
Mass Customization of Cloud Services
Engineering, Negotiation and Optimization

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für
Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Dipl.-Wi.-Ing. Steffen Haak

Tag der mündlichen Prüfung: 20.02.2013

Referent: Prof. Dr. Christof Weinhardt

Korreferent: Prof. Dr. Rudi Studer

Karlsruhe, 2013

Abstract

The fundamental shift from mass production to mass customization has been fos-
tered by the rise of information technology (IT). Yet, it has primarily affected tradi-
tional manufacturing goods. Despite IT’s role as enabler for mass customization, IT
services – and in particular Cloud computing services – are currently not offered in a
mass customization fashion. Consumers either are faced with the effort of building
a service customized to their needs themselves or can select a more or less appro-
priate off-the-shelf Software-as-a-Service offer.

Several challenges hinder the entry of mass customization principles to
providers of Cloud computing services. Firstly, provider and consumer need to
find a way of communicating functional and non-functional requirements. This re-
quires a simple negotiation mechanism helping both parties to find an agreement on
non-functional aspects like Quality-of-Service (QoS) and price. Secondly, the service
engineering on provider side needs to be automated. In order to do so, knowledge
on service resources and offered functionalities has to be available as externalized
knowledge, so that it can be used for an automated service configuration process.
Thirdly, most Cloud computing service offers can be provided through a vast set
of different service configurations, providing the same functionality, yet differing in
quality and price. Finding the optimal choice within such a set with respect to both
consumer preferences and accruing costs can be computationally complex, requir-
ing adequate and efficient optimization techniques.

The work at hand addresses these challenges through technical and economic
contributions. On the technical side, a framework for a semantic description of
service functionalities, resources, dependency and interoperability information as
well as meta information on quality and cost is provided. Further, concept and im-
plementation of an ontology update mechanism, keeping the externalized knowl-
edge up to date, are contributed. A service engineering algorithm enables Cloud
providers to use this knowledge to derive viable service configurations for specific
consumer requests.

On the economic side, three different multi-attributive negotiation mechanisms
are compared. Two are stylized versions of existing mechanisms, one is newly
introduced. All mechanisms are individual rational, budget balanced and benefit
from a simple bidding language. Based on this comparison, an optimization model
and various optimization techniques, which become necessary in such a negotiation
scenario, are developed to cope with the challenge of computational complexity in
QoS-aware service configuration settings. All results are evaluated analytically or
through simulation studies, where appropriate.

Acknowledgments

Composing a work like this is an honorable, but cumbersome task. A task, that
would not have been possible without the guidance and support of many people,
contributing both ideas and valuable feedback in many different ways. I am es-
pecially indebted to my advisor Prof. Dr. Christof Weinhardt for giving me the
chance to work in his group, providing me a productive and efficient environment
and giving his constant support in and beyond my research. He granted me the
freedom to pursue my dissertation and supported me with valuable guidance and
advice throughout my entire time as research assistant. I would also like to show
my gratitude to my co-advisor Prof. Dr. Rudi Studer for his guidance and fruitful
discussions especially on the knowledge management part of this work and possi-
ble extensions thereof. Further thanks go to the other members of the committee,
Prof. Dr. Thomas Setzer for his valuable feedback and the rich discussions on op-
timization techniques, and Prof. Dr. Marc Wouters, who has been so kind to guide
me through a fair and insightful defense.

Furthermore, I would like to show my gratitude to the entire team of the research
group on Information and Market Engineering at the Institute of Information Sys-
tems and Marketing (IISM) as well as to all my colleagues of the research division
on Information Process Engineering (IPE) at the FZI Research Center for Informa-
tion Technology. Special thanks go to Dr. Stephan Grimm and Dr. Jens Wissmann
for their ideas and constructive criticism regarding the technical part of this work,
Dr. Henner Gimpel for his constant support and guidance in and beyond the fields
of negotiations and mechanism design, and Prof. Dr. Thomas Setzer and Dr. Jochen
Martin for their valuable feedback on the optimization part of this work. In addition,
I am grateful to Dr. Benjamin Blau, Dr. Tobias Conte and Dr. Clemens van Dinther
for their ideas and support in the early phase of my research. Special thanks go to
Rico Knapper for supporting me in all kinds of situations. Concerning the readabil-
ity of the work at hand, I am indebted to Nico Rödder for his constant and diligent
proofreading and his constructive feedback. I am especially indebted to my loyal
companions Rico Knapper and Dr. Jochen Martin, not only for contributing valu-
able input to my research, but, most importantly, for always providing me a fun
atmosphere at work.

Most notably, I want thank my parents Hannelore and Michael as well as my
sister Jennifer for their constant and loving support throughout my life. Finally, I
am particularly grateful to my girlfriend Andrea. Without her constant love and
patience, this work would not have been possible.

Steffen Haak

Contents

I Foundations and Preliminaries 1

1 Introduction 3
1.1 Research Questions and Contributions 5
1.2 Outline . 9
1.3 Publications and Research Development 10

2 Basic Concepts and Technologies 13
2.1 Knowledge Management . 13

2.1.1 Ontologies . 14
2.1.2 Ontology Formalisms . 15
2.1.3 Ontology Persistence . 21

2.2 Services . 22
2.2.1 Tangibles, Intangibles and Service Definitions 23
2.2.2 Cloud Services . 25
2.2.3 Service-Oriented Architectures 27
2.2.4 Mass Customizing Services . 28
2.2.5 Service Value Networks . 28

2.3 Economic Foundations . 30
2.3.1 Negotiations . 30
2.3.2 Mechanism Design . 31

2.4 Optimization Techniques . 34
2.4.1 Linear Optimization . 34
2.4.2 Simplex Algorithm . 35
2.4.3 Integer Programming . 36
2.4.4 Dynamic Programming . 36
2.4.5 CPLEX . 37

2.5 Summary . 37

3 Mass Customization of Cloud Services 39
3.1 Scenario . 39

3.1.1 Single Provider Variant . 40
3.1.2 Intermediary Variant . 40

3.2 Assumptions . 40
3.3 Offer Creation Process . 42
3.4 Summary . 46

x CONTENTS

II Technical Design, Implementation and Evaluation 47

4 Semantic Service Description Framework 49
4.1 Requirements . 49
4.2 Related Work . 51

4.2.1 Semantic Description of Web Services 51
4.2.2 Ontology-Based Configuration 53
4.2.3 Applicability . 53

4.3 Ontology Framework . 54
4.3.1 Service Ontology . 55
4.3.2 Domain and Result Ontology 57

4.4 Evaluation . 57
4.5 Summary . 60

5 Ontology Update Mechanism 61
5.1 Use Case . 61
5.2 Requirements . 62
5.3 Related Work . 64

5.3.1 Ontology Versioning and Evolution 64
5.3.2 Ontology Update Language . 65
5.3.3 SMILA – Unified Information Access Architecture 66
5.3.4 Wrappers . 67
5.3.5 Applicability . 67

5.4 Concept . 69
5.4.1 Underlying Concepts and Design Decisions 69
5.4.2 Architecture . 73
5.4.3 Sequence of Update Process . 73

5.5 Implementation . 75
5.5.1 Example Update Rules . 77

5.6 Evaluation . 80
5.6.1 Quantitative Evaluation . 80
5.6.2 Qualitative Evaluation . 83

5.7 Summary . 84

6 Service Engineering Algorithm 85
6.1 Requirements . 85
6.2 Related Work . 87
6.3 Formal Model . 88

6.3.1 Functional Requirements . 88
6.3.2 Service Configuration Graph 88

6.4 Service Engineering Algorithm . 89
6.5 Implementation . 91
6.6 Evaluation . 92
6.7 Summary . 93

CONTENTS xi

III Economic Design, Implementation and Evaluation 95

7 Multi-Attributive Negotiations 97
7.1 Scenario . 98
7.2 Related Work . 100
7.3 Methodology . 101
7.4 Model of Preferences . 102
7.5 Negotiation Mechanisms . 104

7.5.1 TUPLEBIDDING . 104
7.5.2 SCORINGBIDDING . 105
7.5.3 DISCOUNTBIDDING . 105

7.6 Evaluation under Complete Information 105
7.6.1 TUPLEBIDDING . 106
7.6.2 SCORINGBIDDING . 106
7.6.3 DISCOUNTBIDDING . 107

7.7 Evaluation under Incomplete Information 109
7.7.1 Extended model under risk . 109
7.7.2 Numerical Simulation . 110
7.7.3 TUPLEBIDDING . 111
7.7.4 SCORINGBIDDING . 112
7.7.5 DISCOUNTBIDDING . 115

7.8 Comparison of Negotiation Mechanisms 116
7.8.1 Complete Information . 116
7.8.2 Incomplete Information . 117

7.9 Conclusion . 122
7.9.1 Limitations and Implications 123

8 Service Optimization 125
8.1 Related Work . 126
8.2 Optimization Model and Challenges 127

8.2.1 Non-functional Requirements 127
8.2.2 Solution Space . 128
8.2.3 Aggregation Functions . 131
8.2.4 Objective Function . 131
8.2.5 Challenges . 131

8.3 Optimization Techniques . 134
8.3.1 Exact Approaches . 134
8.3.2 Approximations . 137
8.3.3 Heuristics . 138

8.4 Evaluation . 139
8.4.1 Subtractive Approximation Error 139
8.4.2 Simulation Study . 145

8.5 Conclusion . 152
8.5.1 Practical Implications . 154

xii CONTENTS

IV Finale 157

9 Conclusion and Outlook 159
9.1 Contribution . 159
9.2 Limitations and Future Work . 163
9.3 Complementary Research . 165

V Appendix 167

A Appendix to Part II 169
A.1 Service Ontology . 169

B Appendix to Part III 177
B.1 Proof of Strict Monotonic Increase . 177
B.2 Numerical Proof of Strict Inequality 178
B.3 Simulation Results for Various Parameters a and b 179

B.3.1 Results for a=0.25 and b=2 . 179
B.3.2 Results for a=0.5 and b=4 . 181
B.3.3 Results for a=0.25 and b=4 . 183
B.3.4 Parameters and Corresponding Optima 185

References 197

List of Figures

1.1 Structure of the thesis . 9

2.1 Semantic Web Stack . 16
2.2 Architecture of OWLDB . 23
2.3 Formalized SVN graph . 29

3.1 Offer creation process for mass customized services 43
3.2 Illustrative example graph . 44
3.3 Formalized example graph . 45
3.4 Sequence diagram for mass customizing a Cloud service 46

4.1 Service ontology . 55

5.1 The architecture of SMILA . 67
5.2 Example for object property Usage . 71
5.3 Architecture of ontology update mechanism 73
5.4 Sequence diagram of update process 74
5.5 UML diagram of prototypical implementation 76
5.6 Benchmark of execution time . 82

6.1 Example dependency graph . 89
6.2 Screenshot of service engineering algorithm prototype 91

7.1 Example curves . 104
7.2 Likelihood of agreement in TUPLEBIDDING 111
7.3 Optimal bidding parameters (r = 0) . 113
7.4 Optimal bidding parameters (r = 1) . 113
7.5 Likelihood of agreement in SCORINGBIDDING 114
7.6 Likelihood of agreement in DISCOUNTBIDDING 115
7.7 Comparison of negotiation mechanisms – C’s utility 118
7.8 Comparison of negotiation mechanisms – P ’s utility 120
7.9 Comparison of negotiation mechanisms – welfare 121

8.1 Example service configuration graphs 130
8.2 Deterministic error of subtractive approximation for spread values . 141
8.3 Deterministic error of subtractive approximation 142
8.4 Expected error of subtractive approximation 144
8.5 Average runtime G . 147
8.6 Average runtime G+ . 148
8.7 Solution quality depending on N – Wide boundaries 151

xiv LIST OF FIGURES

8.8 Solution quality depending on N – Tight boundaries 153

B.1 Numerical proof of strict inequality . 178
B.2 Scoring and cost function a = 0.25, b = 2 179
B.3 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 2 . . 179
B.4 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 2 . . 180
B.5 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 2 . . 180
B.6 Scoring and cost function a = 0.5, b = 4 181
B.7 Comparison of negotiation mechanisms – welfare, a = 0.5, b = 4 . . . 181
B.8 Comparison of negotiation mechanisms – welfare, a = 0.5, b = 4 . . . 182
B.9 Comparison of negotiation mechanisms – welfare, a = 0.5, b = 4 . . . 182
B.10 Scoring and cost function a = 0.25, b = 4 183
B.11 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 4 . . 183
B.12 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 4 . . 184
B.13 Comparison of negotiation mechanisms – welfare, a = 0.25, b = 4 . . 184

List of Tables

2.1 Description logic constructs . 18
2.2 Description logic notation . 18

4.1 Review on requirements and comparison to related literature 59

5.1 Average execution time – update rule 81
5.2 Review on requirements . 84

6.1 Review on requirements . 93

8.1 Expected error of subtractive approximation 145
8.2 Simulation parameters . 146
8.3 Average runtime G . 149
8.4 Average runtime G+ . 150
8.5 Mean values of deviation ∆ . 152
8.6 Overview on findings . 155

List of Algorithms

6.1 Initiate construction of dependency graph 90
6.2 Recursive construction of a service configuration graph 90
7.1 Numerical Simulation Algorithm (SCORINGBIDDING) 110
8.1 Initialize Depth-First-Search G+ . 134
8.2 Recursive Depth-First-Search G+ . 135
8.3 Initialize Depth-First-Search G . 135
8.4 Recursive Depth-First-Search G . 136

List of Abbreviations

ABox Assertional Box
API Application Programming Interface
BIP Binary Integer Program(ming)
BPEL Business Process Execution Language
CSP Constraint Satisfaction Problem
CWA Closed World Assumption
DFS Depth First Search
ETL Extract, Transform, Load
HTTP Hypertext Transfer Protocol
IaaS Infrastructure-as-a-Service
ICT Information and Communication Technology
IP Integer Program(ming)
IS Information Systems
IT Information Technology
JSON JavaScript Object Notation
LP Linear Program(ming)
MAUT Multi-Attribute Utility Theory
OCR Optical Character Recognition
OWA Open World Assumption
OWL Web Ontology Language
PaaS Platform-as-a-Service
PDF Portable Document Format
QoS Quality of Service
REST Representational State Transfer
SaaS Software-as-a-Service
SLA Service Level Agreement
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol And RDF Query Language
SVN Service Value Network
TBox Terminological Box
UML Unified Modeling Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WS-BPEL Web Services Business Process Execution Language
WSDL Web Services Description Language
XML eXtensible Markup Language

xx LIST OF ABBREVIATIONS

XSLT Extensible Stylesheet Language Transformation

Part I

Foundations and Preliminaries

Chapter 1

Introduction

T oday, customization of products and services is well-set in almost any domain.
Cars are individualized by consumers via configurators, pre-fabricated houses

can be customized and even everyday products like food and clothes are subject
to mass customization [151]. For services, individual and close interaction between
consumer and provider happens almost by definition. With technological progress
and rising customer expectations as mutually depending elements, off-the-shelf of-
ferings to fit the greatest common denominator of potential consumer demands go
out of date in favor of individualized solutions.

Historically, mass customization is a logical progression of the era of mass mar-
kets [89]. It is defined as the ability to offer individually designed products and
services to every customer on a large scale basis [42]. High process agility, flexibil-
ity and integration as well as automation are prerequisites for mass customization
in the manufacturing world. Besides innovative processes, information technology
(IT) has been identified as one of the main enablers, mainly driving automation and
customer involvement [42]. New businesses, selling customizable products over
the Web, continue to appear and replace the classical off-the-shelf markets. Ini-
tially starting with high-priced goods like cars (e.g. Audi1 or BMW2), this trend
has also captured medium-priced goods like clothes. A prominent example in this
segment is TailorStore3, an online retailer selling custom-made shirts and other busi-
ness clothes to the masses with almost an infinite set of potential customer choices,
be it the fabric, the cuff or even the style of the collar. Further examples are Her-
renschmiede4 or Amerano5. And even low-priced everyday products like groceries
nowadays are sold customizable via the Web, as in the case of mymuesli.com, where
one can get a cereal blend of one’s very own individual choice.

On the downside, consumers are faced with an increased complexity in their pur-
chasing decision. While creating one’s own cereal blend or deciding on the stereo
or color of a car still seems feasible, configuration of complex technical products
can become a challenge only experts can master. Even higher complexity is faced

1http://konfigurator.audi.de/
2http://www.bmw.de/de/de/general/configurations_center/configurator.html
3http://www.tailorstore.de
4http://www.herrenschmiede.de/
5http://www.amerano.de/

http://konfigurator.audi.de/
http://www.bmw.de/de/de/general/configurations_center/configurator.html
http://www.tailorstore.de
http://www.herrenschmiede.de/
http://www.amerano.de/

4 CHAPTER 1. INTRODUCTION

by providers offering customized products and services. Not only do they have
to assure that consumers do not create offers which are technically infeasible, they
also have to automate both assembly and pricing of their custom offers in order to
achieve large scale volumes, as required in a mass customization market.

While IT is a main driver for mass customization [42], the above mentioned com-
plexity is the major reason for the lack of mass customized Cloud computing service
offers in reality. Without a doubt, Cloud computing has been recognized as the most
important trend in recent years [34], promising the “long-held dream” of comput-
ing as a utility [6] with benefits like eased scalability, virtually endless resources and
pay-as-you-go pricing schemes. Whether it is in an end-user or business context,
today, consumers who are willing to use or integrate Cloud services6 from exter-
nal service providers are confronted with a crucial design decision, yielding two
different options: Either (1) they build the required business functionality them-
selves, using a set of highly customizable commodity services, or (2) they use an
out-of-the-box service offer designed to achieve a distinct objective. The first option
is commonly implemented by means of so called Infrastructure-as-a-service (IaaS)
or Platform-as-a-Service (PaaS)7 offers, the second option is commonly referred to
as Software-as-a-Service (SaaS). By their nature, SaaS offers are designed to fit the
greatest common denominator of consumer requirements and offer little room for
customization. Consumers building their own applications based on IaaS offers
might obtain services that perfectly fit their expectations, but come at the cost of an
immense complexity on the side of the consumer. Pre-configured images for IaaS
offers can help to reduce this complexity. According to thecloudmarket.com, there are
already over 46,0008 different virtual machine images from various providers that
can be run as virtual appliances on Amazon’s Elastic Compute Cloud (EC2) plat-
form. However, these images are not built on-demand to meet individual consumer
needs.

While this large variety gives further proof of the importance of mass customized
service offers, it becomes obvious that consumers have very individual needs. Even
with these images consumers have little support for the technical and economic de-
cision process of selecting an appropriate image, for deploying the image on the
Cloud or for making further customizations. In addition, expert knowledge in con-
figuration and deployment of Cloud resources is a prerequisite for creating such
individually engineered services, as it is highly unlikely that an image exists which
is already configured exactly according to the individual needs.

Unquestionably, a service provider taking on the quest of offering Cloud ser-
vices tailored to individual consumer needs in a mass customization fashion would
have a significant economic impact. Yet, many new challenges arise when shifting
the above mentioned complexity from the consumer to the service provider. Mass
customization requires the offer creation to follow an automated process. Within
this process, providers and consumers first have to find a way of communicating re-
quests for customized services in a structured, well-formed and standardized way.

6In the remainder of this thesis the term Cloud service is used synonymously for Cloud computing
service.

7IaaS offers raw compute resources, whereas PaaS is a combination of IaaS with a stack of software
development frameworks on top if it.

8Source: http://thecloudmarket.com/stats, last access in September 2012

http://thecloudmarket.com/stats

1.1. RESEARCH QUESTIONS AND CONTRIBUTIONS 5

Such a request comprises both functional and non-functional requirements. The
functional part thereby has to be based on some sort of catalog describing the generic
capabilities offered by the provider. Without such a catalog, consumers will not be
able to formulate the functional requirements of their request – or at least not in
a sense that request and capabilities have a chance to match each other. Once the
generic functional requirements are defined, the provider will have to derive feasi-
ble service configurations based on the resources available to him.

Having defined a specific functionality, the agreement on non-functional at-
tributes of a mass customized service is not a black and white decision. Con-
sumers may have an optimal configuration in mind which would perfectly fulfill
their needs along multiple quality dimensions, paired with a maximum willingness
to pay. Offerings that yield slightly lower quality may still be good enough, yet come
along with a decreased willingness to pay. A mechanism helping provider and con-
sumer to find a satisfactory agreement on both quality and price for both parties
has to be established. This mechanism closely goes in hand with the provider be-
ing able to find the optimal configuration – optimal with respect to the consumer’s
non-functional requirements and her willingness to pay – from an economic profit-
maximizing perspective. The last step of the automated process occurs, once both
parties have agreed on both the functional and non-functional part of the service
offer, as the actual service deployment occurs to complete the process.

The challenges above to some extent also apply to managed services and there-
fore are not restricted to Cloud services. Given the flexibility, short life cycles
and pay-as-you-go pricing schemes of Cloud computing, lowering transaction costs
through automation is particularly important for Cloud service offers. Hence, this
work primarily addresses the challenges in a Cloud computing setting. Neverthe-
less, given the similarity of some challenges, the results might also be transferable to
the offering process of traditional IT service offers. While this thesis cannot provide
a complete and final solution to all of theses challenges, the contributions provided
in the following can be a step towards mass customized Cloud service offers.

1.1 Research Questions and Contributions

It is the goal of this thesis to address the obstacles indicated in the previous sec-
tion. The research within this work is hence dedicated to the overall challenge of
automating the offer process for individualized Cloud services. The focus hereby
lies on three distinct research topics.

The engineering part is set in the context of automatic service composition, i.e.
the question on how to derive feasible service alternatives based on abstract func-
tional consumer requirements. Related work for this topic mainly can be found in
the areas of Web service composition (e.g. [16]) and ontology-based configuration
(e.g. [153]). The first research question hereby addresses a problem from knowl-
edge management by trying to externalize expert knowledge on available service
resources9. Modeling these resources does not only mean describing single entities

9Within this work, a service resource is defined as abstraction of any technical resource (or any combi-
nation of technical resources) which does not fulfill an entire business functionality by itself.

6 CHAPTER 1. INTRODUCTION

and possible abstractions in a taxonomy, but also interdependencies and compatibil-
ities among these resources. The offer creation process for a mass customized Cloud
service needs to reflect the non-functional consumer preferences, thus also requir-
ing meta information on Quality-of-Service (QoS) and price to be modeled. As the
externalized knowledge base is to be used for creating service offers for individ-
ual service requests, it has to be designed so that feasible service configurations can
be derived automatically. The information on QoS and price needs to be included
so that the externalized knowledge can be used to derive economically sound, i.e.
profit maximizing, decisions with respect to non-functional consumer preferences,
as these influence the potential revenue achievable with a given consumer request.

Research Question 1 ≺KNOWLEDGE MANAGEMENT FOR SERVICE

RESOURCES�. Is it possible to design a semantic service description frame-
work where one can model knowledge on service resources so that technically
feasible service configurations matching the functional requirements of a con-
sumer request can be derived automatically?

Closely related to the design of such a framework is the issue of information
up-to-dateness. Information in any decision making context needs to reflect the
most current state of nature. An ontology (or any other kind of knowledge base) is
of little use if the contained information is outdated. While keeping the structural
knowledge, i.e. information on existence and relationship of service resources, is
hardly feasible in an automated manner, simple data values like the QoS and price
of resources fluctuate substantially and can be kept up-to-date by an automated
information aggregation approach. For the designated approach to be applicable in
the context of mass customizing Cloud services, it has to be scalable with respect
to the number of service resources requiring updates. In addition, the information
contained within the framework has to be accessible from shared environments, as
in any business setting typically more than one system and one user is required
to have access to the knowledge base. Based on these considerations the second
research question can be derived.

Research Question 2 ≺ONTOLOGY UPDATE MECHANISM�. Is it
possible to design an automated ontology update mechanism which integrates
information on QoS or price from manifold data sources in an automated and
structured manner, so that the ontology’s data values are kept up-to-date and
can be accessed in a shared environment, and can such a mechanism be scal-
able?

Having laid the groundwork by externalizing knowledge on service resources in
a formal manner and by keeping meta-information on QoS and price up-to-date, the
question remains open on how to derive feasible service configuration alternatives
for individual consumer requests.

1.1. RESEARCH QUESTIONS AND CONTRIBUTIONS 7

To achieve the previously mentioned complexity reduction on the side of the
consumer, the requests are assumed to be of abstract manner. The consumer selects
an abstract functionality or any combination of functionalities, e.g. a content man-
agement system and an online survey tool, which she is willing to purchase. The
selected capabilities are abstract in a sense, that the functional requirements formu-
lated in the request describe the desired functionality from a business perspective,
but do not contain the entire service configuration from a detailed technical per-
spective. The exact configuration, or different potential configurations to be more
precise, is supposed to be derived automatically using the externalized knowledge
from the service description framework.

Similar approaches can be found in the field of software dependency manage-
ment systems (e.g. APT [141]), where the consumer selects an application of her
desire and the dependency management system takes care of installing comple-
mentary software required by the chosen application. Such an approach, which
is fundamentally different to the literature in the area of Web service composition,
would be a novelty to the field of Cloud service engineering. We can rephrase these
considerations as the following research question.

Research Question 3 ≺SERVICE ENGINEERING ALGORITHM�. Is it
possible to design an algorithm that is capable of deriving all feasible service
configuration alternatives based on a set of abstract functional requirements
originating from a semantic service description framework, and can that al-
gorithm be scalable?

Once being able to derive feasible service configurations which meet the func-
tional requirements of a consumer request for an individualized Cloud service, it
remains open which configuration to select and how to price the service offer in
awareness of non-functional consumer preferences regarding the resulting QoS. The
negotiation part of this thesis is dedicated to a game-theoretic consideration on suit-
able mechanisms in this context. Both provider and consumer do not only have
to agree on the functionality provided by the service, but also on non-functional
properties like QoS and price. While finding the optimal quality strongly influences
the overall added value of the agreement, the price is merely a vehicle of distribut-
ing this value among the two negotiating parties. Especially in an automated online
scenario as within this thesis, different mechanisms guiding provider and consumer
through the negotiation can lead to different results – impacting both the efficiency
of the negotiation, i.e. how close is the negotiated agreement to the Pareto-optimal
agreement, and the individual value obtained.

Strong theoretical results in the area of bilateral trading, like the seminal Theo-
rem 1 from Myerson and Satterthwaite [121], along with other work from the area
of multi-attributive procurement auctions (e.g. [21]) are the surrounding for this re-
search focus. Given quasi-linear preferences, it is impossible to design a mechanism
that achieves individual rationality, efficiency, and budget balance at once, regard-
less whether incentive compatibility is fulfilled or not [121]. Incentive compatibil-
ity, however, is the prerequisite for an efficient outcome. Budget balance and indi-

8 CHAPTER 1. INTRODUCTION

vidual rationality are required to enable sustainability and implementability over
time [126].10 Hence, the named desiderata need to be balanced. The considerations
in this area are coined from a practical perspective. Therefore, the focus lies on the
sustainability and implementability of the negotiation mechanism, leading to the
following research question.

Research Question 4 ≺MULTI-ATTRIBUTIVE NEGOTIATION

MECHANISMS�. What are possible budget balanced and individual
rational mechanisms for bilaterally negotiating quality and price of a service
and how do they perform with respect to the economic desiderata incentive
compatibility and ex-post efficiency?

Finally – given one has found a suitable automated negotiation mechanism – the
optimization part covers the challenge of finding the profit maximizing configura-
tion from the derived set of feasible alternatives. The derived set is hereby assumed
to be available as output of the custom service algorithm in a form similar to a Ser-
vice Value Network (SVN) [23], where paths or subgraphs of the network resemble
different configuration alternatives. The profit to be maximized is depending on
both quality and price, with the quality of a certain configuration simultaneously in-
fluencing the provider’s costs and the consumer’s willingness to pay, which, hence,
also influences the price achievable in the negotiation. Clearly, both negotiation
mechanism and optimization algorithm are closely intertwined.

The topic of finding optimal service configurations in a QoS and price-aware
manner is related to the winner determination problem in multi-attributive or com-
binatorial procurement auctions [18, 126] and to the winner determination prob-
lem in complex service auctions [28]. In the latter, the problem is identical to find-
ing an optimal path in an SVN. Within these problems, optimization techniques
like shortest-path algorithms (e.g. [44]) and linear mathematical programming ap-
proaches are applied for optimization. Similar approaches are applicable for the
problem instance in the context of optimizing mass customized Cloud services de-
scribed in this thesis.

Depending on the problem formulation, many different challenges arise as the
computational complexity is depended on the formal structure of the SVN, the profit
maximizing objective function and the aggregation of QoS attribute values, like the
service’s response time or availability.

Research Question 5 ≺OPTIMIZATION TECHNIQUES FOR SERVICE

CONFIGURATION�. What are possible optimization techniques for finding
the profit maximizing service configuration with respect to QoS and price
from a set of alternatives (given as a graph structure) and how do they per-
form with respect to runtime and allocative optimality?

10For the reader not familiar with these concepts, Section 2.3.2 gives a brief explanation on the clas-
sical mechanism design desiderata and other important foundations from mechanism design.

1.2. OUTLINE 9

Part I
Foundations &

Preliminaries

Part IV
Finale

Part III
Economic

Design

Implementation

Evaluation

Part II
Technical

Design

Implementation

Evaluation

Chapter 1

Introduction

Chapter 2

Basic Concepts &

Technology

Chapter 4

Semantic Service Description Framework

Chapter 5

Ontology Update Mechanism

Chapter 7

Multi-Attributive Negotiations

Chapter 8

Service Optimization

Chapter 9

Conclusion & Outlook

Chapter 6

Service Engineering Algorithm

Chapter 3

Mass Customization

of Cloud Services

Figure 1.1: Structure of the thesis

The five research questions above are of synoptic nature and give an overview
on the research contributions presented in the subsequent chapters. The structure
of the thesis, which is presented in the following section, is closely oriented towards
these research questions, with each research question being investigated on in an
individual chapter.

1.2 Outline

The work at hand is subdivided into four parts. Part I includes essential founda-
tions, i.e. an introduction on basic concepts and technologies, and a more detailed
description of the overall scenario of mass customizing Cloud services. Part II
concentrates on the technical contributions answering Research Questions 1 to 3,
whereas Part III contains the economic contributions of the thesis addressing Re-
search Questions 4 and 5. The individual contributions are divided into separate
chapters, each chapter containing the corresponding requirements, related work,
implementation (where applicable) and evaluation. Part IV concludes the thesis,
by summarizing the contributions, shedding light on limitations and highlighting
future research directions.

A high-level illustration of the structure of the thesis is depicted in Figure 1.1.
Part I is opened by the current chapter. It introduces the reader to the topic of mass
customization in the context of Cloud services and gives an overview on the the-
sis’s structure, the research development and publications. The following Chapter 2
provides the reader with a broad understanding on underlying concepts and tech-

10 CHAPTER 1. INTRODUCTION

nologies, which are prerequisites for the actual research contributions following in
Parts II and III. Chapter 3 is a detailed presentation of the overall scenario, which
sets the context for the work at hand.

Part II introduces the technical design, implementation and evaluation of this
thesis. Chapter 4 addresses Research Question 1 by presenting a semantic service
description framework which enables providers to model their service resources so
that the resulting knowledge base can be used to derive mass customized services
in an automated manner by means of an algorithm. The latter is presented in Chap-
ter 6, trying to answer Research Question 3. Such a knowledge base requires con-
stant information updates. Both, concept and implementation of a mechanism, to
achieve such updates automatically is given in Chapter 5, covering Research Ques-
tion 2.

The economic contributions follow in Part III. Addressing Research Question 4,
Chapter 7 investigates on three bilateral negotiation mechanisms for finding agree-
ments on QoS and price between provider and consumer. In such a negotiation
scenario, the provider is faced with the decision on what service to offer to fulfill
the functional requirements of the consumer while maximizing his own profit. In
a scenario, where many different configurations lead to the same functionality, but
different quality levels, optimization approaches are required to find the profit maxi-
mizing configuration. A detailed investigation on different optimization techniques
in this context are presented in Chapter 8, tackling Research Question 5.

Lastly, Part IV concludes the thesis. In the final chapter, the key contributions
are revisited and summarized. Further, limitations of the work at hand are critically
analyzed and future work as well as complementary topics are addressed.

1.3 Publications and Research Development

The research topic of this thesis originated in a prior research project called Sem-
PIT 11 founded by IBM as Center for Advanced Studies. The goal of SemPIT was to
help IBM by supporting their service offer creation process through using seman-
tic technologies in the planning phase of a service offer. While the project resulted
in a patent application [14], the achieved ontology-based solution was limited to
validating and economically evaluating service offers. It, however, served as initial
starting point for the semantic description framework described in Chapter 4.

A similar ontology-based approach for designing and ranking blueprints of
RESTful service mashups was presented at the 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web, a workshop held in conjunction
with the World Wide Web Conference 2009 (WWW) and published in the correspond-
ing proceedings [24].

The overall concept of this thesis was presented at and influenced by the doc-
toral consortium prior to the Int. Conference on Wirtschaftsinformatik 2011 and
published in its proceedings [62]. The semantic service description framework and

11Semantic and Policy-Based IT Management and Provisioning

1.3. PUBLICATIONS AND RESEARCH DEVELOPMENT 11

the algorithm for deriving consumer specific Cloud services were presented at the
8th Extended Semantic Web Conference and published in its proceedings [65].

The findings on multi-attributive negotiation mechanisms have been submitted
to the Int. Conference on Wirtschaftsinformatik 2013 [64].

A minor part of the chapter dealing with optimization techniques describing an
efficient approximation for aggregating multiplicative QoS values (like a service’s
availability) was presented at the 45th Hawaii International Conference on System Sci-
ences 2012 (HICSS) and published in its proceedings [63].

Further, complementary work in the area of autonomic benchmarking for Cloud
infrastructures has been presented at the 1st IEEE/ACM Workshop on Autonomic Com-
puting for Economics, co-located with the 8th IEEE/ACM International Conference on
Autonomic Computing (ICAC), and published in its proceedings [66]. However, it is
not included in the work at hand.

Consequently, parts of the above listed publications were adopted verbatim
throughout this thesis.

Chapter 2

Basic Concepts and Technologies

I n this chapter, fundamental definitions and technologies required throughout
this thesis are presented. Section 2.1 covers the relevant aspects of the field of

knowledge management, i.e. conceptualization, persistence of and reasoning on
structured knowledge using semantic technologies. The subsequent Section 2.2 de-
scribes and defines services, Service-Oriented Architectures, Cloud services, mass
customization of services and Service Value Networks. Economic foundations fol-
low in Section 2.3. An introduction to optimization techniques is provided in Sec-
tion 2.4. The chapter is concluded by a summary given in Section 2.5.

2.1 Knowledge Management

The notion of knowledge has been an important issue in philosophy ever since the
ancient Greek era. Knowledge management – as an attempt to treat knowledge
as an organizational resource – has gained importance in recent years, especially
with the ongoing transformation from an industrial society to a knowledge society
in the most developed countries. In this trend, IS research has fostered knowledge
management systems with the aim to support creation, transfer, and application of
knowledge in organizations [2]. Semantic technologies have evolved as central part
to such knowledge management systems. Within this context, this section covers
the technological foundations relevant for managing the knowledge necessary for
mass customization of Cloud services.

The section is structured as follows: Ontologies, as a way to formally describe
shared concepts, i.e. explicitly defined knowledge, are described in Section 2.1.1.
Concrete formalisms to model, serialize and work with ontologies are presented
in Section 2.1.2. Formalized and machine-readable knowledge can be used to draw
conclusions based on logical reasoning. A brief overview on reasoning and available
reasoners is also given in Section 2.1.2. Lastly, Section 2.1.3 gives an overview on
modern concepts for storing and administrating ontologies in a centralized way.

14 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

2.1.1 Ontologies

The term ontology was first coined by Aristotle [5] describing a branch of meta
physics that investigates on the philosophical problem of existence. In computer
science an ontology is commonly understood as a knowledge base containing for-
malized knowledge over a certain domain of interest. There exist many different
definitions. A very descriptive one is the following: “The role of ontologies is to
capture domain knowledge in a generic way and to provide a commonly agreed
upon understanding of a domain. The common vocabulary of an ontology, defining
the meaning of terms and their relations, is usually organized in a taxonomy and
contains modeling primitives such as classes, relations, functions, and axioms.” [69]
Gruber defines an ontology as a formal explicit specification of a shared conceptual-
ization [59]. This notion has been widely adopted and is commonly used within the
Semantic Web community, leading to the following definition by Studer et al. [145]:

Definition 2.1 [ONTOLOGY]. An ontology is a formal, explicit specification of a shared
conceptualization of a domain of interest.

Conceptualization refers to the focus being on describing things in an abstract
manner, i.e. trying to find generalizations, rather than describing individuals. The
formal and explicit specification ensures readability and interpretability by ma-
chines, a major advantage over unstructured information. The formal nature fur-
ther allows to derive additional knowledge implicitly contained in the ontology by
means of logical reasoning, thus reducing the modeling overhead, as implicit infor-
mation does not have to be stated explicitly. Reasoning can also be used to detect
inconsistencies, revealing statements with conflicting declarations.

The following elements (adapted from [41]) are most important for understand-
ing and modeling an ontology:

Concept Concepts, often referred to as classes, are used to describe a broad range
of things, be it abstract or concrete, atomic or composite, fictious or real. Other
than instances, concepts do not describe individual objects, as they typically
refer to several instances with common properties. Concepts are typically or-
ganized in taxonomies, defining sub- and super-relationships.

Example: The concept car can be used to define anything motorized that has
four wheels and can transport one or more people from location A to location
B.

Taxonomy A taxonomy expresses a hierarchy over different concepts, defining in-
heritance relations between super- and sub-concepts.

Example: car v vehicle, defining that a car is a specification of a vehicle, inher-
iting all properties associated with vehicles in general.

Instance Instances, or individuals as they are also referred to, are similar to instanti-
ations of a class in object-oriented programming. They embody the described
objects contained in an ontology. Every element in the ontology that is not a
concept, is an instance of a certain concept.

2.1. KNOWLEDGE MANAGEMENT 15

Example: A blue Porsche 911 existing in real life could be an instance of the
concept car.

Relation Relations define the type of interaction between two or more instances.
Generally they can be arbitrary n-ary sets. In the most widely used ontology
languages they are binary. The domain and range of a relation is specified on
the conceptual level.

Example: The relationship defining the ownership of the above mentioned
Porsche could be defined as “Porsche911 has-owner SomePerson”.

Axiom Axioms are sentences that are considered to be always true, without them
being proved or demonstrated. The truth for an axiom is taken granted. Thus
axioms build the foundation for any further logical deduction from the ontol-
ogy. Axioms can be used to model constraints on information, deduce new
information or verify the correctness of information.

Example: car v vehicle u4 hasWheel, i.e. cars are vehicles with four wheels.

The knowledge base of an ontology can be divided into two types of knowledge,
the terminological box (TBox) and the assertional box (ABox). The TBox contains
the conceptual or terminological knowledge, i.e. concepts, axioms and relation def-
initions. The ABox contains the assertional knowledge, i.e. instances and their rela-
tions. The way knowledge is described in the ABox depends on the formal concep-
tualization of the TBox.

2.1.2 Ontology Formalisms

This section covers the formalisms OWL, SWRL and SPARQL for representing and
querying knowledge. A complete picture of the Semantic Web stack1 is depicted in
Figure 2.1. The formalisms presented in the following are the basic technology for
the technical approach in the work at hand. The Web Ontology Language (OWL)
is the World Wide Web Consortium (W3C)2 standardized family of knowledge rep-
resentation languages for authoring ontologies. Within this thesis, it was chosen
as formal language for knowledge representation as it is the most widely adopted
language yielding the expressiveness needed while simultaneously offering a wide
support by authoring tools and reasoning engines. The main ideas behind OWL
and its logical foundations are discussed in Section 2.1.2.1. The Semantic Web Rule
Language (SWRL) can be used as extension to OWL, offering increased expressive-
ness through Horn-like rules. It is described in Section 2.1.2.3. SPARQL, covered
in Section 2.1.2.4, is a graph-based query language similar to SQL3, allowing to re-
trieve subsets of interest from the ontology. Lastly, a further advantage of formal-
ized knowledge is the possibility of using this knowledge for reasoning, i.e. to infer
logical consequences which are implicitly contained, but not explicitly stated. OWL
reasoning is described in Section 2.1.2.5.

1http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/
0130-sb-W3CTechSemWeb.pdf

2World Wide Web Consortium www.w3.org
3Structured Query Language

http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/0130-sb-W3CTechSemWeb.pdf
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/0130-sb-W3CTechSemWeb.pdf
www.w3.org

16 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

Unified Logic

Proof

Query:

SPARQL

Ontology:

OWL

Rule:

SWRL

Data Interchange: RDF

XML

RDF-S

URI Unicode

Trust

Crypto

User Interface & Applications

Figure 2.1: Semantic Web Stack

2.1.2.1 OWL

OWL [106, 12] was developed in the effort to promote the mutual understanding of
knowledge concepts in distributed and shared environments. In 2004, the expres-
sive ontology language became a recommendation of the W3C. Historically evolv-
ing from SHOE and DAML+OIL, its aim is to offer a widely-accepted and back-
ward compatible standard for knowledge sharing on the Web. OWL has its logical
foundation in the first-order logic called description logics. OWL ontologies can
be serialized to either XML4 or XML/RDF5 documents. OWL offers three variants
differing in their expressiveness (cf. Section 2.1.2.2).

In 2009, OWL 2 was introduced as an advancement to OWL. It adds new func-
tionality with respect to OWL [111]. Some of the new features are syntactic sugar
(e.g., disjoint union of classes) while others offer new expressiveness, including:

• keys

• property chains

4Extensible Markup Language (www.w3.org/XML/)
5Resource Description Framework (www.w3.org/RDF/)

www.w3.org/XML/
www.w3.org/RDF/

2.1. KNOWLEDGE MANAGEMENT 17

• richer data types, data ranges

• qualified cardinality restrictions

• asymmetric, reflexive, and disjoint properties

• enhanced annotation capabilities

OWL 2 is fully backward compatible, thus ontologies authored in OWL can be used
in OWL 2 without additional effort.

2.1.2.2 Description Logics

The development of description logics stems from frame languages like KL-ONE, a
system for representing knowledge in Artificial Intelligence programs [32]. It pro-
vided the logical foundation for interpreting individuals, unary concepts and binary
roles in between them. Concepts can be constructed by both concept and role con-
structors. In addition, terminological axioms define the relation between concepts
and roles, while assertional facts are statements about individuals of these concepts
and their properties.

The computational tractability for computing inferences over the beliefs encoded
within a knowledge-based systems, i.e. reasoning, has been a major focus of re-
search in the past years [31]. The tractability is characterized by the trade-off be-
tween expressiveness of a knowledge representation language and the difficulty of
reasoning over it. From a practical perspective, soundness and completeness of the
the derived logical consequences are important factors. However, depending on
the expressiveness, algorithms ensuring both soundness and completeness do not
necessarily always terminate. If termination by inference algorithms cannot be guar-
anteed, the logic behind a knowledge representation language is called undecidable.

Whether a description logic is decidable depends on the allowed constructs for
concepts and roles, all of which define the expressiveness of the language. An
overview on different constructs for description logics is given in Table 2.1. As
mentioned in the previous section, OWL comes in three different variants offering
different subsets of these constructs:

OWL Lite is smallest and least expressive fragment of OWL. It is equivalent to the
description logic SHIF (D) It is also decidable with a worst-case complexity
of ExpTime, yet it is little expressive. It lacks some language constructs from
OWL DL like oneOf, unionOf, disjointWith and some others. As it yields very
few advantages over OWL DL, it only has sparse support by current software
technology.

OWL DL is the most prominent variant and a fragment of OWL Full. It contains
all features of OWL Lite, extending it with nominals. In contrast to OWL Full
it is decidable with a worst-case complexity of NExpTime. DL stands for the
description logic SHOIN (D), which is equivalent to the decidable fragment
of first-order logic. It has some major restrictions over RDF Schema, e.g. a
concept cannot be an instance of another concept.

18 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

Symbol Construct
AL Attributive Language: conjunction, universal value

restriction and limited existential quantification
C disjunct and full existential quantification
R+ transitive role
S abbreviation for ALCR+
H role hierarchy (rdfs:subPropertyOf)
I inverse role
F functional role
O nominals (owl:oneOf, owl:hasValue)
Q qualified number restrictions
N unqualified number restrictions (owl:cardinality)
D concrete domains

Table 2.1: Description logic constructs [8]

Symbol Semantics Example Description
≡ Class equivalence A ≡ B concept A equivalent to B
v Class inclusion A v B A is a subset of B
u Class intersection C ≡ A u B C equiv. to intersection of A and B
t Class union C ≡ A t B C equiv. to union of A and B
: Role assertion (x,y) : r x is asserted with role r to y

r(x,y)
∃ Existential restriction C v ∃r.A All of C is asserted with role r to A
∀ Universal restriction ∀r.A all r-successor exists in A
¬ Negation ¬A not A
|= Models O |= Ax Ontology O models axiom Ax

Table 2.2: Description logic notation

OWL Full contains OWL Lite, OWL DL and all features of RDF Schema. It has
been shown to be undecidable [110] offering little tool support. OWL Full is
the only variant allowing reification, i.e. statements about statements.

The concepts described in the later chapters rely on the conventional descrip-
tion logic notation [9] consisting of various symbols having a distinct semantic. An
overview on these symbols is given in Table 2.2.

