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Chapter 1

Introduction

1.1 The Discontinuous Galerkin Method

Reed and Hill [1] applied a first form of the discontinuous Galerkin (DG) method to the
neutron transport equation in 1973. Since then it has undergone a fast development and
finds numerous applications to e.g. the Euler equations of gas dynamics, the shallow wa-
ter equations, the equations of magneto-hydrodynamics, the compressible Navier-Stokes
equations and Maxwell’s equations – only to mention a few; see e.g. [2] for an overview
and analysis of many of these applications. Today, the DG method can be looked upon as
a suitable and efficient tool to treat physical, chemical, meteorological, biological, mathe-
matical and many other problems.
The DG method can be used for time and/or spatial discretization; as references for the
time-stepping DG method, see e.g. [3, 4, 5], which is only a small selection. In that case,
the differential equations are parabolic. We will use it for the spatial discretization of the
time-dependent, linear Maxwell’s equations in three-dimensional rotationally symmetric
geometries (in so-called Bodies of Revolution, BOR) and of the time-dependent Kerr-
nonlinear Maxwell’s equations, which can be formulated as hyperbolic conservation laws.
For time integration we use an explicit time stepping method, the explicit low-storage
Runge-Kutta method, originally introduced by Williamson in 1980 [6] and further devel-
oped by M. Carpenter and C. Kennedy [7]. The combination of the DG method for spatial
discretization and of an explicit Runge-Kutta scheme for time-integration, which is also
called the Runge-Kutta Discontinuous Galerkin (RKDG) method in mathematics or the
Discontinuous Galerkin Time-Domain (DGTD) method in physics, has been introduced
by Cockburn and Shu in several papers, [8] maybe being one of the latest. [9] gives an
introduction to the DG method and contains a more complete list of references on the
RKDG method; it can be downloaded online. We also mention [10], [11] and [12], which
is a review paper about RKDG methods, as references on the DG method. [13] gives a
review of the DG method applied to nanophotonics. We emphasize that there are numer-
ous other good books and papers on this topic.

The DG method encounters several advantages. It is a high order accuracy method;
for many cases optimal convergence rates can be shown, see e.g. [14, 15, 16, 17, 18, 19],
which is only a very small selection. The DG method is a local method, which allows a
high flexibility with meshes and which can thus handle complicated geometries. For linear
problems, parallelization is possible. Due to its locality, discontinuous solutions can be
treated as well.

A main ingredient of any DG scheme is the so-called numerical flux, which serves as
a connection between the single elements in order to construct the global approximation
from all locally obtained approximations. The notion of the numerical flux is taken from
finite volume methods, where the numerical flux meets the same purpose, i.e. to transport
the information from one local cell to another. The numerical flux plays a central role in
this thesis.
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1 Introduction

1.2 BOR Maxwell’s Equations

The electromagnetic characterization of rotationally symmetric systems (bodies of revolu-
tion, BOR) plays an important role for a large number of technical applications. Examples
range from coaxial cables and cylindrical resonators in the microwave regime to lenses,
tapered fibers or plasmonic nanoparticles in the optical spectrum. In numerical calcula-
tions, their symmetry can often be exploited to reduce the effective dimensionality of the
system which reduces the computational or analyical effort significantly. Indeed, over the
past decades most of the commonly employed numerical techniques have been extended
to also treat BOR systems efficiently. Besides the Method of Moments (MoM) [20] and
the Finite Element Method (FEM) [21], this is also true for the Finite–Difference Time–
Domain (FDTD) method [22]. Particularly the BOR–FDTD method has proven popular
and was applied to a large variety of systems, ranging from optical lenses [23] or diffractive
elements [24] to plasmonic nanostructures [25]. In this thesis we apply the Runge-Kutta
Discontinuous Galerkin method to BOR Maxwell’s equations and demonstrate how to
obtain an efficient algorithm for solving them.

1.3 Kerr-Nonlinear Maxwell’s Equations

The physicist John Kerr discovered the optical Kerr effect in 1875. It is a nonlinear optical
phenomenon which arises due to a change in the refractive index of a material in response
to an incoming electric field. The nonlinear behavior of the medium is responsible for
effects like self-focusing or self-modulation. In the first case, the refractive index increases
with the electric field intensity and the medium acts as a focusing lens for an electromag-
netic wave. In the second example, the index of refraction varies in time and intensity
of the incoming pulse, leading to a phase shift which produces a shift in the frequency of
the pulse. Increasing intensity leads to lower frequencies, and decreasing intensity gives
higher frequencies. Near an extremum of the intensity, the frequency of the pulse behaves
approximately linear.
Typically, nonlinearities are observed only if high intensities are present, as, e.g. in case
of lasers. Examples of applications involving the optical Kerr effect are fast sensors for the
measurement of electromagnetic fields, the fast determination of the structure of molecules,
or image enhancement and image conversion in presence of ultraviolet radiation (see e.g.
[26] for an overview) or bistable optical systems, see e.g. [27] and the references therein.

In this work we also apply the RKDG method to Kerr-nonlinear Maxwell’s equations.
In contrast to the linear BOR Maxwell’s equations many aspects are different in this
case. This is especially the case for the numerical flux, which is state dependent for
nonlinear problems. This increases the computational effort immensely. For many rele-
vant applications this makes simulations practically impossible. Therefore an appropriate
approximation to the analytically given numerical flux is indispensable and leads so the
research field of Riemann solvers. There exist numerous different Riemann solvers, like
the Roe solver [28], the HLL solver [29] and its modified versions, like e.g. the HLLC or
HLLE solver; for more Riemann solvers, see e.g. [30]. The HLL solver proved to give very
good numerical performances; see e.g. [31], where several versions of the HLL flux are
compared for the magneto-hydrodynamic equations.
In this work we give an exact numerical flux and approximative numerical fluxes. We
present several linear numerical fluxes, like a Lax-Friedrichs flux, and an HLL-like flux
and compare these numerical fluxes with each other with respect to efficiency and accu-
racy.
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1.4 Organization of this Thesis

1.4 Organization of this Thesis
This thesis consists of two main parts. Part I comprises theoretical topics, Part II is
about the application of the RKDG method to linear BOR and Kerr-nonlinear Maxwell’s
equations.

Part I starts with Maxwell’s equations and a brief overview of the corresponding con-
stitutive relations, the behavior of the electromagnetic fields at interfaces and boundary
conditions. Subsection 2.4.2 contains a short introduction to uniaxial perfectly matched
layers. In section 2.3 we give Maxwell’s equations in the weak form, and in section 2.6
we reformulate them as a conservation law, including theoretical aspects about hyperbolic
conservation laws in section 2.6.1.
In chapter 3 with introduce the Runge-Kutta Discontinuous Galerkin method. A com-
plete DG method consists of defining an appropriate triangulation with a finite element
space of discontinuous functions, and a numerical flux. The choice of a numerical flux
is not unique and there are many possible ways to do it. In section 3.2 we give details
about the numerical flux and its connection to finite volume methods, including examples
of well-known and widely used numerical fluxes. We will choose a numerical flux that
solves a so-called Riemann problem, and section 3.3 contains details about the solution of
a Riemann problem which we need in order to construct a numerical flux.
Space discretization leads to a semi-discrete scheme that needs to be integrated in time.
We use an explicit low-storage Runge-Kutta scheme of 4th order and with 5 stages (see
[7]).
In section 3.4 we give some main convergence results of the RKDG method. This requires
also the stability of the RK time stepping, which is the content of section 3.4.2. This also
leads to the necessity of so-called slope limiters, especially for nonlinear problems, where
discontinuous solutions can occur, leading to oscillations near discontinuities. This is the
well-known Gibbs-phenomenon. A slope limiter stabilizes the DG scheme and ensures its
high-order nature which is lost due to oscillations.

Part II is about the application of the RKDG method to Maxwell’s equations.
In chapter 4.1 we derive BOR Maxwell’s equations and introduce their weak form in section
4.1.1. We then start by applying the DG method to the two-dimensional BOR Maxwell’s
equations in 4.2, where the basic concepts of the DG space discretization are explained.
In section 4.2.2 we present the numerical flux for BOR Maxwell’s equations. We give an
efficient way of computing the resulting system matrices in section 4.2.5. We conclude
this chapter with several numerical tests. We proceed with the three-dimensional BOR
Maxwell’s equations in chapter 4.4 in the same manner and give numerical tests in section
4.5, including the introduction of uniaxial perfectly matched layers. We consider different
test systems, such as traveling waves in an open system, a traveling Gaussian pulse in a
fiber or a simulations in a tapered fiber.
In chapter 5 we then come to the Kerr-nonlinear Maxwell’s equations. In order to complete
the DG scheme, a numerical flux is needed. For this we need to solve the corresponding
Riemann problem, on which we focus in section 5.2. In subsections 5.2.1 and 5.2.3 we give
the corresponding Hugoniot Locus and Riemann invariants, respectively. In section 5.3.2
we present approximative numerical fluxes, and section 5.4 concludes the chapter with
numerical tests, where we consider a traveling Gaussian pulse to test the performance of
the RKDG scheme and the different numerical fluxes.
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2
Chapter 2

Macroscopic Maxwell’s Equations

In 1873 Maxwell formulated four coupled equations to describe the evolution of electric
and magnetic fields and thus the propagation of light. Maxwell’s equations in SI units and
in differential form are given as

Maxwell’s equations

∂D(x, t)
∂t

−∇×H(x, t) = −J(x, t), (2.0.1a)

∂B(x, t)
∂t

+∇×E(x, t) = 0, (2.0.1b)

∇ ·D(x, t) = ρ(x, t), (2.0.1c)
∇ ·B(x, t) = 0, (2.0.1d)

supplemented with initial, boundary and interface conditions (about which will be talked
later). Here, x ∈ R3 is the spatial variable, t ∈ R is the time variable, E is the electric field,
H is the magnetic field, B is the magnetic induction, and D the electric displacement. J
is the vector electric current density function, and ρ the scalar charge density. For now
the fields are assumed to be smooth enough with E,D,B,H in some appropriate func-
tion space X so that Maxwell’s equations (2.0.1) are well defined; this will be specified in
more detail in section 2.3, where we address the weak formulation of Maxwell’s equations.
We also assume that interchanging time derivatives and spatial derivatives is possible. In
addition, in the forthcoming, we suppress the field dependencies on the spatial variable x
and time variable t for clarity, unless it is explicitly brought out otherwise. For theory on
macroscopic Maxwell’s equations, see e.g. [32, 33, 34, 35], only to mention a small selection
of literature.

By taking the time derivative of (2.0.1a) and (2.0.1b) and using (2.0.1d) we get the con-
tinuity equation

∂ρ

∂t
+∇ · J = 0. (2.0.2)

One can separate Maxwell’s equations by the character of their derivatives. Then equa-
tions (2.0.1a) and (2.0.1b) are called Maxwell’s curl-equations, and (2.0.1c) and (2.0.1d)
are termed as divergence conditions. This designation is motivated by the fact that the
divergence conditions can be looked upon as constraints on the electromagnetic fields that
need to be fulfilled at all times, whereas the curl-equations are relevant for time-evolution.
This can be seen follows: We apply the divergence to equations (2.0.1a) and (2.0.1b) and
get

∇ · ∂D(x, t)
∂t

= −∇ · J(x, t) = ∂ρ

∂t
(x, t),

∇ · ∂B(x, t)
∂t

= 0,

5



2 Macroscopic Maxwell’s Equations

where we also used the continuity equation (2.0.2) and the fact that ∇ · (∇ × X) = 0
for any vector function X. We thus find that the divergence of D and B is constant
in time. Therefore, if the divergence condition is initially fulfilled and the current and
charge density follow the continuity equation, the curl-equations suffice to describe the
dynamics of the electromagnetic fields. In case a numerical scheme is applied to discretize
the curl-equations, the divergence conditions do not have to be fulfilled automatically, as
was pointed out in e.g. Ref. [36]. It might be necessary to design a scheme that takes the
divergence constraints numerically into account, as suggested in Ref. [37], where a Discon-
tinuous Galerkin Method is applied to Maxwell’s equations using a locally divergence-free
basis.

2.1 Constitutive Relations
Maxwell’s equations alone do not suffice to determine the electromagnetic fields. Their
interaction with matter is described through the constitutive laws

D(x, t) = ε0E(x, t) + P[E,H](x, t),
H(x, t) = µ0B(x, t)−M[E,H](x, t),

(2.1.1)

where P,M shall be vector valued functionals with P = (Pj)j , M = (Mj)j and Pj ,Mj :
X → R for a fixed value of t. P is called the polarization and M the magnetization. We
stress that the expression for P and M in equation (2.1.1) should be understood as a
short-hand writing to illustrate the character of the relation between the electromagnetic
fields. More details of the exact form of Pj and its general relation to E can be found in,
e.g., [36], [33], [32].
These constitutive equations inhibit some freedom in choosing P and M. For instance, D
and H can be linear in E and B, then

D(x, t) = ε0εE,
H(x, t) = µ0µB,

mirroring a medium that reacts linearly when light propagates through it. In general ε
and µ can vary in x and t. P and M can also be nonlinear in E and H, like e.g.

P[E,H] = ε0χ
(3)|E|2E, (2.1.2)

and we set M = 0. This describes a so-called Kerr-nonlinear medium. Generally, the
third-order nonlinear susceptibility χ(3) is a tensor with components χ(3)

jklm, see [35]. If

χ(3) consists of constants so that χ(3)
jklm ≡ χ(3), we write χ(3) ≡ χ(3) again. A fundamental

attribute of the susceptibility is its frequency dependence, see e.g. Refs [35, 34].
We note one can also derive the expression (2.1.2) by making a power series ansatz, see
the references we have mentioned above. In this case, χ(3) must be small enough so that
this power series converges.

2.2 Interfaces
Let us assume to have a medium with a region 1 and a region 2, creating an interface
in between. In region 1 we denote the permittivity by ε1 and the permeability by µ1, in
region 2 we have the electromagnetic parameters ε2 and µ2, as depicted in figure 2.1. n̂
shall be a unit normal pointing from I into region 1.

6



2.3 Weak Formulation of Maxwell’s Equations

Figure 2.1: Boundary conditions at an interface between two media with different electro-
magnetic properties.

By E1,H1 we denote the limit of electromagnetic fields when approaching I from region
1, and by E2,H2 the ones when approaching I from region 2. By using Gauss’ and
Stokes’ theorem (see e.g. Refs [38] and [39, Lemma 5.3], which takes into account more
mathematical details), it can be seen that across I the tangential components of E and
the normal components of H need to be continuous, that is

n̂× (E1 −E2) = 0,
n̂ · (µ1H1 − µ2H2) = 0,

(2.2.1)

whereas for the normal components of E and the tangential components of H we have

n̂× (H1 −H2) = JI ,
n̂ · (ε1E1 − ε2E2) = ρI ,

By JI we denote the value of the current density J on the surface I; ρI has to be understood
in the same manner. Thus, if ε and µ are discontinuous across I, the electromagnetic fields
E,H are not continuous across I.

2.3 Weak Formulation of Maxwell’s Equations

Until now we have assumed all electromagnetic fields to be “smooth enough” so that all
derivatives are defined. In this section we will specify the meaning of this. For this we will
define the so-called div- and curl-spaces H(div; Ω) and H(curl; Ω). We will not go into
details. The interested reader may choose to look into [39], for instance.

Definition 2.1.
A bounded domain Ω ⊂ Rn is called Lipschitz if its boundary ∂Ω is Lipschitz, that is,
if there exists a finite number of domains Ωi, local coordinate systems (xi, yi, zi) and
Lipschitz-continuous functions f(xi, yi) such that ∂Ω is a subset of the union of all Ωi

and Ω ∩ Ωi = {(xi, yi, zi) ∈ Ωi : zi > f(xi, yi)}.

Figure 2.2 illustrates the concept of Lipschitz continuity of a domain.

Definition 2.2.
By L2(Ω)3 we denote the three-dimensional analogue of the space of all square-integrable
functions L2(Ω), and define for u = (u1, u2, u3)T ∈ L2(Ω)3 and v ∈ L2(Ω)3 its inner
product as

(u,v) :=
∫

Ω
u · v dΩ.

For later purposes, we give the definition of the Sobolev spaces W k,p(Ω) and Hk(Ω).
See the book ”Sobolev Spaces” by Adams and Fournier [40] for more details.
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Figure 2.2: a) Example of a Lipschitz domain. b) Counter example of a non-Lipschitz do-
main: No neighborhood of the edges of the square with a Lipschitz continuous
function can be found.

Definition 2.3.
Let Ω ⊂ Rn be open. The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k}

with 1 ≤ p ≤ ∞. k ∈ N is called the order of W k,p(Ω). W k,p(Ω) is equipped with the norm

‖u‖Wk,p(Ω) :=


(∑
|α|≤k ‖Dαu‖pLp(Ω)

)1/p
, 1 ≤ p <∞;

max|α|≤k ‖Dαu‖L∞(Ω), p =∞.

(W k,p(Ω), ‖ · ‖Wk,p(Ω) is a Banach space. One denotes Hk(Ω) := W k,2(Ω). (Hk(Ω), ‖ ·
‖Wk,2(Ω)) is a Hilbert space.

Definition 2.4.
Let Ω ⊂ R3 be a bounded Lipschitz domain. The space of all functions with square-
integrable divergence is defined as

H(div; Ω) :=
{
u ∈ L2(Ω)3 : ∇ · u ∈ L2(Ω)

}
, (2.3.1)

endowed with the norm

||u||H(div;Ω) :=
(
||u||2L2(Ω)3 + ||∇ · u||2L2(Ω)

)1/2
.

The space of all u ∈ H(div; Ω) with zero trace is

H0(div; Ω) := {u ∈ H(div; Ω) : u · n̂|∂Ω = 0} , (2.3.2)

where u · n̂|∂Ω is continuous and well-defined for u ∈ H(div; Ω). It can be shown (see
[39], Theorem 3.22) that H(div; Ω) is the closure of (C∞(Ω))3 with respect to || · ||H(div;Ω)
and H0(div; Ω) is the closure of (C∞0 (Ω))3 with respect to || · ||H(div;Ω). In an analogous
manner, we define the curl-space

H(curl; Ω) :=
{
u ∈ L2(Ω)3 : ∇× u ∈ L2(Ω)

}
(2.3.3)

with norm

||u||H(curl;Ω) :=
(
||u||2L2(Ω)3 + ||∇ × u||2L2(Ω)3

)1/2
.
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The space of all u ∈ H0(curl; Ω) with zero trace is

H0(curl; Ω) := {u ∈ H(curl; Ω) : n̂× u|∂Ω = 0} , (2.3.4)

where u× n̂|∂Ω is well-defined for u ∈ H0(curl; Ω). It can be shown that H(curl; Ω) is the
closure of (C∞(Ω))3 with respect to the norm || · ||H(curl;Ω) and H0(curl; Ω) is the closure
of (C∞0 (Ω))3 with respect to || · ||H(curl;Ω).

P. Monk shows in [39] that these spaces are well-defined, and gives further properties. We
also cite an embedding result for the space X := H(curl; Ω) ∩H0(div; Ω).

Theorem 2.5.
Let Ω ⊂ R3 be a bounded Lipschitz domain. For k > 1

2 , the space X is continuously embed-
ded into the Sobolev space Hk(Ω)3. Consequently, X is compactly embedded in L2(Ω)3. If
Ω is even C1 or convex, then we have k = 1. The same holds for H0(curl; Ω)∩H(div; Ω).

Proof. See e.g. [41].

With these definitions we are ready to formulate Maxwell’s equations (2.0.1) in the weak
sense. Let us first note that either equations (2.0.1a) to (2.0.1b) can be formulated in the
weak sense and equations (2.0.1c) to (2.0.1d) are to be understood pointwise (strongly),
or (2.0.1a) to (2.0.1b) have to be understood pointwise and (2.0.1c) to (2.0.1d) weakly.
We will give the curl-equations in the weak form, since – as we have alluded to at the end
of section 2 – they are relevant for time evolution of the fields; furthermore, these are the
equations we will work with in later chapters.
So let E,H ∈ H0(curl; Ω) and let ψ ∈ (C∞0 (Ω))3 be a test function, integrate over the
domain Ω and get

Weak Maxwell’s curl-equations∫
Ω

(
∂D(x, t)

∂t
−
∫

Ω
∇×H(x, t)

)
·ψ(x, t) dΩ = −

∫
Ω

J(x, t) ·ψ(x, t) dΩ, (2.3.5a)∫
Ω

(
∂B(x, t)

∂t
+∇×E(x, t)

)
·ψ(x, t) dΩ = 0, (2.3.5b)

plus initial conditions. We have assumed to have zero boundary conditions n̂ × E = 0,
since this choice simplifies the weak formulation of Maxwell’s equations, but in many cases
this may be too restrictive. More about the nontrivial theory of (non-zero) traces can be
found, e.g., in Refs [39, 42] and [43, Ch. 26 by L. Demkowicz].

For theory on existence and uniqueness of solutions to Maxwell’s equations we refer to e.g.
[39] and [44]; for an analytic solution for Kerr-nonlinear Maxwell’s equations in one space
dimension see [45].

2.4 Boundary Conditions
2.4.1 Perfect Electric and Magnetic Conductor
Inside a perfect electric conductor (PEC) the electric field E vanishes, thus we have the
following boundary condition for the tangential component of E:

n̂×E = 0. (2.4.1)
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Also recall that the tangential component of E must be continuous across material inter-
faces, see (2.2.1).
If we consider scattering problems, E is the sum of a known incident field Ein and a
scattered field Es which has to be determined. Then the PEC condition reads

n̂×Es = −n̂×Ein. (2.4.2)

The same can be formulated for the H-field. Then one speaks of a perfect magnetic
conductor (PMC).

2.4.2 Uniaxial Perfectly Matched Layers
Many relevant physical systems are open, not closed, which is the case for a perfect con-
ductor. Berenger [46] found 1994 a way to numerically model open systems by introducing
so-called perfectly matched layers (PML) via a split-field approach. Another formulation
is the uniaxial PML (UPML) which was introduced by Gedney in 1996 [47]. Here, the
PML is an artificially introduced layer to absorb traveling waves in a medium.
Figure 2.3 shall illustrate a PML for a two dimensional Cartesian system. Around the
medium (beige) an artificial layer – the PML (grey)– is introduced, which allows electro-
magnetic waves to pass (orange), that is, the layer is “perfectly matched“ to the medium
itself. Inside the layer, any wave decays exponentially fast; at the outer boundary of the
PML, reflection may occur (violet). Yet, if the layer is broad enough, the exponential
decay prevents the medium from reflection effects. The damping of the wave inside the
layer in the i-direction (i = x, y) can be controled by so-called PML parameters; in figure
2.3 these are denoted by σx, and σy. They can be adjusted as necessary.
Later it was shown that both approaches are equivalent to a third one: the stretched-
coordinate PML approach by Chew and Weedon in 1994 [48], and by Teixeira and Chew
in 1998 [49].

Figure 2.3: Illustration of a perfectly matched layer around a medium.

Here, we will work with the UPML approach for Maxwell’s equations in bodies of rev-
olution (BOR), which is why we will give a brief overview of the procedure and present
the detailed computations of the auxiliary differential equations when we arrive at BOR
Maxwell’s equations. All the details of UPML can be found in the paper by Gedney [47],
or e.g. in [22], [50], [51]. A mathematical discussion of PML is a topic of itself, and there
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exist many works. We only mention two papers by Abarbanel and Gottlieb [52], [53], who
showed that Maxwell’s equations with Berenger’s PML are only weakly well-posed in the
sense that the norms of the Fourier transforms of the split fields ||Ȟx(t)|| and ||Ȟy(t)|| (see
definition (2.4.3) below) are not only bounded by the norm of the corresponding initial
fields, but also by the norm of the initial spatial derivatives of Ěy(t) and Ěz(t), which
leads to instabilities in the solution after a small perturbation, i.e. to ill-posedness. In [53]
they suggest a formulation that is well-posed in the sense that small perturbations do not
lead to instabilities; one reason for well-posedness lies in the fact that the additional equa-
tions for the auxiliary variables are ordinary differential equations, which do not change
the well-posedness if Maxwell’s equations were well-posed in the beginning. We will work
with such auxiliary variables.
In order to formulate Maxwell’s equations with UPML we start by Fourier transforming
them to the frequency domain. For a function f ∈ L1(R) we define its Fourier transform
as

f̌(ω) = 1√
2π

∫
R
f(t)e−iωt dt, (2.4.3)

and its inverse Fourier transform as

f(t) = 1√
2π

∫
R
f̌(ω)eiωt dω.

For theory on the Fourier transform, see, e.g. [54]. We note that this definition can be
extended to f ∈ Lp(R) for p ≥ 1, see e.g. [55].
Recalling theorem 2.5, we Fourier transform Maxwell’s equations to the frequency space
as

∇× Ȟ = −iωεĚ,
∇× Ě = iωµȞ.

(2.4.4)

Here, ω ∈ R. The basic idea is to replace the material parameters ε, µ by material tensors
ε := εΛ, µ := µΛ, where in the Cartesian case, the tensor Λ is defined as

Λ :=


sysz
sx

0 0
0 sxsz

sy
0

0 0 sysx
sz

 , (2.4.5)

with
sk(k) = κk(k)− σk

iω (k = x, y, z),

where the σk are the so-called PML parameters. Very often, κk = 1 is chosen, and we
follow this choice.
In cylindrical coordinates the tensor is given as (see [56])

Λ :=


sφsz
sr

0 0
0 srsz

sφ
0

0 0 sφsr
sz

 (2.4.6)

with

sr(r) = κr(r)−
σr(r)

iω ,

sz(z) = κz(z)−
σz(z)

iω ,

sφ(r) = r̃(r)
r
,
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2 Macroscopic Maxwell’s Equations

where
r̃(r) = r1 +

∫ r

r1
sr(r′)dr′.

In x-direction we have σx 6= 0, σy = σz = 0, in y-direction it is σx = σz = 0, σy 6= 0, in
z-direction σx = σy = 0, σz 6= 0, and in the corners σk 6= 0 (k = x, y, z). In the medium,
we have σk = 0. So, Maxwell’s equations with UPML in Cartesian coordinates are given
as

∇× Ȟ = −iωεΛĚ,

∇× Ě = iωµΛȞ.
(2.4.7)

As an example we demonstrate the derivation of the auxiliary differential equation for the
Ěx-component. The computations for the other components are quite similar, and for
BOR Maxwell’s equations we will present all the details later.
Let us plug (2.4.5) into (2.4.4) so that we have

− εiωĚx = ∂yȞz − ∂zȞy + iωε
(
sysz
sr
− 1

)
Ěx.

We want to eliminate iω, and we do this by first defining a so-called polarization current
J̌i with i ∈ {x, y, z} and with

J̌x := iωε
(
sysz
sx
− 1

)
Ěx.

Then we introduce a new auxiliary variables Pi (i ∈ {x, y, z}). This results in additional
equations for each Pi, so-called auxiliary differential equations (ADE). In the end, after
reshaping the equations in a clever way, we get 12 equations in total for the electric fields
E,H and the corresponding polarizations P(E),P(H). For the Ex-component this looks as
follows. First we encounter

sysz
sx
− 1 =

(
1− σy

iω
) (

1− σz
iω
)

1− σx
iω

− 1 =
(iω − σy)

(
1− σz

iω
)

iω − σx
− 1

= 1
iω − σx

(
σyσz
iω + iω − σz − σy − iω + σx

)
,

and therefore

J̌x = iωε
iω − σx

(
σyσz
iω − σz − σy + σx

)
Ěx.

Now introduce P̌Ex := J̌x + AĚx. A stands for an unknown expression which shall be
determined such that iω drops out. We make the ansatz

(iω − σx)P̌Ex = iωε
(
σyσz
iω + σx − σz − σy

)
Ěx + (iω − σx)AĚx.

Thus we need iωA+ iωε(σx − σy − σz) = 0⇔ A = ε(σy − σx + σz), and thus it follows:

− iωP̌Ex = −σxP̌Ex − ε
(
σyσz − σxσy + σ2

x − σxσz)
)
Ěx.

Now we apply backward Fourier transform, taking into account that

J̌x = P̌Ex −AĚx = P̌Ex − ε(σy − σx + σz)Ěx,

and we obtain Maxwell’s equation for Ex in time domain together with an auxiliary dif-
ferential equation for PEx as

ε∂tEx = ∂yHz − ∂zHy + PEx − ε(σy − σx + σz)Ex,

∂tP
E
x = −σxPEx − ε

(
σyσz − σxσy + σ2

x − σxσz)
)
Ex.
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2.5 Reduction to Lower Dimensions
Reduction to Two Dimensions
If the system is homogeneous in one direction, e.g. the z-direction, the electromagnetic
fields are constant in that direction, and the z−derivative drops out. Assuming Hz = 0
(TM polarization) or Ez = 0 (TE polarization), we obtain the set of equations (neglecting
sources)

TM Polarization

∂tEz = (ε0ε)−1(∂xHy − ∂yHx),
∂tHx = −(µ0µ)−1∂yEz,

∂tHy = (µ0µ)−1∂xEz.

TE Polarization

∂tEx = (ε0ε)−1∂yHz,

∂tEy = −(ε0ε)−1∂xHz,

∂tHz = (µ0µ)−1(∂xEy − ∂yEx).

Reduction to One Dimension
If the system also inhibits a translational invariance, like e.g. in the y-direction, this results
in two equations for Ez and Hy (TM polarization):

∂tEz = (ε0ε)−1∂xHy,

∂tHy = (µ0µ)−1∂xEz.

2.6 Maxwell’s Equations as a Conservation Law
Maxwell’s curl-equations can be reformulated in conservation form. For a deeper insight
into theory about conservation laws and hyperbolic equations, see e.g. [57], [58] and [30].
Here, we give a brief overview.

2.6.1 Overview of the Theory of Hyperbolic Conservation Laws
We consider partial differential equations of the form

Q∂tu +
m∑
j=1

∂Fj(u)
∂xj

= Su, x = (x1, . . . , xm)T ∈ Rm, t ∈ R, (2.6.1)

where ∂tu = ∂u
∂t denotes the partial time derivative of the vector valued function u := (u1, . . . , un)T

with u : Rm × R → Ω, where Ω ⊂ Rn is open, i.e. ui = ui(x1, . . . , xm, t), and it is
S ∈ Rn×n, Q ∈ Rn×n. u is called the state vector, and Ω is called the set of states.
Fj : Ω → Rn, j = 1, . . . ,m, is called the flux function; it is Fj = (F1j , . . . , Fpj)T , where
all Fij shall be smooth. We define the so-called flux vector F := (F1, . . . ,Fm), which is a
(n×m)-matrix, i.e.

F =


F11 · · · F1m

...
...

Fn1 · · · Fnm

 . (2.6.2)

13
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We furthermore define the divergence of a matrix-valued field as follows:

Definition 2.6.
The divergence ∇ · F : Rn → Rn of a matrix-valued field F : Rn → Rn is defined as

∇ · F :=


∂x1F11 + · · ·+ ∂xmF1m

...
∂x1Fn1 + · · ·+ ∂xmFnm

 , (2.6.3)

or, shortly,

∇ · F =

 m∑
j=1

∂xjFij

n
i=1

.

With this we can write equation (2.6.1) as

Q∂tu +∇ · F(u) = Su. (2.6.4)

This system is said to be in conservative form. One also calls it a conservation law.

Definition 2.7.
The Jacobian matrix Aj(u) ∈ Rn×n of the flux vector components Fj is defined as

Aj(u) :=
(
∂Fij(u)
∂uk

)
1≤i,k≤n

, j = 1, . . . ,m.

Definition 2.8.
The conservation law (2.6.4) is called hyperbolic if, for any arbitrary vector v ∈ Rm and
u ∈ Ω ⊂ Rn, the matrix

A(u; v) :=
q∑
j=1

vjAj(u)

has n real eigenvalues λ1 ≤ · · · ≤ λn (where λi = λi(u; v), i = 1, . . . , n) with corresponding
n linearly independent right eigenvectors r1, . . . , rn (where ri = ri(u; v), i = 1, . . . , n), i.e.

A(u; v)ri = λiri, i = 1, . . . , n.

If all the the eigenvalues are distinct, the system is called strictly hyperbolic.

If everything is smooth enough (!), one can rewrite (2.6.4) in non-conservative form by
using the Jacobian as

Q∂tu + A(u)∇u = Su. (2.6.5)

By ∇u we denote the partial derivative of u with respect to x. If all entries of the matrices
A(u) and S are constant in u, the system is called linear with constant coefficients. If
A(u) and S are independent of u, but dependent on x, t, then one says the system is linear
with variable coefficients. If only S depends on u, the system is still linear, and it is quasi-
linear if A(u) depends non-linearly on u. If S = 0, the system is called homogeneous.
For further reading we refer to [59], [58], [57], [30], which is only a very small selection
from literature.
We start our theoretical study with the conservation law (2.6.4) with S = 0 and with
initial conditions, i.e. the Cauchy problem

{
Q∂tu +∇ · F(u) = 0,
u(x, 0) = u0(x), x ∈ Rm,

where u0 : Rm → Ω ⊂ Rn is a given function.
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2.6.2 Integral Formulation of Conservation Laws
Conservation laws can also be expressed as integral equations, and with respect to physics
this seems reasonable, since several governing equations are derived using conservation laws
in integral from, as conservation of mass or momentum. Furthermore, less smoothness of
solutions is required, and discontinuous functions should be allowed. When using the
discontinuous Galerkin method, to which we will come in the next chapter, this is an
indispensable requirement.
There exist several different integral forms which are equivalent to each other. Each one
assumes to have a so-called control volume, which we shall define as V := [t1, t2] × D,
where [t1, t2] is the time domain of the control volume, and D is the spatial domain of
interest. For instance, in one dimension, this would be D = [xl, xr]; see figure 2.4 for an
illustration.

Figure 2.4: Sketch of a control volume V in one dimension in xt-plane.

Integral Form No. 1

Let S = 0 and Q = Id. We get a first integral form by integrating the differential equation
(2.6.4) over D so that

∂t

∫
D

u(x, t) dx = −
∫
∂D

F(u(x, t))n dΓ, (2.6.6)

where n is the outer normal of unit length of D. In one dimension, we simply have∫
∂D

F(u(x, t))n dΓ = (F(u(xl, t))− F(u(xr, t))) n.

Integral Form No. 2

Starting with (2.6.6) and integrating over [t1, t2] we get a second integral form:(∫
D

u(x, t2)dx−
∫
D

u(x, t1) dx
)

= −
∫ t2

t1

∫
∂D

F(u(x, t))n dx dt. (2.6.7)

From both equations one can see that changes of u inside the domain D are only possible
due to fluxes F(u(x, t))n over the boundary ∂D.

Integral Form No. 3: Weak Form

We assume again S = 0 and Q = Id. The weak form of (2.6.4) is∫
D

(∂tu +∇ · F(u)) ·Ψ dx = 0. (2.6.8)
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for all test functions Ψ. On each control volume D ⊂ Ω we have∫
D

(∂tu +∇ · F(u)) ·Ψ dx = −
∫
∂D

F(u(x, t))n ·Ψ dΓ. (2.6.9)

If we integrate over [t1, t2]×D, we get the integral form No. 2 in the weak sense, and its
right hand side reads∫ t2

t1

∫
∂D

F(u(x, t))n ·Ψ(x, t) dx dt = (t2 − t1)
∫
∂D

( 1
t2 − t1

∫ t2

t1
F(u(x, t))n dt

)
·Ψ(x, t) dx.

(2.6.10)

2.6.3 Conservation Form of Maxwell’s Equations
Maxwell’s curl-equations read

∇×E = −µ∂tH, ∇×H = ε∂tE.

We want to bring these into conservation form (2.6.4). For this we define the state vector
u := (E,H)T ∈ R6 and the flux vector F(u) := (Fx,Fy,Fz)T ∈ R6×3, where the compo-
nents Fk (k = x, y, z) are given as Fk = (−êk ×H, êk × E)T ∈ R6. We also define the
material matrix

Q :=

ε 0

0 µ

 ,
where we have assumed that the material tensors ε, µ are 3 × 3−matrices, and ε and µ

shall be constant. In general they can vary in space. Furthermore, Q ∈ R6×6 shall be
invertible. We can thus write Maxwell’s equations in conservation form as

Q∂tu +∇ · F(u) = 0. (2.6.11)

One can show by direct computation that this is a hyperbolic system with the eigenvalues
λ1 = 0 and λ2,3 = ± 1√

εµ , where each eigenvalue has multiplicity 2.

16



3
Chapter 3

The Runge-Kutta Discontinuous
Galerkin Method

The DG method was first introduced by Reed and Hill for the neutron transport equation
in 1973 [1]. Since then it has undergone a fast development and finds numerous applica-
tions to e.g. the Euler equations of gas dynamics, the shallow water equations, the equa-
tions of magneto-hydrodynamics, the compressible Navier-Stokes equations and Maxwell’s
equations – only to mention a few. The DG method can be used for time and/or spatial
discretization. We will apply it to BOR Maxwell’s equations for spatial discretization and
later to Maxwell’s equations with a Kerr-nonlinearity. We use an explicit time stepping
method, the explicit low-storage Runge-Kutta method, originally developed by Williamson
[6] and extended by M. Carpenter and C. Kennedy [7]. This combination, the DG method
for spatial discretization and an explicit Runge-Kutta scheme for time-integration, also
called Runge-Kutta Discontinuous Galerkin (RKDG) method in mathematics and Dis-
continuous Galerkin Time-Domain (DGTD) method in physics, has been introduced by
Cockburn and Shu in several papers, [8] maybe being one of the latest. In [9], which can
be downloaded online and which also gives an introduction to the DG method, a more
complete list can be found. Also [10], [11] and [12] (a review paper about RKDG meth-
ods) shall be mentioned as literature about the DG method. [13] gives a review of the
DG method applied to nanophotonics. Of course, there are many other good books and
papers on this topic.

The DG method encounters several advantages:

• It’s a high order accuracy method.

• It allows meshes with elements of any kind; thus, it can handle complicated geome-
tries.

• It is a local method, e.g. in the linear case parallelization is possible.

• It can handle discontinuous solutions.

• It can be implemented relatively easy.

The Key Ideas

A complete DG method consists of the following main steps:

(1) Space discretization, including the definition of a finite element space with discon-
tinuous functions. This leads to a local scheme, where the exact solution is approx-
imated on each element.

(2) The global approximation to the exact solution is obtained by connecting all local
solutions on the local elements via the so-called numerical flux. The choice of a
numerical flux is the main ingredient of a DG method. It has to be chosen such that
the resulting scheme is consistent and convergent to the exact solution. The choice
of a numerical flux is not unique and there are many possible ways to do it. We will
choose a flux that solves a so-called Riemann problem.
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3 The Runge-Kutta Discontinuous Galerkin Method

(3) Space discretization leads to a semi-discrete scheme that needs to be integrated in
time. We use an explicit low-storage Runge-Kutta scheme of 4th order and with
5 stages, see [7]. For nonlinear problems, it may be necessary to use a stability
preserving RK method, like a high-order strong stability preserving Runge-Kutta
scheme by Ruuth and Spiteri [60].

Sometimes a step (4) is needed: If discontinuous solutions can occur (e.g. in case of non-
linear problems) a so-called slope limiter may be required to stabilize the DG scheme due
to oscillations near discontinuities, which is the well-known Gibbs-phenomenon. Further-
more, another important aspect is regaining the high-order nature of the DG method by
applying a slope limiter.

3.1 Space Discretization with the Discontinuous Galerkin
Method

As we have seen in section 2.6 Maxwell’s curl-equations can be written as a conservation
law, and we have seen it is a hyperbolic system of equations. For later purposes, let us
recall the conservation law (2.6.4)

Q ∂tu +∇ · F(u) = Su, (3.1.1)
u(x, t) = g(x, t), x ∈ ∂Ω, (3.1.2)
u(x, 0) = f(x) (3.1.3)

with the unknown solution u = u(x, t) with u : [0, T ] × Rn → Rm, Q and S are m ×m-
matrices, not necessarily constant, Ω ⊂ Rn and F : Rm → Rm×n. The divergence ∇ · F
was defined in 2.6.

The weak form of (3.1.1) on Ω is given as∫
Ω

(Q ∂tu +∇ · F(u)− Su) ·Ψ dΩ = 0 (3.1.4)

for all test functions Ψ. Now we tessellate Ω by a number of K conforming simplices Ωk,
i.e.

Ω ≈ Ωh :=
K⋃
k=1

Ωk,

for a conforming triangulation Th := {Ωk}. We define the corresponding finite element
space of discontinuous functions as

Vh := {uh ∈ L∞(Ω) : ukh := uh|Ωk ∈ V (Ωk) ∀ Ωk ∈ Th}. (3.1.5)

V (Ωk) is called the local space, and it should be chosen such that spurious, non-physical
solutions are avoided; see e.g. [36, 61] on the topic of spurious solutions of Maxwell’s
equations. One possibility are H(curl)-conforming elements, as e.g. Nedelec’s elements
[62]. A finite element space is called conforming, if it is a proper subspace of the origi-
nal continuous function space, in our case, of H(curl). Hesthaven and Warburton chose
another way [63], the nodal Discontinuous Galerkin method, and we follow it by letting
V (Ωk) = Pp(Ωk), which is the space of multivariate polynomials of total degree p ∈ N, as
in e.g. [8] or [11].
Let n be the external outer normal of unity length, pointing from local element Ωk to a
neighboring element Ωk′ . On each Ωk we have∫

Ωk

[
(Q ∂tu− Su) ·Ψ− F(u) · ∇Ψ

]
dΩ = −

∫
∂Ωk

F(u) n ·Ψ dΓ. (3.1.6)
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3.2 The Numerical Flux

The (continuous) Galerkin ansatz consists in requiring the residual

Rh := ∂tuh +∇ · F(uh)− Suh

to be orthogonal to all test functions Ψh ∈ Vh, i.e.∫
Ωk
Rh ·Ψh dΩk = 0.

In the discontinuous Galerkin ansatz the functions may be constrained across the inter-
faces, so that we get (after integration by parts)∫

Ωk
∂tu(x, t) Ψ− F(u(x, t)) · ∇Ψ dΩk = −

∫
∂Ωk

F(u(x, t)) n ·Ψ dΓ. (3.1.7)

We want to model the right hand side of (3.1.7) in an adequate way by a so-called numerical
flux Fnum. This numerical flux inhibits the information about how the edge values of a
local cell Ωk are connected to the edge values of a neighboring cell Ωk′ . It is thus a
function of ukh and uk′h . That is, it is needed to reconstruct the global solution from all
local solutions. So to complete any DG scheme one needs an expression for the numerical
flux. Thus we set∫

Ωk

[
(Q ∂tukh − Sukh) ·Ψh − F(ukh,uk

′
h ) · ∇Ψh

]
dΩk = −

∫
∂Ωk

Fnum(ukh,uk
′
h ) n ·Ψh dΓ

(3.1.8)

for all Ψh ∈ Vh. We apply integration by parts again and get∫
Ωk

(Q ∂tukh +∇ · F(ukh)− Sukh) ·Ψh dΩk =
∫
∂Ωk

(F(ukh)− Fnum(uh,uk
′
h )) n ·Ψh dΓ.

(3.1.9)

In section 3.2 we will specify the expression Fnum of the numerical flux.

3.2 The Numerical Flux
The numerical flux connects the single solutions ukh on each element Ωk and thus recovers
the global approximation uh. Due to our discontinuous ansatz, the functions ukh can have –
and generally do have – different values on the edges e between two neighboring elements.
The numerical flux Fnum(uh) connects these different edge values. It thus depends on the
interior and exterior values of ukh(xe, t) of element Ωk, where xe is a point on the edge
e := ∂Ωk ∩ ∂Ωk′ . The meaning of ”interior“ and ”exterior“ is defined as follows.

ukh(xint(Ωk), t) = lim
x→xe,x∈Ωk

ukh(x, t),

ukh(xext(Ωk), t) =

gh(x, t), x ∈ ∂Ω,
lim

x→xe,x∈Ωk′
ukh(x, t), otherwise.

By gh(x, t) the discrete boundary values are meant. In what will follow, we will drop the
index k, whenever clarity is not lost by it, and abbreviate ukh(xint(Ωk), t) = u−h and call it
the interior edge value of element Ωk, while ukh(xext(Ωk), t) = u+

h is called the exterior edge
value of Ωk. Figure 3.1 shows a sketch of this situation.

