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1. Introduction

The theoretical foundation of particle physics is the Standard Model. This theory is
based on the principles of quantum mechanics and special relativity. Despite its quite
compact form, it has so far incorporated an immense amount of experimental data. The
Standard Model allows the extremely precise prediction of certain values, that are also
experimentally very well accessible. By passing these highly accurate tests, it has be-
come the most precisely-measured and well-tested model to date. Since its formulation
in the 1970s, there has not yet been any conclusive evidence capable of disproving the
Standard Model.

There are, however, theoretical extensions to this highly successful model. These ex-
tensions are motivated by a number of phenomena. The most prominent one is the
existence of so-called Dark Matter. Indicated by its gravitational effects on the spatial
dimensions of galaxies, the Standard Model cannot provide a suitable candidate for the
nature of this Dark Matter. Theoretical considerations, either concerned with quantum
corrections of certain properties or arising from symmetry considerations, give further
motivation for the search for extensions of the Standard Model.

Experimental particle physics is devoted to find evidence to support, constrain or dis-
prove the Standard Model itself and in particular its extensions, also known as New
Physics. There are two different approaches in the search for new physics in high en-
ergy particle physics:

With a large enough energy density, the direct production of new particles, postulated
by extensions of the Standard Model becomes possible. The largest energy densities
are produced in the collisions of high-energetic protons at the Large Hadron Collider at
CERN in Geneva, Switzerland.

The second method to probe for effects of new physics are indirect searches for its ef-
fects in high-precision measurements. Measurements of this kind are performed at
electron-positron colliders, also known as B factories, that operate at much lower en-
ergies than the Large Hadron Collider. There have been two B factories: The PEP-II
collider at the SLAC National Accelerator Laboratory in Stanford, USA and the KEKB
collider at the KEK High Energy Accelerator Research Organisation in Tsukuba, Japan.
While the energy at B factories is far from sufficient to produce particles postulated by
new physics models, the effects of new physics are nonetheless predicted to be visible
in high precision measurements. The long-lasting success of the Standard Model is,
however, a strong indication that the new physics effects in these indirect searches are
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Chapter 1. Introduction

most likely very small, subtle effects. The very simple argument is that strong effects
would have been long discovered. One of these subtle effects is postulated to occur in
the decays B→Dτντ and B→D∗τντ .

The analysis described in this thesis is devoted to the search for effects of new physics
in the decays B → Dτντ and B → D∗τντ . It has been performed within the Belle
Collaboration at the KEKB B factory. A crucial tool for this analysis and indeed for a
large number of other analyses within the Belle Collaboration is the Full Reconstruc-
tion. This tool allows the measurement of missing momentum in an event, providing
extermely useful and often crucial information for many analyses. The efficiency of the
Full Reconstruction is directly proportional to the size of the available data set for these
analyses. Thus, a large part of this thesis is devoted to the redesign and improvement
of this well-known full reconstruction algorithm.
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2. Theory

The Standard Model of Particle Physics comprises the description of all known parti-
cles and their interactions amongst each other. It is based on the principles of quantum
mechanics and special relativity. As mentioned in the introduction, this thesis is de-
voted to testing certain extensions of the Standard Model. Thus, the Standard Model
and the tested extensions are described in the following.

2.1. The Particles of the Standard Model

All of the objects in the Standard Model can be categorised by the spin they carry. The
spin is an internal quantum mechanical property of any particle. The mathematical
treatment of spin is similar to the treatment of the macroscopic phenomenon of spin
angular momentum. But this is as far as the analogy goes. 1 Suffice it to say that the
spin is an internal property of particles and is measured in units of the reduced Planck
constant ~ [2], where

~ =
h

2π
≈ 1.0546× 10−34Js . (2.1)

Particles that carry half-odd-integer spins (1/2~, 3/2~, . . . ) are called fermions, particles
that carry integer spins (0~, 1~, . . . ) are called bosons. [3]

Only the lightest particles within the Standard Model are long-lived, or in other words
stable. Generally, heavier particles decay very quickly into lighter particles, unless that
decay is forbidden by a conservation law. In a manner of speaking, the stable particles
are only stable, because there is nothing lighter for them to decay into or a conservation
law forbidding it. One exemplary decay that is of special interest for this thesis it that
of a relatively heavy b quark into the lighter c quark.

2.1.1. Matter and Antimatter

Quantum Mechanics does not only allow “normal” particles, but also anti-particles [4].
All leptons and quarks (see below) have corresponding anti-particles. Particle and anti-
particle have the same mass and differ by the sign of their internal quantum numbers.

1The spin angular momentum of a macroscopic object can be interpreted as the sum total of the angular
momenta of all the mass points on their orbit around the axis of rotation. But as the fundamental
particles in the Standard Model have no sub-structure and appear as true point particles, this picture
cannot hold. [1]
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Chapter 2. Theory 2.2. The Interactions of the Standard Model

2.1.2. Leptons

The six known leptons (e, νe, µ, νµ, τ , ντ ) form three different families. Each of these
families consists of a charged, massive lepton and a very light uncharged correspond-
ing neutrino. Table 2.1 gives an overview of the three lepton families. Both the charged
leptons and the corresponding neutrinos carry a lepton number (Ne, Nµ andNτ respec-
tively) that has to be conserved in all processes 2. Thus, the decay

τ−→ e− (2.2)

is forbidden by lepton number conservation and the decay of a τ lepton into an electron
proceeds as follows:

τ−→ e−ντνe . (2.3)

This decay and the fact that it proceeds emitting two neutrinos will be of special interest
for the analysis presented in this thesis.

Family Name Charge Ne Nµ Nτ Mass

I
e −1 1 0 0 0.511± 1.3 · 10−8 MeV/c2

νe 0 1 0 0 < 2 eV/c2

II
µ −1 0 1 0 105.7± 0.4 · 10−5 MeV/c2

νµ 0 0 1 0 < 2 eV/c2

III
τ −1 0 0 1 1776.8± 0.17 MeV/c2

ντ 0 0 0 1 < 2 eV/c2

Table 2.1.: Overview of the leptons of the Standard Model [2].

2.1.3. Quarks

The six known quarks (d, u, s, c, b, t) also form three families, in analogy to the leptons.
They carry non-integer electric charge (±1/3e and ±2/3e) and also differ greatly in their
masses. Table 2.2 gives a systematic overview of the 6 quarks.

2.2. The Interactions of the Standard Model

Currently, there are only four different types of interactions known:

2with the possible exception of neutrino osciallations
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Chapter 2. Theory 2.2. The Interactions of the Standard Model

Family Name Charge Mass

I
up (u) +2

3 2.55+0.75
1.05 MeV/c2

down (d) −1
3 5.04+0.96

−1.54 MeV/c2

II
charm (c) +2

3 1.27+0.07
−0.11 GeV/c2

strange (s) −1
3 105+25

−35 MeV/c2

III
top (t) +2

3 171.3± 1.3± 1.2 GeV/c2

bottom (b) −1
3 4.20+0.17

−0.07 GeV/c2

Table 2.2.: Overview of the quarks of the Standard Model [2].

Gravitation is a macroscopically long ranged interaction between masses, described
by General Relativity. It is not part of the Standard Model. Its effects on the
microscopic processes of Particle Physics are completely negligible.

Electromagnetism causes the attraction of two unequally signed electric charges and
the repulsion of equally signed electric charges. Its classical formulation are the
famous Maxwell equations.

The Weak Interaction manifests itself in the decay of unstable particles. It was first
observed in the nuclear beta decay.

The Strong Interaction causes the attraction between quarks and nucleons.

We will see in chapter 2.2.4, that the electromagnetic and the weak interaction are
merely two different low energy manifestations of a unified interaction, which we call
the electroweak interaction.

2.2.1. The Strong Interaction

Quarks do not occur isolated in nature, but only in bound states of two or more quarks.
This phenomenon is called confinement. From the observation of the energy spectra of
bound two-quark systems (e.g. “Charmonium” cc̄), the form of the potential between
two quarks can be derived [5] as

VS = −4
3
αS
r

+ kr . (2.4)

The first term (∼ 1/r) is clearly dominant at small ranges and proportional to the
Coulomb potential in electrodynamics: V (r → 0) ∼ 1/r. At large distances, however,
the second term (∼ r) dominates clearly and gives an explanation for the above men-
tioned confinement: V (r →∞)→∞. Figure 2.1 visualises equation 2.4. This quickly
rising potential between two quarks has an interesting effect: With increasing distance
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Figure 2.1.: Visualisation of the two-quark potential given in equation 2.4.

between two quarks, at about 10−15 m, it becomes energetically preferable to create a
new quark-anti-quark pair instead of increasing the distance further. This process is
known as hadronisation.

The theory that describes the behaviour of quarks under the strong interaction is called
Quantum Chromodynamics (QCD). It is a gauge theory of the SU(3) gauge group, that
defines a charge with three possible types. This strong charge, an internal quantum
number, is called colour. It is a requirement of Quantum Chromodynamics that only
colour-neutral states are allowed. The chosen colours red, green and blue (r,g,b) and
their corresponding anti-colours (r̄,ḡ,b̄ ) can be combined to colour-neutral states in the
following ways:

r + r̄ = neutral g + ḡ = neutral b+ b̄ = neutral

r + g + b = neutral r̄ + ḡ + b̄ = neutral .

The concept of assigning a “colour” to quarks should not be taken literally, of course. It
is an internal quantum number, but its name provides a useful analogy to explain the
fact that quarks occur in bound states of two or three quarks. Experimental evidence for
the internal quantum number colour comes from the existence of the ∆++ particle, that
is measured as a bound state of three up-quarks in the spatially symmetric ground state
with angular momentum l = 0 with the spins coupled to J = 3

2 , which can figuratively be
described as “all three spins parallel”. So the wave function of this particle is symmetric
in flavour, space and spin, which seems to be a violation of the Pauli principle, which
states that multiple fermions cannot exist in the same quantum state. This issue is
resolved by an additional quantum number, the colour. Quantum Chromodynamics
also allows other possibilities for colourless states, such as four-quark or five-quark
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bound states.

(r + r̄) + (g + ḡ) = neutral

(r + g + b) + (r + r̄) = neutral

There has not been yet irrevocable evidence for the existence of such exotic hadrons.

The colour must be conserved in all processes of Quantum Chromodynamics. The fact
that Quantum Chromodynamics is a non-abelian theory results in the self-interactions
of the gauge field. This means, in effect, that the mediators of the strong force carry
the strong charge “colour” themselves. The mediators of the strong interaction are
the gluons (g). Gluons are massless spin-1 particles that couple to colour and carry
colour themselves. The resulting self-coupling explains the short range of the strong
interaction, despite the masslessness of the gluons. An exemplary process in Quantum
Chromodynamics is schematically shown as a Feynman diagram in figure 2.2. A quark

u(b)

u(r)

)rg (b

Figure 2.2.: Example for the strong interaction

carrying the colour blue is converted into a quark carrying the colour red. As colour
has to be conserved, the gluon must carry the difference, which, in this case, is blue
and anti-red. All gluons carry a certain colour and a different anti-colour. As there are
three different colours in Quantum Chromodynamics, one would expect nine possible
gluons: rr̄, rb̄, rḡ, br̄, bb̄, bḡ, gr̄, gb̄, gḡ. However, as Quantum Chromodynamics is
based on the SU(3) symmetry, the possible colour combinations form a colour octet and
a colour singlet. The above mentioned confinement of quarks can be rephrased in terms
of the SU(3) symmetry: All naturally occurring free particles must be colour singlets.
The hypothetical ninth gluon would be a colour singlet and occur as a free particle
and a long-ranged mediator of the strong force between two other colour singlets, e.g.
proton and neutron. This does not occur in nature and we can therefore exclude the
existence of a gluon singlet [3].
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2.2.2. The Electromagnetic Interaction

The electromagnetic interaction is one of the pillars of classical physics. Quantum
Electrodynamics (QED) describes the effects of the electromagnetic interaction at the
microscopic level. All electrically charged particles interact via the exchange of the
electromagnetic exchange boson, the photon γ . QED describes the annihilation and
production of charged particles. The Feynman diagram in figure 2.3 shows the cou-
pling of charged particles to the photon. The annihilation of electron and position is

+f

+f

γ

Figure 2.3.: Example for the electromagnetic interaction.

an example of the electromagnetic interaction which is of special interest. This an-
nihilation and the subsequent production of the Υ (4S) resonance is the basis for the
entire physics program at B factories and for the Full Reconstructionin particular (see
chapters 4.2 and 5.1).

2.2.3. The Weak Interaction

The only interaction in which all known fermions participate is the weak interaction.
Its effects are small compared to the strong and electromagnetic interaction and often
are obfuscated by them. For instance, the annihilation of electron and positron de-
picted in figure 2.3 and the subsequent production of the Υ (4S) resonance can also
occur via the weak interaction.
There are no known bound states that are formed due to the weak interaction, as there
are in all other fundamental interactions. This makes its description less intuitive, as
we cannot rely on analogies from atomic physics. The weak interaction manifests itself
in the decay of leptons and quarks. Two exemplary weak processes are schematically
shown as a Feynman diagrams in figures 2.4 and 2.5. In figure 2.4, we can see a down-
type quark that is converted into an up-type quark in a weak process. Figure 2.6 shows
the weak interaction of a massive lepton and its corresponding neutrino. The weak
interaction is the only Standard Modelinteraction in which neutrinos participate.
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typeu

typed

-W

Figure 2.4.: Example for the weak interaction.

l

lν

-W

Figure 2.5.: Example for the weak interaction.

First experimental evidence for the weak interaction was found in the β decay of neu-
trons in atomic nuclei, where a neutron decays into a proton, an electron and a neu-
trino, depicted in figure 2.6. It can be easily seen, that the β decay comprises exactly
the two processes that were already shown in figures 2.4 and 2.5. In contrast to all
other interactions, the mediators of the weak interaction (called W ± and Z0) are sub-
stantially massive particles. Their masses of ∼ 80 GeV/c2 and ∼ 91 GeV/c2 are similar
to the mass of heavy atomic nuclei. The above mentioned relative weakness of the
weak interaction can be attributed to the large masses of the exchange particles. Their
properties are summarised in table 2.3.
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n
u
d
d

p
u
d
u

eν

-e

-W

Figure 2.6.: The β decay.

Name Charge Spin Mass

W ± ±1 1 80.399± 0.023 GeV/c2

Z0 0 1 91.1876± 0.0021 GeV/c2

Table 2.3.: Overview of the weak exchange bosons [2].

Parity Violation

A unique property of the weak interaction is the fact, that it is not invariant under the
parity transformation. Any coupling mediated by a spin-1 particle can have either vec-
torial or axial-vectorial characteristics and their fraction is described by the two factors
cA and cV [5]. An interaction is invariant under parity transformation (“conserves par-
ity”), if either cA = 0 or cV = 0 and it violates parity if cA , 0 and cV , 0. The violation
is maximal if |cA| = |cV |. From the analysis of the properties of the decay µ→ eνeνµ, one
can extract cA ≈ −cV and |cA|/ |cV | = 0.985±0.024 [6]. This means that, within the experi-
mental errors, parity is maximally violated in weak interactions. For illustration of this
phenomenon, the concept of “handedness” is instructive: “Handedness” is defined in
such a way, that a particle is right-handed if its spin and momentum point into the same
direction and it is left-handed, if its spin and momentum point in opposite directions.
A consequence of the maximal violation of parity is that only left-handed fermions and
right-handed anti-fermions interact weakly. For massive particles, that always travel
slower than the speed of light in a vacuum (v < c), handedness depends on the frame
of reference, as there can always be a frame of reference where the momentum of the
particle is reversed. So right-handed fermions and left-handed anti-fermions do inter-
act weakly, but the interaction is suppressed. For neutrinos, that travel at the speed of
light (v = c), the situation is different: While left-handed neutrinos and right-handed
anti-neutrinos interact weakly, right-handed neutrinos and left-handed anti-neutrinos
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do not. There is no frame of reference in which their handedness was reversed. Without
a “correctly-handed component” they participate in none of the known interactions.

The CKM Matrix

In the weak interaction of leptons, only lepton transitions within the same generation
are allowed, see figure 2.5. Quarks, on the other hand, do not exhibit this behaviour,
and there are transitions beyond the own generation. This difference can be explained
by the CKM mechanism as follows: The weak interaction does not couple to the pairs
of quark mass-eigenstates (

u
d

) (
c
s

) (
t
b

)
,

but to a set of “skewed” generations:(
u
d′

) (
c
s′

) (
t
b′

)
,

where d′, s′ and b′ are linear combinations of the mass-eigenstates of quarks, given by
d′

s′

b′

 =


Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

︸                   ︷︷                   ︸
CKM Matrix


d
s
b

 . (2.5)

There is no evidence that would favour skewing the down-type quarks rather than the
up-type quarks, so our choice is arbitrary but follows convention. The matrix that
describes these linear combinations is called the “CKM Matrix”. The current best ex-
perimental values for the magnitues of the matrix elements [2] are summarized in the
following equation:

VCKM =


0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014
0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011

−0.0005Vcb
0.00867+0.00029

−0.00031 0.0404+0.0011
−0.0005 0.999146+0.000021

−0.000046

 . (2.6)

The diagonal elements of the matrix correspond to quark transitions within the same
generation. Their values very close to 1 show that this transition is by far the most
frequent. The squares of the off-diagonal elements give the relative frequency of tran-
sitions beyond the quark-generation. Thus, figure 2.4 also describes b → u or t → d
transitions. The change of generation without the change of electric charge would re-
quire Flavour Changing Neutral Currents, which are highly suppressed in the Standard
Model by the GIM mechanism [7].
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Unitarity Triangle

The CKM matrix is a unitary matrix and can be parameterised by three amplitudes and
one phase [8]. The unitarity constraint leads to six orthogonality relations, that can be
depicted as six triangles in the complex plane [9]. The most popular one arises from
the condition

VudV
∗
ub +VcdV

∗
cb +VtdV

∗
tb = 0 . (2.7)

We can now divide this equation by the best known summand VcdV
∗
cb and obtain a

triangle with the base stretching from (0,0) to (1,0) as depicted in figure 2.7. The over-

Figure 2.7.: A unitarity triangle.

constraining of the parameters of this triangle is one of the main pursuits of flavour
physics today. It allows to test the theoretical predictions by the CKM mechanism and
numerous measurements are designed for this purpose.

2.2.4. Electroweak Unification

The W bosons couple to all left-handed fermions with the same strength. Only the
CKM mechanism leads to minor corrections for the quark coupling. These expectations
could be confirmed in the analysis of the branching fractions for the W decay. If the Z
boson mediated the weak interaction in the same way as the W , we would expect the
same branching ratios in the decay to pairs of charged leptons and pairs of neutrinos.
Highly precise measurements at all 4 LEP experiments show that the branching ratio
of Z0 → νe,µ,τ ν̄e,µ,τ is much larger than the branching ratio Z0 → (e−,µ−, τ−)(e+,µ+, τ+)
(e.g. [10]). The Z boson can therefore not be treated as an “uncharged W ”, but it medi-
ates a more complicated interaction, that seems to depend on the electric charge.

To explain this phenomenon, a new quantum number is introduced: The weak isospin
T . The families of left-handed (L) quarks and leptons are identified as weak isospin
doublets (T3 = ±1/2), the right-handed (R) fermions are identified as weak isospin sin-
glets (T3 = 0) [5, 11], as shown in table 2.4. Members of the doublets can transform
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Fermion multiplets T T3 Charge νee

L

 νµµ

L

 νττ

L

1/2
+1/2

−1/2

0

−1

eR µR τR 0 0 −1 u

d′


L

 c

s′


L

 t

b′


L

1/2
+1/2

−1/2

+2/3

−1/3

uR cR tR 0 0 +2/3

dR sR bR 0 0 −1/3

Table 2.4.: Fermions and their weak isospin [5].

into their doublet-counterpart byW exchange. The weak isospin structure for exchange
bosons is given in table 2.5 and gives rise to a weak-isospin triplet and a weak-isosping
singlet. The two W ± bosons are already known from the “purely weak” interaction.

Boson multiplet T3 T
W +

W 0

W −


+1

0

−1

1

B0 0 0

Table 2.5.: Bosons and their weak isospin.

Both the W 0 and the B0 couple to fermions without changing their weak isospin. The
physically-known vector-bosons with that property are the γ and the Z0. These two
vector-bosons can be formulated as orthogonal linear combinations of the W 0 and the
B0: ∣∣∣γ〉 = cosθW

∣∣∣B0
〉

+ sinθW
∣∣∣W 0

〉
(2.8)∣∣∣Z0

〉
= −sinθW

∣∣∣B0
〉

+ cosθW
∣∣∣W 0

〉
, (2.9)

where θW is the electroweak mixing angle. θW also gives a relation between the weak
and the electromagnetic charge g:

e = g · sinθW . (2.10)

The electroweak mixing angle was measured as [2]

sin2θW ≈ 0.231 . (2.11)
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The electroweak mixing renders the interaction more complicated: The charged W ±

bosons couple to all fermions with the same strenght. The couplings to the Z0 boson,
on the other hand, depend also on the electrical charge of the fermion:

gZ(f ) =
g

cosθW
· (T3 − zf sin2θW ) , (2.12)

where zf is the electric charge of the fermion in units of the elementary charge e.

2.3. The Higgs Mechanism

The fact that the W and Z bosons are massive particles poses a central issue in the
theory of electroweak physics. Theoretical consideration would prefer all electroweak
exchange particles to have the same - “symmetric” - zero mass. Looking at table 2.3,
we see that the masses of the W and Z bosons are far from zero, while the photon is
indeed massless. One possible explanation for this electroweak symmetry breaking is
the Higgs mechanism.

The Higgs mechanism adds an additional scalar field φ to the theory, whose minimum
does not lie at φ = 0 [12], resulting in a doublet of complex scalars φ = (φ+,φ0). The
four free scalar fields correspond to four bosons: Three Goldstone bosons are created,
that appear as the longitudinal components of the - now massive - W +, W − and Z0

bosons. The fourth free field that has not bee “absorbed” by the massive electroweak
exchange bosons manifests itself as the Higgs Boson. It is worth noting that the Higgs
mechanism is not only capable of giving mass to the electroweak interaction particles,
but to all fermions as well via the Yukawa interaction of scalar fields and Dirac fields.

Indirect and direct searches for this boson have been going on for decades. In July
2012, an excess of events in the search for the Higgs boson have been simultaneously
reported by the ATLAS [13] and CMS [14] collaborations at the Large Hadron Collider
at CERN. The both excesses were found at masses of MH = 126.5 GeV/c2 (ATLAS) and
MH = 125.5 GeV/c2 (CMS). While further investigation is needed and ongoing, these
excesses seem to be promising candidates for the direct experimental discovery of the
Higgs boson.

2.3.1. Charged Higgs

Although the Standard Model has been a very successful model, there are still areas
of uncertainty left by it. A prominent example is the nature of dark matter, which is
not explained by the Standard Model. Also, the masses of quarks and leptons or the
magnitude of the CKM matrix elements are measured, but not understood [15]. Several
extensions of the Standard Model postulate the existence of charged Higgs bosons in
addition to the neutral Higgs particle postulated by the simplest Higgs mechanism. The
simplest extensions of the Standard Model postulate one additional Higgs field doublet
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and are realized e.g. in the Minimal Supersymmetric Standard Model (MSSM) [16]. In cer-
tain types of extended Higgs models (also in the MSSM at tree level) up-type quarks
get their mass solely from one of the two doublets, while down-type quarks get their
mass from the other doublet [17]. The existence of these charged Higgs bosons could
alter the structure of the weak interaction [18]. Thus, it could have measurable impact
on the branching ratios of several B meson decays, already accessible to experimental
tests. The decays B → D(∗)τν are promising candidates for indirect evidence of ex-
tended Higgs model contributions.

The interaction of charged Higgs bosons with fermions is proportional to the fermion
masses mb and mτ (see eq. 2.14 and [19]), thus the largest eventual contribution of the
charged Higgs interaction at a B factory should be visible in decays of B mesons with
τ leptons in the final state. This choice of the largest possible involved mass leads us
to the decay B→ τν, which has been analysed by the Belle Collaboration [20], and to
the decay B → D∗τν, which is the subject of this analysis. The decay is depicted in
figure 2.8.

u u

b c

 / -W -τ

τν

-H

β tan bm

β tan τm

-B 0D

Figure 2.8.: Feynman graph for the decay B → D∗τντ . The hypothetical decay via
charged Higgs is highlightes in red (coloured version).

The effective Hamiltonian (see section A.1) describing the decays B→ D(∗)τν and B→
τν is

Heff =
GF√

2
Vqb

{
[q̄γµ(1−γ5)b][τ̄γµ(1−γ5)ντ ] (2.13)

−m̄bmτ
m2
B

q̄[gS + gP γ5]b[τ̄(1−γ5)ντ ]
}
. (2.14)

The first part of the effective Hamiltonian (equation 2.13) contains the weak current
standard model interaction. The second part (equation 2.14) describes the charged
Higgs interaction. The coupling constant gp only affects the decay B → τν, whereas
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the decay B→ D(∗)τν is sensitive only to the coupling constant gS . In the MSSM, the
coupling constants take the following form:

gS = gP =
m2
B

M2
H+

tan2β

(1 + ε̃0 tanβ)(1 + ετ tanβ)
, (2.15)

where ε̃0 and ετ are loop correction factors that are 0 in type-II 2 Higgs doublet models.
In these models, the effects of the charged Higgs H+ are thus entirely parameterised by
the mass of the H+ and the ratio of the two vacuum expectation values for the up- and
down-type doublets vu and vd :

tanβ =
vu
vd
. (2.16)

The effects of the charged Higgs contribution should manifest themselves in a change
of the branching ratios of the decays B→ D∗τν. Many hadronic and Standard Model
parametric uncertainties must be considered in the measurement of these branching
ratios. It is therefore beneficial to define the ratios in equations 2.17 to 2.20. In these
ratios, most of the above mentioned uncertainties cancel, while the sensitivity to effects
of charged Higgs contributions is still retained. It is the goal of the presented analysis
to measure the following ratios:

R0 =
B(B0→D−τ+ντ )
B(B0→D−`+ν`)

(2.17)

R+ =
B(B+→D

0
τ+ντ )

B(B+→D
0
`+ν`)

(2.18)

R∗0 =
B(B0→D∗−τ+ντ )
B(B0→D∗−`+ν`)

(2.19)

R∗+ =
B(B+→D

∗0
τ+ντ )

B(B+→D
∗0
`+ν`)

. (2.20)

The Standard Model predictions are 0.297± 0.017 for R0 and R+ and 0.252± 0.003 for
R∗0 and R∗+ [21]. As indicated by the negative sign of the supersymmetric part of the
effective Hamiltonian (see equation 2.14), a negative interference is expected from the
charged Higgs contribution. Thus, the ratio R should decrease down to the point where
the supersymmetric contribution dominates over the standard model expectation, as
shown in figure 2.8. A significant deviation of the ratios R and R∗ from the Standard
Model expectation would indicate a physical process beyond the Standard Model.
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Figure 2.9.: Expected behaviour for R0 and R+ depending on gS [22].
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3. Data Analysis

3.1. Probability

When we look at classical physical processes, like a pendulum or the orbits of plan-
ets, the outcome of a measurement is exactly predictable. There is no fundamental
uncertainty; a defined cause has a defined effect. This is the concept which we call
determinism. The other extreme would be a process whose outcome is completely non-
predictable, like the exact time of a radioactive decay of a single atom or the outcome
of a lottery. We call processes of this type coincidence.

Most real systems are, however, a mixture of determinism and pure coincidence [23].
The expectation, that a certain experiment should give, under identical circumstances,
identical results is an idealisation even in classical physics. The coincidental element
in this classical case is the fact that the circumstances of two experiments can never be
exactly identical. For many measurements, these deviations are tiny compared to the
precision of the measurement. In such cases, we may safely neglect the coincidental
element of the measurement and our prediction of the outcome of a measurement (say
the position of Jupiter) appears within the inherent precision of the measurement exact.

3.1.1. Quantum Mechanical Probability

We find a totally different situation in the field of quantum mechanics. An experiment,
even if the circumstances could be chosen to be identical, would never yield exactly
predictable results. And this behaviour would not be due to our current lack of exper-
imental finesse, but it is an essential property of quantum mechanics. It is thereby an
unavoidable part of particles physics, ultimately due to Heisenberg’s uncertainty prin-
ciple. As a consequence of the coincidental nature of the processes in particle physics,
n measurements will usually yield n different results, that may, when plotted in a his-
togram, cluster in the vicinity of a certain value. At other times the results will be
distributed over a certain range uniformly or according to a certain pattern. Keeping
these arguments in mind, it is evident that it is impossible to measure any quantity in
the field of particle physics exactly and we are limited to make statements about the
probability of the outcome of a measurement. We define the probability P (A) for the out-
come A of an experiment with n independent measurements and k positive outcomes
as:

P (A) = lim
n→∞

k
n
. (3.1)

23



Chapter 3. Data Analysis 3.1. Probability

A typical example would be the probability of an atom to decay within a certain time
window (say within 10 seconds).

3.1.2. Probability In Physics In General

While all processes in nature are ultimately governed by quantum mechanics, the ef-
fects are often negligibly small. Nonetheless, even macroscopic measurements will
never yield the exact same outcome, due to the finite resolution of any measuring ap-
paratus. Think of measuring the exact distance between the physics building at KIT
and San-Go-Kan at KEK to a precision of micrometers. Repeated measurements will
yield slightly different results. The results will cluster according to Gaussian distribu-
tion around the true value [24]

The definition in equation 3.1 yields one practical problem, which is that the infinite
number of repetitions of the experiment can never be achieved. It can, however, be
shown that the error on the probability can be reduced as far as desired by increasing
the number of repetitions.1

3.1.3. Bayes’ Theorem

An important property of probabilities is the ability to make combinations. Let the
probability of event A be P (A) and the probability of event B be P (B). Then the proba-
bility that both events A and B occur is

P (A and B) = P (B|A) · P (A) (3.2)

where P (B|A) is the conditional probability that B occurs, given that A has occurred. As
A and B are not specified any further we can also write in general

P (A and B) = P (B|A) · P (A) = P (A|B) · P (B) (3.3)

which leads to Bayes’ Theorem:

P (A|B) = P (B|A) · P (A)
P (B)

. (3.4)

In the Bayesian interpretation, this theorem relates an initial degree of belief P (A)
(“prior”) with additional infomation P (B) (“evidence”) and the likelihood for the ad-
ditional information P (B|A) with the updated degree of belief encompassing additional
the information P (A|B) (“posterior”). Bayes’ Theorem will be used extensively in this
thesis, in particular in the Full Reconstruction algorithm, described in detail in chap-
ter 5.

