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Abstract

Complex Event Processing (CEP) provides an effective and efficient infrastructure

for an agile decision support. The strength of CEP resides in the declarative and

centralized representation of relevant business situations in form of event patterns,

the real-time capability to detect relevant business situations and the scalable

architecture to deal with a high throughput of events. In recent years CEP has

become the most important enabling technology to provide a real-time situational

awareness in several business domains like algorithmic trading, business activity

monitoring or fraud detection to name a few.

However, while the real-time capability is in the core of CEP systems and well

supported, the issue of event pattern management, including the modelling, de-

ployment and continuous evolution of event patterns, is still in its infancy. First,

existing tools to model event patterns are restricted on manual event pattern gen-

eration without any systematic modelling guidance. Moreover they neglect the

reuse of existing pattern knowledge, that encode the most valuable asset in CEP

systems. Second, the evolution of these patterns, which is a crucial point of nowa-

days IT systems, is let to the user (pattern engineer) of the CEP system. Third,

the life cycle of an event pattern is not well investigated in order to provide ad-

equate methods and tools at different life cycle stages of an event pattern. In a

nutshell the lack of methods, tools and methodologies in event pattern manage-

ment decreases the efficiency and effectiveness of the pattern engineer.

The goal of this thesis is to reduce the barriers stopping more enterprises from

accessing CEP technology by providing additional support in managing relevant

business situations. Therefore we outline the role of event pattern management

and present a methodology, methods and tools aiming at an efficient and effective

event pattern management. We provide a meta model for event patterns, an event

pattern life cycle methodology, methods for guidance, refinement and evolution.

The life cycle methodology aims at covering both design time aspects and run time

aspects of an event pattern. The meta model enables the detection of event pattern

relationships on different event pattern structure levels that will be used to refine

and adapt an event pattern. The methodology and methods are incorporated

by the PANTEON tool that provides a graphical user interface for modelling,

searching, refining, deploying and evolving event patterns.
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1
Introduction

In this chapter we describe the main motivation and the original research contri-

bution of this thesis. Starting with the necessity for the real-time1 data processing

we outline the importance of the event pattern management. We describe aspects

that may raise problems when using a Complex Event Processing system with-

out an adequate event pattern management. Further we briefly describe projects

that accompanied the research presented in this thesis. We conclude this chapter

with the list of publications where the main contribution of this thesis has been

published.

1.1 Motivation

The speed at which data is being produced in and around enterprises has been

increased tremendously in recent years [ChSc09]. Business processes, customer

opinion, press coverage, to mention a few areas, produce a large amount of data.

Without effective techniques for collecting, analysing, correlating the data the

enterprises will end up in an information overload where relevant and irrelevant

data are mixed together [Lund06]. Especially in order to guarantee the situational

awareness and an effective operational intelligence it is necessary to have mech-

anisms to detect relevant business situations [Luck12]. Hence, ensuring effective

1In Complex Event Processing real-time is equivalent to low-latency. Near real-time or busi-
ness real-time are also used synonyms.
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responses to critical business situations decrease the gap between knowing the

state of internal operations and the enterprise environment.

The need for the real-time data processing is increasing, since not only the content

of the data but also its real-time context2, is determining the value of data in order

to gain immediate insights [TSSG12]. The real-time context demands an increase

in the responsiveness of a system meaning that a system must react to relevant

business situations faster [ChEA11], [ChSc09], [Luck01], [EtNi10]. For instance

algorithmic trading systems act within milliseconds without human intervention.

Also, since enterprises nowadays are influenced by many different and dynamically

changing factors, like multiple business processes, customer requests, competitors

and shorter product releases, data in isolation has little value. The value of data

derives from a more intelligent combination to relevant business situations and

their detection in real-time. However, since not every combination is a useful

one, the data combination process must be designed and performed in an effective

and efficient way. With this rising importance of timely operational intelligence,

enterprises have adopted Complex Event Processing (CEP) as their backbone

[ChSc09]. Ultimately, event processing 3 is the key for a real-time operational

intelligence.

Complex Event Processing is the analysis of events from different event sources

in real-time to generate immediate insights and responses to changing business

conditions [Luck01]. The main strength of CEP is to derive high level events from a

set of input events. Event pattern matching is the most powerful capability of CEP

[EtNi10]. Event patterns encode the knowledge for a relevant business situation

that is of interest. A relevant business situation can be the detection of bottlenecks,

process failure or customer dissatisfaction. Luckham [Luck01] considers the event

patterns as the foundation of CEP systems. From the business perspective event

patterns represent the most valuable asset in CEP. Event patterns are used in

order to derive high level complex events describing a relevant business situation.

While nowadays CEP systems provide an efficient and effective infrastructure to

detect event patterns, the management of event patterns is still in its infancy.

Compared to other IT-systems, CEP systems still lack in support of tools and

methods allowing users to configure a system easily or to refactor services and

components [RoSS07]. Popular CEP vendors like StreamBase4, Tibco5, SAP6,

Microsoft7, or Progress8 and academic CEP research (see [PiBa02], [ASSA+99],

[AdEt02], [ACcC+03], [BDGH+07] and [ABBC+04], [AFRS11]) are mainly fo-

cused on the efficient matching of a high volume of events in a short time period

and disregard the role of supporting software tools for event pattern management.

2Context in this case describes the cooccurrence of data.
3In this thesis Complex Event Processing and event processing are used synonymously.
4http://www.streambase.com
5http://www.tibco.com/products/event-processing/complex-event-processing/default.jsp
6http://www.sap.com/solutions/technology/database/complex-event-processing/index.epx
7http://msdn.microsoft.com/en-us/library/ee362541.aspx
8http://www.progress.com/en/Product-Capabilities/complex-event-processing.html
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Although most of the commercial solutions provide a graphical environment to cre-

ate and modify event patterns they are not based on a fundamental methodology,

methods and techniques to cover the life cycle of an event pattern. A methodol-

ogy in general is a set of complementary methods and a clear description how to

apply them [KlHi01], [ArNH86]. It is a guideline for achieving a global objective

using components such as phases, tasks, methods and tools. Having a method-

ology for the event pattern life cycle can increase the efficiency and effectiveness

of the event pattern management especially since the need for the real-time situ-

ation detection is increasing. In the software development domain methodologies

have been used to increase the productivity and quality of software development

and decrease the time and effort [HaKS00], [HCRS+94], [DyMA05], [RiHD02].

In [OSSK+11], [Kulk11], [ChEA11], [EtNi10], [Luck12] the authors stress the im-

portance of methodologies and tool support for improving the usability of CEP

systems. The authors further consider the role of user interfaces and abstraction

levels as an important factor to remove the barriers from accessing a CEP system

and to increase the efficiency and the effectiveness of the pattern engineer 9 10. An

efficient event pattern management in general should include a set of methods for

dealing with event pattern modelling, formalization, refinement, deployment and

adaptation to changing business situations. For example during the modelling of a

new pattern the pattern engineer can be provided with the information that there

exist similar patterns or an equal event pattern that could be reused. Another

example could be that the pattern engineer is notified about an unusual behaviour

of an event pattern based on the pattern execution history. These kinds of sup-

port would increase the efficiency and effectiveness of the pattern engineer and

help to prevent an incorrect or delayed modelling or detection of relevant business

situations.

In the next section we describe several aspects that cause problems when a pattern

engineer currently manages event patterns.

1.2 Tackling event patterns

The value of event patterns arises from their natural occurrence and their real need

for the daily business. A pattern encompasses the codified information within an

enterprise and hence forms a knowledge artefact (see also [Snow04]). A knowl-

edge artefact is created for a practical purpose. A knowledge artefact might be a

document, process, source code, an engineering schematic or a template for a pro-

posal and so forth [Snow04]. Figure 1.1 displays the building blocks of knowledge

management as described in [Prob98]. The cycle consists of knowledge identifica-

tion, acquisition, development, distribution, preservation, use and measurement.

9In Chapter 3 we describe the need for the event pattern management considering different
research and application areas in more detail.

10A pattern engineer is a person who is responsible for the modelling, deployment and evolu-
tion of event patterns. It can be a business user but also a technician.
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The feedback cycle clarifies the importance of the knowledge measuring to ensure

that the focus is on achieving the knowledge goal. The knowledge goal is the

transformation of the accumulated knowledge into a corporate asset.

Figure 1.1: The building blocks of knowledge management according to [Prob98].

Considering the current event pattern management from the knowledge manage-

ment perspective presented in Figure 1.1 we present below issues decreasing the

efficiency and effectiveness of a pattern engineer. The overall goal of having an

efficient and effective event pattern management is to model the most suitable

event patterns for detecting the relevant business situation by keeping the time

period that is needed for the modelling of the relevant business situations short.

∙ Event pattern identification and acquisition Most of today’s knowl-

edge needed to model an event pattern is distributed across the enterprise. It

is either part of existing event patterns, hidden in the business workflows or

occured data or just in peoples’ heads. The identification of this knowledge

and the formalization of the resulting event patterns is a challenge. There

exist neither methodologies nor tools supporting the event pattern identifi-

cation and acquisition. The non-existence of methodologies and tools lead

to the event pattern acquisition problem similar to the knowledge acquisi-

tion problem in the knowledge management (see also [Wagn07], [Wagn00],

[Wate86]). In order to define a new event pattern it is indispensable to have

an approach to consider systematically different sources in order to identify

and acquire event patterns for a given business situation. Possible sources

could be for example the knowledge in people’s head, historical event data,

historical event pattern data and their execution, existing workflows or busi-

ness processes. The partially acquired event pattern knowledge needs to be

combined and refined which should be done while modelling the pattern.

∙ Event pattern modelling and distribution: Like in knowledge manage-

ment it is important to transfer the event pattern knowledge between those

who have it and those who do not. Only explicit event pattern knowledge11

11Event pattern knowledge that has been acquired and formalized.
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can be stored and distributed across enterprises and individuals for a later

reuse (see also [Mark01]). Reusing knowledge includes both recall and recog-

nition. While recall describes the modelling and storage of the information

the aim of the recognition is whether the information meets users’ needs.

Therefore, the formalized event patterns should be shared in order to speed

up the modelling and refinement of event patterns by reusing the existing

event patterns. Moreover, since event patterns are the most valuable as-

set in CEP systems their shareability could support the efficiency and the

effectiveness aspect of the event pattern management.

∙ Event pattern evolution and adaptation The knowledge that has been

defined can be either inaccurate or change over time. It is a known issue

that pattern engineers make mistakes [Wagn07]. Furthermore, maintenance

can introduce inaccuracies or inconsistencies into previously correct event

patterns. While it is reasonable to expect that a pattern engineer will be

able to provide an event pattern specification partially, providing all the

required details is a hard task, even for pattern engineers who are domain

experts [TuGW09]. Moreover, in many active systems, event patterns may

change over time, due to the dynamic nature of the domain. Such changes

complicate even further the specification task, as the pattern engineer must

constantly update the patterns. Since CEP systems are designed for real-

time environments, outdated patterns or a delay in a pattern update may

lead to an increased downtime and possible ignorance of real problems.

1.3 Research contribution

CEP is rather a young research area and most of the research activities are focused

on the matching algorithms and their optimization. However, in order to cope

with the evolving nature of business environments having methodologies, tools

and methods for event pattern management are identified as being promising

[EtNi10],[Luck12]. It is known that the management of event patterns is not an

easy task and that pattern engineers seek additional support to the definition of

event patterns, beyond expert opinion [TuGW09].

Below we present the contribution of this thesis and refer to the chapters where

this contribution is described in more detail. The main contribution of this thesis

centers on the idea to leverage pattern engineer’s strengths by providing her/him

additional support during the whole event pattern management process.

∙ Event pattern life cycle The first step towards an efficient and effective

pattern management is having the understanding of the event pattern life

cycle. Similar to the knowledge management building blocks that form a

cycle we define the event pattern life cycle methodology as a process covering

the modelling, refinement, execution and evolution of event patterns. The
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life cycle methodology consists of three main phases that cover both design-

time issues and run-time issues. Each phase again contains a set of tasks.

These phases form a feedback loop enabling continual flow of information

collected in the entire life cycle of an event pattern. This contribution is

described in Chapter 4.

∙ Event pattern modelling and distribution In order to model event

patterns, we provide a high level graphical user interface to hide the under-

lying complexity and enable also pattern engineers that are non-technicians

to model, deploy and evolve event patterns. The modelling of event pat-

terns is based on refinement and reuse of event patterns. Refining and

reusing existing knowledge is an essential part of knowledge management.

In order to enable a pattern engineer to reuse and refine event patterns we

introduce two approaches for detecting pattern relations. The graph-based

approach aims at finding event pattern overlapping and event pattern exten-

sions. Additionally the similarity-based approach delivers the most similar

event pattern taking into account the concept hierarchy and feature defini-

tion of event patterns. These approaches are semi-automatic meaning that

the results will be revised by the pattern engineer. Additionally, in order

to support the modelling and distribution of event patterns we introduce a

meta model describing the concepts of an event pattern. These contributions

are described in Chapter 5 and Chapter 6.

∙ Event pattern evolution and adaptation

Current CEP engines are designed as a black-box that match a pattern

against incoming events. The engine creates a complex event only in cases

in which the whole pattern expression is evaluated true. We consider the

execution of an event pattern as an essential part of the event pattern life

cycle. Therefore we describe a white-box approach where the execution of an

event pattern is monitored. We introduce a set of requirements and define

a lightweight approach how an existing CEP engine could be extended with

the monitoring feature. In this thesis the white-box CEP provides the data

that will be used to evolve event patterns. This contribution is described in

Chapter 7.

Event patterns are subject to change. Nowadays, the evolution of patterns

is done by business experts fully manually which is the usual case when busi-

ness conditions change or new requirements arise. In this thesis we extend

the evolution of event patterns with the concepts of execution-based evolu-

tion. Based on pattern execution monitoring we determine the execution

statistics and compare current pattern execution statistics with past execu-

tion statistics. To goal is to detect deviations in the event pattern execution.

This approach supports the pattern engineer in keeping the event pattern

repository up-to-date (continued relevance of an event pattern). This con-

tribution is also described in Chapter 7.
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1.4 Project context and publications

The methodology, methods and tools described in this thesis have been developed

mostly in different projects during the time period of August 2008 until May 2012.

Below we describe briefly the projects that accompanied the development of the

approaches described in this thesis.

∙ STIBA (Semantic Technologies in Business Applications), 11-2007

till 12-2008 The main goal of the STIBA project (in cooperation with living-

e AG that has been acquired by Empolis GmbH in 2010) was to apply seman-

tic technologies to real world scenarios. In the context of the STIBA project

we developed the initial idea for event pattern similarity. We implemented

and tested in the context of the STIBA project the similarity metrics which

will be presented in this thesis.

Publications

– Sinan Sen, Slavko Tomcic. An Enterprise Knowledge Manage-

ment Platform on top of the Ontology-based Similarity. LWA,

Band 448 der Technical Report. Department of Computer Science, Uni-

versity of Würzburg, Germany, 2008. (see [SeTo08])

– Sinan Sen and Jun Ma. Contextualised Event-driven Prediction

with Ontology-based Similarity. AAAI Spring Symposium: Intelli-

gent Event Processing, March 23-25, 2009, Stanford, California, USA.

(see [SeMa09])

∙ IDEO, 09-2008 till 04-2009 The goal of the IDEO project (in cooperation

with Union Investment IT in Frankfurt) was to analyse the CEP landscape

and to implement a prototype in order to connect different events from the

IT infrastructure and to detect relevant business situations. In this project

we made the main experience with business users that the management of

event patterns is of paramount importance. Additionally we found out that

existing solutions and approaches do not satisfy their needs since these ap-

proaches are not considered as being usable. In this project we defined the

main pillars of this research based on the tool evaluation results, discussion

with the business users and a workshop we organized at the Union Invest-

ment IT in February 2009.

Publications

– Sinan Sen, Nenad Stojanovic, Ruofeng Lin. A Gaphical Editor

For Complex Event Pattern Generation. The 3rd ACM Inter-

national Conference on Distributed Event-Based System (DEBS), July

6-9, 2009, Nashville, Tennessee, USA. (see [SeSL09])
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– Sinan Sen, Nenad Stojanovic. GRUVe - A Methodology for Com-

plex Event Pattern Life Cycle Management. 22nd International

Conference on Advanced information Systems Engineering (CAiSE),

June 09-11, 2010, Hammamet, Tunisia. (see [SeSt10])

∙ VIDI (Visualising the Impact of the legislation by analysing public

DIscussions using statistical means), 01-2009 till 12-2010 The VIDI

project (funded by the European Commission) had the goal to provide a

set of visualisation techniques in order to understand public discussions for

the policy development and to receive real-time notifications about certain

word patterns in public discussions. In this project we mainly developed the

modelling of event patterns and the extension of the CEP engine in order

to monitor pattern execution statistics.

Publications

– Sinan Sen, Nenad Stojanovic, Ljiljana Stojanovic. An Approach

for Iterative Complex Event Pattern Recommendation. The

4th ACM International Conference on Distributed Event-Based System

(DEBS), June 20-24, 2010, Cambridge, UK. (see [SeSS10b])

– Sinan Sen, Nenad Stojanovic, Bijan Fahimi Shemrani. EchoPAT:

A System for Real-time Complex Event Pattern Monitoring.

The 4th ACM International Conference on Distributed Event-Based

System (DEBS), June 20-24, 2010, Cambridge, UK. (see [SeSS10a])

– Mitja Trampus, Marco Grobelnik, Sinan Sen, Nenad Stojanovic. Vi-

sualisation of Online Discussion Forums. In Yannis Charalabidis

and Sotirios Koussouris (eds.), Empowering Open and Collaborative

Governance, Springer-Verlag Berlin Heidelberg, 2012. (see [TSSG12])

∙ ALERT (Active support and reaL-time coordination based on Event

pRocessing in FLOSS development, 10-2010 till 04-2013 The ALERT

project (funded by the European Commission) has the goal to improve

the bug resolution process in Open Source developers’ collaborative envi-

ronments. In ALERT we refined our event pattern life cycle methodology.

The main work done in ALERT was related to the evolution of event pat-

terns based on event pattern execution statistics. Additionally we evaluated

within the ALERT setting parts of our system with business users.

Publications

– Nenad Stojanovic, Ljiljana Stojanovic, Darko Anicic, Jun Ma, Sinan

Sen, Roland Stühmer. Semantic Complex Event Reasoning - Be-

yond Complex Event Processing. In Dieter Fensel (ed.), Foun-
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dations for the Web of Information and Services. Springer, Berlin-

Heidelberg, 2011. (see [SSAM+11])

– Sinan Sen, Ruofeng Lin, Bijan Fahimi Shemrani. Complex Event

Pattern Evolution based on Real-Time Statistics. The 5th ACM

International Conference on Distributed Event-Based System (DEBS),

July 11-15, 2011, New York, NY, USA. (see [SeLS11])

1.5 Reader’s guide

The thesis is organized into three parts.

In Part I we introduce the main motivation behind this thesis and give an overview

of event processing. We present the main building blocks and present the concept

of event patterns.

In Part II we describe the main contribution of this thesis related to the event

pattern management. In Chapter 3 we present the need for event pattern man-

agement. In Chapter 4 we describe the event pattern management life cycle. In

Chapter 5 we introduce the meta model for the event pattern representation. In

Chapter 6 we specify the refinement and reuse of event patterns during the gener-

ation phase. In Chapter 7 we describe our approach for evolving event patterns

based on pattern execution statistics.

In Part III we present the evaluation results and give a conclusion of the work

presented in this thesis which is followed by an outlook for future development.
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2
Complex Event Processing

In this chapter we describe the fundamental definitions and terminologies behind

Complex Event Processing (CEP). We explain the main building blocks of event

processing 1 and describe the concept of event patterns in more detail.

2.1 Event processing architecture

Complex Event Processing is about performing operations on events, including

reading, creating, transforming, abstracting or discarding them [EtNi10], [Luck01].

It is based on the analysis of events from different event sources in real-time in

order to generate immediate insight and enable immediate response to changing

business conditions. As a research topic, CEP emerged in the late 90’s and has al-

ready become the foundation of modern real-time information technology systems.

It’s origin is located in the area of discrete event simulation, weather simulation,

networks and internet. CEP provides a set of techniques and methods to analyse

and understand event-driven systems [Luck01]. The key idea is to explore tempo-

ral, causal, and aggregation relationships among events to make sense of them in

a timely fashion [ChEA11]. Since the occurrence of events is often not foreseeable,

it is necessary to ensure that the response latency is low [ChSc09].

In contrast to the traditional information systems, that work in a synchronous re-

quest and response manner, event processing is built on top of the asynchronous

1In this thesis event processing and CEP are used synonymously.
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Figure 2.1: The structure of an event processing application according to [EtNi10].

communication based on events. An asynchronous communication enables a data-

driven and real-time reaction to occurring events instead of posing endless re-

quests. Messages are sent by the event producer without waiting for the response.

CEP can be used for observations, dynamic operational behaviour or information

dissemination to name a few areas. Figure 2.1 displays the separation of event

processing logic from the event producers and event consumers that will be de-

scribed below. Before going into details and explaining these building blocks, we

describe the concept of events in the context of CEP.

2.1.1 Events

In event processing an event is an occurrence of something within a particular

domain or system [EtNi10]. It is something that has happened, or is contemplated

as having happened in that domain. Chandy et. al. [ChCC07] define an event

as a significant change in the state of universe. In this sense every piece of new

data can be considered as an event since it changes the state of universe. Events

which require a reaction are forming a situation [AdEt02]. Not only the occurrence

of something denotes an event but also the absence of expected events conveys

information [ChSc09].

The concept of an event is also used in a broader sense to describe a programming

entity (for example a class in a programming language) that represents the oc-

currence or non-occurrence of an activity in a system. Luckham [Luck01] defines

an event as an object that can be processed by computers and should satisfy the

following three aspects:

∙ Form Every occurred event is represented as an object with particular at-

tributes. A form can be a string or a tuple of data components including,

the time stamp, the source and additional attributes.

∙ Significance Every event signifies an activity. The activity is called as the

significance of the event. The form of the event contains the attributes that

describe the activity it signifies.
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∙ Relativity Events are related to other events by time, causality and aggre-

gation. The set of relationships between an event and other events are called

as the relativity of the event.

Example An input event signifies the activity of a NewMail message. The mes-

sage would be in some format such as XML, containing data fields for the subject,

sender, content, and so on. The event’s form would be similar to the message but

would contain extra data fields, for example giving its time of generation, time

of arrival, and relation to other events. The form of an input event would be an

object of a Java class called MailEvent as shown below:

Class MailEvent{Name NewMail;

String id;

Person sender;

Person receiver;

String content;

Time T;

Causality (Id1, Id2, ...);

...

}

Every event belongs to a class of events, which specifies a common structure for

all members of this class. This specification is called event type. Every event

with the same event type has the same structure and semantics. The value of its

attributes will be used for the filtering, aggregation or pattern detection to name

a few operations. Further an event can be either simple or complex [ChEA11]. A

simple event is atomic and does not contain further events. In comparison to a

simple event, a complex event is composed of other simple or complex events. In

[ChEA11] complex events are also described as summary-level facts.

Luckham [Luck01] describes time, causality and aggregation as the most impor-

tant common relationships between events. These relationships are called partial

ordering rather than total ordering since there are events where none of the re-

lationships can be applied. The time aspect is used to order events. This type

of relationship depends upon a system clock. A timestamp is assigned to each

event when it is created. The order of the events defines their relationship to each

other. An event can have more than one timestamp if it is a complex event. For

example if the event 𝐴 always happens before the event B then there is a causal

relationship between 𝐴 and 𝐵 which is 𝐴 caused 𝐵. In this scope causality is

defined as a dependence relationship between events in a system. If there is no

causal relationship then the events are independent.

The aggregation is an abstraction relationship. An event 𝐴 is created when a set

of other events 𝐵𝑖 happens. The event 𝐴 is a complex event since it occurs over

a time interval where a set of other events occurred before.
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2.1.2 Event producer

In event-driven environments there is at least one event producer that creates

and publishes events. Often event producers are called sensors which might be

hardware or software sensor. An event producer creates events according to certain

event reporting logic which is embedded in the event producer. An event producer

can produce at least one type of events. [EtNi10] summarizes event producers into

following categories:

∙ Hardware as an event producer This kind of event producers are sensors

that generate events that indicate a certain aspect of the physical environ-

ment where it is integrated. Motion or temperature sensors are an instance

therefore.

∙ Software as an event producer Every application can be designed as

part of an event-driven system such that it continuously produces events.

Beside applications which produce events there are instrumentation tech-

niques where software agents observe applications and report the state of

the application.

∙ Human interaction as an event producer In several situations a human

interaction generates directly an event. For example to post a tweet or to

make a phone call triggers the creation of an event by an underlying software

component.

Luckham [Luck01] describes event sources on a more abstract level and classifies

into:

∙ IT Layer Events from this source are based on the observation of the com-

munication between software components in the IT landscape. The IT layer

contains several components such as the middleware, database, web service

calls etc.

∙ Instrumentation Components of the target system are equipped with sen-

sors in order to create events as a side effect of the normal behaviour.

∙ CEP Complex Event Processing engine serves also as an event source. It

creates new complex events based on the provided event processing logic.

The next step in the processing of events takes place within the event processing

agent.

2.1.3 Event processing agent

The detection of a situation is done in the event processing agent (EPA) by ap-

plying the event processing logic. The EPA is the place where the CEP engine is
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Figure 2.2: Different type of event processing agents according to [EtNi10].

included. Figure 2.2 shows the hierarchy of the various EPA building block types

described in [EtNi10].

∙ Filter agent filters out uninteresting events by applying a filtering operation.

The operation is stateless meaning that the filtering is done solely based

on the content of the event instance. An example would be to discard a

transaction event if its value is greater than 50.

∙ Pattern detection agent detects the occurrence of a pattern over a set of

events. The definition of a pattern is based on event relations like temporal,

spatial or semantic relations. Pattern detection is the most powerful capabil-

ity of an event processing system. An example would be to detect a credit

card fraud based on plenty low level events.

∙ Transformation agent modifies the content of the received event object.

Transformation agents are further classified based on the cardinality of their inputs

and outputs.