Thus the numerical flux Fnum depends on the exterior and interior edge values, that
is Fnum(uh) = Fnum(u−h ,u

+
h ). Information from one cell to another is transported in
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3 The Runge-Kutta Discontinuous Galerkin Method

Figure 3.1: A sketch of the meaning of ”interior“ and ”exterior“.

direction of the outer unit normal n of Ωk, so we need the numerical flux along n, that is,
we let

Fnum
n (u−h ,u

+
h ) := Fnum(u−h ,u

+
h )n, and Fn(u) := F(u)n.

There are many possible choices of a numerical flux, see e.g. [57], [9]; in general it is
not unique. In section 3.2.2 we will give some examples of numerical fluxes. In order to
produce a convergent DG scheme, the numerical flux has to fulfill the following conditions
[9], [8]:

1. It is locally Lipschitz.

2. It is consistent with the flux vector F, i.e. Fnum
n (z, z) = Fn(z) for all z ∈ Rn.

3. It is conservative, that is, we require

Fnum
n (u−h,k,u

+
h,k) + Fnum

n (u−h,k′ ,u
+
h,k′) = 0

on all edges e = Ωk ∩ Ωk′ . This condition ensures that the numerical scheme is an
approximation to the conservation law, and not to an arbitrary other problem. It
also means that the numerical flux at the boundary between Ωk and Ωk′ is the same
as the one separating Ωk′ and Ωk.

4. If Fnum
n is a vector-valued numerical flux, the mapping z 7→ Fnum

n (z, ·) shall be non-
decreasing. We say a vector valued function is non-decreasing if all its components
are non-decreasing.

These requirements are motivated from finite volume methods, where, for scalar problems,
a numerical flux with these properties gives rise to a monotone scheme. Monotone schemes
were shown to be stable and convergent to the exact solution of order zero, see [64], [65] and
[66]. More details can also be found in [59, Prop. 4.2] or [57], giving only a small selection
of references. Thus, the numerical flux in a DG method is chosen such that for piecewise
constant approximations uh the scheme leads to a monotone finite volume method. We
will say more about monotonicity in the next section, where we give some basics about
finite volume methods in order to motivate the choice and role of the numerical flux in a
DG scheme.

3.2.1 The Numerical Flux and Finite Volume Methods
Originally, the concept of a numerical flux was inspired by finite volume methods, where
the numerical flux is also a means of transporting information from one cell to another.
And indeed, a DG method with polynomial order zero is nothing else than a finite volume
method. In this section we want to motivate the connection between the numerical flux
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3.2 The Numerical Flux

Fnum of a DG scheme and the numerical flux of a finite volume method. We refer to e.g.
[57, 58] for substantial theory about hyperbolic equations and their numerical treatment
by using finite volume methods.
For the following we let S = 0 and Q = Id in (2.6.4). The conservation law (2.6.4) reads
in integral form ∫

Ω
∂tu +∇ · F(u) dx = 0, (3.2.1)

or, equivalently,

d
dt

∫
Ω

u dx = −
∫
∂Ω

n · F(u) dΓ. (3.2.2)

The expression on the right hand side gives a flux across the boundary of Ω, that is, u
changes inside Ω only due to the flux across its boundary ∂Ω. This is the conservative
property.
A finite volume space discretization consists of the following main steps (figure 3.2 a) shall
illustrate the procedure):

1. Subdivide the domain into so-called grid cells (finite volumes) Ωk. A neighboring
element is denoted by Ωk′ . In one space dimension we write Ωi = [xi−1/2, xi+1/2] and
denote a neighboring element by Ωj . In this case the step size in space is denoted
by ∆xi := xi+1/2 − xi−1/2. We also define a time grid 0 = t0 ≤ t1 ≤ · · · ≤ tM = T
with time step size ∆tl := tl+1 − tl (l = 1, . . . ,M). For a uniform one-dimensional
grid in space, it is ∆xi = ∆x for all i, and for a uniform grid in time it is ∆tl = ∆t
for all l.

2. The conservation law is formulated on each cell Ωk as

d
dt

∫
Ωk

u(x, t) dx = −
∫
∂Ωk

nk · F(u(·, t)) dΓ, (3.2.3)

where nk is the outward unit normal vector to Ωk.

3. On each Ωk approximate the integral on the left hand side by

1
vol(Ωk)

∫
Ωk

u(x, t) dx ≈ uk(t).

At each time step tl we have uk(t) ≈ uk(tl) =: ulk. The integral on the left side is
the cell average of u over Ωk, and so, ulk is an approximation to this cell average.
Thus,

d
dt

∫
Ωk

u(x, t) dx ≈ vol(Ωk)
duk(t)

dt .

We also want to approximate the flux integral on the right hand side of (3.2.3). We
first note that it holds∫

∂Ωk
nk · F(u) =

∑
ek,k′⊂∂Ωk

∫
ek,k′

nk · F(u) dΓ,

where ∂Ωk is the union of all edges ek,k′ with ek,k′ = ∂Ωk ∩ ∂Ωk′ being an edge
separating Ωk and Ωk′ . Since we only have information about uk(t) and since in
case of hyperbolic systems information travels with finite speed, we approximate
the flux integral by only using the values uk(t). One then introduces a function
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3 The Runge-Kutta Discontinuous Galerkin Method

Figure 3.2: a) Finite volume discretization. b) Analogue in the DG method for one space
dimension, c) and for two dimensions.
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3.2 The Numerical Flux

F = F(uk,uk′) which shall be an approximation to the flux integral in (3.2.3) so
that ∫

ek,k′
nk · F(u) dΓ ≈ |ek,k′ |F(uk,uk′ ; nek,k′ ), (3.2.4)

where nek,k′ is the unit normal to ek,k′ in direction of Ωk′ . The function F is called
numerical flux, and in order to complete any finite volume method it has to be chosen
appropriately. This gives a semi-discrete scheme of the form

vol(Ωk)
duk(t)

dt = −
∑

ek,k′⊂∂Ωk

|ek,k′ |F(uk,uk′ ; nek,k′ )

4. By using a time-stepping method (e.g. an explicit Euler scheme) we integrate in time
and obtain

ul+1
k = ulk −

∆t
vol(Ωk)

∑
ek,k′⊂∂Ωk

|ek,k′ |F(uk,uk′ ; nek,k′ ). (3.2.5)

For example, in one space dimension, it is

d
dt

∫ x2

x1
udx = F (u(x1, t))− F (u(x2, t)). (3.2.6)

The domain is the interval Ω := [x1, x2] with subdomains Ωi. One thus looks for methods
of the form

ul+1
i = uli −

∆t
∆x(F li+1/2 − F

l
i−1/2), (3.2.7)

where
F li±1/2 ≈

1
∆t

∫ tl+1

tl

F (u(xi±1/2, t)) dt.

For more information and theory, see e.g. [57] and [59].
With (3.2.5) we have obtained a numerical scheme in conservation form.

Definition 3.1 (Conservative Scheme).
A method of the form

ul+1
k = ulk −

∆t
vol(Ωk)

∑
ek,k′⊂∂Ωk

|ek,k′ |F(uk,uk′ ; nek,k′ ).

is called a conservative scheme for the conservation law ∂tu+∂xF(u) = 0. F(uk,uk′ ; nek,k′ )
is called numerical flux.

For the scalar case in one space dimension, a conservative scheme is of the form (see [57])

ul+1
i = uli −

∆t
∆x(F li+1/2 −F

l
i−1/2),

where F li+1/2 = F li+1/2(uli−a, . . . , uli+b); a, b are two integers, and a = b is allowed.

In the last section we have mentioned monotonicity, and the next definition explains what
a monotone scheme is.
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3 The Runge-Kutta Discontinuous Galerkin Method

Definition 3.2 (Monotone Scheme).
A one-dimensional scalar scheme of the form

ul+1
i = H(uli−a, . . . , uli+b) =

k∑
s=−a

Bsu
l
i+s (3.2.8)

with Bs ≥ 0 for all s is called monotone. Again a and b are integers, and a = b is possible.
For a monotone scheme H has to fulfill

∂H

∂uls
≥ 0 for all s. (3.2.9)

This can also be written as [57, Section 12.12]

∂ul+1
i

∂uls
≥ 0,

meaning that if the value of any uls at time step tl is increased, then the value of ul+1
i at

the next time step cannot decrease.
A numerical flux is called monotone, if the resulting scheme with the choice of
F li+1/2 = F li+1/2(uli−a, . . . , uli+b) can be cast into the conservative form of definition 3.1.
We will give examples of (monotone) fluxes in section 3.2.2.
The theory for multi-dimensional scalar conservation laws is more elaborate; yet, many
results and definitions can be formulated for the system case, for instance, by considering
each component of the system; see e.g. [30, Ch. 5.3.4], [57, Ch. 20], [59].

Necessary Conditions for Convergence of a Finite Volume Method

Definition 3.3.
A numerical scheme is called convergent if and only if the numerical solution converges
to the exact solution if the grid is refined, i.e. as ∆x,∆t→ 0.
It is well known that a linear method that is consistent and stable converges to the exact
solution. This gives the following necessary conditions for convergence, see e.g. [57, Ch.
4.3., Ch. 8]:

1. Continuity: The numerical flux shall be Lipschitz continuous.

2. Conservation property: It shall hold F(uk,uk′ ; n) = −F(uk′ ,uk;−n).

3. Consistency: The numerical flux shall be consistent with the physical flux, i.e.

F(u,u; n) = Fn(u,u). (3.2.10)

This is motivated from the following: If u(x, t) is locally constant in x, i.e. it is
ulk = ulk′ ≡ ũk for all k and for all l, then the exact solution is reproduced, that is,

1
vol(Ωk)

∫
Ωk

u(x, t) dx = ũk.

Therefore, (3.2.4) shall also hold exactly, which gives (3.2.10).

4. Stability: If the CFL number fulfills the inequality
∆t
∆x max

p
|λp| ≤ C,

a finite volume method is stable. Here, λp is the pth eigenvalue of F ′(u) (in the
one-dimensional scalar case) or of the Jacobian ∂F

∂u (in the multi-dimensional system
case); see e.g. [57, Ch. 4.4], [30, Section 5.3.3]. The constant C depends on the
chosen stencil. For a three-point stencil, C = 1, for a five-point stencil, C = 2.
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3.2 The Numerical Flux

These conditions motivate the necessary properties 3.2 of a numerical flux of a DG method
(see section 3.2), which are needed to fulfill the assumptions of an important convergence
result for the scalar case, the so-called Lax-Wendroff Theorem.

Theorem 3.4 (Lax-Wendroff Theorem).
Let (∆ti)i and (∆xi)i be a sequence of grids with ∆ti,∆xi → 0 as i→∞. Let u(i)

h be the
approximate solution on grid number i, generated by a consistent and conservative method.
Furthermore,

(i) u
(i)
h is uniformly bounded, i.e. supi ||u

(i)
h ||L∞(R×R+) ≤ C1,

(ii) u
(i)
h converges in L∞loc(R× R+) and almost everywhere to a function u.

Then u is a weak solution of the conservation law. 3.8 gives the definition of a weak
solution.

Proof. See e.g. [57, Ch. 12.10, Th. 12.1], [59, Prop. 4.1].

Remark 3.5.

(i) The second prerequisite can be replaced by the condition that u is BV bounded. See
e.g. [57], [58].

(ii) A finite volume method with a consistent, monotone flux is first order accurate (see
e.g. [59, Lemma 4.1]).

3.2.2 Examples of Monotone Numerical Fluxes

We collect results from references [12], [67], [59], [11], [57], giving a small selection of work
on the choice of numerical fluxes.

1. Lax-Friedrichs flux.

FLF
n (u−h ,u

+
h ) = 1

2
(
Fn(u−h ) + Fn(u+

h )
)

+ 1
2C(u−h − u+

h ) = {{Fn}}+ 1
2C[[uh]],

where C ≥ is an upper bound on the biggest absolute eigenvalue of the Jacobian
∂Fn
∂u (uh), and

{{Fn}} = 1
2
(
Fn(u−h ) + Fn(u+

h )
)

and [[uh]] = 1
2(u−h − u+

h )

is the mean value and the jump, respectively. For more details on the Lax-Friedrichs
flux, see e.g. [11, Ch. 2.3], [67, Ch. 2.2.2, Ch. 3.3.1], [12, Ch. 2.1, Ch. 3.1].

2. Local Lax-Friedrichs flux.

FLLF
n (u−h ,u

+
h ) = {{Fn}}+ 1

2C[[uh]],

where now C = maxi{|λi(u−h )|, |λi(u+
h )|} is the bigger value of the largest eigenvalue

of the Jacobian ∂Fn
∂u (u−h ) in element K and the largest eigenvalue of ∂Fn

∂u (u+
h ) in the

neighboring element Ωk′ . See e.g. [67, Ch. 3.3.1].
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3 The Runge-Kutta Discontinuous Galerkin Method

3. Upwind schemes.
Let F be linear, Fn(u) = Au, where A is a constant matrix. Let us first assume A
is diagonal. Then we let (Fnum

n )i = Fn(u+)i if Aii > 0 and (Fnum
n )i = Fn(u−)i if

Aii < 0. In general, let T be the matrix that diagonalizes A, i.e. A = TΛT−1. One
then defines

Fnum
n (u−h ,u

+
h ) = A{{uh}}+ 1

2 |A| [[uh]], (3.2.11)

where |A| := T |Λ|T−1, |Λ| = diag(|Λii|).
For instance, if ∇·F(u) = ∂1(A1u) +∂2(A2u), it is Fn(u) = n1A1u +n2A2u =: Au.
In the nonlinear case one would take an appropriate linearization Ā of F′n, and
defines

Fnum
n (u−h ,u

+
h ) = {{Fn}}+ 1

2 |Ā| [[u]].

For instance, if F′n has only real eigenvalues, one can try Ā := {{F′n}}. Another
example would be Roe’s linearization, see e.g. [28] for the original work by Roe, or
[30] and the references therein. For the upwind scheme mentioned here, see [11, Ch.
2.4, 6.6.2].

4. Riemann solver (Godunov flux).
Godunov’s method uses the solution of the Riemann problem to create a numerical
flux. The Godunov flux is known to be a monotone flux which produces convergent
finite volume schemes of order 1, as was shown by Harten et. al. [64], Kuznetsov
[65], Crandall and Majda [66]. See also LeVeque [57].
Imagine the boundary Ωk ∩Ωk′ to be extended to a full plane in Rn−1. On the side
of element Ωk, we assume to have the constant value u−, while on the side of Ωk′

we have the constant value u+. In case of the DG method, recall that we solve the
conservation law locally, and afterwards we need to restore a global solution by using
the numerical flux which transports the information from cell to cell. Therefore, the
value of ukh at the boundary Ωk ∩ Ωk′ (which is u−) can be different from the value
of uk′h at Ωk ∩ Ωk′ (i.e. u+), and the numerical flux needs to connect these different
values, thus depending on u− and u+. One now determines the exact solution of
the so-called Riemann problem, which is defined as

∂tu +∇ · F(u) = 0, (3.2.12)

u(x, t0) =
{

u− for x < x0,

u+ for x > x0.
(3.2.13)

Without loss of generality (due to translational invariance in x-direction) we have
assumed to have initially a jump in x = 0 and t = 0, i.e. x0 = 0, t0 = 0. We denote
the solution of (3.2.12) by ũ(x, t). Later we will see that ũ(x, t) = ũ

(
x
t ; u

−,u+).
The numerical flux is then defined as

Fnum
n (u−h ,u

+
h ) := Fn(ũ(0; u−,u+), (3.2.14)

i.e. one evaluates the Riemann solution at x
t = 0. This flux is called Godunov flux.

It can be shown that in the linear case, i.e. F(u) = Au, Godunov’s flux is the upwind
flux in (3.2.11), see e.g. [30, Ch. 5.4.2], [59, Ch. 2.1]. More about Godunov’s method
can be found in e.g. [59, Ch. 2.1], [57], [30].

In the next section we will give more details about the Godunov flux which needs the
solution of the Riemann problem (3.2.12). We will show how to solve a Riemann problem
and how the solution looks like. We will look at the linear and nonlinear case.
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3.3 The Numerical Flux and the Riemann Problem

3.3 The Numerical Flux and the Riemann Problem
In the last section we have given the Godunov flux (3.2.14), where ũ(xt ; u

−,u+) is the
solution of the Riemann problem (3.2.12). For the DG scheme we choose the numerical
flux in the same manner. As seen in the last section and section 3.2.1, the motivation for
this choice comes from finite volume methods: If we choose piecewise constant polynomials
in the DG scheme with a numerical flux that solves a corresponding Riemann problem we
obtain a finite volume method that is stable and convergent of order 1.
In this section we will show how the Riemann problem can be solved in order to get
the numerical flux for a DG method. We will also answer the question under which
circumstances this solution is unique. We will only collect the facts and results that are
important for our purposes. For all the details see e.g. [57], [30], [58], [59].

3.3.1 The Riemann Problem for Linear Hyperbolic Systems
Let us consider (3.2.12) for ∇ = (∂x, 0, 0) and F(u) = Au, where u ∈ Rn and A ∈ Rn×n,
supplemented with initial data

u(x, 0) =
{

uL for x < 0,
uR for x > 0.

Since the system shall be hyperbolic, we have n eigenvalues λ1 < · · · < λn with n linearly
independent right eigenvectors rk such that Ark = λkrk for k = 1, . . . , n. If we transform
to characteristic variables by letting v = R−1u, where R is the matrix containing the right
eigenvectors rk as columns, then the conservation law decouples, and we need to solve p
advection problems

∂vk
∂t

+ λk
∂vk
∂x

= 0 (3.3.1)

with initial data v0(x) := v(x, 0) = R−1u(x, 0). Note this is possible since the prob-
lem is linear and thus R is constant. The solution can be found using the method of
characteristics (see e.g. [59], [57], [30]) and it is given as

vk(x, t) = v0,k(x− λkt).

Thus, transforming back we obtain

u(x, t) = Rv(x, t) = R(v0,k(x− λkt))nk=1 for k = 1, . . . , n.

Since we have n linearly independent right eigenvectors, we can decompose the solution u
as

u =
n∑
k=1

αkrk,

and the same can be done for uL and uR:

uL =
n∑
k=1

αkLrk, uR =
n∑
k=1

αkRrk.

Thus the kth advection equation (3.3.1) has initial data

v(x, 0) =
{
αkL for x < 0,
αkR for x > 0
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3 The Runge-Kutta Discontinuous Galerkin Method

Figure 3.3: Sketch of the wave composition in x − t−plane of a solution of the Riemann
problem.

and the solution is given as

vk(x, t) =
{
αkL for x− λkt < 0 ⇔ x

t < λk,

αkR for x+ λkt > 0 ⇔ x
t > λk.

As a consequence the solution of the Riemann problem (3.2.12) is found to be self-similar,
that means,

u(x, t) = ũ(x
t

; uL,uR).

It consists of n waves with characteristic speeds λk (k = 1, . . . , n), as shown in figure 3.3.

3.3.2 The Riemann Problem for Nonlinear Hyperbolic Systems
Again we consider the Riemann problem (3.2.12), but now F(u) shall be nonlinear in
u. Locally, the wave composition looks like in the linear case; yet, the eigenvalues and
eigenvectors now may vary with u, and so globally, a completely different picture can
form, the characteristics being curves not straight lines.
Characteristic fields can be classified into two basic types: There exist genuinely nonlinear
and linearly degenerated characteristic fields.

Definition 3.6.
If the kth characteristic field fulfills

∇λk(u) · rk(u) 6= 0 ∀u ∈ Rn, (3.3.2)

it is called genuinely nonlinear. If

∇λk(u) · rk(u) = 0 ∀u ∈ Rn, (3.3.3)

the kth characteristic field is called linearly degenerate.

If a kth characteristic field is genuinely nonlinear, it shall be normalized such that

∇λk(u) · rk(u) = 1. (3.3.4)

For both cases the left eigenvectors lk and right eigenvectors rk shall also be normalized
to

lTk (u)rk(u) = 1. (3.3.5)

Let us illustrate what the solution of a nonlinear Riemann problem may look like by
studying the (inviscid) Burger’s equation.
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Introduction: Burger’s Equation

(Inviscid) Burger’s equation reads

∂tu+ ∂x

(
u2

2

)
= 0.

We choose the initial data

u(x, 0) =
{

1 for x < 0,
0 for x > 0.

We assume to have scalar u, and F (u) = u2/2. The eigenvalue is λ(u) = F ′(u) = u, thus
the characteristics are given by

x(ξ) = u0(ξ)t+ ξ,

where ξ is a parameter. Thus,

x(ξ, t) =
{
ξ + t for ξ < 0,
ξ for ξ > 0.

Figure 3.4 illustrates the situation. We define the line left of the line t = 0 as xL := ξ−+ t
with ξ− ∈ {ξ : ξ < 0}, and analogously the line right of t = 0 as xR := ξ+ + t, where
ξ+ ∈ {ξ : ξ > 0}. We see that the characteristics cross – this is exactly the case if the
lines xL and xR intersect, namely if

−ξ + t = ξ for ξ > 0,

since ξ− = −ξ+. Solving for ξ gives

ξ = 1
2 t (ξ > 0),

i.e. the set of intersection points ξ+ is a half line with origin in zero and slope 1
2 . This line

is called a shock; see figure 3.4 (right) for a visualization. For growing time the solution
steepens more and more, until its slope becomes infinity. This is the point where a shock
forms. In figure 3.5 we see two examples of this steepening effect: once, where the initial
data is given as u(x, 0) = 1 for x < 0 and u(x, 0) = 0 for x > 0; and when the initial data
is a hat function.
The speed of such a shock is determined by the Rankine-Hugoniot jump condition, which
is given in the following definition.

Definition 3.7 (Rankine-Hugoniot Jump Condition).
If u is a shock solution of the conservation law ∂tu + ∂xF(u) = 0, then u fulfills the
Rankine-Hugoniot jump condition

F(uR)− F(uL) = s(uR − uL), (3.3.6)

where s ∈ R is the shock speed.

Of course, if the solution u of a conservation law has a discontinuity, it cannot be a classical
solution. Therefore, we need to take weak solutions into account.
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Figure 3.4: Left: Characteristics for initial data u(x, 0) = 1 for x < 0, u(x, 0) = 0 for
x > 0. The lines cross for x = 1

2 t, and a shock forms (red line on the right).

Figure 3.5: Examples of the formation of a shock for Burger’s equation, where the initial
data has a jump (left) and is a hat function (right). The codes for generating
the plots were provided by Willy Dörfler.

Definition 3.8 (Weak Solution).
Let Ω ⊂ Rn be open. Consider the conservation law ∂tu + ∂xF(u) = 0 with initial data
u0 ∈ L∞loc(Rm)n. u ∈ L∞loc(Rm × R)n is called a weak solution of the conservation law if
and only if it fulfills∫

R

∫
Rm

u · ∂ψ
∂t

+
m∑
j=1

Fj(u) · ∂ψ
∂xj

dx dt+
∫
Rm

u0(x) ·ψ(x, 0) dx = 0 (3.3.7)

for all test functions ψ ∈ C1
0 (Rm × R)n with compact support.

If we talk about weak solutions we have also to think about uniqueness of solutions. And
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indeed, there can be several weak solutions of a Riemann problem. Consider for instance
Burger’s equation with the following initial data:

∂tu+ ∂x

(
u2

2

)
= 0, (3.3.8)

u(x, 0) =
{

0 for x < 0,
1 for x > 0,

(3.3.9)

i.e. uL = 0 < uR = 1. In this case the characteristics do not intersect, see figure 3.6. We
cannot determine a solution via the method of characteristics in the region
uLt = 0 ≤ x ≤ t = uRt.

Figure 3.6: Characteristics for Burger’s equation for initial data u0(x, 0) = 0 for x < 0 and
u0(x, 0) = 1 for x > 0.

In this situation, there are several solutions. In fact, for uL 6= uR there is an entire family
of solutions, see [59, Ch. 2.3]. In our case, the function

u(x, t) =
{

0 for x < 1
2 t,

1 for x > 1
2 t

with the shock speed
s = F (uL)− F (uR)

uL − uR
= 0− 1/2

0− 1 = 1
2 ,

where we used the Rankine-Hugoniot jump condition (3.3.6), is a weak solution of (3.3.8).
But there is also another solution, namely

u(x, t) =


0 for x

t ≤ 0 = uL,
x
t for uL = 0 ≤ x

t ≤ 1 = uR,

1 for x
t ≥ 1 = uR,

which is a continuous solution of (3.3.8). This is due to the fact that any function v(x, t) =
x
t for t > 0 is a solution of Burger’s equation, since it holds:

∂tv + ∂x
v2

2 = −x
t2

+ x

t
· 1
t

= 0.

A function of the form u(x, t) = v(xt ) is called self-similar. The solution u(x, t) = x
t in the

region F ′(uL) = uL = 0 ≤ x
t ≤ 1 = uR = F ′(uR) is called a rarefaction fan; its so-called

head is given by x
t = F ′(uL) = uL, and its tail by x

t = F ′(uR) = uR. Inside the rarefaction
fan, the solution u is continuous, that is, we have a continuous transition form left to right.
See figure 3.7 for a sketch of this situation.
So we see there are at least two solutions of Burger’s equation with initial data u0(x, 0) = 0
for x < 0 and u0(x, 0) = 1 for x > 0. In applications, as in e.g. physics, a solution has
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3 The Runge-Kutta Discontinuous Galerkin Method

Figure 3.7: Top: A rarefaction fan for Burger’s equation in x − t-plane with initial data
u0(x, 0) = 0 for x < 0 and u0(x, 0) = 1 for x > 0. Bottom: Corresponding
solution u(x, 1) at the chosen time t = 1. Between x = 0 and x = 1, u(x, 1) is
continuous.

to be unique. So the question is if there is some criterion to ensure uniqueness and with
which to choose the physically relevant solutions. This leads to so-called entropy solutions
that fulfill some kind of entropy condition, see section 3.3.2 of this work. For details and
corresponding theory we refer to e.g. [59], [57], [58]. One can show in the scalar case
that, if u0 ∈ L1(Rm) ∩ L∞(Rm), then the conservation law has a unique entropy solution
u ∈ L∞(Rm × (0, T )); see e.g. [59, Ch. 3.3] for a proof.

In the following sections we take a closer look at the first notions we have encountered for
Burger’s equation: shocks, rarefaction waves and entropy condition, amongst others. The
references we use are [59], [57], [58].

Rarefaction Waves

We are looking for piecewise smooth solutions of the Riemann problem

∂tu + ∂xF(u) = 0, (3.3.10)

u(x, 0) =
{

uL for x < 0,
uR for x > 0.

(3.3.11)

In the last section 3.3.1 we have seen that in the linear case, the solution u is self-similar.
Thus, for the nonlinear case, we make the solution ansatz

u(x, t) = w
(
x

t

)
, (3.3.12)

where we assume that w is smooth. That means we make a classical ansatz. Therefore it
holds

∂xF(u) = ∂F(u)
∂u ∂xu =: A(u)∂xu.

Note that for discontinuous solutions we need to work in the weak sense, and in this case
this equivalence does not hold, as can be seen via studying Burger’s equation, which is one
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of the simplest nonlinear equations. See e.g. the book by LeVeque [57, Ch. 11] for more
details.
If we plug the ansatz (3.3.12) into the conservation law (in the classical sense)

∂tu +A(u)∂xu = 0,

then we obtain

∂tu = − x
t2

v′
(
x

t

)
,

∂xu = 1
t
v′
(
x

t

)
,

and by letting ξ := x
t , we thus have

− ξv′(ξ) +A(v(ξ))v′(ξ) = 0 ⇐⇒ (A(v(ξ))− ξ Id)v′(ξ) = 0.

Hence, either v′(ξ) is the 0-vector, or it is an eigenvector of A(v(ξ)) with eigenvalue ξ, i.e.
there exists an index k ∈ {1, . . . , n} such that

v′(ξ) = α(ξ)rk(v(ξ)), λk(v(ξ)) = ξ. (3.3.13)

Differentiating λk(v(ξ)) with respect to ξ gives

∇λk(v(ξ)) · v′(ξ) = 1,

and inserting the first equation of (3.3.13), we obtain:

α(ξ)∇λk(v(ξ)) · rk(v(ξ)) = 1,

which can only be true if the kth characteristic field is genuinely nonlinear, see equation
(3.3.2). If we assume the normalization (3.3.4), then α(ξ) = 1. So we either have v′(ξ) = 0
or v′(ξ) = rk(v(ξ)) with eigenvalue λk(v(ξ)) = ξ. A function with these properties is called
an integral curve.

Definition 3.9 (Integral curve of a hyperbolic equation).
Let ũ : I → Rn, ξ 7→ ũ(ξ), where I ⊂ R, be a smooth curve in state space. Let ri be a
vector field. ũ is called an integral curve of ri :⇔ in every point ũ(ξ) the tangential vector
ũ′(ξ) is an eigenvector of the Jacobi matrix ∂F/∂u(ũ(ξ)) with eigenvalue λi(ũ(ξ)).

Thus, having a certain set of eigenvectors ri(u), the curve ũ(ξ) is an integral curve only
if its tangential vector is a multiple of the eigenvector ri(ũ(ξ)), i.e.

ũ′(ξ) = α(ξ)ri(ũ(ξ)). (3.3.14)

That is, ũ′(ξ) always has the same direction as ri(ũ(ξ)). We see that the function v is
an integral curve of the vector field rk(v(ξ)), and α(ξ) = 1. Hence, if we assume that the
kth characteristic field rk is genuinely nonlinear, and if we further assume that uL and uR
lie on the same integral curve, i.e. v(λk(uL)) = uL and v(λk(uR)) = uR, where λk shall
increase from uL to uR, then the continuous self-similar solution of the Riemann problem
(3.3.10) with the ansatz (3.3.12) looks as follows:

u(x, t) =


uL for x

t ≤ λk(uL),
v(xt ) for λk(uL) ≤ x

t ≤ λk(uR),
uR for x

t ≥ λk(uL).
(3.3.15)

This solution is called a k-rarefaction wave, and it connects the states uL and uR in a
continuous manner. This definition also holds in the weak sense.
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Definition 3.10.
A self-similar weak solution of the form (3.3.15) is called a k-rarefaction wave.

The following theorem summarizes the results found up until now.

Theorem 3.11.

(i) If the kth characteristic field is genuinely nonlinear, then a given state uL can be
connected to a right state uR by a k-rarefaction wave.

(ii) The characteristic curves of a k-rarefaction wave are straight lines along which the
solution u is constant.

Proof. See [59, Ch. 3.1, Th. 3.1 and Ch. 5, Th. 5.1].

Figure 3.8 shall illustrate a rarefaction wave.

Figure 3.8: Sketch of a rarefaction fan in x−t-plane. If λk(uR,L) is positive, xt = λk(uL) is
the head of the rarefaction and x

t = λk(uR) is the tail. If λk(uR,L) is negative,
it is the other way around.

Riemann Invariants

Rarefaction waves are a special type of elementary waves associated with a certain char-
acteristic family. Riemann invariants are another type of elementary waves.

Definition 3.12 (Riemann Invariant).
A smooth function h = h(u) is called a k-Riemann invariant if it fulfills

∇uh(u) · rk(u) = 0. (3.3.16)

That is, if h(u) is a k-Riemann invariant, it is constant along any curve v : R→ Rn ⇔

d

dξ
h(v(ξ)) = 0. (3.3.17)

Note that
d

dξ
h(v(ξ)) = ∇vh(v(ξ)) · v′(ξ) = 0.

This holds if v is an integral curve, i.e. if v′(ξ) = rk(v(ξ)). So a k-Riemann invariant is
constant along integral curves. Also recall the definition of linearly degenerated charac-
teristic fields (3.3.3). We see that if the k-characteristic field is linearly degenerate, then
λk is a k-Riemann invariant. Locally there exist p− 1 Riemann invariants corresponding
to λk. Furthermore, all k-Riemann invariants are constant on a k-rarefaction wave. The
proofs can be found in [59, Ch. 3.2].
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Definition 3.13.
Let Ω ⊂ R2 and let u : R × R → Rn be a smooth solution of the conservation law
∂tu + ∂xF(u) = 0 on Ω. We call u a k-simple wave if h(u) is constant in Ω for any
k-Riemann invariant h.

Theorem 3.14.
If u is a k-simple wave, the characteristics of the kth field are straight lines, and u is
constant along those characteristics.

Proof. See [59], Theorem 3.3 in Ch. 3.2.

Remark 3.15.

(i) The simple waves of a genuinely nonlinear field are (centered) rarefaction waves.
Their characteristics form a so-called rarefaction fan which is bounded by the head x

t =
λk(uL) and the tail x

t = λk(uR) (if λk(uR,L) is positive; if it is negative, it is the other
way around). See figure 3.8.

(ii) Recall that if the k-characteristic field is linearly degenerate, then λk is a k-Riemann
invariant, and thus, λk is constant on any k-simple wave u. That means, λk(u) =
λk(u∗) =: λ∗k for an arbitrary point u∗ = u(x∗, t∗). Specifically, λ∗k = λk(uL) = λk(uR).
The characteristics are now parallel lines x−λ∗kt, and u = u(x−λ∗kt). (For more details,
see e.g. [59, Ex. 3.5].) Thus, the two states uL and uR cannot be connected by a contin-
uous k-wave. The connecting wave is discontinuous. This issue will be addressed in the
next section.

Now choose h(u) = wi(u) to be the i-th Riemann invariant. Then using (3.3.17) we obtain

∇uwi(u(ξ)) · u′(ξ) = 0.

Using (3.3.14) and α(ξ) = 1 (due to normalization) we see

∇uwi(u(ξ)) · vi(u(ξ)) = 0

for all u(ξ) with varying ξ. From this follows

∇uwi · vi = 0. (3.3.18)

Thus a Riemann invariant is a function that is orthogonal to the eigenvector vi in every
point u. One can use (3.3.14) and (3.3.18) to determine the p− 1 Riemann invariants of
a hyperbolic system. (3.3.14) is a system of ordinary differential equations,

du
dξ

= vi(u(ξ)),

with α(ξ) = 1, u =: (u1, . . . , un)T and vi := (v(1)
i , . . . , v

(n)
i )T . This gives after integration

the Riemann invariants

Ri(u) =
∫

Ω
du−

∫
I
vi(u(ξ)) dξ ≡ const . (3.3.19)

Evaluating Ri(u) at any point u∗ gives the constant. These Riemann invariants fulfill

∇uRi · vi = 0. (3.3.20)
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Here, by the product “·” the following is meant: If ∇uRi is the Jacobian of the vector Ri,
i.e.

∇uRi =


∂Ri,1
∂w1

· · · ∂Ri,1
∂wn

...
...

∂Ri,n
∂w1

· · · ∂Ri,m
∂wn

 , (3.3.21)

then “·” denotes the matrix-vector product, i.e.

∇uRi · vi = 0, 0 ∈ Rn.

That is, the product of a row of the Jacobian,
(
∂Ri,j
∂w1

, . . . ,
∂Ri,j
∂wn

)
(j = 1, . . . , n), which is a

vector in R1×n, with the eigenvector vi ∈ Rn has to be 0. Since the vector spaces Rn and
R1×n are isomorphic, one could interpret this also as the standard scalar product between
a row of ∇uRi and the eigenvector vi, that is(

∂Ri,j
∂w1

, . . . ,
∂Ri,j
∂wn

)T
· vi = 0.

Shocks and Contact Discontinuities

In remark 3.15 we have mentioned the possibility of having discontinuous simple waves
connecting a left and a right state. We will see that we have basically two discontinuous
simple waves: a shock and a contact discontinuity.

Definition 3.16.
A function

u(x, t) =
{

uL for x < st,

uR for x > st,
(3.3.22)

where s ∈ R is the shock speed (see (3.3.6)), fulfilling the Rankine-Hugoniot jump condition

F(uR)− F(uL) = s(uR − uL), (3.3.23)

is a weak solution of the conservation law ∂tu + ∂xF(u) = 0. It is called a discontinuity
wave. The shock speed s is the speed of propagation of this discontinuity.

As in the case of rarefaction waves, we are interested in knowing how two states uL and uR
can be connected by a discontinuous waves. This is answered in the following definitions
and results, taken from [59] and [57].

Definition 3.17 (Hugoniot Locus).
Let u ∈ Rn. The set

HL := {u : s(u∗,u)(u− u∗) = Fn(u)− Fn(u∗)}, (3.3.24)

where s(u∗,u) ∈ R is the shock speed from definition 3.3.22 in dependence of u∗ and u,
is called Hugoniot Locus. A Hugoniot Locus gives the set of all points u∗ that can be
connected to an arbitrary point u by a discontinuity.

Example 3.18 (Hugoniot Locus for a two-dimensional system).
We consider the linear hyperbolic conservation law

∂tu + ∂xF(u) = 0,

u0 =
{

uL, x < 0,
uR, x > 0

36



3.3 The Numerical Flux and the Riemann Problem

with u = (u1, u2)T and F(u) = Au, where A ∈ R2,2. Let λ1 and λ2 be the eigenvalues of
A with corresponding eigenvectors v1, v2. We can thus decompose uL and uR as

uL = a1v1 + a2v2,

uR = b1v1 + b2v2

with some constants ai, bi. For linear problems, the Hugoniot Locus is a family of straight
lines with the direction of v1 (in red) and of v2 (in green) as illustrated in figure 3.9. uL
is the intersection of a line a1v1 for a certain choice of a1 (thick red lines) and of a line
a2v2 for a certain value of a2 (thick green lines); the same holds for uR for special choices
of b1, b2. The Hugoniot Locus contains all values of u∗ = uL so that the right region uR
can be reached by a discontinuity; or equivalently, it consists of all u∗ = uR so that uR
and uL are connected by a discontinuity. Thus the question is how to reach the point uR
by a shock, starting in uL and going via uM .

Figure 3.9: A family of straight lines with the direction of v1 (red) and of v2 (green). uL
is the intersection of a line a1v1 for a certain choice of a1 (thick red lines)
and of a line a2v2 for a certain value of a2 (thick green lines); likewise uR is
the intersection point of the lines b1v1 and b2v2 for certain choices of b1, b2.
Bottom: uM is the state vector in the region between uL and uR.

In section 5.2.1 we will determine the Hugoniot Loci for Kerr-nonlinear Maxwell’s equa-
tions. For other examples corresponding to other differential equations, see e.g. the book
by LeVeque [57]. The next theorem gives more information about the structure of a
Hugoniot Locus.
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Theorem 3.19 (Shock Curves).
The Hugoniot Locus HL consists locally of n smooth curves Lk(u∗), k = 1, . . . , n. Fur-
thermore, if the kth characteristic field is genuinely nonlinear, the curve Lk(u∗) is called
a shock curve.

Proof. See [59].

Definition 3.20 (Shock Wave).
Let u∗ = uL, and suppose Lk(uL) is a shock curve. That is, the k-th characteristic field
is genuinely nonlinear. Then, if uR is a point on Lk(uL), the discontinuity in definition
3.3.22 is called a k-shock wave or only a shock. The same holds if u∗ = uR and uL is a
point on Lk(uR).

We will see later, when we come to the uniqueness of solutions of the Riemann problem in
section 3.3.2, that one differentiates between an admissible and a non-admissible shock.
If the kth characteristic field is linearly degenerate, we have the following:

Theorem 3.21 (Contact Discontinuity).
For a linearly degenerate characteristic field, the curve Lk(u∗) is an integral curve of the
vector field rk, and it holds:

s(u∗,u) = λk(u∗).

In this case, letting uL on Lk(uR) (or, equivalently, uR on Lk(uL)) the speed of shock is
s = λ∗k = λk(uL) = λk(uR). Then, the weak solution

u(x, t) =
{

uL for x < λ∗t,

uR for x > λ∗t
(3.3.25)

is called a contact discontinuity.

Proof. See [59].

Uniqueness of Solutions of the Riemann Problem: The Entropy Condition

In section 3.3.2 we have seen that Burger’s equation has infinitely many solutions. In
classical physics, this makes no sense; there exists a unique solution. Physically and
mathematically the question after uniqueness is of high interest. In case of conservation
laws, the so-called entropy condition and sometimes a supplementary condition on the
shock speed ensure uniqueness.
Physically, entropy can roughly be understood as the total energy of a system, that is,
it is the difference between the energy in the system and the energy running out of it:
energyin−energyout. Entropy is a positive value, i.e. it is impossible that more energy leaves
the system than is in the system itself. Thus entropy gives a physical condition, which of
all the solutions of the Riemann problem that have been found are the physically relevant
ones. The authors of [68] show that the entropy condition is enough to determine the
shocks and that the corresponding shock speed never exceeds the speed of light in vacuum.
Mathematically, there are several conditions on the shock speed available, such as the Lax
entropy condition, Oleinik’s condition, or the condition by Smoller and Johnson [69] for
two dimensional systems. Other conditions are also possible; their choice is motivated
by the physical problem at hand. E.g. Seccia [70] chooses the entropy condition η > 0
along with a reflection and transmission criterion to identify physically relevant shocks of
the Riemann problem corresponding to Kerr-nonlinear Maxwell’s equations. For the same
problem, LaBourdonnaye [71] as well shows unique solvability, yet he takes the condition
of Smoller-Johnson besides positivity of entropy.
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Definition 3.22 (Lax Entropy Condition).

(i) Let the kth characteristic field be genuinely nonlinear. The Lax entropy condition
[57, Ch. 11.13] reads

λk(uR) < s < λk+1(uR),
λk−1(uL) < s < λk(uL)

(3.3.26)

for a k ∈ {1, . . . , n}, with the convention λ0 := −∞, λn+1 := ∞. s is the speed of
the discontinuity. In this case we have a shock.

(ii) If the kth characteristic field is linearly degenerate, then we have

λk(uL) = s = λk(uR).

Then the discontinuity is a contact discontinuity.

Definition 3.23 (Liu Entropy Condition).
The entropy condition by Liu is given as follows [72], [73], [74]:

s(uL,uR) ≤ s(uL,u) (3.3.27)

for any point u on the shock curve Lk(uL) which lies between uL and uR. Liu’s strict
condition replaces “≤” by “<”. This implies the inequality

λk(uR) < s(uL,uR) < λk(uL). (3.3.28)

For a genuinely nonlinear field Liu’s condition is equivalent to the condition by Lax.

Definition 3.24 (Admissible Shocks).
We say a shock is admissible if it fulfills one of the conditions above. A contact disconti-
nuity is always admissible.

In fact, this definition follows from Theorem 5.2, Ch. 5 in [59]. The following is a
combination of a definition and of results found and proven in [69], [75, Th. 2.1], [76,
Th. 4.5].

Theorem 3.25 (Admissibility Condition of Smoller-Johnson).
Let n = 2. Assume λ1 < λ2. Let L1(u∗) be a shock curve with an arbitrary, but fixed
point u∗ ∈ R2 corresponding to the decreasing eigenvalue λ1, and L2(u∗) to the decreasing
eigenvalue λ2 (this means, u∗ is on the left in the x− t-plane). By L∗i (u∗) we denote the
shock curve corresponding to the increasing eigenvalue λi (i.e. u∗ is on the right in the
x− t-plane). If the following entropy condition for shocks holds,

λk(u) < s(u,u∗) < λk(u∗) for u ∈ Li(u∗), (3.3.29)
λk(u∗) < s(u∗,u) < λk(u) for u ∈ L∗i (u∗), (3.3.30)

then the kth characteristic is a shock wave (k = 1, 2). The (additional) condition of
Smoller-Johnson (L) reads

(L)



for u ∈ L1(u∗) \ {u∗} (i.e. k = 1) : s(u,u∗) < λ2(u∗),
for u ∈ L2(u∗) \ {u∗} (i.e. k = 2) : s(u,u∗) > λ1(u∗),
for u ∈ L∗1(u∗) \ {u∗} : s(u,u∗) < λ2(u∗),
for u ∈ L∗2(u∗) \ {u∗} : s(u,u∗) > λ1(u∗).

(3.3.31)

I.e. a point u ∈ R2 can be connected to u∗ by an admissible shock wave if (L) is fulfilled.

Proof. See [69], [75, Th. 2.1], [76, Th. 4.5].
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Solution of the Riemann Problem

From the above discussions, we now can say how the solution of the Riemann problem

∂tu + ∂xF(u) = 0, (3.3.32)

u(x, 0) =
{

uL for x < 0,
uR for x > 0

(3.3.33)

looks like.

Theorem 3.26.

(i) Let the kth characteristic field (k ∈ 1, . . . , p) be genuinely nonlinear. For all
uL ∈ Rn there exists a neighborhood Uε(uL) of uL so that, if uR ∈ Uε(uL), uL and uR can
be connected either by a k-rarefaction wave or an admissible k-shock. An appropriately
chosen entropy condition decides whether it has to be shock or a rarefaction.