2.1.2.3 SWRL

Rule languages have their roots in the field of artificial intelligence. They are used
to express logical consequences from a set of conditions. Originating from Datalog,
which is syntactical subset of Prolog, rules are commonly understood in the sense
of Horn logic [130]. A “Horn Clause” is a clause, i.e. disjunction of literals, with at
most one positive literal:

(2.1) ¬p ∨ ¬q ∨ . . . ∨ ¬y ∨ z

2.1. KNOWLEDGE MANAGEMENT 19

A logically equivalent notation with improved readability is the following:

(2.2) z← (p ∧ q ∧ . . . ∧ y)

While z denotes the head literal, i.e. consequence, p . . . y are the body literals, i.e.
antecedent, of the rule. Each literal is of the form p(t1, . . . , tn) where p is a predicate
of arity n ≥ 0. The head of the rule holds, when all conditions of the body hold.
Other than description logics, rules enable the modeling of triangle relations, thus
are a suitable way to define policies [129, 82]. Rules, however, also have limitations
being limited to the universal quantifier.

The Semantic Web Rule Language (SWRL), was submitted to the W3C in 20046

as a proposal to combine the Datalog rule language RuleML with OWL DL. Thus
extending the variable free SHOIN (D) description logic of OWL DL with variable
based rules [82]. This extends the expressiveness of OWL, making it possible to
define triangle relations between concepts [93].

A SWRL rule consists of one head literal and one or more body literals. The
literal can be a SHOIN (D) class, object property, data type property, data type
respectively or a built-in function [130]. Let a and b1, . . . ,bn be SWRL literals. A
SWRL rule r is an expression of the form:

(2.3) a← b1, . . . ,bn

The SWRL built-in predicates enable simple mathematical calculations. For exam-
ple, the predicate multiply(z, x,y) will be true, when the equation z = x · y holds.
Thus, the reasoner will assign the variable z with the value of x · y. Further built-
ins for addition, subtraction, etc are available and can be extended by writing own
built-in predicates. The full expressiveness of SWRL comes at the price of decidabil-
ity. However, a restriction to the set of DL-safe rules avoids this problem. When
working with known instances only, reasoning engines support this by adding the
necessary restrictions automatically [93]. SWRL has an XML based syntax to serial-
ize SWRL rules contained in OWL ontologies.

2.1.2.4 SPARQL

The Protocol and RDF Query Language SPARQL is a query language for information
retrieval from RDF and OWL based knowledge bases. A query in general is a read
request to a set of formalized knowledge, i.e. typically a database or an ontology,
explicitly restricting the answer set by defining constraints on the entities and their
properties returned. SPARQL has an SQL-like query syntax, offering data access
to both locally stored ontologies and via remote protocols like HTTP. The language
syntax is shown in Listing 2.1.

2.1.2.5 OWL Reasoning

A reasoning engine, or reasoner, refers to a software which is able to infer logical
consequences from a set of asserted facts or axioms comprised in an ontology. With

6http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/

20 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

Listing 2.1: SPARQL syntax

PREFIX ns : < u r i of namespace>
SELECT [DISTINCT] < p r o j e c t i o n >
FROM < u r i of dataset >
WHERE { <graph pattern > [FILTER <expression >] }
[ORDER BY < a t t r i b u t e > [ASC | DESC] | LIMIT <n> | OFFSET <m>]

the pervasion of OWL as standardized ontology language, different algorithms and
implementations for reasoning on OWL ontologies evolved. A complete listing of
all available OWL reasoners is omitted, as it has no benefit for the reader. Following
is a brief description of three prominent engines having different characteristics.

Pellet7 is an open source OWL DL reasoning engine. It offers a Java API as well
as a DIG interface, enabling it to be used by modeling tools such as Protégé8. Ac-
cording to a benchmarking study, Pellet is found to be most efficient in classifying
large ontologies among the four tested reasoners (Pellet, KAON2, Fact++, RacerPro).
The benchmark is based on a framework for benchmarking OWL DL inference ma-
chines on large real-life ontologies [146]. The underlying algorithm is based on the
tableau method. Pellet provides some support for DL-safe SWRL rules. In a perfor-
mance evaluation provided by [88], Pellet was favorable to KAON2 for small cases
with few individuals, but was indicating an inferior scalability. Pellet support the
description logic SROIQ(D).

Fact++9 is a C++ based reasoner, thus yielding slight performance advantages
over Java implementations. Fact++ offers no rule support. Like Pellet, Fact++ is
based on the tableau algorithm.

The Java based framework KAON210 uses a novel approach. Unlike most rea-
soning engines that are based on the tableau algorithm, the algorithm in KAON2
reduces a SHIQ(D) knowledge base to a disjunctive datalog program, which al-
lows to use well-known deductive database techniques to optimize performance.
Other than Pellet and Fact++ which are optimized for T-Box classification, the ar-
chitecture of KAON2 was optimized for fast A-Box querying [112]. “KAON2 is the
best system w.r.t the overall performance to load and respond, and shows favorable
scalability” in a conjunctive query benchmark study [29]. Additionally, KAON2
supports authoring and reasoning over DL-safe SWRL rules.

Another novel approach with focus on scalable T-Box reasoning is contributed
by the OWL reasoner HermiT.11 Based on a hypertableau calculus, known from reso-
lution reasoning, T-Box reasoning performance is improved by addressing two com-
mon problems: Tableau complexity is reduced through improved guessing, model
size is reduced through a strategy called “anywhere blocking” [115]. Empirical
evaluations show a robust classification performance and significant performance
advantages over other reasoners across different real-world ontologies [139, 74].

7http://clarkparsia.com/pellet/
8http://protege.stanford.edu/
9http://owl.man.ac.uk/factplusplus/
10http://kaon2.semanticweb.org/
11http://www.hermit-reasoner.com/

http://clarkparsia.com/pellet/
http://protege.stanford.edu/
http://owl.man.ac.uk/factplusplus/
http://kaon2.semanticweb.org/
http://www.hermit-reasoner.com/

2.1. KNOWLEDGE MANAGEMENT 21

2.1.3 Ontology Persistence

Most commonly, OWL ontologies are persisted by serialization into local files. Seri-
alization can be based on either OWL/XML or RDF/XML notation. For authoring
and querying ontologies, ontology files are deserialized and used as in-memory ob-
ject, having the benefit of fast read, write and query times. However, this common
approach has two major drawbacks: (1) A decentralized and file based persistence
requires an immense synchronization effort in shared environments with many peo-
ple authoring and querying ontologies simultaneously, and (2) with increasing size
of the ontology, in-memory solutions become very costly, if not impossible, since
available random-access memory is a major restriction on most hardware systems.

A database persistence layers is capable of addressing both issues, offering two
key benefits to the users of ontologies: an efficient and centralized data store and vir-
tually no limitations to data size. These advantages are traded against slower read,
write and query performance [68]. Yet, scalable in-memory based database manage-
ment systems currently are emerging, strongly reducing this disadvantage [140].

2.1.3.1 Jena SDB

Jena is a open source semantic framework using a triplet-based approach to author,
query and store ontologies [35]. For this, Jena uses a graph structure supporting
both RDF(S) and OWL ontologies. Jena SBD12 is a database back end for Jena graph
structures, developed for storing RDF data into relational databases. Queries to
Jena knowledge bases are done by means of SPARQL (see Section 2.1.2.4). SDB
also supports OWL, however, as every statement is stored as triplet into one large
database table, querying OWL knowledge from SDB requires many self-joins. SDB
usage for OWL ontologies thus is suboptimal [68].

Jena SDB supports the following database management systems:

• Apache Derby

• H2

• HSQLDB

• IBM DB2 9

• Microsoft SQL Server 2005

• MySQL

• Oracle 10g

• PostgreSQL

12http://jena.apache.org/documentation/sdb/index.html

http://jena.apache.org/documentation/sdb/index.html

22 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

2.1.3.2 Oracle Database 11g

Oracle Database 11g13 is a commercial database management system by Oracle that
offers a native support for both RDF(S) and OWL. As in Jena SDB, the underlying
approach is based on a triplet store, i.e. every information is persisted as subject-
predicate-object triplet into one large database table. For querying the knowledge
base, both SQL and SPARQL can be used. The solution also comprises a version
control system for ontologies. Apart from using SQL or SPARQL, it is possible to
integrate the Jena API allowing to access the database from within a Jena based
application.

2.1.3.3 OWLDB

OWLDB (aka Mnemosyne) is an open-source software specifically developed as na-
tive database persistence layer for OWL ontologies and was developed as part of the
publicly funded Theseus14 project. With OWL being an object abstraction, a triplet
based persistence using RDF(S) syntax is not optimal [68]. OWLDB therefore uses
an object relational projection of the ontology onto a database scheme, relating to
the object model of the OWL API [13]. The projection is implemented by means of
Hibernate, an open source Java persistence framework. Hibernate’s database ab-
straction layer can connect to different database management systems like MySQL,
Oracle or DB2, thus yielding a high compatibility for OWLDB. The OWL API ref-
erence implementation relies on an in-memory processing of file based ontologies.
OWL DB adds a database persistence layer to the OWL API, having its focus on
direct manipulations on the database layer, rather than loading the complete ontol-
ogy into memory. In contrast to the in-memory approach, this yields the benefit of
the ability to work with very large ontologies. In-memory approaches typically fail
when the ontology is larger than the available memory space. Performance evalu-
ations have proven this benefit with very large ontologies [68]. The architecture of
OWLDB is depicted in Figure 2.2.15

2.2 Services

The goal of this section is to provide a thorough introduction to the service concept
itself, conceptual classification models as well as related paradigms and technolo-
gies.

13http://www.oracle.com/technetwork/database/options/semantic-tech/index.
html

14http://www.theseus-programm.de/
15Source http://www.theseus.joint-research.org/assets/
Weitere-Informationen/PosterMnemosynePythia.pdf

http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.theseus-programm.de/
http://www.theseus.joint-research.org/assets/Weitere-Informationen/PosterMnemosynePythia.pdf
http://www.theseus.joint-research.org/assets/Weitere-Informationen/PosterMnemosynePythia.pdf

2.2. SERVICES 23

Figure 2.2: Architecture of OWLDB

2.2.1 Tangibles, Intangibles and Service Definitions

A common paradigm in economics is to distinguish between goods and services.
The terms good, tangible good, intangible good and service, however, are not clearly
defined in the literature. Often, these terms are used with different meanings, de-
pending on the context or field of research. Therefore it is important to provide a
common understanding which is used throughout this thesis.

2.2.1.1 Tangibles and Intangible Goods

In economics, a good is defined as an entity, over which ownership rights can be
agreed on [71]. In contrast to a bad, a good is associated with a positive utility to its
owner. Ownership juridically grants exclusive rights for using, altering or disposing
a good and to prevent others from doing so. As ownership rights can be traded,
a good is also tradable. Both goods and their owners resemble separate entities,
thus production and trading are independent activities, which can be carried out
separately and by different actors. The events of a good’s production, distribution
and consumption can be spread widely apart.

In general most goods are material, i.e. tangible. Intangible entities having the
economic characteristics of a good also exist [71]. Examples are music, software,
construction plans, news or other information and many more. Intangible goods
have no physical dimension, but typically are stored on physical media, many being
electronically transferable, thus easier to duplicate than tangible goods.

24 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

2.2.1.2 Service Definitions

Other than goods, the production and consumption of services cannot occur at sep-
arate times. According to Hill [71], two essential characteristics define a service: (1)
“services cannot be produced without the agreement, co-operation and possibly ac-
tive participation of the consuming unit(s)” and (2) “the outputs produced are not
separate entities that exist independently of the producers or consumer”.

Different definitions of services exist in various contexts. A very simple and
anonymous definition states that “services are anything of economic value that can-
not be dropped on your foot”. In [49] two other aspects are mentioned: (1) Services
are generally perishable in time, i.e. you cannot produce them to stock. At the same
time, (2) service delivery usually involves a close relationship between provider and
consumer. In any case, the consumer finds himself in the role of a co-producer. E.g.
the service of a phone call cannot be delivered (and certainly not charged), without
the telephone customer picking up the telephone, dialing the number of somebody
else and eventually holding a conversation. By looking at this example, a fourth
characteristic of a service becomes evident: It is produced and consumed at the
same time. In general, a service is an activity or performance where the result is a
change of condition of some person or good. Underlying this change of state is an
agreement of the good’s owner and the economic unit providing the service.

Definition 2.2 [SERVICE]. A service is an activity which an economic unit A (service
provider) performs for another economic unit B (service consumer) that results in a change of
state or condition of an economic unit C whereas the output of that activity cannot circulate
in the economy independently of economic unit C.16

In computer science, a service (often called software service) can be character-
ized by the following qualities: It has a self describing interface, it is platform in-
dependent, based on standards and thus composable with other services. The eco-
nomic unit undergoing the change of condition in a software service is intangible
and electronic by nature, i.e. some kind of data. Any software service thus offers
the capability to manipulate or provide data of a certain expected type. Despite the
intangibility of the affected economic unit, the consequences following the change
in condition can be of tangible nature. An example could be an electronic order ser-
vice, which triggers the delivery of a tangible good. Within this thesis, we rely on
the following definition.

Definition 2.3 [SOFTWARE SERVICE]. A software service is a mechanism to enable access
to one or more capabilities provided by an encapsulated software component via an electronic
medium. The provider installs, runs, maintains and evolves hardware as well as software
infrastructure and provides all physical and organizational means. The access is provided by
a well-defined programmatic service interface using standardized protocols and is consistent
with the provider’s constraints and conditions.17

16Definition based on [70, 51, 26].
17Adapted from [93].

2.2. SERVICES 25

The term software service is used in both intra-enterprise and inter-
organizational contexts. Focusing specifically on the inter-organizational aspect, the
Web aspect comes into play. A Web service is a specific software service exposing its
functionality to the Internet using Web technologies like HTTP18 as transport proto-
col and XML19 or JSON20 as data formats. Initially, the emergence and rapid spread
of Web services brought into existence complex protocols like SOAP21 and the WS-*
stack22 built on top of it. Recently, the trend has led to an increasing adoption of
lightweight technology such as RESTful Web services [95]. Representational State
Transfer (REST) [48] is a paradigm for Web applications characterized by to main
properties: RESTful services are (1) stateless, i.e. any call of the Web service is in-
dependent from previous calls, and (2) resource oriented, i.e. all entities of interest
are considered as a resource which is accessible by a unique identifier. This unique
identifier is a URI23 accessed using the HTTP methods GET, POST, PUT, PATCH,
DELETE and OPTIONS. Despite its origin being in the Internet, the same Web tech-
nologies have also succeeded into many enterprise intranets.

Definition 2.4 [WEB SERVICE]. A Web service is a software system identified by a URI
[RFC 2396], whose public interfaces and bindings are defined and described using XML.
Its definition can be discovered by other software systems. These systems may then interact
with the Web service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols.24

2.2.2 Cloud Services

With compute power, storage and bandwidth more and more becoming a commod-
ity like electricity or tap water, all being publicly available in large data centers to
end consumers and businesses alike, Cloud computing as new paradigm has gained
a lot of attention in the past few years. In the context of services, the idea behind
Cloud computing can be stated as follows: Whoever is willing to provide any kind
of software service should be able to focus on the unique value proposition of the
service to be developed, rather than on its deployment or on the necessary man-
agement of the underlying computer resources. Cloud computing is a vague topic
with many different opinion and definitions existing in literature. However there
are some key characteristics25, which are widely accepted:

On-demand self-service Automatic on-demand provisioning of computing capa-
bilities (server time, storage, network bandwidth, etc.) as unilateral process
without human interaction with the provider of the Cloud service.

18Hypertext Transfer Protocol
19Extensible Markup Language
20JavaScript Object Notation
21Simple Object Access Protocol
22Web service standards defined by the W3C (WSDL, WS-Security, WS-Agreement, WS-Policy, ...).
23Uniform Resource Identifier
24Adopted from [152].
25Defined by the National Institute of Standards and Technology, an institution of the U.S. Depart-

ment of Commerce, in [107].

26 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

Broad network access Standardized protocols allow access to the provisioned re-
sources for many thick or thin client platforms (workstations, mobile phones,
tablets, etc.).

Resource pooling Multi-tenant model that allows the provider to offer pooled re-
sources in a standardized manner which is independent from the physical lo-
cation of the hardware resources. The user has information and control on the
physical location on a high abstraction level (e.g. country, region, etc.). Virtual
resources are assigned dynamically based on the current user demand, i.e. the
assignment of physical resources to consumers are short-lived and only valid
for the time of use. Typical resources include (but are not limited to) process-
ing, memory, storage and network bandwidth.

Rapid elasticity Enablement of highly scalable architectures by allowing an elas-
tic provisioning and release of resources. Scalability is possible both inward
and outward and in a rapid and automatic manner according to the current
load. For applications with small resource requirements compared to the size
of the data center, scalability virtually seems unrestricted in quantity – pos-
sible through over-provisioning of resources and reciprocal compensation of
load curves.

Measured service Metering capabilities allowing a detailed monitoring of resource
usage on an individual consumer level. The obtained data is used for resource
optimization, QoS management, consumer transparency and accounting al-
lowing a detailed pay-per-use billing.

There exist different service models which offer the Cloud computing resources
to potential Cloud users. The least restrictive model is called Infrastructure-as-a-
Service (IaaS). The capability is provided as either processing, storage, network or
other fundamental computing resource. The consumer typically has complete con-
trol over the resource on a virtual level. For a compute service this implies control
over the operating system, file system and deployed applications, but no access to
the underlying Cloud hardware. Root access to the operating system makes IaaS
the most versatile service offer.

Platform-as-a-Service (PaaS) offers constrain the consumer to a certain develop-
ment layer (programming languages, libraries, services, tools, etc.). Full control
is given over the deployed application and some configuration options of the un-
derlying framework. However, the possibility to manage the underlying operating
system, network access or Cloud infrastructure is not given.

The most restrictive and specialized offer is Software-as-a-Service (SaaS). SaaS of-
fers are closely related to the concept of an Application Service Provider (ASP),
where a predefined end-user service is offered – tailored to be integrated directly
into business processes of many different customers. SaaS directly offers businesses
functionality without requiring developments on the consumer side, yet offers few
possibilities for configuration and customization.

Within this thesis, the term Cloud service is used as specialization of services
which originate from a Cloud infrastructure. In our sense, a Cloud service can be
understood as any software service which is based on a Cloud infrastructure inde-
pendent of the above mentioned service models. Typically it exposes some or all

2.2. SERVICES 27

of the main Cloud characteristics. For the scope of this work, a Cloud service is
therefore defined as follows.

Definition 2.5 [CLOUD SERVICE]. A Cloud service is any kind of software or Web ser-
vice which is provided based on a Cloud computing infrastructure, typically incorporating
(but not limited to) the characteristics broad network access, rapid elasticity and measured
service.

Within this thesis we further rely on the notion of a service resource, which is
an abstraction of any technical resource which can be combined with other service
resources in order to provide a certain business functionality.

Definition 2.6 [SERVICE RESOURCE]. A service resource is defined as abstraction of any
technical resource (or any combination of technical resources) which can be combined with
other service resources in order to provide a certain business functionality, but does not fulfill
an entire business functionality by itself.

2.2.3 Service-Oriented Architectures

As opposed to traditional software development, service-oriented architectures pro-
mote modularization and goal-oriented composition in order to enable distributed
applications based on smaller reusable service entities [125].

Definition 2.7 [SERVICE-ORIENTED ARCHITECTURE]. A service-oriented architecture
(SOA) is a software design principle promoting reusable, interoperable and discoverable
software services in order to provide distributed applications in a loosely-coupled manner.

Service-oriented architectures thus foster the creation of reusable services which
are optimized for a very specific purpose and can be included in different complex
application scenarios or business processes. Following the key characteristics are
described in more detail.

Reusability Requires that the service is self-contained in a way that it can be used
for more than one business case. I.e. it offers its capabilities such that they can
be used for different purposes or contexts. Applications or business processes
thus can be composed by combining several reusable service components.

Loose-coupling In a service-oriented architecture, atomic service components have
few or no dependencies to other components. Loose coupling can be achieved
by introducing a message based bus system and clearly defined interfaces.
Interfaces serve as business facade, encapsulating the logic from the actual
implementation.

Interoperability Interoperability is capability of integrating two or more services
with little or no adaption necessary. Communication between interoperable
services is achieved by standardized, platform independent communication
protocols (SOAP, CORBA, REST, etc.).

28 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

Discoverability A prerequisite for reusing a service is its discoverability. I.e. the
service and its capabilities can be discovered either by the software architect
or an automatic mechanism. Discoverability requires a repository system con-
taining all available services and their machine-readable service description.

The introduction of service-oriented architectures can be seen as the fundamental
driver for service mashups, Service Value Networks and Cloud computing. For
completeness one should mention that the term SOA comprises more than the above
mentioned requirements. A SOA additionally contains the elements for service dis-
covery, contracting and communication.

2.2.4 Mass Customizing Services

Mass customization is defined as the ability to offer individually designed products
and services to every customer on a large scale basis [42]. High process agility, flexi-
bility and integration are prerequisites for mass customization in the manufacturing
world.

The concept of mass customization is based on the notion of “economies of
scope”, enabling providers to offer product variety and customization through flex-
ibility and quick responsiveness through advances in manufacturing and informa-
tion technology, as well as new management methods, like lean production [89].
Mass customization allows companies to address the long tail [3], i.e. selling less
of more by producing enough variety in products and/or services so that almost
everyone finds what he or she wants at a reasonable price [131].

Thus, the two main characteristics are individualization and scalability. In the
context of Cloud services, this implies an automated and flexible offer creation pro-
cess, i.e. consumer and provider have to agree on both functional aspects and non-
functional facets like QoS and price following a standardized, simple and quick pro-
cess. After the offer creation process, service delivery or deployment consequently
has to follow the same characteristics. Based on these characteristics, a mass cus-
tomized Cloud service will be defined in this thesis as follows.

Definition 2.8 [MASS CUSTOMIZED CLOUD SERVICE]. A Mass Customized Cloud
Service is a Cloud computing service, composed by a set of software and/or Cloud resources,
according to the abstract functional requirements and non-functional preferences of an in-
dividual consumer request. The offer creation and service delivery has to occur in a mass
customization fashion, i.e. the negotiation on functionality, quality and price and the de-
ployment of the Cloud service have to be simple, automated and possible on a large scale
basis.

2.2.5 Service Value Networks

Service-oriented architectures – especially service encapsulation – have fostered the
emergence of highly specialized Web services. Due to standardized protocols, many
of them can be combined to form complex services that support the individual

2.2. SERVICES 29

Figure 2.3: Graphical representation of a formalized SVN [23]

requirements of complex business processes, addressing the long tail [3] by en-
abling service mashups that are tailored to very individual consumer needs. In this
trend, current literature envisions the formation of so called Service Value Networks
(SVN) [11, 23].

According to Blau et al. [23], “Service Value Networks are Smart Business Net-
works, which provide business value through the agile and market-based compo-
sition of complex services from a steady, but open pool of complementary as well
as substitutive standardized service modules by the use of ubiquitously accessible
information technology”.

A business network hereby refers to the most general form of an economically
motivated cooperation among legal entities [73]. A smart business network con-
stitutes a new type of business network with emphasis on the use of ICT to foster
network interaction. The smartness of the business network thereby relates to the
increased effectiveness and the comparative advantage achieved by the use of infor-
mation technology.

Within this work, we concentrate on single providers (or intermediaries) offer-
ing Cloud services in a mass customization fashion. Therefore, we abstract from the
definition above, which emphasizes the importance of composing services from dif-
ferent providers and a market-based coordination. However, the concept of individ-
ually composing complex services from atomic service resources according to some
abstract consumer request is quite similar to the concept of forming a consumer-
specific SVN. Therefore an adapted version of the formal representation of a SVN as
provided in [23] is presented later in this thesis and called service configuration graph.
A graphical representation of a formally defined SVN taken from [23] is depicted in
Figure 2.3. In this graph, vertices v1, . . . ,v4 represent atomic service instances with
QoS attributes aj

i . Any path from source vs to sink v f represents one feasible complex
service.

30 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

2.3 Economic Foundations

This section introduces the reader to the economic foundations which are prerequi-
sites for the economic contributions following in Part III. The section is divided into
two subsections: first a brief overview on negotiations is given, followed by relevant
concepts from the field of mechanism design, including the main economic desider-
ata, the revelation principle and two impossibility theorems having an impact on
the work at hand.

2.3.1 Negotiations

Negotiations are subject of many different research areas. In economics, negotia-
tions are considered by both contracting theory and mechanism design. The focus
of these research areas lies mainly on the efficiency of outcomes and the value distri-
bution among the negotiators in the context of trade. In social sciences, negotiation
is studied as interaction between humans, thus, focusing on human behavior and in-
terpersonal communication. In computer science and information system research,
negotiation is seen from a technical perspective, mainly concentrating on standard-
ized protocols for communication among computer systems.

As a consequence, many different definitions and meanings are around. A ver-
satile definition attempting to be of generic nature is given by Bichler et al. [19]. A
slightly adapted version shall be the definition used within the work at hand:

Definition 2.9 [NEGOTIATION]. A negotiation is a (potentially iterative) communication
and decision making process between two or more agents who (1) cannot achieve their objec-
tives through unilateral actions, (2) exchange information comprising offers, counter-offers
and arguments, (3) deal with interdependent tasks, and (4) search for a consensus which is
a compromise decision.

A negotiation does not necessarily have an agreement between all parties as an
outcome, i.e. a negotiation can potentially end with a disagreement. Typically, a
negotiation is an iterative process, i.e. negotiators can adapt their offers over time.
The process of exchanging offers and counter-offers is also known as “negotiation
dance” [133].

The process of communication and decision making of a negotiation can be struc-
tured, semi-structured or unstructured. In a structured implementation, the mes-
sage space and potential choice or transfer functions are predefined and obligatory
for all negotiation participants. In a semi-structured negotiation implementation,
the rules themselves are subject to negotiation and can change over time. In an un-
structured implementation no rules are given at all. Negotiations can be bilateral,
with two negotiating agents, or multilateral, with more than two parties negotiating.

In the context of this thesis, structured bilateral negotiations are studied, the
main interest being on the efficiency of outcomes and the value distribution among
the negotiating parties. Negotiations are investigated from a mechanism design per-
spective.

2.3. ECONOMIC FOUNDATIONS 31

2.3.2 Mechanism Design

The theory of mechanism design is concerned with the design of institutions, with
its focus on how institutional rules affect the outcome of individuals interacting
within these rules. Individuals are assumed to be self-interested, acting strategically
and to be holding private information relevant to the decision at hand [78]. A social
choice function maps the truthful information of all individuals on a desired opti-
mal outcome. The classic utilitarian objective is to find the outcome that maximizes
the sum over the individuals’ utilities for a certain outcome [126]. The mechanism
design problem is to find an implementation of a certain social choice function.

An example is the bargaining between a buyer and a seller. Within this negotia-
tion scenario, the seller has an interest in achieving a high price and thus will act as
if the item subject to the bargaining is very costly. The buyer’s interest is diametri-
cally opposite, making the buyer pretend to have a very low valuation for the item
to keep the price down as low as possible. The efficient outcome of the bargaining
is that the trade occurs, whenever the buyer’s true valuation for the item exceeds
than true valuation of the seller. Mechanism design investigates how to design a
negotiation protocol inducing this efficient outcome.

Taking an auction as an example institution, the auction design has a significant
impact on how participants behave and on the auction’s final outcome. A sealed bid
auction for example will induce different bidding behavior than an oral ascending
bid auction.

2.3.2.1 Mechanism Design Objectives

In mechanism design, the design of institutions is subject to research with respect to
different design objectives, often called economic desiderata. Such a desideratum (or
property of a mechanism) could be, that individuals reveal their true type, i.e. they
do not lie about their private information, or that no outside payment is required
for the mechanism to function in practice. In the following, the classic and most
frequently named desiderata in the context of mechanism design are presented.26

The first desideratum reflects on the individuals incentive to actually participate
in a mechanism. Naturally, rational individuals will only participate, if they expect
to gain positive utility from participating, or at least, do not expect to incur utility
losses.

Desideratum 2.1 [INDIVIDUAL RATIONALITY]. A requirement that each individual
weakly prefers participation in a mechanism to not participating [78], i.e. individuals should
not expect to incur utility losses from just participating in a mechanism.

Assuming risk neutral rational individuals, this is equal to the claim that the
expected utility from participating should be greater or equal to the expected utility

26Note that a mechanism does not reveal a certain property itself. It is known to have a certain
property, if its social choice function reveals the property. In addition, the properties or desiderata
hold for a given state only, i.e. for a given solution concept (dominant strategies, Bayesian Nash,...)
and a domain of agent preferences, e.g. quasi-linear, monotonic, etc. [126].

32 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

from not participating in the interaction. From a practical perspective, i.e. if one
wants to implement a mechanism in a real world setting, and if individuals are not
forced to participate, this property can be very important.

Another meaningful property, especially seen from a practical perspective, is the
desideratum called budget balance.

Desideratum 2.2 [BUDGET BALANCE]. A mechanism is budget balanced if the sum of
transfers to the individuals equals the sum of payments from the individuals, i.e. there are
no net transfers out of or into the system and all payments made to the mechanism are
redistributed among the individuals without subsidization from outside [126].27

In other words, if an outside payments to the mechanism is required, a mech-
anism is not budget balanced. A mechanism, e.g. an implementation of a central
exchange, most commonly is required to be balanced, as the authority running the
exchange has no interest in subsidizing the mechanism, unless, however, the ex-
change is implemented for non-profit reasons.

A reasonable goal when designing a mechanism with individuals having private
information relevant to the decision making is to incentivize participants in sharing
their private information truthfully. No mechanism can find a decision from a global
and objective perspective in an optimal manner, if the decision is made upon false
information. Incentive compatibility ensures that individuals have no incentive in not
revealing their true private information.

Desideratum 2.3 [INCENTIVE COMPATIBILITY]. A mechanism is said to be incentive
compatible, if when each individual expects that the other individuals will be honest and obe-
dient to the rules of a mechanism, then no individual ever will do better (given the informa-
tion available to him) by acting dishonestly or disobeying the rules of the mechanism [122].
A mechanism that is incentive compatible in dominant strategies is called strategy proof.

That is, if revealing one’s true type is an utility maximizing equilibrium, a mech-
anism is incentive compatible. Incentive compatibility is also important from a
complexity perspective, as truth telling is a very simple strategy, as opposed to
the complex dominant strategies which are possible in non-incentive compatible
mechanisms. As stated above, (ex ante) incentive compatibility is a prerequisite for
achieving an efficient outcome, however it does not guarantee efficiency. Allocation
efficiency is the classical utilitarian objective requiring a mechanism to maximize the
total utility over agents.

Desideratum 2.4 [ALLOCATION EFFICIENCY]. A mechanism is allocative efficient if it
maximizes the sum over all individual utilities [126].

However, efficiency as a design goal is not always desirable, e.g. if the objective
is to maximize a certain individuals utility, e.g. an auctioneer’s revenue. In this case,

27A mechanism is weakly budget balanced, if there are no net payments from the mechanism to the
the individuals, but there can be net payments from the participants to the mechanism.

2.3. ECONOMIC FOUNDATIONS 33

the mechanism design problem is reformulated as an optimization problem which
maximizes the utility of a particular individual.

In general, these goals can been interpreted ex ante, i.e. they hold in expectation
given probability distributions on the private information of individuals, or ex post,
i.e. they hold for all potential realizations, which is the stronger statement.

2.3.2.2 Revelation Principle

In general, mechanisms are differentiated into direct-revelation and indirect-
revelation mechanisms. In a direct mechanism, individuals can only make direct
claims about their preferences once. An indirect mechanism allows an iterative pro-
tocol, i.e. individuals can make adaptions to their claims, based on the feedback
received from the mechanism.

The revelation principle was originally developed by Gibbard [52] and later ex-
tended by Green and Laffont [55], and Myerson [119, 120]. It states, that under
quite weak conditions, any mechanism can be transformed into an equivalent in-
centive compatible direct mechanism such that it implements the identical social
choice function [126]. The intuition behind is the following: Given a mechanism
leads to a certain outcome in equilibrium given a set of strategy profiles for each
participant, an incentive compatible direct mechanism can be designed, that simu-
lates these strategies. The simulating mechanism thereby computes each individ-
ual’s optimal strategy. As the optimal strategies can merely be computed based on
truthfully reported preferences, truthfulness is a dominant strategy, leading to the
same outcome. Consequently, the direct mechanism implements the same social
choice function as the original mechanism.

A seminal implication follows the revelation principle: Given a social choice
function can be implemented by any mechanism, it is sufficient to concentrate on
incentive compatible direct-revelation mechanisms [78]. In other words, once hav-
ing found an indirect mechanism, one can be certain that an equivalent direct mech-
anism exists. And if one can prove that no direct mechanism can exists, no indirect
mechanism can implement the social choice function.

2.3.2.3 Impossibility Theorems

The revelation principle is a powerful theoretic achievement, that has led to a set of
central impossibility results in classical mechanism design. The impossibility the-
orems essentially give proof which combination of economic desiderata no mecha-
nism can ever achieve. The general approach behind these theorems is to first as-
sume direct incentive compatible mechanisms, express other desired properties as
mathematical conditions and then to show contradictions across the mathematical
formulations of the desired properties [126].

Historically, Hurwicz [75] was one of the first to show the conflict between effi-
ciency and strategy-proofness in a simple two agent model. The general impossibil-
ity theorem, which follows from Green and Laffont [55] as well as from later work
by Hurwicz [76, 77], states that it is impossible to achieve an efficient and budget

34 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

balanced social choice function in dominant strategies in a simple exchange econ-
omy. In a simple exchange economy there are buyers and sellers, selling the same
good in single units.

Theorem 2.1 [HURWICZ IMPOSSIBILITY THEOREM]. In a simple exchange economy
with quasi-linear preferences, implementing an allocative efficient, budget balanced, and
strategy proof mechanism is impossible [126].

An extension of the theorem to include Bayesian-Nash implementations is pro-
vided by Myerson and Satterthwaite [121], further strengthening the results of Hur-
wicz and Green & Laffont, if interim individual rationality is additionally required.
The impossibility is provided by Myerson and Satterthwaite in the first theorem of
their seminal work and demonstrated in a scenario where two agents are trading
one good.

Theorem 2.2 [MYERSON-SATTERTHWAITE IMPOSSIBILITY THEOREM]. No
Bayesian-Nash incentive compatible mechanism can ever be implemented such that it is
allocative efficient, budget balanced and (interim) individual rational at the same time, even
with quasi-linear utility functions.

As a consequence of the two above mentioned impossibility theorems, in the
search for an adequate mechanism, one can at most try to achieve two of the four
aforementioned economic desiderata [126].

2.4 Optimization Techniques

This section provides an overview on optimization techniques which are referred to
in Part III of the thesis. The focus hereby lies on linear programming and dynamic
programming. In addition, a brief overview on the industry-leading LP solving
engine CPLEX is given.

2.4.1 Linear Optimization

Linear optimization, also called linear programming (LP), is one of the most com-
monly used techniques of the field of operations research and a subdomain of math-
ematical programming. A good overall introduction to this field is given for exam-
ple by Chvátal [38]. Simple modeling and efficient mathematical solution concepts
are key characteristics. Its purpose of minimizing or maximizing a linear function
subject to constraints, which have the form of linear (in)equations, make linear op-
timization a universal approach for solving a broad spectrum of different optimiza-
tion problems. The practical relevance of linear optimization is mainly due to its
capability of solving even large problems with a multitude of variables and con-
straints in a sufficient amount of time.

2.4. OPTIMIZATION TECHNIQUES 35

In general, a linear optimization problem consists of an objective function of the
form

(2.4) f (x) = f (x1, . . . , xn) = c1 · x1 + c2 · x2 + . . . + cn · xn

and a set of linear equations. The standard notation of a linear program has the
following form:

max c1 · x1 + c2 · x2 + . . . + cn · xn
subject to a11 · x1 + a12 · x2 + . . . + a1n · xn ≤ b1

a21 · x1 + a22 · x2 + . . . + a2n · xn ≤ b2
...

...
am1 · x1 + am2 · x2 + . . . + amn · xn ≤ bm

x1, . . . , xn ≥ 0

It is equivalent to the shorter matrix notation

max cTx
subject to Ax ≤ b

x ≥ 0

where c ∈Rn, b ∈Rn, A ∈Rm×n and x ∈Rn. Hereby n denotes the number of deci-
sion variables, m the number of linear constraints, c the vector of objective function
coefficients, x the vector of decision variables, b the vector of values of the constraint
equations’ right hand side and A the coefficient matrix. Each linear programming
problem of generic form can be transformed into the standard form by a set of trans-
formations.

2.4.2 Simplex Algorithm

Historically, the Simplex algorithm was first introduced in 1947 by Dantzig as a sim-
ple and efficient way for solving LP problems [123]. It is able to solve them exactly
and in a finite number of iterations, with unsolvable or unrestricted LPs being recog-
nized. Since then, many improvements have made the Simplex algorithms become
the most important and most widely used optimization techniques.

The intuition behind the algorithm comes from a geometric perspective on the
linear optimization problem. The solution space of any solvable LP in standard no-
tation can be interpreted as a convex polyhedron. The algorithm hereby can start
from an arbitrary corner of the polyhedron and “runs” along the edges until it has
reached the optimal corner. In fact, the smartness of Simplex is the way of doing so,
as this approach is not unstructured or random. In each step, only corners improv-
ing the objective value are selected, making each iteration an improvement over the
status quo. The most advanced implementations of the Simplex algorithm can be

36 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

found in solving engines like Gurobi28 or the industry leading software CPLEX29 by
IBM (cf. Section 2.4.5).

2.4.3 Integer Programming

In the standard LP formulations, decision variables have the value domain of real
numbers. In many practical problems, integer or binary values are a requirement,
especially when dealing with indivisible goods or true/false decisions. Problems
where one, many or all decision variables are integer variables are called integer
program (IP). If integer and real value decision variables are mixed, we speak of a
mixed integer program (MIP); in case of binary variables only, we have a binary integer
program (BIP).

While dealing with integers at first appears to make things simpler, the opposite
is the case. Indeed, analogously to LP problems, the solution space of IP problems
is also surrounded by a convex polyhedron. Nevertheless, the exact solution space
cannot be obtained by the cut of a finite amount of half spaces, as in the LP problem,
since it would contain also non-integer solution which by definition are invalid.

Different approaches exist to handle the increased complexity. Commonly used
are the branch & bound approach [94, 43] and the cutting plane methods [54], which
both are relying on LP-relaxation. I.e. the problem is first solved with real value de-
cision problems. Afterward, further constraints ensuring integer values are added
consecutively.

2.4.4 Dynamic Programming

Dynamic programming was originally introduced in the 1940s by Bellman [15]. A
dynamic programming problem is an optimization problem which is characterized
by the fact, that it can be broken down into slightly smaller overlapping subprob-
lems and that is has the property of optimal substructure, following Bellman’s prin-
ciple of optimality. From the perspective of mathematical optimization, dynamic
programming usually refers to simplifying a decision by breaking it down into a
sequence of decision steps over time. Dynamic programming can also be used to
solve certain linear programming problems. However, it is not restricted to linear
optimization problems, but has a vast field of applications, from string algorithms
to the calculation of a Fibonacci sequence.

2.4.4.1 Bellman’s Principle of Optimality

For using a dynamic programming approach for solving an optimization problem,
the optimization problem has to be breakable into smaller subproblems which fol-
low Bellman’s principle of optimality [15]. The principle states, that an optimal
policy has the property that whatever the initial state and initial decision are, the

28Gurobi Optimizer http://www.gurobi.com/
29IBM ILOG CPLEX http://www.ibm.com/software/integration/optimization/
linear-programming/

http://www.gurobi.com/
http://www.ibm.com/software/integration/optimization/linear-programming/
http://www.ibm.com/software/integration/optimization/linear-programming/

2.5. SUMMARY 37

remaining decisions must constitute an optimal policy with regard to the state re-
sulting from the first decision.

In other words, the optimal solution to a problem is constituted of optimal solu-
tions to its subproblems only. Considering for example the problem of finding the
shortest path from location A to location D. If the shortest path is A-B-C-D, then the
Bellman property states that A-C, B-D, A-B, B-C and C-D as subproblems of A-D
must also be shortest paths. Such problems can be solved by Dijkstra’s algorithm,
which is presented in the following.

2.4.4.2 Dijkstra’s Algorithm

Dijkstra’s algorithm, which was published by Dijkstra in 1959 [44], is a dynamic
programming approach to solve the single-source shortest-path problem for graphs
with non-negative edge path costs. The algorithm by Dijkstra has a runtime of
O(
∣∣V2
∣∣), which can be further improved by optimized data structures, making Di-

jkstra’s algorithm the most efficient single-source shortest-path algorithm available.
As all dynamic programming approaches, it is based on Bellman’s principle of op-
timality.

2.4.5 CPLEX

CPLEX30 originally was developed by a company called CPLEX Optimization Inc.,
further developed by the company ILOG, which later was bought by IBM. It was
named after the Simplex algorithm and C, the programming language it is written
in. Today, CPLEX comes with many additional methods for mathematical program-
ming and constraint programming, also offering interfaces to other programming
languages than C. CPLEX currently is the industry-leading standard for mathemat-
ical programming software and obtains frequent updates with many improvements
from current research in the field of mathematical programming and constraint pro-
gramming.

2.5 Summary

In this section, fundamental concepts and basic technologies which are prerequi-
sites for the main parts of this thesis were presented. First, an overview on modern
knowledge management including concepts like ontologies and description logics
as well as technologies like OWL, SWRL, SPARQL and OWLDB was given. Fol-
lowing, we presented important service concepts, from very generic definitions to
modern concepts like Service Value Networks. In addition, our understanding on
a mass customized Cloud service was provided and given as a definition. For the
negotiation part of this thesis, the required economic foundations were given, stem-
ming mainly from the field of mechanism design. Lastly, optimization techniques

30The full product name is IBM ILOG CPLEX Optimizer.

38 CHAPTER 2. BASIC CONCEPTS AND TECHNOLOGIES

as used later for finding optimal service configurations were introduced, including
linear programming and dynamic programming approaches.

Chapter 3

Mass Customization of Cloud Services

T his chapter is dedicated to the envisioned process of mass customizing Cloud
services. Hereby, the reader shall be given a thorough understanding on the

process of creating an offer for a Cloud service which is tailored to a specific con-
sumer’s functional requirements and non-functional preferences. In order to do so,
Section 3.1 refines the scenario which was presented in the introduction of this the-
sis. General assumptions in the overall context of this work are given in Section 3.2.
In Section 3.3, the offer creation process is described. The chapter concludes with a
summary given in Section 3.4.

3.1 Scenario

Mass customization has become a major business factor in many industries. In the
area of Cloud services, providers wishing to offer individualized services in a mass
customization fashion are confronted with many different challenges. For the scope
of this work, we consult a scenario from the perspective of a Cloud provider wishing
to offer mass customized Cloud services (cf. Section 2.2.4) individualized to specific
consumer requests. Such a consumer request is assumed to contain a certain busi-
ness functionality as requirement, which is abstract in a sense that it claims a specific
functionality needed, but not exactly by which means it should be provided, i.e. by
using what kind of resources. It is assumed that the functionality cannot be attained
by simple services like storage, compute power or other similar commodity services
not requiring any consumer individualization. In this context, one can think of two
different variants for providing such customized services:

• A single service provider – having both resources and knowledge to offer the
required capabilities – provides the services by combining its own resources.

• An intermediary – having knowledge on the resources of other providers which
can be combined to meet the required capabilities – provides the services by
integrating all external resources and offering them as mass customized ser-
vice to the consumer.

40 CHAPTER 3. MASS CUSTOMIZATION OF CLOUD SERVICES

Both variants yield slightly different peculiarities, especially with respect to
prices and QoS of resources. The individual characteristics of each variant are de-
scribed in the following two sections.

3.1.1 Single Provider Variant

This variant is characterized by a single provider offering the mass customized ser-
vice based on own resources, i.e. hard- and software are owned, operated and main-
tained by the single service provider. The prices for using a resource are endogenous,
i.e. they depend on the current load factor, especially since hardware resources are
associated with high upfront but low variable costs. In such a scenario, resource
prices optimally are determined by revenue management approaches [132]. Nev-
ertheless, if the required amount of compute resources necessary for fulfilling the
request is small compared to the overall resource capacity, momentarily static prices
can be assumed as the data center’s load factor will not significantly be affected by
the incoming request. As there are no third parties involved in the service delivery,
the catalog which has to be offered to the consumer is assumed to be maintained by
the single provider.

3.1.2 Intermediary Variant

In the intermediary variant, both resource prices and QoS service levels1 of all re-
sources offered are known to the intermediary, i.e. price and quality of each atomic
service entity are exogenous and not influenced by the intermediary. For an interme-
diary with considerable small number of service requests compared to the overall
resource capacity of all suppliers, this assumption seems reasonable.

Regarding the maintenance of the service catalog, the intermediary variant al-
lows the following considerations: Selling atomic service resources through an in-
termediary offering mass customized Cloud services as an integrator can be an addi-
tional profitable distribution channel for providers selling single service resources.
Thus, a collaborative construction and maintenance of the intermediary’s service
catalog as joint work with the suppliers appears reasonable, especially from an in-
centive point of view. It is realizable by means of a collaborative ontology evolution
approach, which is, however, not within the scope of this thesis.

3.2 Assumptions

We concentrate, however, on the commonalities of both variants2 and postulate the
following assumptions for our scenario. By nature, both assumptions and solutions
presented later in this work are closely intertwined.

1Described in Service Level Agreements (SLA) of the supplying providers.
2In the following, the term provider is interchangeable with the term intermediary, as all assumptions,
solutions and evaluations are independent of the variant.

3.2. ASSUMPTIONS 41

First, we reflect on the nature of the consumer request for a mass customized
service, which is assumed to be two-fold comprising both functional and non-
functional requirements.

Assumption 3.1 [SERVICE REQUEST]. The request for the mass customized service con-
sists of a functional part (what the service is capable of doing) and a non-functional part
(how the service is capable of doing it).

The functional requirements must contain a formal and unambiguous descrip-
tion of the desired functionalities. That is, provider and consumer must have a
common language for describing a functionality, which can be of abstract nature.

