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Introduction

Although the electronic structure of graphene had been predicted as early as 1947 by P.

Wallace, until 2004 graphene remained a mere mental construction. The isolation of the

first graphene layer by A. Geim and K. Novoselov unleashed an investigation frenzy around

this new amazing material. For the first time, a one-atomic-thick layer of carbon atom

could be accessed, manipulated and characterised. The electrical properties of this new

wonder material soon proved to be astonishing. The description of the electrical transport

due to massless Dirac fermions brings in relativistic theories contrasting with conventional

solid state physics approaches. Graphene displays uncommon and rather counterintuitive

behaviours and features such as anomalous quantum effects or conduction ”without charge

carriers”. Not only does graphene exhibit astonishing electrical properties that makes

it promising for electronic applications but rates among the strongest materials known,

raising the interest for potential mechanical use.

In the permanent quest for smaller transistors together with better performances,

graphene with its exceptionally high carrier mobility even at room temperature and great

down-sizing potential is a promising building-block candidate. Now if graphene has such

extraordinary electronic features, why is the ”silicon-electronic era” not already over? The

exciting prospectives in electronics are damped by technical limitations. The integration

of graphene in electronic devices requires to connect it with metal leads. This require-

ment constitutes one major hindrance, as the intrinsic properties of graphene are strongly

affected by the quality of the contact interface. Therefore unravelling and controlling the

transport process at the interface is crucial to ensure a sustainable integration of graphene

in electronic devices.

Carbon nanotubes are materials closely related to graphene, as they can be viewed as

a rolled-up graphene sheet. Their excellent electrical properties in term of carrier mobility

or maximal current density combined with good heat conduction properties makes them

suitable replacement for metals in the nano-contact engineering field. The idea of using

carbon nanotubes as lead to connect graphene is then supported by the amazing properties

of both graphitic structures. The use of carbon nanotubes to connect graphene could open

the way to ”all-carbon” electronics as well as to a sustainable nano-electronics.

Understanding the transport properties at the carbon nanotube/graphene interface is

thus crucial to develop good-quality junctions and therefore allow further applications.

The investigations related to this topic are at an early stage, no systematic study has

been reported up to now. The work presented constitutes a the first step toward a better

understanding of these promising nano-junctions.
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CONTENTS

In the first part, Sec. 1 the basic properties of graphene and of carbon nanotubes are re-

called. An overview of the current stand on metal/graphene interfaces is presented as well

as the advances made towards carbon nanotubes/graphene junctions. Sec. 2 gives an in-

sight in the structural properties of carbon nanotube/graphene junctions. Semi-empirical

quantum chemistry calculations were performed to determine the equilibrium distance

between the two graphitic structures and to determine the strength of the bonding. The

results of the structural calculations are used in Sec. 3 and Sec. 4 to compute the charge

distribution at the interface. This was done first by using a 2D electrostatic analytic model

in Sec. 3 whereas Sec. 4 presents the results obtained for the charge distribution with a

3D numerical model, termed as ”charge-dipole” model. The results obtained by the two

models are compared and discussed in Sec. 5. The conclusions of the calculations are used

later in the discussion of the experimental results.

The experimental part of this work starts by describing in Sec. 6 the carbon nan-

otube/graphene devices fabrication process. The most delicate part of this process relies

on using the nano-manipulation potential of atomic force microscopy to fabricate actually

the carbon nanotube/graphene junction. To prove that carbon nanotubes have little effect

on the charge distribution in graphene, work function measurements have been performed

using Kelvin probe microscopy. These results are presented and discussed in Sec. 7. Fi-

nally, the transport measurements are reported and analysed in Sec. 8. The experimental

set-up is presented as well as the type of characterisation performed. The statistics ob-

tained probing several carbon nanotube/graphene devices constitutes the core of Sec. 8

along with the discussion that follows.
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1

Basic properties of graphene and
carbon nanotubes

1.1 Basics properties of carbon nanotubes and graphene

1.1.1 Structural properties

Carbon nanotubes (CNTs) and graphene are graphitic materials that are made of car-

bon atoms arranged in a hexagonal honeycomb lattice. They are respectively 1D and 2D

graphitic materials. The electronic ground state configuration for the carbon element is

1s22s22p2. They belongs to the sp2-carbon materials together with fullerenes and graphite.

This class of material shows hybridisation between the 2s and the px py orbitals, which

leads to the following electronic structure: 1s2sp2sp2sp22pz. The hybridized sp2 three

orbitals are spanning a single plane. Their electrons form strong covalent bonds (σ bond)

and do not participate in the electronic transport. The remaining 2pz orbital is perpen-

dicular to the plane defined by the sp2 orbitals. Its electron may form delocalised weak π

bonds and is responsible for the electronic transport properties. The atomic structure of

the graphitic materials follows as a consequence of the orbital orientation.

Graphene

While the band structure of graphene had already been addressed in 1947 by P.R. Wallace

(1), the experimental observation had not been reported until 2004 when A. Geim and K.

Novoselov deposited few-atom-thick layer of carbon atoms, among them mono layers, onto

a SiO2 substrate (2). In 2005, Zhang et al. carried out the first clear characterisation of

mono layer graphene by measuring the anomalous quantum Hall effect, one of the footprint

of graphene (3).

In graphene, each carbon atom binds to its three closest neighbours by a covalent sp2

bond. The distance between two neigbouring atoms is a = 1.42 Å and is termed as in-

plane distance. The unit cell is made up of two atoms A and B and can be defined with

the lattice vectors

a1 =
a

2
(3,

√
3) and a2 =

a

2
(3,−

√
3) (1.1)
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1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

(a)

kx

b1

b2

ky

K

K'

Γ

(b)

Figure 1.1: Fig. 1.1a: Graphene hexagonal lattice with the two sub-lattices formed by the
atoms A and B. The lattice vectors a1 and a2 have been indicated. Fig. 1.1b: First Brillouin
zone of graphene. The high symmetry points Γ, K and K’ have been represented as well as
the reciprocal lattice vectors b1 and b2. Adapted from (4)

to generate the graphene hexagonal lattice (Fig. 1.1a). The distance between two

carbon atoms belonging to the same lattice is then |a1| = |a2| = 2.46 Å. In reciprocal

space, the lattice vectors are then given by

b1 =
2π

3a
(1,

√
3) and b2 =

2π

3a
(1,−

√
3) . (1.2)

As in real space, the structure in reciprocal space is a hexagonal honeycomb lattice. Its

orientation is rotated by 90˚with respect to the structure in the real space (Fig. 1.1b).

The first Brillouin zone has then a hexagonal structure and exhibits a three-fold ro-

tation symmetry. It has two types of corner points: the K and the K’ points with the

following coordinates in reciprocal space

K (
2π

3a
,

2π

3
√
3a

) and K ′ (
2π

3a
,− 2π

3
√
3a

) . (1.3)

These points are often referred to as ”Dirac points”. They are important to understand

the electronic transport properties. Starting from a K point, no K’ point can be reached

using the lattice vectors b1 and b2, hence the K and K’ points are not equivalent.

Carbon nanotubes

Carbon nanotubes were first reported by S. Iijima in 1991 while attempting the synthesis

of C60 fullerenes (5). Nanotubes can be either single-walled nanotubes (SWCNTs) made of

one rolled-up graphene sheet or multi-walled carbon nanotubes (MWCNTs). Multi-walled

nanotubes consist of many concentric nested SWCNTs.

The structure of SWCNTs is entirely determined by a pair of two integers (n,m)

termed chiral indices. In order to eliminate redundancies in the tube structure, the chiral

indexes have to verify the following condition: n > m. These two integers define the chiral

vector C in the unrolled graphene lattice. This vector is also referred to as perimetral

vector or roll-up vector, since its absolute length gives the circumference of the tube.

C = n.a1 +m.a2 (1.4)

6



1.1 Basics properties of carbon nanotubes and graphene

Figure 1.2: The Chiral vector C and the translational vector T defining the unit cell have
been represented for a CNT (5,2) together with the chiral angle θ. The graphene lattice vectors
a1 and a2 have been also indicated as well as the limit (n, 0) and (n, n) for the chiral angle.

where a1 and a2 are the graphene lattice vectors. The tube diameter is then obtained by

dCNT =
| C |
π

=
|a1|
π

√
n2 + nm+m2 (1.5)

The elementary cell is a rectangle defined by the chiral vector C and the translational

vector T as seen on Fig. 1.2. The translational vector T gives the length of the unit cell

and runs parallel to the rolling axes. It is defined by

T = t1.a1 + t2.a2 (1.6)

with t1 = −(2m + n)/dR and t2 = (2n +m)/dR where dR is the biggest common divisor

of (2n+m) and (2m+ n).

An additional parameter, the chiral angle θ defined as the angle between the chiral

vector C and the first lattice vector a1, determines the helical chirality (i.e., how much

the graphene structure is twisted before being rolled up). Because of the graphene lattice

six-fold rotational symmetry, θ ranges from 0˚to 30˚. The way the graphene sheet is

rolled up determines three sorts of tubes as shown in Fig.1.3:

• Zig-zag tubes have a chiral angle θ = 0˚. The open ends of the rolled unit cell have

a zig-zag configuration. These tubes are characterised by having the second chiral

indice equal to zero (m=0), thus the chiral indice pairs are given by (n, 0) (Fig. 1.3a).

• Armchair tubes correspond to the extreme case where θ = 30˚. The open ends

of the rolled unit cell show an ”armchair”-like structure. The pairs of same chiral

indices (n, n) characterise these tubes (Fig. 1.3b).

• Chiral tubes exhibit chiral angle 0˚ < θ < 30˚. The edges of the unit cell do

not show any particular arrangement. All indices combinations but the previously

mentioned result in a chiral tube (Fig. 1.3c).

The SWCNT reciprocal lattice vectors can be written using the graphene reciprocal

lattice vectors b1 and b2. The first reciprocal lattice vector K1 is associated with the

7



1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

(a) (b)

(c)

Figure 1.3: Structure of different CNTs depending on the chiral angle. A lateral view
perpendicular to the axis and a view parallel to the axis are represented for each nanotubes.
Fig.1.3a: Zigzag CNT (8,0). Fig.1.3b: Armchair CNT (5,5). Fig.1.3c: Chiral CNT (7,4).

chiral vector C.

K1 =
1

N
(−t2b1 + t1b2) (1.7)

where N is the number of hexagons in the tube unit cell defined by C and T. The

reciprocal lattice vector K2 associated with the translational vector is given by

K2 =
1

N
(mb1 − nb2) (1.8)

Because of the quasi-1D structure of the tube, the number of wave vectors allowed

along the circumference of the tube is finite pK1 with p an integer ranging from 0 to

N − 1. In the axis direction, since the tube is considered to be infinitely long, the value

of the wave vectors is continuous. This results in a first Brillouin zone that contains N

parallel |K2|-long lines distant from each other by
2π

|C|
.

1.1.2 Band structure

Graphene

The electronic band structure of graphene can be obtained in the tight-binding approxi-

mation. Two hopping processes are considered for the electrons: hopping to the nearest

or to the next-nearest atom. To each hopping process is associated an energy, respectively

t and t′ determined by ab-initio calculations. Using the notation of (4), the Hamiltonian

8



1.1 Basics properties of carbon nanotubes and graphene

reads

H = −t
∑
i,j ,σ

(a†σ,ibσ,j +Hc.)− t′
∑
i,j ,σ

(a†σ,iaσ,j + b†σ,ibσ,j +Hc.) (1.9)

where the operators a†σ,i and aσ,i stand respectively for the creation and annihilation of

an electron with spin σ on a site Ri in the sub-lattice A. The operator b†σ,i and bσ,i are

defined for the electrons in the sub-lattice B. Hc. stands for the hermitian conjugation

of the term in the sum. Solving the Hamiltonian leads to the following energy dispersion

relation for a wave vector k (kx, ky) inside the Brillouin zone

E(k) = ±t
√

3 + f(k)− t′f(k) (1.10)

with

f(k) = 2 cos(
√
3kya) + 4 cos(

√
3

2
kya) cos(

3

2
kxa)

D
 (E
)

Figure 1.4: Left: Graphene conduction and valence bands with a close up around one of
the Dirac points. The conduction and valence band are linear around the Dirac point. Right:
Density of state near the Dirac point. Taken from (4)

As seen from the representation of the band structure in the first Brillouin zone

(Fig. 1.4), the conduction and the valence bands touch at the corner of the Brillouin

zone. These six corner points are the Dirac points (K and K’ points). Because of the two

inequivalent sub-lattices formed by the atoms A and B, the electrons are characterised

by an additional degree of freedom termed valley isospin. For undoped graphene, the

Fermi level crosses the Dirac points. Thus graphene is a semi-metal, its valence band is

completely filled whereas its conduction band is empty, but it exhibits no band gap. The

band structure around the Dirac point determines the electron transport properties.

A closer look at the energy dispersion around the Dirac points discloses a striking

feature of graphene: the energy dispersion is linear instead of being quadratic as for usual

crystals

E(q) ≈ ±}vF |q| (1.11)

where the reference for the wave vector q has been taken from the Dirac point K and vF

is the Fermi velocity (vF = 3ta/2 ' 1 × 106 m.s−1). Such linear energy dispersion is a

feature of relativistic massless particles. The charge carriers in graphene around the Dirac

point can hence be considered to behave as massless relativistic particles coined Dirac

9



1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

fermions that move with the Fermi velocity vF . The fact that two sub-lattices spawned by

the atoms A and B allows the massless Dirac fermion to be described within a relativistic

theory framework using the Dirac Hamiltonian

H = vF~σ.k (1.12)

where σ is the 2D Pauli matrix and k the wave vector.

It follows from the linear dispersion that the density of state D(E) around the Dirac

point is proportional to the energy

D(E) =
2

π

|E|
(}vF )2

(' 0.09 eV−2 |E| for |E| < 1eV). (1.13)

Graphene has consequently at the Dirac point, also labeled as neutrality point, no charge

carrier.

Carbon nanotubes

SWCNT can show either metallic or semi-conductive behavior depending on their band

structure. The graphene band structure is the starting point to obtain the SWCNT

band structure. The chiral indices determine how the Brillouin zone of the tube cuts the

graphene band structure. If the Dirac points are among the allowed states, the tube is

metallic, otherwise it is semi-conductive.

E
n

er
g

y 
(e

V
)

3

2

1

0

-1

-2

-3
0 π/a

k

Figure 1.5: Band struc-
ture for a CNT (5,5) cal-
culated in the tight binding
approximation. Taken and
adapted from (6).

In this work, the nanotubes will be used as wires to con-

nect graphene, only the metallic tubes are of interest for this

task. The review is consequently restrained to metallic car-

bon nanotubes.

The condition on the chiral indices for the SWCNT to be

metallic is

K.C = 2πl (1.14)

where K is the vector in the reciprocal lattice giving the

position of the Dirac point K and l is an integer. This leads

to the following condition for the chiral indices

n−m ≡ 0 [3] (1.15)

Consequently, all armchair SWCNTs are metallic as well

as one third of the zig-zag SWCNTs. The diameter of the

tube dCNT is inversely related to the band gap for semi-

conductive SWCNTs Eg ≈ 0.8 eV.nm
dCNT

. This relation implies

that the outer-shell of MWCNTs is likely to be metallic al-

ready for thin MWCNT. An example of band structure for a

metallic SWCNT is presented in Fig.1.7. More generally, the

dispersion relation is obtained from that of graphene subject to the quantisation condition

along the diameter of the tube

k.C = 2πl (1.16)

10



1.1 Basics properties of carbon nanotubes and graphene

where k is the wave vector and l a integer.

1.1.3 Electrical transport properties

Transport in mesoscopic structures

The electrical transport in mesoscopic structures can be described in a semi-classical the-

ory combining the Drude model together with the Boltzmann equation as long as the

dimensions are large compared to the Fermi wavelength (7).

In the Drude model, the electrons are viewed as independent particles moving freely in

a fixed ion lattice. The electrons interact with lattice defects by elastic scattering processes

associated to a mean scattering time τ . If there is no external field E, the electrons have no

mean velocity. When an external field is applied, the electrons start to accelerate between

each scattering event. Eventually, the mean velocity of the electrons reaches a saturation

value < v > given by < v >= −eEτ/me. The current density is proportional to the mean

velocity and to the density of electron n, < j >= −ne < v >. Ohm’s law is then found

by replacing the expression of the mean velocity in the current density formula

< j >= σ < E > with σ =
ne2τ

me
(1.17)

where σ is the conductivity.

The Boltzmann equation can be used at this point to render the scattering processes

in a more accurate and diverse way (8). The conductivity in this model is given by

σ =
e2

2

∫
dεkD(εk)v

2τ(εk)(−
∂f

∂εk
) (1.18)

where f is the equilibrium Fermi distribution, D(εk) the density of states. The scattering

time τ(εk) depends now on the charge carrier energy εk. It is determined by solving the

Boltzmann equation. Each scattering source is taken into account independently.

Graphene

Graphene exhibits three striking features: a strong response to perpendicular external

electric fields, a transport ”without charge carriers” at the maximum of resistivity and a

high carrier mobility.

Since graphene is an only one-atom-thick arrangement of atoms, it differs from the

3D metal structures in its response to external electric fields. 3D metal structures usually

screen the electric field by means of induced charge. The amount of induced charges

is negligible when compared to the free-carrier concentration in the bulk. Because of

the different dimensionality, the response of graphene should be much more significant.

Indeed, graphene exhibits the ambipolar field effect as shown in Sec. 1.6. For pristine

graphene, the Fermi level is at the Dirac point when no external field is applied. A voltage

difference is applied between the graphene and a gate, thus modifying the electric external

field.

11



1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

Figure 1.6: Ambipolar field effect in pristine graphene: the Fermi level is tunned by the
applied gate voltage Vg. The resistivity is consequently modified, reaching a maximum at the
Dirac point. In the pink (blue) zone, the transport is due to the holes (electrons). Taken and
adapted from (9)

By sweeping the gate voltage Vg, the Fermi level in the graphene sheet is shifted from

the Dirac point downwards (upwards) if Vg < 0 (Vg > 0) leading to p-doping (n-doping)

of the graphene sheet. This determines the nature of the electrical transport. When the

Fermi level is in the valence band (Vg < 0) or in the conduction band (Vg > 0), the

transport is due to holes or electrons respectively.

The induced charge carrier concentration n is proportional to the applied gate voltage

n = αVg. Thus by modifying the applied gate voltage, the charge density in the graphene

sheet can be tunned (See Sec. 8.3 for the determination of α).

The graphene resistivity depends upon the charge carrier density as seen in Fig. 1.6.

When the Fermi level corresponds to the Dirac point, the resistivity is maximum. This

behaviour results from the density of state (DOS) in the graphene. At the Fermi level, the

DOS is zero as inferred from Eq. 1.13 and as seen from Fig. 1.4. No state is available for the

carriers, the resistivity is consequently large. Intuitively one would expect the resistivity

to diverge but it shows a finite maximum value. This maximum value which constitutes a

characteristic of Dirac fermions in 2D systems is still under discussion. Theoretical studies

predict a value of πh
4e2

(10, 11, 12) while experiments reported values around h
4e2

(13). A

soon as the Fermi level is shifted from the Dirac point, more states are available, the

carrier concentration increases leading to a decrease the resistivity.

Graphene was assumed to be pristine until now, but the measured samples are far from

this ideal case. Real graphene presents intrinsic doping due to structural defects as well as

extrinsic doping due to external conditions (adsorbed molecules, charge transfer from the

substrate,...). For doped graphene, when no external field is applied, the Fermi level is not
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1.2 Connecting graphene

at the Dirac point but is shifted depending on type of doping. The Dirac point is reached

for an applied gate voltage VDirac when the resistivity is maximum. The curve shown in

Fig. 1.6 is then shifted horizontally, the maximum of resistivity being set for Vg = VDirac.

The carrier mobility µ links the drift velocity vd, the speed with which the charge

carriers move with the applied external electric field E: vd = µE. The mobility is directly

related to the conductivity σ by σ = neµ where n is the charge carrier density. Although

for pristine graphene the mobility does not depend on the charge carrier type, for doped

sample it presents some asymmetry. Values for the mobility up to more than 200,000

cm2.V−1.s−1 for free standing graphene (14) have been reported and a limit of 40,000

cm2.V−1.s−1 is predicted for graphene on SiO2 at room temperature (15). The difference

in the mobility values is related to the amount of scattering centers in the sample.

Carbon nanotube

The conductance of the nanotubes is quantised at low-temperature taking values that are

multiple of G0 = 2e2/h the conductance quantum (with spin degeneracy). For metallic

SWCNTs, the band structure indicates that near the Fermi energy two spin-degenerate

bands are involved in the electronic transport. Two conducting channels are then available.

In the ideal case, the conductance G is then given by G = 2.G0 =
4e2

h (16).

Figure 1.7: Conductance versus gate for
a two terminal probe metallic SWCNT
device at room temperature. Inset:
Schematic view of the band structure and
the position of the Fermi level. Taken
from (17).

At room temperature, for energies close to

the Fermi level, the expected theoretical value

G = 2.G0 is not reached. The conductance of

metallic tube does not change when the Fermi

level is tuned as can be seen from Fig.1.7 but its

value is limited by the quality of the contacts

used to probe the tube. So the transparency of

the contact for electron waves is a critical pa-

rameter to ensure a conductance value close to

the theoretical value.

Since MWCNTs will be used in this work,

it is worth to mention that in these tubes, the

one or two shells most-outer define the transport

properties since only these shells participate in

the conduction process, as it has been shown by

Bachtold et al. (18).

1.2 Connecting graphene

The properties of the junction formed between graphene and the connecting material have

a dramatic influence on the performance of graphene devices. Thus understanding the

parameters that govern the junction is crucial for further applications of graphene. In this

section, characteristic properties of metal/graphene interfaces will be reviewed. Although

several theories as well as experimental studies have been carried out, it still remains

13



1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

unclear what parameters influence the transport at the metal/graphene junction. In ad-

dition, an overview of the published work on the electronic transport at CNT/graphene

junctions will be presented. In contrast to the metal/graphene interface case, the CNT/-

graphene interface is a rather unexplored area. No specific theory has been reported up

to now and only few measurements have been made.

1.2.1 Metal as leads

Work function

Figure 1.8: Definition of the work function φ for metal and semi-conductors. For the semi-
conductor, the valence band (in red) and the conduction band (in grey) have been indicated.
The electronic affinity has been indicated for the semi-conductor.

The work function is defined for metals as the energy required to remove an electron

from the highest filled energy level and bring it outside the metal. The work function

φ is then taken as the energy difference between the Fermi level and the vacuum level.

For semiconductors, there is no electron at the Fermi level. Still, the work function is

defined from the Fermi level, which lies in the gap. The value of the work function is

not an intrinsic property of the semiconductor as it depends then on the doping. The

electronic affinity χ, which is defined for semiconductors by the energy required to remove

an electron from the bottom of the conduction band is in contrast an intrinsic property.

For pristine undoped graphene the work function value found in the literature is around

4.5-4.6 eV (19, 20, 21, 22, 23). The work function of graphene has been proven to be

charge carrier density dependent with reported values ranging from 4.5 to 4.8 eV (24).

Additional parameters may change the graphene work function, as for example strain due

to the metal deposited (19). As for the carbon nanotubes, large-diameter SWCNTs and

MWCNTs exhibit work function similar to that of graphene (21, 25).

Contact resistance between metal and graphene

When a metal/graphene junction is formed, the charge carriers transferred from one struc-

ture to another have to overcome a potential barrier. The hindering of the transport is

reflected by the contact resistance that limits the device performances. Effects due to

interfacial layers such as oxides or water contribute also to the contact resistance as well
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1.2 Connecting graphene

as the interface roughness. The mechanisms contributing to the contact resistance have

to be investigated and eventually controlled to make graphene reliable for electronic ap-

plications.

The transport in ideal metal/graphene junctions can be understood by using the

Landauer-Buttiker formalism as presented extensively by S. Datta (26). The main idea is

to model the charge carrier transport as a probability to transmit through the structure.

Considering ballistic transport or coherent diffusive transport, the contact resistance Rc

is given for ideal graphene-metal interface by the Landauer formula

1

Rc
=

(
4e2

h

) M∑
n=0

Tn (1.19)

where e the elementary charge and h the Planck’s constant. The spin and the valley

degeneracies account for the factor 4 in the formula. The contact resistance is controlled by

the number of conducting channels in the grapheneM and by the transmission probability

for the metal/graphene interface for each channel Tn.

Metal

M-Graphene Graphene

TMG TK

Figure 1.9: Schematic of the injec-
tion process model proposed by Xia
et al. in (27).

Three different regions are considered: the coat-

ing metal, the graphene underneath the metal pad

where the metal is adsorbed onto the graphene and

finally the pure graphene region (27). The charge

carrier transport at the junction is then seen as two

successive sub-processes as depicted in Fig. 1.9, each

of them associated with a transmission coefficient

• The transmission from the metal to adsorbed graphene region (referred to as M-

graphene from now on). The transmission coefficient TMG is determined by the

coupling strength between the metal and the M-graphene.

• The transport from the M-graphene region to the pure graphene region. The elec-

tronic structure of the M-graphene as well as the doping level affects this transport

process which is described by the transmission coefficient TK .