∙ Translate agent translates an incoming event to an output event based on a

translation operation.

∙ Aggregate agent takes a set of incoming events from an event stream and

produces an event by applying an aggregation function.

∙ Split agent takes a single incoming event and emits at least two or more

event objects.

∙ Compose agent is similar to the join operation in relational algebra. It takes

two streams of events and produce a single stream of output events.

The translation agent is further classified in one of the following agents.

∙ Enrich agent extends an incoming event with additional information.

∙ Project agent deletes information from an incoming event.
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2.1.4 Event consumer

In every event-driven application there are one or more event consumers. The

consumer receives the events from the EPA and triggers certain type of actions.

The event consumer encodes the reactive behaviour of the system. An event

consumer can have plenty of different functionalities like storing, visualising or

forwarding of events. An event consumer can consume either simple events that

are atomic or complex events, that are generated as a result of the event processing

that takes place in the EPA. Etzion and Niblet [EtNi10] classify event consumer

into three categories:

∙ Hardware event consumer Hardware that consumes events is generally

called actuator and is the counterpart of the hardware sensor. An actuator

performs a physical action based on events like the locking or unlocking of

a door.

∙ Human interaction Events can be consumed also by humans. For example

someone could be alerted about a critical situation in order to react on it.

Usually there are also user interfaces that visualize the simple or complex

events in different formats.

∙ Software event consumer This kind of applications do not provide an ex-

plicit user interface for the humans. Rather events trigger certain workflows

or create new instances of certain business processes.

2.2 Event patterns

In event processing event patterns are abstracted as event processing logic. In

event processing the most powerful mechanism is the detection of patterns over

events [EtNi10], [Luck01], [ChEA11]. An event pattern is a template that matches

a set of events (simple or complex). Each match of a pattern is a partially ordered

set constructed by replacing the variables in the event pattern with actual values

[Luck01]. Chandy and Schulte [ChSc09] describe the role of event patterns as

”connecting the dots”. Event patterns are defined in a declarative way. Declarative

means that the language describes what needs to be done and not how it is actually

done. Event patterns are used to create complex events that signify a set of events.

Further, event patterns provide an abstraction of relevant business situations. The

same event pattern can trigger continuously complex events of the same type.

A pattern describes the occurrence context of a set of events. This context contains

the event parameter each event have and the relationship between the set of events

using event operators. Event patterns are described in languages called event

pattern language (EPL).

The pattern below is presented in the tabulator format for the sake of readability.
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Example (taken from [Luck01])

Variables: Subject S, Message M, String ID, Time T, Time T1, Time T2

Event Types: Publish(Subject S, String Id, Message M, Time T)

Receive(Subject S, String Id, Message M, Time T)

Event Operators: and

Pattern: Publish (S, Id, M, T1) and Receive(S,Id,M,T2)

Context test: T2-T1<35 mins and S=’’StockTrade’’

The pattern of type Publish (S,Id,M,T1) and Receive(S,Id,M,T2) above matches

any pair of events that have the same Id, message M, subject S which is StockTrade

and the time difference between publishing and receiving is less than 35 minutes.

An event pattern enables to pick out the interesting events from a large number

of events. This is fundamental to viewing and controlling an event-driven system

[Luck01]. Backtracking from a complex event to its members in CEP is called

drill down [Luck01].

[Luck01] defines the following requirements for EPLs.

∙ Power of expression The expressivity must be powerful enough in or-

der to cover different application domains. The expressivity of an EPL is

mostly dominated by the event operators it supports. Chakravarthy and

Mishra [ChMi94], Anicic et. al. [AFRS11] and others introduced a set of

event operators including logical and temporal operator for event processing

purposes.

∙ Notational simplicity The definition of event patterns must be easy and

succint.

∙ Precise semantics The language must be a mathematically precise concept

of match meaning that the set of events that can match a pattern are known.

∙ Scalable pattern matching The design of the underlying language should

not have negative effects on the performance of the pattern matching process

itself meaning that the matching should be scalable enough to match a large

number of event patterns over high volumes of events in real time.

These requirements are somehow concurring. For example the expressivity of a

pattern language is concurring with the ease of use, simplicity of the pattern

language and efficiency of pattern matching. Further a scalable pattern matching

inevitably influence the language design. Luckham [Luck01] describes this as

follows:

If an EPL is simple and easy to use, we won’t be able to specify some

kinds of complex patterns in it. On the other hand, if it is powerful
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and let us specify complex patterns, it will contain ”advanced” features

or options that take time to learn how to use. And pattern matching

for complex patterns is computationally demanding and difficult to

implement efficiently.

In order to ease the definition of event patterns [Luck01] defines pattern macros

(PM) as an abstraction feature for event patterns. These macros are used in order

to abstract commonly used patterns and to name them. The definition of a PM

can be for example (taken from [Luck01])

pattern PM (parameter-list) (p-pattern)

where PM is the name of the macro and it names the p-pattern which is also

called the body of the macro. The way macros intended to be used is that they

are called in various patterns with a parameter-list like ...PM(actual parameter

list).... Abstraction features like the pattern macros are useful in order to abstract

commonly used patterns, to build up libraries of patterns for each application

[Luck01].

Event patterns that trigger an action are called event pattern rules [Luck01]. In

this sense the event pattern rule defines a causal relationship between the events

that match the pattern and the events that are created as the result of the match-

ing. In STRAW-EPL2 [Luck01] for example a rule consists of a trigger, which is

an event pattern, and an action, which is an event that is created whenever the

pattern matching is true.

In the example below the event pattern from the previous example is extended

with an action that creates a complex event to inform the sender that the mes-

sage has been received successfully. The event which will be created is called

MessageReceived and has two parameters, namely the Id of the message and the

timestamp T2 when the message was received.

Example

Variables: Subject S, Message M, String ID, Time T, Time T1, Time T2

Event Types: Publish(Subject S, String Id, Message M, Time T)

Receive(Subject S, String Id, Message M, Time T)

Event Operators: and

Pattern: Publish (S, Id, M, T1) and Receive(S,Id,M,T2)

Context test: T2-T1<35 mins and S=’’StockTrade’’

Action: create MessageReceived(Id,T2)

Additional meta information for already defined event patterns provides an addi-

tional abstraction level and could be useful in various ways, like for the ease of

readability, clustering of pattern, or the definition of pattern libraries.

The classification of event patterns below is taken from [EtNi10].

2Strawman pattern language
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2.2.1 Basic patterns

Basic event patterns are frequently used in event processing applications and they

don’t depend on the timing or ordering of the incoming event.

2.2.1.1 Logical operator pattern

In event processing a logical operator (sometimes also called logical connective)

is a symbol used to connect two or more events. Event patterns that use logical

operators belong to the most frequent used patterns in CEP.

Conjunction operator pattern (AND) The conjunction operator is used to

look for subsets of incoming events containing all events that are defined in the

conjunction pattern. The pattern is detected when the incoming events contain

at least one instance that satisfies the events in the event list of the conjunction

pattern. The order of the incoming events is immaterial.

Example

(EventA AND EventB)

In the example above the pattern is fulfilled whenever EventA and EventB are in

the matching set.

Disjunction operator pattern (OR) The disjunction operator looks for occur-

rences of any of the relevant events containing just one member. The pattern is

satisfied if the incoming events contain an instance of any of the events in the

event list of the disjunction pattern.

Example

(EventA OR EventB)

In the example above the pattern is fulfilled whenever EventA or EventB are in

the matching set.

Negation operator pattern (NOT) The negation pattern (NOT) detects the

absence of any events with certain specified characteristics. The matching set is

in this case empty. This pattern can be used with temporal aspects to detect time

outs.

Example

(EventA AND (NOT EventB))

In the example above the pattern is fulfilled whenever EventA is in the matching

set and EventB not.
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2.2.1.2 Threshold operator pattern

The threshold operator is based on an aggregation operation which is performed

against the set of participant events. The aggregation value is compared against

a threshold value. Threshold operator can be classified into following types:

∙ Count - The count operator counts the number of incoming event instances

and checks this number using a threshold assertion. The assertion can be

one of the relations =,≤,≥, <,>, ̸=

∙ Average - The average operator is satisfied when the average value of a spe-

cific attribute satisfies the value average threshold assertion. The assertion

can be one of the relations =,≤,≥, <,>, ̸=

∙ Minimum and maximum - This type of operator is satisfied when the maxi-

mal or minimal value of a specific attribute over all incoming events satisfies

the max or min threshold assertion. The assertion can be one of the relations

=,≤,≥, <,>, ̸=

2.2.1.3 Subset operator pattern

Event patterns with the subset selection criteria are concerned with selecting a

subset of events from a set of incoming events. [EtNi10] introduces the n-highest

and n-lowest

∙ n-highest - Patterns using the n-highest operator deliver a set of output

events that have the highest value for a specific attribute. If there are more

than n events in the matching set then the result set will contain n events.

If there are less than n events in the matching set then the result set will

contain all these events.

∙ n-lowest - Patterns using the n-lowest operator deliver a set of output events

that have the lowest value for a specific attribute. If there are more than n

events in the matching set then the result set will contain n events. If there

are less than n events in the matching set then the result set will contain all

these events.

2.2.2 Dimensional pattern

Dimensional patterns are patterns that consider the time and space dimension.

Patterns related to the time dimension are very often used while spatial patterns

are not well researched in CEP [EtNi10].

In the context of this thesis we use the temporal order pattern. The followed

by pattern or sequence pattern (denoted as SEQ) is a temporal order pattern in
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which time plays the major role. The basic underlying assumption is that an event

happens at a single point in time. The sequence pattern is similar to the conjunc-

tion pattern but is also considering the order of event occurrences. The pattern

is satisfied whenever the incoming events occur in the same order like described

in the event list. It is an ordered list of events. The temporal order is part of the

order policy which should be supported by the underlying CEP engine (for more

details about the pattern and order policies see [EtNi10])

Example

EventA SEQ EventB.

In the example above the pattern is fulfilled whenever EventB occurs after EventA

has occurred.
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Part II

Efficient and Effective Event Pattern
Management





3
The Need for Event Pattern Management

In this chapter we describe why having an efficient and effective event pattern

management is essential for the enterprises. We deduce the necessity of the event

pattern management based on the analysis of academic research, by considering

existing CEP solutions and by analysing the most related research areas like active

databases and business rules.

3.1 Why event pattern management matters?

The current generation of event processing tools is rather programming oriented

where fundamental programming skills are needed to develop event patterns

[EtNi10]. However, there is a demand towards easy to use tools allowing users,

who might not have deep programming skills, to define, deploy and maintain

event patterns. Figure 3.1 displays a customer survey1 from 2007 conducted by

ebizQ2 that indicates that most of the customers surveyed would like to have event

pattern defined by business analysts or business specialists. Although the survey

might be outdated its main findings are still valid. Business analysts and business

specialists who will be the pattern engineers need proper tool support including

the recognition of duplicate event patterns, recommendation for event patterns

and support during the pattern modelling and pattern evolution.

1http://www.complexevents.com/2007/10/30/event-processing-market-pulse-2007/ - The
survey was based on 400 responses to the survey from 33 industries.

2http://www.ebizq.net/
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Figure 3.1: Customer survey taken from ebizQ.

Luckham [Luck01] outlines the importance of supporting tools and define the

need for event pattern management. The management procedure in this case

must detect relationships between the new event pattern and the existing one

in order to detect duplicates, to decide which ones are sent to the CEP engine

and which ones are deleted. Further he describes the role of analysis tools for

the CEP infrastructure. These tools are consumers of information provided by

the CEP infrastructure and produce human-readable information. The purpose

is to use all the information a CEP system can deliver to help to find out what is

happening in the system and why. In 2007 Luckham described3 the problem with

event patterns in CEP systems. This time the focus was on pattern engineers.

Especially when the number of event patterns increases their management is a

challenge independently from whether the pattern engineer is a business user or a

technician. The problem arises since the languages in which an event pattern is

written are incomprehensible. The result is that it is hard to read and understand

the event patterns. Therefore he proposes a high-level pattern language that can

be used to express rules succinctly in a way that makes them understandable by

also non-technician pattern engineers.

The following example demonstrates the complexity of an event pattern. This

example joins 2 event streams using the Esper EPL language4. The first event

stream consists of fraud warning events for which we keep the last 30 minutes

(1800 seconds). The second stream is withdrawal events for which we consider the

last 30 seconds. The streams are joined on the account number.

Example:

select fraud.accountNumber as accntNum, fraud.warning as warn,

withdraw.amount as amount,MAX(fraud.timestamp,

withdraw.timestamp) as timestamp, ’withdrawlFraud’ as desc

3What is the difference between ESP and CEP?
4Esper open source event engine -http://esper.codehaus.org
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from FraudWarningEvent.win:time(30 min) as fraud,

WithdrawalEvent.win:time(30 sec) as withdraw

where fraud.accountNumber = withdraw.accountNumber

The syntax of the Esper EPL is based on SQL and without fundamental knowl-

edge in SQL the event pattern is not easy to read and to understand. Nowadays

enterprises that have event processing systems have plenty of event patterns in

order to detect the relevant business situations in real-time. It is quite obvious

that the definition, deployment and maintenance of these event patterns can be

challenging, time consuming and error-prone if the management of event patterns

is done on the event pattern language level. Etzion and Niblet [EtNi10] consider

the management issues in event processing rather from a software engineering

point of view. Etzion and Niblet describe the need for more software engineering

methodologies and tool support. Further Etzion and Niblet outline the defini-

tion of design patterns and collection of best practices for implementing an event

processing system.

In the event processing manifesto (see [ChEA11]) written by the participants

of the 2010 Dagstuhl Seminar on event processing the followinb non-functional

requirement of an EP system are described:

∙ Usability - The tools must provide support for several kinds of users (IT

experts, domain experts) who will be defining and maintaining the event pat-

terns. There are IT professional, engineers, medical staff, business managers

to name a few.

∙ Versatility - The tools must allow contributions from multiple stakeholders

that may have different backgrounds.

∙ Expressiveness - The language that the tools provide must allow the de-

velopment of complex applications.

∙ Maintainability - Event processing platforms must be manageable mean-

ing that new event patterns can be added or removed. The running system

with its processing logic must be monitored to help diagnose and fix prob-

lems.

These requirements reveals the importance usable tools that allow pattern engi-

neer with different background to maintain event patterns. As next we consider

two related research areas in order to support the need for the event pattern

management.

3.1.1 Academic research on event pattern management

Although there are many successful event processing applications, most event

processing approaches are focused on the extreme processing of a large number
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of events and neglect the event pattern management. Below we present current

approaches dealing with some aspects of the event pattern management.

Turchin et. al [TuGW09] describe the limitations of pattern development by pat-

tern engineers. Since they have limited time, knowledge and access to the existing

pattern knowledge it is a hard task to let them define all relevant event patterns.

Therefore they propose a framework for automating the task of specifying event

patterns by combining the knowledge possessed by pattern engineers with auto-

matic techniques for specification of pattern parameters.

The EPTS5 recognized the importance of event management and defines it as a dis-

cipline that encompasses among other things, the design, the development and the

maintenance of events. It is even more complicated in the case of event patterns,

as an event pattern consists of several events connected by event operators.

Kulkarni [Kulk11] describes that current CEP solutions are less usable by business

users. The author describes that the reuse of existing event scenarios and the

creation of similar event scenarios is a frequent task. In contrast to that the

definition of completely new event scenarios is rather rare. The existing CEP

solutions are rather usable by technically trained personnel and require significant

effort to achieve the modelling goal. Therefore the aim should be to close the gap

between the IT developer and the business user.

In [OSSK+11] the authors describe the need for a framework for technical-versed

power users as well as business users. In their approach technical experts model

event patterns in parallel that are fully integrated in the CEP application. A busi-

ness user can assemble the event pattern from prepared and easy-to-use building

blocks using a wizard-based user interface. The goal is to provide business users

an abstraction layer that hides the underlying complexity.

3.1.2 Event pattern management in current CEP solutions

The list of commercial CEP applications is rather long. However, also in indus-

try the management of event patterns is in its infancy. The following chart in

Figure 3.2 taken from the ebizQ survey shows that 77-78% of respondents require

beside the code-based event pattern6 definition also a graphical pattern definition.

What the survey does not show is what exactly the graphical user interface should

support. Nowadays most of the commercial tools provide an user interface in order

to configure the CEP system to develop and to deploy event patterns. Although

these environments are a first step towards a better event pattern management

and seem to be promising they are rather designed for IT experts. There is no

methodology the pattern modelling tools are based on. The refinement, reuse and

evolution of event pattern is not tackled by these solutions. All the tasks related to

5The Event Processing Technical Society is a diverse community (research+industry) inter-
esting in Event Processing. http://www.ep-ts.com

6The survey uses the terminology of event processing rules for event patterns.
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Figure 3.2: Most important event processing features.

refinement, reuse und evolution are done manually without any systematic system

support during the life cycle of an event pattern.

3.2 Related research areas

The most closest research areas for this thesis are business rule management and

active database that are described in this section.

3.2.1 Business rule management

A business rule management system (BRMS) is a software system designed to

define, deploy, execute and maintain the decision logic. The main strength of

the business rules approach is the externalization of the decision logic from the

application logic. The externalization supports the maintainability of the system

since rules are described in a declarative way and not in a procedural one. The

business rules are executed in the business rule engine (BRE) which is a part of

the BRMS.

A BRMS is based on the assumption that the rules change more often than the

application logic. The separation of business logic from the application logic

simplifies the change of rules. Whenever the business conditions change the rules

are modified without recompiling the whole application.

The role of business rule management and evolution have been identified as a cru-

cial point in using business rules. Rosca et. al [RoFW97] presents a methodology

to cope with the maintenance and evolution of business rules. They present a
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methodology covering the business rule acquisition, the business rule deployment

and the business rules evolution. The most relevant aspect for our work is that

they consider the data obtained through the monitoring of the underlying opera-

tional system in order to decide how well the business rules achieve the enterprise

objectives. Taking this information into account they update the business rules.

Lin et. al. [LiEW05] present an approach to support the evolution of business

rules that are coded as part of the source code. Lin et al. [LiEW03] describe

the importance of business rule evolution and identify the unforeseen changes to

business rules as the main challenge for business rule evolution. It is important

that the changes are implemented quickly, economically and reliably. In reality

the evolution of business rules is time consuming and error-prone [EmSh03].

Although business rules and event patterns are rather similar there are some fun-

damental differences that makes it hard to use business rule management systems

for event pattern management [EtNi10]. The first difference is that BREs are

request-driven while CEP engines are event-driven. The processing of data is in

BREs independent (state-less) while CEP engines operate on set of events. In or-

der to derive high-level knowledge it is essential to aggregate events from different

event sources in real-time. Another difference is the usage of temporal aspects

in CEP. It is possible to extend the BREs in order to cover temporal aspects.

However, this creates typically more overhead in the BRE (higher latency) for

handling incoming events [ChSc09].

3.2.2 Active database management

Active database systems respond to events that are occurring either inside or

outside the database itself [PaDi99]. However, the focus of active database systems

is on specification and processing of triggers within a database management system

(DBMS).

Paton [PaDi99] presents several possible dimensions (see Figure 3.3) for the rule

management in active databases. The management of rules contains a set of facil-

ities provided by the underlying system for rule representation and programming

support for rules.

The description of rules is about the database language used to express the rules.

There are several operations on rules in order to activate or deactivate a rule.

The signal represents an external event which is used to notify the rule system

about external occurrences. The adaptability is about changing rules either at

run time or design time. The dimension of data model is considered as having a

significant influence on the designers of the rule system. The last dimension, pro-

gramming support, is considered as being the most important dimension if rules

are used as a mainstream technology in business environments. Therefore method-

ologies for rule analysis, debugging, explanation and querying are of paramount

importance. Dittrich et. al. [DiGG95] describe the programming environment
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Figure 3.3: Dimensions of rule management in active databases [PaDi99].

in active database systems as an essential operational feature. They describe a

list of tools that an active database management system should provide including

maintenance tools to support the user in defining and evolving the rule base.

3.3 Efficiency and effectiveness aspects in event pattern man-
agement

Increasing the efficiency and effectiveness of nowadays business are the main driver

of event processing [EtNi10]. While efficiency describes the comparison between

inputs used in a certain activity and produced outputs the effectiveness describes

the production of right results. The aim of efficiency and effectiveness is to im-

prove the speed of detection of relevant business situations and the reaction to

these situations. CEP already provides capabilities that support the efficiency

and effectiveness of the core processing of events. Chandy and Schulte [ChSc09]

describe these capabilities as follows:

∙ C1 - Real-time behaviour Event processing is about event occurrence and

proper reactions to occurring events.

∙ C2 - Abstraction layer Event processing is based on event patterns that

encode the knowledge about a certain situation. This logic can be separated

from the operational logic allowing to manage the event pattern without

changing the operational logic.

∙ C3 - Decoupling The same events can be consumed by different parties that

are not aware of each other. The event consumer and the event producer

are not forced to know each other or to define routing between producer and

consumer. The decoupling allows to deploy new services with low effort.

While the feature C2 supports mainly the effectiveness, C1 and C3 support the

efficiency of the event processing system. The efficiency is based on the fact

that event processing is used in domains where business agility is an important

issue. It may be necessary to change the event pattern quickly in order to observe

new or arising situations. This could increase the speed of business agility. The

efficiency issue in event processing considers the amount of events processed in
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a given time period [EtNi10]. However, these aspects are rather restricted on

the pattern matching itself. The application of effectiveness and efficiency to the

relevant event pattern management aspects is also necessary and should be part

of the overall efficiency and effectiveness issue in CEP.

Every event pattern is designed to detect a certain business situation. The def-

inition of event patterns can be simple in cases where the all the needed events

for a given business situation are known. If the relevant business situations are

known but not all the events in order to model an event pattern the definition

of event pattern is a hard task. In this case event patterns can be defined as an

approximation to a relevant business situation and adapted over the time.

The issue of effectiveness in pattern management should be based on the degree of

suitability of an event pattern to a relevant business situation. The most effective

event pattern is the pattern which is able to cover the relevant business situations

every time they may occur. A pattern is considered as less effective if some of the

relevant business situations are not detected because of the structural combination

of events and event operator and their configuration respectively. An incremental

approach which will enable refinements of event patterns to sustain the pattern

relevancy could increase the effectiveness of an event pattern.

Since patterns will change in time having methods of continually updating the

patterns in order to ensure their relevance for new situations is also supporting

the effectiveness. A continual improvement of event patterns enables an adapta-

tion of patterns to the situations that need to be detected. Taking into account

the assumption that an event pattern is not perfect at the beginning makes it

necessary to bridge the gap between the functionality offered by an event pattern

management system and the needs of a pattern engineer who models, deploys and

modifies event patterns.

The efficiency in pattern management covers aspects that are both related to

design time and run time. The goal is to decrease the time needed and hence

the needed effort to model, deploy and evolve a pattern. In order to support

the efficiency, it is important to provide an environment that enables a pattern

engineer to operate on event patterns in a consistent and easy way. Graphical user

interfaces that present the functions of the underlying system in a natural way

could also have a positive influence on the efficient management of event patterns.

In the nutshell the efficiency is focused on achieving the definition and evolution

of event patterns timely while the effectiveness is focused on having the right

event patterns for the relevant business situations. We note that in pure end-

user driven systems the productivity of each end-user in defining new rules and

maintaining them is limited [Svio90]. Additionally, systems driven by users are

often poorly structured, incomplete, highly coupled, and thus, difficult to maintain

[Wagn00]. Therefore, there is more than a need to empower the pattern engineer

with additional system support to be efficient and effective in managing event

patterns.
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3.4 Conclusion

Based on the ebizQ survey and [Luck01] we derived that it is necessary to provide

abstract user interfaces for defining and maintaining event patterns. Since there

are also pattern engineers that are non-technicians the event patterns needs to be

understandable and shareable between pattern engineers. Further it is essential

to provide them support during the definition and evolution of event patterns.

Taken into account [EtNi10], [ChEA11] and [Prob98] we identified that event

pattern management starts with introducing a methodology dealing with the life

cycle of an event pattern. The methodology should provide several phases con-

sisting of multiple tasks in order to support the user to define the most suitable

event pattern for a given situation. Both software engineering methodologies and

knowledge management should be considered by defining the event pattern life

cycle methodology.

Considering the requirements in [ChEA11] we identified the trade off between the

expressiveness and the maintainability of event patterns. Expressive event pat-

terns are not easy to manage and maintainable event patterns are not expressive.

However, we will focus on the maintainability since most of the provided event op-

erators that increase the expressiveness of an event pattern are not that frequently

used in real world applications (see also [EtNi10]).

From the academic research on event pattern management, see [TuGW09], [Kulk11]

and [OSSK+11], we concluded that there is a need for a holistic view on event pat-

terns in order to support the pattern engineer during different life cycle stages of

an event pattern.

Considering the current CEP solutions we found out that most of the systems pro-

vide a graphical user interface but neglect the additional tool support for pattern

engineers. These tools are also rather designed for pattern engineers that have a

fundamental programming background.

Last but not least from the related research areas, [PaDi99], [DiGG95], [RoFW97],

[LiEW03], [EmSh03] and [LiEW05] we learned that the issue of evolution and tool

support enables to decrease the barriers for using a system.
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4
Event Pattern Life Cycle Methodology

In this chapter we describe the event pattern life cycle methodology that covers

both the design and run-time aspects of event patterns. While design-time aspects

deal with the modelling and evolution of event patterns, run-time aspects deal

with the execution of an event pattern in the CEP engine. We describe why

designing and maintaining event patterns are more than just writing the pattern

code and its deployment in the CEP engine. Especially in dynamic and rapidly

changing enterprise environments methodological approaches should support the

development of proper tools and methods as a reaction to the unforeseen changes.

We further describe several tasks in each life cycle stage in order to support the

pattern modelling, deployment and evolution.

4.1 Introduction

A methodology in general is a set of complementary methods and a clear descrip-

tion how to apply them [KlHi01], [ArNH86]. It is a guideline for achieving a global

objective using components such as phases, tasks, methods and tools. The global

objective in the case of this thesis is to increase the efficiency and effectiveness of

a pattern engineer.

