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Chapter 1

Introduction and outline

As illustrated by the title, this dissertation is mainly devoted to the research of two problems
— the continuous-time portfolio optimization in different Wishart models and the effects of
discrete rebalancing on portfolio wealth distribution and optimal portfolio strategy. The
first objective is to study the continuous-time portfolio optimization problems in different
Wishart models. In continuous-time models, agents can make investment decisions at any
time during the investment period in order to maximize their expected utility from terminal
wealth with respect to some utility function. This subject has been extensively studied
since the development of stochastic analysis around the 1960’s and the contribution of
Merton in 1971 [40]. While Merton considered an asset price model with non-stochastic
volatility, a lot of recent research is done in models incorporating their own stochastic
volatility processes, since the non-stochastic models are not flexible enough to model some
economic phenomena, such as the “smile effect” and the “leverage effect” etc. However, the
most research done so far is based on an one-factor stochastic volatility model, for example,
Kraft and Zariphopoulou investigated in [35, 47] extensively the optimization problems
involving stochastic volatility in the setting of a Heston model, which is an one-dimensional
case of the Wishart model. Because of the necessity of modeling a complete portfolio of
assets, it is of interest for us to study optimal portfolios in the Wishart stochastic volatility
model.

The Wishart model is a multivariate extension of the Heston model. In the Wishart
model, the multidimensional asset price process evolves as some diffusion dynamic, where
the covariance matrix process follows a Wishart process. The Wishart processes possess a
desirable property, i.e. the affine property. Roughly speaking, an affine process is a process
whose logarithm of its Laplace transform is affine dependent on the initial state of the process
(see [18]). As we will see later, this property makes the portfolio optimization regarding
Wishart processes tractable in many cases. In light of the computational tractability and
flexibility in capturing many of the empirical features of financial dynamics, the Wishart
model has been widely studied and used in recent years. More information on the Wishart
models and their financial applications may be found in [10, 11, 13, 14, 20, 23].

In the Wishart model for our continuous-time portfolio optimization problem, we denote
by (St)e=0 = (S, - - -, St.a) s the vector process of the risky assets price. The joint dynamics
of the risky assets price process (S;),5, and its stochastic covariance matrix process (3¢)i>o
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Chapter 1. Introduction and outline

are given by the following stochastic differential system:

S, = diag (S,) B (3,) dt + diag (S,) Sy 2dW?,
A3y, = (Q0F + M3, + 2, M7) dt + 22wy Q + QT (awy)" x177,

where (Wts)t>0, (
ian motions matrix respectively on the probability space (2, F, P). The parameter B(X) :
ST(R) — R? is measurable, whereas Q, M, Q are d x d matrices with  invertible. Fur-
thermore, we assume that besides the d risky assets, there is still one bond with constant
risk-free rate r in the financial market. Given an investor maximizing utility from termi-
nal wealth with respect to a utility function U, the portfolio optimization problem can be
formulated as

W{¢),», are a d dimensional Brownian motions vector and a d x d Brown-

O (t,x) = max EY U (X7))
with X7 being the portfolio wealth at 7" and z = X;. We denote by 7 = (m;) the vector
process of the investment proportion in the d risky assets.

We will consider two cases of U — logarithmic utility and power utility. The optimal
portfolio strategy with logarithmic utility in the Wishart models can be derived by replacing
Xr by its explicit solution, whereas the portfolio optimization problems with power util-
ity, i.e. extensions of the Merton problem, are generally handled either by methods from
stochastic control theory, which lead to Hamilton-Jacobi-Bellmann equations (see [35, 47])
or by martingale methods (see [32]). Previous to a detailed description of the methods used
in this thesis, let us first introduce two cases of Wishart models, namely the uncorrelated
and the correlated Wishart models. A uncorrelated Wishart volatility model is a Wishart
model with (VVtS ) 0 and (W), being uncorrelated. A correlated Wishart volatility model

is defined likewise as a model with correlated (Wts ) oo and (W7),5o. In the uncorrelated
Wishart model, we can derive the optimal portfolio strategy and represent the value function
as the expectation of a stochastic exponential by the application of the Girsanov theorem.
This is possible due to the assumption of no correlations. We especially consider the case
of ¥y5v = B(X;) — r with v € R? and show that the value function can in this case be
expressed as an exponential function with all coefficients given in closed-form by Proposi-
tion 4.2.7 In the correlated Wishart model we can not apply the Girsanov theorem to solve
the optimization problem, since the Girsanov density is not automatically a martingale and
furthermore, we can not interchange the maximizing and expectation operations as in the
uncorrelated case (see Remark 3.1.2 for more details). Instead of the Girsanov theorem, we
use the Hamilton-Jacobi-Bellman (HJB) principle to derive the optimal portfolios and the
value functions, which extend the results of Kraft and Zariphopoulou in [35, 47]. We again
consider two special models. One model has a general asset process but a special ) matrix
and a special correlation between (W;¥) and (W), whereas the other model possesses a
special assets drift with ;v = B(X;) — r, but less restrictions on ¢ and the correlations.
We first derive the Feynman-Kac representations of the candidate value functions for both
models. The most challenging part in this section is to identify when the HJB equation
owns a finite solution. An example illustrating the blow-up of the HJB solution is presented
by Korn & Kraft [34]. Note that in the setting of a one-dimensional Heston model, the suf-
ficient conditions for a finite value function has been derived by Kraft [35]. For the second
model, we can show by Theorem 4.2.5 and Corollary 4.2.7 that there exists a finite explicit
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value function under some conditions and a verification result to the HJB equation is also
presented at the end of this section.

For the sake of completeness, we also consider the portfolio selection problems with no
risk-free asset in the market. These problems could be regarded as the original optimization
problems subject to the additional constraint 771 = 1. The optimal portfolio strategies can
be derived by applying the constraint directly, namely replacing the d-th asset weight 74 by
11—

The second major part of this thesis is devoted to the analysis of the effects of discrete
rebalancing on the portfolio wealth distribution and optimal portfolio strategy. As pointed
out by Bertsimas, Kogan and Andrew in [6], continuous-time stochastic processes are only
approximations of physically realizable phenomena and continuous trading within a portfolio
is only theoretically feasible. Hence, it is necessary to study portfolios with constraints on
rebalancing frequency. While Bertsimas [6] focused on the asymptotic distribution of the
tracking error, which results from the implementation of the continuous delta-hedging in
discrete-time, we pay attention to the value evolution of a discretely rebalanced portfolio and
the modification of the optimal portfolio strategy under rebalancing frequency constraint.

The discretely rebalanced portfolio’s profit and loss distribution is critical for the risk
measurement of less liquid portfolios and there is already some earlier work done in this
field. Motivated by the proposal of a new market risk measure — the incremental risk charge
(IRC), which, loosely speaking, equals a 99.9% VaR of the terminal wealth distribution of
a less liquid portfolio over a one-year horizon, Glasserman approximated in [21] the loss
distribution for the discretely rebalanced portfolio relative to the continuously rebalanced
portfolio. The approximation is derived from a limiting result for the difference between
the discretely and continuously rebalanced portfolios as the rebalancing frequency increases.
The IRC has been introduced by the Basel Committee on Banking Supervision in 2007. It
is able to capture the risk in long-term fluctuations of less liquid securities compared with
the traditional ten-day 99% VaR used in the banking industry. For further introduction to
IRC please refer to [3, 4, 21].

Contrasting the model of the assets dynamics in Glasserman’s paper, we introduce in
this thesis a new and more sophisticated model with assets dynamics satisfying the regular
conditions listed in Section 5.1. We show that the limiting result for the difference between
the discretely and continuously rebalanced portfolios can be extended to our new model and
the impact of discrete rebalancing on the portfolio wealth distribution can be corrected by
the volatility adjustment (an adjustment that corrects the volatility for discrete rebalancing)
and the conditional mean adjustment (an adjustment that adjusts the tail of the discrete
portfolio’s loss distribution conditional on a large loss in the continuous portfolio). Besides
being used as an approximation of the discretely rebalanced portfolio, the limiting result can
also be used to measure the relative error between the continuously and discretely rebalanced
portfolios. Such a measure is usually called the temporal granularity and is defined as the
standard deviation of the limit distribution in the limit theorem (Theorem 5.2.3). As we
shall show, the temporal granularity helps us to find some rebalancing frequency to keep
the relative error within some sufficiently small value.

The other main result in this part is concerned with the optimal portfolio strategy of
a At-periodic rebalanced portfolio with asset price processes following geometric Brownian
motions. Since the price process of a discretely rebalanced portfolio does not have a “sim-
ple” explicit solution like the continuously rebalanced portfolio, we can not deal with the
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optimization problem in the usual way. This makes it rather difficult to find an explicit ana-
lytical portfolio strategy. Thus, we focus on finding a better portfolio strategy that provides
a larger utility compared with 7* — the optimal strategy for the continuously rebalanced
portfolios for At sufficiently small. The key approach we apply in this part is one iteration
of Newton’s method with 7* being the initial value.

This thesis is organized as follows: In Chapter 2 we provide the readers with some
necessary backgrounds of Wishart processes and some new properties regarding the affine
property of the Wishart processes as well as the corresponding proofs. In the last section of
Chapter 2, a multivariate Wishart stochastic volatility model is introduced.

Chapter 3 is devoted to determining the optimal portfolio strategies with respect to
logarithmic and power utility, in the uncorrelated Wishart volatility model. The optimal
portfolio strategies of our optimization problems are given explicitly for two cases — with
and without risk-free asset in the financial market.

In Chapter 4 we proceed with the determination of the optimal portfolio strategies
in the correlated Wishart volatility model. Again, two utility functions are taken into
consideration, namely the logarithmic utility and the power utility. For the power utility
problem, we first derive the HJB equation to get the optimal strategy and then solve the
HJB equation to derive a candidate for the value function. The candidates are given for two
cases of asset processes: the case of a general drift and the case of a linear drift. We then
present the verification result for the linear drift case.

Chapter 5 contains our extension of the central limit theorem for the relative difference
between the discrete and continuous portfolios. We use this theorem to derive our portfolio
volatility adjustment. Moreover, we prove a conditional limit theorem for the loss in the
discrete portfolio conditional on a large loss in the continuous portfolio and establish, as a
result, the conditional mean adjustment. Some numerical results to evaluate the quality of
various approximations are given at the end of this chapter.

In Chapter 6, we define and interpret the temporal granularity followed by some exam-
ples.

In the final Chapter, we derive an approximation of the optimal strategy for discrete
portfolios. We prove that it yields a larger utility compared to the optimal continuous
portfolio strategy when the rebalancing period is sufficiently small. The main tool we use
is Newton’s method.



Chapter 2

The Wishart process

In this chapter we try to familiarize the reader with some basic concepts and properties
about Wishart processes. We begin with the definition of the Wishart process in Section
2.1. Afterwards, some theorems about the existence and uniqueness of Wishart processes
are given. In Section 2.3, we show that Wishart processes can be constructed as squares
of matrix variate Ornstein-Uhlenbeck processes. Subsequently, some properties of Wishart
processes like the affine property and the conditional distribution of Wishart processes are
illustrated in Section 2.4, 2.5 and 2.6. Finally, we present a Wishart stochastic volatility
model.

2.1 Definition

The Wishart process, which was originally introduced by Bru [10] in 1991, was extensively
studied by Da Fonseca et al. [13, 14], Gourieroux & Sufana [25, 26] and by Gauthier &
Possamai [20]. According to Gourieroux [23], the Wishart process can be defined through
its diffusion representation.

Definition 2.1.1. (Wishart Processes). Let (W[ ),~, denote a dx d matriz-valued Brownian
motion, Q € GLq (R) and M € Mgy (R) be an arbitrary matriz. The matriz-valued process
(34);5¢ s said to be a Wishart process, if it is a strong solution of the following stochastic
differential equation:

A% = (BQTQ + MZ + £, MT) dt + 22aweQ + QT (dWo)' 5,%, So=a9,  (2.1)

where oo € Si is a symmetric, strictly positive definite matriz and 3 > d — 1 is a non-
negative number.

Remark 2.1.2. The condition > d — 1 ensures the existence and uniqueness of a weak
solution of (2.1) on ST (R) almost surely. If B > d + 1 is imposed, the SDE (2.1) owns
then a unique global strong solution on ST (R) a.s. These facts are illustrated in section 2.2
particularly.

The Wishart process (Et)tzo has some desirable properties. First of all, it is shown in
[41], if the eigenvalues of M only have negative real parts, i.e. Re (o (M)) C (—o0,0), the
Wishart process (2;), is mean reverting.
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Furthermore, (£),5, is a process which never leaves S (R). It is obvious that the
matrix Y; is real symmetric and owns the decomposition ¥; = OI'A;O;, where O; is an
orthogonal matrix and A; is real diagonal with the eigenvalues of ¥, on the diagonal.

When (Et)tzm which starts at a symmetric, strictly positive definite matrix o, hits
the boundary of S (R) at time ¢, there exists a nonzero vector a € R? which satisfies
a’'Ya = (Ota)T Ay (Opa) = 0. This implies that the diagonal entries of A; are nonnegative
with at least one zero. From [26, Appendix 1], the conditional variance of d (aTZta) given
F; is then:

V (d (aTEta)) =4 (aTEta) (aTQTQa) dt =0,
where (F;),5, denotes the natural filtration of (%;),5,. Since a’X;a = 0 implies 520 =0
and aTEtI/Q =0, one gets ¥;a = 0 and a’¥; = 0. Then there is
d (aTEta) = (ﬂaTQTQa +a" M0+ aTZtMTa) dt = (BaTQTQa) dt >0

for Q € GL4(R). Thus, it follows that d (aTEta) is deterministic and it goes to positivity
immediately, when the boundary is reached. (See [26]) Thus, the zero eigenvalue is brought
to be positive and we get that the process (%), stays always in St (R).

Remark 2.1.3. The Wishart dynamics can be extended by considering the processes that
satisfy the following stochastic differential equation

Ay, = (07 + M3, + S, MT) dt + 22wy Q + QT (dw?) 1%, So=09,  (2.2)
in which Q € GLq (R) and the constraint QTQ = SQQT is not imposed.

2.2 Existence and uniqueness theorems

As an extension of the findings by Bru [10, Theorem 2], the conditions for the existence of a
unique weak solution to the SDE (2.1) are given by Gauthier [20] in the following theorem:

Theorem 2.2.1. (Existence and Uniqueness of the Wishart Process I). For every initial
value o9 € Sy (R) and Q € GLq(R), M € My4(R), the Wishart stochastic differential
equation (2.1) has a unique weak solution in S} (R), if 8 >d— 1.

Proof. See [10]. O

In the following, we discuss when the SDE (2.1) possesses a unique strong solution. It is
known that the matrix square root function, f : R¥*¢ — R4 ¥, — Zi /2 s locally Lipschitz
on the set of symmetric, strictly positive definite matrices S (R) [44, Theorem 12.12], i.e.
for VN € NT there exists a constant Ky > 0 such that for ||Xs]] < N and ||X|| < N:

15072 = B2 < K|S = Ball, 5.t € (0,7,

Then one gets that all the coefficients in (2.1) are locally Lipschitz, until 3, hits the boundary
of ST (R). One can also easily get that all the coefficients in (2.1) are of linear growth, i.e.
4K >0,

16QTQ + M+ S MT| + [57°Q) + QTS| < Kj1+ %

Thus, as a result in [39], the SDE (2.1) has a unique strong solution, until the process (%),
hits the boundary at the first time. This yields the following theorem.

6



Chapter 2. The Wishart process

Theorem 2.2.2. (Ezistence and Uniqueness of the Wishart Process II). For every initial
value og € S, there exists a unique strong solution 3, of the Wishart stochastic differential
equation (2.1) in S; up to the stopping time

T =inf{t >0:det(X;) =0} >0 a.s.
Proof. See [41, Theorem 4.11]. O

Since it is difficult to show that for d > 2 there still exists a unique strong solution after
the process hits the boundary, it has been focused on the study of conditions such that the
process (3;),s, stays in the set of strictly positive definite matrices S; (R). The sufficient
conditions for it are given by the following theorem in [39]. In this way, one gets the unique
strong solution for all ¢ > 0.

Theorem 2.2.3. (Ezistence and Uniqueness of the Wishart Process IlI). Let B € Sy (R) be
a symmetric matriz, Q € My(R), M € My(R). If B = (d+1)QTQ, then the following
SDE

A% = (B + MY, + S,MT) dt + 2;2dWeQ + QT (dw?) 22, o =0y
has a unique strong solution on S; (R) and there is
T =inf{t > 0:det(X;) =0} =00 a.s.
Proof. See [39, Theorem 2.2]. O

Remark 2.2.4. Note that for B = QT Q, 5 > 0, the condition for the existence of a unique
strong solution to (2.1) for allt >0 is 8 > d+ 1. For B = QQ" as in (2.2), the condition
is QOT = (d+1) QT Q.

Remark 2.2.5. For d =1, Theorem 2.2.3 gives us a sufficient and necessary condition for
the ezistence of a unique strong solution of the SDE (2.1). For d > 2, whether the condition
B = (d+ 1) QTQ is necessary is still an open problem (See [39, section 5]).

2.3 Construction of Wishart process

In the case that § is an integer, the following proposition links Ornstein-Uhlenbeck and
Wishart processes.

Proposition 2.3.1. Let 8 > d+1 be an integer, Q € GL4(R), M € My (R), o9 € S; and
let {Xis,t >0}, 1 <k < B be independent vectorial Ornstein- Uhlenbeck processes in R?
with dynamaic:

dXp, = M X dt + QT dWy,,

where {Wy4,t > 0,1 < k < 8} are independent vectorial Brownian motions. For X o = wy,
1 <k < B, there is .0 _, ayxl = 09. Then

B
Vi =) XpeXih,
k=1
is the unique strong solution of dynamic (2.1).

7



Chapter 2. The Wishart process

Proof. See [41, Theorem 4.19]. O

The construction of Wishart process can be used as another way to define Wishart
process (See [25, Definition 1] for details).

Remark 2.3.2. One can also define Wishart process through its Laplace transforms, in this
way the degrees of freedom [ can be extended to be fractional.

2.4 The affine property

Note that the dynamic of (¥;),5, in (2.1) admits drift and volatility functions which are affine
functions of (¥;). Hence, the Wishart process (3;) is an affine process with characteristic
function and Laplace transform that are exponential affine dependent on (X;). For the
definition and analysis of affine processes, we refer to [18, 19].

The affine property of the Wishart process has been widely explored in the literature.
The characteristic function and Laplace transform of Wishart and integrated Wishart pro-
cesses are derived in e.g. [10, 20, 23]. Gnoatto and Grasselli have extended the original
approach in [10] and shown in [22] the explicit formula for the joint Laplace transform of
the Wishart process and its time integral. Moreover, it has been shown in [26] that the joint
process of (X;) and a given stock price is also an affine process. Since affine processes are
generally introduced for the dynamics of interest rates and the so-called affine term structure
models, the wishart affine property is also extensively studied in the setting of a Wishart
affine term structure model (see e.g. [24, 25]).

Proposition 2.4.1. (Characteristic function). Let © € Sq(R) and t,h > 0 so that I; —
2iV (h)© € GLq (C), where I; € R™ is the identity matriz and V (h) is defined below. Let
(3¢),50 be the Wishart process solving (2.1), then, the characteristic function of X1, given

exp (m [@ (I — 2iV (h)©)™ A (h) ZA (h)T])
(det[I, — 2iV (h) ©])"/?

EtE [eiTr(@EHh)}

Y

where

A (h) ="M
" M AT MT
V(h) = s 4 ds.
(h) /Oe Q" Qe S

Proof. See [20, Proposition 4]. O

Proposition 2.4.2. (Laplace transform). Let © € S;(R) and t,h > 0 so that I; +
2V (h)© € GLa(R). Let (3¢),5¢ be the Wishart process solving (2.1), then, the Laplace

transform of Xy, given ¥, =X € ST is:

exp (—Tr [@ (I +2V (h) @) " A (h) =A (h)T])
(det[I, + 2V () ©])"*

where A (h) and V (h) are defined as in Proposition 2.4.1.

B [ TrO%n)] = : (2.3)

8
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Proof. See [23, Proposition 5 ]

One can define a Wishart process through its Laplace transform. Thus, the result in
Proposition 2.4.2 allows us to extend the definition of Wishart distributions to real values
of faslong as f > d— 1.

The joint Laplace transform of 3;,,, h > 0 and the integrated Wishart process, i.e.

t+h
Et’z {exp (T?" (ClEHh + / ngud'u,)>:| (24)
t

is also exponential affine dependent on ¥, = ¥ € S, where C; and Cy are symmetric
matrices for which the expression (2.4) makes sense.

There are several ways to get the explicit expression for (2.4). The first approach (the so
called “matrix Cameron-Martin formula”) is originally proposed by Bru in [10] and is then
extended by Gnoatto and Grasselli in [22]. The following matrix Cameron-Martin formula
can be found in [22]. To lighten some notations below, we define two matrix hyperbolic
functions at first:

e e 4 ed—e 4

cosh (4) = ————, sinh (4) = ——, A€ S, (R).

Theorem 2.4.3. Let (3;),5, be the Wishart process solving (2.1) with Q € GLq(R), M €
My [R), B > d+ 1. Conditioned on ¥y = X € ST, we denote the set of convergence of the
Laplace transform (2.4) by Dy,. Assume

MUQTQ) T =(QTQ) M,
then (2.4) is given by:

t+h
Et’z [exp (TT (Clzt+h +/ CgEudu>>:|
t :
=det <6_Mh (COSh ( C’zh) + sinh ( C’gh) H(h)))

exp {Tr (Ql @;(h) QT MT (QQTQ)_1> 2] }
where the matrices k, Cs, Cy are given by:
k(h)=— (\/ggcosh < C’gh) + C sinh ( égh)>_1 .
(\/ggsinh ( Cgh) + C} cosh < @h)) ,

Co=Q (-2C,+MTQ'Q"M)Q",
Gy = —0Q (201 +(QTQ) " M) o

Moreover,

Dy, = {(CI,CQ) €Sy \/é’g cosh (\/é’gs) + C} sinh <\/C’23) € GL4, Vs €0, h]} )

9
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Note that the forth expression for (2.4) can be written as an exponential affine function:

t+h
Eb> [exp (Tr (Clﬁt% +/ CgEudu>)] =exp (¢ (h) +Tr[y (h)X]),
t
where the functions ¢ and 1 are given by:

QVGr(QT MT(Q'Q)

v (n) = LV 4
o (h) = glog (det (th (cosh ( C~’2h) + sinh < ézh> m>)) :
Proof. See [22, Theorem 1]. O

Remark 2.4.4. a) Note that the condition MT(QTQ)™ = (QT Q)™M is more general than
the commutativity assumption MQ = QM in [10]. For a discussion see [22].
b) For the case of Cy and Cy being d X d zero matrices, we receive directly

t+h
Eb* [exp (Tr <Clzt+h +/ C’gEudu)>} =1
t

for arbitrary M € R™? Q € R™?. But from our theorem above we do not have (C,Cy) =
(0,0) € Dy, VM, Q € R¥™? where 0 denotes the d x d zero matriz. It means that for (0,0) €
Dy, it follows ¢(h) = 0 and 1p(h) = 0 by our theorem. But in the case of C; = Cy = 0, we

get Eb* [exp <T7° <C’12t+h + ftHh CgEudu)>] =1 also for (0,0) ¢ D,

c)The matriz 1 (h) is a symmetric matriz. To verify this property, one only needs to
check if /Cak (h) equals kT (h) /Cy. Employing

() oo ()

one gets \/Cok (h) = kT (h) \/Cy by direct calculation.