When no reflection processes are considered, the total transmission for one channel is

given by

Ttot,n = TKTMG (1.20)

If the charge carriers are allowed to undergo reflections in both processes with following

transmission coefficient 1 − TMG (from the M-graphene to the metal) and 1 − TK (from

the graphene to the M-graphene), the total transmission for one channel Ttot,n becomes

(26)

Ttot,n =
TKTMG

(1− (1− TK)(1− TMG))
(1.21)

In order to account for real interfaces, the modification of the electronic structure of

the graphene in the M-region is taken into account in the modified Landauer formula as

well as random disorders modifying in the pure graphene region. The formula for the
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1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

contact resistance includes also the total transmission coefficient Ttot,n and is given for a

channel width W

1

Rc
=

4e2

h

∫ E0

−E0

dE1f1(E1 −∆EFM , η)

∫ ∞

−∞
dE2f2(E1 −∆EG)

1

W

Mmod∑
n=0

Ttot,n (1.22)

The first integral accounts for the M-region modified electronic structure. The density

of states is model by the function f1 that takes as parameter the doping level in the

M-region ∆EFM (i.e., the difference between the Fermi level and the Dirac point) and

the coupling strength η. The energy E0 characteristic of the bandwidth of d-orbital of

transition metals (E0 ∼ 1 eV). The second integral renders the modification in the pure

graphene channel by using the function f2 as density of states that depends on the doping

level in the pure graphene region ∆EG.

To determine the characteristics of the two transmission processes involved in the

charge transfer through the junction, the M-graphene region has to be investigated. The

interaction between the metal and the graphene are the origin of the M-graphene region

and are addressed in the next section.

Metal-graphene interaction

Connecting graphene with metal induces a charge transfer at the interface because of

the Fermi-level difference. The charge transfer (or doping) occurring at the interface was

thought to depend on the work function difference between the metal and the graphene

φM − φG. Good contact should be then achieved by selecting metals with work function

close to that of graphene. This assumption is contradicted by the experimental measure-

ments. The contact resistance for copper/graphene contacts is one of the highest reported

although copper has a work function close to that of graphene (∼ 4.7eV) (28).

Giovannetti et al. and Khomyakov et al. proposed a model to explain this discrepancy

based on the type of metal/graphene interaction. They showed that the structure of

the M-graphene underneath and around the metal can be significantly affected by the

adsorbed metal, modifying consequently the work function in this region (22, 29). Thus

the plain-metal work function should not be solely considered but the work function of

the M-region φG to determine the doping level ∆EF induced by connecting the metal

∆EF = φ− φG (1.23)

The modification of the graphene work function in the M-graphene region is deter-

mined by the charge reorganisation at the interface, which is mainly driven by the sort

of interaction between the metal and the graphene. Therefore, Giovannetti et al. and

Khomyakov et al. suggested to classify the connecting metals according to how they ad-

sorb onto graphene:

• Physisorbed metals bind weakly to graphene (0.03-0.05 eV per carbon atom). The

band structure of the graphene underneath the metal is preserved and the graphene

16



1.2 Connecting graphene

KΓ M KΓ M

Figure 1.10: DFT Band structure calculations for two types of metals adsorbed on graphene.
Left: aluminium contact. The graphene band structure is preserved (The Dirac point region
is indicated with a red circle). Graphene is physisorbed on aluminium. Right: palladium
contacts. The band structure of graphene is destroyed. Graphene is chemisorbed on palladium.
Adapted from (22, 29).

Fermi level is shifted according to the charge transfer direction (Fig. 1.10 Left). Thus,

the doping magnitude in the graphene ∆EF can be inferred directly from the band

structure. The work function φ for the M-graphene region takes into account two

contributions: the charge transfer term ∆tr(d) and the chemical interaction between

the metal and the graphene term ∆chem(d), which arises from Pauli’s exclusion

principle between the outermost s-orbital of the metal and the graphene π orbital

(30). It is therefore strongly dependent on the metal-graphene distance d. φ is given

then by

φ = φM − (∆tr(d) + ∆chem(d)) (1.24)

• Chemisorbed metals bind strongly to graphene by forming chemical bounds (0.05-0.4

eV per carbon atom). The metal d orbital and the graphene π orbital undergo a

hybridisation process. This results in a graphene band structure that is significantly

affected. The linear behaviour of the energy dispersion around the Dirac point van-

ishes (Fig. 1.10, right). The doping level cannot be inferred from the band structure

anymore. The magnitude of the charge redistribution at the interface is higher than

in the case of physisorbed metals, thus implying a larger modification of the M-

graphene work function. The interaction process in the case of chemisorbed metal is

still not well understood since no reliable model has been reported to compute the

doping level and the covered-metal graphene work function for this case.

Table 1.1 gives for the usual connecting metal the sort of interaction with graphene.

Now considering the transmission process from the metal to the M-graphene, because

of the weak interaction and the higher metal/graphene distance physisorb metals should be

expected to show a lower transmission coefficient than the more strongly bonded chemisorb

metals. For the M-graphene to graphene process, it is still not clear how the doping level

influences the transport.
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1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

Physisorbed Chemisorbed

Connecting metal Al, Ag, Au, Cd, Cu, Ir, Pt Co, Ni, Pd, Ru, Ti

Binding Energy (per C atom) 0.03-0.05 eV 0.09-0.4 eV

Metal-graphene distance > 3.0 Å < 2.5 Å

Table 1.1: Classification of the usual connecting metals. The binding energies as well as the
metal-graphene distances have been indicated. The results were taken from (30).

Contact resistance experiments

The results reported byWatanabe et al. (31) tend to substantiate the fact that chemisorbed

metals are a better choice than physisorbed metals when it comes to establishing a contact

to graphene. They carried out a contact resistance study for several types of connecting

metals. Chemisorbed metals on graphene (titanium, palladium, nickel and cobalt) showed

significant lower values for the contact resistance than the members of the physisorbed

group (chromium, iron and silver). Robinson et al. measured the contact resistance for

metal/gold contacts on graphene for titanium, copper, palladium, platinum and nickel

(28). They showed that copper which belongs to physisorbed metal group, exhibited the

highest contact resistance over one order of magnitude compared to the rest of the metals.

But in the same study, the same range of contact resistance as the chemisorbed materials

was observed for platinum which is a physisorbed metal on graphene, as demonstrated by

DFT calculations by Khomyakov et al. (22) or by Slawinska et al. (32). The conclusion of

the study are not consistent and do not validate the assumption that chemisorbed metals

contact graphene better than physisorbed metals.

The study from Song et al. (33), displayed also some contradictory results. Indeed, the

contact resistance at the metal/graphene interface was significantly higher for gold than

for palladium, with about 10 kΩ.µm difference. This observation could not be explained by

considering the work function difference between metal and graphene, nor between covered-

metal graphene and graphene since in both cases the difference was almost zero. The way

graphene adsorbs onto these two metals is the key to understand the resistance difference.

Gold binds only weakly to graphene through van der Waals forces (34, 35) while the binding

between palladium and graphene is stronger and presents covalent bonding features (36,

37). The strong bond between graphene and the chemisorbed metals seems thus to insure

low contact resistance. But the same study reports for two additional chemisorb metal

onto graphene, chrome and nickel values about almost one order of magnitude higher or

of the same range as for Gold.

This lack of consistency in the contact resistance value with no clear trend is found

again in the literature. Besides the adsorption process, several parameters seem to con-

tribute to the contact resistance in an uncontrollable fashion, such as the fabrication

process or the measurement conditions, leading to a wide range of values even for the

same metal as seen from Table 1.2. As an example, photo-resist residues used for stan-

dard lithography processes may contaminate the graphene device and increase the contact

resistance by a factor of 6000 (28). Additionally, the measurements report different effect
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1.2 Connecting graphene

for the gate: some studies claim that the contact resistance depends on the gate voltage

while others observe no change with the gate for the same metal.

Metal RC (Ω.µm) Experimental conditions Gate dependence

Ni (38) 500 Thermal evaporation, T=300 K, Vacuum No

Ni (39) 790 ± 300 Thermal evaporation, T=300 K, Ambient Yes

Ti (40) 800 ± 200 Thermal evaporation, T=300 K, Ambient No

Ti (41) 500-2.10 3 (?), T=300 K, Ambient Yes

Ti (38) 103-106 Thermal evaporation, 300K, Ambient Yes

Pd (27) 185 ± 20 Thermal evaporation, 300K, Ambient Yes

Pd (27) 120 ± 20 Thermal evaporation, 6K, Vacuum Yes

Table 1.2: Contact resistance RC as reported in the literature for several metals. The
deposition technique, the measurement temperature and the gate dependence are as well
indicated. For the contact resistance depending on the gate voltage, the minimum value is
reported.

1.2.2 Multi-walled carbon nanotubes as leads

Motivation

The CNT/graphene junction presents several peculiar aspects. The first interesting point

is the nature of the interaction between the two structures which is mostly due to the pz

orbitals, reason for terming the system as π−π interaction system. The electric transport

from a 1D system to a 2D system presents also an interesting. Until now, transport theory

focused on for 2D metal contacts aspects where the contact geometry differs significantly

from the CNT/graphene system.

Since the contact resistance limits the device performance, the inconsistency in the

contact resistance measurements reduces the interest of integrating graphene in conven-

tional or high-frequency electronic devices. As mentioned in Sec.1.2.1, the deposition

technique is one of the many factors that might influence the contact resistance. During

the deposition process, water, oxide layer or impurities can be trapped and influence the

quality of the metal deposition. Since the deposition technique for metals and CNT differ,

connecting the graphene with tubes could be viewed as a solution to eliminate or at least

reduce the impact of undesirable contamination.

Moreover the interaction between CNT and graphene is weak. Therefore the tube

should belong to the physisorbed materials class. Although it is still argued if chemisorbed

metals constitute better connectors for graphene, the fact that graphene and metallic

carbon nanotubes have similar structures could lead to more ”homogeneous” junctions.

This is reflected in the similar work functions that should lead to a reduced charge transfer

at the interface and in consequence to a low contact resistance.

On a more device oriented perspective, connecting graphene with nanotubes could open

the way to new fabrication processes. In fact, graphene and CNT can hold higher temper-

atures than the usual metals used as connecting leads. More importantly, CNT/graphene

junctions could overcome the scaling down limitations of common device fabrication proce-

dures such as lithography. Integrating CNT/graphene junctions could increase the device
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density on a chip and therefore keep up with Moore’s law that predicts an increase of the

transistor density by a factor of two every 18 months. Finally, knowing the performances

of CNT/graphene junctions is of great interest to progress toward the ”all-carbon” elec-

tronics. Conversely, graphene could be used as electrode material to connect CNT which

would constitute a step toward transparent electrodes.

Review of the published work

(a) (b)

Figure 1.11: Fig. 1.11a: Temperature dependence of a CNT-Pt device resistance. An inter-
facial graphitic layer is synthesized at a temperature ∼ 880K. Taken from (42). Fig. 1.11b:
Id-Vds curves for CNT-Ni contacts with (black) and without (red) inter-facial graphitic layer.
Taken from (43).

The first indications for CNT being good connectors for graphene were registered in the

field of electric device production. Indeed, several studies reported improved performances

after intercalating graphitic carbon layers, whose structure is related to graphene, between

CNTs and the connecting metal (42, 43, 44). As seen from Fig. 1.11a, the resistance of

a CNT-Pt device is probed with the temperature (measurement direction indicated by

arrows). At a critical temperature (∼ 880K), a graphitic layer is formed between the

CNT and the metal. With decreasing temperature, the resistance of the device remains

low with weak temperature dependence. An other device made out of a CNT connected

with palladium electrodes showed a significant increase of the On current, leading to an

improvement in the On/Off ratio when graphitic carbon was used as interfacial layer

(Fig. 1.11b).

Despite these hints at the CNT/graphene contact quality, only a few experiments have

been carried on CNT/graphene junctions. A first study was reported for a similar system

in 2000 by Paulson et al.. This work showed a lattice orientation dependence for the

contact resistance at MWCNT/graphite junctions (45). An AFM tip was used to rotate

a MWCNT on a highly oriented pyrolitic graphite surface (HOPG) and to measure the

resistance at the interface. As seen from Fig. 1.12, the contact resistance exhibits a

60˚ periodicity indicating that the orientation of the MWCNT lattice with respect to

the honeycomb HOPG lattice affects the electric transport. However, this study supposes
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Figure 1.12: Contact resistance versus lattice alignment angle between the MWCNT and
the graphite surface. The angle ϕ is measured from a reference position indicated by a red
arrow in the inset. Adapted from (45).

that the MWCNT is a perfectly straight tube and that the AFM tip does not induce

deformations while rotating the tube. These requirements are in practice hard to meet.

Only three studies focused on connecting graphene with CNTs. They tend to sustain

that CNTs yield good connectors for graphene, because of the reduced contact resistance

measured at the interface and the ohmic contact behaviour. In the first study, SWCNTs

were connected with electrodes made of graphene oxide (rGO) that was chemically reduced

to increase the conductivity (46). The report focuses mainly on the fabrication method

which opens the way to build graphene devices without lithography steps by chemical

deposition process (CVD) at high temperatures not withstood by the usual connecting

metals. As seen in Fig. 1.13a, I-V measurements for SWCNT/rGO interface exhibit a

ohmic behaviour and a resistance per length of tube of about 9 kΩ.µm−1 that compares

favorably with reported values (48). Although the junction is not made of pure graphene

and the CVD process introduces impurities, the results gives already a hint that CNTs

could be a sustainable material to connect graphene. Another group reported connect-

ing a thin film of unsorted SWCNT with mono- to few-layer graphene electrodes (49).

The contact resistance at the interface SWCNT film/graphene was found to be negligible

compared to the total resistance of the device.

In the most recent published study, I-V curves for a metallic SWCNT/graphene were

measured (47). As presented in Fig. 1.13b, an ohmic contact behaviour can be observed

as well as a saturation current close to the limit set by the optical phonon scattering

(∼ 25µA). A total resistance for the device of about 28 kΩ can be inferred from the I-V

curves. The three studies miss an important characterisation for graphene devices. The

measurement were made without tuning the carrier density in the graphene sheet. The

position of the Dirac point and the type of doping were not determined, thus the charge

carrier regime for which the measurements have been carried is unknown.

21



1. BASIC PROPERTIES OF GRAPHENE AND CARBON NANOTUBES

rGO 

electrode

CNT

(a) (b)

Figure 1.13: Fig. 1.13a: I-V curve for a SWCNT/reduced graphene oxide junction (show
in the inset). Taken from (46). Fig. 1.13b: I-V curves for metallic/few layers graphene junc-
tion(red curve) and for semi-conducting SWCNT/few layers graphene junction(blue curve).
One side of the graphene has been connected with Palladium while the other side is formed
by the SWCNT/few layers graphene junction part. Taken from (47).
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Figure 1.14: Example of SWCNT-
graphene pillared structure. Taken from
(50).

On the theory side, recently a study re-

ported first-principle calculations for semicon-

ductive SWCNT/graphene contacts, focusing

mostly on the magnitude of the Schottky barrier

at the interface (51). The barrier magnitude was

found to be low (from 0.04 eV to 0.09 eV) com-

pared to the values obtained for SWCNT/metal

contacts (around 0.3 to 0.4 eV). Although these

results were established for semiconductive nan-

otubes, they tend also to indicate that CNTs are

suitable connectors for graphene.

It is worth to mention that the problem

of CNT/graphene pillar systems has been ad-

dressed by several studies, a few focusing on electric transport properties (50, 52, 53)

but mostly focusing on the hydrogen storage potential or other potential applications

(54, 55, 56). In this configuration, CNT is attached to the graphene by a σ bond thus

forming an homogeneous carbon cluster. Such a configuration presents a fundamental

structural difference with that studied in this work where the bonding is not due to the π

electrons. The electric transport properties are thus expected to differ greatly.
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2

Structural properties

2.1 Introduction

In this part, the structural properties of sp2 carbon-graphene systems are investigated by

means of a semi-empirical quantum chemistry method. Two values are inferred from the

calculations and are analysed: the equilibrium distance between the two graphitic systems

and the adhesion energy. The equilibrium distance yields important information on the

ground state geometry of the system. This value is of great importance because it will

be used later on as input parameter for the charge distribution calculations (See Sec. 3

and 4). In addition, it is critical to understand the electronic transport properties for the

carbon nanotube/graphene junctions (See Sec. 8.4). The adhesion energy indicates the

strength of the binding between the subsystems.

Sec. 2.2 introduces the semi-empirical method used for the structural calculations. This

class of methods relies on the Hartree-Fock method to solve the Schrödinger equation, using

a parametrisation based on experimental parameters to speed up the calculations. A quick

reminder on basic quantum physics as well as on the Hartree-Fock method is provided in

Appendix. A. The description of the geometry used for the calculations and the results

obtained are presented in Sec. 2.3.

2.2 Semi-empirical methods

Semi-empirical methods use the same framework as the Hartree-Fock method (See Ap-

pendix. A) to solve the Schrödinger equation but strive to scale down the computational

effort by making at least two additional assumptions.

First, they focus on the valence electrons which are the electrons that are of interest

in most cases. The core electrons are addressed together with the nuclei, bypassing the

computation of the integrals involving them. For the valence electrons, the size of the

basis set is hold to a bare minimum. This minimum basis set contains only the occupied

electronic orbitals when the atoms are in the ground state.

Speeding up the calculations is achieved as well by neglecting some of the most com-

putational costly integrals appearing in the Fock matrix (See Eq. A.20 and Eq. A.21 in

Appendix. A). This comes obviously at an accuracy cost that is offset by a parametrization

of the remaining integrals based on experimental data.
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2.2.1 NDDO method

The choice made for the neglected integrals is setting the various semi-empirical methods

apart. All of these methods commonly do reduce to some extent the number of computed

two-electron integrals, since these integrals are the most expensive to calculate. One way

to go is actually to neglect the differential overlap between two atomic orbitals, meaning

that the product of two atomic orbitals centered at different atoms is set to zero. Following

the literature notation, the superscripts A and B are used to denote the atom at which an

atomic orbital φ is centered. The previous assumption can be written: φAν φ
B
µ = δAB. This

assumption leads the overlap matrix S to be a unit matrix. The Roothan-Hall equations

(Eq. A.21) become:

Fci = εici (2.1)

Additionally, all the integrals involving three or four different atoms as centres vanish.

This approximation combined with the use of a minimal basis set, constitutes the neglect

of diatomic differential overlap approximation (NDDO) (57). Although the number of

integrals has been reduced, the one-centre and two-centre one-electron integrals as well as

the one-centre and two-centre two-electron integrals still need to be evaluated.

For this purpose, a procedure known as modified neglected differential overlap (MNDO)

was derived by Dewar and Thiel (58). The remaining non-zero integrals were not computed

directly but instead parametrized in order to speed up the calculations. The parameters

were obtained by fits based on both ab-initio results and experimental data bases as

described in (58). Since the total energy is required, additionally to the electronic energy,

a parametrization for the the nuclei repulsion term has been introduced.

2.2.2 PM6-D method

One of the most recent development in semi-empirical methods has been made by Stewart

(59) with the MNDO derived PM6 method. In the PM6 method, data from up to 9000

chemical compounds were used to parametrize more than 80 elements. Although the

PM6 performs well for systems driven by covalent bonds, significant discrepancies with

experimental values were observed for non-covalent interactions such as hydrogen bonding

and van der Waals forces.

Further improvements were presented by Rezac et al. (60) to render the non-covalent

interactions in a more accurate way. In particular, a term was added to the Hamiltonian

to account for the London dispersion forces. Such forces arise from the interaction between

instantaneous atomic dipoles (or higher order multipoles) and therefore constitute one part

of the van der Waals interaction. The dispersion forces are weak attractive long-ranged

intermolecular interactions whose magnitude is a up to a few hundreds of meV. The PM6

method with the London dispersion term included is termed as PM6-D. From the results

drawn from Sec. 2.3.3, the van der Waals forces will play a crucial role in the binding

between sp2-carbon structures. The good performance of the PM6-D method with the

van der Waals interaction constitutes a decisive criterion for choosing this method over

the rest of the semi-empirical methods.
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2.3 Equilibrium distance

The term implemented by Rezac et al. is reproduced here as it was first described in

(61):

Edis = −
∑
i,j

fdamp(ri,j , R
0
i,j)

C6,i,j

r6i,j
(2.2)

The dispersion energy is a pairwise addition of damped atomic contributions proportional

to r−6
i,j , where ri,j is the inter atomic distance. In the dispersion energy, the higher-order

expansion terms are neglected. The atomic dispersion coefficients C6 used have been

determined for each atom species by Grimme (62) and, in the case of carbon, are well

suited to describe sp2 hybridized carbon. A damping function fdamp weights the atomic

contribution in order to avoid divergence for small inter atomic distances. In addition

to the inter atomic distance, the damping function takes as argument the van der Waals

radius R0. Two parameters fitted with dispersion-driven molecule data set were introduced

in the damping function to reproduce experimental results.

2.3 Equilibrium distance

2.3.1 Geometry description

The self-consistent-field (SCF) calculations were carried using the MOPAC2009 package

that includes the PM6-D method (63). The structures used for the calculations were all

constructed by defining a large unit cell ranging from 500 atoms to 1500 atoms (upper

limit of MOPAC2009). By giving to MOPAC2009 boundary conditions along the three

space coordinates, the calculations have been performed for the entire 3D structure.

Figure 2.1: 3 Unit cells used for the MOPAC calculation. The structure is made of a
CNT (9,9) and a graphene sheet. The translation vectors used in order to set the boundary
conditions are represented only in the in-plane directions.

Each unit cell was made of two elements as seen of Fig. 2.1:

• a piece of graphene with a width of about 50-60 Å and a length of about 22-25 Å.
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2. STRUCTURAL PROPERTIES

• a piece of carbon nanotube that has the same length as the graphene sheet.

Translation vectors were defined for both in-plane coordinates x and y in order to

construct the whole system.

(a) (b)

Figure 2.2: Fig. 2.2a: View of one unit cell. The distance between CNT and graphene has
been labeled with dCnt−Gra. Fig. 2.2b: Alignment of the CNT (blue atoms) and the graphene
(gray atoms) lattice. The deep blue atoms are the closest atoms to the graphene and are the
ones that are A-B stacked with the graphene atoms.

To ensure CNT-CNT inter cell interactions to be negligible, the spacing between two

CNT was taken large enough (for example around 4 nm for the CNT (9,9)). The CNT

was placed on top of the graphene sheet at a distance dCNT−Gra using the A-B stacking

depicted in Fig. 2.2 for the orientation of the tube with respect to the graphene sheet for

all calculations. For the row of CNT atoms closest to the graphene, the atoms were placed

at the center of an hexagon formed by the graphene atoms.

The optimization of the geometry (i.e., the relaxation of the system) is a critical

step in order to ensure a satisfying convergence. This has been achieved by means of the

EigenFollowing (EF) algorithm in the framework of the Newton-Raphson method (64, 65).

Relaxation has been first performed on each element of the unit cell separately. Each atom

of the graphene was allowed to relax in the in-plane directions. For the carbon nanotube,

each atoms except those of the very bottom row of atoms was allowed to relax in the each

three spatial coordinates. Since the atoms of the very bottom row are taken as reference for

the definition of the distance carbon nanotube-graphene dCnt−Gra, the vertical coordinate

(z=cst) for this row was fixed and the two other coordinates were free to relax. The

optimized geometries obtained after this step, were used together as input to perform a

new SCF calculation.

2.3.2 Binding energy

Since the equilibrium distance deq between the CNT and the graphene sheet is determined

by the binding energy minimum, the procedure for calculating this energy is explained in

this part. For a CNT lying on top of a graphene sheet at a distance d, the total energy is
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2.3 Equilibrium distance

labeled EGra+CNT (d) and the binding energy ∆EBin(d) is defined by

∆EBin(d) = EGra+CNT (d)− EGra+CNT (∞) (2.3)

where EGra+CNT (∞) is the total energy when there is no interaction between the

CNT and the graphene. This formally corresponds to the subsytems being located at

an infinite distance from each other. While EGra+CNT (d) is retrieved directly from the

MOPAC2009 output, extracting EGra+CNT (∞) requires more effort. Indeed, the trivial

approach defining EGra+CNT (∞)

EGra+CNT (∞) = EGra,0 + ECNT,0 (2.4)

as the sum of EGra,0 and ECNT,0 which are respectively the total energy for the graphene

and the CNT calculated separately, is wrong because of the basis set superposition error

that arises for SCF methods using finite basis sets. The SCF calculations for EGra,0 and

for ECNT,0 use actually a more restrained basis set of function than the SCF calculations

for EGra+CNT (d). A procedure was established to sidestep this technical hurdle. In order

to evaluate EGra+CNT (∞), SCF calculations were run for the CNT located at a very large

distance to the graphene sheet (typically about a few nanometers), insuring no CNT-

graphene interaction but at the same time using the same set of basis function as for the

computation of EGra+CNT (d).

As experimental measurements of the CNT-graphene distance have yet not been per-

formed, the value drawn on for the sake of comparison is the adhesion energy. Indeed,

experimental values measured using an AFM are available for CNT/graphene systems (66).