In contrast to the methodology a method tackles the accomplishment of a given

task by providing a proper tool or software solution. A method specifies what

needs to be done and in what order in order to achieve a given goal.
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Methodologies have been used in software development to increase the productiv-

ity and quality of software development and decrease the time and effort [HaKS00],

[HCRS+94], [DyMA05], [RiHD02]. The first formalization effort of the software

development process has led to the Systems Development Life Cycle (SDLC).

Figure 4.1: Systems/Software Development Life Cycle (SDLC).

SDLC like shown in Figure 4.1, originated in the 1960s, is a series of software

development phases observed by software developer. The aim was to deliver the

right software that satisfies defined specifications [Elli04]. Since then plenty of

software development methodologies have been introduced in order to control

the process of information system development. Each methodology has its own

recognized strengths and weaknesses (see [Gera06] for an analysis of SDLC).

The ISO/IEC 12207 established a common framework for software life cycle pro-

cesses that can be referenced by the software industry. It consists of process,

activities and tasks that can be applied during the acquisition, supply, develop-

ment, operation, maintenance and disposal of software products.

Taking into account the methodological approaches in software development and

knowledge management, the observations we made in the research and industrial

projects, described in Section 1.4, and the need for an event pattern management,

described in Chapter 3, we derive the event pattern life cycle management method-

ology shown in Figure 4.2. The methodology constitutes of three phases forming

a feedback loop. This feedback loop enables a continual flow of information col-

lected in the entire life cycle of an event pattern. This information will be used

for the continual improvement of event patterns.

The event pattern life cycle management methodology covers the phases Gener-

ation, Execution and Evolution of event patterns. Each phase contains a set of

tasks that need to be realized in order to enable a pattern engineer to model and

evolve event patterns efficiently and effectively. Below, we describe the phases of

the methodology.
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Figure 4.2: The event pattern life cycle management methodology.

4.2 Generation phase

The life cycle of an event pattern starts with an initial need for a pattern. In

enterprises the need is driven by new regulatories, business environment, products,

processes etc. Once the need is identified the next step is to select the right

strategy for the development of the event pattern. We classify the modelling

of event patterns into three strategies which are expert-driven, mining-driven and

the evolution-driven pattern development (Modelling in Figure 4.2). Starting from

the initial need the important issue is whether the set of patterns that is needed

to cover the relevant business situations is known or not. This initial modelling

process is depicted in Figure 4.3.

Example: The pattern for detecting the relevant business situation is known.

Whenever there are two transaction events following each other where

the transaction value is greater 500

In order to detect the situation in the example above we need to define a temporal

order pattern (sequence) including a threshold pattern that filters all incoming

transaction events with the value greater 500. In such a case the definition of

the pattern is rather obvious and can be done manually. This belongs to the

category of expert-driven modelling where the pattern engineer exactly knows

what to model as a pattern. It is the externalization of the enterprise knowledge.

The manual modelling of pattern works for domains where the pattern engineer
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Figure 4.3: Pattern modelling activities.

is experienced and has solid knowledge about the domain. The challenge here is

to find the right types of events and event operators, to combine and order them

in the right way and foresee and solve the intermediate conflicts in the selected

events. Therefore a pattern engineer should be provided with an overview of

existing events to browse in the event repository, select events and combine them

by using event operators.

On the other hand we are surrounded with critical situations that are much more

complex. In this case the knowledge of the pattern engineer is not sufficient to

model all event patterns that cover the relevant business situations effectively.

Example: The set of patterns is not known or partially known.

whenever there is a credit card fraud

To provide a set of patterns to cover a credit card fraud is rather hard since

there exist plenty of ways for a fraud and additionally there is always space for

new fraudulent patterns. We need a different approach in order to define the set

of patterns for situations where the patterns are not known. For such cases we

propose the following procedure to model event patterns:

∙ Interview Business experts will be interviewed in order to collect a list of

patterns that might be of interest. Once these event patterns are identified

they can be modelled as event patterns for the CEP engine. This can be

done either by using a graphical user interface or the event processing lan-

guage of the underlying CEP engine directly. The EPTS provides an initial

document in order to support the identification of event patterns. However,

this document should be considered as an initial draft (see appendix A3).

Taking into account that document, our experiences in the area of CEP and

the discussions with the end user, especially in the ALERT project1, we

1http://www.alert-project.eu
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propose the following classification of event patterns based on the complex-

ity of the patterns. These classes allow the collection of event patterns for

different business situations.

– Low Complexity This class of event patterns considers only single

events. All event patterns that are members of this class define certain

filters on event properties or check whether a certain event has occurred

or not.

– Medium Complexity Event patterns of this category extend the low

complexity event patterns with the capability of combining multiple

events. Events can have different types and sources. In order to com-

bine multiple events medium complexity patterns include conjunction

(AND), disjunction (OR) and further logical operators without time

and aggregation constraints.

– High Complexity High complexity patterns extend medium complex-

ity patterns with the capability of temporal aspects and aggregation

functionalities. These patterns include followed-by operator (SEQ),

time windows and count windows.

The focus of this classification is on the maintainability of event patterns as

described in Section 3.1. The event operators that are covered by this clas-

sification are threshold patterns, conjunction patterns, disjunction patterns,

negation patterns, subset patterns and temporal order patterns as presented

in Section 2.2.

∙ Browsing the Pattern Repository Browsing takes into account any nav-

igation queries that are related to search. This method is a more pattern

engineer-oriented approach enabling to find equal patterns and hence avoid

duplicates, to find patterns that are more general or specific, to find similar

patterns or to find frequently used event patterns that could be relevant.

By analysing the past event pattern execution statistics a pattern engineer

can obtain new insights and define new event patterns through the analy-

sis and interpretation of event pattern executions. The generation of new

patterns based on existing pattern execution statistics can be considered as

a process. We present in Chapter 6 and Chapter 7 several search methods

in order to derive new pattern knowledge from existing patterns or from

pattern executions.

∙ Event Pattern Mining Beside event patterns developed by experts explic-

itly, there are also implicit patterns in the domain, reflected in the behaviour

of the environment. They can be discovered through the analysis of the event

repository (event logs). The analysis is driven by tools analysing log files

and attempt to detect patterns.

In the research community there are initial thoughts about mining event pat-

terns from historical data to support the pattern engineer in defining new
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event patterns (see [MKFB+12]). The task is to discover new event patterns

that might be of interest. The main challenge here is that existing data min-

ing technologies deliver frequent patterns meaning events that occur together

quite often. However, these patterns may not be relevant since in CEP the

aim is to define patterns of interest that are essential for the business and

require some kind of reaction. The occurrence of such event patterns could

be also rather rare meaning that current data mining algorithms were not

able to detect the relevant event patterns as being relevant.

As these strategies complement each other, it is important that a combination of

them should be targeted. During the aggregation there should be a manual review

and refinement by the pattern engineer that finalizes the pattern definition. Using

such a strategy may decrease the number of false positives generated for example

by the underlying data mining technique.

Regardless of how a pattern is generated it should be represented (Represent in

Figure 4.2) according to an event pattern model. Rozsnyai et al. [RoSS07] describe

the importance of a well defined event model and its impact on the flexibility

and usability of CEP tools. Adi et al. [AdBE00] point out the importance of

a proper event representation in event processing systems. Contemporary event

representations lack the capability to express much of the event semantics and

relationships to other entities. In order to support the management of event

patterns we present in Chapter 5 a meta model for event patterns that will be

used for modelling and representation of event patterns. The aim of the meta

model is to support the modelling and the evolution of event patterns through the

event pattern relationship detection.

Since the event pattern modelling is not a very precise formulation of a pattern in

the first place but an iterative refinement (Refinement in Figure 4.2) of the event

patterns the refinement of patterns should be offered to the pattern engineer by

taking into account the current modelling context and comparing this context with

the existing event patterns in the pattern repository. The refinement which is done

through the comparison of the modelling context and suggestion of relevant event

patterns is described in Chapter 6.

4.3 Execution phase

The execution phase of an event pattern starts with its deployment and ends with

its undeployment. The first task of this phase is the transformation (Tranforma-

tion in Figure 4.2) of the event pattern modelled by the pattern engineer into its

CEP engine specific representation as presented in Figure 4.4. The transforma-

tion of an event pattern should cover the transformation of events, event operators

and complex events respectively. The transformed event pattern will be registered
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Figure 4.4: Transformation of an event pattern in native CEP language.

(Deployment in Figure 4.2) in the CEP engine for matching to continue with the

life cycle of the event pattern.

However, nowadays matching process in the CEP engine is designed as a black-

box. The pattern is evaluated true if and only if the whole pattern is evaluated

true. As a matter of fact the black-box approach introduces a chasm into the

event pattern life cycle. The data regarding the matching is not feed into the

pattern life cycle. However, the matching details can be used to detect possible

errors in the event pattern definition.

In order to collect the data during the pattern execution we propose a white-box

approach. The goal of the white-box approach is to track as much as possible data

about the execution of event patterns in the CEP engine (Obverse in Figure 4.2).

The purpose of this tracking is to send the data (Notify in Figure 4.2) in order

to improve the event patterns in the evolution phase. The white-box approach is

described as part of the evolution approach in Chapter 7.

4.4 Evolution phase

The Evolution phase is responsible for coping with changes that may affect an

event pattern. In a more open and dynamic business environment the domain

knowledge evolves continually. A pattern that must not become rapidly obsolete

must change and adapt to the changes in its environments [TuGW09]. Therefore,

if a pattern aims at remaining useful it is essential that it is able to accommodate

the changes that will inevitably occur. Facilitating those changes is complicated

especially if large quantities of events and event patterns are involved. Developing

patterns and their applications are expensive but evolving them is even more

expensive.

We classify the changes that affect an event pattern into two categories, namely

external changes and changes triggered by the pattern execution. In this thesis

we focus on the changes that are triggered by pattern executions which will be

described in Chapter 7.

Evolution driven by external changes On the one hand the environment in which

systems operate can change. For example new event sources make it necessary to
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change the pattern logic. Events created by these new sources could be used either

to create new patterns or update existing patterns by considering the information

flow from these new sources. On the other hand users’ requirements often change

after the system has been built, warranting system adaptation. For example

the user can change an existing pattern which was modelled to detect a certain

business situation.

Evolution driven by pattern execution statistics While a good design may prevent

many pattern errors some problems will not be detected before patterns are in

use, like:

∙ The events are not received by the CEP engine because of some defective

behaviour of the network or information sources.

∙ The pattern is not relevant any more after a certain time period.

∙ The pattern is defined imprecisely meaning it is either too specific, it is

detected very seldom or it is designed too general meaning it is detected

very often which leads again to an information overload.

Therefore the analysis of the execution data of an event pattern is of paramount

importance in the process of event pattern generation and should not be neglected.

For example, if an event pattern is never executed because a particular condition

was never satisfied, the reason could be that the event pattern is defined very

specific and need to be relaxed. This bottom-up pattern development enables

a continual improvement by adapting execution-mining techniques. Furthermore

the quotient between partially fulfilment and total fulfilment can provide knowl-

edge for the evolution. The partially fulfilment describes the state of an event

pattern where parts of the pattern have been evaluated true. In order to justify

whether there exists a problem it is necessary to compare the current execution

data with historical execution data. This will be described in Chapter 7.

4.5 Related work

Vidackovic et. al [ViKD10] present a CEP development methodology (see Fig-

ure 4.5) that utilizes the Zachman framework [Zach87] by building a monitoring

model in a top-down approach. The stepwise development methodology starts

with the specification of business goals and the definition of key performance

indicators (KPIs) and business objectives. The next step is the assessment of in-

fluencers’ impact on goals and the evaluation of situations where low-latency can

increase the business value. The definition of event pattern rules without technical

details is the last step before the event pattern rules are specified using a concrete

EPL. Compared to our methodology the development methodology is more on an
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abstract strategic and conceptual level. Although the methodology can be use-

ful from a business-oriented perspective, it does not consider the event patterns

from a more technical perspective like how to model, execute and evolve them.

We see the role of the methodology presented by [ViKD10] as part of the initial

process where the relevant business situations are identified. However, both the

methodology presented in [ViKD10] and the methodology presented in this thesis

can be connected in series. Once the initial need for a relevant business situation

is defined through the definition of the KPIs (Key Performance Indicators) the

Instrumentation of Runtime for Event Generation (step 7 in Figure 4.5) can be

done using the methodology presented in this thesis.

Figure 4.5: CEP development methodology according to Vidackovic et al. [ViKD10].

Obweger et al. [OSSK+11] describe that the practical relevance of CEP rises and

falls with the manageability of the underlying event-pattern rules. The authors

describe that event patterns (they use the terminology of business logic) are asso-

ciated with different user groups in an enterprise. Each user group has different

technical skills and competences. The approach aims at solving the issue that busi-

ness users need technical experts in order to model and deploy event patterns (see

(a) in Figure 4.6) by creating a pattern library where technical experts prepare

the patterns which are used by the business user (see (b) in Figure 4.6). While

creating an event pattern by combining existing business logic is a valid approach,

there are no details about how the technical experts know what the business users

expect. To offer a management environment that supports both the needs of

technical-versed power users as well as business users seems promising. However,

the main focus of Obweger et al. [OSSK+11] is not the life cycle management

of event patterns. They neither describe the modelling nor the refinement and

evolution of event patterns in general. We further describe for each phase several

tasks that support a pattern engineer at different stages. While our approach is

more designed for pattern engineers that do not have deep CEP knowledge the

approach presented by [OSSK+11] combines the expertise of a technical experts

and business user in one management environment.
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Figure 4.6: Comparison of event pattern rule-management in existing systems (a) and
the proposed approach (b) by [OSSK+11].

4.6 Summary

In this chapter we presented the event pattern management life cycle covering the

modelling, the deployment and the evolution of event patterns. In each phase

we defined multiple tasks in order to accomplish the modelling, the deployment

and the evolution of event patterns. We described several strategies to model new

event patterns and outline the importance of partially fulfilled event patterns in

order to support the evolution of event patterns. The evolution of event patterns

is needed in order to guarantee the constant relevance of an event pattern. In the

next chapters we will describe the phases of the methodology by providing the

details of our approaches and tools.



5
Event Pattern Meta Model

In this chapter we present the meta model for describing the elements of an

event pattern from the event pattern management point of view. The role of

the event pattern meta model is to support the event pattern modelling and evo-

lution. Events and event patterns are handled as a fundamental information unit

to be stored and queried in order to support pattern engineers during the pattern

modelling and evolution. The meta model is an explicit description of how a do-

main specific event pattern model should be built. Since the way data modellers

and knowledge representation researchers view events is diversified (see [Amar11])

it is necessary to provide a meta model considering the management of event

patterns.

5.1 Introduction

According to [Pidd00] a model is an external and implicit representation of a part

of reality as seen by people who wish to use that model to understand, change,

manage and control that part of reality. A meta model is the construction of a

collection of concepts within a certain domain. The meta model is another abstrac-

tion layer for a model describing the properties of the model itself [SAJP+02]. Like

ontologies meta models are used to describe and analyze the relations between con-

cepts [SAJP+02]. In this chapter we analyze the concepts and their relationships

to each other that are needed to describe an event pattern. The current strategy
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to provide a meta model through a top level ontology1 for events is based on the

identification of a common set of attributes like timestamp, type, place references

and so forth (see for example [KhSt09]). Other approaches (see [GGMO+02],

[HMSH+11] [SFSS09]) use the event relevant elements in existing upper level on-

tologies like DOLCE2 (Descriptive Ontology for Linguestic and Cognitive Engi-

neering) to define event ontologies. These strategies lead to an ontology model

that will not be an efficient one since it include all possible event attributes like

What happened?, When it happened?, Who is involved? and so forth [TePa09].

The resultant meta models are not designed from the event management point

of view where the focus should be on supporting the pattern engineer during the

pattern life cycle.

In order to represent event patterns based on the meta model we use a graph-

based approach. A graph-based approach provides the flexibility to define inter-

event relationships [Amar11]. RDFS3 (Resource Description Framework Schema)

is a proper candidate in order to define events and event patterns as graphs.

Further RDFS has the advantage that it offers formal and explicit definitions of

concepts and relations between concepts. It provides a set of primitives to describe

lightweight ontologies in Resource Description Framework45 (RDF) using the RDF

model and syntax.

Below we present the meta model consisting of the event layer and the event

pattern layer. The examples are serialized in RDF Turtle6 syntax.

5.2 Event layer

As described earlier an event is an occurrence of something within a particular

domain or system [EtNi10]. It is something that has happened or is contemplated

as having happened in that domain. In its very minimal form an event is a

signal containing only a time stamp of the event occurrence. Contemporary event

formats are proprietary composed of attribute values [Luck01] like shown in the

example below. However, this proprietary format is not well suited for the event

pattern management.

Example

tweet(authorName, timeOfCreation, tweetText)

1A top-level ontology is an ontology which contains very general and knowledge domain
independent concepts.

2http://www.loa.istc.cnr.it/DOLCE.html
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/RDF/
5Please notice that our focus is on the meta model and not providing an ontology in RDFS.

RDFS is used for specifying a concrete event pattern. One can also use other graph based
representation languages that provide type inheritance and property specifications (with domain
and range

6http://www.w3.org/2007/02/turtle/primer/
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The event above which is an example for a tweet7 in Twitter consists of a set of

attributes which are authorName, timeOfCreation and tweetText. All attributes

are handled as strings. Additional information regarding the type and source of

the event are also embedded in the proprietary format.

In order to construct the event pattern meta model we start with the meta model

describing the nature of events and their relationship to other event related con-

cepts. We propose an event meta model where an event is a construct consisting

of the following three concepts.

∙ Event This concept contains the minimal set of properties an event should

have. This concept denotes an untyped event describing the occurrence of

something. In order to specify the source and type details we introduce the

concepts EventType and EventSource, an event is linked to. These concepts

support the browsing and the relationship detection as it will be described

in Chapter 6.

∙ Event Type Events can be classified into event types according to their

attributes. All events with the same event type share the same set of at-

tributes. For example events that carry the temperature information would

belong to the same event type class. In order to classify events there exist sev-

eral approaches in linguistics, artificial intelligence and temporal databases

[Amar11]. However, a comprehensive inclusion of such classification into an

event model is missing and therefore needed [Amar11].

∙ Event Source Every event has an event source as described in Subsec-

tion 2.1.2. All events created from the same event source belong to the

same event source concept. For example events created from a tweet would

belong to the same event source class.

Figure 5.1: Event meta model.

Like shown in Figure 5.1 an Event is linked to the concepts EventType and

EventSource by using the relationships hasSource and hasType. Below we in-

troduce a more formal definition of an event and its related concepts described in

Figure 5.1.

7A tweet contains more attributes than displayed above. For more details regarding a tweet
see the project http://twitter4j.org/en/index.html
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Definition: A simple event is defined as a 6-tuple 𝑆𝐸 := (𝐼,𝑁, 𝑆,𝐸,

𝐸𝑆,𝐸𝑇 ) where:

∙ I is the numeric event id.

∙ N is the alphanumeric event name.

∙ S is the numeric start time of an event.

∙ E is the numeric end time of an event.

∙ ES is a reference to a single event source concept in the ontology.

∙ ET is a reference to a single event type concept in the ontology.

A concrete occurrence of a simple event has an unique id and time interval con-

sisting of start and end time of an event. Since simple events are atomic the start

and end time are set to the same value. The time interval is needed in order to

define complex events that are composed of other events. Further an event has

an event type and an event source that are used in order to classify events.

The event type characterizes a class of event objects according to the attributes

of an event object. For example every event that carries a tweet has the the same

event type (see also [AdBE00]).

Definition: The event type is defined as a tuple 𝐸𝑇 := (𝐻𝑒𝑡, 𝐴𝑒𝑡)

where:

∙ 𝐻𝑒𝑡 is an acyclic event type hierarchy.

∙ 𝐴𝑒𝑡 is a set of event type specific properties < 𝑎𝑒𝑡1, ..., 𝑎𝑒𝑡𝑛 >

with range constraints.

An event source is an entity that indicates where an event occurred, e.g. a software

module, a sensor, a web service etc. The event source characterizes a class of event

objects according to the attributes that are only valid for the source.

Definition: The event source is defined as a tuple 𝐸𝑆 := (𝐻𝑒𝑠, 𝐴𝑒𝑠)

where:

∙ 𝐻𝑒𝑠 is an acyclic event source hierarchy

∙ 𝐴𝑒𝑠 is a set of event source specific properties < 𝑎𝑒𝑠1, ..., 𝑎𝑒𝑠𝑛 >

with range constraints.

Every event consists of an instance of the concept Event that is connected to an

instance of the EventType and EventSource. Below we present a scenario for web

data monitoring that will be used to define events, event operators and the final

event pattern throughout this chapter.

Example:
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Whenever there is a news article about Greece followed by a com-

ment referring to the article from the same online source create

a new complex event (the complex event is used for the notification

about the occurred situation) with the reference to the web page. The

source of the information should be located in Germany.

In order to cope with this scenario we start with a possible specification of events,

event types and event sources based on the meta model8. The concept EventSource

has the concept Country as its subclass denoting the source of the event. The

event type is more distinctive. It has the concept Web as its direct subclass. The

concept Web again has two concepts namely Comment and News as its direct

subclasses. The overview of the concepts Event, EventSource and EventType

would look like as follows:

:Event a rdfs:Class;

rdfs:subClassOf owl:Thing.

:EventSource a rdfs:Class;

rdfs:subClassOf owl:Thing.

:Country a rdfs:Class;

rdfs:subClassOf :EventSource.

:EventType a rdfs:Class;

rdfs:subClassOf owl:Thing.

:Web a rdfs:Class;

rdfs:subClassOf :EventType.

:Comment a rdfs:Class;

rdfs:subClassOf :Web.

:News a rdfs:Class;

rdfs:subClassOf :Web.

In order to detect the situation in the above scenario we define two events9 whereby

one represents a news article and the other a comment. Both events have a location

which is the geographic location of the publishing source (country). Based on the

meta model the two events would look like as follows

:NewsEvent a :Event;

:hasSource :Country;

:hasType :News.

:CommentEvent a :Event;

:hasSource :Country;

:hasType :Comment.

8The subclass definition and type hierarchy is only used to exemplify the use of the meta
model and is not a complete specification of the domain.

9For the sake of simplicity the remaining event attributes are not used.
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where both events are linked to the proper event type and the event source. In

order to detect the relevant situation we further define attributes for the event

types (𝑎𝑒𝑡1, ..., 𝑎𝑒𝑡𝑛) and event sources (𝑎𝑒𝑠1, ..., 𝑎𝑒𝑠𝑛) like described in the event

type and event source definition.

:countryName a owl:DatatypeProperty;

rdfs:domain :Country;

rdfs:range xsd:string.

:articleId a owl:DatatypeProperty;

rdfs:domain :Web;

rdfs:range xsd:string.

:url a owl:DatatypeProperty;

rdfs:domain :Web;

rdfs:range xsd:string.

:subject a owl:DatatypeProperty;

rdfs:domain :Web;

rdfs:range xsd:string.

:description a owl:DatatypeProperty;

rdfs:domain :Web;

rdfs:range xsd:string.

The concept country has only one attribute called countryName that denotes the

name of the country. The concepts Comment and News inherit four attributes

from the super concept Web. These attributes are articleId, url, subject and

description. At run-time a concrete event occurrence represented based on the

above event definition would contain the values for the event type and event

source attributes.

So far we only defined the simple events NewsEvent and CommentEvent based

on the meta model. Since a complex event is the result of an event processing

logic it has a reference to the event operator concept. Like mentioned above a

complex event may have different values for start time and end time. The start

time indicates when the first event arrives that was part of the processing. The

end time indicates when a complex event was finally generated.

Definition: A complex event is defined as a 7-tuple CE:=(I,S,N,E,ES,ET,EO)

where:

∙ I is a numeric event id.

∙ N is a alphanumeric event name.

∙ S is a numeric start time of an event.

∙ E is a numeric end time of an event.

∙ ES is a reference to the event source concept.

∙ ET is a reference to the event type concept.
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Figure 5.2: Event meta model extended with event operator in order to define complex
events.

∙ EO is a reference to the event operator concept.

Event operators (described in Section 2.2) can be aggregation operators (AGG,AVG,

COUNT,...), window operators (WITHIN,...), logical operators (AND, OR,...),

temporal operators (SEQ ,...) or geospatial operators (near,...)(see [EtNi10] for a

detailed overview of possible event operators).

Definition: An event operator is defined as a tuple

𝐸𝑂 := (𝐻𝑒𝑜, 𝐸𝑉,𝑂𝑉,𝐴𝑒𝑜) where:

∙ 𝐻𝑒𝑜 is an acyclic event operator hierarchy

∙ 𝐸𝑉 is a set of events (either simple or complex) that an event

operator operates on

∙ 𝑂𝑉 is a set of event operators it is connected to

∙ 𝐴𝑒𝑜 is a set of event operator specific properties < 𝑎𝑒𝑜1, ..., 𝑎𝑒𝑜𝑛 >

with range constraints.

In order to detect the pattern presented in the previous example we need to define

the resultant complex event. We call this event InfoEvent. Beside the link to the

event type and event source a complex event has an additional link to the event

operator. The source of the complex event would be a specific CEP engine where

the matching takes place. Additionally we have to introduce a new event type

concept representing the attributes of the complex event and and a concept for

the event operator the complex event is linked to. Since in our scenario we have

a temporal order between the two events we use the sequence operator (SEQ) in

order to define the complex event. The complex event and its event type, event

source and event operator definition would look like as follows

:InfoEvent a :Event;
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:hasSource :CepEngine;

:hasType :NewsAggregation;

:hasOperator :SEQ.

:CepEngine a rdfs:Class;

rdfs:SubClassOf :EventSource.

:NewsAggregation a rdfs:Class;

rdfs:subClassOf :Web

:EventOperator a rdfs:Class;

rdfs:subClassOf owl:Thing.

:SEQ a rdfs:Class;

rdfs:subClassOf owl:EventOperator.

where the concept CepEngine is a direct of EventSource, NewsAggregation is a

direct subclass of EventType, EventOperator is a direct subclass of owl:Thing and

the event operator SEQ is a direct subclass of EventOperator. The new introduced

concepts have additional attributes which are

:engineName a owl:DatatypeProperty;

rdfs:domain :CepEngine;

rdfs:range xsd:string.

