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ϭ IŶtƌoduĐioŶ

ClassiĐal aŶd QuaŶtuŵ CoŵputaioŶ

In the period of a few decades, computers have conquered the world.
Once bulky and expensive machines, they have evolved into everyday
devices that fit into the smallest pocket. Today, a daunting amount of
computational power is at anyones disposal.
It is debatablewhen the first computer (in a broad sense)was contrived

– the first known mechanical calculation aid, the Abacus, dates back
some 3,000 years; and first mechanical adding machines were built in
the 1600s. However all these machines were special-purpose devices,
applicable only to a very limited range of problems. The birth of the
universal computer can be fixed to the late 1930s, when Alan Turing
described a theoretical model[Tur37] that later became known as the
Turing machine. The Church-Turing thesis[Tur39] asserts that every
effectively calculable function can be computed by such a machine.
Computability does not imply that a computation can be done effi-

ciently, i.e. that the time andmemory required for the computation scales
atmost polynomiallywith the size of the input, and in fact it turns out that
many problems of practical interest can not be efficiently calculated on a
Turingmachine. In a 1981 talk[Fey82], Richard Feynmanpointed out that
the numerical simulation of quantum physics is among those problems.
The simplest argument that can be made to prove this is that the number
of matrix elements of a composite quantum system's wave function, and
therefore the memory required to store them, increases exponentially
with the number of constituent parts. Feynman proposed to overcome
this problem by mapping the system onto a lattice of two-state quan-
tum systems, later designated qubits, with configurable nearest-neighbor
interactions, a device he calls an universal quantum simulator.
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ͷ )ntroduction

In the course of the 1980s his idea was developed further, culminating
in theconceptof theuniversalquantumcomputer. Theuniversalquantum
computer isadeviceverysimilar toaTuringmachinebutempoweredwith
superposition and entanglement, two distinctively quantum features. In
the quantum theory of computation, it plays the same role the Turing
machine plays in the classical theory[Deu89]. A revised version of the
Church-Turing thesis due to David Deutsch[Deu85] concludes that it can
perfectly simulate every finitely realizable (quantum) physical system.
Like the Turing machine, the universal quantum computer is an ab-

stract concept rather than a construction blueprint of a physical device.
Todescribe theworkings of practical computers the circuitmodel[Deu89]
is more intuitive to use. It depicts the computer as a network of quan-
tum gates akin to a classical electrical circuit of logic gates, with each
gate representing a unitary transformation applied to a subset of qubits.
Only a handful of different gates, namely single qubit rotations and an
almost arbitrary two-qubit gate[Llo95], suffice to make the circuit model
universal.
By design, any classical algorithm will also run on a universal quan-

tum computer with equal efficiency. If this was the end of the story,
if quantum computation could not do significantly better than classical
computation in a problem of practical significance, no one would bother
contemplating it. Luckily, a few quantum algorithms are known to pro-
videanexponential speedupcompared toanyknownclassical alternative.
These have spawned interest in the field and promoted the construction
of real quantum computers.

DeĐoheƌeŶĐe

The main difficulty in the physical realization of quantum computers is
eliminating any undesirable interactions of its constituent qubits. Ulti-
mately, such interactions will distort the result of the computation by
altering the quantum state of the computer, a process called decoherence.
Decoherence can result from qubits interacting with their environment,
but also from the qubit interacting with other degrees of freedom of the
systemcomprising the qubits. This favors qubits ofmicroscopic size, such
as photons or trapped atoms, because these tend to have few internal
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ͷ )ntroduction

degrees of freedom and to be well isolated from their environment. Of
course, in order to operate the computer in the first place, it must be
possible to exert control on the individual qubits and establish mutual
interactions.
In this regard, superconducting qubits, such as the ones studied in

this thesis, outperform the microscopic systems. At sizes that can reach
hundreds of square micrometers, they can be designed and embedded
in an electronic circuit and manufactured complete with control lines
using standard lithograpic means. Inducing interactions between super-
conducting qubits is as simple as placing an actual wire between them.
Unfortunately, all this comes at the price of increased decoherence.
The first experiment showing coherence in a superconducting qubit,

published in 1999, saw coherent oscillations lasting up to 2 ns[NPT99].
Step by step, various experimental groups have improved this number,
working onmultiple fronts. Ever new variants of superconducting qubits
have been devised, with very different modes of operation despite being
based on the same basic circuit elements (a few examples can be found in
section 2.2). By exploiting symmetries and through enhanced shielding,
the influence of a noisy electromagnetic environment could be reduced.
The coupling to material defects has been lessened by lowering electric
fields in the placeswhere itmattered, and the defect densities themselves
have been lowered by advancingmaterials andmanufacturing processes.
Progress has been so tremendous[Ste11] that an equivalent of Moore's
law1 has been suggested for the decoherence times of superconducting
qubits[DiV12].At the timeof thiswriting, decoherence timeshavereached100 μ�[RGP+12] (ironically, at some expense of control over the qubit)
and further enhancements are expected.

QuaŶtuŵ Eƌƌoƌ CoƌƌeĐioŶ

Current coherence times preclude the execution even of moderately
complex algorithms and they are extremely short compared to the in-
verse error rate of classical computer memory, which is of the order of≫ × 10�� �[SPW09], almost eighteen orders of magnitude more. Even

1Gordon Moore predicted in 1965 that the number of components in classical
integrated circuits would double every two years[Moo65].
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this seemingly enormous time is not good enough – for 1GB of mem-
ory, it translates to one bit flip every other hour – so error correction
mechanisms are used to boost it even further.
At first glance, error correction of qubits appears to be impossible for

two reasons. First, the destructive nature of the quantum-mechanical
measurement process means that it must be done without knowing
either their original nor their decohered states. Second, a quantum
state is a fundamentally analog quantity, being described by a number
of continuous-valued probability amplitudes. Unlike the discrete bit flips
in the classical case, errors in these amplitudes grow continuously as
time passes. Perhaps surprisingly, quantum error correction is possible
nonetheless.
Peter Shor was the first to note this and proposed an encoding scheme

of one logical qubit in nine physical qubits[Sho95] that can perfectly
restore the original state if one of the physical qubits decoheres. The
crucial point of his idea is the realization that measuring the physical
qubits to find out if andwhere an error occured is not a problem – as long
as it does not reveal any information about the state of the logical qubit.
The measurement then takes care of the second problem by projecting
the initially continous-valued error onto one out of four possible discrete
outcomes. These correspond to no error and flips ࣅ180) rotations) about
the ൶, ൷ or ൸ axes, which can be corrected by applying the appropriate
unitary gate. In the following years, improved error correction codes
have been developed, of which the most notable ones are the seven qubit
code by Andrew Steane[Ste96] which maps many basic gates on the
logical qubit to simple operations on the physical qubits[Mer07], and the
surface codes based onwork byAlexei Kitaev[Kit03], which have a simple
structure and are more economic when the state of a large number
of qubits is to be protected. The latter accomplish an error tolerance
of 0.75% per gate[DiV09], which is in reach of current experimental
implementations.

Toǁaƌds Laƌge-sĐale QuaŶtuŵ Coŵputeƌs

Having reduced the role of decoherence from a show stopper to a mere
inconvenience, the next challenge is to increase the number of qubits
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working together in a quantum processor. All devices that have been
experimentally realized so far contain no more than a handful of qubits.
While this is sufficient to demonstrate basic quantum gates and even
simple algorithms, these processors are mere toys in the big picture of
quantum computation. To do better than the highly evolved classical
computers available today, at least a few tens of interacting qubits (not
including the overhead due to error correction) are necessary.
The path to larger quantum computers poses new experimental chal-

lenges, concerning the arrangement ofmany interacting qubits, the place-
ment of the increasing number of control and measurement connections
andmore. This thesis provides amodest contribution to this large field by
demonstrating a method to control and measure multiple qubits simul-
taneously, that can in principle be used to measure hundreds of qubits
through a single pair of wires.
The method is based on circuit quantum electrodynamics, the study

of interactions between artificial atoms (the qubits) with photons stored
in a microwave cavity. Due to these interactions, the energy required
to add a photon to the cavity depends on the state of the qubit, which
can hence be determined by scattering electromagnetic waves at the
cavity input. Many cavities with slightly different resonance frequencies
can be connected in parallel to a common microwave transmission line,
allowing an almost arbitrary number of qubits to be measured through
the line. Moreover, qubit-cavity interactions can be used to convert the
qubit state into a cavity state and back, which enables a cavity to serve
as a quantum memory or a means to transfer quantum states between
distant qubits. All these features make circuit quantum electrodynamics
a powerful architecture for quantum computation. It may become the
key element to the realization of large-scale quantum computers.
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Ϯ.ϭ SupeƌĐoŶduĐiǀitǇ aŶd the JosephsoŶ EffeĐt

In 2011, the physics community celebrated the 100th anniversary of
the discovery of superconductivity by H. Kammerlingh Onnes[Onn11].
Onnes found that the resistance of a number of metals vanished below a
certain, material-dependent (critical) temperature ൙� . Later experiments
on the persistence of circulating currents injected into (macroscopic)
superconducting rings found a lower bound of 10� years[Tin04], which
confirmed that the resistance of a superconductor was indeed exactly
zero.
A few years later, in 1933, Meißner and Ochsenfeld discovered the sec-

ond basic property of a superconductor, perfect diamagnetism[MO33].
While perfect conductance would by itself cancel any change of a mag-
netic field penetrating the superconductor by induction of eddy currents,
they found that in addition to that the superconductor would expell any
magnetic field already present when ൙� was crossed. The existence of
the reversible Meißner effect proved that superconductivity was a dis-
tinct thermodynamic state[Tin04]. A description of the superconducting
state reproducing these two effects was given by F. and H. London in
1935[LL35], but it was purely phenomenological and did not explain its
microscopic origin.
Measurements of the electronic heat capacity of superconductors found

an exponential ൙-dependence, which indicates the presence of an energy
gap in the excitation spectrum. This discovery led to the formulation
of a microscopic theory of superconductivity by Bardeen, Cooper and
Schrieffer in 1957[BCS57], which showed that a weak attractive force
between electrons can cause them to form a condensate of bosonic pairs
with zero total spin and momentum. The energy 2́ required to break
these so-called Cooper-pairs is equal to the gap energy, and its prediction
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͸ Building Blocks

by the BCS theory matched the measured value. The finite energy gap
also explains the lack of resistivity, because it inhibits scattering of the
Cooper-pairs at impurities.
Both the London equations and BCS theory did not take spacial vari-

ations of the properties of the material into account. This is considered
in the Ginzburg-Landau theory of superconductivity[GL50], which was
initially formulated as a phenomenological theory but later derived from
a generalized BCS theory[Gor59]. Ginzburg and Landau declared a com-
plex parameterည�൰⃗�, which serves as a macroscopic wave function of the
charge carriers and an order parameter of the superconducting phase
transition. It is linked to the local density of Cooper-pairs in the material
via ൬��൰⃗� = |ည�൰⃗�|�. The theory also introduces the coherence length �,the characteristic length scale at which ည�൰⃗�may vary without excessive
increase of the thermodynamic energy of the condensate, typically a few100��.
The finite coherence length implies that at the interface of a supercon-

ductor (S) and a normalmetal (N) or insulator (I), some Cooper-pairswill
be present inside the non-superconducting material. Furthermore, in a
sandwich of two superconducting electrodes with a very thin interposed
N or I layer, there would be interference of the macroscopic wave func-
tions of the two superconductors. B. Josephson predicted[Jos62] that a
supercurrent ൎ� = ൎ� ������ (2.1)
would flow through such a structure even in the absence of an external
voltage. ൎ� is the maximum supercurrent that the structure can support
and depends on its geometry. � = a�g�ည�� ࢿ a�g�ည�� is the differenceof the phases of the wave functions of the superconductors. Josephson
further predicted that in the presence of a voltage difference ൛ between
the electrodes, their phase difference would evolve according to

d�
d൲ = 2൤൛߷ = 2ဂ൛Φ� . (2.2)

Eqns. 2.1 and 2.2 are called the first and second Josephson equations,
respectively.
If an alternating current is applied, a Josephson junction can be con-

sidered a non-linear inductor. Comparing the Josephson equations to the
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͸.͸ The Flux Qubit

response of a linear inductor,൛ = ൑ࢿ dൎ/d൲, the self-inductance ൑�, whichdepends on the phase drop across the junction, can be derived as൑���� = Φ�2ဂൎ� ������ . (2.3)
By controlling the phase drop �, the inductance of the junction to be
adjusted. Unlike ordinary inductors, Josephson junctions can have a
negative inductance. Aseries junctioncanthusreducethetotal inductance
of a circuit.
The Josephson energy stored inside a junction can be derived from൚� = ∫ ൎ�൛d൲, Eq. 2.1 and Eq. 2.2, yielding൚���� = ��[1 ࢿ ������], (2.4)

with �� = ߷ൎ�/2൤. The constant of integration was chosen such that൚���� has a minimum of 0 in the case of a vanishing phase difference,
corresponding to the situation in a bulk superconductor.
Thegeometric structureof a junction resembles thatof aplate capacitor.

Therefore, the total energy stored in the junction must also include the
electrostatic energy of the charges stored on the capacitor plates,

൙ = ൖ�2ൈ = ���൓� ࢿ ൓���.
Here, �� = ≪൤�/2ൈ, is the Coulomb energy of a single Cooper pair stored
on the capacitor, called the charging energy. ൓� is the integer number
of pairs that have tunneled through the junction and ൓� is an externally
applied charge bias, called gate charge.

Ϯ.Ϯ The Fluǆ Quďit

Ϯ.Ϯ.ϭ BasiĐ TǇpes of SupeƌĐoŶduĐiŶg Quďits

As we have seen in section 1, a qubit is a quantum systemwith two states
that can be distinguished by measurement. Few microscopic implemen-
tations of qubits, such as photonic and nuclear spins, are indeed naturally
occuring two-level systems. But natural two-level systems are rare and
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all other approaches rely on a nonlinear energy spectrum to isolate two
computational basis states. For the realization of a qubit in an electric
circuit, Josephson junctions are an evident choice, because they are the
only known nonlinear and nondissipative electrical components[ZB07].
The three basic types of superconducting qubits are the charge qubit, the
phase qubit and the flux qubit.
The charge qubit or Cooper-pair box[BVJ+98]; [NPT99]was the first ex-

perimentally demonstrated superconducting qubit. The computational
states of the charge qubits are states with a well-defined number of
Cooper-pairs on a superconducting island separated by a Josephson junc-
tion. In order to distinguish the charge of a single Cooper-pair, the island
must be sufficiently small, such that �� घ �� and the electrostatic termdominates the total energy of the system. The qubit is best operated
with a half-integer gate charge, where the states |൓� = ൓� ࢿ �� ૕ and|൓� = ൓� � �� ૕ are degenerate. The degeneracy is lifted by the Josephsonenergy ��, which sets the frequency of the qubit transition. The Cooper-pair box is very sensitive to charge noise and has largely been replaced
by an improved variant, the transmon qubit[SHS+07].
Phase qubits[MNA+02]; [YHC+02] operate in the opposite regime,�� घ �� . A phase qubit is realized as a single junction which is current-

biased. The bias current skews the ���� potential with a linear term,
resulting in the so-called tilted washboard potential. The tilt is adjusted
such that only 3–10 states remain in each of the local minima of൚�, whichcan be approximated as anharmonic oscillators. The computational basis
can be formed by the lowest two states in any minimum. Current imple-
mentations of the phase qubit provide the bias by enclosing the junction
in a flux-biased loop, which allows improved decoupling of the qubit from
environmental noise.
Originally, the flux qubit[FPC+00] consisted also of a single junction in

a closed loop. The magnetic energy stored in the loop inductance adds a
parabolic term to the potential. At a flux bias close to Φ�/2, ൚� has twodegenerate minima separated by a tunnel barrier. The tunneling matrix
element of the ground states of the two minima lifts their degeneracy,
the lowest two states are used as qubit states. In practise, this type of
qubit suffers from strong dephasing, because the relatively large loop
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Figuƌe Ϯ.ϭ: CiƌĐuit sĐheŵaiĐ of a ŵagŶeiĐallǇ ďiased thƌee-juŶĐioŶ fluǆ Ƌuďit.
The thiƌd juŶĐioŶ is Đalled the alpha juŶĐioŶ aŶd has aŶ ࿳ iŵes loǁeƌ Đƌiial
ĐuƌƌeŶt thaŶ the otheƌ juŶĐioŶs.

inductance results in strong magnetic fields that couple the qubit to
the environment. This problem was solved by the three-junction flux
qubit, which essentially uses the additional junctions to replace the loop
inductance.

Ϯ.Ϯ.Ϯ ClassiĐal DesĐƌipioŶ of the Thƌee-JuŶĐioŶ Fluǆ Quďit

The three-junction flux qubit[MOL+99], commonly simply called the flux
Qubit, consists of a superconducting ring interrupted by three Josephson
junctions,whereoneof the junctions isbya factor࿳ smaller than theother
two. Since the macroscopic wave function ည�൰⃗� ≡ |ည�൰⃗�| ����൧��൰⃗�� of
the superconductormust be single-valued, the phase��൰⃗� collectedwhen
going once around the ring must be an integer multiple of 2ဂ, which
imposes the flux quantization condition,

∑� �� � 2ဂ൥ = 2ဂ൓, (2.5)

where �� is the phase difference across the i'th junction, ൥ = Φ���/Φ� isthe frustration of the loop generated by an external magnetic field, and൓
is the number of flux quanta trapped inside the loop. A circuit schematic
of the qubit is shown in Fig. 2.1.
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͸.͸ The Flux Qubit

Combining the potential energy stored in each junction, Eq. 2.4, with
the flux quantization condition, Eq. 2.5, yields the total potential energy
of the qubit loop,൚�/�� = 2 � ࿳ ࢿ ������� ࢿ ������� ࢿ ࿳ ����2ဂ൥ ࢿ �� ࢿ ���, (2.6)
where �� is the Josephson energy of each of the large junctions. It is
assumed that the energy stored in the magnetic field generated by the
geometric inductance of the loop is negligible compared to the energy
stored inside the junctions. This is equivalent to the junction inductance൑�, Eq. 2.3, being much larger than the geometric inductance ൑��� of thequbit loop.
The potential is independent of the number of flux quanta trapped

in the loop and has two internal degrees of freedom, �� and ��. It is2ဂ-periodic in both, seen from Eq. 2.6 or Fig. 2.2. A flux qubit is formed
for 0.≫ < ࿳ < 1.0, where the potential describes a lattice of isolated
double-wells, composed of twominima and a tunneling barrier along the�� = �� ��� 2ဂ axis in each �2ဂ�� unit cell. At ࿳ = 1, the potential
barriers between individual unit cells and the tunneling barrier between
the doublewells have the same height and the systembecomes effectively
two-dimensional. For ࿳ < 0.≫, the tunneling barrier vanishes completely,
resulting in a crossover from a lattice of tunneling systems to a lattice of
ordinary anharmonic oscillator potentials.
Classically, the two lowest states of the flux qubit are located at the

minima of the double wells, which are degenerate at half frustration,൥ = 0.≫. At the minima, the phase difference across the junctions is���, ��� = ,ࣄ��± ,�ࣄ� where ࣄ� can be calculated[MOL+99] to be����ࣄ = 12࿳ . (2.7)
This results in a supercurrent flowing around the loop, which differs in
sign between the two wells. Its magnitude can be calculated by plugging
Eq. 2.7 into the first Josephson relation Eq. 2.1,

ൎ� = ൎ� �ࣄ����� = ൎ�√1 ࢿ 1≪࿳� . (2.8)
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At ൥ different from 0.5, the magnetic moment generated by the current
circulating in the loop couples to the external magnetic field used to
bias the circuit and tilts the double well potential. In this case, the
two persistent current states are no longer degenerate and their energy
difference is ߷ဍ = 2ൎ��Φ��� �Φ�/2ࢿ = 2ൎ�Φ��൥ ࢿ 0.≫�. (2.9)
To describe the dynamics of the flux qubit system, the kinetic energy of

the circuit has to be taken into account. The second Josephson relation,
Eq. 2.2, hints that this is equal to the energy of the charges stored on
the islands between the Josephson junctions. If the capacitances of the
islands to ground can be neglected in comparison to the capacitances
across the junctions, the kinetic energy term becomes simply

൙ = 12∑� ൈ�൛�� = 12 (Φ�2ဂ)� (�̇� �̇�) ⋅ � ⋅ (�̇��̇�) .
A coordinate rotation from �� and �� to �� = ��� � ���/2 and �� =��� ࢿ ���/2, diagonalizes the �matrix without complicating ൚�,൚�/�� = 2 � ࿳ ࢿ 2 ������� ������� ࢿ ࿳ ����2ဂ൥ ࢿ 2���.
Ϯ.Ϯ.ϯ QuaŶtuŵ-MeĐhaŶiĐal DesĐƌipioŶ

From ൙ and ൚�, the classical Lagrangian and Hamiltonian are derived,
and by considering the classical phases and their conjugate momenta
as operators, the transition to a quantum mechanical description of the
system is made[OMT+99]. This results in the quantum Hamiltonian് = ൕ��2൒� � ൕ��2൒� � ൚�, (2.10)

where the momentum operators can be written as ൕ� = ��൧߷ဌ/ဌࢿ andൕ� = ,��൧߷ဌ/ဌࢿ the mass terms are ൒� = 2ൈ�Φ�/2ဂ�� and ൒� =2ൈ�1�2࿳��Φ�/2ဂ��, andൈ is the capacitanceofoneof the large junctions.The eigenenergies and eigenstates of this Hamiltonian can be found
in a phase basis by truncating ് to a discrete grid of points in ���, ���
14



͸.͸ The Flux Qubit
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Figuƌe Ϯ.ϯ: NuŵeƌiĐal siŵulaioŶ of the steadǇ-state pƌopeƌies of a fluǆ Ƌuďit.
The paƌaŵeteƌs aƌe�� = 1≪0GHz, �� = 2.8 GHz aŶd ࿳ = 0.6≪≫. ;topͿ EŶeƌgies
of thefiǀe loǁest-lǇiŶg statesof theHaŵiltoŶiaŶ. Athalf fƌustƌaioŶ, the tƌaŶsiioŶ
eŶeƌgǇ ďetǁeeŶ the gƌouŶd state aŶd the fiƌst eǆĐited state ƌeaĐhes a ŵiŶiŵuŵ
of ́ = ≫.9 GHz. The seĐoŶd eǆĐited state is 17GHz higheƌ thaŶ the fiƌst eǆĐited
state, ŵakiŶg the tƌuŶĐaioŶ to tǁo 'Ƌuďit' states ǀeƌǇ aĐĐuƌate. ;ďotoŵͿ Waǀe
fuŶĐioŶs of the Ƌuďit gƌouŶd aŶd fiƌst eǆĐited states at half fƌustƌaioŶ. The
gƌouŶd state is a sǇŵŵetƌiĐ ĐoŵďiŶaioŶ of the tǁo peƌsisteŶt ĐuƌƌeŶt states,
the fiƌst eǆĐited state is aŶ asǇŵŵetƌiĐ ĐoŵďiŶaioŶ. Both states haǀe zeƌo Ŷet
ĐiƌĐulaiŶg ĐuƌƌeŶts. Solid ĐoŶtouƌs deŶote ညࠄ > 0, dashed ĐoŶtouƌs ညࠄ < 0.
The distaŶĐe ďetǁeeŶ ĐoŶtouƌs is Ϭ.ϬϮϱ.
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͸ Building Blocks

space and numerical diagonalization of the resulting Hamiltonianmatrix,
where effects of the other unit cells are included by considering periodic
boundary conditions. Alternatively, the problem can be treated in the
charge basis by limiting the number of charges that can be on each island,
which are naturally discrete. In this case, the basis states are plane
waves in �� and ��. The phase basis solutions are plotted vs. magnetic
frustration of the qubit loop in Fig. 2.3, for the design parameters of one
of the manufactured qubits.
At half frustration, thequbit potential is symmetric and the twoclassical

persistent current states are degenerate. In the quantum-mechanical
description, this degeneracy is lifted by hybridization of the persistent
current states due to the finite height of the tunneling barrier. The
height of the tunneling barrier is defined by the geometry of the qubit
junctions, and so the hybridization energy, which is at the same time
the minimum transition energy between the qubit states, is fixed during
device fabrication. This energy is commonly called the qubit gap and
labelled ߷́, in reference to the terminology used in the description of
tunneling systems.
Not too far from half frustration, the coupling of the current circulating

in the loop adds an additional term called the asymmetry energy ߷ဍ.
This is essentially the same as the classical asymmetry, Eq. 2.9, with the
classical ൎ� replaced by the expectation value of the circulating current
for the relevant states.
Far from half frustration, multiple quantum states are allowed in the

lowerwell that are energetically below the ground state of thehigherwell,
and the classical persistent current states can no longer be identifiedwith
the two qubit states.

Ϯ.Ϯ.ϰ TƌuŶĐaioŶ to tǁo Leǀels

From Fig. 2.3, it can be seen that the energy required to access the second
excited state is several times larger than the transition energy between
the ground and first excited states in the vincinity of half frustration.
Thus, a flux qubit is approximated very well by its two lowest states. A
two-level Hamiltonian can be constructed from the gap and asymmetry

16
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Figuƌe Ϯ.ϰ: NuŵeƌiĐal siŵulaioŶ of the peƌsisteŶt ĐuƌƌeŶt iŶ the Ƌuďit loop foƌ
the gƌouŶd aŶd fiƌst eǆĐited states of a fluǆ Ƌuďit. At ൥ = 0.≫, ďoth states aƌe
aŶ eƋual supeƌposiioŶ of the ĐlassiĐal ĐloĐkǁise aŶd ĐouŶteƌ-ĐloĐkǁise states
aŶd the Ŷet ĐiƌĐulaiŶg ĐuƌƌeŶt ǀaŶishes. The paƌaŵeteƌs aƌe �� = 1≪0GHz,�� = 2.8 GHz aŶd ࿳ = 0.6≪≫.

parameters derived in the previous section, taking the persistent current
states as the basis states. It reads്̃ = ߷2́စ̃� � ߷2ဍစ̃� = ߷2 (ဍ ́́ (ဍࢿ , (2.11)

where စ� and စ� are the first and third Pauli matrices.
This Hamiltonian is diagonalized by a unitary rotation around the ൷

axis, ൚ = ����൧�စ̃�� = ( ��� � ��� ࢿ� ��� � ��� �) , (2.12)

byanangleof �a� 2� = ́/ဍ. In therotatedbasis, theHamiltonianbecomes

് = ൚� ്̃ ൚ = ߷2√́� � ဍ� စ� (2.13)

where the qubit transition frequency is identified as ဋ� = √́� � ဍ�.
17



͸ Building Blocks

The qubit states, written in the circulating current basis, are|࠾૕ = ��� �|൪૕ � ��� �|൰૕ ૕ࡀ|(2.14) = ࢿ ��� �|൪૕ � ��� �|൰૕. (2.15)

At thesymmetrypoint,� = ±ဂ/≪andbothqubit statesaresuperpositions
of the clockwise and counter-clockwise persistent current states with
equal probability amplitudes, resulting in zero net current flowing in
the loop in both states. At large asymmetries, � ࠿ 0 and the qubit
states become equal to the persistent current states. In Fig. 2.4, the
expectation values of the circulating current for the two lowest state of
the full Hamiltonian, Eq. 2.10, are plotted.

