Mit Hilfe eines schmalbandigen Direktmischempfangers, der bei vielen
Arbeitsgruppen auf dem Gebiet der supraleitenden Qubits zum Standard
gehort, kann ein Qubit nach dem anderen gemessen werden. Dies erlaubt
es bereits die Parameter aller Qubits, die sich auf dem selben Mikrochip
befinden, mit einem Abkiihlvorgang und einer Messleitung zu charakte-
risieren. Da beim gewdhlten Layout Mikrowellen, deren Frequenz nicht
mit der Resonanzfrequenz eines der Schwingkreise iibereinstimmt, unge-
stort durch die Probe {ibertragen werden, konnen sogar mehrere Proben
in Serie geschaltet werden. Solche nacheinander ausgefiihrten Charakte-
risierungsmessungen, um etwa die Ubergangsfrequenzspektren, Zerfalls-
und Kohéarenzzeiten der Qubits zu bestimmen, sind in den Abschnitten|4.1
und [4.2] vorgestellt.

Das volle Potenzial der Methode liegt allerdings im simultanen und
unabhingigen Auslesen aller Qubits. Werden mehrere Frequenzenkom-
ponenten, eine fiir jedes zu messende Qubit, durch die Probe gesendet, so
wird der Zustand jedes Qubits in guter Naherung auf genau eine Kompo-
nente aufmoduliert. Der im Verlauf dieser Arbeit entwickelte Messaufbau
(Schaubild [3.10) verwendet schnelle D/A und A/D Signalwandler und
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digitale Signalverarbeitung um Signale mit einer beliebigen Anzahl an
Frequenzkomponenten innerhalb einer Bandbreite von etwa 1 GHz zu
erzeugen und erfassen, und kann somit eine beliebige Anzahl an Qubits
gleichzeitig auszulesen. Mit diesem Aufbau wurden Experimente an bis
zu sechs Qubits parallel durchgefiihrt, die im Abschnitt [4.3] vorgestellt
sind.

Die Berechnungen in Abschnitt [2.5] zeigen, dass Interferenz zwischen
den Auslesekanilen beinahe unabhingig von ihrer Gesamtzahl ist und
vorrangig von ihrem Frequenzabstand abhangt. Der wichtigste Parame-
ter der diesen Abstand nach unten begrenzt ist der Betriebsgiitefaktor
Q; der Schwingkreise, die stark an die Messleitung gekoppelt sind um
schnelles Auslesen zu gewahrleisten. Simulationen zufolge garantiert ein
Kanalabstand von zwei Linienbreiten ein Ubersprechen von weniger als
-10 dB und ein Abstand von 6,5 Linienbreiten ein Ubersprechen von weni-
ger als -20 dB. Die fiir Messungen verwendete Probe weist Linienbreiten
von etwa 6 MHz auf, was theoretisch bis zu 80 Kanale pro GHz Auslese-
bandbreite mit weniger als -10 dB Ubersprechen oder 25 Kanile pro GHz
mit weniger als -20 dB Ubersprechen erlaubt.

In der jetztigen Implementierung ist die Hauptschwache der Methode
die Tatsache, dass eine Einzelmessung nicht ausreicht um den Zustand der
Qubits sicher zu bestimmen. Derzeit erhéltliche Tieftemperaturverstar-
ker im Mikrowellenbereich weisen Rauschtemperaturen von mehreren
Kelvin auf und fiigen zu jedem Signalphoton mehrere Rauschphotonen
hinzu. Bei der Messung einzelner Schwingkreise konnte dieses Problem
durch parametrische Verstirker auf Basis von Josephson-Kontakten ge-
16st werden, die anndhernd quantenrauschbegrenzten Betrieb erreichen.
Leider liegt das Verstarkungs-Bandbreite-Produkt typischer parametri-
scher Verstarker nur bei wenigen MHz, so dass ein separater Verstarker
fiirjeden Auslesekanal vorgesehen werden miisste. Fiir Systeme mit vielen
Kanailen ist ein auf der Birfurkation eines nichtlinearen Schwingkreises
basierendes Ausleseverfahren, dhnlich der bei Transmon Qubits einge-
setzten Technik, eine praktikablere Losung. Hierbei rastet der Schwing-
kreis in einem von zwei klassischen Zustianden ein, abhdngig vom Quan-
tenzustand des Qubits, und behalt diesen bei. Der Auslesevorgang kann
dann tber die Lebensdauer des Qubits hinaus fortgesetzt werden, bis ein
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ausreichender Signal-Rauschabstand erreicht wird. Zukliinftige Verbesse-
rungen des Ausleseverfahrens weisen in diese Richtung.

Vor kurzem wurden neue Proben fertiggestellt, die sowohl eine gemul-
tiplexte Ausleseleitung als auch die Moglichkeit von Qubit-Qubit Wech-
selwirkungen mittels eines als Quantenbus betriebenen Schwingkreises
hoher Giite vorsehen. Diese Proben werden die Ausfiihrung von Zwei-
qubitgattern ermoglichen und damit der erste echte am KIT betriebene
Quantencomputer sein.
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