:containsEvent a owl:DatatypeProperty;

rdfs:domain :EventOperator;

rdfs:range :Event.

:operatorConstraints a owl:DatatypeProperty;

rdfs:domain :EventOperator;

rdfs:range xsd:String.

:eventOrder a owl:DatatypeProperty;

rdfs:domain :SEQ;

rdfs:range :Event.

where engineName contains the value of the CEP engine, containsEvent denotes

the events that the event operator operates on, operatorConstraint denotes the

restrictions for the linked events and eventOrder which describes the temporal

order of the events that are linked to the sequence operator. The attributes opera-

torConstraint and eventOrder are operator specific attributes (< 𝑎𝑒𝑜1, ...𝑎𝑒𝑜𝑛 >).

An example will be presented in the next section as part of the final event pattern.

5.3 Event pattern layer

The event pattern layer shown in Figure 5.3 extends the event layer with a set

of additional concepts in order to specify the final event pattern. The additional

concepts are PatternDomain and EPAT. Further it defines additional properties

for these two concepts. The properties are refersTo, belongsTo, hasId, hasName,

hasTimeOfCreation and hasDescription.
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Figure 5.3: Event pattern meta model.

Definition: An event pattern is defined as a 6-tuple 𝐸𝑃𝐴𝑇 := (𝑃𝐼, 𝑃𝑆, 𝑃𝑁,

𝑃𝐶, 𝑃𝐷, 𝑃𝐸) where:

∙ PI is a numeric pattern id.

∙ PS is a alphanumeric description of the pattern.

∙ PN is a alphanumeric pattern name.

∙ PC is a numeric time of creation.

∙ PD is a reference to the pattern domain.

∙ PE is a reference to the event concept.

Every event pattern must belong to a pattern domain. That allows to categorize

event patterns regarding the target domain where the event pattern will be used

for. For example all event patterns modelled for the observation of social media

content in Twitter, Facebook, Blogs etc. would belong to the pattern domain

SocialMediaMonitoring.

Definition: The pattern domain is defined as a tuple 𝑃𝐷 := (𝐻𝑝𝑑, 𝐴𝑝𝑑)

where:

∙ 𝐻𝑝𝑑 is an acyclic pattern domain hierarchy.

∙ 𝐴𝑝𝑑 is a set of pattern domain specific properties< 𝑎𝑝𝑑1, ..., 𝑎𝑝𝑑𝑛 >

with domain and range constraints.
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In order to finalize the event pattern definition the last step is to use the complex

event InfoEvent and to define the final event pattern. We introduce the pattern

domain NewsMonitoring which is an instantiation of the PatternDomain.

The final event pattern epat has an id, name, description, timeOfCreation, be-

longsTo and refersTo.

:PatternDomain a rdfs:Class;

rdfs:subClassOf owl:Thing.

:NewsMonitoring a :PatternDomain .

:EPAT a rdfs:Class;

rdfs:subClassOf owl:Thing.

Taking into account the event layer and event pattern layer we can define the final

event pattern (this is a concrete instantiation of an event pattern including all

described concepts) that represents the scenario introduced in Section 5.2. Let’s

start with the definition of the event pattern which looks like as follows:

:epat a : EPAT;

:Id "wq778981"^^xsd:String;

:Name "MonitoringPattern"^^xsd:String;

:description "Greek news"^^xsd:String;

:timeOfCreation "04.03.2012,12:34"^^xsd:String;

:belongsTo :NewsMonitoring;

:refersTo :InfoEvent.

The concrete event pattern epat which is an instantiation of EPAT has an id, name,

description, timeOfCreation the pattern domain it belongs to and the complex

event it refers to.

The complex event instantiation based on the definition presented in Section 5.2

is defined as follows:

:infoevent a :Event;

:hasSource :cepEngine;

:hasType :newsAggregation;

:hasOperator :seq.

The infoEvent which is an instantiation of Event has a link to a specific event

source, type and operator as defined below:

:cepEngine a :CepEngine;

:engineName "ESPER"^^xsd:string.

:newsAggregation a :NewsAggregation;

:articleId "ft5703"^^xsd:string;
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:url "http://www.ftd.de/thema/griechenland"^^xsd:string;

:subject

"Geldgeber streiten \"uber Griechen-Hilfe"^^xsd:string;

:description

"Ausnahmsweise sind es nicht die Griechen..."^^xsd:string;

:seq a : SEQ;

:containsEvent :news, :comment;

:operatorConstraints

"news.articleId=comment.articleId"^^xsd:string;

:operatorConstraints

"news.description contains Griechenland^^xsd:string;

:operatorConstraints

"news.subject contains Griechenland^^xsd:string;

:eventOrder :news, :comment.

The cepEngine which is an instantiation of CepEngine has the name ESPER. The

final complex event has the event type NewsAggregation carrying the informa-

tion about the relevant article about Greece which was detected as part of the

matching process. The operator which was involved in the matching process is a

concrete instantiation of the sequence operator (SEQ). The operator is linked to

specific news and comment events. In order to detect the relevant articles from

the mentioned scenario it includes a constraint value where the article ids of the

news and comment event should be the same. Further the news article needs to

contain at least the word ”Griechenland” in its subject or description. In order to

guarantee the correct matching where a news article needs to be published before

a comment event is received is expressed in the eventOrder where the event news

needs to happen before the event comment.

5.4 Implementation

As we described in Chapter 3 for removing the barriers from accessing a CEP

system it is important to provide easy to use graphical user interfaces to the

underlying event processing components. In this section we describe the event

editor as part of the PANTEON tool that allows the pattern engineer to design

new events10 based on the meta model. These events will be used to model

new event patterns. The modelling of new event patterns will be described in

Chapter 6.

Although the meta model does not contain many concepts, its instantiation to a

concrete domain is for those that are not familiar with RDFS and ontology editors

10The event ist used as an template or schema. It will be used for the pattern generation
where the attribute values are set.
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Figure 5.4: The PANTEON event editor.
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like, Protege11, TopBraid Composer12 not easy. Furthermore the usage of different

tools for event and event pattern definition might decrease the efficiency of the

pattern engineer.

The PANTEON event editor allows the pattern engineer to define a concept hier-

archy for event types and event sources with additional attributes for each concept.

Attributes can be inherited by subconcepts. Every attribute has a type which is

the range of the attribute . The domain of the attribute is the concept for which

it is defined. Figure 5.4 displays the event type and event source hierarchy for

the scenario we modelled in the previous section. The definition of a new event

includes three steps described below in the next paragraphs.

Definition of the event types and event type attributes The list of initial event types

contains only the concept EventType which does not provide any attributes and

subclasses (left part in Figure 5.5). It is the strict implementation of the meta

model where only the concept name is provided. In order to modify the event

Figure 5.5: Definition of the event types and attributes in PANTEON event editor.

type hierarchy the event editor provides the operations Add EventType, Remove

EventType and Modify EventType. Each new type is defined as a sub concept of

the previously selected event type. In Figure 5.5 we defined all the event types

defined in the context of the previous scenario. The attributes can be defined

11http://protege.stanford.edu/
12http://www.topquadrant.com
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for each concept. Attributes defined for super concepts are inherited by the sub

concepts. Each attribute has a data type which is the range of the attribute.

This type can be a reference to simple data types like string, integer or complex

like ontological concepts. The reference to a concepts is defined through the URI

(Uniform Resource Identifier).

Definition of the event sources and attributes The definition of the event sources

is similar to the definition of event types like shown in Figure 5.6. Like the

definition of event types first the hierarchy of event sources is defined followed

by the definition of event source attributes. Figure 5.6 displays the event sources

defined in the web data monitoring scenario in Section 5.2.

Figure 5.6: Definition of the event sources and attributes in PANTEON event editor.

Definition of events The final step of the event (event schema or event template)

definition is the creation of the link between the event, event type and event

source. The initial state of the event editor is shown in the left part of Figure 5.7.

In the right part in Figure 5.7 a new template for the event NewsEvent is defined

where the event type is News and the event source Country. The event type and

event source are selected either from the type and source hierarchy or typed in

the proper fields. In order to ease the selection of event types and event source

the proper fields support auto complete functionality like shown for the event

source in Figure 5.7. The attribute list displays all the attributes available for the
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event type and event source. Every event template is stored in a event template

repository. The event template list displays all event templates that have been

defined so far. These templates can be browsed by name, event type or event

source. These events will be later used by the pattern engineer in order to define

a new event pattern.

Figure 5.7: Definition of the final event template in PANTEON event editor.

5.5 Related work

Most of the work regarding the modelling aspects of events and event patterns

is related to the run-time aspects and not to the management aspects of event

patterns. Event models exist in different domains like in Active Databases, Event-

oriented Spatiotemporal Databases, Sensor Networks, Multimedia Information Sys-

tems, Video and Audio Analysis and Surveillance Systems to name a few. There

exist also ontologies which include the concept of events, like:

∙ Event Ontology 13

∙ DOLCE+DnS Ultralite 14

13http://motools.sourceforge.net/event/event.html
14http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS Ultralite
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∙ GEM [WoHo04]

∙ LODE 15

However, the difference between our meta model and these ontologies is that none

of these ontologies provide a representation of event patterns which is the crucial

point of an event pattern management. In these ontologies events are mainly used

in order to define real world events. Additionally the relation between events,

complex events, event operators and event patterns is not part of these ontologies

which is of course the main purpose of our meta model.

Therefore we describe in this section only event and pattern models from the area

of event-based systems that are the most relevant ones for this thesis. Additional

event formats from different domains can be found in [Amar11].

The SARI event model [Rozs08] is centred around the concept of event types.

Event types are hierarchical structures containing an arbitrary number of event

attributes. Each event attribute has an attribute type. Possible attribute types

are collection types, dictionary types and single-value types. Single-value types are

the basic types such as string or integer. The event types in SARI are managed as

libraries which should be valid in the given event processing system. The intention

of having event type libraries is to share events and not event patterns among a

set of CEP related applications. In contrast to this approach our goal with the

meta model is to enable the sharing and reuse of event pattern through event

types, event sources and event operators that are hierarchical concepts. These

concepts and the proper hierarchy enable several relationship detections between

event patterns as it will be described in Chapter 6. Our meta model provides an

abstract view on event patterns and the main relationships between the concepts

involved in a pattern definition. This abstract view can help pattern engineers

to browse, share and evolve event pattern easily which is not in the focus of the

approach presented in [Rozs08].

Kharbili [KhSt09] presents a core ontology for modelling events for policies and

rules for the compliance management. An Event can be either an Input Event or

an Output Event. Each Event can be itself implemented as either Complex Event

or as Event Stream. An event can be an event expression which combines events

using event operators. Complex events can be a combination of event occurrences

or Event Patterns. This ontology is the most closest to our meta model. Both

our meta model and the ontology presented in [KhSt09] share the concepts event,

event operator, complex event and event pattern. However, while the ontology

presented in [KhSt09] is designed to describe events in the context of business

policies and rules for the compliance management our model is independent from

any domain. Our model provides additional concepts like the event type and

event source hierarchies in order to support the pattern engineer in defining and

evolving event patterns (will be described in Chapter 6 and Chapter 7). We

15http://linkedevents.org/ontology/
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further extended the notion of event patterns with attributes and pattern domain

in order to cluster patterns according to their target domain. The clustering will

be used in order to detect frequently used event patterns which will be described

in Chapter 6.

Scherp et al. [SFSS09] present an event model, called F, based on a set of patterns.

The model specializes a version of the DOLCE-Lite and the DNS ( Description

and Situations) ontologies. The F model, which is derived from the E model of

Westermann and Jain [WeJa06], supports the following aspects:

∙ Participation of objects in events Both living and non-living objects

such as people, animals, and other material objects should be represented

by the event model.

∙ Temporal duration of events As events unfold over time, their temporal

duration need to be modelled.

∙ Spatial extension of objects Events also unfold over space and hence

their spatial extension needs to be modelled too.

∙ Structural relationships between events There exist three kinds of

structural relationships between events. These relationships are mereolog-

ical, causal and correlation relationships. The mereological relationships

describe how events are made up of other events (e.g. subevent-of). Causal

relationships require the modelling of causes and effects and should support

the integration and use of different causal theories. The correlation relation-

ship refers to two events that may or may not have a common cause.

∙ Annotability of events The annotability refers to the ability to associate

an arbitrary number of additional information to any event.

∙ Event interpretation Since relationships between events can be a matter

of subjectivity and interpretation the model should provide the ability to

associate relationships with further attributes.

For each aspect there is an ontology pattern describing the aspect in more detail.

Model F covers an event in its broadest sense (living and non-living objects) and

hence contains dozens of concepts. The difference to our meta model is that the

event model in [SFSS09] is designed to ease the interchange of event information

between different event-based components and not for management aspects. It is

a heavyweight and expressive ontology that require ontology experts to maintain

event patterns based on the model F. Model F is an example for an expressive

ontology to represent patterns but not maintainable. This trade-off has been

already described in Section 3.1. Compared to the model F the aim of our meta

model is maintainability and to support the modelling of event patterns using the

frequently used event operators.
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5.6 Summary

Contemporary event pattern representations are not designed for design-time

event pattern management issues. In order to support the event pattern manage-

ment we presented in this section an event pattern meta model. The meta model

serves as the foundation of the graph-based event pattern representation which

is extensible and flexible. It is important to note that a proper representation

should not only define event pattern related information but also add reasoning

capabilities like the subsumption reasoning that will be used for the similarity

calculation in Chapter 6. We will use subsumption reasoning to refine and reuse

event patterns. We presented a graphical environment to define domain specific

events (as a template) based on our meta model. These event templates will be

used as an input in order to model event patterns. In the next chapter we describe

the usage of this model for the detection of different event pattern relationships

to access existing event pattern knowledge and to make use of them for refining

new event patterns.



6
Relationships between Event Patterns

In this chapter we present the user-driven pattern modelling in more detail. The

main goal is to support the pattern engineer to access existing pattern knowledge,

to reuse this knowledge or to derive new knowledge by analysing these patterns.

We describe a set of pattern relationships based on the graph representation of

an event pattern. Further we present the concept of best practice patterns where

the aim is to build a library of patterns that are frequently used for a domain of

interest. These concepts are relevant especially for domains where plenty of users

interact with the CEP systems managing a large number of event patterns.

6.1 Introduction

An increased complexity and size of event patterns make the maintenance of event

patterns a difficult task. Hence it is important to detect patterns that may be

redundant, disjoint or subsumed by other patterns with respect to other event

patterns. Similar problems exist in the rule based community where the generation

and maintenance of rule bases are a challenging task (see [MaML89], [NPLP87])

or in ontology pattern design where the aim is to describe a generic recurring

construct in ontologies (see [BlSa05]).

As we described in Section 4.2 there are different strategies to model a new event

pattern. In this thesis we follow a semi-automatic pattern modelling strategy. The

semi-automatic strategy extends the pure manual modelling by using techniques

from semantic web, graph theory and statistics. These techniques are adopted to
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discover relevant pattern candidates and support the pattern engineer during the

event pattern modelling process.

6.2 Conceptual model

The knowledge engineering process can be categorized into knowledge creation and

knowledge reuse [DaJB96]. Although knowledge creation is considered as more

important and more difficult to manage, the reuse of knowledge can increase the

organizational effectiveness [Dixo00],[Mark01]. Further the storage and access to

knowledge is essential for the operational efficiency of an organization [Mark01].

As we described in Chapter 4 modelling event patterns is rather an iterative

process with the objective of developing the most suitable event pattern for a

given business situation. Within these iterative process steps it is important to

enable the pattern engineer to access the pattern repository for event patterns

that could be relevant for the modelling of a new business situation. This can be

considered as a recommendation during the pattern modelling process taking into

account the modelling context of the pattern engineer. Recommender systems are

mostly known from E-commerce systems where products are recommended to the

user for buying (for example Amazon). Generally, recommendations are based

on top overall sellers, on demographics or on the past buying behaviour of the

customers [ScKR99].

In event processing the recommendation and the reuse of existing pattern knowl-

edge can increase the speed of pattern modelling. The process diagram1 in Fig-

ure 6.1 displays the overview of our event pattern modelling process.

Starting from the need to develop a new event pattern (S1) the goal is to develop

the most suitable event pattern using existing pattern knowledge. The initial

step of modelling a new event pattern is continued either by selecting the type

of the recommendation (S3) or a pure manual definition (S2). Whenever the

recommendation is helpful the pattern engineer can continue by adapting the

initial pattern. Otherwise the system is requested for additional recommendations.

If the pattern is the final one the next step is to verify and validate the pattern

(S5) followed by the deployment of the event pattern (S6).

Figure 6.2 displays the conceptual model of event pattern recommendation. The

recommendation of event patterns is done through the detection of different type

of event pattern relationships. The detection of pattern relationships has the mod-

elling context, 𝑚𝑐, as input. Taking into account the modelling context and the

pattern repository, the result of the relationship detection contains the most rele-

vant event patterns based on different types of relationship detection approaches

which will be described further in this chapter.

1in BPMN 2.0 notation
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Figure 6.1: The process of new event pattern (EPAT) development.

Figure 6.2: Conceptual model of pattern suggestion.

Definition: Modelling context A modelling context, denoted as

𝑚𝑐, is a partially defined event pattern that represents the current

event pattern development progress containing all elements of the meta

model (pattern domain, events, the event operators, property value

definitions and the links between events and event operators).

The initial modelling context is empty. The smallest number of elements in the

modelling context that will be considered for the recommendation generation is

1. It can be either an event or an event operator. The modelling context is the

reference object that is compared to the elements of the event pattern repository.

Definition: Event pattern repository Event pattern repository,

denoted as 𝑒𝑝𝑠, is a container where every event pattern 𝑒𝑝 is serialized

as a directed acyclic graph.
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Definition: Event pattern relation The relation between the mo-

delling context𝑚𝑐 and an event pattern 𝑒𝑝 is defined through the graph

intersection of the modelling context 𝑚𝑐 and 𝑒𝑝. If the intersection is

empty, the modelling context 𝑚𝑐 and the 𝑒𝑝 are said to be disjoint,

denoted as 𝑚𝑐∩ 𝑒𝑝 = ∅. Otherwise if 𝑚𝑐∩ 𝑒𝑝 = 𝑚𝑐 = 𝑒𝑝 then 𝑚𝑐 and

𝑒𝑝 are said to be equal.

Based on these definitions the algorithm below describes the high level pattern

relation detection.

1: given a modelling context 𝑚𝑐 and an event pattern repository 𝑒𝑝𝑠

2: for all 𝑒𝑝 ∈ 𝑒𝑝𝑠 do

3: if 𝑟𝑒𝑙𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑚𝑐, 𝑒𝑝) then

4: 𝛿 ⇐ 𝑑𝑖𝑠𝑡(𝑚𝑐, 𝑒𝑝)

5: 𝑟𝑒𝑠𝐿𝑖𝑠𝑡 ⇐ 𝑒𝑝, 𝛿

6: end if

7: end for

The function 𝑟𝑒𝑙𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑() delivers four types of relations namely, subpattern,

overlapping, similarity and best practices which will be described in Section 6.4

and Section 6.5. Two patterns that do not have a subpattern or overlapping

relation are disjoint. The 𝑑𝑖𝑠𝑡() function delivers the distance between the event

pattern and the modelling context in order to rank the results according to the

distance value between an event pattern 𝑒𝑝 and the modelling context 𝑚𝑐. This

value is used for the ranking of the results. In our approach we used for calculated

the ranking by subtracting the number of nodes in 𝑒𝑝 ∈ 𝑒𝑝𝑠 from the number of

nodes in 𝑚𝑐, |𝑒𝑝| − |𝑚𝑐|. If there exists a relationship between an 𝑒𝑝 and the 𝑚𝑐

and 𝛿 = 0 then 𝑒𝑝 and 𝑚𝑐 are said to be equal. Otherwise if 𝛿 is smaller then zero

the 𝑒𝑝 is said to be more general and otherwise if 𝛿 is greater than zero.

In order to detect the relationships between event patterns we use the graph

traversation. The event pattern graph is a connected graph without any circles

and hence forms a tree. Before describing the different approaches we will describe

some graph theoretical aspects that are relevant for this chapter.

6.3 Graph theory

Graph theory is a model used for the description of relationships among a collec-

tion of items. Many real-world problems can be modeled as graphs. We introduce

in this section relevant fundamentals of graph theory from [Bond76], [Wils96].

A graph 𝐺 = (𝑉,𝐸) consists of a set of elements 𝑉 := {𝑣|𝑣 ∈ 𝑉 }, called nodes (or

vertices), and a set of elements 𝐸 := {𝑒|𝑒 ∈ 𝐸}, which connects pair of elements

in V, called edges (or arcs). If an edge 𝑒 connects two nodes 𝑢 and 𝑣, it is said

to join the nodes 𝑢 and 𝑣, 𝑢 and 𝑣 are called ends of the edge 𝑒. 𝑉 (𝐺), 𝑉𝐺, and
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𝐸(𝐺), 𝐸𝐺, are used as notations of nodes and edges for a certain graph 𝐺, and

they are simplified as 𝑉 and 𝐸 [Bond76]. Figure 6.3 displays a simple example

of a graph. The circles present the nodes and the lines between them present the

edges. 𝑉 (𝐺) = {𝑢, 𝑣, 𝑤, 𝑥}, 𝐸(𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

Figure 6.3: A simple example of graph 𝐺 with nodes {𝑢, 𝑣, 𝑤, 𝑥} and edges
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

A subgraph of graph 𝐺 is a graph which has a subset of 𝐺’s nodes as its nodes

and a subset of 𝐺’s edges as its edges. If a graph 𝐻 is a subgraph of graph 𝐺, 𝐺

is called supergraph of 𝐻. For example, in Figure 6.3, nodes 𝑢, 𝑣, 𝑤 and edges 𝑎,

𝑏, 𝑐 can build up a subgraph of graph 𝐺. Graphs with directed edges are called

directed graphs, vice versa undirected graphs. Figure 6.4 is a comparison of an

undirected graph in a) and a directed graph in b).

Figure 6.4: A directed graph and an undirected graph: a) undirected graph 𝐺; b)
directed graph 𝐻.

If there is a (𝑢, 𝑣)-path for nodes 𝑢 and 𝑣, these two nodes are said to be connected.

A graph is connected, if there is always a path for every two nodes of the graph.

Otherwise this graph is disconnected. The connected subgraphs of a graph are

components of the graph.

A graph containing no circles is called forest, and if a forest is connected, it is a

tree. A tree is a simple type of graphs with additional properties.

6.4 Graph relationships between event patterns

We introduce the following three event pattern relationship levels considering:

∙ Relationship on the node type level The relationship on the type level

considers only the type of the elements in the modelling context which are
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Simple Event (SE), Complex Event2 (CE), Event Operator (EO), Event

Type (ET), Event Source (ES).

∙ Relationship on the node instance level The relationship on the in-

stance level extends the relationship on the node type level to that effect

that the concept instantiations are considered. Concepts that can be instan-

tiated are ET, ES, EO, SE and CE.

∙ Relationship on the node property instantiation level The property

level relationship extends the instance level relationship to that effect that

also the attribute values of each instance ET, ES, EO, SE and CE are

considered for the relationship detection.

The event pattern relationship levels enable a flexible event pattern recommenda-

tion in the sense that the pattern engineer is able to select the concrete relationship

(described below) and the level of this relationship (described above) in order to

adjust the recommendation results.

In the following subsections we present the specific event pattern relationships

including the overlapping and subsumption relationship. Further we describe the

detection of domain-dependent best practice event patterns. The role of best

practice patterns is to build automatically pattern libraries which can be delivered

to the pattern engineer. The relationship levels presented above are applied to

the sumsumption, overlapping and best practice pattern detection. Finally we

introduce a similarity metric for detecting similar event patterns through the

taxonomy and the features of an event pattern.

6.4.1 Event pattern subsumption and overlapping

The assumption behind the event graph relationships is that the event pattern

modelling starts with a more general pattern and is specialized in order to describe

a relevant business situation. In order to incorporate something specific under a

more general category we introduce the overlapping and subpattern relationships.

The event pattern overlapping is derived from the subgraph definition. From the

graph theory we know that a graph 𝐺′ = (𝑉 (𝐻), 𝐸(𝐻)) is called a subgraph of

graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) 𝑖𝑓 𝑉 (𝐺′) ⊆ 𝑉 (𝐺) 𝑎𝑛𝑑 𝐸(𝐺′) ⊆ 𝐸(𝐺).

Definition: Event pattern overlapping A pattern 𝑒𝑝′ has an over-

lapping with another pattern 𝑒𝑝, denoted as 𝑜𝑣𝑙(𝑒𝑝′, 𝑒𝑝) if 𝑒𝑝′ and 𝑒𝑝

have a common subgraph denoted as 𝑆 = (𝐸, 𝑉 ). Further 𝑉 (𝑆) ⊂
𝑉 (𝑒𝑝) 𝑎𝑛𝑑 𝑉 (𝑆) ⊂ 𝑉 (𝑒𝑝′) 𝑎𝑛𝑑 𝐸(𝑆) ⊂ 𝐸(𝑒𝑝) 𝑎𝑛𝑑 𝐸(𝑆) ⊂ 𝐸(𝑒𝑝′) .

2In the meta model complex events are events that are connected to an event operator by
the attribute hasOperator. See definition in Section 5.2
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The minimal number of nodes in a common overlapping subgraph is one. On the

other hand if the number of nodes in 𝑆 is equal to the number of nodes in 𝑒𝑝 we

have a subpattern relation between 𝑒𝑝 and 𝑒𝑝′.

Definition: Event pattern subpattern A pattern 𝑒𝑝′ is a subpat-

tern of another pattern 𝑒𝑝, denoted as 𝑠𝑢𝑏(𝑒𝑝′, 𝑒𝑝) if 𝑒𝑝′ is a subgraph

of 𝑒𝑝. 𝑒𝑝 is said to be a superpattern of 𝑒𝑝′, denoted as 𝑠𝑢𝑝(𝑒𝑝, 𝑒𝑝′).

The subpattern relation is a special form of the overlapping relationship where the

modelling context is a complete subgraph of another event pattern. That means

that every subpattern is an overlapping but not vice versa.