Ϯ.Ϯ.ϱ DƌiǀeŶ Quďit

An external drive can be introduced to the qubit by inductive coupling to
amicrowave field. Themicrowave signal presents an oscillatingmagnetic
field to the qubit, which periodically perturbes the asymmetry energy. It
is thus proportional to a စ� operator in the basis of the persistent currentstates, ്̃ ����� = െ2 ����ဋ�൲ � ��စ̃�, (2.16)

where െ is the amplitude of the drive. The drive is rotated into the qubit
eigenbasis by application of the unitary transformation Eq. 2.12,

്����� = ൚� ്̃ �����൚ = െ2 ����ဋ�൲ � �� [ဋ́�စ� � ဍဋ�စ�] .
The qubit+driving Hamiltonian can be further simplyfied by a transfor-

mation into a frame rotating with the drive, by ൚ = ����൧ဋ�൲စ��. Due tothe explicit time-dependence of this transformation, an additional term in
the transformed Hamiltonian is required to preserve the time-evolution
of the system in the rotating basis,്� = ൚��൲�്൚�൲�� ൧߷൚��൲�ൣ൚�൲�/ൣ൲.
18



͸.͸ The Flux Qubit

After simplification, the transformed Hamiltonian of the driven system
becomes ്� =12߷�ဋ� ࢿ ဋ��စ��െ≪ ဋ́� [����2ဋ�൲ � �� � ������] စ��െ≪ ൧ ဋ́� [����2ဋ�൲ � �� ࢿ ������] စ��െ2 ဍဋ� ����ဋ�൲ � ��စ�,
which is still explicitly dependent on time.
If the driving frequency is close to the qubit frequency, it can be argued

that the time-dependent terms in ്� will average out over one period
of the slow dynamics of the qubit in the rotating frame and can thus be
dropped. This is simplification is called the rotating wave approximation
and yields്��� = 12߷�ဋ� ࢿ ဋ��စ� � െ≪ ဋ́� [ ������ စ� � ൧ ������ စ�] .
The Schrödinger equation associated with this time-independent Hamil-
tonian is solved by ൚�൲� = ,�߷/൧്൲ࢿ���� which is nothing more than a
rotation of the qubit state vector in three dimensions,

൚�൲� = ൧Ω⃗൲ࢿ���� ⋅ စ⃗/2�, Ω⃗ = ⎛੅
���ℏ�� ���������ℏ�� ������ဋ� ࢿ ဋ�

੆⎠ , (2.17)

where Ω⃗ defines the rotation axis and ߷စ⃗/2 is the angular momentum
operator of a spin 1/2 system.
When the drive is resonant with the qubit transition frequency, the

state vector describes rotations around the ൶ or ൷ axis depending on the
starting phase of the drive. The rotation frequency,Ω = |Ω⃗| = െ́/2߷�ဋ� (2.18)
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Figuƌe Ϯ.ϱ: The BloĐh Spheƌe. Puƌe eŶseŵďles aƌe ƌepƌeseŶted ďǇ a poiŶt oŶ the
suƌfaĐe of the spheƌe, ŵiǆed eŶseŵďles ďǇ a poiŶt iŶ its iŶteƌioƌ. The aziŵuthal
aŶgle � desĐƌiďes the eŶeƌgǇ ĐoŶteŶt of the sǇsteŵ, the polaƌ aŶgle� the ƌelaiǀe
phase ďetǁeeŶ the gƌouŶd aŶd eǆĐited state ĐoŵpoŶeŶts.

is known as the Rabi frequency. When the drive is off-resonant, the state
vector additionally precesses around the quantization axis of the rotating
frame, and the rotation frequency is increased toΩ = √(െ́/2߷�ဋ�)� � (ဋ� ࢿ ဋ�)�, (2.19)
called thegeneralizedRabi frequency. Aqubit initially in itsgroundstate ૕࠾| that isdrivenoff-resonantlywill never reach theexcitedstate ,૕ࡀ| because
the rotation axis is tilted towards the ൸ axis. By explicitly evaluating the
rotationmatrix corresponding to Ω⃗, theminimumprojection on the ൸ axis
can be found to be,

૔စ�૕��� = �ဋ� ࢿ ဋ��� ࢿ ( ���ℏ��)��ဋ� ࢿ ဋ��� � ( ���ℏ��)� . (2.20)

Ϯ.Ϯ.ϲ BloĐh Spheƌe

The Bloch sphere[NC04] is an intuitive tool to visualize the evolution of
the state vector of a two-level quantum system. Any such state can be
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͸.͸ The Flux Qubit

describedbyasuperposition |ည૕ = ࿳|࠾૕�࿴|ࡀ૕, where࿳ and࿴ arecomplex
numbers. Because |࿳|��|࿴|� = 1must hold to insure normalization and
because global phase factors of awave function have nophysicalmeaning,
only two parameters remain,|ည૕ = ൤���/� ૕࠾|�2/����� � ൤��/� ,૕ࡀ|�2/�����
which can be understood as the azimuthal and polar angles of a point
on the surface of a sphere, Fig. 2.5. The Bloch vectors corresponding to
the eigenstates | ,ࡂ ൶૕ and | ,ࡂ ൷૕ of the စ� and စ� operators point, quite
naturally, along the ൶ and ൷ axes.
TheBloch sphere can also visualize the density operator of an ensemble

of two-level systems. The density operator of an ensemble of pure states
is constructed ဃ = �ࢾ ��|൧૕૔൧|, where �� is the probability of finding thesystem in state |൧૕. Because this operator is Hermitian and the sum of the
probabilities of finding the system in any of the states must be one, the
operator can be decomposed into

ဃ = 12 �စ� � ൰⃗ ⋅ စ⃗� , (2.21)

where စ� is the identity operator of a two-state system and ൰⃗ is a vector
in �ࠅ with ൰⃗� ≤ 1, known as the Bloch vector. ဃ describes a pure state,ဃ� = ဃ, if and only if ൰⃗ is a unit vector and consequently represents a point
on the sphere. Mixed states are associated with points in the interior of
the sphere. The components ൰� of ൰⃗ are equal to the ensemble averages૔စ�૕ = T� �ဃစ�� of the spin vector.
Ϯ.Ϯ.ϳ Quďit iŶ a Dissipaiǀe EŶǀiƌoŶŵeŶt

In a closed system, the time-evolution of the density operator of a
quantum-mechanical system is governed by the von Neumann equa-
tion[Sha94] ဌဃ�൲�ဌ൲ = ࢿ ൧߷ [്�൲�, ဃ�൲�] . (2.22)
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For a two-level system (qubit)with a density operator in the formEq. 2.21
and the general time-dependent Hamiltonian്�൲� = Ω⃗�൲� ⋅߷စ⃗/2, the von
Neumann equation simplifies to

(ဌ൰⃗ဌ൲ ) ⋅ စ⃗ = (Ω⃗ × ൰⃗) ⋅ စ⃗, (2.23)

where the identity �ൠ⃗ ⋅ စ⃗��ൡ⃗ ⋅ စ⃗� = �ൠ⃗ ⋅ ൡ⃗�စ� � ൧စ⃗ ⋅ �ൠ⃗ × ൡ⃗� was used andboth sides were multiplied by 2. If ൰⃗� = 1 (ဃ describes a pure state),
Eq. 2.23 generates a rotation of the state vector identical to the rotation
induced by the propagator Eq. 2.17.
Themost general way tomodel a qubit coupled to its environment is by

including the environmental and interaction terms in the system density
operatorဃ��� andHamiltonian്���. Inmost, if notall, interestingcases the
solution of this task is infeasible both analytically and numerically. Under
a number of conditions[Kos72]; [Lin76], this problem can be solved in a
less computationally expensivewaybyexplicitly addingdissipation terms
toEq. 2.22. The resultingequation is knownas theKossakowski–Lindblad
equation or Lindblad master equation,ဌဃ�൲�ဌ൲ = ࢿ ൧߷ [്�൲�, ဃ�൲�] � 12∑� ൑�ဃ�൲� (2.24)

where ဃ = T� ����ဃ����, ് = T� ����്����, and൑�ဃ�൲� = 2ൈ�ဃ�൲�ൈ�� ࢿ ဃ�൲�ൈ��ൈ� ࢿ ൈ��ൈ�ဃ�൲�.
Coherent processes introduced by the environment are included in the
reduced Hamiltonian ്, incoherent processes are described by the ൑�.The operators ൈ� = √࿵�െ� are called collapse operators, with െ� being
the operators through which the system interacts with its environment
and ࿵� being interaction rates.
In the case of a qubit, energy relaxation is modeled by the lowering

operator, ൈ� = √࿵�စ� and dephasing, being caused by fluctuations of the
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͸.͸ The Flux Qubit

level splitting, is modeled by ൈ� = √࿵�စ�. Explicit evaluation of the ൑�for a density matrix in the form Eq. 2.21 yields, after some algebra,

൑�ဃ = �࿵ࢿ [12൰�စ� � 12൰�စ� � �൰� ࢿ 1�စ�]൑�ဃ = �࿵ࢿ [൰�စ� � ൰�စ�] .
From these expressions, one can already see that relaxation affects all
three spin components while dephasing affects only the ൶ and ൷ compo-
nents.
In the case of the qubit Eq. 2.23, the Lindblad master equation reads

(ဌ൰⃗ဌ൲ ) ⋅ စ⃗ = (Ω⃗ × ൰⃗) ⋅ စ⃗ࢿ [(࿵�2 � ࿵�) ൰�စ� � (࿵�2 � ࿵�) ൰�စ� � ࿵��൰� ࢿ 1�စ�] . (2.25)
When separated into the three spacial components by calculating the
ensemble averages ૔စ�૕, Eq. 2.25 reduces to the Bloch equations[Blo46],ဌ൒�ဌ൲ = ࿵�൒⃗ × േ⃗�� ࢿ ൒�൙�ဌ൒�ဌ൲ = ࿵�൒⃗ × േ⃗�� ࢿ ൒�൙� (2.26)ဌ൒�ဌ൲ = ࿵�൒⃗ × േ⃗�� ࢿ ൒� �൒�൙ࢿ ,
of a spin 1/2 particle in a magnetic field if ൒⃗ = ࿵൑⃗ = ࿵߷૔စ⃗૕/2 andേ⃗ = ,Ω⃗/࿵ࢿ where ࿵ is the gyromagnetic ratio, are identified. The effect
of the dissipation terms is obvious in this form. The 1/൙� terms in
the first two equations result in an exponential decay of the ൶ and ൷
components of the spin expectation value towards 0with a time constant
of ൙�. After an infinite time, a single measurement in these directions will
return ±߷/2 with equal probability. The 1/൙� term in the last equation
results in a decay of the ൸ component of the spin towards൒�/࿵with time
constant ൙�. By not including excitation terms in the Lindblad equation
zero temperature and a ൙� decay towards the spin up state was assumed,

23



͸ Building Blocks

and thus ൒� = ࿵߷/2. Further comparison of Eqns. 2.25 and 2.26 shows
that the longitudinal relaxation time ൙� is the inverse of the interactionrate ࿵� and the transversal relaxation time ൙� = ࿵��� = �࿵�/2 � ࿵���� isa combination of both rates. In the absence of pure dephasing ࿵� is zero
and the transversal relaxation time becomes ൙� = 2൙�.
Ϯ.ϯ MiĐƌoǁaǀe ResoŶatoƌs

Microwave resonators are the second basic component used in this work.
Resonators are linear resonant circuits built from resistors, inductors and
capacitors that form an harmonic oscillator. In electrical circuits, their
main use is filtering – close to resonance, they pass or block signals in
a chosen frequency range. In qubit circuits, this property can be used
to reject environmental noise. Resonators also store energy in their
inductor and capacitor. This is exploited in quantum information devices
to store qubit states and transfer them between different qubits that
are connected to the same resonator. In this section, the steady-state
electronic properties of microwave resonators will be reviewed from a
classical point of view. The dynamics of qubit-resonator systems in the
quantum regime will be discussed in the following section 2.4.

Ϯ.ϯ.ϭ Seƌies aŶd Paƌallel ResoŶaŶt CiƌĐuits

Close to its resonant frequency, the electrical response of any resonator
can be modeled by either a serial or a parallel combination of a resistorൗ, inductor ൑ and capacitor ൈ. Schematics of these two cases are shown
in Fig. 2.6 a) and b).
The impedance ൟ seen at the terminals of a series RLC circuit depends

on the frequency of the input signal according toൟ = ൗ � ൧ဋ൑ ࢿ ൧ 1ဋൈ . (2.27)
The expression for parallel RLC circuits is very similar if the admittance൞ = ൟ�� instead of the impedance of the device is considered,ൟ�� = 1ൗ ࢿ ൧ 1ဋ൑ � ൧ဋൈ (2.28)
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൑ൗൈ
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൑ൗൈ
a) b) c)
Figuƌe Ϯ.ϲ: SĐheŵaiĐs of aͿ a seƌies RLC ĐiƌĐuit, ďͿ a paƌallel RLC ĐiƌĐuit aŶd ĐͿ a
ĐiƌĐuit ĐoŶŶeĐted to aŶ eǆteƌŶal load.

In both cases, resonance occurs at ဋ� = 1/√൑ൈ, where ൟ becomes real.
An important parameter of a resonant circuit is its quality factor ൖ.

Higher ൖ means lower loss and increased lifetime of photons inside the
resonator. It is defined as[Poz05]

ൖ = ဋ ����g� ������ �� �h� �����a����a�� �f ����g� ���� f��� �h� �����a��� .
To be useful in applications, the resonator must be coupled to some
external circuitry, depicted as a load resistor ൗ� in Fig. 2.6 c). One
distinguishes between loss caused by dissipation inside the resonator
and loss due to the coupling. Loss caused by dissipation inside the
resonator is characterized by the ``internal'' or ``unloaded'' quality factorൖ�. Loss caused by the coupling is characterized by the ``external'' qualityquality factor ൖ� . The combined loss is characterized by the ``loaded'',
quality factor ൖ�. Evidently, ൖ� can be calculated from ൖ��� = ൖ��� �ൖ��� .
The ratio between ൖ� and ൖ� the is known as the coupling factor ࿼. Using࿼, the conversion between the various ൖs is achieved by ൖ� = ࿼ൖ� =�࿼ � 1�ൖ�. In the cases of ࿼ < 1, ࿼ = 1 and ࿼ > 1, the resonator is calledundercoupled, critically coupled and overcoupled, respectively.
At resonance, the average energy stored in the inductor and capacitor

areequal and their total equals� = ൑૔ൎ�� ૕ = ൈ૔൛�� ૕. In themodel circuitsof
Fig. 2.6, internal loss is affected by dissipation inside the internal resistor,൜ = ൗ૔ൎ��૕ = ૔൛�� ૕/ൗ, and external loss by dissipation inside the load
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resistor. In the case of seriesൗ൑ൈ circuits, the currents ൎ� and ൎ� are equal,and the internal and external quality factors and the coupling factors areൖ� = ဋ�൑ൗ = 1ဋ�ൗൈ , ൖ� = ဋ�൑ൗ� a�� ࿼ = ൗ�ൗ . (2.29)
In the case of parallel ൗ൑ൈ circuits, the voltages ൛� and ൛� are equal,
resulting inൖ� = ൗဋ�൑ = ဋ�ൗൈ, ൖ� = ൗ�ဋ�൑ a�� ࿼ = ൗൗ� .
For |ဋ ࢿ ဋ�| ग ဋ�, the expressions 2.27 and 2.28 can be simplified toൟ ≈ ൗ (1 � 2൧ൖ�ဋ ࢿ ဋ�ဋ� ) = ൗ�1 � 2൧ൖ�࿶� (2.30)

in the case of series circuits andൟ�� ≈ 1ൗ (1 � 2൧ൖ�ဋ ࢿ ဋ�ဋ� ) = 1ൗ �1 � 2൧ൖ�࿶� (2.31)
in the case of parallel circuits. In these expressions, the normalized
frequency deviation from resonance ࿶ = �ဋࢿဋ��/ဋ�was introduced. Inboth cases, the expression for lossy resonators can be obtained from the
corresponding expressions for lossless resonators (not explicitly shown)
through the substitution of ဋ� by ဋ��1 � ൧/2ൖ��. It is often useful to
express Eqns. 2.30 and 2.31 in terms of the load impedance ൗ� and the
quality factors ൖ� and ൖ� , as these quantities are more easily accessible
by measurement, ൟ ≈ ൗ� (ൖ�ൖ� � 2൧ൖ�࿶) , (2.32)

ൟ�� ≈ 1ൗ� (ൖ�ൖ� � 2൧ൖ�࿶) . (2.33)

Ϯ.ϯ.Ϯ TƌaŶsŵissioŶ LiŶes

InDCelectronics, awire is just a conductor that connects twocomponents,
equalizing the voltages on both ends wire. At high frequencies, this is no
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Figuƌe Ϯ.ϳ: Luŵped eleŵeŶt ŵodel of a pieĐe of tƌaŶsŵissioŶ liŶe. ൑� aŶd ൈ�
defiŶe the ĐhaƌaĐteƌisiĐ iŵpedaŶĐe of the liŶe, ൗ� aŶd ൌ� iŶtƌoduĐe ĐoŶduĐtoƌ
aŶd dieleĐtƌiĐ loss.

longer true: once the length of a wire becomes a considerable fraction of
the wave length of the electrical signal it carries, the variation of current
and voltage along it must be considered, it becomes a circuit component.
In microwave engineering, a wire (or rather a pair of wires where one is
the voltage reference for the other) is called a transmission line and has a
variety of uses apart from simply carrying a signal between components.
Amongother things, it canbeusedasaphase shifter, impedanceconverter,
filter and, as we will see, a resonator. In fact, the lowest-loss resonators
that can be realized in planar circuits are based on superconducting
transmission lines.
Electromagnetic waves propagate along a transmission line according

to the Telegrapher's equations[Poz05],ൣ൛�൸�ൣ൸ = ࢿ �ൗ� � ൧ဋ൑��ൎ�൸�,ൣൎ�൸�ൣ൸ = ࢿ �ൌ� � ൧ဋൈ��൛�൸�,
where ൗ� and ൑� are the resistance and inductance of the line per unit
length, and ൈ� and ൌ� are the capacitance and conductance of the signal
conductor to the reference conductor of the line, as shown in Fig. 2.7.
These two equations are solved simultaneously by plane waves൛�൸� =൛�� �࿵൸ࢿ���� � ൛�� ����࿵൸�,ൎ�൸� =ൎ�� �࿵൸ࢿ���� ࢿ ൎ�� ����࿵൸�, (2.34)

where ࿵ = ࿳ � ൧࿴ = √�ൗ� � ൧ဋ൑���ൌ� � ൧ဋൈ��
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is called the complex propagation constant. Its real part ࿳ represents
voltage loss through dissipation in the resistors ൗ� and leakage of current
to the ground conductor through ൌ�. Its imaginary part ࿴ is the wave
vector of the electromagnetic radiationon the line. In the case of a lossless
line ဋ�� = ࿴ = ဋ√൑�ൈ� ⇒ �� = 1/√൑�ൈ� (2.35)
yields the phase velocity on the line.
The ratio of voltage to current that the line requires a wave travelling

in a certain direction to have is its characteristic impedance,൛��ൎ�� = ൛��ൎ�� ≡ ൟ� = √ൗ� � ൧ဋ൑�ൌ� � ൧ဋൈ� . (2.36)

If a load with an impedance of ൟ� is attached to the end of the line, it
defines a boundary condition for the wave which can cause reflections.
The amplitude of these reflections is given by the voltage reflection
coefficient, ൛��൛�� = ̀ = ൟ� ࢿ ൟ�ൟ� � ൟ� , (2.37)
which can be derived from Kirchhoff's laws. In the special cases of an
open or shorted line, the voltage reflection coefficient will be �1 or 1ࢿ
respectively, indicating perfect reflection with a phase shift of zero or ဂ.
A load that satisfies ൟ� = ൟ� is called a matched load and does not cause
any reflections.
The superposition of the waves travelling forward and the reflected

waves travelling backward results in an impedance that varies with the
length ൪ of line between the source and load according to the transmission
line impedance equation,ൟ�൪� = ൟ�ൟ� � ൟ� �a�h ࿵൪ൟ� � ൟ� �a�h ࿵൪ . (2.38)

Ϯ.ϯ.ϯ TƌaŶsŵissioŶ LiŶe ResoŶatoƌs

If multiple boundary conditions are introduced on a line, standing waves
form between the points of reflection. Transmission line resonators with
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ൈ� ࿽/≪
Figuƌe Ϯ.ϴ: SĐheŵaiĐ of a ĐapaĐiiǀelǇ Đoupled ࿽/≪ ƌesoŶatoƌ.

high quality factors are built from a piece of line which is either open or
shorted on both ends, insuring a voltage reflection coefficient very close
to ±1. Half-wave resonators have two identical boundary conditions,
both ends shorted to ground or open, allowing standing waves with
a length of ࿽� = 2൪/�൩ � 1�, ൩ ∈ ℕ�. Quarter-wave resonators have
converse boundary conditions, one open andone shorted end, supporting࿽� = ≪൪/�2൩ � 1�.Considerapieceof transmission linewithpropagationconstant࿵ = ࿳�൧࿴ that is shorted togroundatoneend, similar toFig. 2.8butnot coupled to
external circuitry. A shorted end corresponds to a load impedanceൟ� = 0in Eq. 2.38, simplifying the normalized input impedance ൸ = ൟ�൪�/ൟ� to൸ = �a�h�࿵൪�= �a�h�࿳൪� � ൧ �a�h�࿴൪�1 � ൧ �a�h�࿳൪� �a��࿴൪�= 1 ࢿ ൧ �a�h�࿳൪� ����࿴൪��a�h�࿳൪� ࢿ ൧ ����࿴൪� .
We take the length ൪ of the line to be ࿽/≪ and study the response close
to its first resonance ဋ�. Using the dispersion relation Eq. 2.35 we can
rewrite ࿴൪ in terms of ဋ and ဋ� = ဂ��/2൪,࿴൪ = ဋ൪�� = ဋ�൪�� � �ဋ ࢿ ဋ���� ൪ = ဂ2 (1 � ဋ ࢿ ဋ�ဋ� ) ,
which allows an expansion of ����࿴൪� ≈ ဂ�ဋࢿ ࢿ ဋ��/2ဋ�. In the case ofa low-loss line ࿳ ग 1 and �a�h�࿳൪� ≈ ࿳൪ hold additionally, and therefore൸ ≈ 1࿳൪ � ൧ဂ�ဋ ࢿ ဋ��/2ဋ� .
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This has the same form as the impedance of a lumped parallel RLC
resonator. The parameters of the equivalent circuit can be found by
comparing theaboveequationwithEq.2.31andusingEqns.2.35and2.36:

ൗ = ൟ�࿳൪ , ൑ = ≪ൟ�ဂဋ� = 8൑�൪ဂ� , ൈ = ဂ≪ဋ�ൟ� = ൈ�൪2 . (2.39)

Consider now a ࿽/≪ piece of transmission line that is shorted at one
end and coupled to a driving circuit through a capacitor ൈ� at the otherend. To simplify the presentation, the line is assumed to be lossless.
The normalized impedance of the series connection of capacitor and
transmission line is ൸ = ൟൟ� = ൧ [�a� ဋ൪�� ࢿ 1ൡ� ] ,
where we introduced the normalized admittance ൡ� = ဋൈ�ൟ� of the
coupling capacitor and used the dispersion relation Eq. 2.35. Resonance
occurs when I� ൸ = 0, at the solutions ဋ� of �a��ဋ൪/��� = ൡ��� . The
response close to resonance can be found by expanding ൸ in a Taylor
series around ဋ�,൸ = ൸�ဋ�� � ( ൣ൸ൣဋ)���� �ဋ ࢿ ဋ�� � ൔ�ဋ��.
For the lowest resonant frequency,

( ൣ൸ൣဋ)���� = ൧ [ ൪�� (1 � �a�� ဋ�൪�� ) � 1ဋ�ൡ� ] = ൧ ဂ2ဋ� [ൡ��� � 2ဂൡ��� � 1] ,
where aweak coupling of the resonator to the circuit, ൡ� ग 1, correspond-
ing to a nearly open end, and consequently ဋ� ≈ ဂ��/2൪ was assumed.
Keeping only the ൡ��� term, the normalized impedance simplifies to൸ ≈ ൧ ဂ2ൡ�� ဋ ࢿ ဋ�ဋ� ,
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which is equal to the impedance of a series RLC circuit, Eq. 2.30. In
contrast to the uncoupled resonator, which looks like a parallel RLC
circuit at resonance, the capacitively coupled resonator loads the driving
circuit like a series RLC circuit.
As mentioned in section 2.3.1, internal loss can be added for high-Q

resonators by replacing ဋ� ࠿ ဋ��1 � ൧/2ൖ��,൸ ≈ ဂ≪ൖ�ൡ�� � ൧ ဂ2ൡ�� ဋ ࢿ ဋ�ဋ� , (2.40)

which is equal to the Eq. 2.30, if ൗ in that equation is identified withဂ/≪ൡ��ൖ�.
Ϯ.ϯ.ϰ CiƌĐuit ChaƌaĐteƌizaioŶ usiŶg S Paƌaŵeteƌs

The behavior of linear electrical networks with multiple two-terminal
pairs, called ports, can be described in a variety of ways. In the previous
section, a description using the impedance seen at the terminals of a
single-port network, relating voltage to current at the input, was used.
Using thedefinition൛� = ൟ��ൎ� , this concept extendsnaturally to anetworkwith multiple ports. By inverting this relation, ൎ� = ൞��൛� , one can also
characterize the network in terms of admittances. These two definitions
are equivalent, and the impedance and admittancematrices are linked by൞ = ൟ��. While theൟ and൞matricesprovidean intuitiveunderstandingof
the network, their accurate measurement poses difficulties at microwave
frequencies.
An alternative characterization of amultiport network that can bemore

easily measured is through its scattering parameters. The scattering
description ties the amplitudes and phases of waves originating from
the network to waves incident on the network and can be formulated in
terms of voltage waves, current waves or a mixture of both. The complex
voltage amplitudes ൛�� of waves originating from port ൧ are tied to the
amplitudes ൛�� incident on port ൨ of the network by the scattering matrix൘ via ൛�� = ൘��൛�� . Matrix element ൘�� is found by measuring ൛�� while
driving ൛�� andmaking sure that there are no incident waves on the other
ports. This also means that waves originating from the other ports must
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ൟ�1 2
Figuƌe Ϯ.ϵ: SĐheŵaiĐ of aŶ iŵpedaŶĐeൟ� shuŶiŶg a tƌaŶsŵissioŶ liŶe to gƌouŶd.