Corollary 2.4.5. Let (X;),5, be the generalized Wishart process solving (2.2) with Q €
GLy(R) and M € My (R). Then (2.4) is given explicitly by:

Eb® lexp (Tr (O@Hh + /1t o C'QEudu)>] =exp (¢ (h) +Tr (v (h) X))

with the same Dy, k(h), Cy, Cy and ¥(h) as in Theorem 2.4.3 and the following new ¢(h):

o (h)=—Tr <99Tw> h

- 5T (Q—TQQTQ—l log l(\/@ _1 (o (V) + oo (V) )D |

Proof. For the proof we refer to [22, Theorem 11]. ]

10



Chapter 2. The Wishart process

Denote K (s) = / Cy cosh( C’gS) + sinh( C'Qs>, then D;, contains all C; € S,

and Cy € Sy, for which K (s) € GL;(R), Vs € [0,h]. But sometimes we may be more
interested in the set

D = {(01,02) € Sd . K(S) S GLd, Vs 2 O},

which is a subset of Dj,. To determine whether (Cy, Cs) € D or not, we apply the following
proposition.

Proposition 2.4.6. (Cy, Cy) € D, i.e. K (h) € GLy(R), Yh > 0, if and only if

QTQ € GLy(R), —2C,+MTQ'Q "M =0 and +/Cy+ Cy = 0. (2.5)

Proof. First of all, for the well-definedness of matrix square root of Cy, we need Cy to be
symmetric nonnegative definite, which is equivalent to

—20, + MTQ'Q "M = 0. (2.6)

Consider the situation h = 0, one gets K (0) = V/Cy. Then K (0) € GLq (R), if and only if
—2Cy + MTQ7'Q™"M = 0.

Subsequently, we show the sufficiency of the conditions in (2.5) for YA > 0. For the
sake of simplicity, we denote

Kﬂw:%( @+60e5%+%(¢a—005-@% (2.7)

- - - — -1
Note that for v/Cy € S (R) and h > 0, thereiseV " € ST (R) and e~V ¢2" = (e 02h> €
ST (R). Moreover, expanding the matrix exponential functions as series, one gets e Cah _

eV o for /Oy € ST (R), Yh > 0. Hence, one can write e Coh — =V Coh 4 P (h) with
some P (h) € SJ (R). Then there is

1 ~ ~ = 1 [~ - =
K (h) 25 ( CQ + Cl) (6 Cah + p(h)) + 5 ( Cg - 01) e Cah
:\/ége\/é_Qh+% ( 02+61>P(h),
which is always invertible if and only if det (K (h)) # 0, Vh > 0. Note that det (K (h) P~ (h)) =

det (K (h))det (P~ (h)) and det (P~! (h)) > 0, Vh > 0, since P (h) € S (R) for all positive
h, one gets K (h) € GLy if and only if det (K (h) P~ (h)) # 0, Vh > 0. Because of

K (h) P~' () :\/gze* Coh (e Cah _ ¢ é2h)_1 + % < Co + (71)
(1) (1)) 3B

—4R3 - | -
:(2h1+2h2 OQ—F?CQ—F...) +§( 02+Cl),

-

g

0

11



Chapter 2. The Wishart process

it follows det (K (h) P~ (h)) # 0, Vh > 0 from /Cy + Cy = 0.

Eventually, we show the necessity of the conditions. We assume \/a + ¢4 # 0.
Note that for h = 0, K (C},Cs,0) = \/?2 = 0, which implies that all the eigenvalues
of K (C1,C5,0) are positive. If \/é_2+6~'1 70, Le. \/é_2+ C} possesses at least one negative

eigenvalue, one can identify the matrix <\/ Cy + él> eV O gwns also at least one negative

eigenvalue through a matrix similarity transformation:

(V) eve) :g<(e @h)m( 6 ai) (o ézh)m).

Then for h large enough, it follows that K (h) in (2.7) owns at least one negative eigenvalue.
Since the spectrum of a matrix is a continuous function on the entries of the matrix [42],

we conclude that 3h > 0 with K (h) ¢ GLy (R), if \/Cy + Cy # 0. O
Remark 2.4.7. Consider a special case of Cy with Cy = 0, if

-MT(Q"Q) e 57,
then —2Cy + MTQ™1Q~TM = 0 implies \/Cs + Cy = 0 automatically, which means that we
only need to check whether —2Cy + MTQ1Q~TM = 0. Note that a necessary condition for

- (QTQ)_l M € S is Re (a (MT (QTQ)_l)) C (—00,0).

Proposition 2.4.8. Assume that the conditions in (2.5) hold and /Cy + C; € GLg (R),
VCy—Cy € GLy (R), then, we have

\/Car (h) < \/Cy, VA >0.

Proof. We first write the matrix function x (h) explicitly as:
k(h) = — <\/ggcosh ( 02h> + C sinh ( égh)>_1
(\/asinh < égh) + C cosh ( C’Qh))
—_ <\/52 (e Gah | o C‘Qh) Lo (6 Goh _ - C‘gh))l
(\/52 (e Coh _ o= @h) +é1 (e C’2h+e— C*Qh))
R e e e A (B
((Vara) e (Vo -a) e @h)l CRARE

12

+



Chapter 2. The Wishart process

Denote the identity matrix by I, we get then

k(h)=—|1+e C‘zh( <:~2+c~1)1(\5_@1>6_¢c:h

. 7
g

=Ai(h)

-1
—+ 6\/F2h (\/éz—él) ( C'Q—l—é'l)e C2h+]

[\ J/
-~

=Az(h)

-1

The fact that the matrix I + Ay (h) and I + A, (h) are invertible for A > 0 follows from the
well-definedness of x (h) for h > 0 and our assumptions v/ Co+C, € GLy (R) as well as
VCy —Cy € GLy (R). Note that Ay (h) Ay (h) = I, thus, we get

K (h) = — (A1 (h) Ay (h) + Ay ()™ + (I + Az (R)) ™
= (A (W) + D)7 (AL (h) "+ (T + Ay (R) ™ = (T + Ay (b)) (I — Ay (h))
=(I+ Ay (h) " (I + Ay (h) —245(h)) =T —2(I+ A, (h)™".

Then it yields

Ay(h) = (\/52)1 ¢? 02h+( éz+él>1 (\/g_a) (@)1

Note that As(h) is always symmetric invertible for A > 0 under our assumptions in the
proposition. Furthermore, there is Az(hy) = As(he) for hy > he > 0, since

As(hy) — As(hy) = (\/gg) B <62 Cah _ g2 %) =0

13



Chapter 2. The Wishart process

for hy > hy > 0. For h = 0, we have
A3(0)

“(V2) (vee) (Va-a)(ve)
(fea) (dee) () () (-0 ()
=2 < Cy +Ol)_1 = 0.
It implies then As(h) > 0 for all A > 0. Thus, we get our assertion from (2.9). O
Remark 2.4.9. For C; = 0, Proposition 2.4.8 implies that

Q1 (Verm+a) QT Q@ (VG+a) QT

v (k)= ; < ;

on [0,00), if the conditions in Proposition 2.4.8 are satisfied.

In [26], Gourieroux and Sufana have proposed a second approach to get the explicit
exponential affine representation of (2.4). In this approach, the parameters are determined
by a nonlinear matrix Riccati ODE.

Proposition 2.4.10. Let (3),5, be the Wishart process solving (2.2) with Q@ € GL4(R),
M e My (R), 8> d+ 1. Conditioned on ¥y =X € S, the conditional Laplace transform
(2.4) can be written as:

e [exp (TT (omm v @&du))] — exp (6 () + Tr[ (1) %),

where
%ﬁ? = (h) M + M4 (h) + 2¢ (h) QT Q1 (h) + Oy, (2.9)
dg (h) _ -
W == Tr[w (h) Q0 ], (2.10)

with initial conditions: 1 (0) = C1, ¢ (0) = 0. The closed-form solution for 1 (h) is:
v (h) =" + eap[(M +2Q7Qy") h]"

h
{(ca — ") 42 / exp[(M +2Q"QU") u]Q" Qeap[(M +2Q" Qy) u]Tdu}
0
exp[(M +2Q7Qy") hl,
where Y* is a real symmetric matriz which satisfies:
MTY* +p* M + 20*QTQu* + Cy, = 0. (2.11)

The closed-form solution for ¢ (h) is immediately deduced from the second differential equa-
tion:

-1

¢ (h)=Tr Uohw(u) duQQT} :

14



Chapter 2. The Wishart process

Remark 2.4.11. In [23, Appendiz 4], Gourieroux wrote (2.11) as

(207Q)" v+ (207Q) " M| [(207Q)" v + (207Q) " M|
+Cy— MT(2Q7Q) T M =0

1/2 —-1/2 1/2

and it delivers a necessary condition for the existence of a solution ¥* to equation (2.11):
Cy =M™ (2Q7Q) ' M.
Note that the necessity of this condition coincides with our previous statement (2.6).

To get the solutions of the ODEs system, Gourieroux solved the equation (2.9) for
Cy, = 0 at first and then provided the general solution. Hence this approach is called
the variation of constants method by Gnoatto and Grasselli in [22]. In [22], Gnoatto and
Grasselli still introduced the third approach, i.e. the method of linearization of the matrix
Riccati ODE, which is originally proposed by Grasselli and Tebaldi in [28]. For further
details and the comparison of these methods, we refer to [22]. Thanks to Proposition 2.4.6,
we have the conditions for the existence and uniqueness of the ODE system in Proposition
2.4.10. For readers who are interested in the existence and uniqueness conditions for a
generalized matrix Riccati ODEs, we refer to [43].

2.5 Wishart process and Wishart distribution

In this section we consider the relationship between Wishart Processes and Wishart Distri-
butions. We first introduce the definition of a non-central Wishart distribution:

Definition 2.5.1. Consider (3 independent random vectors Xi, ..., X5 with values in RY,
which are distributed according to a multivariate Gaussian distribution N (0, V). Let py, . .., jig
be B non-random vectors in R%. The distribution of

B
W = Z(Xri‘,ui) (Xi+ )"

i=1

is a non-central Wishart distribution with 8 degrees of freedom, denoted by Ws (u, V') where
_\B T

=iy Hik -

It is known that the Laplace transform of the Wishart distribution W ~ Wjg (u, V') is
exp (=T [0 (I, +2VO) ' ]
(det[I; + 2V O)])*?
for © € 54 (R) with I; +2V0O € GL,(R). Comparing (2.3) and (2.12), one gets that the

conditional distribution of 3J; is a non-central Wishart distribution with bounded conditional
moments (see [20, Theorem 4]).

Theorem 2.5.2. If the process (Xt),~, has the dynamic (2.1), then conditional on ¥y, Yy p
has the distribution Ws (u (h),V (h)) where

11t (h) _ 6thtehMT

E [e—T’F(@W)] —

(2.12)

h
V (h) _/o eMQTQeM ds.

15



Chapter 2. The Wishart process

The moments of a noncentral Wishart distribution can be classically obtained by dif-
ferentiating its Laplace transform, then as a consequence of Theorem 2.5.2; the first two
conditional moments of a Wishart process are given as follows (see [20, Proposition 9]):

Proposition 2.5.3. If the process (X),~, has the dynamic (2.1), then we have V1 <
i.j,k, 1 <d N

B (DD l20) = g ()" e ()" e (0 () g ()Y (1)
e (WY V (1) 4 e (W)Y V()" 4V (R)TV ()52
+ (V W)V (W)Y +V (R)*V (WY + e (R)7V (R + (h)klv(h>z’j> 8

B Var[Sem| S = (e (h) + BV (h))* = e (h)* + (ue () + B (h) Tr (e (h) + BV (h))
— e () Tr (pe (R))
E[Zt+h’2t] :Mt( )+5V( ),

where
Var(Sen|Zi = B [(Sern — E[SenlZ)% 5] -

For the general moments of a conditional central and noncentral Wishart distribution we
refer to e.g. [15, 45]. An analysis of the moments of Wishart processes and some functionals
of Wishart processes can be found in [27].

2.6 Some other properties of Wishart processes

Lemma 2.6.1. (Quadratic Variation of Wishart Processes). Let (), be a strong solution
of SDE (2.1) on [0,T'), where T = inf{t > 0 :det (X;) =0} >0 a.s., then

d<21k7 qu>t

Ll = 3, (QTQ), + Ea (Q7Q), + B (Q7Q),, + i (Q7Q),,

As a special case of [39, Lemma 4.7], one gets the following It6 Formula, from which
the It6 Formula for Wishart process follows directly:

Lemma 2.6.2. (Ito’s Formula). Let (Xy), be an Sy -valued continuous semimartingale on
the stochastic interval [0,T) with T = inf{t > 0:det (X;) =0} >0 a.s. and f:S] - R
a twice continuously differentiable function, then f (X;) is a semimartingale on [0,T) and

roa = ere ([wrotaen) L S [l ponan, x).

zkll

where V denotes the operator




Chapter 2. The Wishart process

Lemma 2.6.3. The infinitesimal generator associated with the Wishart process (Et>t20 m
(2.1) is given by, for ¥ € S :

A=Tr[(BQ"Q+ MEZ +XM")V +25VQ"QV],

where V is defined as in Lemma 2.6.2, i.e. V = (.ag-j) )
i) 1<i,j<d

Proof. See [20, Proposition 3]. O]

Lemma 2.6.4. Let (Rso x Sy x F,B([0,t]) ® B(Sq) ® F;) and (R*>?, B (R™>?)) be measur-
able spaces. If © : Rsg x Sg x F'— R4 (5,5 f) — O(s, X, f) is measurable and

|®®T(t7 27 f)| < CO(t7f)|Z|

for all (t,%, f) € Rysp X Sq X F with some bounded Cy and |X| := /Tr(XX) for ¥ € S,.
Then the process Zy = (Zy)1>o defined by

7, i= exp (/t Tr(O(s,S)dW?) + % /t Tr(067)(s, Es)ds)

0 0

s a martingale.

Proof. See [29, Lemma 4.2.]. O

2.7 A multivariate Wishart stochastic volatility model

It is well-known that the classical standard Black-Scholes model is not flexible enough to
create the “smile effect” that is a U-shaped relationship between the implied Black-Scholes
volatility and the strike prices for a given maturity. Furthermore, the standard Black-Scholes
model does not show the “leverage effect” either.

To cover these shortages of the standard Black-Scholes model, C. Gouriéroux and R.
Sufana have in 2004 presented a multivariate Wishart stochastic volatility model in [26]. The
model introduced below possesses a generalized drift compared with Gouriéroux’s model.

In our model the market consists of one riskfree asset with price process (Sy),s, and d
risky assets. The constant riskfree rate is r. The dynamic of the riskfree asset is

4s° — SOrdt, SO — 1.

We denote by (Si;),5q, 1 < @ < d the price processes of the d risky assets and by
(St)e=0 = (Se1, - - -, Sta) s, the assets vector process. The return of (S;)¢o follows a process
represented by log (S;),~,, which owns a Wishart stochastic volatility (3;),~,. The joint
dynamics of (log (S;)),s, and (3;);>0 are given by the following stochastic differential system:

dlog () = (1° + p (1)) dt + 22 dws, (2.13)
A3y, = (007 + M3, + 2, M7) dt + 22wy Q + QT (awy)" x;77, (2.14)
where (W;%) 00 (W7),50 are a d dimensional Brownian motions vector and a d x d Brownian

motions matrix respectively defined on the probability space (22, F, P). (F),5, denotes the

17



Chapter 2. The Wishart process

corresponding Brownian filtration. The entries between (W), and (W¢) =0 can be either

>0
uncorrelated or correlated. In the correlated situation, one represents Wfk = Wt(}c) and

Wey = pk’ijW(}ﬁ) + 1—,021.AW(2) where (Wf?) and <Wt(2)) , 1 < k1,5 < d are
’ ’ ’ t>0 t>0

t, 3V tig0 i
independent Brownian motions. Then one gets d(WS,, W7,;) = pradt, where (-) denotes
the quadratic covariation of two stochastic processes.

The parameter p° is deterministic and p : S (R) — R? is measurable, whereas 2, M,
Q are d x d matrices with €2 invertible. The parameter u (3;) can be interpreted as the risk

premium for an investment of assets S; and from
Et[d IOg St,i] - [M? + 2% (Ztﬂ dt) 1= 17 s 7d7
we expect that p; (3;) > 0,7 =1,...,d for risk averse agents.

Remark 2.7.1. The asset return dynamic presented by C. Gouriéroux in [26] is a special
case of (2.13) with

i (Et) =Tr (DzEt) s 1 S 1 S d,
where D;, 1 < i < d are d X d matrices. In this case the risk premium factor, Tr (D;%;),
1 <i < d, is a linear function of Xy;;, 1 < i,j < d. The conditions that p(%;) > 0 is
satisfied if D;, 1 < i < d are symmetric positive definite matrices (see [26]).

Example 2.7.2. The Wishart stochastic volatility model introduced by Gouriérouz in [26]
can be regarded as an extension of the Heston model to the multidimensional case. Recalling
that the one-dimensional asset return process (log (s;)),~, in Heston model is determined by
the stochastic process: -

dlog (1) = (= 5 ) dt + yzdW,

whereas the volatility process (z;)i>o0 follows a Coz-Ingersoll-Ross process:
dzi = Kk (0 — z) dt + /2 dWE,

where W, W7 are Brownian motions with correlation p and u, k, 6 and & are constants in
R. One can easily get that the dynamics above are specifications of (2.13) and (2.14) in the
unidimensional case.

For further details of Heston model we refer to [31, Section 6.7.] and [30].

We denote ¥y = (X4 k), <) 1cqg and write the dynamic of X, in (2.14) as

d d d
Ao =Y (Qh + MySpa + Do) dt+ > 5707 (dW7), Que + > QF (dWy)L 5%
o o o (2.15)

Moreover, using Itd’s Formula, we write (2.13) as
S, = diag (S)) B (Zy) dt + diag (S,) Sy 2dW? (2.16)

with

1
B(S0) =+ p(S) + 550,

18



Chapter 2. The Wishart process

where Z,El) is a d dimensional vector with (2?)) = Yiii-
1<i<d

We assume that an agent can invest into this financial market and define the portfolio
strategy process (7;),s, as a R¥!'-valued progressively measurable process with respect to

(Ft);>0- We denote 7, = (72, Ty - ,Wt,d)T, where 7 represents the proportion of wealth
invested in the riskfree asset SP, i.e. 7 = ;;;?,, where (X]) denotes the portfolio wealth
t

process and (¢?) denotes the process of wealth amount invested in the riskfree asset S°. In
the same way, we define 7, ; as the proportion of wealth invested in the i-th risky asset for
1 <14 < d. We denote the portfolio strategy of risky assets by

Ty = (ﬂ-t,la - ,Wt,d)T

and one gets obviously 70 + 711 = 1.
Then the portfolio wealth process (X/) owns the following dynamic:

S,
t St

iy ™ s OdStD

dXt :Xtﬂ' +X ﬂ-tF' (217)
t

Applying the dynamic (2.16), it yields

dXT
X7

= (xI B (%) + n0r) dt + 775w
= (xl (B(Z)) — 1) +7) dt + x5, 2dW?, (2.18)

with X7 = (. It is assumed that all coefficients of SDEs (2.14), (2.16) and (2.18) are
progressively measurable with respect to the Brownian filtration (F;) and that the SDEs
have unique solutions. For (2.16) and (2.18) the latter requirement is met if [33, p. 54]

T
/ (1B () [ + [ISY2[2) ds < oo a.s. (2.19)
0
and
T
/ (|7rST (B (%) — 1) +r|+ ||7TZZ;/2||§) ds < 00 a.s. (2.20)
0

For (2.14) there exists a unique global strong solution on S (R), if QOQT > (d+1)QTQ
according to Remark 2.2.4. The solution of the portfolio wealth process (X]) is given as
follows:

T 1 T
X7 = XTexp (/ [WST (B(Z,) —1) +7 — 5||7TST2;/2||§} ds + / WSTE;/?de) . (2.21)
t t

Denote by U : R, — R a (strictly increasing, strictly concave) utility function, we define
admissible portfolio strategies with respect to U (-) in the following sense:

Definition 2.7.3. (admissible portfolio strategy) A portfolio strategy (m:),s, is said to be
admissible if the following conditions are satisfied:

(i) (7t)y=q s a progressively measurable process with respect to (Ft),~q;

19



Chapter 2. The Wishart process

(i) for all initial conditions (to,xo, ¥o) € [0,00)* x Sy (R), the wealth process (X[),, with
X§ = g given by (2.19) has a pathwise unique solution (X['),5o;

(iii) Etomo=o (U (XT)) < 00;
(iv) XTI > 0.

Note that under the assumption (2.20) the conditions (i), (ii) and (iv) for (7)o to be
admissible are satisfied.

20



Chapter 3

Optimal portfolio strategies in the
uncorrelated Wishart volatility model

This and the next section are devoted to solve the optimal portfolio problems of maximizing
utility function from terminal wealth with respect to a utility function U. The value function
of the optimization problem reads as

@ (t,2) = max B'* [U (X7)]

with z being the portfolio wealth at .

In this section we consider the optimal portfolio problem in the setting of a multivariate
Wishart stochastic volatility model with uncorrelated (W) and (W7), i.e. the case of
pri; = 0,1 < k,i,j <d (see Section 2.7 for the notations) and solve the optimal portfolio
strategies for logarithmic utility

U (x) = log (z)
and power utility
U<x>=%, ¥ <1, 7 #£0,

respectively. We will proceed in Section 3 with the correlated case, i.e. 41 < k,i,7 < d,
Pk,ij # 0.

3.1 Optimal portfolios in the model with one risk-free
asset

We face now the Wishart model introduced in Section 2.7. The market consists of one
riskfree asset with the price process (S?) evolving as

45" = SOrdt, SO — 1

and d risky assets. r denotes the constant riskfree rate. The price processes of the d risky

assets are denoted by (S);50. 1 <@ < d with dynamics as in (2.14) and (2.16). Then the
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model

portfolio wealth process (X[7) owns the dynamic (2.18). Assume that the conditions (2.19),
(2.20) as well as

T
g | [y P
t

are satisfied and QQ7 = (d+1)QTQ, it follows that the SDEs (2.14), (2.16) and (2.18) own

unique strong solutions and ftT

< 00 (3.1)

7TSY2dWS is a true martingale.

3.1.1 Optimal portfolios for logarithmic utility

For the utility function U (z) = log (), the value function reads as

O (t,z,%) = r{la? B> (log (XT)). (3.2)

Since (2.18) is assumed to possess a unique strong solution (2.21), we can replace X7 in
(3.2) by (2.21) with X] = x, it yields then

max E“* (log (X7))

(7s)

T
1
:I?aii (logx + Bt [/ 7l (B(Zs) — 1) +7 — §||7T$TE§/2||§ds} +
T ¢

T
A i { / Ty z;/%zwf} ) (3.3)
t

T
1
=log z + max (Em’E [/ I (B(Z,) —r1) +7r— §\|n52§/2\|§dsD
t

s

T
1
=logz + E"™* [/ max (WST (B(Xs) —r)+7r— 5”71’?2;/2”%) ds] : (3.4)
¢

s

where max(.,) is a simplified representation of max Note that we have assumed

Ws)tgng'

that ftT WSTZi/QdWSS is a true martingale, thus, we can cancel the last term in (3.3).