Assumption 3.2 [FUNCTIONAL REQUIREMENTS]. The functional part is an unam-
biguous machine-readable subset of the functionalities that are offered by the provider and
can be of abstract nature.

The consumer may have preferences regarding non-functional aspects of the de-
sired service, i.e. the quality and the price which is delivered. Quality and price nat-
urally are interdependent, as a higher quality commonly goes along with a higher
willingness to pay. A utility function is assumed to be the vehicle for the consumer’s
preferences.

Assumption 3.3 [NON-FUNCTIONAL REQUIREMENTS]. The non-functional part con-
tains the requester’s preferences on non-functional service properties like Quality-of-Service
(QoS) or price in form of a utility function.

As stated before, provider and consumer need to have a language for agreeing
on the desired functionality. In the scenario at hand, we assume that the provider
is offering a set of abstract functionalities in form of a catalog. Examples for such
abstract business functionalities could be a content management system, a billing
service or a data warehouse, just to give some arbitrary examples.

Assumption 3.4 [SERVICE CATALOG]. All generic abstract functionalities offered by the
provider are described in a machine-readable catalog for the consumer to choose from.

For simplicity reasons, we assume the set of functionalities requested in the func-
tional part must be satisfied completely by the configuration, otherwise there is no
agreement between both parties. Hence, we neglect the case of offering configura-
tions which are suboptimal with respect to the functional requirements.

Assumption 3.5 [FUNCTIONAL AGREEMENT]. The functional part has to be met com-
pletely for an agreement to be reached, i.e. the requested functionality has to be provided
on the given abstraction level. Otherwise, there will be no agreement and thus no service
delivery at all.

42 CHAPTER 3. MASS CUSTOMIZATION OF CLOUD SERVICES

In most cases, given the functional requirements are of abstract nature, many
different feasible configurations exist that match the functional requirements. That
is many different combinations of Cloud resources – hard- and software, so to speak
– can deliver the same abstract functionality. However, at different quality and cost
levels. In the sketched scenario, we assume the provider to be in charge – as the
party having the expert knowledge – of choosing the best configuration. As best
we define the configuration yielding the highest profit, i.e. the biggest difference
between the price that can be achieved and the costs. As the price is dependent on
the utility function of the non-functional part of the request, this implies finding the
configuration with the highest margin between monetarized consumer utility and
costs.

Assumption 3.6 [CONFIGURATION SELECTION]. Due to the abstract nature of the
functional requirements, there can be more than one service configuration comprising differ-
ent resources fulfilling the functional requirement. It is up to the provider to choose which
configuration is offered. The resulting QoS will be reflected in the price for the service, based
on the non-functional preferences stated by the consumer in her request.

In order to reflect the quality in the consumer preferences, QoS properties of the
service resources must be available, i.e. they need to be measurable and known
to the provider. In addition, we assume that the overall Quality-of-Service can be
computed by aggregating the QoS values of the underlying resources.

Assumption 3.7 [QUALITY-OF-SERVICE]. The QoS properties (e.g. response time, avail-
ability, etc.) of the available service resources are measurable, known to the service provider
and can be aggregated to obtain overall values.

Lastly, rational utility maximizing individuals are assumed. That is altruistic or
other irrational behavior is not reflected, neither on provider side, nor on consumer
side.

Assumption 3.8 [UTILITY MAXIMIZATION]. In both scenarios, consumer and provider
act rational and pursue the objective of utility/profit maximization.

As this thesis comprises contributions to different fields of research, these as-
sumptions define the overall boundaries of the scenario. They are refined, where
necessary, in the corresponding chapters.

3.3 Offer Creation Process

Independent of the variant of the sketched scenario, the offer creation phase for a
mass customized Cloud service consists of three typical steps, request formulation,
functional engineering and economic optimization. The three steps are depicted in
Figure 3.1 and described in the following.

3.3. OFFER CREATION PROCESS 43

Deduction of feasible

service composition

alternatives

Selecting the economically

best alternative based on

non-functional preferences

and price

Functional requirements

and non-functional

preferences

Request

Formulation

Functional

Engineering

Economic

Optimization

Offer Creation Phase

Figure 3.1: Offer creation process for mass customized services

Request Formulation. Formulation of the request for a mass customized Cloud ser-
vice containing both functional requirements, i.e. what is the required functionality
of the desired service, and non-functional QoS preferences, i.e. how is the desired
service supposed to deliver its functionality. Non-functional preferences typically
are defined by some utility or scoring function over different values of technical
QoS attributes like response time, throughput or availability and contains information
on the willingness to pay for the service.

For a better understanding and to strengthen the relevance of this research, ex-
amples will be provided for each of the three steps. In these examples, a startup
company (called consumer C) serves as an illustration of a potential consumer, re-
questing an individualized service. By means of this service the startup company
wants to offer data mining services via the Web.

Example 3.1. Consumer C requests a service consisting of a data mining engine, a Web
server, an application server, and a customer relationship management component, defining
the functional requirements. Concerning the non-functional preferences, the service should
be at least 99,9% available, yet C is not willing to pay more for an availability above 99,99%.
A service perfectly fulfilling these requirements is worth 500 monetary units per month.

Functional Engineering. Engineering the service from the functional perspective.
This requires some mechanism that is capable of deriving a set of feasible service
configuration alternatives which fulfill the functional requirements of the service
request. The result of this process is a graph structure, representing dependencies,
iterative calls and compatibility.

Example 3.2. For each of the different abstract functional requirements from Example 3.1,
different software or SaaS solutions are available. Each of them has different dependencies
that have to be fulfilled by an interoperable service resource. A sample graph potentially

44 CHAPTER 3. MASS CUSTOMIZATION OF CLOUD SERVICES

Data
Mining

Source

R

SAS
an

d

or

or

Storage

Storage

and

and

DB

DB

an
d

and

Oracle
Cloud

Amazon
MySQL

or

or

or

S3or

or

OS

OS

OS

OS

and

Win

Linux
or

or

o
r

or

or

o
r

Sink

and

and VM

or

or

VM

Azure Win

EC2 Linux

or

Webserver

Application
Server

CRM

Weka

….

Apache

IIS

Xitami

Tomcat

JBoss

Glassfish

Salesforce

ADITO CRM

or

or

Storage

Host
Europe

DB

an
d

and

or

Rackspace

or

OS

OS

OS

OS

OS

and

and

and

and

and

and

an
d

an
d

an
d

OS

or

or

or
or

o
r

or
o

r
or

o
r

or
or

or

or

or

or

or
or

and

an
d

an
d

or

EC2 Win

….

or

….

or
or

Azure
Linux

or

….

or

Cloud Service Offer

Software Resource

Figure 3.2: Illustrative example graph

resulting from the functional engineering step is depicted in in Figure 3.2.3 In this graph,
the functional requirements are represented by the white colored vertices connected to the
source. All white colored round vertices represent abstract requirements. The gray colored
rectangular vertices depict potential service resources. Different resources are available for
each functional requirement and bring along further dependencies. In the depicted graph, the
data mining software SAS is assumed to require an additional storage service and a database
management system in order to function. Within the graph, many different combination of
service resources resemble feasible solutions to the service request of C. One of the many
potential configurations in the example graph could be SAS on a Windows virtual machine
instance of Amazon’s EC2, combined with S3 for storage, Oracle as database service, Apache
Web server and Tomcat application server running on a further virtual machine, and Sales-
force as CRM service.

Economic Optimization. Selecting the best alternative from the feasible set accord-
ing to economic goals. Typically, this implies finding the best alternative with re-
spect to consumer satisfaction and costs, represented by a goal function representing
the profit obtained by a certain service agreement. The combinatorial complexity in
such a graph can get very high, even for small problem instances.

3Note that the graph is illustrative, hence, it does not claim to be exhaustive.

3.3. OFFER CREATION PROCESS 45

Figure 3.3: Formalized example graph

Example 3.3. To illustrate the combinatorial complexity, Figure 3.3 shows a more formal
representation of a graph as it can result from the functional engineering step, similar to
Graph 3.2, without naming the concrete service instantiations. Analogously, different ser-
vice resources (gray vertices named C1,C2, . . .) are connected according to resolved depen-
dencies (gray vertices named Cluster1,Cluster2, . . .) and interoperability among resources.
Two QoS attributes (response time in row two and availability in row three) are depicted in
each service resource. Row four describes the resource price. Despite being a rather small
graph instance, this illustrative graph structure has 114,688 possible combinations as so-
lution space to the optimization problem. The challenge is to find the profit maximizing
combination with respect to the willingness to pay and the quality requirements of consumer
C, as well as the costs accruing from the resource usage.

Automating all three steps is a major challenge. It is the goal of this thesis to
address this challenge. The first two steps, request formulation and functional en-
gineering, are captured in Part II, while the economic optimization and the closely
intertwined aspect of negotiation mechanisms follow in Part III of this thesis.

The interaction between a potential service consumer and the provider is de-
picted as sequence diagram in Figure 3.4 to illustrate the intertwining of all three
steps. The sequence diagram serves as an additional outline of the following chap-
ters, as we first describe the Semantic Service Description Framework, referred to as

46 CHAPTER 3. MASS CUSTOMIZATION OF CLOUD SERVICES

Consumer Provider

Functional Requirements

Service Offer

Service
Engineering
Algorithm

Optimization

Accept

Deployment

Catalog

and Preferences

Service Configuration Graph

Functional
Engineering

Request
Formulation

Economic
Optimization

Service
Deployment

Figure 3.4: Sequence diagram for mass customizing a Cloud service

“Catalog”, in Chapter 4. Closely related is the Ontology Update Mechanism follow-
ing in Chapter 5. The Service Engineering Algorithm computing a graph over feasible
service configurations is described thereafter in Chapter 6. The economic optimiza-
tion, which is dependent on the established negotiation mechanism (cf. Chapter 7),
is covered in Chapter 8.

3.4 Summary

In this chapter, the reader was introduced to mass customization of Cloud services
and the envisioned scenario which sets the context for the work at hand. Within the
scenario, two variants – one where a single service provider offers the customized
services and one with an intermediary doing so – were described. Common to both
of them, is the challenge of finding potential service configurations which meet the
abstract functional consumer requirements and selecting the profit maximizing con-
figuration, in the many cases were there is more than one feasible configuration.

Thereafter, we presented the broad assumptions surrounding the thesis, includ-
ing aspects on the consumer request, the way offered functionality is described, the
existence and knowledge on QoS properties and economic assumptions on the be-
havior of provider and consumer acting as rational and utility maximizing agents.
Lastly, the envisioned offer creation process was presented and a sequence diagram
on the interaction between provider and consumer in the sketched scenario was
provided.

Part II

Technical Design, Implementation and
Evaluation

Chapter 4

Semantic Service Description
Framework

L arge scale and automated engineering of Cloud services requires explicit
knowledge on the available service resources. In this chapter, a framework for

semantically describing service resources is presented. The framework is designed
such that mass customized services comprising subsets of the available resources
can be derived automatically according to abstract functional requirements given
in a consumer request. The framework hence has two purposes: (1) It should be
able to describe resources, their interdependencies and compatibilities and (2) at the
same time report abstract functionalities, that can be built upon these resources for
potential consumers to chose from.

The remainder of this chapter is structured as follows. Requirements on the des-
ignated framework are elaborated on in Section 4.1, followed by the corresponding
related work in Section 4.2. The main contribution, an ontology framework for de-
scribing service resources, is introduced in Section 4.3. Evaluation and discussion
come thereafter in Section 4.4. The chapter is concluded by a summary given in
Section 4.5. The results of this chapter are largely based on [65].

4.1 Requirements

The requirements posed upon a service description framework partially can be de-
rived from the overall scenario of this thesis and to some part are of generic nature
for achieving a sustainable, reasonable and practical solution.

First of all, with many “bloated” ontology solutions for service description avail-
able, we seek a lightweight description approach with focus on the main objectives
required for the engineering of mass customized Cloud services.

Requirement 4.1 [LIGHTWEIGHT DESCRIPTION APPROACH]. The framework should
be a lightweight description approach with strong focus on its core functionality – the deriva-
tion of customized Cloud services.

50 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

The advantage of a lightweight solution is its focus and comprehensibility, while
additional features can be easily extended or existing standard ontologies could be
merged, if needed.

Its core objective is to provide a method for formalizing knowledge such that
abstract functionalities and available service resources needed for providing these
functionalities can be described in a machine-readable way. Thus, the framework
should enable the construction of a taxonomy on both resources and abstract func-
tionalities.

Requirement 4.2 [TAXONOMY ON RESOURCES AND FUNCTIONALITIES]. The
framework should enable the creation of a knowledge base comprising a taxonomy on ser-
vice resources and functional requirements in as many abstraction levels as needed.

Other than any approach for describing the I/O-based matching of Web services,
the focus is on deriving service configurations based upon a selected set of abstract
functionalities. This can be achieved by describing dependencies and compatibil-
ity among the abstract functionalities and the service resources. By resolving de-
pendencies while simultaneously ensuring compatibility, required service resources
can be resolved starting from the requested functionalities, thus deriving potential
configurations.

Requirement 4.3 [DEPENDENCY AND COMPATIBILITY MODELING]. The framework
should allow to model both dependency and compatibility relations among functionalities
and service resources.

Naturally, creating and maintaining such a knowledge base requires an immense
modeling effort. If a certain relation is applicable for a whole group of similar re-
sources, it should be modeled only once for the group rather than stating this rela-
tion for each instance of the group. We therefore require the framework to reduce the
modeling overhead as much as possible by avoiding redundancies through model-
ing information on the highest abstraction level possible.

Requirement 4.4 [REDUCED MODELING OVERHEAD]. The framework should foster
the reduction of modeling overhead by allowing to state knowledge on relations between
resources and/or functionalities on any abstraction level.

As stated before, the designated framework has a clear research focus on en-
abling the derivation of service configurations by modeling interdependencies and
compatibilities. However, a practical usage might require many more details or
further information to be included. Therefore, the framework should be easily ex-
tensible.

Requirement 4.5 [EXTENSIBILITY]. The framework should be easily extensible to allow
more details in the model or to include further information or more complex rules on com-
patibility.

4.2. RELATED WORK 51

As the modeled knowledge might also be of interest to other institutions or part-
ners, or knowledge stemming from external partner should be includable, the for-
mat of knowledge representation should be exchangeable across the border of insti-
tutions by being standard compliant.

Requirement 4.6 [STANDARD COMPLIANCE]. The framework should be standard com-
pliant to ensure the exchangeability across the border of institutions in order to import/export
information from partners or other institutions.

All of the above requirements built the surrounding structure for the design of
semantic service description framework. In addition, these requirements help in
distinguishing other existing solutions from the related literature, which follows in
the succeeding section.

4.2 Related Work

The related work in this context can be found in the research areas of semantic Web
service description and ontology-based configuration. Regarding the first, differ-
ent standard proposals have been made in the past, including OWL-S, WSMO1,
METEOR-S2 and IRS-II3. Along with other work in the context of Web service
mashups, they are described in Section 4.2.1. Concerning the latter, different ap-
proaches from literature are described in Section 4.2.2.

4.2.1 Semantic Description of Web Services

OWL-S originated as part of the DAML program4 and is an ontology for describ-
ing Web services based on OWL (cf. Section 2.1.2.1). The ontology comprises three
parts: (1) the service profile telling a service-seeking or -matchmaking agent what
the service does; (2) the service model which describes how to use the service by
giving details on the semantic content of requests and the conditions under which
particular outcomes will occur; (3) the service grounding specifying the access pro-
tocol for addressing the service [102]. The vocabulary defined by OWL-S may be
used to provide semantic annotations of services, and automatic agents may pro-
cess this information.

WSMO is a conceptual framework for describing Web services using formal se-
mantics. It is targeted to facilitate automated discovery, combination and invocation
of services on the Web. The following semantic Web design principles are (among
others) incorporated in WSMO [134]. WSMO is Web compliant, relying on standards
like URI, XML and other W3C recommendations. It is ontology-based, defining its
own ontology model, claiming to be general enough to capture the other existing on-
tology languages. The recommended modeling language is WSML, although other

1Web Service Modeling Ontology
2Managing End-To-End OpeRations for Semantic Web Services
3Internet Reasoning Service
4DARPA Agent Markup Language – http://www.daml.org/

http://www.daml.org/

52 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

ontology languages are also supported. WSMO fosters strict decoupling, as resources
are described isolated, i.e. the description of a resource does not include references
to other resources that might be used or interacted with. In addition, WSMO em-
phasizes the importance of mediation between heterogeneous resources. Another
design principle incorporated is the ontological role separation. WSMO differentiates
between the high level preferences of a Web user and the actual technical desires
upon an offered Web service. Lastly, it distinguishes description and implementation,
offering a concise and sound description framework, independent from the actual
implementation of a Web service. Yet, to ensure execution capabilities, it aims to be
compliant with current technologies used for Web service execution.

WSMO consists of four top-level elements, representing the main concepts for
Web service modeling: Ontologies are the foundation of WSMO, as they provide the
terminology for all other WSMO elements. Yet, they are no pure terminology in a
sense that they only focus on syntactical issues. In fact, they can be seen as an ab-
straction covering current ontology languages the creators of WSMO found to be
most reasonable for describing Web services. Web services embody the computa-
tional entities, i.e. the interfaces and capabilities of a service using the terminology
of ontologies. Hereby the choreography describes the way to communicate with
a service, while the orchestration characterizes the interaction with other services.
The service’s capabilities can be defined based on pre- or post-conditions, assump-
tions, and effects. QoS attributes can also be defined as non-functional properties.
Goals describe the service requester’s requirements with respect to the requested
functionality. These requirements can be defined, stating the desired capabilities
and interfaces using the ontologies terminology. Goals can thus be seen as the users
view on the Web service usage process. Mediators are responsible for ensuring inter-
operability between heterogeneous WSMO services. They are supposed to resolve
incompatibilities on process, data or protocol level.

The focus of METEOR-S lies on workflow management techniques for transac-
tional workflows in the context of Web services [100]. METEOR-S is a framework
supporting the whole lifecycle of a semantic Web process using semantic technolo-
gies. This lifecycle consists of five main stages: development, annotation, discovery,
composition and execution [1]. METEOR-S provides functionality to semantically
annotate Web services, to describe data semantics, i.e. input, output and exception
data formats, as well as functional semantics, i.e. the offered functionality and how
the incorporated processes can be addressed. Additionally, one can specify QoS
specifications in form of quadruples consisting of the name, a comparison operator,
the value and the unit of the specification. For describing the offered processes, it re-
lies on the BPEL4WS5 standard. Service selection is a three step process, split up into
service discovery, constraint analysis and optimization. The UDDI based discovery
engine supports annotated WSDL, WSDL-S and OWL-S as description languages,
annotated WSDL being the recommended one [1]. METEOR-S uses a constraint-
based selection algorithm, where the searching agent can define business as well as
QoS constraints on the desired service. Constraint fulfillment is first checked, then
optimized using a linear programming algorithm. The optimization algorithm at
the same time brings along a mechanism for ranking various service alternatives.

5Business Process Execution Language for Web Services, meanwhile called WS-BPEL as part of the
WS-* stack.

4.2. RELATED WORK 53

The goal of IRS II is to support the publication, location, composition and ex-
ecution of heterogeneous web services, augmented with semantic descriptions of
their functionalities, providing a one-click publishing support for different software
platforms [116].

In the context of Web service mashups, Blau et al. [25] propose an ontology-based
tool for planning and pricing of service mash-ups. The tool can be used to compose
complex Web services from a set of known atomic services, which are stored in a
domain specific ontology. Afterward, the complex service can be validated based on
axioms and rules in the ontology. A progression of this approach led to a tool called
remash!, an ontology-based solution to model and rank blueprints for RESTful web
service compositions [24].

4.2.2 Ontology-Based Configuration

Product configuration is concerned with assembling a set of customizable compo-
nents to produce a good which satisfies both customers’ needs and technical con-
straints. Ardito et al. [4], for example, present a case study for an Italian furniture
company, introducing ontologies to model knowledge on available furniture com-
ponents in order to offer customizable furniture via the Web.

Yang et al. [153] propose the use of ontologies for reusing configuration knowl-
edge to support and enable a development of product configuration systems. A
meta ontology as means for a product configuration meta model is introduced
to define general terms and relations which are common to the configuration do-
main. Using this meta model, one can describe all product components and con-
straints among them belonging to a certain product. The ontology relies on OWL
(cf. Section 2.1.2.1), while constraints are modeled by means of SWRL (cf. Sec-
tion 2.1.2.3). By adding user requirements as additional constraints, an inference en-
gine is capable of deriving all potential configurations which satisfy the constraints.
As inference engine, the Java Expert System Shell (JESS) is chosen. Therefore, the
OWL/SWRL model has to be transformed into JESS rules.

A further development of the approach is proposed by Dong in a joint work
with Yang and Su [45]. This work introduces a slightly adapted version of the same
approach, which allows the same concept to be used in the context of mobile com-
munication services. As example, the complex task of configuring service packages
for China Mobile is given.

4.2.3 Applicability

From the description above, it becomes obvious that it is common to all semantic
Web service description approaches that their focus is on describing Web services
for discovery and matchmaking purposes, rather than finding configuration alter-
natives for a given consumer request. None of them addresses the challenges and
requirements which occur in the scenario of the work at hand, at least not in way,
that the approach could be adapted to our needs. This is especially the case regard-
ing Requirements 4.2 and 4.3.

54 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

The focus of Ardito’s work is on the description of the case study and the poten-
tial arising from the usage of IT for supporting the process of mass customization
within this case study. Yet, the paper is superficial regarding the actual model and
the algorithms used, which are not presented.

The ontology-based configuration approach by Yang and Dong is much closer
related. Using their proposed concept, potential product configurations in the tradi-
tional manufacturing world (drilling machine) and potential service packages in the
field of a mobile communication service can be derived. Which configurations are
feasible, depends on generic constraints stemming from the domain and additional
constraints which embody the wishes formulated by the consumer. However, the
distinct purpose of such an ontology is the configuration of a single traditional good
(drilling machine) or the packages of a single service. This connotes fundamental
differences to the Cloud service scenario of this thesis, where many different func-
tionalities or services can be combined, rather than focusing on the configuration of
one single functionality (drilling machine) or service (mobile communication). The
approach therefore is not applicable to the scenario of mass customizing a large set
of different Cloud service offers (cf. Requirement 4.3).

4.3 Ontology Framework

In this work, OWL (cf. Section 2.1.2.1) is chosen as the formal knowledge repre-
sentation language for four reasons: (1) It has been established as the leading Se-
mantic Web standard, (2) is widely spread thus offering a large set of modeling
tools and inference engines, (3) is well documented and offers description logics
(DL) expressiveness that fits well the anticipated description of services functional-
ities and resources at class-level. In addition, (4) OWL comes with a standardized,
Web-compliant serialization which ensures interoperability over the borders of sin-
gle institutions.

For stating more complex compatibility constraints that go beyond the DL ex-
pressiveness, the proposed approach makes use of the rule language SWRL (cf.
Section 2.1.2.3) in combination with OWL, while the usage is restricted to DL-safe
rules [114] as a decidable fragment supported by OWL reasoners like Pellet [142] or
KAON2 [113].

The framework comprises three different types of ontology. A generic service
ontology defines the fundamental concepts of the framework. The actual knowledge
on the known software and Cloud resources is modeled in the domain ontology and
will differ for the various Cloud service providers. While the service ontology is
a static model, the domain ontology has to be dynamic, i.e. it will need constant
updates on the current resource situation. The third ontology, the result ontology, is
used to store potential configuration results of any algorithm capable of deriving all
alternatives by resolving resource dependencies (cf. Chapter 6). Both domain and
result ontology import the fundamental concepts defined in the service ontology.

4.3. ONTOLOGY FRAMEWORK 55

Result GraphCore ClassesQoS & Costs

ServiceEntity

requires

isCompatibleTo

choice

xsd:float
hasVariableCosts

ResultNode

SourceNode

OrNode

connectsTo

Alternative

contains

SinkNode

connectsTo

Resource Functionality

xsd:float
hasFixCosts

QualityMetric

hasQualityMetric

QualityMetricType

AggregationFunction

Figure 4.1: Service ontology

4.3.1 Service Ontology

The service ontology is partially depicted in Figure 4.1.6 Basically, the service ontol-
ogy provides concepts for three different aspects:

• Service resources along with dependencies and compatibility information,
needed to derive all valid service configuration alternatives.

• QoS and cost meta information for evaluating these alternatives.

• Structure elements needed for an ontology representation of the resulting
graph stucture.

The most fundamental concept for deriving all feasible deployment alternatives
is the class ServiceEntity with its subclasses Resource and Functionality, along with the
corresponding object properties requires and isCompatibleTo. The requires property
is used to describe the functional dependency between two resource instances. In
most cases, dependencies can and should be described in an abstract way at class-
level. We can do this by including the dependency relation into the class axiom in
conjunction with an object restriction in the form of an existential quantifier on the
required class:

ResourceA v Resource
u ∃requires.ResourceB

Hereby we constitute that each resource of type ResourceA requires some resource
of type ResourceB. The resources required by a functionality can be modeled analo-
gously:

FunctionalityX v Functionality

6For the reader’s convenience we illustrate the ontology in UML notation where UML classes cor-
respond to OWL concepts, UML associations to object or data properties, UML inheritance to sub-
concept relations and UML objects to OWL instances.

56 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

u ∃requires.ResourceA
u ∃requires.ResourceY

As a more concrete example, we could state that every instance of the class Appli-
cation requires at least some operating system:

Application v Resource
u ∃requires.OS

The compatibility can be asserted on instance level using the isCompatibleTo object
property. That implies that there has to be one object relation between all possible
combinations of interdependent resources. To reduce this modeling overhead, we
propose the usage of SWRL rules, which allow us to state compatibility on class
level:

isCompatibleTo(x,y)← ResourceA(x),ResourceB(y)(R1)

We can exploit the full expressiveness of DL-safe SWRL rules. E.g. to state that all
versions of MySQL are compatible to all Windows versions except the mobile version
WindowsPhone, we include the following rule:

isCompatibleTo(x,y)←MySQL(x),Windows(y),differentFrom(y,’WindowsPhone’)(R2)

For inclusion of QoS and cost information additional concepts are included. A
resource can be associated with a quality metric, which itself is an association be-
tween a quality metric type and a certain value. Examples for quality metric types
are response time, availability and other measurable QoS attributes. Each quality
metric type must be associated with an aggregation function, which are the com-
monly used mathematical aggregation operators: addition, subtraction, multiplication,
min and max. The usage of these concepts is illustrated in the following example:

(ResourceX,qm_ResponseTime_10) : hasQualityMetric
(qm_ResponseTime_10, ResponseTime) : hasQualityMetricType

(qm_ResponseTime_10,10.0) : hasQualityMetricValue
(ResponseTime, Addition) : hasAggregationFunction

The example states no other than ResourceX is associated with a ResponseTime of 10.0
and that ResponseTime is aggregated by means of an Addition. Regarding the costs,
one distinguishes between non-recurring fix costs and recurring variable costs. The
latter being more complex, as the total amount depends on another variable, which
has to be defined in the context to serve as a multiplier. E.g. the overall usage fee for
a cloud provider depends on the planned usage period for the service. Both values
are modeled in form of datatype properties (hasVariableCosts and hasFixCosts) with
Resource as domain and xsd:float as range.

The entire service ontology serialized as RDF/XML file can be found in Ap-
pendix A.1.

4.4. EVALUATION 57

4.3.2 Domain and Result Ontology

As stated before, both domain and result ontology are not static, but undergo con-
stant changes. The domain ontology must reflect the current state of nature regard-
ing available service resources and their properties. A result ontology can store a
subgraph of the domain ontology derived for a certain consumer request.

Domain Ontology. The domain ontology uses the concepts described in the ser-
vice ontology to capture knowledge about service resources and functionalities of
a certain service provider and domain of interest. This distinction between generic
concepts and a domain model allows one to use the same technology – e.g. the
service engineering algorithm of Chapter 6 – within different contexts or compa-
nies, just by loading a different domain ontology. In addition, knowledge can be
combined by loading several domain ontologies, as long as the combination of do-
main models does not lead to inconsistencies, which could occur for example due
to naming inconsistencies.

Through the concepts presented in this chapter, a service provider can create a
domain ontology according to the resources available to him. In order to do so,
dependencies and interoperability have to be modeled as presented in the preced-
ing section by making use of the generic concepts defined in the service ontology.
By doing so, the service engineering algorithm presented later in Chapter 6 can be
used to derive feasible configurations. Providing a domain ontology describing the
resource environment for an arbitrary service provider is not in the scope of this
work. The additional scientific contribution of such an example domain ontology
would be questionable due to its high specificity to the provider’s circumstances.

Result Ontology. In the context of mass customization of Cloud services, it is one
objective of the work at hand to allow for an automated derivation of service con-
figuration alternatives. For this purpose, Chapter 6 presents an algorithm which is
capable of doing so in combination with the framework presented in this chapter.
In order to be capable of storing the resulting configuration also by means of an
ontology – which is beneficial as it for example allows reasoning on the resulting
information – additional concepts were added to the service ontology.

The result ontology, storing the configuration alternatives obtained from the ser-
vice engineering algorithm, makes use of the concepts SourceNode, SinkNode, OrNode
and Alternative which are defined in the service ontology (cf. Figure 4.1). The result
information is a graph structure, therefore SourceNode and SinkNode are included
as helper nodes to have a distinct starting and ending points in the graph. They
correspond to the source and sink nodes in a network. The OrNode is introduced
to capture the branching whenever there is more than one compatible resource in-
stance that fulfills the dependency requirement.

4.4 Evaluation

The contribution of this chapter is evaluated qualitatively by comparing the pre-
sented approach to the requirements from Section 4.1. Further, a proof-of-concept
implementation of the service engineering algorithm makes use of the presented

58 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

framework, thus providing further evidence of its applicability. A description of the
implementation follows in Section 6.5.

So far, we have presented requirements which were mainly derived from the
overall scenario of this thesis, related work from the fields of Semantic Web ser-
vice description and ontology-based configuration and the main contribution of
this chapter, an ontology framework for describing Cloud service resources, their
dependencies and compatibilities and meta information on QoS and costs. We now
evaluate the contribution by confronting it with the requirements which were posed
in the beginning.

Lightweight Description Approach. Having many different heavy ontologies and
frameworks for service description available, an approach was sought that has a
clear focus on the ability to support the derivation of Cloud service configuration
alternatives. For this purpose, the description of dependencies, compatibilities and
meta information of service resources is required.

The presented approach comprises a generic service ontology, which addresses
exactly these issues. It does so in a simple and lightweight manner, as it only consists
of a couple of generic concepts, object and datatype properties having descriptive
names.

Taxonomy on Resources and Functionalities. The semantic service description
framework mainly serves two purposes: offering selectable functionalities to the
consumer and modeling information on service resources that are capable of pro-
viding these functionalities. In order to be able to formulate abstract functional re-
quirements, a taxonomy from concrete to less concrete functionalities is a designated
objective.

The solution enables the creation of such a taxonomy by using OWL as ontology
language and providing subclasses of the concept Functionality in as many abstrac-
tions as desirable. An example could be the following taxonomy:

ApacheHTTPServer vWebServer v Functionality

The same principle applies for service resources. Considering for example Ama-
zon’s EC2 compute service as a resource providing compute power, we could state
the following:

AmazonEC2Windows vWindowsComputeService v ComputeService v Resource

Thus, the presented framework can be used to create large taxonomies on resources
and functionalities by making use of the generic concepts and relations defined in
the service ontology.

Dependency & Compatibility Modeling. For deriving feasible service configu-
rations, information on dependencies between functionalities and resources and
among resources themselves have to be stored. When dealing with dependencies
on an abstract level, e.g. that each application requires an operating system, addi-
tional information on the compatiblity among concrete resources must be given.

Both types of information can (and must be) included in the knowledge base by
making use of the object property relations requires and isCompatibleTo, as presented

4.4. EVALUATION 59

Requirement Semantic Web Ontology-Based This
Services Configuration Work

4.1 Lightweight G#
4.2 Taxonomy Resources & Funct. # G#
4.3 Dependency & Compatibility # #
4.4 Reduced Modeling Overhead # G#
4.5 Extensibility
4.6 Standard Compliance G# G#

Table 4.1: Review on requirements and comparison to related literature

prior in this section. Both dependency and compatibility can be stated on instance
or class level.

Reduced Modeling Overhead. Creating and maintaining such an ontology requires
a decent amount of work for an employee with skills in semantic technologies.
Hence, any reduction in the amount of modeling which is necessary to capture all
required information is of great benefit.

A lot of information, especially regarding the dependency and compatibility of
resources, is of generic nature, i.e. a certain assertion is not only true for a single
instance, but for a whole group of resources. Using the concepts provided in the
presented framework, one can model these generic assertions on class level or by
using complex rules that make use of concepts of any abstraction level. Recaptur-
ing the example from the prior section, the statement that MySQL is compatible to
all non-mobile versions of Windows is a great reduction of modeling effort as com-
pared to stating compatibility for each and every version of Windows on instance
level.

Extensibility. The extensibility of a model is crucial for its applicability in practice.
No generic model can be so comprehensive that it captures all potential specifics
arising in different scenarios. By relying on a lightweight approach using OWL as
formal language representation, this extensibility is given. Further concepts can be
easily introduced and even very complex compatibilities can formulated by means
of DL-safe SWRL rules. In addition, external OWL ontologies which are widely
available for various domains can be imported and thus used without much addi-
tional effort.

Standard Compliance. Creating a proprietary framework brings along the major
drawback that information stored within the framework cannot be reused in any
other context. Neither is it possible, to import existing information if it is not avail-
able in the proprietary format. Hence, standard compliance can be of great benefit.
By building the framework on the defacto standard for semantic modeling OWL
in conjunction with the standardized rule language SWRL, standard compliance is
partially given and allows for an easy import and export of information from an
to other data sources. However, a stronger integration with the standardization ef-
forts of the Semantic Web community and the WS-* stack could even improve this
compliance and is subject to future work.

60 CHAPTER 4. SEMANTIC SERVICE DESCRIPTION FRAMEWORK

Summarizing Review. A summary of this review on requirements and the appli-
cability of related work can be found in Table 4.1.7 The small overlap between the
requirements and the semantic frameworks in the context of Web services can be ex-
plained by the different focus of these frameworks. The work by Yang and Dong is
more closer related, yet it does not offer the capability for modeling resource depen-
dencies. The work at hand was designed according to these requirements, hence,
it has the biggest overlap. However, the standard compliance could be further im-
proved by integrating the ontology with other standards from the WS-* stack.

4.5 Summary

Engineering Cloud services in a mass customization fashion requires explicit knowl-
edge on available resources and functionalities offered to potential consumers. In
order for this knowledge to be used in an automated offer creation process, it has
to be machine-readable, well-structured and must contain information which allow
the derivation of configurations from selected functionalities.

In this chapter, first essential characteristics and requirements for a semantic ser-
vice description framework leveraging such an engineering phase were gathered.
Most important, the framework should allow the creation of a taxonomy on ser-
vice resources and functionalities, which is capable of storing information on de-
pendency, compatibility and meta information on QoS and costs.

Subsequently, we investigated on related work from two research areas: the se-
mantic description of Web services and ontology-based configuration. The closed
proximity was found in the latter area. A three-fold ontology framework was the
main contribution of this chapter, allowing to explicitly model the required knowl-
edge in an efficient, extensible and standard compliant manner. Using this frame-
work, reduced modeling overhead can be achieved by defining relations on higher
abstraction levels.

Lastly, a qualitative evaluation was given by discussing the proposed solution in
context of the posed requirements. While the approach could be further improved
regarding its standard compliance, it was found to meet the other requirements as
expected.

7The fulfillment of requirements for Semantic Web Services and Ontology-Based Configuration reflects
on the presented related literature in the corresponding field of research only. Thus, it does not
apply in general.

Chapter 5

Ontology Update Mechanism

I n order to rely on the semantic service description framework (presented in the
prior chapter) for an automated offer creation of mass customized services, the

underlying knowledge base is required to contain most up-to-date information. A
knowledge base that does contain outdated information will inevitably result in sub-
optimal engineering and optimization decisions. While structural and major content
changes to the ontology require manual maintenance by a skilled knowledge engi-
neer, detailed information on instance level on quantitative properties like QoS and
price can and should be be updated by an automated mechanism. We therefore
present an ontology update mechanism that is capable of holding the knowledge
base in a state containing the latest information available.

This chapter thereby is structured as follows. First, a use case for a detailed
illustration of the concrete scenario is presented in Section 5.1. It is a refinement
of the scenario presented in Chapter 3. Thereafter, requirements for an automated
ontology update mechanism are derived in Section 5.2. Related work is introduced
in Section 5.3. The core concepts and a proof-of-concept implementation, which are
the main contributions of this Chapter, are described in Sections 5.4 and 5.5. We
evaluate the ontology update manager in Section 5.6. The chapter is concluded by a
brief summary given in Section 5.7.

5.1 Use Case

The ontology update mechanism requires a more detailed use case than the scenario
presented in Chapter 3. For using an automated service engineering solution – mak-
ing use of the semantic service description framework in Chapter 4 and the service
engineering algorithm of Chapter 6 – it is inevitable that the ontology contains the
latest information available, especially in the context of economically optimal deci-
sion making (cf. Chapter 8). In the scenario variant of an intermediary that is offer-
ing mass customized services as compositions of third party offers, both price and
service level changes will occur on a frequent basis. The frequency hereby can vary
from months down to hours. In the single provider variant, quality and cost con-
ditions of service resources typically change in real time, due to the ever changing
load on the service provider’s infrastructure. QoS and cost values thus can become

62 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

quite volatile. Any expert system optimizing over different service configurations
has to reflect on these values on an instantaneous basis.

A good illustration of the just mentioned challenges can be given through the
following example of a service offer by an intermediary on the basis of IaaS.

Example 5.1. Consider an intermediary offering mass customized services tailored for con-
sumers with computational expensive short-term jobs. As deployment infrastructure, the
intermediary relies on various public IaaS offers, e.g. Amazon’s EC2 or Windows Azure1.
Depending on the job characteristics and the current Cloud market situation, different offers
or even spot instances2 potentially are the cost optimal choice. Thus, optimality is subject
to the current market situation, which can be quite volatile, thus requiring an automated
update mechanism for the knowledge base offering shared access to the intermediary’s sys-
tems. There is currently no standardized interface for accessing market information (QoS,
price, ...) on the available IaaS offers. Information has to be integrated by accessing the data
sources offered by each individual provider.

Example 5.1 serves as illustration and is used for a better understanding of the
requirements on the ontology update mechanism which are derived in the following
section.

5.2 Requirements

In this section, generic and use case specific requirements are derived. Some re-
quirements can be directly deduced from Research Question 2 (cf. Section 1.1) and
Example 5.1, others are generic requirements. The requirements will serve as means
for a qualitative evaluation of the presented solution following in Section 5.6.

As stated before, any knowledge base in the context of engineering or optimizing
mass customized services has to contain up-to-date information. While updating an
ontology’s structural date, i.e. concepts and relations among concepts, can be hardly
automated, data values like quality and price originating from external data sources
can be updated automatically. However, due to many different standards and data
formats available, external data sources expose their data using different interfaces
and in various data formats. An information integration approach therefore has to
be capable of accessing manifold data sources.

Requirement 5.1 [MANIFOLD DATA SOURCES]. The ontology update mechanism has
to support various data sources from different providers. Data access is characterized by
the lack of a common access standard, as providers tend to offer their information services
through different protocols. A common approach is to offer a REST or SOAP-based Web
service. However, statically provided Web content in form of HTML, XML or CSV files
are also used in practice. The support for manifold data sources therefore is a prerequisite
for integrating service offers by many providers. In addition, the software architecture has

1http://www.windowsazure.com/
2A dynamically priced offer of compute resources, similar to a spot market for oil, electricity or other
commodity resources. Cf. http://aws.amazon.com/de/ec2/spot-instances/

http://www.windowsazure.com/
http://aws.amazon.com/de/ec2/spot-instances/

5.2. REQUIREMENTS 63

to be designed in a modular way, such that additional data formats can be easily integrated
without modifications to the core of the update mechanism.

The update mechanism should not be limited to updates on QoS and price in-
formation, but engineered as generic as possible, in order to promote its usage also
beyond the scope of the presented use case.

Requirement 5.2 [ADAPTABILITY/REUSABILITY]. The concept should not be limited
to a certain ontology type or use case. Adaptability to other use cases requiring automated
updates of an ontology (e.g. weather data or stock prices) has to possible without bigger
integration effort. An adaptable solution simultaneously fosters its reusability.

Depending on the entity requiring data updates, the frequency of information
changes and the data source, the update process should occur in a parametrized
and structured manner to use resources efficiently while simultaneously ensuring
up-to-dateness.

Requirement 5.3 [CONTROLLED & STRUCTURED UPDATE PROCESS]. The update
process has to occur in a structured and controlled manner. Information changes can occur
at varying frequencies, monthly, daily, hourly and sometimes even down to milliseconds. A
configuration parameter defining the update interval is inevitable for reducing redundant
data queries. Both data source and data transformation need to be configurable in a well
structured way. The update process has to be plannable, i.e. scheduling updates into times
with low system load has to be possible.

In scenarios with large ontologies requiring frequent information updates from
many different sources, scalability of the update mechanism is an important issue.
A scalable software architecture ensures that decisions based on the semantic de-
scription framework are made based on correct information, as scalability reduces
time lag potentially stemming from system overload. The system’s scalability addi-
tionally influences the system’s availability as overload situation can be application
critical.

Requirement 5.4 [SCALABILITY]. Update intervals can be short and the number of en-
tities requiring updates and the number of data sources can be large. Therefore scalability
of the designated mechanism is an important requirement for its practicability in any real-
world scenario.

Any information update implies changes to the ontology. Naturally, these
changes should not endanger its structural consistency, as this would lead to wrong
results or unavailabilities of the system.

Requirement 5.5 [CONSISTENCY]. The update process executes changes on the targeted
ontology. These changes should not endanger the ontology’s consistency. A guaranteed
consistency is inevitable for queries and reasoning operations to function after the update
has occurred.

64 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

Information aggregation from heterogeneous external resources entails the risk
of data extraction or preparation errors. A visible and comprehensible update pro-
cess can help reducing such errors.

Requirement 5.6 [TRANSPARENCY]. The updated data values have to be visible to the ad-
ministrator in order to ensure traceability and to reduce incorrect data values. By providing
an interface which enables the administrator to follow the update process and the result-
ing values, wrong values resulting from errors in the data extraction or preparation can be
detected. These errors occur when data source change their interface or data structure.

Reading queries to the ontology have to be possible at all times and from dif-
ferent systems for the semantic service description framework to function in any
online scenario with decision making in near or real time.

Requirement 5.7 [PERSISTENCY & SHARED ACCESS]. The ontology has to be acces-
sible from a decentralized system landscape and during any update process. Thus, it is
important that the ontology is persisted in a centralized manner and update processes does
not block the ontology system from reading queries.

The semantic service description framework is based on OWL. Therefore, the
designated approach has to support the Web Ontology Language as formal ontology
description language.

Requirement 5.8 [OWL SUPPORT]. The ontology update manager has to be capable of
updating knowledge data using OWL as formal knowledge representation language.

All of the above requirements build the foundation for a consistent, versatile and
transparent mechanism for updating information from external resources within on-
tology systems.

5.3 Related Work

In this section, related work is described and its applicability evaluated against the
requirements listed in the preceding section. Four distinct areas or approaches are
covered: ontology versioning and evolution, the ontology update language, SMILA,
an extensible framework for building big data by integrating data from heteroge-
neous data sources, and wrappers.

5.3.1 Ontology Versioning and Evolution

By the use of ontologies in professional contexts, their administration, maintenance
and progression become increasingly important. An ontology is a static abstract
model of a domain of interest. However, information within this domain of interest
can change or evolve over time. Thus, the development of an ontology is a dynamic

5.3. RELATED WORK 65

process. In fact, there exists no common and standardized methodology comprising
all aspects of a change management for ontologies. Yet, it is an active topic of current
research. The main work in this area has been published related to the terms ontology
versioning and ontology evolution [86, 124, 144].

Ontology versioning has its focus on the creation and management of different
versions of a given ontology. A new version can emerge from changes to an existing
ontology. A different version can also exist to describe the domain of interest from
a different perspective. Ontology versioning enables access to and management of
different versions of a single ontology [86].

Ontology evolution focuses on ensuring consistency in the change processes to an
ontology. Ensuring consistency is important to guarantee that reasoning queries to
the knowledge base can be executed and return valid results. The complexity of
the evolution process increases with the size of the ontology. Thus, a structured
ontology evolution process becomes inevitable for large ontologies [67].

In [85] various requirements on a change management for ontologies are presented.
Given an ontology in two version {V1,V2}, these are:

Data Transformation. If V2 evolves through a structural change of V1, data de-
scribed within V1’s structure has to be transformed to fit into V2’s structure. If the
structural change, for example, is the union of concepts A and B to form C, instances
of A and B have to be merged into C.

Data Access. Data described in V1 has to be equally and correctly accessible from
V2. Compatibility between the two versions has to be ensured, i.e. queries to V2
should give access to the same data as queries to V1.

Ontology Update. In a shared environment, local copies can exist for many users.
If the central copy is changed, all local copies have to receive the corresponding
update.

Consistent Reasoning. The consistency of a changed ontology has to be validated
after the change occurs, guaranteeing that reasoning operations continue to be pos-
sible.

Verification and Approval. In some scenarios changes to an ontology have to be
verified and approved, before the changes can be reflected in the productively used
ontology. This is especially the case when several developers work on a central
ontology where changes are adopted selectively. Therefore, a user interface allowing
both verification and approval or denial of submitted changes to an ontology is
required.

