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ABSTRACT 
In buildings research Monte Carlo (MC) methods are 
used for uncertainty analyses. This paper presents an 
alternative approach for uncertainty analysis in 
buildings, coined the internal method. Here, the joint 
probability density functions (pdfs) of model outputs 
are directly computed from pdfs of the inputs. This 
method needs only a single simulation run to 
compute the output pdfs compared to significantly 
higher number of runs for MC methods. The 
application of the two competing techniques (MC 
and internal method) to the most elemental building 
problem (1R1C) reveals that MC methods prove to 
be much more appropriate for building problems. 

INTRODUCTION 
The relative influence of stochastic variations on the 
building energy consumption becomes higher for low 
energy buildings. This relationship is visualized in 
Figure 1. Here we compare a hypothetical traditional 
existing building with a mean consumption of 
150 kWh/(m²a) to a very low-energy building, e.g. a 
Passivhaus, with an annual consumption of 
15 kWh/(m²a). 
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Figure 1: Comparison between two buildings with 

different annual energy densities with the same 
absolute uncertainty 

It is assumed that the absolute stochastic variability 
in the consumption is independent of the 
consumption (in both cases ± 7.5 kWh/(m²a)). This 
results in a relative uncertainty for the traditional 
building of ± 5 % and for the Passivhaus of ± 50 %. 
Neglecting an uncertainty of ± 5 % may be justified 
in many cases but neglecting ± 50 % uncertainty is 
certainly not. Neglecting high levels of uncertainty in 

building design, retrofit or building operation can 
lead to disappointments and has a high potential for 
discrediting new and valuable technologies.  
To date, uncertainty analyses are not common in the 
building sector (Macdonald, 2002), even for low 
energy buildings. Recently this has gained some 
attention (IEA ECBCS Annex 55; Jacob et al., 2010; 
Burhenne et al., 2010). 

LITERATURE REVIEW 
Xu et al. (2005) postulate, that for building opti-
mization in particular uncertainties need to be 
considered. Possible approaches are shown e.g. in 
Jiang et al. (2007) and Jacob and Burhenne (2010). 
Uncertainty analysis has been examined in terms of 
both internal and external probabilistic approaches to 
quantifying the overall effect of parameter uncer-
tainty in building simulations (Macdonald, 2002; 
Jensen et al., 1994; Lomas et al.; 1997). Attention has 
also been focused on how stochastic processes 
external to the building (e.g., meteorological events) 
influence the thermal processes in the building (Jiang 
and Hong 1993), or how knowledge of internal 
building processes (e.g., occupancy patterns) can lead 
to improved building operation. A study of the 
general problem of inference in buildings (Dodier 
1999) showed how prediction, diagnosis, and 
calculating the value of information could be applied 
and verified. An example for the rarely treated 
internal stochastic building model is given in 
(Andersen et al., 2000). This work shows mathe-
matically advanced techniques but the described 
stochastic differential equation is not used to 
calculate the probability density functions of the 
building model output variables but how to calibrate 
the stochastic model to measured data.  

STOCHASTIC BUILDING MODELS 
There are two different basic stochastic models, 
which are coined the external and internal method 
(the terms were introduced by Macdonald 2002): 
1. External methods are Monte Carlo methods. In 

Monte Carlo (MC) methods classical 
deterministic building models are used. For all 
uncertain model inputs random samples are 
generated. Then the deterministic building model 
is executed or simulated for every element of 
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this input sample. From the individual model 
outputs, the joint probability distribution of the 
stochastic output variables can then be derived.  

2. The internal method directly calculates the 
probability density functions (pdfs) of the 
stochastic output variables from the pdfs of the 
stochastic input variables by a stochastic 
equation or a stochastic differential equation in 
dynamic cases.  

For this second technique – the internal method – 
almost no commonly known building simulation 
techniques can be used. Due to nonlinearities and 
other mathematical difficulties (like mode switching) 
in building simulations, some computationally 
expensive techniques including numerical integration 
and convolution will likely be necessary in more 
realistic examples.  

This work has shown that the initial expectation 
of shorter calculation times with the internal 
method could not be fulfilled.  

Reporting these results about the internal method still 
seems to be expedient:  
1. For some special cases internal methods are 

superior to MC methods (e.g., if an analytical 
solution is possible such as for simple stationary 
building models), 

2. the description seems to be mathematically more 
consistent,  

3. and it is possible to gain some additional insights 
into the stochastic nature of the problem (e.g. 
dependencies between variables in a proba-
bilistic sense) and  

4. it shows, that the internal method seems not to 
be relevant for the building practice in the near 
future.  