The adhesion energy Eadh is merely defined as being the minimum value of the binding

energy. In the literature, two normalizations for Eadh are found: either the contact length

is used as normalization factor or the number of atoms taking part in the binding. The

first normalization procedure is preferred here, since the second one requires counting the

binding atoms which is not straightforward considering the geometry of the system.

2.3.3 London dispersion forces

MOPAC2009 output yields besides the total energy, the dispersion force contribution Edis

to the total energy. Since the binding energy computed by the PM6 method ∆EBin,PM6

and by the PM6-D method ∆EBin,PM6−D are related by

∆EBin,PM6−D = ∆EBin,PM6 + Edis (2.5)

the role of the dispersion force in CNT/graphene hybrid structures comes out clearly by

comparing both ∆EBin,PM6 and ∆EBin,PM6−D for the same structure.

As seen in Fig. 2.3, when the dispersion term is disregarded (∆EBin,PM6 green curve),

the value for the equilibrium distance is close to that found in the literature for the

interlayer distance in multilayer graphene (i.e., around 3.34 Å). In addition, the PM6

results indicate a very weak binding between the CNT and the graphene. The adhesion

energy for the PM6 method is found to be at least an order of magnitude smaller than the
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Figure 2.3: Binding energy computed with and without including the London dispersion
term as well as the individual contribution of the London term. All energies are plotted versus
the CNT-graphene distance. The calculation was done for a CNT (5,5). Inset: Fit of the
dispersion energy tail. The dots represent the computed values and the solid line represents
the power law (Eq. 2.6).

experimental values (66). For the CNT (5,5)/graphene system, the length of the unit cell

corresponds to the contact length (i.e., about 25 Å), consequently the adhesion energy lies

around 0.015 eV/Å.

When the dispersion term is taken into account (∆EBin,PM6−D, red curve in Fig. 2.3),

the equilibrium distance value shifts toward lower values. For the CNT (5,5), the equilib-

rium distance found is around 3.02 Å. Moreover the binding is stronger since the adhesion

energy Eadh is around 0.17 eV/Å and lies now in the experimental value range. This result

corroborates thus the essential role played by the dispersion forces in the CNT/graphene

binding.

Now focusing on the dispersion contribution Edis, represented in Fig. 2.3 (blue curve)

for a CNT (5,5)/graphene system, this long-ranged contribution outweights the rest of

the interactions in the attractive part of the binding energy and accounts for most of the

attractive forces. For large inter-structure distances (dCNT−gra > deq), the tail of the

dispersion energy presents an algebraic decay. Indeed, for such distances, the dispersion

term can be regarded as a sum of undamped r−6 inter atomic contributions (see Sec. 2.2.2).

The integration carried out over the whole structure determines the resulting asymptotic

power law that governs the attractive interaction between the sub-structures.

A short review of the power law for several parallel structures is found in (67, 68) for

example and is reproduced in Table 2.1:
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2.3 Equilibrium distance

System Power law

Thin wires (1D) 1/d5

Thin plates (2D) 1/d4

π-conjugate layers 1/d4

Thick plates (3D) 1/d2

Table 2.1: Asymptotic power law for several parallel structures. d denotes the subsystems
separation after (67, 68).

Since the CNT(5,5)/graphene system involves two substructures with different dimen-

sionality, the anisotropy hinders a straightforward integration of the inter atomic contri-

butions. The resulting power law has been thus determined by a fit of the tail:

Edis ∝ −C6

dα
; C6 = 260 and α = 3.5 (2.6)

The numerically obtained exponent α = 3.5 does not relate to any of the structures listed

in Table 2.1. The asymptotic interaction energy for CNT/graphene systems presents thus

a different behaviour contrasting with the usual structures, giving therefore already a

glimpse of the peculiarities of such system.

2.3.4 Curvature effect

Contrary to the multilayer graphene case, where all atoms are binding atoms, in CNT/-

graphene systems, because of the curvature, the only atoms that actually participate in

the binding are restricted to a region around the CNT. Thus the stretching of the binding

π orbital due to the neighboring atoms should be limited. Consequently the equilibrium

distance should be smaller than the one for multilayer graphene.

This statement is clearly verified as the equilibrium distance for CNT (5,5), (9,9) and

(15,15) inferred from Fig. 2.4 ranging from 3.02 Å for (5,5) to 3.06 Å for (15,15), is

significantly smaller than the graphite interlayer distance 3.34 Å. The adhesion energy

ranges from 0.17 eV/Å to 0.27 eV/Å as shown in Table 2.2.

CNT deq [Å] Eadh [eV/Å] Rcnt [Å]

(5,5) 3.02 0.17 3.44
(9,9) 3.04 0.21 6.19
(15,15) 3.06 0.27 10.31

Table 2.2: Computed equilibrium distance and adhesion energy for CNT (5,5), (9,9) and
(15,15). The radius is indicated for each CNT.

In addition, this result reveals a radius-equilibrium distance correlation. Indeed, since

the CNT (n, n) radius increases with the chiral index: the larger the radius of the CNT,

the larger the equilibrium distance. This correlation confirms actually the fact that the

more atoms participate in the binding, the more important are the repulsive forces. The

dispersion forces are not significantly affected by such short-ranged scale changes in the

structures. A second correlation can be inferred considering the adhesion energies and the

CNT radii. The binding becomes stronger for larger CNT as more atoms are involved in
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Figure 2.4: Binding energy versus the CNT/graphene distance for CNT (5,5), (9,9) and
(15,15) /graphene systems. Inset: Zoom around the minimum of binding energy. The black
dots correspond to the minimum of binding energy.

the binding. The binding energy should then have as limit, in the case of a CNT of infinite

radius, the graphene-graphene interaction value.

Focusing on the whole sp2-carbon/graphene structure, the bilayer graphene gives the

upper limit for the repulsive force and for the equilibrium distance while the fullerene

adsorbed on graphene gives the lower limit for both values, as shown in Fig. 2.5. The

equilibrium distance exhibited a stepwise change with the dimensionality modification of

the adsorbed structure. Calculations for the C60 fullerene were carried using the procedure

described in Sec. 2.3.1 with the unit cell drawn in the inset of Fig. 2.5. For the bilayer,

the results were established by F. Symalla (69).

The results of the calculations are in good agreement with previous works based partly

on the LCAO-S2 + vdW method (66, 70) where local-orbital DFT is combined with in-

termolecular perturbation theory to render the van der Waals interaction as presented in

(71). Other studies use the molecular mechanics frame (MM+) and render the van der

Waals forces with an adapted Lennard-Jones potential, whose repulsive part is described

by an exponential term instead of the usual r−12 term (72).

Method deq [Å] Eadh [eV/Å]

PM6-D 3.02 0.17
MM+ (72) ∼ 3.2 0.21
LCAO-S2 + vdW (66) ∼ 2.9 0.33

Table 2.3: Equilibrium distance and adhesion energy for CNT (5,5) computed using different
methods.

Table 2.3 shows that indeed each calculation predicts an equilibrium distance signifi-

30



2.3 Equilibrium distance

Figure 2.5: Equilibrium distance for several sp2-carbon structures adsorbed on graphene.
Inset:Unit cell used for the C60/graphene calculations.

cantly lower than for the graphene-graphene case. For the adhesion energy, the method

PM6-D yields lower values than the two other methods, in particular when compared to

the LCAO-S2 + vdW method. Since the former method uses an unscreened term to ac-

count for the van der Waals forces, it overestimates at short distances their contribution

and therefore gives a lower equilibrium distance and a higher adhesion energy.

Nevertheless, the results obtained with the PM6-D method compares well to the values

presented in the experimental part of (66). The adhesive energy could be inferred between

a CNT and a graphene surface by mean of an atomic force microscope with a CNT attached

to the tip and by recording the approach and retract curves. The experimental values lie

between 0.13 eV/Å and 0.47 eV/Å for long nanotubes (l >100 nm).

For further applications (see Sec. 3.3 and Sec. 5.1), the equilibrium distance was cal-

culated for CNT (n, n) with chiral index up to n = 50.

The data obtained with MOPAC for the tubes CNT (5,5), (9,9) and (15,15) have been

used make a crude extrapolation by assuming that

deq = d0 +A exp

(
− R

R0

)
(2.7)

with deq the equilibrium distance for a CNT with a radius of R. The limit for the equi-

librium distance was set to be the graphene-graphene distance (i.e., d0 = 3.34 Å ). The

parameters A and R0 were determined by the extrapolation: A = −0.34Å and R0 = 103Å.

The equilibrium distance for a CNT (50,50) that has a radius of ∼ 34 Å is about 3.16 Å.

Thus, for over an order magnitude increase for the radius, the equilibrium distance in-
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creased by approximately 0.14 Å.

2.4 Conclusion

The results of structural calculations have been presented in this part. The semi-empirical

PM6-D method based on the neglect of diatomic differential overlap approximation (NNDO)

and implemented in the code MOPAC2009 has been used to determine the interactions in

different graphitic structures with emphasis on the CNT/graphene systems.

First, the calculations showed that the dispersion forces make a prominent contribution

to the binding between CNT and graphene that is reflected in the strength of the binding

and the equilibrium distance. Neglecting the dispersion force or not taking it properly

into account, leads to nonphysically weak bonding. The asymptotic behaviour for the

dispersion forces was found to follow a 1/d3.5 power law contrasting with the usual power

laws.

The equilibrium distance between sp2-carbon structures and graphene showed a sig-

nificant dependence on the dimension of the involved sp2-carbon structures. For CNT,

the computed distance was found to be around 3.02 to 3.06 Å. As for the strength of the

binding given by the adhesive energy, the value led approximately between 0.17 eV/Å to

0.27 eV/Å. The radius dependence of both structural values has been analysed and the

following trend could be drawn: the more atoms participates in the binding, the strongest

the binding grows and the further apart the substructures are.

Finally, the equilibrium distance has been inferred by from the computed data for

larger CNT. A fitting step has been performed in order to overcome the computational

limitations. An equilibrium distance up to 3.16 Å has been found for the largest CNT

with a radius of 3.4 nm.
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Analytical calculations

This part addresses the charge redistribution in the graphene sheet that occurs when

building a CNT/graphene junction. Both substructures are held at a different potentials.

For example, during the measurement process, the electric potential difference between

graphene and carbon nanotube may vary, in particular if graphene is back-gated as it is

in common transport measurement technique. From an electrostatic point of view, this

leads to a modification of the charges distribution when the structures are brought close

to one other. A picture of the charge redistribution is essential to understand the charge

transport in the junction. Indeed, the injected charges have to ”move” across the energy

landscape arising from the charge redistribution.

A special focus has been put on the influence of CNT on the charge distribution in the

graphene sheet. Indeed, connecting graphene with metal electrodes leads to significant

charge transfer which at the interface extends over a significant distance into the non-

contacted graphene sheet. The electrostatic models used for the calculations show that

the charge redistribution in case of a CNT used as electrode has a reduced extension in

the graphene sheet.

First a 2D electrostatic model has been used to calculate the charge distribution in

the graphene sheet when the CNT is placed on top of it. To obtain the charge density,

the Laplace equation with specific boundary conditions is solved by applying the con-

formal mapping technique (73). The inferred potential yields then the charge density

on the graphene sheet. The results are analyzed along with the influence of geometrical

parameters such as the tube radius.

3.1 Laplace Equation

Assuming the graphene sheet is an infinite plane and the CNT is an infinitly long cylinder

of radius Rcnt,0, the system can be reduced to a 2D system by considering the cross

section perpendicular to the CNT axis. The graphene is consequently modeled by an

infinite straight line parallel to the x-axis and the CNT by a circle of radius Rcnt,0 placed

at a distance Rcnt,0 + ε above the graphene. The values for ε were taken from Sec. 2.3.4.

For convenience, in the rest of this part, we will focus on CNT (n,n) i.e., armchair tubes,

with n being an integer, and we approximate the circumference of the CNT by a circle.

33



3. ANALYTICAL CALCULATIONS

This simplification is justified in the continuum approach we are taking, neglecting the

structural arrangement of the atoms in the CNT and in the graphene.

Figure 3.1: Intial geometry. The graphene was
modeled by a straight line, the CNT by a circle
of radius Rcnt,0.

A diagram of the initial geometry

is shown in Fig 3.1. The graphene is

set to a potential Vgra, while the CNT

is set to Vcnt. The reference point for

the potential has been taken at infin-

ity. These boundary conditions and the

Laplace equation

∇2V = 0 (3.1)

determine the electrostatic potential V

for the geometry described above. The

Laplacian operator ∇2 is defined in the

Cartesian coordinates (x,y). Conventional variable separation method for solving the

Laplace equation works for few simple geometries as rectangles or disks. The geometry

of the CNT/graphene problem is already too complicate to try the variable separation

method. This is confirmed in hindsight by the potential expression found which is not a

product of two functions of independent variables.

3.2 Conformal mapping technique

3.2.1 Conformal transformations

The conformal mapping technique described in the following part is used to map an

inconvenient geometry to a new geometry. The electrostatic problem is then solved for the

new geometry and the inferred solution is transformed back to the original coordinates,

yielding the solution to the initial problem.

On an intuitive level, conformal transformations are ”smooth” transformations which

preserve the local angles and the sense of rotation, thus introducing no local distortion in

the resulting mapped region.

The Laplace equation is known to be invariant under conformal transformation (see

(73) for a proof). This assertion implies that if a function φ(x, y) satisfies the Laplace equa-

tion, then the function in the mapped region, ψ(u, v) so that φ(x, y) = ψ(u(x, y), v(x, y))

is also solution of the Laplace equation. The interest of the conformal mapping technique

becomes clear. If the Laplace equation is too tedious to be solved for a given geometry,

the conformal mapping technique allows to solve it for a new and easy geometry, providing

that a conformal transformation mapping exists from the initial geometry to the new one.

3.2.2 Laplace Equation solution

Two conformal maps were applied to the initial geometry depicted in Fig. 3.1. The first

transformation maps the initial circle and the initial line into two non concentric circles
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3.2 Conformal mapping technique

shown in Fig. 3.2 a). While the second one maps two non concentric circles into two

concentric circles. The final geometry is drawn in Fig. 3.2 b).

a) b)

Figure 3.2: a): Geometry obtained by applying the first conformal map G(z).
b): Geometry obtained by applying the second conformal map H(w).

Before detailing the conformal transformations used, the different coordinate systems

need to be defined. The initial geometry is described in the (Ox,y, x, y) coordinate sys-

tem. The first map transforms this coordinate system into (Ou,v, u, v), while the second

transformation gives the final coordinate system (Op,q, p, q).

The first conformal mapping transformation G is given by

G(z) = w =
(Rcnt,0 − ε)ε

2Rcnt,0 − ε
+

iε2

z − 2iε
(3.2)

where z = x + iy and w = u + iv, z, w ∈ C and x, y, u, v ∈ R. Applying G to the initial

geometry (Fig. 3.1) yields the geometry shown in Fig. 3.2 a). The original circle Ccnt,0

(radius: Rcnt,0, center: Ox,y) is mapped to a new circle Ccnt,1 (radius: Rcnt,1, center: Ou,v)

while the straight line is transformed to a circle Cgra,1 (radius: Rgra,1, center: Au,v). The

coordinates of the point Au,v are given by

uAu,v =
(2Rcnt,0 − 3ε) ε

4 (2Rcnt,0 − ε)
, vAu,v = 0. (3.3)

The expressions for the radii read

Rcnt,1 =
Rcnt,0ε

|ε− 2Rcnt,0|
, Rgra,1 = ε/4. (3.4)

The expressions u1 and u2 are defined for later use

u1 = uAu,v −Rgra,1 , u2 = uAu,v +Rgra,1. (3.5)

For the second conformal mapping transformation H, a Moebius transformation was

applied in order to map the circles previously obtained by using G into two concentric

circles centered on Op,q. The expression of H(w) is given by

H(w) = t =
w − ab

aw − b
(3.6)
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with t = p+ iq, t ∈ C, p, q ∈ R and a and b defined by

a =
R2

cnt,1 + u1u2 +
√

(R2
cnt,1 − u21)(R

2
cnt,1 − u22)

Rcnt,1(u21 + u22)
(3.7)

b = Rcnt,1. (3.8)

This time, the circle Ccnt,1 is mapped under the transformation H into the circle Ccnt,2

(radius: Rcnt,2) and the circle Cgra,1 is transformed into the circle Cgra,2 (radius: Rgra,2).

Both circles Ccnt,2 and Cgra,2 are centered at Op,q as shown in Fig. 3.2 b).

Rcnt,2 has a simple value since it has been mapped to the unit circle

Rcnt,2 = 1 (3.9)

while the expression for Rgra,2 is the following

Rgra,2 =
R2

cnt,1 − u1u2 +
√

(R2
cnt,1 − u21)(R

2
cnt,1 − u22)

Rcnt,1(u21 − u22)
. (3.10)

By applying successively the transformations G andH, the expression of p(x, y) and q(x, y)

can be inferred since

<(G(z)) = <(w) = u(x, y) =(G(z)) = =(w) = v(x, y) (3.11)

and

<(H(w)) = <(t) = p(u, v) =(H(w)) = =(t) = q(u, v) (3.12)

where < stands for the real part and = for the imaginary part.

The final geometry (Fig. 3.2 b)) matches the one of a capacitor made of two infinitely

long and concentric cylindrical shells. The inner cylinder (radius: Rcnt,2) is at the potential

Vcnt and the outer cylinder (radius: Rgra,2) is at Vgra. The solution of Laplace’s equation

is easy for this simple geometry and yields the following potential between the two cylinder

capacitor:

V (p, q) = Vcnt +
∆V

c

(
ln(
√
(p2 + q2)− ln(Rcnt,2)

)
(3.13)

where ∆V = Vgra − Vcnt and c = ln
(
Rgra,2

Rcnt,2

)
.

Using the expression of p(x, y) and q(x, y) in Eq. 3.13 provides the potential expression

for the initial geometry V (x, y).

3.3 Potential and charge density

Potential map

When holding both structures at a different potential, the induced potential is expected to

exhibit a significant drop in the area between CNT and graphene which will be referred to
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from now on as the junction region. Away from the junction region, the potential should

not differ from that of the graphene sheet in nearby regions and it should go to zero for

regions far away from both structures. In order to illustrate this fact, a map of the electric

potential is represented in Fig. 3.3 for a CNT (5,5) with Vcnt = 10 V and Vgra = 1 V.

Figure 3.3: Map of the electric potential for a CNT (5,5). The tube is represented as a
white circle. The potential of the nanotube is Vcnt = 10 V, the graphene is maintained at
Vgra = 1 V

Charge density

Since the considered system is a 2D system, the linear charge density λ(x) for the graphene

sheet is given in the (Ox,y, x, y) coordinate system by

∂V

∂x
(x, y) = −λ (x)

ε0
. (3.14)

Since the effective potential difference at the junction is hard to determine, a large range

for the potential difference from ∆V = 9.10−3V to 9V has been used for the calculations.

Nevertheless, the influence of the potential difference on the results has proven to be easy

to handle, because it could be worked as a proportionality coefficient. Indeed, the modulus

of the maximum charge density represented in the Fig. 3.4 inset displays a clear linear

behaviour with the potential difference. The linear dependence between the potential

difference and the charge density has been confirmed by studying the normalised charge

density to the potential difference, as all the curves collapse into a single curve.
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Figure 3.4: Charge density for the CNT (5,5), (9,9), (20,20) and (37,37) normalised to the
potential difference ∆V . The distance has been normalised to the radius of the tubes. Inset:
Modulus of the maximal charge density versus the potential difference ∆V for a CNT (5,5).

Fig. 3.4 shows the charge density λ(x) normalised to the potential difference ∆V for

CNT (5,5), (9,9), (20,20) and (37,37). The charge density profile exhibits a sharp peak in

the junction region and reaches its maximum at the closest point to the CNT. Such charge

accumulation does only occur in a region of the graphene sheet close to the CNT, as the

charge density profile tends quickly toward to the neutrality elsewhere. The influence of

the CNT on the charge distribution in the graphene sheet is thus spatially limited to a

small portion of it, around the junction region.

The maximum charge accumulation is −1.67 × 10−1 e.nm−1.V −1 for the CNT (5,5)

while for larger radius CNT the maximum is −1.74 × 10−1 e.nm−1.V −1, indicating that

the the type of CNT considered does not play a significant role on the maximum of

accumulated charge.

The simple 2D electrostatic gives a glimpse of the charge redistribution taking place

at the interface between a CNT and a graphene sheet. The charge distribution in the

graphene sheet is not affected on a large scale by the coupling with the CNT. This ob-

servation will be made clear and supplemented in the next section using a model that

provides better accuracy, down to the atom scale.
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Numerical calculations

The analytical calculations have shown that the influence of the CNT on the graphene

charge distribution is confined to regions around the CNT. However, the analytical calcu-

lations did not take into account the atomic structure. A 3D atomic model also based on

classical electrostatics, coined as ”charge-dipole” model, has been used to overcome such

limitations. It leads to obtain a more precise picture of the charge distribution around the

CNT. In particular, the influence of CNT termination or the shape of the graphene sheet

edges can be addressed with such model.

First the developments that led to the charge-dipole model are presented in Sec. 4.1

followed by a presentation of the model (Sec. 4.2). Although the charge-dipole model

is an atomic model, it is not very sensitive to changes in the structure caused by ge-

ometry optimisation. It yields results with good accuracy for unrelaxed structures, thus

providing an important computational time gain. Under this assumption, the geometry

of the junction used for the calculations is described in Sec.4.4. To decrease the compu-

tational time, the scaling properties of the model are analysed in Sec. 4.5. The optimal

length for the graphene sheet to be used for the calculations is determined. The influ-

ence length is defined and will be used further to characterise the effect of the CNT on

the charge redistribution in the graphene sheet. After having determined that the model

scales proportionally with the potential difference (Sec. 4.6), the results obtained by the

charge-dipole model are presented in the last part of the chapter. For both structures, the

CNT and the graphene sheet, the charge distribution is presented and analysed as well as

the influence of structural parameters such as the termination type for the CNT and the

shape of the graphene edge (Sec. 4.7 and Sec. 4.8).

4.1 Development of the charge-dipole model

The main idea conveyed by the ”charge-dipole” model is to consider that to each atom

i can be associated a net charge qi and a dipole moment pi. The charge-dipole model is

more accurate than the 2D classical electrostatic model discussed in Sec. 3, since it takes

into account not only the charges but also the dipoles and yields an atomic description of

the system. The electronic configuration of the sp2-hybridised carbon is also well reflected.

The net charges account for the displacement of the mobile π-electrons while the dipoles
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account for the tightly bound σ-electrons. For a given system, the pair of values {qi, pi}

associated with each atom are determined by minimizing the total electrostatic energy

Etot.

The model has been first suggested by Olson and Sundberg (74) as an improvement

and extension to previous works on molecular polarisability. Before the prevalent model

used for polarisation calculations had been the ”atom dipole interaction” model which

took into account the dipoles and not the net charges, as described in a reference study

published by Applequist et al. (75).

The idea of associating with each atom of a molecule a net charge and a dipole to

determine electronic properties has then been successfully applied by Applequist et al. to

compute the polarizability of several fullerenes (76). Stern implemented the charge-dipole

model to render the electrostatic interactions as part of a molecular mechanics force field

(77).

The charge-dipole model has been presented in its current development by Mayer in

2005 to compute the polarization of metallic CNT (78). In the same year, he found

a satisfying renormalisation to avoid the divergence arising when considering the charge

distribution around the atom as point charge (79). Further work published in 2007

improved the accuracy of the model (80). Further results on fullerenes, nanotubes and

hydrocarbons molecules polarisation were carried using the framework of the charge-dipole

model (81, 82, 83). Additionally to polarisation calculations, the charge-dipole model could

render in a satisfying way the electrostatic field induced deformations of CNT cantilevers

(84) and charge rearrangement in charged CNT (85).

In a recent work, Wang and Scharstein applied the model to a graphene sheet held

at a defined potential in order to compute the charge distribution (86). They compared

the results obtained with the charge-dipole model to the charge distribution obtained by

a classical electrostatic analytical model. The charge-dipole model results matches with

the analytical conclusions, showing the expected charge enhancement effects on the edge

of the graphene and allows to draw conclusions on an atomic scale.

4.2 Presentation of the charge-dipole model

The charge-dipole model is described in the following part as presented and parametrized

by Mayer in 2005 and extended in 2007 (79, 80). As already mentioned above, each atom

i is associated with a net charge qi and with a dipole momentpi.

40



4.2 Presentation of the charge-dipole model

Total electrostatic energy

The total electrostatic energy for a N -atom system and its associated charge-dipole values

{qi, pi} reads

Etot =
1

2

N∑
i,j=1
i 6=j

qiT
i,j
q−qqj −

N∑
i,j=1
i6=j

qiT
i,j
q−ppj −

1

2

N∑
i,j=1
i 6=j

piT
i,j
p−ppj

+
1

2

N∑
i=1

qiT
i,i
q−qqi −

N∑
i=1

qiT
i,i
q−ppi −

1

2

N∑
i=1

piT
i,i
p−ppi

+

N∑
i=1

qi(χi + Vi,ext)−
N∑
i=1

pi ·Ei,ext.

(4.1)

The interaction between the additional charges carried by the atom i and the core of

the atom is described for by the affinity χi. External parameters such as the set potential

Vi,ext and the applied electrostatic field Ei,ext are also taken into account in the expression

of the electrostatic energy.