(ii) If the kth characteristic field is linearly degenerate, then uL and uR can be con-
nected by a contact discontinuity.

This weak solution is unique.

The proof of uniqueness can be found in [59], Theorem 6.1 in Ch. 6. Figure 3.10 shows a
sketch of a possible composition of waves solving the Riemann problem.

Remark 3.27.
In case of a non-strict hyperbolic system this result still holds if the eigenvalues form a
complete set. Then each characteristic field is still either genuinely nonlinear or linearly
degenerate, and there is still only one possibility for the corresponding simple wave.

There may be also other special waves solving the Riemann problem, depending on the
problem, see e.g. [59], or [70] as an example of application to nonlinear Maxwell’s equations.
In our applications, when we solve the Riemann problem corresponding to Kerr-nonlinear
Maxwell’s equations, such special waves do not occur.

Figure 3.10: A sketch of a weak solution of the Riemann problem consisting (from left to
right) of a left contact discontinuity, a left shock and a right rarefaction.
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3.4 Convergence Theory for the RKDG Method
Shu and Cockburn showed in 1989 in [77] that a RKDG method of order k + 1 can be
devised by (a) applying a DG method with polynomials of degree k to discretize in space,
(b) using a total variation diminishing (TVD) explicit time discretization of order k + 1,
and (c) in case of problems with discontinuous solutions, by utilizing a so-called slope
limiter to ensure the TVD property. They have shown that using a Runge-Kutta scheme
of order k + 1 results in a TVD stable method without loosing its accuracy.
In this section we first look at the convergence behavior of the space discretization via the
DG method, followed by stability and convergence results for the time integration via the
RK method. Both is needed to show that the RKDG method is of order k + 1, as proven
by Shu and Cockburn [77].

3.4.1 Convergence Theory for the DG Space Discretization

For a one-dimensional scalar hyperbolic conservation law, Johnson and Pitkäranta [15]
showed in 1986 a convergence rate of O(hp+1) for regular triangulations. Here, p is the
polynomial order used in the DG scheme. Richter proved in 1988 [14, Th. 3.1] the follow-
ing result on the convergence rate of a DG scheme applied to a linear scalar hyperbolic
conservation law in two space dimensions of the form

a1∂xu+ a2∂yu = f(x, y), (x, y) ∈ Ω ⊂ R2, (3.4.1)

where a1, a2 are constant.

Theorem 3.28.
If the solution u of (3.4.1) is smooth enough and the triangulation of Ω is uniform, then
it holds

||u− uh||L2(Ω) ≤ Chp+1||u||Hp+2(Ω).

Proof. See [14, Th. 3.1].

In case of Maxwell’s equations, the following optimal L2-convergence was shown:

Theorem 3.29.
We consider the linear, isotropic Maxwell’s curl-equations on convex domains, i.e.

ε∂tE−∇×H = j− σE, (3.4.2)
ε∂tH +∇×E = 0, (3.4.3)

where σ is the conductivity and j the current density. The set of equations (3.4.2) can
be brought into a second-oder vector wave equation for the electric field E or H with
E ∈ H0(curl; Ω) or H ∈ H0(curl; Ω), respectively, where Ω ⊂ R3. We denote by u = E or
u = H the exact solution of this vector valued wave equation and by uh the approximate
solution obtained via a DG space discretization. For smooth u on convex domains (see
[16] for detailed regularity requirements), optimal L2-convergence is obtained, that is

||u− uh||L∞([0,T ];L2(Ω)3) ≤ Chp+1,

where L∞([0, T ];L2(Ω)3) is the so-called Bochner space with the norm

||u||L∞([0,T ];L2(Ω)3) = ess supt∈[0,T ] ||u(t)||L2(Ω)3 ,

and [0, T ] denotes the time interval.
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Proof. See [16, Th. 4.3].

The following theorem gives the error of the DG method for a multi-dimensional scalar
conservation law.

Theorem 3.30.
Let Ω ⊂ Rn. Consider the conservation law

∂tu+ ∂xF(u) = 0 on Ω× (0, T ),
u(x, 0) = u0 for x ∈ Ω,

u = γ on ∂Ω× (0, T ),

with u0 ∈ L∞(Ω) and γ ∈ L∞(∂Ω × (0, T )). Let F(u) ∈ W k+2,∞(Ω) (see definition
2.3). Let Lh be the approximation operator to −∇ · F generated by the DG method,
where the finite element space Vh is chosen to consist of piecewise polynomial functions.
Furthermore, we assume the used quadrature rules are of order 2p+ 1 over the edges and
of order 2p inside each element of a regular triangulation. Then the approximation error
is of order ∆xp+1.

Proof. See Proposition 2.1 in [17].

3.4.2 Convergence Theory for the Runge-Kutta Time Discretization

For time integration we use a Runge-Kutta scheme. In our simulations we chose the
low-storage Runge Kutta method with 5 stages and of 4th order (denoted as (5,4)-RK)
as presented in a paper by Carpenter and Kennedy in 1994 [7], originally introduced by
Williamson in 1980 [6]. Their Runge-Kutta scheme requires only 2N storage and has a
better accuracy and a larger stability domain than the (3,3)-RK method by Williamson.
Yet, theoretical results about stability and convergence of the RKDG method are mostly
formulated with respect to another version by Shu [78]. There exist several RK formula-
tions, of which we mention here a version by Butcher [79, Ch. 23] and a version by Ruuth
and Spiteri [60]. We will point out that all these formulations are connected with each
other, so that theoretical results obtained for the scheme by Shu (3.4.6) also extend to the
low-storage Runge-Kutta scheme (3.4.10) by Carpenter and Kennedy.

Let us consider the time-dependent equation

∂uh(t)
dt = Lh(uh(t)), (3.4.4)

where uh is an approximation in space to the exact solution u, and Lh is a discretization
of some operator; in our case, Lh(uh(t)) denotes the discretized form of ∇ · F(u) in the
conservation law ∂tu+∇·F(u) = 0. Consider also a time grid 0 = t0 < t1 < · · · < tM = T
of a time interval [0, T ]. We denote ∆tl := tl − tl−1 with l = 1, . . . ,M , and let ulh be the
solution approximation in time step l.
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Butcher’s version

Butcher’s version of an explicit Runge-Kutta method with s stages for (3.4.4) reads

for l = 1, . . . ,M :

u(0)
h = ulh,

for i = 1, . . . , s :

u(i)
h := Lh(u(0)

h + ∆tl
i−1∑
j=1

aiju(j)
h )

end

ul+1
h = ulh + ∆tl

s∑
j=1

bku
(j)
h

(3.4.5)

with the convention
∑0
j=1 aiju

(j)
h = 0 so that u(1)

h = Lh(ulh). The u(i)
h are recursively

defined. See e.g. Butcher’s book [79, Ch. 23], [80], [81] for more details on Runge-Kutta
methods.

Version of Shu and Osher

In the framework of the DG method, another formulation of the Runge-Kutta time dis-
cretization was introduced in the paper by Shu in 1988 [78]:

for l = 1, . . . ,M :

u(0)
h = ulh,

for i = 1, . . . , s :

u(i)
h :=

i−1∑
j=0

(
αiju(j)

h + ∆tlβijLh(u(j)
h )
)

end

u(l+1)
h = u(s)

h

end.

(3.4.6)

Yet, in order to have optimal convergence results, their Runge-Kutta method has to be of
order s+ 1.

Ruuth’s and Spiter’s version

Especially for nonlinear problems time integration can be a sensitive part of the numerical
process with respect to stability. Ruuth and Spiteri give in [82] a so-called strong sta-
bility preserving Runge-Kutta method up to order 4 with 5 stages. In [60] they use the
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formulation

for l = 1, . . . ,M :

u(0)
h = ulh,

for i = 1, . . . , s :

u(i)
h := u(0)

h + ∆tl
i−1∑
j=0

κijLh(u(j)
h )

end

u(l+1)
h = u(s)

h

end.

(3.4.7)

They also give a connection between the different Runge-Kutta formulations (see [60,
Section 3.2], which is a relation between the coefficients in the different formulations
(3.4.5), (3.4.6) and (3.4.7). The coefficients βij , αij and κij are recursively related by

κij := βij +
i−1∑

k=j+1
αikκkj . (3.4.8)

And between the coefficients bi, aij and κij we have the relation

bi = κs,i−1, i = 1, . . . , s,
aij = κi−1,j−1, j = 1, . . . , i− 1, i = 1, . . . , s− 1.

(3.4.9)

Williamson’s version

Williamson [6] works with the following form:

for i = 1, . . . , s :

∆u(i)
h = Ai ∆u(i−1)

h + ∆tlLh(u(i−1)
h )

end

ul+1
h = ulh +Bi ∆u(i)

h

(3.4.10)

for l = 1, . . . ,M . The relation between the coefficients Ai, Bi and bi, aij from Butcher’s
scheme (3.4.5) is

Bi = ai+1,i for i 6= s,

Bs = bs,

Ai = bi−1 −Bi−1
bi

for i 6= 1, bi 6= 0,

Ai = ai+1,i−1
Bi

for i 6= 1, bi = 0.

(3.4.11)

Carpenter and Kennedy extended Williamson’s RK scheme to a RK method of order 4
with 5 stages [7].
In the next sections we give an overlook of some of the theoretical results about stability
and convergence of the Runge-Kutta method in the context of DG methods. This field
has been widely explored by several authors. We refer to e.g. [78], [8], [67], [10], [12] (and
the references therein). However, there are still open questions, for instance, concerning
nonlinear multi-dimensional systems of conservation laws.
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3.4.3 Stability of the Runge-Kutta Method for One-Dimensional Scalar
Conservation Laws

We consider a nonlinear scalar conservation law in one space dimension

∂tu+ ∂xF (u) = 0.

In order to ensure stability of the Runge-Kutta scheme (3.4.6), the coefficients αij , βij
have to be chosen appropriately, that is, we are looking for a condition on αij , βij . Let us
first redefine the intermediate states u(i)

h as

w
(j)
h := αiju

(j)
h + ∆tmβijLh(u(j)

h ), j = 0, . . . , i− 1,

u
(i)
h =

i−1∑
j=0

w
(j)
h .

The w(j)
h can be rewritten as

w
(j)
h = vj + δLh(vj)

with vj =: αiju(j)
h and δ := ∆tl βijαij , where αij = 0 only if βij = 0; in this case, we set

δ = 0. This is a single forward Euler step. Let us now define what is meant by stability.

Theorem 3.31 (Stability Property).
We say the RK method (3.4.6) has the stability property if and only if

|ul+1
h | ≤ |u

l
h| for all l = 1, . . . ,M.

Theorem 3.32 (Stability of the RK Method).
Assume the w(j)

h fulfill the local stability property |w(j)
h | < |vj | with |δ| ≤ δ0, where δ0 :=

max1≤l≤M{∆tl βijαij } with the additional conditions

(i) If βij 6= 0, then αij 6= 0,
(ii) αij ≥ 0,

(iii)
i−1∑
j=0

αij = 1, i = 1, . . . , s.
(3.4.12)

That is, αij = 0 only if βij, and in this case, it is δ0 = 0. Then Runge-Kutta method
(3.4.6) has the stability property of definition 3.31, and

|ulh| ≤ |u0
h| for all m ≥ 0,

where u0
h = PVhu0 is the projection of the initial data u0 = u(·, 0) on the finite element

space Vh.

Proof. See [12, Ch. 2.2] and [67, Ch. 2.3.2].

In order to ensure L2-stability, the CFL condition needs to be fulfilled, which reads

max
k
|λk|

∆x
∆t ≤ CFL,

where λk is an eigenvalue of the Jacobian of F. This condition must also be kept in the
nonlinear case; see [12].
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Stability of the Intermediate Step

Theorem 3.32 says that the RK scheme is stable if the intermediate step
u

(i)
h 7→ w

(i)
h = vj + δLh(vj) is locally stable. In order to show the stability of the interme-

diate step, we introduce the total variation diminishing (TVD) property.

Definition 3.33 (Total Variation Diminishing (TVD)).
Let uh be the global approximate solution in Ω of u in ∂tu+∂xF (u) = 0, consisting of local
approximate solutions uj on Ωj, where Ω = ∪Kj=1Ωj, K > 0. We assume that Ωj+1 is the
right neighbor of Ωj. The total variation of uh is defined as

|uh|TV :=
K∑
j=1
|uj+1 − uj |.

Let ulh be the approximate solution in space at time step tm. Then a time stepping method
has the TVD property if and only if

|ul+1
h |TV ≤ |ulh|TV

for all l ≥ 1.

For the piecewise constant case, i.e. p = 0, Harten showed in [83] that a monotone scheme
is TVD. Furthermore, in this case monotone schemes were shown to be stable, convergent
and first order accurate, see the works by Harten et. al. [64], Kuznetsov [65], Crandall
and Majda [66]. The general case, i.e. p > 0, is more complex. In this case one studies
the total variation in the local means (TVDM). A time-stepping method has the TVDM
property if

|ūl+1
h |TV ≤ |ūlh|TV,

where ūlh is the local means of ulh on Ωj at time step tl, defined as

ūlj := 1
vol(Ωj)

∫
Ωj
ulh(x) dx.

Theorem 3.34.
If the Runge-Kutta method is TVD or TVDM, then the intermediate step is locally stable,
giving a stable time-stepping scheme.

Proof. See [67, Ch. 2.4.2].

The requirement of having the TVDM property leads to so-called sign conditions (see e.g.
[67], [12]). In order to have an RK method with the TVDM property, these sign conditions
must be fulfilled, which is not automatically the case. This can be ensured by a so-called
slope limiter ΛΠh. Shu and Cockburn [12] devised a generalized slope limiter such that
the intermediate step u(i)

h 7→ w
(i)
h is TVDM stable, or at least TVBM stable (i.e. the total

variation is bounded in the means). See also [67, Ch. 2.4.2], [11, Ch. 5.6.2]. Furthermore,
we have the following theorem on convergence of the approximation.

Theorem 3.35 (Convergence to the Entropy Solution).
Assume that the generalized slope limiter ΛΠh is a TVDM or a TVBM slope limiter.
Assume also that all the coefficients αij in the RK discretization are nonnegative and
satisfy the condition

i−1∑
j=1

αij = 1, i = 1, . . . , k + 1.
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Then there is a subsequence {ūh′}h′>0 of the sequence {ūh}h>0 generated by the RKDG
scheme that converges in L∞((0, T );L1(Ω)) to a weak solution of the conservation law
∂tu + ∂xF (u) = 0 on Ω × [0, T ] with initial data u(x, 0) = u0(x). If the generalized slope
limiter ΛΠh is such that

||v̄h − ΛΠh(vh)||L1(Ω) ≤ C∆x|v̄h|TV (Ω),

then the results hold also for the sequence of the functions {uh}h>0.

Proof. This is Theorem 2.13 in [67, Ch. 2.4.4], and the proof can be found there.

Note that this is a general result for the scalar case, and it is also a true statement for a
nonlinear conservation law.

Integrating a slope limiter into the RKDG process is easily done. One either applies
the limiter in each RK stage (to ensure TVDM/TVBM stability) or after each time step,
as required. A general procedure might look as follows (see [67], [12]):

(1) Compute u0
h = ΛΠhPVhu0, where PVhu0 is the projection of the initial data u0 on

Vh.

(2) Compute ul+1
h of the next time step (l = 0, . . . ,M):

(2a) Set u(0)
h = ulh.

(2b) for j = 1, . . . , k + 1 compute the limited intermediate steps

u
(j)
h = ΛΠh

j−1∑
i=0

αjiu
(i)
h + βji∆tmLh(u(i)

h )

 .
(2c) ul+1

h = u
(k+1)
h .

The authors in [11] give Matlab codes of a selection of slope limiters. There, also numerical
tests on the performance can be found.

We mention another possibility of slope limiting, the so-called weighted essentially non-
oscillatory (WENO) limiter which is an extension of the essentially non-oscillating (ENO)
method. For theory and practical aspects we refer to [84], to the chapter “High Order
ENO and WENO Schemes for Computational Fluid Dynamics” by C.-W. Shu in [85], to
[86], [87], and the references therein. We note that this is only a small selection. In [88] a
very simple way of implementing a WENO limiter is given.

3.4.4 Stability of the Runge-Kutta Method for the Multi-Dimensional System
Case

The TVDM property as defined in section 3.4.3 is only fulfilled in the scalar case for the
intermediate step. For multidimensional systems, Cockburn, Hou and Shu showed in 1990
in [17] that, if the intermediate step fulfills a maximum principle (given in their Lemma
2.3) and if the mesh fulfills a certain uniformity criterion (called B-uniform, see their
definition 2.5), and if this maximum principle is enforced by an appropriate projection
ΛΠh (a slope limiter), then the following can be said about stability and convergence of
the Runge-Kutta method in the multidimensional case:
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Theorem 3.36.
Let the quadrature rule applied in the discretization process be of order (2k + 1) over the
edges and of order 2k over the elements. (k is the degree of the polynomials used in the
DG space discretization.) Then

1. The RKDG method is of order k + 1 in time and space if ∆t = O(h).

2. If a certain CFL condition is fulfilled (the choice of the CFL depends on the trian-
gulation), the approximation generated by the RKDG method fulfills the maximum
principle from Lemma 2.3 in [17].

3. If the BV-norm of ūh is bounded, the approximate solution converges to a weak
solution of the conservation law ∂tu +∇ · F(u) = 0, where u = (u1, . . . , un)T and
x ∈ Ω ⊂ Rn, t ∈ [0, T ].

Proof. This was proven in Theorem 2.10 in [17].

The construction of such a slope limiter can be found in, e.g., [67, Ch. 3.2.2, Ch. 3.3.8]
by Cockburn (the same is found in [12]), although the authors remark that there is no
rigorous proof that this slope limiter indeed ensures stability of the RK method. Yet, their
numerical tests indicate it, and additionally it is easily implemented; therefore it is used
in practice.
The necessity of a B-uniform mesh can be dropped, as Wierse showed in [89] for two-
dimensional scalar conservation laws; in this paper the author presents a slope limiter for
general regular meshes.

Slope Limiting in the One-dimensional System Case

For this section we assume to have u = (u1, . . . , un)T , and we let F = (F1, . . . , Fm),
where Fi = (f1, . . . , fn)T . For a scalar system of conservation laws, it turns out to be
more efficient to transform to characteristic variables, then to apply the slope limiter
componentwise and to transform back (see [67, Ch. 3.3.9]).
Let Āj := ∂F

∂u |u=ūj
be the Jacobian of F, evaluated at the mean value ūj of u on Ωj . The

right eigenvectors of Āj shall be r(l)
j (l = 1, . . . , n), and l(l)j the left ones. They shall be

normalized such that r(l)
j · l

(k)
j = δlk. We define

R̄j := (r(1)
j , . . . , r(m)

j ) ∈ Rn×n.

Due to the normalization of the right and left eigenvectors, it is

R̄−1
j = (l(1)

j , . . . , l(m)
j )T .

(1) Compute R̄j and R̄−1
j .

(2) Transform to the characteristic variables v = R̄−1
j u.

(3) Apply a slope limiter to each component of v.

(4) Transform back via u = R̄jv.
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3.4.5 Convergence of the RKDG Method for the Linear One-dimensional
Scalar Case

Assume F (u) = au, where a = const. In [67, Th. 2.2] the author proves the following
result.

Theorem 3.37.
Assume the initial function u0 is an element of Hk+2(Ω). Define the error function e :=
u− uh. Then it holds

||e(T )||L2(Ω) ≤ C|u0|Hk+2(Ω)(∆x)k+1,

where C depends on k, |a|, and T .

3.4.6 Convergence of the RKDG Method for the Nonlinear One-dimensional
Scalar Case

For piecewise-constant uh, we have the L1-error estimate:

Theorem 3.38.
||u(T )− uh(T )||L1(Ω) ≤ ||u0 − uh(0)||L1(Ω) + C|u0|TV (Ω)

√
T∆x.

Proof. See [67, Th. 2.4].

Unfortunately, there are not yet error estimates for k > 0. However, there is a result in
case the flux F is concave or convex.

Theorem 3.39.
Let F be a strictly convex or concave flux. Then, for any k ≥ 0, if the numerical solution
given by the DG method converges, it converges to the entropy solution.

Proof. See [90] and [67, Th. 2.5].

Thus, assuming to have a convex or concave flux and recalling section 3.4.4, if the RKDG
scheme is devised as required in theorem 3.36 and if the numerical solution converges, it
converges with order k + 1. Especially, if the exact solution is smooth, we can expect
convergence with O(∆xk+1), in the linear and nonlinear case, respectively.
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4
Chapter 4

Application: Rotationally Symmetric
Maxwell’s Equations

Bodies of revolution (BOR) are objects that are rotationally symmetric around a certain
axis. Examples include cylinders of any kind, toroidal resonators which can be used as
sensors or filters in biology, chemistry or physics (to mention only a few areas). They
also range from antennas to tapered fibers as they are used in near-field scanning optical
microscopy below the diffraction limit. In general, the objects of interest in optics are
very small with a size ranging from nm to µm. This complicates numerical simulations:
The objects need to be resolved accurately, resulting in the need of flexible meshes with
many elements of different sizes. This leads to long computation times, especially in three
dimensions. It is therefore desirable to reduce computational costs whenever possible.
In case of BOR, the idea is to use the symmetry to reduce the computational effort. After
introducing cylindrical coordinates, the azimuthal dependence is represented by a Fourier
series. This results in an infinite set of equations with reduced dimension d−1 which have
to be solved. Numerically, a (small) finite number of equations should suffice to express
the azimuthal dependence of the fields sufficiently accurately. Here lies the reduction of
the computational cost.

Figure 4.1: a) A tapered fiber as it is used in optical microscopy [The Awshalom Group
of the University of Santa Barbara]. b) A toroidal resonator as applied in e.g.
biosensing or filtering [Grossmann et al., Appl. Phys. Lett. 96 (2010)].

This chapter is organized as follows: In section 4.1 we derive BOR Maxwell’s equations.
We will see that introducing cylindrical coordinates leads to equations with a singularity.
This problem can be overcome by introducing the weak form. In sections 4.2 and 4.4
we then apply the DG method to discretize BOR Maxwell’s equations in one and two
space dimensions. A main ingredient of any DG scheme is the numerical flux, and we will
derive it for the BOR case. Spatial discretization leads to a semi-discrete scheme with
local matrices that need to be updated element-wise. We will present an efficient way of
computing those matrices by using orthogonal polynomials. In sections 4.3 and 4.5 we
will come to numerical tests and results in one and two space dimensions. As a basic
test system to explore stability and convergence of the scheme we consider a homogeneous
cavity. After that we introduce perfectly matched layers and sources. We will present
results of simulations of a traveling Gaussian pulse through a tapered silicon fiber with
and without a sample made of glass. Most of the results can also be found in the paper
[91].
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4.1 Maxwell’s Equations for Bodies of Revolution in Time
Domain

In the succeeding sections we formulate Maxwell’s equations in bodies of revolution, which
we introduced at the beginning of this chapter. Then we apply the DG method in order
to discretize them in space. We present here results from [91] in more details, considering
also the one-dimensional case in order to introduce the basics of the approach.

Our starting point are Maxwell’s curl-equations in time domain in three dimensions with-
out any sources, that is

∇×E = −µ∂tH,

∇×H = ε∂tE,

where x ∈ R3 is the spatial variable, t ≥ 0 is the time variable, µ is the permeability, ε
the permittivity, E is the electric field, and H is the magnetic field.
We introduce cylindrical coordinates x 7→ (r, ϕ, z) with respect to the standard basis
êr, êϕ, êz so that

∇×E =


1
r∂ϕEz − ∂zEϕ
∂zEr − ∂rEz

1
r (∂r(rEϕ)− ∂ϕEr)

 .
∇×H is transformed in an analogous manner. We thus obtain the Maxwell’s equations
in cylindrical coordinates as

ε∂tEr −
1
r
∂ϕHz + ∂zHϕ = 0,

ε∂tEϕ + ∂rHz − ∂zHr = 0,

ε∂tEz −
1
r

(∂r(rHϕ)− ∂ϕHr) = 0,

µ∂tHr + 1
r
∂ϕEz − ∂zEϕ = 0,

µ∂tHϕ − ∂rEz + ∂zEr = 0,

µ∂tHz + 1
r

(∂r(rEϕ)− ∂ϕEr) = 0.

(4.1.1)

We initially encounter the problem of finding 1
r -terms in the equations, which are singular

at the symmetry axis r = 0. This is a problem introduced by the chosen coordinate
system. The fields are differentiable on the axis of rotation. In the FDTD and FEM
setting several solutions have been suggested that overcome this problem, some of them
are quite elaborate (see e.g. Ref. [92]). Here, we will give another possibility to solve the
singularity problem in the next section.

4.1.1 Weak Form
Here, we will give another possibility to solve the singularity problem, namely by switching
to a weak formulation [40, 39]. To do so, we start with Maxwell’s curl-equations in
coordinate-independent form. To establish the weak form we then multiply by a smooth
test function ψ and integrate over the domain of interestB ⊂ R3. For theory concerning
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4.1 Maxwell’s Equations for Bodies of Revolution in Time Domain

weak formulations see e.g. [40, 39]. We start with Maxwell’s curl-equations (2.0.1) in
coordinate-independent form. To establish the weak form we multiply them by a smooth
test function ψ and integrate over the domain of interest B ⊂ R3. For instance, for
Faraday’s law equation this reads∫

B
ε∂tE · ψ dx =

∫
B
∇×H · ψ dx,

where we assume H,E are smooth enough so that all derivatives are defined (see Ref.
[40] for related theory). Now we introduce cylindrical coordinates with the corresponding
transformation mapping Π : D → B, and get the weak equations as∫

D
ε∂tE ·Ψ r d(r, ϕ, z)

= −
∫
D


−1
r∂ϕHz + ∂zHϕ

∂rHz − ∂zHr

−1
r (∂r(rHϕ)− ∂ϕHr)

 ·Ψ r d(r, ϕ, z).
(4.1.2)

The equation for the H-field is brought into the weak form in an analogous manner. Here,
det(JΠ) = r, where JΠ is the corresponding Jacobian of the mapping Π. We realize the
singularity in r = 0 drops out this way, in contrast to the set of equations (4.1.1). When
we say we solve equation (4.1.1) in the weak sense we mean the set of equations (4.1.2)
with respect to the measure r d(r, ϕ, z). We will proceed with the weak form and later use
a Galerkin ansatz for the discretization of Ω := {(r, z) : (r, ϕ, z) ∈ D}.

4.1.2 Fourier Series Ansatz
Due to the periodicity in ϕ-direction in rotational symmetries (as BOR), we can make a
Fourier ansatz for the ϕ-variable of the fields as

E(r, t) =
∞∑
m=0

eimϕ E(m)(r, z, t),

H(r, t) =
∞∑
m=0

eimϕ H(m)(r, z, t).
(4.1.3)

If we plug this ansatz into the equations (4.1.2), the ϕ-derivative obviously drops out, and
we get an infinite set of equations in the weak sense as

BOR Maxwell’s Equations

ε ∂tE
(m)
r − im

r
H(m)
z + ∂zH

(m)
ϕ = 0,

ε ∂tE
(m)
ϕ + ∂rH

(m)
z − ∂zH(m)

r = 0,

ε ∂tE
(m)
z − 1

r
H(m)
ϕ − r∂rH(m)

ϕ + im
r
H(m)
r = 0,

µ ∂tH
(m)
r + im

r
E(m)
z − ∂zE(m)

ϕ = 0,

µ ∂tH
(m)
ϕ − ∂rE(m)

z + ∂zE
(m)
r = 0,

µ ∂tH
(m)
z + 1

r
E(m)
ϕ + r∂rE

(m)
ϕ − im

r
E(m)
r = 0.

(4.1.4)
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4 Application: Rotationally Symmetric Maxwell’s Equations

Note that m ∈ N0 is fixed. We see that the set of six three-dimensional equations (4.1.1)
is reduced to an infinite set of decoupled two-dimensional equations (4.1.4). We will call
this set of equations BOR Maxwell’s Equations. Numerically, the infinite series in the
ϕ-ansatz (4.1.3) is approximated by a finite series, choosing m appropriately. A thorough
theory about the justification of the ϕ−ansatz, its approximation, and its convergence,
including an error analysis, can be found in Ref. [93]. Physically, the choice of m depends
on the excitation of the system, and it is often sufficient to only solve for a single or very
few values of m. At last, we remark the Fourier series ansatz automatically fulfills periodic
boundary conditions in ϕ.

4.1.3 Boundary Conditions

In order to assure well-posedness, it is required that all electromagnetic fields are contin-
uous on the rotational axis, see [93, Prop. 2.3]. This leads to the following conditions in
r = 0 (see also [94] and [95]):

The limit for r → 0 has to be ϕ-independent and unique. For the Ez-field we thus
require

lim
r→0

Ez(r, ϕ, z, t) = Ez(r = 0, z, t), and Ez(r = 0, z, t) is unique.

Furthermore, it has to hold ∂rEz(r = 0, z, t) = 0. At the rotational axis r = 0, there are
three different cases:

(i) For m = 0 : E(0) is polarized in z-direction, and E
(0)
ϕ (r = 0, z) = 0.

(ii) For m = 1 : E(1)
k (r = 0, z) (for k = r, z) is purely radial, that means,

E(1)
r (r = 0, z) = E(1)

ϕ (r = 0, z) for all z and E(1)
z (r = 0, z) = 0.

(iii) For m > 1 : all fields are 0 in r = 0.

These boundary conditions are included in the weak formulation of BOR Maxwell’s equa-
tions (4.1.4); for theory, see e.g. [93].

4.1.4 BOR Maxwell’s Equations as a Conservation Law

In order to apply a discontinuous Galerkin discretization, we rewrite BOR Maxwell’s
equations (4.1.4) as a system of conservation laws as

Q∂tu +∇ · F(u) = 1
r
Bu (4.1.5)

with the state vector u = (E(m),H(m))T ∈ R6, and m ∈ N0 is fixed; note that u depends
on r = (r, z) and t. Also, ∇ = (∂r, ∂z)T . Q denotes the material matrix and it is given as

Q :=

ε 0

0 µ

 .
B is a 6× 6-matrix with non-zero entries

B1,6 = im, B3,4 = −im, B3,5 = 1,
B4,3 = −im, B6,1 = im, B6,2 = −1.
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F(u) ∈ R6,2 is the so-called flux vector, and it is given by

F(u) := (Aru, Azu),

where the 6× 6-matrices Ar and Az only have the following non-zero entries:

(Ar)2,6 = 1, (Ar)3,5 = −1, (Ar)5,3 = −1, (Ar)6,2 = 1;
(Az)1,5 = 1, (Az)2,4 = −1, (Az)4,2 = −1, (Az)5,1 = 1.

If the material tensors ε and µ are symmetric, then so are the matrices Q,Ar and Az.
Therefore, (4.1.5) represents a hyperbolic system; recall the basic notions about hyperbolic
equations in section 2.6.1 of this thesis. Also, we give [58, Ch. 5] as an additional reference.
In the special case of isotropic media, i.e., ε = diag(ε, ε, ε) and µ = diag(µ, µ, µ), we can
calculate the eigenvalues explicitly and find them to be λ1 = 0 (with double multiplicity)
and λ2,3 = ± 1√

εµ (each with double multiplicity), identical to the Cartesian case.

4.2 The Runge-Kutta Discontinuous Galerkin Method Applied
to 2D-1D-BOR Maxwell’s Equations

In this section we apply the Runge-Kutta Discontinuous Galerkin (RKDG) method to
BOR Maxwell’s equations in two space dimensions. Our aim is to illustrate the RKDG
process, especially also in view of practice. We start by reducing a problem in two space
dimensions with space variables (r, ϕ) to a problem in one space dimension by applying
the ϕ-ansatz (4.1.3) and call the resulting set of equations 1D-BOR Maxwell’s equations.
Then, the electromagnetic fields are solely dependent on r. The system will be discretized
in space with the DG method and integrated in time with a low-storage (4,5)-Runge-Kutta
method, as were introduced in sections 3.1 and 3.4.2.
As a physical motivation for a two-dimensional problem we consider an infinite waveguide
in three space dimensions, as illustrated in figure 4.2.

Figure 4.2: An infinite waveguide in three dimensions. The electromagnetic fields are
invariant in z−direction, and thus the dimension is reduced to two. After the
ϕ-ansatz the computational dimension is one instead of two.

In this case the electromagnetic fields are invariant in z-direction, that is, it is E(r, z1, t) =
E(r, z2, t) for all z1, z2 on the z-axis. Thus, in (4.1.4) all z-dependencies and all z-
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4 Application: Rotationally Symmetric Maxwell’s Equations

derivatives drop out, and we get 1D-BOR Maxwell’s equations as

ε ∂tEr −
im
r
Hz = 0,

ε ∂tEϕ + ∂rHz = 0,

ε ∂tEz −
1
r
Hϕ − ∂rHϕ + im

r
Hr = 0,

µ ∂tHr + im
r
Ez = 0,

µ ∂tHϕ − ∂rEz = 0,

µ ∂tHz + 1
r
Eϕ + ∂rEϕ − imEr = 0.

(4.2.1)

For clarity we have dropped the superscript (m) of the electromagnetic fields, which we
will maintain in the following sections.
The following steps need to be taken if we want to apply the RKDG method to the set of
equations (4.2.1):

1. We discretize in space by applying the DG method.
a) Discretize the space with a discontinuous Galerkin ansatz and choose an ap-

propriate finite element space.
b) Choose a numerical flux so that the resulting DG method is consistent and

stable. In our case, this will be an upwind flux.
c) The basis of the finite element space must be chosen such that the matrices in

the resulting semi-discrete scheme are well conditioned.

2. Integrate the semi-discrete scheme in time by using a low-storage Runge-Kutta
method (see section 3.4.2).

4.2.1 DG Space Discretization
We apply the DG method to discretize (4.2.1) in space. We thus consider u = (E,H)T ∈
R6, where u depends on (r, t) with r ∈ Ω ⊂ R and t ≥ 0. As discussed in section 3.1,
we divide the interval Ω in K elements; this renders subintervals Ωk := [rkL, rkR] so that
Ω =

⋃K
k=1 Ωk. We define the finite element space of discontinuous functions

Vh := {uh ∈ L∞(Ω)6 : uh|Ωk ∈ V (Ωk), k = 1, . . . ,K}.

V (Ωk) is called the local approximation space, and we choose V (Ωk) = Pp with p ∈ N to
be the space of one-dimensional polynomials of degree at most p. We approximate u by
uh ∈ Vh, and we use Lagrange interpolation to represent uh|Ωk . This gives the so-called
nodal representation of the fields (see [11]) as

uh(r, t) =
Np∑
i=1

ukh(rki , t)lki (r), (4.2.2)

where lki is the one-dimensional Lagrange polynomial on Ωk, Np = p + 1 is the number
of nodes and rki are suitably chosen interpolation points on Ωk. For our purposes we will
choose Gauss-Lobatto grid points as in [11]. The test functions ψ are also approximated
by ψh ∈ Vh:

ψ(r, t) ≈ ψh(r, t) =
Np∑
i=1
ψkh(rki , t)lki (r). (4.2.3)
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The Galerkin ansatz requires the residual

Rh := Q ∂tuh +∇ · F(uh)− 1
r
Buh

to be orthogonal to all test functions ψh ∈ Vh with respect to the measure r dr (in two
dimensions this would be r dr with r = (r, z)), i.e.∫

Ωk
Rh ·ψh r dr = 0. (4.2.4)

In section 3.2 we introduced the numerical flux, which is a main ingredient of any DG
scheme and which provides a way of enabling the coupling between neighboring elements.
Let us repeat an important observation about the hyperbolic system (4.1.5), which can
also be motivated from finite volume methods; see (3.2.2) in section 3.2.1. If we integrate
(4.1.5) over each Ωk and apply integration by parts (Green’s Theorem) to the divergence
part ∇ · F, i.e. ∫

Ωk
(∇ · F) r dr =

∫
∂Ωk

(Fn) r dr −
∫

Ωk
F er r dr,

er being the standard basis vector in r-direction, this leads to the expression∫
Ωk

(Q ∂tu−
1
r
Bu) r dr +

∫
∂Ωk

F(u)n r dr −
∫

Ωk
F(u) er r dr = 0,

or, equivalently,∫
Ωk

(Q ∂tu−
1
r
Bu) r dr = −

∫
∂Ωk

F(u)n r dr +
∫

Ωk
F(u) er r dr,

meaning that u changes inside Ωk only due to the flux across the boundary (first term on
the right hand side) and the consumption inside Ωk (second term). Turning back to the
approximation ukh of u on Ωk, we see that within the discontinuous Galerkin formulation
we have∫

Ωk
(Q ∂tukh −

1
r
Bukh) ·ψh r dr = −

∫
∂Ωk

Fnum(ukh)n ·ψh r dr +
∫

Ωk
F(ukh) · ∇ψh r dr

with the numerical flux Fnum, which is an approximation to the flux vector F and which
has to fulfill the requirements from section 3.2, including continuity on ∂Ωk. We apply
integration by parts to the second term on the right hand side and obtain∫

Ωk
(Q ∂tukh +∇ · F(ukh)− 1

r
Bukh) ·ψh r dr =

−
∫
∂Ωk

Fnum(ukh)n ·ψhr d r +
∫
∂Ωk

F(ukh)n · ∇ψh r dr

=
∫
∂Ωk

(
F(ukh)− Fnum(ukh)

)
n ·ψh r dr.

Thus, using a discontinuous Galerkin ansatz, instead of the residual expression in (4.2.4)
we have ∫

Ωk
Rh ·ψh r dr = −

∫
∂Ωk

(
F(ukh)− Fnum(uh)

)
n ·ψh rdr, (4.2.5)

where n denotes the outer normal vector of the boundary ∂Ωk. Recall that the choice of
the numerical flux Fnum plays a crucial role for the stability and accuracy of the scheme,
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see 3.2 and section 3.2.1.
For the one-dimensional BOR Maxwell’s equations (4.2.1) we shall choose a flux Fnum =
F∗, and equation (4.2.5) becomes

∫
Ωk
ε∂tEr · ψ r dr −

∫
Ωk

im
r
Hz · ψ r dr = 0,∫

Ωk
ε∂tEϕ · ψ r dr +

∫
Ωk
∂rHz · ψ r dr = −

[
(FEϕ − F ∗Eϕ)ψ

]rkR
rkL
,∫

Ωk
ε∂tEz · ψ r dr +

∫
Ωk
−1
r
Hϕ − ∂rHϕ + im

r
Hr) · ψ r dr = −

[
(FEz − F ∗Ez)ψ

]rkR
rkL
,∫

Ωk
µ∂tHr · ψ r dr +

∫
Ωk

im
r
Ez · ψ r dr = 0∫

Ωk
µ∂tHϕ · ψ r dr −

∫
Ωk
∂rEz · ψ r dr =

[
(FHϕ − F ∗Hϕ)ψ

]rkR
rkL
,∫

Ωk
µ∂tHz · ψ r dr +

∫
Ωk

1
r
Eϕ + ∂rEϕ − imEr · ψ r dr =

[
(FHz − F ∗Hz)ψ

]rkR
rkL
,

where F∗E := (0, F ∗Eϕ , F
∗
Ez

) ∈ R3,F∗H := (0, F ∗Hϕ , F
∗
Hz

) ∈ R3 are the components of the
numerical flux vector F∗ := (F∗E,F∗H) ∈ R3,2.
Plugging in the ansatzes (4.2.2) and (4.2.3) we get a first version of the semi-discrete
scheme of (4.2.1):

ε∂tEk
r

∫
Ωk
lki l

k
j r dr − imHk

z

∫
Ωk
lki l

k
j dr = 0

ε∂tEk
ϕ

∫
Ωk
lki l

k
j r dr + Hk

z

∫
Ωk
lki (drlkj ) r dr = −

[
r (FEϕ − F∗Eϕ)lkj

]rkR
rkL
,

ε∂tEk
z

∫
Ωk
lki l

k
j r dr −Hk

ϕ

∫
Ωk

(lki lkj + lki (drlkj ) r) dr + imHk
r

∫
Ωk
lki l

k
j dr = −

[
r (FEz − F∗Ez)l

k
j

]rkR
rkL
,

µ∂tHk
r

∫
Ωk
lki l

k
j r dr + imEk

z

∫
Ωk
lki l

k
j dr = 0,

µ∂tHk
ϕ

∫
Ωk
lki l

k
j r dr −Ek

z

∫
Ωk
lki (drlkj ) r dr = −

[
r (FHϕ − F∗Hϕ)lkj

]rkR
rkL
,

µ∂tHk
z

∫
Ωk
lki l

k
j r dr + Ek

ϕ

∫
Ωk

(lki lkj + lki (drlkj ) r) dr − imEk
r

∫
Ωk
lki l

k
j r dr =

[
r (FHz − F∗Hz)l

k
j

]rkR
rkL
,

(4.2.6)

where Hk
n and Ek

n (n = r, ϕ, z) are the time-dependent coefficient vectors, i.e.

(Hk
n)i = Hk

n(rki , t) and (Ek
n)i = Ekn(rki , t).

We have dropped the index h for clarity, but kept k to emphasize the locality of the scheme;
furthermore we suppressed the r-dependency of the Lagrange polynomials lki = lki (r) and
abbreviated the total derivative as d

dr =: dr.

4.2.2 A Numerical Flux for BOR Maxwell’s Equations
In the semi-discrete scheme (4.2.6) an explicit expression for the numerical flux on the
right hand sides is still required. As we mentioned in section 3.2, the numerical flux
Fnum(uh) connects the different edge values of ukh of a local cell Ωk, and thus the global
approximation uh is obtained. In section 3.3 we discussed how to get a numerical flux by
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solving a Riemann problem. It was shown that in the finite volume setting with piecewise
constant approximations, this choice of a numerical flux produces stable and convergent
schemes of order 1, as was shown by Harten et. al. [64], Kuznetsov [65], Crandall and
Majda [66]. See also LeVeque [57]. Thus, if we choose piecewise constant polynomials
in the DG scheme with a numerical flux that has been chosen to solve a corresponding
Riemann problem we obtain a finite volume method that is stable and convergent. This
motivates the choice of numerical flux as the solution of a Riemann problem. Furthermore,
we have seen in section 3.2 that for DG schemes applied to general hyperbolic equations
an optimal convergence rate of O(hp+1) for the L2-error was shown in Ref. [14], and for
Maxwell’s equations (in Cartesian coordinates) in [16]. On the basis of numerical tests we
will show in sections 4.3 and 4.5 to get such a convergence rate also for our scheme.
In [96] a numerical flux for dispersive and lossy Maxwell’s equations is determined by
solving a Riemann problem. In an analogous manner we can compute a numerical flux for
the BOR case.

As we are interested in the transport of information across each edge of a local element in
direction of the outer normal n = (nr, 0, 0)T , pointing to a neighboring cell, we consider
Fn = Fn. In our case it holds

Fn = (−n×H,n×E)T =: (FE,FH)T .

Recalling (4.2.5), we need an expression for Fn−F∗n. To do so we solve the corresponding
Riemann problem. The eigenvalues of the system matrix of equation (4.1.5) contain im-
portant information on the solution of the Riemann problem. They were given as λ1 = 0
and λ2,3 = ± 1√

εµ (all three of double multiplicity). The solution of the Riemann problem
consists of three waves: The waves associated with the eigenvalues λ2,3 are shocks with
the shock speed λL := −1/√εLµL = λ2(εL, µL) and λR := 1/√εRµR = λ3(εR, µR), and
the wave with the speed λ1 is a contact discontinuity with speed 0. Figure 4.3 shows a
sketch of the wave composition in the x−t-plane. Across each wave the Rankine-Hugoniot
jump condition holds, that is

left to 1 : Fn(uL)− F(1)
n (u1) = λLQL(uL − u1),

1 to 2 : F(1)
n (u1)− F(2)

n (u2) = λ1Q1(u1 − u2) = 0,

1 to right: F(2)
n (u2)− Fn(uR) = λRQR(u2 − uR),

(4.2.7)

Figure 4.3: Solution of the Riemann problem for Maxwell’s equations in the x− t-plane.

where F(1)
n and F(2)

n are the numerical fluxes in region 1 and 2, respectively; u1 is the
state vector in the 1-region and u2 the state vector in the 2-region (recall u = (E,H)T
for Maxwell’s equations); both vectors are unknown. uL and uR are the given edge
values in the interior and exterior of the local cell. Furthermore, we assume Qi =
diag(εi, εi, εi, µi, µi, µi), where i = R,L. From the relations (4.2.7) we get the numeri-
cal flux by solving for Fn(uL) − F(1)

n (u1) (recall the expression on the right hand side
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of (4.2.5)). The computations are quite similar to those in [11] or [97]. We will give an
expression for the numerical flux for the two-dimensional BOR Maxwell’s equation (4.1.4)
before we come to the one for the one-dimensional case (4.2.1). For the proof we need the
following definitions.
Definition 4.1.
(i) We define

1. the jump of a scalar as [[f ]] := f− − f+ = fL − fR

2. and for a vector as [[f ]] := n− · f− + n+ · f+ = nL · fL + nR · fR.