This last point is the reason for not having carried out 
realistic simulation studies using the internal method.  

Building Model 
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Figure 2: Most elemental dynamic building model 

The two methods are applied to the most elemental 
dynamic building model (Figure 2) consisting of one 
resistance and one capacity (1R1C). A dynamic 
model was chosen to show how it is possible to treat 
a dynamic model employing the internal method. The 
resistance contains transmission and ventilation 
losses to the ambient and therefore is not constant in 

time. The term gainQ  contains internal, solar and 
heating and cooling equipment gains. 
With an initial value this differential Equation (1) can 
be solved. 
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Now Ti, ventV , IntQ , z and HCQ are regarded as 
independent stochastic variables. To solve this 
stochastic differential equation in the framework of 
the internal method, Equation 1 needs to be 
integrated: 

0

( ) ( '),... '
t

startT t T f T t dt  (2) 

It can be solved with the following simple Eulerian 
discretization scheme.  
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More complicated solution schemes are not 
compatible with the methods developed below for the 
internal method. This method also relies on 
stochastically independent variables, which implies 
that every stochastic variable must only appear once 
in the equation. For this elemental model this is 
possible by algebraic manipulations that lead to 
Equation (4)1. This also prohibits the use of 
temperature dependent heat transfer coefficients. 
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External Method (Monte Carlo Method) 
The Monte Carlo-method (MC method) sometimes 
also called Monte Carlo simulation is a stochastic 
numerical method which involves repeated 
calculations on a random sample.  

                                                           
1 Only if the outside temperature Ta is regarded as 

non-stochastic.  
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Generally, a MC analysis consists of the following 
steps to randomly sample the modeling domain 
(Saltelli et al., 2000): 
1. Selection of the probability density function 

(pdf) for each uncertain input (Xi). 
2. Generation of a sample from each pdf. 
3. Simulating the model for each element of the 

sample. 
4. Analysis of the results. 

Internal Method 
Equation (5) shows the relationship between the 
Probability P of a stochastic variable X being smaller 
or equal to x and the cumulative distribution function 
FX(x) and the probability density function of X (pdfX):  

P F pdf
x

X XX x x x dx  (5) 

Stochastic textbooks (e.g. Soong, 2004) give a 
general relationship for calculating the pdfY from the 
pdfX if Y is the function g(X): 

g( )Y X   1g ( )X Y  (6) 
1

1( ) ( )Y X
dg ypdf y pdf g y

dy
 (7) 

This relationship even holds for piecewise invertible 
functions (Soong, 2004). In the following this 
relationship is explicitly written out for the cases 
described in Equation (4).  
For linear transformations one obtains: 

g( )Y a X X    

                   -11 g ( ) 0X Y Y a
a

 (8) 

1pdf pdfY X
yy dy

a a
 (9) 

The sum of a stochastic variable X and a non-
stochastic variable b is: 

g( )Y b X X   -1g ( )X Y b Y  (10) 

pdf pdfY Xy y b  (11) 

For the sum Z of two stochastic variables X and Y a 
general expression is given (Soong 2004) that also 
holds if X and Y are stochastically dependent 
variables: 

Z X Y   

 ,pdf pdf ,Z X Yz x z x dx  (12) 

Here, pdfX,Y(x,y) is the joint probability density 
function of X and Y. In case of independent variables 
this becomes: 

pdf pdf pdfZ X Yz x z x dx  (13) 

Equation (13) is called the convolution of pdfX and 
pdfY. It is possible to calculate the convolution with a 
Fourier transformation (Equations 14-16). This is 
numerically very effective when Fast Fourier 
Transformation (FFT) is used.  

1FT f f ( ) f ( )
2

i t
t t t e dt  (14) 

1 1FT f f ( )
2

i tt e d  (15) 

with 1f FT FT ft tt t  

As a result, the convolution formula becomes: 
1pdf FT FT pdf *FT pdfZ X Yz z (16). 

Now an algorithm for calculating the sum of two 
stochastic variables can be given: 
 

 
Algorithm 1: Calculation of the pdf of the sum of two independent stochastic variables from their pdfs 

1: Search for an adequate common domain of definition for both pdfs so that both have equal length 
and account for the periodicity in the FFT in the convolution. The domain must start at zero.  