1Additionally, we must assume a perfect experiment with no systematic uncertainties. Systematic uncer-
tainties will not be reduced by increasing the number of repetitions.
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3.1.4. Distributions

As explained in section 3.1, repeated measurements do in general not yield one sin-
gle fixed and predictable value, but rather a distribution of values. Figure 3.1 shows
a histogram of multiple independent mass measurements of a certain type of particle.
These repeated measurements result in a distribution, typical for particle physics. We

Figure 3.1.: A typical mass distribution.

can intuitively see two component in the histogram: A peaking structure and a down-
ward sloped flat component. The peak can be identified as mass measurements of the
particle we are interested in (J/ψ in this example). We call this structure signal. The
downward sloped component can be identified as detector noise or mass measurements
of other particles whose masses were close or identical to the mass of the signal compo-
nent, but were not signals in reality. We call this component the background. The mass
measurement of this particular type of particle merely serves as an example. In this
case, the relatively wide distribution is caused by the finite resolution of the detector.
Nonetheless, a clear signal can emerge, given enough repetitions of the measurement.

3.1.5. Probability Density Functions

When we measure a continuous quantity like mass, it is in principle impossible to
measure one exactly predicted value (say m = 3.096 GeV/c2). The probability for any
such prediction is exactly 0. We can, however, predict that a measurement will yield a
value within a certain range. In general, the probability for such a prediction is larger
than 0. Therefore, we introduce the probability density function (pdf) f (x), a property
that characterises the distribution of a random variable. It denotes the probability
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P (a ≤ x ≤ b) that a measurement of the quantity x lies within the limits a and b by

P (a ≤ x ≤ b) =

b∫
a

f (x)dx . (3.5)

A pdf has to be non-negative and normalized to 1:

f (x) > 0 and

∞∫
−∞

f (x)dx = 1 . (3.6)

The application of formula 3.5 can be shown in the exemplary plot in figure 3.1: The
probability that the outcome of a mass measurement will lie within the peaking struc-
ture is higher than within an equally wide range outside the peak. Note that the prob-
ability density function f (x) is not a probability, but rather the quantity f (x)∆x will
become the probability for x to lie within x and ∆x as ∆x→ 0.

Expectation Value And Variance

An important parameter that characterizes a pdf is the expectation value E of a function
h(x) with respect to the pdf f (x). E is defined as

E[h] =

+∞∫
−∞

h(x)f (x)dx (3.7)

with the important special case of the expectation value of “the function” x:

E[x] = 〈x〉 =

+∞∫
−∞

xf (x)dx , (3.8)

also known as the first algebraic moment. In general, the expectation value of the func-
tion xn is called nth algebraic moment.

The variance V (x) is another important aspect in the characterization of a pdf and is
defined as

V [x] = E[(x − 〈x〉)2] =

+∞∫
−∞

(x − 〈x〉)2f (x)dx = σ2 . (3.9)

It characterizes the width of a distribution and is also known as the second central mo-
ment. In general, the expectation value of the function (x − 〈x〉)n is called nth central
moment.

There are numerous other momenta or function of momenta that are used to character-
ize probability density functions. It can be shown, that any probability density function
can be defined unambiguously by all of its momenta.
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3.1.6. Parameter Estimation

Any measurement in particle physics is subject to uncertainty and measurement er-
ror. They are introduced by the above mentioned fundamental uncertainties of the
quantum physical measurement process, and also by the unavoidable measurement er-
ror due to an imperfect measuring apparatus. It is therefore important to utilize the
optimal technique to extract a relatively precise result from imperfect and imprecise
measurements and also to determine the error of that result. If we once again look at
figure 3.1, we intuitively see what the true value of the measured quantity will most
likely be. Judging from the width of the signal peak, we may even estimate the error
in our determination of the value. So from a relatively broad spectrum, we can extract
a quite precise result and its uncertainty. For proper scientific purposes, the described
intuitive approach is, of course, insufficient and an analytical procedure is required to
obtain unbiased results. We evaluate the quality of such a parameter estimation proce-
dure by the following four criteria:

Consistency For a large number of measurements n, the result â should converge to-
wards the real value a0 :

lim
n→∞

â = a0 (3.10)

Truth to expectation The expectation value E[â] should be the true value a0.

E[â] = a0 (3.11)

Effectiveness The variance of the result â should be as small as possible.

Robustness Data outliers or wrongful modelling should influence the result â as little
as possible.

One of the most commonly used procedures for parameter estimation is the maximum
likelihood method.

The Maximum Likelihood Method

Let us assume, that the underlying probability density function f (x|a) of a measured
distribution of variable x is known. x may stand for a single variable or a vector of
variables with n measured values: x1, x2 . . .xn. a stands for one or more unknown
parameters of the pdf. Given this underlying probability density function f (x|a), we
can then form the negative log likelihood function F(a), defined as

F(a) = −
n∑
i=1

lnf (xi |a) . (3.12)
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According to the maximum likelihood principle, the best estimator â is the one, that
minimizes F(a)2. It can be proven, that in the limit n→ ∞ this method is consistent,
true to expectation and effective. A problem of this method is, however, that the a-
priori knowledge of the underlying probability density function f (x|a) is necessary.

An instructive example is the parameter estimation using a Gaussian distribution. The
Gaussian distribution is defined as:

f (x) =
1

√
2πσ

e−
(x−µ)2

2σ2 . (3.13)

Its shape is determined by the two parameters σ and µ. It can be shown that

µ = â =
∑n
i=1 xi
n

and (3.14)

σ (â) =
σ
√
n

(3.15)

A very fundamental consequence of equation 3.15 is that the variance or “error” of
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Figure 3.2.: 100 events randomly generated according to a Gaussian pdf. A Gaussian
function was fitted to the distribution.

an estimator decreases with increasing number of measurements. Figures 3.2 and 3.3
visualise this phenomenon. While for the low number of measurements in figure 3.2,
the exact shape of the Gaussian is not readily apparent to the eye, for the high number

2Or, equivalently maximizes
∏
f (x|a). Hence the name maximum likelihood method.
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Figure 3.3.: 100000 events randomly generated according to a Gaussian pdf. A Gaus-
sian function was fitted to the distribution.

of measurements in figure 3.3 the shape is much more clearly defined.

The values for σ (x̂) in the figures quantify the above statement in agreement with equa-
tion 3.15: The pdf in figure 3.3 contains a factor 1000 more events and the mean is de-
termined by a factor of

√
1000 ≈ 32 more precisely. While usually parameter estimation

procedures in physics research are much more involved, the above example illustrates
an important point: The more measurements there are in a sample, the more precisely
the parameter estimation can be done, which is the main motivation for the improve-
ment of the Full Reconstruction that will be described in chapter 5 of this thesis.
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3.2. Classification

A major task of data analysis techniques is the classification of an observation, based
on one or more properties of the observation. A very important example is the classi-
fication, whether a particle was reconstructed correctly or not. The mass of the recon-
structed candidate is an intuitive and often useful property for this type of classification.
Figure 3.1 shows the mass measurements of a number of candidates. Let us define a
narrow mass region around m = 3.096 GeV/c2 so that the clear peak in figure 3.1 is
overed by the region, say [3.07,3.11] GeV/c2. If a candidate lies within that region, we
call it “correct”, otherwise “incorrect”.
In general, such a simple classification is not the optimal procedure for a given prob-
lem, as it does not use any further information that we might have about the measure-
ment. Furthermore, even the information that was used is not used in an optimal way
and a binary decision is made, where a probabilistic statement could have been given,
e.g. based on the proximity to the maximum value. Many statistical problems require a
classification into more than just two categories, but usually these multi-class problems
can be reduced to many consecutive binary decisions.
The quality of a classification procedure depends on the amount of information that is
available up to the decision-making moment, and also on the quality of the algorithm
that is used for the decision making.

3.2.1. Classification in Particle Physics

During a typical high energy physics analysis, one is often presented with a collection
of reconstructed particles, called candidates, some of which are actually the particle one
is looking for, which we call the signal component, and some of which are not the par-
ticles one is interested in, which we call background. In order to obtain results from an
analysis, it is essential to separate signal from background. For all selection methods, a
compromise has to be found between good efficiency and good purity, which we define
as:

efficiency =
N(selected signals)

N(signals in the sample)
, purity =

N(selected signals)
N(selected candidates)

. (3.16)

Increasing the efficiency by applying a less restrictive classification usually results in
more background events passing that classification and thereby lowering the purity.
On the other hand, applying a more restrictive classification will improve the purity
by rejecting more background but will in turn, of course, lower the efficiency by reject-
ing a certain portion of the signal component. Figure 3.4 shows an example of purity
plotted over efficiency for two different classification procedures. The curve comprises
all possible pairings of purity and efficiency for a given classification procedure with
varying restrictiveness. Plots of this type can be used as a quality characteristic for
the used procedure. Better classification methods are able to reach further into the top
right hand corner of the graph, having simultaneously better purity and efficiency than
a less powerful classification procedure.
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Figure 3.4.: An exemplary purity-efficiency-plot. The dots represent purity-efficiency
values of two different classification procedures. The red dots, reaching
better purity-efficiency values, stem from an algorithm with higher classi-
fication power than the blue dots.

3.2.2. Monovariate Classification

The easiest way to separate signal from background is to apply a binary decision on
one single property of a candidate. It is therefore called a monovariate classification. If
the property in question of a candidate lies above or below a certain requirement, it
is considered signal or background respectively. As this procedure resembles cutting
away certain areas of the sample, these binary decisions are usually called “cuts”. In
particle physics, typical properties on which cuts are performed are mass, momentum
or impact parameter. In fact, the classification procedure described in the beginning of
section 3.2 is a fairly typical monovariate classification. This procedure has the advan-
tage that it is extremely simple and is well-suited for trivial classification tasks. It can
be beneficial to perform the more trivial part of a classification (should there be one) by
applying cuts. With the trivial decision out of the way, more sophisticated methods are
better able to learn the subtle aspects of the remaining sample. Apart from that point,
monovariate classification has in practice very limited potential. Usually, multiple cuts
on several properties of the candidates have to be performed and it is very difficult to
take correlations amongst these properties into account. Neglecting these correlations
can result in relatively low efficiencies or purities. Figure 3.5 gives a visualisation of the
method of consecutive cuts. Let us assume, that the two dimensions x and y represent
correlated properties of a candidate. The task is to select as many signal candidates
(represented by the red dots for clarity), and leave out as many background candidates
(blue dots) as possible. We may choose either a relatively pure or a relatively efficient
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Figure 3.5.: Visualisation of sequential cuts. More effecient selection: dashed lines.
Purer selection: dotted lines. Red: signal, blue: background.

selection, represented by the dashed and dotted lines. We can see, that it is unavoidable
to either cut away a lot of the signal to achieve a good purity (dotted lines) or to leave a
lot of the background in to achieve a good efficiency (dashed lines).

Variable Transformation

A better solution to this problem would be to tranform the variables x and y. The
transformation would correpond to a rotation of the coordinate system. A tilt of the
coordinate system of ∼ 30◦ in figure 3.5 would allow for an even better selection.

3.2.3. Multivariate Classification

In order to improve the simple selection shown in figure 3.5 and even the variable
transformation, it would be desirable to not be forced to cut in straight lines. This could
in principle be achieved by varying the cut window width of one variable, depending
on the other and thus define an ellipse that wraps around the signal component. While
this might seem feasable for two dimensions, it will quickly become a futile task, when
there are more than two properties to be used for the discrimination procedure.
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A more sophisticated approach for discrimination problems with multiple variables is
multivariate classification. It is a generic term for a great number of procedures that
attempt to map a set of input variables x1, . . .xd to one single output variable y [25].
The goal of these procedures is to combine the discrimination power of many input
variables, taking into account correlations amongst the input variables. The result of
a multivariate analysis is ideally one very powerful discriminator, suited for a simple
cut. In general, there can be more than one output variable. In most cases in physics
research, and also in this thesis, however, only one output variable for the classification
of signal and background is used.

To perform the desired mapping, a mathematical function is used that contains a num-
ber of adjustable parameters, that are commonly referred to as weights. We can write
this function as

y = y(~x, ~w) ,

where ~x is the vector of input variables and ~w is the vector of weights. In general, the
exact form of the mapping function is not known and has to be found using a data set
of examples, where the correct classification is known. This data set is called a training
data set. In particle physics, usually simulated data is used. For other applications,
historical data can also be a source for the training data. The process of adjusting the
weights of the mapping function is called a training and has to be done for all multi-
variate classification methods.

Multivariate techniques are in principle capable of taking correlations amongst the in-
put variables into account. The application of these techniques can, however, be rather
involved. Simplified models can deliver quite good results when correlations between
the different variables are small. An important example of an advanced multivariate
technique is a Neural Network. Neural Networks were used prominently in this the-
sis, as a major part of the NeuroBayes package. A detailed description of NeuroBayes,
including the inner workings of a Neural Network, is given in chapter 3.3.
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3.3. NeuroBayes

The NeuroBayes package is a very powerful multivariate classification method. One
of its core components is a Neural Network that maps a vector of input variables ~x
to an ouput variable oNB. A sophisticated algorithm transforms the raw, unprocessed
input variables into suitable input variables for the Neural Network [26]. The Neural
Network then learns the actual classification for the training data set and produces
the output. The NeuroBayes package is capable of operating in two different modes:
classification-mode or density-mode.

• The classification mode is the most frequently used mode in particle physics and
also the only mode used in this thesis. For a classification task, which is usually
the decision if a candidate is signal or background, the network’s task is to map
the input variables to a single output variable, while taking into account the cor-
relations amongst the input variables. The produced output is a measure of the
signal probability for the candidate. Given the prior of a candidate to be a signal,
the output can be transformed easily into a real probability in the Bayesian sense
(see equation 3.4). A single output node is used for this measure of probability.

• In density mode, there is not one, but many output nodes, which enable the net-
work to estimate a probability density function, from which one can obtain esti-
mates for absolute values rather than just a probability.

As the NeuroBayes package, and its classification mode in particular, is used exten-
sively in the analysis described in this thesis, it will be explained in more detail in the
following.

3.3.1. Theory

Let us assume that we have a random variable t distributed according to its probability
density function (pdf) f (t) (see section 3.1.4). In particle physics, our knowledge of the
pdf will usually come from simulated data, known as Monte Carlo simulations. 3 Given
the knowledge of this shape, it is easy to say what outcome a measurement will have
on average. NeuroBayes, however, will aim to produce a better estimate for each single
event taking into account a set of measured values ~xi . This means that NeuroBayes
aims to find the conditional probability density of variable t, given the measured input
values ~xi : f (t|~xi). If there should be no additional information in the measured values
~xi for the current classification problem, then our best estimate is the pdf: f (t|~xi) = f (t).
If there is, however, additional information in the input vector ~xi , one should be able
to obtain a better estimator for a given event with the conditional probability density
f (t|~xi) than with the pdf f (t) alone.

3If the signal can be seen clearly in a distribution from real measured data, the pdf can be also estimated
from a large number of measurements. The pdf of the measurement shown in figure 3.1 could in
principle be estimated easily.
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Preprocessing

The training of a Neural Network is a crucial step in the application of NeuropBayes.
While it would technically be possible to perform such a training with the raw input
variables, a sophisticated preprocessing procedure can increase the training speed and
the robustness of the classification. As shown in the example in figure 3.6, all the
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Figure 3.6.: Variable transformation during preprocessing.

distributions f (t) of the input variables (left plot in figure 3.6)) are transformed to other
distributions g(s) during preprocessing by a non-linear variable transformation F : t→
s (middle plot in figure 3.6), so that the resulting distribution (signal and background)
is flat and within the interval 0 and 1 (right plot in figure 3.6). This avoids that outliers
in the training data set have the power to completely dominate the Neural Network
training.4 It also avoid numerical problems, should the input variables have extermely
small or large numerical values.

Flattening the Distributions

As an example, we use the mass distribution of D meson candidates, that have a nom-
inal mass of ∼ 1.865 GeV/c2. The flattened distribution can be seen in figure 3.7. The
structure of the original mass distribution can still be seen in this distribution with
many signal events and relatively few background events around the nominal mass.

Normal-Distributed Purity

The flattening of the distribution is followed by obtaining the purity in each bin of the
new, flattened distribution. The resulting purity distribution lies within the interval
0 and 1. Optionally, a spline fit of the resulting purity distribution is performed, as
shown in figure 3.8. The obtained purity distribution is then again transformed, op-
tionally according to the performed fit, to have a mean of 0 and a width of 1. The result
of this final transformation can be seen in figure 3.9. These transformations inprove
the learning speed of the Neural Network and avoid neuron saturation.

4These outliers are usually unreliable data anyway.
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Figure 3.7.: Flattened distribution, red: signal, black: background.
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Decorrelation Of Input Variables

As a final step before the training of a Neural Network, the input variables are decorre-
lated from each other. For that purpose, the known classification of the training sample
(the “target”) is added to the variable set. In the next step, the correlation matrix of the
preprocessed input variables and the target is calculated. This matrix is then diago-
nalised by iterative Jacobian rotations. The rotated input vectors are finally normalized
by their eigenvalues. This results in an input dataset that is rotated in such away that
all correlations are to the target.

Separation Power Of Each Variable

To estimate the separation power of this one variable compared to the whole neural
network, a purity-efficiency plot is created for each input variable, which can be seen
in figure 3.10, where now the black line indicates the purity-efficiency curve for the
current variable alone, while the red curve is for all of the input variables combined.
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Figure 3.9.: Final distribution, red: signal, black: background.

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
pu

ri
ty

0

0.2

0.4

0.6

0.8

1

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
pu

ri
ty

0

0.2

0.4

0.6

0.8

1

Figure 3.10.: Purity efficiency plot, red: current variable only, black: all variable
combined.

3.3.2. The Neural Network

The neural networks utilised in the NeuroBayes package share their common topology
of a three-layered feed forward neural network. Figure 3.11 shows an exemplary neural
network with 4 input nodes (i1 . . . i4), 3 hidden nodes (h1 . . .h3) and one output node (o).
It can be shown, that any neural network can be simplified to a three layer network, if
there are enough nodes in the hidden layer. Neural networks are based on the working
principles of neurons in nature. The input nodes are connected to the nodes in the
hidden layer, who produce, when activated, an output to the output node. The output
y of the nodes in the hidden layer can be expressed as

y = S

∑
i

wixi

 (3.17)

where xi are the different inputs of the nodes with their respective weights wi that
can assume any real value. The widths of the connecting lines between the nodes in
figure 3.11 represent their individual weights. The function S(x) is called the activation
function and is chosen to be a sigmoid function. This function has the virtue to map
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Figure 3.11.: Topology of a three-layered feed forward neural network.

the whole range of real numbers to the interval between −1 and 1:

S : ]−∞,∞[ −→ ]−1,1[ (3.18)

The sigmoid function is defined by

S(x) =
1

1 + e−cx
(3.19)

and shown in figure 3.12, where we can see that this function has

• two approximately constant regions at relatively large and small values of x,

• a linear region around x = 0

• an exponential region at negative values near zero and

• a logarithmic region at positive values near zero.

Where exactly these regions are depends on the choice of the parameter c, which can
also be seen in figure 3.12. If we now look at the whole three layered network, we can
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Figure 3.12.: The sigmoid function for different values of c.

express the output of the node in the output layer o using equation 3.17 twice as:

o = S

∑
l

w2→3
l · S

∑
k

w1→2
kl · xk


 (3.20)

where w1→2
kl is the weight of node k of the input layer to node l in the hidden layer and

w2→3
l is the weight of node l in the hidden layer to the the single output node.

3.3.3. Training

In order to utilise a neural network, first a training has to be performed, the results of
which are then applied to characterise the data in question. To perform the necessary
training we need a data-set, for which the true category of an input event (“signal”
or “background”) and thus the desired value of the output node is known. Generally,
this can be historical data, but in particle physics, Monte Carlo simulations are often
used. The neural network is then trained with a sample of signal and another sam-
ple of background events. The target for the neural network is known for each event
in the training samples and can be either t = 1 for signal or t = −1 for background.
The process of a neural network training is, after setting the weights described in for-
mula 3.17 initially randomly, the readjustment of these weights in order to describe the
known target values as good as possible. In other words, the neural network training
is essentially a fit with the weights as free parameters. To measure the quality of this
fit, a loss function is used, which has to be minimised for all events i in the sample
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simultaneously. This can either be a quadratic (χ2) or an entropy (ED ) loss function:

χ2 = w
1
2

∑
i

(ti − oi)2 , (3.21)

ED = w
∑
i

log
(1

2
(1 + ti · oi + ε)

)
, (3.22)

where ti are the known targets (+1 or −1) and oi are the corresponding network out-
puts. ε is a regularisation constant which helps to avoid numerical problems with an
untrained network. It is reduced to 0 after a few iterations. w is a weight parameter,
introduced to minimise overfitting and to maintain generalisation ability.

For classification problems, the entropic loss function is generally used. It has the
advantage, that its value increases towards infinity for completely wrong classification
(oi = +1 while ti = −1 or oi = −1 while ti = +1). Consequently, this error is automatically
strongly punished and the distinction is quickly learned by the neural network. The
two above mentioned loss functions can only be evaluated after a sufficiently large
subsample of the available data has been used. In order to achieve an improvement in
the prediction power of the network, it is common to perform multiple iterations on
the dataset.

Over-Training

This training process by itself contains one common problem of neural networks, how-
ever, which is over-training. When the signal (or background) fraction in the training is
not large enough and there are many nodes in the input layer, the neural network might
be able to learn the signal (or background) events by heart. This means that a few very
specific pattern might be able to trigger an extreme network output value. While this
value would be true for the one corresponding event, the input pattern leading to the
value has in general not got a general discrimination power.
To avoid this problem, the concept of decaying weights is used, which means that the
weights of all nodes wi are moved towards 0 after a fixed interval, which can either
be one iteration or a fixed number of events. In a figurative way, one could say that
the neural network is programmed to forget part of what it has learned to avoid over-
training. Additionally the training is not performed on the whole available data-set,
but a small fraction of signal and background events are left out of the training and
used for validation of the neural network. Over-training would be indicated by excep-
tionally bad performance on such a validation sample.

Signal And Background Fraction

While it would be possible, and it sometimes indeed is practical, to train the neural
network with the same signal to background ratio as expected on data, it is at other
times more practical and sometimes even only possible using a different ratio. If, for
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example, the desired signal is very rare in the training data, a training would not learn
to distinguish the few signal events from the millions of background events. The net-
work would rather try to learn something from statistical fluctuations that surpass the
signal by far and therefore also dominate the loss function. Therefore, a training with a
higher signal fraction is the only way, in which such rare signals can be detected. This
would, however mean, that the output of the NeuroBayes training could no longer be
interpreted as a probability in the Bayesian sense. It can, however be transformed to
regain that property (see section 3.4).

3.3.4. Performance
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Figure 3.13.: The error function during a NeuroBayes training. The training was
stopped approximately after the 60th iteration.

After a performed neural network training, there are several plots and figures that
provide information about the quality of a network training. The error plots, shown
in figure 3.13, show the value of the loss function during the individual training it-
erations. During a normal training, the value of the error function should decrease
towards a minimal value, which then indicates that a local minimum of the loss func-
tion is found. As it would not bring much improvement to do further iterations at this
point, NeuroBayes can be set to stop the training here. This was in fact done in the
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exemplary plot in figure 3.13 around the 60th iteration.
The quality of the achieved classification can be described by the ability of the network
to separate signal and background of a sample. This ability is shown in figure 3.14. We
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Figure 3.14.: The distribution of the NeuroBayes neural network output, red: signal,
black: background.

can see a small background peak (black line) at low NeuroBayes outputs and a large
signal peak (red line) at high NeuroBayes outputs. The good separation power of this
training is immediately visible.

The separation, as good as it may look on any plot like in figure 3.14 can never reach
100% signal purity in any realistic situation and, as mentioned in section 3.2, we always
have to deal with a compromise between purity and efficiency. The purity-efficiency
plot in figure 3.15, automatically generated by NeuroBayes also gives valuable infor-
mation about the quality of the neural network training. The upper curve shows a
usual purity-efficiency curve, that is obtained by calling the candidates above a certain
cut “signal” and those below that cut “background”. The lower curve is obtained doing
just the opposite: Calling the candidates below a certain cut “signal” and those above
the cut “background”.

Finally, there is one plot that summarises the importance of the given input variables.
It is a colour-coded correlation matrix of the input variables and the target before de-
correlation. It assigns each variable a row and a column and shows the correlation
amongst the variables and the correlation of each variable to the target. An exemplary
correlation matrix is shown in figure 3.16. A strong (anti-)correlation to column no. 1,
which is the known truth during a training, indicates the importance of a variable. If
this variable is, however, strongly correlated to another variable, only one of these is in
fact important for the neural network, as they carry similar information.
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Figure 3.15.: The purity-efficiency plot, generated by NeuroBayes.

3.4. Interpretation Of The NeuroBayes Output

The NeuroBayes algorithm is constructed in such a way that the output of a training,
rescaled to lie within the interval [0,1], is the actual posterior signal probability of a
candidate. The assumption that is made for the above statement is that the signal to
background ratio used for the training is the same as one would expect in the real ap-
plication. As mentioned in chapter 3.3.3, it is sometimes beneficial or even necessary to
artificially change the signal to background fraction for the training in order to improve
the separation power. The artificial change requires a transformation to be applied to
the NeuroBayes output, in order to still be interpretable as the actual posterior signal
probability of a candidate.
For the calculation of this correction [27, 28], we start with two instances of Bayes’
Theorem for two alternative theories S and B for given data D:

P (S |D) =
P (D |S) · P (S)

P (D)
, (3.23)

P (B|D) =
P (D |B) · P (B)

P (D)
. (3.24)

We relate them to each other [29] and define Bayes’ factor Λ and the prior O:

P (S |D)
P (B|D)

=
P (D |S)
P (D |B)︸  ︷︷  ︸
=Λ(D |S)

· P (S)
P (B)︸︷︷︸
=O(S)

(3.25)

The posterior odds are then given by

O(S |D) =O(S) ·Λ(D |S) . (3.26)
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We can express the Bayes’ factor by using the output of a NeuroBayes training ot using
data set t as data. Also, we can assign the two alternative theories S and B to correspond
to the signal hypothesis (S) and background hypothesis (B):

Λ(D |S) =
P (ot |S)
P (ot |B)

(3.27)

Here, P (ot |S) is the likelihood for a certain NeuroBayes output given the candidate
in question was indeed a signal. Accordingly, P (ot |B) is the likelihood for a certain
NeuroBayes output given the candidate in question was background. The conditional
probabaility for a candidate to be signal or background can also be expressed in terms
of a given NeuroBayes output ot. Keeping in mind that the probabilities for the signal
hypothesis and the background hypothesis must add up to exactly = 1, we get

ot = Pt(S |ot) signal (3.28)

(1− ot) = Pt(B|ot) background (3.29)

We can apply Bayes’ theorem in a similar manner to equation 3.25:

Pt(S |ot)
Pt(B|ot)

=
P (ot |S)
P (ot |B)︸  ︷︷  ︸
=Λ(ot |S)

·Pt(S)
Pt(B)

(3.30)

and insert equations 3.28 and 3.29 into equation 3.30:

Λ(ot |S) =
ot

1− ot
· Pt(B)
Pt(S)

(3.31)

We thus obtained the factor Λ(ot |S), independent of the signal to background ratio used
in the training dataset. When we wish to apply the NeuroBayes training on a data set
with a different signal to background ratio than in the training, we have the means to
correct it in such a way, that it is the actual posterior signal probability of a candidate.
We use equation 3.25 once more, now with a prediction dataset p in mind:

Pp(S |op)

Pp(B|op)︸   ︷︷   ︸
=

op
1−op , see 3.28, 3.29

= Λ(ot |S) ·
Pp(S)

Pp(B)
(3.32)

We can now solve equation 3.32 for op and thus gain the desired correction:

op =
[
1 +

(
1
ot
− 1

)
Pp(B)

Pp(S)
Pt(S)
Pt(B)

]−1

(3.33)

Equation 3.33 allows us to re-interpret the output of a NeuroBayes expert as the actual
posterior signal probability of a candidate, regardless whether the signal to background
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ratio that was used in the training sample is the same as on the prediction dataset or
not. The information needed for this re-interpretation is the signal to background ratio
in the training dataset and in the prediction dataset. This probabilistic interpretation of
the NeuroBayes output will be used prominently in the Full Reconstruction algorithm,
described in detail in chapter 5.

45



Chapter 3. Data Analysis 3.4. Interpretation Of The NeuroBayes Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

correlation matrix of input variables

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0
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4. The Experimental Setup

4.1. Particle Accelerators

The vast majority of the matter that surrounds us consists only of electrons, protons
and neutrons. First evidence that there could exist other particles was found in the
analysis of cosmic particles. Neutrinos, muons, pions and kaons were discovered in
these experiments. These newly found particle did not come from another place in the
universe, where there are other forms of matter, but they were produced. The energy
densities required to produce the heavier quarks (c, b and t) occur in nature in cosmic
showers. These originate from interstellar high-energy particles that collide with atoms
in earth’s atmosphere. Under controlled circumstances, the heavier quarks (c, b and t)
can only be produced in modern particle accelerators. Although the several machines
in existence differ largely in their details, they share the common principle of accelerat-
ing stable, charged particles using electric fields and bringing the accelerated particles
to collision. The collision can either occur with a fixed target or with other accelerated
particles of a second beam moving in the opposite direction. An important difference
between fixed-target and two-beam collisions is the achievable centre of mass energy√
s [30]. The historically first experiments were conducted with fixed targets, an exper-

imental setup where the accelerated particles with energy E1 and momentum p1 are
directed onto a fixed target with energy m2 and no momentum. The achievable energy
in the centre of mass frame

√
s for this setup is

s = 2E1m2 +m2
1 +m2

2 , (4.1)
√
s ∼

√
E1 . (4.2)

In more recent two-beam colliders, two relativistic particles with energies E1, E2 are
colliding head-on with momenta p1, p2. In this case, the centre of mass energy

√
s can

be calculated as

s = 2(E1E2 + p1p2) + 2M2 ≈ 4E1E2 , (4.3)
√
s ∼ E , (4.4)

where E2 = E1 ·E2. We can see that the available energy for the creation of new particles
grows with

√
E for fixed-target machines, but with E for two-beam colliders.

Modern colliders can be categorised by the types of particles that are accelerated:

Lepton colliders have the advantage to utilise particles that have no substructure.
Usually, electrons are brought to collision with positrons. Thus, the available cen-
tre of mass energy in a collision can be chosen precisely. Additionally, in electron-
positron collisions, the initial quantum-mechanical state is known exactly. The
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largest drawback of electron-positron colliders is the huge amount of synchrotron
radiation they produce. This type of radiation is emitted by any charged particle
under acceleration. The consequence of this is energy loss ∆E for the particles in
a collider. The energy loss for circular acceleration can be expressed as [1]

∆E =
4π
3

(
e2β3γ4

ρ

)
, (4.5)

where ρ is the bending radius, β the velocity of the charged particle and γ = (1−
β2)−1/2. With β ∼ |~p|/m, it becomes clear that the lighter the accelerated particle
is, the larger its energy loss by synchrotron radiation is:

∆E ∼ 1
m4 (4.6)

Hadron colliders usually accelerate protons or protons and anti-protons and bring
them to collision. As the energy loss due to synchrotron radiation is strongly mass
dependent, according to equation 4.6 we can easily see that this energy loss is a
factor of (mp/me)4 ≈ 1013 smaller for protons than for electrons. Therefore much
higher energies can be reached with hadron colliders. The disadvantage of these
colliders is the substructure of the accelerated particles. Only one constituent of
each hadron plays an active role in the collision, and this constituent carries only
a small fraction of the entire energy of the hadron. As this fraction varies strongly,
a precise choice of energy is impossible.