not be reflected back to the port, which is realized by terminating them
with matched loads.
In the simple case of a single-port network,൛�� = ൘��൛�� ,൘�� is equal to the voltage reflection coefficient ̀, Eq. 2.37, introduced inthe previous section. In case of a two-port network,

(൛��൛�� ) = (൘�� ൘��൘�� ൘��)(൛��൛�� ) .൘�� and ൘�� are the reflection coefficients at port one and two when theother port is terminated with a matched load and ൘�� and ൘�� are the
transmission coefficients from port one to port two and vice versa. It can
be shown that ൘matrices of reciprocal networks are symmetric and those
of lossless networks are unitary.
The ൟ, ൞ and ൘ parameters are equivalent inasmuch as any of these

matrices can be calculated from any other one. Our theoretical models
are typically formulated in terms of impedances, but the measurement
equipment records the ൘ parameters. In the case of two-port networks,
the conversion from ൟ to ൘ is realized by[Poz05],൘�� = [�ൟ�� ࢿ ൟ���ൟ�� � ൟ�� ࢿ ൟ��ൟ��] /́ൟ൘�� = 2ൟ��ൟ�/́ൟ൘�� = 2ൟ��ൟ�/́ൟ (2.41)൘�� = [�ൟ�� � ൟ���ൟ�� ࢿ ൟ�� ࢿ ൟ��ൟ��] /́ൟ́ൟ = �ൟ�� � ൟ���ൟ�� � ൟ�� ࢿ ൟ��ൟ��
An interesting special case is the response of a transmission line with

a shunt impedance to ground. The characteristic impedance of the line is
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ൟ� and the shunt impedance is ൟ�. The ൟmatrix of this network is simplyൟ�� = ൟ�� = ൟ�� = ൟ�� = ൟ�. Using Eqns. 2.41, the scattering matrix of
the shunt becomes ൘�� = ൘�� = 11ࢿ � 2ൟ�/ൟ� (2.42)൘�� = ൘�� = 11 � ൟ�/2ൟ� . (2.43)

Ϯ.ϯ.ϱ ResoŶatoƌ ChaƌaĐteƌizaioŶ

Acircuit topology involvingasingle feedlinewithmultipleresonantshunts
is very suitable to characterize a largenumber of high-Q resonators simul-
taneously. For our experiments, we designed a series of ࿽/≪ transmission
line resonators capacitively coupled to a common line. The response of a
single such resonator coupled to a feedline can be derived by combining
Eq. 2.30 with Eqns. 2.42 and 2.43,

൘�� = 1 � ൘�� = 1 � 11ࢿ � 2൰ � ≪൧൰ൖ�࿶ , (2.44)

where ൰ = ൗ/ൟ� is the loss resistance normalized to the impedance of the
feedline. Using Eq. 2.29, this can be expressed in terms of the loaded and
internal quality factors,

൘�� = ൖ��� � 2൧࿶ൖ��� � 2൧࿶ . (2.45)

These expressions for ൘�� and ൘�� could be fitted against measured
data to find the quality and coupling factors of each resonator. However
these factors can also be extracted from the measurements of only a few
points on the response curve[KG83]; [BR04].
A measurement of the amplitude of the minimum of transmission at

resonance yields ࿼,
൘��� = 2൰1 � 2൰ = 11 � ࿼ ⇔ ࿼ = 1 ࢿ ൘���൘��� , (2.46)
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Figuƌe Ϯ.ϭϬ: TƌaŶsŵissioŶ aŵplitude aŶd phase ƌespoŶse of a feedliŶe shuŶted
ďǇ a ƌesoŶatoƌ. If ࿼ घ 1, the loaded ;uŶloadedͿ ƋualitǇ faĐtoƌ ĐaŶ ďe deteƌŵiŶed
ďǇ ŵeasuƌiŶg the ϯ dB ďaŶdǁidth fƌoŵ the top ;ďotoŵͿ of the aŵplitude gƌaph.
The tƌaŶsŵited phase at the loaded aŶd uŶloaded ϯ dB poiŶts is eƋual. Plot
paƌaŵeteƌs aƌe ൖ� = 20000, ൖ� = ≪000, ƌesuliŶg iŶ ൖ� = 3333 aŶd ࿼ = ≫.

where Eq. 2.29 was used and ൗ� was identified with ൟ�/2 because the
shunt is connected to two parts of the feedline in parallel.
The internal quality factor ൖ� is equal to the inverse normalized band-

width of the resonance curve at the point where the dissipated power in
the internal resistance is half of its value at resonance. The half-power
points are found when the reactance (the imaginary part of Eq. 2.30) of
the resonator is equal to its loss resistance (the real part of Eq. 2.30), and
hence at

|൘���| = ൘���√ 21 � ൘���� , a�g ൘��� = ±a���a� (1 ࢿ ൘���1 � ൘��� ) . (2.47)

In the case of overcoupled resonators with ࿼ घ 1 the ൘���� term in the
denominator can be neglected and the bandwidth measured at √2 times
or 3 dB above the minimum |൘���|.
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The loaded quality factor is found as the inverse normalized bandwidth
at the points where the reactance of the resonator is equal to ൗ � ൗ�, at

|൘���| = √1 � ൘����2 , a�g ൘��� = ±a���a� (1 ࢿ ൘���1 � ൘��� ) . (2.48)

In the case of overcoupled resonators, the ൘��� term in |൘���| is againnegligible and the bandwidth can be measured at 1/√2 times or 3 dB
below the baseline of unity transmission. The loss rate ൖ��� to the
external circuit is best determined fromൖ��� = ൖ��� ࢿ ൖ��� (2.49)
and is equal to the total loss rate ൖ��� in the limit of strongly overcoupled
resonators.
The points where the various quality factors are measured are shown

schematically in Fig. 2.10. Analog expressions can be derived for ൘�� ifthe resonators are to be measured in reflection instead of transmission.

Ϯ.ϯ.ϲ Paƌaŵeteƌs of SupeƌĐoŶduĐiŶg TƌaŶsŵissioŶ LiŶes

Themost common transmission line geometries used in qubit circuits are
the microstrip, stripline and coplanar types.
Themicrostrip[Poz05], is built just froma single conducting stripwhich

is backed by a ground plane at a controlled distance, typically at the back
side of the chip substrate. The signal and ground conductors being on
different sides of the substrate allows layouts of many circuit elements,
such as branches and couplers, on a single signal layer. Because width is
roughly equal to the thickness of the substrate at an impedance of ≫0Ω
on silicon, microstrips tend to be bulkier than other geometries. This also
increases the spatial extent of their electric and magnetic fields, favoring
crosstalk and making the housing a part of the circuit.
The latter two handicaps are avoided by the stripline, which adds

a second substrate and groundplane to the circuit, confining the fields
between the two grounds. Due to the second substrate, it ismore complex
to manufacture.
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Figuƌe Ϯ.ϭϭ: SketĐh of a ĐoplaŶaƌ ǁaǀeguide geoŵetƌǇ.

In a coplanar geometry, shown in Fig. 2.11, the signal and two ground
strips reside in the same layer. The structures can be made arbitrarily
small by reducing the lateral distance between the signal and ground
strips, which keeps the electromagnetic fields local although they are not
explicitly confined. Because of these features, all our resonators are based
on coplanar transmission lines.
Assuming that the signal strip is narrow compared to the height of the

substrate and the distance to the housing, the parameters of a coplanar
line are approximated by[Sim01],

ൈ� = ≪ဍ�ဍ��� ൐�൩��൐�൩��� ,൑� = ࿾�≪ ൐�൩���൐�൩�� , (2.50)

ൟ� = √൑�ൈ� = ࿾�ൢ≪√ဍ��� ൐�൩���൐�൩�� ,
with ൩� = ൜/�൜ � 2ൌ�, ൩�� = √1 ࢿ ൩�� and ൐ being complete elliptic
integrals of the first kind, and ဍ��� = �ဍ� � 1�/2 being the effective
dielectric constant defining the speed of signal propagation along the
line.
A typical CPW used in our experiments may have a center strip width

of൜ = 20μ� and gapwidths of ൌ = 11μ� between the center strip and
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groundplanes andbe situated on topof a Silicon substratewith ဍ� = 11.9.This results in ൈ� = 1≫≫ fF/��, ൑� = ≪2≫�H/�� and a characteristic
impedance of ≫0Ω.
The above geometric inductance and capacitance store energy in mag-

netic and electric fields and a polarization of the substrate. Additionally,
energy can be stored in the motional degrees of freedom of the charge
carriers. In normal metals, the scattering time of the carriers is too short
to store and retrieve a significant amount of kinetic energy. In supercon-
ductors, however, scattering of the Cooper pairs is suppressed by a lack
of low-energy states due to the energy gap, giving rise to an additional
``kinetic'' inductance term.
Inserting a harmonic time dependence into the first London equa-

tion[LL35] yields �⃗ = ൧ဋ࿾�࿽�� ൨⃗�,
where ࿽� is the London penetration depth. Integrating this equation overa slab of superconductor with length ൪ and cross-section൜ൣ results in

൛ = ൧ဋ࿾�࿽��൪൜ൣ ൎ� = ൧ဋ൑�ൎ�.
Since the current is delayed by90ࣅwith respect to the voltage, the fraction
can be interpreted as an inductance[Wün05].
For Nb films and at Millikelvin temperatures, a typical value for ࿽� is90��[Hyp08]. For the above geometry, kinetic inductance contributes

an additional ൑�� = ൑�/൪ = 3�H/�� at a film thickness of 1≫0��. This
affects a relative frequency shift of3⋅10�� of transmission line resonators,
which is not significant for the design of our circuits.
The penetration depth changes with the temperature of the sample,

following ࿽�൙� = ࿽�0�/√1 ࢿ �൙/൙���[EH00]. This causes a noticeable
frequency difference between LHe temperature (≈ ൙�/2) and Millikelvinmeasurements but does not affect temperature resolved measurements
below 1൐.
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Ϯ.ϰ CiƌĐuit QuaŶtuŵ EleĐtƌodǇŶaŵiĐs

Ϯ.ϰ.ϭ IŶteƌaĐioŶ of Light aŶdMateƌ

Quantum electrodynamics, QED for short, is the quantum version of
classical electrodynamics. It describes the interaction of particles with
an electromagnetic field. QED is best known for its extremely accurate
predictions of atomic properties such as the gyromagnetic ratio of the
free electron[KF48] and the Lamb shift of the Hydrogen atom[LR47].
Cavity QED is a subset of QED that is concerned with the interaction

of matter with light confined in a cavity. The presence of the cavity
walls selects an infinite but discrete set of modes that can interact with a
trapped atom. Choosing the right parameters, a single relevant mode of
the field and a single relevant atomic transition can be selected, resulting
in a system characterized by the Jaynes-Cummings model[JC63].
For a cavity QED system to be interesting for quantum information

processing, it must reach the so-called strong coupling limit. In this limit,
the lifetimes of the atomic state, the photonic state and the strength of the
atom-cavity interaction are large enough so that the atomic and photonic
states can be coherently exchanged through a process called vacuumRabi
oscillations. Using this process, an entanglement of the atom and cavity
can be created and transferred to a second atom passing through the
cavity at a later time. Also, the non-resonant interaction allows a weak
measurement of the cavity state by observing the state of the atom and
vice versa[RH01].
Finally, circuit QED is a special realization of cavity QED. Where cavity

QEDemploys a three dimensional cavity and a beamof single atoms flying
through it, circuit QED uses a (typically two dimensional) cavity realized
by patterning a superconducting thin film and a superconducting qubit
next to it. This approach generally makes it easier to reach large coupling
strengths and therefore faster operation times, but suffers from the lower
lifetimes of artificial atoms in a solid-state environment when compared
to free single atoms[BHW+04]. In princple however, cavityQED could also
be used as a bridge between superconducting qubits and natural atoms,
if both were coupled to the same cavity mode.
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Ϯ.ϰ.Ϯ CoupliŶg of TƌaŶsŵissioŶ LiŶe ResoŶatoƌs to Fluǆ Quďits

The most straightforward way to couple a flux qubit to a transmission
line resonator is by coupling the magnetic fields generated by the qubit
and resonator. Viewed from the perspective of the qubit, the coupled
resonator introduces a driving field that is proportional to စ� in the basisof thepersistent current states. The treatmentof this interaction is similar
to the discussion of section 2.2.5, with the difference that the driving field
is itself a quantized field generated by the current operator of the relevant
mode of the resonator instead of a classical field.
An inductive qubit-resonator coupling is a magnetic dipole interaction

of the magnetic moment ࿾� of the persistent current flowing around thequbit loop with the magnetic field േ� generated by the resonator at the
qubit site. This adds a potential energy term ൚��� = �࿾�േࢿ = ൎ�െ�േ�to the system, where ൎ� is the persistent current flowing around the
qubit loop and െ� is the loop area. In terms of the mutual inductance൒�,� = േ�െ�/ൎ� , defined as the magnetic flux that enters the qubit loop
per unit current in the resonator, it becomes ൚��� = �൒�,�ൎ�ൎࢿ .Eachmodeof theresonator, representedby its lumpedelementmodel, is
described as a separate linear harmonic oscillatorwith Hamiltonian �് =߷ဋ��ൠ��ൠ� � 1/2�. The charge on the lumped capacitor is defined by the
position operator൶ = ൖ�,��ൠ���ൠ�� and the current in the inductor by the
momentum operator �� = ൧ൎ�,��ൠ�� .��ൠࢿ ൖ�,� and ൎ�,� are the zero-pointcharge and current fluctuations and can be calculated classically fromൖ��,�/2ൈ = ൎ��,�/2൑ = ߷ဋ�/2. (2.51)൒�,� and ൎ�,� are sufficient to determine the coupling to a lumped
element resonator, but in the case of the transmission line resonator the
mode-dependent distribution of the zero-point current has to be taken
into account. The solutions for the voltage and current waves, Eq. 2.34,
on a quarter-wave resonator in a lossless line shorted at ൸ = 0 are൛�,��൸� = ൟ�ൎ�,� ��� [�2൩ � 1�࿴൸] ,ൎ�,��൸� = �,�ൎࢿ ��� [�2൩ � 1�࿴൸] .
Any mode shows a current maximum at the shorted end at ൸ = 0 and
a minimum at the open end at ൸ = ࿽/≪, and the harmonics show ൩
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additional currentminima andmaxima. Typically, qubits are placed close
to a maximum of the current distribution for maximum coupling, but
other locations may be desired for example to realize a certain hierarchy
of coupling strengths to different modes of the resonator.
Taking only a single relevant mode into account and identifying ൎ�with the zero-point current at the qubit site, the interaction Hamiltonian

between the qubit and resonator takes the form്̃ ��� = ൒�,�ൎ�ൎ� ൧�ൠ� ࢿ ൠ� စ̃�
in thepersistent current basis of thequbit. Theunitary rotationdescribed
by Eq. 2.12 transforms ്̃ ��� into the energy eigenbasis of the qubit,

്��� = ൒�,�ൎ�ൎ� ൧�ൠ� ࢿ ൠ� [ ́߷ဋ�စ� � ဍ߷ဋ�စ�] . (2.52)

Using the mixing angle �, defined in 2.12, the Hamiltonian becomes്��� = ൒�,�ൎ�ൎ� ൧�ൠ� ࢿ ൠ� [����2��စ� � ����2��စ�] .
Atthequbitsymmetrypoint� = ±ဂ/2andthecoupling ispurelytransver-
sal, allowingaphotonexchangebetweenthequbitandthecoupledsystem.
With increasing asymmetry, the coupling acquires an additional longitu-
dinal component, which allows the realization of a controlled phase gate.
For large asymmetries, the transversal coupling diminishes and only the
longitudinal coupling is relevant. The product of constants߷൦̃ = ൒�,�ൎ�ൎ� (2.53)

is called the bare coupling energy. The actual transversal coupling is߷൦ = ߷൦̃ ����2�� (2.54)

and changes with the asymmetry of the qubit.
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Ϯ.ϰ.ϯ The JaǇŶes-CuŵŵiŶgs HaŵiltoŶiaŶ

The quantum Hamiltonian of a cavity QED system is[SZ97],് =്������ � ്����� � ്��� � ്� � ്�,്������ =߷ဋ��ൠ�ൠ � 12�,്����� =߷ဋ�စ�,്��� =߷൦�စ� ࢿ စ���ൠ ࢿ ൠ��. (2.55)
Here, ဋ� is the angular oscillation frequency of the relevant cavity mode,߷ဋ� is the energy difference of the two qubit levels and ߷൦ describes
the strength of interactions between the cavity and qubit subsystems.
The terms്� and ്� mediate relaxation and dephasing of the cavity and
qubit, respectively, through coupling to an external bath. The transversal
component of the interaction term Eq. 2.52 found for the flux qubit
can be transformed into ്��� of the Jaynes-Cummings model using the
identity စ� = စ� � စ� and a rotation. The interaction Hamiltonian is
commonly simplified using the rotating wave approximation, equivalent
to dropping the စ�ൠ� and စ�ൠ terms of the product, with the same
argumentsmade foradrivenqubit insection2.2. Theresulting interaction
term ്��� = ߷൦�စ�ൠ � စ�ൠ�� can be interpreted as a coherent exchangeof excitations between the qubit and cavity.
Exact diagonalization of the Jaynes-Cummings Hamiltonian in the ro-

tating wave approximation and with the decoherence terms ്� and ്�neglected yields the gound state ,࠾| 0૕ and dressed states[BHW+04]|�, ൬૕ = ��� ဎ�|ࡀ, ൬૕ � ��� ဎ�|࠾, ൬ � 1૕,|ࢿ, ൬૕ = ࢿ ��� ဎ�|ࡀ, ൬૕ � ��� ဎ�|࠾, ൬ � 1૕.
Here, | ,ࡂ ൬૕ = | ૕ࡂ ⊗ |൬૕ are the basis states of the bare qubit and cavity
system(s) and �a��2ဎ�� = 2൦√൬ � 1ဋ��
is a mixing angle between the two subsystems. The parameter ဋ�� ≡ဋ�ࢿဋ� is the detuning of the atom from the cavity and is a key parameter
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Figuƌe Ϯ.ϭϮ: EŶeƌgǇ leǀels of the JaǇŶes-CuŵŵiŶgs HaŵiltoŶiaŶ iŶ the dispeƌsiǀe
ƌegiŵe, ဋ�� घ ൦. The tƌaŶsiioŶ fƌeƋueŶĐǇ ďetǁeeŶ tǁo adjaĐeŶt ĐaǀitǇ leǀels
is iŶĐƌeased oƌ deĐƌeased ďǇ the ĐoupliŶg to the Ƌuďit depeŶdiŶg oŶ the Ƌuďit
state. The eŶeƌgǇ diffeƌeŶĐe ďetǁeeŶ the Ƌuďit states also ĐhaŶges liŶeaƌlǇ ǁith
iŶĐƌeasiŶg ĐaǀitǇ photoŶ Ŷuŵďeƌs.

of the dynamics of the system. The eigenenergies corresponding to these
states are �↑,� ࢿ= ߷ဋ��2 ,�±,� =�൬ � 1�߷ဋ� ± ߷2√≪൦��൬ � 1� � ဋ��� . (2.56)
In the limit of vanishing detuning, ဋ�� = 0, of the uncoupled system,

the |�, ൬૕ and ,ࢿ| ൬૕ states would be degenerate, but in the interacting
system this degeneracy is lifted by Ω = 2൦√൬ � 1. At the same time, the
basis states dressed states |±, ൬૕ are equal superpositions of the | ,ࡀ ൬૕
and ,࠾| ൬ � 1૕ states with opposite phases and vice versa. Therefore, an
initial state prepared as | ,ࡀ ൬૕ will evolve into | ,࠾ ൬ � 1૕ and back at a
rate of Ω/2ဂ, which is called the vacuum Rabi frequency. Because of the√൬ � 1 term in the Rabi frequency, the time required to exchange the one
excitation becomes smaller with increasing number of excitations inside
the cavity.
In the opposite limit of large detuning, ဋ�� घ ൦, the dressed states

become equivalent to the basis states of the uncoupled system with first
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order corrections in ൦/ဋ�� . The expansion of the energy levels, 2.56, tofirst order in ဋ�� , provides more insight into this regime.
On one hand, the coupling term renormalizes the transition frequency

between the qubit ground and excited states[AT55],��,� ࢿ ��,��� = ߷ဋ� � ߷൦�ဋ�� �2൬ � 1�, (2.57)

which is called the ac Stark or ac Zeeman shift depending on whether ൦
arises from electric ormagnetic interaction, respectively. A fit of the qubit
transition frequency versus the driving power of the cavity can be used to
calibrate thedrivingnecessary to occupy the cavitywith adesired average
photon number. Because the photon loss rate of the cavity is proportional
to the number of photons inside the cavity, the relation between the two
is linear.
On the other hand, the term also introduces a shift of the transition

frequency between successive cavity levels,��,� ࢿ ��,��� =߷ဋ� � ߷൦�ဋ�� ,��,� ࢿ ��,��� =߷ဋ� ࢿ ߷൦�ဋ�� , (2.58)

which depends on the state of the qubit.

Ϯ.ϰ.ϰ Dispeƌsiǀe Readout

The state-dependent shift Eq. 2.58 of the cavity transition frequency can
be used to determine the qubit state. This so-called dispersive readout
is realized by driving the cavity with microwave radiation and observing
the reflected or transmitted waves.
From the classical treatment of resonators in section 2.3, it is clear that

the amplitude and phase of microwaves scattered at a cavity depends
strongly on the normalized frequency difference ࿶ of the driving and
resonance frequencies. To determine whether the resonator is shifted up
or down in frequency, that is, to determine the state of the qubit, it is thus
sufficient to measure the amplitude or phase of a single element of the
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Figuƌe Ϯ.ϭϯ: ClassiĐal iŶteƌpƌetaioŶofdispeƌsiǀe ƌeadout. TheĐaǀitǇ ispƌoďedďǇ
a ŵiĐƌoǁaǀe sigŶal aŶd the aŵplitude oƌ phase of aŶ eleŵeŶt of the tƌaŶsŵited
oƌ ƌefleĐted sigŶal is ŵeasuƌed. If the dispeƌsiǀe shit is of the oƌdeƌ of a liŶe
ǁidth oƌ ŵoƌe, aŶ aŵplitude ŵeasuƌeŵeŶt at oŶe of the dispeƌsiǀelǇ shited
fƌeƋueŶĐies giǀes the laƌgest ĐoŶtƌast. If the dispeƌsiǀe shit is ŵuĐh sŵalleƌ
thaŶ the liŶe ǁidth, the phase sigŶal at the ďaƌe ĐaǀitǇ fƌeƋueŶĐǇ is ŵeasuƌed
iŶstead.

scatteringmatrix at a fixed frequency. Which type of measurement yields
the best readout contrast depends on the coupling layout of the resonator
to the readout line and the loss rates of the resonator. The case of a
resonator connected to the readout line in series is treated in [BHW+04].
Here, we consider instead the case of a resonant shunt connected to a
feedline.
The response of the feedline measured in reflection is essentially equal

to the responseof a series connected resonatormeasured in transmission.
The width of the resonance peak is determined by the total loss rate࿼� = ဋ/ൖ� (not to be confusedwith the dimensionless coupling factor ࿼).
If࿼� < ൦�/ဋ�� , the peaks representing the twoqubit states are separated.Measuringatoneof theshifted frequenciesgivesclose toperfect reflection
in one state and low reflection in the other state. If ࿼� > ൦�/ဋ�� , thetwo peaks overlap and the amplitude contrast diminishes. In this case, a
measurement of the reflected phase at the bare resonator frequencyဋ� ismore appropriate. If the feedline is measured in transmission, the width
of the transmission dip is ࿼� = ဋ/ൖ�, which is much smaller than ࿼� in
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͸.ͺ Circuit Quantum Electrodynamics

the case of an overcoupled resonator, so that an amplitude measurement
at one of the shifted frequencies is optimal. These amplitude and phase
measurements are compared schematically in Fig. 2.13.
The driving of the cavity can be modeled quantum-mechanically by

plugging ്����� = െ�൲�2 [ൠ� �൧ဋ൲ࢿ���� � ൠ ����൧ဋ൲�] (2.59)
into the totalHamiltonian. Here,െ�൲� is the amplitude and envelopeof the
readout pulse andဋ is the driving frequency. The rate of state transitions
under this driving can be derived by treating ്����� as a perturbation tothe Jaynes-Cummings Hamiltonian and evaluating the transition matrix
elements, |૔±, ൬ � ,ࣀ|�����്|1 ൬૕| ≈ െ2 ൦ဋ�� ,|૔±, ൬ � 1|്�����|±, ൬૕| ≈ െ2 .
The first transition, describing a bit-flip processes, is suppressed by൦/ဋ�� with increasing detuning. The second transition, corresponding
to the addition or subtraction of a photon to or from the cavity, is not
suppressed. In both cases, the assumption ൬ ग ൬���� = ဋ���/≪൦� was
used when expanding ��� �� and ��� ��.In this limit, the Hamiltonian Eq. 2.55 can be expanded[BHW+04] in൦/ဋ�� , ് ≈ ߷(ဋ� � ൦�ဋ��စ�) ൠ�ൠ � ߷2 (ဋ� � ൦�ဋ�� ) စ�. (2.60)
Dispersive readout probes စ� via the dispersive shift �൦�/ဋ���စ� ⋅ ൠ�ൠ.This term commutes with စ�, so no uncertainty relation applies and themeasurement of one of the quantities does not influence the other. In
the absence of disspiation, စ� additionally commutes with ്, so it is a
constant of motion. These two properties together insure that repeated
measurementsgive thesameresult,makingdispersive readouta so-called
quantum non-demolition readout.
However, any measurement, even a non-demolition measurement, has

some backaction on the quantum state of the qubit. When the cavity is
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populatedwithphotons inorder todetermine itsshift, the frequencyof the
qubit transitionismodulatedandfluctuationsof thecavityphotonnumber
dephase the qubit. In the standard realization of circuit QED, a serially
connected cavity with input and output capacitors, it was shown that the
dephasing rate exceeds the quantum limit by a factor of two[BHW+04]
if only the photons leaving the cavity through the output capacitor are
collected by the detector. This statement also holds in the present case
of a cavity shunting a feedline, because the voltage wave emitted by the
cavity travels in both directions of the line.
The amplitude of the waves emitted by the cavity is found by consid-

ering its power loss ൕ���� = ࿼�� into the feedline, where � = ߷ဋ�ൠ�ൠ isthe energy stored in the cavity (neglecting zero-point fluctuations) and࿼� = ဋ�/ൖ� is the loss rate through the coupling capacitor. From thepoint
ofviewof theresonator, the twohalvesof the feedlineareconnected inpar-
allel, presenting an impedance ofൟ�/2 andmakingൕ���� = |൛����|�/�ൟ�/2�.The voltage ൛���� output by the cavity can thus be related to the cavity
operators, ૔൛����૕ = √߷ဋ�࿼�ൟ�/2૔ൠ૕.
If൛�� is the driving voltage applied at the feedline input, the total reflected
and transmitted voltages emitted from the input and output ports are൛�� = ൛���� and ൛�� = ൛�� � ൛����, respectively. In the steady-state of
an overcoupled resonator, ൛�� ≈ 0 at resonance (Eq. 2.46) and thus൛���� = ��൛ࢿ .
The mean steady-state population of the resonator resulting from clas-

sical driving voltage can be calculated from � = ൑ |ൎ���|�. Expressing thecurrent ൎ���� = ൛�� /�ൟ � ൟ�/2� in terms of the input voltage ൛�� and using
2.29 to express ൑ in terms of ൟ� and ൖ� , the stored energy can be written� = 2|൛�� |�ൟ�࿼� ൖ��ൖ���1 � ≪࿶�ൖ�� ,
where ࿶ is the normalized detuning of the resonator frequency including
any shifts. By solving this expression for |൛�� |, the voltage that must be
applied to reach a desired cavity photon number can be determined. It is
important to note that the energy stored in the cavity and therefore the
number of photons decreases with �1�≪࿶�ൖ�� ��� as the drive is detuned
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from the center frequency of the cavity. Additional drives present on the
feedline that are a few loaded linewidths from the center frequency do
not cause an appreciable occupation of the cavity and do therefore not
contribute to the dephasing of the qubit.
In the absence of relaxation, the Schrödinger equation of Eq. 2.60

including the driving term Eq. 2.59 can be solved analytically to find
the time evolution the expectation value of ൛�����൲�. In the presence of
relaxation ൛�����൲� can be calculated by setting up the Master equation ofthe Hamiltonian and integrating it numerically for a given initial density
matrix. Figure 2.14 shows simulated time traces of the cavity occupation
numbers, in-phase and quadrature output voltages for the qubit in the
ground and excited states.