Relationship on the node type level The overlapping and subsumption relationship

on the node type level aims at delivering patterns that strictly consider the types

of the nodes in the event pattern graph without considering the specific event type

and event source of the events. Therefore the concepts that are considered are

event (SE) and event operator (EO).

The detection of relationship on the type level delivers only patterns that share

the same graph structure without taking into account the concrete instantiation

of the event type, source, operator and their values. In this sense the pattern

relationship on the node type level is the most abstract relationship between two

event patterns.

Figure 6.5: Example: Overlapping and sumbsumption relation on the type level (SE
= simple event, EO = event operator).

In the example in Figure 6.5 we have two modelling contexts 𝑚𝑐′,𝑚𝑐′′ and the

event pattern 𝑒𝑝. Between 𝑚𝑐′ and 𝑒𝑝 there exists a subsumption relation where

𝑚𝑐′ is subsumed by 𝑒𝑝. The distance 𝛿 between 𝑚𝑐′ and 𝑒𝑝 is 2 since |𝑚𝑐′| = 3

and |𝑒𝑝| = 5. Between 𝑚𝑐′′ and 𝑒𝑝 we have an overlapping relation (𝑆𝐸 𝐸𝑂 𝑆𝐸).

The distance 𝛿 between 𝑚𝑐′′ and 𝑒𝑝 is -2 since |𝑚𝑐′′| = 7 and |𝑒𝑝| = 5 which
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means that 𝑚𝑐′′ is more specific than 𝑒𝑝. However, between 𝑚𝑐′′ and 𝑒𝑝 there

exist another overlapping relationship displayed in dotted lines in Figure 6.5.

Relationship on the node instance level The next type is the relationship between

two patterns on the instance level. A pattern that satisfies the overlapping and

subsumption relationship on the instance level satisfies also the relationship on

the node type level. The relationship on the node instance level considers the

concrete instantiation of the concepts that are part of the event pattern which are

EO, SE, ET and ES.

Figure 6.6: Example: Overlapping and subsumption on the instance level.

In the example in Figure 6.6 we have two modelling contexts 𝑚𝑐′ and 𝑚𝑐′′ and

an event pattern 𝑒𝑝. 𝑚𝑐′ denotes a single event where the event denotes the

publishing of a tweet containing information about a person. 𝑚𝑐′′ denotes an

event pattern describing a situation where either a tweet containing a country or

a company is published.

While 𝑚𝑐′ is a subpattern of 𝑒𝑝 on the instance level, 𝑚𝑐′′ and 𝑒𝑝 have a common

overlapping on the instance level.

The overlapping and subpattern relationships on the instance level are true since

the following conditions are true for 𝑚𝑐′,𝑚𝑐′′ and 𝑒𝑝:

∙ The event shared between 𝑚𝑐′,𝑚𝑐′′ and 𝑒𝑝 is the simple event SE:Entity.

∙ The event source of the event SE:Entity in 𝑚𝑐′,𝑚𝑐′′ and 𝑒𝑝 is the event

source ES:Twitter.

∙ The event type of SE:Entity in 𝑚𝑐′ and 𝑒𝑝 is ET:Person. The event type of

SE:Entity in 𝑚𝑐′′ and 𝑒𝑝 is ET:Company.
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Relationship on the node property level The relationship on the node property level

is based on the structure equality of the node. This relationship extends the

relationship on the instance level by taking into account the properties and their

values. A node 𝑛 is detected structural equal in two event patterns 𝑒𝑝′,𝑒𝑝′′ if

𝑛 ∈ 𝑉 (𝑒𝑝′) and 𝑛 ∈ 𝑉 (𝑒𝑝′′). Further the node can be interchanged between these

event patterns without changing the semantics of the pattern. That means that

the situation that has been covered by the event pattern stays as it was previously

defined. In the example in Figure 6.7 the modelling context 𝑚𝑐 is subsumed by

Figure 6.7: Example: Overlapping on the the property level. In this case the overlap-
ping is a subsumption.

the event pattern 𝑒𝑝. In this example the event type ET:Person has a property

node name with ”John Doe” as its value.

6.4.2 Best practice event pattern detection

Taking into account the graph relationships between two event patterns we intro-

duce in this section the concept of best practice event patterns. The concept is

derived from the frequent item set discovery which has been used in data mining

to discover association rules (see [AgIS93]).

Definition: Best Practice Event Pattern An event pattern sub-

graph, 𝑠𝑔, is detected as a best practice event pattern, denoted 𝑏𝑝𝑝, if

the quotient of the number of event patterns containing |𝑠𝑔| and the

total number of event patterns in an event pattern repository 𝑒𝑝𝑠 is

greater than a given threshold 𝜏 , |𝑠𝑔|
|𝑒𝑝𝑠| ≥ 𝜏 .

A subgraph 𝑠𝑔 is detected as 𝑏𝑝𝑝 if the quotient is greater or equal than the

threshold 𝜏 . The value of 𝜏 indicates the minimum coverage percentage of the 𝑏𝑝𝑝

in an event pattern repository. The value of 𝜏 is application domain dependent and
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needs to be defined by the pattern engineer. In our experiments we set the value

of 𝜏 to 0.3 or 30%. Another pragmatic approach in order to determine a subgraph

as a best practice pattern is to identify every subgraph that is shared at least by

two event patterns. The presentation of the best practice results to the pattern

engineer is based on a ranking which represents the number of event patterns that

includes the same subgraph. This approach would enable the pattern engineer to

find also relevant best practice patterns that are rather rare and wouldn’t pass

the threshold value 𝜏 .

A best practice is defined3 as a technique or methodology that, through experience

and research, has proven to reliably lead to a desired result. In software develop-

ment, a best practice is a well-defined method that contributes to a successful step

in product development. The set of 𝑏𝑝𝑝 is provided to the pattern engineer at any

time during the pattern modelling process. Since the detection of 𝑏𝑝𝑝 is based on

the event pattern relationships presented in the previous section, the detection of

𝑏𝑝𝑝 is also based on the same relationship types.

Figure 6.8: Best practice pattern on the instance level.

Assumed we set 𝜏 = 0.3(= 30%), and calculate the bpp for the patterns shown in

Figure 6.8. In this example the pattern repository has 8 event patterns in total.

The result is that the event pattern SE:ENTITY(ET:PERSON, ES:TWITTER)

is detected as the most frequent subgraph on the instance level. This is because
|𝑠𝑔|
|𝑒𝑝𝑠| ≥ 𝜏 , |3|

|8| ≥ 0.3. The 𝑏𝑝𝑝 is a subgraph of 𝑒𝑝′, 𝑒𝑝′′ and 𝑒𝑝′′′. The detection of a

𝑏𝑝𝑝 on the type and property level is done in a similar way.

The role of a 𝑏𝑝𝑝 is to help the pattern engineer to select the most used pattern

fragments from a pattern, configure and extend the pattern according to the busi-

ness situation needs instead of modelling the pattern from scratch. That might

help increase the speed of the pattern definition process since the best practice pat-

terns are forming a library of most relevant pattern for a given domain. The usage

3http://searchsoftwarequality.techtarget.com/definition/best-practice
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of 𝑏𝑝𝑝 can also support the building of pattern templates for different application

domains like described in [Kulk11].

6.5 Event pattern similarity

The goal of the similarity is to find event patterns that are conceptually close but

not identical to the modelling context. In computer science similarity is used as an

integral part of information processing such as information retrieval or information

integration.

The objective of the similarity calculation is to derive a function 𝑠𝑖𝑚(𝑒𝑝′, 𝑒𝑝′′),

𝑒𝑝′, 𝑒𝑝′′ ∈ 𝑒𝑝𝑠 that measures the distance between the event patterns 𝑒𝑝′ and 𝑒𝑝′′

(see also [HZAW+06]).

Definition: Event Pattern Similarity Given a set of event patterns

EP, the similarity of two event patterns is defined as a numerical value

between 0 and 1. 𝑠𝑖𝑚(𝑒𝑝′, 𝑒𝑝′′) : 𝐸𝑃 × 𝐸𝑃 → [0, 1]; 𝑒𝑝′, 𝑒𝑝′′ ∈ 𝐸𝑃 .

The similarity function maps event patterns into the unit interval [0, 1]. The value

1 occurs only if 𝑒𝑝′ = 𝑒𝑝′′, which is an exact match. In case that two event patterns

have nothing in common the value 0 is derived. The similarity between two event

patterns is symmetric, meaning 𝑠𝑖𝑚(𝑒𝑝′, 𝑒𝑝′′) = 𝑠𝑖𝑚(𝑒𝑝′′, 𝑒𝑝′).

To derive a more general similarity framework for event patterns we combine multi-

ple similarity metrics in a single aggregation similarity function. This aggregation

function is derived from [MaZa02] and [EHHS04].

𝑠𝑖𝑚𝐴(𝑒𝑝
′, 𝑒𝑝′′) :=

∑︀𝑛
𝑖=1 𝜔𝑖*𝑠𝑖𝑚𝑖(𝑒𝑝

′,𝑒𝑝′′)

𝑛

The importance of each similarity metric is defined through 𝜔 (interval [0, 1]).

The default value of 𝜔 is 1, which indicates that the similarity metrics are equally

important for the overall similarity value. 𝜔 provides the flexibility of adjusting

the importance of each similarity calculation depending on the application domain

where some similarity metrics are considered to be more important. 𝑛 indicates

the number of similarity measures that have been used. The similarity calcula-

tion of event patterns is derived from the similarity research in the semantic web

where similarity is classified into taxonomy-based similarity, feature-based simila-

rity and similarity based on information-content (see [ZJHN+07]). In this thesis

we adapt the taxonomy-based and feature-based similarity described in [AnBK03]

and [MSSS+01] to the event patterns to detect similarity between event patterns.
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6.5.1 Taxonomy-based event pattern similarity

The taxonomy-based approaches calculate the similarity of terms by evaluating

their position within a given taxonomy. They take into account that closely related

terms are grouped together while distantly related terms are spaced more widely

apart.

The meta model described in Chapter 5 has the benefit that the event pattern

concepts are modelled as a tree structure. Since the concepts 𝐸𝑇,𝐸𝑆,𝐸𝑂 and

𝑃𝐷 are organized as a hierarchy, more general concepts should be located closer

to the root of the hierarchy, while more specific ones are located closer to the

leaves. A simple metric for terms arranged as nodes in a directed acyclic graph

such as a hierarchy would be the minimal distance between the two term nodes so

that similarity between two terms could be defined as the length of the shortest

path between the two nodes (see also [PPPC07]). Alternatively, the similarity

measure presented by [WuPa94] finds the most specific common concept that

subsumes both considered concepts. On the other hand, [MSSS+01] introduced the

upwards cotopy (UC) to measure the similarity considering their super concepts

and relative places in a common hierarchy.

The taxonomy-based similarity, 𝑠𝑖𝑚𝑡𝑥, calculates the similarity for events and

event operators used in a modelling context 𝑚𝑐. The nearer the concepts are in

the hierarchy the more similar they are. In order to derive the overall similarity

between the modelling context 𝑚𝑐 and event pattern 𝑒𝑝 we calculate the upwards

cotopy for event type, event source and event operator like described below. The

upwards cotopy is the underlying measure to compute the semantic distance in a

concept hierarchy.

Event type similarity: 𝑠𝑖𝑚𝑡𝑥𝑒𝑡(𝑚𝑐, 𝑒𝑝) = 𝐻𝑒𝑡(𝑚𝑐)∩𝐻𝑒𝑡(𝑒𝑝)
𝐻𝑒𝑡(𝑚𝑐)∪𝐻𝑒𝑡(𝑒𝑝)

4 where𝐻𝑒𝑡(𝑚𝑐)∩𝐻𝑒𝑡(𝑒𝑝)

is the number of event type concepts (from the event type hierarchy) the event

types of the modelling context 𝑚𝑐 and the event pattern 𝑒𝑝 have in common and

𝐻𝑒𝑡(𝑚𝑐) ∩𝐻𝑒𝑡(𝑒𝑝) is the number of distinct concepts (from the event type hierar-

chy) 𝑚𝑐 and 𝑒𝑝 have in total.

Event source similarity: 𝑠𝑖𝑚𝑡𝑥𝑒𝑠(𝑚𝑐, 𝑒𝑝) = 𝐻𝑒𝑠(𝑚𝑐)∩𝐻𝑒𝑠(𝑒𝑝)
𝐻𝑒𝑠(𝑚𝑐)∪𝐻𝑒𝑠(𝑒𝑝)

where 𝐻𝑒𝑠(𝑚𝑐) ∩
𝐻𝑒𝑠(𝑒𝑝) is the number of event source concepts (from the event source hierarchy)

the event sources of the modelling context 𝑚𝑐 and the event pattern 𝑒𝑝 have in

common and 𝐻𝑒𝑠(𝑚𝑐) ∩ 𝐻𝑒𝑠(𝑒𝑝) is the number of distinct event source concepts

(from the event source hierarchy) 𝑚𝑐 and 𝑒𝑝 have in total.

Event operator similarity: 𝑠𝑖𝑚𝑡𝑥𝑒𝑜(𝑚𝑐, 𝑒𝑝) = 𝐻𝑒𝑜(𝑚𝑐)∩𝐻𝑒𝑜(𝑒𝑝)
𝐻𝑒𝑜(𝑚𝑐)∪𝐻𝑒𝑜(𝑒𝑝)

where 𝐻𝑒𝑜(𝑚𝑐) ∩
𝐻𝑒𝑜(𝑒𝑝) is the number of event operator concepts (from the event operator hier-

archy) the event sources of the modelling context 𝑚𝑐 and the event pattern 𝑒𝑝

have in common and 𝐻𝑒𝑜(𝑚𝑐) ∩𝐻𝑒𝑜(𝑒𝑝) is the number of distinct event operator

concepts (from the event operator hierarchy) 𝑚𝑐 and 𝑒𝑝 have in total.

4∩ denotes the intersection and ∪ denotes the set union.
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Taking the similarity of 𝐸𝑇,𝐸𝑆 and 𝐸𝑂 into account we define the taxonomy

based similarity 𝑠𝑖𝑚𝑡𝑥 as 𝑠𝑖𝑚𝑡𝑥(𝑚𝑐, 𝑒𝑝) = 1
3
· (𝑠𝑖𝑚𝑡𝑥𝑒𝑡 + 𝑠𝑖𝑚𝑡𝑥𝑒𝑠 + 𝑠𝑖𝑚𝑡𝑥𝑒𝑜).

Example

The modelling context 𝑚𝑐 in Figure 6.9 contains an event pattern where the

cooccurrence (AND) of two event entities (SE:Entity) of type person (ET:Person)

occurs in Twitter (ES:Twitter).

Figure 6.9: Example: Modelling context as input for the taxonomy-based similarity.

Since the taxonomy-based similarity is based on the concept taxonomy of the

concepts used in an event pattern, Figure 6.10 displays a more specific hierarchy

for 𝐻𝑒𝑡, 𝐻𝑒𝑠 and 𝐻𝑒𝑜.

Figure 6.10: Example: Taxonomy of event type, event source and event operator
(𝐻𝑒𝑡, 𝐻𝑒𝑠, 𝐻𝑒𝑜).

Figure 6.11 displays the event pattern 𝑒𝑝 that will be used for the similarity

calculation. The pattern describes a business situation where an event entity with

event type 𝐸𝑇 : 𝑃𝑒𝑟𝑠𝑜𝑛 occurs before (SEQ) another event entity with event type

𝐸𝑇 : 𝐶𝑜𝑚𝑝𝑎𝑛𝑦. Both events has the same event source 𝐸𝑆 : 𝑇𝑤𝑖𝑡𝑡𝑒𝑟.

The set of concepts for 𝑚𝑐 and 𝑒𝑝 including the root concepts 𝐸𝑇,𝐸𝑆 and 𝐸𝑂

are:

∙ 𝐻𝑒𝑡(𝑚𝑐) = {𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑇}
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Figure 6.11: Event pattern, 𝑒𝑝 ∈ 𝐸𝑃𝑆, which will be used for the taxonomy-based
similarity calculation.

∙ 𝐻𝑒𝑠(𝑚𝑐) = {𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑀𝑖𝑐𝑟𝑜𝐵𝑙𝑜𝑔, 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝐸𝑆}

∙ 𝐻𝑒𝑜(𝑚𝑐) = {𝐴𝑁𝐷,𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐸𝑂}

∙ 𝐻𝑒𝑡(𝑒𝑝) = {𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑇,𝐶𝑜𝑚𝑝𝑎𝑛𝑦}

∙ 𝐻𝑒𝑠(𝑒𝑝) = {𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑀𝑖𝑐𝑟𝑜𝐵𝑙𝑜𝑔, 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝐸𝑆}

∙ 𝐻𝑒𝑜(𝑒𝑝) = {𝑆𝐸𝑄, 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐸𝑂}

The result of the taxonomy-based similarity 𝑠𝑖𝑚𝑡𝑥(𝑚𝑐, 𝑒𝑝) = 1
3
· (2

3
+ 4

4
+ 1

6
) =

1
3
· 1, 83 = 0, 61 = 61%. Since the concepts of an event pattern includes also

properties we present as next the feature-based similarity for event patterns.

6.5.2 Feature-based event pattern similarity

Feature-based similarity assumes that each event type, event source and event

operator have arbitrary properties called features. The more common features

they have the more similar they are. While common features tend to increase the

similarity, non-common features decrease the similarity. Based on [HiXH96] we

calculate the similarity through the quotient of shared features and all features of

𝐸𝑇,𝐸𝑆 and 𝐸𝑂.

Given a modelling context 𝑚𝑐 and an event pattern 𝑒𝑝 ∈ 𝐸𝑃𝑆 the feature-based

similarity is defined as:

𝑠𝑖𝑚𝑓𝑡(𝑚𝑐, 𝑒𝑝) = 1
3
· (𝑓𝑡𝑒𝑡𝑚𝑐∩𝑓𝑡𝑒𝑡𝑒𝑝

𝑓𝑡𝑒𝑡𝑚𝑐∪𝑓𝑡𝑒𝑡𝑒𝑝
+

𝑓𝑡𝑒𝑠𝑚𝑐∩𝑓𝑡𝑒𝑠𝑒𝑝
𝑓𝑡𝑒𝑠𝑚𝑐∪𝑓𝑡𝑒𝑠𝑒𝑝

+
𝑓𝑡𝑒𝑜𝑚𝑐∩𝑓𝑡𝑒𝑜𝑒𝑝
𝑓𝑡𝑒𝑜𝑚𝑐∪𝑓𝑡𝑒𝑜𝑒𝑝

)

The function 𝑠𝑖𝑚𝑓𝑡 delivers the intersection of features in proportion to the union

of all features for 𝑚𝑐 and 𝑒𝑝.

Example Taking the modelling context 𝑚𝑐 and the event pattern 𝑒𝑝 from the
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previous example the result of the feature-based similarity is calculated as shown

below.

The set of features for 𝑚𝑐 and 𝑒𝑝 are:

∙ 𝑓𝑡𝑒𝑡(𝑚𝑐) = {𝑝𝑒𝑟𝑠𝑜𝑛𝑁𝑎𝑚𝑒}

∙ 𝑓𝑡𝑒𝑠(𝑚𝑐) = {}

∙ 𝑓𝑡𝑒𝑜(𝑚𝑐) = {}

∙ 𝑓𝑡𝑒𝑡(𝑒𝑝) = {𝑝𝑒𝑟𝑠𝑜𝑛𝑁𝑎𝑚𝑒, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦𝑁𝑎𝑚𝑒}

∙ 𝑓𝑡𝑒𝑠(𝑒𝑝) = {}

∙ 𝑓𝑡𝑒𝑜(𝑒𝑝) = {}

The result of the feature-based similarity 𝑠𝑖𝑚𝑓𝑡(𝑚𝑐, 𝑒𝑝) = 1
3
·(1

2
+0+0) = 0, 166 =

16, 6%

The aggregated similarity, where 𝜔 = 1 and 𝑛 = 2, is: 𝑠𝑖𝑚𝐴(𝑚𝑐, 𝑒𝑝) = 0,166+0,61
2

=

0, 388 = 38, 8%.

6.6 Implementation

In this section we describe the implementation highlights of the pattern modelling

in PANTEON. We present the functionalities provided by PANTEON in order to

support the pattern engineer during the pattern generation phase.

6.6.1 User interface

As described below the user interface for pattern modelling (see Figure 6.12) con-

sists of 7 sections.

1. Event Panel Provides the list of all available events modelled with the

PANTEON event editor (described in Section 5.4) that serve as input for

new event patterns.

2. Complex Event Panel Provides the list of complex events for a new event

pattern.

3. Operator Panel Provides the list of available event operators that serve

as connectors within an event pattern.



80 6. Relationships between Event Patterns

Figure 6.12: The pattern modelling environment in PANTEON.
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4. Main Panel Provides the design capabilities (the connection of events with

event operators and their proper cofiguration) that are needed to design

new event patterns. Events, event operators and complex events that are

provided in the list are represented as a graphical node within this section

like shown in Figure 6.13.

5. Relation Panel Provides the list of pattern relations described in Sec-

tion 6.4 and Section 6.5. The results of the relation detection are displayed

as selectable pattern icons.

6. Pattern Control Panel Provides functionalities like the deployment, auto

connection of events with an event operator. Additionaly the panel provides

the information that is needed in order to define the pattern domain, the

status (active, deactive) of the pattern, the priority (high, medium and low).

Figure 6.13 displays the graphical elements that will be used to create a new event

pattern. The event node contains a list of event type and event source attributes

(for example Person Name). For each attribute one can specify an attribute value.

In Figure 6.13 a list of names is provided in order to define a tweet event where

a person is mentioned. The event operator node provides a list of operator type

Figure 6.13: Graphical presentation of events, event operators and complex events.

properties (for example count or timeWindow). Constraints on the input events

can be defined by using the where properties. For example one can specify that

all input events should have one attribute value in common. This constraints can

be defined based on the name or data type of the attribute. The complex event

node provides a list of properties where custom selected properties from the input

events can be added.
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6.6.2 User interaction

The process of getting the list of relevant event pattern consists of four steps like

displayed in Figure 6.14.

First the pattern engineer needs to model an initial event pattern which represents

the modelling context of the user (1) (see also Figure 6.15) . In Figure 6.14 the

modelling context consists of the PersonEvent. Once the initial event pattern is

defined the next step is to select one of the relationships presented in the previous

section and the proper event pattern relationship level. These relationships are:

∙ Subsumption on the node type level

∙ Subsumption on the instance type level

∙ Subsumption on the property instance level

∙ Overlapping on the node type level

∙ Overlapping on the instance type level

∙ Overlapping on the property instance level

∙ Best practice pattern on the node type level

∙ Best practice pattern on the instance type level

∙ Best practice pattern on the property instance level

∙ Similar event pattern

In Figure 6.14 the selected relationship is the subpattern relationship on the prop-

erty instance level. The results of the relationship detection are presented as

pattern icons in view number 2 (see also Figure 6.16). From the displayed icons

one can directly see how many events and event operators are used. This is done

through the different colors used for different nodes (events are displayed as blue

rectangles, operator as orange rectangles, and complex events as brigth-red react-

angles). The details of an event pattern are presented in view number 3 (see also

Figure 6.17). In view number 3 the pattern engineer is able to select the pattern

as an additional input to the initial modelling context. View number 4 (see also

Figure 6.18) displays the extension of the initial event pattern taking additional

nodes from the pattern of interest. This process is iterative meaning that the

event pattern in view number 4 can again be the modelling context in order to

receive additional event patterns.
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Figure 6.14: 1 - Definition of the modelling context and the relationship selection, 2 -
Presentation of the results as pattern icons, 3 - Selection of the relevant
event pattern from the result list and 4 - Extension of the initial modelling
context with additional event nodes.
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Figure 6.15: Definition of the modelling context and the relationship selection.
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Figure 6.16: Presentation of the results as pattern icons.
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Figure 6.17: Selection of the relevant event pattern from the result list.
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Figure 6.18: Extension of the initial modelling context with additional event nodes.
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6.6.3 Architecture

Figure 6.19 displays the architecture of pattern relation detection. The compo-

nents are:

∙ PANTEON UI The PANTEON user interface was described in the previ-

ous section.

∙ Pattern Handler The pattern handler is requested by the PANTEON

UI in order to execute the desired operation which are: storage, deletion,

modification or relation detection.

∙ Graph Handler The graph handler converts the event pattern object,

which is generated by the PANTEON UI into the graph object which is

stored in the Graph DB. Operations like the deletion and modification of

existing graph objects are also part of the graph handler. Additionaly it pro-

vides an interface in order to traverse the pattern graphs for the relationship

detection.

∙ Relation Detector The relation detector encapsulates the graph traversing

logic for the subsumption and overlapping relations.

∙ UI Objects This is a MySQL database where the graphical event pattern

objects are serialized. The purpose of this database is to store all event

patterns including the id, name, time of creation, the description, the pattern

domain and the serialized graphical event pattern object.

∙ Graph Db In order to detect the graph-based pattern relationships the

graphically generated patterns are tranformed into a graph object. The

graph objects are managed in a Neo4J NOSQL graph database5. According

to Neo Technology Neo4J offers performance improvements on the order of

1000x or more compared to relational databases.

6.7 Related work

Obweger et al. [OSSR10] present an approach in order to detect the similarity

between single events and similarity between event sequences. In contrast to our

approach the similarity calculation presented in [OSSR10] does not consider the

similarity calculation based on the hierarchy of events. This is because of the

underlying event model that does not provide any hierarchies. They calculate the

similarity of events based on the attribute-level of event types. The attribute-level

5Neo4j is an open source project available in a GPLv3 Community edition, with Advanced
and Enterprise editions available under both the AGPLv3 and commercial licenses, supported
by Neo Technology
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Figure 6.19: The architecture of pattern relation detection.

similarity contains lookup tables, where similarities between terms are predefined,

similarity metrics for the basic data types like boolean, numeric types, strings

and the time stamp of the event. In order to calculate the similarity between

event sequences they extend the attribute-level similarity by taking into account

the absolute and relative temporal structure of events. The temporal structure

is based on the time spans between successive events. They do not consider the

similarity of event types, event sources and event operators. While our goal is

to support the pattern engineer during the pattern modelling process, the goal of

[OSSR10] is to search for event occurrences in the past in order to detect future

similar situations that has been occurred previously. This focus is again on the

run-time matching process.