From a different point of view, this jump is the difference fL−fR of the left and right edge
value of an element in direction of the outer normal.

(ii) We also define the average of a scalar or vector as

{{f}} := f− + f+

2 = fL + fR
2 .

Lemma 4.2.
The numerical flux for the two-dimensional BOR Maxwell’s equations (4.1.4) is given as

GE := (FE − F∗E)n = −[n×H− (n×H∗)] = − 1
2{{Z}}n×

[
ZR[[H]]− αn× [[E]]

]
GH := (FH − F∗H)n = [n×E− (n×E∗)] = 1

2{{Y }}n×
[
YR[[E]] + αn× [[H]]

]
,

(4.2.8)

where ”R” (or ”+”) shall denote the exterior of the local cell, ”L” (”−”) the interior, thus
EL is the value of the E-field in the interior of Ωk, ER the value in the exterior, and
[[E]] := EL − ER are the field differences at the faces of the elements. [[H]] is defined
in an analogous manner. Furthermore, in two dimensions the normal vector is given as
n = (nr, 0, nz)T ; ZL,R =

√
µL,R/εL,R is the local impedance, and YL,R = 1/ZL,R is the local

conductance, and α ∈ [0, 1]. If α = 1 we have an upwind flux, if α = 0 it is a central flux.
We note this flux looks like the Cartesian flux as given in Ref. [11].
Proof. Recall section 4.1.4 and equation (4.1.5):

Q∂tu +∇ · F(u) = 1
r
Bu.

We define the matrix A := nrAr + nzAz; it holds

Au =

(Au)E
(Au)H

 =



nzHϕ

nrHz − nzrHr

−nrHϕ

−nzEϕ
nzEr − nrEz

nrEϕ


=

−n×H
n×E

 .

We observe Fn = Au. For the time being we abbreviate Fn(uL) = FL, Fn(uR) = FR,
F(1)

n (u1) = F(1) and F(2)
n (u2) = F(2). The Rankine-Hugoniot jump conditions (4.2.7) give

(1) FL − F(1) = λLQL(uL − u1),
(2) F(1) = F(2), and u1 = u2 (since λ1 = 0),
(3) F(2) − FR = λRQR(u2 − uR).
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In order to obtain an expression for FE − F∗E, that is, for the numerical flux in the
star region (consisting of region 1 and 2), we solve the Rankine-Hugoniot conditions for
FEL − F(1)

E .
Remember that FL = AuL, FR = AuR and F(1) = Au1. Thus, we have

(AuL)− (Au)(1) = λLQL(uL − u1),
(Au)(1) − (AuR) = λRQR(u1 − uR).

We solve the second equation for u1,

u1 = 1
λR

Q−1
R

[
(Au)(1) − (AuR)

]
+ uR

and plug this into the first equation:

(AuL)− (Au)(1) = λLQL(uL −
1
λR

Q−1
R [(Au)(1) − (AuR)]− uR).

Since Q is diagonal with constant entries ε and µ, we can rearrange in terms in the following
manner to obtain

− (Au)(1) + λL
λR

QLQ
−1
R (Au)(1) = λLQL(uL − uR) + λL

λR
QLQ

−1
R (AuR)− (Au) | · λRQR

⇔ (λLQL − λRQR)(Au)(1) = λLλRQLQR(uL − uR) + λLQL(AuR)− λRQR(AuL).

Furthermore, we note that

λLQL = −diag(ZL, ZL, ZL, YL, YL, YL),

λRQR = diag(ZR, ZR, ZR, YR, YR, YR),
and thus

(λLQL − λRQR)−1 = −diag
( 1

2{{Z}} ,
1

2{{Z}} ,
1

2{{Z}} ,
1

2{{Y }} ,
1

2{{Y }} ,
1

2{{Y }}

)
,

λLQLλRQR = −diag(ZLZR, ZLZR, ZLZR, YLYR, YLYR, YLYR).

Noting ZLZR(EL −ER) = [[E]] and YLYR(HL −HR) = [[H]], it follows:

(Au)(1) =

F(1)
E

F(1)
H

 =

− 1
2{{Z}}

[
− [[E]]− ZL(AuR)E − ZR(AuL)E

]
− 1

2{{Y }}
[
− [[H]]− YL(AuR)E − YR(AuL)H

]
.


We observe

ZL(AuR)E + ZR(AuL)E = ZL(−n×HR) + ZR(−n×HL) = −n× 2{{ZH}},

so thatF(1)
E

F(1)
H

 =

 1
2{{Z}}

[
[[E]]− 2n× {{ZH}}

]
1

2{{Y }}
[
[[H]] + 2n× {{YE}}

]
 =

 1
2{{Z}}

[
[[E]]− 2n× {{ZH}}

]
1

2{{Y }}
[
[[H]] + 2n× {{YE}}

]


=

−n× 1
2{{Z}}

[
2{{ZH}}+ n× [[E]]

]
n× 1

2{{Y }}
[
2{{YE}} − n× [[H]]

]
 .
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At last we have

FEL − F(1)
E = (−n×HL)− n× 1

2{{Z}}
[
− 2{{ZH}} − n× [[E]]

]
= −n× 1

2{{Z}}(2{{Z}}HL − 2{{ZH}} − n× [[E]])

= − 1
2{{Z}}n× (ZR[[H]]− n× [[E]]).

An analog computation for FHL − F(1)
H gives the final result.

4.2.3 A Numerical Flux for 1D-BOR Maxwell’s Equations
For the 1D-BOR case, the unit normal is n = (nr, 0, 0)T , and thus the numerical flux
expression for (4.2.1) becomes

GE = −[n×H− (n×H)∗] = − 1
2{{Z}}


0

−ZRnr[[Hz]] + α[[Eϕ]]
ZRnr[[Hϕ]] + α[[Ez]]

 ,

GH = [n×E− (n×E)∗] = 1
2{{Y }}


0

−YRnr[[Ez]]− [[Hϕ]]
YRnr[[Eϕ]]− [[Hz]]

 .
(4.2.9)

4.2.4 Semi-Discrete Scheme
In the following, we denote the discrete version of the numerical flux (4.2.9) as GE and
GH . The components are GE = (GEr ,GEϕ ,GEz)T (analogously for GH). By defining the
local matrices

(Mk
r )ij :=

∫
Ωk
lki (r)lkj (r) r dr,

(Skr )ij :=
∫

Ωk
r lki (r)(drlkj (r)) dr,

(Mk)ij :=
∫

Ωk
lki (r)lkj (r) r dr,

Fkij :=
∫
∂Ωk

lki (r) lkj (r) r dr,

(4.2.10)

we can rewrite (4.2.6) as

εMk
r ∂tEk

r − imMkHk
z = 0,

εMk
r ∂tEk

ϕ +
(
SkrHk

z −FkGEϕ

)
= 0,

εMk
r ∂tEk

z − (Mk
r + Skr )Hk

ϕ −FkGEz + imMkHk
r = 0.

µMk
r ∂tHk

r + imMkEk
z = 0,

µMk
r ∂tHk

ϕ −
(
SkrEk

z −FkGHϕ

)
= 0,

µMk
r ∂tHk

z + (Mk
r + Skr )Ek

ϕ −FkGHz − imMkEk
r = 0.

(4.2.11)
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We call Mk
r the BOR mass matrix, Skr the BOR stiffness matrix and Mk the local mass

matrix; Fk is the face matrix (see e.g. [11, Ch. 3]). With the definitions

Hk :=


Hk
r

Hk
ϕ

Hk
z

 , Ek :=


Ek
r

Ek
ϕ

Ek
z

 ,

LBOR :=


0 0 im(Mk

r )−1Mk

0 0 −(Mk
r )−1Skr

−im(Mk
r )−1Mk (Mk

r )−1(Mk + Skr ) 0


and

(Mk
r )−1FkGE = ((Mk

r )−1FkGEr , (Mk
r )−1FkGEϕ , (Mk

r )−1FkGEz)T

(provided (Mk
r )−1 is invertible which we assume in our numerical setting, as we will see),

we can write the semi-discrete scheme (4.2.11) in short vector-matrix notation as

Semi-Discrete Scheme in 1D

∂tEk = 1
ε

(
LBORHk + (Mk

r )−1FkGH

)
,

∂tHk = 1
µ

(
−LBOREk + (Mk

r )−1FkGE

)
.

(4.2.12)

This semi-discrete scheme is integrated in time with a low-storage Runge-Kutta method
of order 4 with 5 stages, as was discussed in section 3.4.2.
In principle, one can evaluate the matrices (4.2.10) by using a suitable quadrature rule
for each element Ωk. Recalling section 3.4.2 this quadrature rule would have to be of
order 2p + 1 (where p is the polynomial order) in order to achieve a convergence rate
of p + 1 for the RKDG scheme. From those matrices, one can then easily pre-compute
and store the matrices (4.2.10) which are required to set up the semi-discrete scheme
(4.2.11). However, such a quadrature-based approach requires the storage of four matrices
for each element. This is not only demanding in terms of memory, it also negates much of
the advantage that makes the discontinuous Galerkin time-domain approach so attractive
for implementation. In the next section, we will present an alternative procedure to
calculate the local matrices (4.2.10), which at least partially overcomes the shortcomings
of a quadrature-based approach.

4.2.5 Efficient Computation of the Local Matrices
A significant advantage of the RKDG approach in Cartesian coordinates is that all local
matrices (4.2.10) can be expressed in terms of a few global template matrices. Here, we
will demonstrate how to achieve something similar despite the explicit r-dependence.

Transformation to a Reference Element

All operations are carried out on a reference element I, not on the physical domain Ωk.
The transformation between I := [−1, 1] and Ωk is given by the map Ψ : I → Ωk so that
we can express r ∈ Ωk by

r(x) = rkL + 1
2(rkR − rkL)(1 + x) =: Ψ(x) for x ∈ I. (4.2.13)
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It is

det(JΨ) = 1
2(rkR − rkL) =: h

k

2 ,

where by JΨ we mean the Jacobian of the affine mapping Ψ.

Choosing a Basis

As already mentioned earlier, the nodal representation of u = (E,H)T is expressed as

ukh(r(x), t) =
Np∑
i=1

ukh(rki , t)li(x), (4.2.14)

where the rki are suitable grid points on Ωk, x ∈ I, and li are Lagrange polynomials defined
on I.
We can express the fields also by a so-called modal representation (see [11]), which uses
another basis {Bn}

Np
n=1 of Vh, to be determined afterwards:

ukh(x, t) =
Np∑
i=1

ũki (t)Bi(x), (4.2.15)

where the ũki are the expansion coefficients. We want to find a transformation matrix that
exhibits the change of bases from {ln}

Np
n=1 to {Bn}

Np
n=1. As a special case we can choose

x = xi in (4.2.14), where xi are suitable grid points on I, and obtain by combining (4.2.14)
with (4.2.15):

ukh(xi, t) =
Np∑
j=1

ũkjBj(xi) =
Np∑
j=1

ukh(rkj , t)lj(xi). (4.2.16)

A basic property of the Lagrange polynomials is the fact, that in the grid points they are
exactly one, that is, lj(xi) = δij , where δij is the Kronecker delta. Thus, lj(xi) is only
non-vanishing for i = j, and we get

Np∑
j=1

ũkjBj(xi) = ukh(rki , t), (4.2.17)

or written in matrix-vector notation:

uh = V ũh,

where uh := (ukh(rki , t))
Np
i=1, ũh := (ũ(i)

h )Npi=1, and Vij := Bj(xi) is the so-called generalized
Vandermonde matrix. V describes the transformation between the two bases, as we can
see in the following relation:

Bi(x) =
Np∑
j=1

Bi(xj)lj(x) =
Np∑
j=1

Vjilj(x) =
Np∑
j=1

(Vij)T lj(x), (4.2.18)

or, equivalently, B = V T l, where B = (Bi)
Np
i=1, l = (li)

Np
i=1. Since V is a transformation

matrix of two bases, it is invertible, and it holds l = (V T )−1B. Let us briefly collect this
result in the following lemma.
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Lemma 4.3.
Let {ln}n be the basis of Lagrange polynomials of Vh and {Bn}n another basis of polyno-
mials. The transformation between the two bases is performed by the generalized Vander-
monde matrix V via

V T l(x) = B(x)

with Vij := Bj(xi), or in sum notation: li(x) =
∑Np
k=1(Vki)−TBk(x).

We are left with the open question how to choose the basis {Bn}n. To answer this question,
let us look at the local mass matrix Mk, defined by (4.2.10) as

(Mk)ij :=
∫

Ωk
lki (r)lkj (r) dr.

Transforming to I, we get:

(Mk)ij = Jk
∫
I
li(x)lj(x) dx =: JkMij , (4.2.19)

where M is the global mass matrix, independent of the element Ωk. Now we change to
the basis {Bn}n:

Mij =
∫
I
li(x)lj(x) dx =

∫
I

Np∑
k=1

(Vik)−1Bk(x)
Np∑
m=1

(Vjm)−1Bm(x) dx

=
Np∑
k=1

Np∑
m=1

(Vki)−T (Vmj)−T
∫
I
Bk(x)Bm(x) dx.

(4.2.20)

It is well known that choosing {Bn}n to be a monomial basis leads to an ill-conditioned
mass matrix M , which also is true for the other local matrices in (4.2.10). We need to
choose another basis. From (4.2.20) we see that, if we choose an orthonormal basis, it
holds M = (V V T )−1. V will be invertible also numerically, and M is well-conditioned.
We follow [11, Ch. 3.1] (and the references therein) in order to obtain an orthogonal basis.
Applying the Gram-Schmidt process to the monomial basis with respect to a weighted
scalar product gives an orthonormal basis of Jacobi polynomials. For basic properties of
the Jacobi polynomials in one dimension, see e.g. [98]. We thus have (see [11])

Bn = P̂
(α,β)
n−1 =

P
(α,β)
n−1√
cn−1

, (4.2.21)

where the P (α,β)
n are the one-dimensional Jacobi polynomials which are orthogonal with

respect to the weight function w(x) = (1− x)α(1 + x)β with α, β > −1 (see e.g. [98]) and
cn := 2

2n+1 .
We are now able to show how to compute the local matrices (4.2.10).

Computation of the Mass Matrices

Lemma 4.4 (Mass Matrix).
The local mass matrix Mk can be computed as Mk = JkM , where Jk = det(JΨ) is the
determinant of the transformation from I to Ωk. M is the global mass matrix, which is
independent of each element Ωk; considering implementation, it thus has to be stored only
once. It can be computed efficiently and stably by using orthogonal Jacobi-polynomials by

M = (V V T )−1,
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where V is the Vandermonde matrix given as

Vij = P
(0,0)
j−1 (xi).

Here, P (0,0)
n are the one-dimensional Jacobi polynomials with α = β = 0, which are orthog-

onal with respect to the weight function w(x) ≡ 1. The xi are Gauss-Lobatto quadrature
points on I; see e.g. [81, Ch. 8], [80, Ch. 10].

Proof. We only give the main aspects of the proof; all the details can be found in [11].
In (4.2.19) and (4.2.20) we have already seen that it is Mk = JkM and M = (V V T )−1.
Recalling (4.2.20) again, we also encounter that

Mij =
∫
I
li(x)lj(x) dx =

Np∑
k=1

Np∑
m=1

(Vki)−T (Vmj)−T
∫
I
P̂

(α,β)
k−1 (x)P̂ (α,β)

m−1 (x) dx.

The Jacobi polynomials have to be orthogonal with respect to the weight function w(0,0)(x) =
1, i.e. it is α = β = 0, and thus Vij = P̂

(0,0)
j−1 (xi).

Lemma 4.5 (The BOR Mass Matrix).
The BOR mass matrix Mk

r can be computed as

Mk
r = Jk

(
rkLM + JkMr

)
,

where
(Mr)ij :=

∫ 1

−1
(1 + x)li(x)lj(x) dx

is the global BOR mass matrix, and it can be computed similarly to the mass matrix by
using Jacobi polynomials, but this time with α = 0, β = 1, that is

Mr = (V1V
T

1 )−1, (V1)ij := P
(0,1)
j−1 (xi).

Proof. Transforming to the reference element gives

(Mk
r )ij =

∫
Ωk
rlki (r)lkj (r) dr = Jk

(∫ 1

−1
[rkL + rkR − rkL

2 (1 + x)] li(x)lj(x) dx
)

= Jk
(
rkLMij + Jk(Mr)ij

)
.

We need to choose Jacobi polynomials that are orthogonal with respect to the weight
function w(0,1)(x) = 1 + x, i.e. we have α = 0, β = 1. Then we proceed as in case of the
mass matrix so that we get the Vandermonde matrix (V1)ij = P̂

(0,1)
j−1 (xi).

Computation of the BOR Stiffness Matrix

Lemma 4.6.
The BOR stiffness matrix can also be computed as the composition of template matrices,
i.e.

Skr = rkLS + JkSr,

where S is the stiffness matrix,

Sij =
∫
I
li (dxlj) dx,
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and Sr the BOR stiffness matrix from (4.2.10). Furthermore it holds S = MDr, with Dr

being the differentiation matrix as given in [11, Ch. 3.2], that is

(Dr)ij = dlj(x)
dx

∣∣∣∣
xi

.

Dr can also be computed by using the Vandermonde matrix, i.e. Dr = VxV
−1 with

(Vx)ij =
dP̂ (α,β)

j−1
dx

∣∣∣∣
xi
.

The matrix Sr is the global BOR stiffness matrix,

(Sr)ij :=
∫ 1

−1
(1 + x)li(x) (dxlj(x)) dx,

and analogously, it is Sr = MrDr.
Remark 4.7.

1. We use r as a subscript in Mr, Sr and Dr in analogy with the derivative dr in BOR
Maxwell’s equations, although to set up Dr the x−derivatives of li are taken and the
orthonormal Jacobi polynomials P̂ (α,β)

n are evaluated in Gauss-Lobatto grid points xi
on I.

2. In the semi-discrete equations (4.2.11), we need to multiply by (Mk
r )−1 and thus

obtain an ordinary differential equation in time (4.2.12). This means we do not
have to compute the global BOR stiffness matrix Sr at all, since

(Mk
r )−1Skr = rkL(Mk

r )−1(MDr) + (Mk
r )−1(JkMr)Dr = rkL(Mk

r )−1(MDr) +Dr.

Proof. As before, transforming to I = [−1, 1] gives

Skr =
∫

Ωk
lki (r) drlkj (r) r dr

= Jk
( ∫ 1

−1
li(x) 2

rkR − rkL
dxlj(x) [rkL + rkR − rkL

2 (1 + x)] dx
)

= Jk
1
Jk
(
xkl Sij + Jk(Sr)ij

)
.

The factor 1
Jk

= 2
rkR−r

k
L

comes from the transformation of the derivative dr to dx.
What remains to be shown is the relation Sr = MrDr. The statement S = MDr is proven
in [11, Ch. 3.2]. We proceed in an analogous fashion. It is

(Sr)ij =
∫ 1

−1
(1 + x)li(x) dxlj(x) dx.

Expanding dxlj(x) in terms of Lagrange polynomials as

dxlj(x) =
Np∑
n=1

dxlj(xn) ln(x)

and inserting this expansion together with the Jacobi polynomials in the matrix Sr gives

(Sr)ij =
∫ 1

−1
(1 + x)li(x) dxlj(x) dx =

Np∑
n=1

(dxlj(xn))
∫ 1

−1
(1 + x) li(x) ln(x) dx

=
Np∑
n=1

(Mr)in(Dr)nj .
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Computation of the Face Matrix

If we recall the semi-discrete scheme (4.2.12), there remains the computation of the ex-
pressions FkGE and FkGH , that is (note that ∂Ωk = {rkL, rkR}),∫

∂Ωk
(FE − F∗E)(r) lkj (r) r dr =

[
r (FE − F∗E)(r) lkj (r)

]rkR
rkL

. (4.2.22)

The right hand side can be computed directly by evaluating the expression in the left and
right boundary values rkL, rkR of the element Ωk = [rkL, rkR]. The same is true for FH −F∗H .
In the one-dimensional case the face matrix is thus easily computable at low cost. In
addition, we want to give some details of the construction of the face matrix with respect
to implementation issues.
On each element Ωk we have Np = p + 1 nodes rk1 , . . . , rkNp , where p is the polynomial
order, and in total we have K elements. We collect all grid points in an Np ×K-array

r :=


r1

1 r2
1 · · · rK1

...
...

...
...

r1
Np

r2
Np
· · · rKNp

 . (4.2.23)

Thus the edge nodes on element number k are rkL = rkNp and rkR = rkNp . Let us denote by
G(k)
E the numerical flux on element number k. The we get for j = 1, . . . , Np:[

rG(k)
E (r)lkj (r)

]r1
R

r1
L

=
[
r lkj (r)

]rkNp
rk1

G(k)
E (rkNp − r

k
1)

=
(
rkNp l

k
j (rkNp)− r

k
1 l
k
j (rk1)

)
G(k)
E (rkNp − r

k
1),

where by G(k)
E (rkNp − r

k
1) we mean the numerical flux (4.2.9) for 1D-BOR Maxwell’s equa-

tions, evaluated at the difference rkNp − r
k
1 of the edge points on element Ωk. Recalling

lkj (ri) = δij , we thus obtain in matrix-vector notation

(
rkNp l

k
j (rkNp)− r

k
1 l
k
j (rk1)

)Np
j=1

=


−1 0
0 0
...

...
0 1


 rk1

rkNp

 =: Lk
 rk1

rkNp

 . (4.2.24)

The matrix Lk in (4.2.24) is called Lift matrix and has dimension Np×2. Each component
of the discretized numerical flux vector GE in (4.2.12) is a 2×K-array. We can define a
2×K-vector Fe containing all edge points of all K elements, i.e.

Fe :=

 r1
1 r2

1 · · · rK1

r1
Np

r2
Np
· · · rKNp

 .
We thus obtain

FkGE = LkFe.

For more implementation issues and codes in Matlab, we refer to [11].

4.3 Numerical Tests
Now that we have an RKDG scheme for 1D-BOR Maxwell’s equations (4.2.1), we test the
performance of the method. We used some of the Matlab-codes in the book by Hesthaven
and Warburton [11], some were modified for our case.
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4.3.1 Homogeneous Waveguide
Let us first assume to have a homogeneous waveguide, i.e. ε = 1, µ = 1. The exact
solution of this system is known (e.g. [99, Ch. 9.5.2], [100]). The cylinder shall have a
radius of R = 1 and a length of L = 1, and we let Ω = [0, 1]. We impose PEC boundary
conditions on ∂Ω (see (2.4.1) in section 2.4.1). In TM mode the exact solutions read

Ez(r, ϕ, t) = Jm(γmnr)eimϕe−iωmnt,

Er = Eϕ = 0,
Hz = 0,

Hr(r, ϕ, t) = mεωmn
rγ2
mn

Jm(γmnr)eimϕe−iωmnt,

Hϕ(r, ϕ, t) = iεωmn
γmn

J ′m(γmnr)eimϕe−iωmnt.

Here, Jm is the mth Bessel function of the first kind (see e.g. [98, Ch. 9]), m = 0, 1, 2, . . . ,
γmn the n (possibly infinitely many) zeros of Jm, n = 0, 1, 2, . . . , and ωmn are the corre-
sponding frequencies, ωmn = c γmn, where c = 1√

εµ is the speed of light. For numerical
simulations presented here we chose m = 1 and n = 1. By setting t = 0 in the exact
solutions we get the initial field values.
Figure 4.4 shows the error plot with respect to the L2-norm for this situation. For the
component vectors Ez and Eh

z of the exact and of the approximate solution, respectively,
we compute the error

||Eh
z −Ez||L2 = ||E

h
z −Ez||2
||Eh

z ||2
,

where || · ||2 denotes the Euclidean norm. We can see a convergence behavior as we would
expect from the Cartesian case (see Theorems 3.28 and 3.29). The stagnation in the
slope beginning with p = 5 comes from time integration, where we used a time step size
0.3 dt (the magnitude of dt depends on the mesh step size). To check this we have chosen
a smaller time step size 0.01 dt and have rerun the simulation. In this case the error
decreases further, as expected, see figure 4.5.
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4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.4: Error plot for Ez in a homogeneous medium with polynomial order p ∈
{3, . . . , 8}, with number of elements K = 2, . . . , 15 and m = 1, in logarith-
mic scaling. We plot the L2-error of the deviation |Ehz − Ez| of the exact
solution Ez to the approximation Ehz over the entire time.

Figure 4.5: Error plot as in figure 4.4, but with a smaller time step size.
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4.3 Numerical Tests

4.3.2 Coaxial Cable
As a next test system we look at a coaxial cable, as illustrated in figure 4.6: We have an
inner radius a and a total radius b, so that Ω = [0, a] ∪ (a, b]. The inner ring is filled with
air, the outer ring has material parameters ε and µ. We impose zero boundary conditions
on Ez, that is, Ez(r = a, ϕ, t) = 0, Ez(r = b, ϕ, t) = 0 ([99, Ch. 9]). In our tests we chose
a = 0.5 and b = 1.0.

Figure 4.6: A sketch of a coaxial cable. a) From the front: The shaded gray part is filled
with air, the white ring has material parameters ε and µ; b) after dimension
reduction we get the interval [0, b].

The exact solution is (see e.g. [99, Ch. 9])

Ez(r, ϕ, t) = (A1Jm(γmnr) +B1Ym(γmnr))eimϕe−iωmnt,

Er = Eϕ = 0,
Hz = Hr = 0,

Hϕ(r, ϕ, t) = − iεωmn
γmn

(A1J
′
m(γmnr) +B1Y

′
m(γmnr))eimϕe−iωmnt,

where the Jm are the Bessel functions of the first kind and the Ym are the Bessel functions
of the second kind. A1, B1 and γmn are unknowns, which need to be determined by
applying the boundary conditions Ez(r = a, ϕ, t) = 0, Ez(r = b, ϕ, t) = 0. This leads
to two equations for three unknowns – and thus to a one-parameter family of solutions –
namely

A1Jm(γmnb) +B1Ym(γmnb) = 0,
A1Jm(γmna) +B1Ym(γmna) = 0.

Solving for A1 gives

A1 = −B1
Ym(γmnb)
Jm(γmnb)

,

A1 = −B1
Ym(γmna)
Jm(γmna) .

Equating both equations and solving for B1 renders

B1 (Ym(γmnb)Jm(γmna)− Ym(γmna)Jm(γmnb)) = 0.

Since B1 = 0 would lead to A1 = 0, we have B1 6= 0, and thus γmn is determined as the
zero of the function

f(γmn) := Ym(γmnb)Jm(γmna)− Ym(γmna)Jm(γmnb).

Finally we obtain

A1 = −B1
Ym(γmna)
Jm(γmna) ,

B1 ∈ R arbitrary (but fixed).
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Again, it is ωmn = c γmn, where c = 1√
εµ . For this test system we observe the same

convergence behavior as in the homogeneous system. We do not show an error plot for
this case, since the next test system is an inhomogeneous waveguide, where the solution
of a coaxial cable is needed as well; and, as we will see, we have p-convergence in that case
as well.

4.3.3 Inhomogeneous Waveguide
As a third basic test case we look at an inhomogeneous waveguide. We assume to have a
medium consisting of a region 1 and 2 with Ω = Ω1 ∪ Ω2 = [0, a] ∪ (a, b]; in region 1 we
denote the material parameters by ε1, µ1; in region 2 we have correspondingly ε2, µ2.
The exact solution is composed of the solution in region 1 and region 2 (see [99, Ch. 9.5.1
and 9.5.4]). The solution in region 1 is the one of the homogeneous case (see above), which
we index by a superscript 1. The solution in region 2 is given to be the solution for the
case of a coaxial cable. This gives

E(1)
z (r, ϕ, t) = A1Jm(γ(1)

mnr)eimϕe−iωmnt,

E(2)
z (r, ϕ, t) =

(
A2Jm(γ(2)

mnr) +B2Ym(γ(2)
mnr)

)
eimϕe−iωmnt,

H(1)
r (r, ϕ, t) = mω1ε1

(γ(1)
mn)2r

E(1)
z (r, ϕ, t),

H(2)
r (r, ϕ, t) = mω2ε2

(γ(2)
mn)2r

E(2)
z (r, ϕ, t),

H(1)
ϕ (r, ϕ, t) = A1

iω1ε1

γ
(1)
mn

J ′m(γ(1)
mnr)eimϕe−iωmnt,

H(2)
ϕ (r, ϕ, t) = iω2ε2

γ
(2)
mn

(
A2J

′
m(γ(2)

mnr) +B2Y
′
m(γ(2)

mnr)
)
eimϕe−iωmnt.

Here, γ1 and γ2 are unknown and need to be determined, along with the coefficients
A1, A2, B2. The tangential of the electric field must vanish at r = b, and at r = a the
tangential components of the electromagnetic fields must be continuous (see section 2.2),
leading to a continuity condition on Ez and Hϕ (see [99, Ch. 9.5.1, Ch. 9.5.4]), namely at
the interface r = a we demand

E(2)
z (r = a)− E(1)

z (r = a) = 0, H(1)
ϕ (r = a)−H(2)

ϕ (r = a) = 0.

In addition, we have the boundary conditions E(1)
z (r = 0) = 0, E(2)

z (r = b) = 0. Collecting
this, we get a linear system of equations for the coefficient vector b := (A1, A2, B2)T ,

Ab :=


−Jm(γ(1)

mna) Jm(γ(2)
mna) Ym(γ(2)

mna)
ε1
µ1
J ′m(γ(1)

mna) − ε2
µ2
J ′m(γ(2)

mna) − ε2
µ2
Y ′m(γ(2)

mna)
0 Jm(γ(2)

mnb) Ym(γ(2)
mnb)



A1

A2

B2

 = 0.

Since γ(1)
mn and γ

(2)
mn are unknown as well, we need more information to solve this system

uniquely. In both regions the frequency of the fields has to be similar, that is, ω(1)
mn = ω

(2)
mn.

This gives the condition

γ(2)
mn =

√
ε2µ2
ε1µ1

γ(1)
mn. (4.3.1)
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We only have b 6= 0 if det(A) = 0; from this we can determine γ(1)
mn (see also [99, Ch. 9.5.1

and problem 9.8]): It is a zero of the function

f(γ(1)
mn) =− Jm(γ(1)

mna)Ym(γ(2)
mnb)

ε2

γ
(2)
mn

J ′m(γ(2)
mna) + Ym(γ(2)

mnb)
ε1
γ1
J ′m(γ(1)

mna)Jm(γ(2)
mna)

+ Jm(γ(1)
mna)Jm(γ(2)

mnb)
ε2

γ
(2)
mn

Y ′m(γ(2)
mnb)− Jm(γ(2)

mnb)
ε1

γ
(1)
mn

J ′m(γ(1)
mna)Ym(γ(2)

mna).

If γ(1)
mn is known, we can compute γ(2)

mn from (4.3.1). Thus we have determined all unknowns
and can construct a continuous solution on [0, b].
Again we are interested in the question whether we can hope to get p-convergence. Indeed,
the results suggest this convergence behavior. Figure 4.7 shows for the Ez-field, where we
chose – without any physical motivation – ε1 = 1, ε2 = 1.5, µ1 = 1, µ2 = 5. Note this is a
consequence due to the fact that we chose r = a as a grid point so that the interface r = a
is resolved exactly.

Figure 4.7: Error plot of the Ez-field in an inhomogeneous medium with ε1 = 1, ε2 =
1.5, µ1 = 1, µ2 = 5 and m = 1, p ∈ {3, . . . , 8}. The number of elements is
K ∈ {2, 4, 6, 8, 10}, the time step size is chosen to be 0.01 dt, where dt depends
on the mesh size of the grid.

4.4 The Runge-Kutta Discontinuous Galerkin Method Applied
to 3D-2D BOR Maxwell’s Equations

In this section we apply the DG method to BOR Maxwell’s equations in three space
dimensions. After the ϕ-ansatz in section 4.1.2 the computational cost reduces to two
dimensions, therefore we call the resulting set of equations 2D-BOR Maxwell’s equations.
They read in the weak sense, after the ϕ-ansatz 4.1.1:
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4 Application: Rotationally Symmetric Maxwell’s Equations

ε∂tEr −
im
r
Hz + ∂zHϕ = 0,

ε∂tEϕ + ∂rHz − ∂zHr = 0,

ε∂tEz −
1
r

(∂r(rHϕ)− imHr) = 0,

µ∂tHr + im
r
Ez − ∂zEϕ = 0,

µ∂tHϕ − ∂rEz + ∂zEr = 0,

µ∂tHz + 1
r

(∂r(rEϕ)− imEr) = 0,

(4.4.1)

Recall that when we speak of BOR Maxwell’s equations in the weak sense, this is meant
with respect to the measure r dr, where in two dimensions, r = (r, z). Again, m ∈ N is
fixed. The fields depend on (r, z, t) ∈ Ω × R with Ω ⊆ R2. The approach is very similar
to the one in one dimension, see section 4.2. Yet, there are some differences which are
not minor, especially concerning the computation of the local matrices. We now have a
two-dimensional geometry; we need to find multi-dimensional analogues of the Lagrange
polynomials, and the natural question arises whether the resulting local matrices can be
computed as efficiently as the ones in one dimension. Indeed, this can be accomplished by
defining appropriate two-dimensional orthonormal polynomials.
Thus, as in one space dimension, we have to carry out the following steps during the DG
discretization process:

1. Discretization of Ω and definition of a finite element space.

2. Choice of a numerical flux that gives rise to a stable and convergent DG method.
We have already given a numerical flux in (4.2.8).

3. Efficient computation of the local matrices.

4.4.1 DG space discretization
As in one dimension, we divide Ω into K elements so that Ω =

⋃K
k=1 Ωk. Our finite element

space of discontinuous functions is

Vh := {uh ∈ (L∞(Ω))6 : uh|Ωk ∈ V (Ωk), k = 1, . . . ,K}.
We choose V (Ωk) = Pp(Ωk) as the space of multivariate polynomials of total degree p ∈ N.
We approximate u by uh ∈ Vh, and use Lagrange interpolation to represent uh. Thus, we
obtain the nodal representation (cf. Ref. [11]) of the fields as

uh(r, z, t) =
Np∑
i=1

ukh(rki , zki , t)lki (r, z), (4.4.2)

where lki (r, z) are two-dimensional Lagrange polynomials on Ωk, Np = (p+ 1)(p+ 2)/2 is
the number of nodes and rki := (rki , zki ) are suitably chosen interpolation points on Ωk.
In section 4.2.1 we have seen that the Galerkin ansatz requires the residual

Rh := ∂tuh +∇ · F(uh)

to be orthogonal to all test functions ψh ∈ Vh with respect to the measure r dr. As in
(4.2.5), in the discontinuous Galerkin approach we have instead∫

Ωk
Rhψh r dr = −

∫
∂Ωk

(F(ukh)− Fnum(ukh)) nψh r dr,
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where n denotes the outer normal vector of the boundary ∂Ωk and Fnum is the numerical
flux.
Plugging in the ansatz (4.4.2) into BOR Maxwell’s equations (4.4.1) and approximating
the test functions ψ in Vh as well, we get the semi-discrete scheme

ε∂tEk
r

∫
Ωk
lki l

k
j r dr− imHk

z

∫
Ωk
lki l

k
j dr + Hk

ϕ

∫
Ωk
lki ∂zl

k
j r dr =

∫
∂Ωk

(FEr − F∗Er)nl
k
i l
k
j r dr,

ε∂tEk
ϕ

∫
Ωk
lki l

k
j r dr + Hk

z

∫
Ωk
lki ∂rl

k
j r dr−Hk

r

∫
Ωk
lki ∂zl

k
j r dr =

∫
∂Ωk

(FEϕ − F∗Eϕ)nlki lkj r dr,

ε∂tEk
z

∫
Ωk
lki l

k
j r dr−Hk

ϕ

(∫
Ωk
lki l

k
j dr +

∫
Ωk
lki ∂rl

k
j r dr

)
− imHk

r

∫
Ωk
lki l

k
j r dr

=
∫
∂Ωk

(FEz − F∗Ez)nl
k
i l
k
j r dr,

µ∂tHk
r

∫
Ωk
lki l

k
j r dr + imEk

z

∫
Ωk
lki l

k
j dr−Ek

ϕ

∫
Ωk
lki ∂zl

k
j r dr =

∫
∂Ωk

(FHr − F∗Hr)nl
k
i l
k
j r dr,

µ∂tHk
ϕ

∫
Ωk
lki l

k
j r dr−Ek

z

∫
Ωk
lki ∂rl

k
j r dr + Ek

r

∫
Ωk
lki ∂zl

k
j r dr =

∫
∂Ωk

(FHϕ − F ∗Hϕ
)nlki lkj r dr,

µ∂tHk
z

∫
Ωk
lki l

k
j r dr + Ek

ϕ

(∫
Ωk
lki l

k
j dr +

∫
Ωk
lki ∂rl

k
j r dr

)
− imEk

r

∫
Ωk
lki l

k
j r dr

=
∫
∂Ωk

(FHz − F∗Hz)nl
k
i l
k
j r dr.

(4.4.3)

Again, Ek
r are the coefficient vectors of the fields, which are time-dependent. By F∗ we

denote the numerical flux Fnum, as in the one-dimensional case, which is specified in the
next section.

4.4.2 A Numerical Flux

We already computed the numerical flux in (4.2.8), and we repeat it here:

GE := (FE − F∗E)n = −[n×H− (n×H∗)] = − 1
2{{Z}}n×

[
ZR[[H]]− αn× [[E]]

]
GH := (FH − F∗H)n = [n×E− (n×E∗)] = 1

2{{Y }}n×
[
YR[[E]] + αn× [[H]]

]
,
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with n = (nr, 0, nz)T and α ∈ [0, 1]. Written out componentwise, this is

GEr = − 1
2{{Z}}

[
− ZRnz[[Hϕ]]− α(nr(n · [[E]])− [[Er]])

]
,

GEϕ = − 1
2{{Z}}

[
ZR(nz[[Hr]]− nr[[Hz]]) + α[[Eϕ]]

]
,

GEz = − 1
2{{Z}}

[
ZRnr[[Hϕ]]− α(nz(n · [[E]])− [[Ez]])

]
,

GHr = 1
2{{Y }}

[
− YRnz[[Eϕ]] + α(nr(n · [[H]])− [[Hr]])

]
,

GHϕ = 1
2{{Y }}

[
YR(nz[[Er]]− nr[[Ez]])− α[[Hϕ]]

]
,

GHZ = 1
2{{Y }}

[
YRnr[[Eϕ]] + α(nz(n · [[H]])− [[Hz]])

]
,

(4.4.4)

where GE := (GEr ,GEϕ ,GEz)T and GH := (GHr ,GHϕ ,GHz)T . We used the vector
identity n × (n ×V) = n(n ·V) − (n · n)V = n(n ·V) −V, since n · n = 1, where V is
an arbitrary vector.

4.4.3 Semi-Discrete Scheme
By defining the local matrices

(Mk
r )ij :=

∫
Ωk
lki (r) lkj (r) r dr,

(Skr )ij :=
∫

Ωk
lki (r) ∂rlkj (r) r dr,

(Skz )ij :=
∫

Ωk
lki (r) ∂zlkj (r) r dr,

(Mk)ij :=
∫

Ωk
lki (r) lkj (r) r dr,

Fkij :=
∫
∂Ωk

lki (r) lkj (r, z) r dr.

(4.4.5)

we bring BOR Maxwell’s equations (4.4.1) into the semi-discrete form as

εMk
r ∂tEr − imMkHz + SkzHϕ −FkGEr = 0,

εMk
r ∂tEϕ + SkrHz − SkzHr −FkGEϕ = 0,

εMk
r ∂tEz − (Mk + Skr )Hϕ − imMkHr −FkGEz = 0,

µMk
r ∂tHr + imMkEz − SkzEϕ −FkGHr = 0,

µMk
r ∂tHϕ − SkrEz + SkzEr −FkGHϕ) = 0,

µMk
r ∂tHz + (Mk + Skr )Eϕ − imMkEr −FkGHz = 0,

(4.4.6)

At the end, as in the one-dimensional case we define

Hk :=


Hk
r

Hk
ϕ

Hk
z

 , Ek :=


Ek
r

Ek
ϕ

Ek
z

 ,

LBOR :=


0 −(Mk

r )−1Skz im(Mk
r )−1Mk

(Mk
r )−1Skz 0 −(Mk

r )−1Skr

−im(Mk
r )−1Mk (Mk

r )−1(Mk + Skr ) 0


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and define

(Mk
r )−1FkGE := ((Mk

r )−1FkGEr , (Mk
r )−1FkGEϕ , (Mk

r )−1FkGEz)T ,
(Mk

r )−1FkGE = ((Mk
r )−1FkGHr , (Mk

r )−1FkGHϕ , (Mk
r )−1FkGHz)T ,

We can thus write the semi-discrete scheme (4.4.6) in short vector-matrix notation as

Semi-Discrete Scheme in 2D

ε∂tEk =
(
LBORHk + (Mk

r )−1FkGH

)
,

µ∂tHk =
(
−LBOREk + (Mk

r )−1FkGE

)
.

(4.4.7)

Transformation to a Reference Element

Again all operations are performed on a reference element, which in two dimensions is
given as

I := {x = (x, y) : x, y > −1, x+ y ≤ 0}.

Lemma 4.8.

(i) For straight-sided triangles the transformation of I to Ωk is given by the affine
mapping

Ψk : I → Ωk,

x 7→ r = Ψk(x) := v1 + 1
2(x+ 1)(v2 − v1) + 1

2(y + 1)(v3 − v1)

Here, v1 = (v11, v12),v2 = (v21, v22),v3 = (v31, v32) denote the vertices of the triangle
Ωk as depicted in figure 4.8. In addition, we introduce the edge vectors e1 = v2 − v1,
e2 = v3 − v2 and e3 = v1 − v3.

Figure 4.8: Transformation of Ωk to the reference element I.

The Jacobi matrix of Ψk is given as

JΨk := ∇rΨk = ∂r
∂x = (rx ry) =

rx ry

zx zy

 = 1
2

e11 −e31

e12 −e32

 , (4.4.8)

and we abbreviate its determinant as

det(JkΨ) =: Jk = 1
2 vol(Ωk).

77



4 Application: Rotationally Symmetric Maxwell’s Equations

Since Ψk is an affine mapping, the inverse Jacobi matrix reads

(∇Ψk)−1 = ∇x(Ψk)−1 = ∂x
∂r = (xr xz) =

xr xz

yr yz

 = 1
Jk

−e32 e31

−e12 e11

 .
Thus,

rx = yz
J
, ry = −xz

J
, zx = −yr

J
, zy = xr

J
.

(ii) The derivatives transform as

∂r 7→
1

2J
[
− e32∂x − e11∂y

]
,

∂z 7→
1

2J
[
e31∂x + e11∂y

]
.

(4.4.9)

Proof. (i) The last statement of (i) can be found in [11]. The rest can be easily verified
by direct computation.

(ii) Since Ψk is an affine mapping, ∇r = ∂x/∂r and ∇x = ∂r/∂x are inverse to each
other, and it follows: ∂r

∂z

 7→ ∂r
∂x

T
∂x
∂y

 = 1
2

rx∂x + zx∂y

ry∂x + zy∂y

 ,
and by using (i) we get the statement in (ii).

4.4.4 Efficient Computation of the Local Matrices

It would be desirable to efficiently compute the local matrices as in the one-dimensional
case as the composition of template matrices, that can be set up by using two-dimensional
orthogonal polynomials. Yet, there is another good reason: It is a non-trivial task to
express multi-dimensional Lagrange polynomials explicitly. As we will present in this
section, we can indeed compute the local matrices as efficiently as in one space dimension.
Besides a higher demand in computing the local matrices, it is also more challenging to
find the Np grid points in higher dimensions, and already in two space dimensions this can
be quite elaborate. A naive idea would be to use a tensor product of the one-dimensional
grid points to get the grid points on I = {(x, y) : x, y > −1, x+y ≤ 0}. But as the authors
in [11] point out this leads to ill-conditioned schemes. In [101] Warburton presents another
way of getting a set of two-dimensional grid points by a method he called blend & warp.
The main idea is to find a function f that maps an equidistant grid {requ

i : i = 1, · · · , Np}
to an arbitrary grid {ri : i = 1, · · · , Np} so that f(requ

i ) = ri. He chooses a grid consisting
of Legendre-Gauss-Lobatto nodes, and we will use this set of grid points as well.