Ϯ.ϱ FƌeƋueŶĐǇ-DiǀisioŶMulipleǆiŶg

Ϯ.ϱ.ϭ CoŵpaƌisoŶ of MulipleǆiŶg TeĐhŶiƋues

Multiplexing is amethod to transmit several logical communication chan-
nels over a single physical medium. A variety of multiplexing schemes
exist, whose applicability depends on the characteristics of the signals
to be transmitted, such as their bandwidth and digital or analog nature.
Themostwidely used schemes are time-divisionmultiplexing, frequency-
division multiplexing and code-division multiplexing.
For digital signals, time-division multiplexing is the most straightfor-

ward approach. Several low-bitrate input channels are switched on and
off the output channel in a round-robin fashion, with the rate of switching
defining the bitrate on the output channel. To multiplex ൓ inputs onto a
single outputs, the switching rate must be at least൓ times larger than the
bitrate of the individual inputs. Obvious drawbacks of time-division are
that the signals at the inputs can not be sampled simultaneously without
additional data buffers and that it is hard to implement for continuous
analog signals, which would involve a compression of the signals in the
time-domain.
In contrast, frequency-divisionmultiplexing can easily combine contin-

uous-time signals into a single medium. Frequency-divisionmultiplexing
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Figuƌe Ϯ.ϭϰ: NuŵeƌiĐal siŵulaioŶ of the JaǇŶes-CuŵŵiŶgs ŵodel ǁith dƌiǀiŶg
at the dispeƌsiǀelǇ shited ĐaǀitǇ fƌeƋueŶĐǇ ;letͿ aŶd the ďaƌe ĐaǀitǇ fƌeƋueŶǇ
;ƌightͿ. The solid ;dashedͿ liŶes aƌe the ƌespoŶses foƌ the Ƌuďit iŶ the gƌouŶd
;eǆĐitedͿ state. The dƌiǀiŶg pulse staƌts at 0�� aŶd eŶds at ≫08�� ǁith ≪��
taŶh ƌise aŶd fall. SǇsteŵ paƌaŵeteƌs aƌe ဋ�/2ဂ = 8GHz, ဋ�/2ဂ = 10GHz,൦/2ဂ = 100MHz aŶd ൖ� = 1≫00. Foƌ the siŵulaioŶ, the LiŶdďlad Masteƌ
eƋuaioŶ[LiŶϳϲ] solǀeƌ of the QuTiP paĐkage[JNNϭϮ] ǁas used.
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Figuƌe Ϯ.ϭϱ: CoŵpaƌisoŶ of aͿ Tiŵe-diǀisioŶ ;TDMͿ, ďͿ Code-diǀisioŶ ;CDMͿ
aŶd ĐͿ FƌeƋueŶĐǇ-diǀisioŶ ;FDMͿ ŵulipleǆiŶg. The ĐhaŶŶel sigŶals aƌe added
aŶd tƌaŶsŵited oǀeƌ a ĐoŵŵoŶ ŵediuŵ. TDM uses iŶdiǀidual iŵe slots foƌ
eaĐh ĐhaŶŶel. CDM uses ďasis fuŶĐioŶs that aƌe oƌthogoŶal ǁith ƌespeĐt to
a ĐoŶǀeŶieŶt iŶŶeƌ pƌoduĐt. FDM uses diffeƌeŶt fƌeƋueŶĐǇ siŶes, eƋuiǀaleŶt to
fƌeƋueŶĐǇ slots. TDM aŶd FDM ĐaŶ ďe ĐoŶsideƌed speĐial Đases of CDM.

combines several low-frequency inputs by shifting each of the inputs in
the frequency domain by a different offset frequency and subsequent
summing of the shifted inputs. The channel data is regained by frequency
shifting in the reverse direction and filtering out of the frequencies that
are associated with the other channels. For frequency-division to work,
the bandwidth of the input signals has to be bounded, otherwise the
channels are no longer separable. To multiplex all inputs, the bandwidth
available in theoutputmediummustbeat least the sumof thebandwidths
of all input signals. The requirement of bandwidth-limited inputs also
restricts the time resolution, which is the main drawback of the system.
Code-division multiplexing combines several analog input channels by

multiplication with channel-specific function or digital input channels
by multiplication with a channel-specific sequence of bits (code) and
subsequent addition. The input data is retrieved by calculating the inner
product of the sum signal with each of the channel codes. The design of
the code defines the performance of this system. If orthogonal channel
codes are used, there is no cross-correlation between the codes and thus
no crosstalk between the channels. In this case, the minimum bitrate on
the output mediummust be the sum of the bitrates of the input channels.
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Figuƌe Ϯ.ϭϲ: CiƌĐuit sĐheŵaiĐ of a fƌeƋueŶĐǇ-diǀisioŶ ŵulipleǆiŶg ƌeadout sǇs-
teŵ foƌ Ƌuďits. Muliple ŵiĐƌoǁaǀe Đaǀiies ǁith diffeƌeŶt ĐeŶteƌ fƌeƋueŶĐies
aƌe shuŶiŶg a ĐoŵŵoŶ feedliŶe. EaĐh ĐaǀitǇ is Đoupled to aŶ iŶdiǀidual Ƌuďit.
Dispeƌsiǀe JaǇŶes-CuŵŵiŶgs iŶteƌaĐioŶ shits the ĐaǀitǇ, fƌeƋueŶĐǇ-ŵodulaiŶg
the state of the Ƌuďit oŶto the ĐaǀitǇ.

Other codes can operate with a lower capacity output medium but will
sometimes fail to reproduce the input data correctly.

Ϯ.ϱ.Ϯ Mulipleǆed Dispeƌsiǀe Readout SǇsteŵ

For qubit readout, we chose to implement a frequency-divisionmultiplex-
ing technique based on circuit QED. A number of microwave resonators
with slightly different freuencies are attached to a common feedline, as
shown in Fig. 2.16. Each resonator is coupled to a single qubit, forming
a Jaynes-Cummings system. The systems are operated in the disper-
sive regime and the frequency shifts of the resonators are used as qubit
readouts. For a single resonator, this technique is explained in detail in
section 2.4.4.
This kind of frequency-division multiplexing is very suitable for qubit

readout, because being a frequency-domain method, it allows a simul-
taneous and continuous-time measurement of the states of all qubits
multiplexed on the line. In addition, dispersive readout can be used with
any type of superconducting qubit and is even the sole readout technique
available for transmon qubits[KYG+07].

Ϯ.ϱ.ϯ Cƌosstalk aŶdMiŶiŵuŵ ChaŶŶel BaŶdǁidth

In a multiplexed transmitter-receiver system, interference between dif-
ferentchannels is calledadjacent channel interferenceorsimplycrosstalk.
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Like noise, crosstalk deteriorates the signal-to-noise ratio of a channel, in
this context also called signal-to-interference ratio. In extreme cases, the
deteriorationmay be large enough so that the channel data can no longer
be decoded correctly, so any multiplexing system must be designed to
keep crosstalk at manageable levels. In a frequency-division multiplex-
ing system, crosstalk is caused by spectral components transmitted on a
channel that are outside the allocated bandwidth and assigned instead to
another channel.
In communications systems, interference is quantified by the ratio of

interference power to signal power in a channel. If a multiplexed qubit
readout system is measured in reflection, this definition can be used
directly. The readout resonators, beingpassivedevices, donot themselves
generate a signal, but transmit a part of the externally generated probe
power to the receiver due to reflection. Using the scattering matrix, the
signal power introduced by readout resonator ൧ probed at frequencyဋ isൕ������,� = |൘���ဋ;ဋ��|� ൕ�����.
Assuming that the probe power is the same for all channels, neglecting in-
terferenceof the reflectedwavesandmultiple reflections, the interference
power in channel ൧ is simply the sum of all individual contributions,ൕ������������,� =∑��� |൘���ဋ;ဋ��|� ൕ�����.
The signal to interference ratio is the quotient of the signal and interfer-
ence powers, �൘/ൎ�����,� = |൘���ဋ;ဋ��|�ࢾ��� |൘���ဋ;ဋ��|� .
If the channel is probed on resonance, which is typical if a phase-sensitive
readout is performed, and the resonator is overcoupled, ൘���ဋ�; ဋ�� ࠿ 1.The expression simplifies further to

�൘/ൎ�����,� ≈ (∑��� |൘���ဋ�; ဋ��|�)�� . (2.61)
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If the multiplexed readout system is measured in transmission, each of
the resonators removes energy from the signal seen at the receiver due to
reflection or absorption. In this situation, the signal-to-interference ratio
can be defined to mean the ratio of the power removed from the signal
and the transmitted probe power. Again ignoringmultiple reflections and
interference of reflected waves, the power remaining after transmission
along the off-channel resonators is

ൕ�����������,� =∏��� |൘���ဋ;ဋ��|� ൕ�����.
Thepower removed fromthe feedline isൕ�����ࢿൕ�����������, whichyieldsa signal-to-interference ratio of

�൘/ൎ������,� = ∏��� |൘���ဋ;ဋ��|�1 ࢿ ∏��� |൘���ဋ;ဋ��|� . (2.62)

In both cases, calculation of the signal to interference ratio amounts
to finding the scattering matrices of the readout resonators. Because
of the qubit dynamics, the effective bandwidth of each readout channel
may be somewhat larger thanwhat is expected from considering only the
resonator inastaticsituation. In the following, thekeyfactorsdetermining
the bandwidth requirement for each channel will be reviewed.

ResoŶatoƌ QualitǇ FaĐtoƌ

Using Eq. 2.46 and the identity ൖ� = �1 � ࿼�ൖ� from section 2.3.1, the
coefficientsEq. . 2.44of transmissionandreflectionof the feedline through
each coupled resonator can be rewritten as

൘�� = ࢿ 1 ࢿ ൘���1 � 2൧ൖ�࿶ a��൘�� = ൘��� � 2൧ൖ�࿶1 � 2൧ൖ�࿶ .
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Figuƌe Ϯ.ϭϳ: SigŶal-to-iŶteƌfeƌeŶĐe ƌaio of a ൓-ĐhaŶŶel ƌeadout sǇsteŵ ǀs.
fƌeƋueŶĐǇ spaĐiŶg ďetǁeeŶ the ƌesoŶatoƌs. The solid/dashed liŶe ƌepƌeseŶts a
ƌefleĐioŶ/tƌaŶsŵissioŶ ŵeasuƌeŵeŶt. A ĐoupliŶg ƌaio of ࿼ = 10 ǁas used. IŶ
aŶ ൬-ĐhaŶŶel sǇsteŵ, the S/I ƌaio sĐales appƌoǆiŵatelǇ as ����ࢾ� 1/൧����.
For a two-channel device, the interference introduced into the first

channel by the second channel, from Eqns. 2.61 and 2.62, is�൘/ൎ�����, ��� = |൘���࿶�|�� ≈ 1 � ≪ൖ��࿶� ���൘/ൎ������, ��� = |൘���࿶�|�1 ࢿ |൘���࿶�|� ≈ ≪ൖ��࿶�.
In both expressions, ࿶ = ࿶ဋ/ဋ� is the channel spacing normalized to the
center frequency of the interfering channel. The summand 1 present only
in the reflection case results from the fact that the power reflected from
two resonators at identical frequencies is equal, yielding a ൘/ൎ ratio of 1
(0 dB). In the transmission case, the second resonator removes the signal
power completely, resulting in ൘/ൎ = 0 .(dB࣋ࢿ)
For an ൬-channel device with equal frequency difference between the

resonators, the argument ࿶ becomes ࿶� = ൨࿶. In the limit of ൖ�࿶ घ 1, the
sum of Eq. 2.61 is readily evaluated, yielding

�൘/ൎ�����, ��� ≈ (���∑��� 1൨�)
�� �൘/ൎ�����, ���.
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For large ൬, the sum converges to ဂ�/6 ≈ 1.6≪. The product of Eq. 2.62
is more involved. Numerical simulations show a scaling equal to the
reflection case. Numerically simulated ൘/ൎ ratios for ൓ = 2 and ൓ = 100
are plotted in Fig. 2.17.

Dispeƌsiǀe Shit

The dispersive shift effectively creates two realizations of each resonator,
at (angular) frequencies of ဋ� ± ൦�/ဋ�� (Eq. 2.58). The channel spacingdemanded by the resonator quality factor can simply be increased by൦�/ဋ�� to accomodate for the shift. In the case of dispersive shifts large
compared to the loaded resonator linewidth, a channel may be assigned
to each of the realizations, increasing the number of channels to 2൓ for
an ൓ qubit system.

MeasuƌeŵeŶt Pulse DuƌaioŶ

The maximum time available to measure the state of a qubit is deter-
mined by its energy decay time constant ൙�. The uncertainty principleof the Fourier transform[Pin02] and analogous theorems for other time-
frequency transforms impose a lower limit on the bandwidth of a limited-
time signal. In case of theFourier transform, theminimumtime-bandwith
product is obtained by a Gaussian-shaped pulse,

൛�൲� ࣊ ��� ࢿ) ൲�2စ�)൛̃�ဋ� ࣊ ��� စ�ဋ�2ࢿ) ) .
If the width of the time-domain signal is taken to be equal to be the
standarddeviation√૔൲�૕ = စof thedistribution, thebandwidth in �a�⋅���
is1/စ and the bandwidth inHz is1/�2ဂစ�. At ameasurement timeof only100��, this results in a bandwidth requirement of 1.6MHz, which does
not in practice limit the number of resonators that can be multiplexed.
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͸.ͻ Frequency-Division Multiplexing

FƌeƋueŶĐǇ ModulaioŶ SideďaŶds

A resonator used for dispersive readout loaded with many photons may
be described like a classical harmonic oscillator with a modulated eigen-
frequency. The voltage over the capacitor of the resonator must solve

d�
d൲�൚�൲� � 2࿵ဋ� d

d൲൚�൲� � [ဋ� � ဋ�૔စ�૕�൲�]� ൚�൲� = 0,
whereဋ� is the bare resonance frequency, ࿵ is the coefficient of damping
and ဋ� = ൦�/ဋ�� is the magnitude of the dispersive shift. In the limit of
an undamped oscillator and under the condition that d

d� ૔စ�૕ ग ဋ��൲�, thisdifferential equation is solved by a frequency-modulated voltage signal,

൚�൲� = ൚� ��� [ဋ�൲ � ဋ�∫�
� ૔စ�૕�ဆ�ൣဆ] .

If we take ૔စ�૕�൲� to be sinusoidal with frequency ဋ�, the spectrum of
the frequency-modulated signal shows components at ဋ� ± ൨ဋ�[Car22],൚�൲� =൏��൫� [����ဋ�൲�]ࢿ൏��൫� [����ဋ� � ဋ��൲ ࢿ ����ဋ� ࢿ ဋ��൲]ࢿ൏��൫� [����ဋ� � 2ဋ��൲ ࢿ ����ဋ� ࢿ 2ဋ��൲]�⋯ , (2.63)
where ൏� are Bessel functions of the first kind and ൫ = ဋ�/ဋ� is called
the modulation index. The modulation index and thus the bandwidth
requirement per channel depends on the frequency of the time evolution
of the qubit during readout. If the qubit transition is not driven during
the readout, the modulation frequencyဋ� is determined by the ൙�-decayof the qubit. An exponential decay with time constant ൙� transforms into
a Lorentzianwith a single-sided half-amplitude bandwidth of 1/൙�, whichcan be used asဋ�. The total bandwith requirement can then be found by
finding the number of sidebands with an amplitude that is larger than a
chosen interference goal.
A first approximation for the bandwidth required per readout channel

is a rule of thumb commonly attributed to J. R. Carson[Car22], which
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͸ Building Blocks

states that 98% of the spectral power contained in ൚�൲� is inside a band
of width ́ဋ = 2�ဋ� � ဋ��
around the carrier frequencyဋ� . Because the spectrum is symmetricwith
respect toဋ� , the interference introduced into aneighboring channelwithdistance ́ဋ is smaller than .B�20ࢿ
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ϯ EǆpeƌiŵeŶtalSetupaŶdTeĐhŶiƋue

ϯ.ϭ Saŵple DesigŶ aŶd FaďƌiĐaioŶ

ϯ.ϭ.ϭ Saŵple DesigŶ

All measurements presented in this thesis were performed on a single
sample, labeled ͷͶJ-SPMJͻ.Designed to demonstratemultiplexed readout,
it was kept as simple as possible. The 10×≫��� chip, shown in Fig. 3.1a,
contains a single ≫0Ω coplanar transmission line of width൜ = 1≫0μ�
and ൌ = 83μ� along its long edge. Seven ࿽/≪ transmission line res-
onators with ൜ = 20μ� and ൌ = 11μ� are located in the center of
the chip with a horizontal spacing of 1��. The geometric length of the
resonators varies from 3132 μ� to 2892 μ� in steps of ≪0 μ�. Resonance
frequencies range from 9.3 GHz for the longest up to 10.2≫GHz for the
shortest resonator in steps of approximately 1≫0MHz. The inductance
and capacitance of the equivalent ൑ൈ circuits (Eqns. 2.50 and 2.39) are൑ ≈ 1.0≫ �H and ൈ ≈ 23≫ fF, respectively. At the open (lower) end, the
resonators are capacitively coupled to the feedline using elbow couplers,
shown in Fig. 3.1d. The couplers have a bend radius of 1≫0 μ�, coupling
length of 3≫0 μ� and a remaining feedline ground plane width of ≫ μ�.
This geometry was simulated to result in an external quality factor of
about 1,500. At the upper end, the resonators are tapered to൜ = 1μ�
and ൌ = 8μ�, and shorted to ground, as seen in Fig. 3.1b and c.
Athree-junctionfluxqubit is locatedinoneof thegapsbetweenthe inner

conductor and ground plane close to the shorted end of each resonator.
The two identical junctions of each qubit have an area of 700×200���, a
design critical current of280�A and capacitanceof≪.9fF. Thequbitswere
laid out for a minimum transition frequencies ́ from 6.9 GHz to 7.9 GHz,
corresponding to ࿳ factors between 0.629 and 0.6≪6. The persistent
current predicted for this configuration (Eq. 2.8) is 170�A. The qubits
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͹ Experimental Setup and Technique

Figuƌe ϯ.ϭ: MiĐƌogƌaph of the saŵple used to deŵoŶstƌate ŵulipleǆed ƌeadout.
;aͿ The Đoŵplete Đhip. SeǀeŶ ࿽/≪ ƌesoŶatoƌs aƌe ĐapaĐiiǀelǇ Đoupled to a
ĐoŵŵoŶ feedliŶe at the loǁeƌ edge. The feedliŶe Đaƌƌies ĐoŵďiŶed ƌesoŶatoƌ
pƌoďe toŶes aŶd Ƌuďit ŵaŶipulaioŶ pulses. ;ďͿ Shoƌted ;uppeƌͿ eŶd of oŶe
of the ƌesoŶatoƌs. A gƌid of holes pateƌŶed oŶto the supeƌĐoŶduĐiŶg filŵ
piŶs Aďƌikosoǀ ǀoƌiĐes[Aďƌϱϳ] to staďilize ŵagŶeiĐ ďias fields aŶd aŶd ƌeduĐe
dissipaioŶ. The tǁo daƌk sƋuaƌes aƌe ŵaƌkeƌs to aligŶ the Nď aŶd Al stƌuĐtuƌes.
;ĐͿ OŶe of the fluǆ Ƌuďits. The Ƌuďit aƌe loĐated Ŷeaƌ the shoƌted eŶd of the
ƌesoŶatoƌ to ŵaǆiŵize the ŵutual iŶduĐtaŶĐe ďetǁeeŶ the Ƌuďit aŶd ƌesoŶatoƌ.
;dͿ AŶ elďoǁ-shaped ĐapaĐitoƌ ĐoupliŶg the ƌesoŶatoƌ to the feedliŶe.
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͹.ͷ Sample Design and Fabrication

are inductively coupled to the resonators, with the qubit loops of size7×16μ�� and resonator having a mutual inductance of 6�H. Combined
with the resonator zero-point current of ൎ��� = √߶൥/൑ ≈ 80�A, the
estimated bare coupling energy (Eq. 2.53) is about 12≫MHz. The qubits
are galvanically decoupled from the resonator, making the fabrication of
thequbits independent fromthefabricationof the feedlineandresonators.
The chip does not contain additional microwave inputs to manipulate

nor coils to magnetically bias individual qubits. While this minimalistic
approach results in a cleaner microwave response, it necessitates the use
of external bias coils in the sample holder to control the operating points
of the qubits.
Refer to Fig. 2.16 on page 50 for an electrical schematic of the sample.

ϯ.ϭ.Ϯ FaďƌiĐaioŶ TeĐhŶiƋue

All samples were fabricated in the cleanroom facilities at IPHT Jena in
a two-step process. In the first step, a 200�� Niobium thin film was
deposited on an undoped silicon substrate and patterned using electron
beam lithography and CF� reactive ion etching. All coarse structures,
such as the resonators and the feedline shown in Fig. 3.1(a), were fab-
ricated in this step. The fine structures, the qubit loops and Josephson
junctions, were deposted using the two-angle shadow evaporation tech-
nique[Nie74]; [Dol77].
In shadow evaporation, a stack of two different layers of photoresist is

used to suspend a mask a few 100�� over the substrate. Subsequently,
two layers of metal are evaporated onto the sample at opposite angles to
the normal of the substrate. If two holes in the mask are close enough,
the projection of the first hole in the first evaporation will overlap with
the projection of the second hole in the second evaporation. If oxygen is
allowed into the chamber between the evaporations, an oxide layer forms
between the metal layers, making the overlapping areas S/I/S tunnel
contacts. An electron micrograph of such a contact on one of our chips
is shown in Figure 3.2. The shadow evaporation method is very suitable
to accurately produce very small Josephson junctions. However, the
maximum junction size is limited by the stability of the bridges between
the holes in the mask and can not exceed a few μ�.
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͹ Experimental Setup and Technique

Figuƌe ϯ.Ϯ: EleĐtƌoŶ ŵiĐƌogƌaph of tǁo A�/A�O�/A� JosephsoŶ juŶĐioŶs faďƌi-
Đated usiŶg the shadoǁ eǀapoƌaioŶ teĐhŶiƋue. AluŵiŶiuŵ ǁas eǀapoƌated at
aŶgles of ࣅ±30 to the Ŷoƌŵal of the plaŶe. The fiƌst eǀapoƌaioŶ ǁas doŶe
fƌoŵ the loǁeƌ edge of the iŵage, the seĐoŶd fƌoŵ the uppeƌ edge. The tǁo
light sƋuaƌes aƌe the JosephsoŶ juŶĐioŶs. The desigŶed juŶĐioŶ oǀeƌlap ǁas700 × 200���.
ϯ.Ϯ CƌǇogeŶiĐ EŶǀiƌoŶŵeŶt

ϯ.Ϯ.ϭ Saŵple Holdeƌ

We use cylindric sample compartmentsmilled from copper with an inner
diameter of 28mmand inner height of 5mm, shown in Fig. 3.3. Its overall
design is similar to theholdersusedby thequantuminformationgroupsat
Yale university[Cho10] and ETH Zürich[Qsi]. The compartment features
a fixed top part with through-holes for up to eight SMP-type microwave
connectors and a groove into which a solenoid can be wound. Samples
are installed on printed circuit boards (PCBs) fixed to a removable bottom
'lid' that is screwed to the fixed part of the holder.
The PCBs can be customized for each experiment, and can hold chips

up to a maximum total area of approximately 15mm by 15mm. The
boards usedwere produced by a commercial foundry[Hug] on RT/duroid
6010[Rog] substrate, which has a nominal dielectric constant of 10.2 at
room temperature which is increases by about 20% at 4K and is in very
good agreement with the dielectric constant of the Si substrates, 11.6,
used for the samples. This material choice results in matched transitions
between the board and chip having similar dimensions on both sides,
different only due to the different thicknesses of the conducting layer of
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Figuƌe ϯ.ϯ: Photogƌaph of the ĐƌǇogeŶiĐ saŵple ĐoŵpaƌtŵeŶt. The eǆteƌŶal Đoil
ǁouŶd aƌouŶd the ďoǆ is used to supplǇ a hoŵogeŶeous fluǆ ďias to the Ƌuďits. A
ƌiŶg of holes Đlose to the ĐeŶteƌ holds the gƌadieŶt Đoils ;see seĐioŶ ϯ.Ϯ.ϮͿ ǁhiĐh
aƌe Ŷot iŶstalled heƌe. The SMP-tǇpe ŵiĐƌoǁaǀe ĐoŶŶeĐtoƌs aƌe thƌeepaƌite to
pƌoǀide a loǁ ŵissŵatĐh eǀeŶ ǁheŶ the PCB is Ŷot peƌfeĐtlǇ aligŶed. The sŵall
loop teƌŵiŶaiŶg theŵiĐƌoǁaǀe Đaďle iŶ the ĐeŶteƌ of the piĐtuƌe, used to supplǇ
ŶaŶoseĐoŶd fluǆ pulses to the Ƌuďits, ǁas oŶlǇ pƌeseŶt iŶ oŶe of the ƌuŶs.