2: Discretize 1pdf ,...,X mx x  and 1pdf ,...,Y my y  on equidistant points of support. The number of 
points is equal to a power of 2 ( 2 jm  with j ).  

3: Calculate the discrete Fourier transformation with FFT: 1 1,..., FFT ,...,m mx x x x  and 

1 1,..., FFT ,...,m my y y y . 

4: Convolute in Fourier space: 1 1 1,..., ,...,m m mz z x y x y . 

5: Inverse transformation: 1
1 1,..., FFT ,...,m mz z z z . 

6: If necessary convert the discrete values back to a function (e.g. with splines). 
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For the product Z of two stochastic variables X and Y 
a general expression is given (Soong, 2004) that also 
holds if X and Y are dependent variables: 

Z X Y   

 ,
1pdf pdf ,Z X Y

zz x dx
x x

 (17) 

For stochastically independent variables this 
becomes: 

1pdf pdf pdfZ X Y
zz x dx
x x

 (18) 

For numerical efficiency it is desirable to seek a 
calculation method for Equation (18) based on the 
FFT technique. This can be done with the logarithm, 
a technique used for example in slide rules: 

Z X Y   

log( ) log( )

log( ) log( )

0
0

0 0

X Y

X Y

e X Y
Z e X Y

X Y

 (19) 

To perform this calculation we turn to Equation (6) 
and (7):  

ln( ) g( )Y X X     
          1g ( )YX e Y  for X > 0 (20) 

pdf pdfy y
Y Xy e e  (21) 

and for: 
g( )XY e X    

          1log( ) g ( )X Y Y  (22) 

1pdf pdf logY Xy y
y

 (23) 

Now an equivalent algorithm for the product of two 
independent stochastic variables can be provided: 

 
 

Algorithm 2: Calculation of the pdf of the product of two independent stochastic variables from their pdfs 
1: Distinguish all cases of Equation (19) and separate the pdfs accordingly. 

2: Apply Equation (21) on all pieces: pdf pdfy y
Y Xy e e  and the same for pdfY. 

3: Apply Algorithm 1 for all cases (summation of the log(x) and log(y) in (19)).  
4: Apply the inverse transformation (Equation 23): for all cases.  

5: Combine all cases by summing the individual pdfs up (possibly a normalization is needed). 

6: If necessary convert the discrete values back to a function (e.g. with splines). 

 
 
The description of algorithm 2 might not be detailed 
enough for a technical implementation but it serves 
the purpose of estimating a lower limit on the 
computational resources needed for the internal 
method.  
It appears to be important to note again that this is 
only valid for independent variables in a stochastic 
sense. If the stochastic variables depend on each 
other, the convolution technique is no longer 
applicable here. Then computationally significantly 
more laborious numerical integration techniques are 
needed for Equation (12) and (17). 

RESULT: ESTIMATION OF THE 
COMPUTATIONAL RESOURCES 
NEEDED FOR THE TWO APPROACHES  
With the above description of the two methods, it is 
now possible to estimate the necessary computational 

resources for both the external and internal method 
for the most elemental dynamic building model given 
in Equation (4). This estimation will be done for one 
time step and will assume that all calculations for the 
internal method are carried out on the basis of the 
same discretization. In more realistic applications, 
this will likely not be the case and further raise the 
necessary computational effort for the internal 
method. Later in this section this lower limit 
estimation for the computational resources needed 
for the internal method proves to be reasonable. For 
this estimation the variables Ti, ventV , IntQ , z and 

HCQ are taken to be stochastic and independent. 
Furthermore, an ideal numerical coprocessor is 
assumed to be present which reduces the calculation 
of the basic algebraic operations (+, *, exp, log, sin, 
cos or complex exp) to one computational step. 
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Figure 3 Equation (4) marked with color boxes for counting operations 
 
 
In Figure 3, Equation (4) is marked with boxes in 
different colors to count the necessary operations. 
The result is shown in Table 1: 