Proposition 3.1.1. The optimal portfolio in the above model with logarithmic utility is

T =3 (B(X) - 1) (3.5)
giwen (m}) satisfying (3.1).
Proof. Denote
1
H () =" (B(Z) ~ 1) +7 — o|ln 5?3

and calculate the first derivative and the Hessian matrix of H (), we get

oH (m)
5 = B(2) —r—n
and 52
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The Hessian matrix is negative definite, since Wishart matrix Y is positive definite. Thus,
H(m) attains its local maximum at 7 with OH () /Or = 0. For ||7|ls — oo, it is obvious
that H(m) goes to negative infinity. Thus, the optimal portfolio strategy 7* maximizing
H (m) is:

=21 (B(Z,) —r)

given ¥ satisfying (3.1). O
For the case of B(X) = r + Yv with a v € R? it is evident that 7* = v and the

condition (3.1) is satisfied.
Replacing the notation 7 in (3.4) by 7} and applying Fubini’s theorem, it yields

max B (log (X7T))
r 1
—toga+ [ () (B(E) < x) 4 gl ) ) ds
. 2
1 T
~logz+7(T'— 1)+ 5 / Etos ((B () — 1) 7 (B(D,) - r)) ds.
t

with ]
B (Se) = i+ 1 (Zs) =+ (3s) + 53

as in Section 2.7, where £ is a d-dimensional vector with (2(1))1 cicg = Y. For the further
computation we need to calculate the conditional expectation of the function

f(2)=(B(Z)—n)"' 871 (B(Z,) -1), R* SR

S

We refer to [17, 16, 38, 46] for the conditional expectation of the moments of real inverse
Wishart distributed matrices and [45] for the moments of central and noncentral Wishart
distributions.

3.1.2 Optimal portfolios for power utility

In this section we consider the optimization problem with power utility function U (z) =
%, v < 1, v # 0. The value function of the optimization problem now reads as

X Y
O (t,z, %) = I?a§< Bt (@) . (3.6)
s ’y

Replacing X7 in (3.6) by its solution (2.21) with X[ = z, we get

2 T 1
(15, %) = 8% | Zoxp (3 [ [aT (B2 1) 1 = GIaTE0R s
Ts t

T
+ / nst;/ZdWsS)] .
t

From (2.20) it follows automatically that

T
P [/ w722 gt < oo} _1, 0<T <.
0

23



Chapter 3. Optimal portfolio strategies in the uncorrelated Wishart volatility
model

Let us define a Radon-Nikodym derivative

d T T 2 T
=8| —eo (o [ arsiavs - 3 [ e (37)
5 ¢ ¢

Z5 = P

and first assume that (Z]) is a martingale, then, applying Girsanov theorem we get

O (t,x,%)
B ELoT z” r T L r 12112 | Y -Ts1/2)2 d
=1max Q~ —exXp | Y Ty (B (ES) —I')—FT’——”TI'S Es ||2+_||7Ts Zs “2 S
(ms) Y t 2 2
= max E2> xjexp T7 T (B(Zs) — 1) +7r+ 1o 17TTE Ts| ds (3.8)
) &Ly ' ’ ’ 2 ' '

Remark 3.1.2. Note that under Q™ the distribution of (X;) is not changed, since (W7) and
(W2 are uncorrelated.

Proposition 3.1.3. The optimal portfolio in our model with power utility is achieved at 7
with

7T* — Z_lr_ B(ES)

- (3.9)

fory <1, ~v#0.

Proof. We first assume that (Z]) is a martingale. Denote

—1
F(m) =7 |77 (B(S) =) +7+—nlom.

we consider the extreme values of F(7). The first derivative and the Hessian matrix of F' ()
are given as
OF ()
on

—y(B—r1+(y—1)Zn)

and 52 ")
F(r
WZW(V—UE

respectively. For 0 < v < 1, the Hessian matrix v (7 — 1) ¥ is negative definite, which implies
that the multivariate quadratic function F' (7) attains its maximum at 7 with 0F (7) /Om =
0. For negative 7, the Hessian matrix is positive definite, it follows that the multivariate
quadratic function F'(7) owns a minimum point. Taking % into consideration, we get

x_;exp (/tT F(Ws)d5> < x—fjexp (/tT F(W:)d5> (3.10)

with
7T* — Z_lr B B(ZS)
S S P)/ _ 1
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for v < 1, v # 0. Note that by (3.8) we have

y T
®(t,2,%) = r{1a§< E&f’z {Ef@fz [x_ exp (/ F(Ws)ds) ‘ (W) t<s<T:|:|
s 8 t T

and the inequality in (3.10) yields

. T
E(Sf’z {x_ exp (/ F(ﬂs)ds)
Y t
<Et,x,2 x g F * d Wo‘ _ CWU
=LQr VGXp \ (ﬂ.s) S ( s) t<s<T | —
with C"” € R. Thus, we get

ro T
@ (t,2,5) =B~ | = exp ( / F(W:)ds)l
LY ¢
Moy T 2
—pe® | o (/ (v (=) (B () = 1) + 97+ 7@“”5”:) d)]
LY ¢

—ptes %7 exp ( /t ' (m« - ﬁ (B(2,) - ) s (B(Z,) - r)) ds)] .

(V7 cver|

Note that ((ﬂ*)tTEtI/ 2) and (W) are two independent processes, since (W¢) and (W)
are assumed to be independent, it yields then by [36, Section 6.2, Example 4] that the
process (Z) in (3.8) is a martingale indeed. This concludes the proof. O

For the special case B () —r = Yv with a v € R? we have

O (t,z,%) = gEt’E {exp (/T ('yr _ T Ty v) ds)}
o g ‘ 2(y-1)
v yr(t—T) T
S o {exp (Tr [/ F(l)ZSdS] >]
Y t

ol )VVT. Denote

2(y—1)
V(%) =E" {exp (Tr MT r@)zsds] ﬂ , (3.11)

we have the following proposition:

with [V = —

Proposition 3.1.4. Let us denote h =T —t and

-1
kY (h) = — (\/ C’Q(l) cosh (\/ Cg(l)h) + Cp sinh (\/ C’é”h)) :
(\/ Cél) sinh (\/ Cél)h) + C’fl) cosh ( Cg(l)h)> ,

051) =Q (_ZF(l) 4 MTQlefTM) QT,
chZ_o (MT (Q"Q) "+ (@) M) o,

2
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Assume that

QQ" € GLyR), -2V + MTQ'Q "M =0, iV +cM =0 and TW £o0,
then, the explicit solution of (3.11) is given by
V (t,%) = exp (¢ (h) + Trly™ (n) X))

for all t > 0, where the functions ¢V and vV are given by:

- CS);“(” Q™ MT(Q"Q)” - (Q'Q) " M

(b(l) (h) — _Tr <QQTMT (QTQ>_1 + (QTQ)_I M) h— %TT (QTQQTQ1~

4

(@) N (@cosh (@h) + OV sinh <@h>)] )

with ™M (0) = 0, ¢ (0) = 0. 0 denotes a d by d zero matriz.

log

Proof. The proposition follows directly from Corollary 2.4.5 and Proposition 2.4.6. O

Remark 3.1.5. For I = 0, we have obviously V(t,X) = 1. The reason that we treat this
case separately is explained in Remark 2.4.4 a).

3.2 Optimal portfolios in the model without risk-free
assets
In this section we consider the uncorrelated Wishart volatility model without risk-free assets.

We face a Wishart model with only d, d > 2 risky assets. The price processes of the risky

assets are denoted again by (S;),5(, 1 <4 < d with dynamics as in (2.14) and (2.16), i.e.

S, = diag (S,) B (3y) dt + diag (S,) Sy 2dW?,
Ay, = (QQF + M3, + 2, MT) dt + 22aweQ + QT (dwy)" v,
Let us denote our portfolio strategy by

T = (T, 77Tt,d)T7
one gets directly 771 = 1. Then the portfolio wealth process (X[) follows the following
dynamic

=Ty ——
X7 St

= 1l B(S)dt + 775 2dw? (3.12)

with X = xy. Recalling that in the previous model with one risk-free asset, the portfolio
wealth process (X[) evolves as (2.18), i.e.

dXT
= (7l (B(Z)) = 1r) +7) di + 7[5, 2dW.
t
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We note that (3.12) is actually (2.18) with r = 0. Set
A= {(m)|m e RY 71 =1, Vt €[0,T]},
then, our optimization problems read as

t,x,> g
max £ (log (X7))

for logarithmic utility and

max Et,a},E (X%)W
TeA Y

for power utility, respectively. We face now two stochastic control problems under the con-
dition that there is no risk-free asset in the market. Note that such portfolio strategies take
values in a special closed, convex subset of R?. Cvitani¢ and Karatzas [12] established ex-
istence results for optimal portfolios and discussed extensively several cases of optimization
problems with portfolio strategies constrained to closed, convex subsets of R?, such as opti-
mization problems with no short-selling and optimization problems in incomplete markets,
etc.

As in Section 3.1.1 and Section 3.1.2, the optimal portfolios can be derived through
replacing X7 by its unique solution, we get then

T
1
max B (log (XF)) = loga + B> [ [ ma (wsTB (5) - —waz;/?rr%) ds]
TeA ¢ TeEA 2

and

X7)” i r —1
max F5" (@) = max Eg™ [x— exp (/ v [WSTB (8,) + 2 5 WSTZSWS] ds)}
v t

TeA y TeA

from (3.5) and (3.9) respectively. Thus, the optimal portfolios in the model without risk-free
assets is achieved at

1
i = 7%(2s) = arg max <7TSTB (3s) — §||7r52i/2”§> (3.13)

s TeEA

in the logarithmic utility case and

2l T -1
i =m"(3,) = arg max ELo [x_ exp (/ Y |:7TZB (35) + 1 5 WZESTFS:| ds)} (3.14)
e g t

in the power utility case with v < 1, v # 0 under the assumption that (3.7) is a martingale.
We will solve the problem (3.13) and (3.14) in the following lemmas. First let us consider
the optimization problem (3.13).

Lemma 3.2.1. Let us denote
zit= (sii)1<ij<a-1 € RN (s, = (Bi(%s))1<i<a—1 € R,
_ N\T _ _
57(d,) = (Beadi)igieas € R T0(1d) = (Bsid)1icas ERT
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The optimal portfolio with logarithmic utility in the model without risk-free assets, namely
the solution of (3.13), is achieved at (7T;i), 1 <i<d with

(72 ...,W:,d_l)T =: (Wd_l):, Teq = 1— ((Wd_l):>T 1 with 1€R™

s,1

and (Wdfl): 18 determined by:

(791 = (S0 4 8011 -5 (L d)1T — 15 (d,:)

’ (Bdil(zs) - Bd(23>1 + Es,ddl - 2;<:7 d)) :

Proof. We note that the optimization problem

1
max (ﬂ'TB () — §H7TT21/2||§>

mrl1=1

can be written as
max P(7%)

pd—1
with
1
P 1) ::< d—l)T Bi-1 <1 _ (Wd—l)T 1> B, — 5 ( d—l)T -1 d-1
1 2
- (1= @ ) - 5 (1= (=) 1) S
Calculating the first derivative and the Hessian matrix of P(7?71), we get
OP(m?1) 7 1 4 _ _ _ _ _
T =B 1B, -2 (L d) 2 (L d) 1 T T 18 (d, )t !
4+ Ygal — EddllTﬂ'd_l
and
82
———P(r" ) = -5 = 5,117 + 2 (L d)1T + 187 (d, ).
d (rt-1)

Let us denote M := X%t + 3,117 — ¥7(:,d)1T — 1X7(d,:) and represent ¥ by block
matrices
Y-l ¥ (:,d)
Y= - ,
x7(d,:) Yad
we get that M is the first component on the diagonal of the matrices product
I -1 I -1
( _1T 1 >2( _lT 1 ) ) (315)

where I denotes the (d — 1) x (d — 1) identity matrix.
We know that for Va # 0 € R?!, there exists a b € Rt with

I -1 I -1
T T
a (—lT | )E(—lT 1 >a—b2b>0

28



Chapter 3. Optimal portfolio strategies in the uncorrelated Wishart volatility
model

for ¥ € S, thus, we get that (3.15) is a symmetric, strictly positive definite matrix. It
implies then M is also symmetric, strictly positive definite, namely M € S | (R).

Thus, it follows that the second derivative of P(7?~!) is negative definite. Then P(7¢!)
attains its local maximum at (ﬂdil)* with

oP ((ﬂ'd_l)*> /a']r = 0.
For ||m®~ 1| — oo, it is obvious that P(7¢"!) goes to negative infinity. Thus, the optimal
portfolio strategy (7¢~!)" maximizing P (7¢7!) is:

-1

(7)) = (54 4 Saa11” -3 d)1T 155 (d, )
(BYNE,) = Ba(R)1 + Seaal — X5 (5, d)) .

The solution of the optimization problem (3.14) is given by the following lemma.

Lemma 3.2.2. Let us define
2L BYTNE,), B.(d:), Ei(hd), (77N and 7,

as in Lemma 3.2.1. The optimal portfolio with power utility in the model without risk-free
assets, namely the solution of (3.14), is achieved at ¢ with (qu): given by:
* 1
(7). = ET;I (BTNZ) = Ba(Z)1 — (v = D)0l + (v — 1D (5,d))
with
T, =2 48, 0117 — 27, d)1T — 13, (d, ).

Proof. Denote
f}/ R

Q(T) =~ |:7TTB (2) + 17rTz7r} :

then, by my =1 — (ﬂdil)T 1, we get
Qm) = Q (7)) =4 |:<,n_d—1)T Bi-1 4 <1 _ (Wd—l)T 1> By+ ’YT—l (ﬂ.d—l)T $d—1d-1
Ho -1 (1= (=) 1) (@# ) 5 a) + 1E (1- (@)1 zdd} .

The first derivative and the Hessian matrix of Q(7?71) are given by

0Q (w1
—Q&(le ) ¥ (B =1Bs+ (v = )X (5,d) — (v = 1)Zaal) + y(y — )T
and
L (x*) =v(y=1)7
a(wd71)2
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respectively. Recalling that T € S | shown in Lemma 3.2.1, we get that for 0 < v < 1,
the Hessian matrix v (7 — 1) T is negative definite and for negative 7, the Hessian matrix is
positive definite. Thus, we have again

Zoo ([ @trtas) < Do ([ () as) (3.16)

with
(Wd_l): = st_l (BNS,) = Ba(S:)1 = (v = D)Ssaal + (v — 1)Z; (1, d)) .

for vy <1, v #0.
Note that ((Wd_l)*)?Z;/ 2) and (W) are two independent processes, since (W¢) and

(W) are assumed to be independent, it yields that the process (Z ) in (3.7) is a martingale.
As in Proposition 3.1.3, it follows that (Wd_l): solves (3.14). O
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Optimal portfolio strategies in the
correlated Wishart volatility model

This section is devoted to the study of optimization problems in the correlated Wishart
volatility model with one risk-free asset. The word “correlated” implies that the Brownian
motions (W) and (W) are correlated with correlation coefficients py;; = d(W5,, W7,;) /dt.
In our correlated model, the processes (S?), (S;) and (X[) evolve as in Section 3.1.

4.1 Optimal portfolios for logarithmic utility
For the logarithmic utility function U (x) = log (x), we deal with the value function

® (t,2,%) = max B> (log (X7T)) (4.1)

in the same way as in Section 3.1.1. Replacing X7 in (4.1) by its solution (2.21) with
X[ =z, it yields

T 1
rfla§< B> (log (XT)) = logx 4+ E»™> [/ r{la§< (WZ (B(Xs) —r)+7r— 5“7{2;/2]]%) ds] :
Ts t Ts

Denote

1
H(m) =" (B(2) —x) + 7= S =" S

and calculate the first derivative and the Hessian matrix of H (7), we get the optimal
portfolio strategy:

Corollary 4.1.1. The optimal portfolio in the forth model with logarithmic utility is
7= (B(S,) - 1) (4.2)
given (m¥) satisfying (3.1).

S
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4.2 Optimal portfolios for power utility

We assume that p,;; = 0 for ¢ # ¢ and denote

P -+ Pud P
(Pggi)i<qi<d = (Pgili<qj<a= | + + + | =1 (4.3)
Pd1 -+ Pdd P

with p = (p11 ... p1a)" and p; = py;.

We apply the Hamilton-Jacobi-Bellman (HJB) principle to obtain explicitly the optimal
portfolio and the value function in some parameter settings. We discuss specially the case
that the assets drift is a linear function of the volatility function, i.e. B(X) —r = v
with v € R%. In this case, a candidate of the value function is given by a Feynman-Kac
representation and the conditions for its boundedness are studied and given in Proposition
4.2.7. Under these conditions we get the explicit expression of the value function. Finally,
a verification result for the obtained value function candidate is presented.

4.2.1 The HJB equation and the optimal portfolio strategy

We consider now the optimization problem with power utility function w(z) = %, v <
1,7 # 0. The optimization problem of the investor now reads as
X Y
™ v
and its corresponding value function is denoted by
Xr v
® (t,z,%) = max B> (@) (4.4)
™ v

with »; = ¥ and X; = . Then we face a multidimensional control problem with state
process (¢, X¢, 2¢),~0-

We assume that G (t,z,%) is a candidate for the value function, then from Lemma
2.6.2, one derives the Hamilton-Jacobi-Bellman equation as follows:

O{G+Tr ((VG) (" + MS +XM7")) + r29,G + sup {mrT (B —r1)0,G+

TERA
d

d

1diX 1 d(Sy, & (S, X

5 <dt >8m’IG - 5 Z < “th pq) 8211«2qu + Z %8§31k,xG} = 0, (45)
l7k7p7q:1 l,k’:l

where the terminal condition is G (T x, %) —x'y, v < 1,7 # 0. The notation 9 denotes

the partial derivative, i.e. 0,G = =G (t,z,%) and we denote

0
V= ( ) .
azij 1<i,5<d
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Note that since ¥ is symmetric, we have G(t,z,%) = G(t,z,%7T). It follows VG = VIG.
Applying Lemma 2.6.1 and by direct calculation, one gets

d
Z d Elka pq (92 5 G
1k»2ipq

l,k,p,q=1
d

Z (Elp QTQ + Sk (QTQ)qz + g (QTQ>k:p + Lk (QTQ)lp> aEzk,quG

7y (z_:v QTQ)V) G +2Ir (EV(QTQ)V) G+ Tr (XV(QTQ)V) G
=ATr (ZV(QTQ)V) G

and

d Elkv

Mg

A X) g

~ 7
I

Oy, =G
dt

<x (7 S2AWS) (VAW Q),, + (e SH2aWS) (QT (awy)T £12) )

1,k=1

d
>3 ( 7w BRAWE S AW Q + m SR AWE Qud W, j,?)

l,k=1 \pqij=1

e,
dt

d
v Z ( Z 211)422;/262914% ij + WPEI/QQH JIIQZPq JZ> Ov,2 G,

l,k=1 \pqij=1

d
1/2 1/2
o3 (30 o, sy o

l,k=1 \pqij=1

=2z7" .V (Q" p) 0,G. (4.6)
Then, the HJB equation (4.5) implies

oG +Tr ((VG) (QQ" + ME 4+ XM")) 4+ rzd,G + 2 [Tr (EV(Q'Q)V) G]
+ suﬂg {wa (B—r)0,G+ %27TTZ7T8%1G + 227" SV (Q7 p) 81G} = 0. (4.7)
TE
We use in the following the Ansatz
Gt o) = x—;V(t,Z), v <1,y £0

together with the terminal condition V (7', X) = 1. Then plugging in the HJB equation (4.7)
yields that V' (¢, %) solves

% [0,V +2Tr (SVQTQV)V + Tr (VV) (" + MX +XM7))]
+rV 4+ sup {77 (B—1)V + 1= LaTsnV 4 205y (Q@"p)V p =0. (4.8)

TERC N v
=F(m)
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Proposition 4.2.1. The mazimizer of (4.8) is given by

W*(t,gt)zzt_l ((B(Zt)_ )V(tazt>+N(Zt))’ O<t§T (49)

(1 - 7) 4 (ta Et)
for v <1, v # 0 with
N(%) =25,V (Q"p) V(t, %) € R™ (4.10)

Proof. To solve the optimization problem, we calculate the first derivative and the Hessian
matrix of F (7). By direct calculation we derive

OF(m)=V(B—r)+(y—1)X7V +N
with
N =20, (7"SV (QTp) V) =25VQ"pV € R”.
The Hessian matrix of F' (7) is given by
Op P (M) = (y—1)2V.

For |||l — oo, it is obvious that F(m) goes to negative infinity. Since the Hessian matrix
of F(m), i.e. O ,F (m) is negative definite for v < 1, v # 0, it follows that the multivariate
quadratic function F' (7) has a maximum point and the maximum is achieved at 7* satisfying
O, F (m*) = 0. We have then

B(t,YX)—r)V (t,2)+ N (t,2
W*(t,E):E_I (( (7 ) I‘) (7 )+ (7 )) (411)
-V L)
for v < 1, v # 0. Note that ¥, is always invertible, since it is a symmetric positive definite
matrix. ]

Plugging 7* (¢,%) in (4.8), we get
sup (F(m)) = F(m")

(B—r)"V 4+ N7 —1B-r)'V4+NT__ (B-r)V+N

- S B-1)V+ 2L

(1-7)V _ 2 (1-7)V _ (1-7)V
(B—T)TV+NT -1
i-v_
1-~4((B-r)V+NT'__(B-1)V+N
=— ( v =V v). (4.12)

The last equation in (4.12) is derived from I + [II = —2II. Thus, (4.8) reduces to
OV +2[Tr (SV(QTQ)V) V] +Tr (VV) (QQ" + MY +XM™))
g N y-l(p 2 Ty—-1(p Ty—1 _
+wv+—2(1_7)v(<3 'S (B 1)V +2NTS (B 1)V + NT% N) 0.
(4.13)
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4.2.2 The case of the general asset process (5;):>

In this section, we want to solve the partial differential equation (4.13) for the case that the
assets process (S;);>0 owns assets dynamic (2.16). We assume that p = p1 and the matrix

() admits
Qi,:) =k -Q(1,:), keR, 2<i<d.

Set k1 = 1, we have

QT pp" Q= p*Q"117Q = p’Q"Q

with
2
(E?:l k%)
p2 — ,52 d ’
Zi:1 k?
since
(QM117Q) =Y QuQjg = Y _ kik;Q1,Q1
ij ij
and

(@QQ),, = > _ KQuQi,
Then, by (4.10) one gets

NTS™IN
=4pTQVVE-VVQTp
=4Tr (p"QVVE-VVQ p)
=4p"Tr (XVVQTQVV).
Plugging the above expression for NTX !N in (4.13), we get

OV +2[Tr (EV(QTQ)V) V] +Tr (VV) (20" + M + =M™))
bV 4+ W (B-1)'s ' (B-x)V24+ 2N (B-1)V)

2vp _
i FIr (BVVeIQVY) =o.

In the following we make a further transformation by
V(D) =v(tD)
for a parameter 0 to be determined. Differentiating V' (¢, %) yields

oV =607t 05,V =00 0g, v,
050,50V :(5l/6_lazlk’zpq7/ +0(6—1) V‘S_Qﬁglkyﬁgpqy
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for 1 <1, k,p,q < d. Plugging the above derivatives in (4.16) leads to
50w’ 4+ 200° 1 [Tr (SV(QTQ)V) v] + Tr ((QQF + MES +EM™ + H) Vv) 677!

# (ot g B0 B )

2(1=1)
i PN 0T o) —
+(25(5 1) + = ) Tr (EVrQ'QVr) =0 (4.17)
with
_ 7 T T T
H = = (Q@"p(B—r1)"+(B—-r1)p"Q). (4.18)

The H in (4.18) comes from the term 2(1 7 2NTY =1 (B — 1)V in (4.16) and the expression
for H follows from the following computation:

g Ty—1 _r
—(1_7)]\/2 (B )

2 Q) (B

(2
(s

WQTp<B - r)T)

VUQTp(B - r)T> 60

1 (L [@T (B 0"+ (Qpl5 — 1)) ] Vo) v = T (V) 0
Multiplying both sides of (4.17) with M%l yields
0=0w+2Tr (EV(QTQ)V) v+ Tr ((QQ" + M+ SM") Vv + HVv)

r T «—1 0 — 25 T
(4.19)

If we set

_ (=)
T ey (4:20)

then (4.19) becomes a linear partial differential equation, i.e. (4.19) reduces to
O +2[Tr (EV(QTQ)V) V]

+Tr((QQT+ME+ZMT+H)Vu)+(¥+ﬁ(3—r)TZ_1(B—r)>y:0
—7

with terminal condition v(7,%) = 1. Thus, we have shown:

Theorem 4.2.2. Let p = 1p, Q satisfy (4.14) and p is given by (4.15), then if we use the

transformation
”

G(ta,5) =" (%), 7<1 7#0
f)/
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with § given by (4.20), the HJB equation for the optimization problem (4.4) reads as
O +2[Tr (EV(QTQ)V) V]
+Tr ((QQF + MS + SMT + H) Vv) + (%—Fﬁ(B—I’)TE_I (B—r)) =0
-7

with terminal condition v(T, %) = 1.