5.3.2 Ontology Update Language

The ontology update language [99] is a formal language to initiate and handle reoccur-
ring changes to an ontology. The approach is based on SPARQL Update3 [138], an
extension to the RDF query language SPARQL (cf. Section 2.1.2.4). While SPARQL
is used to find data in RDF graphs, SPARQL Update offers the capability to update
and maintain RDF graph structures. Existing RDF graphs can be updated using the
3http://www.w3.org/Submission/SPARQL-Update/

http://www.w3.org/Submission/SPARQL-Update/

66 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

operations insert (adds data to the graph), delete (removes data from the graph) and
modify (alters data from the graph).

Change Patterns. A change pattern describes how data can change within a certain
domain. For example we can take the concept of a child. A child at some point will
be an adult, the inversion, however, is not possible. Based on such axioms, formal
specifications of possible changes to an ontology can be derived. This formal speci-
fication is often called update rule. Update rules are created ex-ante by the ontology
developer. They are applied once a change request to the ontology arrives. A rule
contains both syntactical and semantical checks of the ontology and the resulting
changes, ensuring that the change request will lead to a consistent knowledge base.
If, for example, an employee is leaving a company, not only the instance of the em-
ployee has to be removed, but also all relationships (e.g. “is-supervisor-of”) defined
in the ontology describing the company’s structure.

Every update rule contains a unique identifier. Under preconditions, prerequi-
sites can be defined, determining which update rule is applicable for what change
request. If more than one rule matches, the first rule found is applied. The actual
changes are defined int a change request pattern, which describes what changes are
made in consequence of a change request. These are declared in the the WHERE
clause of a SPARQL SELECT query.

5.3.3 SMILA – Unified Information Access Architecture

SMILA is an extensible framework for building big data and search solutions to ac-
cess unstructured information in the enterprise. Besides providing essential infras-
tructure components and services, SMILA also delivers ready-to-use add-on com-
ponents, like connectors to most relevant data sources [46]. The main purposes
of SMILA are information pre-processing and information retrieval. The Eclipse4-
based software contains deployable data connectors and services, designed for in-
tegrating large amounts of unstructured information into enterprise contexts. A
scalable architecture enables SMILA to be used in cluster environments.

Architecture. Figure 5.1 shows the architecture of SMILA. The architecture consists
of two distinguished components:

• First, data has to be imported into the SMILA system and processed to build
either a search index, to extract an ontology or to process the data in some
other way.

• Second, the gained information is used to answer information retrieval re-
quests from users, for example search or ontology exploration requests.

The first part gathers its data by either crawling external data sources or by means
of an external client. The external client pushes the data from the source into the
system using a REST API. After extraction, the data is processed, i.e. an index is
built or relevant information is extracted, like name, size, access rights, authors,
keywords, etc. The currently offered crawlers support file system, Web and database

4http://www.eclipse.org/

http://www.eclipse.org/

5.3. RELATED WORK 67

Figure 5.1: The architecture of SMILA

crawling. The focus of SMILA is to enable a search on many different kinds of
unstructured documents from different sources.

5.3.4 Wrappers

In the field of information extraction the notion of a wrapper describes a group of
special procedures for extracting structured data from semi-structured data sources.
A common scenario for the usage of so called Web wrappers is the conversion of
data from different Web pages into a relational database, e.g. for extracting names
and corresponding e-mail addresses. In general, a wrapper comprises a set of ex-
tractions rules and an implementation that is capable of applying theses rules [117].
Extraction rules and implementation commonly are created manually by humans,
yet, different research approaches exist, investigating on an automatic induction and
maintenance of wrappers [117, 97, 108].

5.3.5 Applicability

In this section, the applicability of the presented related work is evaluated against
the requirements of Section 5.3.

5.3.5.1 Ontology Versioning & Evolution

Ontology Versioning emphasizes the creation and management of different versions
of an ontology. The ontology update mechanism induces changes on the service
description ontology and thus also creates different ontology versions. Within the
scope of this work, only the most current version is relevant for decision making.
If a history of data updates becomes relevant, e.g. if historic prices or QoS values

68 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

influence decision making, ontology versioning obtains significance and all aspects
of ontology versioning have to be considered.

Ontology Evolution cares about the consistency of ontologies undergoing struc-
tural changes. This is an important facet for an ontology developer. For an auto-
mated update mechanism with focus on updating data values, i.e. instances and
their data properties rather than structural changes on class level, only partial as-
pects of the ontology evolution process are relevant.

5.3.5.2 Ontology Update Language

The Ontology Update Language enables structured and controlled updates to an RDF
graph. OWL, however, is not supported. Nevertheless, the concept of the change
pattern can be applied to the scenario of the ontology update mechanism. The sce-
nario of updating prices or QoS values thereby resembles a special case of a change
pattern, as only data values of datatype properties are affected. Compared to the
capabilities of the ontology update language, an automated update process is very
constrained regarding the required functionality. This is especially the case since
changes are not triggered by users, but by update rules which can be validated ex
ante.

5.3.5.3 SMILA

SMILA’s extensible framework for accessing and integrating unstructured data po-
tentially can be the groundwork for an ontology update mechanism. Documents
containing price and QoS information can be read by SMILA’s crawling engine. In-
formation extraction can be achieved by means of the integrated BPEL engine and
a suitable workflow. The obtained information can be integrated into an ontology
using SMILA’s ontology store. However, the concept is limited to the integrated
crawlers and the implementation of additional crawlers for currently not supported
data sources is a cumbersome task. Regarding the ontology store, SMILA imple-
mentation is free of any predefined semantics. OWL integration is possible, but not
implemented. While a SMILA-based approach to achieve an ontology update mech-
anism seems feasible, it appears to be less versatile and requires more effort than the
development of a specific ontology update mechanism.

5.3.5.4 Wrappers

Wrappers have their focus on the extraction of data from semi-structured informa-
tion sources into structured data. Depending on the implementation, existing work
in the area of wrappers fulfills many of the posed requirements for an automated on-
tology update process and therefore can serve as a vital input and extension to the
approach in the work at hand. Particularly, the concept of an automatic creation and
maintenance of wrappers could be transferred to the creation and maintenance of
update rules in this scenario. Nonetheless, there is currently no wrapper approach
known to the author, which is capable of both extracting data from heterogeneous

5.4. CONCEPT 69

data sources (other than Web pages) and using the gained information for updating
data values in OWL ontologies.

5.3.5.5 Summary

As summary, one can conclude that neither Ontology Versioning & Evolution, the On-
tology Update Language, SMILA nor wrappers completely fulfill the requirements for
an ontology update mechanism that is appropriate for the mass customization sce-
nario described in this thesis. Nevertheless, the designated approach presented in
Sections 5.4 and 5.5 can benefit from the related work which has been investigated
on in this section.

5.4 Concept

This section presents the main contribution of the ontology update manager. First,
major concepts and design decisions are described in Section 5.4.1. Second, the ar-
chitecture of the ontology update mechanism is defined in Section 5.4.2. Lastly, we
discuss different types of data sources and how to extract data from them in Sec-
tion 5.4.3.1.

5.4.1 Underlying Concepts and Design Decisions

This section covers underlying concepts or principles and design decisions. First
the concept of an update rule is described, followed by the notion of a self-updating
ontology. Design decisions regarding the ontology persistence and the information
integration are presented in two further subsections.

5.4.1.1 Update Rule

The goal of the ontology update mechanism is to update arbitrary data values of
an ontology. Current values have to be extracted from external data sources and
stored into the ontology. The concept is therefore similar to a data warehouse. A
data warehouse is a central database designed to store large sets of data from dif-
ferent sources. Before the extracted data can be stored, it has to be transformed to
match the data scheme defined in the data warehouse, such that queries designed
for the scheme can be executed on the extracted data. Integration rules manage this
transformation process. The process of integrating data into a data warehouse is
called ETL process and consists of three parts [98]:

Extraction. All processing steps necessary to extract the desired data from the data
source. Since various types of sources exist, different extraction methods are nec-
essary. E.g. for a relational database as data source, an SQL operation has to be
launched, for an XML source, the XML document has to be loaded into the parser.

70 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

Transformation. The steps required for transforming the extracted data to meet the
data warehouse scheme. Typical transformations are for name, date or time values
or address information, which are available in many different data formats.

Loading. The actual process of loading the extracted and transformed data into the
data warehouse.

The concept of the ETL process can be applied to the problem definition of the
ontology update manager. Current information from different and heterogeneous
data sources have to be integrated into a service description ontology. First, we
want to provide a formal description of the integration process. The integration
process for updating an ontology comprises the extraction of data values from a data
source, transformation commands and the storage of the newly obtained values into
the ontology. For describing the integration process of an instance of the ontology,
the concept of an update rule is used. An update rule thereby refers to the above
mentioned integration rule in the context of data warehouses. Its purpose is to keep
the data type property within an ontology up-to-date, i.e. it formally describes the
update specification for an instance of a service resource.

Definition 5.1 [UPDATE RULE]. An update rule is the 6-tuple ρ = (C, D, I, E,U, T) with

• C: <OWLIndividual> instance subject to the update

• D: <OWLDataProperty> data type property of C containing data value requiring
update

• I: <Int> update interval in seconds

• E: <ExtractionMethod> extraction method

• U: <URI> URI of the data source containing the latest information values

• T: <Object> transformations required after extraction of the data value

The update rule is applied after the update interval has been exceeded, i.e. the
elapsed time between the last update is greater than the designated update interval.
This enables a structured and controlled update process. An instance of the ontology
can be assigned more than one update rule. This way, different data sources for
the same information can be addressed, either as backup for malfunctioning data
sources or to compare, average or minimize/maximize over different values. In the
intermediary variant of the scenario (cf. Section 3.1.2) for example, this allows to
obtain prices for a certain 3rd party service resource from different providers.

5.4.1.2 Self-Updating Ontology

Since the ontology update mechanism is applied to update instance information
within an ontology, it seems natural to maintain all update rules within the same
ontology. This has three major advantages, as it (1) centralizes both knowledge and
its update rules in one place, (2) allows to refer from the update rules directly to

5.4. CONCEPT 71

Figure 5.2: Example for object properties hasUpdateTarget and hasUpdateTarget

instances of the same ontology and (3) thus ensures consistency, as the validity of
rules can be checked automatically by means of reasoning.

The service ontology is extended with a new class UpdateRule, having differ-
ent subclasses to address different data sources. Examples are UpdateRuleREST,
UpdateRuleXML, UpdateRuleHTML. The class Resource receives the additional ob-
ject property hasUpdateRule, which indicates the relation between an instance of a
service component and its corresponding update rule. The object property hasUp-
dateTarget refers to the instance receiving the update. Depending on the use case, this
could be the same instance as the one associated with the update rule. However, the
date value requiring the update can also be the data type property of another in-
stance for describing a quality or cost aspect of the service component. An example
for the usage of both properties is depicted in Figure 5.2.

Additional data type properties are introduced to capture the source and the time
of the latest updated value. hasValueUpdatedSourceURI:anyURI defines the source of
the current value, hasValueUpdatedTime:dateTime the instant of time of the last update
operation that has written the current value.

A concrete update rule instance belongs to either of the subclasses of UpdateRule,
defining its extraction method. Additional data type properties of the class Up-
dateRule are

• hasURuleInterval:int – contains the update interval in seconds

• hasURuleSourceURI:anyURI – the URI of the data source

• hasURuleTransformation:String – contains potential transformations

Through this extension to the service ontology which captures all aspects of an
update rule, it is possible to model a domain ontology containing all commands nec-
essary for it to be self-updating. An software architecture reading this information
and controlling the update process is presented in Section 5.4.2.

5.4.1.3 Ontology Persistence and Shared Access

For persisting the ontology and providing a shared user access, the architecture is
based on OWLDB (cf. Section 2.1.3.3). OWLDB is open source potentially allow-

72 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

ing software adaptions if the use case requires such adaptions. As a knowledge
base for engineering mass customized services can get quite substantial, an effi-
cient database storage is beneficial over in-memory ontology solutions. A central
database approach enables shared access by different applications running on dif-
ferent systems to the same knowledge base. Simultaneously, main memory con-
sumption is lowered, as the ontology can be loaded partially and only according
to the need of information. The semantic description frameworks relies on OWL
as ontology language. OWLDB as object relational projection of OWL API offers a
higher performance compared to triple-based storage like Jena SDB when executing
OWL queries [68].

5.4.1.4 Information Integration

The presented concept is based on a material information integration approach, i.e.
the data is collected and stored in a central ontology. This knowledge is offered to
applications which process the data or do reasoning with it. This implies that all in-
formation has to be present at time of the query, as opposed to a virtual information
integration approach, where the latest information is gathered on demand. Thus,
all query and processing steps can be executed in the local memory, yielding a sig-
nificant performance improvement over any virtual integration approach. While a
virtual approach offers the most current information, this benefit is traded against a
loss of performance. The material approach, on the other hand, requires a regularly
executed update process to ensure data up-to-dateness.

Overcoming data heterogeneity. Information integration requires mastering both
technical and semantical data heterogeneity. Let us for example consider price infor-
mation. There exist many different data sources for price information. In addition,
different technologies for representing price data and different semantics can be
found and have to be dealt with. The obtained data differs in currency, format, syn-
tax and decimal representation. The following values all potentially carry the same
price information: 1.000,500, EUR 1000,50, 1000,50€, 100050, 1,251 USD, 1251$, ...

Update Result. We define a common information model for the resulting informa-
tion from the update process. After data extraction and transformation, an update
event is triggered bearing the current data value. The data model for an update
result is defined as follows:

Definition 5.2 [UPDATE RESULT]. An update result is the 4-tuple τ = (C,U,V, T) with

• C: <OWLIndividual> instance subject to the update

• U: <URI> URI of the data source containing the latest information values

• V: <Object> new data value from data source

• T: <Timestamp> timestamp at which the update occurred

Update results are written back into the ontology. They represent the most cur-
rent value of a data value of interest. Even if the value has not changed since the

5.4. CONCEPT 73

Figure 5.3: Architecture of ontology update mechanism

preceding update, knowledge on the continuous validity of the current value can be
derived. Before the actual value can be written, additional checks have to be per-
formed. If there exists only one update rule for a certain information, the value can
be written directly. In case there exists more than one rule, the applicability of the
various rules has to be validated. In some cases, the minimum or maximum of all
obtained values yields the semantically correct information, in other cases it is the
average of all values.

5.4.2 Architecture

The architecture of the ontology update mechanism comprises three main compo-
nents: OWLDB Handler for accessing the ontology using OWLDB, the Data Source
Handler which is responsible for the data extraction from the data source and the
Ontology Update Manager, building the core component responsible for the coordi-
nation of the update process. It is depicted in Figure 5.3.

The Ontology Update Manager does not directly access the OWLDB-based ontol-
ogy, but communicates with an abstraction layer, the OWLDB Handler. The same
principle is applied to the access mechanism to external data sources. Instead of
directly accessing the data source, the Ontology Update Manager calls the Data Source
Handler which connects to the data source according to the present update rules
and extracts the desired data value. The introduction of the layered architecture en-
sures the extensibility for further functionality, additional data sources or enables
the exchange of certain algorithm. By relying on the concept of encapsulation, such
modifications are possible without changes to the core component, easing the main-
tenance of the software solution.

5.4.3 Sequence of Update Process

Figure 5.4 shows a UML sequence diagram depicting the processing steps for ex-
tracting a data value from an XML document. First, the update rules {ρ1,ρ2, ...} are

74 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

Figure 5.4: Sequence diagram of update process

loaded from the ontology into the core component by calling the method loadUp-
dateRulesFromOntology() from the OWLDB Handler. Thereafter, the method getUp-
date() from the Data Source Handler is called, comprising one loaded rule ρ as
method parameter. The extraction method parameter E is read by the Data Source
Handler and the corresponding extraction method is selected. The executeRule()
method of a context object is called with the update rule ρ as parameter. This re-
sults in the execution of the execute() method of the selected extraction method – the
XML extraction method it this example. The data is extracted from the XML docu-
ment followed by transformations T defined in the update rule ρ. The result in form
of an update result object τ is returned to the Ontology Update Manager. At last, the
method changeOntology() from the OWLDB Handler is called with τ as parameter.
The value V of τ is written into the ontology and the success of the write transaction
is acknowledged.

5.4.3.1 Data Extraction

When extracting data values from a given data source, both the data representa-
tion and the transport protocol providing the data strongly influence the extraction
process. Representations for example can be of raw binary type, HTML or XML for-
mat or even image data. For each data representation, a corresponding data extrac-
tion method has to be designed. Commonly found data representations are XML,
HTML or JSON. The different data representations can be categorized as unstruc-
tured, semi-structured or structured data. Transport protocols are typically HTTP
based interfaces like RESTful services or the more complex WSDL based services.
Less common are file based protocols, which are found in intranet contexts.

Unstructured Data. Unstructured data is found in documents or images and is char-
acterized by the fact, that the data representation is not machine-readable without
the use of complex algorithms. Typically, the information is easily extractable and
interpretable by humans, but hard to recognize for machines. Examples could be

5.5. IMPLEMENTATION 75

prices in a catalog available as PDF5 file or QoS information that is rendered as an
image file. In these cases, pattern recognition (e.g. using regular expressions) and
OCR6 algorithms come into play.

Semi-Structured Data. Semi-structured data is characterized by the fact, that it
contains both structured data and unstructured data. A typical example for semi-
structured data is free text which is structured by machine readable tags, as it is the
case in HTML Web pages. In this case, the interpreter (i.e. Web browser) knows
how to handle the HTML tags like <title> or <h1>; the text contained within
the tags, however, has no meaning to the interpreter. In order to extract informa-
tion from semi-structured data like HTML, an index can be built, as it is done by
search engines for the World Wide Web. Alternatively, the HTML file can be parsed
into a document object model (DOM), which is a tree structure of the underlying
document. Another approach is to transform an HTML document to an XHTML7

document, which is an XML conform representation of the HTML document. Other
than HTML, XHTML is well-formed, i.e. it is easier to parse and can be transformed
by XSLT8 processors.

Structured Data. For any data to be classified as structured data, all contained data
has to follow a well defined structure. I.e. all data values are characterized by prede-
fined and machine readable types. This allows automated parsing and automated
data transformations. Examples for structured data are database tables or XML doc-
uments. For the latter, XSLT as transformation stylesheet for XSLT processor can be
used to extract data values. This can be done for example by traversing the docu-
ments tree structure or by matching tag or attribute names.

Data sources offering structured data are the preferred source for an automated
data extraction and ontology update. Yet, especially on the Web, many potential
sources are not intended for automated data extraction, but designed for human
readers and thus provided as semi-structured data.

5.5 Implementation

The presented concept is implemented in Java 1.6 with the Ontology Update Man-
ager running as a background process. A UML class diagram showing the im-
plementation is depicted in Figure 5.5. The background process can be monitored
through the console where every step of the update process is logged. Additional
transparency can be achieved by running a separate process that displays the state
of the updated instance following a certain update interval. Four different extraction
methods are implemented as proof-of-concept: HTML and XML as generic methods
for accessing static or dynamically created web content; Amazon SOAP Web service
and Amazon REST Web Service extraction methods for reading Amazon Elastic Cloud
offers from Amazon’s Web service. Web service, other than static or dynamic web

5Portable Document Format
6Optical Character Recognition
7eXtensible Hypertext Markup Language
8Extensible Stylesheet Language Transformation - part of the Turing complete XSL language [83]

76 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

Figure 5.5: UML diagram of prototypical implementation

5.5. IMPLEMENTATION 77

content, expect input parameters that influence the response. Data access for all
extraction methods is based on the HTTP protocol.

5.5.1 Example Update Rules

As a proof-of-concept, several update rules as prototype for different extraction
methods and transformation coping with different challenges arising from the dif-
ferent data formats were implemented. Examples for such rules are presented in the
following.

5.5.1.1 HTML

For the prototypical implementation of an HTML update rule, a regular expression
based approach is chosen to address this semi-structured data format. First, the
HTML Web page is accessed via HTTP from a Web server. A regular expression
serves as pattern for searching the data value of interest from the complete HTML
document. Lastly, the concrete data value is obtained from the regular expression
engine. Consider for example an HTML document containing the following price
information:

Listing 5.1: Sample HTML Document

< !DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4 . 0 1 T r a n s i t i o n a l //EN">
<html xmlns : og=" ht tp :// opengraphprotocol . org/schema/" >
. . . .

 196.70& nbsp;& euro ;
. . . .

</html>

The corresponding update rule ρ = (C, I, E,U, T) for extracting the price infor-
mation is defined in the following:

• C := WindowsServer2008_LicenceCosts

• D := hasValue

• I := 7200s

• E := HTML

• U := https://anyshop.com/pricelist/windows_prices.html

• T := (.*?) € (regular expression)

This example implementation expects a regular expression. In the example, the
number “196.70” is extracted and returned as data value. The data type property
hasValue of instance WindowsServer2008_LicenceCosts is updated accordingly. This
rule is executed every 7200s, i.e. every two hours.

A drawback of this very simple approach is, however, that it will fail if the re-
turned HTML document slightly differs from the expected structure.

https://anyshop.com/pricelist/windows_prices.html

78 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

5.5.1.2 XML

The method for extracting data values from structured information contained in
an XML document is implemented by means of XSLT transformations. The XML
document is read by a standard Java XML parser and than transformed using a
suitable XSLT stylesheet. A sample XML document could be the following:

Listing 5.2: Sample XML Document – sample_pricelist.xml

<?xml version=" 1 . 0 " encoding=" utf−8" ?>
<doc>

<server>
<name>DellPowerEdgeR905</name>
< p r i c e >8763</ p r i c e >

</server>
<server>

<name>DellPowerEdgeR300</name>
< p r i c e >890</ p r i c e >

</server>
</doc>

For getting the desired data value, the well-defined structure of the XML document
has to be analyzed and then used to create a suitable transformation. The corre-
sponding sample XSLT stylesheet which extracts the price value for ontology in-
stance DellPowerEdgeR905 hence is the following:

Listing 5.3: Sample XSLT Document – transformation.xsl

<?xml version=" 1 . 0 " encoding=" utf−8 " ?>
< x s l : s t y l e s h e e t version=" 1 . 0 "

xmlns :xs l=" h t t p : //www. w3 . org /1999/XSL/Transform ">
< x s l : t e m p l a t e match="/">

<xsl : for−each s e l e c t =" doc/server ">
< x s l : i f t e s t ="name= ’ DellPowerEdgeR905 ’ ">

<xsl :value−of s e l e c t =" p r i c e "/>
</ x s l : i f >

</xsl : for−each>
</ x s l : t e m p l a t e>

</ x s l : s t y l e s h e e t >

To refer back to the update rule notion, we can express the rule as ρ = (C, I, E,U, T)
with

• C := DellPowerEdgeR905_Costs

• D := hasValue

• F := 14400s

• E := XML

• U := https://anyshop.com/pricelist/sample_pricelist.xml

• T := transformation.xsl

https://anyshop.com/pricelist/sample_pricelist.xml

5.5. IMPLEMENTATION 79

5.5.1.3 SOAP Web Service

As an example for an implementation of the SOAP Web Service extraction method
serves a client for getting price information on Amazon’s EC2 Cloud services. Ama-
zon offers a SOAP-based Web service together with an additional Java API9 for
accessing this Web service. It offers a broad functionality including current and
historic price information on the Amazon Cloud spot market, where virtual com-
pute instances are offered with a dynamic pricing mechanism. Prices for these spot
instances are set on an hourly basis by Amazon. The corresponding update rule
following the generic notation is the following: ρ = (C, I, E,U, T) with

• C := AmazonEC2StandardSmall_Spot_Costs

• D := hasValue

• F := 3600s

• E := SOAP AWS

• U := m1.small (EC2 instance type)

• T := ∅

Potential values for the EC2 instance type are: m1.small, m1.large, m1.xlarge,
t1.micro, m2.xlarge, m2.2xlarge, m2.4xlarge, c1.medium, c1.xlarge, cc1.4xlarge,
cg1.4xlarge.

5.5.1.4 REST Web Service

Amazon offers information on its complete product assortment over the Amazon
Product Advertising API10. Data like price information of all products offered by
Amazon can be access via a REST Web Service. As an example for accessing REST
Web service, an extraction method for obtaining price information on products of-
fered by Amazon is implemented. For obtaining access to Amazon’s REST service,
a secret key for signing the request is required. A sample rule using this extraction
method in formal notation is the following: ρ = (C, I, E,U, T) with

• C := Windows7_LicenseCosts

• D := hasValue

• F := 86400s

• E := REST AWS

• U := http://ecs.amazonaws.de/onca/xml?ItemId=B002NLKNRY

(ItemID refers to the product Windows 7)

• T := amazon.xsl
9http://aws.amazon.com/de/sdkforjava/
10http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/

http://ecs.amazonaws.de/onca/xml?ItemId=B002NLKNRY
http://aws.amazon.com/de/sdkforjava/
http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/

80 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

The resulting information is encoded in an XML document, which has to be trans-
formed by means of an XSLT transformation (amazon.xsl) to obtain the desired data
value.

5.5.1.5 Adding Extraction Methods

If additional data sources require an alternative extraction method, a new extrac-
tion method has to be implemented and added to the set of existing methods. The
Java class implementing the new method has to implement the interface Extraction-
Method. The following five steps are necessary in order to use the additional method:

1. Ontology Extension. The service ontology (cf. Section 4.3.1) has to extended
by adding a new class for the new extraction method as subclass of UpdateRule.

2. Implementation. A new Java class implementing the interface Extraction-
Method has to be implemented, containing the necessary coding steps for ac-
cessing the data source and doing the required transformations.

3. Registration to OWLDB Handler. The new subclass has to be registered to
the OWLDB Handler, such that update rules of the newly created extraction
method are loaded.

4. Registration to Data Source Handler. The new extraction method has to be
registered to the Data Source Handler, such that it can be executed in the cor-
responding procedure.

5. Update Rule Creation. The rules using the newly added extraction method
have to be defined and added to the domain ontology.

5.6 Evaluation

In this section the above presented concept of an ontology update manager and
its implementation are evaluated. We begin with a quantitative evaluation in Sec-
tion 5.6.1, investigating on the system performance. In addition, a list of relevant
issues for conducting a more exhaustive quantative evaluation is given. In the sec-
ond part of this section, a qualitative evaluation follows in Section 5.6.2, contrasting
the presented concept with the posed requirements and discussing open issues.

5.6.1 Quantitative Evaluation

A quantitative evaluation is characterized by an objective, i.e. measurable, assess-
ment of a given solution to a certain problem. An extensive performance evaluation
thereby examines the scalability of the presented approach, which is a major require-
ment for it to function in a real life setting. An exhaustive quantitative evaluation
of a software solution additionally requires further tests. While these tests exceed
the scope of this thesis, a description of the potential issues, which should be inves-
tigated on in such a test, is given.

5.6. EVALUATION 81

Extraction Method 800 MHz 1200 MHz 1800 MHz
HTML 2.122 1.278 0.922
XML 0.270 0.180 0.126
SOAP AWS 2.733 2.658 2.644
REST 0.488 0.317 0.225

Table 5.1: Average execution time [s] over 100 executed update rules

5.6.1.1 Performance Evaluation

To evaluate the proposed solution against Requirement 5.4 (scalability) various load
tests have been performed to benchmark the ontology update manager concept.
Considering scalability, two different concepts have to be differentiated, the hori-
zontal and the vertical scalability [60]. A vertical scalability is given, if additional
load can be handled by proportionally adding system resources (processing power,
memory, storage, etc.) to a single system. Horizontal scalability is given if addi-
tional load can be handled by proportionally adding further compute nodes to a
parallelized software system. In the latter, only vertical scalability is investigated,
as vertical scalability can be achieved more efficiently than horizontal scalability and
thus is typically tried first.

As the ontology update procedure does not involve reasoning steps, the execu-
tion time mainly depends on the number of instances and the extraction method
which has to be applied. An important external factor is network latency. As the
data sources implemented in the prototype are connected trough the Internet, a re-
liable Internet connection is inevitable for serious benchmarks. The tests therefore
were conducted from within the fast access internet connection of the Karlsruhe In-
stitute of Technology, which is offering a sufficient band width for the amount of
data transferred. Yet, latency due to network congestion or slow server response
time on the side of the data source providers cannot be averted and explains some
of the volatility of the obtained results.

Test Environment. All tests were conducted on a single personal computer with
the following characteristics: Intel Core 2 Duo 1.8 GHz Processor, 2 GB DDR2 RAM,
100 MBit/s LAN connection, Windows XP SP3 operating system, Java Version 1.6.

A first test was conducted to investigate on the influence of processor clock rate
on the execution time of the different extraction methods. Therefore 100 update
rules of a given type were executed on an ontology containing a total of 300 in-
stances. The tests were performed in sequential order, beginning with 800 MHz, fol-
lowed by 1200 MHz and 1800 MHz. The results are shown in Table 5.1. All update
rules are found to be scaling with processor clock speed, yet, with one exception.
The update rule connecting to the Amazon SOAP Web service only showed slightly
increased performance. The processor speed has almost no influence, since the long
execution time accrued from the communication with the SOAP Web service. In
fact, the conducted tests with this extraction method did not lead to a full proces-
sor load. As expected, the HTML extraction method is most costly with respect to
computation time due to the regular expression matching.

82 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

(a) HTML Extraction Method (b) XML Extraction Method

(c) SOAP Extraction Method (d) REST Extraction Method

Figure 5.6: Benchmark of execution time [s]

While the approach in general is found to scale with processor speed, a second
performance test was conducted to find out the influence of a growing number of
instances requiring an update from an external data source. The results of the con-
ducted experiments are depicted in Figure 5.6. All tested extraction methods show
a linear increase in time with a growing number of executed update rules. Hence,
it can be assumed that the update mechanism has a time complexity of O(n) for all
tested extraction methods, with n the number of update rules in the system.

5.6.1.2 Further Quantitative Evaluations

For a broad quantitative evaluation, further tests and questionnaires are inevitable
to evaluate the benefit of the presented solution. We omit such tests, as they exceed
the scope of this thesis. However, we want to briefly present the most relevant
questions to be raised:

Horizontal Scalability. What is the potential reduction in the execution time for the
update rules when the update mechanism is parallelized and distributed among
several compute nodes?

Data Extraction Errors. What likelihood of data extraction errors and how do these
errors affect the system?

Update Rule Lifecycle. What is the average lifespan of an update rule and how to
manage the lifecycle of an update rule?

5.6. EVALUATION 83

Benefit/Cost Ratio. What is the actual added value of having up-to-date informa-
tion in the context of optimizing mass customized Cloud services and what are the
corresponding costs accruing from the ontology update mechanism?

5.6.2 Qualitative Evaluation

In the following, the requirements of Section 5.2 are reviewed and the presented
concept evaluated against them.

Manifold Data Sources. In this chapter, four different extraction methods (that
have been prototypically implemented) were presented. Further data sources can be
added by following the guideline in Section 5.5.1.5, enabling the presented concept
to potentially handle many different protocols and formats without modification to
its core.

Adaptability & Reusability. The presented concept is capable of updating any
OWL-based ontology. The ontology, however, has to be adapted by adding the con-
cept UpdateRule and the other additional classes and object properties mentioned in
Section 5.4.1.2.

Controlled & Structured Update Process. An update rule is a formal representation
of a recurring update process. The information contained like the update interval,
the instance to be updated or the datatype property is used to ensure a controlled
and structured update process.

Scalability. The presented approach was found to be linearly scaling with an in-
creasing number of update rules.

Consistency. The software component OWLDB Handler is responsible for writing
updates to the ontology. By calling the method changeOntology(), updated values
are written into the datatype property. To ensure consistency, the data format of the
update value is checked before allowing write access. As these are the only changes
applied to the ontology, consistency is guaranteed.

Transparency. All information on the execution of update rules are written into
a log file. In addition, a process for monitoring current values was implemented.
Nevertheless, further improvements could be made by implementing a history of
values and by providing user-friendly graphical interfaces.

Persistency & Shared Access. The usage of OWLDB as central ontology persistence
layer allows both an efficient database persistence and shared access to the knowl-
edge base.

OWL Support. OWL is supported through relying on OWLDB as database persis-
tence implementation of the official OWL API.

The results of the above qualitative evaluation and the applicability of related
work are summarized in Table 5.2. Ontology versioning and evolution are omitted
in this overview due to the completely different focus.

84 CHAPTER 5. ONTOLOGY UPDATE MECHANISM

Ontology
Update

Requirement Language SMILA Wrappers This Work
5.1 Manifold Data Sources # G# G#
5.2 Adaptability/Reusability G#
5.3 Structured Update G#
5.4 Scalability G#
5.5 Consistency
5.6 Transparency G# G#
5.7 Persistency & Shared Access # G#
5.8 OWL Support G# #

Table 5.2: Review on requirements

5.7 Summary

An ontology serving as a knowledge base for engineering and optimizing Cloud
services is required to contain most recent information on both quality and costs of
service resources. In this chapter, a mechanism for automating data updates to an
ontology was presented. Following various design concepts like the ETL process of
a data warehouse or the concept of a self-updating ontology, both concept and proof-
of-concept implementation for such an update mechanism were presented. Apart
from describing related work in this area, the chapter also provided a performance
evaluation and a qualitative evaluation against the requirements originating mainly
from the use case and Research Question 2.

By means of the presented contribution, it is possible to keep information on ser-
vice resources stored in an OWL ontology up-to-date through integrating manifold
data sources from the Web in a scalable, transparent and consistent manner.

Chapter 6

Service Engineering Algorithm

I n the offer creation phase for a mass customized Cloud service, service provider
and consumer need to agree on the functionalities provided by the desired Cloud

service. In the envisioned offer creation process (cf. Chapter 3), this is achieved by
the consumer selecting one or more (abstract) functionalities by means of a catalog
to choose from. Thereafter, the functional engineering phase takes care of finding
feasible service configurations which are capable of providing the requested func-
tionalities. A semantic service description framework serving as knowledge base
for both the catalog and the knowledge on how to find feasible configurations was
presented in Chapter 4. A further challenge, however, lies in deriving all feasible
configurations matching the functional requirements of a given consumer request.

The current chapter addresses this challenge by providing a service engineering
algorithm which is capable of using information stored in such a framework to de-
rive all feasible configurations by iteratively resolving dependencies starting from a
set of functional requirements specified by the service consumer. It is structured as
following. Requirements posed upon the algorithm are given in Section 6.1. There-
after, related work from the areas of Web service composition, constraint program-
ming and ontology-based configuration is presented in Section 6.2. A formal model
for describing functional requirements and the resulting service configuration graph
follows in Section 6.3. The chapter’s main contribution – the service engineering al-
gorithm – is described in Section 6.4. Implementation and evaluation are presented
the subsequent Sections 6.5 and 6.6. The chapter is concluded by a summary given
in Section 6.7. The results of this chapter are largely based on [65].

6.1 Requirements

In order for the designated algorithm to be able to derive a service configuration for
a certain consumer request based on a semantic description of available service re-
sources, we recognize four requirements as important specification for it to function
in the scenario of this thesis. As stated before, the functional requirements are se-
lected from a catalog of functionalities as provided by the semantic service descrip-

86 CHAPTER 6. SERVICE ENGINEERING ALGORITHM

tion framework.1 The algorithm therefore has to work on the basis of an ontology
describing service functionalities and resources.

Requirement 6.1 [ONTOLOGY-BASED KNOWLEDGE BASE]. The dependency and
compatibility information required by the algorithm should be stored in an ontology, as it
is for example provided by the semantic service description framework.

Outgoing from the abstract functional requirements specified by the consumer
potential service configurations have to be derived. The algorithm has to resolve
dependencies specified in the knowledge base beginning at the functional require-
ments in a recursive manner until no pending dependencies are left.

Requirement 6.2 [DEPENDENCY RESOLUTION]. The algorithm should provide an au-
tomatic resolution of all (transitive) dependencies between functionality and service resource
classes, starting from the top level functionalities defined in the functional requirements,
ending when no more unresolved dependencies exist and resulting in a graph structure com-
prising all feasible configurations.

During the recursive resolution of dependencies, compatibility between service
resources needs to be checked in order to prevent unfeasible service configurations
to be contained in the resulting graph structure.

Requirement 6.3 [COMPATIBILITY]. Compatibility/interoperability between depending
resources has to be validated and thus feasibility of potential configurations needs to be en-
sured at all times.

To ensure practicability of the algorithm in real-life scenarios, we require deter-
minism, termination and scalability as preventable non-determinism, interminable-
ness or exponential time complexity would lead to suboptimal or unsatisfied con-
sumer requests and thus should be avoided if possible.

Requirement 6.4 [DETERMINISM, TERMINATION & SCALABILITY]. The algorithm
should be deterministic, i.e. identical input will lead to identical output, terminating in
finite time and scalable, i.e. having a polynomial growing time complexity with respect to
the problem size.2

The requirements above serve as design goal, for investigating on the applicabil-
ity of related work and for evaluating the resulting algorithm qualitatively.

1A detailed solution on how to offer such a catalog through a graphical user interface to end con-
sumers is not in the scope of this work.

2The problem size is mainly influenced by the consumer’s functional requirements and the ontol-
ogy’s structure.

6.2. RELATED WORK 87

6.2 Related Work

For solving the technical problem of deriving configuration alternatives, a broad
spectrum of research areas has to be covered, from Web service composition to tech-
niques from operations research and constraint programming.

Berardi et al. [16] address the problem of automatic service composition by de-
scribing a service in terms of an execution tree, then making use of finite state ma-
chines to check for possible service compositions that match a requested behavior.
Lécué and Léger [96] present an AI planning-oriented approach using Semantics.
Based on causal link matrices, the algorithm calculates a regression-based optimal
service chain. Both [16] and [96] concentrate on input/output based matching of
Web services, thus they are not suitable for deriving mass customized Cloud ser-
vices, where the interfaces between service resources are much more complex and
cannot be described in terms of input and output. Another work from the Semantic
Web context by Lamparter et al. [92] describes the matching process between re-
quests and offers of Web services. This approach is related to the matching of com-
patibility constraints (relevant for Requirement 6.3), however it does not include a
mechanism for resolving dependencies.

Blau et al. [25] propose an ontology-based tool for planning and pricing of service
mash-ups. The tool can be used to compose complex Web services from a set of
known atomic services, which are stored in a domain specific ontology. Thereafter,
the complex service can be validated based on axioms and rules in the ontology. The
complex service, however, has to be planned manually within the tool.

Sabin et al. [137] present different constraint programming approaches for prod-
uct configuration. Van Hoeve [72] describes optimization approaches for constraint
satisfaction problems. In [81] an optimization framework combining constraint
programming with a description logic is provided. An ontology-based configura-
tion approach as presented by Yang et al. [153] and Dong et al. [45] was already
mentioned in Chapter 4. In both papers, an OWL ontology in conjunction with
SWRL rules is used to formalize the constraints of a constraint satisfaction problem
(CSP) [109]. Consumer requirements are added as additional constraints to the CSP.
Feasible configurations are derived by solving the CSP through transforming the
concepts modeled in OWL and the constraints formulated by means of SWRL into
the JESS rule engine, a forward-chaining reasoning method implementing the Rete
algorithm for processing rules. Common to all of these approaches is that the con-
figuration problem itself is static with a well-defined set of configuration options
which is known ex ante. This differs from the problem which is considered in this
work, where configurations can be completely distinct from each other. Configura-
tion options, thus, are only contained implicitly in the model and have to be made
explicit for every individual consumer request.

Two software tools that include a transitive dependency management should
also be mentioned, which are mainly related to Requirements 6.2 and 6.3. Ad-
vanced Packaging Tool (APT) [141] is a package management system to handle the
installation and removal of software packages on Linux distributions. APT allows
to automatically install further packages required by the desired software to avoid
missing dependencies. The dependency management also includes compatibility

88 CHAPTER 6. SERVICE ENGINEERING ALGORITHM

checks, however only in form of a rather simple version level check. Another de-
pendency manager is Apache Ivy.3 Dependencies in Ivy are resolved transitively,
i.e. you have to declare only direct dependencies, further dependencies of required
resources are resolved automatically. Both approaches, however, do not allow any
semantic annotation which would enable more complex dependencies or interoper-
ability constraints.

6.3 Formal Model

In the following, formal representations of the functional requirements and the re-
sulting service configuration graph are given.

6.3.1 Functional Requirements

Functional requirements describe what is needed, i.e. the resources required for
a functioning service, whereas non-functional requirements describe how it is
needed, i.e. the desired quality of the service. For the declarative description of
functional requirements, we build on concepts taken from an ontology that con-
tains background information in form of an abstract resource and functionality de-
scription layer (service ontology) and a domain-specific layer containing domain-
dependent descriptions of available resources (domain ontology). Based on the con-
cepts from the semantic service description framework described in Chapter 4, we
define functional requirements as follows.

Definition 6.1 [FUNCTIONAL REQUIREMENTS]. For a background ontology O the
functional requirements for a mass customized Cloud service are described by the set of
concepts C, with C = {C1, . . . ,Cn} and Ci v Functionality, i.e. each Ci being a subclass of
the concept Functionality in O.

6.3.2 Service Configuration Graph

By resolving the dependencies for the set of functionalities defined in the con-
sumer’s functional requirements, additional knowledge cannot be gained. One can
only make knowledge explicit, that is implicitly contained in the knowledge base.
The nature of this knowledge is best described by graph structure, which is de-
scribed in the following.

As the additional gained information is only valuable in the context of a certain
consumer request, it would not be useful to materialize the entire domain ontology
for each and every potential configuration that could be obtained by the entire set of
potential service requests. It is, however, reasonable to also rely on an OWL ontol-
ogy for persisting the consumer request specific gained knowledge, so that it can be
used for further reasoning tasks. To do so, the result ontology presented in Chap-
ter 4 makes use of the concepts SourceNode, SinkNode, OrNode and Alternative, all

3http://ant.apache.org/ivy/

http://ant.apache.org/ivy/

6.4. SERVICE ENGINEERING ALGORITHM 89

Online
Survey

Source

Quikpoll

LimeSurvey

op
ti

on
op

ti
on

Script

Script

requires

requires

DB

DB

requires

re
qu

ire
s

Oracle

MySQL

option

option

op
ti

on

Perl

PHP

option

option

OS

OS

OS

OS

requires

requires

requires

requires

Win

Linux

option

option

option

op
tio

n
op

ti
on

option

op
ti

on

Sink

requires

requires

op
tio

n

VM option

VM
Xen

VMware

option

op
ti

on

Figure 6.1: Example dependency graph

defined in the service ontology. SourceNode and SinkNode are a helper nodes to have
a distinct starting and ending points in the graph. They correspond to the source
and sink nodes in a network. The OrNode is introduced to capture the branching
whenever there is more than one compatible resource instance that fulfills the de-
pendency requirement.

In the remainder of this chapter we work with a more formal notation for the
service configuration graph, as this notation is more appropriate in the context of
the later presented pseudo algorithm.4 A simple and arbitrary example graph is
depicted in Figure 6.1.

Definition 6.2 [SERVICE CONFIGURATION GRAPH]. For a background ontology O and
functional requirements given as a set of concepts C, the service configuration graph
G = (V, E) is a directed, acyclic, labeled graph with vertices V and edges E and a labeling
function L, recursively defined as follows:

• n0 ∈ V is the source node of G

• n∞ ∈ V is the sink node of G

• there is a node nC ∈V with label L(nC) = C for each (atomic or nominal) class C ∈ C
and an edge (n0,nC) ∈ E

• if n ∈ V is a node with an atomic class label L(n) = A then there is a node no with
label L(no) = {o} for each individual o ∈O with O |= A(o), and an edge e = (n,no)
with label L(e) = or

• if n ∈ V is a node with a nominal class label L(n) = {o} then there is a node nC with
label L(nC) = C for each atomic or nominal class C with O |= C(x) for all x such
that O |= requires(o, x) and O |= isCompatibleTo(o, x), and an edge e = (n,nC)
with label L(e) = and

6.4 Service Engineering Algorithm

OWL reasoners typically construct models for answering standard reasoning tasks,
but do not expose them as such. Since it is needed to explicitly access these models

4Note that both notations are semantically the same.

90 CHAPTER 6. SERVICE ENGINEERING ALGORITHM

as configuration alternatives at the instance-level, an algorithmic solution is chosen,
making use of OWL reasoning capabilities in between the construction of depen-
dency graphs.

Algorithm 6.1 initiateAlgorithm(C, O; G) – Initiate the construction of a dependency
graph.

Require: a set of concepts C as functional requirements and ontology O
Ensure: G contains the service configuration graph for C

V := {n0,n∞}, V∗ := E := ∅
for all C ∈ C do

V := V ∪ {nC}, L(nC) := C
E := E ∪ {(n0,nC)}, L((n0,nC)) = and
for all o with O |= C(o) do

V := V ∪ {no}, L(no) = {o}
E := E ∪ {(nC,no)}, L((nC,no)) = or
deriveServiceConfiguration(O, o, G, V∗)

end for
end for

Algorithm 6.2 deriveServiceConfiguration(O, o; G, V∗) – Recursively construct a service
configuration graph for a given ontology and resource instance.

Require: an ontology O and a resource instance o ∈O
Ensure: G = (V, E) contains a service configuration graph for o, V∗ contains all re-

source instance nodes visited
V∗ := V∗ ∪ {no}
C := ∅, getRequiredClasses(o; C)
if C = ∅ then E := E ∪ {(no,n∞)}
for all C ∈ C do

V := V ∪ {nC}, L(nC) := C
E := E ∪ {(no,nC)}, L((no,nC)) = and
for all o′ with O |= C(o′) and O |= isCompatibleTo(o,o′) do

V := V ∪ {no′}, L(no′) = {o′}
E := E ∪ {(nC,no′)}, L((nC,no′)) = or
if no′ 6∈ V∗ then deriveServiceConfiguration(O, o′ , G, V∗)

end for
end for

The procedure initiateAlgorithm in Algorithm 6.1 initiates the construction of a ser-
vice configuration graph, starting from functional requirements given in C, and calls
the procedure deriveServiceConfiguration in Algorithm 6.2, which recursively finds
suitable service resource instances by following the object property requires. In the
procedure getRequiredClasses the reasoning engine is invoked with the following
SPARQL query to find all implicitly stated dependencies, i.e. through a class ax-
iom rather than explicitly on instance level:

SELECT ? sub ? t ? ob j
WHERE {

? sub owl : sameAs dm: component .