Hadron colliders, like the LHC and the Tevatron, yield enough energy to push the
boundaries of achievable energies and thereby the potential to discover new particles
further. Lepton colliders such as LEP, PEP-II or KEK B can achieve a much higher
precisions in the collision energy. They are therefore more suited to perform high-
precision measurements that also allow the search for new physics and the indirect
search for new fundamental particles.

4.2. The KEKB Accelerator

The KEKB accelerator is an asymmetric electron-positron collider [31, 32, 33] located
at Tsukuba, Japan. Its construction began in 1994 in the underground tunnels that
were formerly occupied by the TRISTAN collider. Figure 4.1 shows a schematic draw-
ing of the KEKB accelerator. KEKB consists of two rings, 3.016 km in circumference,
constructed side by side: a low energy ring (LER) that contains a positron current of ap-
proximately 1600 mA at an energy of E+ = 3.5 GeV and a high energy ring (HER) that
contains an electron current of approximately 1200 mA at an energy of E− = 8.0 GeV.
The two beams yield a centre of mass energy

√
s of 10.58 GeV, which is approximately

the energy of the Υ (4S) resonance:
√
s =

√
4E+E− ≈ 10.58 GeV = EΥ (4S) . (4.7)
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Figure 4.1.: The KEKB accelerator.

The asymmetry between the two rings can be expressed by the resulting Lorentz-boost
parameter βγ of the Υ (4S) resonance:

βγ =
E− −E+√

s
= 0.42 . (4.8)

The need for this asymmetry is derived from physics considerations. One of the main
goals of the experiments is to measure CP violations in the decay of B mesons. Due
to the relatively small lifetime of the B mesons, a large Lorentz-boost is beneficial for
distinguishing the B decay vertices.

Although we speak of a “particle beam”, the shape of the particles in a collider is not
a constant flow, but rather thousands of particle bunches, a few centimetres in length
with equal spacing of approximately 2m between them. This topology is due to the
mechanism of acceleration by high frequency electromagnetic fields that self-actingly
produces this bunch structure.

The production rate for new particles in collisions is determined not only by the achieved
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energy, which is only an indicator, whether a certain type of particle can be produced
at all with the available energy, but by the luminosity L of the collider:

production rate = luminosity · cross section (4.9)

The luminosity of a collider depends only on the properties of the beam and is given
by

L =
N1N2f

4πσxσy
, (4.10)

where N1,2 is the number of bunches in the HER and LER ring respectively, σx and σy
are the spatial dimensions of the bunches and f is the collision rate of these bunches.

The KEKB accelerator operates using trains of 1582 bunches, separated by gaps of 270
buckets (empty bunches) which are needed for a safe beam abort procedure. The bunch
crossing frequency is at f ≈ 508.9 MHz and bunches are crossed at an angle of 22 mrad
in the horizontal plane. The KEKB has only got one interaction region, which lies in
the Tsukuba area, where the Belle detector was located. The KEKB accelerator was
designed for a luminosity of 1 · 10−34 cm−2s−1, but has reached a record luminosity of
2.1083 · 10−34 cm−2s−1 in June 2009, towards the end of its runtime. It was shut down
on June 30th, 2010 and will be upgraded to Super KEKB, with decreased beam size for
an even higher luminosity at the Υ (4S) resonance.

50



Chapter 4. The Experimental Setup 4.3. The Belle Detector

4.3. The Belle Detector

The Belle detector was a multi purpose particle detector designed to perform high
precision measurements of asymmetric electron-positron collisions at the Υ (4S) res-
onance [34] and to carry out quantitative studies of rare B meson decays with very
small branching fractions [35]. Figure 4.2 shows a schematic side view of the detector.
The Belle detector consists of several, specialized sub-detectors, that shall be described
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Figure 4.2.: Side view of the Belle detector. [35]

in the following. As a lot of components of the detector have roughly cylindrical shape,
it is convenient to describe the geometry using cylinder coordinates. Figure 4.3 gives
an overview of the used coordinates.

4.3.1. Interaction Region

The entire Belle detector is build in several layers around the interaction region, where
the e+e− collisions occur. The magnetic field of the Belle detector is aligned with the
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Figure 4.3.: Coordinates used in the description of the Belle detector. [35]

direction of the low energetic e+ beam. The high energetic e− beam intersects the low
energetic beam at an angle of 22mrad in the interaction point. This finite angle avoids
parasitic collisions and makes it unnecessary to use separation bend magnets, allowing
for higher luminosity.
After the collision products were produced in the interaction region, they have to cross
the walls of the beam line before they reach the next layers of the detector. Coulomb
scattering during this process is a limiting factor for the vertex position resolution.
Another important factor for the resolution is the spatial proximity of the first layer of
the Vertex detector to the interaction point. Thus, it is important to have a beam pipe
with low diameter and thin walls. Two Beryllium walls of 0.5mm thickness were used,
separated by a layer of Helium of 2.5mm thickness. The Helium layer is necessary as
a gas cooling system to avoid damage to the beam pipe and detector induced by a few
hundred watts of beam induced heating. The beam pipe is covered by a 20µm thick
gold sheet to reduce certain backgrounds. The inner edge of this compound wall is
located at a radius of r = 20mm from the interaction point. A schematic view of the
interaction region and the beam line can be found in figure 4.4. In the process of the
update of the Silicon Vertex Detector (see section 4.3.2), the radius of the beam pipe
was reduced from 20 mm to 15 mm [36].

4.3.2. Silicon Vertex Detector

As one of the main goal of the Belle detector is to measure time-dependent CP-asymmetries,
precise measurement of the position of the interaction vertex is essential. The Silicon
Vertex Detector (SVD) was designed for that purpose. Additionally, the decay vertices
of relatively long-lived particles such as D mesons can be measured by the SVD im-
proving the overall reconstruction quality. The SVD also delivers an important input
for the tracking algorithm and can therefore also help to achieve a good tracking qual-
ity.
The original Silicon Vertex Detector was replaced multiple times by almost identical
spares due to radiation damage. An updated construction was installed in September
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Figure 4.4.: Schematic view of the interaction region and the beam line. [35]

2003 and remained in usage until the end of the runtime. It was named Silicon Vertex
Detector 2 (SVD2) and as the bulk of the Belle data was taken with the SVD2 in use,
only the SVD2 shall be described in further detail.
The measurement devices utilized by the SVD2 are two types of double-sided silicon
strip detectors (DSSD), differing in their spatial dimensions. The DSSD are arranged
in four layers of, with a range of radii from r = 20.0mm for the innermost layer to
r = 88.0mm for the outermost layer [37, 38, 39]. The four SVD2 layers cover a polar an-
gle of 17◦ < θ < 150◦. The SVD2 delivers an intrinsic spatial resolution of 12.0± 0.4µm
in the φ plane and 22.3± 0.8µm in the z plane.

4.3.3. Central Drift Chamber

The majority of all measurements that can be conducted at a modern multi-purpose
particle detector as the Belle detector depend greatly on good quality tracking of the
trajectories of charged particles. Within a magnetic field, charged particles are de-
flected and the curvature of their trajectories is inversely proportional to their mo-
menta. The trajectories of charged particles are determined by measuring the ionisa-
tion trail they leave when transversing gases. These measurements are conducted using
the central drift chamber (CDC). Additionally, important information for the particle
identification can be extracted from the energy loss which can be measured by the
weakening of the ionisation signal in the CDC.
The CDC comprises 8400 drift cells, distributed amongst 50 cylindrical layers, orga-
nized into 11 super-layers. The CDC stretches from an inner radius of r = 103.5mm to
an outer radius of r = 874mm. A schematic depiction of the CDC can be found in fig-
ure 4.5. In order to achieve a good compromise between as little multiple scattering as
possible to achieve a good momentum resolution and good energy loss measurements,
the CDC is filled with a mixture of Helium and Ethane to equal parts. The CDC de-
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livers an overall spatial resolution of 130µm. The resolution for transverse momentum
pt, measured in muon pair production processes is 1.64 ± 0.04 % in the pt range from
4 − 5.2 GeV/c. The energy loss dE/dx resolution was measured in KS decays and was
found to be 7.8% in the momentum range 0.4− 0.6 GeV/c.

4.3.4. Aerogel Cherenkov Counter System

Situated just outside of the CDC, the aerogel Cherenkov counter system (ACC) plays
a key role for particle identification at the Belle experiment together with energy loss
information of the CDC (see section 4.3.3) and time-of-flight measurements (see sec-
tion 4.3.5). The ACC is composed of 960 silica aerogel counter modules with refrac-
tive indices between 1.01 and 1.03. The ACC structure has an angular coverage of
θ = 17◦−34◦ for the forward endcap and θ = 34◦−127◦ for the barrel ACC. There is no
backward endcap module.
The Cherenkov radiation is amplified by photon multipliers. The descriminating vari-
able that is used for particle identifiaction is the pulse height caused by different types
of particles passing through the aerogel. The individual cells were calibrated using
µ+µ− events. The opening angle of the Cherenkov cone is not measured. An exemplary
pulse height spectrum distinguishing kaons and electrons is shown in figure 4.6.

4.3.5. Time Of Flight Counters

At a distance of r = 120 cm from the interaction point, the 192 time of flight counters
(TOF) are located. They are composed of scintillation counters with directly attached
photomultipliers. They cover angles of θ = 34◦ − 120◦ and have an intristic time reso-
lution of 80 ps. Time of flight measurements can be performed for transverse particle
momenta from pt ≈ 0.28 GeV/c, which is the minimum momentum required to reach
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Figure 4.6.: Exemplary pulse height spectrum of the ACC separating kaons from elec-
trons. [35]

the TOF at all to pt ≈ 1.2 GeV/c, when the resolution of the TOF does not suffice any-
more. Several additional contributions (e.g. beam bunch length) are added in quadra-
ture and result in a resolution of ∼ 100 ps. The time of flight measurements are another
important variable for particle identification at the Belle detector. Figure 4.7 shows an
exemplary time of flight spectrum separating pions from protons.

4.3.6. Electromagnetic Calorimeter

The electromagnetic caloriemter (ECL) is designed to perform precise measurements of
electromagnetic clusters of both relatively low and relatively high energies (< 0.5 GeV−
4 GeV) [40]. The separation of individual clusters is another important aspect for cer-
tain physics analyses, thus a good spatial resolution, provided by fine granularity of
the caloriemter cells, is desirable. The ECL of the Belle detector is composed of CsI(Tl)
crystals that are arranged in a finely segemented array.
The ECL is arranged asymmetrically around the interaction point. The barrel region of
the ECL streches from z = −1.0m to z = 2.0m relative to the interaction point and covers
an angle of θ = 32.2◦ −128.7◦. It contains the bulk of the CsI(Tl) crystals that are tilted
by ∼ 1.3◦ in order to reduce photon loss through the gaps between the crystals. The
forward and backward endcap calorimeters are attached to the barrel region and cover
angles of θ = 12.4◦ − 31.4◦ and θ = 130.7◦ − 155.1◦ respectively. An overview of the
three parts of the ECL is given in figure 4.8. The choice of the crystal size is governed
by two considerations: The smaller the crystals, the better the resolution. But with
smaller crystals the energy resolution deteriorates due to the gaps and inactive mate-
rial between them and additional channels have to be read out. For different parts of
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Figure 4.7.: Exemplary time of flight spectrum of the TOF separating pions from pro-
tons. [35]

the ECL, different sizes of the crystals have been chosen. The front faces of the crystals
are squares with edge lenght ranging from 44.5mm to 70.8mm. The back faces of the
crystals have edge lenghts ranging from 54mm to 82mm and the crystals are 300mm
long.
Calibrated with Bhabha and γγ events, the ECL delivers an energy resolution of 1.7 %
in the barrel region, 1.74 % in the forward endcap and 2.85 % in the backward endcap.

4.3.7. KL and Muon Detection System

The purpose of the KL and muon detection system (KLM) is to separate muons from
other charged particles by shielding them off and to detect the relatively long-lived
KL mesons. The KLM consists of 14 iron layers, each 47mm thick, separating 15 de-
tector layers [41]. The detector layers are composed of glass-electrode-resistive plate
counters, that detect the passage of charged particles by ionisation. The separation of
muons against other charged particles is based on their range and deflection through
the 4.7 radiation lenghts the KLM construction provides. The KLM is divided into
three parts: A barrel region and two end caps. Together, these three components cover
an angle of θ = 20◦ − 155◦. The overall layout of the KLM is shown in figure 4.2. The
glass-electrode-resistive plate counters are of rectangular shape and vary in size from
3.3m2 to 5.9m2.
The average number of KL clusters is 0.5 per event, which is in agreement with simula-
tion. Muons with energies larger than 0.5 GeV can reach the KLM. A comparison of the
simulated to the measured range of particle tracks allows to assign a muon likelihood.
The muon detection efficiency depending on the muon momentum for a likelihood cut
of 0.66 is shown in figure 4.9.
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Figure 4.8.: Schematic overview of the electromagnetic calorimeter. [35]

4.3.8. Detector Solenoid and Iron Yoke

The inner sections (SVD, CDC, ACC, TOF, ECL) of the Belle detector are in a constant
magnetic field of 1.5 T. The field is cylindrical, 4.4 m long and 3.4 m in diameter.
As mentioned in section 4.3.3, this is essential to measure the momenta of charged
particles. The magnetic field is produced by a NbTi/Cu superconductor, storing an
energy of 35 MJ when fully charged. The iron support structure for all Belle detector
components serves, together with the iron absorber plates of the KLM detector, as flux
return paths. A contour plot of the measured field strength inside the tracking volume
can be found in figure 4.10.

4.3.9. Trigger System

It would be very difficult and unpractical to record every single collision that occurs at
the interaction region of the Belle detector. Many processes are of small or no interest
at all. Apart from processes that are physically interesting, Bhabha and γγ events
are useful to calibrate the detector and measure luminosity. Given that estimates of
the beam-related backgrounds are difficult, a flexible trigger system is required that
can keep the background level low, while still giving good efficiency for physically
interesting events. The Belle trigger system [42] consists of a Level-1 hardware trigger
and a Level-3 software trigger. The Level-1 trigger combines up to 48 signals from track
triggers and energy triggers and forms the trigger signal in fixed processing time of 350
ns. An overview of possible inputs to the Level-1 trigger system is given in figure 4.11.
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4.3.10. Overview and Summary

To summarize this chapter, let us see how different types of particles interact with
different subdetectors and how they can be distinguished. Figure 4.12 gives a graphical
representation of the interactions.

An important group are the charged particles: e−, µ−, π−, K− and p− are relatively long-
lived particles, that travel macroscopic distances through the detector. Due to their
electrical charge, they leave ionisation trails when passing through the silicon strips of
the SVD and the gas in the CDC. When they reach the ECL, they leave electromagnetic
showers in the crystals. Out of this group, only muons travel through the iron absorper
plates of the KLM and leave a signal there. The other charged particles are usually
absorbed there and can be distinguished by energy loss measurements in the CDC and
inforamtion from the ACC and TOF subdetectors.

There is only one neutral particle, that can be detected directly, the photon (γ). γ par-
ticles are directly detected by the electromagnetic showers they leave in the ECL. They
can be distinguished from charged particles that also leave showers there by the fact
that there is no matching track in the CDC to their showers. There is a number of
neutral particles that can be detected indirectly. The π0 decays into two γ particles,
that can be detected and matched to reconstruct the original π0. KS mesons frequently
decay into two charged pions within the CDC and leave a v-shaped structure of two
charged tracks that do not originate from near the interaction point. Photons that con-
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Figure 4.10.: Contour plot of the mesured field strength in the Belle detector. [35]

vert into an e+e− pair can be detected in the same way. KL mesons are long-lived and
are usually the only particles that reach the KLM, where they decay into two or more
charged particles.
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5. The Full Reconstruction

Many of the B meson decays studied at B-factories are semi-leptonic or even purely
leptonic decays, i.e. the B meson decays into hadrons and leptons or into leptons only.
Typical examples are found in equations 5.1 and 5.2.

B→D(∗)`ν` semi-leptonic (5.1)

B→ τ(→ `ν̄`ντ )ντ purely leptonic (5.2)

Another example would be the decay B → D(∗)τντ , which is the main focus of this
thesis. One of the common features of these decay modes is the fact that they contain
neutrinos. There is no known detector that would be able to identify the only weakly
interacting neutrinos with the rate and the accuracy that would be necessary for useful
event reconstruction. Furthermore, shielding the 7 × 109cm−2s−1 neutrinos from the
sun reaching earth, would pose another huge problem. That means that it is currently
impossible to measure the momentum of neutrinos at collider experiments directly in
a satisfactory manner.

5.1. The Principle Of The Full Reconstruction

There is, however, a way to measure the momentum of neutrinos indirectly. This indi-
rect measurement basically relies on the momentum conservation in two-body decays.
To understand this technique, we must remember the fact that KEKB operates at the
Υ (4S) resonance, as described in equation 4.7. In the cross-section spectrum of e+e−

collisions, shown in figure 5.1, the Υ (4S) resonance is the first resonance, where the
creation of a B meson pair is energetically possible. The Υ (4S) resonance produced at
B-factories decays almost always into a pair of B mesons and no additional particles:

Υ (4S)→ BB̄ > 96% (5.3)

Υ (4S)→ B+B−= (51.6± 0.6)% (5.4)

Υ (4S)→ B0B̄0 = (48.4± 0.6)% (5.5)

As the decay Υ (4S)→ BB̄ is a two-body decay, the principle of conservation of momen-
tum yields a very simple relation:

pCMS(B) + pCMS(B̄) + pCMS(Beam) = 0 (5.6)

Let us imagine that one of these B mesons, which we shall call the signal side B meson
Bsig, decays semi-leptonically and the other B meson, which we shall call the tag side
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Figure 5.1.: The Υ resonances in the cross-section spectrum of e+e− collisions [43]. The
Υ (4S) resonance is written as Υ ′′′ in this plot.

B meson Btag, decays purely hadronically. If this is the case, we are, in principle, able
to reconstruct the purely hadronically decaying tag side B meson Btag completely, or
“fully”. This is not possible for the signal side, we will always miss the momentum car-
ried away by the neutrinos. But using equation 5.6, with the precise knowledge of the
4-momentum of the beam, we can derive the true 4-momentum of Bsig, compare it with
the reconstructed 4-momentum of Bsig and thereby measure the missing momentum:

pCMS(Btag) + pCMS(Bsig, rec) + pCMS(missing) + pCMS(Beam) = 0 (5.7)

It can be easily seen from equation 5.7, that the precise knowledge of the beam mo-
mentum is another crucial element for the Full Reconstruction algorithm.

5.1.1. Missing Momentum And Additional Particles

The ability to make this missing momentum measurable is one of the main features of
the Full Reconstruction. Another very important piece of information can be deduced
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from the fact that in Υ (4S) decays, there are no particles in addition to the two Bmesons
(see equations 5.4 and 5.5). It is therefore possible to measure the number and 4-
momenta of additional tracks and electromagnetic clusters, that were included neither
in the tag-side nor in the signal-side reconstruction. This knowledge can greatly help to
understand signal-side decays or yield much cleaner signal samples by requiring that
there shouldn’t be any tracks or electromagnetic clusters left.
An exemplary schematic for a fully reconstructed event with a signal side can be found
in figure 5.2. It should be noted, that the Full Reconstruction is not an analysis in itself,

tag side signal side

Figure 5.2.: A fully reconstructed event with B−→D0(→ K−π+)π+π−π− on the tag side
and the purely leptonic decay B+→ τ+(→ e+ντ ν̄e)ντ on the signal side

but rather a tool that makes many other analyses at all possible. It takes advantage of
the properties of the Υ (4S) resonance and the very precisely known beam energy and
is therefore only applicable at lepton colliders.

5.1.2. Inclusive Searches

The missing momentum on the signal side can not only originate from missing neu-
trinos. The Full Reconstruction allows to measure the missing momentum of every
particle combination that can be missed during reconstruction. This is a very useful
property for inclusive searches. Consider for example an inclusive search for cc̄ reso-
nances:

B+→ Xcc̄K
+ (5.8)

By reconstructing one K+ particle and then measuring the missing momentum of the
rest of the signal side, Xcc̄ resonances can be found in the spectrum of missing mass.
This approach makes the explicit reconstruction of the particles of interest unnecessary.
It is therefore a useful approach in the search of yet unknown states.
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5.1.3. Broken China Plates

A simple analogy can be made to illustrate the principle of the Full Reconstruction: Let
us imagine two identical china plates that were dropped to the floor. If one is successful
to piece one of the two plates together completely, one can be sure that the entire pile
of shards that remains must come from the other plate. If we imagine further, that one
or more shards were taken away from the pile, we can exactly determine the mass of
these shards by measuring how much lighter the remaining pile of shards is than the
pieced together china plate.

5.2. Efficiency and Purity

Many analyses at B factories, predominantly those concerned with (semi-)leptonic B
meson decays, depend on a tag side. If we recall figure 5.2, we can directly see, that the
more often we are successful in fully reconstructing a tag side, the larger the available
data sample for the signal side analysis is. The number of fully reconstructed tag side
events depends basically on two factors:

1. The covered branching ratio of the B meson and

2. the reconstruction and selection efficiency.

Both of these factors have direct influence on the number of tag side B mesons, or the
efficiency. Keeping in mind the need for as many tag-side candidates as possible, or the
highest possible efficiency, it seems, at first glance, a reasonably good idea to imple-
ment as many purely hadronic B and D meson decays as possible. As the D mesons
and especially the B mesons decay into a rich spectrum of final states, it seems to be
beneficial to include as many of these decay modes as possible into the reconstruction
algorithm. At the same time, one might think about not introducing any pre-cuts at all,
since it is only possible to loose efficiency by applying cuts. This approach was indeed
followed at first and very soon serious problems arose: Using every possible combina-
tion of tracks and electromagnetic clusters present in an event for the combination of
a B meson candidate corresponds to picking k items out of n in a specific order leading
to n!/(n− k)! possible candidates. This means for the exemplary typical tag-side decay

B+→ D̄0π+π+π− (5.9)

D0→ K−π+ (5.10)

five tracks have to be picked from a typical event track multiplicity of ten. This leads
to

10!
5!

= 30240 (5.11)

possible combinations in this channel alone, where at most one can be true. The above
argument runs a bit short, as the tracks are already divided up by their charge and even
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very wide mass windows for D and B mesons don’t allow for completely non-sensible
combinations etc. . . . It becomes nonetheless clear, that combinatorics pose a very se-
rious problem. Apart from all technical problems, this is important above all for the
signal to background ratio of the tag side sample, as it would introduce an enormous
amount of background. Furthermore, we cannot neglect the technical difficulties this
approach would bring with it. The necessary computing time to perform the recon-
struction of the decay chains and the necessary storage capacity to save the results are
not available. Even higher requirements would be expected for the classification of
this enormous tag side sample. It is therefore crucial for the success of the Full Re-
construction tool to find tag side channels, that cover a fair amount of the B and D
meson branching ratio and pose still manageable combinatorial problems. At the same
time, efficient pre-cuts are absolutely necessary to simultaneously avoid giving away
too much of the tag-side signal on which many analyses directly depend, while reduc-
ing the background to manageable levels.

5.2.1. Channels

With inspiration taken from the predecessor of this Full Reconstruction [44, 45] and
the Particle Data Group [2], B and D meson channels were chosen for the Full Recon-
struction that cover a fair portion of the respective total branching ratios. Despite their
relatively low branching ratio, J/Ψ mesons were included, as they provide a very clean
signal. Additionally, experience with runtime and trial and error played a significant
role in the selection of decay channels. The B meson decay channels are listed in ta-
ble 5.1, the D meson decay channels are listed in table 5.2, the excited D∗ meson decay

channels are listed in table 5.3 and the D(∗)
S and J/Ψ meson decay channels are listed in

table 5.4, all of them with their respective branching ratios.

5.2.2. Hierarchical System

Tables 5.1 through 5.4 give a clean overview of the decay channels used for the Full
Reconstruction. One has, however, to keep in mind that one single line in table 5.1
does not only correspond to one exclusive decay channel, but rather to a large number.
This comes from the fact that D mesons also decay in numerous different channels. For
example the line

B+→ D̄0π+
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Channel BR Channel BR

B+ → D̄0π+ 0.484% B0 → D−π+ 0.268%

B+ → D̄0π+π0 1.340% B0 → D−π+π0 0.760%

B+ → D̄0π+π+π− 1.100% B0 → D−π+π+π− 0.800%

B+ → D+
S D̄

0 1.000% B0 → D̄0π0 0.026%

B+ → D̄0∗π+ 0.519% B0 → D+
SD
− 0.720%

B+ → D̄0∗π+π0 0.980% B0 → D∗−π+ 0.276%

B+ → D̄0∗π+π+π− 1.030% B0 → D∗−π+π0 1.500%

B+ → D̄0∗π+π+π−π0 1.800% B0 → D∗−π+π+π− 0.700%

B+ → D+∗
S D̄

0 0.760% B0 → D∗−π+π+π−π0 1.760%

B+ → D+
S D̄

0∗ 0.820% B0 → D+∗
S D

− 0.740%

B+ → D+∗
S D̄

0∗ 1.710% B0 → D+
SD
∗− 0.800%

B+ → D̄0K+ 0.037% B0 → D+∗
S D

∗− 1.770%

B+ → D−π+π+ 0.107% B0 → J/ψK0
S 0.087%

B+ → J/ψK+ 0.101% B0 → J/ψK+π− 0.120%

B+ → J/ψK+π+π− 0.107% B0 → J/ψK0
Sπ

+π− 0.100%

B+ → J/ψK+π0 0.047%

B+ → J/ψK0
Sπ

+ 0.094%

Sum 12.0% Sum 10.4%

Table 5.1.: B meson decay modes used in the Full Reconstruction
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Channel BR Channel BR

D0 → K−π+ 3.89% D+ → K−π+π+ 9.40%

D0 → K−π+π+π− 8.09% D+ → K0
Sπ

+ 1.49%

D0 → K−π+π0 6.90% D+ → K0
Sπ

+π0 6.90%

D0 → π+π− 0.14% D+ → K−π+π+π0 6.08%

D0 → π+π−π0 1.44% D+ → K0
Sπ

+π+π− 3.10%

D0 → K0
Sπ

0 1.22% D+ → K+K−π+ 0.98%

D0 → K0
Sπ

+π− 2.94% D+ → K+K−π+π0 1.50%

D0 → K0
Sπ

+π−π0 5.40%

D0 → K+K− 0.39%

D0 → K+K−K0
S 0.47%

Sum 37.9% Sum 29.4%

Table 5.2.: D meson decay modes used in the Full Reconstruction

Channel BR Channel BR

D0∗ → D0π0 61.9% D+∗ → D0π+ 67.70%

D0∗ → D0γ 38.10% D+∗ → D+π0 30.70%

Sum 100.0% Sum 98.4%

Table 5.3.: D∗ meson decay modes used in the Full Reconstruction

Channel BR Channel BR

D+
S → K+K0

S 1.49% D+∗
S → D+

Sγ 94.20%

D+
S → K+π+π− 0.69%

D+
S → K+K−π+ 5.50%

D+
S → K+K−π+π0 5.60%

D+
S → K+K0

Sπ
+π− 0.96%

D+
S → K−K0

Sπ
+π+ 1.64%

D+
S → K+K−π+π+π− 0.88% J/ψ → e−e+ 5.94%

D+
S → π+π+π− 1.10% J/ψ → µ−µ+ 5.93%

Sum 17.9% Sum 11.9%

Table 5.4.: D(∗)
S and J/Ψ meson decay modes used in the Full Reconstruction
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corresponds to 10 exclusive decay modes:

B+→ D̄0π+ with D0→ K−π+

B+→ D̄0π+ with D0→ K−π+π+π−

B+→ D̄0π+ with D0→ K−π+π0

B+→ D̄0π+ with D0→ π+π−

B+→ D̄0π+ with D0→ π+π−π0

B+→ D̄0π+ with D0→ K0
Sπ

0

B+→ D̄0π+ with D0→ K0
Sπ

+π−

B+→ D̄0π+ with D0→ K0
Sπ

+π−π0

B+→ D̄0π+ with D0→ K+K−

B+→ D̄0π+ with D0→ K+K−K0
S

When we look at table 5.1 again with this in mind, it can be calculated that the Full Re-
construction comprises the reconstruction of 1104 different exclusive decay channels.
In terms of coding and code maintenance, it would be a futile task to implement all
those decay channels one by one. This is why a hierarchical reconstruction framework
was developed. It enables us to follow the naturally given approach to reconstruct a
collection of unstable particles, say D0 mesons, and then use the entire collection for
further reconstruction. A visualisation of this framework can be found in figure 5.3.

Figure 5.3.: The hierarchical reconstruction framework developed for the Full
Reconstruction
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Four Stages

The hierarchical system, pictured in figure 5.3 comprises four stages: In the first stage,
tracks measured by the Belle-Detector are divided into e+, µ+, K+ and π+ and electro-
magnetic clusters are skimmed for good photons γ . Then, K0

S and π0 mesons are recon-
structed using K+ and π+ and γ respectively. In the next stage, D and J/Ψ mesons are
reconstructed using the particles from the stage before according to the decay channels
listed in tables 5.2 and 5.4. After that, excited D mesons are reconstructed using all
available D mesons and all of the remaining π+, π0 and γ particles, according to ta-
bles 5.3 and 5.4. In the last stage, all available excited D mesons, all D and J/Ψ mesons
and all remaining e+, µ+, K+, π+, K0

S and π0 are combined into the final B mesons, of
course according to table 5.1.

The hierarchical approach has us thus allowed to implement the reconstruction of B
mesons in a very convenient and natural manner, minimizing the potential for human
error. But this was not only advantageous, as described in section 5.2.3.

5.2.3. Intermediate Cuts

When we try to maximise the efficiency of the Full Reconstruction as much as possible,
we have to question the need for cuts during the reconstruction process. It is a trivial
fact, that one can only loose signal by applying even the softest cut. It became, however,
evident very quickly that it is unavoidable to include several cuts in the reconstruction
framework. Otherwise, there would be no chance to obtain a tag-side sample with a
reasonable fraction of correctly reconstructed tags and it would take minutes to pro-
cess one single event, instead of a feasible time in the order of 10−2s.