Recalling that in our correlated Wishart volatility model, the volatility process (%)
evolves as

A% = (QO7 + MY, + SMT) di + 5,2dW7 Q + QT (W) 5,

under the physical measure P. We denote a new measure by P associating with the following
Radon-Nikodym derivative:

dP ! T o 1[0 2
Zy = i . = exp (/t Tr (6" (Z,) dW?) — E/t 110 (s) || d3> (4.22)
with
0(3) = ﬁ (=2) 7 (B(E) - 1) p". (4.23)

Then, we have the following proposition:

Proposition 4.2.3. If the Radon-Nikodym derivative (Z;) is an (F;)-martingale and if

5(t, %) = E>t [exp < /t ' (% + ﬁ (B(Z,) —1)" S7H(B(Z,) — r)> ds)} e C2 (o)
(4.24)

with o = [t, T] x S4(R), then, the solution v (t,%) of (4.21) has the Feynman-Kac represen-
tation U(t, %), where E denotes the expectation under P.

Proof. Let us first identify the dynamic of () under P. From (4.22) we know that
t

We — e —/0 0(5,) ds
is a d x d Brownian motions matrix under P by the Girsanov theorem. We can also check
that the equality

21200 + QToTYY? = H (4.25)
holds. Thus, it yields

Ay = (QO7 + MS, + XM7Y dt + 22awg Q + QT (awy)' v,
. - AT
= (QQ7 + M3, + S, M" + H) dt + 512dW7Q + Q7 (th") n1/2, (4.26)
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i.e. the Wishart process (X;);>o possesses the Wishart dynamic (4.26) under P.
We get then for f € C? (S (R)),

(ANHE) =2 [Tr (EV(QTQ)V) f] + Tr (" + MS +SM" + H) V)

under P by Lemma 2.6.2. Then, the differential equation (4.21) can be written as
r _
Atl/ = —atl/ — (% + ﬁ (Bt — I‘)T Zt 1 (Bt — I')) v,
v(T,X) = 1.
Applying the theorem of Feynman-Kac representation in [33, Theorem 3.26.], we conclude

that the representation in (4.24) is the solution of (4.21) with v(7,3) = 1 under proper
conditions. O

Remark 4.2.4. a) Note that for the cases that B (X5) —r =0 and B (X5) —r = >y with
v € R, we can easily get that (4.22) is a martingale and (4.24) belongs to C2 (o).

b) The condition in (4.24) is not generally satisfied. We refer to Korn & Kraft [3/,
Proposition 3.4] for a counterexample in the setting of Heston model.

4.2.3 The case of B(X) —r =3v

Since for general B(Y), it is not possible to compute the expectation or verify the solution,
we consider in this section a special case of B(X) satisfying B(X) —r = Zv for a v € R%
We drop the former restrictions on @ and p,;; (i.e. there is no p = p1), but the correlation
coefficients py;j, 1 < q,%,7 < d are still assumed to satisfy p,;; = 0 for ¢ # ¢ and we still
have (4.3). The asset dynamic (S;);>o can now be written as

a$, = diag ($) (v + %) dt + 22w (4.27)
The differential equation (4.13) now reads as

OV +2Tr (EV(QTQ)V)V +Tr (VV) (QQ" + M+ XMT)) + 41V

Y T 2 T Tv—1
_— vV IN* vV +N-X7"N) =0. 4.28
*3 1-7)V (VIEVVE 4+ 2NTVY o ) (4.28)

with N = 2XVQTpV given in (4.10) and V(T,X) = 1.
Theorem 4.2.5. The partial differential equation (4.28) given initial value V(T,%) = 1
possesses the following solution in case that the expressions are finite:

V(t,XE) =exp (¢P(T —t) + Trp@(T — 1)x]), (4.29)

where (T —t) € R and v P (T —t) € Sy are solutions of the following Riccati equations
system:
(T — 1)

y =T — )M + MTYP(T — t) + 20T — ) QT QY (T — t) 4+ T,

(4.30)
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_—d¢(2) EZJ; —t) _ Trip@(T — )QQT] 4 ~r (4.31)

with

M=M v T T  ATAH _ T 8 T T p__ e
+(1_7)Q pv., QQ QQ+<1_7)Q pp Q, ="

and the initial conditions: ¥ (0) = 0,¢?(0) = 0. The notation 0 denotes a d by d zero
matriz.

Proof. We simply verify that V (¢, %) given in (4.29) satisfies (4.28). We note that

(A8 — 1) (T = 1)

VV = V(T —t)

and
2
BV = VOO(T — )02 (T —1).

The left side of (4.28) reduces to
T(t) =0,V + 2T (SV(QTQ)V)V + Tr (VV) (QQ" + ME +XM")) + 4V

v T 2 T Ty —1
_ vV IN* VvV + N* XN
+2(1_7)V(V vVe 4 vV + )

with
N =28V (Q"p) V. (4.32)

Plugging the derivatives into Y (¢), we get

@7 — @(r —
T(t) =V (—CM) (df D 1 [—Cw g ‘) ED +2Tr (ST - )(QTQW(T — 1)) V

+VTr (T —)(QQ" + MS + SMT)) +4rV+
T - 5 (VIEV A+ 4pTQUIT TV + 4pT QU (T = ZU(T - Q")

@(T — @7 _
—v (W +Tr {Wz] + 277 (ST — 1)(QT Q) (T — 1))

+Tr (YT — 6)(QQF + MY + SMT)) + yr+

+

+ 2(17_ ekl (VISv +4pT QU (T — t)Ev + 4pT Qu@(T — )T — t)QTp)) ,
Note that
2(17_ . Tr (VTEV) =T1r (fZ) ,
v @ _
20— Tr (4p" QU (T — t)Tv)

__ 7 r (vol O (T — Lr@)— T
(1_7>T (vp" Qu(T t)E)—’_(l—’y)T (T — £)Q" pv™Y)
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and
T (4p"QUA(T — 1) (T — 1)Q" p)
2(1 =)
2
=~y T T = 0QTpp" QU (T~ 1)%)
we can get Y(t) =0 for t € [O T] by (4.30) and (4.31). To ensure V(T,3) = 1, we need the
initial conditions 1) 2 )(0) = 0 and ¢ (0) = 0. O

Remark 4.2.6. It is known from Proposition 2.4.10 that (4.29) is the explicit solution of
the following Laplace transform of the integrated Wishart process (3;):

T
V(S,4) = B> {exp (mT )+ / Tr (rzs) ds)} (4.33)
t
with
45, = <QQT NS+ itMT) dt + S2aweQ + QT (awe) TRV, 5, =% (4.34)
under proper conditions. But the representation (4.33) satisfying the initial condition 3, =3

is not obtainable in the setting of the HJB equation (4.28). Let us recall that in the HJB
equation, we have defined

A, = (007 + M3, + £, MT) dt + 22aweQ + QT (dwy)" v, (4.35)

under P with the initial condition ¥, = X. To get the Wishart process (4.34), we need to
consider the process

=Q"QTZQ'Q
and then apply the Girsanov theorem to the process (Et) to get (X;). It implies that for

Q #+ @, we can not have Y, = X = %, which means that ¥ can not be the initial value of
(3¢) in the setting of the HIB equation (4.28) for Q # Q.

Applying Corollary 2.4.5, Proposition 2.4.6 and Proposition 2.4.10, we can solve the
Riccati equations system (4.30) and (4.31). Then, we get the following proposition:

Proposition 4.2.7. Suppose MT(QTQ)™" = (QQ)"'M. Let h = T —t € [0,T] and we

define
-1
w(h) = = (\/ Cy” cosh (\/ 02(2’h) +Cf¥ sinh (\/CQ(Z)h))
(\/ 052) sinh (\/ 052)h> + CfQ) cosh ( CQ(Q)h)) ’

O = Q (20 + MTQQ AT QT
)= QI (@O
with M, Q, T given in Theorem 4.2.5, then if

Q"Q € GLy(R), -2+ M'Q'Q ™M =0 and \/CP+C? =0 (4.36)
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are satisfied, the partial differential equation (4.28) given initial value V (T,%) = 1 possesses
on [0,T] the solution (4.29) with

D (h) = @'y 052);(2)@)@4 _ MT(@QT@)_l

W (@re)”
¢ (h) = —Tr | QQT 5 h+~rh

(\/@) N (@cosh (@h) + Cy sinh <\/@h>)] )

with ¥ (0) = 0 and ¢ (0) = 0.

Remark 4.2.8. a) Note that whether (4.33) is finite or not does not dependent on  from
(4.36) . The last two conditions in (4.36) for the existence of the explicit solution of the
Riccati equations system reduce to the single condition

— %Tr (@TQQTQ1 - log

~ ~ o <\ 1 o
T < M7 <2QTQ> M, (4.37)
- N | RN
if MT <QTQ) + <QTQ> M s negative semidefinite. Under this assumption, sz) I8

positive semidefinite, thus the condition (4.37) implies the condition 1/ C’2(2) + sz) = 0.

b) For the case of d = 1 the condition (4.36) coincide with the results in the Heston
model in [35, Proposition 5.2]. Let us use the terminologies in Kraft [35] and denote for
d=1

K - o K Y o < K
M:=—= = A = == M=——+—"-p\i=——.
5 Vv , p=p Q 5 2+1_72p 5

In [35] it is assumed that o > 0, kK > 0 and & > 0, under these assumptions, it follows that

@@ =7 (14 250) € GLu®) and 7 (Q7Q) "+ (Q7Q) 1 = s <.

1+ﬁp2) -

The condition in (4.37) can be written as

_ 2/_\ 2/_\22 2 1
Y )\2<(/<;2— 7P0“+7 ,002). a
2(1—7) (-7  (1-9) 202 + 7=

(1=7)
Note that for v < 1, v # 0, the term o+ (ljv) p*0? is always positive, thus, multiplying both

sides with this term, the inequality above can be simplified as
YN (N pr K>
1—7(2+ O') < 507
which is condition (26) in Kraft [35].
Now we conclude that the HJB differential equation (4.13) has the finite solution V' (¢, ¥)

in (4.29) for the case B (X) —r = Xv under conditions in (4.36). To get that the value
function candidate

0202

Y
Gta2)=V(LS), 1< 740

with V (¢,X) = 1 is indeed the value function of our optimization problem (4.4), we still
need a verification result for G (¢, z,X).
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4.2.4 The verification result for the case of B(X) —r = Xv

We first identify the optimal portfolio strategy in the case of B(X)—r = Xv. We still denote
the optimal optimal strategy by 7* (¢,%). Recalling (4.9) and (4.32), we get

(B(Z)—r)v+N)_ v SUIN +2w(2)(T—t)QTp
1-7V 1y (1-9)V  1-9 1y
(4.38)

T, %) =71 (

for v < 1, v # 0, since
SUIN =271 22wV QT p =2V (T — 1)QTp
by the explicit expression of V (¢, %) in (4.29).

Remark 4.2.9. Note that 7*(t,X) = 7/, i.e. the optimal strategy is purely deterministic
and does not depend on .

Proposition 4.2.10. Assume that the process (X;)i>0 follows the dynamic (2.2). Let us
denote

T T
Zy = exp (/ Tr (ASEi/QdWSU) — %/ HAsEi/Z’PdS) )
t

t

where (A¢)icppr 5 a deterministic process with values in R4 and bounded by A* € R4,
then (Zy)icpr) s a martingale.

Proof. By Lemma 2.6.4 we get that (Z;) is a martingale, if there exists a constant C° > 0
such that

VTr (0(2)0T (%)0 ()07 () < C°/Tr (LX) (4.39)
with 6 (X) = AXY2. Consider the left-hand side of (4.39), it follows

Tr(0(2)07 (2)0(%) 0" (%))
=Tr(ASATASAT) < Moo Tr (ASZAT) = Ao Tr (SATAS) < N2

max

Tr(£%),

where A, is the largest eigenvalue of AT A. The second last inequality follows from the
fact that the trace of a matrix is the sum of its eigenvalues and

ALATAS AT = ASOANOTSAT < \,0. ASS AT,

where OAO? is the spectral decomposition of AT A. The last inequality follows in the same
way, 1.e.

YATAY = SOAOTY <\, XX,

Since A, € R4 0 < s < T are bounded on [0, 7], Apas is also bounded on [0,7] and we
denote its upper bound by \* Then one concludes that (4.39) is satisfied with C° = \*

max-* max?

which implies that (Z;) is a martingale. O
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Proposition 4.2.11. Let us denote

T 1 T
Zy == exp (/ ATS2qws — §/ ||ASTE;/2|\2ds) , t€]0,T]

t t

where (At)te[o,T] is a deterministic process with values in R, which is bounded by A* € R.
Then (Zt)icpor) is a martingale.

Proof. Recalling theA assumptionsAof Paij 0 (4.3), (WS, W7.) = p; yields that W3 2
P1Wi + /1 = piWia, where (W) is a d x d Brownian motions matrix, independent of
(W?). Let us denote s := (p,0,...,0)7 € R and ¢ := (1/1 — p2,0,...,0)T € RT, we get

ATS2aWs B Tr (CATSY2AW?) + Tr (cATS2all,)

and
IATS2)P = (P + 1= p7) [ATE2)? = [[SATS2 P + [ISAT S22
Hence, we get

T 1 [T
Zy =exp (/ Tr (gAZE;ﬂdWSU) — 5/ ||§AZZ£/2H2(13>
t

t

T N 1 T
- exp (/ Tr (g‘ASTEiﬂdWs) — —/ HGASTEi/QHst)
t 2 t
T ) T .
—¢ ( / Tr (quT 2;/2dwg)) £ ( / Tr (g-A;f zg/wvvs)) .
: t : t

Now we obtain

EZ) =E[B[Z,|F;"]]
—F {5 (/T Tr (gAfz;ﬂdW;))tE {5 (/T Tr <<A§z;/2dm)) F H .

Since (W;) and (W¢) are independent, the inner conditional expectation is equal to 1 due
to [36, Example 4]. From Proposition 4.2.10 we conclude that the remaining expression is
also 1. O

t

Theorem 4.2.12. (verification result I). Suppose the conditions in (4.36) are satisfied, then,
given 7 (t,%) as in (4.38), there is

~

G Gras) - Zoxp (6T — 1) + Trlg (T 1))

g

Et,z,E

fort €[0,T], >0, % €SS (R).

Proof. Recall that we have
T 1 T
X7 = X[ exp (/ [WSTZSV +7r— §||W32i/2|]§} ds + / WZZi/deSS)
t t
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with X7 = z. Let us denote

Zt =

@,

T
~exp (7 [ myrsiaws -
t t

2 T
2 [ )
t

which is a martingale by Proposition 4.2.11. The application of Girsanov Theorem yields

i ((XW*)W)

T T
——Eﬂ(exp (o[ s b= Sy ds o [ reans) )
t

:—E

=— E(az exp

exp

v

e

I, = ("yV(?T:)T +

Plugging 7* in Fg, we get

A%

20T

Fo=v ((1 "

Y(y—1)

(1=

p)T

2)(T —

Q" p

(o[ [morse + = hemyrm g +
(] s o)

5 _exp ('yr(T t)+/t TT{(VV(W:)T—F@W:

*

2 7TS< S

~
2

w)").

2¢)()

Sl

(7

*
S

(T -1)Q"

e a )|

o))

In what follows let us denote the deterministic matrix-valued process

T

yvvT

(s
(1—7)
p QAT —

(1—=7)

)((1‘—/7)+

WET — 5)QTpv”

(1—=9)
@ (7 _
N 2ypBN(T

p)T

5)QT ppTQy!

(T —

201 —7)

Replacing ;d’f/)
(T )

(1-7)

v—1

—8)QTQu(T

(v—1)

above by the expression for ' derived in (4.30), we get

=gy YT M = MIET = s) - 2 (T
I 27w(2) (T — S)QTPVT 4,)/1/}(2) (T . 5>QTppTQQ/}(2) (T _ S)
Y= 1 (’Y _ 1) .
Thus, it yields
T
/ TT(FSZs)dS

- [ (s = oar e st — ) 2000 - @ Qur -

_29PN(T - 5)Q"pp" Qv

5)QTpv"

4yy

)(T—

(T -

v—1

44

(v—=1)

S)) 23> ds.

s)

—8)

(4.41)
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Next we compute ftT Tr(FyX,)ds under Q. For this instance we need to identify the dynamic
of (¥;) under Q. Since dW* and dW? are correlated, the application of Girsanov theorem
has influence on (W7). We assume that

dI/Vz? = pi,ideiS + \/ — P zdelv (442)

where W = (Wi, ..., W) is a d-dimensional standard Brownian motions vector, indepen-
dent of W*. This assumption ensures dWZ-‘;dW/iS = p;i;dt. Recall that we have p;;; =
p;, 1 <i<d, then, (4.42) can be written as

AW = dw*pT + dw p*
with p; = /1 — p?,;. Since under the new measure Q, the process
AW = dW* — v 27*ds
is a standard Brownian motion, it follows that
AW = dWSp" +dWp" = dW® — 221 plds
is also a standard Brownian motion. Thus, we get under Q

Ay, = (QQF + M, + S, M) ds + S2dWeQ + QT (dw?)" £2/2
=(QQ" + ME, + S, M7 + 98,7 p"Q + Q" p(7*)"'S,) ds

FRVRAQ + QT (aiiy ) sl
is a Wishart process with drift
QO + MY, + S MY + 427" p"Q + Q" p(n*)' 2,
=007 + M3, + M7 + ﬁzsvaQ + 12_—77235@&(2) (T —5)Q"pp"Q

+—1 QTpv'E +—127 QT pp" QAT — 5)%,.

Due to the product rule and since 1® (0) = = Y. we obtain under Q
T (BT = 5) _ dW) —5)
[ (S e ( =)
T T
=—1Tr ( / ¥ dyp@(T — ) =—Tr (2 P2 (0) = Sp(T —t) — / Y (T — s)dEs)
=T (EW (T —t)+ / (T )dzs)

=Tr (ST - 1)) +TT(/ (T — ) QQT+ME + %, MT+ﬁz vplQ
2
+ﬁz VT = 5)Q"pp" @+ Qv ﬁ@TppTQw@)(T—s)zs)ds
(T — )SYV2AWeQ + v (T — 5)QT (dwg) 2;/2) . (4.43)
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Thus, plugging (4.43) in (4.41), it follows
T T
/ Tr(F,%,)ds = Tr (SpP(T —t)) + / Tr (v(T — s)QQ7) ds
T
— / Tr (21# 2)( — S)QTQ¢(2) (T — S)Zs) ds

+Tr</ e 21/2dW"Q+/ (T - $)QT (dW;)TE;/Q).

Note that the differential equation (4.31) can be written as

PN —t) = / ' Tr (YT — $)QQT) ds + yr(T — t),

we get then from (4.40):

xVEY ((XE)7)

=Eg” {exp (w(T —t) + /tT Tr(FSZS)dsﬂ

=FEg” {exp (Tr (ST = 1)) + ¢P(T —t) — / T (20T = $)QT QT — 5)%,) ds

t
Y L R COED)]
=exp (Tr (ST —t)) + (T — 1)) - EG” [exp (2T7~ ( / ' QUI(T — s)zg/zdwsd)
t
— /T Tr (20T — s)QTQY(T — 5)%,) ds)] .
t
Applying the Girsanov theorem again with the following Radon-Nikodym derivative

- ._@
Zt - d@

— exp (Z / (20T — )T?), AW — Z / (2Qu® 3)2;/2)fjds>
=17t t

’le

—ep (e[ [ 2auer —s>z;/2dW:)—Tr ([ 200 = spmar—o)7as) )

which is a Q-martingale by Proposition 4.2.10, we get finally

g v

o ((Xﬂ s ) ~ 7 xp (Tr (S6O(T — 1)) + 6T - t)) _ %V(t, %) = G(t,z,%).

]

We recall the definition of admissible strategies in Definition 2.7.3 and denote the set
of admissible strategies by B. We claim that (7}).c0,7] € B with the following statements.
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Note that the conditions (i) and (7i7) in Definition 2.7.3 are obviously satisfied by (7}):>0.
For B(X) —r = ¥v and the deterministic (7*):cjo,r], we have that the assumption (2.20) is
true. It follows that the second and the fourth conditions are also satisfied.

We define another set B C B, which includes all admissible strategies satisfying in

addition .
E ( / W?dé‘) < 00.
t

Proposition 4.2.13. (verification result II). Assume V (t,%) € CY2[t, T, then we obtain

T\
EhmE (@) <G(tz,X%)
Y

Then we have clearly (7)o € B.

for all m € B.
Proof. See [35, Proposition 4.3]. O
By Proposition 4.2.12 and Proposition 4.2.13, we can now conclude

T\ Xr* v
max Et,:p,E ((X§> ) — Et,x,E (( 2) ) — G(t,:c, Z),

ie. G(t,z,X) is the value function of the optimization problem (4.4) for B(¥) —r = Xv
and (7*) is the optimal portfolio strategy.

Remark 4.2.14. The optimal portfolio strategy (m;) in (4.38) can be decomposed into the
Merton ration == and the hedging demand given by

1—y
20(T - 1)Q"p
1—7 '

In case there is no correlation between (W) and (W?), i.e. p = 0, the optimal portfolio
strateqy reduces to the Merton ration and does not depend on time. In any case note that
the optimal portfolio strategqy does not depend on ().

4.2.5 An example for the case of B(X) —r = Xv

In this subsection we give an example of the value function G(¢, x, ) for the case of B(X) —
r = Xv. By Theorem 4.2.5 we have that

G(t,z,%) = %GXP (62T —t) + Tr[p®(T —1)8]), <1, y#0,

where ¢ (T —t) and ¥ (T — t) are determined in Proposition 4.2.7.