Orthogonal Polynomials

As we have briefly reported in section 4.2.5, the family of one-dimensional Jacobi poly-
nomials {P (α,β)

n }n≥0 on [−1, 1], for α, β > −1, is constructed by the Gram-Schmidt or-
thonormalization procedure with respect to the weighted L2-scalar product on (−1, 1)
using w(x) = (1 − x)α(1 + x)β as a weight, see e.g. [11, App. A]. In Ref. [102, Ch. 3.3,
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Class IV and Class V] a family of two-dimensional Jacobi polynomials {P (α,β,γ)
n,k }0≤k≤n on

the simplex
S :=

{
(ξ, η) ∈ R2 : 0 < η < ξ < 1

}
was derived, for α, β, γ > −1, that is L2(S)-orthogonal with respect to the weight function

wS(ξ, η) = (1− ξ)α(ξ − η)βηγ , (4.4.10)

see Ref. [102, (3.10)]. The two-dimensional polynomials are obtained from the one-
dimensional polynomials via

P
(α,β,γ)
n,k (ξ, η) = P

(α,β+γ+2k+1)
n−k (2ξ − 1)ξkP (β,γ)

k

(2η
ξ
− 1

)
.

Since all our later operations are carried out on I, we define a transformation from I to S
by

ΨI→S : I → S, ΨI → S(x, y) := 1
2(1− y, 1 + x)T . (4.4.11)

Thus we obtain the two-variable analogues of the Jacobi polynomials on I by

P̃
(α,β,γ)
n,k (x, y) = P

(α,β,γ)
n,k ◦ΨI→S(x, y) = P

(α,β+γ+2k+1)
n−k (−y)(1− y)k

2k P
(β,γ)
k

(
21 + x

1− y − 1
)

(4.4.12)

with n = 0, . . . , N, k = 0, . . . , n and m = (n − k) + (N + 1)k + 1 − k
2 (k − 1). These are

orthogonal with respect to the weight function

wI(x, y) = 1
2α+β+γ (1 + y)α(x+ y)β(1 + x)γ . (4.4.13)

We normalize the orthogonal polynomials P̃ (α,β,γ)
n,k such that their weighted L2(I)-norm is

unity. By doing so we get the normalized set {P̂ (α,β,γ)
n,k }0≤k≤n of the two-variable poly-

nomials (4.4.12). We remark that for the choice α = β = γ = 0 we recover the Dubiner
polynomials, see e.g. [103], [102], [104], [11, Ch. A.1].

Computation of the Mass Matrices

Lemma 4.9 (Mass matrix).
The local mass matrix can be computed as Mk = JkM with Jk being the Jacobi determi-
nant on element k, where we assume to have straight-sided triangles, and the global mass
matrix M is given through

M = (V V T )−1 with Vij = P̂
(0,0,0)
j−1 (xi),

where P
(0,0,0)
m (xi) are the orthogonal polynomials in (4.4.12). Thus, the computational

effort for Mk reduces to computing a global template matrix M once.

Proof. We transform the local mass matrix to the reference element I by

(Mk)ij :=
∫

Ωk
lki (r)lkj (r) dr = Jk

∫
I
li(x)lj(x) dx =: JkMij .

As was shown in [11, Ch. 6.2], it holds M = (V V T )−1.
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Lemma 4.10 (BOR mass matrix).
The local BOR mass matrix can be computed as a composition of template matrices as

Mk
r = Jk

(
v11M + e11M

(1)
r − e31M

(2)
r

)
,

where

(M (1)
r )ij :=

∫
I

1
2(1 + x)li(x)lj(x) dx,

(M (2)
r )ij :=

∫
I

1
2(1 + y)li(x)lj(x) dx.

This can be seen as follows:

(Mk
r )ij =

∫
Ωk
lki (r)lkj (r) r dr = Jk

∫
I

[
v11 + (1 + x)e11

2 − (1 + y)e31
2

]
li(x)lj(x) dx

= Jk
[
v11

∫
I
li(x)lj(x) dx + e11

2

∫
I
(1 + x)li(x)lj(x) dx− e31

2

∫
I
(1 + y)li(x)lj(x) dx

]
= Jk

[
v11Mij + e11

2 (M1
r )ij −

e31
2 (M2

r )ij
]
.

Analogously to the computation of the mass matrix via the generalized Vandermonde matrix
V , the matrices M (1)

r and M
(2)
r can also be set up by the usage of BOR Vandermonde

matrices, that is

M (1)
r = (V (1)

r (V (1)
r )T )−1 with (V (1)

r )ij := P̂
(0,0,1)
j−1 (xi),

M (2)
r = (V (2)

r (V (2)
r )T )−1 with (V (2)

r )ij := P̂
(1,0,0)
j−1 (xi).

Computation of the BOR Stiffness Matrices

At last, the BOR stiffness matrices in (4.4.5) can be computed as

Skr = JkMr(xrDx + yrDy),
Skz = JkMr(xzDx + yzDy),

where Dx, Dy are the differentiation matrices, given as

(Dx)ij := ∂xlj(xi),
(Dy)ij := ∂ylj(xi),

where xi = (xi, yi), exactly as in [11, Kap. 3.2]. They can be computed in the same way
via Dm = VmV

−1, m ∈ {x, y} and

(Vm)ij = ∂mP̂
(α,β,γ)
j (ai).

Proof. We transform on I and recall the transformation of the derivatives (4.4.9) to get

(Skr )ij =
∫

Ωk
lkj (r)(∂rlki (r)) r dr

= Jk
[ ∫

I

(
v11 + (1 + x)e11

2 − (1 + y)e31
2

) 1
2Jk (−e31∂x − e12∂y) li lj dx

]
= Jk

[
− v11e32

2Jk
∫
I
li(x) ∂xlj(x) dx− v11e12

2Jk
∫
I
li(x) ∂ylj(x) dx

− e11e32
2Jk

∫
I

1 + x

2 li(x)∂xlj(x) dx− e11e12
2Jk

∫
I

1 + x

2 li(x) ∂ylj(x) dx

+ e31e32
2Jk

∫
I

1 + y

2 li(x)∂xlj(x) dx + e31e12
2Jk

∫
I

1 + y

2 li(x) ∂ylj(x) dx
]
.
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We define the matrices

(S(1))ij :=
∫
I
li(x) ∂xlj(x)dx,

(S(2))ij :=
∫
I
li(x) ∂ylj(x)dx,

(S(3))ij :=
∫
I

1 + x

2 li(x) ∂xlj(x) dx,

(S(4))ij :=
∫
I

1 + x

2 li(x) ∂ylj(x) dx,

(S(5))ij :=
∫
I

1 + y

2 li(x) ∂xlj(x) dx,

(S(6))ij :=
∫
I

1 + y

2 li(x) ∂ylj(x) dx.

Analogously to the one-dimensional case, one shows

S(1) = MDx,

S(2) = MDy,

S(3) = M (1)
r Dx,

S(4) = M (1)
r Dy,

S(5) = M (2)
r Dx,

S(6) = M (2)
r Dy.

At last we define

Sr := v11MDx + e11M
(1)
r Dx − e31M

(2)
r Dx = MrDx,

Sz := v11MDy + e11M
(1)
r Dy − e31M

(2)
r Dy = MrDy,

and get altogether

(Skr )ij =
∫

Ωk
lki (r) ∂rlkj (r) r dr

= Jk
(
v11
(
xrS

(1)
ij + yrS

(2)
ij

)
+ 2Jkxz

(
yrS

(3)
ij + xrS

(4)
ij

)
− 2Jkxz

(
xrS

(5)
ij + yrS

(6)
ij

))
= Jk(Mk

r )ij(xr(Dx)ij + yr(Dy)ij),

(Skz )ij =
∫

Ωk
lki (r) ∂zlkj (r) r dr

= Jk
(
v11
(
xzS

(1)
ij + yzS

(2)
ij

)
+ 2Jkyz

(
xzS

(3)
ij + yzS

(4)
ij

)
− 2Jkxz

(
xzS

(5)
ij + yzS

(6)
ij

))
= Jk(Mk

r )ij(xz(Dx)ij + yz(Dy)ij).

Remark 4.11.
We realize that

(Mk
r )−1Skr = xrDx + yrDy,

(Mk
r )−1Skz = xzDx + yzDy.

That means the BOR stiffness matrices do not have to be computed explicitly. Only the
matrices Dx, Dy are needed which are already available (see [11]).
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Computation of the Face Matrix

It remains to evaluate the flux expression on the right hand side of the semi-discrete
scheme (4.4.3), that is, we need to compute integrals of the form

Ek :=
∫
∂Ωk

GE
k(r) lki (r) r dr,

where GE
k is one of the flux terms in (4.4.4) on Ωk.

In our case Ωk is a triangle, and thus we can decompose its boundary ∂Ωk into its three
edges e1, e2, and e3, so that we have

Ek =
∫
∂Ωk

GE
k(r) lki (r) r dr =

3∑
m=1

∫
em

GE
k(r) lki (r) r dr, (4.4.15)

Inserting the expansion of the fields into basis functions lkj , we find

∫
em

Gk(r) lki (r) r dr =
Np∑
j=1

Gk
j

∫
em
lki (r) lkj (r) r dr. (4.4.16)

Recall the face matrix defined in (4.4.5), i.e.

(Fk)ij =
∫
∂Ωk

lki (r) lkj (r) r dr.

In (4.4.16) we see we can split the face matrix integral into three integrals over the three
edges e1, e2, and e3; thus, by letting

M
(k,em)
ij :=

∫
em
lki (r) lkj (r) r dr,

expression (4.4.16) can be written as a matrix-vector product of the discrete flux vector
Gk and M (k,em); the discretized version of the flux expression in (4.4.3) is thus given as
FkGk =

∑3
m=1M

(k,em)Gk. The matrix M (k,em) is very similar to the BOR mass matrix,
with the distinction that the integration only runs over a certain edge of the element
instead over its volume.
We can use one-dimensional orthogonal polynomials to compute this surface integral in
an efficient way. As in the previous computations of the local matrices, we transform to a
reference element; in one dimension, this is I = [−1, 1]. We collect all results and details
of how to determine Ek in the next lemma.

Lemma 4.12 (Surface integral).
The integral Ek can be approximated by

Ek ≈
3∑

m=1

p+1∑
j=1

Gk
jJ

1
k

∫
em
lkj (r) lki (r) r dr,

where in one dimension, Np = p+ 1. Here, J1
k = 1

2 vol(∂Ωk). The edge matrices

M em
ij =

∫
em
lkj (r) lki (r) r dr, (m = 1, 2, 3)

can be composed into template matrices as

M (k,em) = |em|2

(
vm1M

1D + em1
2 M1D

r

)
,
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where

M1D :=
(
V 1D(V 1D)T

)−1
,

M1D
r :=

(
V 1D
r (V 1D

r )T
)−1

.

The matrices V 1D and V 1D
r are the generalized one-dimensional Vandermonde matrices

(V 1D)i′j′ = P
(0,0)
j′−1 (τi′),

(V 1D
r )i′j′ = P

(0,1)
j′−1 (τi′).

The indices i′, j′ result from a one-to-one correspondence between the indices i, j ∈ {1, . . . , Np}
for the nodes xi on em to indices i′, j′ ∈ {1, . . . , p + 1} for the nodes τi′ in [−1, 1] with
xi = γm(τi′). γm(τ) exploits the transformation of the edges onto the reference interval
[−1, 1],

γm(τ) = vm + 1 + τ

2 em.

Remark 4.13.
In the code we write the face matrix Fk in vector notation as F = [Mk,e1 ,Mk,e2 ,Mk,e2 ]T .
Also, we have the notation J1

k =̂ Fscale, Fk=̂ LIFT. The face matrix is also called lift
matrix (see [11]).

Proof. The edges em are mapped onto the reference interval [−1, 1] by the transformation

γm(τ) = (γm1, γm2)T = vm + 1 + τ

2 em.

M
(k,em)
ij thus becomes

M
(k,em)
ij = |em|2

∫ 1

−1
γm1(τ) lki (γm(τ))lkj (γm(τ)) dτ.

The interpolation points are chosen such that there are p + 1 points on each edge with
identical distribution. Thus we can replace the element-specific two-dimensional Lagrange
polynomials lki (r) by corresponding one-dimensional Lagrange polynomials li′(τ) on the
reference interval, i.e.

M
(k,em)
ij = |em|2

∫ 1

−1

(
γm1 + 1 + τ

2 em1
)
li′(τ)lj′(τ) dτ.

Here we consider a one-to-one correspondence between the indices i, j ∈ {1, . . . , Np} and
the indices i′, j′ ∈ {1, . . . , p+ 1} as explained in the lemma.
Similarly to the procedure of the BOR mass matrix, we can express the Lagrange polyno-
mials in terms of Jacobi polynomials and exploit the orthogonality relations to find

M (k,em) = |em|2

(
vm1M

1D + em1
2 M1D

r

)
.

4.5 Numerical Tests
From sections 3.4.1 and 4.2.1 we know that DG schemes applied to general hyperbolic
equations have an optimal convergence rate of O(hp+1), as in the one-dimensional case.
We will demonstrate in this section that we find p-convergence also for our scheme applied

83



4 Application: Rotationally Symmetric Maxwell’s Equations

the two-dimensional BOR equations.
We will start with a first basic test by looking at a two-dimensional homogeneous cavity.
Here, we check the p-convergence behavior as predicted in theory, see theorem 3.29.
For many realistic cases it is necessary to simulate open systems. Unfortunately, it is
non-trivial to formulate and implement exact open boundary conditions. As a well-known
alternative, one can add an absorbing layer around the computational domain. If this layer
is designed in a way to absorb outgoing radiation without any reflections at its interface,
it is called a perfectly matched layer (PML). We therefore extend our test systems by
uniaxial perfectly matched layers (UPML), as introduced in section 2.4.2,

Another important extension is the total field/scattered field (TF/SF) approach which
allows – within the discontinuous Galerkin approach – a relatively easy way to add sources
to the system. As sources we will consider an incoming traveling wave and a traveling
Gaussian pulse.

As a first basic test system including PML we will look at a homogeneous cavity with
PML in z−direction in order to check the performance of the PML. As a second test, we
consider a glass fiber with PML and insert a traveling wave or a Gaussian pulse, respec-
tively, as an incoming wave. As a last test we look at a tapered fiber with a traveling
Gaussian pulse as an incoming wave.

In numerical simulations with PML and TF/SF we have to regard several error sources
which can influence the performance of the scheme. We basically expect two error sources:
an error coming from the approximation to the exact Gaussian pulse, which is a convolu-
tion integral; and an error coming from the PML, like reflection effects. To judge whether
our results are reasonable we orient on what is known from finite difference time-domain
methods (see e.g. [22]). We therefore carry out the following tests on the performance of
the PML and the approximation to the Gaussian pulse:

1. First basic test: Increasing the polynomial order p should lead to a better spatial
resolution.

2. Error coming from the source: If we increase the temporal width of the Gaussian
pulse we should obtain a better approximation to the convolution integral.

3. Error coming from the PML: Ideally the PML absorbs the fields completely. In-
side the layer, the fields decay exponentially fast, so that there occurs no reflection
back into the medium. In numerics, there will be a reflection error. To keep this
error small, first the PML should be wide enough (so that the exponential decay
can unfold), secondly, we can vary the PML parameters such that the reflection gets
minimal. From FDTD we expect the reflection decreases down to a certain minimal
value (around 10−4, if not even better) and then increases again for increasing pa-
rameter values (using log-scaling). The values of the parameters corresponding to
this reflection minimum are then optimal.

Before we come to the single test systems, we introduce the UPML and the TF/SF ap-
proach for BOR Maxwell’s equations.

4.5.1 Uniaxial Perfectly Matched Layers
In order to simulate real physical systems, we need to be able to treat open systems numer-
ically. As already introduced in section 2.4.2, this can be performed by using a perfectly
matched layer (PML). Specifically, we use unixial PML (UPML) here. For our case of
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Figure 4.9: Sketch of a BOR–PML-region (gray) with PML-width r1 − R = z1 − Z. The
physical region is [0, R]× [−Z,Z].

BOR Maxwell’s equations, we need UPML in cylinder coordinates, which can be found in
the paper by Teixeira and Chew [56].

We start by Fourier-transforming Maxwell’s curl-equations to the frequency domain, i.e.
(with the convention ∂t ↔ −iω)

∇× Ȟ = −iωεĚ, (4.5.1)
∇× Ě = iωµȞ.

By f̌ we denote the Fourier transform of a function f as defined in section 2.4.2. We
choose the UPML region as shown in figure 4.9. We have in r-direction the PML region
[R, r1] and in z−direction the PML regions [Z, z1] and [−Z,−z1], respectively.

Lemma 4.14 (BOR Maxwell’s Equations with UPML).
BOR Maxwell’s equations with UPML in cylinder coordinates read

− iωεΛĚ = ∇× Ȟ,

iωµΛȞ = ∇× Ě,

where the tensor Λ is given as

Λ =


sφsz
sr

0 0
0 srsz

sφ
0

0 0 sφsr
sz

 .
Here,

sr(r) = κr(r)−
σr(r)

iω , sz(z) = κz(z)−
σz(z)

iω , sφ(r) = r̃(r)
r
,

r̃(r) = r1 +
∫ r

r1
sr(r′)dr′.

For a proof, see [56]. We call σr and σz the PML parameters.
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Choice of the PML Parameters

Throughout we choose κr(r) = κz(z) = 1 so that

σr(r) = σr = const, σz(z) = σz = const .

Thus, we get

r̃(r) = r

(
1− σr

iω

)
+ σr

iω r1 and

sr = 1− σr
iω , sz = 1− σz

iω , sφ =
(

1− σr
iω

)
+ r1σr
r iω .

For PML in r-direction, it is σr 6= 0, σz = 0; for PML in z-direction, it is σr = 0, σz 6= 0,
and in the corners σr 6= 0, σz 6= 0. In the medium, we have σr = σz = 0. See figure 4.9
for an illustration.

UPML for BOR Maxwell’s Equations

Thus, in frequency domain, Maxwell’s equations (4.1.4) with UPMLs can be written
component-wise as

− εiωĚr = −∂zȞϕ + im
r
Ȟz + 1

r
J̌ (E)
r ,

− εiωĚϕ = −∂rȞz + ∂zȞr + 1
r
J̌ (E)
ϕ ,

− εiωĚz = ∂rȞϕ + 1
r
Ȟϕ −

im
r
Ȟr + 1

r
J̌ (E)
z ,

− µiωȞr = ∂zĚϕ −
im
r
Ěz + 1

r
J̌ (H)
r ,

− µiωȞϕ = ∂rĚz − ∂zĚr + 1
r
J̌ (H)
ϕ ,

− µiωȞz = −∂rĚϕ −
1
r
Ěϕ −

im
r
Ěr + 1

r
J̌ (H)
z ,

(4.5.2)

with the polarization currents J̌(E) and J̌(H), which are introduced such that iω is elim-
inated. Then we introduce a new variable Pi with i ∈ {r, ϕ, z}, which results in an
additional equation for Pi, a so-called auxiliary differential equation (ADE). In the end,
we get 12 equations in total for the electromagnetic fields E,H and the corresponding
polarizations P(E),P(H), as stated in the next lemma.
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Lemma 4.15 (BOR Maxwell’s Equations with UPML).

rε∂tEr = −r∂zHϕ + imHz + P (E)
r + ε(r1σr − rσz)Er,

∂tP
(E)
r = −σrP (E)

r − εσrr1(σr − σz)Er,

rε∂tEϕ = −r∂rHz + r∂zHr + P (E)
ϕ − ε(r1σr + rσz)Eϕ,

r∂tP
(E)
ϕ = −rσrP (E)

ϕ + r1σrP
(E)
ϕ − εσrr1((r1 − r)σr − rσz)Eϕ,

rε∂tEz = Hϕ + ∂rHϕ − imHr + P (E)
z + ε((r1 − 2r)σr + rσz)Ez,

∂tP
(E)
z = −σzP (E)

z + εσ2
r (r1 − r)Ez + εσz((r1 − 2r)σr − rσz)Ez,

rµ∂tHr = r∂zEϕ − imEz + P (H)
r + µ(r1σr − rσz)Hr,

∂tP
(H)
r = −σrP (H)

r − µσrr1(σr − σz)Hr,

rµ∂tHϕ = r∂rEz − r∂zEr + P (H)
ϕ − µ(r1σr + rσz)Hϕ,

r∂tP
(H)
ϕ = −rσrP (H)

ϕ + r1σrP
(H)
ϕ − µσrr1((r1 − r)σr + rσz)Hϕ,

rµ∂tHz = −Eϕ − ∂rEϕ + imEr + P (H)
z + µ((r1 − 2r)σr + rσz)Hz,

∂tP
(H)
z = −σzP (H)

z + µσ2
r (r1 − r)Hz + µσz((r1 − 2r)σr − rσz)Hz,

(4.5.3)

where we have one auxiliary differential equation for each component within the PML. It
should be noted that these auxiliary differential equations do not contain spatial derivatives,
which means that no modification of the numerical flux is needed [105, 106].

Proof. We only demonstrate the computations for the E-field. The principle is the same
for the H-field. The equations differ in a sign (a small but very important difference).

We begin with the equation for Er:

Define
J̌r := iωεr

(
sφsz
sr
− 1

)
Ěr.

Using the relation

sφsz
sr
− 1 =

(
1− σr

iω + σrr1
r iω

) (
1− σz

iω
)

1− σr
iω

− 1 =
(
iω − σr + σrr1

r

) (
1− σz

iω
)

iω − σr
− 1

= 1
r(iω − σr)

(
σrσz
iω (r − r1)− rσz + r1σr

)
,

J̌r becomes

J̌r = iωε
iω − σr

(
σrσz
iω (r − r1)− rσz + r1σr

)
Ěr.

Now introduce the new variable

P̌Er := J̌r + xĚr.

x stands for an unknown expression which shall be determined such that iω drops out.
Making the ansatz

(iω − σr)P̌Er = iωε
(
σrσz
iω (r − r1)− rσz + r1σr

)
Ěr + (iω − σr)xĚr,
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we come to
iωx− iωεrσz + iωεr1σr = 0⇔ x = ε(rσz − r1σr),

and it follows:

− iωP̌Er = −σrP̌Er + εσrr1(σz − σr)Ěr.

After Fourier transformation we obtain the equation for Er and the ADE for P (E)
r .

We resume with the equation for Eϕ:

As before we define
J̌ϕ := iωεr

(
srsz
sφ
− 1

)
Ěϕ

and use the relation

srsz
sφ
− 1 =

(iω − σr)(1− σz
iω )

iω − σr + σr
r1
r

− 1 =
−σz + σrσz

iω − σr
r1
r

iω − σr + σr
r1
r

,

leading to
J̌ϕ = r iωε

r iω − σr + σrr1

(
r
σrσz
iω − rσz − r1σr

)
Ěϕ.

Define
P̌Eϕ := J̌ϕ + xĚϕ.

Then we have

(r iω − σr + σrr1)P̌Eϕ = r iωε
(
r
σrσz
iω − rσz − r1σr

)
Ěϕ + (r iω − σr + σrr1)xĚϕ,

and we obtain

riωx− r2 iωεσz − r iωεr1σr = 0⇔ x = ε(rσz + r1σr).

Consequently,

− r iωP̌Eϕ = −rσrP̌Eϕ + σrr1P
E
ϕ − εσrr1[r(σz − σr) + σrr1]Ěϕ.

Finally, we present the details for the equation for Ez:

Define
J̌z := iωεr

(
srsφ
sz
− 1

)
Ěz.

As before, it is

srsφ
sz
− 1 =

−2rσr + σrr1 + σ2
r

iω (r − r1) + rσz

r(iω − σz)
,

therefore we come to

J̌z = iωε
iω − σz

(
σr(r1 − 2r) + σ2

r

iω (r − r1) + rσz

)
Ěz.

We introduce
P̌Ez := J̌z + xĚz,
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Figure 4.10: a) Splitting of a region into Scattered Field and Total Field region. (b) Two
triangles at the interface between Total Field and Scattered Field.

resulting in

(iω − σz)P̌Ez = iωε
(
σr(r1 − 2r) + σ2

r

iω (r − r1) + rσz

)
Ěz + (iω − σz)xĚz,

and finally x = ε[σr(2r − r1)− rσz], so that

− iωP̌Ez = −σzP̌Ez − εσ2
r (r − r1)Ěz + εσz[σr(2r − r1)− rσz]Ěz.

4.5.2 Sources and the Total Field/Scattered Field Approach

The interesting questions and phenomena in optics arise when incoming light meets the
physical system. Depending on the strength, the polarization, the frequency and direction
of light the system will react accordingly.
As a second step towards more physical systems we thus introduce sources into our model.
A very popular way for linear problems is the so-called total field/scattered field (TF/SF)
approach; see e.g. the review article [13] and the references therein for many details.
Within the TF/SF approach the total electromagnetic fields can be split into a scattered
and incident part as

Etotal(x, t) = Ein(x, t) + Escat(x, t),
Htotal(x, t) = Hin(x, t) + Hscat(x, t).

(4.5.4)

It is exactly the incident field which represents a given mathematical expression of the
incoming light. Given the total field, the scattered field can be determined; given the
scattered field, we can compute the total field. Figure 4.10 shall illustrate the situation.
Since we work with linear Maxwell’s equation, we solve in each region for the scattered
and the total field. In conservative form (2.6.11) the equations to solve read

Q∂tutotal +∇ · F(utotal) = 0 in the TF region,
Q∂tuscat +∇ · F(uscat) = 0 in the SF region.
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4 Application: Rotationally Symmetric Maxwell’s Equations

If we are in the TF or SF region itself, the equations are the familiar Maxwell’s equations.
There we have the known field differences

∆Etotal(x, t) = Eext
total(x, t)−Eint

total(x, t),
∆Escat(x, t) = Eext

in (x, t)−Eint
scat(x, t).

With “int” we mean the interior of the local cell and with “ext” the exterior, i.e. the
neighboring cell. But on the interface between total field and scattered field, this is not
true anymore. Although we may consider Maxwell’s equations for the total field in the
TF region (or the other way around if we are in the SF region), at the interface we
suddenly switch between the total and scattered field. We therefore need to adjust the
field differences in the numerical flux.
Due to (4.5.4) we can express the total field by means of the scattered and incident field,
that is

Etotal = Escat + Ein,

and we can express the scattered field by means of the total and incident field, i.e.

Escat = Etotal −Ein.

The adjustment of the numerical flux at the interface can be accomplished as follows.
Imagine to be in a cell in the TF region. There, the field difference is given as

∆Etotal = Eext
total −Eint

total.

In a neighboring cell in the SF region we only have Eext
scat. In order to get an equality, we

need to add the incident field value to get the total field as

Eext
total = Eext

scat + Eext
in .

Now we look from the other side. Imagine to be in a cell in the SF region. At the interface
from SF to TF region we need to adjust the expression

Eext
scat = Eext

total −Eext
in .

Collecting everything, the field differences at the interface therefore are

∆Etotal = Eext
scat + Eext

in −Eint
total = Eext

scat −Eint
total + Ein,

∆Escat = Eext
total −Eext

in −Eint
scat = Eext

total −Eint
scat −Ein.

So the only adjustment consists in adding or substracting the incident field to the to-
tal/scattered field differences.

In our simulations we considered traveling waves and a traveling Gaussian pulse in z-
direction, respectively. We remark that the Gaussian pulse we use is not a solution to
Maxwell’s equations. It is an approximation to the true solution which is – after Fourier
transformation – a convolution integral [32], [33]. This integral might be computed ex-
actly (in the sense that the integral is approximated by some quadrature formula, e.g.),
but the effort involved might lead to inefficiency with respect to computational time and
memory. Additionally, there is an error coming from the approximation of the integral
as well. Indeed, the approximation we use is “relatively good”, and it becomes better for
increasing values of the Gaussian pulse width σ. We look at this in the next section in
more detail.

90



4.5 Numerical Tests

Figure 4.11: A sketch for the relation n × E+ = −n × E− in case of perfectly electric
conducting boundary conditions n×E = 0.

4.5.3 Homogeneous Cavity as a Test System

As a first basic test we consider a homogeneous cylindrical resonator of radius R = 1 and
length L = 1, i.e. Ω = [0, 1]2. We choose TM mode with m = 1 as an initial condition and
let the fields evolve for 10 periods of oscillation. For this case the BOR equations (4.4.1)
reduce to

− 1
rµ

(imEz − r∂zEϕ) = ∂tHr,

− 1
µ

(∂zEr − ∂rEz) = ∂tHϕ,

−1
ε
∂zHϕ = ∂tEr,

1
ε
∂zHr = ∂tEϕ,

1
rε

(∂r(rHϕ)− imHr) = ∂tEz

in the weak sense (with respect to the measure r dr). We choose perfectly electric con-
ducting (PEC) boundary conditions, i.e. n×E = 0. At a boundary element we therefore
require

n×E+ = −n×E−,

or, equivalently, [[E]] = −2E−. Figure 4.11 shall motivate an explanation of this relation in
one dimension. Let Ωk be a boundary element and Ωk′ its neighboring element. Imagine
to have a so-called ghost cell Ωg left to Ωk; that is, formally, Ωg /∈ Ω. At the edge
ek := ∂Ωk ∩ Ωg, we require n× E = 0, and n is the outer normal at ek pointing from Ωk

to Ωg; −n is the outer normal at ek pointing in the opposite direction, i.e. from Ωg to
Ωk. Therefore, in order to obtain n × E = 0 on ek, the value on ek coming from Ωg, i.e.
n×E−, and the value on ek coming from Ωk, that is, −n×E+, must be the same, which
means: n×E+ = −n×E−. For the H-field it is mathbfn×H+ = n×H−, i.e. [[H]] = 0.

91



4 Application: Rotationally Symmetric Maxwell’s Equations

For this system the exact solutions are known:

Ez(r, ϕ, z, t) = Jm(γmn r)eimϕ cos
(κπz
L

)
e−iωmnt,

Er(r, ϕ, z, t) = − κπ

Lγmn
J ′m(γmn r)eimϕ sin

(κπz
L

)
e−iωmnt,

Eϕ(r, ϕ, z, t) = − imκπ
r Lγ2

mn

Jm(γmn r)eimϕ sin
(κπz
L

)
e−iωmnt,

Hr(r, ϕ, z, t) = mεωmn
r γ2

mn

Jm(γmn r)eimϕ cos
(κπz
L

)
e−iωmnt,

Hϕ(r, ϕ, z, t) = iεωmn
γmn

J ′m(γmn r)eimϕ cos
(κπz
L

)
e−iωmnt.

Here, the Jm are the Bessel functions of the first kind, γmn its nth zero, κ ∈ N is the
oscillation number, ωmn = c

√(γmn
R

)2 +
(
κπ
L

)2 the frequency and c = 1√
εµ the speed of

light.

Remark 4.16.
We remark the exact solutions are determined from the relations

Et = 1
γ2
(
∇t(∂zEz)−

iω
c

(êz ×∇t)Hz
)
,

Ht = 1
γ2
(
∇t(∂zHz) + (iωε)(êz ×∇t)Ez

)
.

The index “t” denotes the transversal part of the electric fields, i.e. Et = (Er, Eϕ), and
∇t is the transversal derivative with

∇t :=

 ∂r
1
r∂ϕ

 .
For a test run we chose – without physical motivation – κ = 1, ε = 1, µ = 1, m = 1, n = 1.
At each time step, we record the L2-error of the approximate solution Ez and the analytical
solution Ehz , i.e.

||Eh
z −Ez||L2 = ||E

h
z −Ez||2
||Eh

z ||2
.

In figure 4.12 we plot the L2-error over the entire time in logarithmic scale, for increasing
polynomial order p and decreasing maximal edge length h. We observe an error behavior
of O(hp+1), as we know from the Cartesian case.

4.5.4 Homogeneous Cavity with PML in z-direction
We consider the test system as depicted in figure 4.13. Here, we include PML in negative
z-direction with the following parameter settings:

• σr = 0, σz = 7.

• The PML width shall be 0.5, i.e. we define the PML region in z-direction as PMLz :=
[0, 1.5]× [−1,−1.5].

Furthermore we inject a traveling wave or a Gaussian pulse in z-direction with wave
number k = −2π at the interface between SF and TF region, which is located at Z = 1. We
thus consider the SF region ΩSF := [0, 1]×[1, 1.5] and the TF region ΩTF := [0, 1]×[−1.5, 1].
The entire region is Ω = [0, 1]× [−1.5, 1.5]. We thus have a cylinder of length 3. For our
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4.5 Numerical Tests

Figure 4.12: Error plot for Ez in a homogeneous medium with ε = 1, µ = 1, m = 1 for
increasing polynomial order p ∈ {3, . . . , 9} and decreasing edge length h.

simulations we chose the polynomial order p = 5, and we impose PEC boundary conditions
on the outer cylinder wall.
As mentioned previously, we take a traveling wave or a traveling Gaussian pulse as source,
which are given in the following.

Traveling waves

We consider a closed system with PEC boundary conditions and initialize traveling waves
in z−direction into the system. These are given as (see e.g. [100], [99], [107], and section
4.5.3)

Ez(r, ϕ, z, t) = Jm(γmn r)eimϕe±ikze−iωmnt,

Er(r, ϕ, z, t) = ± ik
γmn

J ′m(γmn r)eimϕe±ikze−iωmnt,

Eϕ(r, ϕ, z, t) = ± imk
r γ2

mn

Jm(γmn r)eimϕe±ikze−iωmnt,

Hr(r, ϕ, z, t) = mεωmn
r γ2

mn

Jm(γmn r)eimϕe±ikze−iωmnt,

Hϕ(r, ϕ, z, t) = iεωmn
γmn

J ′m(γmn r)eimϕe±ikze−iωmnt,

Hz(r, ϕ, z, t) = 0.

Here, k is the wave number (which can be chosen arbitrarily), ωmn = c
√(γmn

R

)2 + k2

is the frequency and c = 1√
εµ is the speed of light. We chose k = 2π

λ = −2π with the
wavelength λ = 1. Traveling waves serve as a first test on the performance of the PML
and the sources within the TF/SF framework.
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4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.13: A sketch of a test system with scattered field (SF) and total field (TF) region
and PML in z-direction. A traveling wave is launched into the system at the
TF/SF edge as indicated by the black arrows.

A Gaussian Pulse traveling in z-direction

We aim at simulating the wave propagation in a glass fiber. For this we multiply the exact
solution known from the homogeneous test case with

A(t) := e−iω(t0−t)e−(t0−t)2/(2σ2).

A(t) consists of an oscillating part with frequency ω and a Gaussian pulse envelope, where
σ is its width and t0 is its center. For a motivation of this choice, see [13, Ch. A.1.3]. The
frequency is given as ω = k0c, where k0 = 2πλ is the free-space wave number and λ is the
wave number. We have chosen λ = 1.5 in our simulations. σ should be a multiple of t0,
i.e. σ = at0 for some a ∈ N. By multiplying the exact solution of the homogeneous case
from the previous subsection with A(t) instead of e−iωmnt, we obtain

Ez(r, ϕ, z, t) = Jm(γmn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

Er(r, ϕ, z, t) = ik
γmn

J ′m(γmn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

Eϕ(r, ϕ, z, t) = imk
r γ2

mn

Jm(γmn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

Hr(r, ϕ, z, t) = mεω

r γ2
mn

Jm(γmn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

Hϕ(r, ϕ, z, t) = iεω
γmn

J ′m(γmn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

Hz(r, ϕ, z, t) = 0.

(4.5.5)

In order to check the performance of the PML and sources, we consider the following tests,
as already alluded to in the introduction of this section:

1. Increasing the polynomial order p must lead to a better spatial resolution. We can
see this in figure 4.14.

2. Error coming from the source: For bigger t0 and σ the error coming from the Gaus-
sian pulse source must decrease (see e.g. [13, Ch. A.1.3]). We chose successively

t0 = 1, σ = 5; t0 = 2, σ = 10; t0 = 3, σ = 15; t0 = 4, σ = 20.
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The results are shown in figure 4.15. The first bump at the very beginning of the
plot comes from the error made in the source approximation. Indeed we can see that
this bump gets smaller and smaller for increasing σ.

3. Error coming from the PML: As a measure for the reflection we define

R :=
max

x∈Ωs,t>10σ
Ez(x, t)

max
r∈[0,1], t>0

Ez(r, Z, t)
,

that is, R is the ratio of the maximum of the Ez-field in the SF region for times
bigger than 10σ to the maximum of the Ez-field at the TF/SF edge (in each time
step); we choose t > 10σ since we are interested in the error coming from the
reflection alone, not from the source itself (this was examined in point 2). The
source error dominates and it would distort R. In figure 4.15 the second bump
gives the maximum value of the reflected field. We observe the correct translation
of the center t0 by approximately a factor of the length of the cylinder, taking into
account the wavelength. R can be understood as an approximation to the reflection
coefficient, which is the ratio of the electric field strength of the reflected wave to
that of the incident wave. The results are shown in figure 4.16. Indeed we see that
R decreases down to a minimal value around 10−4 and then increases again. This is
the same behavior known from FDTD (see e.g. [22]).

Figure 4.14: The spatial resolution of the fields gets better if the polynomial order p is
increased. Here, t0 = 1, σ = 5, the simulation time is 30 units.

4.5.5 A Glass Fiber with PML
In order to simulate the propagation of electromagnetic waves in a glass fiber, we succes-
sively extend the systems from the previous sections in the subsequent manner, namely:

(1) We add PML in z-direction, and we consider a finite system with PEC boundary
conditions.

(2) As a next step, we add PML in r- and z-direction, simulating an open system with
decaying solutions for r → ∞. This system can be looked upon as a model for a
dielectric covered conducting rod (see [99, p. 524 ff.]).

(3) We simulate wave propagation in a half glass fiber.
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4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.15: The error coming from the source decreases for increasing values of t0 and σ.

(4) As a last step we consider a tapered fiber, that is, we add a sample beneath the half
glass fiber. The system is composed of the regions as shown in figures 4.17 and 4.18,
that is

- The entire area is Ω = [0, b] × [−c, c], where b, c are positive numbers. We
denote by bPML the PML width. The scattered field and total field regions are

ΩSF = [0, b]× [c− bPML, c],
ΩTF := [0, b]× [−c, c− bPML].

- The PML region in z-direction is defined as

PMLz :=
(
[0, b]× [c− bPML, c]

)
∪
(
[0, b]× [−c+ bPML,−c]

)
,

where σz 6= 0. In r-direction we have the PML region

PMLr := [b− bPML, b]× [−c, c],

with σr 6= 0, and in rz-direction, i.e. in the corners, we let

PMLrz := PMLz ∩PMLr,

where σr, σz are both nonzero.
- The fiber shall have a width of 2aµm, the fiber region (green) is

Ω1 := [0, a]× [−c, c] with 0 < a < b

and the material parameters ε1, µ1. The rest of the region is the medium Ω2
with ε2 = µ2 = 1.

In the following we present all the details of these four systems we are considering.

(1) Fiber with PML in z-direction, finite system with PEC boundary conditions

We look at a fiber with a core of radius a and a cladding, as is visualized in figure 4.18(a).
At r = b we impose PEC boundary conditions. As a source we initialize the analytic
solutions of an inhomogeneous medium. For the one-dimensional case, these are given in
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Figure 4.16: Error coming from PML in negative z-direction: behavior of R as a measure
for the reflected field strength for varying PML strength.

4.3.3. In two dimensions, the exact solution in TM mode in Ω is composed of the exact
solution in the fiber region Ω1 and the medium Ω2 in the following manner:

For 0 ≤ r ≤ a :

E(1)
z (r, ϕ, z, t) = A1Jm(γ(1)

mn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
r (r, ϕ, z, t) = A1

ik
γ

(1)
mn

J ′m(γ(1)
mn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
ϕ (r, ϕ, z, t) = A1

−mk
r(γ(1)

mn)2
Jm(γ(1)

mn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
r (r, ϕ, z, t) = A1

mε1ω

r(γ(1)
mn)2

Jm(γ(1)
mn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
ϕ (r, ϕ, z, t) = A1

iε1ω
γ

(1)
mn

J ′m(γ(1)
mn r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
z (r, ϕ, z, t) = 0.

For a ≤ r ≤ b :
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4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.17: A system with a fiber of radius a, PML in r- and z-direction, scattered field
(SF) and total field (TF) region. A Gaussian pulse is launched at the edge
between TF and SF region with the traveling direction as indicated by the
arrows. The mesh was generated with NetGen 4.9.9 [108].

Figure 4.18: (a) Fiber with PEC boundary conditions. (b) Fiber with a PML.
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E(2)
z (r, ϕ, z, t) =

(
A2Jm(γ(2)

mn r) +B2Ym(γ(2)
mn r)

)
eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(2)
r (r, ϕ, z, t) = −ik

γ
(2)
mn

(
A2J

′
m(γ(2)

mn r) +B2Y
′
m(γ(2)

mn r)
)
eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(2)
ϕ (r, ϕ, z, t) = mk

r (γ(2)
mn)2

(
A2Jm(γ(2)

mn r) +B2Ym(γ(2)
mn r)

)
eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(2)
r (r, ϕ, z, t) = −mε2ω

r (γ(2)
mn)2

(
A2Jm(γ(2)

mn r) +B2Ym(γ(2)
mn r)

)
eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(2)
ϕ (r, ϕ, z, t) = −iε2ω

γ
(2)
mn

(
A2J

′
m(γ(2)

mn r) +B2Y
′
m(γ(2)

mn r)
)
eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(2)
z (r, ϕ, z, t) = 0.

The Ym are the Bessel functions of the second kind, see e.g. [98]. The wave number k has
to be determined from the dispersion relations

k2 + (γ(1)
mn)2 = µ1ε1k

2
0,

k2 − (γ(2)
mn)2 = µ2ε2k

2
0,

where k0 is the wave number in vacuum, i.e. k0 = ω
c . Note that now the frequency ω is

a given quantity, whereas in the case of traveling waves in a homogeneous cavity we had
ω = ωmn, dependent on the zeros γmn of the Bessel functions. Now it is k = kmn, but in
the forthcoming we drop the index to avoid index overflow.

The coefficients A1, A2, B2 and the unknowns γ(1)
mn, γ

(2)
mn, k have to be determined, which

can be achieved by applying boundary conditions and continuity conditions at the interface
at r = a. That is, the tangential field components have to vanish, i.e.

E(1)
z (r = 0) = 0, E(2)

z (r = b) = 0,

and the continuity condition at r = a gives

E(1)
z (r = a) = E(2)

z (r = a), H(1)
ϕ (r = a) = H(2)

ϕ (r = a).

We will present the detailed computations for the next test system, where we include PML
in r-direction. We refer to e.g. [99] and [107] for details.

(2) Fiber with PML in r- and z-direction

We add a PML in r-direction to simulate an open fiber system as shown in figure 4.18(b)
and figure 4.17. The exact solution of this system, again multiplied by a traveling Gaussian
pulse, is launched as a source into the fiber. In the second region, the medium, the solution
has to decay exponentially, since we are considering an open system. It consists of the
modified Bessel functions of the first kind, denoted by Km; see e.g. [98]. In the simulations
we made the following settings:

Ω = [0, 4.5]× [−5, 5], ΩSF = [0, 4.5]× [4.5, 5], ΩTF := [0, 4.5]× [−5, 4.5],
PMLz =

(
[0, 4.5]× [4.5, 5]

)
∪
(
[0, 4.5]× [−4.5,−5]

)
,

PMLr := [4, 4.5]× [−5, 5],
PMLrz := PMLz ∩PMLr,
Ω1 := [0, 1]× [−5, 5], i.e. a = 1, b = 4.5, c = 5, bPML = 0.5.