Figuƌe ϯ.ϰ: Photogƌaph of a PCB ǁith a saŵple ŵouŶted. The PCB has aŶ outeƌ
diaŵeteƌ of 29�� aŶd a Đhip ŵouŶiŶg aƌea of 10.2 × ≫.2��. Fouƌ ĐoplaŶaƌ
liŶes ĐaŶ ďe used to tƌaŶsŵit ŵiĐƌoǁaǀes to aŶd fƌoŵ the Đhip, ďut oŶlǇ tǁo
of theŵ aƌe ƌeƋuiƌed foƌ this eǆpeƌiŵeŶt. The ĐoplaŶaƌ liŶes aƌe teƌŵiŶated
ǁith SMP-tǇpe ĐoŶŶeĐtoƌs, ǁhiĐh ŵate ǁith ĐoŶŶeĐtoƌs at the top of the saŵple
ĐoŵpaƌtŵeŶt. The ƌegulaƌ gƌid of holes aƌe feedthƌoughs shoƌiŶg togetheƌ the
gƌouŶd plaŶes at the fƌoŶt aŶd ďaĐk side of the PCB aŶd also the otheƌǁise
disĐoŶŶeĐted gƌouŶd plaŶes at the top of the PCB. A laƌge Ŷuŵďeƌ of Al ǁiƌe
ďoŶds fƌoŵ the Đhip to the PCB iŶsuƌe a loǁ-iŵpedaŶĐe ĐoŶŶeĐioŶ of the Đhip
aŶd PCB gƌouŶd plaŶes. AddiioŶallǇ, up to Ϯϰ DC ĐoŶŶeĐioŶs aƌe aǀailaďle,
ǁhiĐh ĐaŶ ďe ĐoŶtaĐted ďǇ piŶ headeƌs soldeƌed the ďaĐk of the PCB.
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35 ࿾m on the PCB and 0.2 ࿾m on the chip. In the coplanar structures
used, a change of thickness influences mostly the capacitance between
the inner conductor and ground planes, resulting in an a few ohms lower
impedance of the same geometry on the PCB compared to the chip, which
was corrected by modified trace widths. Microwave signals are coupled
to the PCB through surface-mount ࣅ90 SMB connectors mating with their
counterparts in the toppartof thesampleholderandadditionalDCsignals
are connected by means of header connectors soldered to the back side
of the PCBs and routed through holes in the lid. A photograph of the PCB
used in this experiment is presented in Fig. 3.4.
To protect the samples from external magnetic fields, a combination of

a highly permeable outer shield and a superconducting inner shield was
used. Theouter shieldmade fromCryopermattenuatesoutside fields, and
the inner lead shield freezes the remaining field upon transition through
its critical temperature. This ensures that fluctuating external fields does
not cause fluctuations of the flux bias of the qubits.

ϯ.Ϯ.Ϯ Fluǆ BiasiŶg

In all single qubit experiments, the qubits were biased by a 1,500 turn
superconducting NbTi solenoid wound around the exterior of the sample
compartment. Each qubit sits in a closed loop formed by the central
conductor of its readout resonator and the ground plane. Once the
sample is superconducting, flux quantization precludes a net flux from
entering the loop. The qubits can still be biased however, if the magnetic
field inside the loop is inhomogeneousand the fluxespenetratingdifferent
parts of the loop sum up to zero. It is thus no surprise that the observed
mutual inductances between the solenoid and qubits do not agree with
the magnetic field distribution associated with a free solenoid. The
experimentally measured mutual inductances, summarized in Table 4.2
on page 81, increase with increasing distance of each qubit from the edge
of the chip, suggesting that they are biased predominantly by screening
currents on the groundplane. In addition, each qubit sees a randomoffset
flux that changes each time the temperature of the sample goes through
the critical temperature of the Nb film and is likely caused by Abrikosov
vortices trapped in the film.
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Figuƌe ϯ.ϱ: AƌƌaŶgeŵeŶt of the ďias Đoils. The ŵaiŶ ;ŵͿ Đoil is ǁƌapped aƌouŶd
the eǆteƌioƌ of the saŵple ďoǆ. IŶteƌŵediate ;iͿ size aŶd sŵall ;sͿ Đoils aƌe sĐƌeǁed
to the fiǆed paƌt of the saŵple ďoǆ ďetǁeeŶ the ŵiĐƌoǁaǀe feedthƌoughs.

To simultaneously operate multiple qubits at their sweet spot, addi-
tional bias coils are required. Three intermediate-size and five small
gradient coils were screwed to the inside of the sample compartment to
simultaneously bias several qubits at their symmetry points. Their ar-
rangement is sketched in Fig. 3.5. Changing the bias of a single qubitwhile
leaving the others at fixed bias values is complicated by the fact that each
coil couples to all qubits. A function to automatically measure the mutual
inductance matrix between the coils and qubits was implemented in the
measurement software. Using the invertedmutual inductancematrix, the
bias of up to four qubits could be individually controlled.
An additional high-frequency bias coil, made from a piece of coaxial

cable by cutting back the outer conductor, bending the inner conductor
and soldering it to the outer conductor, was used in some of the runs.It
was placed in the center of the sample compartment, as shown in Fig. 3.3.

ϯ.Ϯ.ϯ WiƌiŶg aŶd FilteƌiŶg

The experimental wiring inside the dilution refrigerator consists of only
three coaxial cables carrying high-frequency signals to and from the
sample and up to nine twisted pairs providing static flux biases to the
qubits, shown in Figure 3.6
To reduce the amount of high-frequency noise sent to the sample,

the microwave input line feeding the readout resonators and qubits is
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Figuƌe ϯ.ϲ: EǆpeƌiŵeŶtal ǁiƌiŶg iŶside the diluioŶ ƌefƌigeƌatoƌ.

heavily attenuated. Without attenuation, the noise power fed from a
50Ω-terminated device at room temperature into the 50Ω feedline of
the sample is equal to ൕ = ൩�൙́൥, where ́൥ is the bandwidth of the
line[Joh28]; [Nyq28]. An attenuator placed at one of the lower temper-
ature stages feeds roughly the noise power of such a termination at the
lower temperature in addition to the attenuated noise coming from its
input. Therefore, at least one attenuator must be installed at the lowest
temperature stage and its attenuation should be at least equal to the ratio
of the temperature of the input termination and the temperature of the
attenuator. We added attenuators of 20 dB at each at the 4.2 K, 1.6 K and
30mKstages,maintaining this ratio andat the same timedissipatingmost
of the power at the 4.2 K stage where the cooling power of the dilution
refrigerator is greatest. Additional attenuation of about 10 dB, dependent
on frequency and temperature, comes from the fact that the input line
is manufactured from a stainless steel coaxial cable, which trades good
high-frequency transmission for low thermal conductivity.
Other than in the input line, attenuation of the output line is not a viable

option because the power sent into the output line can not be increased
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arbitrarily to counter attenuation. Instead, noise coming through the
output line in the reverse direction is removed by a series of two Pamtech
XTE1238K cryogenic circulators with an isolation of 20 dB each in the
band between 8 and 12GHz, and lower frequency noise is rejected by
a Mini-Circuits VHF-8400+ high-pass filter with a cutoff frequency of
8.4 GHz. The fast bias line does not include any filtering, because it is very
loosely coupled to the sample, which translates into a large impedance
missmatch between the line and the sample.
Signals coming from the sample are transmitted through a low-loss

superconducting coaxial cable to a cryogenic HEMT amplifier at the 4.2 K
stage with ൌ� = 26�B gain and an equivalent noise temperature of൙� = 10K. The cryogenic amplifier is followed by two Mini-Circuits
ZVA-183-S+[Min] room temperature amplifiers with ൌ�,� = 26�B gain
each and equivalent noise temperatures of ൙�,� = 600K. The noise
temperature of the complete amplification chain, calculated by Friis'
formula[Fri44], is൙����� = ൙��൙�/ൌ��൙�/�ൌ�ൌ�� = 10൐�1.≫൐�0.01൐ ≈ 11.≫൐, (3.1)
dominated by the cryogenic amplifier. The amplification chain adds a
total thermal noise power ofൕ����� = ൩�൙࿼/2ဂ ≈ 1.6 × 10���W
within the 10MHz bandwidth of a typical readout cavity. A 10GHz cavity
populated with a single photon on average losesൕ���� = ߷ဋ�࿼/2 ≈ 0.2 × 10���W (3.2)
to each half of the feedline. Thus, in the single photon regime, the
amplification chain adds 8 noise photons to each signal photon.
Noise in the slow bias lines is reduced by LC lowpass filters in a ဂ

configuration, with a cutoff frequency of 250 kHz at 4.2 K.

ϯ.ϯ SteadǇ-State Readout

The experiments presented in section 4.1 involve the themeasurement of
the amplitude and phase of a microwave signal transmitted through the
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Figuƌe ϯ.ϳ: Rooŵ-teŵpeƌatuƌe ŵiĐƌoǁaǀe setup used foƌ ŵeasuƌeŵeŶts of
steadǇ-state pƌopeƌies.

sample with respect to various parameters such as the applied magnetic
flux, probe and excitation frequencies and powers. In contrast to the
experiments in the following chapters, theydonot require time resolution
and can thus be performed with little extra hardware. In addition to the
general-purpose part of the experimental setup already discussed, we
use a commercial Anritsu VectorStar MS4642A[Anr] network analyzer,
designed to measure transmission and reflection of continuous wave
signals between 70 kHz to 20GHz through and from a device. Except
for probe frequency sweeps, the sweep parameter is controlled by the
measurement computer and single data points are retrieved from the
network analyzer via a digital interface. Noise in the measured signal
can be reduced by choosing appropriate parameters of digital band-pass
filters and averaging functions implemented inside the device. Where
an additional microwave tone is necessary to manipulate the qubits,
it is combined with the signal of the network analyzer using a Narda
4226-20 directional coupler, where the probe tone is sent through the
-20 dB coupled port, the manipulation tone is sent through the output
port and the refrigerator input is connected to the input port. The
complete room-temperature microwave setup is shown in Figure 3.7.
This configuration is optimized to yield highest excitation power at the
cost of probe power, which is suggested by the fact that at its resonance
frequency, which is equal to the probe frequency, even a low excitation
power loads the resonator withmany photons, but at the qubit transition
frequency, which is far from resonance, its small coupling capacitance to
the feedline and large impedance isolate the qubit.
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ϯ.ϰ Tiŵe-Resolǀed Readout aŶdMaŶipulaioŶ

The observation of the state evolution of a qubit system is limited by en-
ergyrelaxationanddephasing. Insuperconductingcircuits, thetimescales
of relaxation and dephasing are typically microseconds, but can also be
tens of nanoseconds. The electronics used to manipulate and read out
the qubit state must operate faster than that to resolve qubit dynamics.
Because both qubit manipulation and dispersive readout are based

on microwave pulses, the two subsystems are composed of very similar
equipment. In the manipulation system, fast digital-to-analog converters
(DACs) with sub-nanosecond resolution output pulse envelopes, which
are modulated onto continuous-wave microwaves using mixers. In the
readout system, DACs provide shortmultitone bursts up to a fewhundred
megahertz which are shifted into the resonator band by the samemixers.

ϯ.ϰ.ϭ MiĐƌoǁaǀe Miǆeƌs

A basic frequency mixer is an analog multiplier with two signal inputs
and one product output. We use passive, double-balanced diode mixers,
whicharealsoknownas ringmodulators, because theirmain components
are four fast-switching diodes that are arranged in a ring, as shown in
Fig. 3.8. Two ports, the ``local oscillator'' (LO) and the ``radio frequency''
(RF), are transformer-coupled to the ring, such that two pairs diodes are
between the two terminals of each port and only one diode separates one
port from the other. The third port, the ``intermediate frequency'' (IF)
port, is connected to a tap in the middle of each transformer. Any port
can be an input or output, but because of this construction the LO and
RF ports have a high-pass characteristic while the IF port has a low-pass
characteristic.
If a frequency mixer is used for pulse modulation, the unmodulated

input tone is connected to the LO (or RF) port and the pulse envelope
is connected to the IF port. Once the voltage at the IF port exceeds two
times the threshold voltage of the diodes, one pair of diodes switches to
the conducting state, connecting the LO and RF ports. If the sign of the IF
voltage is inverted, the other pair of diodes switches, rotating the phase
of the signal passing between LO and RF by 180 degrees. The better
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LO RF
IF

Figuƌe ϯ.ϴ: CiƌĐuit sĐheŵaiĐ of a douďle-ďalaŶĐed diode ŵiǆeƌ. The iŶputs
at LO aŶd IF aƌe ŵuliplied to pƌoduĐe RF. Miǆeƌs ĐaŶ ďe used foƌ aŵplitude
ŵodulaioŶ oƌ fƌeƋueŶĐǇ ĐoŶǀeƌsioŶ. See ŵaiŶ teǆt foƌ a detailed desĐƌipioŶ.

the symmetry of the transformers and diodes, the lower the amplitude
of unmixed input signals seen at the output port. The Marki Microwave
M8-0420[Mar] mixers used for pulse modulation have a typical isolation
of 40 dB between the LO and RF ports, equal to amaximum on–off output
voltage ratio of 10�, and a switching time of 250 ps. While other types
of switches, such as pin diode switches, reach higher isolations of 60 dB
and more, they require switching times of the order of 100 ns, which is
too slow for qubit manipulation pulses.
If used for frequency conversion, a microwave tone strong enough to

switch the diodes is applied to the LO port. As the phase of the drive
evolves over time, the LO signal periodically switches one or the other
pair of diodes into the conducting state, inverting the voltage of the signal
passed between IF and RF. The output is thus a product of a square wave
with fundamental frequency of ൥�� and the second input applied to eitherthe IF or RF port. Because square waves only show odd harmonics, the
spurious frequencies introduced bymultiplication start around 3൥�� andcan easily be filtered. If the mixer is used as an up-converter, the second
input is connected to the IF port, producing an output of ൥�� ± ൥�� at theRF port. If the mixer is used as a down-converter, the second input is
connected to the RF port, producing and output of |൥�� ࢿ ൥��| at the IFport. An arbitrary number of frequency components can be applied to
the RF and IF ports, but not to the LO port.
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Figuƌe ϯ.ϵ: BloĐk sĐheŵaiĐ of a tǁo-Ƌuadƌatuƌe ŵiǆeƌ.

A two-quadrature or ``IQ''-mixer is a four-port device that is a combi-
nation of two mixers and a phase shifter, see Fig. 3.9. The input supplied
to the LO port is split and fed to the twomixers with a phase difference of
90 degrees. The first mixermultiplies the signal applied to the ``in-phase''
(I) port with the unshifted LO signal and the second mixer multiplies the
signal at the ``quadature'' (Q) port with the phase-shifted LO. The sum of
the two mixer RF outputs is passed to the RF output of the composite
device.
The sum ൎ ����2ဂ൥��൲� � ൖ ����2ဂ൥��൲� of outputs of the two in-

ternal mixers can be rewritten as √ൎ� � ൖ� ����2ဂ൥��൲ � �� where� = a���a��ൖ/ൎ� ��ဂ�. An IQ mixer can be thus be used as a phase
modulator by applying different amplitude DC inputs to I and Q. It can
also be used as a single sideband mixer by applying phase shifted inputs
of equal frequency ൥�� to I and Q, such that either the mixing product൥�� � ൥�� or ൥�� ࢿ ൥�� is cancelled from the sum. Like a regular mixer,
an IQ mixer can be used in reverse to measure the phase difference of
microwaves applied to LO and RF or to separate the upper and lower
sidebands of an RF signal.

ϯ.ϰ.Ϯ Quďit Readout

For the dispersive readout of a single qubit, a microwave generator and a
two-quadrature mixer are sufficient. The microwave generator provides
continuous wave signal at the bare frequency of the readout cavity that
is split by a power divider. One part of the signal is provided to the
local oscillator port of the mixer mixer as a reference and the other
one is transmitted through the sample and input to the RF port of the
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mixer. In this so-called homodyne configuration, the I and Q outputs are
constant DC voltages, and their ratio encodes the phase difference of the
transmitted and reference signals. As the transmitted phase depends on
the dispersive shift of the readout cavity and the dispersive shift of the
cavity depends on the state of the qubit, I and Q switch between two
sets of constant voltages as the qubit switches between its ground and
excited states. Because an excited state qubit will inevitably decay to its
ground state due to energy relaxation, the I and Q outputs are voltage
pulses with a duration of the order of ൙� that decay to the ground state
voltages. The voltage pulses can either be recorded using an analog
integrator and a low-speed data acquisition system or using amoderately
fast (ൔ�1/൙��) analog to digital converter. A setup like this was used for
qubit characterization until a high-speed ADC was available.
To read out൓ qubits,൓microwave tones at the frequencies of the read-

out cavities must be transmitted through the sample and their individual
amplitude changes and phase shifts detected. For small൓, the homodyne
setup for a single qubit could simply be multiplied by the number of
qubits, but even for moderate ൓ this quickly becomes impractical. Our
readout setup, shown in Fig. 3.10, uses software-defined radio techniques
to simultaneously generate an arbitrary number of readout tones.
A measurement computer generates two digital waveforms, the first

representing a sum of ൓ sine functions and the second representing a
sum of ൓ cosine functions, with equal amplitudes and frequencies of൥� = ൥���,� ,��൥ࢿ where ൥�� is a freely chosen reference frequency. Theseso-called baseband waveforms are output by a Tektronix AWG7062B
10bit 6 GS/s DAC[Tek] (2010 and 2011 experiments) or a UCSB GHzDAC
14bit 1 GS/sDAC[Ghz] (2012 experiments) and fed into the I andQ inputs
of aMarkiMicrowave IQ-0618[Mar] quadraturemixer. The special choice
of I andQwaveformsoperates themixer as a single-sidebandupconverter,
producingmixing products at ൥���,� = ൥���൥� and suppressing the image
frequencies at ൥�� ࢿ ൥� . Any frequency within two times the analog
bandwidth of the DACs around ൥�� can be individually generated. The
spurious free bandwidth is two times that achieved which a conventional
mixer, which would produce two sidebands that are mirror images of
each other.
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Figuƌe ϯ.ϭϬ: Rooŵ-teŵpeƌatuƌe ŵiĐƌoǁaǀe setup foƌ siŵultaŶeous ƌeadout
of ŵuliple Ƌuďits. A dual-ĐhaŶŶel digital to aŶalog ĐoŶǀeƌteƌ geŶeƌates a
ďaseďaŶd sigŶal ǁith oŶe fƌeƋueŶĐǇ ĐoŵpoŶeŶt peƌ Ƌuďit to ďe ƌead out. This
is up-ĐoŶǀeƌted to the ďaŶd of the ƌeadout ĐaǀitǇ ďǇ the fiƌst IQ ŵiǆeƌ, ĐƌeaiŶg
the pƌoďe sigŶal. AteŶuatoƌs ďetǁeeŶ the DAC aŶd ŵiǆeƌ daŵpeŶ ƌefleĐioŶs
fƌoŵ the ŵiǆeƌ iŶputs. The Ƌuďit ŵaŶipulaioŶ sigŶal is geŶeƌated sepaƌatelǇ
aŶd ĐoŵďiŶed ǁith the pƌoďe sigŶal usiŶg a diƌeĐioŶal Đoupleƌ. The diƌeĐioŶal
Đoupleƌ ŵaǆiŵizes the aŵplitude of the ŵaŶipulaioŶ sigŶal ǁhile ƌeduĐiŶg the
aŵplitude of the pƌoďe sigŶal. This is ƌeasoŶaďle ďeĐause the ŵaŶipulaioŶ
sigŶal is off-ƌesoŶaŶt ǁith the ƌeadout Đaǀiies thƌough ǁhiĐh it ŵust pass to
ƌeaĐh the Ƌuďits. Ateƌ the ĐoŵďiŶed sigŶal is tƌaŶsŵited thƌough the ĐƌǇogeŶiĐ
setup iŶĐludiŶg the saŵple, it ƌetuƌŶs to the deteĐioŶ seĐioŶ. The deteĐioŶ
seĐioŶ staƌts ǁith aŶ isolatoƌ to suppƌess ƌefleĐioŶs ďetǁeeŶ the ĐƌǇogeŶiĐ
aŶd ƌooŵ-teŵpeƌatuƌe aŵplifieƌs. The folloǁiŶg high-pass filteƌ eŶsuƌes that
the ƌooŵ-teŵpeƌatuƌe aŵplifieƌs aƌe Ŷot satuƌated ďǇ theƌŵal Ŷoise fƌoŵ the
ĐƌǇostat. A seĐoŶd IQ ŵiǆeƌ ĐoŶǀeƌts the tƌaŶsŵited sigŶal ďaĐk to ďaseďaŶd
fƌeƋueŶĐies. Loǁ-pass filteƌs iŶ I aŶd Q Đut Ŷoise aďoǀe aŶd ďeloǁ the ďaŶd of
the ƌeadout Đaǀiies aŶd douďle as aŶi-aliasiŶg filteƌs. Ateƌ a fiŶal aŵplifiĐaioŶ
stage, the ďaseďaŶd sigŶal is ƌeĐoƌded ďǇ a fast tǁo-ĐhaŶŶel ADC.
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After passing through the cryogenic part of the setup, the transmitted
signal is high-pass filtered to remove a large part of the (amplified)
thermal noise power originating from the cryostat and amplified by two
room-temperature amplifiers. A second, identical IQ mixer converts
the signal back to baseband frequencies. The local oscillator port of
the down-converter is driven from the same source as the up-converter
to provide a stable phase reference. The LO is split by a Wilkinson
power divider with 20 dB of isolation between its output ports to prevent
leakage of the high-frequency probe signal between the generation and
detection stages. A high-pass filter installed between the two mixers
does the same to the baseband probe signal. Low-pass filters at the
I and Q outputs of the down-converter further reduce the total noise
power by limiting the detector bandwidth to the minimum required to
address all readout cavities. After a final amplification stage, I and Q are
sampled by a Spectrum M3i.2132 8 bit 1 GS/s ADC board[Spe] installed
in the measurement computer. Software on the measurement computer
performs a fast Fourier transform on the sampled data to recover the
amplitude changes and phase shifts of all components of the probe signal.
The cryogenic and room temperature amplification chain is the same

used for the steady-state measurements and presented in section 3.2.3.
At readout powers in the single photon regime, the amplifiers add ap-
proximately 8 noise photons per signal photon in the bandwidth of each
resonator. The readout signal is sent as a 512 ns burst, limited by the
energy relaxation time of the qubits. In this time, approximately 32 signal
photons are transmitted from the readout cavity to the output, resulting
in a best-case signal-to-noise ratio of √32/8 = ≪.1ࢿ �B. It is thus not
possible to extract the state of the qubit from a single time trace in this
configuration, averaging is required.
With the help of ultra low-noise parametric amplifiers and at larger

mean cavity occupation numbers, such a single-shot readout and even
real-time monitoring of the time evolution of a qubit's state is possible
and has already been demonstrated for a single qubit[VSS11]. Because
parametric amplifiers are based on high-quality oscillators, they have
narrow gain bandwidths and a separate amplifier is required for each
readout cavity. If designed together with the readout cavities and inte-
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grated on the same chip, using them may be possible and they may see
use in future experiments.
A stable phase reference is a key requirement when averaging the

transmitted AC voltage signal. In a homodyne setup, the only phase of
interest is the phase of the microwave generator. A stable reference is
guaranteed by driving the down-converter from the same source that
also generates the probe signal, themixer output is DC. In themulti-qubit
setup, the baseband signal is a sum of several AC components, the phase
of which must be taken into account. If the baseband is generated by
a DAC, the starting phase of all components is defined by the waveform
and the phase found at the detector is constant as long as the DAC and
ADC are triggered with a constant delay. If the baseband is generated by
free-running oscillators or if the DAC can not be reliably triggered, the
baseband signal must be sampled before up-conversion and a reference
phase must be calculated from this data.

ϯ.ϰ.ϯ Quďit MaŶipulaioŶ

Forqubitmanipulation, anumberofdifferentsetupswereuseddepending
on the experiment and the number of qubits to be manipulated.
If available, aTektronixAWG501414 bit1.2 GS/s fourchannelDAC[Tek]

was used to generate pulse envelopes. The envelopes were applied to
continuouswavemicrowaves generated by individualmicrowave sources
using various arrangements of standard and quadrature mixers, shown
in Fig. 3.11. Simple pulse shapes could also be realized by a pulse gen-
erator instead of the DAC, but without the low-frequency noise rejecting
averaging described in section 3.4.5.
The simplest setup, Fig. 3.11a, uses a single mixer to gate the output

signal of a continuous wave generator. This setup is sufficient for sin-
gle qubit manipulation with moderate pulse amplitudes. Because of the
limited isolation between the ports of mixers, a small driving is always
on even when no voltage is applied to the IF port. The Marki Microwave
M8-0420[Mar] used are high-isolationmixers providing an excellent LO–
RF isolation of 40 dB, or an on–off amplitude ratio of 10�. Typical on-state
Rabi frequencies realized in the experiments were in excess of 100MHz,
resulting in off state Rabi frequencies of the order of a MHz in this setup.