The first three terms in Etot are the mutual interaction terms between atoms, the next

three terms contain the self-energy terms whereas the two last terms are the single-atom

interaction terms. The terms Tq−q, Tq−p,Tp−p contain respectively the charge-charge,

charge-dipole, dipole-dipole interactions in vacuum. These terms are in fact tensors whose

dimensionality ranges from zero for the charge-charge term to two for the dipole-dipole

term.

The charge-charge interaction term is given by

1

2

N∑
i,j=1
i6=j

qiT
i,j
q−qqj (4.2)

where T i,j
q−q stands for the charge-charge interaction tensor in vacuum. If ri,j is the distance

between the atom i and the atom j, and ri the coordinate of the atom i, the regular

expression for T i,j
q−q is then :

T i,j
q−q =

1

4πε0

1

ri,j
(4.3)

The charge-dipole interaction term has the following expression

−
N∑

i,j=1
i6=j

qiT
i,j
q−ppj (4.4)

where Ti,j
q−p is the charge-dipole interaction tensor in the vacuum. The regular expression

for Ti,j
q−p can be derived from T i,j

q−q by:

Ti,j
q−p = −∇ri T

i,j
q−q (4.5)
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The dipole-dipole interaction term has the following expression

−1

2

N∑
i,j=1
i6=j

piT
i,j
p−ppj (4.6)

where Ti,j
p−p is the dipole-dipole interaction tensor in vacuum. As for the charge-dipole

interaction tensor, the regular expression for Ti,j
p−p can be derived from the previous terms

by applying the operator ∇ :

Ti,j
p−p = −∇rj ⊗∇ri T

i,j
q−q (4.7)

Regularization of the net charge density

When a point charge distribution is considered, the charge-charge, charge-dipole and

dipole-dipole terms do diverge when ri,j → 0. A regularization of the net charge dis-

tribution has been introduced to avoid such divergence. To be able to define the terms

T i,i
q−q, T

i,i
q−p,T

i,i
p−p, the net charge density for each atom has been regularized by a Gaussian

distribution centered on the atom. The atom i carrying a net charge qi has its charge

distribution given by

ρi(r) =
qi

π3/2R3
exp

(
−|r− ri|2

R2

)
(4.8)

where R is the width of the Gaussian distribution. Using the Eq. 4.8 in the expressions

for the interaction tensors terms leads then to the following expressions

T i,j
q−q =

1

4πε0

erf
(

ri,j√
2R

)
ri,j

(4.9)

Ti,j
q−p =

1

4πε0

ri,j
r3i,j

[
erf

(
ri,j√
2R

)
−
√

2

π

ri,j
R

exp
(
−r2i,j/2R2

)]
(4.10)

Ti,j
p−p =

1

4πε0

3ri,j ⊗ ri,j − r2i,jId3

r5i,j
{[

erf

(
ri,j√
2R

)
−
√

2

π

ri,j
R

exp
(
−r2i,j/2R2

)]
−√

2

π

1

R3

ri,j ⊗ ri,j
r2i,j

exp
(
−r2i,j/2R2

)}
(4.11)

where Id3 is the size 3 identity matrix and erf is the Gauss error function

erf(x) =
2√
π

∫ x

0
exp(−t2)dt. (4.12)

The self-energy terms are obtained as limiting case in the expressions of the interaction
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tensors 4.9, 4.10, 4.11 when ri,j → 0:

T i,i
q−q =

1

4πε0

√
2√
πR

(4.13)

Ti,i
p−q = 0 (4.14)

Ti,i
p−p = − 1

4πε0

√
2

3
√
πR3

Id3. (4.15)

As pointed out in (80), the dipole-dipole self-interaction Ti,i
p−p term is equal to α−1

iso

which is the polarisability of the carbon atoms in sp2 carbon structures. Thus assuming

an isotropic polarisability, the following relation can be used to link the parameter R (i.e.,

the width of the Gaussian distribution) and the polarisability

αiso

4πε0
= 3

√
π

2
R3. (4.16)

The parameter R has been then determined using experimental data to reproduce the

mean polarisability of fullerenes and lateral polarisabilty of CNT (78). R was set to

0.06862 nm for the calculation, corresponding to a polarisability of αiso
4πε0

= 0.12149001 nm

and was used in all the recent work cited in Sec 4.1.

Minimization of the energy

For a system ofN -atoms, the {qi, pi} for each atom are determined by minimizing the total

electrostatic energy Etot given by Eq.4.1. The minimization is carried out by requiring

that for each atom i
∂Etot

∂qi
= 0 and

∂Etot

∂pi

= 0

This leads to solve a 4×N linear equations system.

If the sum of the net charge is required to be equal to a specific value Qtot, an additional

equation is added to the linear equation system determined previously. The minimization

of the expression Etot−λ (
∑

i qi −Qtot) with respect to the variable λ yields the additional

equation
∂Etot

∂λ
= 0

The implementation of the charge-dipole model has been done using the C++ program-

ming language. The resolution of the linear equation system was performed with the

routine DGESV called by the C++ code. This routine is part of the LAPACK package

(87) written in Fortran. Structures with up to about 10.000 atoms could be solved using

the random access memory (RAM) resources of the Opus Cluster from the Steinbuch Cen-

tre for Computing (SCC). The size of the systems handled with the charge-dipole model

is therefore larger than with ab-initio methods or even semi-empirical methods.
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4.3 Code validation

The C++ code has been validated by reproducing results from the literature. First, the

charge distribution in a graphene sheet has been computed as it has been reported by

Wang and Scharstein et al. (86). They confirmed the following classical electrostatic re-

sult: for a rectangular graphene sheet held at a certain electric potential with an amount

of external charges, the electric charges tend to accumulate on the edges and on the cor-

ners. Silvestrov et al. (88) had already studied such charge accumulation effect but using

analytical electrostatic model. Wang and Scharstein thus used a numerical charge-dipole

based model to compute the charge distribution in free-standing graphene, without any

substrate consideration. The graphene sheet was relaxed by using adaptive intermolecular

reactive bond order potential functions (AIREBO). The same calculations but without

any relaxation of the geometry have been carried out using the C++ code based on the

following procedure.

The 8 nm × 5 nm graphene sheet has been generated with the parameters described

later in Sec. 4.4. The graphene flake was held at a potential of Vgra = 1 V and the

reference was taken at infinite distance. An amount of additional charges is introduced in

the graphene sheet.

Figure 4.1: Density of net charge for a graphene flake. A color scale is used to represent
the charge density for each atom. Red stands for a high charge density, blue for a lower
one. The density has been normalised to that in the middle of the graphene sheet: q0 =
8.1 · 10−4 e per atom.

Fig. 4.1 illustrates the charge distribution for the unrelaxed graphene sheet. The charge

has been normalised to that in the middle of the graphene sheet. It shows as expected

charge enhancement at the edges and corners. Additionally, the value of the net charge

reaches in the corners its maximum value (i.e., about 14 times the charge at the centre

of the flake). The range of the normalised charge density is thus in perfect agreement

with the values obtained by Wang and Scharstein (86). The results for the non-relaxed

structure matches perfectly the results for the relaxed graphene.
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4.3 Code validation

As a second test, the net charge distribution has been computed for an uncapped CNT

(5,5) made of 110 atoms having an excess of Q = 20 e charges. DFT as well as electro-

static moment calculations have been reported for the CNT (5,5) system additionally to

the charge-dipole method (89, 90, 91). The expected U-shape curve was obtained for the

charge distribution (Fig . 4.2). First, the charge-dipole model calculations exhibit little

variation between unrelaxed/relaxed structures. The value of the net charge differs slightly

only for the end atoms, which undergo the most important positional change during the re-

laxation process. When compared to DFT and moment method results, the charge-dipole

model results show a lower charge value for the end atoms for both unrelaxed/relaxed

structures. Indeed, the normalised charge given by the charge-dipole is around 1.8 to 2

whereas for the DFT and moment method it is around 2.5-2.7. In the center part thus

the results obtained by all three methods show good agreement, the DFT calculations

yields a slightly lower value but shows some oscillation that could be related to numerical

instabilities.

[   ]

Figure 4.2: Normalised net charge along the (5,5) CNT axis with respect to the average
net charge per atom. The results for the unrelaxed/relaxed CNT using the charge-dipole
model are represented as well as results of DFT calculations from (90) and results of using a
electrostatic moment method (91). Inset: Net charge per atom depicted using a color scale.
The blue colour indicates a low net charge while the green denotes a significant amount of net
charge and the red colour stands for strong accumulation of charge.

Beside the validation test of the C++ code, reproducing already published work leads

to conclude that for the charge-dipole model the benefit of geometry optimisation is not

significant. Indeed, unrelaxed and relaxed structures show almost the same charge distri-

bution. The charge-dipole model is not sensitive to changes in the atoms position of the

order of magnitude of that introduced by the relaxation processes. Thus, for the rest of

45



4. NUMERICAL CALCULATIONS

the work, this costly computational step will not be performed in order to speed up the

calculations.

4.4 Geometry

Since the charge-dipole model is a 3D model that takes into account the atomic structure,

the geometry used as input for the calculations differs from that used for the analytical

calculations and therefore it needs to be redefined here. The CNT-graphene junction was

modeled by a rectangular sheet of graphene and a carbon nanotube placed on top of the

graphene sheet. As for the 2D analytical calculations, the output of the semi-empirical

structural calculations from Sec. 2.3.4 is used to determine the equilibrium distance ε

between graphene and CNT. Only in Sec. 5.2, the distance ε has been set to different

values. The carbon-carbon in-plane bond was taken from the literature and corresponds

to a = 0.142 nm. The stacking of the atoms is A-B, meaning that for the CNT, its closest

atoms to the graphene flake is located at the center of a hexagonal cell. The coordinate

system used for the calculations as well as the different structural parameters are depicted

in Fig. 4.3.

y

x

l

w

e

a

Figure 4.3: Parameters and coordinate system
used for the calculations

The width of the graphene sheet was

fixed through all the calculations to w ∼
5.00 nm while the length varied from

l ∼ 5.00 nm to 50.00 nm. The number

of atoms in the graphene sheet ranged

consequently from Ngra = 984 to Ngra =

9512.

Although the charge-dipole model

does not take into account the band

structure, for the coherence of the study,

only metallic CNT have been used to

form the junction. Most part of the

analysis has been carried with a CNT

(5,5) generated by repeating 19 elemen-

tary cells in the y direction, thus having a

non-capped length of about 4.60 nm and

containing Ncnt = 380 atoms. The junction length (i.e., the length of the part of the CNT

lying on top of the graphene flake) is approximatively 2.25 nm, the rest of the CNT is

suspended away from the sheet.

The choice of the CNT (5,5) makes sense when it comes to cap the nanotube. Indeed

capping the CNT (5,5) is easily done with a C30 hemisphere made by halving of a C60

molecule (Ncnt = 420) and attaching it to the CNT end lying on top the graphene sheet.

The free standing end was left uncapped. To study the influence of the radius on the

results, CNT (n,n) with n up to 50 (i.e., up to radius about 3.4 nm) were generated by

repeating enough unit cells in the y direction assuring a junction length of about 2.25 nm.
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4.5 Charge profile and scaling of the model

The charge-dipole model yields a picture of the charge reorganisation that occurs when

CNT and graphene are brought together and held at different potentials, forming a CNT-

graphene junction. The charge-dipole model is used to determine the spatial extent of the

charge redistribution in the graphene sheet. An obvious limitation of the charge-dipole

model and, in general, of electrostatic-based models is that they assume that a sufficient

number of states are available for the electrons in both structures. They do not consider

any band structure effects. For graphene, this implies that in the vicinity of the Dirac

point the results have to be considered with caution.

As mentioned above, the calculations were made using a CNT (5,5). The first task was

to determine how the net charge redistribution scales with the length l of the graphene

flake. Knowing the optimal length for the graphene flake helps to reduce the computational

cost of the simulations but also ensure the accuracy of the results. At the same time, the

initial calculations were used for a preliminary analysis of the charge distribution. For

this purpose, several lengths ranging from l ∼ 5.00 nm to ∼ 50.00 nm have been used

to run the simulations. The net charge profile was analysed in the graphene along the

length of the sheet near the junction region as well as far from the CNT, following the

line drawn in the inset of Fig. 4.4. The calculations were carried for a potential difference

∆V = Vcnt − Vgra = 9 V, the graphene was held at Vgra = 1 V while the CNT at

Vcnt = 10 V. The neutrality of the system is ensured by requiring the total charge to be

zero. This condition and the potential difference ∆V fix the amount of charges in each

structure.

Charge profile

As depicted in Fig. 4.4, the charge profile exhibits a sharp peak close to the position of the

CNT on an otherwise flat part of the profile. The charge distribution profile for the atoms

in the graphene flake experiences considerable variation close to the junction region. The

closest the graphene atoms are located to the CNT, the strongest the charge accumulation.

On the other hand, the further the graphene atoms from the CNT, the weaker the charge

accumulation. For atoms located a few nm away from the CNT (x ≥ 2−3 nm), the charge

profile flattens when the influence of the CNT becomes less prevalent, meaning that the

extension of the charge redistribution is limited. The atoms located on the row forming

the edges of the graphene sheet have significantly higher charge values as displayed by

charge profile kink for the outermost point. This is due to electrostatic edge effects: the

charges tend to accumulate at the edges of the structure.

Scaling of the model

No significant change in the charge profile around the junction region is observed when

changing the length of the graphene sheet as illustrated in Fig. 4.4. The accumulation

peak in the charge profile has the same shape through all calculations. For a length of

l ∼ 5.00 nm, the maximum is about −10.97 × 10−2 e per atom while for l ∼ 50.00 nm
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Figure 4.4: Charge per atom in the junction region along the length of the graphene flake.
Different lengths for the graphene flake have been used.

the values is about −10.85 × 10−2 e per atom. These values correspond to the charge

carried by the atom closest to the CNT. As for the edge effects, characterised by charge

accumulation at the end of the graphene sheet, narrower graphene flakes exhibit stronger

effects up to −2.76×10−2 e per atom for a l ∼ 5.00 nm length. With increasing length, the

edge effects become less significant. An additional effect of the scaling is that for lengths

larger than ∼ 15 nm, the additional charge of atoms located away from the CNT is almost

zero. The influence of the CNT is confined to a few atomic rows near the junction region.

For shorter sheets, the influence of the CNT and the edge effects can not be analysed

independently since the charge value stays well above neutrality through all the sheet.

For the rest of the study, a value of l ∼ 25 nm was chosen for the length of the graphene

sheet assuring on one hand negligible edge effects and on the other hand allowing to define

clearly the CNT influence zone.

Influence length l5%max

For a more accurate analysis of the extension of the charge redistribution in the graphene

sheet, the value |q|5%max has been defined. It corresponds to 5% of the maximal absolute

value for the net charge and it is located in the part where the charge profile starts to

flatten. Thus, the length on the graphene sheet l5%max where the charge profile reaches

|q|5%max is a good indicator of how far the CNT affects the charge distribution in the

graphene sheet. In Fig. 4.5, l5%max is shown for different values of graphene sheet length.

For small lengths, l5%max is limited to the very few atomic rows near the junction because

of the edge effects and it cannot give a reliable information over the extension of the CNT

influence on the graphene. l5%max increases with the length of the graphene sheet until it
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Figure 4.5: Length on the graphene sheet where the net charge corresponds to |q|5%max for
different graphene sheet widths.

reaches a limit value around 1.9 nm. This limit value defines the influence length of the

CNT on the graphene.

4.6 Effects of the potential difference

The results inferred from the analytical calculations presented a linear behaviour with

the potential difference ∆V = Vcnt − Vgra. The charge distribution computed with the

charge-dipole model scales proportionally with the potential difference as well. The shape

of the charge profile in the graphene sheet and the length over which the carbon nanotube

affects the charge in the graphene do not change with the potential difference.

This result was established comparing the maximum of net charge obtained and the

charge profile for several values of ∆V . The left plot in Fig. 4.6 shows the charge profile for

∆V = 5V, 9V, 15V and 18V. The charge profile exhibits the same shape for each potential

difference.

As depicted in the inset in the right part of Fig. 4.6, the values for the maximal

depletion ranges from −6.0 × 10−2 e for ∆V = Vcnt − Vgra = 5V to −22.9 × 10−2 e for

∆V = 18V. They present a linear behaviour with respect to ∆V . The same observations

have been made for the mean value of the charge in the graphene sheet. The charge

profile seems thus to scale proportionally with the potential difference ∆V . This trend is

confirmed when analysing the charge profiles normalised to the potential difference ∆V

as depicted in the right part of Fig. 4.6. Consequently, all charge values will be from now

on normalized to the potential difference.

4.7 Charge distribution in the graphene sheet and in the
CNT

The charge distribution in the tube and in the graphene sheet is addressed in this sec-

tion. In addition, the modification in the charge distribution have been investigated when
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Figure 4.6: Left: Net charge profile along the length of the graphene sheet in the middle of
the junction region
for ∆V = 5V, 9V, 15V, 18V. Right: Net charge profile along the length of the graphene sheet in
the middle of the junction region normalised to the potential difference ∆V . Inset: Maximum
charge depletion for several potential differences ∆V .

changing the type of CNT termination. The comparison was carried between CNT with

open ends (i.e., uncapped CNT) and CNT with closed ends (i.e: capped CNT).

First the charge distribution for a junction with an uncapped CNT (5,5) has been anal-

ysed. A view of the charge redistribution near the junction region is depicted in Fig. 4.7.

As expected, for the atoms located close to the junction the charge value significantly

differs from the average charge, denoting a charge accumulation/depletion in this region.

More precisely, the strongest charge variations are found at the end of the CNT that lies

on top of the graphene and in the graphene parts lying under the CNT.

Charge distribution in the open-ended CNT

The charge distribution in the top- and bottom-rows (see inset Fig.4.8) has been addressed.

The atoms of the CNT along the top row experience a significant change in their net charge

only at the ends. Indeed, as inferred from Fig. 4.8, the net charge ranges from 0.32 to

0.40× 10−2 e per atom and per Volt for central atoms. The end atoms at each end of the

CNT, experience a higher charge variation due to edge effects.

This observation contrasts with the behaviour displayed by the bottom atoms of the

CNT. The charge profile exhibits two clear parts: a weakly charged part outside the junc-

tion region and a highly charged part in the junction region with in between a transition

region. The bottom-row atoms show a charge increase in the junction part since they

experience a significant influence of the graphene flake. Their charge does not vary sig-

nificantly and has values around 1.70 × 10−2 e per atom and per Volt. Away from the

junction part, except for the end atom, the influence of the graphene lessens therefore the
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Figure 4.7: Net charge density for an uncapped metallic CNT (5,5)-graphene junction.
The net charge has been normalised for the CNT as well as for the graphene to the average
charge per atom for each structure. The color scale indicates the magnitude of the charge
redistribution. The blue colour indicates a net charge close to the average while the green
denotes a significant variation to the average and the red colour stands for a strong variation
to the average.
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Figure 4.8: Net atomic charge density for an open-ended CNT (5,5) part of CNT-graphene
junction normalised to the length of the CNT. The net charge profile has been represented for
the top atomic row (red curve) and for the bottom atomic row (blue curve).
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4. NUMERICAL CALCULATIONS

charge exhibits values close to the top rows atoms net charges. The charge profile for the

central row did not show significantly difference with the top row. This implies that only

the closest atom row to the graphene are affected by the charge redistribution.

For the CNT, the charge accumulation is then restricted to the closest rows of atoms

to the graphene sheet. These atoms carry a charge about 4 to 5 times higher than the

atoms away from the junction region or the atoms further away from the graphene sheet.

Charge distribution in the graphene

Figure 4.9: Charge density profile along the width of the graphene flake for different rows
of atoms. The colours correspond to the different atomic rows with x = cst.

In the graphene sheet, the same trend as in the CNT is observed for the charge redistri-

bution. The junction area exhibits a significant charge accumulation while regions located

further away from the tube tend the charge neutrality. As already mentioned in Sec. 4.5,

the significant charge redistribution takes place in the graphene only in a limited region

around the tube. The influence length is about 1.90 nm in the perpendicular direction

to the tube axis. The analysis of the net charge profile across the x and y directions in

the graphene sheet makes evident the contrast between the low-charge and high-charge

regions. This analysis substantiates the value of the influence length and leads to identify

the characteristics of the high-charge region.

Apart from the edge atoms, the charge distribution is homogeneous in the junction re-

gion along the direction of the tube axis (i.e., along the width of the sheet). In contrast, the

charge value tends quickly toward the neutrality for the atoms outside the junction region.

Perpendicular to the tube axis (i.e: along the length of the sheet), as expected, the value

of the net charge decreases with the distance to the axis of the CNT. These features are

clearly illustrated by the representation along the width of the charge profile in the sheet
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4.7 Charge distribution in the graphene sheet and in the CNT

in Fig. 4.9. In the junction region, for the row of atoms located closest to the tube axis, the

net charge per atom varies from −1.11 to −1.22×10−2 e per atom and Volt (pink curve in

Fig. 4.9), while for the row located close to the radius of the CNT (5,5), the net charge has

already diminished significantly, ranging from −0.72 to −0.81×10−2 e per atom and Volt

(the orange line in Fig.4.9). For a distance of approximately twice the CNT radius (blue

curve in Fig. 4.9), the net charge value has dropped by more than a factor of three, being

around −0.35× 10−2 e per atom and Volt.

Figure 4.10: Charge profile along the length of the graphene flake for different rows of atoms.
The colours displayed in the top figure correspond to the different atomic rows with y = cst.

The analysis of the charge profile along the length of the graphene sheet confirms the

quick drop of the charge value with the increasing distance to the CNT axis and made

evident the homogeneous distribution of the charge in the junction region. As seen in

Fig. 4.10, the charge profile shows a strong variation for atoms close to the CNT, while it

presents a steep drop a few atomic rows away from the CNT axis reaching a value close

to charge neutrality. As already pointed out, the charge value does not show significant

variation in the junction region along the length of the graphene. The charge profile in

the middle of the junction region (red line in Fig. 4.10) and the profile at the end of the

tube (green lines in Fig. 4.10) present no significant contrast. Moreover, the influence

of the tube is clearly limited across the graphene not only in the width but also in the

length. The rows of atoms that are not located under the tube (pink and dark blue lines

in Fig. 4.10) contrast with the previous mentioned rows, since the magnitude of the peak

in the charge profile decreases quickly with the distance from the tube. This results in a

flatter charge profile and values close to neutrality.

Now focusing on the edge atoms, the charge enhancement effect are clearly noticeable.

The atoms located in the junction region at the edge of the graphene flake undergo the
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4. NUMERICAL CALCULATIONS

strongest variation in their net charge charge. From Fig. 4.10 (blue line), the net charge

carried can reach up to −2.27×10−2 e per atom and Volt, almost twice the maximal value

for atoms in the middle of the junction region.

The analysis of the net charge distribution across the graphene sheet leads to following

conclusions. First, the charge transfer is significant only in a limited region underneath

the tube. The spatial extent of this region is about a few atomic rows. The net charge

carried by the atoms outside this region is insignificant. Secondly, the charge distribution

is homogeneous in the junction region along the direction of the tube axis. Finally, the

net charge value is significantly higher for graphene edge atoms. This particular region

needs consequently further studies (See. 4.8)

Capped CNT

Since it is not clear which structure the termination of the CNTs has, both cases, open-

ended and capped, have been considered in the calculations. The influence of the termi-

nation on the charge distribution is addressed in the following part. Open-ended CNTs

exhibit sharp edge termination, leading to a strong charge enhancement at the edges

as seen in the previous section. Because the half-fullerene structure used as a cap has

smoother edges, capped CNTs are expected to show less charge enhancement effect.
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Figure 4.11: Atomic charge density for a capped CNT (5,5) of a CNT (5,5)-Graphene
junction. The charge has been represented for the top atomic row and for the bottom atomic
row.

Closing the end of the CNT does not modify significantly the charge distribution in

the central part of the CNT as observed in Fig. 4.11. The charge profile along the tube

follows the same trend as seen in Fig. 4.8. The values of the charge match those for

the case of open-ended CNT. In contrast, the edge effects are much less prevalent at the
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4.8 Effects of the edges of the graphene flake

junction end of the capped nanotube as they are for the case of an open-ended CNT.

The atom carrying the maximal charge in the CNT is still found at the termination of

the CNT, but exhibits a lower charge. Indeed, for a open-ended CNT, the maximal

charge was 3.10 × 10−2 e per atom and per Volt while for a capped nanotube it is only

1.91× 10−2 e per atom and per Volt as shown in Fig. 4.12. The charge distribution in the

half-hemisphere cap is in agreement with the trend already pointed out that atoms closer

to the graphene sheet undergo the highest net charge variations. The top atoms in the

cap exhibit charge values (∼ 0.50× 10−2 e per atom and per Volt) similar to the top row

atoms in the central part of the CNT.

Figure 4.12: Charge distribution in the C30 molecule used as cap for the CNT (5,5). The
color scale indicates the value of the net charge per Volt in ×10−2 e.