The exact solution in TM mode in Ω is composed of the exact solution in the fiber Ω1 and
the medium Ω2 as follows (we drop the subscript mn in γmn for clarity):
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For 0 ≤ r ≤ a :

E(1)
z (r, ϕ, z, t) = A1Jm(γ(1)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
r (r, ϕ, z, t) = A1

ik
γ(1)J

′
m(γ(1)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
ϕ (r, ϕ, z, t) = A1

−mk
r (γ(1))2Jm(γ(1)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
r (r, ϕ, z, t) = A1

mε1ω

r (γ(1))2Jm(γ(1)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
ϕ (r, ϕ, z, t) = A1

iε1ω
γ(1) J

′
m(γ(1)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
z (r, ϕ, z, t) = 0,

(4.5.6)

For a ≤ r ≤ ∞ :

E(2)
z (r, ϕ, z, t) = A2Km(γ(2)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
r (r, ϕ, z, t) = −ik

γ(2)A2K
′
m(γ2r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

E(1)
ϕ (r, ϕ, z, t) = mk

r (γ(2))2A2Km(γ(2)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
r (r, ϕ, z, t) = −mε2ω

r )γ(2))2A2Km(γ(2)r) + eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
ϕ (r, ϕ, z, t) = −iε2ω

γ(2) A2K
′
m(γ(2)r)eimϕeikze−iω(t0−t)e−(t0−t)2/(2σ2),

H(1)
z (r, ϕ, z, t) = 0,

(4.5.7)

with

k2 + (γ(1))2 = µ1ε1k
2
0, (4.5.8)

k2 − (γ(2))2 = µ2ε2k
2
0. (4.5.9)

This solution ansatz and relations (4.5.6) or (4.5.7) can be found in [99] and [107].
At the interface r = a the following continuity conditions have to hold:

E(1)
z (r = a) = E(2)

z (r = a),
H(1)
ϕ (r = a) = H(2)

ϕ (r = a),

This leads to a linear system of equations for the unknowns A1, A2, γ
(1), γ(2) which only

has a nontrivial solution if the determinant of the corresponding system matrix vanishes.
This shows that A1 can be chosen arbitrarily, and

A2 = Jm(γ(1)a)
Km(γ(2)a)

, (4.5.10)

which is a consequence of the continuity condition on Ez at r = a. Using the second
continuity condition on Hϕ renders

ε1γ
(2)J ′m(γ(1)a)Km(γ(2)a) + ε2γ

(1)Jm(γ(1)a)K ′m(γ(2)a) = 0.
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4.5 Numerical Tests

Thus, γ(1) is the zero of the function

f(γ(1)) := ε1γ
(2)J ′m(γ(1)a)Km(γ(2)a) + ε2γ

(1)Jm(γ(1)a)K ′m(γ(2)a).

Furthermore, considering (4.5.8), solving for k2 and substracting both equations gives

(γ(1))2 + (γ(2))2 = (µ1ε1 − µ2ε2)k2
0.

γ(1) can be found numerically with any zero finding routine, and k is given through (4.5.8).
We have thus determined all unknowns.

Remark 4.17.
The derivatives of the Bessel functions fulfill the relations [109]

J ′m(x) = 0.5(Jm−1(x)− Jm+1(x)),
K ′m(x) = −0.5(Km−1(x) +Km+1(x)).

This avoids the explicit computation of the derivatives, e.g. via some difference method.

Remark 4.18.
Given E

(1)
z and H

(1)
z – which is 0 in TM mode – the rest of the electromagnetic fields in

Ω1 can be determined by (see e.g. [107])

E(1)
r = i

(γ(1))2
(
k∂rE

(1)
z + ω

r
∂ϕH

(1)
z

)
,

E(1)
ϕ = i

(γ(1))2
(k
r
∂ϕE

(1)
z − ω∂rH(1)

z

)
,

H(1)
r = i

(γ(1))2
(
k∂rH

(1)
z −

ε1µ1ω

r
∂ϕE

(1)
z

)
,

H(1)
ϕ = i

(γ(1))2
(k
r
∂ϕH

(1)
z + ε1µ1ω∂rE

(1)
z

)
.

The fields in Ω2 are obtained by replacing (γ(1))2 by −(γ(2))2.

(3) A half glass fiber with PML in r- and z-direction

We change the system described in (2) as depicted in figure 4.19, so we now consider a
half fiber (here without the sample), ending at the line through z = 0. The exact solution
and the source remain the same. We choose the (not physically motivated) material values
ε1 = 2.0, ε2 = 1.0, µ1 = µ2 = 1.0, and we repeat the simulations. Some snapshots of the
waves are shown in figure 4.20.

(4) A tapered fiber

At last we extend system (3) to include a sample. We simulate a semi-infinite dielectric
fiber system as shown in figures 4.18 (b) and 4.19. The fiber has radius r = 1µm, and
permittivity ε1 = 1.527 in z = [0,∞]. Below the fiber, at the distance of 1µm, we put
a sphere with radius rs = 1µm; to emphasize the effect of the sample we let εs = 12.
The computational domain was chosen to be 4.5µm × 10µm in size and is surrounded
by a PML of width 0.5µm. The system is excited by an injection of a pulse within the
fiber, traveling from the top downwards. The pulse consists of the exact solution of this
system (which can be found in e.g. [98], [107]) multiplied by a Gaussian pulse with carrier
frequency of ν0 = 2π

1.5 and a Gaussian envelope of width σ = 8. Outside the fiber the
solution decays exponentially. Some snapshots of the traveling waves are shown in figure
4.21. For mesh generating we used NetGen 4.9.9 [108].
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4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.19: System with a fiber of radius 1µm and length 5µm, ending in z = 0, and
a sample of radius 1µm. We have PMLs in r- and z-direction with width
0.5µm. A Gaussian pulse is launched at the edge at z = 4.5, as indicated by
the arrows.
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4.5 Numerical Tests

Figure 4.20: Simulation plots of Er traveling in z-direction along a fiber, ending in z = 0.
The system is surrounded by PML. In the fiber we let ε1 = 2.0 and outside
ε2 = 1. (a) At time unit 29.6779, (b) at time unit 44.8395, (c) at time unit
63.5495, (d) at final time 90.0.

103



4 Application: Rotationally Symmetric Maxwell’s Equations

Figure 4.21: Simulation plots of Er traveling in negative z-direction along a fiber, ending in
z = 0. The pulse is then scattered by a sphere with εs = 12 and the outgoing
radiation is absorbed by surrounding PMLs. (a) At time unit 30.0341, (b) at
time unit 38.8765, (c) at time unit 56.8291, (d) at 75.3795.
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4.6 Summary

4.6 Summary
We presented an efficient implementation of the Runge-Kutta discontinuous Galerkin
method for the solution of Maxwell’s equations in axi-symmetric systems (bodies of revo-
lution, BOR) in two and three space dimensions. In contrast to a naive, quadrature-based
approach, we showed how all elementary matrices can be constructed by exploiting the set
of orthogonal Jacobi polynomials. Above all, we demonstrated how the stiffness matrices
can be directly constructed from two global template matrices.

While our approach still requires to pre-compute and invert the BOR mass matrix Mk
r

for each element, it still reduces the required memory by at least a factor of two when
compared to the quadrature-based approach. Since BOR systems are effectively two-
dimensional, in most cases this memory requirement does not lead to significant limitations
in terms of applicability. For cases where memory is very scarce, our method leads to re-
ductions by roughly a factor of four at the price of some additional matrix-vector products.

Finally, in a set of numerical experiments, we demonstrated that our implementation
yields optimal p-convergence and is a promising method for solving the time-dependent
Maxwell equations in BOR systems:

1. We observed higher order convergence of our scheme for a homogeneous cavity.

2. We successively added PML and sources to our systems and showed simulations of
electromagnetic waves traveling along a half fiber and scattering by a sphere, which
was placed beneath the fiber in a distance of 1µm. Our plots show the radiation is
absorbed by the surrounding PML.
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5
Chapter 5

Application: Kerr-Nonlinear Maxwell’s
Equations

The optical Kerr effect is a nonlinear optical phenomenon, which was discovered in 1875
and named after the physicist John Kerr. The Kerr effect arises due to a change in the
refractive index of a material in response to an incoming electric field. The nonlinear be-
havior of the medium is responsible for effects like self-focusing or self-modulation. In the
first case, the refractive index increases with the electric field intensity and the medium
acts as a focusing lens for an electromagnetic wave. In the second example, the index
of refraction varies in time and intensity of the incoming pulse, leading to a phase shift
which produces a shift in the frequency of the pulse. Increasing intensity leads to lower
frequencies, and decreasing intensity gives higher frequencies. Near an extremum of the
intensity, the frequency of the pulse behaves approximately linearly.
Typically, nonlinearities are observed only if high intensities are present, as, e.g. in case
of lasers. Examples of applications involving the optical Kerr effect are fast sensors for the
measurement of electromagnetic fields, the fast determination of the structure of molecules,
or image enhancement and image conversion in presence of ultraviolet radiation (see e.g.
[26]).

In this section we will apply the RKDG method to Kerr-nonlinear Maxwell’s equations. In
contrast to the linear BOR Maxwell’s equations many aspects are different for a nonlinear
problem. This is especially the case for the numerical flux, which is given via a functional
and which is state dependent for nonlinear problems. For BOR Maxwell’s equations we
chose the numerical flux to be the solution of a corresponding Riemann problem. This
resulted in an upwind flux. Due to the linear behavior of the equations, the functional
globally determines the flux and is state independent. For Kerr-nonlinear Maxwell’s equa-
tions we will proceed in a likewise manner. Yet, one crucial difference and difficulty arises
due to the nonlinear nature of the equations. In every point of the domain we have a
different Riemann problem with a corresponding solution and thus the functional deter-
mining the numerical flux is state dependent and not globally given. This increases the
computational effort immensely. For many relevant applications this makes simulations
nearly impossible. Already for one-dimensional, very small systems with e.g. only ten
elements, it takes minutes to run a simulation. Therefore an appropriate approximation
to the analytical numerical flux is indispensable and leads to the research field of Riemann
solvers. We chose several numerical fluxes, a Lax-Friedrichs flux, a Richtmyer flux, an-
other linear flux and an HLL-like flux, which we compare with each othinside the layer,
the fields decay exponentially faster with respect to efficiency and accuracy.

5.1 Kerr-Nonlinear Maxwell’s Equations
The basis for the computation of a numerical flux for the DG method applied to Kerr-
nonlinear Maxwell’s equations are results from a paper by LaBourdonnaye [71]. The
author presents the analytic solution of the Riemann problem corresponding to the Kerr-
nonlinear Maxwell’s equations. He shows uniqueness of this solution under the assumption
of positivity of entropy (see e.g. [70]), and the entropy condition of Smoller-Johnson (see
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5 Application: Kerr-Nonlinear Maxwell’s Equations

section 3.3.2). In this section we cite the main results which are important for our pur-
poses. For details and some theory, we refer to [71].

We consider the Kerr-nonlinear Maxwell’s curl-equations of the form

∂tD(E)−∇×H = 0,
∂tB +∇×E = 0,

(5.1.1)

where the following constitutive relations shall hold:

B(H) = µ0H,

D(E) = E ′
(1

2 |E|
2
)

E.
(5.1.2)

The function E ′ is defined as

E(x) := ε0x+ χx2,

E ′(x) = ε0 + 2χx,
E ′′(x) = 2χ.

(5.1.3)

As a special choice we consider a Kerr-nonlinear medium so that

E ′
(1

2 |E|
2
)

= ε0 + χ|E|2. (5.1.4)

E shall fulfill the following conditions:

(i) E ′
(
x2

2

)
≥ 0 for all x ∈ R.

(ii) E ′′
(
x2

2

)
> 0.

This leads to the requirement χ > 0. For χ = 0 we obtain the linear Maxwell’s equations.
With these assumptions, the energy, that is, the corresponding Hamiltonian, of the system
is convex, implying that D(E) is invertible; the Hamiltonian is given in [71] and later in
(5.2.20) of section 5.2.2. Thus the Kerr-nonlinear Maxwell’s equations (5.1.1) can be
rewritten as

∂tD(E)− 1
µ0
∇×H = 0,

∂tB +
(
∂D(E)
∂E

)−1
∇×D(E) = 0.

(5.1.5)

For the forthcoming we define the Jacobian of D(E) as J(E) := ∂D(E)
∂E and often abbreviate

J(E) = J .

Definition 5.1.
The Kronecker product V⊗W of two matrices V ∈ Rm×n and W ∈ Rr×s is defined as

v11W · · · v1nW
... . . . ...

vm1W · · · vmnW

 . (5.1.6)

The resulting matrix has dimension mr × ns.
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5.1 Kerr-Nonlinear Maxwell’s Equations

With this definition we can give an explicit expression of the matrix J as [71]

J(E) = ∂D(E)
∂E = E ′

(1
2 |E|

2
)

Id +E ′′
(1

2 |E|
2
)

(E⊗E), (5.1.7)

where

E⊗E = (ExE, EyE, EzE) =


E2
x ExEy ExEz

ExEy E2
y EyEz

ExEz EyEz E2
z

 (5.1.8)

for E = (Ex, Ey, Ez). Note that J is symmetric. The inverse J−1 enables a connection
between ∂ED(E) and ∂D(E)E, namely

J−1∂ED(E) = ∂D(E)E. (5.1.9)

The same is true with respect to the time derivative, i.e.

J−1∂tD(E) = ∂tE. (5.1.10)

Proof. All fields depend on (x, t). Taking the partial derivative of D(x, t) with respect to
t, we obtain

∂tD = ∂t(E ′) E + E ′∂tE
= E ′′(Ey∂tEy + Ez∂tEz)E + E ′∂tE

=

E ′′(E2
y∂tEy + EyEz∂tEz) + E ′∂tEy

E ′′(EyEz∂tEy + E2
z∂tEz) + E ′∂tEz


=

 E ′′E2
y E ′′EyEz

E ′′EyEz E ′′E2
z

+ E ′ Id

 ∂tE
=
(
E ′′(E⊗E) + E ′ Id

)
∂tE

= J∂tE.

By Id we mean the 2× 2 identity matrix.

In view to the DG method, where the domain of interest is discretized and a corresponding
mesh is generated, one often works quadrilaterals (in two space dimensions), or with
polyhedra (in three dimensions). In any case, the numerical flux transports information
from one cell to another across their shared faces along the unit normal n pointing into
the neighboring cell. Imagining a face extended to be a half space, the same is true
for any other face of two arbitrary neighboring cells. Due to rotational invariance we
therefore consider propagation only in x-direction so that n = (nx, 0, 0)T , leading to
∂tDx = ∂tBx = 0. Plugging this into (5.1.1), we can rewrite the Kerr-nonlinear Maxwell’s
equations as

∂tDy + ∂xHz = 0,
∂tDz + ∂x(−Hy) = 0,
∂tBy + ∂x(−Ez) = 0,
∂tBz + ∂xEy = 0.

(5.1.11)

We thus have D := (Dy, Dz)T ,E := (Ey, Ez)T ,B := (Bz,−By)T and H := (Hz,−Hy)T .
The matrix J in (5.1.7) then becomes

J = E ′ Id +E ′′(E⊗E) =

E ′ + E ′′E2
y E ′′EyEz

E ′′EyEz E ′ + E ′′E2
z .

 , (5.1.12)
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The inverse of J is determined to be

J−1 = 1
det(J)

E ′ + E ′′E2
z −E ′′EyEz

−E ′′EyEz E ′ + E ′′E2
y

 , (5.1.13)

and the determinant of J in (5.1.12) becomes

det(J) = E ′(E ′ + E ′′|E|2) = (ε0 + χ|E|2)(ε0 + 3χ|E|2). (5.1.14)

For implementation issues we reformulate (5.1.1) as

J−1∂tE−∇×H = 0,
∂t(µ0H) +∇×E = 0,

which, by using (5.1.10), is equivalent to

∂tE− J∇×H = 0,

∂tH + 1
µ0
∇×E = 0.

(5.1.15)

The one-dimensional Kerr-nonlinear Maxwell’s equations are obtained by setting, for in-
stance, Ey = 0 and Hz = 0. This case has been studied in the diploma thesis [110]. The
matrix J−1 is then given as

J−1 =
( 1

ε0+χE2
z

0
0 1

ε0+3χE2
z

)
.

An analytical solution of the resulting Kerr-Maxwell’s equations in one dimension can be
found in [45]. Analogously one could set Ez = 0 and Hy = 0 and get an analogous formula
by substituting Ez → Ey and Hy → −Hz.

Conservative Form of Kerr-Nonlinear Maxwell’s Equations

By defining the state vector u := (Dy, Dz, µ0Hy, µ0Hz)T and the flux vector
F(u) := (Hz,−Hy,−Ez, Ey)T we can write system (5.1.11) in conservative form as

∂tu + ∂xF(u) = 0.

In [71] it is shown that system (5.1.5) is a quasilinear hyperbolic system, which is sym-
metrizable. Its eigenstructure looks as stated in the following lemma.

Lemma 5.2.
The eigenvalues of the Jacobian F′(u) ∈ R4×4 are given as

λ±1 = ± 1√
E ′
, (5.1.16)

λ±2 = ± 1√
E ′ + E ′′|E|2

, (5.1.17)

where we abbreviated E ′ = E ′
(

1
2 |E|

2
)

. The corresponding eigenvectors read

v±1 =

 Ẽ
λ±1 Ẽ

 , v±2 =

 E
λ±2 E

 (5.1.18)

with Ẽ := (−Ez, Ey)T , i.e. Ẽ ⊥ E. It holds

λ−1 ≤ λ
−
2 ≤ 0 ≤ λ+

2 ≤ λ
+
1 .
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5.1.1 Characteristic Fields

Lemma 5.3.

(1) The 1-characteristic field, corresponding to the eigenvalues λ±1 , is linearly degenerate.

(2) The 2-characteristic field, corresponding to the eigenvalues λ±2 , is genuinely nonlin-
ear as long as E 6= 0..

Proof. (1) Recalling definition 3.6, we need to show

∇λ1(u)± · v1(u)± = 0 ∀ u ∈ R6.

Recall that λ±1 = (E ′)−1/2. We then encounter

∇λ1(u)± = (J−1∂Eλ
±
1 , ∂Bλ

±
1 ) = (J−1∂Eλ

±
1 ,0) = J−1

(
±
( 1√
E ′

)′
E,0

)
,

where we applied the chain rule to the expression

∂Eλ
±
1 = ∂E

(
1√

E ′(|E|2/2

)
,

and
(

1√
E ′

)′
means the total derivative

d
dx

(
1√
E ′(x)

)
.

Since E ⊥ Ẽ i.e. E · Ẽ = 0, the claim follows.

(2) According to definition 3.6, we require to show

∇λ2(u)± · v2(u)± 6= 0 ∀ u ∈ R6.

Again, it is

∇λ2(u)± = (J−1∂Eλ
±
2 (|E|2),0),

where λ±2 = (E ′ + E ′′|E|2)−1/2. Using the chain rule we obtain

∂Eλ
±
2 = 2E ′′ h(|E|2) E,

with h(|E|2) := −1
2(E ′ + E ′′|E|2)−3/2. Denoting the first component of v±2 = (E, λ±2 E)T

by v±2,1, we observe

∂Eλ
±
2 · v

±
2,1 = 2E ′′ h(|E|2) E ·E,

which only becomes zero if E = 0. This ends the proof.

For the following, whenever we say the 2-characteristic field is genuinely nonlinear, we
exclude E = 0.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution
When we applied the DG method to BOR Maxwell’s equations, we chose the numerical
flux to be the solution of the corresponding Riemann problem. We make the same choice
for Kerr-nonlinear Maxwell’s equations. In this section we present the solution structure of
the Kerr-nonlinear Riemann problem as given in [71]. In section 3.3 we saw that (Theorem
3.26)

(1) if the kth characteristic field is genuinely nonlinear, we either have a k-shock or a
k-rarefaction wave;

(2) for a genuinely nonlinear k-field, points on a Hugoniot Locus correspond to a k-
shock, and points on a Riemann invariant correspond to a k-rarefaction. An entropy
condition and a second condition on the shock speed give the parts on the Hugoniot
Locus to which an admissible shock corresponds;

(3) for a k-shock, the Rankine-Hugoniot jump conditions must hold;

(4) if the k-th field is linearly degenerate, we have a contact discontinuity. It can be
determined by either applying the Rankine-Hugoniot condition or by using the cor-
responding k-Riemann invariant

(5) the solution of a Riemann problem consists of finitely many waves which are either
a shock or a rarefaction, respectively, or a contact discontinuity.

In our case,

(1) the 2-field is genuinely nonlinear, so we either have a 2-shock or a 2-rarefaction. We
determine a 2-shock via the Rankine-Hugoniot condition and select the admissible
ones by the entropy condition η > 0 and the condition of Smoller-Johnson (3.3.31),
as in [71]. The 2-rarefaction wave is determined via the 2-Riemann invariants;

(2) the 1-field is linearly degenerate, therefore we have a contact discontinuity. It can
be determined by either applying the Rankine-Hugoniot condition or by using the
corresponding 1-Riemann invariant.

In this section we start by determining the Hugoniot Loci and the Riemann invariants for
the Kerr-nonlinear Riemann problem. Afterwards we give its unique solution.

5.2.1 Hugoniot Locus
In order to determine the Hugoniot Loci we use the approach in [57, Ch. 13.7]. In definition
3.17 of section 3.3.2 we defined the Hugoniot Locus as the set

HL = {u : s(u∗,u)(u− u∗) = Fn(u)− Fn(u∗)}, (5.2.1)

where u ∈ Rn and s = s(u∗,u) ∈ R is the shock speed from definition 3.3.22. In our
case, n = 4. A Hugoniot Locus gives the set of all points u∗ that can be connected to an
arbitrary point u by a discontinuity. We aim at finding all states u∗ that can be connected
to a left state uL (or a right state uR). With view to the Riemann problem where one
initially considers the left and right states uL and uR, we are interested in the question in
which case uL and uR are connected by a discontinuity or, more precisely, by an admissible
shock (see definition 3.24). Then either u∗ = uR or u∗ = uL, depending on whether one
is interested in the connection to uL or uR.
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So let u∗ be arbitrary and fixed. We consider n = (1, 0, 0)T so that Fn(u) = F(u). By
using (5.2.1) we obtain via the Rankine-Hugoniot jump condition (3.3.23)

s (D∗y −Dy) = H∗z −Hz, (5.2.2a)
s (D∗z −Dz) = Hy −H∗y , (5.2.2b)
s (B∗z −Bz) = E∗y − Ey, (5.2.2c)
s (By −B∗y) = E∗z − Ez. (5.2.2d)

Additionally, we have the constitutive relations (5.1.2)

Dy = (ε0 + χ|E|2)Ey,
Dz = (ε0 + χ|E|2)Ez.

(5.2.3)

Recall that |E|2 = E2
y +E2

z . We assume to have χ 6= 0. Furthermore, at this point we let
u 6= u∗. We see that we have six equations (5.2.2a) to (5.2.2d), together with equations
(5.2.3), for seven unknowns in total, namely Dy, Dz, Ey, Ez, By, Bz and the shock speed
s. Thus we will get a one-parameter family of solutions. One of the unknowns should be
chosen to be a parameter in such a way that all expressions become relatively simple. In
the diploma thesis [110], where the one-dimensional Kerr-nonlinear Riemann was studied,
the E-field was chosen to be the parameter, and we follow by either taking Ey or Ez to
be the parameter. We choose Ey in the subsequent, but Ez is equally well possible. We
then solve equations (5.2.2a) to (5.2.3) for the remaining unknowns.
We define

α = α(Ez) := ε0 + χ(E2
y + E2

z ). (5.2.4)

It is important to note that α depends on Ez. We combine (5.2.2a) with (5.2.2c) and
(5.2.2b) with (5.2.2d) and obtain

s2 (D∗y −Dy) = E∗y − Ey ⇐⇒ s2 =
E∗y − Ey
D∗y − αEy

, (5.2.5)

s2 (D∗z −Dz) = E∗z − Ez ⇐⇒ s2 = E∗z − Ez
D∗z − αEz

. (5.2.6)

Note that we have assumed E∗y 6= Ey and E∗z 6= Ez for the moment. We equate both
equations for s2 and get after some rearrangement the equation

(−χE∗y)E3
z + (E∗zEyχ)E2

z +
[
D∗y − E∗y(ε0 + χE2

y)
]
Ez + γ = 0, (5.2.7)

where we introduced

γ := βD∗z + (ε0 + χE2
y)E∗zEy −D∗yE∗z ,

β := E∗y − Ey.

As a first step we need to distinguish the following cases:

Case 1:
E∗y = 0, E∗z 6= 0. Then (5.2.7) becomes

χE∗zEyE
2
z + χE∗zE

3
y − χ(E∗z )3Ey = 0

⇐⇒ E2
z + E2

y − (E∗z )2 = 0
⇐⇒ E2

z = (E∗z )2 − E2
y . (5.2.8)
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The solution is given as

E(1,2)
z = ±

√
(E∗z )2 − E2

y . (5.2.9)

Since all values have to be real, we require (E∗z )2 − E2
y ≥ 0, which leads to the

condition |E∗z | ≤ |Ey|.

Case 2:
E∗y 6= 0, E∗z = 0. Equation (5.2.7) reads

− χE∗yE3
z +

[
(ε0 + χ(E∗y)2)E∗y − β(ε0 + χE2

y)− Ey(ε0 + χE2
y)
]
Ez = 0

⇐⇒
(
−E2

z + (E∗y)2 − E2
y

)
Ez = 0,

and it follows that Ez = 0 or E2
z = (E∗y)2 − E2

y . Since Ez has to be real, we need
|E∗y | ≥ |Ey|. The condition |E∗y | ≥ |Ey| may lead to selective discontinuities; yet, Ez
must be continuous, and therefore Ez = 0 is the solution.

Case 3:
E∗y = 0, E∗z = 0. The left hand side of (5.2.7) is zero, and Ez can be chosen
arbitrarily, but it mus depend continuously on Ey. Especially, Ez = Ey or Ez = 0
are possible. In this case, the speed s of the shock is equal to the eigenvalue λ±1 .

Case 4:
E∗y 6= 0, E∗z 6= 0. Equation (5.2.7) is a third order equation in Ez, which can be
analytically solved by applying the Cardano formulas which were published in 1545
(see e.g. [111, 112]).

The Cardano formulas are formulated for the equation

z3 + pz + q = 0. (5.2.10)

A general third order equation of the form

Ax3 +Bx2 + Cx+D = 0, A 6= 0,

can be transformed to the form (5.2.10) by first dividing through A and obtaining the
normal form

x3 + ax2 + bx+ c = 0

with a = B/A, b = C/A, d = D/A. With the substitution x := z − a/3 one obtains the
reduced form

z3 + pz + q = 0

with

p := b− a2

3 , (5.2.11)

q := 2a3

27 −
ab

3 + c. (5.2.12)

Depending on the discriminant D which is defined as

D :=
(
q

2

)2
+
(
p

3

)3
,

one has to distinguish the following cases:
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

(1) D > 0: There is one real solution and two imaginary solutions.

(2) D = 0: There are only real solutions.

(3) D < 0: There are three different real solutions.

Since the electromagnetic fields are physical quantities, only real solutions are of interest.
These real solutions are:

(1) D > 0: Letting a± := − q
2 ±
√
D, the solution is z+ = v1 + v2, where

v1,2 = sign(a±) 3√
a±.

(2) D = 0: If p 6= 0 6= q, the solutions are z(0)
1 = 3q

p and z
(0)
2 = − 3q

2p . If p = q = 0, the
only solution is z(0) = 0.

(3) D < 0:

z−1 =
√
−4

3p · cos
(

1
3 arccos

(
−q2

√
−27
p3

))
,

z−2 = −
√
−4

3p · cos
(

1
3 arccos

(
−q2

√
−27
p3

)
+ π

3

)
,

z−3 = −
√
−4

3p · cos
(

1
3 arccos

(
−q2

√
−27
p3

)
− π

3

)
.

Note that in this case p < 0.

For our case we divide equation (5.2.7) by −χE∗y and define

a := −E
∗
zEy
E∗y

,

b := −E2
y − (E∗y)2 − (E∗z )2,

c := − γ

χE∗y
.

Next, we make the substitution Ez = z − a
3 , which leads to

z3 + pz + q = 0,

where p and q are given in (5.2.11). Following 5.2.1 we obtain Ez by Ez = z − a
3 , where

in detail 
D > 0 : E+

z := z+ − a
3 ,

D = 0 : E
(0)
z,i := z

(0)
i − a

3 (i = 1, 2), if p 6= 0 6= q;
E

(0)
z = 0, if p = 0 = q,

D < 0 : E−z,i := z−i − a
3 (i = 1, 2, 3).

For the case u∗ = u, especially if E∗y = Ey, equation (5.2.7) reduces to

− E3
z + E∗zE

2
z + (E∗z )2Ez − (E∗z )3 = 0,

and a = −E∗z , b = −(E∗z )2, c = (E∗z )3. Also, we then have p = −4
3(E∗z )2 and q = 16

27(E∗z )3.
For E∗z 6= 0 we are in the case D = 0 with p 6= 0 6= q. For E∗z = 0 we would have D = 0
and p = q = 0, and then Ez = 0.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Having determined Ez, Dy and Dz are also known. By and Bz are obtained from equations
(5.2.2c) and (5.2.2d) as

B+
y = B∗y +

√
(E∗z − Ez)(D∗z −Dz), (5.2.13a)

B−y = B∗y −
√

(E∗z − Ez)(D∗z −Dz), (5.2.13b)

B+
z = B∗z −

√
(E∗y − Ey)(D∗y −Dy), (5.2.13c)

B−z = B∗y +
√

(E∗y − Ey)(D∗y −Dy), (5.2.13d)

and by using (5.2.5) the shock speed is given by

s± = ±
(
E∗z − Ez
D∗z −Dz

) 1
2
, (5.2.14)

or, equivalently,

s± = ±
(
E∗y − Ey
D∗y −Dy

) 1
2

. (5.2.15)

We obtain equations (5.2.13a) and (5.2.13b) by using (5.2.14), and equations (5.2.13c)
and (5.2.13d) by taking (5.2.15). The superscript “+” in (5.2.13a) and (5.2.13c) shall
emphasize that the corresponding shock speed is s+, and s− corresponds to equations
(5.2.13b) and (5.2.13d) with superscript “-”.
Figure 5.2 shows two exemplary plots of all possible solutions for all the cases D < 0,
D = 0 and D > 0 for (1) E∗y = 1, E∗z = 0, B∗y = 0, B∗z = 2 and (2) E∗y = 1, E∗z = 1,
B∗y = 2, B∗z = −2, χ = 0.1, ε0 = 1, where we have the notations as displayed in table
5.2.1. For instance, for Ey ∈ [−|E∗y |, |E∗y |] it is D < 0, and we have three real solutions on
the plus or minus branch, respectively; if D > 0, for instance for |Ey| = 2, we have one
real solution on the plus or minus branch, respectively. It is important to emphasize that
we have a plus branch and a minus branch for By and Bz, respectively. Figure 5.3 shows
a more detailed analysis of figure 5.2. In figures 5.4 and 5.5 all plus branches B+

y and B+
z

are marked red and all minus branches B−y and B−z are marked blue.
The discriminant D varies smoothly in Ey and Ez, see figure 5.6 for a visualization. Also,
the tangential components of the electric field have to be continuous across interfaces (see
section 2.2), i.e. Ez is continuous. Furthermore, the Hugoniot Locus consists of a set of
points leading at least to a locally smooth curve. We therefore define the subsequent
selection rules in order to select the correct parts of the complete set of solutions. For all
cases we let Ey ∈ R vary as a parameter, fix arbitrary E∗,B∗ and define the regions

I := (−∞,−|E∗y |),
II := [−|E∗y |, |E∗y |],
III := (−∞,−|E∗y |),

Figure 5.1 visualizes the situation. If Ey is such that D < 0, Ez is given as follows:

Case 1: E∗y < 0, E∗z > 0 or E∗y > 0, E∗z < 0.

Ez|I = E−z,1,

Ez|II = E−z,2,

Ez|III = E−z,3.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Case 2: E∗y > 0, E∗z > 0 or E∗y < 0, E∗z < 0.

Ez|I = E−z,3,

Ez|II = E−z,2,

Ez|III = E−z,1.

Case 3: E∗z = 0 and D = 0. The solution is Ez = 0.

Figure 5.1: (a) Solution Ez for the case E∗y < 0, E∗z > 0 or E∗y > 0, E∗z < 0. (b) Solution
Ez for the case E∗y > 0, E∗z > 0 or E∗y < 0, E∗z < 0.

For D = 0 with p 6= 0 6= q, we first realize that z(0)
1 = −1

2z
(0)
2 . In the linear case the

Hugoniot Locus consists of a family of straight lines with the directions of the eigenvectors
(see the linear example in section 3.3.2); in the nonlinear case these directions are locally
given by the eigenvectors of the system, and locally the winding curves are straight lines,
as in the linear case. Therefore we can choose either z(0)

1 or z(0)
2 , since their directions

are the same. In our tests we chose z(0)
2 . Figures 5.9 and 5.8 each show a branch of the

Hugoniot Locus which is obtained by applying the selection rules to the complete solution
of the system. Figure 5.7 shows a plot of Ez after applying the selection rules and the
resulting plus and minus branches of By and Bz, respectively. At the bottom of figure 5.9
a sketch of the Hugoniot Loci for the Kerr-nonlinear Riemann problem is shown, including
several branches. Compare this picture with the linear case, see figure 3.9.

D > 0 D = 0 D < 0
superscript “+” superscript “(0)” if p 6= 0 6= q superscript “-”

superscript “(00)” if p = q = 0

minus branches B−y , B−z plus branches B+
y , B+

z

subscript “m” subscript “p”

Table 5.1: Notation for the solutions in figure 5.2. The numbers 1, 2, 3 in the subscript
denote the solution number.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.2: Plots of all the solutions given by the Cardano formulas. We have chosen
Ey ∈ [−|E∗y | − 2, E∗y + 4] with (Top) E∗y = 1, E∗z = 0, B∗y = 0, B∗z = 2, χ = 0.1,
ε0 = 1. (Bottom) E∗y = 1, E∗z = 1, B∗y = 2, B∗z = −2, χ = 0.1, ε0 = 1.
The empty spaces in the plots for of Ez and By are due to a deficiency of the
plotting program. They should be closed so that ellipses are obtained.

118



5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Figure 5.3: Details of the plots of figure 5.2. The left picture shows all solutions given via
the Cardano formulas for the Bz component of the Hugoniot Locus. In region
II, where D < 0, we have three real solutions in point 1 on the plus branch
which are identical, and three real solutions in point 2 on the minus branch
which are identical as well. In point 3 in region I, where D > 0, we have
exactly one real solution. On the right, we see the same for the By component:
In points 1 to 3 in region II on the plus branch, it is D < 0, and there are
three real solutions which are not identical. In region I, in the red point 1, it
is D > 0 and there is exactly one real solution.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.4: Left: All solutions Ez for E∗y = 1, E∗z = 0, B∗y = 0, B∗z = 2, χ = 0.1, ε0 = 1
and for all cases D < 0, D > 0 and D = 0 which are used to compute B±y and
B±z . Again, it is Ey ∈ [−|E∗y | − 2, E∗y + 4]. Middle and right: +s branches of
By and Bz, respectively, are marked red, −s branches are marked blue.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Figure 5.5: The same figure as figure 5.4, but for E∗y = 1, E∗z = 1, B∗y = 2, B∗z = −2,
χ = 0.1. Left: All solutions Ez for D < 0, D > 0 and D = 0 which are used
to compute B±y and B±z . Again, it is Ey ∈ [−|E∗y | − 2, E∗y + 4]. Middle and
right: +s branches of By and Bz, respectively, are marked red, −s branches
are marked blue.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.6: Plots of the discriminant D in dependency of Ey with Ey ∈ [−|E∗y |− 2, E∗y + 4]
with (Top) E∗y = 1, E∗z = 0, B∗y = 0, B∗z = 2, χ = 0.1, ε0 = 1. (Bottom)
E∗y = 1, E∗z = 1, B∗y = 2, B∗z = −2, χ = 0.1, ε0 = 1. All the cases D > 0,
D < 0 and D = 0 occur.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.8: One branch of the Hugoniot Locus for the Bz and By components after select-
ing the solutions according to our selection rules with (Top) E∗y = 1, E∗z = 0,
B∗y = 0, B∗z = −2 and (Bottom) E∗y = −1, E∗z = 1, B∗y = 1, B∗z = −2. The
dashed parts mark admissible shocks with λ+

2 (EL) < s < λ+
2 (ER).124



5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Figure 5.9: Top: One branch of the Hugoniot Locus for the Bz component with E∗y = 1,
E∗z = 0, B∗y = 0, B∗z = −2 after selecting the correct solutions. Bottom:
Several corresponding Hugoniot Loci. Blue: B−z , red: B+

z
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5 Application: Kerr-Nonlinear Maxwell’s Equations

5.2.2 Admissible Shocks
Not all parts on the Hugoniot Locus give rise to an admissible shock. In section 3.3.2
we gave conditions in order to determine admissible shocks: positivity of entropy and a
second condition on the speed of the shock, e.g. the Lax entropy condition, the Liu entropy
condition, or the condition of Smoller-Johnson. The author of [71] chooses the condition of
Smoller-Johnson in addition to the entropy condition to ensure uniqueness of the solution
of the Kerr-nonlinear Riemann problem. Seccia found similar results in [70], yet he uses
a reflection and transmission criterion besides the entropy condition. We denote by η the
entropy of the system, and we check for admissibility by requiring positivity of entropy,
that is, η > 0, and by demanding λ2(EL) < s < λ2(ER) (condition of Smoller-Johnson);
see [71, Section 2.3.6].

The Entropy

We want an explicit expression for the entropy. The following demonstration does not
comply with mathematical demands and shall give an idea of how to find the entropy
function given in [71] or [70]. For doing so, first recall Maxwell’s curl-equations

∂tD−∇×H = 0, (5.2.16a)
∂tB +∇×E = 0, (5.2.16b)

with B = µ0H and D = E ′E. By multiplying equation (5.2.16b) with B and equation
(5.2.16a) by E we obtain

B · ∂tB + B · (∇×E) = 0,
E · ∂tD−E · (∇×H) = 0.

Adding both equations, using the vector identity ∇ · (E×B) = B · (∇×E)−E · (∇×H)
and defining S := E×B we get

(B · ∂tB + E · ∂tD) +∇ · S = 0, (5.2.17)

S is called the Poynting vector. Poynting’s theorem (see e.g. [38]) gives (5.2.17) in conser-
vation form as

∂tw +∇ · S = 0, (5.2.18)

where w = wE + wM is the total energy, wE is the electric energy and wM the magnetic
energy, which are respectively given as

wE =
∫

E dD,

wM =
∫ 1
µ0

B dB.

For the Kerr-system (5.1.11) it is

wE =
∫

E dD =
∫

E d(E ′E) =
∫

E d((ε0 + χ|E|2)E)

= ε0

∫
E dE + χ

∫
E d(|E|2E)

= ε0
|E|2

2 + 3
4χ|E|

4,

wM =
∫ 1
µ0

B dB = |B|
2

2µ0
.

(5.2.19)
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

We note that an alternative way of obtaining the energy w is via the Hamiltonian of the
system, which is given as [71]

H(E,B) := D ·E− L(E,B), (5.2.20)

where L is the Lagrangian,

L(E,B) := E
(
|E|2

2

)
E− |B|

2

2µ0
, (5.2.21)

so that

H(E,B) = E ′E ·E− L(E,B) = (ε0 + χ|E|2)|E|2 − (ε0
|E|2

2 + χ
|E|4

4 ) + |B|
2

2µ0

= ε0|E|2 + χ|E|4 − ε0
|E|2

2 − χ |E|
4

4 + |B|
2

2µ0

= ε0
|E|2

2 + 3
4χ|E|

4 + |B|
2

2µ0

= w.

(5.2.22)

The Rankine-Hugoniot jump conditions for Maxwell’s curl-equations (5.2.16) and (5.2.16a)
read (recall (5.2.2))

s [[D]] + n× [[H]] = 0, (5.2.23a)
−s [[B]] + n× [[E]] = 0, (5.2.23b)

where the jump was defined as [[u]] = uL − uR. The divergence conditions ∇ ·B = 0 and
∇ ·D = 0, together with the fact that the normal components of the E- and H-field must
be zero (assuming no sources), render the conditions

s [[Dn]] = [[E ′En]] = 0 and [[En]] = 0, (5.2.24a)
s [[µ0Hn]] = 0, (5.2.24b)

where Dn := D · n, Hn := H · n, and n as the outer unit normal of ∂Ω. Applying
the Rankine-Hugoniot jump condition to Poynting’s theorem (5.2.18) gives the so-called
generalized entropy [68].

Definition 5.4.
Let u(x, t) be the entropy solution of the conservation law ∂tu + ∂xF (u) = 0 having a
discontinuity in x(t) and moving with shock speed s. In the discontinuity x(t) we define
the generalized entropy

η := −s[[w]] + [[n · S]], (5.2.25)

where S = E×H is the Poynting vector.

Lemma 5.5.
For s 6= 0 the entropy can be expressed as

η = 1
µ0s

[[(3− s2µ0(ε0 + 3
2χ|E|

2)|E|2]]. (5.2.26)

Note that for s = 0 we have the null shock. The entropy condition requires η ≥ 0.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Proof. Equation (5.2.23b) is equivalent to [[H]] = 1
µ0s

n× [[E]]. Plugging this into (5.2.23a)
gives

s[[D]] + n× [[ 1
µ0s

n×E]] = 0.

The vector identity n× (n×E) = (E ·n)n and the fact that [[En]] = 0 (see (5.2.24a)) leads
to

n× [[n×E]] = [[En]]n− [[E]] = −[[E]]. (5.2.27)

Altogether we obtain

s[[D]] + n× [[ 1
µ0s

n×E]] = s[[E ′E]]− 1
µ0s

[[E]] = 0

or, equivalently,

[[E ′E]] = 1
µ0s2 [[E]]. (5.2.28)

For the subsequent statements we note that for two vectors a and b it holds

[[a · [[b]]]] = [[a]] · [[b]].

By using this relation and also observing that

n · S = n · (E×H) = H · (n×E)−E · (n×H)

and by applying relations (5.2.23b) and (5.2.23a) we obtain

[[n×E]] = [[H · s[[B]]−E · (−s[[D]])]] = µ0s[[H]]2 + s[[E]] · [[E ′E]]. (5.2.29)

Into this equation we plug the relation found in (5.2.28), which gives

µ0s[[|H|2]] + s[[E]] · [[E ′E]] = µ0s[[|H|2]] + 1
µ0s

[[E]]2. (5.2.30)

Altogether, and by also recalling (5.2.19), the entropy from definition 5.4 becomes

η = −s[[w]] + [[n · (E×H)]] = sµ0[[|H|2]]
2 − sε0[[|E|2]]

2 − 3sχ[[|E|4]]
4 + 1

µ0s
[[|E|2]]. (5.2.31)

From this equation we eliminate [[|H|2]]. For this we need the following relations (see
(5.2.23b), (5.2.23a))

[[H]] = 1
µ0s

n× [[E]], (5.2.32a)

[[E ′E]] = −1
s
n× [[H]], (5.2.32b)

the vector identity (5.2.27) and

(n× [[|H|2]]) = (n× [[H]]) · (n× [[H]]) (5.2.33)
= (n · n)([[H]] · [[H]])− (n · [[H]])(n · [[H]]) (5.2.34)
= [[|H|2]]− [[|Hn|2]] (5.2.35)
= [[|H|2]], (5.2.36)
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

where we used [[Hn]] = 0 from (5.2.23b) and (5.2.23a). Taking n× (5.2.32a) and using
(5.2.27) we encounter

n× [[H]] = 1
sµ0

n× (n× [[E]]) = − 1
sµ0

[[E]]. (5.2.37)

From equation (5.2.23a) we get

n× [[H]] = −s[[E ′E]]. (5.2.38)

Multiplying (5.2.37) with (5.2.38) and using the statement in equation (5.2.33) leads to

[[|H|2]] = (n× [[|H|2]]) = 1
µ0

[[E]][[E ′E]].

Now we use equation (5.2.28), i.e. [[E ′E]] = 1
µ0s2 [[E]], and plug this into the last relation,

which renders

[[|H|2]] = 1
s2µ2

0
[[E]]2.

Finally the entropy in (5.2.31) becomes after some rearrangement in terms

η = sµ0[[|H|2]]
2 − sε0[[|E|2]]

2 − 3sχ[[|E|]]4

4 + 1
µ0s

[[|E|2]]

= 3
2s2µ0

[[|E|2]]− sε0[[|E|2]]
2 − 3sχ[[|E|4]]

4

= 1
2sµ0

[[|E|2(3− s2µ0(ε0 + 3
2χ|E|

2)]].

Figure 5.10 shows the shock speed s+ =
(
E∗y−Ey
D∗y−Dy

) 1
2 and the eigenvalue λ+

2 = 1√
E ′+E ′′|E|2

in
dependency of Ey for the exemplary choices from the last subsection, i.e. E∗y = 1, E∗z = 0,
B∗y = 0, B∗z = −2 and for E∗y = −1, E∗z = 1, B∗y = 1, B∗z = −2, respectively. The green
dashed parts mark the corresponding admissible shocks. The green dots mark the end
points λ+

2 (|EL|) and λ+
2 (|ER|) of the condition of Smoller-Johnson λ2(EL) < s < λ2(ER).