Table 1 Count of operations in Equation (4) 
according to Figure 3 

Operation count 
sum of a constant and a  
stochastic  variable: 3 

product of a constant and a 
stochastic variable 3 

sum of two  
stochastic variables 3 

product of two 
stochastic variables: 1 

External Method 
For the Monte Carlo method, only one calculation 
step is needed for each of the operations listed in 
Table 1 under the above stated assumption of an ideal 
numerical coprocessor. If the stochastic input 
variables are time invariant or slowly changing in 
time compared to the time step in Equation (4) the 
sample generation can be neglected here.  
Table 2 Estimate of the numerical resources needed 

for one time step of the Monte Carlo method 

Operation comp. 
resources 

sum of a constant and a  
stochastic  variable: 3 

product of a constant and a 
stochastic variable 3 

sum of two  
stochastic variables 3 

product of two 
stochastic variables: 1 

  
total count of ops per time step for 
each element of the MC sample 10 

total count of operations per time 
step for the whole MC sample (10n) 

 
In Table 2 the necessary computational resources are 
estimated. From this it can easily be understood that 
the total numerical resources needed for one time 
step of the external method are of the order of ten 
times the sample size as shown in the last line of 
Table 2. 

Here the numerical effort for setting up the models 
and those required to analyze the outputs for the 
external method is neglected. This is mainly done 
because that is only necessary at the beginning and 
the end of the simulation. Therefore the effort for that 
per time step is divided by the number of time steps, 
which is for normal building simulations a big 
number, especially for the Euler solving scheme 
needed for the internal method.  
 

Internal Method 
Doing the same exercise for the internal method is 
more complicated. The individual operations in 
Figure 3 need to be distinguished more closely.  
According to Equation (11) for one summation 
between a stochastic variable X and a non-stochastic 
variable a, there are m subtractions of a necessary. 
Where 2 jm  with j is the discretization.  

According to Equation (9) for one multiplication 
between a stochastic variable and a non-stochastic 
number a there are 2m multiplications with 1/a 
necessary.  
The computational resources for one summation 
between two stochastic variables can be estimated 
from Algorithm 1. Since we assumed that we do not 
have to change the discretization, steps 1., 2. and 6. 
are not applicable here. Remaining are two FFTs and 
one pairwise multiplication of all Fourier 
transformed values and one inverse FFT. The 
computational resources needed for one FFT (or 
inverse FFT) are of the order (mlog(m)) for the 
assumed equidistant discretization with 2 jm  and 
j  (Stoer, 1972). This adds up to 
(m+3m3log(m)) operations for on summation of 

two stochastic variables.  
For the multiplication of two stochastic variables 
(only occurring one time as denoted by the orange 
box in Figure 3) the necessary computational 
resources can be estimated from Algorithm 2. For the 
sake of simplicity we assume here, that all 
distribution domains are strictly positive, so no case 
distinctions according to Equation (19) are necessary. 
This adds up to (7m+3m3log(m)) operations for on 
multiplication as shown in Table 3.  
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Table 3 Estimation of the necessary computational resources for the multiplication of two stochastic variables 
necessary computational resources 

operation count 
per operation total 

taking the logarithm 2 (2m) (4m) 
FFT 2 (mlog(m)) (2mlog(m)) 
convolution 1 (m) (m) 
FFT-1 1 (mlog(m)) (mlog(m)) 
taking the exponential 1 (2m) (2m) 
    
total   (7m+3mlog(m)) 

 
 
Table 4 Estimation of the total necessary computational resources for the internal method according to Figure 3 

necessary computational resources 
operation count 

per operation total 
sum of a constant and a  
stochastic  variable: 3 (m) (3m) 

product of a constant and 
a stochastic variable 3 (2m) (6m) 

sum of two  
stochastic variables 3 (m+3mlog(m)) (3m+9mlog(m)) 

product of two 
stochastic variables: 1 (7m+3mlog(m)) (7m+3mlog(m)) 
    
total   (19m+12mlog(m)) 

 
 
Now it is possible to compare the two methods – 
internal and external – with the information from 
Table 2 and Table 4. Nonetheless, the results from 
the two methods cannot be compared directly 
because the sample size n of a Monte Carlo method 
and the number of discretization points m of the 
internal method have different implications.  
Härdle et al. (2004) show that in estimations of 
(output-) pdfs from Monte Carlo results with sample 
size n with so-called kernel density estimators the 
approximate mean integrated squared error is 
declining with 4/5n .  
For the internal method the error estimation is more 
complicated and involves more assumptions. Here, 
both the discretization error for the discrete Fourier 
transformation and convolution and the interpolation 
error for the inverse transformation have to be taken 
into account. Considering the interpolation error of 
the inverse transformation interpolation error and 
assuming a similar behavior for the convolution part. 
Stoer (1972) gives approximations for the asymptotic 
behavior of the integrated squared error for different 
interpolation functions. For linear interpolation the 
error is declining with m-1 and for spline interpolation 
with m-2 for sufficiently mathematically well-
behaved functions2.  