Example 4.2.15. In our example, we consider the financial market introduced in Section
4.2.3 with one riskfree asset and d = 2 risky assets. The parameters of the volatility process
(3;) are given by

_( My O (@ 0 (P [ v
=0 )= (% )e= ()= ()

47



Chapter 4. Optimal portfolio strategies in the correlated Wishart volatility
model

for My, My, Q1,Qs,v1 € R. Then we arrive at the following M, QTQ and T that are defined
in Theorem 4.2.5:

~ Y T T a 0 ad Y T ﬂ/v% 0
M=M+ v o= , I'= vv' = 20-9) ,
T (0 MQ) 2(1 — ) ( 0 0>

g T _ T e 0
e (5 4)
(1- 7) P 0 @
with a = My + lelp and ¢ = 1+ 2. We obtain ¢ > 0 for v < 1, v # 0 and we
assume that )1, QQ # 0. Then, we can tak:e Q simply as

0-(43)

QTQ=Q"Q+

and
- (MT(QTQ) T +(QTQ) M - —a 0
2 _ _ T _ _ N1 —
Gr=-q ( 2 < M ( 0 —M ) ’
c®— 0 (_21: n MTQ—IQ—TM) O = b 0
2 0 M?
with b = a? — %Ul Q3c. By Proposition 4.2.7 we need to assume

QTQ € GLy(R), —20+MTQ7'Q "M =0 and /C+C® =0, (4.44)

which is satisfied if My # 0, Vb—a >0 and b > 0. We obtain 052) _ ( \65 ’]\04 | ) and
2

KT —t) = ( C? cosh (\/07( t)) + 0, sinh( cP(r —t)>)_1-
( s smh( cP(T t)) +c? cosh( 02(2)(T—t))>

_ ( Vbsinh(v/bt) — a cosh(v/bt ))/ <\/gcosh(\/7)t) — asinh(ﬂt)) 0 > '

Then, we have (T —t) as
o1 —@_1 CIRIT QT @I+ Q1)
- 5 :
2 —1
_ ( M) <\[bCOth(\/5t) - a) 0 )
0 0

and the solution of @ (T —t) can be deduced from (4.31) as

T—t

T—t _
oD (T — 1) = Tr { @ (u) duQQT] — (22, 4+ 02) / il (\/Ecoth(\/l?t) - a) " du.
0

0 2(1 =)
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The optimal portfolio strategy is here given by

i= (1) d ( (Vi =) ) |

It implies that one would never invest in to the second asset in this example. Also note that

due to Vb —a > 0 and coth(\/gt) > 1, the hedging demand in the first asset is positive if
py > 0 and negative if py < 0.
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Chapter 5

Asymptotic error distribution and
adjustments for discrete rebalancing
with regular paths

The purpose of this chapter is to analyze the impact of incorporating “liquidity horizons”
for less liquid assets. Given one discretely rebalanced (e.g. At periodic) portfolio X(N)
and one continuously rebalanced portfolio X7, we want to find some relationships between
the distributions of the two portfolios and as a result, approximate the distribution of

A

X(ny through Xp. More precisely, we will illustrate in Section 5.2 the limit distribution

of the absolute error X(N) — X7 and the relative error <X(N) — XT> /X(N) by letting the

rebalancing period At go to zero and then establish a limit theorem. In Section 5.3 and
Section 5.4, we will introduce two adjustments to correct the effect of discretely rebalancing,
namely the volatility adjustment and the conditional mean adjustment. Finally, the limit
theorem and the two adjustments will be tested in Section 5.5 by some examples. This
chapter is an extension of Glasserman [21], in which the investigation focused on a model
with constant portfolio weights and constant drift and volatility in the assets dynamics (See
[21] for details).

5.1 Model dynamics

Let us consider now a market with d risky assets. We denote the price processes of the d risky
assets by (Sii)i>0, 2 = 1,...,d and the assets vector process by (S;)i>0 = (Se1,- -+, Std) 0
The dynamic of (S;);>o is represented by the following stochastic differential equation

dS; = diag(Sy)udt + diag(S;)o, dW, (5.1)

with p; € RY, o, € R and (W) being a d dimensional Brownian motions vector. We
make the following assumptions to the drift vector process (u;) and the volatility coefficients
process (0¢):

1. (u¢) and (o) are bounded, cadlag, deterministic vector processes with iy = (f144)1<i<a
and oy = (0v,4j)1<ij<d>

2. the second-order right-sided derivatives of (0;) and (u;) with respect to ¢ exist and are
right-sided continuous in the interval [0, T') with respect to time t.
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We define the covariance matrix ; as

(3t = UtU?.

Let (Wt)tzo be the fractional portfolio strategy process that is a R%valued deterministic
process. We denote the portfolio strategy by

Ty = (ﬂ-t,l; e >7Tt,d)T

with 7]'1 = 1. m,, represents the proportion of wealth invested into stock k at time ¢. We
assume furthermore:

3. m is a continuous function of o; and .

The conditions 1, 2 and 3 are called regular conditions in this thesis and paths satisfying
regular conditions are called regular paths. We say that the above introduced processes (1),
(o) and (m;) have regular paths.

The portfolio wealth process of the continuously rebalanced portfolio (X;) evolves as

d

dX dS i
—t Z Thi—— it = 7] pydt + WfatdWS 7l dt + /7l o0, T, dW,, (5.2)
=1

,l

with Xp = 1 and W, = ————n70,W, being a one-dimensional scalar Brownian motion.
0 t \/m t YtV g

Let T' (e.g. 1 year) be the risk horizon and At = T'/N the rebalancing horizon. We

introduce a discretely rebalanced (At periodic) portfolio with wealth process denoted by

(X;). The wealth process (X;) evolves from nAt to (n+1)At, 0 <n < N —1, as

d
5 > Sn 1)At,i
X(n+1)At = Xnat (Z thi(Jr—)t,)

i1 SnAt,i

with X, = 1.
We assume that (5.1) and (5.2) own unique strong solutions. Solving the stochastic
differential equations, we get

S = Sosexp (/OT (u ~ Sllouts )||2> du+ /T ouli, )dWS) (5.3)

fori=1,...,d and

T T
1
Xr = exp (/0 (Wg,uu — §H7rgau|\2> du +/0 ﬂfaude) : (5.4)

To lighten notation, let us denote X( ) = AnAt, Xy = Xuat, Om) = Onat, fn) =
HnAty T(n) = TnAt and AVVn . W(n+l)A — Whas
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5.2 Asymptotic error

In this section we will study the asymptotic behavior of the relative difference between
the continuously rebalanced and the discretely rebalanced portfolios at T. Such relative
difference at T is called portfolio error and is defined as

A

Xy — X7
Xr '

We will approximate the portfolio error in Section 4.2.1 and establish in Subsection 5.2.2
a limit theorem illustrating the asymptotic behavior of the scaled portfolio error. Finally
we will show that the limit theorem obtained in Subsection 5.2.2 applies also to some more
general case.

5.2.1 Approximation of the errors

Note that for the portfolio error (X( ~) — X7)/X7r the following holds:

X'(N) — Xr _ XV(N) _ X(N—l) + X(N—l) _ X<N—2> +. @ _ @
Xr Xr Xiv—y  Xwv-1)  X(v—2) Xa X

N ’
_ Xy  Xm-p (5.5)
Xwy Xw-1) )’ '

We have the following proposition concerning the portfolio error:

Proposition 5.2.1. Assume that (o), (p) and () satisfy the reqular conditions introduced
in Section 4.1 and let

€p —

d
) 1
Z T(n—1),i (U(n—l)(la 3)AW(57;—1))2 - 5 (W(Y;L—1)U(n—1)AW(€z—1))2

=1

N —

d
, 1

Z 7T(n—1),z‘|‘0'(n—1)(% 5)H2At + 5”77-(7;171)0-@—1) HQATZ

i=1

N —

then

Proof. By (5.3) and (5.4) we get

nAt 1 nAt
SnAt,i = S(n)’i = So,i exp (/ (Mu,i — §HUU (’i, :) H2> du + / Ou (i, :) de)
0 0

and
nAt 1 nAt
Xnat = Xn) = exp (/ (Wffuu — §||7Tfau||2> du +/ Wfauqus> .
0 0
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Then we define R, and f?n, n=1,...,N as

X(n) nAt 1 nAt
R, = = exp (/ (wguu — —||7r30u|]2) du + / ﬂgoudW&g)
Xn-1) (n—1)At 2 (n—1)At

and

X S(n—l),i

d nAt 1 nAt
= Zﬂ'(n_l),i exp (/( </‘u7i - §Hau (i,:) HQ) du +/( oy (i,:) de) ,

i=1 n—1)At n—1)At

5 d
i X n Sn K
R, = ) - Zﬂ(n—l),i )
(n—1) i=1

respectively. Thus, we have

and

We define a function gy, (y) as follows:

: oty 1 2o T Lop 1o
5 ) = Toeoesp ([ (s = glou G P = i+ gl ?) o
tn—1

=1

+/ A (0u(i,:) — Tl 0u) de) (5.7)

tn—1

with t,_1 = (n — 1) At. We note that there is

R,
= = g (V) (5:8)
and gy, (0) = 1. Let
1 SN2 T Lo 7 e
M = i = Sl (42) [IF = p + 5l ol (5.9)

and we use the following representation:

tn,1+y2 d tn71+y2 1/2
/ (au (,:) — 7T30'u) dW?s = Z / Juijdu ZNmn.j
th—1 tn—1

=1
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with
)2
Juij = (Uu,ij - 775% (HJ)) (5.10)

and Znn; j = 1,...,d being independent standard normal distributed random variables.
Thus, we obtain

d tn71+y2 d tn71+y2 1/2

gnn (Y) = Z T(n—1),i €XP / o idu + Z / Juizdu ZNn,j
i=1 tn—1 j=1 tn—1

According to the assumptions of the paths of (o;) and (y), the second-order right-
sided derivatives of h,; and f,;;, i,j = 1,...,d exist in the interval u € [(n — 1)At, nAt),
n=1,...,N. Let F be the antiderivative of f, we get F;” = fuijs W E [tn-1,tn—1+¥?], ..

tnfl‘i’y2
/ Juigdu = Fy,_ 1y2 55 — Fr, - (5.11)

tn—1

The Leibniz integral rule yields

!

tn—1+y2
/ fu,ijdu = ftn_1+y2,ij : 2y7
tn—1

then we get the first derivative of gn,, (y):

d

/ tn—1+y? d tn—1+y?
Inay) = Z T(n—1),i €XP / hy idu + Z / JuijduZn p j
tn—l ]:1 tn—l

=1

d
Jtuoitv2ii " Y
st 20 + ST Zms ) (5.12)
( Y jzl \/Ftn71+y27ij - En—lyij

Applying a Taylor expansion to F; 4,2, and write

_ ! 2 2
En71+y27ij - Ftnflaij + Ftnfl,l'jy + ntn—1+y2’ijy

with limy 07, 4,2 = 0, we have

I v I v ! (5.13)
im = lim y = . .
v=0 N By g2 — By w0 Ftn_l,ijy2 + ntn71+y2,ijy2  ftn1ij

Thus, there is

d d 5
! P . .. . ] y
gN,n (0) - ZX_; 7T-(n—l),z ]2_; ftn,172] ZN,n,j ili\% \/F;gn -

—1+yig T Etn—hij

d d d
= Z T(n—1),i Z V Jtu1,4jZNmj = Z T(n—1),i (Otn,l (1) — Wtj;,lfftn,l) Znn = 0.
i=1 j=1 i=1
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Since (o) and (p;) are assumed to be 2-times right-hand differentiable with respect
to t in the interval [(n — 1)At,nAt), it follows that gy, (y) is 3-times right-hand differ-

entiable with respect to y in [(n — 1)A¢,nAt), which means that lim,g M and

" "
INn (y) “9IN,n (0)

lim o exist. We have also assumed that the second-order right-sided deriva-

! /
In.n(Y)—9N,,(0)

tives of (u;) and (o) are right continuous, thus, there is lim, g = limy0 g ()

Inn W)=, (0)
v
der Taylor expansion to gy, (v At) at 0 under the assumption g;(,vn(O) = lim, g;(,m(y) and

I (0) = limyyo gy, (y). Then for some &y, € [0, v/At], there is

1 1 ]. 1"
gxa(VAD) = 1+ S04 ()AL + 260 (AP +ox (VADARZ  (5.14)

and lim, o = lim,o g}(}m(y). Because of VAt > 0, we can apply a third or-

with

exn(VBT) = ¢ (94.4(6) — g3 (0)) (5.15)

for a £ € (0,v/At). By direct computation we get the following second-order derivative of
gna (¥), 0 <y < VAt as follows:
1/2

d tno14y? tno14y?
gNn Z (n—1), i €XP / hu zdu + Z / fu,ijdu ZN,n,j

tn—1

2
Jroriv2ii Y

F ZN,TL,]’ + htn—l+y2,i2
n— 1+y itJ tn—1,1]

(ht“ S Z R,

/

d
Jtai+y2ij * Y
+h 214y + oo ZN/n,"
o Z (\/Ftn 1+y2,i5 Ftn—hij !

Jj=1

with

/

Jtn14y2ij Y
Vi — P g

/
_ Fonorryzig ¥ Jou a2 2Y S Y S Y
o _ — 3/2
\/E”71+y2’z‘7 Enil’l‘] y:O (Ftn71+y277;j - Ftn—lyij>

y=0
2

y=0
Foivgrii + -2y ? 1
_ Jtaatyidg tn_14y2,ij ~ “Y ftn_1+y27ij
\/Ftn—1+y2,ij - Ftn—l,ij y:O \/Ftn,1+y2,ij - Ftnfl,ij y:O ftn—lyij
!
2
o2 1529 —0

\/Ftn_1+y2,ij - Ftn—hij
Thus, it follows

d 2
j=1

y=0
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and
1 1<
§9Nn 252 (n— l)z{ U(n—l)(iai)—W(Tn 1) (n— 1))AW }
=1

1 1
» (mnl) = 31000 ) 12 = 7Ty + gl ool ) A

2
(W(j;l_l)o-(n—l)AW(i_l))

DO | —

d
=2 Ty )(ia:)AW(i—l))2_

=1

d
1 , 1
3 Zﬂ-(n—l)ﬂ'HO—(n—l) (4,:) ||PAt + §||7T(7;z_1)0(n—1)||2At = €n-
i=1

[\Dlr—\

It follows then

al 1<
D e = 3 > g (0) AL (5.16)

From (5.6), (5.8) and (5.14) we get

fw al 1, 1w ,
20— [Lowa (VB7) =TT [1+ o (00204 5% 0) 807 40, (VED AP
n=1

n=1
(5.17)
1 & 1
=145 a0 A+ 2D gy, (0) At3/2+ZcN (VAOALS 4y, (5.18)
n=1 n=1 n=1

where the remainder ry includes all other terms in the product. Then, the proof will be
concluded from (5.16) , if we can show that the last three terms in (5.18) are negligible.

The Minkowski inequality yields

X(N) — XT N ]_ N " 3/2 3/2
— % - Z en|l < 5 Inn (0) At Zan OAL=| + ||rw]l - (5.19)
n=1 n=1

We will show next that each term on the right side is o <\/ At) . Let us first consider g;(}m(y),
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0 <y < VAt, we compute

" tn 1+y d tnfl‘i'y2
Inn(Y E T(n—1),i €XP / o idu + E / JuijduZn n j
-1 =1 tn—1

2
Jtorty2ii Y
<htn 1+y2i 2y + Z \/F’t 1+y2,ij Ft - Zle’j

n—1+y2ij

’

n—1+ Y
Fhe, 2 2+ h —1+y2i 43/ T Z (\/Ft +1 = — F ) v
n—1 y ’U n—1,%7

Jtu1tv2ii " Y
h 2y + g - ! Z ;
( ot Y \/Ft Ftn—hij N

n—1+y2,ij

Jto1tv2ii " Y
12 (h P2 +§ n 1ty VAN
( ot Y \/Ft Ftn—hi]' N

n—1+y2,ij

/

Jtn +y2,i5 Y
h’tn71+y2,i 2+ h —1+y2i 4y + Z (\/Ft +l —F — ZN,”J
n—1 y 7«7 n—1,17

"

d
Jtooi4y2ij Y
—|—12yh it 8x3h it SR ZNn.j
1+y 1+y Z \/Ftn 1+y Z] Ftnflyij ’

with

1"

ftn_1+y2,ij Y
—1 +y Enfl 77'.]
y=0

’
2
" 1+y 7’-] + ftn l+y l] 2y o ftn71+y27ij ) y : ftn71+y2,ij ) y
— - 3/2
Vi = Frosis (Ftn_1+y2,z‘j - Ftn_l,ij)

y=0
' 2
—1ty2ij Ay’ +6yft —1+y2ij <ftn—1+y2,ij 2y +ft”‘1+y2’”) Jinata2is Y
> 32
\/Ftn 1+y2,ij Ftn71’7,] (Ftn71+y2’i]' - Ftnflﬂzj)
3 2 2 2
4y ftn_1+y2,ijft"*1+y27ij + 2ftn—1+y2,ij Y + 3ftn—1+y27ij Y Sty Y
(F, —F, )" (F, —F, )"
tn—1+Yy>2,ij tn—1,ij tn_1+y2,ij tn—1,ij
2 2 2
=30 i Y 3t s Yo ris Y
- I I a2 T P 7 5/2
( tn71+y27ij - tn—laij) ( tn71+y27ij - tn—17ij)

y=0

?

y=0
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which reduces to

2
3 e g2 Y (ftn_1+y2,z‘j Y2 = Fp i+ Ftn_l,z'j)
v
2

lim

3/2 R .
y—0 (Ftn,1+y2,ij — Ftnfl,ij) / Ftn—1+3/2,l] Ftn—l,’LJ

3ft2 T ) 4

— lim n—11y24j (ft_+2i"y2_ft_ij'92_ft A (1) 2---y4>
y—0 (Ftn71+y2,ij - Ftn717ij)5/2 o 1 S ey

3ft2 TREY y4
—lim n-1+y” 4 (ft gyt T ey R y4)
3 Jtu_rij

ftnflﬂ.j
. 2
by a Taylor expansion to Ftn71+y ajand fi 42 Zj, where h( )1+y and h( )1+y . are two

functions with lim,_,o h = 0 and lim,_, h = 0. Then, we get

—1+y2?, —1+y2,

d d 3 d d
Q%m (0) = Z T(n—1),i (Z V ftnl,ijZN,n,j> +6 Z T(n—1),ilt,_, (Z V ftnl,ijZN,n,j>
1 — =1 =1

ft %
+ Zﬂ_n 1 n— 17] ZNn
7] 1 \/ ftn 171]

By (5.10) we obtain

!

ft/n_l,ij =2v/ftn_vij (Uu,ij — Loy, (:,j)) ,

we get then

d d 3 d d
Inn (0) =D 7). (Z V ftn_l,z’jZan,j) +6) mo)ibe, (Z V ftn_l,ijZN,n,j>
i=1 J=1

i=1 j=1
+3 Z T(n—1), (Uu,ij - 775% (17,7))/ ZNmn.j-

"

The assumption that (0y), (1) and () satisfy the regular conditions yields that E{gy,, (0)] =

0and Var[gy,, (0)],n=1,..., N are bounded. Thus, the first term on the right side of (5.19)
is the norm of a sum of independent, but not identically distributed mean zero random vari-
ables. It follows that

N 2 N N
1 " At " At?) nr
S gna O ARE| =SB |3 g, (0 =S Y Var gy, (0)]
n=1 n=1 n=1
with
At3N _— [ " (Oﬂ < A3 & v [ ,,, (0)} < At3N v [ p (0)]
36 agnan W [INe BU] = T3 2 T AT [N B = T3y T [T T



Chapter 5. Asymptotic error distribution and adjustments for discrete
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Thus, we get H% S G (0) At?’/Q‘ € O (At).
For the next term in (5.19), the summands do not have zero mean, but the Minkowski
inequality yields

S enn(VEDAPE | < 4023 [lewal VD).

The norm of ey, (VAt) = % (g}(}n(f) — g%yn(O)), n=1,...,N go to zero as v At — 0, since
the norm of 9%,71(5 ) and g%,n(O) exist and g%n(f) is a continuous function of ¢ for small .

Thus, we have

N
Z ena(VAY)AE? || = 0 (NA?) =0 (v At) :
n=1

It remains to show ||ry|| = O (At) for the remainder in (5.19). Each term in ry is a

product of the four types of terms in (5.17). We group the terms in ry according to the
number J of factors different from 1, for J = 2,3,..., N. The case J =0 and J = 1 appear
explicitly in (5.18). To lighten notation, we write

n =gy (0) /2, by =gy, (0) /6, coi=cna(VAL),

forn=1,..., N. Then,

N J J-k
rN = Z Z Z Z Cry - Cry gy oo by gy - - anJAtSk/QAtgl/QAt‘]’k’l. (5.20)

J=2 k=0 =0 ni,...,n g

Here, nq,...,ns denote the J factors different from 1, and each n; ranges from 1 to N. Note
that the innermost sum Znh---,m is taken over sets of distinct indices nq,...,ny . In this
expression for ry, each power of At is determined by its degree in the Taylor expansion, i.e.
the k factors c,,, ..., c,, contribute At3*/2 and so on.

We note that with distinct indices, each product in (5.20) is a product of independent

random variables drawn from up to 3N distributions. Thus, we have

chl...cnkb ”k+lank+l+1"'a’nJH

.

=llenl- - Men bl - [1Bneacl Nlaneprinll - - lan, | < o7,

for some p not depending on J or N; e.g., if At < 1, we can take

p= max (llanll, [[ball; llenll) < oo.

Let J, k,[ be fixed. We consider
..b

Y =Y, n, =Cn-..Cpb . Qy,

N1 * o Ong nggyg - J

with fixed nqy,...,n;. Recall that each b, is a linear combination of odd powers of normal
distributions and each a, is a centered sum of even powers. Thus, each a,b, is a linear
combination of odd powers of Zy,. It follows that E[a,b,] = 0. By the independence of
the Zn,,n=1,..., N, we also have

Elanam] = Ebyby| = Elayby,) =0
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whenever n # m. Thus, we have E[Y] = 0, except the one for which £ = J. Now consider
a term

Y = Yn1:~'~7nk7mk+l:~-~7mJ =Cny - anbmk+l e bmk+lamk+l+l o Qmy,

different from Y. We could show that E[YY'] = 0. In the situation that an index
n € {ngy1,...,ny} does not appear in {myy1...,my}, there exists also an index m €
{mis1,...,my} not in {ngyq,...,n;} with n # m, we can then pull the corresponding
factors a,, (or b,) and by, (or a,,) out of the product to get E[YY'] = 0. Otherwise, there
must be an index n € {ng,1,...,nk} that appears in {myyi41...,my} or else an index in
n € {ngti41,...,nys} that appears in {myy1 ..., mg}. In either case, we can pull a factor
anby, out of the product of Y and Y’ and again conclude that E[YY'] = 0. Thus, we have
Y and Y are uncorrelated.