73



͹ Experimental Setup and Technique

-6	dB
6-18	or	4.5-9	GHz

IQ
L RDAC

DAC -6	dB

d)

a)

c)

-3	dB
DAC

4-20	GHz 4-20	GHz
2.2	GHz-6	dB-6	dB

4-20	GHz
DAC 1.2	GS/s

-12	dB
DACDACDAC

-6	dBDAC 4-20	GHz

b)

Figuƌe ϯ.ϭϭ: EǆpeƌiŵeŶtal setups foƌƋuďitŵaŶipulaioŶpulsegeŶeƌaioŶ. EaĐh
ŵiĐƌoǁaǀe geŶeƌatoƌ pƌoǀides a siŶgle ĐoŶiŶuous ǁaǀe toŶe at the tƌaŶsiioŶ
fƌeƋueŶĐǇ of the Ƌuďit to ďeŵaŶipulated. The digital to aŶalog ĐoŶǀeƌteƌs output
DC pulses that aƌe used as aŵplitude eŶǀelopes. 6�B ateŶuatoƌs ďetǁeeŶ the
DACs aŶd ŵiǆeƌs aƌe used to daŵpeŶ douďle pulses Đaused ďǇ ƌefleĐioŶs at
the ŵiǆeƌ iŶputs. aͿ The ŵost leightǁeight setup uses a siŶgle ŵiĐƌoǁaǀe ŵiǆeƌ
as a sǁitĐh to applǇ the eŶǀelope pulses to the geŶeƌatoƌ output. BeĐause of
the liŵited LO-RF isolaioŶ of the ŵiǆeƌ, aŶ appƌeĐiaďle Ƌuďit dƌiǀe is pƌeseŶt
iŶ the off state of the ŵiǆeƌ. ďͿ Tǁo ŵiǆeƌs ĐaŶ ďe daisǇ-ĐhaiŶed to loǁeƌ the
dƌiǀiŶg aŵplitude iŶ the off state. A loǁ-pass filteƌ iŶ the IF path aǀoids leakage
of the geŶeƌatoƌ toŶe Đaused ďǇ ƌelaiǀelǇ loǁ LO-IF aŶd IF-RF isolaioŶs. ĐͿ
UsiŶg a Ƌuadƌatuƌe ŵiǆeƌ aŶd tǁo DAC outputs, the aŵplitude aŶd phase of the
ŵaŶipulaioŶ pulse ĐaŶ ďe ĐoŶtƌolled. This alloǁs a fƌee ĐhoiĐe of the ƌotaioŶ
aǆis of a Raďi dƌiǀe iŶ the ൶/൷ plaŶe. dͿ Up to fouƌ ŵiĐƌoǁaǀe geŶeƌatoƌs,
DAC outputs aŶd ŵiǆeƌs aƌe used foƌ the ŵuli-Ƌuďit eǆpeƌiŵeŶts. AteŶuatoƌs
ďetǁeeŶ the DACs aŶd ŵiǆeƌs haǀe ďeeŶ oŵited fƌoŵ the figuƌe.
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This introduces a significant probability of a state flip within the readout
window of 512 ns.
The improved setup in Fig. 3.11b cascades two mixers to increase the

on–off amplitude ratio to 10�. The off state Rabi frequency is reduced to
a few kHz, which causes negligible errors.
The setup in Fig. 3.11c uses a quadrature mixer to control both the

amplitude and phase of the manipulation signal. With a standard mixer,
the rotation axis of the qubit drive is fixed to the ൶ axis. The phase control
offered by an IQ mixer allows one to choose any rotation axis in the ൶/൷
on a per-pulse basis. Rotations around the ൸ axis require a change of the
level splitting of the qubit, which can be effected by pulsing the flux bias
of the qubit from a third DAC channel.
For simultaneous manipulation of multiple qubits, an extra microwave

generator and mixer was used for each qubit, as shown in Fig. 3.11. The
outputs of all mixers were combined by an AtlanTecRF BPD-040180-4
four-port powerdivider[Atl]. Inprinciple,multi-qubitmanipulation could
alsobedoneusing the sameSDR techniquesused formultiplexed readout.
This requires a very fast DAC with an analog bandwidth that is large
enough to access the transition frequencies of all qubits. Due to the large
spread of our qubits' frequencies from 2GHz to 6.5 GHz, this was not
implemented.

ϯ.ϰ.ϰ TiŵiŶg aŶd SǇŶĐhƌoŶizaioŶ

The timing of the experiments was controlled by an Aglilent 81130A
two-channel pulse generator[Agi]. The first channel was used to trigger
the DACs creating the qubit excitation signal. The second channel was
used to trigger the readout DACs and ADCs. The pulse generator was
phase-locked to a 10MHz reference signal which was common to the
DACs and ADCs and the pulse generator.
The excitation and probe pulses were aligned by transmitting a large-

amplitude excitation in the readout band, such that it could be acquired
without averaging. This was possible because the sample is transparent
tomicrowaves except at the resonance frequencies of the readout cavities.
The probe pulse and ADC start were adjusted using a digital trigger delay
feature provided by the ADC card.
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Experiments were run at a rate of 10� averages per second, allowing
the qubits approximately 10൙� to relax to their ground states between
repetitions. The readout signal being a 512 ns burst, about 50MB of data
were generated per 8 bit 1 GS/s channel per second. Because Fourier
transform and calculation of the mean are both linear operations, they
commute and the more compute-intensive FFT was carried out on the
averaged time-traces. Finally, the transmitted amplitude and phase were
calculated from the complex Fourier coefficients.

ϯ.ϰ.ϱ AǀeƌagiŶg ǁith Loǁ-fƌeƋueŶĐǇ Noise RejeĐioŶ

The dilution refrigerator used for all experiments being located in a
4th floor roomwithout air-conditioning, the measured transmission was
subject to drifts on timescales of minutes and hours due to temperature
changes inside the laboratory affecting the cable delay.
Standard measurement protocols that use a per point averaging ap-

proach, where statistics for each data point are aquired before going to
the next data point, are susceptible to these low-frequency drifts. Each
point is affected by the drift accumulated from the start of the experiment
until the measurement of the point.
Analternative is aper trace averagingapproach. Here, the experimental

parameters are changed on each repetition until a single measurement
has been performed for each data point, completing a trace. More traces
are recorded until sufficient statistics have been measured for all data
points. This approach is more robust to drifts and low-frequency noise,
because all points are equally affected.
Per trace averaging is used in all experiments where only pulse pa-

rameters need to be changed. Pulse waveforms for each parameter set
are loaded into the manipulation DAC, which is set up to advance to the
next waveform every time it is triggered, every 10 μ�. The readout ADC
is synchronized with the DAC, so that each acquisition can be sorted into
the correct bin. A complete trace is finished after a fewms, rejecting noise
at frequencies below a few hundred Hz.
The measurement software displays the average over all traces in a

periodically updated plot. Partial averages over the traces acquired in the
course of a few seconds are shown in a separate plot and also saved to
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Figuƌe ϯ.ϭϮ: DeteĐioŶ of loǁ-fƌeƋueŶĐǇ dƌits aŶd dƌopouts. EaĐh ǀeƌiĐal liŶe
of the let plot is a ŵeaŶ oǀeƌ ϭ,ϬϬϬ tƌaĐes aĐƋuiƌed iŶ the Đouƌse of a feǁ
seĐoŶds. Phase dƌits, if pƌeseŶt, ĐaŶ ďe deteĐted as a ĐhaŶge iŶ Đoloƌ iŶ the ൶
diƌeĐioŶ of the plot. AƌouŶd aǀeƌage ϭϱ,ϬϬϬ aŶd ϵϬ,ϬϬϬ, tǁo dƌopouts of the
sigŶal ĐaŶ ďe seeŶ. The ƌight plot shoǁs the ŵeaŶ oǀeƌ all ŵeasuƌeŵeŶts.

disk. From the partial averages, drifts can be detected and dropouts can
automatically be removed. Figure 3.12 shows a plot of partial averages
next to the mean over all measurements.
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ϰ.ϭ SteadǇ-State Quďit aŶd ResoŶatoƌMeasuƌeŵeŶts

ϰ.ϭ.ϭ Saŵple ChaƌaĐteƌizaioŶ

Readout ResoŶatoƌs

The firstmeasurement performed on any new sample once it has reached
its operating temperature of a few Millikelvins is a frequency sweep of
the network analyzer at zero external flux bias, shown in Figure 4.1. Due
to the design of the resonators as an array of notch filters on a shared
feedline, a minimum of transmission is seen at the resonance frequency
of each resonator.
From the shape of each resonance peak, losses ൖ� internal to the

resonator and the losses ൖ��� due to the coupling to the feedline can be
determined using equations 2.47 and 2.49 from section 2.3.5, as shown
in Table 4.1.

device resonance ൖ��� ൖ� (run ͷ) ൖ� (run ͹)
1 9313MHz 2,000 37,000 39,000
2 9458MHz 1,500 79,000 19,000
3 9614MHz 1,500 32,000 200,000
4 9773MHz 1,500 23,000 61,000
5 9934MHz 1,500 58,000 35,000
6 10094MHz 1,000 17,000 72,000
7 10262MHz 750 7,500 4,300

Taďle ϰ.ϭ: ResoŶaŶĐe fƌeƋueŶĐies aŶd ƋualitǇ faĐtoƌs of the ƌeadout ƌesoŶatoƌs
ŵeasuƌed at ϯϬŵK.
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Figuƌe ϰ.ϭ: TƌaŶsŵissioŶ of saŵple ϭϬJ-SPMJϱ at zeƌo fluǆ ďias.

The internal quality factors are different each time the sample is cooled
down, which can be attributed to Abrikosov vortices trapped close to
the resonator. Superconductivity is suppressed in the core of a vortex,
and a movement of vortices induced by the radio frequency field of the
oscillator leads todissipation[SHD+09]. Themagnitudeof this dissipation
depends on the vortex count and position. The internal quality factor of
resonator #7 is worse than the others, because its resonance frequency
is close to a box resonance of the sample holder, which supports a mode
at 10.35GHz into which the resonator can radiate energy.

Bias CaliďƌaioŶ

The transition frequencies of flux qubits are far detuned from the cavity
frequencies for all fluxes except a narrow range of a few �Φ� close to
half frustration of the qubit loop. As the dispersive shift, Eq. 2.58, is
proportional to �ဋ� ࢿ ဋ����, the inverse difference between the cavity
and qubit frequencies, it becomes negligibly small at zero flux bias and
the observed cavity resonance frequencies measured are the bare cavity
frequencies. As discussed in section 2.4.4, at these frequencies the qubit
state is encoded into the phase of the signal transmitted through the
sample. Bias calibration for all qubits is done by measuring transmission
at eachbare resonancewhile sweeping the fluxbiasover a rangeof severalΦ� using the external coil wound around the sample holder.
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Figuƌe ϰ.Ϯ: TƌaŶsŵissioŶ aŵplitude aŶd phase thƌough the feedliŶe at the
ƌesoŶaŶĐe fƌeƋueŶĐǇ of ƌesoŶatoƌ #ϱ. ;letͿ A Đoaƌse sĐaŶ is used to deteƌŵiŶe
the ĐuƌƌeŶt Ŷeeded to iŶĐƌease the fluǆ thƌough the Ƌuďit loop ďǇ Φ�. ;ƌightͿ
Fƌoŵ a fiŶe sĐaŶ, the eǆaĐt posiioŶ of the sǇŵŵetƌǇ poiŶt ĐaŶ ďe eǆtƌaĐted. The
tǁo steep slopes aƌe at the posiioŶs of aŶiĐƌossiŶgs ďetǁeeŶ the Ƌuďit aŶd its
ƌeadout ƌesoŶatoƌ.

From a coarse magnetic field scan, shown in Fig. 4.2, the mutual induc-
tance ൒�,��� of the bias coil and qubits can be extracted. The transition
frequency of the qubits is periodic in flux with a period of Φ�, and so isthe phase of the transmitted probe signal. By calculating the period of the
phase response with respect to the current applied to the bias coil, we
find that൒�,��� increases by 33% from qubit #1 to qubit #7. The absolute
values of൒�,��� can be found in Table 4.2.

device 1 2 3 4 5 6 7 unit
period 398 334 305 281 264 254 252 ࿾A൒�,��� 5.2 6.2 6.8 7.4 7.8 8.1 8.2 pH
Taďle ϰ.Ϯ: Mutual iŶduĐtaŶĐe of eaĐh Ƌuďit aŶd the eǆteƌŶal ďias Đoil.

In the absence of a superconducting film, the mutual inductance be-
tween the coil and qubits on the chip is expected to bemaximum for qubit
#4, which is located closest to the symmetry axis of the sample holder,
shielding and bias coil, and decrease towards both the higher and lower
qubit numbers. In the presence of the superconducting film, however, the
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Figuƌe ϰ.ϯ: TƌaŶsŵissioŶaŵplitude thƌough the feedliŶe iŶ a ƌaŶgeof fƌeƋueŶĐies
Đlose to the ƌesoŶaŶĐe fƌeƋueŶĐǇ of ƌesoŶatoƌ #ϱ. At ±9.≪�Φ�, the sigŶ of
the dispeƌsiǀe shit ĐhaŶges ďeĐause of the Ƌuďit tƌaŶsiioŶ fƌeƋueŶĐǇ passiŶg
thƌough the ƌesoŶaŶĐe fƌeƋueŶĐǇ of the ƌeadout ĐaǀitǇ.

flux bias is generated by screening currents on the film and depends on
the distance of the qubit from the edge of the ground plane.
Zooming in on one of the peaks measured during the measurement

of the mutual inductance reveals that they are double-peaks that are
symmetric with respect to their central point. This point corresponds
to a half-integer frustration of the flux qubit, with respect to which its
energy levels are symmetric. The double-peak structure is only present
when theminimum transition frequency ́ of the qubit is designed below
the resonance of the readout cavity, andmarks the pointswhere the qubit
transition frequency and cavity resonance cross each other.

Quďit-ResoŶatoƌ AŶiĐƌossiŶgs

In figure 4.3, the transmission amplitude of resonator #5 vs. the external
flux bias and probe frequency is shown. From this plot it can be seen
clearly that not only the transmitted phase but the position of the mini-
mum of the absorption dip, which is equal to the resonant frequency of
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this cavity, changes with the applied flux. With the qubit being in the
ground state during the whole experiment, the microwave tone probes
the transitions ,ࢿ| ൬૕ ࡁ ,ࢿ| ൬ � 1૕ between different resonator photon
number states of the Jaynes-Cummings Hamiltonian. The dashed line
represents the theoretical prediction Eq. 2.58 of the transition frequency��,��� �,��ࢿ in the dispersive limit, ဋ�� घ ൦. It is in close agreement to
the experimentally obtained data throughout the plot. In principle, the
bias dependence of the resonator frequency provides an indirect mea-
surement of the frequency of the qubit transition and the qubit-resonator
coupling energy ൦. In practice this is complicated by the weak photon-
number dependence of the shift and the fact that ൦ decreases from the
symmetry point to the anticrossing points according to Eq. 2.54 because
of the changing mixing angle.

ϰ.ϭ.Ϯ Tǁo-ToŶe Quďit SpeĐtƌosĐopǇ

Loǁ-Poǁeƌ SpeĐtƌosĐopǇ

The transition frequency of the qubit can be measured directly using
two-tone spectroscopy. In addition to the probe tone at the cavity photon
number transition, a second microwave (spectroscopy) tone is transmit-
ted to the system. If this tone is close the ,ࢿ| ൬૕ ࡁ |�, ൬૕ transition
of the Jaynes-Cummings Hamiltonian, it acts as a Rabi drive and causes
periodic oscillations between the qubit states. This causes a modulation
of the instantaneous frequency of the readout resonator with the Rabi
frequencyΩ given by Eq. 2.19. The spectrum of the frequency-modulated
resonator has sidebands at ဋ� ± ൨Ω with amplitudes of ൏��൫�, where൫ = ဋ�/Ω and ဋ� is the dispersive shift of the resonator. For Ω ≲ ဋ�,many closely spaced sidebands are present – the spectrum is spread in
the interval [ဋ� ࢿ ဋ�, ဋ� � ဋ�]. For Ω घ ဋ�, only ൏��൫� is nonzero andthe resonator appears at its bare frequency. In both cases, changes of
the transmitted amplitude or phase at the dispersively shifted and bare
resonance frequencies indicates a coincidence of the qubit transition and
spectroscopy tone frequencies. Transitions to higher levels outside the
qubit subspace can also be detected this way.
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Figuƌe ϰ.ϰ: SpeĐtƌa of the seǀeŶ Ƌuďits. Daƌk Đoloƌ iŶdiĐates a phase ƌespoŶse
of the ĐaǀitǇ. The dashed ďlaĐk liŶes ƌepƌeseŶt fits to the eǆpeĐted pƌogƌessioŶ
EƋ. Ϯ.ϭϯ. The hoƌizoŶtal liŶes aƌe Đaused ďǇ the speĐtƌosĐopǇ toŶe eǆĐiiŶg the
ƌesoŶatoƌ diƌeĐtlǇ.
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By sweeping the external flux bias and the spectroscopy tone frequency,
the flux dependence of the qubit transition frequency can bemapped out.
This curve provides the gap energy ́ and the asymmetry energy ဍ of the
qubit, from which the persistent current ൎ� in the loop can be calculated.́ depends sensitively on the geometry of the Josephson junctions of the
qubit and gives feedback on the quality of the fabrication process. ൎ� is
one of the factors determining the strength of coupling ൦ of the qubit
to the resonator. Alternatively, ൦ can be calculated from the separately
measured magnitude of the dispersive shift of the resonator and ́. The
parametersof thequbits foundonthemultiplexedsamplearesummarized
in Table 4.3.
device 1 2 3 4 5 6 7 unit́ 1970 6350 4400 6170 5800 5100 2000 MHzൎ� 174 129 146 134 142 147 178 nA൦ 51 73 80 85 89 89 51 MHz൙� 63 114 224 150 286 218 79 ns
Taďle ϰ.ϯ: Paƌaŵeteƌs of the seǀeŶ Ƌuďit eǆtƌaĐted fƌoŵ steadǇ-state
ŵeasuƌeŵeŶts.

The spectra of all seven qubits including fits of their transition fre-
quencies are plotted in Figure 4.4. In the plot, a dark pixel indicates a
phase responseof the cavity at the corresponding combinationof fluxbias
and spectroscopy tone frequency. The dark horizontal lines that appear
in some plots are caused by the spectroscopy tone directly exciting the
readout cavity or interfering with the probe signal detector. Towards
the intersection points of the qubit and cavity frequencies, the contrast
diminishes. This is caused by the dispersive shift increasing to several
line widths, so that the transmission at the bare cavity frequency is no
longer affected by the resonator in any of the qubit states. The dashed
black lines are fits of the spectral line to the theoretical progression of
the qubit transition with flux, given by Eq. 2.13.
In a Jaynes-Cummings system, the interaction between the qubit and

cavity not only shifts the frequency of the cavity, but also the frequency of
the qubit. This shift is known as the Autler-Townes effect or AC Stark shift
and can be calculated using Eq. 2.57. Its magnitude is proportional to the
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Figuƌe ϰ.ϱ: ;letͿACStaƌk shitof Ƌuďit #ϲ. ThedashedǀeƌiĐal liŶe at3×10���W
iŶdiĐates the pƌoďe poǁeƌ at ǁhiĐh the ĐaǀitǇ is oĐĐupied ďǇ oŶe photoŶ oŶ
aǀeƌage. The shit is liŶeaƌ iŶ the pƌoďe poǁeƌ, aŶd appeaƌs eǆpoŶeŶial oŶlǇ
ďeĐause of the logaƌithŵiĐ poǁeƌ sĐale used iŶ the plot. The eƌƌoƌ ďaƌs iŶdiĐate
the full ǁidth at half ŵaǆiŵuŵ of the speĐtƌal liŶe. ;ƌightͿ TheoƌeiĐal ŵeaŶ aŶd
staŶdaƌd deǀiaioŶ of the ĐaǀitǇ oĐĐupaioŶ Ŷuŵďeƌ ǀs. pƌoďe poǁeƌ, assuŵiŶg
the ĐlassiĐal pƌoďe dƌiǀes the ĐaǀitǇ to a ĐoheƌeŶt state. The ďƌoadeŶiŶg at loǁ
pƌoďe poǁeƌs iŶ the eǆpeƌiŵeŶtal plot ǁheŶ Đoŵpaƌed to the theoƌeiĐal data
is a ŵeasuƌe foƌ the dephasiŶg of the Ƌuďit.

numberofphotons൬ inside the cavity and thus to theprobepowerapplied
to the system. The color scale of Figure 4.5 shows the experimentally
measured amplitude response of cavity #6 at the symmetry point of
the qubit for different probe powers (൶ axis) and spectroscopy tone
frequencies (൷ axis, offset by ́). Up to probe powers of approximately3 × 10���W ,(�B�≪11ࢿ) the transition frequency is independent of the
probe power, because the cavity is occupied by less than one photon on
average. This power range is known as the single photon regime. At
higher probe powers, a linear shift of the qubit frequency is visible, which
appears exponential in this plot because of the logarithmic power scale
used on the horizontal axis. Qubit spectra are measured in the single
photon regime to avoid distortion.
The width of the qubit resonance line in the spectrum is linked to the

dephasing rate of the qubit. This is because dephasing of a qubit is caused
by fluctuactions of its transition frequency, which are quantified by the
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linewidth in the spectrum. Deep in the single photon regime, the spectral
line width ࿵ is dominated by intrinsic dephasing of the qubit, and ൙� is≪ဂ/࿵. At higher probe powers, the line is broadened by the varianceစ�� = ൬ (assuming the cavity is driven to a coherent state) of the mean
cavity photon number ൬, shown as errorbars of the right plot. Because
the ൙� broadening follows a Lorentz distribution and the broadening
due to ൬ follows a normal distribution, ࿵ and စ� can be separated in
high-resolution data. In lower-resolution data, ࿵ can be approximated by
assuming all distributions are gaussian and using propagation of errors,

စ������ = ࿵�8 �� 2 � ( ൦�ဋ� ࢿ ဋ� )� စ�� .
The ൙� values provided in Table 4.3 were calculated from fits to this
equation.

High-Poǁeƌ SpeĐtƌosĐopǇ

Low-power spectroscopy shows the first-order transitions of the Jaynes-
Cummings Hamiltonian, the cavity photon number transition and the
qubit transition, revealing qubit parameters and potential spurious cou-
plings to defect states in the sample[SLH+04]. In addition to these, certain
higher-order transitionsare interesting forquantuminformationprocess-
ing, since they may be used to create qubit-qubit[LWT+06]; [PGM+12]
and qubit-photon[WSB+07] entanglement without the need to bring the
entangled subsystems into resonance. For flux qubits, this has the advan-
tage that they can be left biased at their sweet spots all the time, where
they are least sensitive to flux noise. Other types of superconducting
qubits, namely single junction transmon qubits, are fixed-frequency on
purpose to remove the frequency control as a source of decoherence.
Apart from making the cavity frequency tunable, which increases the
decoherence of the cavity, exciting sideband transitions is the only way to
entangle these qubits with cavity photons.
For quantum information processing, the ``blue'' sideband transition|ࢿ, ൬ ࢿ 1૕ ࡁ |�, ൬ � 1૕ at a frequency of ဋ���� = ဋ� � ဋ� and the ``red''sideband transition ,ࢿ| ൬૕ ࡁ |�, ൬૕ at ဋ��� = |ဋ� ࢿ ဋ�| are the most

interesting ones.
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Figuƌe ϰ.ϲ: TƌaŶsiioŶs ďetǁeeŶ the eŶeƌgǇ leǀels of the JaǇŶes-CuŵŵiŶgs
HaŵiltoŶiaŶ seeŶ iŶ tǁo-toŶe speĐtƌosĐopǇ. ;letͿ IŶ loǁ-poǁeƌ speĐtƌosĐopǇ,
the Ƌuďit-ĐaǀitǇ sǇsteŵ is iŶiiallǇ iŶ its gƌouŶd state. The eŶeƌgǇ ƌeƋuiƌed to
eǆĐite the sǇsteŵ is at least ߷ဋ� oƌ ߷ဋ�, ǁhiĐheǀeƌ is loǁeƌ. ൩-photoŶ tƌaŶsiioŶs
aƌe suppƌessed ďǇ a faĐtoƌ of �൦/ဋ����, ǁheƌe ဋ�� = ဋ� ࢿ ဋ�. ;ƌightͿ High
ĐaǀitǇ pƌoďe poǁeƌs ƌesult iŶ a ŶoŶ-zeƌo ŵeaŶ populaioŶ of the ĐaǀitǇ, alloǁiŶg
a ĐaǀitǇ photoŶ to ĐoŵďiŶe ǁith a loǁ eŶeƌgǇ speĐtƌosĐopǇ photoŶ to iŶduĐe a
tƌaŶsiioŶ. At high speĐtƌosĐopǇ toŶe poǁeƌs the seĐoŶd oƌdeƌ ``ƌed'' aŶd ``ďlue''
sideďaŶd tƌaŶsiioŶs aŶd ŵuli-photoŶ tƌaŶsiioŶs ďeĐoŵe ǀisiďle.

The spectrum of qubit #2 shown in Figure 4.7 was recorded at large
spectroscopy and probe tone amplitudes, so that the cavity is always
populated and the matrix elements of second order transitions become
sufficiently large. The red sideband transition, shown as a dashed black
line, can be clearly identified. The blue sideband transition starts at
probe frequencies of approximately 17GHz, which is outside the range of
the plot. However, the two-photon blue sideband transition can be seen
starting from8.≫ GHz and is shownas adash-dottedblack line. The strong
drivingalsoenables anumberof other transitions, suchas the two-photon
qubit transition and the two-photon red sideband transition, which have
matrix elements of comparable size. A list of identified transitions can be
found in the figure caption.
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Figuƌe ϰ.ϳ: SpeĐtƌuŵ of deǀiĐe #Ϯ ƌeĐoƌded ǁith laƌge speĐtƌosĐopǇ aŶd pƌoďe
toŶe poǁeƌs shoǁiŶg sideďaŶd tƌaŶsiioŶs. The solid ďlaĐk liŶes aƌe siŶgle aŶd
tǁo-photoŶ tƌaŶsiioŶs ďetǁeeŶ ,ࢿ| ൬૕ aŶd |�, ൬ � 1૕. The dashed ďlaĐk liŶes
aƌe siŶgle aŶd tǁo-photoŶ ƌed sideďaŶd tƌaŶsiioŶs ďetǁeeŶ ,ࢿ| ൬૕ aŶd |�, ൬૕.
The dash-doted ďlaĐk liŶe is the tǁo-photoŶ ďlue sideďaŶd tƌaŶsiioŶ ďetǁeeŶ|ࢿ, ൬૕ aŶd |�, ൬ � 2૕. The doted ďlaĐk liŶe is the ,ࢿ| ൬૕ ࡁ |�, ൬ 1૕ࢿ tƌaŶsiioŶ.
The oƌigiŶ of the solid gƌaǇ liŶe is uŶĐleaƌ. The hoƌizoŶtal dashed ǁhite liŶe
iŶdiĐates the fƌeƋueŶĐǇ of the ƌeadout ƌesoŶatoƌ.

ϰ.Ϯ SeƌialMeasuƌeŵeŶts of Quďit DǇŶaŵiĐs

ϰ.Ϯ.ϭ SiŶgle Quďit Gates

IŶtƌoduĐioŶ

Among the list of elementary gates required to operate a quantum com-
puter are arbitrary rotations of the state vectors of individual qubits. As
shown in section 2.2.5, such rotations can be produced by driving qubits
with microwave pulses. If the amplitude and phase of the drive and the
detuning between the driving and qubit transition frequencies can be
controlled on a per-pulse basis, the general rotation operator Eq. 2.17
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can be directly implemented. If only the phase of the drive or only the
detuning can be controlled, an arbitrary rotation can be synthesized from
a sequence of three rotations[KG01] around two different axes (൶-൷-൶,൶-൸-൶, …) by expressing the rotation vector in terms of Euler angles. The
absence of flux lines allowing fast control of the qubit transition frequen-
cies therefore does not restrict our ability to produce arbitrary single
qubit gates.