To the author’s best knowledge there is no further approach that deals with the

event pattern relationship detection.

6.8 Summary

In this chapter we described several event pattern relationships and described sev-

eral event pattern relationship levels that enable the pattern engineer to adjust

the recommendation of event patterns. We started with the graph-based event

pattern relationships to cover overlapping and subpattern relations. We continued

with the description of the best practice event patterns which are frequent sub-

graphs. The role of best practice event patterns is to create a library of patterns

that are relevant for a domain of interest. The overall goal is to provide as much

as possible event pattern knowledge to pattern engineer. For cases where event

patterns could be relevant that are structurally not equal we presented a similarity

approach based on the taxonomy of event types, sources and operators and their

properties.
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7
Event Pattern Evolution

In this chapter we describe the event pattern evolution which is based on the

monitoring of event patterns during their execution in the CEP engine. The

evolution makes use of event pattern execution data to learn a usual execution

behaviour of an event pattern and to identify execution outlier continuously based

on ongoing pattern execution data. Once a pattern is identified as a candidate for

evolution the pattern engineer is provided with additional information to adapt

the identified event pattern.

7.1 Introduction

The quick adaptation of enterprises to their dynamic environment is an important

factor for gaining competitive advantage in highly dynamic market environments.

In order to ensure the competitive advantage each single enterprise information

system must provide the capability of evolution and adaptation. Since CEP sys-

tems are part of the overall enterprise information system event pattern evolution

should be a central pillar of the adaptable CEP system.

Increasing the efficiency and effectiveness of nowadays business are the main driver

of using event processing [Luck12],[EtNi10]. Especially the declarative definition

of event patterns supports the effectiveness of CEP system [ChSc09]. However,

the premise is having a set of tools and methods for modelling, deploying and

especially identifying the event pattern candidates that need to be updated and

supporting their adaptation to the new business conditions.
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In information systems it is essential that the adaptation to the changing business

conditions is done in smaller, easier and more frequent steps [FaOP92]. For event

patterns this could lead to the minimization of the discrepancy between the busi-

ness situation that needs to be detected and the definition of the event pattern

that is defined to detect the situation. Further, in information systems the bigger

the discrepancy between what is needed and what is available results into undesir-

able situation in which a user starts disliking the system [FaOP92]. As for event

patterns the discrepancy could have negative effects on the situational awareness

of the enterprise.

In the next section we describe the notion of transparent event pattern matching

which is the prerequisite for our event pattern evolution approach described in

this chapter.

7.2 Transparent event pattern matching

Contemporary CEP engines have the task to trigger a complex event as soon as

an event pattern has been matched against received events. The detection of a

complex event is either true or false. This kind of matching is like a black-box

since the only interfaces that are provided are the interface for receiving events

and the interface for receiving event patterns to detect a relevant situation. How-

ever, we know from the active database research that the monitoring of rules is

worthwhile in order to optimize them [DiGG95]. In the domain of logic program-

ming [EiBP91] described the concept of transparent Prolog machine in order to

animate the execution and debugging of Prolog programs. Applying the concept

of transparency to the pattern execution is promising not only for providing event

pattern execution data for the evolution of patterns but also for a more proactive

event pattern matching (see [EnEt11]). In a transparent CEP engine we need to

differentiate between the full matching and the partial matching. We call the full

matching of an event pattern pattern triggering and the partial matching pattern

execution.

Definition: Pattern triggering An event pattern is triggered when-

ever all pattern elements are evaluated true such that the complex

event can be produced as a result.

In order to trigger an event pattern the events must be occurred according to the

event pattern. As described earlier, the event pattern definition contains events

and the event operators. For example the pattern A SEQ B is triggered if and

only if B is followed by A. Pattern triggering is that what is supported by existing

CEP engines. We call these engines black-box or non-transparent CEP engines.

Definition: Pattern execution An event pattern is executed when-

ever an event pattern subgraph of the event pattern is evaluated true.
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As described in Chapter 6 the minimal length of the subgraph is 1, which indicates

the occurrence of an event that is part of the event pattern. We call this kind of

pattern execution the white-box or transparent approach. It is what should be

supported by the next generation CEP engines. Figure 7.1 displays the difference

between the pattern execution (white-box) and pattern triggering (black-box).

Figure 7.1: Black-box vs. white-box event pattern matching.

The figure displays an event pattern 𝑒𝑝 := (𝐴 𝑆𝐸𝑄 𝐵) in the black-box and

white-box mode whereby in both cases the event pattern 𝑒𝑝 describes a situation

where two events 𝐴 and 𝐵 are connected by a sequence operator 𝑆𝐸𝑄. In the

black-box CEP engine the pattern is triggered, indicated by 𝑡𝑟(𝑒𝑝), after the event

B is received and matched. There is no additional information about the number

of events that have been consumed between the first and last occurrence of event

pattern relevant events. In the white-box approach the pattern is also triggered

true after the event B is received and matched. However, the difference to the

black-box CEP engine is that the white-box CEP engine delivers also additional

execution data about the consumption of events 𝐴 and 𝐵 before the event pattern

is triggered, indicated by 𝑒𝑥(𝐴) and 𝑒𝑥(𝐵). As a result the white-box CEP engine

registers that the event A has been occurred three times and the event 𝐵 one time

before the event pattern is triggered. The question is how to extend the existing

black-box CEP engines to handle these additional execution data.

A naive and straightforward approach is to extend the event pattern graph in the

CEP engine with additional analyzer. In order to support our evolution approach

we extended the event pattern graph of the open source CEP engine Esper12 to

deliver the execution data [SeLS11]. We know that such an extension might have

negative effects on the throughput of the engine. However, the performance issues

of the CEP engine are not in the scope of this thesis and therefore neglected. The

additional nodes that we add to the event pattern graph in Esper sends the status

of the event pattern tree to an external component. The deployment of an event

pattern in the engine is not influenced by the extension of the internal pattern

graph. The Esper CEP engine represents an event pattern as an Abstract Syntax

Tree. It is a connected graph without cycles.

1http://http://esper.codehaus.org/
2We used Esper since it enables the monitoring of the pattern graphs through the implemen-

tation of new plug-ins. The ease of implementation was reason why we selected Esper.
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Figure 7.2 displays the extension of the regular event pattern graph with additional

analyzer nodes. The analyzer nodes are added between two nodes and have the

task to inform the evolution component about the state change within the event

pattern graph, ex(A), ex(B), tr(ep). Our general strategy to extend the regular

event pattern graph with additional analyzer was to extend each node in the

regular pattern with an analyzer node. This would allow us to receive every state

change in an event pattern graph.

Figure 7.2: Extension of the event pattern graph with additional analyzer nodes in
order to receive pattern execution data.

The extension of the CEP engine might be different for different CEP engines.

We do not proclaim the approach above as the gold standard. Its purpose is to

deliver the data we need for the execution-driven evolution.

7.3 The process of execution-driven evolution

The evolution of event patterns consists, as described in Figure 4.2 in Chapter 4,

of four tasks which are Analyse, Compare, Suggest and Adapt. While Analyse has

the objective to build for every event pattern execution statistics from received

execution data, Compare deals with the outlier detection in pattern execution

taking into account historical execution statistics. Suggest aims at spotting the

problem for event patterns that are candidates for evolution. Adapt includes the

user feedback for an evolution candidate in order to adapt the event pattern if

necessary. Figure 7.3 describes the process of execution-driven pattern evolution.

We call the execution data that is send by the CEP engine as pattern session.

Definition: Pattern session A pattern session is a tuple containing

the information about an event that has been consumed by the CEP

engine and is part of an event pattern matching, 𝑃𝑆 := (𝑝𝑖𝑑, 𝑡𝑠, 𝑒𝑖𝑑),

where 𝑝𝑖𝑑 is the id of the pattern that has been part of the matching,

𝑡𝑠 is the timestamp of the matching and 𝑒𝑖𝑑 is the id of the event node

that has been evaluated true.

A pattern session contains the detailed execution data of an event pattern. Fig-

ure 7.4 displays an example of a pattern session. The example shown in Figure 7.4
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Figure 7.3: Overview of the evolution approach.

Figure 7.4: Example: Pattern session.

contains an event pattern with 𝑝𝑖𝑑 = 1 and two events 𝐴 and 𝐵 with id 𝑒1 and

𝑒2. The pattern sessions are sent at time points 𝑡1, 𝑡2, 𝑡3 and 𝑡4 whereby at 𝑡4

the event pattern is triggered, 𝑡𝑟(1, 𝑡4).

Every pattern session that has been received by the evolution component will be

used to learn the reference execution statistics and for the outlier detection. The

process continues if and only if reference statistics for a given event pattern exists.

In this case possible event pattern execution outlier are detected which will be

described in detail in Subsection 7.3.1, Subsection 7.3.2 and Section 7.4. The

outlier detection is enriched with additional information about events that caused

the unusual behaviour. Finally the possible candidates for evolution are presented

to the pattern engineer. In the next sections we continue with describing these

steps in more detail.

7.3.1 Constructing the pattern execution statistics

As described in the previous section the detection of evolution candidates is based

on the historical execution statistics. In order to build the execution statistics we
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introduce the monitoring period 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑 consisting of a start time 𝑚𝑡𝑠𝑡𝑎𝑟𝑡 and the

end time 𝑚𝑡𝑒𝑛𝑑. Both 𝑚𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑚𝑡𝑒𝑛𝑑 are timestamps which span the duration

of the monitoring period. The monitoring period is used for building the initial

reference statistics which will be used for the outlier detection. The monitoring

period is also the time period for which the outlier detection is done. Examples

for 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑 can be seconds, minutes, hours, days, weeks, months, years .

Independently from which 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑 is selected, the monitoring period is repetitive

and composes the Monitoring Window. For each 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑 a pattern frequency

object 𝑓 is created. The pattern frequency object, 𝑓 := {𝑓𝑡𝑟, 𝑓𝑒𝑥}, is composed

of the total number of pattern triggering 𝑓𝑡𝑟 and the total number of pattern

executions 𝑓𝑒𝑥 that includes also the total number of each executed event. 𝑓𝑡𝑟 and

𝑓𝑒𝑥 are constructed from the received pattern sessions.

Definition: Monitoring window The Monitoring Window, denoted

as 𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑, is composed of a set of pattern frequency objects 𝑓 for

the monitoring periods 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑1 , 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑2 , ..., 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑𝑛 .

The𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 is a sliding count window with the size 𝑛. The example in Figure 7.5

displays a𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 with 𝑛 = 5 and 6 pattern frequency objects 𝑓1−𝑓6. Whenever

the size of the monitoring window is reached and a new frequency object is received

the oldest element of the 𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 is deleted from the monitoring window.

Figure 7.5: Example: Monitoring window.

Based on the frequency objects in 𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 the next step is to build the reference

statistics for each event pattern. Once the reference statistic for a pattern is

generated new received event pattern frequency objects is compared to generated

event pattern reference statistic. As next we describe these steps in more detail.
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7.3.2 Pattern frequency distribution and frequency clustering

The pattern frequency object 𝑓 of an event pattern contains the frequency of the

pattern triggering and the frequency of pattern execution within a given monitor-

ing period.

Figure 7.6 shows an exemplified frequency distribution for the event pattern 𝑒𝑝1 :=

𝐴 𝐴𝑁𝐷 𝐵 and its event elements 𝐴 and 𝐵.

Figure 7.6: Example: Evolution time window.

In this exemplified frequency distribution the monitoring period 𝑚𝑡𝑝𝑒𝑟𝑖𝑜𝑑 is one

hour and starts at 1pm. The length 𝑛 of the monitoring window 𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 is 6.

The last monitoring period ends at 8pm. The figure displays the 𝑓 , 𝑓𝑡𝑟 and 𝑓𝑒𝑥.

The pattern execution 𝑓𝑒𝑥 contains the frequency of the event consumption 𝐴 and

𝐵.

Based on the frequency distribution for a given monitoring windows 𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑 the

goal is to derive a triggering cluster for usual patterns. The triggering cluster is

bounded by the maximum and minimum number of pattern triggering for a given

monitoring period.

In order to detect an outlier in the pattern triggering we apply the technique of

clustering known from the data mining [ZhRL97]. A cluster is a collection of data

objects that are similar to one another and treated collectively as a group. To

determine whether the frequency of pattern triggering is an outlier we applied

the Cluster Feature(CF) from the BIRCH-Algorithm [ZhRL97]. BIRCH is an

unsupervised data mining algorithm for performing hierarchical clustering. It has
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the advantage that it incrementally and dynamically clusters an incoming data

point.

CF allows to calculate measures directly, like the cluster centroid, the radius and

the diameter. The cluster centroid is the euclidian center, the radius the average

distance from member points to centroid and the diameter is the average pair-wise

distance within a cluster. Given 𝑁 d-dimensional data points in a cluster: ⃗{𝑥𝑖}
where 𝑖 = 1, 2, . . . , 𝑁 , the centroid 𝑥0, radius 𝑅 and diameter 𝐷 are defined as:

𝑥0 =
∑︀𝑁

𝑖=1 𝑥𝑖

𝑁

𝑅 =

√︁∑︀𝑁
𝑖=1(𝑥𝑖−𝑥0)2

𝑁

𝐷 =

√︂∑︀𝑁
𝑖=1

∑︀𝑁
𝑗=1(𝑥𝑖−𝑥𝑗)2

𝑁(𝑁−1)

The purpose of using 𝑥0, 𝑅 and 𝐷 is to check if the pattern triggering frequency

is an outlier. Figure 7.7 displays an example for a pattern frequency distribution

cluster with the frequency values 𝑥𝑖 = {10, 15, 17, 18, 23, 26} and 𝑁 = 6.

Figure 7.7: Pattern frequency cluster with centroid and radius.

The centroid 𝑥0 of the cluster is 18.17 the radius 𝑅 is 5.21 and the diameter

𝐷 is 5.66. The radius 𝑅 which implies that the usual pattern frequency cluster

(𝑈𝑃𝐶) is in the range of 𝑈𝑃𝐶 = 𝑥0 ± 𝑅 = [12.96, 23.38]. The minimal and

maximal 𝑈𝑃𝐶 values denote the minimal cluster border 𝑏𝑚𝑖𝑛 and the maximal

cluster border 𝑏𝑚𝑎𝑥.

The cluster is recalculated whenever a new frequency object enters the monitoring

window like described in Figure 7.5. Taking into account these reference statistics

we continue with the actual detection of the evolution candidates.
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7.4 Detection of evolution candidates

As described in the previous section 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 mark the minimum and maxi-

mum value of the cluster. These borders are non-negative numbers with 0 as the

lowest value for 𝑏𝑚𝑖𝑛.

All elements that are not within this cluster are marked as outliers. As we can

see from the example in Figure 7.7 the 𝑥0, 𝑅 and 𝐷 were calculated based on

two values, 10 and 26, which are now outside the cluster. In this case the pattern

frequency distribution would be an outlier and hence the according event pattern

will be marked as a candidate for evolution. However, this would be a false

negative since the original calculation was based on these two values 10 and 26.

To offer a more flexible unusual execution detection we extend pattern frequency

clustering from Figure 7.7 by introducing two additional strategies.

The first strategy is called the extended usual pattern cluster 𝐸𝑈𝑃𝐶 which aims

at being more robust than the 𝑈𝑃𝐶. The 𝐸𝑈𝑃𝐶 is based on the diameter 𝐷 of

the cluster which is the value of the average pair-wise distance within a cluster.

The idea behind the 𝐸𝑈𝑃𝐶 is to apply the average pair-wise distance to the

minimum and maximum cluster boarders in order to cover also the frequency

values that have been used for the initial cluster border calculation.

Figure 7.8: Extended ususal pattern frequency cluster.

The value range for the 𝐸𝑈𝑃𝐶 is 𝑈𝑃𝐶 ±𝐷. Figure 7.8 displays the 𝑈𝑃𝐶 from

figure Figure 7.7 where the value of the minimum and maximum cluster borders

are extended. The new borders 𝑒𝑏𝑚𝑖𝑛 and 𝑒𝑏𝑚𝑎𝑥 are calculated by adding or

subtracting the value 𝐷 to/from the old cluster borders as shown below:

𝑒𝑏𝑚𝑖𝑛 = 𝑏𝑚𝑖𝑛 −𝐷

𝑒𝑏𝑚𝑎𝑥 = 𝑏𝑚𝑎𝑥 +𝐷;
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𝑒𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑖𝑛 are non-negative numbers with 0 as lowest value for 𝑒𝑏𝑚𝑖𝑛. If

𝑒𝑏𝑚𝑖𝑛 = 𝑏𝑚𝑖𝑛 − 𝐷 < 0 then 𝑒𝑏𝑚𝑖𝑛 will be set to 0. That implies that a non-

occurrence of a pattern triggering within a monitoring period is possible.

Every frequency distribution that is outside these borders is marked as unusual.

In Figure 7.8 the 𝐸𝑈𝑃𝐶 cluster contains all pattern triggering frequencies.

The next strategy is the most robust one and is called the absolute usual pattern

cluster 𝐴𝑈𝑃𝐶. This strategy was inspired from the Chebyshev’s inequality theo-

rem [Knut97]. Chebyshev’s theorem says that in any probability distribution that

at least 1
1/𝐾2 (𝐾 is any positive real number) of data from a sample must fall

within 𝐾 standard deviations from the mean. For the event pattern execution

it means that there will be pattern executions that are usual but are marked as

unusual which would be a false positive. In order to reduce the number of these

false positives, we select the lowest pattern triggering frequency 𝑓𝑡𝑟𝑙𝑜𝑤 and highest

pattern triggering frequency 𝑓𝑡𝑟ℎ𝑖𝑔ℎ and calculate the absolute borders 𝑎𝑏𝑚𝑖𝑛 and

𝑎𝑏𝑚𝑎𝑥 by adding or subtracting 𝐷 to the highest and lowest frequencies.

𝑎𝑏𝑚𝑖𝑛 = 𝑓𝑡𝑟𝑙𝑜𝑤 −𝐷;

𝑎𝑏𝑚𝑎𝑥 = 𝑓𝑡𝑟ℎ𝑖𝑔ℎ +𝐷;

The assumption is that the pair-wise average distance of each element in the cluster

can be applied to the lowest and highest frequency values in order to determine

the absolute range for the pattern execution.

Figure 7.9: Absolute usual pattern frequency cluster.

In Figure 7.9 the minimum and maximum borders are determined by adding the

diameter value 5.66 to 26 and subtracting the diameter value from 10 respectively.

The new absolute cluster borders are 4.34 and 31.66.

Every pattern that has a pattern triggering frequency 𝑓𝑡𝑟 outside this cluster

is marked as candidate for evolution. The distance to the borders determines

the evolution score which will be used for the ranking of the detected evolution

candidates.
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𝑒𝑣𝑜𝑠𝑐𝑜𝑟𝑒(𝑒𝑝) =

{︂
𝑓𝑡𝑟𝑒𝑝 − 𝑎𝑏𝑚𝑎𝑥 if 𝑓𝑡𝑟𝑒𝑝 > 𝑎𝑏𝑚𝑎𝑥

𝑎𝑏𝑚𝑖𝑛 − 𝑓𝑡𝑟𝑒𝑝 if 𝑓𝑡𝑟𝑒𝑝 < 𝑎𝑏𝑚𝑖𝑛

Figure 7.10: Unusual pattern execution detection.

In Figure 7.10 a new frequency distribution is received with the value 37. This

value is outside of 𝑎𝑏𝑚𝑖𝑛 and 𝑎𝑏𝑚𝑎𝑥 and hence the pattern is marked unusual. The

evolution value is 𝑒𝑣𝑜𝑠𝑐𝑜𝑟𝑒(𝑒𝑝) = 37−𝑎𝑏𝑚𝑎𝑥 = 5.34. The higher the evolution score

the higher the event pattern will be ranked when the list of evolution candidates

is presented to the pattern engineer.

7.4.1 Preparation for the evolution

The outlier detection of the pattern triggering frequency itself does not provide any

information why this pattern is marked as an outlier. Hence, to adapt an event

pattern candidate we provide additional context information about the pattern

frequency deviation. This procedure is part of the evolution preparation which

consists of the identification of the events that caused the unusual behaviour

followed by the generation of evolution suggestions.

The reasons for an event pattern frequency being an outlier can be:

∙ Human errors The pattern definition is not well suited to the business

situation and therefore there might be an inconsistent triggering behaviour.

For example the pattern can be too general meaning that it is triggered

to many times under certain situations. On the other hand it can be too

specific meaning it executes very rare under certain circumstances.

∙ Source errors The event source can be defective meaning that it is not

reliable in sending the events that are needed for the business situation

detection.
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∙ Changes in the environment The system environment where the CEP is

in use has been changed and the pattern is in this new context not applicable

without changes.

In order to prepare the evolution phase it is essential to provide the information

about the events that might lead to these unusual categories. During the prepa-

ration phase the single event execution on the pattern level is analysed in order

to localize possible erroneous events.

We classify the event pattern frequency outlier detection into the following cate-

gories:

∙ More Execution An event pattern is triggered more than the maximum

border of the cluster.

∙ Less Execution An event pattern is triggered less than the minimum border

for the cluster.

In order to identify possible defective events we compare the current execution

value of an event 𝑓𝑒𝑥𝐸
with the arithmetic average of the same event for the

monitoring window𝑚𝑡𝑤𝑝𝑒𝑟𝑖𝑜𝑑. The arithmetic average indicates a central tendency

where a set of numbers cluster around some values. The arithmetic average for

each event is calculated as 𝐴𝐸 = 1
𝑛

∑︀
𝑖 𝑓𝑒𝑥𝐸𝑖

where 𝑛 is the size of the monitoring

window and 𝑓𝑒𝑥𝐸𝑖
the frequency of the event 𝐸 in the monitoring period 𝑖.

For each event we determine the absolute execution difference by subtracting the

arithmetic average 𝐴𝐸 from the current absolute event occurrence 𝑓𝑒𝑥𝐸
.

𝑎𝑏𝑠𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 = 𝑓𝑒𝑥𝐸
− 𝐴𝐸

The result of 𝑎𝑏𝑠𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 indicates different types of event occurrences with differ-

ent types of evolution preparation strategies.

𝑇𝑦𝑝𝑒 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒

⎧⎨⎩
𝑙𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 if 𝑎𝑏𝑠𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 < 0

𝑒𝑞𝑢𝑎𝑙 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 if 𝑎𝑏𝑠𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 = 0

𝑚𝑜𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 if 𝑎𝑏𝑠𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 > 0

Based on the type of event occurrence there can be different reasons for the devi-

ation in the event pattern triggering:

∙ Event source The event source of the event might be defective since it

produces less or more events.

∙ Property value The property values are not set correctly.

∙ Pattern invalidity The whole pattern itself is not valid.
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A more automatic approach would be to consider other event patterns that have

the same event type and event source and check whether these patterns are marked

as candidate for evolution or not. This information can be used by the pattern

engineer in order to adapt the event pattern by considering related event patterns

that are not marked as candidate for evolution.

Further we define the generality and speciality of an event pattern through the

quotient of the number of the pattern triggering 𝑓𝑡𝑟 and the number of pattern

execution 𝑓𝑒𝑥. Assuming that 𝑓𝑒𝑥 ̸= 0 for a given monitoring period the quotient

𝑄𝑔𝑠 can be defined as follows:

𝑄𝑔𝑠 =
𝑓𝑡𝑟
𝑓𝑒𝑥

The value for the quotient is in the range of 0 and 1. The result can identify

situations where a pattern is defined as being too specific meaning that the value

of the quotient is towards 0. In an opposite way a pattern could be modelled

too general meaning that the value of the quotient is towards 1. The quotient is

showed to the pattern engineer in cases where the pattern is being detected as

an outlier. The overall goal is to present the pattern engineer several processing

related data to adapt a possible outlier.

7.4.2 Evolution adaptation

The evolution adaptation is the phase where the human-machine cooperation takes

place. In our case the evolution detection aims at finding outliers in the event

pattern triggering enriched with additional information presented to the pattern

engineer. The role of the pattern engineer is, taking into account this information,

to decide whether the pattern is a candidate for evolution or not.

The evolution adaptation is a process triggered by the evolution candidate detec-

tion. The process is described in Figure 7.11. When an event pattern is identified

as a candidate for evolution the pattern engineer is prompted to adapt the event

pattern. The pattern engineer decides whether the evolution candidates are valid

for updates or not. If the evolution candidate is valid for update the next step is to

adapt the event pattern taking into account the statistics of the event pattern. If

it is not valid for update the pattern engineer can take into account the statistics

details and derive the knowledge for a new event pattern if needed.

The event pattern definition is, as described in Chapter 4, part of the Generation

phase. The more interesting question is what happens if the pattern is subject to

change and what are the steps that will lead to the adaptation. Below we describe

different tasks in order to adapt the event pattern.

∙ Property modification Meaning that a property value of the event will

be changed to a new value since the old value is out-dated.
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Figure 7.11: The process of evolution adaptation.

∙ Event modification Meaning that the event node will be replaced by an-

other event or deleted.

∙ Event operator modification Meaning that the event operator configu-

ration was not adequate and will be changed.

∙ Pattern modification Meaning that the pattern structure will be changed

by removing of events and event operators or by adding of new events and

event operators. The result is a new event pattern.

7.5 Implementation

The results of the evolution detection are presented to the pattern engineer in a

graphical way. Figure 7.12 displays the main window where the pattern engineer

can search for the pattern candidates that are marked as a candidate for evolution.

The displayed UI consists of the following two section:

∙ Search The search part is provided in order to find an event pattern that has

been created by the pattern engineer. Beside the regular search option there

is also the possiblity to search event patterns that are marked as candidate

for evolution.
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Figure 7.12: Overview of the detected evolution candidates with highlighting (red
bordered event) the events that might lead to the detection.
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∙ Search results The search results are presented as pattern icons. These

icons can be clicked for further information about the event pattern. Events

that might be problematic are highlighted in red. This view is presented in

Figure 7.13.

The detailed view contains the original event pattern as it was developed by the

pattern engineer with highlighting (red bordered event) the event parts that might

be problematic since the absolute event occurrence deviates from the historical

event execution.

Figure 7.13: Detailed view of the detected evolution candidate.