The norm of a sum of M uncorrelated, mean zero random variables is smaller than
v/M times the norm of the largest one of them. Using this property and then the triangle
inequality with T"= N - At, At < 1, we get, for k < J — 1,

3k/2 A 431/2 A pJ—k—1
Z Cry -+ Crgbngyy oo Ong Gy - - - AT AL
N1,y...,N g
_ J+k/241/2
= Z Cny - - - Cny Z brgr -+ Oy Oy -+ - Gy || AL e
ni,...,Ng Nk+1, J
k J+k/2+1/2
<N _max Z O S (R ¢ AT R4
btk Ng415---510F
k arLsE J+k/2+1/2
<NFN "z _max €y -« Cobrgss - O ys Qg - - - Oy || AETTE/ZTY
1,510 g
p? (1+T)7 AtV+D/2
<p’ 1 +T)" At’? (5.21)

for At small. We write (1 4+ T') in the forth calculation to cover the possibility that 7" < 1.
For k = J, we have

A2 <N e, - en, || A2 = I TI AL, (5.22)

so the bound in (5.21) applies in this case as well.
Now we return to (5.20). For each J there are

I+ D)+ J+... +1=J+2)(J+1)/2= <J+2)

2
combinations of values of K =0,1,...,J and [ =0,1,...,J — k factors. Thus, we have
N N—-1
J+2 A2 < Jj2 _ 1— (KAL) =
ryll < 1+ T At (6p*(1+T)*At = KAt
Irx Z( )o <000+ 1 o
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with K = 6p?(1 + T)?. Since

No1
tim KAl A 7 1 :
At—0 1 - VKAt At

we get ry = O (At). This concludes the proof. O

5.2.2 Limit theorem

For €, given in Proposition 5.2.1, there is

r, d
1 , 2 1 2
Varle,| =Var 5 Zﬂ(n,l)ﬂ- (a(n,l) (7,:) AW(‘Z_U) ~ 3 (Wa_l)a(n,l)AW(i_l)) ]
| < i=1

o d
1 )
=Var 5 E Tin-1)i ((0n-1) (i,:) — 71'%;71)0(,1_1)) AW(il))Ql . (5.23)
< =1

Let

1< . 2
5 Z T(n—1), ((O-(nfl) (27 3) - 77-,(1;1—1)0-(7171)) ZN,n)

=1

52 -
0Ly :=Var

Y

where Z N is a d-dimensional random vector with 7 Nan ~ N (0,1), then, we get
Varle,] = 67, At%. (5.24)
With Z being a d-dimensional standard normal vector and A € R%*? there is
Var[ZT AZ] = 2Tr(AT A),

this equality yields

d
1N G a0
5 > Z0. 250

J,k=1

0L m-1 =Var

d
: <Z T(n—1), (O—(nfl),ij - Wa_l)a(n—l)(i7j)) ) (U(n—l),ik - Wa_nff(nfl)(% k)))]
i=1

:%TT(Bg), (5.25)

where B, is a symmetric matrix with entries

d
Bn,jk = Zﬂ(nq),z’ (J(nfl),ij - W(I;L_l)a(nA)(i,j)) ) (J(nfl),ik - 7T(77;_1)0—(n71)<:7 k))
i=1
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for 5,k =1,...,d. To lighten notation, we omit the time parameter and let the parameters
o, ¢ and w be taken at (n — 1)At. Then there is

7,k=1
&
=5 Z i (05 — 7 0(,9)) - (o — 7 o (5,k)) 7y (005 — 70 (2, 5)) - (opr — 7 0 (2, k)
jkip=1
1 d d
=5 W,sz (0ij =7 0(:, ) - (0p5 — 7" o ( Z (o — 7" o(:,k)) - (opr — 7 0(:,k))
ip=1 j=1 k=1
1
=5 2 i (6ip — 7' 6(:,0) — 7' 6(:,p) + 7 o)
ip=1
1
=5 Z Ty (6ipGip — 27 6(2,p)Gyp — 27 6(2,1)64 + 27 66y, + 20 6 (2, 1) 6 (2, p)
ip=1
21t ennt 6, p) — 2nlGnnt 6 (s d) + 7l o (i)l 6 (c,0) + e (s p)Tl (s, p) + (7TT5'7T)2>

(Z TiTpOipOip — 2 Z o i,)m + (7" om) 2)

’Lp—

1
=3 <7TT (Go6)m+ (" O'7T) — 27TT&D67T) ,

where o denotes elementwise multiplication and D := diag(m). The entire expression for
67,1 is then given by

2

A~

. 1 R R
Oln-1=5 <7T<7;—1) (61 © 1) 1) + (Tla-1)F 0-1)T (1)

- 27T(Tn_1)5(n1)D(n1)57(n1)7T(n1)>- (5.26)

Theorem 5.2.2. (Limit theorem 1) As N — oo,

R Xy — X
{\/N (X(N) ~ Xr, %) } B XV, V), (5.27)
T

T
V~N (o,T / 6i’udu)
0

1 2
A2 T~ 4 T 4 T 4 A
0w =73 <7T (6o © Gy) Ty + (7Tu Uuﬂ'u) — 27, O'uDuO'uﬂ'u> ,

where

1s independent of X1 with

u

where o denotes elementwise multiplication and D,, denotes the diagonal matriz diag(m,).
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Proof. We can obtain the assertion by applying multidimensional Lindeberg-Feller central
limit theorem. The proof follows in 3 steps.
(1) Fulfillment of the multidimensional Lindeberg-Feller condition:

It is clear that €¢,, n =1,..., N given in Proposition 5.2.1 are independent distributed
and Var[e,] < co. We note that Ele,] = 0, since

d d
1 , 2 1 .
FE 5 Z 7T(n—1),i (O’(n_l)(l, )AW(ifl)) ] = 5 Zﬁ(n_1)7i||0'(n_1)(l, )H2At
i=1 i=1
and . X
T S 2 T
L {5 (ﬂ—(nfl)a(”—l)AW(nfl)) } = §H7T(n71)‘7(n—1)H2At-
Let
nAt 1 - 9 nAt . S
Y = Tully — = ku auH du + T, 0udW,
(n—1)At 2 (n—1)At
and

nAt
An =Y — Elym] = / 7o, dW?
(n—1)At

for 1 < n < N, we have that (%,),>1 is a sequence of independent random variables with
ZEero mean.
Let us consider in the following a sequence of independent R2-valued random vectors

E, = (fyn,\/ N en> , 1 < n < N with zero mean. We want to show that the sequence

E, satisfies the multidimensional Lindeberg-Feller condition in [8, Corollary 18.2], i.e. for
Yo > 0, V91,92 < R,

N 2
Y E {(91% + egx/ﬁen) : 1{91%92\@@5}} — 0 as N — co. (5.28)
n=1

To show (5.28) we first write 7,, as
nAt 1/2
=20 ([ Wl w0240V
’ (n—1)At ’ ’
by the mean value theorem with

. T < (1) < T
min ||| < Ky, < max o], VN €N

and Z](\})n being a one-dimensional standard normal distributed random variable. We write
€, in the same way as

d d 2
B (Z Kgggjzgg;d) A+ KD A

ij=1 j=1

where K](\i)n,jk,K](\%)m,K](é)n € R are bounded for j,k = 1,...,d, VN € N and Z](\?)n =

<Z](\?)n j> , ZJ(\:;’)n = <Z](5’)n ; are two d-dimensional standard normal distributed
" igjga’ "

)1§j3d
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random vectors. Then, we obtain

07\ 1/2
RS (E {(Helmomvem}) D =0, Vo>0

and

\/ E —(em + 02\/%)4]

At

1 1 d 2 2 2 d 3 3 2 4 !
B (00280402 | S K280, 20 (S K, 2800,) o+

At

At

d d 2
G (R RN S BN R O o

ij=1

4

j=1

is bounded. Employing Cauchy-Schwarz inequality, we get

2
E {(91% + 92\/N6n> : 1{01’~yn+92\/ﬁen>6}:|

1/2

< (E {(91% + sz/ﬁen>1 E [(1{91%+92¢Nen>5}>2D ’

2
thus, we conclude that F {(61% + 02W6n> . 1{91%%2@605}} is o(v'At) and (5.28) holds.
The fulfillment of the Lindeberg-Feller condition yields then

(Z I VNS en> 2 N(0, B)

n=1 n=1

with E = limy o 3.0, Cov(E,) € R¥? being the limit of the sum of the covariance matrix
Cov (E,) overn=1,...,N.

(ii) Computation of E:

We first show that 7, and ¢, are uncorrelated, namely we want to show

nAt
E K / o, (5 5) dwjj) AWE g AW(i_l)g} =0 (5.29)
(

n—1)At

for j,k,q=1,...,d. For the cases that j, k, ¢ are not all the same, (5.29) follows easily from
the independence of the entries of AW(?%U. By [5, Lemma 48.2.], we get that for j = k = ¢,

nAt - S nAt S nAt g
(/( 70w (5, ) qu,j,/( dWw-,/( qu’j> ~ N(0,T)

n—1)At n—1)At n—1)At
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with
nAt . nAt nAt .
f(n 1 At 7T U“ ,j))QdU f(nfl)At T Uu ] d fn 1At T O :’j) du
= f(n 1At mlo, (5, 4) du At At
nAt
f(n 1At mlo, (5, 7) du At At

Let Z](\L& and Z](\?)n be two independent standard normal distributed random variables, we
represent

[ s AV [ e A0 o,
with
o _ (" e ] @ _ [ e )2
P = /(n_w HAHET \/ /(n_wm o )P = (P0,)
Thus we get

nAt
E K/ meow (5, ) quSj) AW 1y, AW J}
(n—1)At 7 , ’
i [(20)" 8 (40,280, + 8,20, = 0

and (5.29) is shown. Recalling the representation in (5.24), we get the following covariance
matrix of F,:

nAt T 9
Cou(En) = Cov <<%,\/ﬁen>> = ( f(n—l)At ||(;TUUU|| du - OAtT >
Lin—1

We arrive at then the limit of its sum over n:

al al f"At |70, ||du 0
' ; (n—1)At u
A}l_l)n 321 Cov(E,) A}méog 0 52 At

n=1

) TP du 0
0 T [} 63 ,.du

with &%,u given in the theorem.
(iii) Multidimensional Lindeberg-Feller central limit theorem and the concluding result:
From the first and the second step we have achieved

(z%,mzen> LY

T T
Y ~ N (0/ ||7r§au\|2du) ., V~N (O,T/ &%’udu>
0 0
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independent. Since X; = exp (ZnNzl fyn> = exp (fOT (Wguu -3 H?TZ;UUW) du+ N %)

is a continuous function of 25:1 n, by the continuous mapping theorem, we get

<XT7 \/Niﬁn> 2) (XT7 V)>

where X and V' are independent. The Proposition 5.2.1 yields

T

X X N ’
(N) — AT
E (\/NX— ~ VN ;—1: en) =0

as N — oo, thus, we conclude that

Xy — X7

=V N
Vi = VN o

(5.30)

inherits the limiting distribution of v N 25:1 €n, it yields then
Xony — X
(XT, v N%) 3 (Xr,V)
T

by [9, Theorem 4.1], where X7 and V' are independent. Then by the continuous mapping
theorem, we get

X — X

%) i> (XTV7 V) )

T

VN (X(N) — X,

where X1 and V' are independent. O

5.2.3 Unconditional limit theorem

Instead of the deterministic processes (o) and (y;) introduced in Section 5.1, let us now
consider two d-dimensional stochastic processes (3;) and (©;), which are both independent
of (W7), as the coefficients of the asset price process. We assume that the paths of (3;) and
(©;) satisfy the regular conditions listed in Section 5.1.

In this section we will show that there is a similar limit theorem result as Theorem
5.2.2 for the asset price process with stochastic drift process (0;) and stochastic volatility
process (X;).

Let us consider a market with d risky assets. The continuous time evolution of the
assets prices are given by

dS, = diag(S,)Odt + diag(Sy) ¥, dW}? (5.31)
with (W) being a d dimensional Brownian motions vector. The covariance matrix of Sy is

denoted by ¥; = 3,37
We still denote the fractional portfolio strategy process by (7)., with

Ty = (ﬂ-t,la - ,Wt,d)T
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satisfying 771 = 1. The portfolio wealth process of the continuously rebalanced portfolio
and the discretely rebalanced portfolio are still denoted by (X;) and (X,) respectively. We
define (F*) as the natural filtration with respect to (2;), namely

Fri=0{%,,0<u<t}

Then the natural filtration with respect to (6©;) can be defined in the same way and is
denoted by (FP).

Theorem 5.2.3. (Limit theorem 1) As N — oo,

X — X
VN Wf)( LAVT / Uy dW, (5.32)
T

with (Wy)us0 being a Brownian motion independent of (¥p,,,) and

1
Wy, = \/5 (Wg (UyoW,)m, + (WuT\I/uﬁu)2 — QWEKI/uDu\I/uWu),

where o denotes elementwise multiplication and D,, = diag (m,).

Proof. By Theorem 5.2.2 we get as N — oo,
D T
FrF2| =N (O,T / \Ifgudu), (5.33)
0

W2, = % (77 (0y 0 0,) 7, + (710,7,)" — 20 0,D,0,7,)

=

Xr

where

with (¥,;) and (7;) being paths of (¥;) and (m;), respectively.
It is known that N <0, T fDT @%udu) owns the same distribution as the stochastic inte-
gral

T
V= \/T/ @L,udWw
0

Let

_ X — X
Vn = \/N (—(N) T
Xr

7.7%),
then we get
Vw3V as N— oo (5.34)
by (5.33). We denote
Cy:={h:R—R: his continuous and bounded},
then by the Portmanteau Theorem in [9, Theorem 2.1], (5.34) yields

lim E[h(Vy)] = E[R(V)], Vhe G,

N—oo
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i.e. for Vh € O

h (\/N (X(N’X—;XT» - F [h (\/T/OT xpL,uqu>

Taking expectation on both sides, we get for Vh €

h (JN (X(N)X—;XT» ‘ F%,f?” (5.35)
—F {E {h (ﬁ /O ' \Ifdeu) f%,f?” .

From h € Cy, it follows that |A(-)| < K, 3K € R. It implies then

X — Xop
(v (F))

Applying the dominated convergence theorem to (5.35), we get

lim F

N—o0

FF TS

E|lim FE

N—oo

E

‘f?,f?] <K, VNEeN.

E%_E% ( >)‘]—"}"”
oo (v (B ]))f%f?H

el ()

Then we arrive at the equality
Xy — X T
h <m (L)) (V7 [ s.am)]
X7 0
for Vh € C and the proof is concluded by applying the Portmanteau Theorem again. [
Remark 5.2.4. From the (5.25) and (5.26), we get that

lim F
N—o00

% (Wf (\Tlu o \Tlu) Ty + (wf@uwu)Q — 27r5\T!uDu\Tlu7ru>

s always positive. It guarantees that Wy, is well-defined.

5.3 A volatility adjustment for discrete rebalancing

In this subsection, we derive a “continuity correction” which adjusts the distribution of Xp
to get an approximation of the distribution of Xy. Asin [21], we investigate the asymptotic
covariance between the scaled portfolio error Vy and the logarithm of the continuously
rebalanced portfolio log(X7) at first and get afterwards the so-called volatility adjustment.

We face the model in Section 5.1 again, namely we have deterministic processes (o),
(¢) and (wy) satisfying the regular conditions proposed in Section 5.1.
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5.3.1 Asymptotic covariance

Recall that the scaled portfolio error Vi is given by

X — X
Vy = VN (M)
Xr

in (5.30). It can be rewritten as

. VN)
Xvy=Xr |1+ —=
) ( VN

Note that the discretely rebalanced portfolio X (v) is not guaranteed to be positive, since the

relative difference Vyy/v/ N could be negative. Thus, we can not directly take its logarithm
to calculate a volatility. Set

Kp = Xpoxp (\‘//—%) | (5.36)

it yields then
Xr=Xr |1+ E (M ' =X + O(1/N)

Concerning the asymptotic covariance between Vi and log(X7), we have the following
proposition:

Proposition 5.3.1. (i) We have

T [T, T
VINCov[log(Xr), V)] — 5/ b, du + T/ AL udu, (5.37)
0 0
where
" m — TT.
b, == —mlo,0ol lim h
nl0 h
and
Ao = thy Duouoy mu = Ty i - |70 0ul|® + (|7 0ul|* = 7y 0u0y Duouor, m, (5.38)

with D, = diag (7).
_ . 2
(i) E [(XT - X(N)> } — O(N"2) and
v T T 12 T
N (Var [log (XT)} —Var [log(XT)D — T/ aiﬂdu—i—T/ b, du + 2T/ AL udu.
0 0 0

Proof. By (5.5) we have

X i) X
Vi = VA =X \/_Z< ) _<>>.
n+1

X(mn)
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Replacing X7 by its expression in (5.4) and plugging (5.30) yield

Cov [log(X7), V]
=E [log(X7)Vy] — E[log(X7)] E [Vy]

T 1 T
=F [(/ (Wguu — 5”71-50-11,”2) du +/ WgaudWE) . VN} — Elog(X7)] E [Vy]
0 0
T 1 T
:/ (ngu - §||7r$au||2) du-E[VN|+ E [/ o, dW? VN}
0 0

T 1
~ [ (o= o) au- £

0

VN » o Xy Xy
=V N E / o, dws | 2 - ) (5.39)

; ; (k—1)At Xty  Xw)

We claim that
kAt X(nJrl) X(n) ) 0 k>n+2,
E / Lo, dW? < % = Ann+OAB) k=n+1, (5.40)
(k—1)At (n+1) (n) o(At7/2) kE<n

with S\L,Nm € R. The first case in (5.40) follows immediately from the independence of
Brownian motion increments. For the second case in (5.40), we may write

| Jnat “ Y Ry X
[ pnt+1)At R X

—E / Lo, dws | p | 20 (5.41)
|/ nAt Rn—l—l X(n)
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. Now
(n+1)At R
E / Tl g, dWS ot
nAt Rn+1
d (n+1)At (n+1)At 1
=S woel | [ wadwE e ([ (= o P -
i=1 nAt nAt 2

1 (n-‘rl)At
—|——||7rggu||2) du+/ (0u(i,:) — T o) AW

2 nAt

(n+1)A (n+1)At |
_Zw(n )i / Wgaude exp —/ —||au( ) — mloy||*du (5.42)
nAt
(n+1)At (n+1)At 1
[ et o) aws ) e ([ (Glowtic) - aloul 4
n nAt

1 e T Lo 2

o G B = A+ LT 2

Applying the Girsanov theorem to the forth equation with the following Radon-Nikodym
derivative

1 (n+1)At (TL+1)At
exp —5/ o (i, 2) —WSUulfsz+/ (0(i,2) = myo) AW

At nAt

which is a martingale following from the independence of the processes (o,) and (W?) by
Example 4 in [36, P221], we get that the Ito integral f (EDAL T o WS in (5.42) is

(n+1)At (n+1)At .
/ Lo, dW? + / Thou (0u(iy:) — 7wl ow) du
nAt nAt

under the new measure. Thus, we get

(n+1)At sR 11 Z (n+1)A . ( (i) T )T
E / T auqu - T(n) 1/ 7ru0u oy (1,:) —m,04) du
nAt Rn+1 - ()
(n+1)At
$eXp / (Hui = 7t + [Ty 0l = 0 (3,2) oym,) du | (5.43)
nAt

In our model we have assumed that (m;) is a continuous function of (o;) and (u;). It
implies that (m;) is twice differentiable with respect to ¢, thus we have m;, —m, = O(t; —t3).
Expanding the right side of the forth equation (5.43), we get

(n+1)A R
E / LT T oW dW?S R”E = A + AP+ Ry
nAt (0
with
~ d (n+1)At (n+1)At
Ao = D T / . Ty 0u(0u(i,:) — myo,) du = / . T a0y () — Tu)d,
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(n+1)At
7-‘-ZZO-u(O-u@a :) - 7sz;o-u)Tdu
nAt

d
J(2
)‘(L,)N,n = Z T(n),i /
=1

(n+1)At
. / (,uw- — 7+ |7l oy | — ou(d, :)auwu) du
nAt

and Ry being the remainder of the expansion. It yields then S\(Ll)Nn e O(A#?), :\5;2)]\,” €

O(At?) and Ry € O(At?) from the boundedness of (m,), (7,) and (p,). Thus,

(n+1)At¢ R )
E / loTaw s € O(A).
nAt n+1
The Ay, in (5.40) is defined as
B B 5 d (n+1)At
ALNn ::)‘(Ll,)N,n + )\(L2)Nn = Z T(n),i / Wfau(au(i, ) — ﬂgau)Tdu
i=1 nAt
(n+1)At
1+ / (1w — o pt + || 7h 0l = 00 (i, )oumy,) du | (5.44)
nAt
Consider the rest term in (5.41), i.e. F [%] and recall ﬁi”; =11, R—i, we have
X(n) n Rk n
E|Z2| = = =1] @ +oar*?) =1+ o(VAL).
X(n)] [17 | 5| = L0+ elae) =1+ oA

Note that £ [%} belongs to 1 + o( At*/?) from
k

1 1 1 "
=’ {1 + = gnn (0) At + —gy, (0) AtY/2 + cN,n(\/At)At?’/ﬂ

with

Elgna (0] =0, Elgy,(0)] =0 and B |[ex,(VADAL?] = o(AL)
by (5.17). Since Brownian motion increments are independent, we can write the last case
in (5.40) as

5 / B s [Xery - X
| J(k—1)At “ “ Xmay X
YN . 5 n+l A n R
=K / T, 0, dW; == s
|/ (F—1)At ,El B nl;[l B
[ ha T s T i R +1
=LK / T, Oy dW,; s -1
| Je—1)a gl Ry ) \ Ruta
[ rkAt k£ n - 5
R R,
=LK / Lo, dW? = = Cni |
i (k—1)At po— Rm) <m]_;[+1 Rm) <Rn+1
Koy ] [ Bl o [Ra]) [
—FE E / mo dWi =1 T E|52] ) B —1/,
_X(k:—l) (k—1)At Rk —— Rm Rn-‘rl
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which is

(14 o(VAL)) - O(AL?) - (1 + o(VAL)) - o At*?) = o(ALT/?),

Then the order relationship in (5.40) is shown and we apply this relationship to (5.39), it
yields then

N-1
VNCovllog Xz, Viy] =O(N®) - o( A7) + N*O(A) + N Y Apnm
n=0
N-1 _
=N Z )\L,N,n + O(\/ At) (545)
n=0

We identify in the following the explicit expression of limy_ o, N Z )\ L.Nn- Note that

2

N—oo N—o0

lim NZS\L,N,TL = lim N <)\2Nn+)\LN7L)

I
o

n

by (5.44) and j\f)Nn can be written as the sum of Ay, y, with

(n+1)At
T_ T/ -
ALNn = g T(n / T, 0u0,, (3, 1)du

(n+1)A
: / (Nu,z’ — Tl + |7 ou|)? = 0u(i, ) oum,) du € O(AE?)
nAt

and a rest term

(n+1) d (n+1)
— / ool T.du Z W(n)yi/ (,uu,i — 7+ |7l o | — ou(d, Z)O‘uﬂ'u) du € O(At?).
nAt i=1 nAt

It yields then

N—1 N—1
. (1
]\}IE;ON 50 ALNn = 11m N E—o (A(L)Nn + AL,N,n) .

Let us denote .
by = / mlo,ol (1, — m,)du.
nAt
The Taylor expansion of by, 11)a¢ yields

1 1 1" 1 "
)\(Ll,)N,n = b(n+1)At - bnAt + bnAt + §bnAtAt2 + O(AtQ) = ibnAtAtQ + O(At2)

with
p ol o,ol Ol ool or
bnAt = —( tatt t) W(n) ( ¢ 8tt t t) = W?UtU;T att (546)
tinAt tinAt tinAt
Then we get
N
lim N 3 A n = Jim —anmm / b u
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Tu+h —Tu
oh

with b: —7TTO'UO' limy, o . In the same way we write

ALNn = ZW 7T(n (n)(:,i)AIH—o(At))
: ((/ub(n)J’ - W?) —|— ||7T 0'(n H2 - O'(n)(i, Z)O’(n)ﬂ'(n)) At + 0(At>) .