SoluioŶ of the LiŶdďlad Masteƌ EƋuaioŶ

Because physical qubits are subject to dissipation and dephasing, exper-
imental results are better described using the time evolution Eq. 2.25 of
thedensityoperator insteadof the coherent evolutionof apurequbit state
represented by Eq. 2.17. Using the fact that the Pauli matrices together
with the identity matrix စ� form an orthogonal basis of the vector space
of 2 × 2 matrices, the equations for the components of the Bloch vector
can be separated and Eq. 2.25 can be reformulated as an inhomogeneous
first-order linear matrix differential equation in three dimensions,ဌ൰⃗ဌ൲ = �࿵ࢿ) �Ωࢿ Ω�Ω� �࿵ࢿ �Ωࢿ�Ωࢿ Ω� (�࿵ࢿ ⋅ ൰⃗ � (00࿵�)= ൒ ⋅ ൰⃗ � ⃗ൢ. (4.1)

In this equation, ൰⃗ is the Bloch vector, Ω� are the components of the
rotation vector Ω⃗ defined by Eq. 2.17, ࿵� is the longitudinal and ࿵� is thetransversal relaxation rate.
The formal solution of differential equations in the form of Eq. 4.1 is൰⃗�൲� = ൰⃗ࣄ � ����൒൲� ⋅ �൰⃗�0� ࢿ ൰⃗ࣄ�,

where ����൒൲� is the matrix exponential of ൒൲ and ൰⃗ࣄ = ൒�� ⋅ ⃗ൢ is the
steady-state solution.
If only resonant driving around the ൶ axis, equivalent to Ω� = Ω� = 0,is considered, the equation for ൰� can be separated from the equations for൰� and ൰�. The equations for ൰� and ൰� can then be solved by expanding

the 2 × 2 matrix in Pauli matrices and using the identity ����൧ൠ⃗ ⋅ စ⃗� =
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စ� ����ൠ� � ൧൬̃ ⋅ စ⃗ ����ൠ�, where ൠ = |ൠ⃗| and ൬̃ = ൠ⃗/ൠ, to evaluate the
matrix exponential. Because the readout apparatus can onlymeasure the൸ component of the Bloch vector and experiments typically start with the
qubit in the ground state, we are only interested in the solution of ൰��൲�with ൰��0� = 1 and ൰��0� = ൰��0� = 0,൰��൲� = ൤��� [����Ω̃൲� � ࿵�̃Ω ����Ω̃൲�] �1 ࢿ ൰ࣄ,�� � ൰ࣄ,�. (4.2)
Eq. 4.2 describes anoscillationdecaying towards a relaxation and rotation
rate dependent steady-state value൰ࣄ,� = ࿵�࿵�࿵�࿵� � Ω�� . (4.3)

The decay rate is the arithmetic mean of the longitudinal and transversal
decay rates, ࿵ = ࿵� � ࿵�2 . (4.4)
The frequency of these oscillations is the Rabi frequency Eq. 2.18, shifted
to lower frequencies due to damping,

Ω̃ = √Ω�� ࢿ ࿵�� ,
where ࿵� = ࿵� ࢿ ࿵�2 .
Due to the relaxation rates of ൰� and ൰� being equal, the above equations
hold for any resonant driving if Ω� is replaced by Ω = √Ω�� � Ω��.
Readout CaliďƌaioŶ

For each qubit, the readout apparatus outputs the transmission ampli-
tude and/or phase shift ൗ of the microwave tone scattered at the qubit's
associated readout resonator. Due to the nature of the quantummechan-
ical measurement process, the output takes one out of two values, ൗ� forthe qubit in the ground state and ൗ�� for the qubit in the excited state.
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In the absence of noise, one could perfectly discriminate between the
two values and map them to the two qubit states. In a noisy system,
the measured values are distributed stochastically with two normalized
probability density functions (PDFs) ൕ±� that peak at the output valuesof the noiseless system, such that∫ ൗൕ±��ൗ� �ൗ = ൗ±�.
If the PDFs have a small overlap, it is possible to determine the qubit state
from a single measurement, a process called single shot readout. In the
present case of dispersive readout, the PDFs overlap almost completely
because the noise power introduced by the amplification chain exceeds
the readout signal power by one to two orders ofmagnitude, as discussed
in section 3.2.3. The system can thus not determine the qubit state from a
single measurement, but can only determine its ensemble average value
overmany repetitions. The outcome of each repetition is drawn from one
of the two PDFs with weights equal to the probabilities ��� = �1 ࢿ ൰��/2to find the qubit in the excited state and �� = 1 ࢿ ��� = �1 � ൰��/2 tofind the qubit in the ground state, where ൰� is the ൸ component of the
Bloch vector introduced in Eq. 2.21. The ensemble average is thus a linear
interpolant between ൗ� and ൗ��,ൗ = ∫ ൗ [��ൕ��ൗ� � ���ൕ���ൗ�] �ൗ= �1 ࢿ ����ൗ� � ���ൗ��= ൗ� � ൗ��2 � ൗ� ࢿ ൗ��2 ൰�,
and it is sufficient to measure the response for any two different qubit
states with well known values of ൰� to calibrate the whole scale. In
particular, the detailed frequency characteristics of the readout resonator
do not play a role for calibration.
The first calibration point is attained by not applying any excitation,

which amounts to leaving the qubit in its ground state, and identifying
themeasured valueൗ� with ൰� = 1. The second calibration point could befound by applying a pulse that prepares the excited state of the qubit, and
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ͺ.͸ Serial Measurements of Qubit Dynamics

readoutmanipulation t treadout
Figuƌe ϰ.ϴ: Pulse seƋueŶĐe of a Raďi eǆpeƌiŵeŶt.

identifying the measured value ൗ�� with ൰� = .1ࢿ This requires a carefulcalibration of the pulse and is not robust against errors. Instead, the qubit
is driven for a time ൙ घ ࿵��� , ࿵��� such that the measurement ensemble
is in the incoherent steady state ൰ࣄ,�. The value of ൰ࣄ,� can be calculated
from Eq. 4.3 if at least two different driving amplitudes are measured or
by making the driving amplitude sufficiently large such that ൰ࣄ,� = 0 to agood approximation.

EǆpeƌiŵeŶtal OďseƌǀaioŶ of Raďi OsĐillaioŶs

To manipulate a qubit's state, its transition frequency is first found by
two-tone spectroscopy. Subsequently, manipulation pulses of variable
duration are applied at or close to this frequency. After a few ൬൱ delay, the
readout signal is sent to the qubit to determine its state at the end of the
manipulation. The pulse sequence is depicted in Fig. 4.8 By varying the
duration, amplitude, phase and frequency of themanipulation pulses, the
qubit's response can be compared to the various theoretical predictions
made by equations 2.17 and 4.2.
The data presented in Figure 4.9 shows the pulse duration and pulse

amplitude dependence of the response of qubit #2, measured at its
symmetry point. Each of the six plots on the top shows the excited
state occupation probability ��� = �1 ࢿ ൰��/2 against the duration of thedriving pulse. The solid lines are fits of Eq. 4.2 to the data. While the
manipulation pulse is on, the state rotates around the ൶ axis of the Bloch
sphere, oscillating from the ground state to the excited state and back.
The total rotation angle is proportional to the duration of the excitation
pulse. According to Eq. 2.18, the oscillation frequency and therefore the
total rotation angle is also proprotional to the amplitude of the excitation
pulse. Linear regression of the oscillation frequency vs. probe amplitude,
shown in the bottom plot of Fig. 4.9, confirms this.
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Figuƌe ϰ.ϵ: EǆĐitaioŶ poǁeƌ depeŶdeŶĐe of Raďi osĐillaioŶs of Quďit #Ϯ. ;topͿ
IŶdiǀidual Raďi Đuƌǀes foƌ ǀaƌious poǁeƌs. ;ďotoŵͿ Fit of the oďseƌǀed Raďi
fƌeƋueŶĐǇ to EƋ. Ϯ.ϭϴ. Up to a ŵiǆeƌ iŶput of Ϭ dBŵ, the Raďi fƌeƋueŶĐǇ
iŶĐƌeases liŶeaƌlǇ ǁith eǆĐitaioŶ poǁeƌ, at laƌgeƌ poǁeƌs the ŵiǆeƌ satuƌates
aŶd the aŵplitude deliǀeƌed to the Ƌuďit is ƌeduĐed.
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device 2 3 4 5 6 unitဋ/2ဂ 6.370 4.414 6.164 5.808 5.094 GHz࿵�� 309 717 220 748 388 ns࿶࿵�� 9 59 12 62 43 ns
Taďle ϰ.ϰ: DeĐaǇ iŵes of Raďi osĐillaioŶs of Ƌuďits #Ϯ–#ϲ at theiƌ sǇŵŵetƌǇ
poiŶts. Best ƌesult out of seǀeƌal ŵeasuƌeŵeŶts. See also seĐioŶ ϰ.Ϯ.Ϯ.

Duetodecoherenceeffects, theoscillationsdecaywithatimeconstantof࿵��, where ࿵, defined by Eq. 4.4, is the arithmetic mean of the transversal
and longitudinal decay rates. While it is not possible to individually
determine the values of ࿵� and ࿵� from this type of measurement alone,
it puts an upper limit of 2࿵ on both. The decay times ൙���� = ࿵�� are
summarized in Table 4.4.
Figure 4.10a shows the response of qubit #2 to driving at different

frequencies. If the microwave drive is not resonant with the transition
frequency of the qubit, the rotation vector acquires an additional com-
ponent Ω� equal to the difference of the transition and driving (angular)frequencies. In Rabi oscillations, this manifests itself in an increased
rotation frequency, the generalized Rabi frequency Eq. 2.19. The experi-
mentallymeasuredoscillation frequencies aswell as a fit to thehyperbolic
dependence expected from Eq. 2.19 is plotted in Fig. 4.10b. Furthermore,
the rotation axis is now tilted with respect to the ൶-൷ plane. Therefore
the qubit, initially in the ground state, can not reach the excited state.
The minimum of ൰� increases towards 1 as the frequency difference is
increased, plotted in Fig. 4.10c including a fit of the expected minimum
Eq. 2.20 to the experimental data. The decay rate of the oscillations is
found to be lowest at resonance and fall off to a constant value for large
detunings, as shown in Fig. 4.10d.

QuaŶtuŵ State ToŵogƌaphǇ

Since both the equations ofmotion Eq. 4.1 and the initial state, the ground
state, are invariant under rotations around the ൸ axis, changing the phase
of the microwave drive does not affect the Rabi oscillations presented in
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Figuƌe ϰ.ϭϬ: Off-ƌesoŶaŶt Raďi dƌiǀiŶg of Ƌuďit #Ϯ. aͿ Phase ƌespoŶse of
ƌesoŶatoƌ #Ϯ ǁhile dƌiǀiŶg Ƌuďit #Ϯ Đlose to its tƌaŶsiioŶ fƌeƋueŶĐǇ. Daƌkeƌ
;lighteƌͿ Đoloƌ iŶdiĐates a loǁeƌ ;higheƌͿ eǆĐited state oĐĐupaioŶ pƌoďaďilitǇ. ďͿ
FƌeƋueŶĐǇ of the osĐillaioŶs ǀs. dƌiǀiŶg fƌeƋueŶĐǇ. The osĐillaioŶ fƌeƋueŶĐǇ is
ŵiŶiŵuŵ ǁheŶ the dƌiǀiŶg fƌeƋueŶĐǇ is ƌesoŶaŶt ǁith the Ƌuďit tƌaŶsiioŶ aŶd
gƌoǁs as (Ω� � �ဋ� ࢿ ဋ���)�/� ǁith iŶĐƌeasiŶg detuŶiŶg. ĐͿ The theoƌeiĐallǇ
eǆpeĐted osĐillaioŶ aŵplitude is ŵaǆiŵuŵ at zeƌo detuŶiŶg ;ƌotaioŶ aƌouŶd
the ൶ aǆisͿ aŶd deĐƌeases ǁith iŶĐƌeasiŶg detuŶiŶg ;ƌotaioŶ aǆis ilted toǁaƌds
the ൸ aǆisͿ. The loǁeƌ aŵplitude that ǁas eǆpeƌiŵeŶtallǇ oďseƌǀed Đlose to
ƌesoŶaŶĐe is due to ƌesidual dƌiǀiŶg duƌiŶg Ƌuďit ƌeset aŶd ƌeadout. dͿ The
osĐillaioŶs deĐaǇ fasteƌ toǁaƌds laƌgeƌ detuŶiŶgs as the iŶflueŶĐe of ࿵� घ ࿵�
iŶĐƌeases.
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Figuƌe ϰ.ϭϭ: ;letͿ IllustƌaioŶ of the eǀoluioŶ of the iŶiial state ૕࠾|� � �૕ࡀ| /√2
duƌiŶg ƌadial state toŵogƌaphǇ. ;ƌightͿ Pulse seƋueŶĐe of the toŵogƌaphǇ
pƌoĐess.

the previous section. Only when a sequence of at least two pulses with
different phases is applied, this symmetry can be broken. The first pulse
defines the (rotating) reference frame of the qubit and is typically set to
be a rotation around the ൶ axis. The second pulse rotates the spin vector
around a different axis within this reference frame.
A pulse sequence to demonstrate the effect of changing the relative

phase between two pulses is shown on the right-hand side of Figure 4.11.
To control the phase, the ൎ and ൖ inputs of a two-quadrature mixer (see
section 3.4.1) are supplied with DC pulses of variable amplitude. The
reference frame is chosen such that the ൎ input of the mixer controlsΩ� = Ω���� and the ൖ input controls Ω� = Ω����. The first pulse, witha duration of ൲���� = 10��, prepares the qubit by rotating it from the
ground state to the desired initial state. The total rotation angle Ω൲����is set by varying the amplitude on the ൎ and ൖ inputs rather than the
duration of the pulse. The amplitudes required for certain Ω� and Ω�are separately calibrated for the ൎ and ൖ channels by measuring Rabi
oscillations. The second pulse, also with a duration of ൲���� = 10��,
rotates the state around a different axis in the ൶-൷ plane.
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The left-hand side of Figure 4.11 illustrates the evolution of the Bloch
vector ൰⃗ corresponding to the initial state | ,࠾ ൶૕ = ૕࠾|� � �૕ࡀ| /√2 for
different rotation axes. If direction of ൰⃗ and Ω⃗ coincide, ൰⃗ is invariant
under the rotation. The larger the angle (acutally |൰⃗/൰ × Ω⃗/Ω|) between൰⃗ and Ω⃗, the larger is the circle described by ൰⃗ on the Bloch sphere.
Figure 4.12 demonstrates the effect of varying the amplitude and phase

of the second pulse, or, equivalently, of varying the orientation of its
rotation axis and total rotation angle for different initial states. The polar
angle represents thephase�of thesecondpulseand theradius represents
the total rotation angle generated by the pulse, subject to calibration. The
grey scale indicates the excited state occupation probability at the end of
the second pulse, with dark colors indicating low excitation probabilities
and light colors indicating high excitation probabilities. The plots on
the left-hand side show experimentally measured data, the plots on the
right-hand side show the response expected from theory.
In Figs. 4.12a and 4.12d the qubit is initialized in the ground state

and excited state, respectively. In these cases, the angle between ൰⃗ andΩ⃗ is independent of �, and the plots are expected to be rotationally
symmetric. The experimental data does not completely measure up to
this expectation, showing an increasedΩ towards .ࣅ270 This is indicative
of themixer producing an amplitude error in themicrowave pulse, which
can be compensated for by calibrating the mixer for a larger number of
angles instead of just ࣅ0 and ,ࣅ90 as done here. In Figs. 4.12b and 4.12c
the qubit is initialized in the | ,࠾ ൷૕ and | ,࠾ ൶૕ states along the ൷ and ൶
axis, accordingly. In these plots, the dependence of the oscillations on the
relative angle between ൰⃗ and Ω⃗ can be seen.
Because the readout system can only measure the projection of the

Bloch vector on the ൸ axis, rotations around the ൶ and ൷ axes are used to
find the other projections. A ဂ/2 rotation around the ൶ axis exchanges
the ൷ and ൸ axes, enabling the measurement of ൰�. A ဂ/2 rotation aroundthe ൷ axis exchanges the ൶ and ൸ࢿ axes, enabling the measurement of ൰�.The process of measuring all components of the Bloch vector ൰⃗ is called
quantum state tomography[SAM+06].
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Figuƌe ϰ.ϭϮ: Radial state toŵogƌaphǇ of Ƌuďit #Ϯ. Ateƌ pƌepaƌiŶg the Ƌuďit
state, ƌotaioŶs aƌouŶd diffeƌeŶt aǆes iŶ the ൶-൷ plaŶe aƌe peƌfoƌŵed. Pƌepaƌed
states aƌe aͿ ,૕࠾| ďͿ ૕࠾|� � �૕ࡀ| /√2, ĐͿ ૕࠾|� � ൧|ࡀ૕� /√2, dͿ .૕ࡀ| Let-haŶd plots
shoǁ eǆpeƌiŵeŶtal data, ƌight-haŶd plots aƌe siŵulated. The Đoloƌ sĐale iŶdiĐates
the eǆĐited state oĐĐupaioŶ pƌoďaďilitǇ ;daƌk = loǁͿ, the polaƌ aŶgle iŶdiĐates
the diƌeĐioŶ of the ƌotaioŶ aǆis, aŶd the ƌadius iŶdiĐates the ƌotaioŶ aŶgle.
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ϰ.Ϯ.Ϯ MeasuƌiŶg DeĐoheƌeŶĐe

IŶtƌoduĐioŶ

The longitudinal and transversal relaxation rates ࿵� and ࿵� or their in-
verses, the coherence times ൙� and ൙�, are the two key dynamical param-
eters characterizing the fitness of a qubit for quantum computation. ࿵� isa measure of how fast the excited qubit relaxes to its ground state. ࿵� isa measure of how fast the knowledge of the phase, the crucial difference
between quantum and classical information, is lost. The experimental
determination of ࿵� will be detailed in the next section, differentmethods
to determine ࿵� are found in the following sections.
In our case, ࿵� is what counts for quantum computation, because it

limits the time available for operations. ൙� is also is important for two
reasons: First, it limits the duration of a dispersive readout, shown in
section 2.4.4, and therefore themaximum density of a frequency-division
multiplexing system. This is discussed in section 2.5.3. Second, it limits൙� due to the inequality ൙� ≤ 2൙� derived in section 2.2.7.
LoŶgitudiŶal RelaǆaioŶ൙� is measured by applying a ဂ pulse to the qubit and varying the de-
lay between the excitation and readout pulses, as shown in Fig. 4.13.
Subsequently, Eq. 4.1 is fitted to the acquired ൰��൲� to extract ൙�. If theparameters of the ဂ pulse are not known, because Rabi oscillations have
not been measured before, any initial state except the ground state can
be used to measure ൙�. The choice of a ဂ pulse is simply a matter of
convenience, because it maximizes the contrast of the decay curve.
We measured the decay times of qubits #2 to #6 at their symmetry

points by applying a ဂ pulse to each qubit and recording the amplitude
response of its readout resonator. Qubits #1 and #7 were not measured

readoutmanipulation ttπ treadout
Figuƌe ϰ.ϭϯ: Pulse seƋueŶĐe of a ൙� ŵeasuƌeŵeŶt.
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Figuƌe ϰ.ϭϰ: MeasuƌeŵeŶts of the ൙� iŵes of Ƌuďits #Ϯ to #ϲ at theiƌ sǇŵŵetƌǇ
poiŶts. The ൶ aǆis iŶdiĐates the delaǇ ďetǁeeŶ the eŶd of a ဂ pulse eǆĐiiŶg the
Ƌuďit aŶd the staƌt of the ƌeadout pƌoĐess.
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due to their lowreadout contrastwhich is a result of their smaller coupling
to the readout resonator and large detuning from the resonator. The ൙�times of all measured qubits are about 1 ࿾�, which is a typical value for
similarly fabricated fluxqubits. Themeasureddecay curves arepresented
in Figure 4.14, and the ൙� values extracted from the curves are listed in
Table 4.5.

device 2 3 4 5 6 unitဋ/2ဂ 6.370 4.414 6.164 5.808 5.094 GHz൙� 1.095 1.103 0.966 0.898 0.636 ࿾s
Taďle ϰ.ϱ: LoŶgitudiŶal ƌelaǆaioŶ iŵes of Ƌuďits #Ϯ to #ϲ ŵeasuƌed at theiƌ
sǇŵŵetƌǇ poiŶts. The ǀalues aƌe fits to the Đuƌǀes pƌeseŶted iŶ Fig. ϰ.ϭϰ.

TƌaŶsǀeƌsal RelaǆaioŶ: Raďi EǆpeƌiŵeŶt

The result Eq. 4.4 for the decay rate ࿵ of (resonant) Rabi oscillations
allows the setting of an upper bound of the transversal relaxation rate ࿵�,࿵� ≤ 2࿵. If the longitudinal relaxation rate has been separatelymeasured,࿵� can be calculated from ࿵ and ࿵�. The advantages of this method are its
simplicity and robustness. Both measurements, Rabi and ࿵�, require onlya single gate operation on the qubit. Pulse amplitude and duration errors
do not influence the measured ࿵ and ࿵�. The ൙� times of qubits #2 to #6
extracted this way are summarized in Table 4.6.
The measured ࿵� were not well reproducible and varied by a factor ofup to three between different measurements taken within a span of one

hour. At the same time, variations of the qubit transition frequency of the
order of a few MHz could be seen, indicating an unstable flux bias. Any
bias offset from the symmetry point results in net circulating currents
around the qubit loop, which is opposite for the twobasis states, as shown
in Figure 2.4. External magnetic fields couple asymmetrically to the two
states, changing their energy difference and causing dephasing.
In [KMS+07], 1/൥ noise in the bias flux was found to give the main

contribution to dephasing in a flux qubit. The authors found that ࿵� was
proportional to the bias offset ́Φ from Φ�/2. Adopting their treatment
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device 2 3 4 5 6 unitဋ/2ဂ 6.370 4.414 6.164 5.808 5.094 GHz࿵��/2 155 358 110 274 194 ns൙� = ࿵��� 180 531 124 641 278 nsΩ 8.7 58.9 11.6 62.0 42.9 MHz࿵��/2 155 244 110 165 131 ns൙� = ࿵��� 180 313 124 202 164 nsစ൙� ∞ 173 1 186 92 ns
Taďle ϰ.ϲ: ൙� iŵes of Ƌuďits #Ϯ to #ϲ at theiƌ sǇŵŵetƌǇ poiŶts, ĐalĐulated fƌoŵ
the loŶgitudiŶal aŶd Raďi deĐaǇ ƌates iŶ Taďles ϰ.ϱ aŶd ϰ.ϰ. The fiƌst set of ǀalues
aƌe the ďest ƌesults out of seǀeƌal ŵeasuƌeŵeŶts, the seĐoŶd set of ǀalues aƌe
the ŵeaŶ of these ŵeasuƌeŵeŶts.

to the parameters (geometric size and persistent current) of our qubits,
a dephasing rate ࿵� = 1≫MHz/�Φ� ⋅ ́Φ is expected. At an offset of2≫0 μΦ�, causing an increase of the qubit transition frequency by 4MHzfrom its minimum, this limits ൙� to 250 ns. These numerical values
assume that the spectral density of flux noise is equal in [KMS+07] and
our experiments. The high sensitivity to small offsets could very well
explain the variance of ࿵� observed, and it emphasizes the necessity to
optimize the magnetic shielding of the qubits.

A more in-depth study of decoherence of flux qubits[BGY+11] shows
that ࿵ is not a constant, but depends on the Rabi frequency Ω. As the
driving amplitude is varied, the qubit samples the noise power spectral
densityof critical currentnoise൘��Ω�andof fluxnoise൘��Ω�. ࿵� extractedfrom this measurement is thus only unambiguously defined if the Rabi
frequency at which it was measured is also given. It should be noted that
the standard Ramsey and echo experiments presented in the following
sections and more general dynamical decoupling sequences are likewise
sensitive todifferentparts of thenoise spectrum, dependingon theoverall
time of the pulse sequences.
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readoutmanipulation ttπ/2 treadouttπ/2
Figuƌe ϰ.ϭϱ: Pulse seƋueŶĐe of a RaŵseǇ ൙� ŵeasuƌeŵeŶt.

TƌaŶsǀeƌsal RelaǆaioŶ: RaŵseǇ EǆpeƌiŵeŶt

The transversal relaxation rate canbemeasureddirectly using a sequence
of two rotations, by means of a so-called Ramsey experiment[Ram50],
sketched in Fig. 4.15. First, a ဂ/2 pulse around the ൷ axis (or any other
axis in the ൶-൷ plane) is applied to the qubit. The pulse turns the Bloch
vector ൰⃗ = ൸̃ of the inital state into ൰⃗ = ൶̃, on the equatorial plane of the
Bloch sphere. After some time, during which decoherence processes take
place, a second ဂ/2 rotation around the same axis is applied. The second
pulse transforms the ൶ component of ൰⃗ into the ൸ࢿ component and the ൸
component into the ൶ component. When finally ൰� ismeasured, it contains
information on the evolution of ൰� in the time interval between the two
pulses, which is an exponential decay with rate ࿵�, as can be found fromEq. 4.1.
If therotationpulsesaredetunedfromthequbit transition, anadditional

precession of the state around the ൸ axis takes place, which is seen as an
oscillation in the ൰� projection. A fixed detuning is often employed in this
measurement, because slow oscillations, introduced by an accidential
detuning, are hard to separate from ࿵� when fitting the experimental
curve.
Figure 4.16 shows the results of a Ramsey measurement performed

on qubit #6.The qubit was resonantly driven at 5070MHz with a Rabi
frequency of Ω/2ဂ = 95.5MHz, resulting in a duration of ဂ/2 pulses of
2.6 ns. The low measured ൙������� time compared to Table 4.6 is a result
of noise coupled by the unattenuated high-frequency bias line used in this
measurement run.
Figure 4.17 shows Ramsey measurements performed on qubit #2 at

various detunings of the drive from the qubit transition frequency. The
expected linear dependence of the oscillation frequency on the detuning
can be seen. Discrepancies from the theoretical curve at are due to bias
instabilities.
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Figuƌe ϰ.ϭϲ: RaŵseǇ eǆpeƌiŵeŶtoŶƋuďit #ϲ at its sǇŵŵetƌǇ poiŶt. The duƌaioŶ
of a ဂ/2 pulse ǁas 2.6 ��.

Figuƌe ϰ.ϭϳ: Off-ƌesoŶaŶt RaŵseǇ eǆpeƌiŵeŶt oŶ Ƌuďit #Ϯ.aͿ EǆĐited state
oĐĐupaioŶ pƌoďaďilitǇ of Ƌuďit #Ϯ ǀs. dƌiǀiŶg fƌeƋueŶĐǇ. Lighteƌ Đoloƌs iŶdiĐate
higheƌ pƌoďaďiliies. ďͿ FƌeƋueŶĐǇ of the osĐillaioŶs ǀs. dƌiǀiŶg fƌeƋueŶĐǇ. The
osĐillaioŶ fƌeƋueŶĐǇ is eƋual to the detuŶiŶg ďetǁeeŶ the Ƌuďit aŶd dƌiǀe.
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readoutmanipulation ttπ/2 treadouttπ/2t tπ
Figuƌe ϰ.ϭϴ: Pulse seƋueŶĐe of aŶ eĐho ൙� ŵeasuƌeŵeŶt.