The analysis of the cap-induced changes on the charge (Fig. 4.13) leads to identify two

different regions in the graphene sheet. The upper half of the graphene sheet concentrate

the highest variation in the charge. As expected, the atoms closest to the cap experiences

the most significant variations. For the atoms closest to the cap, the increase in the charge

is almost three times larger than for the open-ended CNT. These atoms already showed

charge values in the open-ended CNT case around 0.50 × 10−2 e per atom and per Volt,

the capping results then in a significant increase in their charge value. Further away along

the length of the sheet, the atoms experience some variations in their charges (green colour

in Fig. 4.13) but still do not carry significant charge. The values are close to the neutrality.

The charge distribution does not present any change in the lower half of the sheet, where

the tube is located (region below the black line in Fig. 4.13). Thus, the structure of the

CNT ends does not influence the charge distribution in the junction region.

4.8 Effects of the edges of the graphene flake

In the previous parts, the conclusions for the charge distribution were drawn mostly

based on the regions of the sheet labeled as ”middle of the junction” regions, where the

charge profile was almost constant along the width of the sheet. As already pointed
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4. NUMERICAL CALCULATIONS

Figure 4.13: Relative difference in the charge density in the junction region part of the
graphene flake when considering a capped nanotube over an uncapped nanotube. The relative
difference is given by: (qgra,capped − qgra) /qgra and is indicated with the color scale. Below
the black line, the charge distribution is not affected by the CNT end structure.

out in Sec. 4.7, the charge distribution for the edge of the graphene sheet contrasts

with that for the rows in the middle of the junction. There the charge enhancement

was stronger. Fig. 4.15 shows that the maximal charge value on the edge row is ∼
−2.27 × 10−2 e per atom and per Volt while for the middle part of the junction, it is

only around ∼ −1.22× 10−2 e per atom and per Volt. The electrostatic charge enhance-

ment at the edge of a structure can be invoked to explain the higher net charge values

exhibited by the atoms forming the edge of the graphene sheet.

Figure 4.14: Edge of the junction
region. Top: Armchair configuration.
Bottom: Zigzag configuration.

For the edge row, besides the higher maximal

value, the peak in the charge profile has a broad-

ened shape, meaning that the charge accumula-

tion extends further into the graphene sheet. In-

deed, the length for which the charge value is 5%

of the maximum was found to be for the edge row

about l5%max ∼ 3.30 nm while for the middle of

the junction l5%max ∼ 1.90 nm. Here this length

can not be used to measure the influence of the

CNT as it has been in as defined in section 4.5,

since additionally to the CNT effects, the electro-

static edge enhancement effects have to be taken

into account.

So far, the calculations were carried with arm-

chair edges for the junction region as represented

in top of Fig. 4.14. For completeness, calculations were performed for junctions with

zigzag edges as shown at the bottom of Fig. 4.14. As illustrated in Fig. 4.15, for both edge
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Figure 4.15: Charge per atom in the junction region along the width of the graphene flake for
different edge configurations. Charge profile has been drawn along the graphene edge taking
part in the junction and for the middle of the junction.

configurations, the maximum value for the charge in the graphene flake is located in the

junction region and on the closest atoms to the CNT.

Overall, the edge configuration (armchair or zigzag) does not have a significant in-

fluence on the net charge. Only the atomic row forming the edge itself presents some

contrast. For this atom row, the atoms of the zigzag edges have a higher charge accu-

mulation value than their armchair counterpart. A slightly larger accumulation of about

−2.38 × 10−2 e per atom and per Volt is found for zigzag edges compared to −2.26 ×
10−2 e per atom and per Volt for armchair edges. For atoms located away from the

edges, as expected, the influence of the edge configuration is not discernible. The val-

ues for the maximal charge for both the zigzag configuration and armchair configuration

is ∼ −1.22× 10−2 e per atom and per Volt.

Considering l5%max for a cut along the graphene in a middle of the junction, there is no

significant variation due to the type of edge involved in the junction (l5%max ∼ 1.90 nm).

Even on the edge row l5%max does not show a significant contrast between both edge

configuration (l5%max ∼ 3.40 nm for zigzag edges, l5%max ∼ 3.30 nm for armchair edges).

4.9 Conclusion

The charge distribution has been computed for a CNT/graphene system using the ”charge-

dipole” model, a 3D electrostatic model. It scales down to the atom allowing a more

accurate description than the analytical calculations presented in Sec. 3.

The analysis of the charge distribution shows clearly two regions for the graphene

sheet:
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4. NUMERICAL CALCULATIONS

• a high charge concentration region in the vicinity of the CNT/graphene interface.

In this region, the charge is homogeneous in the graphene sheet along the CNT axis.

The maximum charge is carried by the atoms closest to the CNT.

• a low charge concentration region (neutral region) a few rows away from the CNT.

The influence length gives a limit where this region is located. For the CNT (5,5),

it starts 1.9 nm away from the tube.

The extent of the charge accumulation in the graphene sheet gives an indication about

how strong the CNT modifies the graphene beneath and around it. This extension was

proven to be limited. Moreover, the influence of several structural parameters on the

charge distribution could be studied. Capped and non-capped CNT were used to build

the junction. The influence of the CNT termination on the charge distribution in the

graphene sheet was found to be confined to a few atoms around the termination. The

effect of the graphene sheet edge has been also addressed. The type of edge has no

influence on the charge distribution in the high charge concentration region away from the

edge. These structural parameters do not modify significantly the charge distribution and

therefore are not likely to influence the electronic transport.

If the middle of the junction is considered, the analytical calculations are good enough

to study the charge distribution and the extent of the CNT influence over the graphene

sheet charges. However, for a more precise analysis, the charge-dipole model has to be used.

Because it is a 3D model and it takes the atomic structure into account, the charge-dipole

model could address the change in the distribution induced by capping one end of the

tube. The charge distribution for different edge configurations could also be studied with

the charge-dipole model. The edge effects were found to be limited to the atoms forming

the edges. The analytical calculations could not have given access to these informations.

58



5

Results for the charge distribution

For both models, the main characteristics of the charge distribution of the CNT/graphene

junctions have been identified and discussed in Sec. 3 and Sec. 4. One clear main trend

emerges from the results: both models indicate that the charge accumulation/depletion is

spatially limited to regions around the junction.

So far only small nanotubes have been used for the calculations (i.e., the CNT (5,5)).

In the experiments, thin multi-walled nanotubes (MWCNT) have been used to fabricate

CNT/graphene junctions. These MWCNT have radii of about an order of magnitude

larger than the CNT (5,5). In this section, the charge distribution will be computed for

larger tubes and results drawn for the scaling of the influence length with the radius.

Additionally to the radius of the tube, the distance between the tube and the graphene

sheet will be modified and the changes induced on the charge distribution are also presented

in this section. From the results of electrical transport measurements presented in Sec. 8,

the distance between the tube and the graphene turns out to influence dramatically the

contact resistance at the junction. The analysis of the change in the charge distribution

with the distance could be the first step to understand the contact resistance variation.

5.1 Scaling of the influence length l5%max with the radius of
the CNT

The scaling of the influence length l5%max with the radius has been investigated by replac-

ing the CNT (5,5) of the previous computations by tubes with larger radius. 12 different

armchair CNTs (n,n) with radii ranging from ∼ 0.38 nm to ∼ 3.35 nm (and the chiral

index n ranging from 7 to 50) have been used, giving then twelve different junction config-

urations. The equilibrium distance between the tubes and the graphene has been inferred

from the results of Sec. 2.3.4. The maximum of charge has been defined by considering

the charge for the middle of the junction and by determining the maximum along a cut

across the graphene sheet.

First, the limited extent of charge accumulation is also observed in case of larger CNT.

This trend is clearly revealed when the atoms carrying a charge value higher than 5% of

the maximum charge |q|5%max are represented for larger CNT, as in Fig. 5.1.

Additionally, the lateral extension of the charge redistribution in the graphene sheet

tends to be more restricted to regions close to the CNT when the radius increases. This
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Figure 5.1: View of the extension of the CNT influence on the graphene sheet for a CNT
(7,7) (left) and a CNT (37,37) (right). Atoms in red have a charge value |q| ≥ |q|5%max, while
atoms in blue have a charge value |q| ≤ |q|5%max.

trend is clearly observed in the variation of l5%max with the radius of the CNT for either

analytical calculations or charge-dipole model (Fig. 5.2). For each junction configuration,

the influence length l5%max has been determined by considering the maximum of the charge

value at the middle of the junction. The influence length increases with the radius of the

tube as illustrated in Fig. 5.2 (top), ranging from 2/2.5 nm to 5.5/6.5 nm depending on

the model considered. To study how the influence region on the graphene sheet changes

with the radius of the CNT, l5%max has been normalised to the radius of the CNT in

Fig. 5.2 (bottom).
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Figure 5.2: Influence length l5%max versus the radius of the CNT used for the junction (top).
l5%max has been normalised to the radius of the CNT (bottom). l5%max has been computed
analytically and using the charge-dipole model.

The charge-dipole model gives for the CNT (50,50) a normalised influence length l5%max

of only about 1.7 times the radius of the tube itself, while for the tube (7,7) l5%max is

about 4.5 times the radius. The results of the analytical calculations yield higher values

for l5%max but follows the same tendency as the charge-dipole model, l5%max = 1.9 ·RCNT

for the CNT (50,50) and l5%max = 5.6 ·RCNT for CNT (7,7).
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5.2 Effects of the CNT-Graphene distance

A important point in the analytical calculations is the lack of edge effects, since the

graphene is modeled as an infinite sheet. The values for l5%max are taken far from the

edges in the case of the charge-dipole model. Thus edge effects can be ruled out to justify

the differences arising between the two models. A reliable explanation for the different

l5%max values between the two models lies in the charge-dipole interaction that tends to

prevent the charge from spreading out in the graphene sheet and pin them in the junction

region.

5.2 Effects of the CNT-Graphene distance

The effects of the CNT-graphene distance dCNT−Gra on the charge distribution in the

graphene sheet have been addressed in this section. In Sec. 2.3.4, the equilibrium distance

between several CNT and a graphene sheet has been computed by means of the semi-

empirical PM6-D method. Up to now, no experimental value is available for the equilib-

rium distance. The experimental value for interlayer distance in graphite is the closest

experimental value available. The experimental definition of the graphene-nanotube dis-

tance is not straightforward since graphene is not perfectly flat due to thermal fluctuations.

Corrugations of up to 1 nm in the out-of-plane direction have been reported in suspended

graphene (92). Furthermore the equilibrium distance may vary during the experiment. In

particular for back-gated graphene transistors, the gate voltage sweep may draw the tube

toward the graphene or push it away. Furthermore, trapped impurities may also locally

modify the distance between the two structures. The picture of a perfectly flat junction

has then to be modified. Taking into account the range of all modifications is out of scope

but as a starting point, the effect on the charge distribution arising from a change in the

distance between the CNT and the graphene has been determined.

The CNT (5,5) has been used to build the junction. This tube constitutes the upper

limit for the extent of the CNT influence with respect to the radius as seen in Sec. 5.1. The

charge distribution profile across the graphene sheet is represented for several dCNT−Gra

and for both models in Fig. 5.3. The range of distances used for the calculations covers

both experimental and computed ranges, from dCNT−Gra = 2.4 Å to 3.8 Å.

The overall shape of the charge profile does not change significantly with the distance

dCNT−Gra. Indeed, the region of influence of the CNT is still confined to a few atomic

rows around the CNT and does not extend far into the graphene. The only noticeable

modification is the value of the charge distribution peak. The closer the tube to the

graphene sheet, the higher the value of the maximum charge. Thus, the variation of

dCNT−Gra does only affect significantly the atoms located close to the CNT.

Since both models give the same trend, the charge-dipole model has been used to

study in detail the charge variation with the distance dCNT−Gra for atoms close to the

CNT, along the row pictured in the top part of Fig. 5.4. The closest atom to the CNT

(blue atom in Fig. 5.4) undergoes the strongest change in charge value with increasing

distance: it carries a net charge of −17.3× 10−2 e for dCNT−Gra = 2.4 Å and a net charge

of −7.4× 10−2 e for dCNT−Gra = 3.8 Å.
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5. RESULTS FOR THE CHARGE DISTRIBUTION

Figure 5.3: Left: Charge profile in the graphene given by the charge-dipole model for different
equilibrium distances dCNT−Gra. Right: Charge density profile computed analytically in the
graphene for different equilibrium distances dCNT−Gra.

This behaviour is clearly seen in Fig. 5.4, where the charge has been represented

for atoms sitting at several distances from the closest atom to the CNT. The charge

has been normalised for each atomic row to that for the distance dCNT−Gra = 2.4 Å.

For the atoms sitting one row to three rows away from the closest atom to the CNT

(respectively red, green and brown atoms), the change in the net charge is significant

when the distance dCNT−Gra varies. When compared to the charge value these atoms

carry for dCNT−Gra = 2.4 Å, the charge reduction is about 0.6 times for the first-row

atom and about 0.15 times for the third-row atoms. For rows further away, the loss is

smaller and it becomes eventually negligible for the atom 5 rows away from the closest

one to the CNT (purple atom).

5.3 Conclusion

The charge distribution in the graphene sheet at the junction has been investigated by

changing two structural parameters: the diameter of the CNT and the distance between

the tube and the graphene.

First, the calculations show that tubes with large diameters have limited influence

over the charge distribution in the graphene. The extension of the charge redistribution

in the graphene has been found to be less than 2 times the tube radius. This value can be

compared to the extension in the graphene sheet of the doping due to metal leads, which

is on the micrometer scale.

The change in the tube-graphene distance does affect only the graphene atoms the

closest to the CNT. It has no influence on a large scale in the graphene sheet.
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5.3 Conclusion

Figure 5.4: Normalised charge versus the CNT-graphene distance for atoms along the row
defined in the top figure (dashed line). Along this row, the normalised charge is indicated for
the closest to the CNT (Max), the 2nd closest, the 3rd closest, the 4th closest and 6th closest.
Top: Zoom in the junction region. The charge of the coloured atoms has been drawn.

These results have helped to characterise the electronic structure of graphene in the

vicinity of the tube. They will be used in the experimental part to identify the mechanism

governing the contact resistance (see Sec.8.4).
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6

Sample preparation

6.1 Introduction

Until now all the graphene/CNT junctions reported in the literature have been made

using ”stochastic” methods, relying on a random more than on a controlled fabrication

process. In the study carried by Pei et al. (47), the graphene has been first deposited

onto the substrate. The tubes were then directly grown on the graphene by chemi-

cal vapor deposition (CVD). Since the growth direction of the tube during the CVD

process can not be fully controlled, only few CNT were lying on the graphene flakes.

Figure 6.1: AFM picture of CNT/-
graphene junctions as reported by Engels
et al. (93). The fabrication method relies
on a high concentration of tubes to ran-
domly fabricate CNT/graphene junctions.
No control can be achieved on the number
and on the position of the junctions.

A similar technique has been used to grow

SWCNT on pre-patterned arrays of reduced

graphene oxide electrodes (rGO) (46). Neither

of these studies use pure monolayer graphene

to build the junctions but either few-layers

graphene or 10-nm thick rGO layers. One rea-

son is due to CVD process step, which is car-

ried out under gas flow and at high temper-

atures (around 800 − 850˚C), which weakens

the monolayer graphene binding with the sub-

strate and therefore may causes the graphene

to fold or to fly away.

The closest realization of a pure monolay-

er/CNT junction has been reported by Engels

et al. (93), using the opposite steps sequence

as in the previously mentioned studies (Fig. 6.1). The only probed junction was a mixed

mono- and bilayer graphene/CNT junctions fabricated by growing the CNTs followed by

graphene deposition. Besides, the CNT turned out to consist of bundle of tubes according

to AFM characterisation.

The fabrication of controlled graphene/CNT junctions has to overcome several limita-

tions mostly due to the CVD method used to grow the CNTs, as already alluded to in the

previous paragraph. An inherent drawback of CVD tube growth is the lack of selectivity

over the type of CNT obtained. The chirality of the grown tubes is random. Therefore
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semiconductive as metallic tubes can end up building up the junction. As an alternative

for metal leads to connect graphene, the semiconductive tubes are of no interest since

they may introduce a Schottky barrier. Control of over parameters such as the location

and the number of junctions fabricated have also proven to be tedious if not impossible.

Moreover, the growth of nanotubes by CVD requires a metallic catalyst. Since the purifi-

cation after CVD may damage the graphene, the samples are contaminated with residual

metallic particles (iron, copper,...).

In this work, a graphene/CNT junction fabrication technique has been developed that

tries to overcome the hurdles previously mentioned. Instead on relying on CVD to grow the

tubes, a wet deposition technique has been used combined with atomic force microscopy

nanomanipulation. With the developed technique over more than 250 monolayer graphene

flakes could be connected with CNTs.

MWCNTs were preferred over SWCNTs as building block for the junction. MWC-

NTs are well suited to connect to graphene because they most likely exhibit a conductive

behaviour. Indeed, the gap energy is inversly related to the diameter of the CNT. For

the MWCNTs used in this work, the diameter ranges from 9 nm to 12.5 nm which corre-

sponds to a gap energy of 0.0306 to 0.0426 eV, close to the value for the thermal voltage

kBT ' 0.0258 eV at room temperature (T=300 K). Unlike the SWCNTs, no separation

step needs to be performed to sort out MWCNTs and ensure they are metallic. Control

over the position as well as over the number of junctions fabricated has been ensured

by dragging off selected tubes onto the graphene with the tip of an atomic force micro-

scope (AFM). Indeed, the AFM in-plane scanning range allows an accurate positioning of

the MWCNTs on graphene. The CVD inherent catalyst particle contamination could be

avoided by spin coating MWCNTs in solution directly onto the workpiece. In addition,

the nanomanipulation process allows a mechanical ”cleaning” of the tube. As the tubes

are dragged onto the substrate, a trail of the surfactant molecules is left behind.

6.2 Graphene

6.2.1 Substrate preparation

Highly doped silicon wafers with a 300-nm thick thermal oxide layer on top have been

used as substrate for all the experiments and could act as back gate. Arrays of markers

were deposited onto the wafer using e-beam lithography (described in Sec. 6.5) to ensure

a proper orientation and alignment on the substrate. The metals deposited for the align-

ment markers, either palladium or gold, were chosen for giving a good scanning electron

microscope contrast. After cleaning and removing the residual impurities by means of an

oxygen plasma, the wafers were cut into small pieces of less than 1 cm length.

6.2.2 Graphene deposition

Natural graphite flakes from the company NGS Naturgraphit GmbH were used as raw

material for the graphene fabrication (94). Natural graphite was preferred over highly

oriented pyrolitic graphite (HOPG), since it presents monocristal domains of a larger
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6.2 Graphene

(a) Graphene deposition with the me-
chanical exfoliation technique.

(b) Thin graphite flakes lying on the
substrate after removing the scotch
tape. Optical microscope picture.

Figure 6.2: Graphene deposition

extension than HOPG, therefore yielding larger graphene flakes. The graphene flakes were

obtained by means of the mechanical exfoliation technique. This graphene production

method was first reported by Novoselov et al. in 2004 (2) and takes advantage of the

graphite structure. The weak interlayer van der Waals interaction facilitates breaking the

interlayer bound and peel the bulk graphite.

The ”scotch tape technique” is used to cleave graphite by removing a few layers from

it (Fig. 6.18a). The scotch tape is then folded a couple of times to thin the graphite flakes

sticking on the tape down to a thickness of few atomic layers. The tape is then pressed

onto the substrate leaving a random stack of flakes of different thickness on it, as seen on

the optical microscope image in Fig. 6.2b. The random distribution and size of the flakes

combined with the lack of control over the thickness make it arduous to spot and identify

graphene sheets on the substrate.

6.2.3 Graphene characterisation

Optical microscopy

Figure 6.3: Optical micro-
scope picture showing the con-
trast between mono-, bi- and
multilayer graphene. The lower
the contrast, the thinner the
flake.

The next step after the graphene deposition consists of an

optical check of the substrate performed using an optical

microscope at high magnification.

Although graphene is only one atom thick, one of its

most striking features is the contrast it presents with the

SiO2/Si substrate, as first reported by Blake et al. (95).

Roddaro et al. (96) explained this effect by the very sen-

sitive transparency dependence of the graphite layers on

their thickness. The ”relative amplitude of the interfer-

ing [reflexion] paths” along the air/graphite/SiO2 inter-

face can be modulated depending on the thickness of the
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graphite flake, leading to ”resonant cancellation of reflection by destructive interference

at specific wavelengths” that can be detected with the optical microscope.

Monolayer graphene sheets present the lowest optical contrast of all graphitic sheets. In

practice, the sample is scanned with an optical microscope, searching for flakes presenting

low optical contrast. These flakes are strong candidates to be mono-layer or at least few

layer graphene. Fig. 6.3 gives a hint at how strong is the optical contrast for mono-,

bi- and multilayer graphene is. The optical characterisation technique is a first means

to sort out of the material lying on the substrate. But since this technique relies on the

human eye and appreciation, a second characterisation is performed to validate the optical

observation.

Raman spectroscopy

Raman spectroscopy is a fast and non-destructive technique to characterise graphene flakes

with thickness of up to at least 3 layers. It has already been intensively used to study

other sp2-carbon structures. For example, metallic and semiconductive nanotubes ex-

hibit features in their Raman spectra that can tell them apart (see (97) for a review

on Raman spectroscopy on CNT). The first Raman spectroscopy study on graphene was

reported by Ferrari etal., in 2006 (98), and since then Raman spectroscopy has become

a standard characterisation method for mono-, bi- and multilayer graphene (99, 100).

Figure 6.4: G peak mechanism: cre-
ation of an electron-hole pair by the
incident photon and recombination in-
volving in-plane transversal or longitu-
dinal optical phonon. Source: L.M.
Malard et al. (100)

The Raman effect rises from the interaction be-

tween on one side photons and the other side

atoms and molecules. Photons are likely to

undergo elastic scattering from the atoms and

molecules, the incoming and the scattered photon

have then the same kinetic energy and therefore

the same wavelength. This phenomena is known

as ”Rayleigh scattering”. A small proportion of

photons however may be scattered inelastically,

exciting in that case a phonon. The scattered pho-

ton may have a lower energy (Stokes scattering)

or a higher energy (anti-Stokes scattering) than

the incoming photon. Thus the wavelength of the

scattered photon exhibits a shift with respect to

the one of the incoming photon. This shift is de-

tected by a spectrometer and the Raman spectrum can be inferred (intensity of the scat-

tered photons versus the wavelength shift).

The Raman spectrum of graphitic structures presents three remarkable peaks: the G

peak located at around 1580 cm−1, the G’ peak (also termed as 2D peak in the literature)

and the D peak. The position of the last two peaks depends on the excitation wavelength,

showing a dispersive behaviour.

For a wavelength of λ = 633 nm, the position of the D peak is around ∼ 1350 cm−1

and the G’ peak appears around ∼ 2700 cm−1. The G peak is due to a first-order Raman
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scattering process involving the doubly degenerate in-plane transversal and longitudinal

optical phonons at the Γ point of the Brillouin zone (see Fig.6.4). The incident photon

creates an electron-hole pair. The electron then excites either an in-plane transversal or

longitudinal optical phonon and recombines emitting a photon with lower energy.

In contrast, the D and G’ peaks are due to second-order double-resonance Raman

scattering processes (Fig. 6.5). Both processes start with the creation of an electron-hole

pair by the incident photon. During the G’ peak process, the created electron interacts

with an in-plane transversal optical phonon and is scattered inelastically to a state in the

opposite valley of the Brillouin zone.

A second inelastically scattering process also occurs with an in-plane transversal optical

phonon but the electron is scattered back to the initial valley.

Figure 6.5: D and G’ peaks mechanism: second order
double-resonance Raman scattering. iTO phonon stands
for in-plane transversal optical phonon. Source: L.M.
Malard et al. (100)

When the electron is recombin-

ing, the emitted photon has a

lower energy than the incident

one. In the D peak process, an

elastic scattering by a defect re-

places one of the two inelastic

scattering process occurring in

the G’ peak process. In addi-

tion, the D peak process is an

intra-valley process.

The Raman spectroscopy allows two characterisations for the graphene flake. First, the

Raman spectrum yields information on the quality of the flake. Since the D peak process

involves defect scattering, the intensity of the peak can be linked to the number of defects in

the flake. Secondly, the thickness of the graphene flake can be determined since the shape

and the intensity of the G’ peak change with the number of layers. The G’ peak process

is sensitive to the band structure around the Dirac point because of the electronic states

involved in the process. Mono-, bi-, tri- and multilayers present a significantly different

band structure around the Dirac point and present therefore different peak features. As

shown in Fig. 6.6, the spectrum of monolayer graphene exhibits a sharp symmetric G’

peak that can be described by a Lorentzian function. The spectrum of a bilayer shows

overall a broader G’ peak with a noticeable hump at low-energy side of the peak. The G’

peak can be fitted by four Lorentzian functions each accounting for one Raman scattering

process involved. With increasing number of layers, the G’ peak broadens and looses in

intensity. It tends thus to exhibit features similar to the graphite G’ peak.