Additional information about the detection can be delivered by clicking the An-

alytics button. Figure 7.14 displays the information that is shown for an event

pattern that is detected as an outlier. In this case the number of the last event

pattern execution was 223 which outside of the border 12 (minimum) and 23 (max-

imum). Further the execution of both events (Event ID 0 and 1) is displayed. The

quotient between the current execution and triggering is 0.57 which indicates that

neither there is a zero triggering nor a triggering of the event pattern whenever

an event is received. Additional statistics from the previous monitoring periods

are also displayed.

If the pattern is detected correctly as an outleir, the pattern engineer can click

on the Edit button and change the original event pattern. Otherwise the pattern

can be ignored (Ignore) since it was detected as a false positive. In this case the

pattern engineer can decide whether this pattern should be excluded from the

observation for a certain time period or totally.
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Figure 7.14: Additional evolution information in order to adapt the event pattern.

7.6 Related Work

Turchin et al. [TuGW09] presented an approach in order to update event pat-

tern rules automatically. The approach consists of the rule parameter prediction

and the rule parameter correction. For the rule parameter prediction they used

an unsupervised learning approach without any expert feedback. The parameter

update is supervised which means that the expert feedback is utilized. The ap-

proach is based on a predictor-corrector type estimator that estimates the state

of a dynamic system from a series of noisy events. They use the Discrete Kalman

Filter [Kalm60]. In our approach the focus is to support the pattern engineer

and enable a semi-automatic event pattern evolution. We consider the overall

pattern structure and not only the attributes of the events in order to support the

evolution. Compared to [TuGW09] we are able to detect events that caused the

unusual event pattern execution. Further our approach is a semi-automatic one

meaning that the details of the evolution detection are presented to the pattern

engineer who determine further actions.

Vijayakumar and Plale [ViPl07] address the problem of missing events in sensor

and instrument streams. They propose a model based on the Kalman filter. The

filter is used for modeling the input sensor streams as a time series and to predict

the missing events. Wasserkrug et al. [WGET08] tackles the problem of event

materialization under uncertainty. They used Bayesian network for constructing

the probability space of an event history. The Monte Carlo sampling algorithm

is used to approximate the materialized event probabilities. The topic of han-

dling uncertainty in CEP was also considered by [KhBS08]. Georgakopoulos et al.

[GBNC07] presents the Video Event Awareness Workbench video surveillance sys-
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tem that detects automatically complex events in near real-time. Their approach

is designed in order to gather information in a proactive way to deal with missing

or incomplete event information. Compared to our approach these approaches are

used in order to identify events that are relevant but missing. The user-centric

evolution support is not the main focus of these approaches. They neither pro-

vide information about an unusual execution behaviour nor present the pattern

engineer what should be done in cases where events do not occur.

7.7 Summary

In this chapter we described the process of event pattern evolution based on exe-

cution and triggering data. We introduced the transparent CEP engine as the

prerequisite for this approach and described a way how to extend existing CEP

engines towards a transparent processing style. The presented evolution approach

detects pattern triggering outliers based on historical data. Event patterns that

are detected as candidate for evolution are enriched with additional event statistics

in order to support the adaptation of the event pattern by the pattern engineer.

Finally we presented the evolution environment within the PANTEON system

that detects and presents the evolution candidates for the pattern engineer and

supports the pattern engineer in adapting the event patterns.



Part III

Finale





8
Evaluation

In this chapter we present the evaluation of the PANTEON tool that is based

on the event pattern life cycle methodology presented in Chapter 4 and includes

the implementation for the approaches presented in Chapter 5, Chapter 6 and

Chapter 7.

Since CEP is a rather young research area, to our best knowledge, there exists

no relevant data sets for evaluation purposes. Neither for event patterns nor for

event data there exist data sets which we could use for event pattern modelling

and simulation purposes. Second the evaluation of management issues in CEP

systems is rather unclear. As described in earlier chapters the main focus of

nowadays CEP is on the matching process. Often in CEP systems performance

evaluations are conducted to figure out the throughput and the number of active

event patterns in the engine and so forth.

For the final evaluation we conducted a task-driven usability evaluation to find out

the perceived usability, the task completion time and the failure rate. Based on

these results we derived the efficiency and the effectiveness of a pattern engineer

using the PANTEON tool.

8.1 Usability evaluation

The ISO 9241 defines the usability as ”the extent to which a product can be

used by specified users to achieve specified goals with effectiveness, efficiency and
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satisfaction in a specified context of use”. Jakob Nielsen introduces a framework1

where usability is a part of ”usefulness” which is composed of:

∙ Learnability How easy is it for users to accomplish basic tasks the first

time they encounter the system?

∙ Efficiency Once users have learned the system, how quickly can they per-

form tasks?

∙ Memorability When users return to the system after a period of not using

it, how easily can they reestablish proficiency?

∙ Errors How many errors do users make, how severe are these errors and

how easily can they recover from the errors?

∙ Satisfaction How pleasant is it to use the system?

The usability aims at increasing the productivity of the user which is also one of the

main goal of the PANTEON tool. A usability study has subjective and objective

results. While subjective results are derived from the opinion and attitude scales

of the participants, the objective results are based on the task completion time

[Lewi95].

In order to have subjective results there exists several approaches. The user in-

terface rating form2 for interactive multimedia aims at rating the interface of a

new program or one under development. The rating form contains several dimen-

sions like Ease of Use, Navigation or Overall Functionality. Beside that there are

Figure 8.1: Data based on t-tests of random sub-samples of various sizes. Twenty sub-
samples were taken at each sample size for each site and each questionnaire.
What is plotted is the percentage of those 20 tests that yielded the same
conclusion as the analysis of the full dataset [TuSt04].

1http://www.useit.com/alertbox/20030825.html
2http://it.coe.uga.edu/ treeves/edit8350/UIRF.htm
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also questionnaires like the Computer System Usability Questionnaire (CSUQ)

[Lewi95], System Usability Scale (SUS) [Broo96], Questionnaire for User Interface

Satisfaction (QUIS) [ChDN88] and Microsoft’s Product Reaction Card (MPRC)

[BeMi02] in order to assess the perceived usability [TuSt04].

Based on the evaluation of these questionnaires in [TuSt04] we decided to use SUS

for the usability evaluation. The main advantage of SUS is that it provides less

questions and hence is best suited for a fast and continuous opinion capturing.

Tullis and Stetsen [TuSt04] found out that SUS has a higher accuracy with an

increasing sample size than the other questionnaires. Figure 8.1 displays the

percentage of the correct conclusions using 20 sub-samples of the full dataset.

The questionnaire SUS reaches an asymptotes of 90-100%.

8.1.1 System Usability Scale (SUS)

The SUS is a low-cost scale that allows the global assessments of systems usability.

SUS is a ten-item scale (see Figure 8.2) providing a subjective assessment of

usability based on a 5 point Likert scale [Broo96].

Figure 8.2: SUS questionnaire [Broo96].

The SUS is used after the participant evaluated the system. It is done before any

debriefing and discussion take place. If a participant is not able to respond to
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a particular item the centre point of the scale should be marked. The result of

SUS is a single number representing the overall usability of the system. It has

a range between 0 to 100. Each item has a score range from 1 to 5 (sometimes

also 0 to 4). For items 1,3,5,7 and 9 the score is the scale position provided by

the participants minus 1. For items 2,4,6,8 and 10 the score is 5 minus the scale

position provided by the participants. The sum of the scores is multiplied by 2.5

to obtain the overall SU score (see also [Broo96]).

8.2 Evaluation in the context of the ALERT project

On the way to the final version of the PANTEON tool we continuously evaluated

the system in order to derive insights and to continuously improve the system and

to adjust the underlying methodology and methods. Beside the evaluation in the

context of the ALERT project we presented in [SeSS10b] an evaluation covering

the subjective and objective evaluation of the modelling and refinement aspects.

Before describing the final evaluation, below we briefly describe the evaluation in

the context of the ALERT project.

In the ALERT project the PANTEON tool is used in order to create interaction

patterns. An interaction pattern is the description of a situation which should be

detected and reported in real-time. The interaction patterns are materialized as

event patterns. In order to evaluate the PANTEON tool we set up a questionnaire

based on the User Interface Rating Form (UIRF)3. The UIRF covers multiple user

interface dimensions and used for programs that are still under development. The

main goal of this evaluation was to find out the perceived usability of the sys-

tem by business users. The PANTEON tool that has been subject to evaluation

provided the pattern modelling, deployment and search functionality. The evalu-

ation didn’t include the event definition, pattern relationship detection and event

pattern evolution. The evaluation includes two parameters for testing:

∙ Usability - measures the quality of the user interface.

∙ Functionality - does the program do what you want it to do.

The test was done with 13 participants from the open source software develop-

ment domain. These participants were rather business users than IT experts.

For each of the tests described below (taken from, User Interface Rating Form,

http://it.coe.uga.edu/ treeves/edit8350/UIRF.html ), we define several evaluation

questions (see appendix A1). Briefly, these questions covered the following dimen-

sions:

∙ Ease of Use The Ease of Use is the parameter which evaluates the facility

with which the user can use the software and interact with it. The important

3http://it.coe.uga.edu/ treeves/edit8350/UIRF.htm
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criteria here is the user interface which is closely related to the ease of use and

usually defines the user satisfaction with the specific program to some level.

This parameter evaluation ranges from the perception that the program is

very difficult to use to one that is perceived as being very easy to use.

∙ Navigation Navigation is the parameter which defines whether the user can

easily move through the content of the program in an intentional manner.

One important aspect of navigation is orientation which actually defines the

degree to which the user feels oriented within the program i.e. knows in

which functionality of the program he/she is working and how to exit or

go to another part of the program. Navigation can be evaluated from the

perception that a program is difficult to navigate to one that is perceived as

being easy to navigate.

∙ Cognitive Load The user interface is the mechanism that allows perceptual,

conceptual, and physical contacts with the interactive program. In terms of

cognitive load, the user interface can seem unmanageable (i.e., confusing)

at one end of the continuum and easily manageable (i.e., intuitive) at the

other end.

∙ Mapping Mapping is the parameter which refers to the ability of the pro-

gram to track and graphically lead the user through the program. A detailed

mapping system provides help for the user in understanding the degree of

their interaction with the software and insight into the parts of the software

which were used, and those that have not been used. Interactive programs

fall in a continuum of containing no mapping function to an appropriately

powerful mapping function.

∙ Screen Design Screen Design is a particularly complex dimension of inter-

active programs that can easily be broken down into many sub-dimensions

related to text, icons, graphics, colors and other visual aspects of interactive

programs. The first problem with it is that the screen design principles did

not keep the pace with the rapidly changing nature of interactive technol-

ogy. Secondly, creative designers may sometimes intentionally violate screen

design principles for effect or to otherwise focus the user’s attention. Screen

design is a dimension ranging from substantial violations of principles of

screen design to general adherence to principles of screen design.

∙ Knowledge Space Compatibility Knowledge space is a parameter which

refers to the network of concepts and relationships that compose the mental

schema a user possesses about a given phenomena, topic or process. When a

novice user initiates a search for information in an interactive program, the

interface should be powerful enough so that the user perceives the resulting

information as compatible with his or her current knowledge space. If the

information received is not perceived as relevant to the search strategies used

by the user, the system will be perceived as incompatible.
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∙ Information Presentation The Information Presentation dimension is

concerned with whether the information contained in the knowledge space of

an interactive program is presented in an understandable form. This is very

important because regardless of the elegance of the user interface design, the

program is useless if the information it is intended for is incomprehensible

to the user. Information presentation is defined as a dimension ranging from

unclear to clear.

∙ Aesthetics The Aesthetics parameter refers to the artistic aspects of inter-

active programs in the sense of possessing beauty or elegance. The aesthetics

dimension of the user interface of a program is defined as ranging from dis-

pleasing to pleasing.

Figure 8.3 displays some of the results for the user interface evaluation. The whole

results can be found in the appendix A2. Most of the participants evaluated the

system rather positive. The usability of interaction pattern modelling, search and

deployment was perceived mostly very easy.

Figure 8.3: Selected results regarding the user interface.
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The general conclusion of the evaluation study was that the purpose of PANTEON

is mostly clear to the participants. It satisfies their expectations, particularly the

need for a simpler method for new pattern definition and pattern retrieval. Fur-

thermore, the analysis shows that the functionality of PANTEON is considered

mostly as being useful. PANTEON speeds up their work and helps in resolving

their problems regarding the definition of more complex patterns for real-time

notifications about relevant situations. It is generally easy to use, to find every

option, to define interaction patterns, to search for interaction patterns and to

update patterns. Beside that the main insight for us was that offering the PAN-

TEON tool to business users without introducing the basic CEP concepts might

cause problems during the usage of the tool.

From the ALERT project we learned that a collaborative event pattern develop-

ment by a bigger team could be very relevant. Taking this recommendation into

account we extended the system with a user management functionality. However,

we consider the collaborative event pattern development as an important feature

that could be an extension of the PANTEON tool in the future.

8.3 Final evaluation based on SUS

In the final evaluation our goal was to get statistically significant numbers about

the perceived usability and functionality of the full PANTEON tool and how well

the participants perform by using different settings for the same task. According

to Jakob Nielsen, 20 test users are needed in order to get statistically significant

numbers4.

8.3.1 Evaluation methodology

For the final evaluation we created the following three evaluation settings.

∙ S1 - Event pattern management with the full version of PAN-

TEON The full version of PANTEON provides the refinement of event

pattern through the event pattern relationship detection, the detection of

best practice patterns, the search functionality and the evolution support.

∙ S2 - Event pattern management with the simple version of PAN-

TEON The simple version of PANTEON provided only the modelling and

search functionality. Neither the refinement nor the evolution of event pat-

terns were supported.

∙ S3 - Event pattern management with the Esper CEP engine The

Esper CEP engine is one of the most popular CEP engines. It provides a

4http://www.useit.com/alertbox/20000319.html
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SQL-like language in order to define event patterns. For our evaluation we

used the version written in the programming language Java. Esper does not

provide any kind of user interface. An event pattern must be written as part

of the programming code.

While S1 was the primary system of evaluation S2 and S3 were set up in order

to put the evaluation results in a more descriptive context. However, our initial

evaluation goal to compare the full PANTEON tool with a comparable system

could not be realized due to the lack of similar tools with similar functionalities.

For the evaluation we acquired 20 participants including students, researchers and

business users with computer science background. We selected our participants

according to their knowledge about CEP and the Esper CEP engine. The partic-

ipants were categorized as member of one of the following groups:

∙ Experts The participants of this group were familiar with CEP systems.

All of them had experiences with the Esper CEP engine and had already

defined several event patterns in Esper. All of them used the Esper engine

in research projects. Hence, they were familiar very well with the concept of

event patterns. Four participants had previous experience with PANTEON.

The experience was only related to the manual event pattern generation

using PANTEON without any system support. In this group we had 8

participants.

∙ Novices The participants of this group were not familiar with CEP systems.

None of them have ever experienced with a CEP system or defined an event

pattern. They have never experienced with the PANTEON tool and the

underlying event pattern life cycle methodology. In this group we had 12

participants.

Having these three settings and these two groups our goal was to compare the

task completion time, the perceived usability in the different settings and the

failure rate per task. Since the effort to learn the Esper CEP engine is rather

high we assigned to S3 only the Experts. They were familiar with the engine

and its underlying event pattern language and syntax. For each setting we set up

an Esper CEP engine for the event pattern matching. We further implemented

a simulation component that was continuously generating the events that were

needed in the different tasks in order to simulate the triggering and execution of

the event pattern.

The evaluation in each setting started with an introductory part where we ex-

plained the procedure of the evaluation. The introduction was different for each

setting:

∙ Introduction - S1 For S1 we made an introduction to the full version of the

PANTEON tool and presented the different elements of it. The participants
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were asked to define several event patterns in order to become familiar with

the system. Additionally we gave them the possibility to play around with

the system and to experience with the pattern relation detection and the

evolution functionality of the PANTEON tool.

∙ Introduction - S2 For S2 we made an introduction to the simplest version

of the PANTEON tool and presented the different elements of it. The par-

ticipants were asked to play around with the system and to define several

event patterns and to search for event patterns in order to become familiar

with the system.

∙ Introduction - S3 Since we assigned S3 only to participants who were

familiar with CEP and the Esper engine, we printed out the Esper docu-

mentation and gave them this documentation to prepare themselves for the

evaluation. We explained the event operators that will be relevant for the

evaluation. The documentation, either online or the print version, could be

used during the evaluation.

8.3.2 Scenario definition

Since there doesn’t exist any data set we selected the US presidential election

2012 as our evaluation scenario. As an event source we used the Twitter data

stream where Tweets are delivered continuously. Twitter has been recognized

as a good source for event data. For our evaluation we were more interested in

the entity patterns in the Twitter data stream. In order to detect entities each

Tweet is sent through the OpenCalais5 service. The OpenCalais service provides

semantic information for text input. It detects beside other the following entities;

City, Company, Country, Facility, Movie, Organization, Person, PoliticalEvent,

TVShow. We parsed the RDF data which is delivered by the OpenCalais service

and created for each instance an event. Each event has a property called Name.

The value of this property is set with the value of the delivered instance.

Task 1 - Event pattern modelling The aim of task 1 was to model several event

patterns. The events that were needed for the modelling of the event patterns

have been defined beforehand. In PANTEON we used the event modeller from

Chapter 5 in order to define the events. For Esper we defined the relevant events

in Java objects format which is supported by Esper.

∙ T1.1 Define an event pattern where a person event with the value equal

to ”Barack Obama” cooccurs with a country event with the value equal to

”Iraq”.

5http://www.opencalais.com
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∙ T1.2 Define an event pattern where a person event with the value equal to

”Barack Obama” or ”Mitt Romney” cooccurs with person event with value

equal to ”George W. Bush”.

∙ T1.3 Define an event pattern where a person event with the value equal

to ”Mitt Romney” cooccurs with a country event with the value equals to

”Afghanistan” without the occurrence of a person event where the value is

equal to ”Barack Obama”.

∙ T1.4 Define an event pattern where a person event with the value equal

to ”Angela Merkel” is followed by a country event with the value equal to

country ”Greece”and a person event with the value equal to ”Hilary Clinton”

within 60 seconds.

Task 2 - Event pattern knowledge reuse The aim of this task was to access exist-

ing event pattern knowledge and extend event patterns that have already been

modelled by us. In order to do that the participants were asked to search for

these patterns, and to extend these patterns with new events, event operators or

property values. The pattern repository of PANTEON included 50 event patterns.

The same event patterns have been modelled for S3 where Esper. For Esper we

modelled the event patterns in one single file that could be used by the participants

who were assigned to Esper to complete the tasks.

∙ T2.1 Find the event pattern that includes at least two country events and

two person events. All events are connected by the conjunction operator

(AND).

∙ T2.2 Find the event pattern that includes two sequence operators (SEQ)

that are connected again by a disjunction operator (OR). Please replace the

OR operator by an AND operator.

∙ T2.3 Find the event pattern that extends the pattern which has been defined

in T1.1. Extend this pattern again by connecting an arbitrary organization

event to the conjunction operator (OR).

∙ T2.4 Find the most used event pattern fragment containing the person

”Barack Obama” and extend this fragment with an additional country event

by setting the country value to ”Germany”.

Task 3 - Event pattern adaptation The aim of task 3 was to detect event patterns

that are subject to evolution. For this task we set up an Esper CEP engine and

fed the engine with the events from Twitter. The events were simulated based

on previous entity occurrences in Twitter. For every participant we restarted the

system and initialized our evolution component. The monitoring period was set

to one minute and the length of the monitoring window was set to the value of 5.
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Further we created an output panel where the participants were able to see the

results of the matching in simple text format.

We simulated the following situations where the participants should analyse whe-

ther there are event patterns that are not working correctly and if yes what might

cause this malfunction. We simulated the following scenarios:

∙ T3.1 Zero triggering In this scenario we selected T1.1 and generated

only the person events. In this case the pattern has been executed but not

triggered. The participants should identify that the country event was not

produced any more and therefore update the pattern definition if necessary.

∙ T3.2 Doubled triggering In this scenario we selected the T1.4 and gen-

erated two times more events than usual. As a result the pattern may lead

to an information overload and therefore could be a candidate to evolution.

The participants should identify this pattern and explain the reason for this

pattern execution behaviour.

∙ T3.3 General pattern definition In this scenario we selected an event

pattern where the person ”Barack Obama”cooccurs with the country ”Amer-

ica”. During the simulation the quotient of this pattern was 1 which means

that both events occur always together. This indicates that the pattern

definition is too general and hence suboptimal.

8.3.3 Task completion procedure

Figure 8.4 displays the procedure that has been applied to all participants during

the evaluation. The process has been applied to all three settings. After each

task we applied the SUS questionnaire. The evaluation was concluded by a final

discussion in order to receive additional feedback and suggestions.

Figure 8.4: The process of the final evaluation.

During the evaluation we measured also the task completion time. The task

completion time started whenever the participants started solving the task in

PANTEON until they gave us a signal that they are finished. The task completion

time was measured in seconds. The participants started with setting S2 and

continued with S1. As for the setting S3 we set up a single evaluation where only

the 8 participants who were familiar with the Esper CEP engine were involved

and was done after S1.
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8.3.4 Evaluation results

We had in total 120 filled in SUS questionnaires for S1 and S2. For S3 we had 24

filled in SUS questionnaires.

Figure 8.5 displays the SU score for the three settings and the three tasks. It is

noticeable that the SU score descreases for all settings with increasing complexity

of the tasks. The maximum possible SU score is 100. The higher the value is

the better the participants evaluated the usability of the system. Remarkable

Figure 8.5: SU results for the three settings and tasks.

is that for S3 the SU score is far below the SU score for S1 and S2. Further

it decreases to the value of 10 for task 3. As for S2 the value decreases from

68 over 52 to 36. In order to explain this discrepancy let us consider the task

completion time and the failure rate for the different settings and tasks. Table 8.1

displays the minimum, maximum and the average task completion time for task

1. Although the task 1 is rather simple to solve there is a clear tendency towards

S1 S2 S3
Min 6,5 min 7 min 7,5 min
Max 8,5 min 10,5 min 25 min
Avg 7,5 min 8,5 min 18 min

Table 8.1: Task completion time for task 1.

the full PANTEON version where the participants received suggestions based on

the current modelling context and the pattern relationship detection presented

in Chapter 6. In S1 the participants are 12% faster than the participants of S2.

Compared to S3 the users of the full PANTEON version are more than two times

faster. Of course being faster does not mean that they were effective. For that

reason we calculated the failure rate of the participants. Task 1 was completed

by all participants of each setting. Table 8.2 displays the total and the average

failure rate of the three settings. The total failure rate is the number of all failures

done by the participants. The average value is calculated by dividing the total

number through the number of participants.
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S1 S2 S3
Failure Total 15 19 17
Failure Avg 0,75 0,95 2,13

Table 8.2: Failure rate for task 1 (The average value is calculated by dividing the
number of total failures by the number of participants (S1 and S2 20 par-
ticipants)(S3 8 participants)).

In order to have a correct event pattern both the pattern schema and value defi-

nition should be correct. While the schema definition considers whether the right

number of events is connected to the event operator, the value definition considers

whether the values of the events or event operators are set correctly. We didn’t

consider misspellings in value definition as an error. Every missing event to oper-

ator or operator to operator connection and wrong value definition increases the

failure rate by 1.

Our observation was that with less tool support the failure rate is increasing too.

Especially with Esper where no tool support was available the participants are not

aware of existing problems with the event pattern definition. The difference in

failure rate between S1 and S2 arises from the issue that in S1 the participants were

able to detect pattern relationships during the modelling of new event patterns.

This suggestion leads especially in the T1.4 to less failures. T1.4 was considered

as the most complex event pattern and the participants in S1 made use of the

pattern relationship detection and hence made less failures.

Table 8.3 displays the minimum, maximum and the average task completion time

for task 2. These values show that the full PANTEON version where the user are

able to detect event pattern relationships on different levels is faster in solving the

defined tasks. The search and reuse of event pattern is in S1 almost 2 times faster

than in S2 and about 4 times faster than in S3.

S1 S2 S3
Min 4 min 5,5 min 14 min
Max 9 min 17 min 37 min
Avg 6,5 min 11 min 24,5 min

Table 8.3: Task completion time for task 2.

Further let us consider the task completion time for task 2 in the context of the

failure rate. While in S1 the average failure done by each participant is 1.1 while

in S2 is 1.7 and in S3 2.88. The increasing task completion time and the higher

failure rate of S2 and S3 are manifested also in the SU score shown in Figure 8.5.

The value decreases for S2 from 68 to 52 while for S3 the value decreases from

36 to 24. The main discrepancy between the different settings is more visible in

the last task which was about the detection of pattern candidates that might be

adapted. Although this scenario was a simulation based on real Twitter data it

displays the role of tool support for the event pattern management evolution.
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S1 S2 S3
Failure Total 22 34 23
Failure Avg 1.1 1.7 2.88

Table 8.4: Failure rate for task 2 (the average value is calculated by dividing the num-
ber of total failures by the number of participants (S1 and S2 20 partici-
pants)(S3 8 participants)).

However, the increasing task completion time and the higher failure rate of S2 and

S3 are manifested also in the SU score shown in Figure 8.5. The value decreases

for S2 from 68 to 52 while for S3 the value decreases from 36 to 24. The main

discrepancy between the different settings is more visible in the last task which

was about the detection of pattern candidates that might be adapted. Although

this scenario was a simulation based on real Twitter data it displays the role of

tool support for the event pattern management evolution.

Table 8.5 displays the minimum, maximum and the average task completion time

for task 3. Task 3 was the most complex and difficult one. The SU score for S2 in

task 3 was about 36 while for the S3 the value was about 10. In contrast to that

for S1 the SU score was 71.

S1 S2 S3
Min 9 min 25 28
Max 17 min 41 44
Avg 13 min 35 37

Table 8.5: Task completion time for task 3.

While in S1 19 participants solved all the tasks this number was for S2 and S3 3.

The participants in S2 and S3 who solved the tasks were the same persons who

were very well familiar with CEP systems and had solid knowledge about CEP

and event patterns.