TƌaŶsǀeƌsal RelaǆaioŶ: SpiŶ EĐho EǆpeƌiŵeŶt

A Hahn spin echo measurement[Hah50] is an improved method of mea-
suring the transversal relaxation rate of a qubit that suppresses low-
frequency noise. It uses a sequence of three pulses, shown schematically
in Figure 4.18. As in the Ramsey experiment, the first pulse, initializes
the Bloch vector to ൰⃗ = ൶̃, and the last pulse projects ൰� onto the ൸ axis.The second pulse, a ဂ pulse, inverts the sign of ൰� but not of ൰�, effectivelyinverting the sign of the polar angle of the Bloch vector. A phase acquired
during the evolution between the first and second pulses is canceled by
the evolution between the second and third pulses, given that the evolu-
tion time and precession frequencies are the same. The echo sequence
will thus cancel the effect of fluctuations of the qubit transition that are
slow on the time scale of a single repetition of the experiment, that would
otherwise degrade the average over many repetitions. It has no effect on
fluctuations on shorter time scales.
Figure 4.19 shows the results of a spin echo experiment performed

on qubit #6.The qubit was resonantly driven at 5070MHz with a Rabi
frequency ofΩ/2ဂ = 95.5MHz, resulting in a duration of 2.6 ns of the ဂ/2
pulses and 5.2 ns of the ဂ pulse. The ൙����� = ≪1.≪ ��measured using the
spin echo technique is about five times larger than the ൙������� = 7.9 ��
measured using the simple Ramsey technique. This indicates that low
frequency noise contributes significantly to the total dephasing in this
setup. For comparison, ൙����� = 11.9 ��was also measured, and found to
coincide with ൙������� reasonably well.
Figure 4.20 shows a spin echo experiment performed on qubit #2 at

various detunings of the driving and qubit transition frequencies. Like in
the detuned Ramsey experiment in Figure 4.10, the oscillation frequency
is equal to the detuning. The oscillations decay slower than in the Ramsey
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Figuƌe ϰ.ϭϵ: SpiŶ eĐho eǆpeƌiŵeŶt oŶ Ƌuďit #ϲ at its sǇŵŵetƌǇ poiŶt.BeĐause
the total duƌaioŶ of the eǆpeƌiŵeŶt is tǁo iŵes the delaǇ ďetǁeeŶ the pulses,
the deĐaǇ is pƌopoƌioŶal to �����2൲/൙ࢿ���� �. ൙����� is suďstaŶiallǇ loŶgeƌ thaŶ
the ൙� eǆtƌaĐted fƌoŵ the RaŵseǇ ŵeasuƌeŵeŶt Fig. ϰ.ϭϲ, iŶdiĐaiŶg that loǁ
fƌeƋueŶĐǇ Ŷoise sigŶifiĐaŶtlǇ ĐoŶtƌiďutes to the total dephasiŶg.

Figuƌe ϰ.ϮϬ: Off-ƌesoŶaŶt spiŶ eĐho eǆpeƌiŵeŶt. aͿ EǆĐited state oĐĐupaioŶ
pƌoďaďilitǇ of Ƌuďit #Ϯ ǀs. dƌiǀiŶg fƌeƋueŶĐǇ. Lighteƌ Đoloƌs iŶdiĐate higheƌ
pƌoďaďiliies. ďͿ FƌeƋueŶĐǇ of the osĐillaioŶs ǀs. dƌiǀiŶg fƌeƋueŶĐǇ. The
osĐillaioŶ fƌeƋueŶĐǇ is eƋual to the detuŶiŶg ďetǁeeŶ the Ƌuďit aŶd dƌiǀe.
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experiment, indicating that the echo sequencealso counteracts dephasing
in the off-resonant case.

ϰ.ϯ Paƌallel QuďitMeasuƌeŵeŶts

ϰ.ϯ.ϭ Setup aŶd SteadǇ-State MeasuƌeŵeŶts

Setup of the Readout SǇsteŵ

Parallel dispersive readout of multiple qubits amounts to simultaneous
probing of multiple resonators. Our readout system handles this in
a scalable manner, using a high-speed DAC combined with a conven-
tional microwave generator and a two-quadrature mixer (see Fig. 3.10
on page 71 for details about the hardware setup). The DAC is setup to
synthesize a burst containing the baseband frequenciesဋ�/2ဂࢿ൥�� of allresonators to be probed. The following two-quadrature mixer shifts the
frequencies up by the generator frequency ൥�� to the actual resonance
frequencies.
Probing of all seven resonators on the sample requires a readout band-

width of ဋ��#7�/2ဂ ࢿ ဋ��#1�/2ဂ = 9≪9MHz. By following the relativephase of the ൎ andൖ quadratures, a two-quadraturemixer can distinguish
between positive and negative baseband frequencies, so two channels
with a bandwidth of 475MHz each are necessary. This is easily handled
by the 6GS/s DAC, but the analog frontend of the 1GS/s ADC used has a
somewhat lower bandwidth, which limits the number of resonators that
can be probed simultaneously to six out of the seven on the sample. Since
the ADC used can acquire two channels only up to 500MS/s (250MHz),
only the ൎ quadrature was recorded when faster sampling rates were
required. In the latter case, the receiver can no longer discriminate the
signs of the baseband frequencies, so their moduli have to be different.
To test the parallel readout, we performed a flux sweep similar to

Fig. 4.2, but acquired by the multiplexing readout setup instead of a
network analyzer. The reference generator was set to ൥�� = 9720.3MHz,and theDACwas programmed to output tones at -405.7MHz, -259.7MHz,
-104.2MHz, 55.3MHz, 216.08MHz and 375.7MHz. After up-conversion,
this translates to the resonance frequencies of resonators #1 to #6, with
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Figuƌe ϰ.Ϯϭ: SiŵultaŶeous ŵeasuƌeŵeŶt of the ƌespoŶse of ƌesoŶatoƌs #ϭ to #ϲ
to a sǁeep of the ŵaiŶ ďias Đoil.

the dispersive shift due to every qubit at its symmetry point already taken
intoaccount. Figure4.21shows thenormalizedamplitude responseof the
acquired baseband tones to a sweep of the main bias coil. The amplitude
of each tone remains constant as long as the qubit and resonator are far
detuned, increases strongly close to the qubit–resonator avoided level
crossings, and varies weakly close to the symmetry point of each qubit,
where the slope of the transition frequency vs. magnetic flux is small.
The curves can be understood as horizontal cross-sections through the
equivalents of Fig. 4.3 for each device.

GƌadieŶt Coil CaliďƌaioŶ

Due to a variable, cooldown-dependent offset of the flux bias seen by
each qubit, the main bias coil alone is not sufficient to bias more than
one qubit into a working regime at the same time. The simplest solution
to this issue is the addition of on-chip bias lines that provide a local flux
bias to each qubit. This has been integrated in later chip designs but
not in the original multiplexing sample, whose layout was kept as simple
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Figuƌe ϰ.ϮϮ: GƌadieŶt Đoil ĐaliďƌaioŶ ǀia the ďias shit of Ƌuďit #ϰ iŶtƌoduĐed
ďǇ gƌadieŶt Đoil ൧�. The gƌaǇsĐale ďaĐkgƌouŶd shoǁs the aĐƋuiƌed Đuƌǀes,
ǁhose douďle-peak stƌuĐtuƌe oƌigiŶates fƌoŵ a speĐtƌosĐopǇ toŶe at ϲ,ϭϴϵMHz
ĐoiŶĐidiŶg ǁith the Ƌuďit tƌaŶsiioŶ fƌeƋueŶĐǇ. The ďlaĐk ŵaƌkeƌs aŶd solid liŶe
iŶdiĐate the ĐalĐulated shit ďetǁeeŶ the Đuƌǀes.

as possible. Instead, additional bias coils, arranged as shown in Fig. 3.5,
were attached to the inside of the sample compartment.
The additional coils were calibrated by repeatedly sweeping the main

bias coil, changing the current through the other coil in between sweeps.
A continuous wave spectroscopy tone at a fixed frequency well above
the qubit gap was applied to the qubit to introduce a pair of symmetric
markers to the measured curve. The measurement software would then
calculate the change of the current in the main bias coil necessary to
cancel the change of magnetic flux introduced by the other coil through
cross-correlation of the traces. The software controls the whole calibra-
tion process, automatically choosing the step size between data points
depending on the error made in the previous step. This allowed for
a precise measurement of the mutual inductances of each (coil, qubit)
pair in a minimum amount of time and without sending large currents
through the coils, although their absolute values differ by two orders of
magnitude. An example calibration run is shown in Figure 4.22.
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Figuƌe ϰ.Ϯϯ: SiŵultaŶeouslǇ ŵeasuƌed speĐtƌa of ŵuliple Ƌuďits. The gƌadieŶt
Đoils aƌe setup suĐh that the sǇŵŵetƌǇ poiŶts of Ƌuďits #Ϯ, #ϯ aŶd #ϱ ĐoiŶĐide
foƌ a ĐeƌtaiŶ field geŶeƌated ďǇ the ŵaiŶ ďias Đoil. A siŶgle ĐoŶiŶuous ǁaǀe
ŵiĐƌoǁaǀe toŶe aŶd the field of the ŵaiŶ ďias Đoil aƌe sǁept. The ƌeadout
ƌesoŶatoƌs aƌe pƌoďed siŵultaŶeouslǇ eǀeƌǇ 10 ࿾൱. IŶ eaĐh of the plots, daƌk
Đoloƌ iŶdiĐates aŶ eǆĐitaioŶ of the ĐoƌƌespoŶdiŶg Ƌuďit.

Because of the large distance between the coils and qubits, each coil
couples to every qubit. Changing the bias of a single qubit while leaving
the biases of the other qubits unchanged was done by linearly expanding
themutual inductance functions an solving the linear equation Φ⃗ = ൒ ⋅ ൎ⃗.
Because the components of൒�� also differ by orders of magnitudes, the
biasing process had to be iterated. Using this method, it was possible to
bias up to three qubits close to their symmetry points at the same time.

SiŵultaŶeous Quďit SpeĐtƌosĐopǇ

Once the electronics for multiplexed readout and the gradient coils are
set up, the simultaneous measurement of multiple qubit spectra is as
simple as the measurement of a single spectrum, already discussed in
section 4.1.2. The spectra of qubits #2, #3 and #5, measured simultane-
ously, are shown in Figure 4.23.
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Data is acquired by the multiplexed readout setup instead of the net-
work analyzer. Because the measurement computer can not sustain the
1GB/s of data produced by the data converters in the acquisition board,
transmission was only measured for 512 ns every 10 μ�, reducing the
data rate to 51MB/s. This duty cycle of 5% results in a 20-fold increased
measurement duration with the multiplexed readout setup compared to
the network analyzer, to obtain the same amount of statistics. Due to
the relatively large coupling ൖ��� between the readout resonators and
feedline however, the averaging time is negligible compared to the time
it takes to sweep the coil and generator, and the overall duration is the
same for both acquisition methods.
All qubits were driven through the readout line from the same mi-

crowave generator. As long as the drive is not resonant with any of the
readout resonators, only a portion of ൔ�ൖ��� � of the drive reaches each
qubit, and the interaction of the drive with one qubit has no influence on
the others.

ϰ.ϯ.Ϯ DǇŶaŵiĐs MeasuƌeŵeŶts

SiŵultaŶeous CoheƌeŶt OsĐillaioŶs

To induce coherent oscillations in multiple qubits, it is necessary to pro-
videmicrowavedrives close to the transition frequencyof eachqubit. This
requirement ensues from Eq. 2.20, which links the စ� amplitude of Rabi
oscillations to the detuning of the drive. For the parallel measurement of
qubits #2, #3 and #5 presented in Fig. 4.24, this meant driving pulses at
6365MHz, 4400MHz and 5822MHz. Each frequency was generated by
an individual microwave source and gated by a mixer connected to a DAC
channel, similar to Fig. 3.11d on page 74.
The combined driving signal was applied through the readout line, so

each qubit was simultaneously driven by all three microwave tones. In
the frame of each qubit, the off-resonant tones induce rotations around
an axis in the ൶-൷ plane that is not fixed but rotates itself around the ൸ axis
with the frequency of the detuning. The additional drivings thus result
in small oscillations at the frequencies of the detunings, superimposed
on the oscillation induced by the resonant drive. However, in Figure 4.24
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Figuƌe ϰ.Ϯϰ: SiŵultaŶeouslǇ ŵeasuƌed Raďi osĐillaioŶs of ŵuliple Ƌuďits.
DƌiǀiŶg pulses at ဋ� = 636≫MHz, ဋ� = ≪≪00MHz aŶd ဋ� = ≫822MHz aƌe
applied to all Ƌuďits thƌough the ĐoŵŵoŶ feedliŶe. ;topͿ Tiŵe-tƌaĐes ŵeasuƌed
at ൕ� = ,�B�18ࢿ ൕ� = ,�B�9ࢿ ൕ� = �B�≪1ࢿ dƌiǀiŶg poǁeƌ. ;ďotoŵͿ
DƌiǀiŶg aŵplitude depeŶdeŶĐe of the Raďi fƌeƋueŶĐies.
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the superimposed oscillations induced into qubit #2 by the drive of qubit
#5 and vice versa can not be seen, even though their frequencies were
below the sampling limit of 600MHz determined by the spacing of the
data points. Instead, they average out because the relative phase of the
drives is not kept fixed between repetitions.
No significant deviations were observed between the data presented

in Fig. 4.24 and the data presented earlier in Fig. 4.9. The expected linear
dependenceof the oscillation frequencies on thedriving amplitudes could
be reproduced. The absolute values are larger than before because of an
amplifier introduced into the excitation signal path.

SiŵultaŶeous AppliĐaioŶ of DiffeƌeŶt SeƋueŶĐes to Muliple Quďits

With the largest version of the qubit manipulation setup, shown in
Fig. 3.11d on page 74, independent pulse sequences can be generated
for all qubits. Figure 4.25 shows the results of such an experiment per-
formed on qubits #2, #3 and #4. Three different manipulation sequences
are combined and sent to the sample through the readout line: A Ramsey
pulse sequence, Fig 4.15, at a frequency of ဋ�/2ဂ = 6≪1≫MHz, close
to the transition of qubit #2. A ൙� sequence, Fig 4.13, at a frequency ofဋ�/2ဂ = ≪≪00MHz, resonant with the transition of qubit #3. A Rabi
sequence, Fig 4.8, was applied at ဋ�/2ဂ = ≫822MHz, resonant with thetransition of qubit #5.
The overall shape of the curves is what is expected as the outcome of

the individual experiments. The ൙� time of 815 ns measured for qubit #3
iswithin 30%of the value reported in Table 4.5. The൙� times of 13.6 ns of
qubit #2 and 23.9 ns (extracted using Eq. 4.4) of qubit #5 aremuch lower
than the values obtained previously during this run. In case of qubit #5
the culprit is most likely dephasing resulting from the flux bias being1.1�Φ� away from its symmetry point[KMS+07]. In case of qubit #2
an additional effect plays a greater role, as its spectral line, shown in
Fig. 4.23, is also widened at its symmetry point. It should be noted that
spectra taken previously using the same (parallel) method did not show
this widening. Also, the readout system can not disturb the qubit states,
as it does not output any signals during the pulse sequences.
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Figuƌe ϰ.Ϯϱ: SiŵultaŶeouseǆeĐuioŶofdiffeƌeŶt seƋueŶĐesoŶƋuďits #Ϯ, #ϰaŶd
#ϱ. A RaŵseǇ ൙� ŵeasuƌeŵeŶt is peƌfoƌŵed oŶ Ƌuďit #Ϯ, at ဋ� = 6≪1≫MHz. A൙� ŵeasuƌeŵeŶt is peƌfoƌŵed oŶ Ƌuďit #ϯ, atဋ� = ≪≪00MHz. A Raďi osĐillaioŶ
ŵeasuƌeŵeŶt is peƌfoƌŵed oŶ Ƌuďit #ϱ at ဋ� = ≫822MHz. Fits to the Đuƌǀes
giǀe ൙� = 13.6 �� aŶd a detuŶiŶg of ϮϬ.ϱMHz foƌ Ƌuďit #Ϯ, ൙� = 81≫�� foƌ
Ƌuďit #ϯ aŶd a Raďi deĐaǇ iŵe ࿵�� = ≪7�� foƌ Ƌuďit #ϱ.
For many simple experiments, especially for serial characterization of

qubits, the approach of sending qubit manipulation sequences through
the readout line is sufficient. When going tomulti-qubit algorithms, it has
its shortcomings, because the sum of all manipulation tones is seen by
all qubits. Simultaneously performed gates mutually reduce their fidelity
once the frequency separation of the qubits becomes smaller than a few
times theRabi frequency – fast, high-fidelity gates preclude ahighpacking
density and vice versa. It needs to be investigated if ideas from optimal
control theory, which have been employed to improve gate fidelity and
suppress transitions out of the qubit subspace in weakly anharmonic
qubits[CDG+10], can reduce or completely cancel the detrimental effects
of the additional drives. A second, rather technical, weakness of the
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approach is that broadband circulators are required to stop reflections
at the input the readout amplifier from travelling back to the sample and
inducing further qubit rotations. By separating the excitation and readout
lines, with the excitation line terminating at the sample, this can be easily
avoided.
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CoŶĐlusioŶaŶdOutlook

This thesis presents a technique to simultaneously measure the state of
an arbitrary number of superconducting qubits using minimal resources,
by frequency multiplexing the qubit signals on a single transmission line.
Each qubit is furnished with an individual microwave resonator, which
experiences a state-dependent frequency pull due to the qubit-resonator
interaction. All resonators are connected to a common on-chip trans-
mission line, through which their resonance frequencies are probed and
hence the states of the qubits are read out.
With a narrow-band homodyne detection setup, which is now standard

for groups working in the field, each qubit can be separately measured.
This is already very useful, because it allows characterization ofmany de-
vices in a single refrigerator run, through a single line. Since microwaves
travel freely along the lineoutside thebandwithof the readout resonators,
several chips can even be connected in series. Serially performed char-
acterization measurements, such as qubit spectra, decay and dephasing
times, are presented in sections 4.1 and 4.2.
However, the full power of the readout system lies in providing si-

multaneous and independent readouts of all qubits. When multiple
frequency components, one for every resonator to be probed, are trans-
mitted through the sample, the state of each qubit is encoded onto the
corresponding component. The experimental setup (Fig. 3.10) developed
in this thesis borrows ideas from software-defined radio to generate and
detect signals with an arbitrary number of frequency components within
a bandwidth of about 1 GHz, thus allowing an almost arbitrary number
of qubits to be read out simultaneously. In section 4.3, we present mea-
surements performed on up to six qubits in parallel using this technique.
Calculations in section 2.5 show that co-channel interference depends

mostly on the frequency difference between adjacent channels and is
almost independent of their overall number. The primary parameter
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Conclusion and Outlook

restricting the distance between channels is the loaded linewidth of the
readout resonators, which are strongly coupled to the measurement line
inorder tospeedupthemeasurement. According to thesimulationresults
for ൓ = 100 channels (Fig. 2.17), a spacing of 2 linewidths is sufficient
for interference to be less than -10 dB, and a spacing of 6.5 linewidths
further reduces interference to -20 dB. The resonators realized on our
sample have linewidths of approximately 6MHz, theoretically allowing
80 channels per GHz of bandwidth at -10 dB crosstalk or 25 channels at
-20 dB crosstalk.
In its current implementation, the main drawback of the readout is

that it is not single shot. With noise temperatures of several Kelvins,
commercially available cryogenic amplifiers add several noise photons to
each signal photon. For a single resonator, the solution to this problem
is the use of parametric amplifiers based on Josephson junctions, which
feature a close to the quantum limited noise performance. Our circuit
is especially suited to be integrated with such an amplifier, due to the
large change of the amplitude ratio and phase of the transmitted signal,
which are proportional to the intrinsic instead of the loaded quality
factor as in standard setups. Unfortunately, the gain-bandwidth product
of typical parametric amplifiers is only a few tens of MHz, so a separate
amplifier would have to be included for each readout channel. For
many-channel systems, a bifurcation readout similar to what has been
demonstrated for transmon qubits[MOPL+09] is a more viable solution.
Through the inclusion of a Josephson junction, each readout resonator
is made nonlinear and can then be driven such that it latches the state
of the qubit. Single-shot readout becomes possible because the duration
of the readout is no longer limited by the decay time of the qubits and
the bandwidth of the detector can be reduced until the amplifier noise
is below the signal. Future improvements of the readout will aim in this
direction.
Recently, newsamples that includebothmultiplexed readout andqubit-

qubit interactions mediated by an additional high-ൖ bus resonator have
been manufactured. These samples will allow the demonstration of
two-qubit quantum gates, and will be the first real quantum computer
operated at KIT.
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ZusaŵŵeŶfassuŶguŶdAusďliĐk

Die vorliegende Arbeit stellt eine Methode vor, die es ermöglicht den Zu-
stand einer beliebigen Anzahl an supraleitenden Qubits mit minimalem
Aufwand an Ressourcen gleichzeitig zu bestimmen. Hierfür wird ein Fre-
quenzmultiplexverfahren verwendet, dass die Auslesesignale sämtlicher
QubitsaufeinereinzelnenHochfrequenzübertragungsleitungzusammen-
fügt. Hierzu wird jedes Qubit mit einem Schwingkreis im Mikrowellen-
bereich kombiniert, der durch induktive Wechselwirkung mit dem Qubit
eine Verstimmung erfährt, dessen Vorzeichen vom Zustand des Qubits
abhängt. Alle Schwingkreise werden an eine gemeinsame Übertragungs-
leitung angeschlossen, durch die ihre Resonanzfrequenzen und damit
auch die Zustände aller Qubits bestimmt werden können.
Mit Hilfe eines schmalbandigen Direktmischempfängers, der bei vielen

Arbeitsgruppen auf dem Gebiet der supraleitenden Qubits zum Standard
gehört, kann ein Qubit nach dem anderen gemessenwerden. Dies erlaubt
es bereits die Parameter aller Qubits, die sich auf dem selben Mikrochip
befinden, mit einem Abkühlvorgang und einer Messleitung zu charakte-
risieren. Da beim gewählten Layout Mikrowellen, deren Frequenz nicht
mit derResonanzfrequenz eines der Schwingkreise übereinstimmt, unge-
stört durch die Probe übertragen werden, können sogar mehrere Proben
in Serie geschaltet werden. Solche nacheinander ausgeführten Charakte-
risierungsmessungen, umetwadieÜbergangsfrequenzspektren, Zerfalls-
undKohärenzzeitenderQubits zubestimmen, sind indenAbschnitten4.1
und 4.2 vorgestellt.
Das volle Potenzial der Methode liegt allerdings im simultanen und

unabhängigen Auslesen aller Qubits. Werden mehrere Frequenzenkom-
ponenten, eine für jedes zumessende Qubit, durch die Probe gesendet, so
wird der Zustand jedes Qubits in guter Näherung auf genau eine Kompo-
nente aufmoduliert. Der imVerlauf dieser Arbeit entwickelteMessaufbau
(Schaubild 3.10) verwendet schnelle D/A und A/D Signalwandler und
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digitale Signalverarbeitung um Signale mit einer beliebigen Anzahl an
Frequenzkomponenten innerhalb einer Bandbreite von etwa 1GHz zu
erzeugen und erfassen, und kann somit eine beliebige Anzahl an Qubits
gleichzeitig auszulesen. Mit diesem Aufbau wurden Experimente an bis
zu sechs Qubits parallel durchgeführt, die im Abschnitt 4.3 vorgestellt
sind.
Die Berechnungen in Abschnitt 2.5 zeigen, dass Interferenz zwischen

den Auslesekanälen beinahe unabhängig von ihrer Gesamtzahl ist und
vorrangig von ihrem Frequenzabstand abhängt. Der wichtigste Parame-
ter der diesen Abstand nach unten begrenzt ist der Betriebsgütefaktorൖ� der Schwingkreise, die stark an die Messleitung gekoppelt sind um
schnelles Auslesen zu gewährleisten. Simulationen zufolge garantiert ein
Kanalabstand von zwei Linienbreiten ein Übersprechen von weniger als
-10 dBundeinAbstandvon6,5Linienbreiten einÜbersprechenvonweni-
ger als -20 dB. Die für Messungen verwendete Probe weist Linienbreiten
von etwa 6MHz auf, was theoretisch bis zu 80 Kanäle pro GHz Auslese-
bandbreite mit weniger als -10 dB Übersprechen oder 25 Kanäle pro GHz
mit weniger als -20 dB Übersprechen erlaubt.
In der jetztigen Implementierung ist die Hauptschwäche der Methode

dieTatsache, dasseineEinzelmessungnicht ausreichtumdenZustandder
Qubits sicher zu bestimmen. Derzeit erhältliche Tieftemperaturverstär-
ker im Mikrowellenbereich weisen Rauschtemperaturen von mehreren
Kelvin auf und fügen zu jedem Signalphoton mehrere Rauschphotonen
hinzu. Bei der Messung einzelner Schwingkreise konnte dieses Problem
durch parametrische Verstärker auf Basis von Josephson-Kontakten ge-
löst werden, die annähernd quantenrauschbegrenzten Betrieb erreichen.
Leider liegt das Verstärkungs-Bandbreite-Produkt typischer parametri-
scher Verstärker nur bei wenigen MHz, so dass ein separater Verstärker
für jedenAuslesekanalvorgesehenwerdenmüsste.FürSystememitvielen
Kanälen ist ein auf der Birfurkation eines nichtlinearen Schwingkreises
basierendes Ausleseverfahren, ähnlich der bei Transmon Qubits einge-
setzten Technik, eine praktikablere Lösung. Hierbei rastet der Schwing-
kreis in einem von zwei klassischen Zuständen ein, abhängig vom Quan-
tenzustand des Qubits, und behält diesen bei. Der Auslesevorgang kann
dann über die Lebensdauer des Qubits hinaus fortgesetzt werden, bis ein
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ausreichender Signal-Rauschabstand erreicht wird. Zukünftige Verbesse-
rungen des Ausleseverfahrens weisen in diese Richtung.
Vor kurzemwurden neue Proben fertiggestellt, die sowohl eine gemul-

tiplexte Ausleseleitung als auch die Möglichkeit von Qubit-Qubit Wech-
selwirkungen mittels eines als Quantenbus betriebenen Schwingkreises
hoher Güte vorsehen. Diese Proben werden die Ausführung von Zwei-
qubitgattern ermöglichen und damit der erste echte am KIT betriebene
Quantencomputer sein.
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