It yields

(i = Ty + 17y 0 12 = 0y (6, )0y Ty ) AL

= lim T/ (wa,uuﬂr 0wl (:,48) — Ty - |7l o |+ |7l o |t

N—o0

— g Tuiou (i, )oumuml ool (:, @)) du

T
:T/ )\Lmdu.
0

Thus we get
N T (T ., T
]\P_I&N; ALNn = 5/0 b,du + T/O ALudu,

which implies the first assertion in the proposition.
For the part (i7) of the proposition, the Taylor expansion of exp(Vy /v N) yields

Xr — Xy = Xr (exp(VN/\/—) —1- \‘//_NN) = Xr -

esN V2
2 N

_ N2
for some &y with |{y] < |V—\/%| To get E [(XT - X(N)) } = O (N7?%), we need to show that
E[X2e*~V{] is bounded for all N € N. Recalling X7 in (5.4), we have

T 1 T
E[X2eXVVE] =F [exp (2/ (ﬂfuu — 5”71'30“”2) du + 2/ WfaudW5> B%ijé}

0 0

T T

=exp (/ 27rfuudu+/ ||7r30u||2du> :

0 0

T T
E {exp (2/ Lo, dW?2 — 2/ HﬂgauHQdu) 62§NV13:|

0 0

T T
=exp </ 27 o du +/ H7rgau||2du> - B [e*VVy]
0 0
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by a change of measure with the following Radon-Nikodym derivative

T T
exp (2/ Lo, dW? — 2/ H7rfau||2du> :
0 0

Employing the Cauchy-Schwarz inequality, we have

QEN V4 \/ Ele¥~N| E

Note that F [645N] is bounded, since |[£x] < % Furthermore, the fact that fo is a

continuous function of log-normal distributed variables implies that E[VR] is bounded for
N € N and goes to E [V®] as N — oo. Thus, we have E [¢*¥ V] is bounded for all N € N.
For the last statement in the proposition, we have
N (Varllog X7] — Var[log Xr]) =N (Var [log <XT exp (VN/\/N>>} — Var[log XT]>
=Var[Vy] + 2V NCoullog Xr, V]
and

T
Var[Vy] = Var[V] =T / 67 udu
0

with 67 , as in the Theorem 5.2.2 Then, the statement follows directly from the first asser-
tion. [

5.3.2 Volatility adjustment for Xy,

In this thesis the volatility of a portfolio is defined as the standard deviation of the portfolio’s
logarithm, divided by 7, i.e. the volatility of X is given by \/Var[log X7]/T. By (ii) in
Proposition 5.3.1, we have

Var[log X7
T

1 T T T
=—= || Var |log(Xr)] + At/ o7 du+ At/ b, du + 2At/ A udu)]
VT [( log(Xr) 0 b 0 0 t
1 T . T T T 1/2
N—— Lo, ||Pdu + At/ o2 du+ At/ b, du + 2At/ A udu)] .
VT [(/0 | | o 0 o

Definition 5.3.2. (Volatility adjustment)

1/2

. - . T T 2 1/2 ..
Replacing the volatility of Xr, i.e. (fo |7 ol du/T) by a new volatility o,.q4;, we

get an approximation of the distribution of X(N). This new volatility is called the volatility
adjustment for X(N) and is given by

1 T T T T
Oudy = \| o </o ||7T50u||2du—|—At/O U%,udu+At/0 b;;du—l—QAt/o )\Lvudu).
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Note that for Xt given in (5.4) the volatility adjustment implies that we should replace

T
/0 Inlo2du by To?,

and

T T - T
/ o, dWE by V7o 4 / Lo, dW?
0 0

VI 770, 2du

with Z ~ N(0,1) to correct for the discrete rebalancing. Thus, the volatility adjustment
yields the following approximation for Xy

T T
/ T 0'
Xadj = exp / Ty M AU — VT adj / 7T3; auqus
0 0

CLdj
VI 7o, 2du

5.4 A conditional mean adjustment for discrete rebal-
ancing

As illustrated by Glasserman [21], it is necessary to supplement the central limit theorem
with an approximation specifically focused on the tails, since the normal approximation
(central limit theorem) loses typically accuracy in the extreme tails.

This phenomenon can be shown by the following figure. In Figure 1 we see three curves
representing the density functions of the continuously rebalanced portfolio X, the discretely
rebalanced portfolio X (v) with V = 16 and the portfolio corrected by volatility adjustment
Xagj, respectively. The figure in the left panel gives us a whole impression, whereas the
figure in the right panel focuses on the tail. It is evident to see that the density functions
go apart in the tail.

1 . T T T T 0.2
09 0.18
08 0.16
07" 0.14
06 0.12
0.5} e
oal 0.08
ol 0.06
02l 0.04

0.02
0.1
5 0
-3 =3 -2 -1.5 -1 -05

Figure 1: Density functions. The red curve corresponds to X7, the blue curve corresponds to
X (v) with N =16 and the green curve corresponds to Xgg;-

In this section, we will identify a correction in approximating the distribution of Xy
with X7 in the tails. To this end, we will determine the distribution of X / X7 conditioned
on an outcome of X7 in the tail of its distribution.
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5.4.1 Conditioning on a large loss

(N)

Concerning the distribution of conditioned on an extreme outcome of X, we have the

following theorem:

Theorem 5.4.1. Let xy = v/ N and yy = exp (:L‘N + fOT (7L o + 37T 0u|?) du), then

X 1
< U Xy = yN> 5 exp (—ﬁLx2> (5.47)
Xt 2
as N — oo, where
gy T Iy us (i Joumal du T fy (i) mu (non) " du (5.48)
L= 2 = 3 , )
T
(Jo ||wzau||2du) (5 ImZol2du)
with
Qu(i,:) = 0,(i,:) — Loy,
and

= > s (i) - wlo.) (ou(iy:) —7la).

Proof. Using Lemma A.1. in Appendix A.1, we get

nAt
(/ Qu(i, ) dWS| W = a)
(n—1)At

2
nA . nAt
a.f(nfl)m Qu(1,)oymudu  nit o (f(n L O'uﬂ'udu>
T ) 1922, )| "du —
fo |7l o du (

n—1)At fo 17T, ||2du

Thus, we can represent the following conditional distribution

X T B
X = = X = 5.49
( X, T yN) (E R, T = YN ( )
as
N d nAt 1 1
TTS msesw ([ (b= loatic P = sl + 3litoul?) o
n=1 i=1 (Tl—l)At
nAt
+ / Qu(z’,:)dMu), (5.50)
(n—1)At
with antl)At u(i,:)dM, given in (A.3) in Appendix A.1 and a = 21/N. Thus, any limit of

(5.50) is a weak limit of (5.49).
We transform the factors in (5.50) in following steps:

(i) replace f( 1)AtQ (i,:)dM, by its definition in (A.3),
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(ii) replace N by T/At and a by zv/N,

(iii) replace each f nm Qu(i,:)dWE by

At
d nAt
Z ZNn,;j / Juigdu

and replace fOT Lo, dW? by

i Zj\//OT (whou(:, 5))* du,

with fy; = Q2(i,:) as in (5.10) and Z, Zy,, n=1,..., N are independent standard
normal distributed random vectors in R<.

Then we get (5.50) can be written as [[°_, Gn..(VAt), where Gy ,(s) : R — R is a function
of s with

GNn ZGan

and

tn—1+82 1
Crma(s) =1, 4 exp ( / (uu,i— louliy )2 quu+§|lﬂfau\|2) du
tn—1

tn—1+52
+ / (i, )dM,
th—1

with ¢,_1 := (n — 1)At. Employing the transformations (i), (ii) and (iii) mentioned above,
we get that G ,,:(s) can be written as

tn—14s> tn—1+s”
GN,n,i(S) =Ty, _1,i €XP / hu zdu + Z ZNnj / fu z]du
th—1 tn—1
N VT =350 2y Jy (whou(:, ) du
+/ Oy (i, )oymudu - = \/fo

Jo 17T o 2du

with ;= pui — llou(@, )| — 7L + 3|7 0y]|* as in (5.9). We can easily identify that
Gnn(0) =1 and

ZGan Han( )
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with
Jto 452 S
\/ ttnn 11+82 Jujdu
VT — ZFI Zj\/fo (7Tou(:, ) du /T J;i";ﬁs? (1, ) o mudu
| 15 ko T T

Note that for differentiable (o,) and (m,), we have

+ Qtn71+32 (7/7 ) ' O-tn71+327rtn71+32 ' 28

Hyni(8) ==hy, | +s2, 28+ZZN7”

tn—1+s
/ Q, (1, )oymudu = (Utn,l(i, ) — 7Tt7;,1‘7tn71) Ot Tt 15 +o(s )

tn—1

and recalling (5.10), (5.11) and (5.12), we get

Fo vt
lslﬁ)l t 1+852” = Vi
\/f” VT fuggdu

thus,

23:\/T

S 17T o]2du

Zﬂ-tn 17 (ZZNW/] V ftn 17ZJ +Qtn 1 7’ gtn 17Ttn 1 °
tn—1+4s> ' T >

—lim Oy (i, ) o, mudu -
570 Sty R SQfOTHWTUuHQdu

—Zﬂtn 1i (ZZNHJ\/ftn i T Qe (4, )0,
2T )

Sy 17T o |2du

23:\/T

Iy 17T, |12 du

Qtn 1(2 )Utn lﬂ-tn 1°
By direct computation we get the second-order derivative of Gy, (s) as follows:

ftn 1+527ij S

VI g
d .
25 2 f (7L, 5)) du

I 17T o, 2du

tn-1+s” Q. (i, ) o mudu T

tn—1
T
5 I 7T o, ||2du

GNn ZGNH% S HJQV,nz( )+2ht —1+s2,i +ZZN7%]

_Qtn71+32 (Z7 :)O-tn71+82 7Ttn71+82 :

Recalling the computation of the second-order derivative of gy, (s) in Proposition 5.2.1, we
have

/

DU (SR, I
N"'L,] tn— 1+52 d
j;j fu K% U
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and since (3, :) is differentiable with respect to ¢, we get

!

1457 Q. (i, ) oy mudu

lim [ 22
s—0 82
), : 2 P 0 (3, ) oumedu2s
— lim (Qtn71+32 (Za -)Utn,1+3277tn,1+s225) S ~ lm tn1 u\ls - )OuTly
510 54 510 o
. ! g4 . 6
i 2 (Qtn—1+82 (i> :) D, 4 (iv )) 2 <[Qt”_l(l’ :)Jtn—lﬂtn—l} % + 776%) =0
“liy : - . _

with

for a € € [t,_1,tn_1 + s*]. Hence,

d d . )

A O, (Za :)Ut 1Ty, ZE\/T
G TL(O) — 7Tn—17'i ZN,TL,' fn_lyi' + n—1 n—1 n—1
R {(z Wi Bl

250, 20/ ) <wfou<:,j>>2du}

+2ht7,'_Qt7 (/L :)Ut77t7 .
n—1,7 n—1 ’ n—1 n—1 fOT ||7T;{0‘u||2du

d d . 2

Q, (4,:)or, T, 2T

=D T, i ZNmg N ftnrij + —— e + 2ht, -
2 {(Z e Jy ko2 o

j=1

We can write G;/\,m(O)At/Q as the sum of Yy, and uy/N with

d
, At .
Vivn =3 T, i ([ﬂtnm V2wl 5+ (0 I = o, G)1)
=1

oVTAt )

d
+Z7Tt _ ,iQt _ (’l :)ZN,th _ (Z Z)O't T
e H PP

At
2

and
2 x2T?

d
1
Uy = = Tt 1 |t 1 (8, 1) 00, T, .
2 Zzl t 1 |: t 1( ) t 1/t 1] (J"OT ||7T’Z:’O'u||2du)2

Thus, by the Taylor expansion of Gy, (Vv At), we have

Un

GN,n(V At) =1+ YN,n + N + TNn,

where the remainder 7y, is of order o(At). We write the logarithm of (5.50) as

N
Up,
Zlog (1+YN,n+ ﬁ +TN,n) .

n=1

(5.51)

81



Chapter 5. Asymptotic error distribution and adjustments for discrete
rebalancing with regular paths

We will show next that this sum converges to

N 2 d N
_ . Up, zT 9
U= ]\}l_l;noo Z ﬁ = T T 9 2 ]\}1_2{130 Z Z ﬂ-tn—l:i [Qtn—l <Z7 :)O—tn—lﬂ-tn—l} At
n=1 2 (fo |l du> i=1 n=1

2T d T
— t 5 Z/ T [Qu(7, Z)Uuﬂ'u]2 du
0

2 ( s ||7Tgau||2du> P

in probability. From

2 d
(Z Tt 1,180 4 ( )ZNn> = 7 illon (@)1 = lInf o,
i=1

we identify
E[Yn,] =0.

It is clear that (Yn,),_,  forall N € Nare independent random variables with E[Yy ,N] =
0 and F [(YanN )2] finite. Hence, there is

N

N
Var(Ynn, 1
ZM< max Var(Yy,) Z— < oo, N — o0.

n2 1<n<N 2
n=1 _

Then by the Kolmogorov criterion of the law of large numbers, we have

N
Z Yo 30
n=1

it yields that > Yy, converges to zero also in probability.
Since Yy, € O(At) and the remainder ry,, € o(At), we get

N N N N
2 2
Z YNmo Z "'Nons Z "Nn  and Z YNnTNn
n=1 n=1 n=1 n

all converge to zero in probability. It implies that

XN: (YM + 2y n) (5.52)

n=1

converges to @ in probability and

N 2
> <YN,n + % + rN7n> (5.53)

n=1

converges to zero in probability. Following from (5.53), we have

Up,
nirll,a)fN ‘YN,n + W + TN,n‘ (554)
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also converge to zero in probability. Using the fact that, for all sufficiently small v,
v—v? <log(l+v) <v+v?

we have (5.51) converges to % in probability with v = Yy, + 5 +7n,,. It follows that (5.50)
converges in probability to e and thus that (5.49) converges in distribution to the same
constant.

It remains to evaluate 4. From the definition of @, we can write 4 = Srz%/2 with

Y I i [, o) du

BL 7
(Jo lImdoul?du)?
Let
d
Tu = Z TuiQE (3, )1, ),
we can write
5 T fOT o, Tu (Wgau)T du
L= =
(f() HWEUUHQCZU)Q
This concludes the proof. O

5.4.2 The conditional mean approximation H(Xr)

From Theorem 5.4.1, we get the approximation
N 1 9
(X(N)lXT = y) ~ Yy exp §5L»T /N

for large N with z = logy — fOT (7l o = SlmLo|?) du. Tf we define

1 T 1 2
H(y) = yexp (ﬁm (106 [ (#Eu— gl ) au) / N) ,
0

we have then H(X7) ~ (X(N)\XT = y) for large N, it implies that H(Xr) =~ X(N) for large
N. Provided H is monotone near ¢, we get

A

P(Xy) <) = P(Xr < H'(c)). (5.55)

Similarly, we can approximate the VaR for the discretely rebalanced portfolio, %7%& in
terms of that for the continuously rebalanced portfolio, VaR,, using

VaR, ~ H(VaR,),

if H is monotone near the VaR. Calculating H (y), we get that H (y) is positive for all
sufficiently large N at each y > 0.
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5.5 Examples

In this section, several examples will be given to test some important results in this thesis.
We will first in Subsection 5.5.1 test the convergence result in Theorem 5.2.1 and then in
subsection 5.5.2, we will compare the accuracies of the volatility adjustment, the conditional
mean adjustment and the combined adjustment in different situations.

5.5.1 Test of the limit theorem

To illustrate the convergence in Theorem 4.2, we apply the method of Monto-Carlo simula-
tion on our example:

Model 1: A portfolio consists of five assets with the volatility coefficients matrix o(Y;) €
R°*® and the mean rate of return p(Y;) € R driven by an external deterministic process (Y;)
with state space S = [1,2,3]. In our example, we have

1 0<t< T}y
Y,=< 2 Th<t<Ti+T,
3 Th+1T, <t<T

with Ty = 1, Ty = 1/2, T3 = 1/2. Then, T = Ty + T5 + T3 = 2 is the time horizon. The
volatility coefficients matrix o(Y;), 0 <t < T is given by

002 +.02Y; .001 + .2Y; .04+ .02Y; .03+ .02Y; .01+ .02Y;

03+ .2y,  .002+.2Y; .001+.02Y; .02+ .02Y; .04+ .02Y;

o(Y;) = .004+.02Y; .003+.02Y; .01+.02Y; .01+ .02Y; .02+ .02Y;
003 +.2Y,  .04+.02Y, .02+ .02Y; .02+ .02Y; .03+ .02Y;

.001 +.02Y; .002+.02Y; .03+ .02Y; .01+ .02Y; .03+ .02Y;

and the mean rate of return p(Y;), 0 <t < T on the i-th asset is
pi(Ye) = 0.05 + [[o(Y2) (4, 2)[| /4.

The portfolio weights are constant with 7 = (—1,0.5,2,0.5, —1). We measure the portfolio’s
leverage as the ratio of the total long position (the sum of the positive weights) divided by
the initial capital (the sum of all the weights, which is simply 1). This yields a leverage
ratio of 3.

In table 1, the first three columns of results show estimates of the standard deviation,
skewness and kurtosis of the relative difference Vy, the next three columns show estimates
for the absolute difference X (v) — X7 and the last column shows estimates of the correlation
between Vy and logX7. The values in the table are estimated from one million replications;
the last row shows theoretical values under the limiting distributions. We note that the
moments of the relative difference Vy converge to the moments of the normal distribution
as the number of rebalancing frequency N increases.

Relative Difference Vy Absolute Difference v N (X Ny — X71)
N Std. Skewness Kurtosis Std.  Skewness Kurtosis Correl.
8 0.20 -2.45 15.99 0.21 -1.29 11.90 0.2
100 0.17 -0.34 3.29 0.22 -0.49 6.45 0.06
200 0.17 -0.22 3.05 0.22 -0.29 6.01 0.05
o0 0.169 0 3 0.215 0 5.36 0
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Table 1: Numerical illustration of the convergence of relative and absolute difference as the number
of rebalancing dates N increases. The last row shows theoretical values for the limit.

Figure 2 compares the scatter plots of Viy against logXp at N =8 and N = 200. At N =8,
a quadratic relation between Vi and logXr is reflected in the scatter plot in the left panel. The
picture in the right panel shows the asymptotic independence.

2 . . . . . . 08 . . . . .
R ) E R J

log(Xr)

Figure 2: Scatterplots of \/NX(%;XT versus log(Xr) for N = 8 and N = 200, illustrating
the asymptotic independence.

Figure 3 shows QQ-plots (Quantile-Quantile plot) between the scaled relative rebalanc-
ing error VN &%;XT AT [ 07 ,du and the standard normal distribution at N = 8 and
N = 200. With the observations falling on a straight line in the right panel, we show that

VN X(%;XT /)T fOT 07 ,du converges to the standard normal distribution as N increases.

al 4
3
2y N=200
ol 2
ol 1
w n
Kl = o 0
B A 2
s = -
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Figure 3: QQ-plots of \/NX(%;XT/\/TfOT a%}udu for N = 8 and N = 200, illustrating the

convergence to normality.
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5.5.2 Test of the accuracy of the volatility adjustment

To measure the accuracy of the volatility adjustment, we use the concept of error reduction
that is first introduced by Glasserman in [21]. The error reduction is defined as

where 0,4; is the adjusted volatility in Definition 5.3.2, 65 denotes the estimated “volatility”

of X(N), ie.
. 1 A
7y = var (1og (X))

and o, denotes the portfolio “volatility”, i.e.

1 (T
O = T/o Lo, ||2du.

To get o(n), we calculate the standard deviation of log (X(N)> across one million paths.

Furthermore, to make our calculation always rational, we simply discard negative values of
X (N), Which are rare in the examples we have tested, before taking logs.

We introduce two more models in the following. Both models have five assets.
Model 2: The volatility coefficients matrix o(Y;), 0 < ¢ < T is given by

02Y; —.018 2Y; —.199 .02Y; 4+ .02 .02Y;+.01 .02Y; — .01
2Y,— .17 2, —.198 .02Y; — .019 02Y; 02Y; 4 .02
oY) =1 .02y; —.016 .02Y; —.017 .02Y; —.01 .02Y; —.01 02Y;
2Y; — 197 .02Y; + .02 .02Y; 02Y; 02Y; + .01
.02Y; —.019 .02Y; —.018 .02Y;+ .01 .02Y; —.01 .02Y; + .01

with (Y;) as in Model 1; the mean rate of returns p(Y;) are as in Model 1; portfolio weights
are [—1,1,2,1, —2] with a leverage ratio of 4;
Model 3: The volatility coefficients matrix o(Y;) and the mean rate of return p(Y;) are
given as in Model 1; portfolio weights are [—0.2,0.4,0.4,0.1,0.3] with a leverage ratio of 1.2.
Table 2 shows that the portfolios with higher leverages and volatilities show a marked
improvement in the error reduction as N increases, whereas for the portfolios with low lever-
age and low volatility, the adjusted volatility is nearly exact even at N = 8. This assertion
extends the similar statement in Black-scholes model stated by Glasserman in [21].

Model2 Model3
Ox Oadj on error red. | o, Oadj on error red.
N=8 0.4615 0.4927 0.5136 | 59.9% 0.2710 0.2728  0.2727 | 95.3%
N=12 | 0.4615 0.4825 0.4903 | 73.0% 0.2710 0.2722 0.2719 | 64.6%
N=16 | 0.4615 0.4774 0.4790 | 90.1% 0.2710 0.2719 0.2715 | 31.6%

Table 2: Error reduction using the volatility adjustment across test models. The table shows the
portfolio volatility o, the adjusted volatility o,4; and the volatility of the discretely rebalanced
portfolio 6. The columns “error red.” show the error reduction achieved by the adjusted volatility
at different rebalancing frequencies.
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5.5.3 Test of the accuracy of the combined adjustment

In the following, we will illustrate the effects of the volatility adjustment, the conditional
mean adjustment and the combined adjustment on different models through comparing the
distribution functions of log X7, logX y and the different approximations of logX N)-

In a similar way as in [21], we first generate a sample of one million of X7 by simulating

T
exp / <7r ,uu——||7r Fo)? du+z\// (7T 0, (:,1)) duZ*"
0

with ZX7 = (ZZ-XT)1 <i<q Deing a d-dimensional standard normal distributed random vector

and denote the distribution function of X7 by F(c) :== P(Xr < ¢), c € RT.
Then, we generate the sample of X(y) through simulating

N d nAt %
H Z 71-(nfl),i exXp (/ (Mu,z - ||Uu ?, ”2 du + Z \// 0y zyd Z ('L)>
n=1 i=1 (n—1)At (n—1)A

with Z¥m) = (Zf“”)
1<j<d

tor for n = 1,..., N and denote the distribution function of Xy by ﬁ(c) =P (X(N) < c),

ceR.
The volatility adjustment in Definition 5.3.2 yields the following approximation of F'(c)

being a d-dimensional standard normal distributed random vec-

Fug(c) =P (Xogg < )= P (X(N) < C) , ceR"

with

T T
, T VTo,
Xogj = €xp / Ty MU — Oadj / WfaudW5
0

ad]
VI IrTo, 2 7o
and the conditional mean adjustment in (5.56) provides the approximation Fy(c) given by

Fu(c) = P(H(Xz) <)~ P (X(N) < c)

with H(y) : R — R given in Section 5.4.2.
Finally, we define a combined approximation F,g; z(c) that use both adjustments, as

Fugn(c) = P(H (Xuq) <c)= P (X(N) < C> .

In figure 4, the distribution functions of log X7, log X(N) and the different approxi-
mations of log X(y) are shown and we see that F,q4 n provides the best approximation of

the discretely rebalanced portfolio X (v) on the region near probabilities of the order of
1073 —10"!. Figure 4 concentrates on this region, since it is important to estimate VaR at a
99.9% confidence, which is critical for the determination of the incremental risk charge (IRC).
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0061
0081
— ] og (X1) log (Xr)
Ran) 9 005 log (X))
L log (oo b 3 og (X
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Figure 4: Distribution functions in model 2 (left panel) and model 3 (right panel). In each panel
the red line plots log (X7), the blue line plots log (X(N)> with NV = 4, the green line is the ap-

proximation of log (X,4;), the yellow line is the approximation of H (X7) and the square signs plot
log (H(Xagj))-
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Chapter 6

Temporal granularity

The concept of temporal granularity is introduced in economics and finance to show the
relationships between continuous-time and discrete-time models. The temporal granularity
can be used to quantify the approximation errors that arise from discrete-time implemen-
tations of continuous-time models, for example the implementation of a continuous time
delta-hedging strategy in discrete time. The discrepancy between the discrete-time and the
continuous-time delta-hedging strategies is unusually called tracking error for delta-hedging.

Bertsimas, Kogan and Lo [6] have studied the temporal granularity in a derivative
pricing model assuming that perfect replication of the derivative is not possible, namely,
delta-hedging strategies exhibit tracking errors. In [6], it is shown that the normalized track-
ing error converges weakly to a particular stochastic integral and the temporal granularity
coefficient is defined as the standard deviation of this stochastic integral. The temporal
granularity in this thesis will be defined in a similar way.