6.5. IMPLEMENTATION 91

Figure 6.2: Screenshot of service engineering algorithm prototype

? sub so : r e q u i r e s _ : b0 .
_ : b0 rdf : type ? t .
? ob j rdf : type ? t }

ORDER BY ? t

so hereby refers to the name space of the service ontology, dm to the name space
of the domain ontology. The literal _:b0 refers to a blank node, i.e. there do not exist
two individuals for which we find the requires property. Yet, based on the axiomatic
knowledge, we know there has to be at least one.

The query will be answered with a set of all types characterizing the blank node.
This results in one disadvantage: We are only interested in the most specific class
assertions. If the knowledge base for example contained the information that each
and every application needs an operating system, the result set of the query would
contain the class OS, however also every superclass up to Thing. Therefore, in a
second step, one needs to find out the most specific classes, i.e. all classes that have
no subclasses also contained in the result set. This can be achieved by a simple
algorithm which has a worst case runtime of O(π2) subsumption checks, with π
the number of classes in the class hierarchy.

As there might be redundant dependencies, which by themselves again might
have further dependencies, visited resources (V∗) are memorized, as their depen-
dencies do not need to be resolved more than once. Further the algorithm remem-
bers unfulfilled requirements and recursively traces them back, deleting unfeasible
paths. For are better comprehensibility these steps are not included in the above
printed pseudo algorithm, as they would only confuse the reader.

6.5 Implementation

As proof-of-concept, a prototype was implemented in Java. As reasoning engine
Pellet [142] was chosen, as to the best knowledge of the author, it is the only OWL
DL reasoner that is capable of reasoning with both SWRL rules and SPARQL queries
that involve blank nodes. A screenshot of the prototype application is depicted in
Figure 6.2.

92 CHAPTER 6. SERVICE ENGINEERING ALGORITHM

The ontology update mechanism (cf. Chapter 5) was integrated by means of
OWL DB (trough relying on the OWL API). This approach allows to rely on domain
knowledge which is kept up-to-date automatically. Further, the optimization prob-
lem following in Chapter 8 has been implemented as binary integer program using
CPLEX and was successfully integrated into the prototype.5

6.6 Evaluation

In the following, the presented solution is thoroughly evaluated against the require-
ments posed upon the service engineering algorithm.

Ontology-Based Knowledge Base. The service engineering algorithm, which was
presented prior in this chapter, derives feasible service configurations based on a set
of concepts C serving as functional requirements of a consumer request. The con-
cepts in C are taken from an ontology which is built upon the concepts of the generic
service ontology presented in Chapter 4. The algorithm then reveals knowledge that
is implicitly contained in the ontology and only valuable for a certain consumer re-
quest by using the information modeled on an abstract level using object properties
requires and isCompatibleTo. Thus, an algorithm was presented that derives service
configurations by relying on an ontology approach for knowledge representation.

Dependency Resolution. Two procedures were presented as core contribution of
this chapter. The first procedure initiateAlgorithm initiates the algorithm and starts re-
solving dependencies beginning at the concepts in C, which represent the functional
requirements given by a service consumer. The second procedure deriveServiceConfig-
uration then recursively resolves all dependencies, until no furhter dependencies are
left. Unfulfilled dependencies are traced back and unfeasible configurations thus
removed from the resulting service configuration graph. Hence, the requirement of
dependency resolution is met.

Compatibility. The recursive procedure deriveServiceConfiguration only adds service
resource instances from the ontology, which are considered compatible through the
object property isCompatibleTo. The semantic service description framework hereby
allows complex SWRL rules for defining compatibility, which can also make use of
additional object or datatype properties associated with a resource instance. This
way, compatibility among dependent service resources is ensured throughout the
entire service configuration graph.

Determinism, Termination & Scalability. The algorithm contains no stochastic
conditional branches, therefore given the same input C and O, the algorithm always
derives the same resulting service configuration graph G in a deterministic manner.
Loops are successfully prevented by remembering already visited nodes in V∗, thus
the algorithm is guaranteed to terminate.

Lastly, for evaluating the scalability of the presented approach, the time com-
plexity of the algorithm needs to be investigated on. With α denoting the num-
ber of classes in C, β the maximum number of instances in any resource class,

5A simplified version of the prototype, without OWL DB and CPLEX integration can be executed
using Java Web Start at http://research.steffenhaak.de/ServicePlanner/.

http://research.steffenhaak.de/ServicePlanner/

6.7. SUMMARY 93

Requirement B
er

ar
di

Lé
cu

é

La
m

pa
rt

er

B
la

u

Sa
bi

n

Ya
ng

/D
on

g

A
PT

/I
V

Y

T
hi

s
W

or
k

6.1 Ontology-Based KB # # # #
6.2 Dependency Resolution G# # # # # #
6.3 Compatibility G#
6.4 Determinism, Termination #
& Scalability

Table 6.1: Review on requirements

γ the maximum number of dependencies of any resource class, π the maximum
number of classes in any class hierarchy of a required resource class and λ the
maximum dependency depth, the algorithm has a worst case time complexity of
O
(
α · βλ+1 · π2 · γλ

)
. We find an exponential time complexity in the maximum de-

pendency depth λ, which, however, can be assumed constant and not growing with
the size of an ontology. With respect to all other metrics, the algorithm shows a poly-
nomial worst case time complexity. In addition, the expected average time complex-
ity presumably will be a lot better, since the above calculation is based on maximum
values and ignores the fact, that not all resource instances contained in a class are
always compatible.

Summarizing Review. The considerations from above are summarized in Table 6.1,
along with an overview on the applicability of the presented related work.

6.7 Summary

After presenting requirements and related work, an algorithm for deriving potential
configurations for a mass customized Cloud service was introduced in this chapter.
The algorithm takes a domain ontology (making use of the semantic service de-
scription framework from Chapter 4) and a set of functionalities as input. It then
derives a service configuration graph by resolving all dependencies stored in the
ontology for the selected functionalities in a recursive and compatibility ensuring
manner, making implicitly contained knowledge explicit in form of a graph struc-
ture. The algorithm is deterministic, terminating and scalable – showing polynomial
time complexity with an increasing ontology size. Lastly, the applicability of related
work and an overview on the the qualitative evaluation was given.

Part III

Economic Design, Implementation
and Evaluation

Chapter 7

Multi-Attributive Negotiations

T his thesis is set in the domain of mass customized Cloud services. Within this
context, provider and consumer need to agree on both functional and non-

functional properties for the envisioned service offer. The negotiation process con-
cerning the functional part thereby follows a binary characteristic, i.e. function-
ality either sufficiently matches the requirements or not. In Part II, an extensive
framework for deriving feasible service configurations matching the functional re-
quirements of a consumer request was presented. Dealing with the non-functional
requirements like QoS and price brings along further challenges for this process.

In this chapter, a theoretical model is introduced in order to evaluate three mech-
anisms for bilateral negotiation on multiple attributes with respect to their economic
properties. Two of the mechanisms are stylized representations of existing mecha-
nisms, one – DISCOUNTBIDDING – is newly introduced. In the light of the impos-
sibility theorems by Hurwicz and Myerson and Satterthwaite, the requirements of
individual rationality and budget balance are maintained due to their practical im-
portance, incentive compatibility is abandoned, and the effect of strategic bidding
on efficiency and distribution of economic surplus is studied in different settings.
For an introduction on these theorems and mechanism design in general refer to
Section 2.3.2.

To the end of this chapter, Section 7.1 redefines the broad scenario presented in
Chapter 3 to form a more detailed negotiation scenario. Related work is reviewed
in Section 7.2, followed by a description of the used methodology in Section 7.3. In
Section 7.4, the economic model for describing the preferences, utility functions and
welfare is presented. Section 7.5 formalizes the negotiation mechanisms, Sections 7.6
and 7.7 analyze strategic behavior and outcomes in settings under complete and in-
complete information with different levels of risk and risk aversion. Based on these
findings, a comparison of the mechanisms in both settings follows in Section 7.8. Fi-
nally, Section 7.9 concludes the findings, sketches their limitations and describes the
implications for the subsequent chapter on service optimization and for the overall
scenario of this thesis. The results of this chapter are largely based on [64].

98 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

7.1 Scenario

As stated before, in the scenario of mass customizing Cloud services, the offer cre-
ation process requires provider and consumer to negotiate over functionality, qual-
ity and price of a service. Regarding the quality, there is an almost infinite space
of options depending on the complexity of the configuration, from different levels
of response time or instructions per second to scalability of the service, availability
levels, and the like. The consumer may have an optimal quality set in mind which
would perfectly fulfill her needs along multiple quality dimensions, paired with a
maximum willingness to pay. Offerings that yield slightly lower quality may still be
good enough, yet come along with a decreased willingness to pay. In other words,
it appears realistic to set some upper and lower quality boundaries to properly de-
fine a consumer request. Receiving a quality higher than the upper boundary does
not increase a consumer’s utility any further while the lower boundary marks the
tipping point at which offerings are no more acceptable for the consumer and, thus,
drops its utility to zero.1 The utility from services in between these boundaries at a
given price can be expressed in a scoring rule or function, as it is commonly used in
multi-dimensional auctions (e.g. [37, 33, 21, 127, 7]).

Transferring the general setting of this thesis into a negotiation scenario for mass
customized services, the challenge for service providers is to decide which negotia-
tion mechanism to use for defining an agreement on quality and price, as described
above. A multi-dimensional negotiation between consumer and provider typically
includes an integrative and a distributive element [149, 133]. The integrative element
shall identify the optimal service level that maximizes the difference from consumer
utility and provider costs. In other words and when expressing consumer utility in
monetary terms, it specifies the value or economic surplus created in the negotia-
tion. The distributive element determines how the economic surplus created in the
integrative part is actually distributed between the negotiating parties. Thus, in this
part, the market participants claim their stake in the created value. Negotiators act-
ing strategically typically address integrative and distributive elements in parallel,
thereby limiting their own ability to mutually maximize the economic surplus.

A negotiation mechanism or, more general, a market mechanism is typically
judged with respect to four desirable economic desiderata (cf. Section 2.3).

Individual rationality ensures that participants do not expect to incur losses from
the mechanism and, thus, do not have to consider opting out from participa-
tion in the negotiation.

Incentive compatibility lets participants honestly report their true type, i.e. true
preferences, as a (Bayesian) equilibrium strategy.

(Ex-post) allocation efficiency requires that whenever a configuration with a cer-
tain service level exists for which the consumer’s valuation is higher than the
provider’s costs, an agreement is reached and the agreement maximizes the
sum over both consumer’s and provider’s utility.

1While there might be even slight changes in utility above/below these boundaries, the assumption
of hard borders simplifies the model, is common in literature and is believed to have little influence
on practical implications.

7.1. SCENARIO 99

Budget balance denotes that no outside payments are required to realize the out-
come.2

Yet, the economic outcome of such a setting is restricted by a multitude of
strong theoretic results: Given quasi-linear preferences, it is impossible to design a
Bayesian-Nash incentive compatible mechanism that achieves individual rational-
ity, efficiency, and budget balance at once (cf. Section 2.3.2.3)3. However, incentive
compatibility is the prerequisite for an efficient outcome. Hence, the named char-
acteristics need to be balanced in some way. For instance, efficient mechanisms
can lead to a considerable need to plough in money, as the famous Vickrey-Clarke-
Groves (VCG) mechanisms give proof of [148, 39, 58]. Likewise, individually ra-
tional and budget balanced mechanisms can result in highly inefficient outcomes
[105, 10]. Additionally, budget balance and individual rationality are compulsory
characteristics to enable sustainability and implementability over time [103, 126].
On the one hand, participants are unwilling to voluntarily participate in a market
mechanism in which they expect to incur losses. On the other hand, continuous sub-
sidiaries are unrealistic, if there is no third party to externally subsidize the mecha-
nism.

In order to evaluate the performance of different negotiation mechanisms, a mar-
ket scenario being an economic abstraction of the scenario presented in Section 3.1
is consulted. It has the following assumptions and characteristics:

• Multiple consumers are interested to procure a mass customized service of a
particular functionality. Besides the service’s functionality and price, quality
attributes play a major role.

• The consumers are endowed with heterogeneous requirements and a different
willingness to pay for variable QoS levels. The consumers’ individual willing-
ness to pay subject to a certain quality level is not fully known to the public.

• Multiple providers are present in the market. They offer mass customized
services in accordance with the solutions presented prior within this thesis.
Providers and consumers agree on the functionality of a service by having the
consumer select the functionalities of her desire from a catalog offered by the
provider. The potential configurations for the selected functionalities differ in
their quality of service and prices, subject to negotiation.

• The providers have different technologies and internal processes that influence
their internal costs for service provision. These factors and costs are not fully
known to the public.

• Both consumers and providers act rationally and strategically in their own
interest.

2This definition describes weak budget balance. Strong budget balance requires the sum of all net
transfers to be zero, cf. Section 2.3.2.1.

3The result cited above is derived in Theorem 1 of [121]. Given this impossibility, their Theorem 2,
provides the grounds for testing whether a given incentive-compatible, individually rational mech-
anism maximizes the expected economic surplus. This theorem does not apply to the present sce-
nario, as its robustness depends on knowledge of both distributions of player types, it is restricted to
single-attribute negotiations (price only) and a trusted 3rd party is required for its implementation.

100 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

• Since both consumers’ and providers’ types are not publicly known, the mar-
ket exhibits uncertainty of the optimal matching. Yet, both consumers and
providers may have some information or expectation on the other market
side’s type which is reflected in their strategies.

• Consumers and providers interact bilaterally. There is no third party running
a central exchange.

• To facilitate online scenarios with low transactions costs, interaction is re-
stricted to two-stage mechanisms, in preference to more complicated nego-
tiation mechanisms. This simplification follows the standard assumption in
bargaining models that delay of reaching an agreement is costly and, thus, ra-
tional agents should reach an agreement immediately with the first offers (cf.
the seminal paper by Rubinstein [135] and the literature building on it).

In the shade of this game theoretic model, analytical and numerical results can be de-
rived. These results would not be feasible in the broad scenario which is much more
complex on a technical level. Nevertheless, the insights gained can be transferred
to the practical scenario and the optimization approach presented in the subsequent
chapter.

7.2 Related Work

There are several market mechanisms to be used in such a scenario. The simplest
and most widely-used mechanism is a fixed price for a specifically defined service
without any further information exchange. Such a fixed price can either be set by
the provider or the consumer. In both cases, the bidding language is very simple, yet
very little information is transferred hindering the discovery of the optimal service
specification given the provider’s and consumer’s types. In game theoretic terms,
such a take-it-or-leave-it fixed price offer is an ultimatum game [61], the simplest
form of a negotiation mechanism. A subtle variation commonly observed in prac-
tice is to not offer a single quality-price combination, but a small set of such com-
binations to choose from. This increases the likelihood of discovering the optimal
service configuration at the cost of complexity of decision making for both sides.

Recently, a variation of this simple mechanism has gained importance. Using
opaque selling, the provider or typically an intermediary guarantees certain quality
attributes and the price of a custom service, yet hides its very identity until the
transaction is completed. Despite the fact, that existing offerings for travel deals
like Priceline or Hotwire also match consumer requirements with different quality-
price-offers, opaque selling is an additional distribution channel for already existing
take-it-or-leave-it offers, with a very limited quality-spectrum. Literature in this
area [80, 47] has a strong revenue management focus, i.e. capacity management and
dynamic pricing, with quality of service and customization not being in the center
of attention.

More complex mechanisms to tackle the multi-dimensionality at hand are multi-
attribute negotiations and auctions. Multi-attributivity, as introduced to auction de-
sign by [37] and [33], allows for the negotiation on non-price attributes by referring

7.3. METHODOLOGY 101

to multiple features of a single unit [150]. In the last decade, powerful computer net-
works have brought up electronic markets that can handle the complex sale or pro-
curement of multi-attribute services and products through automated negotiation
and the determination of the allocation [53, 17, 36, 20]. Such mechanisms’ bidding
languages are rich and, therefore, a lot of information is exchanged. Multi-attribute
procurement auctions based on the family of VCG mechanism are incentive compat-
ible and allocatively efficient, yet suffer from their impossibility to achieve budget
balance. Approaches to achieve budget balance by foregoing efficiency mostly re-
sult in very complex mechanisms, either with respect to their accomplishment or,
due to complex transfer functions, with respect to the strategies that can be played.
For instance, [127] introduces an iterative protocol while [128], [90], and [27] propose
budget balanced approximations of VCG mechanisms, at the cost of sophisticated
transfer functions which lead to very complex strategy considerations. [40] intro-
duced a multi-attribute mechanism based on cooperative game theory with some
interesting properties in networked environments, however, also leading to highly
complex strategies of the participants.

In summary, common mechanisms in the scenario sketched above either reveal
very little information, or their bidding language and/or transfer function is com-
plex. The information that is exchanged is oftentimes biased by strategic behavior
of the participants. This circumstance suggests that there is a trade-off between
the simplicity of a mechanism and its richness (which is linked to the information
content exchanged between the negotiating parties). Moreover, strategic misrepre-
sentation of the participants’ preferences can be observed due to the mixture of the
integrative and the distributive part of the negotiations.

7.3 Methodology

To facilitate mass customization of individualized and quality-differentiated ser-
vices, a mechanism is sought that fulfills individual rationality and budget balance
and, at the same time, keeps efficiency as well as truthful information content high,
while maintaining a simple bidding language. In order to evaluate how different
mechanisms perform in the present setting, we scrutinize the following three mech-
anisms:

TUPLEBIDDING One party poses a take-it-or-leave-it offer of a single price-quality
tuple, the other party either accepts or not.

SCORINGBIDDING One party proposes a complete scoring function over the set of
possible price-quality combinations. The other party either selects one tuple
described by this function or rejects to agree at all.

DISCOUNTBIDDING Like the scoring function mechanism, but in addition to the
scoring function, the proposing party requests a price discount it requires on
any tuple described by the scoring function.

TUPLEBIDDING and SCORINGBIDDING represent extreme cases on the contin-
uum of simple and rich information exchange – they are stylized representations of

102 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

commonly used fixed price and multi-attribute mechanisms. Intermediate versions
like proposing multiple price-quality tuples and extensions like repeated offer ex-
changes are possible, but offer only limited insight in qualitative differences of the
mechanisms.

DISCOUNTBIDDING is newly introduced as an extension of SCORINGBIDDING.
The basic idea is to separate the integrative and distributive element of the negoti-
ation with the scoring function allowing to identify the optimal price-quality com-
bination and the discount factor allowing to claim value. All three mechanisms are
formally characterized and evaluated – both under complete and incomplete infor-
mation.

For the case of complete information, i.e. the consumer is completely and correctly
aware of the providers true type, both strategies and the resulting equilibria are
deduced analytically.

For the case of incomplete information, a parameter capturing the consumer’s risk
is introduced. A numerical simulation study is conducted for computing strategies
and equilibria. A quasi-Monte Carlo simulation is chosen as deterministic method
for approximating the expected payoffs for a given bidding parameters. The bid-
ding parameters thereby are uniformly sampled within their value domain. The
bidding value offering the highest expected consumer payoff is recognized as equi-
librium strategy along with the corresponding provider payoff and the obtained
welfare for this equilibrium. A more detailed description of the numerical simula-
tion follows in Section 7.7.2.

7.4 Model of Preferences

Consider two parties, the service provider P and the consumer C, negotiating over
quality q ∈ (0,1) and corresponding price p ∈ (0,1) of a service. Both quality and
price are individually normalized to the unit interval. The provider P has a cost
function

(7.1) C(q) = qb

with b ∈ [1,∞) representing the cost of providing a service of given quality. b = 1
yields a linear, b > 1 a convex cost function with positive and increasing marginal
costs of quality. The provider P has the quasi-linear utility function

(7.2) UP (q) = p− C(q)

Analogously, the consumer C has a scoring function

(7.3) S(q) = qa

with a ∈ (0,b) over different qualities of service.

The structural form using a monomial to capture the cost and the scoring func-
tions is chosen for three reasons: (1) It is a common approach in the related litera-
ture to capture each quality-attribute with one monomial, e.g. [21, 27]. (2) It allows

7.4. MODEL OF PREFERENCES 103

for both simple and comprehensible analytical considerations along with computa-
tional tractability and (3) it ensures proximity to realistic scenarios under consider-
ation of the preference elicitation challenges.

a > 0 ensures strong monotonicity in quality, i.e. C prefers a higher quality over a
lower quality, and a < b ensures the existence of a mutually beneficial agreement. In
practice and for a given provider and consumer it might be the case that no mutu-
ally beneficial agreement on a q-p-tuple exists. However, in this case no mechanism
could yield an individually rational agreement. This case is neglected and we as-
sume the existence of a mutually beneficial agreement for comparing the ability of
different negotiation mechanisms in identifying the optimal agreement. C has the
quasi-linear utility function

(7.4) UC(q) = S(q)− p

The economic surplus – also termed as welfare – generated by an agreement is de-
fined as sum of utilities

(7.5) W(q) = UC(q) + UP (q) = S(q)− C(q) = qa − qb

Thus, welfare is determined by the quality that the two negotiating parties agree on,
while it is independent of the price, as long as a price does not hinder the mutual
agreement between the two negotiating parties. The price is merely the mechanism
for distributing this welfare between the two parties. The optimal quality q∗ maxi-
mizing welfare for given types of P and C, is obtained by equating the first deriva-
tion of the welfare function with zero, solving for q and ensuring that the extreme
value is a maximum:

(7.6) q∗ = argmax
q

W(q) =
(

b
a

) 1
a−b
∈ (0,1)

The corresponding maximal welfare is:

(7.7) w∗ =
(

b
a

) a
a−b
−
(

b
a

) b
a−b

Figure 7.1 sketches an example of the above model with a = 0.5, b = 2, and result-
ing q∗ = 0.397. The price is arbitrarily chosen as p = 0.35 ∈ [c(q∗),S(q∗)] and both
parties’ utilities are positive. Graphically speaking, the assumptions on C(q) and
S(q) assure the existence of an area of individually rational potential agreements
in between the two curves. The objective of a negotiation is to determine a point
{q, p} within this area. It is in both parties’ interest4 and Pareto optimal to choose
q = q∗ so that the distance of the two curves, i.e. welfare, is maximized. The price
p anywhere on the intersection of q∗ with the area distributes this welfare between
both parties. For an omniscient arbitrator with a given fairness perception, this is
a relatively easy task. For P and C themselves under incomplete information and
both acting strategically, this task, however, is very complex.

4Only from a global perspective. Depending on the value distribution, i.e. the agreed price, either
party can have an interest to choose a different quality at a more favorable price.

104 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
(q

),
c(

q)

q

UC

UP

Consumer Scoring Function (a=0.5)
Provider Cost Function (b=2.0)

Negotiated Agreement

Figure 7.1: Example for scoring and cost functions, optimal quality, price and utilities

7.5 Negotiation Mechanisms

Three negotiation mechanisms can help P and C in their complex task. Without loss
of generality, the consumer C is assumed going first and the provider P responding
to the offer. As the scenario and model are symmetric with respect to the roles, the
evaluation with an inverted order of action would follow analogously.

7.5.1 TUPLEBIDDING

This mechanism represents the classical take-it-or-leave-it business, as one party
proposes a quality-price pair, the other party accepts or declines. Formally speaking:

1. C submits a binding bid of a tuple {q, p}.

2. P can accept exactly this tuple as agreement or reject it leading to no agree-
ment. Assuming myopic utility maximization within the scope of this negoti-
ation, P accepts if p ≥ C(q) and rejects otherwise.5

This mechanism is chosen for comparison for two reasons: (1) It offers a maxi-
mum simplicity in its bidding language and (2) it is commonly found in practice.
Providers offer their product of a certain quality for a given price. It is then up to
the consumer, whether she wants to accept the deal or not.
5For simplicity of the following analysis acceptance is assumed in case of indifference, i.e. for p =
C(q).

7.6. EVALUATION UNDER COMPLETE INFORMATION 105

7.5.2 SCORINGBIDDING

SCORINGBIDDING represents the extreme case of rich information exchange. The
consumer potentially could reveal complete information about her true type, while
this certainly is not in her own interest. More formally, this mechanism consists of
the following two steps:

1. C submits a binding bid of a scoring function Ŝ(q) or – in a less generic setting –
the parameters of a scoring function of given functional form, e.g. â for Ŝ(q) =
qâ. C can (and will) choose Ŝ(q) 6= S(q), i.e. she can strategically misrepresent
her type.

2. P sets a quality q̂ and price p̂≤ Ŝ(q̂). {q̂, p̂} is the agreement. If there exists a q̂
with Ŝ(q̂) ≥ C(q̂), P maximizes his utility with p̂ = Ŝ(q̂) and q̂ = argmaxq p̂−
C(q) = argmaxq Ŝ(q)− C(q). Otherwise, P rejects any agreement.

As stated before, this mechanism is designed following the multi-attributive auction
theory [18, 21, 27, 7] and was chosen as benchmark for rich information exchange
mechanisms.

7.5.3 DISCOUNTBIDDING

This mechanism is similar to SCORINGBIDDING in its amount of information ex-
changed. However, DISCOUNTBIDDING allows the consumer to claim an additional
price discount, i.e. a price reduction over her scoring value for the chosen quality.
Formally, one denotes:

1. C submits a binding bid of a scoring function Ŝ(q) or, as above, a single pa-
rameter, e.g. â. In addition, C submits a discount value d.

2. P sets a quality q̂ and price p̂ ≤ Ŝ(q̂) − d. {q̂, p̂} is the agreement. If there
exists a q̂ with Ŝ(q̂)− d ≥ C(q̂), P maximizes his utility with p̂ = Ŝ(q̂)− d and
q̂ = argmaxq p̂ − C(q) = argmaxq Ŝ(q) − d − C(q). Otherwise, P rejects any
agreement.

DISCOUNTBIDDING is an extension to SCORINGBIDDING and newly introduced in
this thesis. It allows the consumer to claim value independent of the chosen quality.

7.6 Evaluation under Complete Information

In this section optimal bidding behavior, utility, and welfare is derived for both C
and P analytically. C is assumed to be perfectly informed, i.e. C accurately knows
P ’s cost function C(q) and P ’s profit maximizing price-quality decision function.
Section 7.7 will relax this complete information setting and allow for risk and risk
aversion.

106 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

7.6.1 TUPLEBIDDING

C bids a tuple {q, p} which maximizes her utility, i.e.

(7.8) max
q,p

UC = max
q,p

S(q)− p

making sure thatP accepts, i.e. p≥C(q). For no combination {q, p} there is a benefit
for C of setting p > C(q), so C will set p = C(q) while finding the efficient and, thus,
welfare maximizing quality

(7.9) q∗ = argmax
q

S(q)− C(q)

and claiming the entire rent.6 Thus C maximizes her utility by bidding

(7.10) q∗ =
(

b
a

) 1
a−b

(cf. Equation 7.6) and p = C(q∗). P will accept this bid, as the price is equal to his
costs at q∗, i.e. p ≥ C(q∗), resulting in the following utilities and welfare.

Consumer Utility UC Provider Utility UP Welfare W

UC(q∗) = S(q∗)− p

= (q∗)a − (q∗)b UP (q∗) = p− C(q∗) = 0 W(q∗) = UC(q∗) = w∗

=
(

b
a

) a
a−b −

(
b
a

) b
a−b

= w∗

7.6.2 SCORINGBIDDING

C wants to sumbit a bid Ŝ(q) = qâ that maximizes her utility UC . She will not submit
a bid of â > b, as this will inevitably lead to no agreement. â = b leaves the provider
indifferent in the quality he chooses, as any quality yields the same (zero) utility to
him. This is a major risk to the consumer. Thus, and as it is a theoretic artifact of
complete information and the assumptions made on the scoring and cost function,
the case of â = b is excluded and â < b is assumed. The following analysis includes
â approaching the limit b, i.e. the consumer bidding infinitely close to the provider’s
cost function. P ’s response to C’s bid of â will be7

(7.11) q̂ = argmax
q

Ŝ(q)− C(q) =
(

b
â

) 1
â−b

In order to maximize her utility, C has to solve the optimization

(7.12) â∗ = argmax
â

UC = argmax
â

S(q̂)− p

6In Figure 7.1, by bidding tuple {q∗,C(q∗)}, UC (upper arrow) is at the maximum, while UP (lower
arrow) is zero.

7Analogously to the calculation of q∗ in Equation (7.6) in Section 7.4.

7.6. EVALUATION UNDER COMPLETE INFORMATION 107

As in this mechanism P will set the price p = Ŝ(q), C’s optimization problem is

(7.13) â∗ = argmax
â

S(q̂)− Ŝ(q̂)

As P ’s response q̂ depends on â, one obtains the optimization problem8

â∗ = argmax
â

S(q̂(â))− Ŝ(q̂(â))(7.14)

= argmax
â

(
b
â

) a
â−b
−
(

b
â

) â
â−b

(7.15)

Intuitively, C’s utility will increase in â > a. In fact, one is confronted with a
corner solution. Following, an analytical proof is sketched, showing that UC is at its
maximum for â→ b. One has to distinguish between three cases:

1. â < a: bidding a value â < a inevitably leads to a negative utility, as

p = Ŝ(q) > S(q),∀q ∈ (0,1)

2. â = a: truthful bidding leads to a utility of zero for C, i.e.

UC =
(

b
a

) a
a−b
−
(

b
a

) a
a−b

= 0

3. b > â > a: UC(q̂(â)) = S(q̂(â))− Ŝ(q̂(â)) increases strictly monotonically in â.9

Thus, C’s optimization leads to â→ b.

As shown, one has to regard the corner solution for y→ 1 or â→ b or â = b− ε
with ε→ 0. By regarding the corresponding limits for ε→ 0, the welfare as well as
provider and consumer utilities can be derived.

Consumer Utility UC Provider Utility UP Welfare W

UC(q̂) UP (q̂)

= limε→0
b

b−ε

a
−ε − b

b−ε

b−ε
−ε = limε→0

b
b−ε

b−ε
−ε − b

b−ε

b
−ε W(q̂) = UC(q̂) = e−

a
b − 1

e

= e−
a
b − 1

e = 1
e −

1
e = 0

7.6.3 DISCOUNTBIDDING

P only accepts, if he obtains a utility of UP ≥ 0, i.e. the agreed price must be greater
or equal to the costs for the agreed quality:

(7.16) p ≥ C(q̂)⇔ q̂â − d ≥ q̂b

8The notation q̂(â) is used to indicate this relationship of q̂ and â, without explicitly defining a func-
tion.

9Cf. proof in Appendix B.1.

108 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

C can therefore at most obtain a utility as high as the welfare of a chosen quality,
UC = W(q̂). The optimal strategy for C, thus, is to achieve UC = w∗, which implies
UP = 0. There only exists one welfare maximizing quality q̂∗ such that W(q̂∗) = w∗.
Hence, C can only obtain UC = w∗, if and only if q̂ is equal to q̂∗. As P ’s optimal
response is

(7.17) q̂ = argmax
q

Ŝ(q)− c(q) = argmax
q

qâ − qb

and

(7.18) q̂∗ = argmax
q

qa − qb

both terms must be equal, i.e.

(7.19) qâ − qb !
= qa − qb ⇔ â !

= a ∀q ∈ (0,1)

In other words, no other â with â 6= a can lead to a welfare maximizing agreement.
Bidding â truthfully is the only way to ensure a maximal welfare, which is quite
intuitive.

Let us regard the second bidding parameter d. When bidding â truthfully, i.e.
S(q) = Ŝ(q), the following holds:

(7.20) UC = S(q)− p = S(q)− Ŝ(q) + d = d

If C wants to exploit the full rent, UC = w∗, she has to bid d = w∗, thus optimal
bidding for her consists of â∗ = a and

(7.21) d∗ = w∗ =
(

b
a

) a
a−b
−
(

b
a

) b
a−b

if the bid is to be accepted by P . P only accepts if

(7.22) q̂â∗ − d∗ ≥ q̂b

which is no other than

(7.23) (q̂∗)a − w∗ ≥ (q̂∗)b⇔ (q̂∗)a − (q̂∗)b ≥ w∗⇔ w∗ ≥ w∗

which is always true, thus P will accept C’s bid.

Consumer Utility UC Provider Utility UP Welfare W

UC(q∗) = S(q∗)− p

= (q∗)a − (q∗)b UP (q∗) = p− C(q∗) = 0 W(q∗) = UC(q∗) = w∗

=
(

b
a

) a
a−b −

(
b
a

) b
a−b

= w∗

7.7. EVALUATION UNDER INCOMPLETE INFORMATION 109

7.7 Evaluation under Incomplete Information

This section deals with the more realistic case of incomplete information and risk
aversion. Incomplete information implies risk in the decision making of C. For the
provider, there is no risk, as the negotiation mechanisms require him to react to C’s
bids, not her true type. When inverting the mechanisms towards the provider going
first, he would face the risk. As mentioned before, the analysis is agnostic to the
specific roles – all results equally apply the other way round, when the mechanisms
are inverted.

7.7.1 Extended model under risk

C continues being informed about the state of the world and the rules of the game
with one exception: the parameter b of P ’s cost curve. However, C knows that b is
uniformly distributed and C knows the support, i.e. b ∼U(m− s,m + s) with m and
s being public knowledge. s is a proxy for C’s risk; the higher s, the higher the risk.
P still knows b, i.e. his cost function. To capture C’s risk aversion, parameter r, the
function

(7.24) R(x) = x
1

1+r

and its corresponding inverse function

(7.25) R−1(x) = x1+r

are introduced. r = 0 implies C being risk-neutral, while an increasing r > 0 implies
C being increasingly risk averse. The risk aversion is reflected in C’s utility function

(7.26) UC(q) = R (S(q)− p(q)) = (S(q)− p(q))
1

1+r

In order to compare the welfare in situations with different risk aversion and in
order not to overvalue the utility of C, the welfare function is adapted by back-
transforming the influence of r10

(7.27) W(q) = R−1(UC(q)) + UP (q) = (S(q)− p(q))1+r + p(q)− c(q)

The case of complete information could be solved analytically (cf. Section 7.6); for
incomplete information a numerical analysis is chosen. A wide range of parameters
a, b, s, r is used as input to the simulation in order to test for sensitivities and as-
sure reliability of the results. Three reasons indicate that the numerical solution is
accurate: (1) For the border case of complete information, the numerical and the an-
alytical solution coincide; (2) all strategic effects and utility comparisons vary either
smoothly within the parameter range or, in case of step functions, are intuitive and
straightforward to explain; (3) the qualitative effects and comparisons hold true for
all parameter configurations tested.

10Any interpersonal utility comparison or definition of welfare is subject to normative assumptions
on the relative importance of different players. While being aware of potential concerns, the C’s
expected utility is normalized to the unit interval by the use of R−1 and the welfare defined as sum
of P ’s utility and C’s normalized utility. This is the simplest and least questionable approach that
serves our purpose of a numerical representation of welfare.

110 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

7.7.2 Numerical Simulation

The numerical simulation was performed with Java by enumerating all bidding pa-
rameters, the support of b’s distribution and the risk parameter s with an increment
of ε = 0.001. The simulation was run for a wide range of different utility and cost pa-
rameters a and b and different risk aversion parameters r, varying from zero to four.
For each parameter combination and each negotiation mechanism, the strategic in-
teraction was played to identify optima in bidding strategies and the associated
outcome. A sample algorithm in pseudo notation for SCORINGBIDDING is given in
Algorithm 7.1. The algorithms for TUPLEBIDDING and DISCOUNTBIDDING follow
analogously, as they only iterate over other bidding parameters.

Algorithm 7.1 Numerical Simulation Algorithm (SCORINGBIDDING)

Require: true scoring parameter a, cost parameter m, risk aversion r, increment ε
Ensure: optimal bidding parameter â∗, expected utilities E(UC)∗ and E(UP)∗ and

welfare W∗ are obtained for each s ∈ (0,1]
for s = 0→ 1 do

s← s + ε
â∗← 0, E(UC)∗← 0, E(UP)∗← 0, W∗← 0
for â = a→ m + s do

â← â + ε
E(UC)← 0, E(UP)← 0, W← 0
for b = m− s→ m + s do

b← b + ε
if â < b then

q̂← b
â

1
â−b

p̂← q̂â

UC ← (q̂a − p̂)
1

1+r

UP ← p̂− q̂b

E(UC)← E(UC) +
UC

(2s/ε)+1

E(UP)← E(UP) +
UP

(2s/ε)+1

W← E(UC)r+1 + E(UP)
end if

end for
if E(UC) > E(UC)∗ then

â∗← â
E(UC)∗← E(UC)
E(UP)∗← E(UP)
W∗←W

end if
end for
StoreResult(s, â∗, E(UC)∗, E(UP)∗, W∗)

end for

The graphs depicted in the following sections sketch selected results for one par-
ticular setting with a = 0.5, b = 2, s ∈ [0,1], r ∈ {0,1}11. The slight zick-zack-pattern
11Further results for different parameters a and b can be found in Appendix B.3.

7.7. EVALUATION UNDER INCOMPLETE INFORMATION 111

Likelihood of Agreement s=1
Likelihood of Agreement s=0

 0

 0.2

 0.4

 0.6

 0.8

 1

p

 0

 0.2

 0.4

 0.6

 0.8

 1

q

 0

 0.2

 0.4

 0.6

 0.8

 1

l

Figure 7.2: Likelihood of agreement in TUPLEBIDDING for s ∈ {0,1}, r = 0

of some graphs in Section 7.8.2 is an artifact of the simulation with a discrete incre-
ment and potential floating-point rounding errors in the runtime environment.

In the remainder of this section, we first review optimal bidding strategies, ex-
pected utility of both players, and welfare for each mechanism separately to provide
an intuition in the strategic effects of the mechanisms under risk (s > 0) and with the
consumer being risk averse (r > 0). In the following Section 7.7.2, a direct compar-
ison of the three mechanisms is presented to identify which mechanism performs
best in which situation and for what player.

7.7.3 TUPLEBIDDING

Obviously, C’s bid consisting q and p has two effects: It determines the likelihood of
reaching an agreement (cf. Figure 7.2) and the utility of an agreement, should it be
achieved. In bidding, C trades-off these two directly opposed effects for maximizing
her expected utility. In the border case of complete information (s = 0), bidding is
straightforward and the numerical simulation coincides with the analytical solution
presented above. Any {q, p}-tuple belongs to either of two sets: Either it leads to
agreement with certainty, or to disagreement with certainty.12 Among the tuples
that lead to an agreement, C maximizes her utility by choosing the efficient alloca-
tion.

12Recall the assumption that the provider accepts when the tuple belongs to his cost function, i.e.
accepts a utility of zero for himself.

112 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

Introducing risk (s > 0), C’s optimization problem becomes more tricky. Numer-
ical results (cf. Figures 7.3 and 7.4) show that for an increasing risk parameter s, C
initially prefers bidding more conservatively, i.e. she foregoes utility from the agree-
ment but assures reaching agreement with 100% certainty. She does so by simulta-
neously lowering q and increasing p (both to her disadvantage in case of agreement),
i.e. by moving the bid to the upper left in Figure 7.1. At one point – called “tipping
point” t from here on –, s becomes excessive from C’s viewpoint. C stops retracting
and starts bidding more aggressive. From s > t onwards, C simultaneously increases
q and decreases p; she demands higher utility in case of agreement and takes the risk
of not reaching an agreement.

Under complete information (s = 0), the efficient agreement is reached, C claims
all the value, and P has a utility of zero. Welfare, i.e. the sum of utilities, is at its
maximum. With increasing risk (s > 0 and increasing), C’s utility decreases mono-
tonically and increasingly rapidly – up to the tipping point (Figure 7.7a). At the tip-
ping point, C changes her strategy (see above): The monotonic decline of expected
utility persists, but is slowed down.

As C’s risk increases, P ’s utility increases – again, up to the tipping point, when
P ’s expected utility reaches its maximum and then sharply declines with further in-
creasing uncertainty (Figure 7.8a). The effect on welfare is straightforward: Welfare
is optimal for s = 0. With risk, the parties on average no longer agree on the efficient
allocation; welfare declines gradually. With risk s beyond the tipping point t, when
P ’s utility declines, the decline of welfare increases its speed (Figure 7.9a).

All of the above holds for risk neutrality (r = 0). With the cost function, scoring
function and utility functions chosen for numerical simulation, the tipping point is
t = 0.7.13 When C is increasingly risk averse (r > 0 and increasing), t increases, as the
“gambling strategy” is more risky and, thus, less preferred by C. C’s strategy and
expected utility, P ’s strategy and expected utility as well as welfare qualitatively all
follow the pattern described above, only with higher t (Figures 7.7b, 7.8b, 7.9b).

7.7.4 SCORINGBIDDING

Under risk and when C bids a scoring function, C faces the same trade-off as with
price-quality tuples. The trade-off is between utility in case of agreement and the
likelihood of reaching agreement (cf. Figure 7.5).

Numerical results show that C’s strategy in bidding a scoring function follows
the same pattern as in bidding a price-quality tuple (cf. Figures 7.3 and 7.4): With
increasing risk (s), the consumer again bids more conservatively. Technically, she
decreases â and bids more truthfully. She does so sufficiently to assure certainty of
reaching an agreement. Again, this holds up to the tipping point t, at which C starts
gambling, i.e. she gradually increases â for claiming more value at the risk of not
reaching agreement. With increasing risk aversion, the cost of gambling rises and,
thus, the tipping point rises from t = 0.7 for r = 0 to t = 0.9 for r = 1. Interestingly,

13The exact tipping point (0.7) depends on the exact parameters chosen. We believe however, that
the existence of such a tipping point is almost universal.

15Note that â∗ of SCORINGBIDDING has been divided by four to improve the readability of the chart.

7.7. EVALUATION UNDER INCOMPLETE INFORMATION 113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

B
id

di
ng

 P
ar

am
et

er
s

s

t

DiscountBidding â*
DiscountBidding d*

TupleBidding q*
TupleBidding p*

ScoringBidding 1/4 â*

Figure 7.3: Optimal bidding parameters for all three negotiation mechanisms de-
pending on the consumer’s risk (s) and risk aversion (r = 0)14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

B
id

di
ng

 P
ar

am
et

er
s

s

t

DiscountBidding â*
DiscountBidding d*

ScoringBidding 1/4 â*
TupleBidding q*
TupleBidding p*

Figure 7.4: Optimal bidding parameters for all three negotiation mechanisms de-
pending on the consumer’s risk (s) and risk aversion (r = 1)15

114 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

Likelihood of Agreement

 0

 0.2

 0.4

 0.6

 0.8

 1

s

 0.5
 1

 1.5
 2

 2.5
 3

â

 0

 0.2

 0.4

 0.6

 0.8

 1

l

Figure 7.5: Likelihood of agreement in SCORINGBIDDING for s ∈ [0,1], r = 0

the tipping point coincides with the tipping point for bidding price-quality tuples
for any r.16

C’s and P ’s expected utility as well as welfare all three qualitatively resemble
the patterns from TUPLEBIDDING for varying s and r. C’s expected utility is maxi-
mal for s = 0 and decreases monotonically for an increasing risk parameter s (Fig-
ure 7.7a, 7.7b). The decrease speeds up for increasing s up to the tipping point and
slows down from t > s onwards. P ’s expected utility is zero for s = 0, increases
monotonically for increasing s up to the tipping point. It sharply kinks at s = t and
decreases thereafter (Figure 7.8a, 7.8b).

Interestingly, welfare is optimal for s = t. The intuition is that strategic bidding
by C hinders the integrative part of the negotiation; risk initially lowers C’s strategic
misrepresentation and thereby allows P to come closer to the efficient quality. At
s = 0, C submits a bid of â as close as possible to b, optimizing her own utility, yet
sacrificing efficiency by overbidding by almost four times the real value a (for a = 0.5
and b = 2.0). As stated before, with increasing uncertainty (s > 0), C will lower her
bid, thus increasing efficiency simultaneously. After passing the utmost efficient
point for s = t, C starts gambling by raising â and welfare starts to rapidly decline
again (Figure 7.9a, 7.9b).

16For other parameters a, b the tipping point is slightly shifted, cf. Appendix B.3.

7.7. EVALUATION UNDER INCOMPLETE INFORMATION 115

Likelihood of Agreement s=1
Likelihood of Agreement s=0

 0.5
 1

 1.5
 2

 2.5
 3

â

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

d

 0

 0.2

 0.4

 0.6

 0.8

 1

l

Figure 7.6: Likelihood of agreement in DISCOUNTBIDDING for s ∈ {0,1}, r = 0

7.7.5 DISCOUNTBIDDING

C’s trade-off decision is the same as for the other mechanisms, only the vehicle of
bidding more or less conservatively differs (cf. Figure 7.6). It can be implemented
by either lowering scoring parameter â, or by lowering discount d, or both. The
interesting question is which of these vehicles C chooses to maximize her expected
utility.

Analogously to the analytical results in case of complete information, numerical
results show that bidding the scoring function truthfully (â = a) and claiming value
via discount d is the strategy maximizing C’s expected utility. For the functional
forms of C(q) and S(q) being strongly convex/concave (cf. Section 7.4), bidding
the scoring function truthfully is the only optimum.17 Considering, for instance,
the border case of s = 0: C knows the efficient allocation that maximizes her utility
(q∗, p = C(q∗)) and needs to derive a bid (â,d) to meet that very allocation. With
â 6= a, the provider’s optimization will yield a quality different from q∗, value is lost
and cannot be regained by any discount d (cf. Section 7.6.3). Numerical results show
that the same holds true under uncertainty.

For more general scoring and bidding functions, however, bidding the scoring
function truthfully might not be the only optimum – it is, however, always one
optimum, as long as P chooses the efficient quality q for a truthful bid.