As mentioned above, it is of paramount importance to have the most efficient recon-
struction possible, while not loosing the signal fading in enormous amounts of back-
ground. At the same time we must take care not to be overwhelmed by excessive need
for computing time and storage capacity. The relatively large number of decay chan-
nels for B and D mesons listed in tables 5.1 to 5.4 made the need for one single solution
for this problem that worked for all decay channels equally well clear. Tweaking differ-
ent selection criteria for all of the decay modes one-by-one seemed not only a lengthy
task, prone to human error. It would also be a procedure that would lack well-defined
criteria for the selection purity and efficiency. Let us clarify this with an example: Our
goal is to achieve the maximum amount of signal, while keeping background levels
and computing requirements manageable. Considering that, how can one compare the
quality of a candidate in the two decay channels

B+→ D̄0π+ and

B+→ D̄0π+π+π− ?
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Let us furthermore consider only two decay modes of the D meson:

D0→ K−π+ and

D0→ K0
Sπ

+π−π0 .

Considering the relatively clean1 decay channel D0 → K−π+, we might consider quite
loose cuts. This approach appears especially compelling when combining the resulting
D meson with the clean B decay mode B+→ D̄0π+. If we, on the other hand, combine
the D meson with the much less clean B decay channel B+→ D̄0π+π+π− stronger cuts
are much more appropriate. So for clean B decay modes, we would select loose D me-
son cuts; for less clean B decay modes, we would select stronger D meson cuts. A large
list of cuts for the D0→ K−π+ decay channel would be necessary. And a very different,
but equally large list for the D0→ K0

Sπ
+π−π0 would have to be determined.

Implementing different cuts for a D meson, depending on the B decay mode that will
eventually be used, seems to be the solution for this issue. This would be a truly
sisyphean undertaking. The 1104 exclusive decay channels mentioned earlier to il-
lustrate the benefit of the hierarchical system would in this case have to be treated
really individually, thus making the hierarchical system superfluous. At first glance, it
seems impossible to combine the need for individually adjusted selection criteria with
the simple and clear, hierarchical system, where all particles of the same type are to be
treated equally. Abandoning the hierarchical system was not an option, considering the
huge amount of cut determination and coding, that would be required for the exclusive
reconstruction, not to mention the still missing well-defined criteria for efficiency and
purity and the large amount of human errors, that would come with this approach.

5.2.4. Probabilities

The above described predicament was solved by calculating the signal probability for
each decay channel. This probability has the benefit to be comparable between different
decay channels of the same particle, say

D0→ K−π+ and

D0→ K0
Sπ

+π−π0 .

This comparability is based on the signal probability of the candidates and is therefore
independent of the cleanliness of the channel. Thus, we can now use D mesons of dif-
ferent decay channels for the reconstruction of B mesons and do not need to explicitly
distinguish the decay modes of the D mesons. The task of calculating the probability
was performed by the multivariate analysis framework NeuroBayes.

While we limited ourselves in the given example to the reconstruction of B andD decay
modes, the very same procedure was applied for all stages. The final stage particles in

1A decay channel is typically considered “clean” when it has a relatively large signal component and low
background levels.
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the first stage are assigned a signal probability, as well as all unstable particles in the
higher stages.

NeuroBayes trainings were performed for all particles of stage 1. Typical variables used
in these trainings include information coming from the various sub-detectors and also
their combination into the standard Belle Particle ID [46, 47, 48], energy, total momen-
tum and shower shape parameters, where applicable. Complete lists and brief descrip-
tions of the variables can be found in tables A.1 to A.7 in appendix A.5. The output
of these trainings was then recalculated to represent the actual signal probability as
described in section 3.4. This recalculation was performed to enable a fair comparison
between the decay channels on the same stage.

The variables used in the trainings of the higher stages (D(∗)
(S), J/Ψ and B mesons) were

quite similar for all channels. This is due to the fact that they all are unstable particles
and the quality of the decay products and the kinametics of the decay are the two main
pieces of information in such cases. The variable with the largest discrimination power
was almost always oprod, described in more detail in section 5.2.5. Typically, vertex fit
information provided useful information as well. A complete list of all variables can
be found in table A.8 in appendix A.5.

5.2.5. The Product Of Children Probabilities

Let us stay with the exemplary B meson decays a bit further. While we have now the
signal probability of each of the children at our disposal, the question remains how to
determine ideal cuts on these different probabilities. A first step is the combination of
all the signal probabilities of all children in a product:

oprod =
N∏
i=0

(oi) , (5.12)

where N is the number of children and oi is the NeuroBayes output of child i. For each
B decay mode, oprod is a very powerful variable on which an individual cut, depending
on the B decay mode can be performed. This means that we perform a cut on all D
meson decays simultaneously and at a later time when further information (vertex fits,
decay mode of the B meson, additional final state particles) is available.
The variable oprod is one of the central elements of this Full Reconstruction algorithm.
It allows for very efficient intermediate cuts at all stages of the hierarchical system.
This was an essential requirement for an efficient Full Reconstruction.

5.2.6. Cut Determination

Still unanswered is the question, how the exact values of the cuts on oprod were deter-
mined. For simplicity, let us consider the D0 mesons alone for the moment. We only
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considered D0 mesons that decay into final state particles in our choices of decay chan-
nels. For each of these final state particles, we know the signal probability from the
corresponding NeuroBayes training. We are therefore able to construct oprod. The goal
of our selection process is to select as much signal Nsig as possible summed over all D0

decay modes for a given total number of accepted events Nall =Nsig +Nbg. In mathemat-
ical terms, we wish to maximise the following expression for a given total number of
accepted events Nall: ∑

f (Nsig,f )∑
f (Nsig,f +Nbg,f )

, (5.13)

where f denotes the final state in which the D0 meson decays. There is no obvious cri-
terion for the number of accepted events Nall, apart from the needed processing time
and storage space. But let us first discuss the optimisation strategy.

The following strategy for the above mentioned optimisation was chosen: On generic
Monte Carlo simulation, several possible cut values over the whole range of oprod were
tested for all D0 meson channels individually. Each cut yielded a certain number of
signal and background events. All of those pairs of numbers were plotted as points
on a plane. This resulted in the curves shown in figure 5.4. The slope of the tan-

Figure 5.4.: Signal and background for different cuts on oprod for all D0 decay channels
in the Full Reconstruction

gent at a fixed point of one of the curves gives the number of additional background
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candidates that will be accepted for one additional signal candidate. Very clean chan-
nels (e.g. D0 → K−π+) have a relatively flat slope over their whole range. Other less
clean channels (e.g. D0 → K0

SK
+K−) have much steeper slopes for low cut values of

oprod. Choosing the same slope for all channels gives us cut values that accept the same
amount of background events for one additional signal event. This statement is true
for all D0 modes that are considered in this Full Reconstruction. The cuts are therefore
optimised with respect to the efficiency and purity integrated over all D0 decay chan-
nels. Increasing or decreasing one single cut value would lead to a non-optimal signal
to background ratio with respect to the overall number of accepted events Nall.

Let us now return to the still missing criterion for the number of accepted events Nall.
This factor is proportionally linked to the numerical value of the chosen slope in the
above described optimisation.The steeper the slope is, the more candidates per event
are accepted and the more computing time is needed to process the Belle data set and
several Monte Carlo sets. The flatter the slope is, the less computing time is needed.
Ultimately, experience with the CPU requirements of previous full reconstruction at-
tempts guided the decision. An average processing time of less than 0.1s per event was
chosen and the obtained numerical values of the slope can be found in table 5.5.
The above described procedure was not only performed for D0 mesons, but for all D(S)

Particle NCPE Slope

D+ 6.88 7087

D0 8.62 5404

D+
S 4.17 22443

D∗+ 1.62 8223

D∗0 5.24 8223

D∗+S 1.88 8223

B+ 0.93 31934

B0 0.52 31729

Table 5.5.: Slopes and numbers of candidates per event NCPE that were chosen in the
Signal-Background curves method for intermediate cuts

mesons in the Full Reconstruction. It was also used for the intermediate cuts in the
reconstruction of D∗(S) and finally B mesons.
Let us remind ourselves that the cuts were performed on NeuroBayes trainings. Fur-
thermore, the product of the NeuroBayes outputs of the children oprod were used in
these trainings. This way, information on the tracks and electromagnetic clusters found
its way into the NeuroBayes trainings for D∗(S) and B mesons, along with vertex fit in-
formation for the D mesons etc. In terms of the hierarchical system, described in sec-
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tion 5.2.2, both the reconstruction and the flow of information is organised in a hierar-
chical manner. This hierarchical flow of information is one of the very strong features
of the Full Reconstruction framework.

The chosen values for all slopes can be found in table 5.5 and the signal-background
curves can be found in figures A.15 to A.20 in appendix A.4.

5.3. The Btag Collection

After the reconstruction of the four stages, we have obtained the desired collection of
Btagmesons. Although there is no following reconstruction step that would require any
quality criterion, NeuroBayes trainings were performed for these B mesons as well.
This has proven very beneficial, as the purity and efficiency of this final sample can
now be chosen freely. This gives different types of analyses with different needs the
ability to utilise the Full Reconstruction with optimal purity and efficiency. These final
trainings are described in more detail in the following.

5.3.1. Continuum Suppression

A large background contribution in the Btagsample provided by the Full Reconstruc-
tion stems from events, where no Υ (4S) resonance has been produced. This class of
events is called continuum. For many analyses, it is beneficial to suppress this type
of background. There are many variables that can help to suppress this sort of back-
ground. However, many of these variables rely on analysis of the spatial event shape
in the detector, which generally tends to be more jet-like for continuum events. For
certain analyses, the usage of such variables might introduce difficulties. Therefore, a
dedicated Btagnetwork training was performed with all continuum suppression vari-
ables left out.

For certain analyses, the usage of continuum suppression is less problematic. There-
fore, additional trainings were performed that included continuum suppression vari-
ables.

Fox-Wolfram Moments

Most variables that were used in the NeuroBayes trainings to suppress the continuum
background were the Fox-Wolfram moments [49, 50] Hl defined as:

Hl =
∑
i

∑
j

|pi | · |pj | · Pl cosθij , (5.14)

where i and j are final state particles in an event, pi and pj their momenta, θij is the
angle between their momenta and Pl is the Legendre polynomial of lth order.
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The First Continuum Suppression

The first continuum suppression network training contains the second reduced Fox-
Wolfram moment

R2 ≡
H2

H0
(5.15)

as well as the thrust angle cosθthrust. For the definition of the thrust angle, all final
state particles that belong to the Btagcandidate in question were combined into one set.
The thrust axis ~ntag of this set is defined by maximising∑

i ~n · ~pi∑
i |~pi |

. (5.16)

In a second step, all particles in the event that do not belong to the Btagcandidate are
combined into a second set and a second thrust axis ~nrest is determined. The angle
between the two thrust axes is the thrust angle:

cosθthrust = cos^(~ntag, ~nrest) (5.17)

The Second Continuum Suppression

Additionally to the first continuum suppression network, as second network was trained,
which included more variables than the first network. Mainly, the Super-Fox-Wolfram
moments [51] were used. They provide more information than the Fox-Wolfram mo-
ments by exploiting the distinction between tag side and signal side. The summation of
all final state particles, as given in equation 5.14 is split into the particles that were used
in the reconstruction of the Btagcandidate, those that were not used, and mixed terms.
This splitting yields 18 different terms, all of which were used in the second continuum
suppression network. As this approach brings information about the signal side into
the continuum suppression, it can lead to difficulties for certain analyses. This was
the reason to provide three methods of evaluating the Btagquality: Without continuum
suppression, including only event shape variables and including Super-Fox-Wolfram
moments. The user is then free to choose, which of the three NeuroBayes experts to use
for the selection of purity and efficiency.

5.3.2. Purity And Efficiency

As explained in chapter 3.2.1, a good and intuitive way to compare different classifi-
cation methods are purity-efficiency plots. They give a complete overview of the dis-
crimination power of a classification algorithm and also allow thorough comparisons
between two different algorithms. The basis of comparison for the Full Reconstruc-
tion algorithm presented in this chapter is the Full Reconstruction algorithm that was
in usage by the Belle collaboration for many years. This predecessor of the new Full
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Reconstruction used a cut-based algorithm and presented a fixed point in the purity-
efficiency plane as a result. It is described in more detail in references [44, 45].

For the purity-efficiency comparison, Btagsignal yields have to be extracted from the
data. They were extracted by fits to the beam-constrained mass Mbc, defined as

Mbc ≡
√
E2

beam −
∑
FS

p2
FS , (5.18)

where Ebeam is the measured beam energy and FS runs over the final state particles
used in the Btagreconstruction. Multiple fits to this variable were performed for dif-
ferent cut values of oNB. It should be stressed that the following comparisons were all
done on real data. Three exemplary plots that allow a quick comparison to the prede-
cessor are shown in figures 5.5, 5.6 and 5.7. From these plots alone, it is evident that

Figure 5.5.: Mbcfor the B0
tag sample provided by the Full Reconstruction and its prede-

cessor. The cut on oNBwas chosen to achieve the same signal efficiency for
both samples.

. . .

• For the same signal efficiency, the purity of the current Full Reconstruction algo-
rithm is substantially higher than that of the predecessor (figure 5.5).

• For the same background level, the signal fraction is much higher than for the
predecessor (figure 5.6).

• For the same purity, the signal yield is approximately by a factor 2 larger than for
the predecessor (figure 5.7).
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Figure 5.6.: Mbcfor the B+
tag sample provided by the Full Reconstruction and its prede-

cessor. The cut on oNBwas chosen to achieve the same background level for
both samples.

The three described plots are taken at random points on the purity efficiency curve,
and were chosen only for an illustrative comparison to the predecessor.

The purities and efficiencies for many different cuts were extracted from similar fits and
composed into purity-efficiency plots, which give a more complete picture. Figures 5.8
and 5.9 show the performance of all three Btagclassification methods of the new Full
Reconstruction and the purity-efficiency working point of the predecessor. It can be
easily seen from these figures, that the new algorithm supersedes its predecessor both
in purity and efficiency simultaneously. If a purity similar to the predecessor is cho-
sen, the new Full Reconstruction delivers roughly double the efficiency. If, on the other
hand, a similar efficiency to the predecessor is chosen, the purity of the sample rises
from below 25% to over 80%. The point for maximum reconstruction efficiency yields
an overall efficiency of 0.18% for B0 mesons and 0.28% for B+ mesons. These efficien-
cies correspond to 1.4 and 2.1 million correctly reconstructed Btagmesons, respectively,
given the complete Belle data-set of 771× 106 BB̄ events.
It can also be seen, that the network outputs including continuum suppression vari-
ables deliver better performance than the one without. Our expectation that the more
information is used in the classification, the better the result will be, was confirmed.

5.3.3. Reduced Channel Set

When faced with the comparison between the current Full Reconstruction and its pre-
decessor, the question arises how much of the improvement is due to the new decay
channels and how much due to the improved algorithm. This question cannot be
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Figure 5.7.: Mbcfor the B+
tag sample provided by the Full Reconstruction and its pre-

decessor. The cut on oNBwas chosen to achieve the same purity for both
samples.

clearly answered, as the two aspects are connected: Without the improved algorithm,
the addition of new channels would not have been possible. Nonetheless, this issue was
investigated. For testing purposes, the Full Reconstruction described in this thesis was
stripped of all newly added channels. The sample that resulted from this channel re-
duction was then analysed and compared to a sample of the predecessor. Both samples
were obtained from the very same data set. The signal and background yields were ob-
tained from fits to Mbc. The fit results are shown in figure 5.10. Table 5.6 summarises
the results. It is evident, that a large fraction of the improvement was indeed achieved
by the application of the more sophisticated algorithm. When performing this com-

Sample Predecessor [103] Current [103] Factor

B0 signal 48.4 71.6 1.48

B0 background 135 135 1.00

B+ signal 64.2 102 1.59

B+ background 177 176 1.01

Table 5.6.: Extracted yields from the reduced channel fits. The cut on oNBwas chosen in
such a way that equal background levels could be achieved.

parison on a channel-by-channel basis, it became evident that the largest improvement
could be achieved in channels with two or more light mesons in the final state, where
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Figure 5.8.: The purity-efficiency curves for the B0
tag sample provided by the Full

Reconstruction.

this new Full Reconstruction algorithm imposes much weaker phase space-limits.

5.4. Summary

The Full Reconstruction algorithm is an essential analysis tool for a great number of
analyses. It provides a tag side and is therefore also known as the hadronic tag. Us-
ing a hierarchical reconstruction algorithm combined with the advanced data analysis
toolkit NeuroBayes allowed for a hierarchical flow of information. Thus, the signal
probability for each candidate on each stage could be calculated and used as a very
powerful discrimination variable. The postponing of the cut decision to later stages led
to a very efficient selection. With a maximum reconstruction efficiency of 0.18% for B0

mesons and 0.28% for B+ mesons, this improved algorithm, combined with the addi-
tion of more decay channels, yielded an efficiency improvement over its predecessor of
roughly a factor 2. This means, in effect, a doubling to the available data-set for many
analyses overnight after 10 years of data-taking at the Belle detector.
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tag predecessor
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(c) B+
tag current
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Figure 5.10.: A comparison of the Btagsignal yields of the current Full Reconstruc-
tion and its predecessor. Only the decay channels that were present in
both algorithms are included. The cut on oNBwas chosen in such a way
that equal background levels could be achieved.
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6. Signal Side

The goal of the presented analysis is to measure the ratios R0, R+, R∗0 and R∗+, which
are defined as

R0 =
B(B0→D−τ+ντ )
B(B0→D−`+ν`)

(6.1)

R+ =
B(B+→D

0
τ+ντ )

B(B+→D
0
`+ν`)

(6.2)

R∗0 =
B(B0→D∗−τ+ντ )
B(B0→D∗−`+ν`)

(6.3)

R∗+ =
B(B+→D

∗0
τ+ντ )

B(B+→D
∗0
`+ν`)

, (6.4)

where ` = e,µ. Note that isospin symmetry suggests that R0 = R+ and R∗0 = R∗+. The
measurement of these ratios rather than branching fractions has the advantage that
several systematic effects cancel. We call B→ D(∗)τντ signal decays the signal modes
and the B→ D(∗)`ν` decays the normalisation modes. The decays of the τ mesons that
are considered are those into lighter leptons `. These decay channels cover a relatively
large branching fraction and are also experimentally comparably well accessible. This
means that by reconstructing B→ D(∗)`ν` decays, we implicitly also reconstruct B→
D(∗)τντ decays. It is therefore crucial for this analysis to distinguish not only the τ and
` signal channels from various backgrounds but also from each other. This introduces
a fundamental problem, however: When we reconstruct the τ lepton from its decays
into lighter leptons, the decay B→ D(∗)`ν` is reconstructed from the same final state
particles as the decay B→D(∗)τντ , as shown in equations 6.5 and 6.6.

B→Dτ(→ `νν)ν (6.5)

B→D`ν (6.6)

The only difference between the two decay channels is the number of neutrinos in the
decay. These can, however, not be reconstructed with current particle detectors with
even remotely sufficient efficiency. It is therefore necessary to measure the momentum
of the neutrino system in an indirect manner. As already explained in great detail in
chapter 5, the Full Reconstruction enables us to do exactly that.
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6.1. Previous Measurements

Before we proceed with the decsription of the analysis, let us review the previous mea-
surements done by the Belle and BaBar collaborations. Let us fist focus on the Belle
measurements. There have been numerous efforts to measure the branching fractions
B(B→ D(∗)τντ ) and the ratios R and R∗. They fall into two categories, distinguished by
the different tagging methods.

6.1.1. Tagging Methods

The hadronic tagging, also known as the Full Reconstruction, endeavours to recon-
struct as many purely hadronic b→ c decays as possible. The efficiency of this recon-
struction procedure is typically ∼ (0.1− 0.2)%. Only after the hadronic tag is available,
the signal side is reconstructed. This is also the tagging method that is used for the
analysis presented in this thesis.

The inclusive tagging method follows a different approach. The visible final state par-
ticles of the signal side are reconstructed and combined first. All remaining final state
particles in the event are then combined to form a tag side. This approach typically
yields larger efficiency than the hadronic tagging, but also brings higher background
levels with it.

6.1.2. First Measurement With Inclusive Tagging

The first measurement of the channel at the Belle collaboration [52] was performed in
2007 on a data set corresponding to 535×106B̄B pairs. The only decay channel that was
reconstructed was B0 → D∗−τ+ντ . The τ leptons were reconstructed in the channels
τ+ → e+νeν̄τ and τ+ → π+ν̄τ . The reconstruction of the D∗ mesons was done in the
channel D∗− → D̄0π− and the D meson decay channel was D0 → K−π+. Additionally,
the channel D0 → K−π+π0 was used in the electron mode. The signal extraction was
performed by a fit to the Mbcdistribution of the inclusive Btag. Figure 6.1 shows the
signal extraction fit and the results are summarised in table 6.1. Taking the system-
atic uncertainty of 18.5% into account, this measurement yields a signal significance
of 5.2σ . Thus, this measurement constitutes the first observation of an exclusive semi-
tauonic B decay.

6.1.3. Charged B Measurement With Inclusive Tagging

With a larger data set of 657 × 106B̄B pairs, another analysis using the inclusive tag-
ging method was performed in 2010 by the Belle collaboration [53]. The B mesons
were reconstructed in the channels B+ → D̄0τ+ντ and B+ → D̄∗0τ+ντ . The D∗ mesons
were reconstructed in the decay D∗0 → D0π0 with the D meson channels D0 → K−π+

and D0 → K−π+π0. The τ mesons were reconstructed in leptonic and hadronic de-
cays: τ+ → e+νeν̄τ , τ+ → µ+νµν̄τ and τ+ → π+ν̄τ . The signal was extracted by a 2-
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Figure 6.1.: Summary of the results of the first measurement with inclusive tag-
ging [52].

dimensional fit to the Mbcdistribution of the Btagand the momentum of the signal side
D meson in the Υ (4S) frame. Figure 6.2 shows the signal extraction fit and the results
are summarised in table 6.1. This measurement had systematic uncertainties of 13.9%
in the B+ → D̄∗0τ+ντ channel and 15.2% in the B+ → D̄0τ+ντ channel. Taking these
uncertainties into account, this measurement yields a signal significance of 8.1σ for the
D∗ channel and 3.5σ for the D channel. Thus, it constitutes the first evidence for the
decay B+→ D̄0τ+ντ .

6.1.4. All Decay Channels With Hadronic Tagging

The only Belle measurement of B→ D(∗)τντ using hadronic tagging was done in 2009
on the dataset of 657 × 106B̄B pairs [54]. The B meson decay channels were B0 →
D−τ+ντ , B0 → D∗−τ+ντ , B+ → D

0
τ+ντ and B+ → D

∗0
τ+ντ . The D∗ mesons were re-

constructed in the decay channelsD∗0→ (D0π0), (D0γ) andD∗+→ (D+π0), (D0π+). The
usedD meson decay channels wereD0→ (K−π+), (K−π+π0), (K−π+π+π−), (K−π+π+π−π0),
(K0
Sπ

0), (K0
Sπ

+π−) and (K0
Sπ

+π−π0) as well asD−→ (K+π−π−), (K+π−π−π0) and (K0
Sπ
−).

The τ leptons were reconstructed only leptonically: τ+ → e+νeν̄τ and τ+ → µ+νµν̄τ .
For the first time, a normalisation sample was reconstructed in a Belle analysis as
well. It consisted of the decays B0 → D−`+ν`, B0 → D∗−`+ν`, B+ → D

0
`+ν` and

B0 → D∗−`+ν`. These were used for the calculation of R and R∗. The signal was ex-
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Figure 6.2.: Signal extraction fit of the charged B measurement with inclusive tag-
ging [53].

tracted by 2-dimensional fits to M2
missand EECL

extradefined as

M2
miss =

[
p(Beam)−

(
p(Btag) + p(D(∗)) + p(`)

)]2
and (6.7)

EECL
extra =

∑
ECalor. −

(∑
Etag +

∑
Esignal

)
(6.8)

Projections of the fits can be found in figure 6.3, the results are also summarised in
table 6.1.

6.1.5. BaBar Measurements

The BaBar collaboration has made similar efforts as the Belle collaboration to measure
the branching fractions B(B→ D(∗)τντ ) and the ratios R and R∗. In 2007 a first mea-
surement was performed [55], using a data sample of approximately 232×106 BB̄ pairs.
The extracted values for R(∗) are

R = 0.416± 0.117± 0.052 and (6.9)

R∗ = 0.297± 0.056± 0.018 . (6.10)

The analysis was updated in 2012 [56] with and increased data sample of approxi-
mately 471×106 BB̄ pairs and and improved tagging method. The extracted values for
R(∗) are

R = 0.440± 0.058± 0.042 and (6.11)

R∗ = 0.332± 0.024± 0.018 . (6.12)
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Figure 6.3.: Projections of the signal extraction fits [54].

Combined, these two values deviate from the Standard Model by 3.4σ and exclude the
type II 2 Higgs Doublet Model with a 99.8% confidence level.

6.1.6. Conclusion

Since 2007, there have been numerous measurements by the Belle collaboration focus-
ing on B → D(∗)τντ . Both hadronic and inclusive tagging methods have been used
successfully. Table 6.1 summarises the results. Recent measurements by the BaBar
collaboration indicate a deviation from the Standard Model and rule out the type II 2
Higgs Doublet Model at the same time. The analysis in this thesis endeavours to test
the observed tension.
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Tagging Measurement Result

Inclusive B(B0→D∗−τ+ντ ) (2.02+0.40
−0.37 ± 0.37)%

Inclusive B(B+→D
0
τ+ντ ) (0.77± 0.22± 0.12)%

Inclusive B(B+→D
∗0
τ+ντ ) (2.12+0.28

−0.27 ± 0.29)%

Hadronic R(D0) , R(D+) 0.70+0.19+0.11
−0.18−0.9 , 0.48+0.22+0.06

−0.19−0.05

Hadronic R(D∗0) , R(D∗+) 0.47+0.11+0.06
−0.10−0.07, 0.48+0.14+0.06

−0.12−0.04

Hadronic B(B+→D
0
τ+ντ ) (1.51+0.41+0.24

−0.39−0.19 ± 0.15)%

Hadronic B(B+→D
∗0
τ+ντ ) (3.04+0.69+0.40

−0.66−0.47 ± 0.22)%

Hadronic B(B0→D−τ+ντ ) (1.01+0.46+0.13
−0.41−0.11 ± 0.10)%

Hadronic B(B0→D∗−τ+ντ ) (2.56+0.75+0.31
−0.66−0.22 ± 0.10)%

Table 6.1.: Summary of previous Belle measurements [52, 53, 54].
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6.2. Simulated And Real Data

In many collaborations in particle physics, it is good practice to develop an analysis
not on the real data that was measured by the detector. Instead, a sample of simulated
data, usually called “Monte Carlo” is used. For the Belle collaboration, the accurate
simulation of the decays of the BB̄ meson pairs from the Υ (4S) resonance is of great
importance. Another important point is the correct estimation of the various back-
ground processes that are present on real data. Therefore, e+e− → (cc̄), (ss̄), (uū), (dd̄)
transitions are also simulated. The set of simulated data containing all those processes
is called “generic Monte Carlo”.

A rather large computational effort is required to generate simulated data that reflects
the real data in a satisfactory manner. The first step is to simulate the mere physi-
cal processes. Correct simulation of masses, widths, lifetimes, branching ratios and
angular distributions are amongst the most important requirements. This simulation
is performed by two different packages: The EvtGen package [57] and the PYTHIA
software [58] are used for the simulation of the decays of the B mesons coming from
Υ (4S) → BB̄ and of the e+e− annihilation and production of lighter quark-antiquark
pairs (u,d,s, c)

The second step in the production of Monte Carlo data is to simulate the detector re-
sponse to each simulated physics event. This requires a detailed description of the ge-
ometry and the materials of the detector. This description is then used by the GEANT
software [59], which simulates the detector response.

For the development of certain analyses it is desirable to have as much simulated data
as possible. But the production of Monte Carlo data is time consuming, the simulation
of the detector response especially so.

The equivalent of the amount of real data that was recorded by the Belle detector is
called one stream. 6 streams of generic Monte Carlo were produced. Additionally, 4
streams were produced that contained only BB̄ events. While they do not represent
real data with the same accuracy as the complete generic Monte Carlo samples, they
are still useful for certain aspects of some analyses. Signal shapes or BB̄ background
can still be modeled using these samples.
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6.3. Signal Side Selection

For the measurement of R and R∗, we need to reconstruct the normalization modes B→
D(∗)`ν` as well as the signal modes B→D(∗)τντ . The signal side decays were selected in
the modes listed in table 6.2. The neutrinos can, of course, not be selected and are just
mentioned for completeness. As the τ leptons are reconstructed from their decays into
e and µ only, the reconstruction of the B→ Dτντ and B→ D∗τντ decay channels is
done implicitly. The decay channels of the D and D∗ mesons are listed in table 6.3.

B0→D−e+νe B+→D
0
e+νe

B0→D∗−e+νe B+→D
∗0
e+νe

B0→D−µ+νµ B+→D
0
µ+νµ

B0→D∗−µ+νµ B+→D
∗0
µ+νµ

Table 6.2.: B meson decay channels used for the signal side reconstruction.

D+→ K−π+π+ D0→ K−π+

D+→ K0
Sπ

+ D0→ K−π+π+π−

D+→ K0
Sπ

+π0 D0→ K−π+π0

D+→ K−π+π+π0 D0→ K0
Sπ

0

D+→ K0
Sπ

+π+π− D0→ K0
Sπ

+π−

D∗+→D0π+ D∗0→D0π0

D∗+→D+π0 D∗0→D0γ

Table 6.3.: D and D∗ meson decay channels used for the signal side reconstruction.

6.3.1. Pre-cuts

A small set of relatively soft pre-cuts was applied during the reconstruction in order to
keep the background levels manageable. These cuts are listed in table 6.4.

6.3.2. Choice Of Btag

In every event, the reconstruction of each D meson listed in table 6.3 was attempted.
All of the candidates were checked for overlaps with the Btag collection. Overlaps
would mean that a track or an electromagnetic cluster that was already used in the Btag
reconstruction was used again for the signal side reconstruction. If at least one Btag was
found, that had no overlap with the D meson candidate, the candidate was kept. It was
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Chapter 6. Signal Side 6.3. Signal Side Selection

Cuts

Allowed combinations: (B+
tagB

−
sig), (B−tagB

+
sig), (B0

tagB
0
sig), (B̄0

tagB
0
sig), (B0

tagB̄
0
sig) and (B̄0

tagB̄
0
sig)

Signal Side final state particles consistent with at least one tag side

Mbc,tag > 5.22 GeV/c2 (as dictated by Full Reconstruction)

−0.15 GeV < ∆Etag < 0.10 GeV (as dictated by Full Reconstruction)

e± ID > 0.4, µ± ID > 0.4, π± ID > 0.1 and K± ID > 0.1

goodKs== 1

dr < 2.0cm and dz < 4.0cm for charged tracks.