Figure 5.11 shows plots of the entropy η in (5.2.26) in dependency of Ey.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.10: Shock speed s+ =
(
E∗y−Ey
D∗y−Dy

) 1
2 from (5.2.15) (blue) and the eigenvalue λ+

2 =
1√

E ′+E ′′|E|2
(magenta) in dependency of Ey for (Top) E∗y = −1, E∗z = 0,

B∗y = 0, B∗z = −2 and (Bottom) E∗y = 1, E∗z = 1, B∗y = 2, B∗z = −2. The
dashed lines mark admissible shocks. ER denotes the value right of the line
x = 0, EL denotes the value left of the line x = 0.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Figure 5.11: Entropy (5.2.26) in dependency of Ey for (Top) E∗y = −1, E∗z = 0, B∗y = 0,
B∗z = −2 and (Bottom) E∗y = 1, E∗z = 1, B∗y = 2, B∗z = −2. The dashed lines
mark admissible shocks.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

5.2.3 Riemann Invariants
In section 3.3.2 we presented the definition and some properties of Riemann invariants. A
Riemann invariant remains constant across a characteristic wave. It can thus be used to
formulate the solution of the Riemann problem.
Recall relations (3.3.19) and (3.3.20) with which the ith Riemann invariant Ri can be
determined:

Ri(u) =
∫
du−

∫
vi(u(ξ))dξ ≡ const (5.2.39)

or, equivalently, one can use

∇uRi · vi = 0. (5.2.40)

For the Kerr-nonlinear Riemann problem there are 4 Riemann invariants, which are pre-
sented in the subsequent lemma.

Lemma 5.6 (Riemann invariants for the Kerr-nonlinear Maxwell’s equations).
The Riemann invariants of the Kerr-nonlinear Maxwell’s equations (5.1.11) in conserva-
tive form, i.e.

∂tu + ∂xF(u) = 0

with u = (Dy, Dz, µ0Hy, µ0Hz)T and F(u) = (Hz,−Hy,−Ez, Ey)T , are given as follows:

For λ±1 :

R±1 :=

R±1,1
R±1,2

 =

|E|2
|E|2

 ,
R±2 :=

R±2,1
R±2,2

 =
√
E ′E∓B,

For λ±2 :

R±3 :=

R±3,1
R±3,2

 = E
|E| ∓B,

R±4 :=

R±4,1
R±4,2

 = G(|E|) E
|E| ∓B,

(5.2.41)

where E = (Ey, Ez), B = Bz,−By, E ′ = E ′
(
|E|2

2

)
= ε + χ|E|2 and G(|E|) is defined as

the primitive of

dG
d|E| =

√
E ′ + E ′′|E|2.

In our case, where E ′ = ε+ χ|E|2, G(|E|) can be given explicitly as

G(|E|) = 1
2 |E|

dG(|E|)
d|E| +

√
3

6√χε0 ln
(√

3χ|E|
)

+ dG(|E|)
d|E| . (5.2.42)

R±1 and R±2 are 1-Riemann invariants corresponding to λ±1 ; R±2 and R±3 are 2-Riemann
invariants corresponding to λ±2 .
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Recall that whenever we write E ′ we mean E ′ = E ′
(
|E|2

2

)
.

Proof. A proof can be found in [71], using the relation (5.2.40). Here, for demonstration
purposes, we will additionally present how to compute the Riemann invariants R1,R2 and
R3 by solving (5.2.39), and exemplary show that the relation (5.2.40) holds for R4.
The eigenvalues and eigenvectors of the Kerr system are given in (5.2) as

λ±1 = ± 1√
E ′
, λ±2 = ± 1√

E ′ + E ′′|E|2
,

and recall λ−1 ≤ λ
−
2 ≤ λ

+
2 ≤ λ

+
1 . The corresponding eigenvectors are

v±1 :=

 E⊥
λ±1 E⊥

 , v±2 :=

 E
λ±2 E

 , (5.2.43)

where E⊥ = (−Ez, Ey)T is orthogonal to E = (Ey, Ez)T . We also note that ∇u = (J−1∂E,
∂B). We want to solve the system of ordinary differential equations

du
dξ = v±i (i = 1, 2).

For λ±1 we have the following set of equations:

dDy

dξ = −Ez, (5.2.44a)

dDz

dξ = Ey, (5.2.44b)

dBz
dξ = −λ±1 Ez, (5.2.44c)

dBy
dξ = −λ±1 Ey. (5.2.44d)

Combining (5.2.44a) and (5.2.44c) gives

dBz
dξ = λ±1

dDy

dξ .

After integration we obtain

Bz =
∫
λ±1 (|E(ξ)|)D′y(ξ) dξ.

It is D′y = (E ′Ey)′ = (E ′)′Ey + E ′E′y, and furthermore it holds

(
√
E ′)′ = 1

2
1√
E ′

(E ′)′.

Recalling λ±1 = 1√
E ′ we thus get

±Bz =
∫ 1√

E ′
((E ′)′Ey + E ′E′y) dξ =

∫ 1√
E ′

(E ′)′Ey dξ +
∫
E ′E′y dξ.

Partial integration of the first term (and letting y′ := 1√
E ′ (E

′)′ and x := Ey) gives

√
E ′Ey −

∫ √
E ′E′y dξ +

∫
E ′E′y dξ =

√
E ′Ey.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Thus, we get the first component of the Riemann invariant R±2 as
√
E ′Ey ∓Bz = const =: R±2,1(E,B).

In an analogous manner we get by combining equations (5.2.44b) with (5.2.44d) the second
component of R±2 :

√
E ′Ez ±By = const =: R±2,2(E,B).

The constants can be determined by choosing an arbitrary point (E∗,B∗).
Next, combination of (5.2.44a) with (5.2.44b) givesD′y

D′z

 =

−Ez
Ey

 ,
that is, D′ = Ẽ, where we defined Ẽ as (−Ez, Ey)T . Recalling the relation ∂ED = J−1∂DE
we obtain

J−1E′ = E⊥.

Multiplying with E renders

J−1(E′ ·E) = E⊥ ·E = 0 ⇐⇒ (|E|2)′ = 0.

And thus we obtain the Riemann invariant R±1 .
Now we come to the Riemann invariants corresponding to λ±2 . We need to solve

du
dξ = v±2 .

Written out, this reads:

dDy

dξ = Ey, (5.2.45a)

dDz

dξ = Ez, (5.2.45b)

dBz
dξ = λ±2 Ey, (5.2.45c)

dBy
dξ = −λ±2 Ez. (5.2.45d)

We combine (5.2.45a) and (5.2.45b) and get D′ = E′, or, equivalently,

J−1E′ = E | ·E⊥ ⇐⇒ E′ ·E⊥ = 0. (5.2.46)

From this follows that E has to be such that

E′ = a(E)E′ + b(E)E, (5.2.47)

i.e. E is a product of two functions f, g with E = fg. f and g remain to be determined.
Applying the product rule we get

E′ = f ′g + fg′. (5.2.48)
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Comparing both expressions (5.2.47) and (5.2.48) with each other, we see that f ′ = E′
and g = a(E) and g′ = b(E). Furthermore, it has to hold:

∇uR±3 · v
±
2 = 0.

Recalling ∇u = (J−1∇E,∇B) and (v±2,1,v
±
2,2)T = E we obtain

J−1∇ER
±
3,1 ·E = 0. (5.2.49)

We get R±3 by integrating (5.2.46). Also we assume that R±3 has the form
E = (fg) = E g(E), i.e.

R±3 = E g(E) =⇒ ∇ER
±
3 = g(E)(1, 1)T + E∇E · g(E).

Plugging this into (5.2.49) gives(
g(E)(1, 1)T + E∇E · g(E)

)
·E = 0

⇔ g(E)(E · (1, 1)T ) +∇E · g(E)|E|2 = 0.
(5.2.50)

Here, by ∇EE the divergence is meant, i.e.

∇E ·E = ∂EyEy + ∂EzEz.

For a function h = h(E) it is

∇E · h(E) = ∂Eyh(E) + ∂Ezh(E).

Continuing, from (5.2.49) we see

∇E · g(E) = −E · (1, 1)T

|E|2
g(E),

and after integration this becomes

g(E) = −
∫ E · (1, 1)T

|E|2 dE = 1
|E| ,

due to the fact that

∇E ·
1
|E| = ∂Ey

1
|E| + ∂Ez

1
|E| = −E · (1, 1)T

|E|2 .

Thus, R±3 = E g(E) = E
|E| .

For the Riemann invariant R±4 we prove that definition (5.2.40) holds. Recall again ∇u =
(J−1∇E,∇B). We need to show

∇uR±4 · v
±
2 = 0 ∈ R4.

It holds

∇uR±4 = ∇u

R±4,1
R±4,2

 =

J−1

∂ER
±
4,1

∂ER
±
4,2

∂BR
±
4,1

∂BR
±
4,2

 .
The meaning of this may be confusing, so we write out the components:∂ER±4,1

∂ER
±
4,2

∂BR±4,1
∂BR

±
4,2

 =

∂ER±4,1 ∂BR
±
4,1

∂ER
±
4,2 ∂BR

±
4,2

 =

∂EyR±4,1 ∂EzR
±
4,1 ∂BzR

±
4,1 ∂(−By)R

±
4,1

∂EyR
±
4,2 ∂EzR

±
4,2 ∂BzR

±
4,2 ∂(−By)R

±
4,2

 .
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5 Application: Kerr-Nonlinear Maxwell’s Equations

It is

∂BzR
±
4,1 = 0,

∂(−By)R
±
4,1 = ∓1,

∂BzR
±
4,2 = ∓1,

∂(−By)R
±
4,2 = 0,

∂EyR
±
4,1 = G′

E2
y

|E|2
+ G

|E|
(1−

E2
y

|E|2
),

∂EzR
±
4,1 = G′

EyEz
|E|2 −

G

|E|3EyEz,

∂EyR
±
4,2 = G′

EyEz
|E|2 −

G

|E|3EyEz,

∂EzR
±
4,2 = G′

E2
z

|E|2 + G

|E|(1−
E2
z

|E|2 ).

So it follows∂ER
±
4,1

∂ER
±
4,2

 =

G′ E
2
y

|E|2 + G
|E|(1−

E2
y

|E|2 ) G′
EyEz
|E|2 −

G
|E|3EyEz

G′
EyEz
|E|2 −

G
|E|3EyEz G′ E

2
z
|E|2 + G

|E|(1−
E2
z
|E|2 )



= G′

|E|2

 E2
y EyEz

EyEz E2
z

− G

|E|3

 E2
y EyEz

EyEz E2
z

+ G

|E| Id .

Here, Id is the identity matrix. Recall that

E⊗ET =

 E2
y EyEz

EyEz E2
z


was the Kronecker product as defined in 5.1. Thus we obtain∂ER

±
4,1

∂ER
±
4,2

 = G′

|E|2 E⊗ET − G

|E|3 E⊗ET + G

|E| Id .

At last, it is

∇u

R±4,1
R±4,2

 · v±2 =

J−1

∂ER
±
4,1

∂ER
±
4,2

∂BR
±
4,1

∂BR
±
4,2

 · v±2
=
(
J−1

(
G′

|E|2 E⊗ET − G
|E|3 E⊗ET + G

|E| Id
)

∓ Id
)
·

 E
λ±2 E


= J−1

[(
G′

|E|2 E⊗ET − G

|E|3 E⊗ET + G

|E| Id
)

E
]
− λ±2 E

= J−1
(
G′

|E|2 (E⊗ET )E− G

|E|3 (E⊗ET )E + G

|E| Id E
)
− λ±2 E.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Observing that

(E⊗ET )E =

E3
y + EyE

2
z

E3
z + E2

yEz

 =

Ey(E2
y + E2

z )
Ez(E2

y + E2
z )

 = |E|2E,

it follows

J−1
(
G′

|E|2 (E⊗ET )E− G

|E|3 (E⊗ET )E + G

|E|E
)
− λ±2 E

= J−1
(
G′

|E|2 |E|
2E− G

|E|3 |E|
2E + G

|E|E
)
− λ±2 E

= G′J−1E− λ±2 E
= G′(λ±1 )2E− λ±2 E
= λ±2 E− λ±2 E
= 0.

Geometrical Illustration

Recall that the Riemann invariants given in Lemma 5.6 are constant, i.e. R±i (u) =
R±i (u∗) =: (R±i )∗ (i = 1, . . . , 4), where u∗ is an arbitrary point. So we choose u∗ =
(E∗,B∗) and obtain:

(R±1,1)∗ = (R±1,2)∗ := R±1,1(E∗,B∗) = |E∗|2 ≡ |E|2,

(R±2 )∗ := R±2 (E∗,B∗) = E∗

|E∗|2 ≡
E
|E|2 ,

(R±3 )∗ := R±3 (E∗,B∗) =
√
E ′
( |E∗|2

2

)
E∗ ∓B∗ ≡

√
E ′
( |E|2

2

)
E∓B,

(R±4 )∗ := R±4 (E∗,B∗) = G(|E∗|) E∗

|E∗|2 ∓B∗ ≡ G(|E|) E
|E|2 ∓B.

(5.2.51)

(E∗,B∗) is a given point, as well as (R±i )∗ (i = 1, . . . , 4) are known constants. E and
B are unknown. To visualize the Riemann invariants geometrically, one chooses either E
or B as a parameter and then solves the equations (5.2.51) for the remaining unknown
variables. Since it is easy to solve for B, we treat Ey as an “inner” parameter and Ez as
an “outer” one, i.e. we let Ey vary and fix one Ez, then we choose another Ez and vary
Ey again, and so forth. Of course, other choices would be possible.
We only consider R±2 and R±4 for visualization. The reason is that later these are used to
give explicit formulas of the waves of the Riemann problem. Thus we have the following
equations:

For R±2 :
B±y,2 = ±((R±2,1)∗ −

√
E ′Ez),

B±z,2 = ∓((R±2,2)∗ −
√
E ′Ey).

For R±4 :

B±y,4 = ±
(

(R±4,1)∗ −G(|E|)Ez
|E|

)
,

B±z,4 = ∓
(

(R±4,2)∗ −G(|E|)Ey
|E|

)
.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

We observe that B+
y,3 and B−y,3 intersect in E∗ with B+

y,3(E∗) = B−y,3(E∗) = B∗y . The
same holds for B+

z,3 and B−z,3, B+
y,4 and B−y,4, B+

z,4 and B−z,4. The plots in figures 5.12 to
5.15 show that these are not the only intersection points. The Riemann invariants in the
Ey−Bz-plane (left plots) have an intersection point for all Ez ∈ [−3, 3], which moves from
the right to the left in Ey-direction for changing values of Ez. On the other hand, the
Riemann invariants in the Ey−By-plane (right plots) wander up and down in By-direction
for changing values of Ez with Ez ∈ [−3, 3] and do only intersect for certain values of Ez.
In those cases, whenever Ez is such that the plus and minus branches of By intersect,
as in figure 5.14, (E∗,B∗)T can be connected to another point (E,B)T on the Riemann
invariant by a rarefaction wave.

Figure 5.12: Plots of the magnetic field B for the Riemann invariants R±2 and R±4 at
Ez = −3, where Ey ∈ [−4, 2] and Ez ∈ [−3, 3]. The fixed chosen point is
(E∗,B∗)T = (−1, 1, 2, 1)T .
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

Figure 5.13: Plots of B at Ez = −3.

Figure 5.14: Plots of B at Ez = 1 = E∗z .
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.15: Plots of B at Ez = 3.

5.2.4 Analytical Solution of the Riemann Problem

As we already pointed out at the beginning of this section, the solution of the Kerr-
Riemann problem consists of the following simple waves (see [71]):

(1) For the 2-field, which is genuinely nonlinear: We either have a 2-shock, which can
be determined via the Rankine-Hugoniot condition, or a 2-rarefaction which can be
obtained by using the 2-Riemann invariants.

(2) For the 1-field, which is linearly degenerate: We have a contact discontinuity which
can be determined via the Rankine-Hugoniot condition or via the 1-Riemann invari-
ants.

Due to the fact that λ−1 ≤ λ−2 ≤ λ+
2 ≤ λ+

1 , the solution of the Riemann problem looks as
illustrated in figure 5.16. The different regions between the single waves are denoted, from
left to right, by “L”, “1”, “2”, “3” and “R”. Table 5.2.4 shows an overview of the wave
composition of the Kerr-nonlinear Riemann problem with the corresponding wave speeds.
We will go into details in the following subsections.
The author in [71] proves uniqueness of this solution by requiring positivity of entropy
η > 0 and the condition of Smoller-Johnson, see sections 3.3.2 and 5.2.2. Seccia [70]
chooses another condition to select admissible shocks, namely a reflection and transmission
condition alongside the entropy condition.

Contact Discontinuities

The simple wave corresponding to the 1-field with eigenvalues λ±1 is a contact discontinuity
which can be determined by applying the Rankine-Hugoniot jump condition or the 1-
Riemann invariants R±1 ,R

±
2 from section 5.6, which are constant across the discontinuity.
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5.2 The Kerr-Nonlinear Riemann Problem and its Solution

eigen- determined via wave speed Riemann
value invariants

left λ−1 Rankine-Hugoniot sL = λ−1 (EL) R−1 ,R
−
2

1-discontinuity Riemann invariants
left 2-shock λ−2 Rankine-Hugoniot λ−2 (E1) ≤ s1 ≤ λ−2 (E2) R−3 ,R

−
4

s1 = ±
[

a1−a2
E ′(a2

1/2)a1−E ′(a2
2/2)a2

]
left λ−2 Riemann invariants |E1| > |E2| R−3 ,R

−
4

2-rarefaction head: xhead
L = x− λ−2 (|E1|)t

tail: xtail
L = x− λ−2 (|E2|)t

right λ+
2 Riemann invariants |E2| > |E3| R−3 ,R

−
4

2-rarefaction head: xhead
R = x− λ+

2 (|E3|)t
tail: xtail

R = x− λ+
2 (|E2|)t

right 2-shock λ+
2 Rankine-Hugoniot λ+

2 (E2) ≤ s2 ≤ λ+
2 (E3) R−3 ,R

−
4

s2 = ±
[

a2−a3
E ′(a2

2/2)a2−E ′(a2
3/2)a3

]
right λ+

1 Rankine-Hugoniot sR = λ+
1 (ER) = −sL R−1 ,R

−
2

1-discontinuity Riemann invariants

Table 5.2: Overview of the wave composition of the Kerr-nonlinear Riemann problem.

The shock speed of the left contact discontinuity is sL = λ−1 (|EL|) and of the right contact
is sR = λ+

1 (|ER|); it holds sL = −sR. From R±1 we see that the modulus of the electric
field is constant across the discontinuity, i.e. |E| = |EL| = |E1| and |E| = |E3| = |ER|. For
the following we denote the direction of E as e := E/|E|. Thus altogether, it is

eL = EL

|EL|
= EL

|ER|
, (5.2.52)

eR = ER

|ER|
= ER

|EL|
, (5.2.53)

e1 = E1
|E1|

= E1
|EL|

= E1
|ER|

= E1
|E3|

, (5.2.54)

e2 = E2
|E2|

, (5.2.55)

e3 = E3
|E3|

= E3
|ER|

= E3
|EL|

= E3
|E1|

. (5.2.56)

From R±2 we get

for λ−1 : B1 −BL = −
√
E ′
( |EL|2

2

)
(E1 −EL) = −

√
E ′
( |EL|2

2

)
|EL|(e1 − eL),

for λ+
1 : BR −B3 =

√
E ′
( |ER|2

2

)
|ER|(eR − e3).

(5.2.57)
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Figure 5.16: A sketch of the wave composition of the Kerr-nonlinear Riemann problem.
Locally, the characteristics are straight lines, globally they are winded curves
due to the nonlinear nature.

One could have used the Rankine-Hugoniot condition, too, with

sL = λ−1 (|EL|) = λ−1 (|E1|) = λ−1 (|E3|) = λ−1 (|ER|) for the left 1-contact,
sR = λ+

1 (|ER|) = λ+
1 (|E3|) = λ+

1 (|E1|) = λ+
1 (|EL|) for the right 1-contact,

i.e. sL = −sR.

Rarefaction Waves

The simple waves corresponding to the 2-field with eigenvalues λ±2 can be rarefaction
waves. From R±3 we see that

e2 = E2
|E2|

= E1
|E1|

= e1,

e2 = E2
|E2|

= E3
|E3|

= e3.

(5.2.58)

Using R±4 we obtain

for λ−2 : B2 −B1 = e2 (G(|E2|)−G(|EL|)) ,
for λ+

2 : B3 −B2 = e2 (G(|E2|)−G(|ER|)) ,
(5.2.59)

where we recall from the previous subsection that |EL| = |E1| and |ER| = |E3|.

Admissible Shocks

Besides rarefaction waves, the simple waves corresponding to the 2-field can also be shocks.
The author in [71] shows that by applying the Rankine-Hugoniot conditions (5.2.23) and
some rearrangement in terms we can differentiate the following cases:

Case 1: If |EL| = |ER| and eL = eR, then there is no shock.

Case 2: If |EL| = |ER| and eL 6= eR, the speed of the shock is given as s = λ±1 , so
we have a contact discontinuity.

Case 3: If |EL| 6= |ER|, then ER and EL are collinear, i.e. its directions are equal,
eL = eR =: e, and there exist constants aL, aR with EL = aLe and ER = aRe. The
condition of Smoller-Johnson gives that aL and aR must have the same sign.
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Furthermore, if we denote the shock speed of the left shock by s1 and the one of the right
shock by s2, the shock speeds have to fulfill

λ−2 (E1) ≤ s1 ≤ λ−2 (E2),
λ+

2 (E2) ≤ s2 ≤ λ+
2 (E3).

Thus the shock speeds are given as

s1 =


+
[

a1−a2
E ′(a2

1/2)a1−E ′(a2
2/2)a2

] 1
2 , if |E1| ≤ |E2|,

−
[

a1−a2
E ′(a2

1/2)a1−E ′(a2
2/2)a2

] 1
2 , if |E1| ≥ |E2|,

s2 =


+
[

a2−a3
E ′(a2

2/2)a2−E ′(a2
3/2)a3

] 1
2 , if |E2| ≤ |E3|,

−
[

a2−a3
E ′(a2

3/2)a1−E ′(a2
3/2)a3

] 1
2 , if |E2| ≥ |E3|,

(5.2.60)

where

e1 = e2 = e3 =: e,
E1 = a1e, E2 = a2e, E3 = a3e.

(5.2.61)

Furthermore, a1 and a2, a2 and a3 must have the same sign, respectively. Thus, an
admissible shock has the following form:

for λ−2 : B2 −B1 = e2

[
(E ′
(
|EL|2

2

)
|EL| − E ′

(
|EL|2

2

)
|E2|)(|EL| − |E2|)

] 1
2

,

for λ+
2 : B3 −B2 = e2

[
(E ′
(
|ER|2

2

)
|ER| − E ′

(
|ER|2

2

)
|E2|)(|ER| − |E2|)

] 1
2

.

(5.2.62)

The unique Solution

The condition on the shock speed, that is, λ±2 (EL) ≤ s ≤ λ±2 (ER), decides whether the
2-field is a 2-shock or a 2-rarefaction. Since the eigenvalues are decreasing functions in |E|,
it follows that, if |uL| < |uR| we have a shock, and if |uL| > |uR| we have a rarefaction. We
collect this and all the informations from the last two subsections in defining a function
f : R+ × R+ → R by

f(x, y) :=


G(y)−G(x), x > y

[
(E ′(y2/2)y − E ′(x2/2)x)(y − x)

] 1
2 , x ≤ y.

(5.2.63)

Thus, instead of (5.2.59) and (5.2.62) we can write:

for λ−2 : B2 −B1 = e2 f(|E2|, |EL|), (5.2.64)
for λ+

2 : B3 −B2 = e2 f(|E2|, |ER|). (5.2.65)
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Figure 5.17: The y- component of γ as defined in (5.2.67), γy, in dependency of Ey, where
Ey ∈ [−5, 5], Ez = 0 and By = 0. In this case, γz ≡ 0. The – arbitrarily
chosen – settings to generate this plot are EL,y = 0.2, ER,y = 0.1, EL,z = 0,
ER,z = 0, BL,y = 0, BR,y = 0, BL,z = −0.1, BR,z = 0.1, sR = 1, sL = −1,
χ = 0.08, ε = 1. The red dot marks the zero E2,y ≈ 2.496 · 10−1, where
γy(E2,y) = 0.

Combining statements (5.2.57), (5.2.59) and (5.2.62) with each other, we obtain the fol-
lowing relations for the left and right sides of the line t = 0:

γL(E2; uL) := BL +
√
E ′
( |EL|2

2

)
EL − e2

√E ′ ( |EL|2
2

)
|EL| − f(|E2|, |EL|)

 = B2,

γR(E2; uR) := BR −

√
E ′
( |ER|2

2

)
ER + e2

√E ′ ( |ER|2
2

)
|ER| − f(|E2|, |ER|)

 = B2.

(5.2.66)
Thus, E2 is the zero of the function

γ(E2) := γL(E2; uL)− γR(E2; uR). (5.2.67)

The function γ is smooth. As soon as E2 and B2 are known, the missing fields E1,B1 and
E3,B3 can be determined from equations (5.2.58), (5.2.59), (5.2.61), (5.2.62) and (5.2.66).
In [71, Th. 1] it is shown that the above Riemann solution exists and is unique.
As an example, figure 5.17 illustrates the y-component of γ, γy, in dependency of Ey,
where we have set Ez = 0, By = 0 and Ey ∈ [−5, 5], i.e. γz(Ey, Ez) = 0 for all values of
Ey and Ez = 0. The – arbitrarily chosen – settings to generate this plot are EL,y = 0.2,
ER,y = 0.1, EL,z = 0, ER,z = 0, BL,y = 0, BR,y = 0, BL,z = −0.1, BR,z = 0.1, sR = 1,
sL = −1, χ = 0.08, ε = 1. The red dot marks the zero E2,y, where γy(E2,y) = 0. In section
5.4.2 we present how to compute the zero E2 numerically.
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5.3 DG Space and RK Time Discretization

As for BOR Maxwell’s equations in sections 4.2 and 4.4, we apply the RKDG method to
Kerr-nonlinear Maxwell’s equations

∂tE− J−1∇×H = 0,

∂tH + 1
µ0
∇×E = 0,

(5.3.1)

In this section we will present the semi-discrete form of (5.3.1). We introduce the weak
form of Kerr-nonlinear Maxwell’s equations and we plug in the DG ansatz. The resulting
local matrices do not change as in the BOR case and are computed as presented in, e.g.,
the book by Hesthaven and Warburton [11]. For this we use their Matlab codes.
The main topic of this section is the numerical flux. Since we have a nonlinear problem the
corresponding Riemann problem must be solved in each grid point to obtain a numerical
flux, which is computationally extremely expensive. Already for very few elements it takes
minutes to run the simulation. We therefore choose a Lax-Friedrichs flux and an HLL-like
Riemann solver which we modified for the Kerr system. For basic tests we also consider
two linear numerical fluxes. We test the performance of our scheme on the analytically
given solution for the one-dimensional Kerr-nonlinear Maxwell’s equations, as found in
[45].

5.3.1 Semi-Discrete Scheme

We proceed similarly to BOR Maxwell’s equations, that is, we divide the physical do-
main of interest, Ω, into K elements so that Ω =

⋃K
k=1 Ωk. The finite element space of

discontinuous functions is chosen to be

Vh := {uh ∈ (L∞(Ω))4 : uh|Ωk ∈ V (Ωk), k = 1, . . . ,K},

where V (Ωk) = Pp(Ωk) is the space of one-dimensional polynomials of total degree p ∈
N. We approximate u by uh ∈ Vh, and use Lagrange interpolation to represent uh (cf.
Ref. [11]) as

uh(x, t) =
Np∑
i=1

ukh(xki , t) lki (x), (5.3.2)

where lki (x) are one-dimensional Lagrange polynomials on Ωk, Np = p + 1 is the number
of nodes and xki are suitably chosen interpolation points on Ωk. For the discontinuous
Galerkin ansatz the residual Rh := ∂tuh + ∂xF(uh) has to fulfill

∫
Ωk
Rh ·ψ dx = −

∫
∂Ωk

(Fn(ukh)− Fnum
n (ukh)) · ψ dx,

where n denotes the outer normal vector of the boundary ∂Ωk, as usual, and Fnum is the
numerical flux. Plugging in the the nodal representation of the fields (5.3.2) into Kerr-
Maxwell’s equations (5.3.1) and approximating the test functions ψ by ψh ∈ Vh as well,
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we obtain the semi-discrete scheme

∂tEk
y

∫
Ωk
lki l

k
j dx+ J11Hk

z

∫
Ωk
lki ∂xl

k
j dx− J12Hk

y

∫
Ωk
lki ∂xl

k
j dx

=
∫
∂Ωk

(FEy − Fnum
Ey )n lki l

k
j dx,

∂tEk
z

∫
Ωk
lki l

k
j dx+ J12Hk

z

∫
Ωk
lki ∂xl

k
j dx− J22Hk

y

∫
Ωk
lki ∂xl

k
j dx

=
∫
∂Ωk

(FEz − Fnum
Ez )n lki l

k
j dx,

∂tHk
y

∫
Ωk
lki l

k
j dx− 1

µ0
Ek

z

∫
Ωk
lki ∂xl

k
j dx =

∫
∂Ωk

(FHy − Fnum
Hy )n lki l

k
j dx,

∂tHk
z

∫
Ωk
lki l

k
j dx+ 1

µ0
Ek

y

∫
Ωk
lki ∂xl

k
j dx =

∫
∂Ωk

(FHz − Fnum
Hz )n lki l

k
j dx.

(5.3.3)

By defining the local matrices

(Mk)ij :=
∫

Ωk
lki (x) lkj (x) dx,

(Sk)ij :=
∫

Ωk
lki (x) ∂xlkj (x) dx,

Fkij :=
∫
∂Ωk

lki (x) lkj (x) dx

(5.3.4)

and introducing

GE := (FH − Fnum
H )n,

GH := (FE − Fnum
E )n,

we can rewrite (5.3.3) as

Mk∂tEk
y + (J11S

kHk
z −FkGEy)− (J12S

kHk
y −FkGEy) = 0,

Mk∂tEk
z + (J12S

kHk
z −FkGEz)− (J22S

kHk
y −FkGEz) = 0,

Mk∂tHk
y −

1
µ0
SkEk

z + FkGHy = 0,

Mk∂tHk
z + 1

µ0
SkEk

y −FkGHz = 0,

where GE and GH denote the discrete analogues of GE and GH, respectively. After
multiplying by (Mk)−1 we obtain the final semi-discrete scheme. We note that it holds
(Mk)−1Sk = Dr, where Dr is the differentiation matrix from [11], i.e.

(Dr)ij = dlj(x)
dx

∣∣∣∣
xi

.

The computation of the local matrices can also be found in [11]. To complete the DG
space discretization we need a numerical flux.

5.3.2 Numerical Fluxes

We work with the set of equations (5.3.1). As a first approximation we assume to have a
constant matrix JLR := J(ELR), and thus the inverse J−1

LR = J−1 is also constant. The
value ELR is chosen depending on the choice of the numerical flux. For the Lax-Friedrichs
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flux, we assume that J = ε0 Id, for the HLL-like flux it is given later in (5.3.16). Thus we
obtain

JLR ∂tE−∇×H = 0,
µ0 ∂tH +∇×E = 0.

(5.3.5)

By defining u := (Ey, Ez, Hy, Hz)T = (E,H)T , F(u) := (Hz,−Hy,−Ez, Ey)T = (H̃, Ẽ)T
and the matrix

Q :=

JLR 0
0 1

µ0
Id


we can write this system as a conservation law, namely as

Q∂tu + ∂xF(u) = 0.

We remark that the rotation in system (5.3.5) is computed by using the extended state
and flux vectors

ū :=



0
Ey

Ez

0
Hy

Hz


, F(ū)n =



0
nxHz

−nxHy

0
−nxEz
nxEy


=

−n× H̄
n× Ē

 ,

where n = (nx, 0, 0)T is the outer unit normal of an element Ωk, and H̄ := (0, Hy, Hz)T ,
Ē := (0, Ey, Ez)T , D̄ := (0, Dy, Dz)T denote the extended analogues of H,E,D.

A Lax-Friedrichs Flux

The Lax-Friedrichs flux often is a good choice of a numerical flux, also for nonlinear
problems, although it is a numerical flux for linear problems. It is easily implemented
and renders good approximation results comparable to those obtained with a Godunov
flux (Riemann solver), although it produces more artificial viscosity; see [12, p. 187].
The authors also remark that, by their numerical experience, the numerical flux plays an
increasingly minor role on the quality of the approximation with increasing polynomial
order.
The Lax-Friedrichs flux was introduced in section 3.2.2, and it was given as

FLF
n (uL,uR) = 1

2
(
Fn(uL) + Fn(uR)

)
+ 1

2C(uL − uR) = {{Fn}}+ 1
2C[[u]]. (5.3.6)

In our case we need an expression for (FH − FLF
H )n and (FE − FLF

E )n. We abbreviate
FL := Fn(uL) and FR := Fn(uR) in the forthcoming and recall that GLF

E = (FE−FLF
E )n;

the same holds for GLF
H .
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Lemma 5.7.
The components of the Lax-Friedrichs flux for the Kerr-system (5.3.1) are given as

GLF
Ey = 1

2{{Z}} (ZRnx[[Hz]]− αC [[Ey]]) ,

GLF
Ez = 1

2{{Z}} (−ZRnx[[Hy]]− αC [[Ez]]) ,

GLF
Hy = 1

2{{Y }} (−ZLnx[[Ez]]− αC [[Hy]]) ,

GLF
Hz = 1

2{{Y }} (ZRnx[[Ey]]− αC [[Hz]]) .

Again, ZL,R =
√
µL,R/εL,R is the local impedance, YL,R = 1/ZL,R is the local conductance,

and α ∈ [0, 1]. For α = 1, we have an upwind flux, for α = 0 it is a central flux. The
constant C is given as C = maxi |λi|, where λi (i = 1, · · · , 4) are the eigenvalues given in
(5.1.16). It is assumed to hold C ≤ ∆x

∆t CFL, where CFL is the CFL number.

A Richtmyer Flux

As another choice of a numerical flux we take the Richtmyer flux which is a two-step
version of the Lax-Wendroff flux for nonlinear systems of conservation laws (see e.g. [30,
Ch. 5.3.4], [57, Ch. 6.1]). The Lax-Wendroff flux produces finite volume schemes of order
2 (see e.g. [113, Ch. 19.1, p. 844]). It is given as

uRi := 1
2
(
uL + uR

)
+ 1

2C
(
Fn(uL)− Fn(uR)

)
,

FRi
n (uL,uR) := Fn(uRi).

Note that for our purposes we need an expression for (FH − FRi
H )n and (FE − FRi

E )n so
that GRi

E = (FE − FRi
E )n; analogously for GRi

H .
We note that in our case, the Richtmyer flux becomes the Lax-Friedrichs after some
rearrangement in terms.

Another Linear Numerical Flux

Let us first look at the linear case, i.e. s1 = sL, s2 = sR. Then it holds u1 = u2 = u3 and
F1 = F2 = F3, and the Rankine-Hugoniot conditions reduce to

F2 − FL = sL(u2 − uL), (5.3.7a)
FR − F2 = sR(uR − u2). (5.3.7b)

We solve (5.3.7a) for u2, which leads to

u2 = 1
sL

(F2 − FL) + uL,

and plugging this into (5.3.7a) we obtain

FL − F2 = sL
sL − sR

(−sR(uL − uR) + (FL − FR)). (5.3.8)

Alternatively one could substract (5.3.7b) from (5.3.7a) and solve for FL−F2, which gives

FL − F2 = 1
2[(FL − FR) + sL(uL − u2) + sR(uR − u2)]. (5.3.9)

Both expressions are equivalent, with the difference that equation (5.3.9) uses u2 and
equation (5.3.8) does not need u2 at all. All flux expressions are equivalent to the Lax-
Friedrichs flux in the previous section 5.3.2. Equations (5.3.8) and (5.3.9) can be used to
test the quality of the approximation of the zero u2 of the function γ defined in (5.2.67).
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A Nearly Exact Numerical Flux

We now turn back to the full problem (5.3.10) and solve for FL − F2. At this point
we make a first approximation to the exact Riemann solution. We suppose to have only
shocks, thus ignoring rarefaction waves, but computing the middle state u2 still exactly
(in the sense that it is determined as the zero of the function γ in (5.2.67) via some zero
finding method). By applying the Rankine-Hugoniot conditions we obtain

F1 − FL = sL(u1 − uL), (5.3.10a)
F2 − F1 = s1(u2 − u1), (5.3.10b)
F3 − F2 = s2(u3 − u2), (5.3.10c)
FR − F3 = sR(uR − u3). (5.3.10d)

By Fi we denote the flux in region i (i = L, 1, 2, 3, R) and by ui the solution in region i.
Recall that sL and sR are the wave speeds of the left and right contact discontinuity (see
definition 3.21), respectively, and s1, s2 are the shock speeds of the left and right shock,
respectively (see definition 3.20 and (5.2.60)).
By adding equations (5.3.10a) and (5.3.10b), and equations (5.3.10c) and (5.3.10d) we
eliminate F1 and F3 and obtain

F2 − FL = sL(u1 − uL) + s1(u2 − u1), (5.3.11)
FR − F2 = s2(u3 − u2) + sR(uR − u3). (5.3.12)

Substracting equation (5.3.11) from (5.3.12) and adding FL on both sides gives after some
rearrangement in terms

FL − F2 =1
2 [(FL − FR) + sL(uL − u1) + s1(u1 − u2)

+s2(u3 − u2) + sR(uR − u3)] .
(5.3.13)

We implement this numerical flux by considering the following. The wave speeds sL, sR
correspond to the left and right contact discontinuities, respectively, with sL = λ−1 (|EL|)
and sR = λ+

1 (|ER|), if |EL| is the upwind value, i.e. |EL| ≤ |ER|. In the other case, it
is the other way around. For a shock, the wave speeds s1 and s2 are given by equation
(5.2.60). In case of a rarefaction wave, we choose s1 and s2 to be the speeds of the head of
the left and right rarefaction fan, respectively, that is, s1 = λ−2 (|EL|) and s2 = λ+

2 (|ER|),
taking into account that |E3| = |ER| and |E1| = |EL|.
This numerical flux still needs u2, which has to be computed for every grid point anew.
Although we use a fast zero finding routine, see section 5.4.2, the simulation is still very
slow. We therefore want a global approximation to u2.

An HLL-like Flux

In section 5.2.4 the exact Riemann solution of the Kerr system was given and in the last
subsection we presented an implementation of a nearly exact numerical flux resulting from
this Kerr-Riemann solution. We pointed out that using this as an analytical numerical
flux is computationally too expensive. In this section we present an HLL-like Riemann
solver, which is a modified HLL solver to suit our needs. The original HLL Riemann
solver was introduced by Harten, Lax and van Leer [29], and it is an approximation to
the exact solution of the Riemann problem. The authors also showed that if the scheme
with an HLL flux converges, it converges to the weak solution. Furthermore, several works
demonstrate that the HLL flux (and its modified versions, like the HLLC or HLLE solvers
[30]) give very good numerical performances; see e.g. [31], where several versions of the
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HLL flux are compared for the magneto-hydrodynamic equations. For some background
and properties of the HLL flux, see e.g. [30, Ch. 10].
The HLL flux assumes to have two shock waves and thus ignores rarefaction waves or
contact discontinuities. Applying the Rankine-Hugoniot jump conditions, one obtains the
numerical flux Fnum = FHLL with (see e.g. [30, Ch. 10], [114])

FHLL(ul,ur) =



F(ul) if 0 ≤ s∗1,

s∗2F(ul)−s∗1F(ur)+s∗1s∗2(ur−ul)
s∗2−s

∗
1

if s∗1 ≤ 0 ≤ s∗2,

F(ur) if s∗2 ≤ 0.

(5.3.14)

Here, “r” denotes the value right to the shock wave with wave speed s∗1, and “l” denotes
the value left to the shock wave with wave speed s∗2; see figure 5.18 (c) for a sketch. Note
that equation (5.3.14) is to be understood as a general formula for the HLL flux, so ul
and ur must not be confused with uL and uR. The wave speeds s∗1 and s∗2 are determined
via so-called wave speed estimates. Several wave speed estimates were proposed, where we
refer to the ones in Toro [30] and in Batten et al. [114].
Recall that the solution of the Riemann problem was given as displayed in figure 5.18(a).

Figure 5.18: (a) Exact Riemann solution for Kerr-nonlinearity (from left to right): left con-
tact discontinuity with speed sL, left rarefaction wave/left shock with speed
s1, right rarefaction wave/right shock with speed s2, right contact disconti-
nuity with speed sR; (b) Riemann solution for Kerr-nonlinearity when using
an HLL-like approximation (from left to right): left contact, left shock with
estimated speed s∗1, right shock with estimated speed s∗2, right contact; (c)
HLL solver: left and right shock.

s∗1 and s∗2 are global approximations to the shock speeds s1 and s2. The following formulas
are collective information from section 5.2.4 and are essential for the subsequent discussion.
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|E1| = |EL|, |E3| = |ER|, (5.3.15a)

e1 = E1
|EL|

, e2 = E2
|E2|

, e3 = E3
|ER|

(5.3.15b)

e1 = e2 = e3, (5.3.15c)

H̃1 = H̃L −

√
E ′
( |EL|2

2

)
|EL|(e1 − eL), (5.3.15d)

H̃3 = H̃R −

√
E ′
( |ER|2

2

)
|ER|(eR − e2). (5.3.15e)

Note that Ei = [Ei,y, Ei,z]T , H̃i = [Hi,z,−Hi,y]T (i = 1, 2, 3) and so on. Also, it is
E1 6= E3 6= E2 in general.
The HLL Riemann solver assumes to have two shocks in between a left region “l” and a
right region “r”; see figure 5.18 (c) for a visualization. Across the shocks the Rankine-
Hugoniot condition holds. By combining the Rankine-Hugoniot condition for the left and
right shock, one can show [30, Ch. 10] that u2 is approximated by a state uHLL in the
following manner (recall (5.3.14)):

uHLL = s∗2ur − s∗1ul + Fl − Fr

s∗2 − s∗1
. (5.3.6)

For our case, we have a left and right contact discontinuity, and we now assume two have
only a left and right shock, thus neglecting rarefaction waves completely, analogously to
the HLL solver. The wave speeds s1 and s2 are approximated by the wave speeds s∗1
and s∗2, respectively. Across all four waves the Rankine-Hugoniot jump conditions (5.3.10)
hold. We now substitute E1, E2, E3, H1, H2 and H3 by approximations EHLL

1 , EHLL
2 ,

EHLL
3 , HHLL

1 , HHLL
2 and HHLL

3 given by (5.3.6). Thus we obtain

E2 ≈ EHLL
2 = s∗2EHLL

3 − s∗1EHLL
1 + H̃HLL

1 − H̃HLL
3

s∗2 − s∗1
, (5.3.7a)

H2 ≈ HHLL
2 = s∗2HHLL

3 − s∗1HHLL
1 + ẼHLL

1 − ẼHLL
3

s∗2 − s∗1
, (5.3.7b)

E3 ≈ EHLL
3 = sRER − s∗2EHLL

2 + H̃HLL
2 − H̃R

sR − s∗2
. (5.3.7c)

First we observe that equation (5.3.7b) can also be written as

H̃HLL
2 = s∗2H̃HLL

3 − s∗1H̃HLL
1 + EHLL

1 −EHLL
3

s∗2 − s∗1
, (5.3.8)

and from equations (5.3.15a), (5.3.15b) and (5.3.15c) one obtains

EHLL
1 = |EL|

|ER|
EHLL

3 , (5.3.9)
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so we can express EHLL
1 in terms of EHLL

3 . The same holds for H̃HLL
1 and H̃HLL

3 , as we can
see from equations (5.3.15d) and (5.3.15e) if we insert (5.3.9):

H̃HLL
1 = H̃L −

√
E ′L
( |EL|
|ER|

EHLL
3 −EL

)
, (5.3.10a)

H̃HLL
3 = H̃R −

√
E ′R(ER −EHLL

3 ). (5.3.10b)

Here we abbreviated E ′(|Ei|2/2) =: E ′i for i = L,R. By plugging relations (5.3.9), (5.3.10a)
and (5.3.10b) into (5.3.8), we encounter

H̃HLL
2 = aLR + bLREHLL

3 , (5.3.11)

where we introduced

aLR := 1
s∗2 − s∗1

[
s∗2(H̃R −

√
E ′RER)− s∗1(H̃L +

√
E ′LEL)

]
,

bLR := 1
s∗2 − s∗1

[
s∗2

√
E ′R + s∗1

√
E ′L
|EL|
|ER|

+ |EL|
|ER|

− 1
]
.