Again, the qualitative patterns in strategies and utilities resemble what is known
from the other mechanisms: With increasing risk s, C initially bids more and more

17The fluctuations in Figures 7.3 and 7.4 for â∗ and d∗ are an artifact caused by the increment in
our implementation, as the difference between the exact theoretical maximum welfare w∗ and the
second best welfare is smaller than the increment with its three decimal places.

116 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

conservative, lowering discount d. The tipping point t exists at which this pattern
inverts and C switches to gambling, i.e. to increasing d (cf. Figures 7.3 and 7.4).

Up to t, C’s utility decreases in s and P ’s utility increases. For increasing s > t,
the decline of C’s utility slows down (Figure 7.7a, 7.7b) and P ’s utility decreases as
well (Figure 7.8a, 7.8b). Welfare decreases in s with a kink at t (Figure 7.9a, 7.9b).
Increasing risk aversion r increases t but does not qualitatively affect behavior or
outcomes. All variation in C’s bidding depending on s and r takes place in the
discount d; the revelation of the scoring function remains truthful (â = a).

In summary, discount bidding effectively disentangles the integrative and dis-
tributive elements of the negotiation. Bidding the scoring function truthfully allows
maximizing the consumer’s expected utility and expected welfare in any given state
of the world, i.e. for any combination of provider cost function (parameter b), con-
sumer scoring function (parameter a), and consumer risk aversion (parameter r).
Comparing discount bidding with bidding a pure scoring function (Section 7.7.4)
shows that this truthfulness is only possible, as the discount factor d provides the
consumer a vehicle to claim value, i.e. d is the distributive element of the negotia-
tion.

Truthfulness in the scoring function is an interesting and potentially beneficial
property of the discount bidding mechanism. The even more interesting question
is, however, how the three mechanisms compare in terms of utility for one or the
other party, as this will drive adoption in the marketplace. The following Section 7.8
presents this comparison.

7.8 Comparison of Negotiation Mechanisms

This section provides a comparison of the three mechanisms regarding utility and
welfare. The first comparison is under complete information, followed by a com-
parison under incomplete information. The comparison is based on the findings of
Sections 7.6 and 7.7.

7.8.1 Complete Information

Under complete information TUPLEBIDDING, as aforementioned, allows the con-
sumer to choose the efficient allocation q∗ while claiming the entire surplus by set-
ting the price to the value of P ’s cost function. The same is possible when DIS-
COUNTBIDDING is implemented, as C can use the discount d to obtain the entire
surplus, while ensuring efficiency by truthfully bidding â. Thus, under complete
information, both mechanisms result in the same allocation, utility and welfare.

SCORINGBIDDING cannot achieve the same efficiency, as C is always tempted to
misrepresent her type by overbidding â, thus leading to a quality agreement that
does not match q∗. Despite the fact that it yields the same utility for P , it turns out
that SCORINGBIDDING leads to a lower utility for C, which also implies a lower wel-
fare than when using TUPLEBIDDING or DISCOUNTBIDDING as negotiation mecha-

7.8. COMPARISON OF NEGOTIATION MECHANISMS 117

nism. In mathematical terms, this is represented by the following strict inequality:

(7.28) e−
a
b − 1

e
<

(
b
a

) a
a−b
−
(

b
a

) b
a−b

which holds ∀a ∈ (0,b) and ∀b ∈ [1,∞).18

7.8.2 Incomplete Information

Figures 7.7 to 7.9 show the numerical results for the consumer’s expected utility, the
provider’s expected utility and welfare for all three negotiation mechanisms. The
upper graph of each figure – labeled with (a) – relate to risk neutrality (r = 0), the
lower graph – labeled with (b) – to risk aversion (r = 1). a = 0.5 and m = E(b) = 2
is constant across all settings.19 Qualitatively equivalent but numerically different
results were obtained for other a and b combinations (cf. Appendix B.3).

Figure 7.7a shows that for any given risk s, the consumer’s expected utility is
equal for DISCOUNTBIDDING and TUPLEBIDDING (the lines are exactly on top of
each other) and strictly lower for SCORINGBIDDING. This result is independent of
the consumer’s risk aversion, as Figure 7.7b exemplifies. The implication is twofold:

• When the consumer can choose the mechanism, she will prefer either DIS-
COUNTBIDDING or TUPLEBIDDING over SCORINGBIDDING. The consumer
may have the ability to choose the mechanism when either there are multiple
providers offering different mechanisms, or when she has sufficient purchas-
ing power to dictate the mechanism.

• When the consumer has the chance to reduce her risk at a reasonable cost in
terms of time and money, she will do so. She may have the chance to acquire
information either by standard market research, or by learning from repeated
negotiations with a single or with multiple providers.

Figure 7.8a shows a clear ranking of the three mechanisms from the provider’s
view: SCORINGBIDDING is preferred over DISCOUNTBIDDING which is preferred
over TUPLEBIDDING. This holds for all s > 0; for s = 0, the provider is indifferent
between the three mechanisms. The implication is, again, twofold:

• When the provider can choose the mechanism, he will select SCORINGBID-
DING.

• When the provider can influence the consumer’s risk, he will do so. He will
try to provoke conservative bidding by the consumer but will not exaggerate
the risk to a level where the consumer starts gambling and the provider risks
not reaching an agreement at all. The provider can e.g. influence risk by with-
holding information on the exact technology employed and on his costs. Both

18For mathematical proof refer to Appendix B.2.
19In graph b, R−1(E(UC)) is shown, i.e. the back transformation with respect to risk aversion. The

underlying strategic decision making still considers C’s risk aversion. However, the numerical
change for this graph allows a comparison of absolute numbers and slopes across graphs a and b.

118 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

U
c

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

(a) Expected utility of C for r = 0

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

U
c

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

(b) Expected utility (applied R−1) of C for r = 1

Figure 7.7: Comparison of negotiation mechanisms with respect to C’s utility
depending on the level of the consumer’s risk s and risk aversion r

7.8. COMPARISON OF NEGOTIATION MECHANISMS 119

is common in real-world settings. The provider has, however, an interest on
providing some information on technology and, thus, on implied costs. Again,
this is a common behavior in real-world settings.

The ranking of mechanisms from the provider’s viewpoint is independent of the
consumer’s risk aversion (cf. Figure 7.8b). The provider’s strategic manipulation of
the consumer’s risk, e.g. by providing or withholding information on the technology
for service provision and associated costs, depends on the consumer’s risk aversion.
This, in turn creates risk on the provider side with regards to the exact degree of the
consumer’s risk aversion. The analysis of an equilibrium in this extended game is
beyond the scope of this thesis.

Figure 7.9a – the welfare – combines the above perspectives and, again, provides
a ranking of mechanisms. Interestingly, for the case of the consumer being risk
averse, this ranking depends on the level of risk (cf. Figure 7.9b). For low risk,
welfare from TUPLEBIDDING is higher than from SCORINGBIDDING.20 For high
risk and risk aversion, this ranking inverts. In any case, DISCOUNTBIDDING results
in at least the same welfare for the special case of s = 0 and strictly higher expected
welfare for the general case of s > 0. This result leads to the following implication:
When a third party can choose the mechanism, it will select DISCOUNTBIDDING
as welfare maximizing mechanism among the three mechanisms, independent of
risk and risk aversion. Note, however, that in the scenario studied in this chapter,
it is rather unlikely that a third party like a regulator imposes a mechanism to the
bilateral negotiation.

Looking beyond the scope of a single negotiation, three observations stand out:
Firstly, the provider will strategically manipulate the consumer’s risk prior to the
negotiation, if he has the chance of doing so (which will hold true in most real-
world settings, where any provider will carefully decide on how much information
on his technology he is willing to give price). His challenge is to find the optimal
degree of risk, as neither a low nor a high risk by the consumer is optimal for the
provider.

Secondly, DISCOUNTBIDDING is an attractive mechanism, but not 100% certain
to be adopted in practice. In the extended game of selecting a mechanism, TU-
PLEBIDDING is not Pareto-optimal, it is dominated by DISCOUNTBIDDING. DIS-
COUNTBIDDING will prevail when either the consumer or a third party have the
discretion or power to impose a mechanism. Bidding scoring functions will be
adopted when the provider decides on the mechanism. A positive side effect ex-
ists that might increase the provider’s utility from DISCOUNTBIDDING in the long
term: DISCOUNTBIDDING promotes truthful revelation of the consumer’s scoring
function and, thereby, allows the provider to optimize his technology portfolio and
cost structure in the long-term. This effect – that is not reflected in the provider’s
utility function in this chapter – might lead all parties to unanimously prefer dis-
count bidding over the other mechanisms.

Thirdly, the results presented in the previous sections can be also be interpreted
from the perspective of the contract [30] or principal-agent theory [57, 91]. Seen

20Note that welfare can increase for SCORINGBIDDING and potentially equal welfare of TUPLEBID-
DING when allowing for more general forms of scoring functions.

120 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

U
p

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

(a) Expected utility of P for r = 0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

U
p

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

(b) Expected utility of P for r = 1

Figure 7.8: Comparison of negotiation mechanisms with respect to P ’s utility
depending on the level of the consumer’s risk s and risk aversion r

7.8. COMPARISON OF NEGOTIATION MECHANISMS 121

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0 0.2 0.4 0.6 0.8 1

W
el

fa
re

 (
E

xp
ec

te
d)

s

DiscountBidding
ScoringBidding

TupleBidding

(a) Expected welfare for r = 0

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0 0.2 0.4 0.6 0.8 1

W
el

fa
re

 (
E

xp
ec

te
d)

s

DiscountBidding
ScoringBidding

TupleBidding

(b) Expected welfare for r = 1

Figure 7.9: Comparison of negotiation mechanisms with respect to welfare de-
pending on the level of the consumer’s risk s and risk aversion r

122 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

from this perspective, TUPLEBIDDING can be considered as a complete non-linear
pricing mechanism. In SCORINGBIDDING, the principal (consumer) is more con-
strained since it does not have a contract term to directly transfer (or, appropriate)
surplus from the agent (provider). Therefore, it is intuitive that SCORINGBIDDING
is inferior in terms of efficiency. The principal has to sacrifice efficiency to address
the moral hazard of the agent (provider). In DISCOUNTBIDDING, the principal is less
constrained compared to the case of SCORINGBIDDING because it can use a discount
term to transfer surplus from the agent. However, the principal’s contracting vehicle
is still not as flexible as TUPLEBIDDING because the principal cannot directly specify
the quality level, but only the functional form of the quality. Such a constraint then
forces the principal to balance between the contracting terms – the bidden functional
form and the discount term – in addressing the incomplete information and moral
hazard. In SCORINGBIDDING, actually the agent determines the surplus transfer,
i.e. the price. All in all, the results presented in Section 7.8 are congruent with these
considerations.

7.9 Conclusion

In this chapter an economic model for multi-attributive negotiations was presented.
The model is set in the overall scenario of this thesis – mass customized Cloud ser-
vices that require not only an agreement on functional requirements, but in addition
also require agents to agree on non-functional aspects. Specifically, bilateral nego-
tiations on quality and price of a service between service provider and consumer
were studied. In this setting, a negotiation has an integrative facet – many possi-
ble qualities of service are sub-optimal, but by means of communication within the
negotiation mechanism, the parties can identify a Pareto-optimal quality of service.
On the other hand, the negotiation has a distributive facet – either party has an inter-
est in claiming as large a share in the value from an agreement as possible. Strategic
bidding typically leads to negotiators mixing the integrative and distributive facets
which results in inefficient outcomes.

In such a scenario, the selection of an “optimal” or at least “satisfying” negoti-
ation mechanism is a challenge. In the light of the Myerson-Satterthwaite impossi-
bility theorem [121], individual rationality and budget balance were postulated for
analyzing economic properties of different negotiation mechanisms, namely in how
far agents’ negotiation strategies deviate from truthful revelation of their types and
in how far efficiency of negotiated agreements deviates from the efficient agreement
an omniscient arbitrator would define. On this theoretical background, three nego-
tiation mechanisms were compared: TUPLEBIDDING, SCORINGBIDDING and DIS-
COUNTBIDDING. TUPLEBIDDING serves as a proxy for commonly used fixed price
mechanisms; SCORINGBIDDING resembles the widely used approach of agents bid-
ding a scoring function, e.g. in multi-attribute auctions. DISCOUNTBIDDING was
newly introduced in this thesis – it allows to bid a scoring function and addition-
ally a discount that the consumer demands from the provider. The intuition is that
this approach disentangles the integrative and distributive facets of the negotiation
and increases efficiency. The results confirmed this intuition. For complete informa-
tion, these results were derived analytically from the game theoretic equilibrium;

7.9. CONCLUSION 123

for the extended case of incomplete information, risk and risk aversion, a numerical
simulation was conducted to characterize the mechanisms.

TUPLEBIDDING is not Pareto-optimal but dominated by DISCOUNTBIDDING.
Thus, it is unlikely to prevail in a marketplace for custom services as soon as this
market matures. Nowadays, comparable mechanisms are used by some Cloud ser-
vice providers, for example. It has the advantage of a simple bidding language and
very little communication effort. However, as providers and consumers get more
and more sophisticated and as automatic negotiations become more prevalent, the
disadvantageous economic properties will weigh heavier and TUPLEBIDDING will
become less relevant.

SCORINGBIDDING emphasizes the integrative facet and yields higher expected
utility for the provider than either of the other mechanisms. When the provider
can dictate the choice of the mechanism, he will presumably favor SCORINGBID-
DING. However, the consumer’s strategic misrepresentation of her scoring function
leads to sub-optimal agreements. DISCOUNTBIDDING captures even more of the in-
tegrative facet: it promotes truthful revelation of the consumer’s scoring function
and thereby allows reaching an efficient agreement more often than with SCOR-
INGBIDDING. The expected welfare from DISCOUNTBIDDING is higher than from
SCORINGBIDDING for any level of risk and risk aversion. Compared to SCORING-
BIDDING, the discount factor in DISCOUNTBIDDING shifts utility from the provider
to the consumer. Whenever the consumer or an independent third party can dictate
the negotiation mechanism, she will tend to favor DISCOUNTBIDDING. A positive
long-term effect of DISCOUNTBIDDING is that truthful revelation of the consumer’s
scoring function allows the provider to adapt his technology and service offering.
In the long run, this may even overturn the provider’s favoritism for SCORINGBID-
DING.

All mechanisms show a tipping point in the consumer’s behavior depending on
the risk: with risk below this tipping point, the consumer bids conservatively and
assures reaching an agreement; beyond this risk, she bids aggressively and risks not
reaching an agreement. For a given level of risk aversion, this tipping point is –
somewhat surprisingly – identical for all three mechanisms.

In each of the mechanisms, the provider has an incentive to strategically ma-
nipulate the consumer’s risk by determining the level of information provided on
his technology and costs. Neither full transparency nor opacity are optimal for the
provider, but he will have to carefully chose the level of information depending on
the consumer’s risk aversion. The higher the consumer’s risk aversion, the less in-
formation will be given by the provider. All results hold inversely when inverting
the roles of consumer and provider in the negotiations.

7.9.1 Limitations and Implications

The presented results have four main limitations: (1) Firstly, individually rational
utility maximizing agents are assumed; in the real-world, such a setting is rare. (2)
Secondly, the results depend on the model of preferences, especially on the func-
tional forms of cost, scoring, and utility functions, the assumed probability distribu-
tion function and are limited to a single QoS attribute. While we believe that similar

124 CHAPTER 7. MULTI-ATTRIBUTIVE NEGOTIATIONS

results can be obtained for other preferences and more than one QoS attribute, this
has not been proven yet. (3) Thirdly, “only” three distinct mechanisms are studied
without deriving an “optimal mechanism” in the mechanism design sense. How-
ever, given the complexity and impossibility theorems, this comparison of existing
mechanisms and introduction of DISCOUNTBIDDING as additional mechanism is
a valuable contribution to the field. (4) Fourthly, and most importantly, all three
mechanisms only allow for a single offer and its acceptance or rejection by the coun-
terparty. More complex negotiation mechanisms with an alternating offer exchange
are possible, so is the introduction of a central marketplace.

For the overall scenario of this work, and in particular for the service optimiza-
tion following in Chapter 8, the obtained results have two implications: Firstly, a
provider offering mass customized Cloud services will prefer SCORINGBIDDING
over the other two mechanisms under investigation. As direct implication, the opti-
mization scenario in the subsequent chapter implements SCORINGBIDDING, yet al-
lowing more than one quality attribute in the scoring function.21 Secondly, a Cloud
provider implementing any of the three mechanisms in a mass customization sce-
nario should be well aware of how much information to reveal to his customers, as
neither too much, nor too little information on his cost structure was found to be
beneficial.

21Note that from an optimization view point DISCOUNTBIDDING could also be implemented without
implications on the optimization mechanism, as finding the optimal configuration is independent
of the discount factor d.

Chapter 8

Service Optimization

I t is the goal of this thesis to enable Cloud providers to offer mass customized
services in a profit maximizing way. So far, we introduced a semantic service

description framework, an ontology update manager and a service engineering al-
gorithm, which altogether allow to derive feasible service configurations for a given
consumer request. The resulting configurations are formalized in a graph structure
– a so called service configuration graph. However, it remains open how to find
the optimal configuration within this graph, i.e. the configuration which yields the
highest profit for the provider.

Chapter 7 presented different negotiation mechanisms which help provider and
consumer in finding an agreement on both quality and price of a service. In two of
the three presented mechanisms – SCORINGBIDDING and DISCOUNTBIDDING – the
provider is expected to find the profit maximizing quality given a scoring function
and his own cost function, which were modeled as monomials. Reality, however, is
more complex. The scoring function representing the consumer preferences regard-
ing the non-functional service properties in many cases has to capture more than
one QoS attribute. The cost function cannot be represented by a monomial, as dif-
ferent pairs of quality and costs depend on the available service resources and thus
result in a discrete step function. While the economic implications drawn in the pre-
ceding chapter are also believed to be valid in more complex models, this chapter
has its focus on optimization techniques. We thereby assume a complex form of
SCORINGBIDDING to be implemented by the provider, allowing to state consumer
preferences on more than one QoS attribute.1 The challenge lies in the combinato-
rial complexity of finding the best alternative in a service configuration graph, that
can get high even for rather small graph instances. Especially, since overall Quality-
of-Service levels have to be obtained by aggregation. The aggregation operators
strongly influence the computational complexity. Depending on the graph struc-
ture and the QoS aggregation operators, different techniques from brute-force, over
integer programming, to shortest-path algorithms are possible and imply their own
advantages and disadvantages.

In this chapter the challenge of the above mentioned computational complex-
ity is addressed by presenting optimization techniques, efficient aggregation func-

1The results of this chapter could also be applied to DISCOUNTBIDDING. TUPLEBIDDING is domi-
nated by the other mechanisms, hence it is not considered in this chapter.

126 CHAPTER 8. SERVICE OPTIMIZATION

tions including their formulation within integer programs and heuristics. We first
introduce related work from different research areas in Section 8.1. The concrete
optimization model as well as the resulting challenges in this model follow in Sec-
tion 8.2. The model includes a formalization of non-functional requirements, the
solution space of the optimization, functions for aggregating QoS values and the
objective function. Challenges arise from conjunctive edges (and nodes) in the ser-
vice configuration graph and from aggregation functions that violate the Bellman
property. Different optimization techniques coping with these challenges are de-
scribed in Section 8.3. The presented techniques comprise brute-force algorithms,
a binary integer programming approach and a graph-based approach using Dijk-
stra’s algorithm. A detailed evaluation comes thereafter in Section 8.4. Some parts
are evaluated analytically or numerically, while the main evaluation is performed
through a simulation study. The chapter is concluded by a summary and recom-
mendations given in Section 8.5. Minor parts of this chapter are based on [63].

8.1 Related Work

This chapter introduces different optimization techniques for finding optimal ser-
vice configurations with respect to given consumer preferences and provider cost
structures. Regarding the consumer preferences, Asker and Cantillon [7] introduce
the concept of a scoring function for expressing quality preferences in the context
of multi-attribute procurement auctions. The scoring function is used to rank dif-
ferent offers over different attributes like quality and costs. In the work by Blau et
al. [27], this concept is picked up and used in the context of a newly introduced com-
plex service auction, an auction based negotiation protocol for selecting and pricing
a complex service based on an SVN. The scoring function thereby is used to rank
different paths, i.e. feasible service composition alternatives of an SVN. The model
presented in the following section is an adaption of these well established concepts
for describing both the non-functional preferences and the economic objective func-
tion.

Further related literature concerning the challenge of QoS-aware service config-
uration can be found in the field of BPM and service composition research. In the
context of automatic service composition different approaches have been proposed
in recent literature. In the work by Lécué and and Léger [96] backward chaining
is applied to derive suitable compositions starting from a central objective. Sirin et
al. [143] propose the use of AI planning techniques to achieve an automated compo-
sition of Web Services. Thereby they use a hierarchical task network for planning in
conjunction with OWL-S Web service descriptions. These and other approaches in
this area are mainly based on formal description languages focusing on functional
service characteristics as proposed by the W3C recommendation SAWSDL, OWL-S
and WSMO. Other work, such as by Berardi et al. [16], also incorporates the service
lifecycle aspect and time dependencies. Yet, all of these approaches mainly focus
on service functionality as the only criteria for composition and largely ignore other
non-functional properties like QoS or price for an economic evaluation.

Mathematical models for aggregating quality attributes of single services into
complex services depending on multiple types of process patterns are investigated

8.2. OPTIMIZATION MODEL AND CHALLENGES 127

in [22, 79, 147, 87]. Although this stream of research considers different types of
attributes and the implications for a corresponding aggregation algorithm, com-
putational complexity and desired efficiency is not in scope of their investigation.
Another research area targets a more comprehensive solution for managing func-
tional and non-functional service characteristics across the entire life cycle based on
a model of atomic and composite services [101, 118]. Although the outlined ap-
proaches also focus on automation and on-line computation of QoS aggregation,
complexity aspects and efficient algorithm design is not in the focus. Zeng et al. [154]
propose a linear programming approach that enables an automated Web service
composition while maximizing user experience that is modeled as QoS dependent
utility function. The authors also describe how different types of QoS values can
be aggregated in such an optimization scenario. For aggregating multiplicative QoS
values like a services availability, a similar approach to the later presented logarithm
approximation is used. The optimization model itself, however, differs fundamen-
tally to the model in this thesis, as both approaches deal with different scenarios.

8.2 Optimization Model and Challenges

This section introduces a formal model specific to the challenge of finding the profit
maximizing configuration in a scenario of mass customized Cloud services. The
model is closely related to the formalizations in the previous chapters, in partic-
ular to the model presented in Section 6.3. While the service engineering model
is focused on deriving feasible service configurations to form a service configura-
tion graph, we now concentrate on finding the optimal configuration within such a
graph structure. The model containes the non-functional requirements of a con-
sumer request for a mass customized service, a refined definition of the service
configuration graph which spans the solution space obtained from functional engi-
neering step, the aggregation functions for QoS attributes and the overall objective
function of the economic optimization problem. The section is concluded with a
presentation of the computational challenges arising in the economic optimization
over different service composition alternatives.

8.2.1 Non-functional Requirements

A request for a mass customized Cloud service contains both functional and non-
functional requirements. The non-functional requirements contain preferences re-
garding non-functional QoS attributes along with a price component, the consumer
is willing to pay for the service. This is analogous to model of preferences which
was presented in Section 7.4. Yet, it comprises an additional price component that
distinguishes two different consumers in their general willingness to pay for the
service and are more complex scoring function.

The non-functional preferences P are defined as the tuple P = (α,S) with will-
ingness to pay for a perfect service α and the QoS preferences represented by a scor-

128 CHAPTER 8. SERVICE OPTIMIZATION

ing function S : A→ [0,1] of the form

(8.1) S(A) =

(
L

∑
l=1

λl ‖al‖
)

with L the number of QoS attributes, Λ = (λ1, ...,λL) a vector of weights with
∑ λl = 1, A = (a1, ..., aL) a vector containing the aggregated QoS attributes for ser-
vice configuration alternativeA and ‖al‖ the normalization function for aggregated
attribute al defined as

(8.2) ‖al‖ =


1 if al ≥ γT

l
al−γB

l
γT

l −γB
l

if al ∈
(
γB

l ,γT
l
)

0 if al ≤ γB
l

with γT
l , γB

l upper and lower boundaries for al. The chosen functional form assumes
linearity between the boundaries parameters γT

l and γB
l . While other functional

forms certainly could be more realistic, linearity is assumed for two reasons: (1) It
simplifies preference elicitation on consumer side, as only two boundary parame-
ters have to be obtained from the consumer, and (2) linearity reduces the problem
complexity and allows for the usage of state of the art optimization approaches.

The mathematical form of the non-functional preferences P is given by the nego-
tiation mechanism as presented above. Weights λl as well as boundary parameters
γT

l and γB
l are assumed to be obtained from the consumer in her service request.

8.2.2 Solution Space

The solution space for describing feasible service compositions resulting from the
service engineering algorithm is described in graph notation. We hereby rely on the
same notion of a service configuration graph G (cf. Section 6.3.2), slightly adapted
in its formulation to better fit in the context of optimization algorithms. Two differ-
ent graph structures are distinguished, as the difference between them affects the
nature of applicable optimization techniques. At first, a general concept of a service
configuration graph allowing conjunctive edges is presented.

Definition 8.1 [SERVICE CONFIGURATION GRAPH]. The solution space which results
from the service engineering algorithm is defined as service configuration graph G = (V, E),
a directed, acyclic, graph with vertices V = {n0,n∞} ∪ V• ∪ V+ and edges E, defined as
follows:

• n0 ∈ V is the source node of G

• n∞ ∈ V is the sink node of G

• nodes in V• represent conjunctive dependencies, nodes in V+ represent possible
atomic service choices (disjunctive) for the preceding dependency

• there are at least one and at most M nodes n• ∈ V• with edges (n0,n•) ∈ E

8.2. OPTIMIZATION MODEL AND CHALLENGES 129

• for each node n• ∈ V• there are at least one and at most τ nodes n+ ∈ V+ with edges
(n•,n+) ∈ E

• for each node n+ ∈V+ there are either at least one and at most M nodes n• ∈V• with
edges (n+,n•) ∈ E or there is one edge (n+,n∞) ∈ E

• N is the depth of the graph, defined as the number of nodes n+ in the longest path from
n0 to n∞

• A⊆V+ is a subset of nodes representing one feasible service configuration alternative
of G, i.e. a subgraph of G where the following condition holds ∃!n+ ∈A : (n•,n+)∈ E,
∀n• ∈ V•

Through the nature of generic defined dependencies, the graph structure is built
upon conjunctive and disjunctive edges, i.e. connections between nodes either have
the semantics of and or or. Within this graph structure, feasible configurations are
subgraphs of G.

Limiting the underlying ontology to contain at most one dependency per service
entity, a more simple graph structure containing only disjunctive edges is obtained.
The graph is characterized by or connections only, with each path from source to
sink representing one feasible configuration. As such, the structure is equivalent to
the structure of an SVN graph (cf. Section 2.2.5).

Definition 8.2 [DISJUNCTIVE SERVICE CONFIGURATION GRAPH]. The solution
space resulting from the service engineering algorithm and limited to at most one depen-
dency per service entity is defined as disjunctive service configuration graph G+ = (V, E),
a directed, acyclic, graph with vertices V = {n0,n∞} ∪V+ and edges E, defined as follows:

• n0 ∈ V is the source node of G+

• n∞ ∈ V is the sink node of G+

• nodes n+ ∈ V+ represent possible atomic service choices

• for each node n+ ∈ V+ there are either at least one and at most M nodes n̂+ ∈ V+

with edges (n+, n̂+) ∈ E or there is one edge (n+,n∞) ∈ E

• N is the depth of the graph, defined as the number of nodes n+ in the longest path from
n0 to n∞

• A⊆V+ is a subset of nodes representing one feasible service configuration alternative
of G+, i.e. a path from n0 to n∞.

The remainder of this chapter deals with solutions for both graph structures.
Sample graphs of both variants are depicted in Figure 8.1. In (a), the depicted graph
contains both conjunctive and disjunctive edges with A =

{
n+

1 ,n+
3 ,n+

4 ,n+
9
}

being
one of the potential service configurations. Graph (b) comprises only or connections.
In graphs of this nature, the usage of shortest-path algorithms becomes possible,
which is not the case in the graph that also has conjunctive edges. A=

{
n+

1 ,n+
3 ,n+

9
}

is an example path from source to sink, representing one potential service configu-
ration in this type of graph.

130 CHAPTER 8. SERVICE OPTIMIZATION

n1
• n0

n1
+

n2
+

or

or

n2
•

n5
•

and

and

n4
•

n3
•

and

an
d

n4
+

n5
+

or

or

or

n3
+

n6
+

or

or

n7
•

n8
•

n9
•

n10
•

and

and

and

and

n9
+

n10
+

or
or

or

or
or

or

or

n∞ or

n6
•

or

or

n7
+

n8
+

and

and

an
d

n11
•

n12
•

or
or

(a) G with M = 3, τ = 2, N = 3

n0

n1
+

n2
+

or

or

n4
+

n5
+

or

or

n3
+

n6
+

or

or

or

or

oror

n9
+

n10
+

n∞

or n7
+

n8
+

oro
r

or

or

oror

(b) G+ with τ = 4, N = 3

Figure 8.1: Example service configuration graphs

8.2. OPTIMIZATION MODEL AND CHALLENGES 131

8.2.3 Aggregation Functions

Each QoS attribute that is contained in the scoring function S needs to be aggre-
gated, i.e. the perceived QoS value of the entire service configuration has to be cal-
culated based on the individual values of each atomic service resource comprised in
the configuration alternative. The aggregation function is defined as

(8.3) al =
⊕
n∈A

ql
n

with ql
n being the lth QoS attribute of resource node n. Depending on the type of

attribute l, the aggregation operation
⊕

is characterized by different mathematical
operators. The selection of attributes under consideration is restrained to the three
most important QoS attributes most often mentioned in literature, response time (∑),
availability (∏), and throughput (min), additionally adding error rate (max) and encryp-
tion (∧) in order to consider two further common operators.

8.2.4 Objective Function

The following functional term is used as objective function to the optimization prob-
lem

(8.4) U(A) = αS(A)− C(A)

with cost function

(8.5) C(A) = ∑
n∈A

cn

and cn the costs of component node n. It resembles a monetarized utility that is
obtained by multiplying the normalized scoring function with the maximum will-
ingness to pay α, minus the accruing costs for service configuration alternative A.

8.2.5 Challenges

In the generic form of the service configuration graph, conjunctive edges prevent
the use of well-known efficient graph algorithms. Hence, it is a challenge to find an
optimization technique which is able to find the optimal subgraph representing the
best available and feasible configuration, without having to enumerate all feasible
configurations in a brute-force attempt.

Regarding the more simple disjunctive graph structure, a property stated by Bell-
man [15] becomes important: “An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an op-
timal policy with regard to the state resulting from the first decision.” This policy, a
necessary condition for optimality of dynamic programming approaches, is known
as Bellman’s principle of optimality (cf. Section 2.4.4.1). In any shortest-path graph
optimization problem with an objective function fulfilling the Bellman principle, the
optimal path can be computed efficiently using well-known algorithms like Dijkstra

132 CHAPTER 8. SERVICE OPTIMIZATION

or the Bellman-Ford algorithm. This is due to the fact, that under the Bellman con-
dition, suboptimal paths of a graph can never be part of the optimal path and thus
can be cut off from the remaining search space.

Any computational challenge for finding the optimal path in a disjunctive ser-
vice configuration graph G+, consisting of or-labeled edges only, arises from a lack
of the Bellman optimality in the objective function. It turns out, that this also holds
for the more complex case with conjunctive edges, where optimal sub graphs rather
than paths have to be found.

The Bellman optimality potentially is violated at two different spots in the
present model. The first violation occurs in the application of the normalization
function, when dealing with more than one QoS attribute and aggregated attributes
potentially cross upper or lower boundaries. The following example illustrates this
violation.

Example 8.1. Two attributes (L = 2) with aggregation function ∑, lower and upper bound-
aries γT

l = 0,γB
l = 10, both weighted equally (λ1 = λ2 = 0.5). Now consider a node n with

two incoming paths. Path one with aggregated attribute values a1 = 2, a2 = 3 and path two
with a1 = 1, a2 = 9. It is easy to see, that path one is superior to path two, as one obtains a
score of 0.5(2− 10)/(0− 10) + 0.5(3− 10)/(0− 10) = 0.75, while path two has a lower
score of 0.5(1− 10)/(0− 10)+ 0.5(9− 10)/(0− 10) = 0.5. In any optimization approach
with Bellman optimality, path two could be neglected, as any suboptimal sub path cannot be
part of the optimal path. With node n adding attribute values q1 = 1, q2 = 7, the score of
both paths are not lowered equally due to the effect of the normalization function’s bound-
aries. Path one now has a score of 0.5(3− 10)/(0− 10) + 0.5(10− 10)/(0− 10) = 0.35,
while path two scores 0.5(2− 10)/(0− 10) + 0.5(10− 10)/(0− 10) = 0.4. a2 becomes
irrelevant, as for both paths, the lower boundary is reached (path one) or exceeded (path two)
– a2 contributing a partial score of 0 for both paths. Path two (neglected in any Bellman
optimization) suddenly is superior to path one, as its partial score for a1 is higher.

With other words, whenever the objective function contains elements, that possi-
bly change the rank order of preceding paths, Bellman-optimality-based algorithms
cannot guarantee optimality. This is also the case with aggregation functions like ∧
and ∏, as these functions do not guarantee strictly monotone behavior. However,
similar Bellman-like behavior can be observed for attributes like availability, which
we will call “quasi-Bellman” behavior from here on. Despite the fact, that ∏ has
to be used as aggregation function, the value domain is usually restricted to val-
ues above 99%, implying strictly monotone behavior while aggregating availability
values.

After all, eight different settings can be characterized which are typically found
in the domain of our interest, posing different challenges on the optimization tech-
nique. The first challenge arises in settings with the generic form of a service con-
figuration graph, where the conjunctive semantic of AND connections massively
increases the combinatorial complexity of the solution space.

8.2. OPTIMIZATION MODEL AND CHALLENGES 133

Setting 8.1 [CONJUNCTIVE EDGES]. In the generic form of a service configuration graph,
conjunctive edges with AND semantic prevent the usage of well known graph algorithm, as
not paths, but subgraphs represent feasible configurations.

Further challenges arise from the different forms of QoS aggregation functions,
which are required for aggregating the various types of QoS attributes. One can
distinguish between three classes of attributes.

Setting 8.2 [ONLY BELLMAN ATTRIBUTES]. Any setting with only attributes following
a strictly monotonous aggregation function, not violating the Bellman property.

In the following, attributes that show “quasi-Bellman” behavior are denoted as
quasi-Bellman attributes.

Setting 8.3 [QUASI-BELLMAN ATTRIBUTES]. Quasi-Bellman attributes require an ag-
gregation function that violates the Bellman property when computed exactly. Nevertheless,
certain value domains, as in the case of the QoS attribute availability, allow heuristic ap-
proaches yielding a very low expected error.

Setting 8.4 [NON-BELLMAN ATTRIBUTES]. Comprises all other attributes that require
non-Bellman aggregation functions, but do not approximately behave Bellman-like (e.g.
multiplicative attributes with a wide value range or Boolean attributes).

Lastly, the normalization function can bring along a further violation of the Bell-
man property, if upper or lower boundaries are surpassed (cf. Example 8.1).

Setting 8.5 [BOUNDARY VIOLATION]. Any boundary violation in the normalization
function also leads to a violation of the Bellman property in the optimization.

The approaches presented later in this chapter address the challenges contained
in these settings. They are also evaluated in different time criticality contexts – of-
fline, online and time critical.

Setting 8.6 [OFFLINE]. The optimization is run in an offline scenario, for example over
night, without runtime being of any great importance. Formally, we require runtime to be
below 12 hours.

Setting 8.7 [ONLINE]. The optimization is run in an online scenario, for example in an
online order process, i.e. results have to be obtained within a reasonable waiting time at least
for reasonable problem instances. Formally, we require runtime to be below 10 seconds.

Setting 8.8 [RUNTIME CRITICAL]. Runtime is the most critical factor, for example, if
thousands of simultaneous requests have to be processed and any lag is associated with high
costs. Formally, we require runtime to be below 100 milliseconds.

134 CHAPTER 8. SERVICE OPTIMIZATION

8.3 Optimization Techniques

This section describes different approaches for tackling the challenge of finding opti-
mal configurations within a service configuration graph. The presented approaches
have been designed to meet the challenges presented in Section 8.2.5. An evaluation
on both their runtime and solution quality follows in Section 8.4. The section begins
with exact procedures, followed by a description of approximative solutions deal-
ing with quasi-Bellman attributes. Lastly, heuristic solutions allowing an efficient
computation in non-Bellman-optimality scenarios are presented.

8.3.1 Exact Approaches

In the exact approaches, exactness of the obtained objective function value and op-
timality of the solution are guaranteed. However, depending on the problem struc-
ture, optimality comes at the price of soaring computation time. The presented
brute-force algorithms – exploring the complete solution space – serve as bench-
mark for all other approaches, as they not only are exact, but also can cope with
all challenges of Section 8.2.5. Dijkstra’s algorithm and the BIP formulation offer a
massively improved runtime performance, however, they are only exact for a subset
of all settings.

8.3.1.1 Brute-Force-Search

Brute-force algorithms iterate through each and every possible solution of the op-
timization problem. For a disjunctive service configuration graph G+, a simple
depth-first-search algorithm can be implemented (Algorithms 8.1 and 8.2). The im-
plementation for the graph with conjunctive edges is more sophisticated, due to the
increased solution complexity obtained from the and connections. Algorithms 8.3
and 8.4 show an approach that uses a stack S to store unvisited conjunctive nodes.2

Algorithm 8.1 Initialize Depth-First-Search G+

Require: graph G+, objective function U
Ensure: nodes A∗ yielding the highest possible utility u∗

u∗←−∞, A← ∅, A∗← ∅
for all n ∈ V with (n0,n) ∈ E do

depthFirstSearchDisjunctive(n, G, U, A, A∗, u∗)
end for

8.3.1.2 Dijkstra

Dijkstra’s algorithm (cf. Section 2.4.4.2) is a single-source shortest-path algorithm
for graphs with nonnegative edge path costs. It has a runtime of O(

∣∣V2
∣∣), which

2Note that the presented pseudo algorithms do not claim to be most efficient.

8.3. OPTIMIZATION TECHNIQUES 135

Algorithm 8.2 depthFirstSearchDisjunctive(n, G+, U, A, A∗, u∗) – Recursive Depth-
First-Search G+
Require: node n, graph G+, objective Function U, path A, optimal path A∗, maxi-

mum utility u∗

Ensure: path A∗ yielding the highest possible utility u∗

if n 6= n∞ then
A←A∩ n
for all n′ ∈ V with (n,n′) ∈ E do

depthFirstSearchDisjunctive(n′, G, U, A, A∗, u∗)
end for

else
u←U(A)
if u > u∗ then

u∗← u
A∗←A

end if
end if

Algorithm 8.3 Initialize Depth-First-Search G
Require: Graph G, Objective Function U
Ensure: Nodes A∗ yielding the highest possible utility u∗

u∗←−∞, A← ∅, A∗← ∅, S← ∅
for all n• ∈ V• with (n0,n•) ∈ E do

push(S, n•)
depthFirstSearch(G, U, S, A, A∗, u∗)

end for

can be further improved to O (|V| log |V|+ |E|) by optimized data structures, mak-
ing Dijkstra’s algorithm one of the most efficient single-source shortest-path algo-
rithm available [50]. Being based on Bellman’s principle of optimality, however, a
prerequisite for it to work is a strictly monotonous objective function. This is the
case within its typical field of application as routing algorithm. For the problem
of finding optimal configuration paths in a disjunctive service configuration graph,
this implies two restrictions on the objective function for it to guarantee optimal-
ity: (1) The aggregation function has to be of strictly monotonous nature, and (2)
lower and upper boundaries of scoring function S cannot be exceeded, as exceeded
boundaries also violate strict monotonicity. Regarding the first restriction, Dijkstra’s
algorithm ensures optimality only for additive QoS attributes. By nature, Dijkstra’s
algorithm cannot be used for service configuration graphs with conjunctive edges.

8.3.1.3 Binary Integer Program

Despite the graph notation for the service configuration problem in this chapter,
finding the best feasible service composition alternative can also be solved using a
binary integer programming (BIP) approach (cf. Section 2.4.3).

136 CHAPTER 8. SERVICE OPTIMIZATION

Algorithm 8.4 depthFirstSearch(G, U, S, A, A∗, u∗) – Recursive Depth-First-Search G
Require: graph G, objective function U, stack S, subgraphA, optimal subgraphA∗,

maximum utility u∗

Ensure: recursively adding nodes to A yielding the highest possible utility u∗

if S 6= ∅ then
n•← pop(S)
for all n+ ∈ V+ with (n•,n+) ∈ E do

if n+ /∈ A then
A←A∩ n
for all n• ∈ V• with (n+,n•) ∈ E do

push(S, n•)
end for

end if
depthFirstSearch(G, U, S, A, A∗, u∗)

end for
else

if u > u∗ then
u∗← u
A∗←A

end if
end if

Objective Function. The objective function presented in Section 8.2.4 has to be
adapted to meet the prerequisites of BIP solvers. As current state-of-the-art inte-
ger programming algorithms3 only support linear or quadratic forms, the objective
function has to be linear or at most of quadratic nature. Through introducing binary
decision variables x ∈ X with value domain {0,1}, for each node n ∈V representing
a service resource, one obtains the following binary optimization problem:

(8.6) max
x∈X

α · S(X)− C(X)

Cost Function. The BIP formulation of the cost function is straight forward using

(8.7) C(X) = ∑
x∈X

c · x

Modeling the scoring function S is more sophisticated. The piecewise defined nor-
malization function can be reformulated using both min and max function:

(8.8) min(max(
al − γB

l
γT

l − γB
l

,0),1)

The obtained minimax objective can be transformed by adding additional decision
variables and constraints ensuring minimality and maximality, respectively.4

3As implemented in industry standard solving engines like CPLEX or Gurobi (cf. Section 2.4.2).
4Solvers like CPLEX support min and max functions by performing the required transformations
(additional variables and constraints) automatically, potentially increasing the BIP formulation’s
computational complexity.

8.3. OPTIMIZATION TECHNIQUES 137

Aggregation Function. Regarding the aggregation functions (cf. Section 8.2.3), the
aggregation operators ∑, min, max and ∧ can be formulated within a linear integer
program. Additive QoS attributes are formulated analogously to the cost function.
min and max functions are more tricky, as QoS attributes are multiplied with deci-
sion variables, which requires a transformation of all QoS values to be below zero
or above one, respectively. Using transformation value t = max(q1, ...,qn), the min
function is transformed by

(8.9) min((q1 − t) · x1, ..., (qn − t) · xn) + t

and the max function, analogously. Linearization is then achieved using the same
transformation as described for the normalization function. Boolean QoS attributes
like encryption can be aggregated through the term

(8.10) 1−max(x1 · (1− q1), ..., xn · (1− qn))

When dealing with more than two decision variables, multiplicative QoS attributes
cannot be formulated within a binary integer program, as the ∏ function would
lead to a nonlinear and nonquadratic objective function. However, quasi-Bellman
attributes like availability can be approximated using the approaches presented in
the succeeding Section 8.3.2.

Graph Structure. The graph structure of the solution space is formulated by means
of constraints to the BIP. Constraints can be derived in a standardized manner from
the graph. For a disjunctive service configuration graph with disjunctive edges only,
the term

∑
i

xi = 1 ∀i : (n0,ni) ∈ E(8.11)

constrains all nodes connected to the source, while

∑
j

xj ≥ xi ∀i, j : (ni,nj) ∈ E(8.12)

constrains all other nodes. A major advantage of a BIP formulation over Dijkstra’s
algorithm is its easy adaptivity to graphs with conjunctive edges. Nodes connected
to the source are constrained as above. All other nodes are modeled by means of the
constraint formulation:

∑
k

xk ≥∑
i

xi ∀i, j,k : (n+
i ,n•j) ∈ E ∧ (n•j ,n+

k) ∈ E(8.13)

Further, the BIP formulation can be extended by adding additional constraints,
e.g. excluding certain undesired resource combinations.

8.3.2 Approximations

Apart from the brute-force algorithms, neither of the exact mechanisms can solve
the optimization when dealing with multiplicative QoS attributes. However, QoS

138 CHAPTER 8. SERVICE OPTIMIZATION

attributes with very limited value domain can show quasi-Bellman behavior. With
values typically ranging from 0.99 to 0.999, this is especially true for availability –
one of the most important QoS attributes in the IT service domain. Despite the
multiplicative nature of this attribute, two different linear approximations proposed
later in this section allow its inclusion into linear programming approaches.5

8.3.2.1 Subtractive Approximation

To achieve an efficient computation (and for aggregating quasi-Bellman attributes
in a BIP formulation), a linear approximation can be of great benefit. Recapturing
the typical characteristics of QoS attribute availability (and others with similar value
domain) that are aggregated by multiplication, the linear approximation function in
the following offers computational efficiency. Simultaneously, it only yields a small
error, depending on the concrete problem instantiation:

(8.14) al = 1− ∑
n∈A

δ · (1− qn)

Parameter δ can be used to parametrize the function according to the domain of
attribute values, which allows to reduce the expected error of the approximation
function. Values for δ that achieve a minimum expected error typically lie within
the unit interval, as shown experimentally later in Section 8.4.1.

8.3.2.2 Logarithmic Approximation

A second approximation can be achieved by means of the logarithm function.
Hereby, true values of the QoS attribute are replaced by their logarithmic values.
The ∑ operator is then used instead of the ∏ operator. For back-transformation, the
logarithm is applied on the upper and lower boundaries of the normalization func-
tion. However, the resulting value is not exact, as these steps are no mathematically
equivalent transformations. The following linear term is obtained6

(8.15) ‖al‖ =
∑

n∈A
ln(qn)− ln(γB

l)

ln(γT
l)− ln(γB

l)

with all logarithmic values pre-computed.