The Raman spectrometer used for the graphene characterisation at the INT is a cus-

tomised WiTec Micro Raman. It is integrated into an optical microscope used to locate

precisely the flake to be analysed. Once the position is found, a helium-neon laser with a

wavelength of 633 nm is focused to a spot on the graphene sample. Particular attention

has been payed to the thermal stability of the measurement, keeping the power of the in-

cident laser around ∼ 1 mW to prevent sample heating. The spectrometer is made of two

sensors: a 1024 channel charge-coupled device (CCD) for broad spectrum recording and
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Figure 6.6: Raman spectra for a mono-, bi- and multilayer graphene on Si/SiO2 substrate.
The peaks G and 2D are indicated.

an avalanche photodiode (APD) for precise measurements at a given wavelength. When

using the CCD, the integration times was set to 90 s.
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6.3 Multi-walled carbon nanotubes

6.3.1 Solution of carbon nanotubes

The carbon nanotubes used for the samples are thin multi-walled carbon nanotubes

(MWCNT). They were produced by catalytic chemical vapor deposition by the company

Nanocyl (reference number NC3100 (101)). The data sheet gives scanning probe micro-

scope measurements about ∼ 1.5 µm for the average length and about ∼ 9.5 nm for the

average diameter. The MWCNT are in powder form and therefore need to be put into so-

lution for further applications. CNT are insoluble in water or organic solvents as they tend

to aggregate into bundles. Their large surface area and high flexibility helps the attractive

van der Waals forces to bind the CNTs together. To obtain a dispersion of CNT a common

method is the use of surfactant. The surfactant molecules are adsorbed on the CNT surface

and wrap the tubes, as seen in Fig. 6.7, thus keeping them separated from each other.

Figure 6.7: Results of molecular sim-
ulation showing how sodium cholate
(SC) molecules wrap a CNT (6,6) (blue
molecule). Two single SC molecule are
represented on top and at the bottom of
the picture. The calculations and the pic-
ture are taken from (102).

To prepare the dispersion a few grams of

MWCNT powder are put in an aqueous 2 %

sodium cholate solution. Sodium cholate (chem-

ical formula: C24H39O5Na), is a bile salt com-

monly used as surfactant for CNT dispersion

(103). The solution is sonicated to separate

the tubes already packed into bundles, thus al-

lowing the surfactant to intercalate between the

tubes. A purification step to remove the amor-

phous carbon and residual impurities is then

performed using a centrifuge. After this step,

the dispersion is ready but contains tubes with

a broad length distribution.

Tubes of about ∼ 1 µm to 1.5 µm are well

suited for building the junction. Tubes out of

this length range would act as a hurdle in the

nanomanipulation phase. An additional step to

sort out the tubes by the length is then performed with the size-exclusion chromatography

technique (SEC). This technique is based on transit time through a porous medium which

depends on the molecule’s length. The solution is poured into the top of a column filled

with porous gel and slowly passes through the column. Long nanotubes cannot enter the

pores and thus come out first at bottom of the column. Short tubes enter the pores, having

then a longer transit time through the column and thus coming out later. The emerging

solution is stored in chronologically labeled fractions.

6.3.2 Characterisation

Since long nanotubes have a short transit time in the SEC column, only the first fractions

of the SEC are of interest for the fabrication of CNT/graphene junctions. To assure that
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the nanotubes contained in a fraction are well suited, a few drops of the fraction are spin-

coated on a clean substrate. Next, the substrate is washed with distilled water to remove

the surfactant.

A scan of the substrate in few areas is then performed using an atomic force microscope

(AFM), yielding information on the length and on the diameter of the tubes, as seen in

Fig. 6.8. As inferred from height profiles of Fig . 6.8, the diameter of the selected tubes

ranges from 9 nm to 12.5 nm.

Figure 6.8: Atomic force microscopy (AFM) image of multi-walled carbon nanotubes spin-
coated on a silicon substrate. The height profile is represented along the coloured cuts. The
height profiles have been shifted with respect to each other for better visibility.

Additional parameters concerning the quality of the dispersion itself can be inferred

from the AFM pictures. Indeed, the homogeneity of the dispersion as well at its stability

over time can be checked easily along with the tube concentration. To illustrate this,

the AFM picture of a poor-quality dispersion is shown in Fig. 6.9. Tubes are scarce on

the substrate and are mostly bundled together as seen on the left part of the picture.

The small dots on the top right part are remnants of surfactant. The bigger particles

are impurities contained in the solution and that were not removed by the centrifugation

process.

Once the parameter and quality checks have been run and the best suited fraction

has been determined, the MWCNT are deposited onto the graphene samples with the

spin-coating technique already used for the analysis of the SEC fractions. This time a

few drops of the MWCNT solution are put on the graphene sample. The sample is then

rotated at around 4000 rpm. Distilled water is used afterwards to clean the sample. This

deposition step has proven to be critical for the graphene sheet, since it may happen that
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2 µm

Bundles

Impurities

Surfactant

Figure 6.9: Poor quality MWCNT dispersion spin-coated on a Si/SiO2 substrate. MWCNT
bundles, surfactant rest and impurities, as well as low tube concentration are clearly visible
on the AFM picture

the sheet folds back on itself because of the combined effects of the surfactant and of the

centrifugal force.

6.4 Nanomanipulation of MWCNT

Several steps of the MWCNT/graphene junction fabrication process make use of an atomic

force microscope (AFM). The primary function of an AFM is to image and to measure

areas on a micrometer scale down to the atomic scale, acting thus as a control tool. As

already mentioned, the AFM picture is used to determine the quality of the MWCNT

solution.

After the MWCNT deposition on the graphene sample, an AFM picture of the graphene

sheet and its surrounding region is also taken to assure that enough nanotubes are lying

close to the graphene. The AFM is used again at the very last step of the fabrication

process to check the final result.

The operation mode for the AFM through all the experiments is the so-called ”in-

termittent contact mode” (IC-Mode) also labeled as ”Tapping Mode”. In this mode, a

piezoelectric drives the cantilever to oscillate with a frequency close to its resonance fre-

quency (standard value: 95% of the cantilever resonance frequency), letting the tip come

briefly into contact with the sample surface. Common tapping mode cantilevers (such as

the NSC15 from the MikroMasch company (104)) have a resonance frequency about 300 to

350 kHz. The amplitude of the oscillations is usually used as feedback control parameter.

When the tip comes close to the sample surface, the amplitude of the tip oscillation is

reduced due to the attractive forces. The topography of the surface can then be monitored

by the error signal between the measured amplitude and the set-point amplitude as well
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as the height profile. The IC-Mode has been preferred over the contact mode (C-Mode),

in which the tip is constantly in contact with the sample. This could lead to damaging

the sample because of the repulsive forces arising between the tip and the sample when

they are in contact.

The use of the AFM tip as a ”nanomanipulator” has already been reported for pushing

particles or clusters on diverse substrates (105, 106, 107, 108). Among other molecules,

MWCNT can be manipulated and arranged to build devices without undergoing structural

damage (109, 110, 111). The usual manipulation procedure relies on switching off the

feedback loop so that the tip comes close to the sample surface. The tip is then used as a

”rake” to push or pull the nanotube along the scan direction.

The manipulation and the control require three scans:

• First scan (Fig. 6.10a): feedback loop on. The MWCNT to be manipulated is imaged

as well as the surrounding area.

• Second scan (Fig. 6.10b): feedback loop off. From the set-point position, the tip

is lowered from a selected distance −zoffset. The slow scan axis is disabled so that

only a selected line is scanned. The tip comes into contact with the MWCNT. While

the tip moves, the MWCNT is pushed along the scan direction.

• Third scan (Fig. 6.10c): feedback loop on. A scan is performed to check the new

position and orientation of the MWCNT.

The second scan is the critical step in the manipulation process since disabling of the

feedback loop may lead the tip to crash onto the sample. Because the distance between

the tip and the sample can not be known precisely, the optimal distance the tip as to been

lowered from the set point position is determined stepwise. Before performing the scan

with the feedback loop off, the tip is lowered from a distance −zoffset from the setpoint

position. During the scan, the distance between the tip and the CNT is monitored by the

amplitude signal. To prevent a crash, −zoffset is increased gradually after each scan. As

the tip comes closer to the sample, the amplitude signal decreases and eventually reaches

zero when the tip contacts the sample, giving the optimal −zoffset.
One limitation of the manipulation is the high needs of AFM tip. The tips are eas-

ily worn out as the disabled feedback loop does not prevent them on pressing onto the

substrate. Moreover, impurities such as glue rest due to the graphene fabrication process

may accumulate on the tip apex resulting on a blunt tip. In some rare cases, during the

manipulation process the MWCNT may stick to the tip and no reliable method has been

found to retrieve it.
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Figure 6.10: MWCNT manipulation procedure. The red arrows indicate the scan direction.
For each scanned line, two sets of signals are recorded: for the forward (solid blue lines) and
for the backward direction (dashed blue lines)
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(a)

x

(b)

(c)

Figure 6.11: Schematic representation of the tip lowering process. The tip is lowered from
a distance −zoffset. The set-point distance is taken as reference for the distance −zoffset.
The oscillation amplitude along the scanned line is represented below the first two pictures.
Fig. 6.11a: The distance −zoffset is too large to bring the tip in contact with the tube. The
amplitude signal does not vanish but slightly decreases when the tip scans the tube. Fig. 6.11b:
The distance −zoffset is the optimal distance for the nanomanipulation. The amplitude signal
vanishes as soon as the tip come into contact with the tube. Fig. 6.11c: The distance −zoffset
was set too high, the tip crashed onto the sample.

Figure 6.12: Dimension Icon AFM

The AFM used at the INT for imaging and

nanomanipulation are the MultiMode and the

Dimension Icon, both from the company Bruker.

The Multimode operates with the Nanoscope

controller III while the Dimension Icon runs

with the upgraded version of it, the Nanoscope

controller V.

The difference in the controllers makes the

nanomanipulation more tedious when using the

MultiMode. Indeed, its controller does not allow

any reorientation of the scan direction without rotating the scan window. Moreover the

Dimension Icon software comes with a mode (termed as ”NanoMan”) that helps to set

the proper parameters for the nanomanipulation.

After the nanomanipulation step, 6 to 15 MWCNT are lying on the graphene flake

depending on the flake size and configuration. Each of them forms a MWCNT/graphene

junction as shown in Fig.6.13. An AFM picture is taken with at least one alignment

marker on it. This is essential for the lithography step to ensure a proper alignment of

the contacts with the sample.
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Figure 6.13: AFM picture of a sample ready for the lithography step. 11 MWCNT have
been dragged off onto the graphene flake. On the left side, an alignment marker is visible.

6.5 Electron beam lithography

Once the MWCNT/graphene junctions have been fabricated, the device needs to be con-

nected to the measurement set-up. In this scope, metallic contacts and leads are deposited

on the sample. The first step is the fabrication of a mask on the sample surface. The mask

leaves exposed the parts of the sample where the metal should be deposited and protects

the rest of the sample by covering it. A usual technique to create masks with nanometric

to micrometric features is the electron-beam lithography (e-beam lithography).

Electron gun

Sample 

chamber

Beam 

deflection 

controller

Figure 6.14: The Leo 1530 system used
for the e-beam lithography with the beam
deflection controllers on the left side.

For that a layer of resist, mostly a polymer,

is used to cover the sample. In the case of the

so-called positive resists, the exposure to the

electron beam triggers a scission in the polymer

main chain breaking the bounds between the

atoms. The exposed regions of the resist con-

sist of smaller molecules that can be dissolved

by an appropriate solvent (selective solvent).

First, the sample is coated with a polymethyl

methacrylate layer (PMMA). The PMMA is a

commonly used positive resist in e-beam lithog-

raphy. A few drops of a commercial 4.5 % solid

PMMA solution in anisol from the company All-

resist GmbH are deposited onto the sample.

The thickness of the layer obtained by spin-

coating depends on the rotation speed. The

lithography parameters such as the exposure

time, the doses and the beam dwell time have

been optimized for a 200 nm thickness PMMA layer. The benchmarks given by the PMMA

manufacturer indicate a 200 nm thickness layer for a rotation speed of 6000 rpm. Ellip-

sometry measurements confirmed the value for the thickness. The sample is then backed
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at 165˚C for about 30 min to evaporate the rest of solvent and to harden the PMMA layer.

The sample is then ready to undergo the e-beam lithography process. The e-beam lithog-

500 µm U

V

20 µm
U

V

Figure 6.15: Pattern for the e-beam lithography. The design is composed by several layers.
The colours of the layers relates to the aperture used to write them: 120 µm diameter aperture
for the blue layer (2500×2500µm writing field), 20 µm diameter aperture for the red layer
(400×400µm writing field) and 10 µm diameter aperture for the green layer (100×100µm
writing field). The purple layer is not written but it is used to represent the structures lying
already on the substrates such as the graphene flake to be connected or the alignment markers.
Top: Zoom in the graphene region. Bottom: Overall view of the pattern.

raphy was performed with an upgraded Leo 1530 scanning electron microscope (SEM).

This lithography system is composed of three main parts: the electron source (or elec-

tron gun), the sample chamber and the beam deflection controller (Elphy Plus package).

The first two parts are common to all SEM, the third one is the upgrade that turns the

SEM into a lithography system. The electron are emitted by a tungsten filament attached

to a tip-shaped cathode using the electrical field enhanced thermionic effect (Schottky
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emission). The emitted electrons are accelerated in the electron gun by applying an ac-

celeration voltage up to 30kV. A system of electromagnetic lenses along the electron gun

makes sure that the beam is focused. The beam current and consequently the diameter of

the outgoing e-beam can be changed by switching between several apertures. The sample

to be lithographied is clamped to the mechanical stage in the sample chamber and brought

under the e-beam.

The areas of the workpiece to be written have been previously drawn in a pattern file

using the Elphy software. While generating the pattern file some guidelines have to be

followed to ensure an optimal lithography process. The pattern is divided into several

layers each one being written using a different aperture (Fig. 6.15). Indeed, each aperture

allows a different writing field, which is the biggest area the e-beam can scan on the

sample without having to move the mechanical stage. The maximal deflection of the e-

beam sets the boundaries of the ”writing field”. Choosing aperture implies a trade-off

between the accuracy and the writing speed, as a big aperture allows to cover a bigger

region at some accuracy cost while smaller apertures ensure higher writing precision but in

a restrained area. Since moving the mechanical stage, also known as stitching, introduces

a shift in the writing and leads to a mismatch between the neighboring writing fields,

the position of the mechanical stage is fixed during the lithography of a given layer.

Figure 6.16: Sample after dissolv-
ing the e-beam exposed part. The
green coloured parts are covered by the
PMMA mask. The dark blue ones are
left exposed and will be metalized.

A critical step is the alignment of the pattern with

the sample. This is done by matching the pattern

coordinate system with three alignment markers

on the sample. Once the lithography process is

completed, the exposed parts are removed to cre-

ate the mask (Fig. 6.16). The sample is soaked in

a solution of methyl isobutyl ketone (MIBK) and

isopropanol (proportion 1:3) for about 15 seconds.

An optical microscope check follows to determine

if resist remains on the exposed areas. Finally the

sample is post-baked for about 30 min at 90˚C to

harden the edges of the PMMA mask.
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6.6 Metal deposition

The metal deposition has been performed using a thermal evaporator (Fig. 6.17), operating

in ultra high vacuum (UHV ∼10−9-10−10 mbar). For each sample, two metals have been

used for the contacts. A thin layer of titanium of about 5 to 10 nm thickness folloxed

by a 40 nm thick aluminum layer have been deposited onto the sample. The titanium

ensures good adhesion of the aluminum on the sample. To reduce the formation of islands

or clusters and therefore obtain a homogeneous layer, the sample is maintained during the

deposition at low temperature (∼ −130˚C) by a liquid-nitrogen cooling system.

Figure 6.17: UHV thermal evaporator. The sample is loaded into the loading chamber and
transferred into the main chamber. An ion pump makes sure that the pressure in the main
chamber is around ∼10−9-10−10 mbar. The sample is rotated to face the metal source whose
temperature is set by the controlling board.

Removing the PMMA mask is the last step of the fabrication process. The workpiece

is soaked in acetone to dissolve the PMMA and get rid of the extra metal. The sample is

then ready to be connected to the probe station for measurments (Fig. 6.18a).
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6.6 Metal deposition

(a) Optical picture of a sample after the metal deposition showing the pads used to connect the
samples as well as the metallic leads. The sample is now ready to be probed. The probe station
needles will connect the sample on the pads.

(b) Left: Optical microscope picture of a pristine graphene sheet before starting the CNT/graphene
fabrication process. Right: The same graphene sheet after the metal deposition. The upper left
part of the graphene sheet fold back over itself during the fabrication process.

Figure 6.18: Final step of the sample production.
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Work function measurements

The charge distribution at the interface of a junction gives the potential landscape that

an electron flowing from one structure to another has to cross. Therefore, knowing the

charge repartition is the first step to understand the current transport in the junction. One

key issue when connecting graphene is the charge transfer due to the connecting metal.

The doping due to the metal acts on the transport properties and give rise to a contact

resistance at the interface.

As already discussed in Sec. 1.2.1, metals adsorbed onto graphene bind in two different

ways depending on whether they preserve the electronic structure of the graphene or not

(22, 29). The physisorbed metals bind weakly to the graphene. In that case, the band

structure of the graphene underneath and around the metal is not modified significantly.

The conic shape around the Dirac point is conserved and the effect of doping due to the

metal can be represented by a shift of the graphene Fermi level from the Dirac point.

For chemisorbed metals, the doping introduced can not be understood easily since the

graphene electronic structure is strongly affected and the conical shape of the bands around

the Dirac point is not preserved.

Focusing on physisorbed metals, at the interface, the effective work function of the

graphene Φeff
gra (i.e., the work function of the graphene areas influenced by the metal) is

given by

Φeff
gra = Φ0

gra +∆EF (7.1)

where ∆EF is the shift in the Fermi level and Φ0
gra is the pristine graphene work function.

Despite the lack of band structure calculations for CNT/graphene systems, the MWCNTs

can be assumed to belong to the physisorbed type. The main binding interaction for

a CNT/graphene system is the weak van der Waals force (see Sec. 2.3.3). Moreover,

the equilibrium distance computed for the CNT/graphene in Sec. 2.3 is in the range of

that exhibited by the physisorbed metals (see Table 1.1). Measuring the effective work

function of MWCNT/graphene junctions and comparing it to the pristine graphene can

give a picture of the doping induced in the graphene sheet and therefore an indication of

the overall charge transfer. Therefore, several graphene/MWCNT junctions were probed

using the Kelvin probe force microscopy technique.
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7.1 Kelvin Probe Force Microscopy

The Kelvin probe force microscopy (KPFM) is an AFM technique to measure the work

function of a sample (112). A conductive tip scans the sample while the contact potential

difference (CPD) is recorded. The CPD is due to the work function difference between

the tip (Φtip) and the sample (Φsample)

VCPD =
Φtip − Φsample

−e
(7.2)

where e is the elementary charge. Provided that the work function of the tip is known by

means of a calibration procedure, the work function of the sample can be inferred.

The measurement of the CPD relies on applying an AC voltage plus a DC voltage

offset to the tip V = VAC sin(ωt) + VDC and then nullifying the oscillating electrostatic

forces between the tip and the sample. The aim of the AC voltage is to tell apart the

electrostatic forces from other interactions that could affect the tip. The electrostatic

forces Felec arise from the Fermi level difference and are given by

Felec = −1

2

dC

dz
∆V 2 (7.3)

where z and C are respectively the distance and the capacitance between the tip and the

sample. This expression is only true for metallic samples, since it is derived from the

energy for a parallel-plate capacitor. The potential difference between the tip and the

sample ∆V is the sum of the CPD and the applied voltage to the tip

∆V = VAC sin(ωt) + VDC + VCPD (7.4)

The electrostatic force Felec is a sum of three spectral terms: a static term, a term

depending on the excitation frequency ω and a last one depending on 2ω.

Felec = Fstat + Fw + F2w (7.5)

The static part of the force Fstat acts only as a constant off-set on the cantilever

bending whereas the F2w contribution does not depend on VCPD. Therefore only Fw is

of interest for the KPFM. Since Fw is proportional to (VDC − VCPD), by tuning the DC

voltage, Fw can be nullified and therefore the CPD can be inferred.

Since the KPFM setup acts also as an AFM while scanning the sample with the tip,

not only the electrostatic interaction is measured but also the interactions an AFM can

detect. This implies the possibility to separate the topography signal from the KPFM

signal. For that, the cantilever is excited with a multi-frequency signal allowing to record

in one scan both the topography and the KPFM signal (113, 114). The first eigenmode

of the cantilever oscillation ω0 is used to drive mechanically the cantilever and therefore

detect the topography in the IC-mode (see Sec. 6.4). The KPFM signal is detected via

the second eigenmode ω1. The frequency of the AC signal applied to the tip matches the

second eigenmode frequency.

84



7.2 Ambient air measurements

The KPFM or similar electrostatic force microscopy are established techniques to probe

graphene samples. Monolayer graphene as well as few-layers graphene exhibit a work

function dependence on the thickness (115, 116, 117). This relates to the incomplete

charge screening of substrate impurities in thin graphene sheets (118). The work function

difference between mono- and bilayer graphene was found to be about 66 meV and reaches

the value of the graphite for five-layer graphene. Despite this variation, the work function

of graphene remains close to that of graphite. KPFM measurements have been carried

together with transport measurements and have evidenced the effect of charge carrier

tuning in mono- and bi-layer graphene on the work function (24). The work function

could be changed from 4.5 to 4.8 eV for a monolayer while the bilayer samples exhibited

a variation range from 4.65 to 4.75 eV. Asymmetry effects between electron and hole

transport as well as the impact of impurities left by the fabrication process have also been

investigated using KPFM (119, 120).

7.2 Ambient air measurements

The KPFM measurements were performed in ambient conditions with a MultiMode AFM

head from Bruker Company and a controller from Nanonis GmbH at the Institute of

Microstructure Technology (IMT) together with Zhang Zhenhao. The AFM tip was made

of p-doped silicon and was excited with following frequencies: ω0 ∼ 70 kHz and ω1 ∼
430 kHz.

Figure 7.1: Optical picture of the sample
used for the KPFM measurements. The con-
trast of the graphene sheet has been enhanced.

No tip calibration could be performed

to measure its work function Φtip. Conse-

quently, the extracted work functions have

an off-set that can be eliminated by compar-

ing the work function between two regions

of the sample.

The measured sample (Fig. 7.1) has

been fabricated following the procedure de-

scribed in the Sec. 6. The contacts were

made of a 10 nm-thick titanium layer and

a 40 nm-thick aluminium layer. The carrier

density in the graphene was fixed during the

measurements, since no back voltage could

be applied to the sample. Because of the fabrication process and also inferred from the

electrical transport measurements, a p-doping can be assumed for the graphene sheet with

a high carrier density.

The scanned region is a 7 × 7 µm square encompassing silicon substrate areas as well

as parts of the graphene device. Fig. 7.2 shows clearly the different scanned regions. The

height signal image presents a good contrast between the graphene, the nanotubes and

the metallic leads. Therefore it will be taken as reference for the location of the different

structures.
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Figure 7.2: AFM IC-Mode height picture of a device showing the metallic leads, the MWCNT
and the graphene sheet. The color scale has been modified to enhance the contrast between
the graphene, the tubes and the metallic leads.

The VCPD profiles of two regions of the sample have been analyzed. The two profiles

of about 2 − 2.2 µm length were drawn together along the graphene, the MWCNTs and

the metallic leads. The direction of both profiles are shown in Fig. 7.3a. The KPFM

signal (Fig. 7.3b) shows, along both profiles, low contrast between the graphene and the

MWCNTs and high contrast between the metallic leads and the graphene as well as with

the MWCNTs. For both profiles, the height and the VCPD profile are shown on the same

plot.

In the ”1”-labeled profile (Fig. 7.3c), the nanotube has a diameter of ∼ 14 nm for a

corresponding VCPD signal of about 0.6 V, close to the value of graphene (∼ 0.57 V) . The

metallic leads show a much lower VCPD signal: for the first lead between 0.27 − 0.30 V

and for the second one around 0.25 V.

The same trend is clearly to be seen in the ”2”-labeled profile (Fig. 7.3d). The profile

goes across three nanotubes whose diameters are about ∼ 15 nm. The third nanotube lies

half on the graphene and half on the SiO2 substrate, as can be inferred from the height

step between the region before and after the nanotube. All the nanotubes present a VCPD

signal (∼ 0.56V) indistinguishable from that of graphene VCPD signal. Again, the scan

of the metallic leads gives for the VCPD values significantly lower than the ones observed

for graphene. The measured VCPD signal values are about 0.25 V, in agreement with the

values measured along the ”1”-labeled profile for the metallic leads.

From the information given by the two profiles, several conclusions can be drawn.

First, except for the graphene areas in the vicinity of a metallic pad, the VCPD signal

exhibits a homogeneous value across the rest of the graphene sheet. The work function

can be considered constant and no charged or depleted region are evidenced in the sheet.

In particular, there is no contrast between graphene regions around the MWCNT and

those far away, considered as pristine graphene areas. Consequently, if referred to Eq. 7.1,
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Figure 7.3: 7.3a: AFM IC-mode height picture showing where the two profiles were made.
7.3b: KPFM picture of the same region. Both pictures were recorded simultaneously with the
one-scan KPFM technique. 7.3c and 7.3d : Height (red curve) and VCPD signal (blue curve)
profiles respectively along the ”1”-labeled and the ”2”-labeled profiles.
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no significant Fermi-level shift and therefore no induced doping can be established in

the regions close to the MWCNT. Moreover, the differences of VCPD signal between the

MWCNT and the close surrounding graphene areas are of the same magnitude as the

instrument noise level ∼ 0.02 V. Since the KPFM technique does not give any significant

contrast between both regions, the work functions are very similar.