E(γ) > 50 MeV

E(γ from π0) > 50 MeV

110 MeV/c2 <M(π0) < 150 MeV/c2

|~p∗(D0/+)| < 3.0 GeV/c

M(D) within a 160 MeV/c2 window of the nominal mass except for the modes below

1.70 GeV/c2 <M(D) < 2.10 GeV/c2 for D+→ K0
Sπ

+π0 and D0→ K−π+π0

1.60 GeV/c2 <M(D) < 2.10 GeV/c2 for D0→ K0
Sπ

0

0.125 < ∆M(D∗,D) < 0.160 for D∗+→D0π+ and D∗+→D+π0

0.122 < ∆M(D∗,D) < 0.162 for D∗0→D0π0

0.109 < ∆M(D∗,D) < 0.175 for D∗0→D0γ

Not more than 1 remaining track with dr < 2.0cm and dz < 4.0cm

Table 6.4.: Reconstruction cuts

then combined with each e and µ candidate that passed the cuts in table 6.4 and was
not already used for any Btag or on the signal side. The resulting signal side candidates
were again checked for overlaps with Btag, as it can occur that the D meson is compat-
ible with a Btag with which the used ` candidate is not. While in principle, only one
final check for overlaps would be sufficient, it has proven a great advantage in program
execution speed to perform the check for overlaps also for D mesons and lepton tracks.
If there were multiple Btag candidates compatible with the signal side Bmeson, a choice
had to be made which Btag candidate should be used. The Btag candidate with the
largest number of charged tracks without overlap was chosen. In a true signal event
no additional charged tracks can occur, so this method of choosing is the most efficient
one. Choosing a Btag candidate with less charged tracks would lead to remaining tracks
in the event. Such a candidate would not pass the later selection critera, described in
section 6.4. If there should be two candidates with the same (largest possible) number
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of tracks, the one with the better oNBwas chosen.

6.4. Analysis Samples

After the reconstruction finished, the data set was cleaned up further with several soft
pre-cuts listed in tables 6.5 and 6.6. More finely grained cuts on the D meson mass
and the mass difference between the D∗ mesons and their D mesons were applied, the
exact cut values are listed in table 6.7. In order to obtain meaningful cuts on M(D) and
∆M(D∗D), fits to these distributions were performed for each D and D∗ meson decay
channel individually. The fit results can be found in table 6.8 and are the basis for
the cuts listed in table 6.7. Additionally, a cut on the momentum transfer squared q2,
defined as

q2 =
(
p(Btag)− p(D∗sig)

)2
(6.13)

was performed. The purpose of this cut is to reduce the otherwise overwhelming sig-
nal contribution of the B→ D`ν` and B→ D∗`ν` normalisation modes. The require-
ment for no remaining π0 particles applies to π0 candidates within the mass range
[0.1178,0.1502] GeV/c2 and with photon energies E(γ) > 50 MeV in the barrel region,
E(γ) > 100 MeV in the forward endcap or E(γ) > 150 MeV in the backward endcap.
The cuts on oNB,tag side were determined by requiring 90% efficiency of each individual
cut for the combined τ signal of the channels B→Dτντ and B→D∗τντ .
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Cuts

Allowed combinations: (B+
tagB

−
sig), (B−tagB

+
sig), (B0

tagB
0
sig), (B̄0

tagB
0
sig), (B0

tagB̄
0
sig) and (B̄0

tagB̄
0
sig)

Signal Side final state particles consistent with at least one tag side

Tag Side channel dependent oNB,tag side cut, see table 6.6

Mbc,tag > 5.27 GeV/c2

−0.15 GeV < ∆Etag < 0.10 GeV

e± ID > 0.6

µ± ID > 0.9

π± ID > 0.1

K± ID > 0.1

eID for π± and K± < 0.9

µID for π± and K± < 0.9

goodKs== 1

dr < 2.0cm and dz < 4.0cm for charged tracks.

E(γ) > 50 MeV

E(γ from π0) > 50 MeV

M(π0) ε (110 . . .150) MeV/c2

p∗(π0) > 200 MeV/c2 except for slow π0 from D∗

D mass cuts and D∗D mass difference cuts, see table 6.7

|~p∗(D0/+)| < 3.0 GeV/c

q2 > 4.0 GeV2/c4

No remaining tracks with dr < 2.0cm and dz < 4.0cm

No remaining π0 particles

Table 6.5.: Analysis cuts
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Channel Cut Channel Cut

B−→D∗0π− -3.72 B0→D∗+π− -2.40

B−→D∗0π−π0 -5.40 B0→D∗+π−π0 -5.28

B−→D∗0π−π−π+ -6.12 B0→D∗+π−π+π− -4.92

B−→D0π− -3.60 B0→D+π− -3.24

B−→D0π−π0 -5.04 B0→D+π−π0 -4.80

B−→D0π−π−π+ -6.12 B0→D+π−π+π− -6.24

B−→D∗0D∗−S -5.76 B0→D∗+D∗−S -6.12

B−→D∗0D−S -6.36 B0→D∗+D−S -4.68

B−→D0D∗−S -6.48 B0→D+D∗−S -4.80

B−→D0D−S -7.32 B0→D+D−S -6.24

B−→ J/ψK− -0.96 B0→ J/ψK0
s -0.48

B−→ J/ψK−π+π− -2.88 B0→ J/ψK−π+ -0.60

B−→D0K− -5.40 B0→ J/ψK0
s π

+π− -4.32

B−→D+π−π− -5.52 B0→D0π0 -5.40

B−→D∗0π−π−π+π0 -7.20 B0→D∗+π−π−π+π0 -6.24

B−→ J/ψK−π0 -5.76

B−→ J/ψK0
Sπ
− -1.56

Table 6.6.: Analysis cuts on log(oNB,tag side)
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Channel sample lower SB Signal region upper SB

[ GeV/c2]

D+→ K0
Sπ

+ MC [1.816,1.838] [1.848,1.892] [1.902,1.924]

D+→ K0
Sπ

+ Data [1.811,1.835] [1.845,1.894] [1.904,1.929]

D+→ K0
Sπ

+π0 MC [1.740,1.780] [1.830,1.910] [1.920,1.960]

D+→ K0
Sπ

+π0 Data [1.721,1.770] [1.820,1.919] [1.929,1.978]

D+→ K−π+π+ MC [1.821,1.841] [1.850,1.889] [1.899,1.918]

D+→ K−π+π+ Data [1.815,1.838] [1.847,1.892] [1.902,1.924]

D+→ K−π+π+π0 MC [1.801,1.830] [1.840,1.899] [1.909,1.938]

D+→ K−π+π+π0 Data [1.801,1.831] [1.841,1.899] [1.909,1.938]

D+→ K0
Sπ

+π+π− MC [1.823,1.841] [1.851,1.888] [1.898,1.917]

D+→ K0
Sπ

+π+π− Data [1.820,1.840] [1.850,1.890] [1.900,1.920]

D0→ K0
Sπ

0 MC [1.625,1.695] [1.795,1.935] [1.945,2.014]

D0→ K0
Sπ

0 Data [1.616,1.691] [1.791,1.939] [1.949,2.023]

D0→ K−π+ MC [1.814,1.834] [1.844,1.885] [1.895,1.916]

D0→ K−π+ Data [1.806,1.830] [1.840,1.889] [1.899,1.924]

D0→ K−π+π0 MC [1.711,1.758] [1.818,1.912] [1.922,1.969]

D0→ K−π+π0 Data [1.687,1.746] [1.806,1.924] [1.934,1.992]

D0→ K0
Sπ

+π− MC [1.812,1.833] [1.843,1.886] [1.896,1.918]

D0→ K0
Sπ

+π− Data [1.805,1.830] [1.840,1.890] [1.900,1.924]

D0→ K−π+π+π− MC [1.814,1.835] [1.845,1.885] [1.895,1.915]

D0→ K−π+π+π− Data [1.807,1.831] [1.841,1.889] [1.899,1.923]

D∗+→D+π0 MC - [0.139,0.143] [0.145,0.149]

D∗+→D+π0 Data - [0.138,0.143] [0.145,0.149]

D∗+→D0π+ MC - [0.143,0.148] [0.150,0.155]

D∗+→D0π+ Data - [0.142,0.148] [0.150,0.156]

D∗0→D0γ MC [0.114,0.127] [0.129,0.155] [0.157,0.170]

D∗0→D0γ Data [0.114,0.127] [0.129,0.155] [0.157,0.171]

D∗0→D0π0 MC - [0.140,0.144] [0.147,0.152]

D∗0→D0π0 Data - [0.140,0.145] [0.148,0.153]

Table 6.7.: Analysis cuts for D meson masses and D∗D mass differences. The cut width
correspond to 3 to 4 times the fitted widths, depending on the channel.
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width [ MeV/c2]

Channel MC Data ratio

M(D+→ K0
Sπ

+) 5.51 6.14 1.11

M(D+→ K0
Sπ

+π0) 10.01 12.30 1.23

M(D+→ K−π+π+) 4.78 5.53 1.16

M(D+→ K−π+π+π0) 7.36 7.27 0.99

M(D+→ K0
Sπ

+π+π−) 4.64 5.00 1.08

M(D0→ K0
Sπ

0) 17.45 18.58 1.06

M(D0→ K−π+) 5.12 6.14 1.20

M(D0→ K−π+π0) 15.62 19.58 1.20

M(D0→ K0
Sπ

+π−) 5.37 6.20 1.15

M(D0→ K−π+π+π−) 5.08 5.96 1.17

∆M (D, D∗+→D+π0) 2.05 2.21 1.08

∆M (D, D∗+→D0π+) 1.31 1.48 1.13

∆M (D, D∗0→D0γ) 13.09 13.27 1.01

∆M (D, D∗0→D0π0) 2.15 2.61 1.21

Table 6.8.: Results of the fits to D meson mass spectra and D∗D mass difference spectra
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6.4.1. D Mass Sideband Sample

Apart from the signal sample, an additional sample was produced, also with the cuts
described in table 6.5, but with D meson mass cuts that excluded the D meson signal
region. Two D mass regions were selected for this sample, one above the mass window
for the signal region, and the other one below. The two regions were chosen to have
a certain distance from the signal window and to have a combined width equal to the
width of signal mass region. This choice of sideband widths ensures that the composi-
tion of backgrounds in the signal box is correctly reflected in the sidebands. The exact
values for each channel are shown in table 6.7. The sideband regions are also marked
in figures A.4 to A.10 in appendix A.2.

6.4.2. ∆M(D∗D) Sideband Sample

Additionally, a ∆M(D∗D) sideband sample was produced. It had to fulfil the cuts de-
scribed in table 6.5 and theD meson mass signal region cuts in table 6.7. The ∆M(D∗D)
sideband cuts from the same table were then applied. The sideband regions are also
marked in figures A.4 to A.10 in appendix A.2.
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6.5. Correction of Monte Carlo

Simulated data is used extensively in many areas of high energy physics as it is cru-
cial in the developement of a great number of analyses. It is often the only method
of determining the composition of an analysed sample, reconstruction efficiencies of
the individual components and detector acceptance. The Belle collaboration has en-
deavoured to create a simulated data set that describes the real data taken by the Belle
detector as precisely as possible (see section 6.2). While this generic Monte Carlo sam-
ple delivers a quite accurate description of real data for many cases, there are also some
known imperfections. In order to better simulate the real data, several correction can
be applied to the generic Monte Carlo samples.

6.5.1. Tag Side Bias

The developement of the Full Reconstruction, and especially the NeuroBayes Experts
that are used, relied heavily on the usage of Monte Carlo samples. During the tests of
the Full Reconstruction, it has become apparent, that the branching fractions of cer-
tain B meson decays were not modelled correctly. In fact, for some high multiplicity B
meson decays, the Monte Carlo delivers as much as double the signal that is observed
on real data. A set of correction factors for each single tag side B meson decay channel
has to be determined. By comparing the fit yields obtained in a B→ D∗`ν signal side
analysis on generic Monte Carlo and data, such a set of correction factors can be ob-
tained [60].
The original distribution for Btag Mbc together with the reweighted distributions, ac-
counting for the tag side bias, can be seen in figure 6.4. We expect the effects of the tag
side bias to cancel in the measurement of the ratios R and R∗. This correction is still
aplied, as it improves the estimates of expected signal and background events.

6.5.2. D∗∗ Components

In the standard Belle generic Monte Carlo, the semileptonic B → D∗∗`ν` decays are
generated accoring to the ISGW2 model [61, 62]. More sophisticated models have ap-
peared after the generation of the generic Monte Carlo [63], called LLSW [64, 65]. Event
weights to change the ISGW2 shapes into LLSW shapes were calculated [66]. Three
different weights have been calculated, corresponding to the two extreme values in the
allowed parameter space and the average:

η = −0.45 τ̂1 = −1.2 ζ̂1 = −1.6 (6.14)

η = −0.15 τ̂1 = −1.2 ζ̂1 = −1.6 (6.15)

η = +0.15 τ̂1 = −1.2 ζ̂1 = −1.6 (6.16)

The reweighting was done in 22 bins in the q2 range of 0 . . .11 GeV2/c4. The original
M2

missdistributions for the D∗∗ background together with the reweighted distributions
can be seen in figure 6.5.
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Figure 6.4.: Effect of the tag side bias corection on BtagMbc.

6.5.3. Lepton ID Efficiency

There are known discrepancies between data and Monte Carlo in the lepton ID effi-
ciency. The necessary corrections were calcualted using γγ → `+`− processes [67] as
functions of polar angle θ and momentum p. To account for influences of a hadronic
environment to the lepton ID efficiency, an inclusive B → XJ/ψ(→ `+`−) sample was
reconstructed and used for comparison.

Using a standardised tool to calculate the correction [68], tables 6.9 and 6.10 were
produced.

6.5.4. Lepton Fake Rates

The cuts on particle ID (see table 6.5) result in quite clean samples of charged final
state particles. These samples, though very clean, can never be perfectly clean. Some
real K+ mesons, wrongfully identified as µ+ leptons, end up in the µ+ sample and vice
versa. Such fakes occur for all types of particles. For the K+ and π+ mesons used for
the reconstruction of the D meson, this sort of background is part of the wrong D(∗)

background component (see section 6.10). The lepton samples (e+ and µ+) contain in-
correctly identified particles as well. The lepton fake rates can differ on Monte Carlo
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Figure 6.5.: Effect of the D∗∗ shape correction on M2
miss.

exp lepton signal tau signal ratio

eID 7 - 27 0.9866± 0.0213 0.9629± 0.0309 1.0246
eID 31 - 65 0.9825± 0.0165 0.9681± 0.0243 1.0149
µID 7 - 27 0.9661± 0.0252 0.9492± 0.0253 1.0178
µID 31 - 39, 45a 0.9554± 0.0193 0.9795± 0.0182 0.9754
µID 41 - 49 0.9503± 0.0197 0.9740± 0.0180 0.9757
µID 51 - 65 0.9794± 0.0194 0.9906± 0.0195 0.9887

Table 6.9.: Lepton Efficiency corrections for B0

simulation and on real data. To evaluate the differences in the fake rates, a dedicated
D∗ sample was analysed [69, 70]. This sample can deliver extremely clean π+ and K+

samples. By counting, how many of these real π+ and K+ particles pass the electron-ID
or muon-ID cut, an estimate of the real fake rates on data can be made.
Events that contained such a fake lepton were reweighted according to the expecta-
tions from the above procedure. The correction factors were determined in 8 bins
of θ (0 . . .151◦) and 11 bins in the momentum of the particle in the lab frame plab
(0 . . .4.0 GeV/c).
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exp lepton signal tau signal ratio

eID 7 - 27 0.9863± 0.0213 0.9641± 0.0321 1.0231
eID 31 - 65 0.9824± 0.0165 0.9690± 0.0230 1.0138
µID 7 - 27 0.9657± 0.0253 0.9480± 0.0249 1.0187
µID 31 - 39, 45a 0.9539± 0.0197 0.9692± 0.0206 0.9842
µID 41 - 49 0.9467± 0.0198 0.9669± 0.0205 0.9790
µID 51 - 65 0.9768± 0.0195 0.9917± 0.0207 0.9849

Table 6.10.: Lepton Efficiency corrections for B+

6.5.5. D Meson Widths

It has been observed by many analyses before, that the resolution of the D meson mass
is better on simulated data than on real data. Imperfect modelling of the magnetic
field, the number of hits left by a charged particle and other detector responses lead to
that imperfection. While it is possible to correct for that effect by smearing of tracks,
an alternative approach was chosen. The D meson signal in the M(D) distribution and
the D∗ signal in the ∆M(D∗,D) distribution are clearly visible for all decay modes and
can thus be fitted on generic Monte Carlo and on data. The results of these fits are
summarized in table 6.8.

With the knowledge of the widths on data and Monte Carlo, we can then construct a
transformed D mass variable:

M(D)trafo =
M(D)−M(D)WA

σdata,MC
(6.17)

M(D)trafo =
M(D)−middle of SB

σdata,MC
(6.18)

Equation 6.17 is valid for the signal region of the D meson mass, while equation 6.18
is valid for the sideband regions. M(D)WA is the current world average value of the D
meson mass, “middle of SB” is the middle of the upper or lower sideband and σdata,MC
is the fitted width on Monte Carlo or data respectively.

An analogous transformation was performed for the mass difference ∆M(D∗,D):

∆M(D∗,D)trafo =
∆M(D∗,D)−∆M(D∗,D)WA

σdata,MC
(6.19)

∆M(D∗,D)trafo =
∆M(D∗,D)−middle of SB

σdata,MC
(6.20)

Again, equation 6.19 is valid for the signal region of the D∗,D meson mass difference,
while equation 6.20 is valid for the sideband regions. ∆M(D∗,D)WA is the current world
average value of the D∗,D meson mass difference, “middle of SB” is the middle of the
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upper or lower sideband and σdata,MC is the fitted width on Monte Carlo or data respec-
tively.

These two tranformed variables look the same on data and Monte Carlo. They were
therefore better-suited for further usage in the NeuroBayes trainings described in sec-
tion 6.7.

101



Chapter 6. Signal Side 6.6. The Fitting Variables

6.6. The Fitting Variables

The ultimate goal of this analysis is to measure the ratios R and R∗

R =
B(B→Dτντ )
B(B→D`ν`)

and R∗ =
B(B→D∗τντ )
B(B→D∗`ν`)

, (6.21)

already defined in more detail in equations 6.1 to 6.4. It is therefore crucial to distin-
guish the τ signal from the ` signal and also to distinguish both the τ and the ` signal
from various backgrounds. As the τ leptons are reconstructed in the channels

τ−→ e−ν̄eντ and (6.22)

τ−→ µ−ν̄µντ , (6.23)

the decay B→D(∗)τ(→ `ν`ντ )ντ differs from the decay B→D(∗)`ν` only in the number
of undetectable neutrinos. The one decay channel is therefore in itself not distinguish-
able from the other. However, with the knowledge of the 4-momentum of the tag-side
meson p(Btag) that is provided by the Full Reconstruction and the 4-momentum of the
beam p(Beam), we can calculate the 4-momentum of the missing neutrino system. This
allows us to distinguish the lepton signal from the τ signal.

Missing Mass Squared

Several observables can be calculated using the information about the missing mo-
mentum of the neutrino system. A very intuitive example is the Missing Mass Squared
(M2

miss), defined as

M2
miss =

[
p(Beam)−

(
p(Btag) + p(D(∗)) + p(`)

)]2
. (6.24)

For the electron and muon signal, there is only one neutrino involved in the decay.
As the neutrino has a mass very close to 0, we therefore expect a peaking component
around M2

miss= 0 GeV2/c4. In the τ signal decay, the three neutrino system constitutes
a much larger missing mass, and we therefore expect to see a much broader structure at
M2

miss> 1 GeV2/c41 This variable is very useful to distinguish the lepton and τ signal.
It has, however, only very limited power to distinguish the τ signal from a number of
backgrounds. It is therefore desirable to construct a variable, that is better suited to
separate the τ signal from backgrounds. An exemplary distribution of M2

missis shown
in figure 6.6. For a more detailed description of the M2

miss-shape of the fit components,
see chapter 6.10.

Other Variables and Correlations toM2
miss

It is possible to construct many more variables that can separate τ and ` signal from
each other. Examples of such variables are

1Further detailed explanations can be found in section 6.10.
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Figure 6.6.: M2
missdistribution for B0→ D−e+νe. For a detailed description of the com-
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• q2 = (pmiss + p`)2

• P
in Bsig frame
`

Those variables are constructed using information provided by the Full Reconstruction.
The primary information that comes from the Full Reconstruction is the momentum of
the Btagand a list of final state particles that were used in the reconstruction of the
Btag. The powerful variables use exactly this information. While the variables differ
in the details of their construction, they all use similar information. It is therefore not
surprising that there are large correlations amongst them. A fit in a second dimension
to such a variable would therefore bring not much additional information, but larger
correlations between the two fitting variables. These variables were therefore not used
in the analysis.

An exception is the additional energy in the electromagnetic calorimeter EECL
extra:

EECL
extra =

∑
ECalor. −

(∑
Etag +

∑
Esignal

)
(6.25)

The exact implementation is done in the same way as in reference [71]. WhileM2
missuses

information about the momentum of the neutrino system, EECL
extra uses information about

the remaining particles in the detector. The correlation between the two variables is
therefore small, while the information that they bring is complementary. Using EECL

extra
as a second dimension in a fit is therefore reasonable. There are, however, more vari-
ables that have discriminative power to distinguish signal from various sources of
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background. These additional variables do not use Full Reconstruction information
and have therefore little correlation to M2

miss. In order to increase the discriminative
power that a second dimension would bring compared to a fit only toM2

miss, many vari-
ables were combined in a NeuroBayes training. It is described in detail in chapter 6.7.
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6.7. NeuroBayes Trainings

Four separate trainings were performed for the four different channels: B0→ D−`+ν`,

B0→ D∗−`+ν`, B+→ D
0
`+ν` and B+→ D

∗0
`+ν`. The categories for the trainings were

the folllowing:

Target B→D(∗)τντ signal

Background Wrong D meson background, wrong D∗ meson background, D∗∗ back-
ground, wrong lepton background, wrong charge cross-feed, Ds background and
remaining backgrounds. (see section 6.10)

Not included B→D(∗)`ν` signal, B→D∗`ν` cross-feed, B→D∗τντ cross-feed

Each of the above trainings contained the same 8 variables. They are listed, together
with their significance in table 6.11. The significance is defined as the correlation of
the variable to the target multiplied by the square-root of the sample size [72]. Other
variables are not taken into account. The network output was recalculated in such a
way that it lies within the interval [0,1]. The purity efficiency plots and the network
outputs of the trainings can be found in figures 6.7 and 6.8.
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Figure 6.7.: Purity efficiency plots and network output plots for channels B0→D−e+νe
and B0→D∗−e+νe.
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Figure 6.8.: Purity efficiency plots and network output plots for channels B+→D
0
e+νe

and B+→D
∗0
e+νe.

While it would in principle be possible to use the output of the trainings oNBdirectly in
the fit, there is some benefit in transforming it. The tranformation is given by

oNB, trafo. = log
oNB − omin

omax − oNB
, (6.26)

where omin and omax are the minimum and maximum network output respectively. It
has the effect of turning the network output into a smooth distribution, the fitting of
which generally poses less technical issues. Although there is no obvious mathematical
reason for it, oNB, trafo.often shows Gaussian-like shape and can indeed be fitted by a
bifurcated Gaussian function. It should be noted, this transformation only provides
the smoother shape of the distribution and does not improve the discrimination power
of the NeuroBayes trainings.

6.7.1. Correlation

In order to check the correlations between the first fitting variableM2
missand the output

of the NeuroBayes trainings (oNB), a correlation analysis was performed using the corre-
lation analysis tool CAT [73]. The results of this analysis are summarised in table 6.12.
The low absolute values of Pearson’s [74] and Spearman’s [75] correlation coeffcients
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(both range from −1 to +1) indicate an only small linear correlation of oNB and M2
miss.

There are, however, non-linear forms of correlation that are not quantified by these two
types of correlation coefficient. A hypothesis test, described in reference [73] will test
the two variables for any type of correlation, linear or non-linear. The significance of
the hypothesis of the two variables being correlated is given under the column Sign in
table 6.12. Especially for the case of no cut in oNB(i.e. oNB > 0.0), there seem to be large
correlations. One must, however, keep two important facts about the analyzed sample
in mind: A cut on oNB will definitely be performed at a later stage during the analy-
sis, so the large correlation for the completely uncut sample is of no big importance.
Secondly, this analysis was performed using 5 streams of generic Monte Carlo. So the
sample is 5 times larger than the expected sample on real data. To correctly estimate
the expected significance for correlations on real data, one has to divide the signifi-
cance figures by

√
5 ≈ 2.24. This leads to realistic cut values in the region oNB > 0.1 or

oNB > 0.22, depending on the channel.

2Reminder: oNBranges from 0 to 1.
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Variable Sig [σ ]

D+ D∗+ D0 D∗0

Hash identifying the type and decay channel
of the D meson

84.16 33.51 92.22 25.38

Hash identifying the type and decay channel
of the D∗ meson

0.00 4.17 0.00 34.09

Relative deviation of the D meson mass from
the world average value (in sidebands: from
middle of sideband), in units of fitted D mass
width. See section 6.5.5.

30.18 10.24 42.62 10.39

Relative deviation of the D∗,D mass differ-
ence from the world average value (in side-
bands: from middle of sideband), in units of
fitted D∗,D mass difference width. See sec-
tion 6.5.5.

0.00 14.01 0.00 24.92

Number of photons from remaining π0 can-
didates. These π0 candidates must lie within
the mass region [0.110,0.150] GeV/c2 and
have photon energies E(γ) > 50 MeV, inde-
pendent of the detector region (compare dif-
ferent requirements in section 6.4)

16.29 8.31 34.23 20.43

Remaining energy in the ECL after removal
of the clusters used for the tag side or signal
side

52.16 28.14 81.77 52.62

Cosine of the angle between the momentum
of the D meson and the line through the
D meson decay vertex and the interaction
point

8.57 0.35 1.72 3.18

oNBof the tag side B meson 6.17 4.22 15.68 4.58

Hash identifying the type and decay channel
of the tag side B meson

18.45 14.64 29.17 24.21

Table 6.11.: Variables in the Signal Side NeuroBayes training
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6.8. Best Candidate Selection

In this analysis, we deal with 4 signal samples: B0 → D−`+ν`, B0 → D∗−`+ν`, B+ →
D

0
`+ν` and B+→ D

∗0
`+ν`. We can ultimately only accept one candidate per event. It

is therefore necessary to choose the best B candidate in an event, for which there are
many possible criteria. Three criteria were investigated for this analysis:

1. We choose the best candidate at random.

2. We choose the candidate with the lowest value for EECL
extra.

3. We define two qualities:

M(D)trafo =
M(D)measured −M(D)WA

σ (M(D))fitted
(6.27)

∆M(D∗D)trafo =
∆M(D∗D)measured −∆M(D∗D)WA

σ (∆M(D∗D))fitted
(6.28)

We then choose the candidate with the lowest value for M(D)trafo in B→ D`ν`
channels and the candidate with the lowest value for ∆M(D∗D)trafo in B→D∗`ν`
channels.

To evaluate the quality of these three criterions, a sample was produced for each se-
lection with special NeuroBayes trainings. These special trainings are based on the
trainings described in section 6.7, but they do not contain the variable that was used
for the best candidate selection:

• The selection using M(D)trafo and ∆M(D∗D)trafo was performed on a sample,
where the two variables were left out of the NeuroBayes training.

• The selection using EECL
extrawas performed on a sample, where this variable was left

out of the NeuroBayes training.

• The random selection was performed on a sample that contained all variables
listed in table 6.11.

Before the best candidate selection was performed, the cuts on oNBdescribed in sec-
tion 6.18 were applied. As a reference for comparison, a sample where no best candi-
date selection and no cut on oNBwas performed at all was also produced. Table 6.13
summarises and compares the results of the best candidate selection.
Column “all” shows the maximal achievable number of τ and ` signal. No selection
was performed there. Columns “EECL

extra” and “M(D) / ∆M” show the achieved signal
yields for the best candidate selection according to the corresponding criterion. Col-
umn “random” finally shows the signal yields for the completely random best candi-
date selection, but with all the information in the NeuroBayes training. As this step in
the selection procedure chooses one candidate per event, the number of candidates for
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all EECL
extra M(D) / ∆M random

Channel ` sig τ sig ` sig τ sig ` sig τ sig ` sig τ sig

B0→D−`+ν` 9857 891 8732 816 8749 800 9000 844
B0→D∗−`+ν` 15754 685 15341 670 15176 658 15239 660

B+→D
0
`+ν` 19258 1716 16155 1428 15400 1368 15871 1418

B+→D
∗0
`+ν` 27083 1284 22695 1077 20294 974 17393 816

All Signals added 71952 4576 62923 3991 59619 3800 57503 3738

Table 6.13.: Best candidate selection evaluated on 10 streams of generic Monte Carlo.

the “EECL
extra”, “M(D) / ∆M” and the “random” sample are fixed3. Therefore, a larger τ

and ` signal yield implies a lower background yield.
We can conclude from table 6.13 that each method has its advantages. The random

selection performs quite well for most channels (except for B+→ D
∗0
`+ν`). This is, of

course, due to the fact that the omission of EECL
extraor M(D) / ∆M from the NeuroBayes

trainings lessens their quality. So the necessary cuts remove more signal in the EECL
extraand

M(D) / ∆M methods.

The random best canidate selection does not use any variables that are even slightly cor-
related to the NeuroBayes trainings. So, no dditional systematic error is introduced by
this method. The random best canidate selection was chosen for the signal extraction.

3They are slightly different from each other, as the NeuroBayes trainings are not identical
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6.9. Cross-Checks for the NeuroBayes Trainings

After the best candidate selection, several cross-checks were performed to ascertain the
quality of the NeuroBayes trainings.

6.9.1. Signal Efficiencies

As a first cross-check, the ratio of B→D(∗)`ν` signal to B→D(∗)τντ signal, depending
on the cut on the NeuroBayes expertise, was studied using Monte Carlo information.
Let us recall that those two signal components occupy quite different regions of M2

miss.
When plotting the ratio B → D(∗)`ν`/B → D(∗)τντ , against oNB, a small slope would
indicate a low correlation of oNB to M2

missand the inability of the NeuroBayes expert to
distinguish between B→D(∗)`ν` signal and B→D(∗)τντ signal. The resulting plots are
shown in figure 6.9. From figure 6.9 we can conclude that there is no strong correlation
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Figure 6.9.: Ratios of B → D(∗)`ν` signal to B → D(∗)τντ signal. When either B →
D(∗)`ν` signal or B→D(∗)τντ signal was 0, then the ratio was set to 0.

between M2
missand oNB.
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6.9.2. oNBin D mass sideband

As a cross-check involving real data, the number of events in theD mass sidebands (see
section 6.4.1) was determined in the generic Monte Carlo simulation and on real data
for different cuts on oNB. A ratio of “wrong D in MC-sideband” to “wrong D in data-
sideband” was formed. The resulting plots are shown in figure 6.10. The NeuroBayes
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Figure 6.10.: Ratios of “wrong D in MC-sideband” to “wrong D in data-sideband”.
When either the “wrong D in MC-sideband” component or the “wrong
D in data-sideband” component was 0, then the ratio was set to 0.

expert has similar effects on data and Monte Carlo, visible as small slopes (close to 0) in
figure 6.10.