8.3.3 Heuristics

Based on the considerations prior in this section and the approximations from
above, several heuristics can be derived addressing the problem of quasi-Bellman
attributes as described in Setting 8.3.
5Note that the formulation of the approximation functions in the following looks slightly different
in a binary integer program, as the aggregation function in such a program must iterate over all
decision variables, while multiplying the QoS value with the corresponding decision variable x ∈
X . For readability reasons, the graph notation is therefore chosen, iterating only over the set A
representing one feasible service configuration alternative.

6For a better readability, parts of the piecewise function above/below the upper/lower boundary are
omitted.

8.4. EVALUATION 139

8.3.3.1 Dijkstra*

The first heuristic introduced in this thesis will be called Dijkstra*. Dijkstra* is not
exactly a heuristic in a sense, that it is different from the exact algorithm. Yet, this
notation is used whenever Dijkstra’s algorithm is applied despite the violation of
Bellman’s principle of optimality. This violation occurs when cutting off paths in
the graph, that are dominated by a higher valued path from a local perspective and
could become optimal later on while iterating through the graph, due to some non-
monotonous aggregation function.

8.3.3.2 Dijkstra with Approximation

For the quasi-Bellman attribute availability, Dijkstra’s algorithm can be applied using
the approximations described in Section 8.3.2. Its application will lead to no addi-
tional error on top of the error originating from the used approximation function,
unless strict monotonicity is violated by another aggregation function or through
crossing the normalization function’s boundaries.

8.3.3.3 Binary Integer Program with Approximation

Through the linearity of the two approximation functions presented above, the BIP
approach is also applicable to settings with multiplicative quasi-Bellman-like at-
tributes. As with the above mentioned Dijkstra-based heuristic, the inexactness of
the optimization originates from the error of the approximation function.

8.4 Evaluation

So far, different approaches to tackle the challenge of efficiently computing opti-
mal service configurations in different settings were introduced. This section covers
both efficiency, i.e. runtime of the presented approaches, and effectiveness, i.e. the
solution quality, under different circumstances.

The expected error of the subtractive approximation is evaluated context-free,
i.e. independent of the optimization model, both analytically and numerically in
Section 8.4.1. As the other approximations and all other techniques and heuris-
tics cannot be evaluated independently of a given scoring function and service con-
figuration graph, a simulation study is conducted as evaluation, following in Sec-
tion 8.4.2.

8.4.1 Subtractive Approximation Error

As measure for the obtained approximation error the following function is defined

(8.16) e(a∗, â) =
|a∗ − â|

a∗

140 CHAPTER 8. SERVICE OPTIMIZATION

with a∗ being the exact aggregation value and â the approximated one.7 Based on
this error function, various sensitivity analyses are conducted with different param-
eter settings. For reducing the mathematical complexity and a better understand-
ing of the reader, δ is set to a value of one for most parts of the evaluation, as one
can draw the same conclusions without losing generality. A simplified aggregation
function with δ equaling one is obtained

(8.17) a = 1− N + ∑
n∈A

qn

with N = |A| the number of service resource nodes in A.

8.4.1.1 Deterministic Values

For a first analytic error estimation we assume the attribute values to be determinis-
tic and parameter δ to be one. Thus the error can be calculated straightforward with-
out the use of stochastics. If all attribute values are equal, i.e. ∀n,n′ ∈A : qn = qn′ = q,
a simplified equation is obtained:

(8.18) e(a∗, â) =

∣∣qN − 1 + N − N · q
∣∣

qN

The resulting error as a function of N and q is depicted in Figure 8.3a. One can see
that the error increases with N and decreases with q. However, in reality, not all
values are equal. One way to measure this effect in a deterministic manner, is by
spreading the N attribute values equally in the interval [q− ε,q + ε], with

q1 = q − ε
...

qN = q + ε

The following error function can be derived, showing the influence of the values
being spread apart by two times ε:

(8.19) e(a∗, â) =

∣∣∣∣ N
∏
i=1

(
q + ε

(
2·i−2
N−1 − 1

))
− 1 + N − N · q− ε

N
∑

i=1

(
2·i−2
N−1 − 1

)∣∣∣∣
N
∏
i=1

(
q + ε

(
2·i−2
N−1 − 1

))
Looking at Figure 8.2, the error depending on q and ε can be analyzed. For q

values below one and starting from ε = 0, one can notice that the error of the ap-
proximation first decreases in ε. When a certain value of ε is reached, the approxi-
mation evaluates to the exact value obtained by the product of all aggregated values,
i.e. approximation and exact value are equal. After passing this point, the error in-
creases again. The exact location of this root depends on the number of aggregated

7Note that index l for the l’s attribute of S is omitted in this Section.

8.4. EVALUATION 141

Figure 8.2: Deterministic error of subtractive approximation for spread values
depending on ε [%]

attributes N and their mean value q. The location of the root forms a valley where a
decreasing value of q corresponds to an increasing value of ε. From a practical point
of view, this is an advantageous property, as realistic values commonly “fall” into
this valley, i.e. q-values are below one and spread within a certain interval.

8.4.1.2 Normalization Function

In the context of a normalization function, as presented in Section 8.2.1, the per-
ceived error increases. This is due to the augmentation effect of the normalization,
scaling up small differences in the attribute value, thus also raising the expected
error. For q ∈ [γB

l ,γT
l] the deterministic error equals

(8.20) e(‖a∗‖ ,‖â‖) =

∣∣∣∣1−γB
l −N−N·q
γT

l −γB
l
− qN−γB

l
γT

l −γB
l

∣∣∣∣
qN−γB

l
γT

l −γB
l

=

∣∣1− N + N · q− qN
∣∣

qN − γB
l

Obviously, the error is actually independent of the upper boundary γT
l , yet requires

a limit analysis where a∗ is close to γB
l . Figure 8.3b shows the error in dependency

on γB
l and q. In most cases, it is not much higher than the error without using a scor-

ing function, yet with a close proximity of qN to γB
l , the error rises towards infinity.

This implies that the proposed approximation function is not suitable, where the
exact value of the aggregation function is very close to the lower boundary of the
scoring function. However, from a practical point of view, this case can be consid-
ered unlikely, unless quality expectations are very high compared to the available
configurations.

142 CHAPTER 8. SERVICE OPTIMIZATION

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0

 5

 10

 15

 20

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

e() in %

q
N

(a) Equal q values without normalization

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0.9
 0.91

 0.92
 0.93

 0.94
 0.95

 0.96
 0.97

 0.98
 0.99

 0

 2

 4

 6

 8

 10

e() in %

q

γB

(b) Equal q values with normalization, N = 10

Figure 8.3: Deterministic error of subtractive approximation [%]

8.4. EVALUATION 143

8.4.1.3 Stochastic Values

Up to now, evaluation results were relying on deterministic values for the QoS at-
tributes. In reality one is confronted with values that origin from some stochastic
or random process with an underlying probability distribution8. Nevertheless, the
prior deterministic considerations allowed for some much simpler analytic conclu-
sions, that become far more complex in the stochastic case. As more sophisticated
analytic considerations require a numerical integral evaluation with an increasing
complexity in the number of variables, Monte Carlo simulations are used for com-
puting error values for larger values of N.

In the center of interest is again the error arising from using an approximation
instead of the exact multiplication function. In the stochastic case this error is not a
deterministic value, but a probability function. Thereby, the expected value of this
function resembles a comparable result to the deterministic error value.

This expected error, which is based on N independently distributed quality val-
ues, can be calculated by building the integral over all random variables. To do so,
density functions of all random variables have to be multiplied (i.e. the actual prob-
ability of obtaining a given value) with the error that results from the given set of
random variable instantiations. With fi(qi) being the probability density function of
variable qi, the following equation is obtained

(8.21) E(e(a∗, â)) =
∫

...

∫
f1(q1) · ... · fN(qN)

|a∗ − â|
a∗

dq1...dqN

for calculating the expected error. Table 8.1 gives an overview on concrete values –
(a) contains values for two and three normally distributed variables9 with different
distribution parameters µ and σ2, (b) shows values for two to five uniformly dis-
tributed variables with different parameters for the distribution U (a,b). All error
values are calculated by means of numerical integration. For large values of µ or
a,b, respectively, i.e. quality values above 99%, the expected error is well below or
around 1%. Concerning the QoS attribute availability, such a result seems acceptable,
given that availability values in most Cloud computing SLAs are commonly around
or above 99% (e.g. Amazon EC2 99.95%, IBM SmartCloud Enterprise+ 98.5% for
Bronze to 99.9% for Platin, ...).

As a further evaluation, a Monte Carlo simulation study to expose the relation-
ship of mean value, variance and parameter δ on the expected error was conducted.
All simulations are based on the average of 100,000 runs. The study reveals, that the
error slightly increases with the variance σ2 and decreases with the mean value µ,
in accordance with Table 8.1. Figure 8.4a, shows the influence of a growing graph
structure G, i.e. an increasing value of N for a typical setting with a mean value of
99.5% and a variance of 0.001.

It remains open, whether the approximation can be improved by adjusting pa-
rameter δ. Figure 8.4b shows its influence on the expected error depending on mean

8For evaluating the expected error when coping with stochastic processes, the probability distribu-
tions are assumed to be known.

9Note that normally distributed values for availability can exceed a value of one, which has been
neglected in the considerations, but only has a small influence on results. Future work will address
this issue by using a beta distribution instead.

144 CHAPTER 8. SERVICE OPTIMIZATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50

E
rr

or
 in

 %

N

Mean Error

(a) qi ∼N (0.995,0.001)

Mean Error N=10

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

μ

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

δ

 0

 10

 20

 30

 40

 50

 60

Error in %

(b) qi ∼N (µ,0.01),N = 10

Figure 8.4: Expected error of subtractive approximation [%]

8.4. EVALUATION 145

N µ σ2 E(e(a∗, â))

2 0.9 0.1 1.979

2 0.9 0.01 1.238

2 0.99 0.1 0.698

2 0.99 0.01 0.014

2 0.999 0.1 0.666

2 0.999 0.01 0.006

3 0.9 0.1 5.560

3 0.9 0.01 3.988

3 0.99 0.1 1.296

3 0.99 0.05 0.317

3 0.999 0.1 1.216

3 0.999 0.01 0.282

(a) qi ∼N (µ,σ2)

N a b E(e(a∗, â))

2 0.9 0.99 0.348

2 0.99 0.999 0.003

3 0.9 0.99 1.085

3 0.99 0.999 0.009

4 0.9 0.99 2.257

4 0.99 0.999 0.019

5 0.9 0.99 3.911

5 0.99 0.999 0.031

(b) qi ∼ U (a,b)

Table 8.1: Expected error of subtractive approximation [%]

value µ. In fact, parameter δ can be effectively used to reduce the error even for low
mean values, by lowering δ when QoS attributes are low as well.

An extensive evaluation on the effective performance of this approximation in
the context of service configuration graphs will follow in Section 8.4.2.2.

8.4.2 Simulation Study

For evaluating the different approaches within the context of the custom service
process, a simulation-based numerical evaluation is chosen for two reasons: (1) To
ensure comparability over all scenarios, challenges and approaches, and (2) as an-
alytically predicting the runtime of an optimization problem formulated as binary
integer program is hardly feasible. The simulations are based on Java implementa-
tions for both algorithms and BIP formulations, with CPLEX (cf. Section 2.4.5) as
solver for the BIP without any optimizations of the solver’s out-of-the-box parame-
ters.

In all simulations, both non-functional preferences P and graph G are randomly
generated in each round. With L = 2, availability and response time serve as exemplary
QoS attributes. Each node is assigned with random values drawn from normal dis-
tribution N (0.995,0.005) for availability and from normal distribution N (15,5) for
response time. Concerning S , weights λ ∈ Λ are randomized, while the normaliza-
tion boundaries are constant values of a function. The function ensures a reasonable
relationship of the boundaries to the parameters’ mean value, standard deviation
and boundary tightness φ – with a higher value of φ leading to a tighter interval
[γB

l ,γT
l]. Further parameters describing the structure of the input graph G are de-

146 CHAPTER 8. SERVICE OPTIMIZATION

Parameter Default Value Description

τ 3 Number of n+-nodes per n•-node/hierarchy

N 3 Depth of the graph from n0 to n∞

β 2/3 Connectivity (ratio)

φ 1 Tightness of the normalization boundaries

with γB
l ,γT

l = µ± (σ/φ)

L 2 Number of QoS attributes

Table 8.2: Simulation parameters

picted in Table 8.2. Apart from β, all parameters originate from the the optimization
model in Section 8.2. β denotes the connectivity of the graph, i.e. the ratio between
actual and maximum number of connections between two dependency layers. All
runtime simulations are conducted for both types of graph, G+ and G, whereas solu-
tion quality was evaluated on disjunctive service configuration graphs only, without
loss of generality.

8.4.2.1 Runtime

For evaluating the runtime of the different approaches, a simulation study with 100
rounds per setting is conducted. Main drivers for an increasing problem complex-
ity are parameters τ and N. In the scenario of this thesis, a growing ontology will
increase the number of nodes τ. The dependency depth N can be assumed con-
stant, as the number of dependencies is closely related to the number of layers in
the service architecture, which typically is limited to a few layers. Figure 8.5 shows
the influence of τ (a) and N (b) on runtime for regular service configuration graphs,
Figure 8.6 for the more simple disjunctive variant.10 Average runtime is depicted for
all graph-based and BIP approaches presented in Section 8.3. Average brute-force
runtime is shown for low complexity settings in Table 8.3 for the generic variant
G and Table 8.4 for the disjunctive variant G+, with |V| denoting the number of
vertices in the graph.

Looking at the generic service configuration graph allowing conjunctive edges
(cf. Figure 8.5), one recognizes exponential growth in both parameters. Neverthe-
less, realistic problem sizes with up to 20 resource options per dependency node
n• still can be computed within one second (cf. Figure 8.5a). Concerning the dis-
junctive service configuration graph, polynomial runtime can be achieved by both
the Dijkstra-based mechanism and the BIP approach with respect to parameter τ
(cf. Figure 8.6a), opposed to the exponential growth of the brute-force algorithm
(cf. Table 8.4). However, runtime shows an exponential growth rate in dependency
depth N (cf. Figure 8.6b). As stated before, the dependency depth can be assumed
constant even for large ontologies, as a single service configuration will not grow in
the number of resources.

10The runtime is depicted in a logarithmic scale to achieve a better readability of the graphs.

8.4. EVALUATION 147

 10

 100

 1000

 5 10 15 20 25

R
ut

im
e

in
 [m

s]

τ

BIP SUB.
BIP LN

(a) Number of nodes τ

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

R
ut

im
e

in
 [m

s]

N

BIP SUB
BIP LN

(b) Graph depth N

Figure 8.5: Average runtime [ms] – service configuration graph (G)

148 CHAPTER 8. SERVICE OPTIMIZATION

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45

R
ut

im
e

in
 [m

s]

τ

BIP SUB
BIP LN

Dijkstra*

(a) Number of nodes τ

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25

R
ut

im
e

in
 [m

s]

N

BIP SUB
BIP LN

Dijkstra*

(b) Graph depth N

Figure 8.6: Average runtime [ms] – disjunctive service configuration graph (G+)

8.4. EVALUATION 149

τ |V| Solutions Brute-Force BIP SUB BIP LN

1 18 1 0.02 2.31 2.07

2 32 4 0.09 5.09 4.53

3 46 11247 45.24 21.04 14.56

4 60 29470 133.92 17.25 18.42

5 74 5190360 22828.41 27.14 16.07

(a) Number of nodes τ

N |V| Solutions Brute-Force BIP SUB BIP LN

3 46 – – 16.36 15.47

6 100 – – 112.52 115.76

9 154 – – 9349.00 9643.20

(b) Graph depth N

Table 8.3: Average runtime [ms] – service configuration graph (G)

In general, runtime is found to grow faster in a setting with conjunctive edges
(generic graph G) than in settings with disjunctive edges (disjunctive graph G+).
The selection of a specific approximation function shows no significant effect on
runtime, as both approximations are of additive nature.

All in all, graph-based optimization approaches achieve a better runtime than the
BIP formulations. However, the constant amount of runtime for initialization (inde-
pendent of the problem size) could not be separated in the the simulation study
and is larger for the BIP formulation in comparison to the Dijkstra implementation,
due to the overhead of using a complex software library like CPLEX. For disjunctive
service configuration graphs, however, the runtime advantage of the Dijkstra* algo-
rithm is significant, especially since a linear growth in runtime with respect to graph
depth N is recognizable, whereas the BIP approach shows polynomial growth.

8.4.2.2 Solution Quality

To evaluate the deviation of heuristic approaches from the exact solution, two dif-
ferent measures are used:

Equality E measures how often the exact solution was matched by the heuristic
proportional to the number of considered observations.

Deviation ∆ measures the deviation of utility from the exact solution’s utility in
proportion to the exact solution’s utility, as average over the considered obser-
vations. It can be interpreted as percental loss of welfare due to inexactness of
the heuristic approach.

The results of a simulation (200 rounds for each setting) showing the effects of a
growing network (parameter N) are depicted in Figure 8.7, for a setting with wide

150 CHAPTER 8. SERVICE OPTIMIZATION

τ |V| Solutions Brute-Force BIP SUB BIP LN Dijkstra*

5 16 45 0.01 14.39 14.37 0.06

10 32 490 1.21 42.22 37.49 0.38

15 47 1500 6.91 72.80 67.83 0.93

20 62 3380 25.54 100.34 101.48 2.48

25 77 7225 78.44 126.38 119.06 5.40

30 92 12000 178.15 163.34 156.45 10.08

35 107 18515 369.52 207.23 203.66 17.82

40 122 27040 694.65 254.30 243.00 28.99

45 137 40500 1309.76 257.02 263.65 45.77

(a) Number of nodes τ

N |V| Solutions Brute-Force BIP SUB BIP LN Dijkstra*

5 16.4 48 0.11 13.66 13.12 0.05

10 30.6 1536 3.47 24.05 23.98 0.30

15 45.05 49152 141.78 53.30 44.84 0.26

20 59.28 1572864 6353.43 76.05 68.23 0.33

(b) Graph depth N

Table 8.4: Average runtime [ms] – disjunctive service configuration graph (G+)

boundaries (φ = 0.3), and in Figure 8.8, for tight boundaries (φ = 1.0). In all cases and
for all heuristics, an increase in N leads to lower value of E and a higher deviation ∆.

For the case of wide boundaries (cf. Figure 8.7), the Dijkstra* algorithm domi-
nates all other approaches. As wide boundaries ensure that Bellman optimality is
not violated by the normalization function – this violation only affects graph-based
approaches, not BIP formulations – both Dijkstra and BIP approach relying on the
same approximation function show identical error values. The subtractive approx-
imation (SUB)11 hereby clearly offers better results than the logarithm-based ap-
proximation (LN). Nevertheless, all heuristics apart from the logarithm-based ones
guarantee a high solution quality with welfare losses below 0.1%.

In cases where aggregated QoS attribute values exceed the boundaries of the
normalization function, the BIP approach’s strength becomes visible (cf. Figure 8.8).
Again, the subtractive approximation outruns the logarithm-based one, both with
high solution quality in combination with BIP formulation (∆ < 0.1%). The Dijkstra-
based approaches experience high welfare-losses (∆ > 25%) for larger values of N,
thus are not suitable for a scenario with tight boundaries.

11With δ = 1, no further tuning of the subtractive approximation was performed.

8.4. EVALUATION 151

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

N

BIP SUB
BIP LN

Dijkstra SUB
Dijkstra LN

Dijkstra*

(a) Equality E

 0.0001

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16 18 20

N

BIP SUB
BIP LN

Dijkstra SA
Dijkstra LN

Dijkstra*

(b) Deviation ∆

Figure 8.7: Solution quality [%] depending on N – Wide boundaries φ = 0.3

152 CHAPTER 8. SERVICE OPTIMIZATION

Mean ∆ S.A. Mean ∆ LN A.

BIP & Dijkstra, φ = 0.3 0.00262 0.69133

BIP, φ = 1.0 0.00302 0.10274

Table 8.5: Mean values of deviation ∆ in %, N ∈ [0,20]

For validating the predominance of the subtractive approximation over the
logarithm-based one, a comparison of mean values is shown in Table 8.5.12 In all
scenarios and in combination with each potential algorithm, the subtractive approx-
imation shows significantly lower mean welfare losses than the logarithm-based ap-
proximation.

8.5 Conclusion

This chapter was dedicated to computational efficient optimization techniques for
finding optimal service configurations in a graph structure that, for example, results
from the service engineering algorithm. A more complex form of SCORINGBIDDING
was assumed to be implemented by the service provider as negotiation mechanism.

In the presented model, the functional requirements from Chapter 6, that lead
to a certain service configuration graph, are extended by non-functional require-
ments. They contain the consumer preferences regarding certain QoS attributes and
a willingness to pay for a service configuration offering maximal preference fulfill-
ment. Through introducing lower and upper bounds for each QoS attribute and a
parameter for weighting the various attributes, a linear scoring function is obtained
which allows the usage of either binary integer programming or graph algorithms
like Dijkstra to be used for solving the optimization problem.

The major challenges within the presented model arise from the required ag-
gregation of QoS attributes, their normalization and from conjunctive nodes. Re-
garding the first, we recognized that nonadditive aggregation operators violate the
Bellman property, hence hinder the use of efficient graph algorithms without losing
exactness. In a BIP approach, additivity is also required to obtain a linear objective
function. Regarding the latter, and instead of or semantics require more sophisticated
solutions as not paths, but subgraphs are feasible service configurations within the
solution space.

When dealing with non-Bellman attributes, a special case was identified when
aggregating high percentage values by multiplication, as in the case of availability, a
QoS attribute commonly of high interest. For these types of attribute, the notion of
a “quasi-Bellman” attribute was introduced. It turned out, that two rather simple
approximations can handle quasi-Bellman attribute in an additive way. One of the
two – the subtractive approximation – was found to be superior to the other one –
the logarithmic approximation.

12The comparison is based on all simulation runs over all variations of N. Statistical tests are omitted
given the effect size and number of total observations.

8.5. CONCLUSION 153

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

N

BIP SUB
BIP LN

Dijkstra SUB
Dijkstra LN

Dijkstra*

(a) Equality E

 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

N

BIP SUB
BIP LN

Dijkstra SUB
Dijkstra LN

Dijkstra*

(b) Deviation ∆

Figure 8.8: Solution quality [%] depending on N – Tight boundaries φ = 1.0

154 CHAPTER 8. SERVICE OPTIMIZATION

In the evaluation section of this chapter, the expected error for this approxima-
tion was derived analytically. For reasonably sized graphs – which already become
computationally complex through their combinatorial nature – the subtractive ap-
proximation was found to have acceptable small errors, as long as dealing with
availability values in the range above 90%. With values of 99% or above, the error
was even found to be well below 1%.

Additionally, a broad simulation study was conducted to investigate on both
runtime and solution quality of all techniques in randomized service configuration
graphs. In graphs with disjunctive edges only, Dijkstra or Dijkstra* are dominating
both regarding runtime and solution quality, unless boundaries of the normalization
function are violated. In this case, the slower binary integer programming approach
using the subtractive approximation offers the least error. The same technique also
is capable of dealing with conjunctive edges, where the graph based Dijkstra algo-
rithm is no longer suitable. However, this problem instance grows exponentially in
number of nodes per dependency and in dependency depth, making it only a viable
concept for smaller graphs. In case absolute correctness is required or non-Bellman
attributes are used, brute-force algorithms can provide a solution. However, they
yield exponential time complexity with exploding runtime even for rather small
graph instances.

All of the results also hold for a provider implementing DISCOUNTBIDDING, as
the discount parameter d merely implies a linear transformation and hence neither
influences solution quality, nor runtime of the presented optimization techniques.

The presented results have three major limitations. Firstly, one cannot claim that
the presented techniques are the only suitable mechanisms for solving the problem
at hand. Secondly, it is not proven that the presented approximation and optimiza-
tion techniques are optimal regarding runtime or solution quality. Thirdly, we do
not provide a solution for non-Bellman attributes apart from the brute-force algo-
rithms. Especially regarding Boolean attributes, optimization algorithms smarter
than brute-force are thinkable, as the combinatorial explosion is limited due to
true/false values only. Nevertheless, through the findings of this chapter, an effi-
cient optimization of service configuration problems can be achieved in many stan-
dard settings.

8.5.1 Practical Implications

Based on the above made observations, a recommendation on when to use which
approach can be given. Dominated heuristics and approximation functions – Dijk-
stra in conjunction with either approximation and the logarithm-based approxima-
tion in general – are not considered. Table 8.6 summarizes the evaluation results and
indicates the eligibility of the different techniques under different circumstances.
Brute-force algorithms can cope with all challenges, but are only suitable in offline
settings. Dijkstra and Dijkstra* are the best choice in disjunctive graphs and when
normalization boundaries are unlikely to be violated. Regarding runtime, they out-
perform all other presented approaches. Dealing with tight boundaries or conjunc-
tive edges, the BIP formulation can be a remedy, yet, at the cost of worse expected
runtime behavior. In order to cope with quasi-Bellman attributes, the subtractive

8.5. CONCLUSION 155

Exact Mechanisms Heuristics

Brute-Force Dijkstra BIP Dijkstra* BIP SUB

8.1 Conjunctive edges # #

8.2 Only Bellman attributes

8.3 Quasi-Bellman attributes # #

8.4 Non-Bellman attributes # # # #

8.5 Boundary violation # #

8.6 Offline G#

8.7 Online # 13 13

8.8 Runtime Critical # G#13 G#13

Extensibility # # #

Table 8.6: Overview on findings

approximation is required in the BIP formulation, offering an acceptable error rate
for reasonable graph depths.

Another aspect important from a practical perspective included in this overview
is extensibility. Due to the generic formulation of binary integer programs consist-
ing of any type of linear objective function along with linear constraints, further
restrictions can be included. In addition, it is possible to adapt the BIP formula-
tion in order to optimize over several service requests simultaneously, which can be
beneficial when dealing with service requests competing for scarce resources.

13Only for small service configuration graph sizes when dealing with conjunctive edges.

Part IV

Finale

Chapter 9

Conclusion and Outlook

I n the last decade, mass customization has found its way into many areas of
traditional manufacturing. While this trend offers great business opportunity

by addressing the “long tail” of consumers, it has not reached current Cloud ser-
vice offers. Many obstacles, from technological to economic challenges, have to be
overcome in order to enable mass customized service offers in the field of Cloud
computing. This thesis is dedicated to these obstacles, coping with both technical
and economical problems in a holistic manner. With knowledge-based engineering,
negotiation and optimization three distinct areas have been addressed. The chap-
ter at hand summarizes the obtained results, discusses limitations and provides an
overview on future work as well as complementary research.

This chapter is structured as follows: A summary of all contributions is given in
Section 9.1, followed by limitations and future work in Section 9.2. Lastly, comple-
mentary research topics are presented in Section 9.3.

9.1 Contribution

The contributions of the work at hand are spread among three parts: Part I intro-
duced the reader to the thesis, its topic – mass customization in the context of Cloud
service offers – and gave a broad overview on basic concepts and technologies which
build the thesis’s foundation. Part II covered the technical aspects of engineering
mass customized Cloud services, while Part III had its focus on the economic per-
spective – multi-attributive negotiation mechanisms and service optimization.

Concerning the functional engineering of a Cloud service, the need to external-
ize knowledge on available service resources and the functionalities which can be
provided by them was identified. The necessary knowledge should be stored in a
machine readable form and in a such a manner, that it serves as a catalog of func-
tionalities to the consumer and that it can be used to derive all feasible resource
configurations which match the consumer’s selected functionalities. This requires
a framework that supports both the modeling of dependencies and interoperability
between resources. Research Question 1 addresses this challenge.

160 CHAPTER 9. CONCLUSION AND OUTLOOK

Research Question 1≺KNOWLEDGE MANAGEMENT FOR SERVICE RESOURCES�.
Is it possible to design a semantic service description framework where one can model knowl-
edge on service resources so that technically feasible service configurations matching the
functional requirements of a consumer request can be derived automatically?

Addressing this question, fundamental knowledge management concepts were
introduced in Section 2.1, including ontologies and formalisms like OWL, SWRL
and others. Characteristics and definitions of tangibles, intangibles and more spe-
cific information on service concepts like Cloud services, SOAs, mass customized
services and SVNs were given in Section 2.2. A broad understanding of these con-
cepts helps to comprehend the particularities when modeling knowledge on service
resources.

The main contribution addressing this question is the semantic service descrip-
tion framework provided in Chapter 4. Apart from deriving distinct requirements
and covering the related literature, Section 4.3 presented a three-fold ontology
framework, comprising a generic service ontology, a domain ontology and a re-
sult ontology. The generic concepts defined in the service ontology are used within
the domain ontology to store information on service resources and functionalities,
along with their dependencies and compatibility information. The framework is
built upon OWL in conjunction with SWRL rules as formal languages, fostering
standard compliance, extensibility and exchangeability across the borders of insti-
tutions. A major concern when designing this framework was a reduced modeling
overhead, i.e. knowledge should be modeled on higher abstraction levels, if possi-
ble. The goal was achieved by using description logic expressiveness in conjunction
with the horn-like rules of SWRL, allowing to model information on both depen-
dencies and compatibility on class rather than instance level.

In order to use such a framework in the engineering and optimization phase of
the Cloud service offer creation process, the knowledge base has to contain up-to-
date knowledge. In a scenario with constantly changing infrastructure conditions,
price and quality information associated with a service resource requires continuous
updates. This issue is addressed in Research Question 2.

Research Question 2 ≺ONTOLOGY UPDATE MECHANISM�. Is it possible to design
an automated ontology update mechanism which integrates information on QoS or price
from manifold data sources in an automated and structured manner, so that the ontology’s
data values are kept up-to-date and can be accessed in a shared environment, and can such a
mechanism be scalable?

Again, the necessary foundations were provided in Chapter 2, with ontology
persistence in Section 2.1.3 being particularly relevant to this research question. The
ontology update mechanism itself was described in Chapter 5. After refining the
general use case to cover all relevant details for this research topic, requirements
were derived and related work was presented. As main contribution, both a con-
ceptual software architecture and its prototypical implementation followed in Sec-
tions 5.4 and 5.5 respectively. The presented concept is capable of updating data val-
ues in any OWL ontology from manifold sources from the Web, supporting different

9.1. CONTRIBUTION 161

data formats. Examples were given for HTML, XML and RESTful Web services as
data source. Through the modular architecture, the software can easily be extended
by further types. The prototypical implementation was then used to evaluate the
software performance. As major result, the approach was found to scale well with
the number of update rules defined in the ontology.

Once having designed a semantic service description framework and a mecha-
nism to keep the knowledge within up-to-date, an algorithm was sought which is
capable of deriving feasible service configurations for a particular consumer request.
Such an algorithm needs to resolve dependencies beginning from the functional re-
quirements defined by the consumer in her request, while simultaneously ensuring
compatibility among the selected service resources. The challenge of designing such
an algorithm is formulated in Research Question 3.

Research Question 3 ≺SERVICE ENGINEERING ALGORITHM�. Is it possible to de-
sign an algorithm that is capable of deriving all feasible service configuration alternatives
based on a set of abstract functional requirements originating from a semantic service de-
scription framework, and can that algorithm be scalable?

The relevant foundations to this question overlap the foundations required by
the previous contributions to a large extend. In addition to OWL and SWRL, knowl-
edge on OWL reasoning and SPARQL as query language are requirements for this
contribution. Both, reasoning and SPARQL were briefly introduced in Section 2.1.2.
In order to derive service configurations from the presented ontology framework,
a formal model to represent both input and output of the designated algorithm is
required. After presenting requirements and related work, a formal model for func-
tional requirements as input and a service configuration graph as output for the
service engineering algorithm was given in Section 6.3. Based on the functional re-
quirements and a domain ontology built upon the concepts of the generic service
ontology, the algorithm derives a graph over feasible service configuration by re-
cursively resolving dependencies for each functionality and service resource, until
no more unresolved dependencies are left. The concept of the algorithm was de-
scribed in Section 6.4, a prototypical implementation followed in Section 6.5. It was
evaluated against the posed requirements and found to be scalable even for com-
plex configuration scenarios with many different resource alternatives and longer
dependency hierarchies.

After addressing these technical research questions, the focus of Part III is on
economic problems. Provider and consumer of a mass customized Cloud service
not only need to agree on the functionalities provided, but also on non-functional
properties like quality and price of a particular service. Naturally, quality and price
go hand-in-hand with the available service configurations. In order for both parties
to find an agreement – especially in an online scenario – different negotiation mech-
anisms can help them to find an adequate solution. Different economic desiderata
like individual rationality, budget balance, incentive compatibility and allocation
efficiency play an important role in judging the eligibility of a certain mechanism.
Yet, theory has proven that not all of these goals can be achieved at the same time.
In Chapter 7, we sought a negotiation mechanism that fulfills individual rationality
and budget balance and, at the same time, keeps efficiency as well as truthful infor-

162 CHAPTER 9. CONCLUSION AND OUTLOOK

mation content high, while maintaining a simple bidding language. This challenge
is addressed in Research Question 4.

Research Question 4 ≺MULTI-ATTRIBUTIVE NEGOTIATION MECHANISMS�.
What are possible budget balanced and individual rational mechanisms for bilaterally ne-
gotiating quality and price of a service and how do they perform with respect to the economic
desiderata incentive compatibility and ex-post efficiency?

Important economic foundations mainly in the field of mechanism design, like
the above mentioned desiderata, were presented in Section 2.3. To answer the re-
search question, a simplified model of preferences allowing analytical conclusions
was introduced in Section 7.4. We scrutinized three different negotiation mecha-
nisms, presented in Section 7.5, all of them being individual rational and budget
balanced, yet suffering from a lack of incentive compatibility and allocation effi-
ciency: TUPLEBIDDING serves as proxy for the take-it-or-leave-it mechanisms com-
monly found in practice. SCORINGBIDDING relates to the concept of bidding a scor-
ing function as it is often proposed in the multi-attributive auction theory. A third
mechanism, DISCOUNTBIDDING, was newly introduced in this thesis as extension
to SCORINGBIDDING, offering the advantage of having separate bidding parameters
for disconnecting the integrative facet from the distributive facet of the negotiation.

All three mechanisms were evaluated regarding the truthfulness, the resulting
utilities for both parties and the obtained efficiency. This was done analytically in
the case of complete information in Section 7.6 and with the consumer facing risk
on the providers cost structure in Section 7.7 by relying on a extensive simulation
study. Summarizing, one can conclude that TUPLEBIDDING is not Pareto-optimal,
but dominated by the other two mechanisms. If the provider can choose between
the three mechanisms, he will favor SCORINGBIDDING over the other mechanisms
independent of both level of risk and risk aversion. For the consumer, DISCOUNT-
BIDDING or TUPLEBIDDING are the mechanisms of choice yielding the highest ex-
pected utility. From a welfare perspective, DISCOUNTBIDDING was found to per-
form best as soon as the consumer faces some risk. In the model and in analogy to
the overall scenario of the work at hand, the consumer was assumed to go first in
all mechanisms and thus confronted with risk in his decision making. Through the
symmetry in the model, the results, however, also hold in the opposite direction.

Lastly, making use of the technical contributions and the considerations on an
adequate negotiation mechanism, the question of choosing the optimal, i.e. profit
maximizing, configuration remains open. Assuming a provider that is implement-
ing a form of SCORINGBIDDING adapted to multi-dimensional QoS, the optimal
configuration choice requires a suitable optimization technique to find the best al-
ternative with respect to a given service configuration graph and the submitted non-
functional requirements. The first spanning the solution space and the latter repre-
senting the obtainable revenue for a given service quality. This final challenge is
addressed in Research Question 5.

Research Question 5 ≺OPTIMIZATION TECHNIQUES FOR SERVICE
CONFIGURATION�. What are possible optimization techniques for finding the profit
maximizing service configuration with respect to QoS and price from a set of alternatives

9.2. LIMITATIONS AND FUTURE WORK 163

(given as a graph structure) and how do they perform with respect to runtime and allocative
optimality?

A brief overview on the foundations of mathematical optimization was given
in Section 2.4. The main contribution followed in Chapter 8, which is dedicated to
different optimization techniques in the context of service configuration graphs and
QoS-aware consumer preferences. Again, a formal model adapted to the peculiari-
ties of the optimization scenario was presented in Section 8.2. Within this model, the
consumer preferences are stated as a combination of a linear scoring function and a
maximum willingness to pay which is multiplied by the obtained score. QoS values
are aggregated from the individual service resources through various aggregation
operations, impacting the computational tractability of the resulting optimization
problem. We investigated on different techniques for two different kinds of service
configuration graphs: a generic one allowing conjunctive nodes, as it results from
the service engineering algorithm, and a simplified graph structure, when service
resources are constrained to at most one dependency each.

Three different solution techniques have been developed: brute-force algorithms
that iterate through the entire search space, a binary integer programming approach
where service resources are binary decision variables and a graph based approach
using Dijkstra’s algorithm. To allow an efficient computation also in the context
of the very often used attribute availability, two different approximations were pro-
posed, allowing to aggregate multiplicative QoS values in the range above 90% in a
linearized manner. A detailed evaluation of the various techniques in combination
with and without the approximations under different circumstances was conducted
in a broad simulation study. All of the optimization approaches thereby showed ad-
vantages and disadvantages, making each of them more or less adequate in different
contexts.

9.2 Limitations and Future Work

In the following, the above mentioned results are critically analyzed in order to
expound their limitations. In addition, future research directly linked to the recog-
nized open issues is presented.

Regarding the semantic service description framework presented in Chapter 4,
several reasonable extensions and shortcomings to the approach are recognized.
Firstly, a more complex cost and quality model would be beneficial. Secondly,
compatibility can be ensured through complex rules, yet is limited to dependent
resources only. The approach currently offers no possibility to ensure compatibility
between resources in the same configuration without having a direct link. However,
a concept for modeling further constraints could easily address this issue. Thirdly,
we recognize the need for a better evaluation, qualitatively, through relying on an in-
dustry use case, and quantitatively, by analyzing both the economic benefit of exter-
nalized knowledge in conjunction with the other contributions, versus the costs that
accrue from the creation and maintenance of the ontology. Lastly, a stronger integra-
tion with the standardization efforts of the Semantic Web community and the WS-*

164 CHAPTER 9. CONCLUSION AND OUTLOOK

stack would improve its standard compliance. Grounding the presented framework
to a foundational ontology like DOLCE [104] could prevent conceptual ambiguity or
poor axiomatization when integrating the presented concepts into other ontological
frameworks. All of these shortcomings are subject to future work.

The second contribution of the work at hand addresses the issue of information
up-to-dateness. While the ontology update mechanism presented in Chapter 5 of-
fers a scalable, transparent and consistent automatism to update information stored
in an ontology from manifold data sources, the approach is limited to updating data
values. Additional service resources, compatibility and dependency information or
any other structural changes to the ontology have to be made manually. Further, the
obtained transparency of the mechanisms could be further improved by introducing
an update history and providing a user interface for monitoring update activities.
Lastly, proof-of-concept implementation and evaluation of the update functionality
are based on rather simple example update instructions. An application of the pro-
posed solution in a real business context might require more sophisticated update
instructions, especially regarding data extraction and transformation, potentially
also influencing the systems scalability. Again, all three issues will be addressed
in future research.

In Chapter 6, an algorithm capable of deriving feasible service configurations
by resolving dependencies defined on an abstract level while ensuring compatibil-
ity between dependent resources was presented. In this chapter, two main short-
comings can be identified. Firstly, in close relation to the criticism on the semantic
framework, the presented approach ensures compatibility between dependent re-
sources only. Secondly, the algorithm was analytically evaluated regarding its run-
time. However, queries to the ontology were assumed to be of constant time. A sim-
ulation study with different ontology sizes and various complexity levels regarding
the used expressiveness needs to conducted in order to find out the influence of
reasoning query time. It is subject to future work.

The results regarding the multi-attributive negotiation mechanisms presented
in Chapter 7 have four main limitations: Firstly, individually rational utility maxi-
mizing agents are assumed, which is rare in any real-world setting. Secondly, the
results depend on the model of preferences, especially on the functional forms of
cost, scoring, and utility functions, the assumed probability distribution function
and are limited to a single QoS attribute. While it is believed that similar results can
be obtained for other preferences and more than one QoS attribute, the proof is sub-
ject to future work. Thirdly, “only” three distinct mechanisms were studied without
deriving an “optimal mechanism” in the mechanism design sense. Nevertheless,
the obtained results are a valuable contribution for the practical scenario in the con-
text of mass customization of the work at hand. Fourthly, all three mechanisms only
allow for a single offer and its acceptance or rejection by the counterparty. More
complex negotiation mechanisms with an alternating offer exchange are possible,
so is the introduction of a central marketplace.

The last contribution of this thesis was dedicated to the challenge of finding opti-
mal configurations from the perspective of a profit-maximizing Cloud provider. Re-
garding the results of Chapter 8, three shortcomings can be identified: Firstly, only a
distinct set of the most important aggregation operators is considered. While the in-

9.3. COMPLEMENTARY RESEARCH 165

troduction of two approximation functions is a valuable contribution to an efficient
optimization with quasi-Bellman attributes like availability, no solution is provided
that can deal with multiplicative QoS attributes of generic nature. Secondly, the
binary integer programming approach offers acceptable runtime for smaller prob-
lem instances of service configuration graphs containing conjunctive nodes, yet it
does not scale for large problem instances due to its exponential growth in runtime.
While it is believed that the problem itself lies within an exponential runtime com-
plexity class, this proof is subject to future work. Thirdly, the aggregation of QoS
attributes is restricted to a simple hierarchy, aggregating with the same aggregation
function over the complete stack of resources. This approach does not cover the po-
tential process nature of service configurations, which would imply more complex
aggregation functions. Research in this area can be found for example in [87].

9.3 Complementary Research

This section provides an overview on research directions which are related, but do
not contribute a direct extension to this thesis. The goal is to briefly introduce the
reader to complementary topics that further promote mass customization in the con-
text of Cloud computing.

From a technical point of view, the research areas ontology versioning, main-
tenance and collaborative evolution have to be mentioned. Ontology version-
ing [86, 124] has its focus on the creation and management of different versions
of a given ontology, which could also be beneficial in the context of the mass cus-
tomization scenario presented in the work at hand. By adding additional service
resources and functionalities, a centralized versioning system becomes essential, es-
pecially in shared environments with more than one person performing changes.
An often mentioned issue when dealing with ontologies is the complexity of their
creation, maintenance and evolution. Without the use of tools engineered to the
needs of the specific use case, only highly skilled semantic technology experts are
able to perform these tasks. Yet, given appropriate tools and monetary incentives,
a collaborative ontology evolution approach would be possible, allowing 3rd party
service resource providers to maintain the information on their service offers them-
selves. In such a scenario, the 3rd party resource providers could use the integrat-
ing Cloud provider as additional distribution channel. Thus, supplying companies
would have an incentive to collaborate in the ontology’s evolution.

The contributions of this thesis result in an optimized service offer, comprising
the service resource configuration, quality and price of the offer. An autonomic de-
ployment of the service, however, is not in the scope of the thesis. Current research
in computer science, mainly in the field of autonomic computing [84], addresses
this issue, going closely at hand with the other self-* properties proclaimed in the
autonomic computing community.

Turning to the economic perspective, it is often assumed that agents are aware
of their true preferences and valuations. The same assumption is made in the eco-
nomic part of this thesis. However, even for professional consumers, stating one’s
preferences is not an easy task. Especially in multi-attributive scenarios, elicita-

166 CHAPTER 9. CONCLUSION AND OUTLOOK

tion of preferences can become complex. Regarding the model presented in Sec-
tion 8.2, consumers must be aware of both their willingness to pay for a perfect
service and their upper and lower boundaries for each and every QoS attribute of
interest. Prominent solutions to the preference elicitation problem are conjoint anal-
yses [56] and analytical hierarchy processing [136]. Yet, for the scenario of the work
at hand, these approaches are not appropriate due to their complexity, especially in
settings with many QoS attributes.

Complementary to the thesis’s scenario would be the introduction of a central
marketplace where several providers can interact with potential consumers, nego-
tiating over quality and price of a service in an auction setting. The concept of a
complex service auction [28] takes this approach even further, having numerous in-
dividual providers offer a collaborative service in a coopetition scenario.

Lastly, Myerson and Satterthwaite [121] provided two seminal theorems in the
context of bilateral trading: Theorem 1 proving the impossibility of achieving all
four classical mechanism design desiderata at the same time, Theorem 2 providing
the means to compute mechanisms that maximize expected total gains from trade
for a wide class of problems. Extending these theorems to a multi-attributive setting
with valuations depending on further attributes without doubt would be a seminal
breakthrough in this research area.