On the contrary, the contrast difference between the metal and the pristine graphene

in the KPFM signal is obvious for both profiles. The work function difference is about

∼ 0.30 eV. If the literature value is assumed for the pristine graphene work function (i.e.,

Φ0
Graphene ∼ 4.60 eV), neglecting the effect of p-doping, the inferred work function for the

metallic leads is Φ0
Metal ∼ 4.30 eV. This value is indeed close to the work function of

aluminium (Φ0
Aluminium = 4.25 eV). The KPFM is a surface measurement technique, thus

the values measured are those of the top layer of aluminium and not those of the bottom

layer of titanium.

Focusing on the graphene/metal interface, the variation in the VCPD signal does exhibit

a noticeable mismatch with the height signal ones (Fig. 7.4b). The VCPD signal has been

averaged along the profile direction over a small region (i.e., the rectangle in Fig. 7.4a).

The VCPD signal starts to ”feel” the interface around 0.15 µm to 0.2 µm away from it

in the graphene part. Indeed, the VCPD signal starts to decrease significantly for such

distance and it drops for a distance of 0.1 µm from the interface to a value of 0.52 V. On

the other side, in the metal region, VCPD drops quickly over a small distance and reaches

a value around ∼ 0.26 V. This value does not change significantly over the metal pads

except for impurities as already inferred from the analysis of the profiles in Fig. 7.3. As

the titanium is chemisorbed on graphene, the doping level ∆EF can not be deduced from

Eq. 7.1. But the fact that the effective work function of the graphene does not match

that of pristine graphene over a significant distance away from the contact accounts for

an extended doping due to the metal pads.

7.3 Conclusion

Kelvin probe force microscopy measurements have shown that no sizable charge trans-

fer occurs at the interface between MWCNTs and graphene or in the graphene regions

around the tube. Metal pads have been on the contrary proven to modify the graphene

work function over a large scale, evidencing a significant charge transfer. Since charge

carriers injected through the junction move in the energy landscape defined by the charge

distribution, the MWCNTs are expected to show low contact resistance when used as

connectors for graphene.

The measurements were carried out without tuning the charge carrier density by sweep-

ing the back-gate. A high carrier density with holes as main carriers has been assumed

from the statistic of the transport measurements already performed. As observed by Yu

etal. (24), the work function of graphene exhibit a work function difference of ∼ 0.3 eV

when changing from a high hole density to a high electron density regime. The work

function of the tube should not be significantly modified by the gate sweep, since they are
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(a)

(b) (c)

Figure 7.4: Fig. 7.4a: Top: Height picture with the direction of the profile and the region
used for the average. Bottom: KPFM picture of the same region. Fig. 7.4b: Height and VCPD

signal profiles respectively along the ”1”-labeled profile. Fig. 7.4c: Labeled position of the
AFM tip while recording the VCDV signal. Position I: measurement of the pristine graphene.
Postion II: measurement of the doped graphene. Position III: measurement of the aluminium.
These positions are indicated in the profiles in Fig. 7.4b.

metallic. Repeating the measurements while sweeping the back-gate could then evidence

how strong the coupling is between CNT and graphene.
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8

Electrical transport experiments

The electrical characterisation of the MWCNT/graphene junctions fabricated following

the process explained in Sec. 6 is presented in this section. Such type of junctions have

an unconventional geometry: the contact region is not two dimensional as in standard

metal/graphene junctions but quasi-linear. This peculiar feature is expected to influence

the transfer of charge carriers across the interface and thus the contact resistance.

The contact resistance arises from the charge transfer that occurs at the junction

because of the Fermi level re-alignment as mentioned before in Sec.1.2.1. This picture is

valid for an ideal contact. For real contacts, the surface presents defects and is not perfectly

flat. The contact resistance is then influenced by the way the interfaces match together

and by how many effective ”contact points” are formed between the two structures. When

the contact surface is two dimensional, statistically enough contact points are present to

considered that the matching between the interfaces does not hinder significantly the

electrical transport. The injection process is characterised by the transfer length which

is basically the length over which the injection process happens. But when it comes to

MWCNT/graphene junctions, the electrical transport should be much more influenced by

the linear nature of the contact region.

Conventional measurement techniques for the contact resistance includes four-probe

measurements, e.g., van der Pauw measurements (121), or transfer length technique (TLM

technique) (122). Both techniques require a specific geometry configuration for the sam-

ple, which cannot be achieved for the MWCNT/graphene samples because of technical

limitations. Indeed, this would require a pre-patterning of the graphene sheet by e-

beam lithography. The contamination by the remnants of PMMA would hinder the AFM

nanomanipulation process. The contact resistance was therefore determined by two-probe

measurements at zero bias using of lock-in detection technique. The two probe measure-

ments consisted in recording the resistance of MWCNT/graphene junction devices while

sweeping the gate voltage (i.e., while tunning the charge carrier density in the graphene).

8.1 Measurement setup

All transport measurements were carried out at room temperature and under ambient

condition. The samples were connected to the measurement set-up by means of a home-
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made probe station. While a small AC excitation voltage is applied between the pair

of probed contacts, the current flowing is being measured and recorded. Because of the

small amplitude of the signal to be detected, lock-in amplifiers have been used for the

measurements.

Lock-in amplifier rely on a phase sensitive detection technique to retrieve small signals

down to the nanovolt in the presence of a noise level that can be orders of magnitude

larger. The lock-in generates a DC signal: AL sin(ωLt + θL). The signal to be detected

AS sin(ωSt+θS) is amplified and multiplied by the lock-in generated signal. The resulting

output signal is proportional to cos((ωL−ωS)t+(θL−θS))−cos((ωL+ωS)t+(θL+θS)). The

output is passed through a low-pass filter eliminating the AC component of the signal. The

output signal is a DC signal only when ωL = ωS . It is then proportional to cos(θL − θS).

The lock-in frequency is usually taken as the same as the excitation signal used for the

measurements, thus assuring the condition ωL = ωS .

SR 560

SR 570 EG&G 5210

SR 830

Keithley

2400

SR 830

Lock-in

dV

Lock-in

dI
Vg

10 kΩ

1 Ω

Figure 8.1: Electric schematic of the measurement set-up. Two metallic leads (green colour
on the AFM picture) are connected to the measurement set-up. The back-gate voltage is
applied to the silicon substrate (grey colour).

The Fig. 8.1 gives the electrical diagram of the measurement set-up. The sample lies

on a copper plate connected to a source meter (Keithley 2400 Source Meter) that is used

for applying the back-gate voltage. The low frequency (∼ 15− 35Hz) excitation signal is

delivered by a Stanford Research Systems (SR) 830 DSP lock-in (∼ 5V), a voltage divider

follows to reduce the excitation voltage to a safe range for the sample (∼ 0.5 mV). This

assures that the measurements are carried at (almost) zero bias. The current flowing

through the pair of contacts is detected after amplification and conversion into a voltage

(low-noise current amplifier SR 570) by a EG&G 5210 lock-in. The voltage drop across

the contacts is measured after amplification (low-noise amplifier SR 560) by the SR 830

DSP lock-in. The differential resistance dV/dI is measured by using the lock-in technique.

Since the measurements are performed at low bias, the differential resistance is equal to

the resistance.
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8.2 Sample description

8.2 Sample description

Each sample fabricated had typically between 6 to 10 graphene/MWCNT and 4 graphene/metal

junctions integrated in it. Three sorts of devices have been probed:

1 2 3 4 5

1 µm

(a)

(b) (c) (d)

Figure 8.2: AFM pictures of the 3 devices layouts used for the scope of this work. Fig. 8.2a:
Overall view of a sample on which MWCNT as well as metal probes are lying on a graphene
sheet. Left: 3D picture. Contacts 1, 2 and 5 are MWCNT. Contacts 3 and 4 are metal. Right:
2D picture of the same sample with the scale indicated. Fig.8.2b: Example of metal-graphene-
metal device (MGM) Fig. 8.2c: Example of CNT-graphene-metal device (CntGM) Fig. 8.2d:
Example of CNT-graphene-CNT device (CntGCnt)

• metal-graphene-metal devices (MGM) which are standard two terminal metal probes

with two metal/graphene junctions (Fig. 8.2b)

• CNT-graphene-metal device (CNT-GM) which integrates one MWCNT/graphene

junction and one metal/graphene junction (Fig. 8.2c)

• CNT-graphene-CNT device (CntGCnt) which integrates two MWCNT/graphene

junction in which both electrodes are MWCNTs (Fig. 8.2c)
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8.3 Description of the measurements

A classical way to characterise graphene devices is to study how external electric potentials

modify the charge carrier transport in the device. For that, the so-called resistance versus

gate measurements are performed. The graphene is separated from the highly doped

silicon wafer by a layer of silicon oxide. The system forms a capacitor with the top plate

being the graphene sheet, the bottom one being the highly doped silicon and the silicon

oxide constitutes the dielectric medium. By applying a voltage to the highly doped silicon

Vg, a potential difference is created across the silicon oxide and the charge carrier density

in the graphene sheet can be tuned.

As already mentioned in Sec. 1.1.3, since the charge carrier density is directly related

to the density of states (DOS) and to the Fermi level in the graphene sheet, the Fermi

level position can be controlled by the back-gate voltage Vg. The direction of the shift

allows to control the carriers involved in the transport. For Vg < VDirac, the Fermi level is

in the valence band, being the holes the main carriers. While for Vg > VDirac, the Fermi

level is in the conduction band and the electrons are then involved in the transport.

For graphene with a Dirac point at VDirac, the charge density reads

n = α(Vg − VDirac) with α =
ε0εr
te

(8.1)

where ε0 is the vacuum permittivity, εr is the relative permittivity of SiO2, t is the thickness

of SiO2 layer and e is the elementary charge. For all the experiments a SiO2 thickness

layer of 300 nm has been used, thus giving a value α = 7.19× 1010cm−2.V−1. Because of

the p-doping exhibited by almost all samples, the Dirac point was reached for positives

Vg. The intrinsic doping level ranged from almost zero for VDirac & 0 V to more than

n ∼ −4.67× 1012cm−2 ( VDirac ∼ 65 V) for strongly doped samples. This implies a wide

range of charge carrier density, thus allowing to analyse the transport for three different

carrier regimes: the high-density carrier regime with holes or electrons as main carriers,

and the low-carrier regime near the Dirac point.

8.3.1 Connecting graphene with metal

The measurements of metal-graphene-metal (MGM) devices yield a range for the resistance

of the graphene and the metal/graphene junction. They also give a characterisation of the

graphene sheet in terms of intrinsic doping.

The MGM device can be viewed as series of resistors with some of them showing a

gate dependency. The total resistance RMGM is the sum of the lead resistances RMet, the

metal/graphene interface resistance RMet/Gra and the graphene channel resistance RGra

RMGM = 2.RMet + 2.RMet/Gra +RGra (8.2)

The metal leads are assumed to have the same contact quality and therefore no dis-

tinction is made between them. From all the contributions, the lead resistance does

not depend on the gate voltage and introduces a small offset in the total resistance. It
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can be assumed that this contribution is negligible. The expression 8.2 reduces then to

RMGM ' 2.RMet/Gra +RGra.

Figure 8.3: Resistance-versus-gate
curve. The red (blue) curve has
been recorded for increasing (decreas-
ing) gate voltage sweep.

The graphene resistance is expected to depend

on the charge carrier density n. As for the met-

al/graphene contact resistance, as mentioned in

Sec.1.2.1, it is still unclear whether it shows a de-

pendence on n.

An example of resistance versus gate measure-

ment for a MGM device is given in Fig.8.3. For

all the resistance versus gate measurements per-

formed, two curves have been obtained depend-

ing on the gate sweep direction. The Dirac point

is shifted but the overall behaviour of the resis-

tance remains unchanged. This hysteresis effect

observed upon reversal of the gate sweep direc-

tion is a known effect occurring at room temper-

ature. It is due to the screening of the gate volt-

age by charged impurities of adsorbate molecules

(123, 124). In the rest of the work, for the sake

of comparison, only the downward sweep direction has been considered (i.e: gate voltage

sweep direction: from the maximum to the minimum).

ΔV=40V

(VDirac,n=0,RDirac) 

(Vhigh,nhigh,Rhigh) 

Figure 8.4: Resistance-versus-gate
curve. The charge carrier density
is shown on the x-axis. The Dirac
point has been represented as well as
the point in the p-branch labeled by
(Vhigh, nhigh, Rhigh).

The maximum of resistance displayed by the

curve in Fig. 8.4 signals the position of the Dirac

point reached for a gate voltage of VDirac, the

charge carrier density n is zero at this point.

The resistance exhibits some asymmetry between

the p-doped and the n-doped branches, indicating

that the electrons and the holes have a different

field effect mobility. All samples presented a level

of intrinsic p-doping, as the Dirac point is always

reached at positive voltages.

For the analysis of the high-density carrier

regime, we focus on the hole governed transport

since more data are measured than for the elec-

tron governed part. A point has been taken

as reference 40V away from the Dirac point in

the p-branch of the resistance-versus-gate curve

Vhigh = VDirac − 40 V. This point has a charge

carrier density nhigh and a resistance Rhigh.

For each MGM device, the shape of the

graphene channel and the contact surface between

the metal and the graphene are different. The resistance depends on the geometry of the
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device. The measurements of RMGM give therefore only an overall indication of how re-

sistive the graphene and the interface metal/graphene are, but comparison of different

samples is not possible. From Fig. 8.5, the most of the resistance values are around a few

kΩ except for three more resistive samples that show values up to some tens of kΩ.

In order to characterise the magnitude of the change in the resistance induced by the

gate voltage sweep (i.e., the gate effect), ∆R has been defined by

∆R = RDirac −Rhigh. (8.3)

From the RMGM data in Fig. 8.5, ∆R is only a few kΩ with a maximum of about 15 kΩ

for the two samples showing the highest resistance. These two samples can be considered

as having poor quality contact between the graphene sheet and the metal.

Figure 8.5: Top: Distribution of the MGM Devices with respect to measured resistances at
the Dirac point and 40 V away from it in the p-doped region. The full dots correspond to
the resistance at the Dirac pointVDirac, while the open dots correspond to the resistance for
Vhigh. The data has been sorted ascendantly using VDirac. Thus the sample number is not
related to the chronological order of sample fabrication. Bottom: Distribution of the MGM
Devices with respect to ∆R.
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8.3.2 Connecting graphene with MWCNTs

MWCNT-Graphene-Metal devices

As the MGM devices, the CNT-GM devices are series of resistors. This time the total

resistance RCNT−GM is given by

RCNT−GM = 2.RMet +RMet/Gra +RGra +RCNT/Gra +RCNT +RCNT/Met. (8.4)

RCNT−GM includes in addition to the resistances already described for the MGM de-

vices, the resistance of the interface MWCNT/graphene RCNT/Gra, the resistance of the

MWCNT RCNT and the resistance of the interface MWCNT/metal RCNT/Met. In the

Eq. 8.4, RGra + RMet/Gra depends on the charge carrier density n and RCNT/Gra would

be proven to depend on this parameter as well. RCNT + RCNT/Met is gate-independent

since the tubes are metallic.

Measurements have been carried out for 32 CNT-GM devices. They display a resistance

range significantly larger than the MGM devices (Fig. 8.6). The least resistive samples

exhibit a resistance around ∼ 40 kΩ while the most resistive sample had a maximal

resistance over 1.4 MΩ. ∆R shows a wide range of values varying by two orders of

magnitude from around 10 kΩ to 1 MΩ.

Several terms in Eq. 8.4 can be estimated. First, the literature gives for the resistance

of MWCNT and the contact resistance between MWCNT and metal a range from a few

kΩ to some tens of kΩ (125, 126, 127, 128, 129).

The resistance range exhibited by the MGM devices gives an estimate for RMet/Gra +

RGra. RMGM contains twice the contact resistance RMet/Gra. By taking half of the values

for RMGM , the RMet/Gra + RGra term is only a few kΩ, when not considering two most

resistive samples.

It follows from these estimates, that three groups of samples can be identified depending

on the neglected contribution in the total resistance expression RCNT−GM :

• Low-resistance samples (RDirac . 80 kΩ- 100 kΩ). For these samples, Eq. 8.4 holds

since the two terms RMet/Gra + RGra and RCNT + RCNT/Met cannot be neglected.

The charge carrier density dependent part is then RMet/Gra +RGra +RCNT/Gra.

• Medium-resistance samples (100 kΩ . RDirac . 250 kΩ). The contribution of the

graphene and the metal/graphene interface can be safely neglected. Thus Eq. 8.4

reduces to RCNT−GM ' RCNT/Gra+RCNT +RCNT/Met. The charge carrier density

dependent part is this time only the contact resistance between the tube and the

graphene RCNT/Gra.

• High-resistance samples (RDirac > 400 kΩ) The MWCNT contribution to the total

resistance can be neglected for this group. Thus the measured resistance is the

MWCNT/graphene interfacial resistance RCNT/Gra.

The resistance versus gate curves display an interesting trend. In Fig. 8.7, the gate

effect is small for the low-resistance sample ∆R = RDirac −Rhigh ∼ 8kΩ while it is about
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Figure 8.6: Repartition for the CNT-GM devices of the resistances measured at the Dirac
point and 40V away from it in the p-doped region. The full dots correspond to the resistance at
the Dirac point VDirac, while the hollow dots correspond to the resistance for Vhigh. The data
has been sorted ascendantly using RDirac. Thus the x-axis sample number is not related to the
chronological order of sample fabrication. Bottom: Repartition of ∆R for the corresponding
CNT-GM devices.

an order of magnitude higher (∆R ∼ 70kΩ) for the medium-resistance sample and almost

two orders of magnitude higher for the high-resistance sample (∆R ∼ 900kΩ).

This trend is clearly confirmed when ∆R is represented versus the resistance at the

Dirac point as in Fig. 8.8. For low-resistance samples, the modulation of the resistance

with the charge carrier density is weak, ∆R is a few kΩ. Such value for ∆R are close to the

values observed for the MGM devices. The junction can be considered to be an additional

resistor weakly dependent on the charge carrier density that only shifts the curve obtained

for the graphene connected to metal to a higher value of the resistance.

Since the range of the gate effect in graphene is around a few kΩ as seen previously,

the gate effect observed in graphene cannot account for the one observed for medium- to

98



8.3 Description of the measurements

Figure 8.7: Resistance versus gate curves for three different types of CNT-MG devices: a low
resistance sample (left), a medium resistance sample (middle) and a high resistance sample
(right).
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Figure 8.8: ∆R versus RDirac for the CNT-GM devices

high-resistance samples. The modulation of the resistance with the charge carrier density

in graphene is directly related to the density of states of graphene. As a consequence, a

different mechanism is needs to be invoked to explain the gate voltage effect observed in

medium- to high-resistance samples.
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MWCNT-Graphene-MWCNT Junctions

The same transport measurements as for the CNT-GM have been carried for 13 CNT-G-

CNT devices. These devices are also series of resistors with some showing a charge carrier

density dependence. As for the CNT-GM devices, the total resistance RCNT−G−CNT

contains the metal leads RMet, which will be neglected as for the CNT-GM and MGM

devices and the graphene channel Rgra contributions. For the CNT-G-CNT devices, both

electrodes are made up of CNTs, no graphene/metal interface contribution has to be

considered. The total resistance RCNT−G−CNT is then given by

RCNT−G−CNT = RCNT/Met,1+RCNT,1+RCNT/Gra,1+RGra+RCNT/Gra,2+RCNT,2+RCNT/Met,2

(8.5)
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Figure 8.9: Repartition of the resistance RCNT−G−CNT measured at the Dirac point for the
measured CNT-G-CNT devices. The data has been sorted ascendantly using RDirac. Thus
the x-axis sample number is not related to the chronological order of fabrication. The

The previous section evidenced that the resistance of the tubes presents a wide range

of variation. Therefore, the two tubes are not assumed to be similar.

Fig. 8.9 makes evident that as expected from Eq. 8.5, RCNT−G−CNT is the sum of the

contributions of the two tubes/graphene junctions integrated in the device. Indeed, this

trend is clearly seen if the resistance of one MWCNT/graphene junction RCNT−G−M inte-

grated in the CNT-G-v device is represented along with the total resistance of the CNT-G-

CNT device RCNT−G−CNT . In addition, Fig. 8.9 gives the range of RCNT−G−CNT values

that vary from around 150 kΩ to more than 1 MΩ. Considering the resistance group-

ing of the single MWCNT/graphene junctions discussed in the previous section, the lower

limit range of RCNT−G−CNT accounts for CNT-G-CNT devices made of two low-resistance
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MWCNT/graphene junctions. The association of two high-resistance MWCNT/graphene

junctions yields the upper limit for RCNT−G−CNT .
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Figure 8.10: Resistance versus gate
R(Vg) measurement for CNT-graphene-
CNT devices (CNT-G-CNT).

The MWCNT/graphene contact resistance was

proven in the last section to exhibit a gate depen-

dence. The resistance versus gate measurements

of CNT-G-CNT devices do consequently show the

same behaviour (Fig.8.10). But these measure-

ments display also more noise than the CNT-GM

measurements. This observation is easily under-

stood by the fact that the noise is due to the in-

tegrated MWCNT/graphene junctions in the de-

vice.

Finally, the same trend as in the previous sec-

tion with respect to the gate effect is also clearly

evidenced in Fig. 8.11. The gate effect increases

with the resistance of the device. Indeed, samples

characterised by low resistance (i.e., RDirac less

than 400 kΩ) exhibit low ∆R , while high resis-

tive samples (i.e., RDirac above 700 kΩ) shows a

difference ∆R around 400 kΩ.
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Figure 8.11: ∆R versus RDirac for the CNT-M-CNT devices

Summary

The following trends have been revealed by the measurements:
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8. ELECTRICAL TRANSPORT EXPERIMENTS

• The more resistive the junction is, the higher the resistance gate modulation.

• Low-resistance junctions show a slight gate dependence of the resistance. The re-

sistance of the CNT-GM devices is mainly the resistance of the graphene and the

graphene/metal contacts shifted by the value of the MWCNT/graphene junction

resistance.

• Medium- to high-resistance junctions exhibit a moderate to high gate resistance

modulation, which cannot be attributed to the graphene channel. The gate depen-

dence effect relies on a different mechanism than the one prevalent in graphene. For

CNT-GM devices integrating such junction, the total resistance is mainly the MWC-

NT/graphene interfacial resistance (plus a small contribution of the CNT resistance

for the medium resistance samples).

8.4 MWCNT/graphene junction properties

From the study presented by Khomyakov et al. (22) (See Sec. 1.2.1), the electrons flowing

across the junctions have to overcome a potential barrier arising from the work-function

missmatch and the chemical interaction. The transfer process taking place at the junction

governs the junction properties. Therefore, the measurements presented in the previous

section will be analysed in this section to characterise this process. It is assumed that

the charge carrier transport from the tube into the graphene is equivalent to the reverse

transport direction. Thus only the transport from the tube to the graphene has been

considered for the analysis.

8.4.1 Charge injection localisation

The description of the charge injection mechanism is essential to understand the perfor-

mances of the probed devices. The injection process is the tunneling process that allows

the charge carriers to be transfered from the tube to the graphene underneath the tube.

This process is one of the two processes that account for the contact resistance as explained

by Xia et al. (See Sec.1.2.1). Determining where in the junction the injection occurs sets

the limits for the device scaling and therefore presents a great interest for potential device

integration in applications.

Two mechanisms for the charge injection have been reported for metal contacts to

CNTs or to graphene. Some studies claimed that the charge injection occurs at the

edges of the contact region (38, 130, 131, 132, 133). Other works suggested that the

charges are injected in the part of the nanostructure underneath the electrode, the contact

is said to be distributed (134, 135, 136, 137, 138). Such type of injection process is

characterised by a transfer length defined by the distance over which the charges are

transferred from one structure to the other. When the contact length is smaller than the

transfer length, the charge transport is hindered. This is reflected in an steep increase

of the contact resistance for devices with contact length below the transfer length. For

CNT/metal contacts, transfer lengths of about 100 nm have been reported (137) whereas
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8.4 MWCNT/graphene junction properties

for graphene/titanium contacts transfer lengths down to 200 nm have been extracted

(138).

In addition to the lack of consistency of the previously mentioned results, it is worth

pointing out that these results were obtained for side-contact configuration and in the

case of the CNTs for embedded contacts. The probed MWCNT/graphene junctions are

side-contact junctions but not an embedded type since the graphene does not wrap the

tube. Thus the contact area differs from the reported junctions and is reduced to a line

in the case of an ideal junction.
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Figure 8.12: Resistance at the Dirac point RDirac versus the contact length lc. Inset:
Contact length measured using an AFM picture.

This implies that the contact length between the tube and the graphene constitutes

the key parameter to analyse the MWCNT/graphene junction. The contact length lc is

defined by the length of the tube lying on top of the graphene sheet. The resistance of

the CNT-GM devices at the Dirac point has been used for the analysis. Considering the

resistance at high carrier density would have yielded the same trends. The extraction

from the AFM measurements gives a range from about 100 nm to 900 nm for the contact

length.