6.9.3. oNBin ∆M(D∗,D) sideband

As a similar cross-check as above, the number of events in the ∆M(D∗,D) sidebands
(see section 6.4.2) was determined in the generic Monte Carlo simulation and on real
data for different cuts on oNB. Again, the ratio of “wrong D in MC-sideband” to “wrong
D in data-sideband” was formed. The resulting plots are shown in figure 6.11. Again,
we can observe similar effects of NeuroBayes expert on data and Monte Carlo.

6.9.4. Figure Of Merit

In order to get a feeling for different possible cut values for oNB, a figure of merit was
calculated. It is defined as

FOM =
# of τ signal events√

# of τ signal events + # of background events
(6.29)

The calculation was performed on 5 streams of generic Monte Carlo in the region
M2

miss > 1.5 GeV2/c4. The results are shown in figure 6.12. These results should not
be used to determine the final NeuroBayes cut, as this check lacks information about
the 2-dimensional fitting including M2

miss. They indicate, however, that for most net-
works the exact choice of the cut value is not critical. This is evident by the plateau
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Figure 6.11.: Ratios of “wrong D in MC-sideband” to “wrong D in data-sideband”.
When either the “wrong D in MC-sideband”component or the “wrong D
in data-sideband” component was 0, then the ratio was set to 0.

that the figure of merit shows. Only in the channel B+→ D
∗0
τ+ντ it seems important

to select the cut value with special care.
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Figure 6.12.: Figure of merit calculation.
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6.10. Composition

Using large amounts of simulated data described in section 6.2, the expected composi-
tion of the selected sample was analysed. As the available streams of complete generic
Monte Carlo was used, the signal decays B→ D(∗)τντ are also included. The analysis
cuts listed in tables 6.5, 6.6 and 6.7 were applied. A very instructive variable that can
be constructed is the missing mass squared M2

miss in an event. It can only be calculated
with a tag side. It is defined as

M2
miss =

[
p(Beam)−

(
p(Btag) + p(D(∗)) + p(`)

)]2
. (6.30)

and is described in more detail in section 6.6. For improved clarity on the plots, the
sample was divided into two regions: The “low M2

miss region” (M2
miss < 1.5 GeV2/c4)

contains a very dominant and narrow component, which would, in a common plot,
overshadow the small, but important components in the “high M2

miss region” (M2
miss >

1.5 GeV2/c4). The different components in the sample are described in the following.
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Figure 6.13.: The composition of the analysis sample of the decay B+→ D
0
e+νe, using

five times the expected amount of data. Shown is the M2
miss distribution

for M2
miss < 1.5 GeV2/c4.

Lepton signal One of the most prominent components is the lepton signal compo-
nent. It comprises a correctly reconstructed D or D∗ meson, as well as a correctly
matched light lepton (e or µ) originating from the B decay. They both form a B
meson with no missing particles apart from one neutrino. This component can
be seen as a narrowly peaking structure around M2

miss = 0.0 GeV2/c4 in the M2
miss
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Figure 6.14.: The composition of the analysis sample of the decay B+→ D
0
e+νe, using

five times the expected amount of data. Shown is the M2
miss distribution

for M2
miss > 1.5 GeV2/c4.

spectrum. It peaks in the Mbc spectrum of the Btag meson, in the D meson mass
spectrum and, where applicable, in the ∆M(D,D∗) spectrum. In all plots within
this thesis it is coloured green.

τ signal This is the far less prominent of the two signal components. A correctly re-
constructed D or D∗ meson is required, as well as a correct lepton originating
from the τ decay. They both form a Bmeson with no missing particles apart from
three neutrinos. This component can be seen as a broad structure in the M2

miss
spectrum above M2

miss = 1 GeV2/c4. It also peaks in the Mbc spectrum of the Btag
meson, in the D meson mass spectrum and, where applicable, in the ∆M(D,D∗)
spectrum. In all plots within this thesis it is coloured red.

Lepton cross feed It frequently happens that in reality a B→ D∗`ν` decay occurred,
but the decay B→ D`ν` was reconstructed, missing a slow pion or gamma from
the D∗ decay. By virtue of the Full Reconstruction this missing 4-momentum can
be measured, just as the missing 4-momentum of the neutrino system. Slow pi-
ons or gammas are relatively difficult to reconstruct directly, but the Full Recon-
struction yields an indirect measurement. It can therefore happen that the cross
feed component in the channel B→ D`ν` is larger than the signal component in
B→ D∗`ν`. The cross feed component resembles real B→ D`ν` signal in many
ways: A correct D meson is combined with a correctly identified lepton to form a
B→ D`ν` candidate. This component therefore peaks at the correct D mass and
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Figure 6.15.: The composition of the analysis sample of the decay B0→D∗−e+νe, using
five times the expected amount of data. Shown is the M2

miss distribution
for M2

miss < 1.5 GeV2/c4.

Btag Mbc values. It also shows a peaking structure in theM2
miss spectrum, but with

a much broader peak than the lepton signal and shifted towards higher values of
M2

miss. With the explanation above, it is clear that this component can only occur
in the B→D`ν` samples. In all plots within this thesis it is coloured orange.

Wrong charge cross feed It can also easily happen, that in a B0 → D∗−`+ν` decay
with D∗+→ D0π+ the charged pion is missed. It peaks in the same region as the
“Lepton cross feed”, described in the previously. This component only occurs as
a small background contribution in the B+→D

0
`+ν` sample and not at all in the

B0→D−`+ν` sample. In all plots within this thesis it is coloured black.

τ cross feed In a very similar way to the lepton cross feed, an actual B→D∗τντ decay
can be misreconstructed as the decay B→ Dτντ , missing a slow pion or gamma
from the D∗ decay. As it was already discussed for the lepton cross feed, this com-
ponent peaks at the correct D mass and Btag Mbc values. In the M2

miss spectrum,
the relative shift and widening of the cross feed component with respect to the
already very broad B→ Dτντ signal structure is not noticeable. It can also only
occur in the B→ D`ν` samples. In all plots within this thesis it is coloured light
brown.

Wrong D meson The most common misreconstruction is that of the D meson. This
can occur when one or more tag side tracks or clusters are used for the signal side
D meson reconstruction. Also, the tracks or electromagnetic clusters belonging
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Figure 6.16.: The composition of the analysis sample of the decay B0→D∗−e+νe, using
five times the expected amount of data. Shown is the M2

miss distribution
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to the D meson could simply be missed by the detector or detector noise could
wrongly be interpreted as a track or cluster. Finally, actual signal side lepton
tracks may have been wrongly used in the D meson reconstruction. As this back-
ground originates from events with correct as well as from events with wrong Btag
, there is a peaking and a non-peaking component in the Btag Mbc spectrum. The
wrong D component is flat in the D mass spectrum and shows up as a very broad
structure in the entire M2

miss spectrum In all plots within this thesis it is coloured
blue.

Wrong D∗ meson For the B→ D∗`ν` and B→ D∗τντ samples, there is another major
source of misreconstruction. Even with a correctly reconstructed D meson, the
reconstruction of the D∗ meson can still go wrong. Again, usage of one or more
final state particles from the tag side or detector effects are conceivable causes. A
non-peaking component in the ∆M(D,D∗) spectrum is caused by this background
and it shows a very broad structure in the entire M2

miss spectrum , similar to the
wrong D component. By definition, this component also includes wrongly re-
constructed D mesons. In the Btag Mbc distribution there is a peaking and a non
peaking part, as explained above. In all plots within this thesis this component is
coloured light blue.

D∗∗ component It is not only possible to miss a slow pion or gamma from a D∗ de-
cay, but also from higher excited states of the D meson. The states D∗0(2400)0,
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D∗1(2420)0, D∗2(2460)0 and D∗2(2460)± are summarized as D∗∗ mesons and can pol-
lute the B→ D`ν` and B→ D∗`ν` samples in a similar way as the lepton cross-
feed. The lepton and τ components of this background have practically indis-
tingushable shapes. Therefore they are treated in the same way. With correct
D and D∗ mesons (by definition), this component peaks in the M(D) and in the
∆M(D,D∗) spectra. As it differs from a real signal decay only by the missing 4-
momentum of the slow pions, the D∗∗ component peaks in the Mbc distribution
of the Btag. With a large system of missing particles, it is visible as a very broad
structure in the entire M2

miss spectrum above M2
miss > 0.0 GeV2/c4. In all plots

within this thesis this component is coloured purple.

Wrong lepton In the reconstruction of the decay B → D`ν`, not only the D meson
can contribute to the background, but also the lepton. The lepton candidate can
be a wrongly identified K or π, either from the signal side decay B→ DK/π or
from the tag side. The case of a charged track taken from the signal side D meson
would result in a wrongD meson and is already covered in the category “WrongD
meson”. The argument also holds for D∗ mesons. The wrong lepton component
is visible as a very broad structure in the entire M2

miss spectrum above M2
miss >

0.0 GeV2/c4 and it peaks in the M(D) and in the ∆M(D,D∗) spectra. In all plots
within this thesis this component is coloured light purple.

Ds decay The helicity suppressed decay B→ D(∗)Ds with Ds → τν has the very same
particles in the final state as the τ signal decay and can therefore fake a τ signal
decay. It also shows very similar structures as the actual τ signal decay. For
the decays of Ds to lighter leptons, the helicity suppression is stronger and their
contribution is so small that it was not found in the Monte Carlo samples. In all
plots within this thesis this component is coloured dark brown.

Remaining backgrounds The remaining background events were so few, that further
investigation as to their origin seems pointless. No clear shape could be estab-
lished due to lack of statistics. In all plots within this thesis this component is
coloured dark grey.
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6.11. Normalisation Check

For the development of the fitting procedure to extract R (see equations 6.1 to 6.4),
a preliminary test was performed. The τ signal region in the M2

missspectrum was
blinded by requiring M2

miss < 1.5 GeV2/c4. On this blinded sample, a simultaneous
2-dimensional fit to M2

missand oNB, trafo.on the B→ D`ν` and B→ D∗`ν` samples was
performed. The aim was to extract the ratios

X0 = X(B0) ≡ B(B0→D∗−`+ν`)
B(B0→D−`+ν`)

and (6.31)

X+ = X(B+) ≡ B(B+→D
∗0
`+ν`)

B(B+→D
0
`+ν`)

. (6.32)

The individual components of the fits are described in the following.

6.11.1. The Fit Components

For each component that could be identified in the B→D`ν` and the B→D∗`ν` sam-
ples (see section 6.10) a PDF was determined and included in the fit. The shapes of
all components inM2

misswere determined on generic Monte Carlo samples as smoothed
kernel estimation functions [76]. The shapes in the oNB, trafo.dimension were parametrised
by bifurcated Gaussian PDFs. With 5 streams of generic Monte Carlo available, four
streams were used for determining the shapes of the components and the remaining
stream was used for the actual fitting procedure. The following components are in-
cluded in the fit:

Lepton signal This is the main signal component. The normalisation is a free param-
eter of the fit.

Lepton cross-feed This is a major source of background in the B→D`ν` sample. The
normalisation is a free parameter of the fit.

τ signal The contribution of τ signal in the region M2
miss < 1.5 GeV2/c4 is negligible.

The normalisation was fixed to standard model expectations of the generic Monte
Carlo.

τ cross-feed The contribution of τ cross-feed in the region M2
miss < 1.5 GeV2/c4 is

negligible. The normalisation was fixed to standard model expectations of the
generic Monte Carlo.

wrong D background This background component can be easily separated from the
signal component by the fit to oNB, trafo.. The normalisation is a free parameter of
the fit.

wrong D∗ background Similar to the wrong D background, this component is quite
well separable from the signal using oNB, trafo.. Therefore, its yield is also a free
parameter of the fit.
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D∗∗ background The normalisation of this background component was determined
before the actual fit. An additional fit was performed to the D∗∗ enriched sam-
ple. The following components (see section 6.12.2) were distinguished in this
additional fit:

Signal The normalisation is a free parameter of the additional fit.

Random π0 The normalisation is a free parameter of the additional fit.4

Combinatorial background The normalisation is a free parameter of the addi-
tional fit.

On the 4 streams of generic Monte Carlo (subscript 4), a factor g4 was determined
using Monte Carlo information:

g4 =
D∗∗ bg yield4

signal yield in D∗∗ enriched sample4
(6.33)

Before the actual fit on the remaining stream started, the yield of the D∗∗ back-
ground was determined by the additional fit to the remaining stream (subscript
1). Thus, an estimate for the D∗∗ background in the actual fit to the remaining
stream was obtained:

D∗∗ bg yield1 = g4 · signal yield in D∗∗ enriched sample1 . (6.34)

The normalisation of this component was fixed in the fit.

DS background and wrong lepton background These background components have
much smaller yields than the statistical uncertainty of the lepton signal or the
lepton cross-feed. They have therefore little effect on the result. The yields were
fixed to the standard model expectations of the generic Monte Carlo.

remaining backgrounds This background component has a much smaller yield than
the statistical uncertainty of the lepton signal or the lepton cross-feed. It has
therefore little effect on the result. The normalisation is a free parameter of the
fit.

6.11.2. Intermediate Branching Fractions

In order to immediately get a proper estimate on the fit precision, it is beneficial to
actually fit the variable X, rather than the B → D`ν` and B → D∗`ν` signal yields
separately. Technically, one of the two signal yields is expressed in terms of the other
signal yield, the relative efficiency and X. An interesting issue involving intermediate
branching fractions occurs when fitting X(B0): For the decays B0→D−`+ν` and B0→
D∗−`+ν` the ratio X0 is calculated as follows:

X0 =
B(B0→D∗−`+ν`)
B(B0→D−`+ν`)

. (6.35)

4The two components Random π0 to signal and Random π0 to CF (see section 6.12.2) were not distin-
guished in this fit.
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The number of generated and reconstructed events are connected by the efficiency

Rec = Gen · ε . (6.36)

We can express the number of reconstructed B0→D−`+ν` events as

RecB0→D−`+ν` =NBB̄ · B(B0→D−`+ν`) · εB0→D−`+ν` ·
∑
FS

B(D+→ FS)εD+→FS (6.37)

and the number of generated B0→D∗−`+ν` events as

RecB0→D∗−`+ν` =NBB̄ · B(B0→D∗−`+ν`) · εB0→D∗−`+ν` · (A+B) , where (6.38)

A = B(D∗+→D0π+) ·
∑
FS ′

[
B(D0→ FS ′)εD0→FS ′

]
(6.39)

B = B(D∗+→D+π0) ·
∑
FS ′′

[
B(D+→ FS ′′)εD+→FS ′′

]
. (6.40)

Solving equations 6.37 and 6.38 for the branching ratios B(B0→ D∗−`+ν`) and B(B0→
D∗−`+ν`), we can rewrite equation 6.35 using 6.36 as follows:

X0 =
B(B0→D∗−`+ν`) · εB0→D∗−`+ν`

B(B0→D−`+ν`) · εB0→D−`+ν`

·
∑
FS B(D+→ FS)εD+→FS
A(eq 6.39) +B(eq 6.40)

(6.41)

For clarity, let us limit ourselves for the moment to the factors in the second term,
which relevant for this argument:

X0 ∼
∑
FS B(D+→ FS)εD+→FS∑

FS ′
[
B(D0→ FS ′)εD0→FS ′

]
+
∑
FS ′′ [B(D+→ FS ′′)εD+→FS ′′ ]

(6.42)

The D+ and D0 branching fractions in equation 6.42 differ on the generic Monte Carlo
from the current world averages. These values enter in the calculation of X. Thus,
different values for these branching fractions had to be used in the following fits, de-
pending on whether Monte Carlo or real data was analysed.

When we consider the decays B+→ D
0
`+ν` and B+→ D

∗0
`+ν`, equation 6.42 simpli-

fies to

X+ ∼
∑
FS B(D0→ FS)εD0→FS∑
FS ′ B(D0→ FS ′)εD0→FS ′

. (6.43)

This is due to the fact, that D∗0 mesons only decay into D0 mesons. The effect of differ-
ent D meson branching ratios on generic Monte Carlo and on data thus cancels in the

case of B+→D
0
`+ν` and B+→D

∗0
`+ν` decays.
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Fit on Shapes and ratios determined on

Generic Monte Carlo, stream 0 Generic Monte Carlo, streams 1,2,3,4

Generic Monte Carlo, stream 1 Generic Monte Carlo, streams 0,2,3,4

Generic Monte Carlo, stream 2 Generic Monte Carlo, streams 0,1,3,4

Generic Monte Carlo, stream 3 Generic Monte Carlo, streams 0,1,2,4

Generic Monte Carlo, stream 4 Generic Monte Carlo, streams 0,1,2,3

Data Generic Monte Carlo, streams 0,1,2,3,4

Table 6.14.: Samples used for the fits in the normalisation check

6.11.3. Results

To extract the ratiosX0 andX+, 2-dimensional unbinned maximum likelihood fits were
performed. A detailed description of the components can be found in section 6.11.1. A
listing of the data samples that were used for the fit and the determination of the shapes
can be found in table 6.14. The fits were performed for no cut on oNB and for realistic
cut values for the extraction of R and R∗: oNB(X0/+) > 0.2. The results of the fits are
summarised in a graphical form in figures 6.17 and 6.18. The expected values for the
B→ D`ν` and B→ D∗`ν` signals are indicated by the dotted line with the uncertainty
in yellow. The expectation and the uncertainty were determined on 5 streams of generic
Monte Carlo. It should be noted at this point that the error bars on the fit results include
statistical uncertainties only. The extracted values are therefore easily compatible with
the expectation. For the fit to real data, the Monte Carlo Expectation in known to be
incorrect. Assuming isospin invariance, the current expectation [77] (see also [78, 79,
80, 81]) is

X0/+
expect. = 2.32± 0.11 . (6.44)

The fits to data for oNB(X) > 0.0 and oNB(X∗) > 0.0 yielded:

X0 = 2.54± 0.09 and X+ = 2.21± 0.07 . (6.45)

The fits to data for oNB(X) > 0.2 and oNB(X∗) > 0.2 yielded:

X0 = 2.49± 0.12 and X+ = 2.09± 0.09 . (6.46)

All results treated separately are compatible with the expectation. The combinations
of both values for X are

Xcomb.,1 = 2.334± 0.055 for oNB(X0/+) > 0.0 (6.47)

Xcomb.,2 = 2.234± 0.072 for oNB(X0/+) > 0.2 . (6.48)

Both of these values are also well compatible with the expectation. Projections of the
fits can be found in figures 6.19 to 6.22.
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Figure 6.17.: Fit results of the normalisation check for oNB(X) > 0.0 and oNB(X∗) > 0.0.
The lines are from top to bottom: Generic Monte Carlo streams 0,1,2,3
and 4. The expectation for X on generic Monte Carlo is X = 2.50. The
known uncertainty on data was used for the Monte Carlo expectation.
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Figure 6.18.: Fit results of the normalisation check for oNB(X) > 0.2 and oNB(X∗) > 0.2.
The lines are from top to bottom: Generic Monte Carlo streams 0,1,2,3
and 4. The expectation for X on generic Monte Carlo is X = 2.50. The
known uncertainty on data was used for the Monte Carlo expectation.
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6.11.4. Conclusion

As the sample is entirely dominated by the lepton signal, lepton cross-feed and the
wrong D(∗) background, only the modelling of these components could be checked.
Other components of the samples have got a smaller yield than the statistical uncer-
tainty of the three dominant components. It can be concluded from this check, that the
modelling of the lepton signal, lepton cross-feed and the wrong D(∗) background works
satisfactorily and the expected results could be reproduced on data.
While the study on fitting X was helpful to confirm part of the fitting procedure for
R on real data, a very important aspect could not be clarified by this procedure. The
D∗∗ background component had very little impact on the fitting of X0/+ and will be
investigated in further detail in section 6.12.
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6.12. D∗∗ Backgrounds

The correct estimation of background coming from B→ D∗∗`ν events is crucial for the
success of this analysis. Those events cluster towards large values of M2

miss, the same
region where the B→ D(∗)τντ signal is expected. This background can therefore have
substantial influence on the extraction of the τ signal.

6.12.1. Origin Of The D∗∗ Backgrounds

Based on generic Monte Carlo simulation, the contributions of all D∗∗ decay modes
included in the generic Monte Carlo were estimated. Tables 6.15 and 6.16 summarise
the results. From these tables, it is evident, that the majority of theD∗∗ signal ends up
as background in the signal sample by missing one neutral π0 during reconstruction.
Only a small fraction of the D∗∗ signal (< 10%) has a missing charged track in the final
state.

6.12.2. D∗∗ Enriched Sample

In order to estimate the contribution of theD∗∗ backgrounds, aD∗∗ enriched sample was
reconstructed for each signal decay channel. This was achieved by explicitly adding a
π0 to each signal mode. Thus, there are 4 different D∗∗ enriched samples:

• B0→D−`+ν`π
0

• B0→D∗−`+ν`π
0

• B+→D
0
`+ν`π

0

• B+→D
∗0
`+ν`π

0

Each of these channels is used for the D∗∗ background estimation in the respective sig-
nal channel without the added π0. The justification for this procedure was given in
section 6.12.1, specifically by tables 6.15 and 6.16. In decays with unexcited D mesons
(i.e. B0 → D−e+νe, B0 → D−µ+νµ, B+ → D

0
e+νe and B+ → D

0
µ+νµ) the D∗∗ enriched

sample contains by construction a certain amount of D∗ signal. The expected mass dif-
ferences ∆M(D∗∗,D) are well above 300 MeV/c2. In choosing ∆M(D∗∗,D) > 200 MeV/c2,
all of the D∗ signal is suppressed while the bulk of the D∗∗ signal is retained.

6.12.3. Composition And Fitting Of The D∗∗ Enriched Sample

The D∗∗ enriched samples consist of four distinct components:

Signal The D∗∗ signal component consists of real B→ D∗∗`ν events and peaks around
M2

miss = 0.0 GeV2/c4. This component is is used to estimate D∗∗ background com-
ponent in the signal sample (e.g. B0 → D−e+νe). For that purpose, the two
components are fitted simultaneously.
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Random π0 to B→D`ν` signal It can easily happen, that a correct B→D`ν` candi-
date was reconstructed and a random π0 was added. By erroneously increasing
the correct mass of the candidate, the missing mass is reduced below M2

miss =
0.0 GeV2/c4. To suppress this background, M2

misswas calculated without the ad-
ditional π0. This results in a distribution, where the B→ D`ν` signal is clearly
visible as a sharp peak around M2

miss, no π0 = 0.0 GeV2/c4. Cutting away the sharp

signal peak by requiring M2
miss, no π0 > 0.2 GeV2/c4 reduces this background. This

component was fitted simultaneously with the B→D`ν` signal in the actual sig-
nal fit. The two yields are connected via a factor, determined on generic Monte
Carlo. It is negligibly small in the B→D∗`ν`π

0 samples and was not included in
the corresponding PDFs.

Random π0 to B→D∗`ν` signal In a similar way as for the B→D`ν` channel, a ran-
dom π0 can be attached to a correct B→ D∗`ν` signal. With the same argument
as above, it can also be reduced by a cut to M2

miss, calculated without the extra
π0. This component can, however also occur in the B → D`ν`π

0 channel. In
that case, a random π0 was added to cross-feed, a component where actually a π0

was missed. Being cross-feed, this component does not peak aroundM2
miss, no π0 =

0.0 GeV2/c4, so it is not cut away by requiringM2
miss, no π0 > 0.2 GeV2/c4. But hav-

ing roughly the correct missing mass (missing a π0 and then adding one again),
it peaks around M2

miss = 0.0 GeV2/c4. The peak is broader than the actual D∗∗

signal peak and has to be separated by the fit. This component was fitted simul-
taneously with the B→ D∗`ν` signal in the actual signal fit. The two yields are
connected via a factor, determined on generic Monte Carlo.

Combinatorial background The normalisation is a free parameter of the fit.

To estimate the B → D∗∗`ν background contribution in the signal sample, the signal
component in the D∗∗ enriched sample is used. It is extracted by a 2-dimensional fit to
M2

missand oNB, trafo.. For each of the four components described above, a smooth kernel
estimation PDF was constructed in the M2

missdimension. Bifurcated Gaussian PDFs
were used to model the distribution in oNB, trafo.. In an analogous way as it was done for
the normalisation check, the shapes were determined on an independent sample from
the fitting sample. Table 6.17 gives an overview of the samples that were used. The
results of the fits to generic Monte Carlo are summarised in figures 6.23 to 6.26.
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Figure 6.23.: Summary of the results of the fits to the D∗∗ enriched samples ( B0 →
D−`+ν`π

0) on generic Monte Carlo. The lines are from top to bottom:
Generic Monte Carlo streams 0,1,2,3 and 4.
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Figure 6.24.: Summary of the results of the fits to the D∗∗ enriched samples ( B+ →
D

0
`+ν`π

0) on generic Monte Carlo. The lines are from top to bottom:
Generic Monte Carlo streams 0,1,2,3 and 4.
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Percentage Events Channel

B0→D−e+νe

67.13% 876 B0→D∗+0 (→D+π0)e

17.24% 225 B0→D∗+2 (→D+π0)e

6.67% 87 B+→D∗00 (→D+π−)e

B0→D−µ+νµ

64.95% 706 B0→D∗+0 (→D+π0)µ

19.32% 210 B0→D∗+2 (→D+π0)µ

7.73% 84 B+→D∗00 (→D+π−)µ

B0→D∗−e+νe

38.68% 345 B0→D ′+1 (→D∗+π0)e

37.56% 335 B0→D+
1 (→D∗+π0)e

6.28% 56 B0→D∗+2 (→D∗+π0)e

5.38% 48 B+→D ′01 (→D∗+π−)e

4.93% 44 B+→D0
1 (→D∗+π−)e

B0→D∗−µ+νµ

44.21% 313 B0→D ′+1 (→D∗+π0)µ

32.91% 233 B0→D+
1 (→D∗+π0)µ

6.07% 43 B0→D∗+2 (→D∗+π0)µ

5.93% 42 B+→D ′01 (→D∗+π−)µ

5.37% 38 B+→D0
1 (→D∗+π−)µ

Table 6.15.: Composition of the D∗∗ backgrounds in the B0 sample. For clarity, only the
top 90% of the backgrounds are listed.
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Percentage Events Channel

B+→D
0
e+νe

67.90% 1231 B+→D∗00 (→D0π0)e

18.81% 341 B+→D∗02 (→D0π0)e

4.30% 78 B0→D∗+0 (→D0π−)e

B+→D
0
µ+νµ

66.19% 971 B+→D∗00 (→D0)π0µ

19.97% 293 B+→D∗02 (→D0π0)µ

3.82% 56 B0→D∗+0 (→D0π−)µ

2.18% 32 B+→D∗00 (→D0π0)τ

B+→D
∗0
e+νe

39.21% 158 B+→D0
1 (→D∗0π0)e

38.71% 156 B+→D ′01 (→D∗0π0)e

8.19% 33 B+→D∗02 (→D∗0π0)e

2.98% 12 B0→D ′+1 (→D∗0π+)e

1.99% 8 B0→D+
1 (→D∗0π+)e

B+→D
∗0
µ+νµ

43.22% 137 B+→D ′01 (→D∗0π0)µ

40.06% 127 B+→D0
1 (→D∗0π0)µ

5.68% 18 B+→D∗02 (→D∗0π0)µ

2.52% 8 B0→D+
1 (→D∗0π+)µ

Table 6.16.: Composition of the D∗∗ backgrounds in the B+ sample. For clarity, only the
top 90% of the backgrounds are listed.
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Fit on Shapes determined on

Generic Monte Carlo, stream 0 Generic Monte Carlo, streams 1,2,3,4

Generic Monte Carlo, stream 1 Generic Monte Carlo, streams 0,2,3,4

Generic Monte Carlo, stream 2 Generic Monte Carlo, streams 0,1,3,4

Generic Monte Carlo, stream 3 Generic Monte Carlo, streams 0,1,2,4

Generic Monte Carlo, stream 4 Generic Monte Carlo, streams 0,1,2,3

Data Generic Monte Carlo, streams 0,1,2,3,4

Table 6.17.: Samples used for the fits in the D∗∗ backgrounds check.

enriched_sig
0 50 100 150

  11 MC: 82± 91 

  12 MC: 82±129 

  12 MC: 82±100 

  12 MC: 82±105 

  11 MC: 82± 83 

(a) D∗∗ Signal (simulta-
neous with D∗∗ BG in
B0→D∗−`+ν` sample)

enriched_good_Dst
0 50 100

   1 MC: 44± 42 

   1 MC: 44± 43 

   1 MC: 44± 43 

   1 MC: 44± 46 

   1 MC: 44± 45 

(b) Random π0 to B0 →
D∗−`+ν` signal (simul-
taneous with B0 →
D∗−`+ν` signal)

enriched_bad_D
50 100 150 200

  15 MC:125±107 

  15 MC:125±113 

  16 MC:125±132 

  14 MC:125± 86 

  15 MC:125±116 

(c) Combinatorial BG

Figure 6.25.: Summary of the results of the fits to the D∗∗ enriched samples ( B0 →
D∗−`+ν`π

0) on generic Monte Carlo. The lines are from top to bottom:
Generic Monte Carlo streams 0,1,2,3 and 4.
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enriched_sig
100 200 300

  28 MC:189±207 

  27 MC:189±217 

  29 MC:189±310 

  27 MC:189±177 

  28 MC:189±260 

(a) D∗∗ Signal (simulta-
neous with D∗∗ BG in
B+→D

∗0
`+ν` sample)

enriched_good_Dst
100 200 300 400

   6 MC:245±237 

   6 MC:245±240 

   6 MC:245±235 

   6 MC:245±253 

   5 MC:245±234 

(b) Random π0 to B+ →
D
∗0
`+ν` signal (simul-

taneous with B+ →
D
∗0
`+ν` signal)

enriched_bad_D
400 600 800

  36 MC:618±653 

  33 MC:618±562 

  34 MC:618±543 

  35 MC:618±617 

  34 MC:618±560 

(c) Combinatorial BG

Figure 6.26.: Summary of the results of the fits to the D∗∗ enriched samples ( B+ →
D
∗0
`+ν`π

0) on generic Monte Carlo. The lines are from top to bottom:
Generic Monte Carlo streams 0,1,2,3 and 4.
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6.12.4. Data-Monte Carlo Comparison

While the above described strategy works reasonably well on generic Monte Carlo, this
is not guaranteed on real data. To test this, the above described fits were performed
on the D∗∗ enriched sample from real data and compared to generic Monte Carlo. It
is known, that the branching fractions that are used in the generic Monte Carlo for
the D∗∗ decay channels are too large [77, 82, 83, 84, 85]. Table 6.18 gives the expected
data/Monte Carlo ratios along with the fit yields. A good agreement within the uncer-
tainties could be found. Please note that the fit results on Monte Carlo were obtained
by using 5 streams of Monte Carlo. This accounts for the significantly lower uncertain-
ties. The projections of the fits to real data, along with exemplary fit projections on
Monte Carlo can be seen in figures 6.27 to 6.30.
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6.13. Fit Strategies

There are two different approaches to extract R and R∗ from the B0 and B+ samples.