Part V

Appendix

Appendix A

Appendix to Part II

A.1 Service Ontology

<?xml version=" 1 . 0 " ?>

< !DOCTYPE rdf:RDF [
<!ENTITY owl " h t t p : //www. w3 . org /2002/07/owl# " >
< ! ENTITY xsd " h t t p : //www. w3 . org /2001/XMLSchema# " >
< ! ENTITY owl2xml " h t t p : //www. w3 . org /2006/12/owl2−xml# " >
< ! ENTITY r d f s " h t t p : //www. w3 . org /2000/01/ rdf−schema# " >
< ! ENTITY rdf " h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# " >

] >

<rdf:RDF xmlns=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl# "
xml:base=" h t t p : //research . s te f f en ha ak . de/o n t o l o g i e s /ServiceOntology . owl "
xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
xmlns:owl2xml=" h t t p : //www. w3 . org /2006/12/owl2−xml# "
xmlns:owl=" h t t p : //www. w3 . org /2002/07/owl# "
xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema# "
xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# ">

<owl:Ontology r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl "
/>

< !−−
/ /
/ /
/ / D a t a t y p e s
/ /
/ /
−−>

< !−−
/ /
/ /
/ / O b j e c t P r o p e r t i e s
/ /
/ /
−−>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # c h o i c e −−>

170 APPENDIX A. APPENDIX TO PART II

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# choice ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl#OrNode"/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology

. owl# S e r v i c e E n t i t y "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # c o n n e c t s T o −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# connectsTo ">
<rdfs:domain>

<owl :Class>
<owl:unionOf rdf :parseType=" C o l l e c t i o n ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# S e r v i c e E n t i t y "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#SourceNode "/>

</owl:unionOf>
</owl :Class>

</rdfs:domain>
< r d f s : r a n g e >

<owl :Class>
<owl:unionOf rdf :parseType=" C o l l e c t i o n ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#ResultNode "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# S e r v i c e E n t i t y "/>

</owl:unionOf>
</owl :Class>

</ r d f s : r a n g e >
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # c o n t a i n s −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# conta ins ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# A l t e r n a t i v e "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology

. owl# S e r v i c e E n t i t y "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl #
h a s A g g r e g a t i o n F u n c t i o n −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasAggregationFunction ">
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology

. owl# AggregationFunction "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# QualityMetricType "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # h a s Q u a l i t y M e t r i c −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasQual i tyMetr ic ">
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology

. owl# Qual i tyMetr ic "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# S e r v i c e E n t i t y "/>
</owl :ObjectProperty>

A.1. SERVICE ONTOLOGY 171

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # h a s Q u a l i t y M e t r i c T y p e
−−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# hasQualityMetricType ">
< r d f : t y p e r d f : r e s o u r c e ="&owl ; Funct ionalProperty "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# Qual i tyMetr ic "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology

. owl# QualityMetricType "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # i n v e r s e O f C h o i c e −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# inverseOfChoice ">
<owl: inverseOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# choice "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # i n v e r s e O f C o n n e c t s T o
−−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# inverseOfConnectsTo ">
<owl: inverseOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# connectsTo "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # i s C o m p a t i b l e T o −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# isCompatibleTo ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# S e r v i c e E n t i t y "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology

. owl# S e r v i c e E n t i t y "/>
<owl :propertyDis jo intWith r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh a ak . de/o n t o l o g i e s /

ServiceOntology . owl# isRequiredBy "/>
<owl :propertyDis jo intWith r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh a ak . de/o n t o l o g i e s /

ServiceOntology . owl# r e q u i r e s "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # i s R e q u i r e d B y −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# isRequiredBy ">
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology

. owl# S e r v i c e E n t i t y "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# S e r v i c e E n t i t y "/>
</owl :ObjectProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # r e q u i r e s −−>

<owl :ObjectProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# r e q u i r e s ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# S e r v i c e E n t i t y "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology

. owl# S e r v i c e E n t i t y "/>

172 APPENDIX A. APPENDIX TO PART II

<owl: inverseOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# isRequiredBy "/>

</owl :ObjectProperty>

< !−−
/ /
/ /
/ / Data p r o p e r t i e s
/ /
/ /
−−>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # h a s D e f a u l t V a l u e −−>

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasDefaultValue ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# QualityMetricType "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; f l o a t "/>

</owl:DatatypeProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # h a s F i x C o s t s −−>

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasFixCosts ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# Resource "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; f l o a t "/>

</owl:DatatypeProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl #
h a s Q u a l i t y M e t r i c V a l u e −−>

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasQuali tyMetricValue ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# Qual i tyMetr ic "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; f l o a t "/>

</owl:DatatypeProperty>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # h a s V a r i a b l e C o s t s −−>

<owl:DatatypeProperty r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# hasVariableCosts ">
<rdfs:domain r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/

ServiceOntology . owl# Resource "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; f l o a t "/>

</owl:DatatypeProperty>

< !−−
/ /
/ /
/ / C l a s s e s
/ /
/ /
−−>

A.1. SERVICE ONTOLOGY 173

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # A g g r e g a t i o n F u n c t i o n
−−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
AggregationFunction ">
<rdfs : subClassOf r d f : r e s o u r c e ="&owl ; Class "/>

</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # A l t e r n a t i v e −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
A l t e r n a t i v e ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl#ResultNode "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # F u n c t i o n a l i t y −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
F u n c t i o n a l i t y ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# S e r v i c e E n t i t y "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl #OrNode −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
OrNode">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl#ResultNode "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # Q u a l i t y M e t r i c −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
Qual i tyMetr ic ">
<rdfs : subClassOf r d f : r e s o u r c e ="&owl ; Class "/>

</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # Q u a l i t y M e t r i c T y p e −−
>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
QualityMetricType ">
<rdfs : subClassOf r d f : r e s o u r c e ="&owl ; Class "/>

</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # R e s o u r c e −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
Resource ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl# S e r v i c e E n t i t y "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # Resu l tNode −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
ResultNode ">

174 APPENDIX A. APPENDIX TO PART II

<rdfs : subClassOf r d f : r e s o u r c e ="&owl ; Class "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # S e r v i c e E n t i t y −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
S e r v i c e E n t i t y ">
<rdfs : subClassOf r d f : r e s o u r c e ="&owl ; Class "/>

</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # SinkNode −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
SinkNode ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl#ResultNode "/>
</owl :Class>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # SourceNode −−>

<owl :Class r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology . owl#
SourceNode ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /

ServiceOntology . owl#ResultNode "/>
</owl :Class>

< !−− h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl # C l a s s −−>

<owl :Class r d f : a b o u t="&owl ; Class "/>

< !−−
/ /
/ /
/ / I n d i v i d u a l s
/ /
/ /
−−>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # A d d i t i o n −−>

<owl:NamedIndividual r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# Addition ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology .

owl# AggregationFunction "/>
</owl:NamedIndividual>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl #Maximum −−>

<owl:NamedIndividual r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#Maximum">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/ServiceOntology .

owl# AggregationFunction "/>
</owl:NamedIndividual>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl #Minimum −−>

A.1. SERVICE ONTOLOGY 175

<owl:NamedIndividual r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl#Minimum">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology .

owl# AggregationFunction "/>
</owl:NamedIndividual>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # M u l t i p l i c a t i o n −−>

<owl:NamedIndividual r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# M u l t i p l i c a t i o n ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology .

owl# AggregationFunction "/>
</owl:NamedIndividual>

< !−− h t t p : / / r e s e a r c h . s t e f f e n h a a k . de / o n t o l o g i e s / S e r v i c e O n t o l o g y . owl # S u b t r a c t i o n −−>

<owl:NamedIndividual r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /
ServiceOntology . owl# S ub t r ac t i on ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s /ServiceOntology .

owl# AggregationFunction "/>
</owl:NamedIndividual>

< !−−
/ /
/ /
/ / G e n e r a l axioms
/ /
/ /
−−>

< r d f : D e s c r i p t i o n >
< r d f : t y p e r d f : r e s o u r c e ="&owl ; A l l D i f f e r e n t "/>
<owl:dist inctMembers rdf :parseType=" C o l l e c t i o n ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# Addition "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#Maximum"/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#Minimum"/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# M u l t i p l i c a t i o n "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# S ub t r ac t i on "/>

</owl:dist inctMembers>
</ r d f : D e s c r i p t i o n >
< r d f : D e s c r i p t i o n >

< r d f : t y p e r d f : r e s o u r c e ="&owl ; A l l D i s j o i n t C l a s s e s "/>
<owl:members rdf :parseType=" C o l l e c t i o n ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# AggregationFunction "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# Qual i tyMetr ic "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# QualityMetricType "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#ResultNode "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# S e r v i c e E n t i t y "/>

</owl:members>
</ r d f : D e s c r i p t i o n >
< r d f : D e s c r i p t i o n >

< r d f : t y p e r d f : r e s o u r c e ="&owl ; A l l D i s j o i n t C l a s s e s "/>
<owl:members rdf :parseType=" C o l l e c t i o n ">

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl# A l t e r n a t i v e "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#OrNode"/>

176 APPENDIX A. APPENDIX TO PART II

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#SinkNode "/>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //research . s t e f fe nh aa k . de/ o n t o l o g i e s/
ServiceOntology . owl#SourceNode "/>

</owl:members>
</ r d f : D e s c r i p t i o n >

</rdf:RDF>

< !−− G e n e r a t e d by t h e OWL API (version 3 . 3 . 1 9 5 7) h t t p : / / o w l a p i . s o u r c e f o r g e . n e t −−>

Appendix B

Appendix to Part III

B.1 Proof of Strict Monotonic Increase

Proof of strictly monotonic increase: By introducing the substitutions a = x · b and
â = y · b with 0 < x < y < 1, one obtains the following term

(B.1) y∗ = argmax
y

(
b

yb

) xb
yb−b
−
(

b
yb

) yb
yb−b

= argmax
y

(
1
y

) x
y−1

−
(

1
y

) y
y−1

Without loss of generality we can replace (1/y) by some factor c > 1 as 0 < y < 1
and obtain

(B.2) y∗ = argmaxy c
x

y−1 − c
y

y−1 with c
x

y−1 − c
y

y−1 > 0 as c
x

y−1 > c
y

y−1

(B.3) and c > 0 and x
y−1 > y

y−1 for 0 < x < y < 1

It remains to be shown that c
x

y−1 − c
y

y−1 grows strictly monotonically in y. This is the
case, if

(B.4) d
(

c
x

y−1−c
y

y−1
)

dy > 0 or
d
(

c
x

y−1
)

dy >
d
(

c
y

y−1
)

dy

or, as c > 1, more simply, if

(B.5) d
(

x
y−1

)
dy >

d
(

y
y−1

)
dy ⇔− x

(−1+y)2 > − 1
(−1+y)2

(B.6) ⇔ x
(−1+y)2 <

1
(−1+y)2 ⇔ x < 1

which is true ∀x ∈ (0,y). (q.e.d.)

178 APPENDIX B. APPENDIX TO PART III

B.2 Numerical Proof of Strict Inequality

Proof of strict inequality: By introducing the substitution a = c · b with c∈ (0,1), cap-
turing the relationship between a ∈ (0,b) and b ∈ [1,∞), one obtains the following
term:

(B.7) e−
c·b
b − 1

e
<

(
b

c · b

) c·b
c·b−b
−
(

b
c · b

) b
c·b−b

Simplifying this equation one can eliminate parameter b and the following equation
is obtained:

(B.8) e−c − 1
e
<

(
1
c

) c
c−1

−
(

1
c

) 1
c−1

Figure B.1 numerically shows that this condition holds for ∀c ∈ (0,1), as both terms
are continuous and differentiable functions in c.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

c

Left-hand side
Right-hand side

Figure B.1: Numerical proof of strict inequality

B.3. SIMULATION RESULTS FOR VARIOUS PARAMETERS A AND B 179

B.3 Simulation Results for Various Parameters a and b

In the following, further simulation results underpinning the robustness of Sec-
tion 7.7 are presented. In all results, consumer C is risk neutral (r = 0).

B.3.1 Results for a=0.25 and b=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
(q

),
c(

q)

q

UC

UP

Consumer Scoring Function (a=0.25)
Provider Cost Function (b=2.0)

Negotiated Agreement

Figure B.2: Scoring and cost functions, optimal quality, price and utilities for a = 0.25, b = 2

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 0.2 0.4 0.6 0.8 1

W
el

fa
re

 (
E

xp
ec

te
d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.3: Comparison of negotiation mechanisms with respect to welfare de-
pending on the level of the consumer’s risk s for a = 0.25, b = 2

180 APPENDIX B. APPENDIX TO PART III

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.2 0.4 0.6 0.8 1

U
c

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.4: Comparison of negotiation mechanisms with respect to C’s utility
depending on the level of the consumer’s risk s for a = 0.25, b = 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

U
p

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.5: Comparison of negotiation mechanisms with respect to P ’s utility
depending on the level of the consumer’s risk s for a = 0.25, b = 2

B.3. SIMULATION RESULTS FOR VARIOUS PARAMETERS A AND B 181

B.3.2 Results for a=0.5 and b=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
(q

),
c(

q)

q

UC

UP

Consumer Scoring Function (a=0.50)
Provider Cost Function (b=4.0)

Negotiated Agreement

Figure B.6: Scoring and cost functions, optimal quality, price and utilities for a = 0.5, b = 4

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 0.5 1 1.5 2 2.5 3

W
el

fa
re

 (
E

xp
ec

te
d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.7: Comparison of negotiation mechanisms with respect to welfare de-
pending on the level of the consumer’s risk s for a = 0.5, b = 4

182 APPENDIX B. APPENDIX TO PART III

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2 2.5 3

U
c

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.8: Comparison of negotiation mechanisms with respect to C’s utility
depending on the level of the consumer’s risk s for a = 0.5, b = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.5 1 1.5 2 2.5 3

U
p

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.9: Comparison of negotiation mechanisms with respect to P ’s utility
depending on the level of the consumer’s risk s for a = 0.5, b = 4

B.3. SIMULATION RESULTS FOR VARIOUS PARAMETERS A AND B 183

B.3.3 Results for a=0.25 and b=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
(q

),
c(

q)

q

UC

UP

Consumer Scoring Function (a=0.25)
Provider Cost Function (b=4.0)

Negotiated Agreement

Figure B.10: Scoring and cost functions, optimal quality, price and utilities for a = 0.25, b = 4

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.5 1 1.5 2 2.5 3

W
el

fa
re

 (
E

xp
ec

te
d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.11: Comparison of negotiation mechanisms with respect to welfare de-
pending on the level of the consumer’s risk s for a = 0.25, b = 4

184 APPENDIX B. APPENDIX TO PART III

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.5 1 1.5 2 2.5 3

U
c

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.12: Comparison of negotiation mechanisms with respect to C’s utility
depending on the level of the consumer’s risk s for a = 0.25, b = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3

U
p

(E
xp

ec
te

d)

s

DiscountBidding
ScoringBidding

TupleBidding

Figure B.13: Comparison of negotiation mechanisms with respect to P ’s utility
depending on the level of the consumer’s risk s for a = 0.25, b = 4

B.3. SIMULATION RESULTS FOR VARIOUS PARAMETERS A AND B 185

B.3.4 Parameters and Corresponding Optima

a b q∗ w∗

0.5 2 0.3969 0.4725

0.25 2 0.3048 0.6501

0.5 4 0.5520 0.6501

0.25 4 0.4774 0.7793

References

[1] Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service
composition in METEOR-S. In: In Proceedings of IEEE International Confer-
ence on Services Computing. pp. 23–30 (2004)

[2] Alavi, M., Leidner, D.: Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues. MIS quar-
terly pp. 107–136 (2001)

[3] Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of
More. Hyperion (2006)

[4] Ardito, C., Barricelli, B., Buono, P., Costabile, M., Lanzilotti, R., Piccinno, A.,
Valtolina, S.: An ontology-based approach to product customization. Proceed-
ings of the 3rd International Conference on End-User Development pp. 92–106
(2011)

[5] Aristotle: The complete works of Aristotle: The revised Oxford translation,
vol. 1. Bollingen Foundation (1984)

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

[7] Asker, J., Cantillon, E.: Properties of Scoring Auctions. The RAND Journal of
Economics 39(1), 69–85 (2008)

[8] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
description logic handbook: theory, implementation, and applications. Cam-
bridge University Press (2003)

[9] Baader, F., Horrocks, I., Sattler, U.: Description logics. Foundations of Artifi-
cial Intelligence 3, 135–179 (2008)

[10] Barberà, S., Jackson, M.: Strategy-proof exchange. Econometrica 63(1), 51–87
(1995)

[11] Basole, R., Rouse, W.: Complexity of service value networks: Conceptualiza-
tion and empirical investigation. IBM Systems Journal 47(1), 53–70 (2008)

[12] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/ [Last visited: 15.10.12] (Feb 2004)

http://www.w3.org/TR/owl-ref/

188 REFERENCES

[13] Bechhofer, S., Volz, R., Lord, P.W.: Cooking the Semantic Web with the OWL
API. In: The Semantic Web – ISWC 2003: Second International Semantic Web
Conference, Sanibel Island, FL, USA. pp. 659–675 (2003)

[14] Behrendt, M., Blau, B., Breiter, G., Haak, S., Studer, R., Van Dinther, C., Wein-
hardt, C.: Semantic-and Preference-Based Planning of Cloud Service Tem-
plates (Oct 12 2011), US Patent App. 13/271,575

[15] Bellman, R.: Dynamic Programming. Princeton University Press, Princeton
(1957)

[16] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Auto-
matic Service Composition Based on Behavioral Descriptions. Int. J. of Coop-
erative Information Systems 14(4), 333–376 (2005)

[17] Bichler, M., Kalagnanam, J.: Software Frameworks for Advanced Procure-
ment. Communications of the ACM 49(12), 104–108 (2006)

[18] Bichler, M., Kaukal, M., Segev, A.: Multi-attribute auctions for electronic pro-
curement. In: Proceedings of the First IBM IAC Workshop on Internet Based
Negotiation Technologies. Yorktown Heights (March 1999)

[19] Bichler, M., Kersten, G., Strecker, S.: Towards a structured design of electronic
negotiations. Group Decision and Negotiation 12(4), 311–335 (2003)

[20] Bichler, M., Pikovsky, A., Setzer, T.: An Analysis of Design Problems in Com-
binatorial Procurement Auctions. Business and Information Systems Engi-
neering 1(1), 111–117 (2009)

[21] Bichler, M., Kalagnanam, J.: Configurable offers and winner determination
in multi-attribute auctions. European Journal of Operational Research 160(2),
380–394 (January 2005)

[22] Blake, M., Cummings, D.: Workflow Composition of Service Level Agree-
ments. In: Proceedings of the IEEE International Conference on Services Com-
puting. pp. 138–145. Salt Lake City (2007)

[23] Blau, B., Krämer, J., Conte, T., van Dinther, C.: Service Value Networks. In:
Hofreiter, B., Werthner, H. (eds.) Proceedings of the 11th IEEE Conference on
Commerce and Enterprise Computing (CEC). pp. 194–201. Vienna (2009)

[24] Blau, B., Lamparter, S., Haak, S.: remash! - Blueprints for RESTful Situational
Web Applications. In: Proceedings of the 2nd Workshop on Mashups, Enter-
prise Mashups and Lightweight Composition on the Web (MEM 2009) (2009)

[25] Blau, B., Lamparter, S., Neumann, D., Weinhardt, C.: Planning and Pricing
of Service Mashups. In: 10th IEEE Joint Conference on E-Commerce Technol-
ogy (CEC 2008) and Enterprise Computing, E-Commerce and E-Services (EEE
2008). Washington, D.C. (July 2008)

[26] Blau, B.: Coordination in Service Value Networks - A Mechanism De-
sign Approach. PhD dissertation, Universität Karlsruhe (TH), Fakultät für
Wirtschaftswissenschaften (2009)

REFERENCES 189

[27] Blau, B., Conte, T., Weinhardt, C.: Incentives in Service Value Networks – On
Truthfulness, Sustainability, and Interoperability. In: ICIS 2010 Proceedings.
Saint Louis, Missouri, USA (12 2010), paper 8

[28] Blau, B., van Dinther, C., Conte, T., Xu, Y., Weinhardt, C.: How to Coordi-
nate Value Generation in Service Networks – A Mechanism Design Approach.
Business and Information Systems Engineering (BISE) 1(5), 343–356 (October
2009)

[29] Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL reasoners. In: Proceed-
ings of the Workshop on Advancing Reasoning on the Web: Scalability and
Commonsense (ARea08), CEUR-WS. p. 119 (2008)

[30] Bolton, P., Dewatripont, M.: Contract theory. MIT press (2005)

[31] Brachman, R., Levesque, H.: The Tractability of Subsumption in Frame-Based
Description Languages. Proceedings of the National Conference on Artificial
Intelligence (AAAI’84), Austin, TX, USA pp. 34–37 (1984)

[32] Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive science 9(2), 171–216 (1985)

[33] Branco, F.: The design of multidimensional auctions. RAND Journal of Eco-
nomics 28(1), 63–81 (1997)

[34] Buyya, R., Yeo, C., Venugopal, S.: Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In: High
Performance Computing and Communications, 2008. HPCC’08. 10th IEEE In-
ternational Conference on. pp. 5–13 (2008)

[35] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson,
K.: Jena: Implementing the Semantic Web Recommendations. In: WWW Alt.
’04: Proceedings of the 13th international World Wide Web conference on Al-
ternate track papers & posters. pp. 74–83. ACM, New York, NY, USA (2004)

[36] Chandrashekar, T., Narahari, Y., Rosa, C., Kulkarni, D., Tew, J., Dayama, P.:
Auction-Based Mechanisms for Electronic Procurement. IEEE Transactions on
Automation Science and Engineering 4(3), 297–321 (2007)

[37] Che, Y.: Design competition through multidimensional auctions. RAND Jour-
nal of Economics 24, 668–680 (1993)

[38] Chvátal, V.: Linear programming. WH Freeman (1983)

[39] Clarke, E.: Multipart pricing of public goods. Public Choice 11(1), 17–33
(September 1971)

[40] Conte, T., Blau, B., Knapper, R.: Networked Mechanism Design – Incentive
Engineering in Service Value Networks as Exemplified by the Co-Opetition
Mechanism. In: Proceedings of the 16th Americas Conference on Information
Systems (AMCIS). Lima (2010)

190 REFERENCES

[41] Corcho, O., Gómez-Pérez, A.: A Roadmap to Ontology Specification Lan-
guages. In: Dieng, R., Corby, O. (eds.) EKAW. Lecture Notes in Computer
Science, vol. 1937, pp. 80–96. Springer (2000)

[42] Da Silveira, G., Borenstein, D., Fogliatto, F.: Mass customization: Literature
review and research directions. International Journal of Production Economics
72(1), 1–13 (2001)

[43] Dakin, R.: A tree-search algorithm for mixed integer programming problems.
The Computer Journal 8(3), 250–255 (1965)

[44] Dijkstra, E.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1(1), 269–271 (1959)

[45] Dong, M., Yang, D., Su, L.: Ontology-based service product configuration sys-
tem modeling and development. Expert Systems with Applications (2011)

[46] Eclipse Foundation: SMILA - Unified Information Access Architecture, http:
//www.eclipse.org/smila/, [Last visited: 15.10.12]

[47] Fay, S.: Selling an opaque product through an intermediary: The case of dis-
guising one’s product. Journal of Retailing 84(1), 59–75 (2008)

[48] Fielding, R.: Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California (2000)

[49] Fitzsimmons, J.A., Fitzsimmons, M.J.: Service management. McGraw-Hill, 6.
international edn. (2008)

[50] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM 34(3), 596–615 (Jul 1987)

[51] Gadrey, J.: The characterization of goods and services: an alternative ap-
proach. Review of Income and Wealth 46(3), 369–387 (2000)

[52] Gibbard, A.: Manipulation of Voting Schemes: A General Result. Economet-
rica 41(4), 587–601 (July 1973)

[53] Gimpel, H., Mäkiö, J., Weinhardt, C.: Multi-Attribute Double Auctions in Fi-
nancial Trading. In: Proceedings of the 7th International IEEE Conference on
E-Commerce Technology (CEC 2005). pp. 366–369. IEEE Computer Society,
Los Alamitos (2005)

[54] Gomory, R.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64(5), 275–278 (1958)

[55] Green, J., Laffont, J.: Characterization of Satisfactory Mechanisms for the Rev-
elation of Preferences for Public Goods. Econometrica 45(2), 427–438 (1977)

[56] Green, P., Rao, V.: Conjoint measurement for quantifying judgmental data.
Journal of Marketing Research pp. 355–363 (1971)

[57] Grossman, S., Hart, O.: An analysis of the principal-agent problem. Econo-
metrica: Journal of the Econometric Society pp. 7–45 (1983)

http://www.eclipse.org/smila/
http://www.eclipse.org/smila/

REFERENCES 191

[58] Groves, T.: Incentives in Teams. Econometrica 41(4), 617–631 (1973)

[59] Gruber, T.R.: A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition 5(2), 199–220 (1993)

[60] Guitart, J., Beltran, V., Carrera, D., Torres, J., Ayguade, E.: Characterizing Se-
cure Dynamic Web Applications Scalability. In: Parallel and Distributed Pro-
cessing Symposium, 2005. Proceedings. 19th IEEE International. p. 108a (2005)

[61] Güth, W., Schmittberger, R., Schwarze, B.: An Experimental Analysis of Ul-
timatum Bargaining. Journal of Economic Behavior and Organization 3, 367–
388 (1982)

[62] Haak, S.: Custom Cloud Services – An economic model for optimizing ser-
vice configuration and provisioning. In: Eymann, T. (ed.) Proceedings of
the Doctoral Consortium of the Wirtschaftsinformatik 2011. Lehrstuhl für
Wirtschaftsinformatik, Univ. Bayreuth, Bayreuth (2011)

[63] Haak, S., Blau, B.: Efficient QoS Aggregation in Service Value Networks. In:
Proceedings of the 45th Annual Hawaii International Conference on System
Sciences. Grand Wailea, Maui (2012)

[64] Haak, S., Gimpel, H.: Individualized Quality-Differentiated Services – A Mar-
ket Model and Comparison of Negotiation Mechanisms. In: Proceedings of
the 11. Internationale Tagung Wirtschaftsinformatik. Leipzig (2013), (forth-
coming)

[65] Haak, S., Grimm, S.: Towards Custom Cloud Services - Using semantic tech-
nology to optimize resource configuration. In: Proceedings of the 8th Ex-
tended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece.
Springer (2011)

[66] Haak, S., Menzel, M.: Autonomic Benchmarking for Cloud Infrastructures
- An Economic Optimization Model. In: Proceedings of the 1st IEEE/ACM
Workshop on Autonomic Computing for Economics. Karlsruhe, Germany
(2011)

[67] Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Proceed-
ings of the Second European Semantic Web Conference, Heraklion, Greece
(2005)

[68] Henss, J., Kleb, J., Grimm, S.: A Database Backend for OWL. In: Hoekstra, R.,
Patel-Schneider, P.F. (eds.) OWLED. CEUR Workshop Proceedings, vol. 529.
CEUR-WS.org (2008)

[69] Hesse, W., Kaschek, R., Mayr, H.C., Thalheim, B.: Ontologien in der und
für die Softwaretechnik. In: Rumpe, B., Hesse, W. (eds.) Modellierung. LNI,
vol. 45, pp. 269–270. GI (2004)

[70] Hill, T.: On goods and services. Review of Income and Wealth 23(4), 315–338
(1977)

192 REFERENCES

[71] Hill, T.: Tangibles, intangibles and services: a new taxonomy for the classifi-
cation of output. Canadian Journal of Economics 32(2), 426–446 (1999)

[72] van Hoeve, W.: Operations Research Techniques in Constraint Programming.
Ph.D. thesis, Tepper School of Business (2005)

[73] Holm, D., Eriksson, K., Johanson, J.: Business Networks and Cooperation in
International Business Relationships. Journal of International Business Stud-
ies 27(4), 1033–1053 (1996)

[74] Horrocks, I., Motik, B., Wang, Z.: The HermiT OWL Reasoner. In: OWL Rea-
soner Evaluation Workshop (ORE 2012) (2012)

[75] Hurwicz, L.: On informationally decentralized systems. In: McGuire, C., Rad-
ner, R. (eds.) Decision and Organization, pp. 297–336. North-Holland, Ams-
terdam (1972)

[76] Hurwicz, L.: On the existence of allocation systems whose manipulative Nash
equilibria are pareto-optimal. In: 3rd World Congress of the Econometric So-
ciety (1975)

[77] Hurwicz, L., Walker, M.: On the Generic Nonoptimality of Dominant-Strategy
Allocation Mechanisms: A General Theorem That Includes Pure Exchange
Economies. Econometrica 58(3), 683–704 (May 1990)

[78] Jackson, M.: Mechanism theory. In: Derigs, U. (ed.) The Encyclopedia of Life
Support Systems. EOLSS Publishers, Oxford (2003)

[79] Jaeger, M., Rojec-Goldmann, G., Muehl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: 8th IEEE International Enterprise
Distributed Object Computing Conference (EDOC). pp. 149–159. Monterey
(2004)

[80] Jerath, K., Netessine, S., Veeraraghavan, S.: Revenue management with strate-
gic customers: Last-minute selling and opaque selling. Management science
56(3), 430–448 (2010)

[81] Junker, U., Mailharro, D.: The Logic of ILOG (J)Configurator: Combining
Constraint Programming with a Description Logic. In: Proceedings of the IJ-
CAI Workshop on Configuration. vol. 3, pp. 13–20. Citeseer (2003)

[82] Karimi, V.: Semantic Web Rule Language (SWRL). http://www.cs.uwaterloo.
ca/~gweddell/cs848/Vahid.pdf [Last visited: 15.10.12] (2008)

[83] Kay, M.: XSL Transformations (XSLT) Version 2.0 (Januar 2007), http://www.
w3.org/TR/2007/REC-xslt20-20070123/ [Last visited: 14.07.12]

[84] Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

[85] Klein, M., Noy, N.: A Component-based Framework for Ontology Evolution.
In: Proc. Workshop on Ontologies and Distributed Systems, IJCAI 2003 (Aca-
pulco, Mexico) (2003)

http://www.cs.uwaterloo.ca/~gweddell/cs848/Vahid.pdf
http://www.cs.uwaterloo.ca/~gweddell/cs848/Vahid.pdf
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

REFERENCES 193

[86] Klein, M., Fensel, D.: Ontology Versioning on the Semantic Web. In: Proc. 1st
Int. Semantic Web Working Symp. pp. 75–91. Stanford University, CA, USA
(2001)

[87] Knapper, R., Blau, B., Speiser, S., Conte, T., Weinhardt, C.: Service Contract
Automation. In: Proceedings of the 16th Americas Conference on Information
Systems (AMCIS). Lima (2010)

[88] Kolovski, V., Parsia, B., Sirin, E.: Extending the SHOIQ(D) Tableaux with DL-
safe Rules: First Results. In: Parsia, B., Sattler, U., Toman, D. (eds.) Description
Logics. CEUR Workshop Proceedings, vol. 189. CEUR-WS.org (2006)

[89] Kotha, S.: From mass production to mass customization: the case of the na-
tional industrial bicycle company of Japan. European Management Journal
14(5), 442–450 (1996)

[90] Kothari, A., Parkes, D., Suri, S.: Approximately-strategyproof and tractable
multiunit auctions. Decision Support Systems 39(1), 105–121 (2005)

[91] Laffont, J., Martimort, D.: The theory of incentives: the principal-agent model.
Princeton University Press (2001)

[92] Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection
of highly configurable web services. In: Proceedings of the 16th international
conference on World Wide Web. pp. 1013–1022. ACM Press New York, NY,
USA (2007)

[93] Lamparter, S.: Policy-based Contracting in Semantic Web Service Markets.
Ph.D. thesis, Universität Karlsruhe (TH) (2007)

[94] Land, A., Doig, A.: An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society pp. 497–520
(1960)

[95] Lanthaler, M., Gutl, C.: Towards a RESTful service ecosystem. In: Digital
Ecosystems and Technologies (DEST), 2010 4th IEEE International Conference
on. pp. 209–214. IEEE (2010)

[96] Lécué, F., Léger, A.: A formal model for Web service composition. In: Proceed-
ing of the 2006 conference on Leading the Web in Concurrent Engineering. pp.
37–46. IOS Press, Amsterdam, The Netherlands, The Netherlands (2006)

[97] Lerman, K., Minton, S., Knoblock, C.A.: Wrapper maintenance: A machine
learning approach. J. Artif. Intell. Res. (JAIR) 18, 149–181 (2003)

[98] Leser, U., Naumann, F.: Informationsintegration. dpunkt.verlag (2007)

[99] Lösch, U., Rudolph, S., Vrandecic, D., Studer, R.: Tempus Fugit - Towards
an Ontology Update Language. In: 6th European Semantic Web Confer-
ence (ESWC 09). Lecture Notes on Computer Science, vol. 5554, pp. 278–292.
Springer-Verlag (Juni 2009)

194 REFERENCES

[100] LSDIS, Large Scale Distributed Information Systems, University of Georgia:
METEOR-S: Semantic Web Services and Processes (2004), http://lsdis.cs.
uga.edu/projects/meteor-s/, [Last visited: 15.10.12]

[101] Ludwig, A., Franczyk, B.: COSMA – an approach for managing SLAs in com-
posite services. Service-Oriented Computing–ICSOC 2008 pp. 626–632 (2008)

[102] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Seman-
tic Markup for Web services (2004), http://www.w3.org/Submission/OWL-S/,
[Last visited: 15.10.12]

[103] Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford Uni-
versity Press, New York (1995)

[104] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology
Library. Wonderweb Deliverable D18. (DOLCE) (2003), http://wonderweb.

semanticweb.org/

[105] McAfee, R.: A Dominant Strategy Double Auction. Journal of Economic The-
ory 56(2), 434–450 (1992)

[106] McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview
(2004), http://www.w3.org/TR/owl-features/, [Last visited: 08.11.12]

[107] Mell, P., Grance, T.: The NIST definition of cloud computing. National Insti-
tute of Standards and Technology 53(6), 50 (2009)

[108] Meng, X., Hu, D., Li, C.: Schema-guided wrapper maintenance for web-data
extraction. In: Proceedings of the 5th ACM international workshop on Web
information and data management. pp. 1–8. ACM (2003)

[109] Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction. In: Proceedings
Eighth National Conference on Artificial Intelligence. pp. 25–32 (1990)

[110] Motik, B.: On the properties of metamodeling in OWL. In: Proceedings of
the 4th international conference on The Semantic Web. pp. 548–562. Springer-
Verlag (2005)

[111] Motik, B., Patel-Schneider, P., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoek-
stra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: OWL 2 web ontology
language: Structural specification and functional-style syntax. W3C Recom-
mendation 27 (2009)

[112] Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large
description logic aboxes. In: Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 227–241. Springer (2006)

[113] Motik, B., Studer, R.: KAON2–A Scalable Reasoning Tool for the Semantic
Web. In: Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Greece (2005)

http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://www.w3.org/Submission/OWL-S/
http://wonderweb.semanticweb.org/
http://wonderweb.semanticweb.org/
http://www.w3.org/TR/owl-features/

REFERENCES 195

[114] Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide
Web 3(1), 41–60 (JUL 2005)

[115] Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research 36, 165–228 (2009)

[116] Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS–II: A Framework and
Infrastructure for Semantic Web Services. The Semantic Web-ISWC 2003 pp.
306–318 (2003)

[117] Muslea, I., Minton, S., Knoblock, C.A.: Hierarchical Wrapper Induction for
Semistructured Information Sources. Autonomous Agents and Multi-Agent
Systems 4, 93–114 (2001)

[118] Muthusamy, V., Jacobsen, H., Chau, T., Chan, A., Coulthard, P.: SLA-driven
business process management in SOA. In: Proceedings of the 2009 Conference
of the Center for Advanced Studies on Collaborative Research. pp. 86–100.
ACM (2009)

[119] Myerson, R.: Incentive Compatibility and the Bargaining Problem. Economet-
rica 47(1), 61–73 (1979)

[120] Myerson, R.: Optimal auction design. Mathematics of operations research pp.
58–73 (1981)

[121] Myerson, R., Satterthwaite, M.: Efficient mechanisms for bilateral exchange.
Journal of Economic Theory 28, 265–281 (1983)

[122] Myerson, R.: Mechanism design. Discussion Papers 796, Northwestern Uni-
versity, Center for Mathematical Studies in Economics and Management Sci-
ence (September 1988)

[123] Nash, J.: The (Dantzig) simplex method for linear programming. Computing
in Science & Engineering 2(1), 29–31 (2000)

[124] Noy, N.F., Musen, M.A.: Ontology Versioning in an Ontology Management
Framework. IEEE Intelligent Systems 19, 6–13 (2004)

[125] Papazoglou, M., Georgakopoulos, D.: Service-Oriented Computing. Commu-
nications of the ACM 46(10), 25–28 (2003)

[126] Parkes, D.: Iterative combinatorial auctions: achieving economic and compu-
tational efficiency. Ph.D. thesis, University of Pennsylvania (2001)

[127] Parkes, D., Kalagnanam, J.: Models for Iterative Multiattribute Procurement
Auctions. Management Science 51(3), 435–451 (2005)

[128] Parkes, D., Kalagnanam, J., Eso, M.: Achieving Budget-Balance with Vickrey-
Based Payment Schemes in Combinatorial Exchanges (2001), iBM Research
Report

[129] Parsia, B., Clark, K.G.: UMD Mindlab Rules Workshop Position Paper. http:
//www.w3.org/2004/12/rules-ws/paper/81/ (2004), [Last visited: 08.11.12]

http://www.w3.org/2004/12/rules-ws/paper/81/
http://www.w3.org/2004/12/rules-ws/paper/81/

196 REFERENCES

[130] Parsia, B., Sirin, E., Grau, B.C., Ruckhaus, E., Hewlet, D.: Cautiously
approaching SWRL. http://www.mindswap.org/papers/CautiousSWRL.pdf

(2005), [Last visited: 08.11.12]

[131] Pine, B., Davis, S.: Mass customization: the new frontier in business competi-
tion. Harvard Business School Press (1999)

[132] Pueschel, T., Neumann, D.: Management of Cloud Infastructures: Policy-
Based Revenue Optimization. ICIS 2009 Proceedings p. 178 (2009)

[133] Raiffa, H.: The Art and Science of Negotiation. Harvard University Press,
Cambridge (1982)

[134] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied
Ontology 1(1), 77–106 (2005)

[135] Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica:
Journal of the Econometric Society pp. 97–109 (1982)

[136] Saaty, T.: How to make a decision: the analytic hierarchy process. European
journal of operational research 48(1), 9–26 (1990)

[137] Sabin, D., Freuder, E.: Configuration as composite constraint satisfaction. In:
Proceedings of the Artificial Intelligence and Manufacturing Research Plan-
ning Workshop. pp. 153–161 (1996)

[138] Seaborne, A., Manjunath, G.: SPARQL/Update - A language for updating
RDF graphs. http://www.w3.org/Submission/SPARQL-Update/ (2008), [Last
visited: 08.11.12]

[139] Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner.
In: Proceedings of the 5th International Workshop on OWL: Experiences and
Directions (OWLED 2008). pp. 26–27 (2008)

[140] Sikka, V., Färber, F., Lehner, W., Cha, S., Peh, T., Bornhövd, C.: Efficient trans-
action processing in SAP HANA database: the end of a column store myth.
In: Proceedings of the 2012 international conference on Management of Data.
pp. 731–742. ACM (2012)

[141] Silva, G.: APT howto (2003), http://www.debian.org/doc/manuals/

apt-howto/index.en.html, [Last visited: 08.11.12]

[142] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-
DL Reasoner. Web Semantics: science, services and agents on the World Wide
Web 5(2), 51–53 (2007)

[143] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on
the World Wide Web 1(4), 377–396 (2004)

[144] Stojanovic, L.: Methods and Tools for Ontology Evolution. Ph.D. thesis, Uni-
versity of Karlsruhe, Germany (2004)

http://www.mindswap.org/papers/CautiousSWRL.pdf
http://www.w3.org/Submission/SPARQL-Update/
http://www.debian.org/doc/manuals/apt-howto/index.en.html
http://www.debian.org/doc/manuals/apt-howto/index.en.html

REFERENCES 197

[145] Studer, R., Benjamins, V., Fensel, D.: Knowledge Engineering: Principles and
methods. Data & Knowledge Engineering 25, 161–197 (1998)

[146] Tsarkov, D., Gardiner, T., Horrocks, I.: Framework For an Automated Com-
parison of Description Logic Reasoners. In: Proceedings of the 5th Interna-
tional Semantic Web Conference (ISWC) (2006)

[147] Unger, T., Leymann, F., Mauchart, S., Scheibler, T.: Aggregation of Service
Level Agreements in the Context of Business Processes. In: Proceedings of the
12th Enterprise Distributed Object Computing Conference (EDOC). pp. 43–52.
Munich (2008)

[148] Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders.
The Journal of Finance 16(1), 8–37 (1961)

[149] Walton, R.E., McKersie, R.B.: A Behavioral Theory of Labor Negotiations.
McGraw-Hill, New York (1965)

[150] Wellman, P.: Online Marketplaces. In: Singh, M. (ed.) The Practical Handbook
of Internet Computing, pp. 1–17. CRC Press, Boca Raton (2005)

[151] Wirth, S.: Individuelle Massenware kommt aus dem In-
ternet. http://www.welt.de/wirtschaft/article4625748/

Individuelle-Massenware-kommt-aus-dem-Internet.html (September 2009),
[Last visited: 08.11.12]

[152] World Wide Web Consortium (W3C): Web Services Architecture Require-
ments. http://www.w3.org/TR/wsa-reqs/ (Feb 2004), [Last visited: 08.11.12]

[153] Yang, D., Dong, M., Miao, R.: Development of a product configuration sys-
tem with an ontology-based approach. Computer-Aided Design 40(8), 863–
878 (2008)

[154] Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for Web services composition. Software Engineering, IEEE
Transactions on 30(5), 311–327 (2004)

http://www.welt.de/wirtschaft/article4625748/Individuelle-Massenware-kommt-aus-dem-Internet.html
http://www.welt.de/wirtschaft/article4625748/Individuelle-Massenware-kommt-aus-dem-Internet.html
http://www.w3.org/TR/wsa-reqs/

	I Foundations and Preliminaries
	1 Introduction
	1.1 Research Questions and Contributions
	1.2 Outline
	1.3 Publications and Research Development

	2 Basic Concepts and Technologies
	2.1 Knowledge Management
	2.1.1 Ontologies
	2.1.2 Ontology Formalisms
	2.1.3 Ontology Persistence

	2.2 Services
	2.2.1 Tangibles, Intangibles and Service Definitions
	2.2.2 Cloud Services
	2.2.3 Service-Oriented Architectures
	2.2.4 Mass Customizing Services
	2.2.5 Service Value Networks

	2.3 Economic Foundations
	2.3.1 Negotiations
	2.3.2 Mechanism Design

	2.4 Optimization Techniques
	2.4.1 Linear Optimization
	2.4.2 Simplex Algorithm
	2.4.3 Integer Programming
	2.4.4 Dynamic Programming
	2.4.5 CPLEX

	2.5 Summary

	3 Mass Customization of Cloud Services
	3.1 Scenario
	3.1.1 Single Provider Variant
	3.1.2 Intermediary Variant

	3.2 Assumptions
	3.3 Offer Creation Process
	3.4 Summary

	II Technical Design, Implementation and Evaluation
	4 Semantic Service Description Framework
	4.1 Requirements
	4.2 Related Work
	4.2.1 Semantic Description of Web Services
	4.2.2 Ontology-Based Configuration
	4.2.3 Applicability

	4.3 Ontology Framework
	4.3.1 Service Ontology
	4.3.2 Domain and Result Ontology

	4.4 Evaluation
	4.5 Summary

	5 Ontology Update Mechanism
	5.1 Use Case
	5.2 Requirements
	5.3 Related Work
	5.3.1 Ontology Versioning and Evolution
	5.3.2 Ontology Update Language
	5.3.3 SMILA – Unified Information Access Architecture
	5.3.4 Wrappers
	5.3.5 Applicability

	5.4 Concept
	5.4.1 Underlying Concepts and Design Decisions
	5.4.2 Architecture
	5.4.3 Sequence of Update Process

	5.5 Implementation
	5.5.1 Example Update Rules

	5.6 Evaluation
	5.6.1 Quantitative Evaluation
	5.6.2 Qualitative Evaluation

	5.7 Summary

	6 Service Engineering Algorithm
	6.1 Requirements
	6.2 Related Work
	6.3 Formal Model
	6.3.1 Functional Requirements
	6.3.2 Service Configuration Graph

	6.4 Service Engineering Algorithm
	6.5 Implementation
	6.6 Evaluation
	6.7 Summary

	III Economic Design, Implementation and Evaluation
	7 Multi-Attributive Negotiations
	7.1 Scenario
	7.2 Related Work
	7.3 Methodology
	7.4 Model of Preferences
	7.5 Negotiation Mechanisms
	7.5.1 TupleBidding
	7.5.2 ScoringBidding
	7.5.3 DiscountBidding

	7.6 Evaluation under Complete Information
	7.6.1 TupleBidding
	7.6.2 ScoringBidding
	7.6.3 DiscountBidding

	7.7 Evaluation under Incomplete Information
	7.7.1 Extended model under risk
	7.7.2 Numerical Simulation
	7.7.3 TupleBidding
	7.7.4 ScoringBidding
	7.7.5 DiscountBidding

	7.8 Comparison of Negotiation Mechanisms
	7.8.1 Complete Information
	7.8.2 Incomplete Information

	7.9 Conclusion
	7.9.1 Limitations and Implications

	8 Service Optimization
	8.1 Related Work
	8.2 Optimization Model and Challenges
	8.2.1 Non-functional Requirements
	8.2.2 Solution Space
	8.2.3 Aggregation Functions
	8.2.4 Objective Function
	8.2.5 Challenges

	8.3 Optimization Techniques
	8.3.1 Exact Approaches
	8.3.2 Approximations
	8.3.3 Heuristics

	8.4 Evaluation
	8.4.1 Subtractive Approximation Error
	8.4.2 Simulation Study

	8.5 Conclusion
	8.5.1 Practical Implications

	IV Finale
	9 Conclusion and Outlook
	9.1 Contribution
	9.2 Limitations and Future Work
	9.3 Complementary Research

	V Appendix
	A Appendix to Part II
	A.1 Service Ontology

	B Appendix to Part III
	B.1 Proof of Strict Monotonic Increase
	B.2 Numerical Proof of Strict Inequality
	B.3 Simulation Results for Various Parameters a and b
	B.3.1 Results for a=0.25 and b=2
	B.3.2 Results for a=0.5 and b=4
	B.3.3 Results for a=0.25 and b=4
	B.3.4 Parameters and Corresponding Optima

	References