8.3.5 Discussion of the results

The goal of the evaluation was to find out to what degree the PANTEON tool

can increase the efficiency and effectiveness of a pattern engineer. Additionally

the final evaluation delivered quantitative results 67 regarding the usability and

functionality of the full PANTEON tool. In order to compare these results we

set up two additional settings. In one setting we deactivated all supportive func-

tionalities of the PANTEON tool while in the other we offered the plain CEP

engine Esper without any additional support. Because of the complexity of the

Esper language we only assigned participants to this setting who have already

experienced with Esper.

6http://www.nngroup.com/articles/quantitative-studies-how-many-users/
7According to Nielsen, 20 users offers a reasonably tight confidence interval
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The main observation we made is that with increasing complexity of the tasks

there is a higher demand for additional tool support. Especially in task 2 and

task 3 this was observable. Participants who were using the full PANTEON tool

performed in every task better, were faster in completing the tasks and made less

failures.

As a result we can conclude that, independently whether the participants are

familiar with CEP or not, the full PANTEON tool eases the pattern definition,

enables a proper access to the underlying pattern knowledge and supports the

reuse of existing pattern knowledge. The capability of the PANTEON tool to

observe the pattern execution statistics and suggest event pattern improvement

is of paramount importance and is very well accepted. We can say that using

the PANTEON tool the pattern engineer is not only efficient but also effective

in managing event patterns. However, using the full PANTEON tool does not

avoid failures as shown in the previous sections. In this case additional validation

and verification mechanisms are needed in order to reduce further the number of

incorrectly defined patterns.

8.4 Performance tests

In this section we describe some performance aspects of the PANTEON tool.

Although the performance issue is not the main focus of this thesis, we think that

presenting some performance results could help to understand the limitations of

the PANTEON tool.

The results presented in this section were carried out on a Lenovo ThinkPad T410s

with Intel i5CPU M560, 2.67 GHz, 8GB of RAM running Windows 7 Professional

64 bit.

8.4.1 Modelling expressivity

We conducted several iterations to find out the maximum number of events and

event operators that could be handled by the PANTEON tool. An event pattern

with 100 events and more than 10 event operators is handled without any problems.

The storage and the search (about 3500 patterns in pattern repository) needs less

than 0,5 second. Using more than 120 nodes in the graphical interface leads to

Google Web Toolkit(GWT) Developer Plugin8 problems in the browser. However,

having event patterns with such a number of events and event operators might

be rather unrealistic. At least no scenario is known to us which has this amount

of events and event operators. The usual way would be to split such complex

scenarios into smaller pattern definition and to combine them to larger event

8The plugin is needed in order to run a GWT Programm in a web browser see also
https://developers.google.com/web-toolkit/gettingstarted.
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patterns. Figure 8.6 displays an event pattern with 100 events and multiple event

operators. Such complex event patterns could have negative effects on the usability

of the system used for modelling purposes.

Figure 8.6: An example of an event patten including 20 nodes.

8.4.2 Event pattern relation detection

For this test we implemented a pattern generator program that randomly gener-

ated event patterns. The event pattern generator was able to generate 500 distinct

events with 10 properties. As for event operators the generator created patterns

that include the sequence, disjunction, conjunction and negation operator with

count and time window. The most expressive event pattern included 43 event

operators and 800 events. The less expressive event pattern included two events

and one event operator.

Event pattern storage in Neo4J We conducted an evaluation in order to measure the

average time in order to store an event pattern as a graph in the Neo4J database.

The storage of the event pattern consists of converting the output of PANTEON

into a Neo4J acceptable format and the actual storage itself. Table 8.6 displays

the result of the event pattern storage. For the most expressive event pattern (P2)

the storage of the event pattern as a graph in Neo4J is around 600ms.

Relationship detection In order to detect an event pattern relationship we took as

the modelling context one instance of the event pattern P2 from Table 8.6. The

Neo4J database was feeded with randomly generated event patterns based on the

pattern expressivity presented in Table 8.6. The size in Table 8.7 refers to the
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Expressivity (P=Event pattern) Time in miliseconds
P1: E = 2, EO = 1, SEP = 20 390 ms
P2: E = 40, EO = 5, SEP = 20 450 ms
P2: E = 800, EO = 43, SEP = 20 600 ms

Table 8.6: Transformation and storage of event patterns (P1,P2,P3) in Neo4J. E de-
notes the total number of events, EO denotes the total number of event
operators and SEP denotes the number of properties for each event.

number of event patterns in the database. Table 8.7 displays the average response

time. We repeated the test 100 times for each relationship detection in order to

calculate the average response time.

Size = 100 Size = 400 Size = 1600
Best practice pattern ≤ 50 ms ≤ 240 ms ≤1150 ms
Other ≤ 20 ms ≤ 60 ms ≤ 200 ms

Table 8.7: Response time for the event pattern graph relationship detection (in mil-
liseconds).

As we can see from the Table 8.7 the response time increases linear.

8.4.3 Performance of the event pattern evolution component

We further conducted a test in order to have some quantitative data for the evolu-

tion component. Therefore we registered up to 5.000 event patterns and simulated

their triggering and execution. For each event pattern we simulated 25000 event

executions and triggered 1000 event patterns. We simulated an evolution detec-

tion every minute. For each event pattern the evolution component detected every

expected evolution detection. The detection time is near real-time meaning that

it detects an event pattern as candidate to evolution in less than 2 seconds after

the last relevant event has arrived the component.

8.5 Conclusion

In this chapter we presented the evaluation of the PANTEON tool. We described

previous evaluations where several aspects have been evaluated in order to collect

the user satisfaction and further improvement suggestion. Further we presented a

task-driven usability evaluation where several tasks have been defined and should

be solved by the participants of the evaluation. We found out that with increasing

task complexity the users’ efficiency and effectiveness decrease enormously if no

proper tool support is available. We defined several settings in order to measure

the perceived usability, the task completion time and the success rate. In order

to measure the usability we used the SUS questionnaire [Broo96].
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9
Conclusion

9.1 Summary

The main motivation behind this thesis came from the issue that the main research

in Complex Event Processing (CEP) is mostly focused on an efficient matching

of events by neglecting the management of event patterns. Event patterns are

from the business point of view the most valuable asset in order to detect critical

business situations. Unless this issue is not investigated the barriers for using CEP

systems will be rather high. A pattern engineer who deals with the modelling

and the maintenance of event patterns requires supportive tools, methods and

methodologies in order to handle the complexity of event patterns in an efficient

and effective way.

The starting point of this thesis was the analysis of existing research regarding the

event pattern management. However, in 2008 when we started this research there

were significantly less approaches targeting the event pattern management in CEP.

However, we defined the necessity of an efficient and effective event pattern man-

agement by considering related areas like business rule management and active

databases. Furthermore we defined requirements based on several research papers

(see Chapter 3). Based on this requirement analysis we defined in Chapter 4 a

methodology for event pattern life cycle management similar to the software de-

velopment methodologies. Our methodology consists of three main phases namely

Generation, Execution and Evolution forming a feedback loop. For each phase we

defined tasks in order to support the pattern engineer in an efficient and effective
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way. In Chapter 5 we presented a meta model for representing event patterns. This

model is based on concept hierarchies in order to enable the relationship detection

between event patterns. The relationships are used both during the modelling of

new event patterns and later on during their evolution and adaptation.

In order to detect relationships we made use of graph theoretical concepts. Event

patterns that are based on our meta model are represented as a graph. In Chap-

ter 6 developed methods for detecting relationships between event patterns. We

introduced the subsumption and the overlapping relationships in order to support

the pattern engineer during the definition of new event patterns. These relation-

ships enable the pattern engineer to access existing pattern knowledge and make

use of it by refining a new event pattern. We further introduced the similarity

relationship between event patterns in order to also access event patterns that

are structurally not equal. The similarity relationship is based on the taxonomy

and the features of events and event operators. In order to build libraries of most

used event patterns we introduced the concept of best practice patterns where

frequently used patterns are presented to the pattern engineer for further usage.

In order to evolve event patterns we introduced in Chapter 7 the concept of the

transparent CEP engine. This can be considered as a paradigm shift from a

black-box CEP engine where only the result of the matching is received to a

white-box approach where every event consumption regarding an event pattern is

monitored. Based on the concept of the transparent CEP engine we introduced the

execution-driven event pattern evolution where past statistics for event pattern

triggering and execution are compared to the current triggering and execution

rate in order to detect deviations. Based on this deviation detection we enriched

the pattern statistics with the quotient of event pattern triggering and execution,

the frequency of event consumption and provide this information to the pattern

engineer. Taking this information into account the pattern engineer is able to

adapt the event pattern definition.

The methodology, language and the several methods were implemented in the

PANTEON tool that provides a high-level graphical interface for event pattern

management. It follows the graph-based programming paradigm where event

patterns are defined as a graph where events, event operators and complex events

are connected to each other forming a valid event pattern. The tool is able to

detect inconsistencies in event pattern definition during the modelling of event

patterns.

We conducted several evaluations in order to find out the perceived usability and

functionality of the PANTEON tool. The pre-evaluations were helpful to get

initial user feedback and to improve the methodology, language and the methods.

They delivered helpful insights for the overall adjustment of our research. The

final evaluation showed that the features and the user interface of the PANTEON

tool are easy to learn and very helpful. Participants using the full PANTEON

tool were faster in finishing the tasks, had a better success rate and a lower failure

rate.
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In the nutshell the main achievements of this thesis are:

∙ The necessity of event pattern management;

∙ An event pattern life cycle methodology;

∙ A meta model for the management of event patterns;

∙ The relationship detection between event patterns;

∙ Evolution of event patterns based on pattern execution statistics;

∙ A high-level graphical user interface simplifying the modelling, de-

ployment and evolution of event patterns;

9.2 Future direction

This thesis is a first step towards an efficient and effective event pattern manage-

ment. We provided an easy to use tool that is based on a profound methodology,

language and methods. However, there is still space for future improvements:

Collaborative pattern development During several evaluations we found out that

the participants are interested in collaborative pattern modelling. This could be

especially relevant for organizations where the pattern knowledge is distributed

across several departments. The final event pattern could be composed of different

pattern fragments that are modelled in different departments by different pattern

engineers. Although the PANTEON system enables the reuse of event patterns the

collaborative development raises further open issues like real-time collaborative

modelling and consistency checking of collaborative patterns which need to be

researched.

Domain dependent user interfaces One of our assumptions was that proper user

interfaces could increase the acceptance of CEP systems. The user interface of

PANTEON is designed for business users who operate in the context of CEP

systems. However, there is a big movement towards the offering of real-time

situation detection for every day life where new kinds of high-level user interfaces

are needed for hiding the underlying CEP technology from the user. The pattern

definition could be implicit meaning that the user will not define the pattern

explicitly like in PANTEON but rather the patterns are defined automatically by

monitoring the click behaviour of the user.

Pattern modelling driven by data mining and existing models We have already de-

scribed in Chapter 4 that data mining is one of the most important technologies

that could ease the definition of event patterns. However, the challenge is how to

detect an event pattern that is relevant although it is not frequently appearing.
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Event pattern evolution The semi-automatic evolution of event patterns is from

our point of view an essential part of an efficient and effective event pattern

management. It helps the pattern engineer to keep an event pattern repository

up-to date. Therefore the approach presented in this thesis needs to be further

evaluated in different business settings in order to find the right size of monitoring

window and monitoring period since these parameters are rather application and

domain dependent.

Extension of the event pattern management life cycle Our event pattern management

life cycle starts with the actual need to define an event pattern. However, like pre-

sented in [ViKD10], described in Section 4.5 and the need itself requires additional

methodological approaches. The pattern engineer must be supported also during

the initial need identification to find the relevant business situations that need to

be detected through event pattern detection.

9.3 Conclusion

In this thesis we presented an approach to support the pattern engineer systemat-

ically during the event pattern modelling, deployment and evolution. The graph-

based representation of event patterns based on our meta model enables the reuse

of existing pattern knowledge and supports the pattern engineer to be more ef-

ficient and effective during pattern modelling. In order to keep the event pat-

tern repository up-to-date our event pattern evolution approach detects event

pattern execution outliers and supports the pattern engineer to adapt event pat-

terns. Overall the approaches presented in this thesis increase the efficiency and

effectiveness of the pattern engineer during the event pattern life cycle.
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A.1 ALERT Questionnaire



 

     

  
 

Introduction 
The PANTEON interaction pattern editor is a design environment to define, deploy and evolve 
interaction patterns. An interaction pattern is the description of a situation which should be 
detected and reported and is important to the user. For the definition of an interaction pattern 
PANTEON provides a set of events and a set of event operators in order to model an interaction 
pattern. The deployment of an interaction pattern will be done in the CEP engine which matches 
an interaction pattern against incoming ALERT events. The owner of the interaction pattern is 
informed about the occurrence of the situation as soon as it happens.  

Complex Event Processing (CEP) deals with the analysis of streams of continuously arriving 
events with the goal of identifying instances of predefined meaningful patterns.  

The goal of this evaluation is to find out users perception about defining and updating 
interaction patterns using the PANTEON tool. The actual matching and notification is not part of 
PANTEON. Only the design relevant issues are part of this evaluation. 

 

Please take a moment to first fill in the basic information about yourself 
and then answer the questions. 

 

1. Profession:  

_________________________________________________________ 

 

2. Company:  

_________________________________________________________ 

 

3. Experience and Expectations 

 

1- Have you ever used any kind of system with alerting/notification functionalities 
in general? (like RSS feeds, BTS notification, Email notification, Google Alerts 
etc.) 

 Yes,  No 

 

If yes, which system did you use and for what purposes? 

____________________________________________________ 

 

2- Have you ever used a Complex Event Processing system? 
 Yes,  No 

 

If yes, which system did you use and for what purposes? 



 

     

____________________________________________________ 

 

3- If you are a software developer, do you use any kind of alerting/notification 
system in your software development projects? 

 Yes,  No 

 

If yes, which system did you use and for what purposes? 

____________________________________________________ 

 

4- Do you think a system with alerting/notification functionalities would increase 
the awareness of the team members in a software development project?  

 Yes,  No 

 

Why? 

____________________________________________________ 

 

5- Which functionality should an alerting/notification system provide?  
(multiple selection possible) 

 Real-time functionality 

 Expressive language to define the alerts/notifications 

 Multiple alerting/notification channels (like SMS, Email etc.) 

 A graphical user interface to define and change alerting/notification rules 

 Recommendation of alerting/notification rules 

 

Other: 

____________________________________________________ 

 

6- Do you think an alerting/notification system in general would be a useful 
system for your daily business life? 

 Yes,  No 

 

Why? 

____________________________________________________ 

 

7- What do you expect from a tool to define and maintain interaction patterns? An 
interaction pattern is the description of a situation which should be detected 
and reported and is important to the user. (multiple selection possible) 

 To ease the definition of new patterns 



 

     

 To ease the maintenance of existing patterns 

 To define better patterns 

 To search for patterns 

 To save time 

 

Other: 

____________________________________________________ 

 

8- How would you like to define a new interaction pattern? (multiple selection 
possible) 

 Using a graphical editor 

 Coding the pattern using a programming language 

 

If you selected both when do you prefer to use which one? 

____________________________________________________ 

 

4. Interaction Pattern Editor Quality 
 

PART A: 

 

A.1  What do you think who should be the primary user of Interaction Pattern 
Editor?  
  Business user 

  Programmer 

  Don’t know 

 

Other 

____________________________________________________ 

 

 

A.2  Is the purpose of Interaction Pattern Editor clear? 
  No,  a Little,  Moderately,  a Lot,  Completely  

 

A.3  Did the Interaction Pattern Editor satisfy your expectations in general?  
  No,  a Little,  Moderately,  a Lot,  Completely  

 

If no please tell us why? 

____________________________________________________ 



 

     

 

A.4 Which expectations were satisfied? (multiple selections possible) 
 

 To ease the definition of new patterns 

 To ease the maintenance of existing patterns 

 To define better patterns 

 To search for patterns 

 To save time 

 

Other: 

____________________________________________________ 

 

A.5 Do you find the functionalities of the Interaction Pattern useful?  
  No,  Yes  

 

If no please tell us why and which functionalities you missed? 

____________________________________________________ 

 

A.6 Did you find any user interface element or functionality in the Interaction 
Pattern Editor irrelevant? 

 

 No,  Yes 

 

If yes, please tell us what elements or functionalities are irrelevant and what are 
your suggestions? 

____________________________________________________ 

 

 

A.7 Is the Interaction Pattern Editor a tool for defining alerting/notification 
rules? 

  No,  Yes  

 

 

PART B: 

 

B.1  Did you find that the created pattern match what you intended to create?  
 No,  a Little,  Moderately,  a Lot,  Completely  



 

     

 

B.2  Is the purpose of the pattern clear to you by just looking only on its 
graphical representation?  

 No,  a Little,  Moderately,  a Lot,  Completely  

 

If no please tell us why? 

____________________________________________________ 

 

5. Describe how skilful you should be in using a notification system, in order to 
successfully use the Interaction Pattern Editor: 

 Novice,  Advanced Beginner,  Competent,  Advanced,  Expert  

 

6. Describe how skilful you should be in creating alerting/notification rules for 
successfully define interaction patterns: 

 Novice,  Advanced Beginner,  Competent,  Advanced,  Expert  

 

7. Describe how skilful you should be in using other pattern editors, in order to 
successfully use the Interaction Pattern Editor: 

 Novice,  Advanced Beginner,  Competent,  Advanced,  Expert  

 

8. Do you think that the Interaction Pattern Editor could speed up your work?  
 No,  a Little,  Moderately,  a Lot,  Completely  

9. Do you think that the definition of an interaction pattern could reduce the time 
needed for resolving a problem? 

   No,  a Little, Moderately,  a Lot,  Completely  

10. Is the Interaction Pattern Editor is easy to use?  

       No,  a Little,  Moderately,  a Lot,  Completely 

11. Was it easy to find every option in order to create an interaction pattern?   

 No,  a Little,  Moderately,  a Lot,  Completely 

12. Was it easy to define interaction patterns through Interaction Pattern Editor?  
 No,  a Little,  Moderately,  a Lot,  Completely  

13. Was it easy to search for interaction patterns?  
 No,  a Little,  Moderately,  a Lot,  Completely  

14. Was it easy to find your active patterns? 
 No,  a Little,  Moderately,  a Lot,  Completely  

15. Was it easy to update your pattern in Interaction Pattern Editor?  
 No,  a Little,  Moderately,  a Lot,  Completely  

 



 

     

16. If the answer to any of the questions 8-15 is no, a Little or Moderately, please tell us 
why: 

_________________________________________________________ 

 

17. Was it easy to get all the patterns you are interested by using the search 
functionality of the Interaction Pattern Editor? 

 No,  a Little,  Moderately,  a Lot,  Completely  

18.  Were all of the search criteria included in the search results for the Interaction 
Pattern Editor? 

 No,  a Little,  Moderately,  a Lot,  Completely  

19.  Do you understand search results when searching patterns in Interaction Pattern 
Editor? 

 No,  a Little,  Moderately,  a Lot,  Completely  

 

20. If the answer to any of the questions 17-19 is no, a Little or Moderately, please tell 
us why: 

_________________________________________________________ 

 

21. How much time did you spend to solve all the tasks? 
 

 

22. Was the task description easy to understand: 
 No,  a Little,  Moderately,  a Lot,  Completely  

 

Suggestions to improve the task description: 

_________________________________________________________ 

 

23. Do you have any other suggestions to improve the Interaction Pattern Editor? 
 

_________________________________________________________ 

 

 

Thanks for filling in this questionnaire! 
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A.2 ALERT Questionnaire Results



02-Mar-12

Questionnaire Interaction Pattern Editor
Questionnaire Interaction Pattern Editor

 

3.1. Have you ever used any kind of system with
alerting/notification functionalities in general? (like
RSS feeds, BTS notification, Email notification, Google
Alerts etc.)

1
(16.67%) No

5
(83.33%) Yes

 

3.2 Have you ever used a Complex Event Processing
system?

6
(100%) No

0 (0%) Yes

 

3.3 If you are a software developer, do you use any
kind of alerting/notification system in your software
development projects?

2
(33.33%) No



4
(66.67%) Yes

 

3.4 Do you think a system with alerting/notification
functionalities would increase the awareness of the
team members in a software development project?

0 (0%) No
6

(100%) Yes

 

3.5 Which functionality should an alerting/notification
system provide? (multiple selection possible)

5
(27.78%)

Recommendation of
alerting/notification

rules

4
(22.22%)

A graphical user
interface to define

and change
alerting/notification

rules

3
(16.67%)

Multiple
alerting/notification
channels (like SMS,

Email etc.)
6

(33.33%)
Real-time

functionality

 

3.6 Do you think an alerting/notification system in
general would be a useful system for your daily
business life?



1
(16.67%) No

5
(83.33%) Yes

 

3.7 What do you expect from a tool to define and
maintain interaction patterns? An interaction pattern
is the description of a situation which should be
detected and reported and is important to the user.
(multiple selection possible)

3
(16.67%) To save time

4
(22.22%)

To search for
patterns

2
(11.11%)

To define better
patterns

3
(16.67%)

To ease the
maintenance of

existing patterns
6

(33.33%)
To ease the definition

of new patterns

 

3.8 How would you like to define a new interaction
pattern? (multiple selection possible)

2
(28.57%)

Coding the pattern
using a programming

language
5

(71.43%)
Using a graphical

editor

 

A.1 What do you think who should be the primary
user of Interaction Pattern Editor?



0 (0%) Don’t know
5

(83.33%) Programmer

1
(16.67%) Business user

 

A.2 Is the purpose of Interaction Pattern Editor clear?

0 (0%) Completely
2

(33.33%) a Lot

3 (50%) Moderately
1

(16.67%) a Little

0 (0%) No

 

A.3 Did the Interaction Pattern Editor satisfy your
expectations in general?

0 (0%) Completely
2

(33.33%) a Lot

4
(66.67%) Moderately

0 (0%) a Little
0 (0%) No

 

A.4 Which expectations were satisfied? (multiple
selections possible)

2
(14.29%) To save time

4
(28.57%)

To search for
patterns

1 To define better



(7.14%) patterns

1
(7.14%)

To ease the
maintenance of

existing patterns
6

(42.86%)
To ease the definition

of new patterns

 

A.5 Do you find the functionalities of the Interaction
Pattern useful?

0 (0%) No
6

(100%) Yes

 

A.6 Did you find any user interface element or
functionality in the Interaction Pattern Editor
irrelevant?

6
(100%) No

0 (0%) Yes

 

A.7 Is the Interaction Pattern Editor a tool for
defining alerting/notification rules?



0 (0%) No
6

(100%) Yes

 

B.1 Did you find that the created pattern match what
you intended to create?

0
(0%) Completely

3
(50%) a Lot

3
(50%) Moderately

0
(0%) a Little

0
(0%) No

 

B.2 Is the purpose of the pattern clear to you by just
looking only on its graphical representation?

0
(0%) Completely

3
(50%) a Lot

3
(50%) Moderately

0
(0%) a Little

0
(0%) No

 

5.   Describe how  skillful  you  should  be  in  using  a
notification system,  in  order  to  successfully  use
the Interaction Pattern Editor:

0 (0%) Expert



0 (0%) Advanced
4

(66.67%) Competent

2
(33.33%) Advanced Beginner

0 (0%) Novice

 

6.   Describe how  skilful you  should  be  in  creating
alerting/notification rules for successfully define
interaction patterns:

0 (0%) Expert
0 (0%) Advanced

5
(83.33%) Competent

1
(16.67%) Advanced Beginner

0 (0%) Novice

 

7.  Describe how skilful you should be in using other
pattern editors, in order to successfully use the
Interaction Pattern Editor:

0 (0%) Expert
0 (0%) Advanced

2
(33.33%) Competent

3 (50%) Advanced Beginner
1

(16.67%) Novice

 

8.   Do you think that the Interaction Pattern Editor
could speed up your work?

0



(0%) Completely

3
(50%) a Lot

3
(50%) Moderately

0
(0%) a Little

0
(0%) No

 

9.   Do you  think  that  the  definition of an interaction
pattern could reduce the time needed for
resolving a problem?

1
(16.67%) Completely

2
(33.33%) a Lot

2
(33.33%) Moderately

1
(16.67%) a Little

0 (0%) No

 

10.                  Is the Interaction Pattern Editor is easy to
use?

1
(16.67%) Completely

3 (50%) a Lot
2

(33.33%) Moderately

0 (0%) a Little
0 (0%) No

 

11.                Was it easy to find every option in order to
create an interaction pattern? 

1 Completely



(16.67%)
4

(66.67%) a Lot

1
(16.67%) Moderately

0 (0%) a Little
0 (0%) No

 

12.                    Was it  easy  to  define  interaction  patterns
through Interaction Pattern Editor?

1
(16.67%) Completely

3 (50%) a Lot
2

(33.33%) Moderately

0 (0%) a Little
0 (0%) No

 

13.                     Was it easy to search for interaction
patterns?

3
(50%) Completely

3
(50%) a Lot

0
(0%) Moderately

0
(0%) a Little

0
(0%) No

 

14.             Was it easy to find your active patterns?

2
(33.33%) Completely

4
(66.67%) a Lot



0 (0%) Moderately
0 (0%) a Little
0 (0%) No

 

15.                        Was it easy to update your pattern in
Interaction Pattern Editor?

1
(16.67%) Completely

3 (50%) a Lot
2

(33.33%) Moderately

0 (0%) a Little
0 (0%) No

 

17.   Was it easy to get all the patterns you are
interested by using the search functionality of
the Interaction Pattern Editor?

0 (0%) Completely
5

(83.33%) a Lot

1
(16.67%) Moderately

0 (0%) a Little
0 (0%) No

 

18.Were all  of  the  search  criteria  included in  the
search results for the Interaction Pattern Editor?

1 Completely



(16.67%)
4

(66.67%) a Lot

1
(16.67%) Moderately

0 (0%) a Little
0 (0%) No

 

19.Do you understand search results when
searching patterns in Interaction Pattern Editor?

0 (0%) Completely
4

(66.67%) a Lot

2
(33.33%) Moderately

0 (0%) a Little
0 (0%) No

 

21.Was the task description easy to understand:

0 (0%) Completely
4

(66.67%) a Lot

2
(33.33%) Moderately

0 (0%) a Little
0 (0%) No
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