The results presented in Fig. 8.12 display no obvious dependence of the resistance on

the contact length. No increase of the resistance for short contact length is evidenced, im-

plying that from a device integration point of view, 100-nm long junctions make already

good contact. Since the transfer length gives the limit for the device scaling, when con-

sidering its value for CNT/metal and for graphene/metal contacts, MWCNT/graphene

junctions show better downsizing potential.
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8. ELECTRICAL TRANSPORT EXPERIMENTS

Now focusing on the place the charge injection occurs, as already mentioned, the

injection mechanisms found in the literature are based on embedded side contacts and are

therefore not relevant to explain the charge injection in the MWCNT/graphene junctions.

Since the contact is quasi-linear and because of the tunneling nature of the charge injection,

it can be safely assumed that the distance between the tube and the graphene plays a

crucial role in determining where the charge are injected. Indeed, the tube-to-graphene

charge injection is likely to occur at the closest point between the two structures. Charge

accumulation at the end of the tube has been demonstrated in Sec. 4.7 suggesting that

this point can be identified with the injection point. Nevertheless, if deformations of the

structures due to structural properties or defects are considered, the injection point could

be located away from the tube end.

8.4.2 Gate dependence of the injection

The MWCNT/graphene junctions displayed a wide range of resistance as well as values

of the gate effect. The gate dependent part of the resistance in the CNT-GM devices was

proven to be related directly to the MWCNT/graphene contact resistance for medium- to

high-resistance samples. For the low-resistance samples, the gate effect is mainly due to the

graphene, but with a small contribution from the MWCNT/graphene contact resistance.

The mechanism described by Xia et al. to render the contact resistance for metal/-

graphene junctions (27) has been used as a point of departure to analyse the measurements

obtained for MWCNT/graphene junctions. As mentioned in Sec. 1.2.1, the contact re-

sistance is described by two transmission processes, each characterised by a transmission

coefficient: the injection of carriers from the metal to the metal-covered graphene (trans-

mission coefficient: TMG) and the transport from the injection point to the pure graphene

channel (transmission coefficient: TK).

Injection from the M-graphene to pure graphene

As discussed in Sec. 1.2.1, the electronic structure of the metal-covered graphene and

around the metal is modified (referred as M-graphene). In the case of physisorbed metal,

the Fermi level is shifted from the Dirac point while for chemisorbed metals the band

structure is strongly affected. This leads to a charge accumulation (depletion) in the M-

graphene. The charge carriers flowing from the M-graphene to the pure graphene need to

overcome the potential barrier due to the charge redistribution in the M-graphene region.

Up to some hundreds of nanometers have been reported for the width of the extension

of the M-graphene region. (139, 140, 141). The transmission coefficient TK accounts for

such transport.

In the case of MWCNT/graphene junctions, the equivalent of the M-graphene area is

the area influenced by the tube in the graphene sheet. This region has a limited extent,

around 1.7 to 2 CNT radius for big tubes according to the charge distribution calcula-

tions (See Sec.5.1). The transmission coefficient TK can be therefore considered as fixed

for all the MWCNT/graphene junctions, implying that the electrical transport from the
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8.4 MWCNT/graphene junction properties

tube-influenced graphene area to the graphene is not relevant to explain the high contact

resistance and strong gate effects exhibit by some samples.

An additional argument is provided by the KPFM work-function measurements of

Sec. 7. No change in the work function has been evidenced around the MWCNT/graphene

junction. The charge transfer if any was proven to be limited. Thus the potential barrier

the charge carriers have to cross when flowing from the graphene underneath the MWCNT

to the ”pristine” graphene region, is small and spatially confined. The junction is therefore

not governed by the transport process from the tube-influenced graphene area to the

graphene.

Injection from the MWCNT to the M-graphene

Since the transmission process between the tube-influenced graphene area and the pristine

graphene has been ruled out to explain the resistance range and the gate effect observed for

the MWCNT/graphene junction samples, the transmission process between the MWCNT

and the graphene appears to be the governing process for the transport. For the metal-to-

graphene injection, considering a coherent diffusive regime, Xia et al. give the following

formula for the transmission coefficient TMG

TMG =

√
λ

λm
(8.6)

where λ is the scattering mean free path in the M-graphene. The length λm is the metal-

graphene coupling length and is inversely related to the coupling strength term η that ren-

ders the re-hybridisation strength between the d-orbitals of the metal and the graphene

pz orbital. Fermi’s golden rule can be used to obtained an expression for η yielding a

quadratic dependence on the hopping integral between the metal and the carbon atoms

tMG, which accounts for the inter-system carrier transmission: η ∝| tMG |2 (27). Metal

binding strongly with the graphene shows a higher coupling strength (η=0.3 eV for tita-

nium) than weakly binded metal (η=0.06 eV for palladium) (135). The coupling strength

η is expected to decrease with the increasing distance between the metal and the graphene,

implying the very same behaviour for the transmission coefficient TMG. Indeed, as men-

tioned in (22, 29), the chemical interaction that accounts for the repulsive interaction

between the metal and graphene orbitals depends strongly on the distance between the

structures, being strong when the structures are close and negligible when the structures

are distant from more than a threshold distance (& 4.2 Å for copper contacts on graphene

(29)).

In the case of MWCNT/graphene junctions, no band structure calculations have been

reported up to now. The interaction between the pz orbitals of the two systems can be

assumed to be weak since it is mostly due to the van der Waals interaction. Still, since

the hopping integral between the carbon of the tube and the carbon of the graphene

can be defined tCNT−G, the coupling strength coefficient η is obtained as in the previous

metal-graphene interaction case by Fermi’s golden rule. The transmission coefficient is

then expected to decrease with increasing MWCNT-graphene distance.
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The equilibrium distance has been computed in Sec. 2.3.4 for an ideal MWCNT/-

graphene junction deq. This distance corresponds to for the position where the chemical

repulsive forces are balanced by the attractive electrostatic forces. The calculations do

not take into account the randomness of the contact due to impurities, defects in the

structures or corrugations in the graphene sheet that can modify significantly the effective

distance between the the two structures. In the case of a real MWCNT/graphene contact,

the effective distance deff is the distance between the MWCNT and the graphene at the

charge injection point from one structure to another as pictured in Fig.8.13.

Figure 8.13: Distance between the tube and the graphene for an ideal junction (left) and
for a real junction (right). In the picture, the effective distance deff departs from the ideal
equilibrium distance deq due to an impurity trapped between CNT and graphene.

The trend indicated by the MWCNT/graphene junction resistance measurements can

be related to the effective distance deff between MWCNT and graphene and to the changes

induced by the electrostatic forces on this distance. As the gate voltage is swept, the

charge carrier density in the graphene sheet is tunned. In the MWCNT, mirror charges

are created to screen the electric field due to the charges in the graphene sheet. Because

of the attractive electrostatic interaction between the charges in the graphene and in the

MWCNT, the distance deff changes and therefore the transmission coefficient TCNT−G

with it. This leads finally to the observed variation of the junction contact resistance with

the gate voltage. Around the Dirac point, the charge carrier density in the graphene sheet

is low, thus the electrostatic interaction with the tube is reduced. The effective distance

deff is then maximum and so is the contact resistance. With the increase of the charge

carrier density in the graphene sheet, the electrostatic interaction with the tube grows and

eventually the effective distance deff shortens allowing a better transmission.

Thus the range of values obtained for the MWCNT/graphene junction resistance can

be related to the effective distance between the MWCNT and the graphene deff . In-

deed, MWCNT/graphene junctions with large effective distance exhibit low transmission

coefficient and therefore high contact resistance. If on the other hand the distance deff

decreases, the tube-to-graphene transmission probability increases, resulting in a reduced

contact resistance.

The variation of deff with the gate sweep drives the variation in the junction resistance.

The value of the effective distance at the Dirac point dmax is crucial to determine the

range of deff and therefore the amplitude of the resistance gate modulation. For values

of dmax close to the theoretical value, the effective distance between the MWCNT and
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8.4 MWCNT/graphene junction properties

the graphene cannot be reduced significantly by the electrostatic forces since quickly the

repulsive forces due to atomic orbital overlap prevail as pictured in the representation of

the binding energy in Fig. 8.14. For values of dmax substantially larger than the theoretical

value, the range of variation is larger for the distance deff as seen in the binding energy

in Fig.8.15.

All theses assumptions lead to understand the MWCNT/graphene junction as follows:

• Low-resistance MWCNT/graphene junctions have few structural defects or impuri-

ties. They exhibit an effective distance at the Dirac point dmax (pink position in

Fig. 8.14) close to the theoretical value. With the gate sweep, the effective distance

does not change significantly (green position in Fig.8.14) because of the quickly rising

repulsive forces. Thus, the transmission coefficient is not substantially affected. The

resistance consequently does not show a strong modulation. The chart in Fig. 8.14

gives an overview of the resistance modulation phenomena for low resistance MWC-

NT/graphene.

• Medium- to high-resistance MWCNT/graphene junctions have a higher effective

distance at the Dirac point. This leads to a higher resistance range than for the low-

resistance MWCNT/graphene junctions. The distance deff changes significantly

when the graphene charge density is tuned. Consequently, the transmission coeffi-

cient is strongly affected. This is reflected by the medium to strong modulation effect

observed for the junction resistance. Fig. 8.15 gives an overview of the resistance

modulation phenomena for high-resistance MWCNT/graphene.
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Figure 8.14: Gate dependence mechanism for low resistance samples. The effective distance
is indicated on the resistance versus gate curve for the high charge carrier density (green
position) and for the Dirac point (pink position). The binding energy E between the tube
and the graphene as well as the tunneling transmission coefficient T at the junction (assumed
to have an exponential decay shape) are shown versus the effective distance deff . The two
positions corresponding to the high charge carrier density and the Dirac point are displayed
in each chart.
The small range of deff variation evidenced between the pink and the green position (red
arrow) is due to the quick uprising repulsive forces. The change in the transmission coefficient
is small between these two positions and therefore has little influence over the resistance.
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Figure 8.15: Gate dependence mechanism for high resistance samples. The effective distance
is indicated on the resistance versus gate curve for the high charge carrier density (green
position) and for the Dirac point (pink position). The binding energy E between the tube
and the graphene as well as the tunneling transmission coefficient T at the junction (assumed
to have an exponential decay shape) are shown versus the effective distance deff . The two
positions corresponding to the high charge carrier density and the Dirac point are displayed
in each chart.
The large range of deff variation evidenced between the pink and the green position (red
arrow) is due to the electrostatic forces arising when the graphene sheet is being charged.
The change in the transmission coefficient is significant between these two positions. The
resistance undergoes consequently a dramatical modulation.
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8.5 Conclusion

Electrical transport measurements on MWCNT/graphene junctions were carried out for

several devices. The measurements yielded a wide range of junction resistances, from a

few tens of kΩ to around 1.5 MΩ. The contact length of the junction down to 100 nm

was found not to influence the quality of the transport. This result could be used for

further applications to downsize devices. The measurements showed furthermore that the

junction resistance depends on the gate voltage. A correlation between the resistance

of the junction and the exhibited gate effect was clearly revealed. The transport at the

junction can be understood by a chain process involving first the transfer from the tube

to the graphene underneath the tube followed by a second transport process to the pure

graphene region.

The first transfer process was proven to govern the junction transport properties. The

correlation trend between resistance and gate effect had been explained by the nature of the

contact surface, which is a quasi 1D contact area. A slight modification over the contact

area represented by a change in the effective distance between the two structures has a

dramatic influence over the transport properties at the junction since the effective distance

is related to the transmission coefficient. Low-resistance junctions have few structural

defects and impurities in contrast to medium- to high-resistive samples. This is reflected

by a smaller effective distance and therefore small resistance value and reduced resistance

modulation with the gate voltage sweep.

Thus controlling the transport at the junction depends strongly on the experimental

condition. Impurities due to sample fabrication and structural defects influence the quality

of the junction. Surfactant molecules or residual scotch tape are key parameters to control

in order to improve the quality of the junction and obtain more predictable results.
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Conclusion

New connecting techniques for graphene have to be developed to ensure a better device

integration for this astonishing material. The use of carbon nanotubes, a material closely

related to graphene as connecting material is a promising option to explore. In this work,

the interface between carbon nanotube and graphene has been addressed. A range of

properties have been determined ranging from structural parameters to electrical transport

behaviour.

First the structural properties of carbon nanotube/graphene junctions have been com-

puted using semi-empirical quantum chemistry methods. The van der Waals interaction

plays a key role in the binding between the two graphitic structures. The binding energy

as well as the equilibrium distance have been determined. Both exhibited a dependence on

the carbon nanotube radius: the more atoms participates in the binding, the stronger the

binding becomes and the further apart the substructures are. The equilibrium distances

ranging from 3.02 Å for small-radius tube to 3.14 Å for large-radius tubes are significantly

smaller than the graphite interplane distance.

The equilibrium distance was used as an input parameter to calculate the charge

distribution at the carbon nanotube/graphene interface. First two-dimensional analytical

calculations have been performed. By means of conformal mapping technique the Laplace

equation could be solved, giving the charge distribution. A three-dimensional electrostatic-

based model called ”charge-dipole” model that scales down to the atoms has been used to

gain more insight. The results yielded a limited spatial extent of the charge redistribution

around the junction region in the graphene sheet. When compared to usual metals that

dope the graphene over a scale of hundreds of nanometers scale, the influence of the

nanotube on the charge distribution in graphene is confined to 1.7 to 2 times the tube

radius.

Contrary to all reported fabrication techniques, the process developed in this work

to build nanotube/graphene junctions allows to preselect the type of tube and to control

the location of the junction. This achievement relies on using the tip of an atomic force

microscope as a ”nano rake” to drag off the tubes onto the graphene. Multi-walled carbon

nanotubes (MWCNT) have been used as building block for the junctions because of their

metallic properties and their resistance to mechanical manipulations.

Kelvin probe force microscopy were performed to measure the work function of the

graphene at and around MWCNT/graphene junctions and Ti/Al/graphene junctions.

No significant charge transfer could be evidenced at the interface between MWCNTs

and graphene nor in the graphene regions around the tube. Connecting graphene with
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MWCNT therefore does not introduce doping in the graphene sheet. On the contrary,

KPFM measurements displayed a substantial work function modification over a large

scale deep in the graphene sheet due to the charge transfer between the metal and the

graphene.

Electrical transport measurements were carried out on the fabricated MWCNT/-

graphene junctions. The measured resistance ranged from a few tens of kΩ to around

1.5 MΩ. A high downsizing potential was evidenced for the MWCNT/graphene junctions,

since the junction resistance exhibits no variation with the contact length down to 100

nm. An interesting trend was revealed by the results: the higher the junction resistance,

the stronger the modulation of the resistance with the charge carrier density (i.e., the gate

effect). The transfer process between the tube and the graphene underneath was found to

govern the junction resistance. It depends on the effective distance between the MWCNT

and the graphene. Junctions showing few structural defects or/and low contamination

are likely to exhibit a small effective distance and thus a low interfacial resistance while

junction having higher effective distance are much more resistive. This is a step toward

the control over the electrical transport at MWCNT/graphene junctions.

The use of MWCNT as connector for graphene in electronic devices is limited then by

performances strongly dependent on the experimental conditions and on the quality of the

building-blocks. Reducing the amount of impurities due to the fabrication process could

be a way to assure low-resistance MWCNT/graphene junctions suitable for the electronic

applications such as transparent electrodes or all-carbon electronics.
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Appendix A

Hartree-Fock method

A.1 Schrödinger equation

Quantum effects play an important role for the understanding of nanoscopic and meso-

scopic systems. When the system is at equilibrium and without time-dependent pertur-

bation, the time-independent Schrödinger equation is enough to describes the system.

Solving the time-independent Schrödinger consists of determining the Eigenstates and

their associated Eigenvalue for the Hamiltonian of the system. Finding all the Eigenstates

for a system is a daunting task and is dispensable since the system in the further devel-

opments is considered not to be in an excited state but in its ground state. The ground

state is defined by being the state with lowest energy. All the calculations carried in this

section will refer to the ground state.

The Schrödinger equation reads

HΨ = EΨ (A.1)

where H is the Hamiltonian operator, Ψ the wave function and E the system energy.

In a matrix algebra picture, E and Ψ are respectively Eigenvalue and Eigenvector (or

Eigenstate) of the Hamiltonian operator H. Providing an accurate expression for H is the

starting point for determining the system. The operator H contains five contributions to

the total energy of the system and its expression is given by

H = −
∑
A

~2

2mA
∇2

A +
∑
A<B

e2ZAZB

rA,B
−
∑
i

~2

2me
∇2

i +
∑
i<j

e2

ri,j
−
∑
i

∑
A

e2ZA

ri,A
(A.2)

where A denotes the nuclei, i denotes the electrons, m is the mass, e is the elementary

charge, Z is the atomic number and r is the distance between the considered particles.

The first two terms in Eq. A.2 account respectively for the nuclei kinetic energy and the

potential energy, the third and fourth term account for both the electronic kinetic energy

and the potential energy whereas the last term contains the electron-nucleus Coulomb

interaction.

Since the proton to electron mass ratio is about 1836, electrons move faster than

nuclei and react instantaneously to a change in the nuclei position. Consequently, the

electrons are considered to be moving in a frozen nuclei lattice. Thus when dealing with
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the motions of the electrons, the nuclei positions are then fixed. The nuclei kinetic energy

can be then neglected and the nuclei potential energy set as constant, which will be

omitted in the following developments since it only shifts the energy eigenvalues and leaves

the wave functions invariant. In this approximation, known as the Born-Oppenheimer

approximation, the Hamiltonian can be written

Hel = −
∑
i

~2

2me
∇2

i +
∑
i<j

e2

ri,j
−
∑
i

∑
A

e2ZA

ri,A
(A.3)

and the general Schroedinger equation (Eq. A.1) reduces to the electronic Schroedinger

equation

HelΨ(r) = EelΨ(r) (A.4)

with r the electronic coordinate vector and Eel the electronic energy. Using the one-

electron operator h(i) for the electron i defined as

h(i) = −1

2
∇2

i −
∑
A

ZA

ri,A
(A.5)

and the two-electrons operator v(i, j)

v(i, j) =
1

ri,j
(A.6)

equation A.3 can be written as (using atomic units: me = 1, ~ = 1 and e=1)

Hel =
∑
i

h(i) +
∑
i<j

v(i, j). (A.7)

A.2 Hartree-Fock method

Having decoupled the electronic motion from the nuclear one by calling on the Born-

Oppenheimer approximation, the resolution of Eq. A.4 remains rife with problems as it

can be only solved exactly for one-electron systems such as H, H+
2 or He+. The electron-

electron interaction term hinders an exact resolution of the Schroedinger equation for

larger systems. Handling larger systems requires then to rely on numerical methods.

In this scope the Hartree-Fock method was developed (142). This method relies on

an iterative process for determining the wave function and the associated energy. Instead

of considering the electron-electron interaction pairwise, the method introduces a mean

field term for the electron-electron interaction. Each electron moves into a field induced

by the other electrons and the value of this field depends only on the coordinates of the

considered electron, the positions of the other electrons is thus not required.

The second assumption made by the Hartree-Fock method concerns the total wave

function Ψ used as initial guess to start the iterative process. For the initial guess, Ψ is

required to be antisymmetric and to be a product of one-electron wave functions χ, called

molecular spin orbitals (MSO). The MSO are a product of spatial wave function times a
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spin wave function. They are chosen to constitute a set of orthonormal functions

< χi|χj >=

∫
χi(x)χj(x)dx = δi,j (A.8)

Ψ is written for a system of N electrons as a Slater determinant

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN (1)
χ1(2) χ2(2) · · · χN (2)

...
...

. . .
...

χ1(N) χ2(N) · · · χN (N)

∣∣∣∣∣∣∣∣∣ (A.9)

The Hartree-Fock equations are now derived by first computing the energy of a so defined

total wave function Ψ. The expectation value of the electronic Hamiltonian (Eq. A.7)

gives the Hartree-Fock energy

EHF =< Ψ|Hel|Ψ >=

∫
Ψ(x)HelΨ(x)dx. (A.10)

Introducing the one-electron integrals and their notation

< i|h(i)|i >=
∫
χi(x1)h(i)χi(x1)dx1 (A.11)

as well as the two-electron integrals

< ij|kl >=
∫ ∫

χi(x1)χj(x1)
1

r1,2
χk(x2)χl(x2)dx1dx2 (A.12)

the energy can be recast

EHF =
∑
i

< i|h(i)|i > +
1

2

∑
i,j

(< ij|ij > − < ij|ji >) . (A.13)

Having the expression of the Hartree-Fock energy, the variational principle can be

invoked to determine the set of MSO. This principle states that the Slater determinant

with the lowest energy is the best approximation to the true wave function describing the

system. Thus, if a wave function Ψ close enough to the ground state undergoes a small

change δΨ, then the change in the energy should be equal to zero, δEHF = 0. Adding

the fact that the MSO are required to be orthonormal, this minimization condition leads

after some developments to the canonical Hartree-Fock equations

h(i)χi(i) +
∑
j 6=i

[∫ |χj(j)|2

ri,j
dx2

]
χi(i)−

∑
j 6=i

[∫
χj(j)χi(j)

ri,j
dx2

]
χi(i) = εiχi(i). (A.14)

If the Coulomb operator Jj(i) and the exchange operator Kj(i) are defined as

Jj(i) =

∫ |χj(j)|2

ri,j
dx2 and Kj(i) =

∫
χj(j)χi(j)

ri,j
dx2 (A.15)
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and the Fock operator f(i) as well

f(i) = h(i) +
∑
j 6=i

(Jj(i)−Kj(i)) (A.16)

the equation A.14 can be rewritten

f(i)χi(i) = εiχi(i). (A.17)

The meaning of the εi is then disclosed, as they turn out to be the eigenvalues of the Fock

operator associated to the canonical MSO. The Coulomb operator Jj(i) corresponds to

the Coulomb interaction between the charge densities defined by |χi(i)|2 and |χj(j)|2. The
exchange operator Kj(i) reflects the fermionic nature of electrons that hinders electrons

with same spin to be at same place.

Since the Fock operator definition contains the MSO, this is where the iterative trait

of the Hartree-Fock method comes into play. In fact, a set of initial guess for the orbitals

is needed in order to define the Hartree-Fock energy and the Fock operator and to solve

consequently the Hartree-Fock equations that will supply a new set of orbitals. This new

set of orbitals will be used in turn to carry on with the iterative process until the energy

difference between two iterative steps is smaller than the defined convergence criteria.

Due to such iterative feature, Hartree-Fock calculations are alternatively labeled as self-

consistent field calculations (SCF).

A.3 Implementation of the Hartree-Fock method

The codes using the Hartree-Fock method are based on a matrix form of the method

coined by Roothaan (143). Indeed, they use a discrete basis set to expand the spatial part

of the MSO. Let Φi be the spatial part of the MSO χi, the expansion of Φi in a basis set

{φ}α=1,...,n is given by

Φi =
n∑

α=1

cα,iφα = ci (A.18)

where ci is the expansion coefficient matrix. The {φ} are called atomic orbitals and the

expansion is referred as linear combination of atomic orbital (LCAO). Here the literature

conventions are used: the lower-case Roman letters for indexing the MSO and Greek letters

for indexing the basis set. If the system is assumed to have all its N electrons paired in
N
2 orbitals (closed-shell system), the Hartree-Fock energy can be rewritten as

EHF = 2

N
2∑

i=1

< i|h(i)|i > +

N
2∑

i=1

N
2∑

j=1

(2 < ij|ij > − < ij|ji >) (A.19)

and the Fock operator as

f(i) = h(i) +

N
2∑

j=1

(2Jj(i)−Kj(i)). (A.20)
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Moreover the Hartree-Fock equation can be recast in matrix form in the atomic orbital

basis {φ}α=1,...,n as

Fci = εiSci (A.21)

This set of equations are known as Roothan-Hall equations (143, 144). The terms of the

overlap matrix S are computed as

Sµν =< µ|ν >=
∫
φµ(x1)φν(x1)dx1. (A.22)

The matrix F is called the Fock matrix and its terms Fµν are defined by

Fµν =< µ|f(i)|ν >=< µ| − 1

2
∇2

i −
∑
A

ZA

ri,A
|ν > +

∑
λσ

Pλσ

[
〈µν|λσ〉 − 1

2
〈µλ|νσ〉

]
(A.23)

where Pλσ are terms of the density matrix P:

Pλσ = 2

N
2∑

i=1

cλ,icσ,i. (A.24)

In practice, the Hartree-Fock programs compute the overlap, the one-electron and the

two-electron integrals along with the density matrix to construct the Fock matrix and then

follow the procedure depicted in the Fig. A.1. Despite the approximations assumed in the

Hartree-Foch method, the calculations involving large systems are still too expensive. The

computational cost does raise dramatically with larger basis set. Indeed, for a basis set of

N functions, the amount of two-electron integrals scales proportional to N4.
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Figure A.1: Flow chart for the Hartree-Fock method (adapted from (145))

118



Acknowledgements

I would like to thank all the persons who supported me during my PhD.

First, I owe my deepest gratitude to Prof. Dr. Hilbert von Löhneysen for
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