Note that aLR is a two-dimensional vector and bLR is a scalar. Analogously, we insert
equations (5.3.9), (5.3.10a) and (5.3.10b) into (5.3.7a) and obtain

EHLL
2 = cLR + dLREHLL

3 (5.3.12)

with

cLR := 1
s∗2 − s∗1

[
H̃L − H̃R +

√
E ′LEL +

√
E ′RER)

]
,

dLR := 1
s∗2 − s∗1

[
s∗2 − s∗1

|EL|
|ER|

−
√
E ′L
|EL|
|ER|

−
√
E ′R
]
.

Next, we solve equation (5.3.7c) for EHLL
2 , that is,

EHLL
2 = 1

s∗2
(sRER − H̃R + H̃HLL

2 − (sR − s∗2)EHLL
3 ), (5.3.13)

and plug in equation (5.3.11), which gives

EHLL
2 = ALR +BLREHLL

3 , (5.3.14)

where ALR and BLR are defined as

ALR := 1
s∗2

[
sRER + aLR − H̃R

]
,

BLR := 1
s∗2

(bLR − sR + s∗2) .

We equalize equations (5.3.12) and (5.3.14) to obtain

EHLL
3 = cLR −ALR

BLR − dLR
.

Inserting this into (5.3.12) finally gives

EHLL
2 = cLR + dLR

(cLR −ALR

BLR − dLR

)
= cLRBLR − dLRALR

BLR − dLR
.
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If BLR = dLR, we choose the linear numerical flux in equation (5.3.8). This is justified by
the following considerations. Plugging alternatively equation (5.3.11) into (5.3.7c) gives

EHLL
3 = 1

sR − s∗2 − bLR

(
sRER − s∗2EHLL

2 + aLR − H̃R

)
.

If we insert this into (5.3.12) we obtain

EHLL
2 = sR − s∗2 − bLR

1 + s∗2dLR

[
cLR + dLR

sR − s∗2 − bLR
(sRER + aLR − H̃R)

]
.

The cases sR − s∗2 − bLR = 0 or BLR = dLR are of particular interest. The case sR − s∗2 −
bLR = 0 can only occur if sR = s∗2 and if bLR = 0. This happens if |EL| = |ER|, and
in this case, E1 = E3, so that s∗1 = −s∗2. Then it is also BLR = dLR, i.e. we only have
the 2-region and we obtain the solution of the linear Riemann problem corresponding to
linear Maxwell’s equations. Therefore we can choose the linear numerical flux in (5.3.8) or
the Lax-Friedrichs flux as given in (5.3.6). With view to numerics, we therefore make the
following important observation as a consequence of equation (5.3.9): Whenever the values
|EL| and |ER| are close to each other, that is, ||EL| − |ER|| ≤ tol for some given tolerance,
we are – inside this tolerance – close to the linear case. Then the linear numerical flux can
be looked upon as a good approximation, meaning, inside this tolerance. For instance,
for problems with smooth solutions, as e.g. a Gaussian pulse which we consider in section
5.4.1 or a (linear) standing wave as a basic test, our numerical results suggest a tolerance
of around 10−14 up to 10−4, depending on χ. For instance, if χ = 10−14, tol ∼ 10−14, for
χ = 0.08, it is tol ∼ 10−4.

Wave Speed Estimates

What remains are explicit expressions for the wave speeds s∗1, s∗2. These can be obtained
via so-called wave speed estimates. We choose the wave speed estimates given by Batten
et. al. [114], which were first introduced by Einfeldt et. al. in [115], due to the fact that
these are less diffusive compared to other estimates, they give rise to a robust algorithm
and shocks are resolved exactly.
Following Batten et. al. [114] the wave speed approximations s∗1 and s∗2 are given for an
m-dimensional system as

s∗1 = min{λ1(ul), λ1(uRoe)},

s∗2 = max{λm(ur), λm(uRoe)}.
(5.3.15)

Here, uRoe is the so-called Roe average of the Roe solver [28] which has to be determined.
A practical introduction to the Roe solver can be found in e.g. [30, Ch. 11]. There, also
the Roe-Pike method is explained which gives a way of avoiding the computation of the
Roe matrix explicitly, which is needed to determine the Roe average uRoe. Yet this ansatz
leads to extremely large and complicated expressions for our case, in parts only implicitly
given. A note in the book by Laney [116, Ch. 5.3.2, p. 86] gives us another approach.
The author remarks that the Roe average uRoe can be written as

uRoe =: uRL = θuL + (1− θ)uR. (5.3.16)

If θ ∈ [0, 1] such Roe averages are called linear averages, convex interpolations or convex
linear combinations. For example, for Euler’s equations, the Roe average indeed fulfills
(5.3.16), where θ is a fixed fraction consisting of the Euler variables so that 0 < θ < 1. Our
approach therefore is to assume that uRoe can be expressed as in (5.3.16) with θ ∈ [0, 1],
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5 Application: Kerr-Nonlinear Maxwell’s Equations

where θ is treated as an unknown.
In order to finalize the wave speed estimates, we need the eigenvalues of the Kerr system
which were given in (5.1.16). For our purposes we rename the eigenvalues in order of their
magnitude as

λ1(|E|) = − 1√
E ′( |E|

2

2 )
, (5.3.17)

λ2(|E|) = − 1√
E ′( |E|

2

2 ) + E ′′|E|2
, (5.3.18)

λ3(|E|) = 1√
E ′( |E|

2

2 ) + E ′′|E|2
, (5.3.19)

λ4(|E|) = 1√
E ′( |E|

2

2 )
. (5.3.20)

λ1, λ2 are strictly monotonic increasing with |E|, and λ3, λ4 are strictly monotonic de-
creasing with |E|. Thus, using (5.3.15) and the ansatz (5.3.16) with θ ∈ [0, 1] we obtain
the wave speeds

s∗1 = min
θ
{λ1(|EL|), λ1(|ERL(θ)|)}, (5.3.21)

s∗2 = max
θ
{λ4(|ER|), λ4(|ERL(θ)|)}, (5.3.22)

where ERL(θ) = θEL + (1 − θ)ER. Also note, since the eigenvalues are increasing or
decreasing functions in |E|, the maximum and minimum, respectively, given in (5.3.21)
always exists, thus s∗1, s∗2 are well-defined.
We could not find explicit expressions for s∗1, s∗2, only implicit ones which involved the
computation of zeros of implicitly defined functions, which would contradict the intention
of the HLL solver, namely to be computationally efficient and affordable. In practice we
therefore chose the following procedure: We define an array theta = linspace(0, 1, num),
where num is an arbitrary number which should not be too big with view to efficiency;
besides it is unnecessary to choose a big value of num. We then compute s∗1, s∗2 as given in
(5.3.21) and take the maximum and the minimum, respectively, over all chosen values of θ.

The HLL-like flux should be applied whenever s1 6= sL and s2 6= sR. If s1 and sL, s2
and sR are close to each other within a tolerance tol, we are close to the linear case. Fur-
thermore, throughout our simulations we observed sL = −sR and s1 = −s2. Whenever
|s1− sL| ≤ tol (in this case it is also |s2− sR| ≤ tol) one can use a linear flux, like e.g. the
Lax-Friedrichs flux (5.3.6) or the linear flux (5.3.8).

5.4 Numerical Tests
5.4.1 Gaussian Pulse for the One-Dimensional Kerr System
If we set Ey = 0 and Hz = 0 we obtain the one-dimensional Kerr-nonlinear Maxwell’s
equations as

∂tEz − J22∂xHy = 0, (5.4.1)

∂tHy −
1
µ0
∂xEz = 0 (5.4.2)
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where J22 is an entry of the matrix J−1 from (5.1.13), which for this case is given as

J−1 =
( 1

ε0+χE2
z

0
0 1

ε0+3χE2
z

)
=:

J11 J12

J12 J22

 .
Equivalently, one could set Ez = 0 and Hy = 0, which gives

J−1 =
( 1

ε0+3χE2
y

0

0 1
ε0+3χE2

y

)

and

∂tEy + J11∂xHz = 0, (5.4.3)

∂tHz + 1
µ0
∂xEy = 0 (5.4.4)

In [45] the analytical solution of (5.4.1) is given implicitly as

Ez = Ez(x, t) = G

x± 1√
√
ε0µ0 +

√
µ0
ε0

3χEz(x, t)2
t

 , (5.4.5)

Hy(x, t) = µ0
ε0
F

(
3χEz(x, t)2

ε0

)
. (5.4.6)

The initial data for Ez is assumed to be continuously differentiable, that is,
Ez(x, t = 0) ∈ C1(R). Furthermore, the function F is for the right traveling wave, i.e. for
the minus sign, defined as the power series

F (x) :=
∞∑
n=0

anx
n (5.4.7)

with the coefficients

an = (−1)n (2n− 3)!!
2n(2n+ 1)n! for n > 0,

a0 = −1.

Here, m!! is the double factorial which is defined as

m!! := (2m− 1)!, m ∈ N, m ≤ n,

m!! = 1 for m ≤ 0.

For the left traveling wave, one substitutes F → −F .
We note that with the substitution Ez → Ey and Hy → −Hz (5.4.5) is also a solution of
(5.4.3).

In our simulations we choose a Gaussian pulse as initial condition, i.e.

G(Ez) := E0 exp

− 1
2σx−

 1√
√
ε0µ0 +

√
µ0
ε0

3χE2
z

t


2 , (5.4.8)
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5 Application: Kerr-Nonlinear Maxwell’s Equations

where E0 is the amplitude and σ is the width of the Gaussian pulse. Ez is determined as
the zero of the function

f(Ez) := Ez −G(Ez).

Analogously, one cant determine Ey as the zero of f(Ey) = Ey−G(Ey). We use a modified
regula falsi method to compute its zero, which is as fast as a Newton’s method (which is of
order 2) or much faster than a bisection scheme, avoiding the computation of the derivative
of f . For computing the analytical solution, speed is essential, since the computation of
Ez takes most of the simulation time. Figure 5.19 shows snapshots of a Gaussian pulse
with the settings χ = 0.08, σ = 0.1, E0 = 1, x0 = 0, the simulation interval was [−1, 5]
and the simulation time tfinal = 3. Please note that theoretically, the Gaussian pulse is for
t > tmax = 0.947 not analytical anymore; indeed, we can see for t = 3 in figure 5.19, that
the pulse steepens more and more, thus resulting in a shock.
We compute the double factorial via the formula

(2m− 1)!! = (2m− 1)!
2m−1(m− 1)! , for m > 0.

Furthermore, we determine the coefficients an via the Horner scheme (see e.g. [80] [81]);
in order to do so the power series F is rewritten as

F (x) =
∞∑
n=0

anx
n = (. . . (anx+ an−1)x+ . . . )x+ a0.

In order to ensure existence and uniqueness of the analytical solution the assumptions of
the implicit function theorem must be fulfilled. This leads to the condition t < tmax for
the time variable t, where tmax is given as follows [117, Lemma 2.15]

tmax :=
(

1 + 3χE2
z

ε0

) 3
2 ∣∣∣∣ε0√ε0µ0

3χE2
0

∣∣∣∣σe 1
2 .

If χ = 0, the Gaussian pulse is given as

Ey = e−
(x−x0+t)2

2σ2 ,

Hz = e−
(x−x0+t)2

2σ2 .

(5.4.9)

In this case, tmax would be infinity, and the total simulation time can be chosen arbitrarily.
Furthermore, as we mentioned in section 2.1, χ has to be small enough so that the power
series converges.

156



5.4 Numerical Tests

Figure 5.19: Snapshots of the Gaussian pulse (5.4.8) with χ = 0.08, σ = 0.1, E0 = 1,
x0 = 0, x ∈ [−1, 5] and the final simulation time tfinal = 3, at time (a) t = 0,
(b) t = 0.947, (c) t = 3.
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Zero Finding Routine for the Numerical Computation of Ez

In our implementations we use an efficient modified regula falsi method to determine the
zero of the function f(Ez) := Ez − G(Ez), which is a modified version of the regula falsi
scheme (see e.g. [113, Ch. 9.2]). Let f ∈ C2(D), D ⊂ R open, and [a0, b0] be an interval
in which a zero exists with f(a0) · f(b0) < 0. Then we perform the following steps:

1. Bracketing in case the starting guess is far away from the actual zero. Define z :=
1
2(am+bm) with m > 0 and let the new interval [am+1, bm+1] = [am+1, z] or [z, bm+1],
depending on sign(f(z) · f(am)).

2. Regula falsi step. Define

x := amf(bm)− bmf(am)
f(bm)− f(am) .

3. Newton step with overshoot. Let

y := x− 2 bm − am
f(bm)− f(am) .

4. We distinguish the following cases:
Case 1: If y /∈ [am, bm]: No change.
Case 2: If f(x) · f(y) > 0: Choose either [am, x] or [x, bm] as a new interval, depending

on sign(f(x) · f(am)).
Case 3: If f(x) · f(y) < 0: Either [x, y] (if y > x) or [y, x] (if y < x).

In cases 2 and 3 we add a bisection step to increase the convergence speed.
The y in step 2 can be looked upon as a “trial balloon”. For smooth functions we
are very soon, i.e. for some m > m0, where m0 is a small integer, in case 1 of step 3
so that the computational effort remains small.

Step 1 ensures stability and convergence of the method and step 2 increases its speed
with a total convergence order of 2, in contrast to the simple regula falsi scheme which
can be very slow. It is thus as fast as Newton’s method but avoids the computation of
the derivative f ′, and it is faster than the secant or regula falsi methods. The idea of
the modified regula falsi scheme can be compared to the idea of the Illinois variant of
the regula falsi method, see e.g. [118]. Our modified regula falsi method is adjusted such
that it uses fzero if the initial guess is a scalar and not an interval. All simulations were
performed on an Intel Core 2 processor.

5.4.2 Zero Finding Routine for the Numerical Computation of E2

In order to compute the exact numerical flux and the wave speeds s1 and s2 we need the
zero E2 of the function γ in (5.2.67) which we determine via a zero finding routine. γ
is continuously differentiable, as already mentioned in section 5.2.4. We therefore expect
that a zero finding routine does converge.
The modified regula falsi method which we used in section 5.4.1 to compute a Gaussian
pulse solution is designed for real scalars, like e.g. fzero by Matlab. Yet in our case, E2
is a two-dimensional vector. We have to run the routine for E2,y and E2,z, respectively.
Besides the question of time, we know that solving the function γ in (5.2.67) for E2 also
requires its norm |E2|2 = E2

2,y + E2
2,z. Therefore we cannot apply the regula falsi method

componentwise, since we have a coupled problem in E2,y and E2,z. We decided to use
Muller’s method (see e.g. [113, Ch. 9.5.2]) which is able to determine complex zeros as

158



5.4 Numerical Tests

convergence order total time no. of no. of function |f(Eappr
2 )|

iterations evaluations
modified 2 0.005973 5 11 4.26e-14

regula falsi
regula falsi 1 0.006474 5 11 4.26e-14

secant method golden ratio ≈ 1.6 0.006705 7 9 3.73e-14

fzero at most 2 0.008126 6 31 0

Table 5.3: Comparison of the performance of different zero finding routines, where we
have chosen the following (arbitrary) settings: EL = (2, 1)T , ER = (1, 1)T ,
BL = (−1, 1)T , BR = (1, 0)T , ε = 1, µ = 1, χ = 1/3. The initial interval is
[−5, 8] and the initial guess for fzero is 0. These guesses are not close to the
zero. |f(Eappr

2 )| is the function value at the obtained approximative zero Eappr
2 .

well. We thus write the vector E2 = (E2,y, E2,z)T as a complex number E2 := E2,y +iE2,z;
the function γ becomes a complex scalar function γ̃ in dependency of E2. We then apply
Muller’s method to find the zero E2 of γ̃ so that E2,y = oRe(E2) and E2,z = Im(E2).
Whenever one of the components Ey or Ez is zero, we can use fzero or regula falsi to
compute E2,y or E2,z, since then the coupling nature is absent. In that case, we have
compared fzero with Muller’s method and obtain a maximal difference of around 10−16.
We have also run a simulation with the exact numerical flux from section 5.3.2, once using
fzero and once using Muller’s method. We chose χ = 10−16, p = 3, K = 50, tfinal = 4 and
the Gaussian pulse with the settings from above. The total simulation time was about 2
hours for fzero, and about 17 minutes for Muller’s method (on a single CPU Inter Core
2). The maximal L1-error was in both cases about 8 · 10−3.
Muller’s method is a modified secant method. In contrast to the secant method it needs
three initial guesses and its corresponding three function values, and then interpolates
quadratically. For completeness we give Muller’s method here.

1. Find three initial guesses xi−2, xi−1, xi.

2. Evaluate γ̃(xi−2), γ̃(xi−1) and γ̃(xi).

3. Define
q := xi − xi−1

xi−1 − xi−2
.

4. Define the quantities

A := qγ̃(xi)− q(1 + q)γ̃(xi−1) + q2γ̃(xi−2),

B := (2q + 1)γ̃(xi)− (1 + q)2γ̃(xi−1) + q2γ̃(xi−2),

C := (1 + q)γ̃(xi).

5. The new value is

x
(1,2)
i+1 = xi − (xi − xi−1) 2C

B ±
√
B2 − 4AC

.
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In our simulations we use information from the linear numerical flux (5.3.8) to find the
three initial guesses for Muller’s method. We let

E0 := sL
sL − sR

(−sR(EL −ER) + (BL −BR))

and define the three initial guesses

x1 = E0,y + iE0,z,

x0 = x1 − ε,

x2 = x1 + ε,

where ε > 0. Recall that sL = λ−1 (EL) and sR = λ+
1 (ER). We also need a stopping

criterion for Muller’s method, which we define as follows.

- Choose a tolerance tol, a maximal iteration number max_iter and a maximal
counter number max_count. Initially define the iteration step number iter = 1
and a counter count = 1.

- Let fnew = min(γ̃(x0), γ̃(x1), γ̃(x2)) and denote the corresponding value x0, x1 or x2
by xold.

- if |fnew| ≤ tol
Enew

2 = xold

else
while |fnew| > tol or count == max_count

Do a Muller’s step and obtain the two new values x(1,2)
i+1 .

Evaluate γ̃(x(1,2)
i+1 ) and choose fnew = min(γ̃(x(1)

i+1), γ̃(x(2)
i+1)) with the corre-

sponding value x(1)
i+1 or x(2)

i+1, which gives the new starting guess Enew
2 for

the next Muller step, from which we determine three new initial guesses
xi−2, xi−1, xi and their three corresponding function values.
Increase iter = iter+1.
if iter == max_iter

reduce the tolerance by number so that tol = tol*number. Set count = count+1.
Repeat if necessary until count = max_count.

end
end

end.

The last if-loop enforces the ending of the while-loop in case Muller’s method cannot find
a function of the given tolerance. Note that until then the tolerance might be too high in
order to talk of convergence of the method. It is meant as a sure stopping criterion for
Muller’s method.
In our simulations we have chosen ε = 0.01, tol = 1e-15, max_iter = 10,
max_count = 3 and number = 5/count.

The wave speeds s1 and s2 are given as follows (see section 5.2.4):

• We need to identify the upwind and downwind value.
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- If |EL| < |ER|, then |EL| is the upwind value and we have a 2-shock. The speed
s1 of the left 2-shock and the speed s2 of the right 2-shock are given according
to (5.2.60). In this case, we also have E1 = |EL|

|E2|E2 and E3 = |ER|
|E2|E2.

- If |EL| > |ER|, |ER| is the upwind value. Then E1 = |ER|
|E2|E2 and E3 = |EL|

|E2|E2.
In this case we have a 2-rarefaction wave; we choose s1 to be the speed of the
head of the left rarefaction fan, that is, s1 = λ−2 (|EL|), and s2 = λ+

2 (|ER|) is
the speed of the head of the right rarefaction fan.

5.4.3 Comparison of the Numerical Fluxes and the Exact Numerical Flux

In this section we compare the following numerical fluxes with each other: three linear
numerical fluxes (the Lax-Friedrichs flux from section 5.3.2, the Richtmyer flux from sec-
tion 5.3.2 and the linear flux from section 5.3.2), the exact numerical flux from section
5.3.2 and the HLL-like flux from section 5.3.2. For all fluxes we compute the L1-error
between the exact solution Ey, i.e. the Gaussian pulse (5.4.5), and its approximation Ey,h,
produced via the DG method, over the entire time, for increasing polynomial order p and
decreasing maximal edge length h. For implementation, we approximate the L1-error by

e(Ey,h − Ey) := h
∑
i

∑
j

|(Ey,h − Ey)ij |,

where (Ey,h − Ey)ij denotes an element of the Np ×K-array Ey,h − Ey. The simulation
time in case of the implicitly given Gaussian pulse (5.4.5) was tfinal = tmax − 0.1 = 0.84,
the domain was chosen to be Ω = [−1, 5], and we set χ = 10−16 or χ = 0.08 with ε = µ = 1
in order to compare the behavior of the scheme for the linear and nonlinear case, respec-
tively. The time step size was ∆t = 0.4 min(∆x), the Gaussian pulse width was σ = 0.1,
its center x0 = 0 and its amplitude E0 =

√
ε/µ. In the power series (5.4.7) we chose

n = 15. For the regula falsi algorithm we have set the tolerance on the function value f
at the approximate zero x and on x itself to 10−18, respectively, with a maximal iteration
number of 1000.
Table 5.4 gives an overview of the numerical results with the different numerical fluxes
for χ = 10−16 (once with the implicitly defined Gaussian pulse (5.4.5), where zero ap-
proximation is needed, and once with the explicitly given Gaussian pulse (5.4.9), which
does not need the computation of a zero) and χ = 0.08. In figures 5.20 to 5.30 the
convergence results are plotted in logarithmic scale. We observe an error behavior of ap-
proximately O(h3) to O(h4) for all numerical fluxes if χ = 0.08 (for varying polynomial
order p = 3, . . . , 9), and p-convergence O(hp+1) for χ = 10−16, which we would expect
from theory. In the following we present details.

Numerical tests suggest that the convergence order 3 to 4 for χ = 0.08, which is not
according to theory, may arise due to two reasons. First, it may be due to the usage of
a linear flux, since, for χ = 0, the order of convergence is between O(h4) to O(h5), as
figure 5.23 illustrates. We first observe p-convergence, and then the order of convergence
stagnates, which is due to the Runge-Kutta time integration, which is of order 4. Figures
5.23, 5.24, 5.26, 5.27 and 5.29 show p-convergence in case of χ = 10−16 as well, whereas
for χ = 0.08, this behavior is lost, see figures 5.20, 5.21, 5.22, 5.28 and 5.30. Second,
this convergence behavior may also be due to an error coming from the approximation to
the Gaussian pulse for the nonlinear Kerr-system as given in (5.4.5). The following two
numerical tests indicate to this. First, if we make a very simple linear test with χ = 0,
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using initially a standing wave in an empty cavity, i.e.

Ey = − sin(k(x− a)) cos(ωt),

Hz = cos(k(x− a)) sin(ωt),

where L := b − a is the length of the simulation interval [a, b], k = mπ
L is the wave num-

ber, m the number of modes and ω =
√

µ
ε k the frequency, we approximately observe the

well-known convergence behavior O(hp+1), again taking into account that we use a (4, 5)-
Runge-Kutta method. We have chosen the Lax-Friedrichs flux. See figure 5.25 for a plot.
We have set a = −1, b = 1 and m = 1. Secondly, we repeat this test with χ = 0 and use
initially a Gaussian pulse for the linear problem as given in (5.4.9), which does not need
a zero finding routine to be established. We have again used a Lax-Friedrichs flux. We
observe a convergence behavior that is similar to the one for the standing wave, as figure
5.26 illustrates.

Convergence plots for the exact numerical flux from section 5.3.2 are shown in figures
5.27, where we have set χ = 10−16 and χ = 0.08. We have used fzero and Muller’s
method to compute the zero E2 of the function γ in (5.2.67). Furthermore, now we have
∆t = 0.2 min(∆x), but a bigger time step size as e.g. ∆t = 0.4 min(∆x) would work as
well. Yet, with a smaller time step size we expect a smaller error coming from the Runge-
Kutta time integration, and thus a better convergence behavior, which is what we indeed
obtain; see figures 5.20 and 5.24 for example. Throughout, the maximal error between a
zero found with fzero and a zero found with Muller’s method was around 10−16. The total
simulation time needed to produce the results with fzero was about 5.5 days to more than
7 days on our computer (a single CPU Inter Core 2). With Muller’s method, the same
test system needs about 2 days. For χ = 10−16, we observe p-convergence; the stagna-
tion starting with polynomial order p = 6 is due to the Runge-Kutta scheme. We tested
the error coming from the approximation to the implicitly defined Gaussian pulse (5.4.5),
for χ = 10−16, with the different numerical fluxes. Thus, we have run simulations with
the exact numerical flux and computed the implicitly defined Gaussian pulse as given in
(5.4.5), i.e. via regula falsi, and once we have run the same simulation with the explicitly
given Gaussian pulse (5.4.9); see figures 5.26 and 5.23 as examples for χ = 10−16; in both
cases, a Lax-Friedrichs flux was used. Again we find indications that the computation of
the implicitly given Gaussian pulse is responsible for a slightly lesser accuracy and conver-
gence order. Yet, the results with χ = 0.08, where we find a convergence order of about
2.5 to 4, suggest there are also other reasons, possibly due to the nonlinear behavior which
manifests itself stronger if χ O(1), instead of χ 0.
For the HLL-like flux from section 5.3.2, figures 5.29 and 5.30 show the L1-error for the
same test system from above with χ = 10−16 and χ = 0.08. Here, the total simulation
time was about 5 hours (for χ = 10−16 and χ = 0.08), which is an immense improvement
in time to the exact flux. Furthermore, we have approximately the same convergence
order. Additionally, we observe that the wave speeds s∗1 and s∗2 are good approximations
to the exact wave speeds s1 and s2. We will say more about this in the following subsection.

Throughout our simulations and tests we observed that we are often in the situation
|s1− sL| ≤ tol and |s2− sR| ≤ tol, where sL = −sR in our case. Numerical results suggest
that the maximum of the differences |s1−sL| and |s2−sR|, respectively, is of the magnitude
of |χ|; for example, if χ = 0.08, max |s1 − sL| ≈ 0.07. Simulations also suggest that this
occurs in grid points around the peak of the Gaussian pulse, whereas in grid points away
from the peak, we have |s1 − sL| ∼ 10−16. An intuitive explanation comes from the fact
that the self-focusing of the Gaussian pulse is exactly observed around the peak. In this
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5.4 Numerical Tests

χ = 10−16, implicitly defined Gaussian pulse (5.4.5):

numerical flux order of convergence error behavior running time
exact flux (fzero) p-convergence 10−9 > 7 days
linear fluxes p-convergence 10−11 1 h
HLL flux p-convergence 10−11 2 h

χ = 10−16, explicitly given Gaussian pulse (5.4.9):

numerical flux order of convergence error behavior running time
exact flux (fzero) p-convergence 10−10 5.5 days
linear fluxes p-convergence 10−11 1 h
HLL flux no tests – –

χ = 0.08:

numerical flux order of convergence error behavior running time
exact flux (muller) 2.5 to 4 10−5 2 days
linear fluxes 2.6 to 4 10−5 2.2 h
HLL flux 2.5 to 4 10−5 2.7 h

Table 5.4: Overview of the most important numerical results for χ = 10−16 and χ = 0.08
with the different numerical fluxes: exact flux, linear fluxes (Lax-Friedrichs,
linear flux from (5.3.7) or (5.3.9), Richtmyer flux) and HLL-like flux. In case of
the exact numerical flux, we have written in brackets if fzero (fzero) or Muller’s
method (muller) was used to compute E2 of γ of (5.2.67). With p-convergence
we mean that the convergence behavior of the L1-error looks like p-convergence
at the beginning and then stagnates for certain polynomial degrees, resulting in
an order of convergence of 4, coming from the Runge-Kutta time integration,
which is of order 4.

case, whenever |s1 − sL| ≤ tol (then |s2 − sR| ≤ tol holds also), we are close to the linear
case, and the corresponding Riemann problem is linear, thus giving a linear numerical flux.

Summarized we find the following: All numerical fluxes produce convergence orders that
are approximately similar to each other. For χ = 10−16, we find p-convergence. For
χ = 10−5, the order of convergence is between 2.6 and 4. After a thorough comparison
of the five different numerical fluxes presented here, we think that using a linear flux is
a suitable choice with respect to efficiency. It is the fastest among the numerical fluxes,
while giving the same convergence results. Furthermore we have observed in our simula-
tions that we are often in the linear case, that is, we have s1 = sL and s2 = sR. Several
numerical tests suggest that the not optimal convergence order between 2.6 and 4 is a
consequence of the approximation to the implicitly defined Gaussian pulse (5.4.5), other
numerical error sources (like e.g. Muller’s method or fzero), or simply the nonlinear nature
of the problem at hand.

163



5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.20: L1-error plot for Ey for polynomial order p ∈ {3, . . . , 9} and number of ele-
ments K = 50, 80, 100, 120, 150, 170, 200 and with the linear flux from equa-
tion (5.3.8); initially the implicitly defined Gaussian pulse (5.4.5) is chosen
with width σ = 0.1, center x0 = 0, amplitude E0 = 1 and number of co-
efficients n = 15, where the Gaussian pulse was computed according to the
exact solution for the one-dimensional Kerr-problem. The time step size was
∆t = 0.4 min(∆x). The simulation domain is [−1, 5], and the material pa-
rameters are χ = 0.08, µ = 1, ε = 1 and the final simulation time was
tfinal = 0.84.
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5.4 Numerical Tests

Figure 5.21: L1-error plot for the implicitly defined Gaussian pulse as in figure 5.20 with a
Lax-Friedrichs flux and with χ = 0.08; the total simulation time was tfinal =
0.84 over the domain [−1, 5]. The time step size was ∆t = 0.4 min(∆x).

Figure 5.22: L1-error plot for the implicitly defined Gaussian pulse as in figure 5.21 with
a Richtmyer flux as given in section 5.3.2.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.23: L1-error plot for the implicitly given Gaussian pulse (5.4.5) for p ∈ {3, . . . , 9}
and K = 50, 200, 300, 400, 500 with a Lax-Friedrichs flux and with χ = 0;
the total simulation time was tfinal = 4 over a domain [−1, 5]; for χ = 0
the maximal allowed time tmax is infinity. The time step size was ∆t =
0.4 min(∆x).

Figure 5.24: L1-error plot for the explicitly given Gaussian pulse (5.4.9) with the linear
flux (5.3.8) and with χ = 10−16, K = 50, 80, 100, 120, 150, 170, 200. The total
simulation time was tfinal = 4 over a domain [−1, 5]; here, the time step size
was ∆t = 0.2 min(∆x). With a smaller time step size we expect a better
convergence behavior and smaller error, which is what we indeed obtain.
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5.4 Numerical Tests

Figure 5.25: L1-error for a standing wave in an empty cavity for p ∈ {3, . . . , 9} and K =
2, 4, 6, 8, 10 with a Lax-Friedrichs flux and χ = 0. The simulation domain
was [−1, 1] and the simulation time was tfinal = 5. The time step size was
∆t = 0.4 min(∆x).

Figure 5.26: L1-error for the explicitly defined Gaussian pulse according to (5.4.9)
for the linear problem with χ = 0, p ∈ {3, . . . , 9} and K =
50, 80, 100, 120, 150, 170, 200, where no zero approximation is needed to com-
pute the Gaussian pulse. A Lax-Friedrichs flux was used. The simulation
domain was [−1, 5] and the simulation time was tfinal = 4.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

Figure 5.27: L1-error for the explicitly given Gaussian pulse (5.4.9) with the exact nu-
merical flux from section 5.3.2 and with χ = 10−16, p ∈ {3, . . . , 9} and
K = 50, 80, 100, 120, 150, 170, 200, where fzero was used to compute the zero
E2 of the function γ in (5.2.67). The simulation domain was [−1, 5] and the
simulation time was tfinal = 0.84. The total running time of the simulation
was about 5.5 days.

Figure 5.28: L1-error plot as in figure 5.27, but now with χ = 0.08. The exact numerical
flux with Muller’s method was used to compute the zero E2 of the function
γ in (5.2.67). The total running time was about 2 days.
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5.4 Numerical Tests

Figure 5.29: L1-error for the implicitly defined Gaussian pulse (5.4.5) with χ = 10−16 and
with the HLL-like flux of section 5.3.2. The simulation domain was [−1, 5]
and the running time was tfinal = 0.84.

Figure 5.30: L1-error for a Gaussian pulse as in figure 5.29, but with χ = 0.08.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

5.4.4 Comparison Between the Exact Wave Speeds and the Wave Speed
Estimates

We compare the exact wave speeds s1 and s2 with the wave speed estimates s∗1 and s∗2 by
computing the l1-error

e(si, s∗i ) := h
∑
j

(|(si − s∗i )j |) i = 1, 2,

where (si − s∗i )j denotes the j-th component of the vector si − s∗i (i = 1, 2). s∗1 and s∗2
were given in (5.3.21), and we compute s1 and s2 as follows:

In the left region:
If |E2| > |EL|, we have a left rarefaction, and s1 is chosen to be the speed of the head of

the rarefaction fan, that is, s1 = λ−2 (|EL|).
On the other hand, if |E2| ≤ |EL|, we have a left shock; s1 is given in (5.2.60).

In the right region, we proceed analogously. If |E2| > |ER|, we have a rarefaction wave,
and s2 = λ+

2 (|ER|). If |E2| ≤ |ER|, s2 is given via (5.2.60).

Table 5.5 shows the numerical results for a traveling Gaussian pulse, for χ = 10−18 and
for χ = 0.08. We see that the error is of a magnitude around 10−4 for χ = 0.08, hinting
again to a reason for the convergence order of 3 to 4 of the RKDG method with a linear
flux, as we observed in the previous section. Furthermore, it is e(s1, s

∗
1) = e(s2, s

∗
2) and

e(s1, sL) = e(s2, sR). We also observe that for χ = 0.08 we indeed have s1 6= sL and
s2 6= sR with e(s1, sL) ∼ 10−2, that is, we have truly a nonlinear problem. For χ = 10−18

we obtain e(s1, s
∗
1) = 0 and s1 = sL, as in the linear case. Figure 5.31 shows the maximum

of the error e(s1, s
∗
1) over the entire time, and table 5.6 shows e(s1, sL) over the entire time

for p ∈ {3, · · · , 9} and K = 50, 80, 100, 120, 150, 170, 200. We conclude that s∗1 and s∗2 are
relatively good approximations to s1 and s2, and above all, s∗1 and s∗2 are given globally
and their computation is fast.

χ = 0.08, K = 50, N = 3:

time 0.1326 0.2652 0.3978 0.5304 0.6629 0.7955
e(s1, s

∗
1) 7.8965e-05 1.2676e-04 2.2906e-04 2.8590e-04 2.6828e-04 1.6404e-04

e(s1, sL) 0.0174 0.0177 0.0177 0.0173 0.0164 0.0151

χ = 10−18, K = 50, N = 3:

time 0.1326 0.2652 0.3978 0.5304 0.6629 0.7955
e(s1, s

∗
1) 0 0 0 0 0 0

e(s1, sL) 0 0 0 0 0 0

Table 5.5: Error e(s1, s
∗
1) and e(s1, sL) for a Gaussian pulse (settings as in section 5.4.3)

for K = 50, N = 3 and (top) χ = 0.08, (bottom) χ = 10−18 at time
t = 0.1326, 0.2652, 0.3978, 0.5304, 0.6629, 0.7955. For χ = 0.08, it is e(s1, sL) 6=
0, which means we are indeed in the nonlinear regime. For χ = 10−18,
e(s1, s

∗
1) = e(s1, sL) = 0 for all times, i.e. we are in the linear case, as expected.
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5.4 Numerical Tests

e(s1, s
∗
1) K = 50 K = 80 K = 100 K = 120 K = 150 K = 170 K = 200

p = 3 0.0177 0.0189 0.0174 0.0172 0.0173 0.0172 0.0172
p = 4 0.0195 0.0192 0.0181 0.0176 0.0174 0.0173 0.0173
p = 5 0.0198 0.0183 0.0182 0.0175 0.0174 0.0174 0.0172
p = 6 0.0215 0.0187 0.0178 0.0177 0.0174 0.0173 0.0173
p = 7 0.0209 0.0185 0.0180 0.0177 0.0174 0.0173 0.0173
p = 8 0.0207 0.0185 0.0179 0.0177 0.0175 0.0174 0.0189
p = 9 0.0207 0.0187 0.0179 0.0177 0.0175 0.0176 0.0187

Table 5.6: Error behavior of e(s1, s
∗
1) over the entire time for polynomial order

p ∈ {3, . . . , 9} and number of elements K = 50, 80, 100, 120, 150, 170, 200.
The final simulation time was tfinal = 0.84.

Figure 5.31: Plot of the error max (|s1 − s∗1|) for a Gaussian pulse according to (5.4.5) with
χ = 0.08, p ∈ {3, . . . , 9} and K = 50, 200, 300, 400, 500. A Lax-Friedrichs flux
was used. The simulation domain was [−1, 5] and the simulation time was
tfinal = 0.84.
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5 Application: Kerr-Nonlinear Maxwell’s Equations

5.5 Summary
In this chapter we applied the Discontinuous Galerkin method to Kerr-nonlinear Maxwell’s
equations. The numerical flux was chosen as the solution of the corresponding Riemann
problem. We presented the exact solution structure of the Riemann problem as proven
in [71]. It consists of four simple waves, of which two are a contact discontinuity and the
other two are either a shock or a rarefaction wave. We investigated the simple waves by
exploring the Hugoniot Locus and the Riemann invariants, containing valuable information
about the exact form of the corresponding simple wave.
Due to the nonlinear behavior of the Kerr system the numerical flux is not given globally,
but locally, which leads to the necessity of solving the Riemann problem in each grid point
to establish the numerical flux. This is extremely expensive in view of simulations, leading
to the demand of more efficient alternatives. We presented here several global approximate
numerical fluxes, the well-known and widely used Lax-Friedrichs flux, a Richtmyer flux, a
linear flux which assumes to have only two contact discontinuities in spite of two contacts
and two shocks or rarefaction waves, respectively, and an HLL-like flux, which assumes
to have two contact discontinuities and two shocks. The wave speeds are given by wave
speed estimates. In order to compare the performance of these fluxes we implemented a
nearly exact numerical flux which is computed locally in every grid point, as the Kerr-
Riemann problem requires, yet with the restriction of not taking into account rarefaction
waves, but considering only shocks, as in case of the HLL-like flux. Yet we compute the
exact shock speeds, and in case of a rarefaction wave we take the speed of the head of the
rarefaction fan as the shock speed. Furthermore, the middle states are computed locally
by determining the zero E2 via Muller’s method, in every grid point. The results show that
linear numerical fluxes require the least resources in time and memory, whereby producing
a DG scheme of order 2.6 to 4, which is comparable to the order of convergence with the
exact numerical flux and HLL-like flux. Therefore, a linear flux might be a good choice
with respect to efficiency.
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6
Chapter 6

Summary and Outlook

The first part of this dissertation was devoted to background theory which is important for
the problems of our interest: the linear BOR Maxwell’s equations and the Kerr-nonlinear
Maxwell’s equations. We first presented Maxwell’s equations and some of their basic prop-
erties, like the constitutive relations between the electromagnetic fields, their behavior at
interfaces and boundary conditions. We introduced the weak form of Maxwell’s equations,
which is indispensable for our purposes. Furthermore we rewrote Maxwell’s equations as
a conservation law and saw that they are a hyperbolic system of equations.
We then introduced the Runge-Kutta Discontinuous Galerkin method which was intended
to be applied to the linear BOR Maxwell’s equations and the Kerr-nonlinear Maxwell’s
equations. We have seen that the numerical flux is an essential ingredient of the DG
method. We chose a numerical flux that is the solution to the corresponding Riemann
problem. In this context we studied the general Riemann problem and its solution, and
we introduced the notion of admissible, that is, physically relevant shock waves and rar-
efaction waves.

The second part of this work dealt with the application of the theory given in the first
part to linear BOR Maxwell’s equations and the Kerr-nonlinear Maxwell’s equations.
For BOR Maxwell’s equations, we presented an efficient implementation of the Runge-
Kutta Discontinuous Galerkin method in two and three space dimensions. We showed
that all elementary matrices can be constructed by exploiting the set of orthogonal Jacobi
polynomials. Above all, we demonstrated how the stiffness matrices can be directly con-
structed from two global template matrices.
Our approach still requires to pre-compute and invert the BOR mass matrix for each ele-
ment. Still it reduces the required memory by at least a factor of two when compared to
a quadrature-based approach. Since BOR systems are effectively two-dimensional due to
a dimension reduction of 1, owing to the rotational symmetry, in most cases this memory
requirement does not lead to significant limitations in terms of applicability. For cases
where memory is very scarce, our method leads to reductions by roughly a factor of four
at the price of some additional matrix-vector products.
Finally, in a set of numerical experiments, we demonstrated that our implementation
yields optimal p-convergence and is a promising method for solving the time-dependent
Maxwell equations in BOR systems. First, we observed higher order convergence of our
scheme for a homogeneous cavity. We successively added PML and incoming waves to
our systems and showed simulations of electromagnetic waves traveling along a half fiber
and scattering by a sphere, which was placed beneath the fiber in a distance of 1µm. Our
plots show the radiation is absorbed by the surrounding PML.

In the last chapter we applied the Discontinuous Galerkin method to Kerr-nonlinear
Maxwell’s equations in one space dimension for the y- and z-components of the electromag-
netic fields. Again, the numerical flux was chosen to be the solution of the corresponding
Riemann problem. We presented the exact solution structure of the Riemann problem as
proven in [71]. It consists of four simple waves, of which two are a contact discontinuity
and the other two are either a shock or a rarefaction wave. We investigated the simple
waves by exploring the Hugoniot Locus and the Riemann invariants.
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6 Summary and Outlook

Due to the nonlinear behavior of the Kerr system the numerical flux is not given globally,
but locally, which leads to the necessity of solving the Riemann problem in each grid point
to establish the numerical flux. This is extremely expensive in view of simulations, leading
to the demand of more efficient alternatives. We presented here three global approximate
numerical fluxes, the well-known and widely used Lax-Friedrichs flux, a linear flux and an
HLL-like flux. We also implemented a nearly exact numerical flux which assumes to have
only shocks but which uses the exact wave speeds. This flux is computed locally by solving
the Kerr-Riemann problem in every grid point anew. The middle state, which is needed
to construct the solution of the Riemann problem, is the zero of a smooth function. We
determined this zero by applying Muller’s method (in every grid point). Muller’s method
is much faster than, e.g., fzero by Matlab. The results show that the Lax-Friedrichs flux
requires the least resources in time and memory, whereby producing a DG scheme of order
3 to 4. Numerical observations suggest that a linear flux is a good choice with respect to
efficiency. The HHL-like flux seems to be a promising alternative to a linear flux, but still
needs improvement and corrections.

For time integration we used the low-storage Runge-Kutta scheme of order 4 with 5 stages
[7]. The error coming from a RK scheme depends on the choice of the Runge-Kutta co-
efficients. Thus, in order to increase the accuracy of the RKDG method and to decrease
the L1-error between the approximative and exact solution, one could choose another time
integration procedure, like e.g. a Runge-Kutta method of higher order which can be easily
integrated into our RKDG scheme. We mention the RK 8(7) method by Dormand and
Prince (see e.g. [119, Ch. 5.4, Ch. 4] and the references theirein), with which the error
coming from the RK time integration might be decreased from around 10−4 to 10−6. The
paper by Verner [120] suggests that higher accuracy can be achieved without increasing
the computational effort by choosing an efficient set of Runge-Kutta coefficients. If high
accuracy is needed, one could even use a Runge-Kutta method of order 10, see [121], which
includes a table of the RK coefficients.
With view to increasing optimality one could also think about replacing Muller’s method
with another zero finding routine, like e.g. a nonlinear SOR method; see e.g. [113, Ch.
19.5].
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