1. Two independent fits are performed, one to the B0 sample and another one to the
B+ sample.

2. The B0 and B+ samples are fitted simultaneously. The shared parameters are R
and R∗.

Both approaches have their advantages, so both were implemented. In the following
descriptions, let us focus on the two independent fits. The small technical differences
of the two separate fits to the simultaneous fit will be explained in section 6.19. Be
aware that the two independent fits that are described in the following are also “simul-
taneous” fits. The two samples that are simultaneously fitted in that case are the D and
the D∗ sample. In a manner of speaking, the two independent fits are “simultaneous”
fits and the fit to the combined B0 and B+ samples is a “double-simultaneous” fit.

6.13.1. Fit Components

The fit strategy for extracting R and R∗ is very similar to the one used for extracting
X (see section 6.11.1). There are, however, some key differences. Therefore, the entire
strategy shall be explained again to avoid confusion.
For each component that could be identified in the B → D`ν` and the B → D∗`ν`
samples (see section 6.10) a PDF was determined and included in the fit. For the fit-
ting procedure, the shapes of all components were determined on generic Monte Carlo
samples unless stated otherwise. The pdfs in M2

missare determined as smoothed kernel
estimation functions [76]. The shapes in the oNB, trafo.dimension (see section 6.7) were
parametrised by bifurcated Gaussian pdfs. The following components are included in
the fit:

Lepton signal The normalisation is a free parameter of the fit.

Lepton cross-feed This is a major source of background in the B→D`ν` sample. The
normalisation is a free parameter of the fit.

Wrong charge cross-feed This is a small source of background that only occurs in the

B+→D
0
`+ν` sample. Its yield is fixed to Monte Carlo expectation.

R, R∗ and τ signal The main focus of this fitting procedure lies on the extraction of
R and R∗, as defined in equations 6.1 to 6.4. Therefore, R and R∗ were imple-
mented as free parameters of the fit. They are linked to the lepton and τ signal
by the factors fR and f ∗R. These factors were determined on generic Monte Carlo
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as follows:

fR = RWA ·
D`signal yield
Dτsignal yield

(6.49)

f ∗R = R∗WA ·
D∗`signal yield
D∗τsignal yield

, (6.50)

where R(∗)
WA are the current world average values, which are also used on generic

Monte Carlo. Therefore, the τ signal yield itself is not a free parameter of the
fit, but a function of R(∗) and the lepton signal yield. The shape of the τ signal
component was determined on especially produced τ signal Monte Carlo.

τ cross-feed This component cannot be reliably separated by the fit, as its shape is
very similar to the τ signal. It has to be determined using other information. The
lepton and τ cross-feeds are in reality D∗ lepton or D∗τ signal events, that were
misreconstructed. The same reconstruction error - missing a slow pion or photon
- was made for both components. It is therefore reasonable to assume, that the
two cross-feeds and their corresponding signal components are connected in the
following way:

`CF
D∗`signal

= g · τCF
D∗τsignal

. (6.51)

The factor g takes possible differences between B→D∗`ν` and B→D∗τντ decays
into account, most likely kinematic differences due to the large τ mass. The factor
g is determined on generic Monte Carlo and the τ cross-feed is then determined
in the following way:

τCF =
1
g
·D∗τsignal · `CF

D∗`signal
. (6.52)

The τ cross-feed is therefore not a free parameter of the fit. It is determined by the
free parameters `CF, D∗`signal and D∗τsignal, the latter of which is a function of
R∗, as explained above.

wrong D background The normalisation of this background component was deter-
mined before the actual fit by using D mass sideband data. On generic Monte
Carlo, a factor fSB was determined using Monte Carlo information::

fSB =
wrong D bg yield

# of events in D mass SB
(6.53)

Before the actual fit started, the yield of the wrongD background was determined
by counting the events found in the D mass sidebands. Thus, an estimate for the
wrong D background in the actual fit was obtained:

wrong D bg yield = fSB ·# of events in D mass SB (6.54)

The normalisation of this component was then fixed in the fit.
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wrong D∗ background The normalisation of this background component was deter-
mined before the actual fit by using ∆M(D∗,D) sidebands. Otherwise, the proce-
dure is completely analogous to the wrong D background. The factor connecting
the ∆M(D∗,D) sidebands and the wrong D∗ component is f ∗SB and defined as

f ∗SB =
wrong D∗ bg yield

# of events in ∆M(D∗,D) SB
(6.55)

D∗∗ background The normalisation of this background component was determined
simultaneously with the actual signal fit by using the D∗∗ enriched sample (see
section 6.12.2). For each component that could be identified in the D∗∗ enriched
sample (see section 6.12.2) a PDF was determined and included in the fit.

Signal This component is fitted simultaneously with the D∗∗ background com-
ponent in the signal sample.

Random π0 to B→D`ν` A random π0 was added to a correctly reconstructed
B→D`ν` decay. This component was fitted simultaneously with the signal
in the actual signal fit. The two yields are connected via a factor fe1. It is
determined on generic Monte Carlo as follows:

Random π0 to D` signal yield = fe1 · B→D`ν` signal yield (6.56)

Random π0 to B→D∗`ν` signal A random π0 was added to an actual B →
D∗`ν` decay. This can happen in the B → D∗`ν`π

0 sample as well as in
the B→ D`ν`π

0 sample (“cross-feed”). These two components were fitted
simultaneously with the B→ D∗`ν` signal in the actual signal fit. The two
yields are connected to the B → D∗`ν` signal via two factors fe2 and f ∗e ,
determined on generic Monte Carlo:

Random π0 to D∗` cross-feed = fe2 · B→D∗`ν` signal yield (6.57)

Random π0 to D∗` signal yield = f ∗e · B→D∗`ν` signal yield (6.58)

Combinatorial background The normalisation is a free parameter of the fit.

With the fitting procedure for the D∗∗ signal component ready, the simultaneous

fitting of the D∗∗ background can be set up: On generic Monte Carlo, a factor f (∗)
D

was determined:

f
(∗)
D =

D∗∗ bg yield in B→D(∗)`ν` sample

signal yield in B→D(∗)`ν`π
0 sample

(6.59)

The normalisation of the D∗∗ background component was fitted simultaneously
with the signal component in the D∗∗ enriched sample, as explained above.

D∗∗ bg yield in B→D(∗)`ν` sample = f (∗)
D · signal yield in B→D(∗)`ν`π

0 sample
(6.60)
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DS background This background component has a very small yield. The yield was
fixed to standard model expectations of the generic Monte Carlo. For the fit on
data, the branching ratio was corrected to the most precise measurements.

wrong lepton background This background component has a very small yield. The
yield was fixed to MC expectation. For the fit on data, the fake lepton rates for
real data were taken into account.

remaining backgrounds This background component has a very small yield and is
fixed to MC expectation.

The full PDF can thus be written as a sum of the following 4 components:

PD = YD`sigPD`sig +YD`CFPD`CF + (R ·YD`sig · fR)PDτsig

+
YD`CF ·YD∗τsig

YD∗`sig · g
PDtcf

+YwrongDPwrongD + (Y enrD
D∗∗`sig · fD )PD∗∗inD +YDS inDPDS inD

+Ywrong charge inDPwrong charge inD +Ywrong`inDPwrong`inD +YDrestPDrest
PenrD = Y enrD

D∗∗`sigP
enrD
D∗∗`sig + (fe1 ·YD`sig)P enrD

Dsig+randomπ0

+ (fe2 ·YD∗`sig)P enrD
D∗sig+randomπ0 +Y enrD

combP
enrD
comb

PD∗ = YD∗`sigPD∗`sig + (R∗ ·YD∗`sig · f ∗R)PD∗τsig

+YwrongD∗PwrongD∗ + (Y enrD∗
D∗∗`sig · f

∗
D )PD∗∗inD∗ +YDS inD∗PDS inD∗

+Ywrong`inD∗Pwrong`inD∗ +YD∗restPD∗rest
PenrD∗ = Y enrD∗

D∗∗`sigP
enrD∗
D∗∗`sig

+ (f ∗e ·YD∗`sig)P enrD∗
D∗sig+randomπ0 +Y enrD∗

comb P
enrD∗
comb

where P stands for a 2-dimensional pdf, consisting of a non-parametric kernel-estimation
pdf (K) in one dimension (M2

miss) and a (sum of) bifurcated Gaussians (G) in the other
dimenson (oNB, trafo.):

P =K(M2
miss) · G(oNB, trafo.)

YD`sig, YD∗`sig, YD`CF, R, R∗, Y enrD
D∗∗`sig, Y enrD∗

D∗∗`sig, Y enrD
comb and Y enrD∗

comb are free parameters of the
fit, Ywrong charge inD is fixed to Monte Carlo expectation in the B+ sample and set to 0
in the B0 sample. fR and f ∗R are factors containing intermediate branching ratios and
efficiencies for the calculation of R and R∗ respectively. g (see equation 6.51), fD , f ∗D (see
equation 6.59), fe1, fe2 and f ∗e (see equations 6.56 to 6.58) are determined from Monte
Carlo simulation. The numerical values of these factors are given in the following sec-
tion. Factors that occur multiple times are coloured to help readability.
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6.13.2. Factors

When performing the simultaneous fitting procedure, the yields of certain components
are linked using a numerical factor, as descried in detail in section 6.13.1. The numer-
ical values of the used factors are given in table 6.19.

Component Eqn Value (B0) Value (B+) Streams

wrong D bg fSB 6.53 0.835± 0.020 0.748± 0.017 5

wrong D∗ bg f ∗SB 6.55 1.628± 0.074 0.737± 0.016 5

D∗∗ bg fD 6.59 1.044± 0.033 1.011± 0.031 10

D∗∗ bg f ∗D 6.59 2.323± 0.114 0.781± 0.047 10

D`ν sig in enr fe1 6.56 0.022± 0.001 0.027± 0.002 10

D∗`ν CF in enr fe2 6.57 0.156± 0.003 0.726± 0.011 10

D∗`ν sig in enr f ∗e 6.58 0.016± 0.001 0.079± 0.003 10

Eff factor for R fR 6.49 3.350± 0.106 3.381± 0.115 10

Eff factor for R∗ f ∗R 6.50 5.719± 0.200 5.192± 0.232 10

τ CF g 6.51 1.137± 0.065 1.450± 0.080 10

Table 6.19.: Factors used for simultaneous fitting determined on 5 or 10 streams of
generic Monte Carlo. Some values could only be calculated using 5 streams
of generic Monte Carlo, because the other 5 streams did not contain non-BB̄
background.

6.13.3. Shapes

The shapes for the individual components described in section 6.13.1 are shown in
figures 6.31 to 6.39. For this illustration, the shapes were determined on all 10 streams
of generic Monte Carlo. An exception is the τ signal shape. This was determined on
signal Monte Carlo, as the sample size yielded from even 10 streams of generic Monte
Carlo was far from the size of the signal Monte Carlo samples.
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Figure 6.31.: Lepton signal shapes determined on 10 streams of generic Monte Carlo.
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Figure 6.32.: τ signal shapes determined on signal Monte Carlo.
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(a) B0→D−`+ν` lepton cross-feed
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(b) B0→D−`+ν` τ cross-feed
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Figure 6.33.: Lepton and τ cross-feed shapes determined on 10 streams of generic
Monte Carlo.
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Figure 6.34.: D∗∗ background shapes determined on 10 streams of generic Monte Carlo.
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Figure 6.35.: Wrong D(∗) background shapes determined on 10 streams of generic
Monte Carlo.
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Figure 6.36.: Wrong lepton background shapes determined on 10 streams of generic
Monte Carlo.
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Figure 6.37.: DS background shapes determined on 10 streams of generic Monte Carlo.
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Figure 6.38.: Remaining background shapes determined on 10 streams of generic
Monte Carlo.
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Figure 6.39.: Wrong charge cross-feed background shapes determined on 10 streams of
generic Monte Carlo.
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6.13.4. Illustration

Figure 6.40 tries to illustrate the rather complicated web of simultaneously fitted yields.
The words in parentheses in figure 6.40 only try to clarify the intention behind the si-

lepton signal (free)

tau signal (free from R)

lepton cross-feed (free)

tau cross-feed (sim) 

D** background (sim)

others (fixed)

D** signal (free)

D l nu + random π (sim)

D* l nu + random π (sim)

others (free)

D** signal (free)

D l nu + random π (sim)

D* l nu + random π (sim)

others (free)

lepton signal (free)

tau signal (free from R*)

D** background (sim)

others (fixed)

D l ν D* l ν

D l ν + π D* l ν + π

Figure 6.40.: Visualisation of the simultaneous fitting procedure.

multaneous fitting. Take, for instance, the signal component in the sample. It is
labelled as “free”, whereas the D∗∗ background in the B→ D`ν` sample is labelled as
“sim” (simultaneously). The message is that the normalisation of the D∗∗ background
is constrained by the D∗∗ signal component in the sample. In reality, this is a simulta-
neous fit, so in a manner of speaking, both component constrain each other 5.

5Usually, the statistically dominant component(s) in the simultaneous fits are the “free” ones
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6.14. Expected Yields

Based on the 5 available complete streams of generic Monte Carlo, the expected yields
of the components were calculated. They are listed in tables 6.20 and 6.21. These
numbers were produced on a sample which was reweighted for tag side bias, the lepton
fake rate and the D∗∗ background shape.

Component B0→D−`+ν` B+→D
0
`+ν`

Lepton Signal 1173.93 2306.16

Tau Signal 110.15 205.03

Lep Cross-Fee 1198.43 7184.14

Tau Cross-Fee 45.13 255.02

Wrong D 495.58 820.58

D** 191.60 469.99

Wrong Lepton 44.38 122.50

Charge Cross-Feed 0.00 183.56

DS 14.26 55.87

Rest 24.69 83.60

Table 6.20.: Yield expectations for the individual components in the B→ D`ν` signal
sample with oNB(R) > 0.2. Best candidate selection done at random.

Component B0→D∗−`+ν` B+→D
∗0
`+ν`

Lepton Signal 1960.41 2557.09

Tau Signal 86.31 117.89

Wrong D* 297.13 1469.66

D** 145.45 149.17

Wrong Lepton 28.12 29.10

DS 11.70 9.44

Rest 4.78 3.73

Table 6.21.: Yield expectations for the individual components in the B→ D∗`ν` signal
sample with oNB(R∗) > 0.1.. Best candidate selection done at random.
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6.15. Toy Study

In order to check the fit model, a toy Monte Carlo study has been performed. Accord-
ing to the pdfs described in section 6.13, 2-dimensional datasets were generated. The
shapes of the pdfs were determined on 10 streams of generic Monte Carlo. This study
was performed with oNB(R) > 0.2 and oNB(R∗) > 0.1 (see section 6.18). The generated
yields of the components were sampled from Poisson distributions the means of which
are the expected numbers of events according to generic Monte Carlo expectations. Six
samples were produced:

• The D signal sample,

• the D∗ signal sample,

• the D mass sideband,

• the ∆M(D∗,D) sideband,

• the D∗,∗ enriched sample from the D signal sample and

• the D∗,∗ enriched sample from the D∗ signal sample.

The fitting procedure described in section 6.13 was then applied and the resulting
yields and errors for each component saved. A pull distribution, defined as

pull =
Yield−Expectation

Error
(6.61)

was calculated.
Overall, 1000 iterations were performed and the resulting distributions for fit yields,
errors and pulls can be found in figures 6.41 to 6.72. Gaussian pdfs were fitted to the
distributions and the mean and width of these Gaussians are also noted on the plots.
A bias in the fit would manifest itself in the pull distributions: A mean of the fitted
Gaussian which would be signifcantly different from zero would indicate a bias.
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6.15.1. B0→D−`+ν` Sample
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Figure 6.41.: Toy Monte Carlo study, B0 → D−`+ν` sample, R. Generated values are
coloured blue.
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Figure 6.42.: Toy Monte Carlo study, B0 → D−`+ν` sample, lepton signal. Generated
values are coloured blue.
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Figure 6.43.: Toy Monte Carlo study, B0→ D−`+ν` sample, τ signal. This is not a free
parameter of the fit.. Generated values are coloured blue.
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Figure 6.44.: Toy Monte Carlo study, B0 → D−`+ν` sample, lepton cross-feed. Gener-
ated values are coloured blue.
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Figure 6.45.: Toy Monte Carlo study, B0 → D−`+ν` sample, tau cross-feed. This is not
a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.46.: Toy Monte Carlo study, B0→D−`+ν` sample, wrong D background. This
is not a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.47.: Toy Monte Carlo study, B0→D−`+ν` sample, sideband. Generated values
are coloured blue.
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Figure 6.48.: Toy Monte Carlo study, B0→D−`+ν` sample, D∗∗ background. This is not
a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.49.: Toy Monte Carlo study, B0 → D−`+ν`π
0 sample, D∗∗ signal. Generated

values are coloured blue.
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6.15.2. B0→D∗−`+ν` Sample
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Figure 6.50.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, R∗. Generated values are
coloured blue.
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Figure 6.51.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, lepton signal. Generated
values are coloured blue.
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Figure 6.52.: Toy Monte Carlo study, B0→ D∗−`+ν` sample, τ signal. This is not a free
parameter of the fit.. Generated values are coloured blue.
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Figure 6.53.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, wrong D∗ background.
This is not a free parameter of the fit.. Generated values are coloured
blue.
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Figure 6.54.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, sideband. Generated val-
ues are coloured blue.
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Figure 6.55.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, D∗∗ background. This is
not a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.56.: Toy Monte Carlo study, B0 → D∗−`+ν`π
0 sample, D∗∗ signal. Generated

values are coloured blue.
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6.15.3. B+→D
0
`+ν` Sample
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Figure 6.57.: Toy Monte Carlo study, B+ → D
0
`+ν` sample, R. Generated values are

coloured blue.
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Figure 6.58.: Toy Monte Carlo study, B+ → D
0
`+ν` sample, lepton signal. Generated

values are coloured blue.
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Figure 6.59.: Toy Monte Carlo study, B+→ D
0
`+ν` sample, τ signal. This is not a free

parameter of the fit.. Generated values are coloured blue.
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Figure 6.60.: Toy Monte Carlo study, B+ → D
0
`+ν` sample, lepton cross-feed. Gener-

ated values are coloured blue.
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Figure 6.61.: Toy Monte Carlo study, B+ → D
0
`+ν` sample, tau cross-feed. This is not

a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.62.: Toy Monte Carlo study, B+→D
0
`+ν` sample, wrong D background. This

is not a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.63.: Toy Monte Carlo study, B+→D
0
`+ν` sample, sideband. Generated values

are coloured blue.
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Figure 6.64.: Toy Monte Carlo study, B+→D
0
`+ν` sample, D∗∗ background. This is not

a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.65.: Toy Monte Carlo study, B+ → D
0
`+ν`π

0 sample, D∗∗ signal. Generated
values are coloured blue.
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6.15.4. B+→D
∗0
`+ν` Sample
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Figure 6.66.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, R∗. Generated values are

coloured blue.
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Figure 6.67.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, lepton signal. Generated

values are coloured blue.
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Figure 6.68.: Toy Monte Carlo study, B+→ D
∗0
`+ν` sample, τ signal. This is not a free

parameter of the fit.. Generated values are coloured blue.
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Figure 6.69.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, wrong D∗ background.

This is not a free parameter of the fit.. Generated values are coloured
blue.
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Figure 6.70.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, sideband. Generated val-

ues are coloured blue.
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Figure 6.71.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, D∗∗ background. This is

not a free parameter of the fit.. Generated values are coloured blue.
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Figure 6.72.: Toy Monte Carlo study, B+ → D
∗0
`+ν`π

0 sample, D∗∗ signal. Generated
values are coloured blue.
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6.15.5. Conclusion

The pull distributions for R and R∗ are all well-compatible with a Gaussian of mean
0.0 and width 1.0 . The lepton signal component can also be extracted correctly in
B → D`ν` channels. The lepton signal seems to have a small bias in the B → D∗`ν`
channels. Let us for instance consider channel B+ → D

∗0
e+νe (figure 6.67). The mean

of the pull is shifted to −0.310. From equation 6.61, we see that this means that the
extracted yield is on average 31% of the extracted error larger than the generated value.
31% of a mean error of 63 events leads to a bias of ∼ 20 events. Compared to an overall
expected yields of 3170 events, this bias of 20 events seems negligible. The correct pull
distribution for R and R∗ (in which the lepton signal enters) support this claim.
τ signal and cross-feed, wrong D(∗) and D∗∗ backgrounds are not free parameters of the
fit and are merely shown here for clarity and completeness. It can be directly seen that
wrongD(∗) andD∗∗ backgrounds are deduced fromM(D) and ∆M(D∗,D) sidebands and
theD∗∗ enriched sample, respectively. Overall, the toy Monte Carlo study did not reveal
any major issues in the fitting procedure.

172



Chapter 6. Signal Side 6.16. Corrected Expected Yields

6.16. Corrected Expected Yields

If we take into account our current best knowledge of what to expect on real data,
tables 6.20 and 6.21 in section 6.14 can be recalculated. Our knowledge of what to
expect on data stems from the following sources:

1. Fitted yields of the B→D(∗)`ν` samples. See section 6.11.

2. Yields from M(D) and ∆M(D∗D) sidebands of real data.

3. Fit to the D∗∗ enhanced samples on real data. See section 6.12.

4. Previous measurements of R and R∗ by the BaBar collaboration [56].

Table 6.22 summarises the corrections for the expected yields. The corrections of

Decay Channel Fit X Sideband Data D∗∗ enriched BaBar

MC Data MC Data MC Data MC Data

B0→D−e+νe 1132 1138 570 574 186 112 0.297 0.440

B0→D∗−e+νe 1848 2012 150 216 82 30 0.251 0.332

B+→D
0
e+νe 2129 2228 946 1083 424 154 0.297 0.440

B+→D
∗0
e+νe 2171 1846 1014 1254 189 77 0.251 0.332

Table 6.22.: Data-driven corrections to the expected yields. The first line indicates
where our knowledge of data comes from.

the yields are simply the fractions Data
MC obtained from table 6.22. If they are applied,

tables 6.23 and 6.24 are obtained. Additional toy Monte Carlo studies were
performed with these corrected yields. The results can be seen in figures 6.73 to 6.76.
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Figure 6.73.: Toy Monte Carlo study, B0 → D−`+ν` sample, R. Generated values are
coloured blue.
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Component B0→D−`+ν` B+→D
0
`+ν`

Lepton Signal 1178.30 2318.06

Tau Signal 163.88 304.54

Lep Cross-Fee 1275.12 5143.80

Tau Cross-Fee 63.37 227.85

Wrong D 550.03 835.13

D** 114.79 159.50

Wrong Lepton 43.78 106.00

Charge Cross-Feed 0.00 181.63

DS 14.30 49.45

Rest 24.69 75.99

Table 6.23.: Yield expectations for the individual components in the B→ D`ν` signal
sample with oNB(R) > 0.2. This table is corrected, taking our current best
knowledge of the data into account.

Component B0→D∗−`+ν` B+→D
∗0
`+ν`

Lepton Signal 2174.91 2715.59

Tau Signal 128.39 171.42

Wrong D* 428.18 2133.79

D** 53.36 69.48

Wrong Lepton 28.81 31.26

DS 11.91 12.84

Rest 4.54 4.39

Table 6.24.: Yield expectations for the individual components in the B→ D∗`ν` signal
sample with oNB(R∗) > 0.1. This table is corrected, taking our current best
knowledge of the data into account.
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Figure 6.74.: Toy Monte Carlo study, B0 → D∗−`+ν` sample, R∗. Generated values are
coloured blue.
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Figure 6.75.: Toy Monte Carlo study, B+ → D
0
`+ν` sample, R. Generated values are

coloured blue.
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Figure 6.76.: Toy Monte Carlo study, B+ → D
∗0
`+ν` sample, R∗. Generated values are

coloured blue.
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6.17. Expected Statistical Uncertainty

An important property of this analysis is the expected relative error on the values of R
and R∗. The toy Monte Carlo studies can provide such estimates. Table 6.25 shows the
expected statistical uncertainty of the measurements of R and R∗. The values are ex-
tracted by fitting Gaussian functions to the error distributions of the toy Monte Carlos.
Values for the generic Monte Carlo expectation (section 6.14, figures 6.41, 6.50, 6.57
and 6.66) and for the expectation closest to data (section 6.16, figures 6.73, 6.74, 6.75
and 6.76) are given in table 6.25. For comparison, the uncertainties of the most recent
measurements by the BaBar collaboration [56] are also included in table 6.25. We

generic Monte Carlo closest expectation BaBar

Channel Value abs rel Value abs rel Value abs rel

B0→D−e+νe 0.294 0.068 23% 0.438 0.074 17% 0.469 0.084 18%

B0→D∗−e+νe 0.252 0.047 19% 0.336 0.046 14% 0.355 0.039 11%

B+→D
0
e+νe 0.293 0.079 27% 0.440 0.078 18% 0.429 0.082 19%

B+→D
∗0
e+νe 0.253 0.036 14% 0.335 0.044 13% 0.322 0.032 10%

Table 6.25.: Expected statistical uncertainties of the measurements of R and R∗. abs:
absolute error, rel: relative error.

can see that the expected relative errors are competitive with those given by the BaBar
collaboration.
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6.18. Determination Of Cut Values On Generic Monte Carlo

The extraction of R and R∗ is performed via 2-dimensional extended maximum like-
lihood fits to M2

missand oNB, trafo.. While it it possible to cut on oNBbefore the fitting
procedure, we do not expect large benefits, as the variable on which the cut would be
performed (oNB) is already included in the fit, albeit in a transformed way. The correla-
tion analysis described in section 6.7.1 suggests however, that cuts of oNB(R) > 0.2 and
oNB(R∗) > 0.1 would reduce the correlations between these two variables largely. The
final fitting procedure was performed for different cut values on oNB and the resulting
values for R and R∗ are plotted in figures 6.77 to 6.80. Cut value of oNB(R) > 0.2 and
oNB(R∗) > 0.1 seem optimal, as they result in still relatively small statistical errors on
the fit result, while the correlation is found to be insignificant. The fits were performed
on the 5 complete streams of generic Monte Carlo, the shapes and factors were deter-
mined on the 9 streams of generic Monte Carlo that were not used for fitting. Table 6.26
summarises the usage of the samples.

Fit on Shapes and ratios determined on

Generic Monte Carlo, stream 0 Generic Monte Carlo, streams 1,2,3,4,5,6,7,8,9

Generic Monte Carlo, stream 1 Generic Monte Carlo, streams 0,2,3,4,5,6,7,8,9

Generic Monte Carlo, stream 2 Generic Monte Carlo, streams 0,1,3,4,5,6,7,8,9

Generic Monte Carlo, stream 3 Generic Monte Carlo, streams 0,1,2,4,5,6,7,8,9

Generic Monte Carlo, stream 4 Generic Monte Carlo, streams 0,1,2,3,5,6,7,8,9

Table 6.26.: Samples used for the fits on generic Monte Carlo.

With the cut fixed at oNB(R) > 0.2 and oNB(R∗) > 0.1, the results of the fits to the sig-
nal side are summarised in figure 6.81. The resulting values for R and R∗ are well-
compatible with the expectation, while the uncertainties are consistent with the expec-
tations from toy Monte Carlo studies (see section 6.17). Exemplary fit projections can
be found in figures 6.82 to 6.85.
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(a) The five results for each cut correspond to the 5 streams of generic Monte Carlo. The red line indicates
the expected value of R = 0.297.
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Figure 6.77.: Fit results and average absolute error on R for different cut values of oNB
in channel B0→D−`+ν`.
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(a) The five results for each cut correspond to the 5 streams of generic Monte Carlo. The red line indicates
the expected value of R = 0.251.
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Figure 6.78.: Fit results and average absolute error on R for different cut values of oNB
in channel B0→D∗−`+ν`.
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(a) The five results for each cut correspond to the 5 streams of generic Monte Carlo. The red line indicates
the expected value of R = 0.297.
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Figure 6.79.: Fit results and average absolute error on R for different cut values of oNB

in channel B+→D
0
`+ν`.
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Figure 6.80.: Fit results and average absolute error on R for different cut values of oNB

in channel B+→D
∗0
`+ν`.
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Figure 6.81.: Summary of the results of the fits to the signal samples on generic Monte
Carlo. The lines are from top to bottom: Generic Monte Carlo streams
0,1,2,3 and 4.
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6.19. Simultaneous Signal Extraction Fit

The fits described in section 6.18 are well-suited to extract the B→D(∗)τντ signal com-
ponents. There are, however, disadvantages: Two different fits are performed on two
different samples: One fit on the B0 sample, one fit on the B+ sample. This means, that
two different values for R and two different values for R∗ are extracted, where in reality
we expect only one value each. Additionally, the treatment of the correlation between
R and R∗ is simplified when there is only one value each. The alternative is to fit both
the B0 and B+ samples simultaneously, as already mentioned in section 6.13. While we
have only considered the two independent fits up to this point, let us now consider the
simultaneous fit to the combined B0 and B+ sample6.

The actual fitting procedure is very similar to the two independent fits presented until
now. There are two places, where the simultaneous fitting of the B0 and B+ samples is
utilized:

1. There is only one common value fro R and only one common value for R∗ in the
fit.

2. The wrong charge cross-feed in the B+ → D
0
`+ν` sample (see section 6.10) can

now be constrained by using B0 → D∗−`+ν` lepton signal. The two yields are
connected by a factor fwc = 0.091± 0.003.

Other than those two points, the fitting procedure is identical. The results of this fitting
procedure applied to generic Monte Carlo are summarized in figure 6.86. Again, a sin-
gle stream of generic Monte Carlo was used for fitting, while the shapes and factors (see
sections 6.13.3 and 6.13.2) were determined on the remaining streams. See table 6.26
for a detailed description.

Let us compare the results from this simultaneous fitting with the results obtained
from fitting two separate samples shown in figure 6.81. We see that the uncertainty
of the results in figure 6.86 have the same size that would be obtained by making a
weighted mean from the results in figure 6.81. This behaviour is expected from samples
that are in good approximation statistically independent. Projections of the individual
subsamples can be found in figures 6.87 to 6.90.

6Described as “double-simultaneous” fit in section 6.13
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R
0.2 0.4

 0.052 MC:0.297±0.261 

 0.057 MC:0.297±0.278 

 0.052 MC:0.297±0.334 

 0.052 MC:0.297±0.313 

 0.053 MC:0.297±0.266 

(a) B0→D−`+ν`

Rst
0.1 0.2 0.3 0.4

 0.028 MC:0.252±0.281 

 0.030 MC:0.252±0.314 

 0.028 MC:0.252±0.261 

 0.026 MC:0.252±0.227 

 0.028 MC:0.252±0.274 

(b) B0→D∗−`+ν`

Figure 6.86.: Summary of the results of the fits to the signal samples on generic Monte
Carlo. The lines are from top to bottom: Generic Monte Carlo streams
0,1,2,3 and 4.
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In conclusion, the procedure of extracting R and R∗ by a simultaneous fit to the com-
bined B0 and B+ sample has produced the expected results. It is the method of choice
for extracting R and R∗, while the two independent fits to the B0 and B+ samples pro-
vide a useful alternative and cross-check.
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6.20. Results

As mentioned before the fit to data was performed in two ways.