                                                           
2 Basically the second derivative must be bounded. 

If there are no other sources of errors present (which 
needs to be further investigated) this leads to the 
following observation: 

The decline of the estimation error seems to be 
faster for the internal method than the external 
method.  
Due to the computationally extremely efficient 
FFT transformation, the rise in the necessary 
numerical resources for the internal method is 
slower than the decline in the error compared to 
the external method.  
That means that the internal method has the 
potential to be superior for very high accuracy 
applications.  

Now the question is: Is it possible to use this 
advantage in today’s building science problems? The 
answer will be given by looking at the elemental 
building model from Figure 2, which is described by 
Equation (4). The necessary computational resources 
are contrasted for sample sizes n for the external 
method and discretization points m. As a start a 
sample size n = 80 for the Monte Carlo method is 
looked at as it is suggested for building simulations 
by Macdonald (2002). According to Table 2, the 
necessary computational resources for one time step 
with the Monte Carlo method are of the order of 

(800). If the same amount of computational 
resources are spent on the internal method, an 
amount of 16 discretization points is derived from the 
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result in the last row of Table 4. For m = 16 this gives 
necessary computational resources of the order of 

(836). Tests with the internal method, however, 
showed that a discretization of 16 is not sufficient.  
In these tests a number of discretization points of 
m = 128 seemed to work reasonably. From Table 4 
necessary computational resources of the order of 

(9,500) are deduced. If the same amount of 
computational resources are spent on the external 
method it is possible to realize a sample size of 
n = 950. In our experience this is already an 
extensive sample size for Monte Carlo methods in 
building problems.  
Another important point is that it is straightforward 
to parallelize Monte Carlo methods. Computers with 
10 CPUs are not rare anymore and with cloud 
computing techniques it is possible to distribute 
Monte Carlo methods on hundreds of processors. 
With these techniques, the sample size of the Monte 
Carlo method is multiplied by 10 or rather 100 within 
the same order for the computation time. This is 
giving effective sample sizes of 9,500 or rather 
95,000 for the example given in the preceding para-
graph.  
Another important aspect is that modern building 
simulation solvers are generally capable of using 
higher order schemes, implicit solving and variable 
time step techniques. For this reason the number of 
time steps can be reduced compared to the simple 
Euler integration scheme used in the internal method. 
Additionally fixed time step solvers are inapplicable 
to stiff differential equations, like for couple heat and 
airflow simulations or for coupled building and 
control simulations. This is an additional advantage 
of Monte Carlo methods.  

CONCLUSION 
Based on the presented findings on the necessary 
computational resources and computational runtimes, 
Monte Carlo methods are preferable for the accuracy 
desired of results from stochastic building 
simulations. An additional important advantage of 
the external method is the possibility to easily 
parallelize this method. Furthermore, it is possible to 
harness current highly advanced building simulation 
techniques directly with Monte Carlo methods; 
whereas for internal methods entirely new stochastic 
simulation engines would have to be developed. It is 
more important that stochastic effects in building 
simulations are considered at all, and for this purpose 
Monte Carlo methods are more applicable.  
Due to the better convergence behavior of the inter-
nal methods they seem to be more appropriate for pdf 
calculations demanding very high levels of accuracy. 
Furthermore internal methods may also be more 
appropriate for linear time invariant systems used 
during controls design. The intention of this work is 
not to discourage further development of internal 

methods but to inspire a lively discussion on them 
and initiate research projects taking these ideas 
further.  
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NOMENCLATURE 
 

C total zone heat capacity 
constsol  constant containing summation over 

product of radiation times area times 
solar transmission of all windows 

cp specific heat capacity of air 
i number of time step 
Ht building loss coefficient 
m number discretization points of 

internal method 
n MC sample size 

gainQ  heat gains (power) to zone 

HCQ  heat gains (power) from heating and 
cooling equipment 

Qheat,spec specific heating energy demand 

IntQ  internal heat gains 
R total resistance to ambient  
T zone temperature 
Ta ambient temperature 
Tstart initial zone temperature 

ventV  volume flow of ventilation 
z solar transmission factor of blinds 
  
FT Fourier transformation 
FFT Fast Fourier Transformation  
MC Monte Carlo 
pdf probability density function  

 Landau order symbol /  
big Oh notation 
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