1. Two independent fits, one to the B0 sample, the other one to the B+ sample. This
procedure is described in section 6.18.

2. One fit, simultaneously to the B0 and the B+ sample. This procedure is described
in section 6.19.

Both fits were applied to real data. The free and fixed parameters and the factors con-
necting certain yields within the simultaneous fitting procedure are described in detail
in sections 6.18 and 6.19.

The results of the fits to real data are summarised in table 6.27 and visualised together
with the Standard Modelexpectation in the R, R∗ plane in figures 6.91 to 6.93.

Channel R(∗) Nτ N` B(B→D(∗)τντ )

B+→D
0
`+ν` 0.271 + 0.083 −0.081 194.6± 59.6 2402.0± 63.9 0.61± 0.19

B+→D
∗0
`+ν` 0.265 + 0.037 −0.036 127.0± 17.4 2604.7± 46.2 1.51± 0.22

B0→D−`+ν` 0.126 + 0.063 −0.060 45.0± 22.0 1134.7± 38.9 0.27± 0.14

B0→D∗−`+ν` 0.267 + 0.047 −0.044 98.7± 16.7 2106.8± 46.5 1.32± 0.23

B→D`ν` 0.199 + 0.051 −0.050
(B+) 143.6± 36.4 (B+) 2409.9± 63.9

(B0) 71.1± 18.0 (B0) 1131.8± 38.8

B→D∗`ν` 0.276 + 0.027 −0.027
(B+) 131.2± 12.8 (B+) 2583.4± 45.4

(B0) 102.7± 10.0 (B0) 2118.3± 46.5

Table 6.27.: Final results

The branching ratios in table 6.27 were calculated from the measured factors R(∗) and
the current world average values for the corresponding B→D(∗)`ν` decays [2]:

B(B→D(∗)τντ ) = R(∗) · B(B→D(∗)`ν`)WA (6.62)

The errors on the branching ratios were calculated by propagating the errors on R∗ and
the B→D(∗)`ν` branching ratios:

∆B(B→D(∗)τντ ) =

√(
∆R(∗)

R(∗)

)2

+
(
∆B(B→D(∗)`ν`)WA

B(B→D(∗)`ν`)WA

)2

· B(B→D(∗)τντ ) (6.63)

As the errors on R∗ are asymmetric, the larger of the two values was used.
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Figure 6.91.: Fit result with 1,2 and 3σ contours and Standard Model expectation in the
R, R∗ plane. Fit to the combined B0 and B+ sample. Fit result: red, BaBar
result: blue, Standard Model: green.

The simultaneous fit to the combined B0 and B+ sample yields a result that is in excel-
lent agreement with the Standard Model expectation [21] and deviates from the Stan-
dard Modelby less than 2σ . It is visualised in figure 6.91. We can not see a significant
reduction towards lower values of R, as expected from Minimal Supersymemtic Stan-
dard Models, explained in chapter 2.3.1 and in reference [16, 22]. We can also not
reproduce the τ signal excess observed by the BaBar collaboration [56], which was in
disagrement with the Standard Model and the usual type-II (see chapter 2.3.1) sce-
nario [86, 87].
The two independent fits individually yield similar results: The fit to the B0 sample,
shown in figure 6.92 is also in agreement with the Standard Model, although the value
of R = 0.126+0.063

−0.060 deviates by slightly more than 2σ from it. The extracted value of
R∗ = 0.267+0.047

−0.044 is in good agreement with the Standard Model expectation.

The fit to the B+ sample, shown in figure 6.93 is in good agreement with the Standard
Model. The value of R = 0.271+0.083

−0.081 as well as the value of R∗ = 0.265+0.037
−0.036 is in good

agreement with the Standard Model expectation. Projections of the fits can be found in
figures 6.94 to 6.101.

The statistical uncertainty of this analysis could be significantly reduced compared to
the previous analysis using hadronic tagging (see section 6.1 and reference [54]). They
were reduced from ∼ 0.2 for R and ∼ 0.1 for R∗ (see table 6.1 for more details) to ∼ 0.08
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Figure 6.92.: Fit result with 1,2 and 3σ contours and Standard Model expectation in
the R, R∗ plane. Fit to the B0 sample. Fit result: red, BaBar result: blue,
Standard Model: green.

for R and ∼ 0.04 for R∗. This improvement is partly due to the 17.4% larger available
data set, but the largest effect comes from the new Full Reconstruction algorithm, which
effectively doubled the available dataset with respect to the previous analysis.
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Figure 6.93.: Fit result with 1,2 and 3σ contours and Standard Model expectation in
the R, R∗ plane. Fit to the B+ sample. Fit result: red, BaBar result: blue,
Standard Model: green.
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6.21. Systematic Uncertainties

The measurements of R and R∗ are relative measurements:

R(∗) =
B→D(∗)`ν`
B→D(∗)τντ

(6.64)

We expect therefore many uncertainties, especially those related to detector effects to
cancel in the ratio. Such effects include soft pion reconstruction (from the D∗ decays),
particle identification and final state radiation. Large systematic uncertainties are ex-
pected to come from the limited understanding of the D∗∗ background.

6.21.1. D∗∗ backgrounds

TheD∗∗ background events have a strong influence on the extracted amount of τ signal.
This is because they occupy the same region in the M2

missspectrum. Several factors
contribute to the uncertainty introduced by this background:

• The limited accuracy in the determination of this background by theD∗∗ enriched
samples. Specifically, the uncertainties of the numerical factors fD and f ∗D (see
table 6.19).

• D∗∗ contributions from decays into multi pion final states, which are not simu-
lated on generic Monte Carlo.

• The shape of the known and unknown components of the D∗∗ background.

• The possibility of yet undiscovered radial excitations of the D mesons.

All of these uncertainties considered, a conservative error estimation was performed.
The two factors fD and f ∗D were one by one increased or decreased by 50%. This corre-
sponds to changes in the D∗∗ background yield by 50%. The effects on the values of R
and R∗ are listed in table 6.28. As can be seen from table 6.28, the systematic uncer-

Factor
relative change in sample . . .

B0 B+ combined

fD
R +0.047 −0.026 +0.032 −0.017 +0.031 −0.015

R∗ 0.000 0.000 −0.001 0.000 +0.001 −0.001

f ∗D
R −0.012 +0.004 −0.014 +0.006 −0.014 +0.005

R∗ +0.026 −0.009 +0.009 −0.003 +0.014 −0.005

Table 6.28.: Relative change in the fit results with varied factors in the D∗∗ background
estimation
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tainty can be quite substantial. Especially the measurement of R in the B0 sample has
a large uncertainty. The uncertainties were added in quadrature and are listed in the
summary table 6.32.

6.21.2. Factors For Simultaneous Fitting

All factors that are used in the simultaneous fitting procedure (see table 6.19) were
evaluated using generic Monte Carlo. They are only known up to a certain precision.
To evaluate the effects of this imprecision to the final result, each factor was varied by
its uncertainty. The resulting changes to the extracted values R and R∗ are listed in
table 6.29. It can be seen from this table, that most factors have little influence on
the final result. The largest contribution comes from fR (see equation 6.49) and g (see
equation 6.51). The deviations were added quadratically and are listed in table 6.32.

6.21.3. PDF Shapes

The PDF for all fit componnets have been determined on simulated data and are there-
fore sensitive to differences between data and Monte Carlo. It is known that the resolu-
tion of M2

missmay be not modeled entirely correctly on Monte Carlo. This difference in
resolution should have the largest relative effect on the the lepton signal as this is the
the narrowest of the components. All of the other components, being much broader,
are expected to be less affected by the difference in resolution.

D(∗) lepton signal

The M2
missspectra in the region −0.45 GeV2/c4 < M2

miss < 0.45 GeV2/c4 for data and
Monte Carlo were analysed. A histogram pdf for the lepton signal component and
for the background was taken from 5 streams of the generic Monte Carlo. The signal
component was then transformed according to:

x = (M2
miss − a)/s , (6.65)

where a would indicate a shift of the histogram pdf and s a widening of it. The sum
of the tranformed signal histogram pdf and the background histogram pdf was then
fitted to the data sample. The results are summarised in table 6.30. These obtained
corrections were then applied when fitting data. Only the normalisation data sample
(M2

miss < 1.5 GeV/c2) was fitted, as described in section 6.11. The lepton signal pdf
was changed to a histogram pdf. The fit was then performed with and without the
application of the relative widenings and shifts listed in table 6.30. The results of the
fits are listed in table The relative changes are all at most in the order of 0.1%, most
are even much smaller. Compared to the relatively large uncertainties brought by the
D∗∗ background, this component is completely negligible.
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B0 Sample B+ Sample Combined Sample

+1σ −1σ +1σ −1σ +1σ −1σ

fSB
R −0.0020 +0.0020 +0.0011 −0.0011 −0.0007 +0.0007

R∗ −0.0008 +0.0008 −0.0014 +0.0014 −0.0008 +0.0009

f ∗SB
R +0.0001 −0.0001 +0.0022 −0.0020 +0.0009 −0.0008

R∗ −0.0018 +0.0018 −0.0023 +0.0021 −0.0018 +0.0018

fe1
R +0.0011 −0.0011 +0.0003 −0.0003 +0.0008 −0.0008

R∗ +0.0001 −0.0000 +0.0000 −0.0001 −0.0000 +0.0000

fe2
R +0.0044 −0.0045 +0.0027 −0.0026 +0.0035 −0.0036

R∗ +0.0005 −0.0005 +0.0007 −0.0008 +0.0006 −0.0006

f ∗e
R −0.0007 +0.0006 −0.0017 +0.0018 −0.0010 +0.0010

R∗ +0.0013 −0.0013 +0.0009 −0.0010 +0.0008 −0.0008

fR
R +0.0056 −0.0056 +0.0088 −0.0088 +0.0083 −0.0083

R∗ +0.0000 +0.0000 +0.0000 +0.0000 −0.0004 +0.0004

f ∗R
R +0.0000 −0.0000 +0.0001 +0.0001 −0.0003 +0.0003

R∗ +0.0131 −0.0131 +0.0111 −0.0112 +0.0123 −0.0123

g
R +0.0095 −0.0110 +0.0169 −0.0176 +0.0135 −0.0145

R∗ +0.0002 −0.0005 +0.0022 −0.0028 +0.0023 −0.0028

fwc
R +0.0001 −0.0001

R∗ 0.0000 0.0000

Table 6.29.: Absolute change in the extracted values for R and R∗.

All Other Shapes

While the uncertainty on the lepton signal shape has little impact on the fit result,
this might be different for other components. Especially those that are similar to the τ
signal shape may have a noticeable influence on the result. To evaluate this behaviour,
the shapes of all components were changed and the fit was repeated. As the shapes
in M2

missare determined by Kernel estimation functions (see [76]), the bandwidth of
these functions was varied by 50%. The resulting relative changes are summarized in
table 6.32. The effect of the varied bandwidth in the kernel estimation is in most cases
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Channel s a

B0→D−e+νe 1.004± 0.004 (0.7± 0.7)× 10−3

B0→D∗−e+νe 1.033± 0.001 (3.7± 0.2)× 10−3

B+→D
0
e+νe 1.017± 0.003 (−4.8± 0.8)× 10−3

B+→D
∗0
e+νe 0.998± 0.003 (1.7± 0.8)× 10−3

Table 6.30.: Relative widening s and shift a of the lepton signal

Channel Change Lepton Signal Rel. Change

B0→D−`+ν`
original 1609.0

transformed 1609.0 0%

B0→D∗−`+ν`
original 2727.7

transformed 2727.2 < 0.1%

B+→D
0
`+ν`

original 3384.3

transformed 3379.8 0.13%

B+→D
∗0
`+ν`

original 4176.7

transformed 4175.4 < 0.1%

Table 6.31.: Influence of the relative widening s and shift a of the lepton signal.

smaller than the uncertainties coming from the D∗∗ background or the factors used in
the simultaneous fitting procedure.

6.21.4. Summary

Table 6.32 lists all of the systematic uncertainties discussed above. With these system-
atic uncertainties, the result of the simultaneous fit to the combined B0 and B+ sample
is the following:

R = 0.199+0.051
−0.050(stat.)+0.037

−0.027(syst.) (6.66)

R∗ = 0.276+0.027
−0.027(stat.)+0.019

−0.017(syst.) (6.67)
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Source B0 Sample B+ Sample Combined Sample

D∗∗
R +0.047 −0.029 +0.033 −0.022 +0.031 −0.021

R∗ +0.026 −0.009 +0.009 −0.003 +0.014 −0.005

Factors
R +0.012 −0.019 +0.019 −0.020 +0.016 −0.017

R∗ +0.013 −0.013 +0.012 −0.012 +0.013 −0.013

Bandwidth
R +0.011 −0.000 +0.017 −0.000 +0.013 −0.004

R∗ +0.000 −0.018 +0.000 −0.016 +0.000 −0.010

Quad. Sum
R +0.050 −0.035 +0.042 −0.030 +0.037 −0.027

R∗ +0.029 −0.024 +0.015 −0.020 +0.019 −0.017

Table 6.32.: Absolute systematic uncertainties from various sources.

The result of the two independent fits to the B0 and the B+ sample is:

R0 = 0.126+0.063
−0.060(stat.)+0.050

−0.035(syst.) (6.68)

R∗0 = 0.267+0.047
−0.044(stat.)+0.029

−0.024(syst.) (6.69)

R+ = 0.271+0.083
−0.081(stat.)+0.042

−0.030(syst.) (6.70)

R∗+ = 0.265+0.037
−0.036(stat.)+0.015

−0.020(syst.) (6.71)

The largest systematic uncertainty comes from the D∗∗ background. For each measure-
ment, the statistical uncertainty is dominant over the systematic uncertainty. Assuming
that the systematic uncertainties do not change the overall correlation between R and
R∗, the contour plots visualising the results have been redone. They can be found in fig-
ures 6.102 to 6.104. These contour plots also include 1,2 and 3σ contours for the BaBar
results. they are calculated using the errors and correlations given in reference [56].
With the prospect of a vastly larger data sample, provided by the future Super B-
factories [88], B → D(∗)τντ remains an interesting channel to consider for indirect
searches for new physics effects [89, 90]. Possible improved understanding of the D∗∗

decays might help in the future to further increase the sensitivity of analyses similar to
the one presented in this thesis.
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Figure 6.102.: Fit result with 1,2 and 3σ contours and Standard Model expectation in
the R, R∗ plane. Fit to the combined B0 and B+ sample. Fit result: red,
BaBar result: blue, Standard Model: green.
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Figure 6.103.: Fit result with 1,2 and 3σ contours and Standard Model expectation in
the R, R∗ plane. Fit to the B0 sample. Fit result: red, BaBar result: blue,
Standard Model: green.
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Figure 6.104.: Fit result with 1,2 and 3σ contours and Standard Model expectation in
the R, R∗ plane. Fit to the B+ sample. Fit result: red, BaBar result: blue,
Standard Model: green.
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7. Conclusion

The presented thesis consisted of two major parts. Let us start with the second part, for
a change. The second part described the analysis of the decay B→ D(∗)τντ . The goal
of this analysis was the extraction of the values R and R∗, defined as

R =
B(B→Dτντ )
B(B→D`ν`)

and

R∗ =
B(B→D∗τντ )
B(B→D(∗)`ν`)

.

The τ leptons were reconstructed from their purely leptonic decays. Thus, the final
states of B→ D(∗)τντ decays differed from those of B→ D(∗)`ν` decays only by two
additional, undetectable neutrinos. This is the point, where part one of the presented
thesis comes into play.

In part one of this thesis the development of an improved hadronic tagging algorithm,
the Full Reconstruction, was described. This algorithm allows to measure missing mo-
mentum in a BB̄ event indirectly. The efficiency of the Full Reconstructioncould be dou-
bled compared to its predecessor. As shown in figure 7.1, the overall performance in
terms of purity and efficiency is largely improved. This improvement could be achieved
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Figure 7.1.: The purity-efficiency curves for the Btag sample provided by the Full
Reconstruction.

in part by the addition of more B meson decay channels to the algorithm, but largely
due to the advanced reconstruction procedure, heavily utilising the NeuroBayes pack-
age.
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Chapter 7. Conclusion

With this improved hadronic tagging, the analysis of the decay B→ D(∗)τντ could be
performed on the entire Belle dataset of 771f b−1 with a hadronic tagging efficiency of
∼ 0.2%. The extracted values

R = 0.199+0.051
−0.050(stat.)+0.037

−0.027(syst.) and (7.1)

R∗ = 0.276+0.027
−0.027(stat.)+0.019

−0.017(syst.) (7.2)

are well compatible with the Standard Model expectations of R = 0.297 ± 0.017 and
R∗ = 0.251 ± 0.003. The statistical uncertainties could be reduced significantly with
respect to the previous analysis[54]. The extracted values are visualised in the contour
plot, shown in figure 7.2. Neither the recently found excess by the BaBar collaboration,
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Figure 7.2.: Fit result with 1,2 and 3σ contours and Standard Model expectation in the
R, R∗ plane. Fit to the combined B0 and B+ sample. Fit result: green, BaBar
result: blue, Standard Model: black.

nor charged Higgs effects could be observed.
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A. Appendix

A.1. A Brief Introduction To Feynman Diagrams

The important experimental probes of particle physics are the measurements of life-
times and cross sections. The comparison of the measured values to the theoretical
predictions enables us to strengthen or disprove the theory on which the calculations
were based.
The calculation of lifetimes and cross sections requires two ingredients: [3]

1. The matrix elementM for the process (also referred to as the amplitude)

2. The available phase space (also referred to as the density of final states)

These two ingredients are used in the calculation of the transition rate of a given pro-
cess by an equation, often called “Fermi’s Golden Rule”:

transition rate =
2π
~
|M|2 × (phase space factor) (A.1)

A.1.1. Phase Space

The available phase space depends on the masses, energies and momenta of the initial
and final state particles. Suppose a particle 1 decays into several particles 2, 3, . . . n,
then the decay rate for that process is given by

dΓ ∼ |M|2 ·
[
d3~p2

E2
·
d3~p3

E3
. . .
d3~pn
En

]
× δ4(p1 − (p2 + p3 . . .pn))︸                                                       ︷︷                                                       ︸

phase space factor

, (A.2)

where pi = (Ei/c, ~pi) is the 4 momentum of particle i and the δ function enforces en-
ergy and momentum conservation. Figuratively speaking, the more an initial state
outweighs a final state in terms of mass, energy and momentum, the larger the phase
space factor is, and the more likely a process is to occur. If the initial state only barely
outweighs the final state (e.g. in the decay of the neutron n→ peν̄e), the phase space
and thereby the decay rate is very small.
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Appendix A. Appendix A.1. A Brief Introduction To Feynman Diagrams

A

B

C

D

E
1v 2v

Figure A.1.: A generic Feynman diagram

A.1.2. Matrix Element

The matrix element of a process contains all the dynamical information. The calculation
of the matrix element can be visualised by “Feynman diagrams”. A very generic Feyn-
man diagram is shown in figure A.1. In order to calculate the matrix element for the
generic process depicted in figure A.1, we first look at the vertices v1 and v2 and notate
a factor of

−ig

for each vertex, where g is the coupling constant of the interaction at the vertex. Please
note that during this section, the letter i is reserved for the imaginary unit. The con-
servation of energy and momentum dictates that at each vertex an additional factor
of

(2π4)δ4(k1 + k2 + k3)

comes into the matrix elementM, where kj is the momentum of particle j. The single
internal lines give a factor of

i

q2 −m2c2 ,

where q is the 4-momentum and m the mass of the particle this internal line describes.
The necessary integration over internal momenta yields a factor of

1
(2π)4d

4q

per internal line, where again q is the 4-momentum of the corresponding particle. Fol-
lowing this procedure, we obtain the matrix element −iM. For the diagram shown in
figure A.1, the Matrix element is

−iM = −ig2 1

(pC − pD )2 −m2
Cc

2
(2π)4δ4(pB + pD − pA + pC)) . (A.3)
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Appendix A. Appendix A.2. D Meson Masses

Equation A.3 provides the matrix elementM, which can be directly used to calculate
the transition rate using Fermi’s Golden Rule. The corresponding Feynman Diagram
gives a quick and intuitive overview of the physical process.

A.2. D Meson Masses
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Figure A.2.: D+ meson masses for all channels used on the Signal Side.
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Figure A.3.: D0 meson masses for all channels used on the Signal Side.
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Figure A.4.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.
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Figure A.5.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.
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Figure A.6.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.
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Figure A.7.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.

221



Appendix A. Appendix A.2. D Meson Masses

M(D)
1.80 1.85 1.90 1.95

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Signal box

Sideband boxes

Signal Component

Real Data

P = 0.000000
 Test:2Χ

 

P = 0.000000
Kolmogorov Test:

(a) D0→ K−π+ with oNB > 0.0

M(D)
1.7 1.8 1.9 2.0

0.000

0.005

0.010

0.015

0.020

0.025

Signal box

Sideband boxes

Signal Component

Real Data

P = 0.000000
 Test:2Χ

 

P = 0.000000
Kolmogorov Test:

(b) D0→ K−π+π0 with oNB > 0.0

M(D)
1.80 1.85 1.90 1.95

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Signal box

Sideband boxes

Signal Component

Real Data

P = 0.000000
 Test:2Χ

 

P = 0.000000
Kolmogorov Test:

(c) D0→ K−π+ with oNB > 0.2

M(D)
1.7 1.8 1.9 2.0

0.00

0.02

0.04

0.06

0.08

0.10 Signal box

Sideband boxes

Signal Component

Real Data

P = 0.000338
 Test:2Χ

 

P = 0.001175
Kolmogorov Test:

(d) D0→ K−π+π0 with oNB > 0.2

Figure A.8.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.
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Figure A.9.: D meson mass distributions. Comparison of data (dots with error bars) and
generic Monte Carlo simulation (solid line). The signal and the accepted
signal and sideband regions are highlighted.
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Figure A.10.: D meson mass distributions. Comparison of data (dots with error bars)
and generic Monte Carlo simulation (solid line). The signal and the ac-
cepted signal and sideband regions are highlighted.
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A.3. Signal Side Composition
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Figure A.11.: Background composition for B0 → D−`+ν`, evaluated on 5 streams of
generic Monte Carlo
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Figure A.12.: Background composition for B0 → D∗−`+ν`, evaluated on 5 streams of
generic Monte Carlo
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Figure A.13.: Background composition for B+ → D
0
`+ν`, evaluated on 5 streams of

generic Monte Carlo
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Figure A.14.: Background composition for B+ → D
∗0
`+ν`, evaluated on 5 streams of

generic Monte Carlo
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A.4. Signal-Background Curves

Figure A.15.: Signal and background for different cuts on oprod for all D+ decay chan-
nels in the Full Reconstruction
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Figure A.16.: Signal and background for different cuts on oprod for all D0 decay chan-
nels in the Full Reconstruction

Figure A.17.: Signal and background for different cuts on oprod for all DS decay chan-
nels in the Full Reconstruction
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Figure A.18.: Signal and background for different cuts on oprod for all D∗(S) decay chan-

nels in the Full Reconstruction

Figure A.19.: Signal and background for different cuts on oprod for all B+ decay channels
in the Full Reconstruction
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Figure A.20.: Signal and background for different cuts on oprod for all B0 decay channels
in the Full Reconstruction
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A.5. NeuroBayes Trainings of the Full Reconstruction

Name Variable

ATC PID binned 23 Particle ID π+ vs K+

dEdx pull [(dE/dx)measured − (dE/dx)expected,π]/σ (dE/dx)
PID eid Particle ID e+

PID muid Particle ID µ+

PID eid flag Flag, if Particle ID e+ exists
ATC PID binned 21 Particle ID π+ vs µ+

acc pid PID information from ACC only
tof pid PID information from TOF only
pt pt
ATC PID binned 24 Particle ID π+ vs p+

ATC PID binned 20 Particle ID π+ vs e+

PID muid flag Flag, if Particle ID µ+ exists
dEdx ratio (dE/dx)measured/(dE/dx)expected,µ
energy E
trk pid PID information from TRK only
ptot |p|

Table A.1.: Variables used in the π± training
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Appendix A. Appendix A.5. NeuroBayes Trainings of the Full Reconstruction

Name Variable

ATC PID binned 32 Particle ID K+ vs π+

ATC PID binned 34 Particle ID K+ vs p+

acc pid PID information from ACC only
tof pid PID information from TOF only
energy E
dEdx pull [(dE/dx)measured − (dE/dx)expected,K ]/σ (dE/dx)
PID eid flag Flag, if Particle ID e+ exists
PID eid Particle ID e+

trk pid PID information from TRK only
ATC PID binned 30 Particle ID K+ vs e+

PID muid Particle ID µ+

pt pt
PID muid flag Flag, if Particle ID µ+ exists
dEdx ratio (dE/dx)measured/(dE/dx)expected,K
ATC PID binned 31 Particle ID K+ vs µ+

ptot |p|

Table A.2.: Variables used in the K± training

Name Variable

dPhi ∆φ from Ks finder
mass m
dr ∆r from Ks finder
Z dist Zdist of the two helices
Intersect Type of intersection of the two helices
PMag |p| from Ks finder
ptot |p|
pz pz
px px
py py
Chi2 χ2 of the fit
energy E
pt pt

Table A.3.: Variables used in the K0
S training
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Name Variable

EA seed ECL AUX energy of seed cell
EA width ECL AUX RMS shower width
EA e9 ECL AUX E9/E25: photon-like & isolation cut
energy E
dPhi ∆φ from Ks finder (converted photons only)
ECL en ECL energy in the cluster
EA cID ECL AUX ID of seed cell
EA nhits ECL AUX crystals in the cluster
EA e9unf ECL AUX E9/E25: photon-like & isolation cut unfolded
Z dist Distance in z of the two helices (converted photons only)
dr ∆r from Ks finder (converted photons only)
PMag |p| from Ks finder (converted photons only)
pt pt
Intersect Type of intersection of the two helices (converted photons

only)
Ks goodKs goodKs Variable from Ks finder (converted photons only)
ptot |p|
Chi2 χ2 of the fit (converted photons only)

Table A.4.: Variables used in the γ training
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Name Variable

Pi0ChildrenAngle Angle of the two γ coming from π0 in the lab frame
Pi0Mass m
energy E
Pi01EA seed ECL AUX γ1 energy of seed cell
Pi00EA seed ECL AUX γ0 energy of seed cell
Pi00EA cID ECL AUX γ0 ID of seed cell
Pi0GammaMatch ECL γ0 and γ1 info if clusters match with tracks from CDC
Pi01EA width ECL AUX γ1 RMS shower width
Pi00EA width ECL AUX γ0 RMS shower width
pt pt
Pi01EA cID ECL AUX γ1 ID of seed cell
Pi00EA e9 ECL AUX γ0 E9/E25: photon-like & isolation cut
Pi01EA e9 ECL AUX γ1 E9/E25: photon-like & isolation cut
Pi01EA e9unf ECL AUX γ1 E9/E25: photon-like & isolation cut unfolded
Pi00EA e9unf ECL AUX γ0 E9/E25: photon-like & isolation cut unfolded
Pi01EA nhits ECL AUX crystals in γ1 cluster
Pi00ECL en ECL γ0 energy in the cluster
Pi01ECL en ECL γ1 energy in the cluster
Pi00EA nhits ECL AUX crystals in γ0 cluster
ptot |p|

Table A.5.: Variables used in the π0 training
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Name Variable

PID eid Particle ID e+

ATC PID binned 02 Particle ID e+ vs. π+ binned
trk pid PID information from TRK only
pt pt
ATC PID binned 01 Particle ID e+ vs. µ+ binned
ATC PID binned 03 Particle ID e+ vs. K+ binned
PID eid flag Flag, if Particle ID e+ exists
acc pid PID information from ACC only
ATC PID binned 04 Particle ID e+ vs. p+ binned
tof pid PID information from TOF only
energy E
dEdx pull [(dE/dx)measured − (dE/dx)expected,e]/σ (dE/dx)
dEdx ratio (dE/dx)measured/(dE/dx)expected,e
PID muid Particle ID µ+, if it exists
PID muid flag Flag, if Particle ID µ+ exists
ptot |p|

Table A.6.: Variables used in the e± training
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Name Variable

PID muid Particle ID µ+

ATC PID binned 12 Particle ID µ+ vs π+

KLM likelihood4 KLM Miss likelihood binned
dEdx pull [(dE/dx)measured − (dE/dx)expected,µ]/σ (dE/dx)
PID eid Particle ID e+

energy E
ATC PID binned 10 Particle ID µ+ vs π+

dEdx ratio (dE/dx)measured/(dE/dx)expected,µ
KLM likelihood1 KLM Muon likelihood binned
trk pid PID information from TRK only
ATC PID binned 14 Particle ID µ+ vs p+

KLM likelihood5 KLM Junk likelihood binned
KLM likelihood2 KLM Pion likelihood binned
pt pt
KLM Chi2 KLM χ2 of the associated hits
KLM likelihood3 KLM Kaon likelihood binned
PID eid flag Flag, if Particle ID e+ exists
tof pid PID information from TOF only
acc pid PID information from ACC only
KLM Outcome KLM Outcome information how far the track came in KLM
ATC PID binned 13 Particle ID µ+ vs K+

PID muid flag Flag, if Particle ID µ+ exists
ptot |p|

Table A.7.: Variables used in the µ± training
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Name Variable

sumChldNB Sum of the NeuroBayes outputs of all of the children
prodChildNB Product of the NeuroBayes outputs of all of the children
ptot |p|
ChN ptot |p| of child N
ChN NBout NeuroBayes output of child N
ChN PseudoHelAng Angle between the child momentum in the mother’s rest

frame and the mother’s direction in the Υ (4S) rest frame.
For D meons, this really is a good approximation of the
helicity angle.

ChN hash Decay hash of child N
ChN Mass Mass of child N
ChMN Angle Angle between children N and M in the CMS
ChMN InvMassScaled Invariant mass of children N and M, scaled to the maxi-

mum (=1) and minimum (=0) possible theoretical value.
mom dir dev Angle between the momentum of the unstable meson and

the line connecting the IP and the fitted decay vertex.
dist to IP Distance of the fitted decay vertex and the IP
sig dist to IP Significance of the distance of the fitted decay vertex and

the IP
deltaE ∆E
Dstar D massdiff M(D∗)−M(D)
D hash from 1st dstar Decay hash from the first D∗ meson
D hash from 2nd dstar Decay hash from the second D∗ meson
CosThetaB cosθB
ChN D dist Distance of closest approach of a track from the B decay to

the fitted vertex of the D meson

Table A.8.: Variables used in the stage 2, 3 and 4 trainings
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