6.1 Definition of temporal granularity

We consider the model in Section 5.2.3. The discretely rebalanced and continuously rebal-
anced portfolios are denoted still by X and X, respectively. Then, according to Theorem
5.2.3 (limit theorem II'), we have as N — oo,

~Xwv - X T
0

T

with (W, )u>0 being a Brownian motion and
1
\If%u =3 <7r$ (UyoW,)m, + (ﬂg\lluwu)Q — 2W§\I’UDU\IJU7TU> )

Then, the definition of temporal granularity can be given by:

Definition 6.1.1. (Temporal granularity)
The temporal granularity g is defined as the standard deviation of the limit distribution

of\/N(X(N) —XT/XT), i.e.

T T
g= \/5/ E(xl (U, 0W,)m, + (7T, m,)* — 210, D, ¥, ) du (6.1)
0
with ¥, m, D as in Section 5.2.3.
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It is easy to see that g = 0 if (3;) is constantly zero and g is merely determined by ()
and (V). g is well-defined, since

E (mf (T, 0 W) 7, + (77 W,m,)" — 277 \I/uDu\IJuwu>

is always positive (See Remark 5.2.4).

6.2 Interpretation of Temporal granularity and some
examples

The temporal granularity can be interpreted as a measure of the relative error between Vi
and Vp. More formally, for large N, we can write

g=VN |E <—VN_V(T>>2.

It yields then that the relative error between Vi and V(T)) can be approximated by g/v/N
for large N, i.e.

v |
E (TT)) ~ g/VN. (6.2)

It implies that for a model with high granularity, a larger rebalancing frequency N, is
required to achieve the same level of relative error as a model with low granularity. If we
want the relative error of Vy and V(T) to be within some small value §, we have to require
a rebalancing frequency N > ¢/ by (6.2).

We want to give some examples of the temporal granularity in this subsection. Let
us first consider a simple example, namely the temporal granularity of geometric Brownian
motions.

Example 6.2.1. Given the price process of an assets vector, which follows a multidimen-
sional geometric Brownian motion with constant volatility coefficients matriz ¥ and set
U = 3, then, the granularity g defined in (6.1) is given by:

T\/WT (W o W)+ (aT¥7)* — 27T W DU
g= ,
2

where ™ denotes the constant portfolio weights and D = diag(r).

In a switch model we assume that the drift coefficients vector and the volatility coef-
ficients matrix of a assets vector process, denoted by p and X, are driven by an external
Markov chain (Y;). (Y;) is stationary with state space £ = {y(1),...,y(l)} and initial dis-
tribution II. We still set ¥(Y;) = X(Y;) - £(Y;) and let m(Y;) denote the portfolio weights.
Then, we have
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Example 6.2.2. In the switch model introduced above, the granularity g in (6.1) is given
by

. \/ i M) ¥
with
W =" (y(0)) (¥ (y(0)) o (i) (y(0) + (w7 () ¥ (i) m ()
— 20 (y(0) W (i) D (i) ¥ ((2) 7 (5()).

The example above follows directly from Theorem 5.2.3, Definition 6.1.1 and the as-
sumption that (Y;) is stationary. We note that

\Ijmin \Ijmar

T <g<T
9 >9=

If the probability for a lower W, ;) increases and the probability for a larger ¥, ;) decreases,
then, g becomes smaller.
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Chapter 7

Optimal portfolios for discretely
rebalanced portfolios in the
Black-Scholes model

It is clear that the optimal portfolios for discretely rebalanced portfolios does not evolve
the same as the optimal portfolios for continuously rebalanced portfolios. In Section 2 and
3 we have obtained explicit expressions for optimal strategies in Wishart volatility models
regarding logarithmic utility and power utility, respectively.

The aim of this section is to present an approximate optimal strategy for discretely
rebalanced portfolios in the Black-Scholes model. Let us denote by 7* the optimal strategy
of a continuously rebalanced portfolio for logarithmic utility in the Black-Scholes model. It
is known that the optimal strategy 7* remains constant in the entire time horizon 7. In
this section we familiarize the readers with a way to find some portfolio with an improved
optimality for discretely rebalanced portfolios compared with 7*.

Since the terminal value of the discretely rebalanced portfolio Xy over N rebalancing
periods does not own an “simple” explicit expression, we can not deal with the optimization
problems by direct calculation as in Section 2.1.1. Hence, it is extremely difficult to get an
explicit analytical result for the optimization problems for discretely rebalanced portfolios.
Our objective is to find some portfolio, which shows a better optimality than 7* for At
sufficient small.

There are several ways to approximate the optimal strategy. Our first intuition is to
apply Theorem 4.2. (Limit theorem I), namely we approximate Xy by Vr (1 + X \/¥>
with X being the limit normal distribution in Theorem 4.2. This approach involves the
computation of [log (1 + X \/gﬂ , which is problematic due to the positive probability

of negative 1 + X4/ %. In this thesis we use another way to approximate the optimal
strategy, namely the Newton’s method.
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7.1 Model dynamics and the portfolio problem

We consider a market consisting of d risky assets and a bond. The price process of the risky
assets vector evolves as a geometric Brownian motion

dS, = diag(S,) (udt + odW,) (7.1)

with g = (py ... pg)T being the drift vector and o € R¥*? being the volatility coefficients
matrix. The dynamic of the riskfree asset is

dS) = SPrdt. (7.2)

We denote by Wy = (Wi, ..., Wy:) a d-dimensional standard Brownian motion. The con-
stant riskfree rate is denoted by r. The entries of the covariance matrix > are

d

dS;4 dS‘t) o

i = cov - :E OikOik, &J=1,...,d,
’ (Si,t St i

ie. X =o0l.

The portfolio weights are denoted by m = (my,...,m4)", which is constant over time.
The optimal risky assets strategy of a continuously rebalanced portfolio with logarithmic
utility in the above model is

™ =" (u—rl). (7.3)

We assume further that there exists no short-selling in the financial market, especially, we
have (7' (u—r1)), > 0 fori = 1,...,d and 1 — 175" (u—7r1) > 0. We point out
that the optimization problem for a continuously rebalanced portfolio in a market with-
out short-selling can generally be solved. Cvitani¢ and Karatzas [12] have discussed the
optimization problems, when the portfolio is constrained to take values in a given closed,
convex, nonempty subset of R? and treated the no short-selling constriction as a special case
in Example 14.9.
The portfolio wealth process of the continuously rebalanced portfolio (X;) evolves as

d
= Zmdsi’t + (1 — 7TT1) rdt.
Sit

dX;
Xy

i=1

Let T (e.g., 1 year) be the risk horizon and At = T /N the rebalancing horizon. The
wealth process of the discretely rebalanced portfolio (Xt> evolves from nAt to (n + 1)At,
0<n<N-—-1,as

d
% % Sz n
Xmsyar = Xnae (Z 7, 2t DAL (1—7"1) rAt)

i—1 Si,nAt

with Xy = X = 1. To lighten notation, we denote X(n) = Xuat, Xy = Xnae, Wiy = Waae,

94



Chapter 7. Optimal portfolios for discretely rebalanced portfolios in the
Black-Scholes model

It is known that the optimal strategy 7* of (X};) is not optimal for (Xt) in general. To

get the optimal portfolio strategy for <Xt>, we need to solve the following problem:
max F [log (X’Tﬂ
N o
X
n=1 X(”_l)
N d 1
= max E |lo T €X i — =|lo(i,: 2)At+ai,:AWn)—l— 1—771) e

Y g(z p (1= loti (AW () ) + (1 - 771)

=N max E |log (i ; exp ((u — %Ha(i, :)||2> At + o (i, :)AW(n)) +(1—7"1) eMt>] :
- (7.4)

=max F
iy

The last step follows from the fact that AW (n), n =1,..., N are identically distributed.

Since it is difficult to find the exact solution of problem (7.4). Our task is to find a
strategy 7(At) € R? which owns a larger terminal logarithmic utility than 7* in (7.3) for
small At. It is clear that 7(At) should go to 7* as At goes to zero. To get such a 7(At),
we apply Newton’s method with 7* being the initial value. Note that (7.4) is not always
well-defined, since

é%’ exp ((u - %Ila(i, :)\F) At + o(4, :)AW(n))

could be negative for arbitrary m;. To make our optimization problem reasonable at least
for small At, we assume that our optimal strategy of a continuously rebalanced portfolio
7 owns only positive components and the bond proportion 1 — (W*)T 1 is also positive. It
implies that the components of #(At) and 1 — (#(At))" 1 are positive at least for small At
and our optimization problem is well-defined under this condition for sufficient small At.

7.2 Optimality in the Black-Scholes model

Let us first denote
d 1
GNni = Zwi exp <(,ul — 5“0(2’, )HZ) At +o(i,:)ZnnV At) + (1 — 7TT1) Tt
i=1
and
d 1
C_?Nﬂm = Zm exp <<,ul - §||a(z', )||2> At + o(i, I)ZN,n\/ At) + (1 - 7TT1) eAt (7.5)
i=1

where Zy, is a d-dimensional standard normal distributed random vector with Zy, =
AW (n)/V At and Zy,, is a realization of Zy .
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Applying Taylor approximations to the exponential functions in (7.5), Gy, can be
written as the following polynomial plus the rest term Ry ,, where G Nn,i and RNn denote

realizations of Gy, ; and Ry, respectively. Then we get
d 1 1 1 2
Grns =3 | 1+ (= 3l0t1°) A 00i ) a8+ 5 (= gllotiOIF) e

1 1 _ 1 _
+ 5 (0,)Znn)” At + (ul- ~Slloti :>H2) 0,5) Znn S + < (0(i,:) Zn)* A2

(009 70) 5 L (016970 (= Lot

t _
)+

+(1—n"1) (1+7‘At+r

=1+ a; VAL + agAt + agAt3/2 + &4At2 + RN,n

with
_ > m Ha( Z 1
a; = 7TTO'ZN,n, ay =mlpy— ==L + = Zm ZNn) + (11— 7rT1)r,
2 =1
d d . ~
1 = j— 7 - Z n
= 37 (= 30917 (2 + Z2IHTLD )"
=1
(e Sllo,))1?) L Xiami(e (i) Znm)
= 2 21
d 4 .\ 7 20 1 NP 2
i Zizl T (0(27 -)ZN,n) (,uz 2”0‘(27 )H ) X (1 B 7TT1) U
2 2
and
o T (= o)) A S (0 ) Zna) (i 5l )[7)” A
N == 6 + 2
L (= 3o )IP) A ST T (o) ) (s = o))" AL
24 6
3
L X m (00) Znn)” (11 = 3o )I1P) AP
6
4 T (09 Zna)” (i = 310G ) P)" AF
4

o S ((u— Sloti)12) At + 00 ) ZnaVBT) 2 (pa
+Z5 < ] >+Z(

n=3
We obtain that Ry, € O(At/?). In the following, we want to get an approximation of
log(Gn i) with exact values up to O(At?). From the Taylor series

o0

log(1 = —1"+1“’—n -1 <1
og(l+z)=> (-1) — for <z<

n=1
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and the fact that |a; VAt + as At + asAt3? + a At? + RN,n < 1 for sufficiently small At,
we get the following desired approximation:

(alx/At + apAt + az A2 4 a AR + RN,H)

n

<a1 vV At + (IQAt + CL3At3/2 + G4At2>n

Z - + R,
" 2

3
—a; VAt + ( as — —) At + (a3 — ayay + %) At3/?

log GN,“

||M8

2

a3 2 aj 2, P
+ (as— 5 0103 + ajas — 1 At" + Ry,

where P'“?V,n and R;an are obviously polynomials of aq, as, as, aq and RN,n.

Let R;V,n denote the random variable with realizations R/N’n, we can easily get that
E [R'Nn} € O(At*?), since R'Nm is a polynomial of Zy, and thus the coefficients of At-
terms are all bounded, hence, we get that

E [log [G yn,i]
a2 a3 ) 52
=F ag—? At + 4_5_a1a3+a1a2_z At + O(ALY?)
TE d 12 2 T 1— T]_ 2
:(WTM+(1_7TT1)T_7T 7T> At -+ (21127%% +(1—7TT1)%— (7T ,u+( : T )r)
d
T
_ZZJ 1 J —ZT(‘Z/JL’L O_ 7T+7TTZ7T (7_(_ [L+(1—7T 1)’[")
1
o UZ% Sio(i)otm— 2 ( TEWV) AP + O(AE?),

For the convenience of our further computations, we rewrite

E [log [Gnn,i]] =rAt + 7TTM1 — 7 My + 7' Srn (p — r1) At?

7TTE7T)2At2
: At? — (— A®/? )
+7 O'Z?TZ 5 i)o(i, Yol 1 + O( ) (7.6)
with
2At2
M = pAt — rAt+ 2 5 HOEAe - 5~ (1 —r1)rAt?

and

YA —r1)(p —r1D)TAL? Y o X)AL?

M, = 2t+<ﬂ r )(M2 r1)” At +( 04) t —l—(ILLlTOO’)UTAtQ—ETAtQ.

Theorem 7.2.1. For At sufficiently small
F=Y"Yu—r1)—HJ
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1s a better portfolio strategy compared to
7 =Y"u—rl)
for a At-periodic rebalanced portfolio, where H is a dx d real matriz and J is a d-dimensional
real vector with
(X o X)At

2
+ (u—r1)(u — r1)TAt + 22 DYAt + 2% diag(p — r1) At + 2diag(u — r1) LAt

H=-%- —2(p1" oo) oAt + 25rAt + 25 (p — r1)"S 7 (u — r1) At

— Y —r1)TS Y —r1)At

and

PO Ay r2At Yok
2 2 2
+r(p—rD)At+ (p—r1) (e — r DTS (p — r1)At + 25D (u — r1)At

+ (u—r1)o(u—r1)At

with D = diag(7*).

J = S p—r1)At =2 (p1" 0 0) oS (- r1)At

Proof. We use the multidimensional Newton’s method to prove the theorem. We may choose
7 = X7 (u—1r1) to be the initial value of the Newton’s method. This intuition comes from
the fact that 7* optimizes the optimization problem (7.4) for N — oo, namely for large IV,
7 is close to *. This guarantees that for N large enough the portfolio strategy 7 obtained
by one Newton iteration, wins a larger utility compared with the initial value 7*.

To take one iteration, we need the first derivative of E [log |Gy ]] with respect to 7
and its Hessian matrix. Let us denote

0 0?

Ji= o Ellog[Gyadll  and Hi= o5 Elog|Gyn,l]

T=T0 T=m*

Then, by direct computation we get

J =M, — 2Mor* +257* ()" (u — r1))AE + ()" S (u — r1) A

+ 2N DET AL 4+ (S1%) o ()AL — (7)) Srrsat A

POM N2 r2At? _YoX
2 2 2

+r(p—rDAP 4 (u—r1)(p — 1) (g — r1) A2 + 25 D(p — r1) At?

+ (u—r1)o (p—r1)At?

SN p—r1)A? =2 (p1" o o) 6" ST — r1) AL

and
H=—2M, 425 ()" (1 — r1) A8 + 257" (p — r1)TAE + 2(p — 71) (7%)" DAL
+ 2 DYAL + 28diag(Sm) AL + 2diag(Sr*) LA — 2 (7%)T St At
— 257" (7T*>T YA
=—2Ms + S(pu—r1)"S 7 (= )AL + 2(p — r1)(u — r1)T AL + 25 DT AL
+ 2% diag(u — r1) At + 2diag(p — r1)ZAL.
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Following from one iteration of Newton’s method, we get
F=Y""pu—r1)+H'J
The proof is concluded. 0

Whether 7 shows a larger utility or not for a fixed At, depends on the effect of the
Newton’s method we used in the proof above, namely, considering a At-periodic rebalanced
portfolio, a Newton’s iteration started from 7* exhibits an enhancement of utility in our
settings (7.4) and (7.6) only for At sufficiently small. For the investigation of the convergence
of the Newton’s method and the conditions for a nondecreasing iteration, we refer to [2,
Lemma 9.19, Lemma 2.6.1].

7.3 Numerical examples

The optimality of the portfolio strategy 7 given in Theorem 7.2.1 will be illustrated by some
numerical examples in this section. We compare three models in the following and apply
the method of Monto-Carlo simulation on our models to get the logarithmic utilities and
the optimal strategies 7 for different models. The Monto-Carlo simulations are performed
across ten million paths. Since the received outcomes are not very stable (the values are
too small), we perform every Monto-Carlo simulation 50 times and take the mean of the 50
outcomes as the final result. We first introduce our models.

Model 1: The portfolio consists of five risky assets with price vector processes as in
(7.1). The volatility coefficients matrix is given by

1 0.0 0.2 0.15 0.05
0.15 25 005 0.1 0.2
o= 0.2 015 1.5 0.05 0.1
0.15 02 01 25 0.3
0.056 0.1 0.15 0.05 3

The mean rate of return on the i-th asset is p; = 0.6 + ||o(7,:)|| /4 and the constant riskfree
rate is r = 0.5. We choose portfolio weights for the continuously rebalanced portfolio by our
principle in (7.3). This yields the portfolio strategy for risky assets

7 = (0.2012,0.0770,0.1177,0.0742,0.0690)

and the weight for the riskfree asset 1 — 177* = 0.4609.

Model 2: The model has five risky assets. The individual asset volatilities ||o (i
), @ = 1,...,5 range from 0.8 to 2.4 in increments of 0.4, namely (|lo(i,:)[]);=; 5
(0.8,1.2,1.6,2.0,2.4) and all pairwise correlations of distinct assets are equal to 0.2. Since
¥i; = Cov(dS;,dS;)/dt, i,j = 1,...,5 by its definition, we get X;; = p;; - |lo(4,:)||||lo(4, )|
for i,7 =1,...,5. This yields the following covariance matrix

0.64 0.192 0.256 0.32 0.384
0.192 144 0.384 0.48 0.576
Y= | 0.256 0.384 2.56 0.64 0.768
032 048 064 4 096
0.384 0.576 0.768 0.96 5.76
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The volatility coefficients matrix ¢ is given by the unique square root of ¥, i.e. oo = X.
The mean rate of return on the i-th asset is p; = 0.65+||o (¢, :)|| /4 and the constant riskfree
rate is 7 = 0.6. The optimal portfolio strategies for continuously rebalanced portfolio is then

7 = (0.2398, 0.1382,0.0955, 0.0725, 0.0580)”

and 1 — 177* = 0.396.
Model 3: The mean rate of return on the i-th asset is changed to u; = fi; + ||o (i, :)|| /4
with (f;),_, 5 = (0.65,0.65,0.7,0.65,0.65). The other factors, i.e. [[o(i,:)|, i =1,...,5,

p and Y have the same form as in Model 2. This yields the following optimal portfolio
strategies for continuously rebalanced portfolio

7 = (0.2344,0.1345,0.1172, 0.0703, 0.0564)”

and 1 — 177* = 0.3872.

It is easy to see from Table 3 that in each model the risky assets strategies approach
to their corresponding 7* as IV increases. Especially, we note that although in Model 2 the
mean rate of return increase gradually for ¢ = 1,...,5, the investment proportion of .S; is
smaller than the investment proportion of S;_;. This appears to against our intuition, since
exp(p;At), i = 1,...,5 are exactly the expectations of the exponential functions in (7.4).
This phenomenon may be explained by the fact that S; owning a larger asset volatility
|lo(i,:)]| is more risky than S; ;. Furthermore, comparing the parameters in Model 2 and
Model 3, we note that the mean rate of return on the third risky asset in Model 3 is a bit
larger than it in Model 2 and all the other parameters are the same in both models. As we
expected, in this situation the investment proportion on the third risky asset in Model 3 is
larger than in Model 2.

N=4 N=10
Model 1 | (0.2721,0.0513,0.1272,0.0477,0.0328,) | (0.2309,0.0675,0.1239,0.0637, 0.0527)
Model 2 | (0.3096,0.1632,0.0969, 0.0605, 0.0388) | (0.2662,0.1482,0.0965, 0.0676, 0.0493)
Model 3 | (0.3073,0.1617,0.1181,0.0597,0.0383) | (0.2616,0.1452,0.1178,0.0659, 0.0480)
N=20 N=30
Model 1 | (0.2161,0.0724,0.1211,0.0689,0.0605) | (0.2112,0.0740,0.1201,0.0707,0.0633)
Model 2 | (0.2528,0.1433,0.0961, 0.0700, 0.0535) | (0.2485,0.1416,0.0959, 0.0709, 0.0550)
Model 3 | (0.2478,0.1400,0.1176,0.0681,0.0520) | (0.2433,0.1381,0.1175,0.0689, 0.0534)

Table 3: Improved portfolio strategies on the risky assets for discretely rebalanced portfolios at
N =4, N=10, N =20 and N = 30 in different models.

N=4 N=10

N=20 N=30

Uﬂ.* Uﬁ- Uﬂ-* Uﬁ-

U * Ufr U7r * Ufr

Model 1

0.1497 | 0.1527 | 0.0635 | 0.0637

0.0319 | 0.0320 | 0.0204 | 0.0205

Model 2

0.1753 | 0.1755 | 0.0717 | 0.0717

0.0358 | 0.0358 | 0.0236 | 0.0236

Model 3

0.1775 | 0.1776 | 0.0712 | 0.0713

0.0356 | 0.0356 | 0.0237 | 0.0237

Table 4: The logarithmic utilities for discretely rebalanced portfolios at N =4, N =10, N = 20
and N = 30 in different models. The columns of U« indicate the utilities obtained by the portfolio
strategy m* and the columns of U; indicate the utilities obtained by 7.
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Table 4 illustrates the improvement on utilities for discretely rebalanced portfolios by
investing 7 given in Theorem 7.2.1. The optimal portfolio strategy for continuously re-
balanced portfolio 7* indicates already a lower utility at N = 4 compared to 7#* and the
superiority of 7 keeps in our example. It is self-evident that U; converges to U, as N — oo,
hence, the differences between U; and U« tend to be smaller than 0.0001 at N = 30 in
Model 2 and 3.
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Appendix A

Proof of Lemma A.1l.

Lemma A.0.1. (Conditional Distribution of Brownian Increments)
Let us denote

T
W= / Lo, dW? (A.1)
0
and
Qu(i,:) == 0,(i,:) —7lo,, 1<i<d,

W(1,)dWS, 1 < n < N conditional on W = a, a € R, are
W(1,)dWS 1 < n < N has the conditional distribution

nAt
(/ Qu(i, ) dWS|W = a>
(n—1)At

2
nA . nAt .
a- f(njl)At Oy (i, ) oymudu /nAt (I(n—l)At Q. (1, .)O’uﬂ'udu>

1904, 2) || *du —
fOT |7l o, ||2du (n—1)At fOT |7l o, ||2du

then, the increments f( BYVLY
jointly normal. Each ant Q

(A.2)

and each pair of increments f(ﬁﬁﬁ)m O (i, :)dW? f(’;ﬁi)m Qu(i,:)dWS, n # k, has condi-
tioned covariance

<f(7£t1)m 0, (i, :)Juwudu> <f(2ﬁ)m 0y (1, :)ouﬂudu>

S 17T o,]2du

The conditional joint distribution of ant (1, NdW?2, 1 < n < N, coincides with the
unconditional joint distribution of

nAt .
nAt nAt a - Qu 2, O'uﬂ'udu
/ Qu(l, )dMu = / Qu(% )de + f(n—l)At ( )
( (

n-1)At n-1)At [F 7T o, ||2du

(LTTLLAtl)At O‘uﬂudu) fO Ty UudWS

Jo lImdon|[du

, n=1,...,N (A.3)
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with

T
a - Oy, du fo m, audWS auﬂudu

dM, = dW; + — —
Jo NImoull*du Jo I7Tou2du

Proof. The first assertion follows from the fact that jointly normal random variables remain
jointly normal when conditional on a linear combination. To derive the conditional means
and covariance of the increments, we first compute the joint distribution of f nAL Q) u(i,:

~1)At
YdW? and fk Dae Qi ) AWE £ ks
nAt .
f(ngl)At Qu (i, )dWy;
Sy Qi )dWE | ~ N (i, %)
|44

with i being a 3-dimensional zero vector and

ant At 19234, ) ||*du 0 f?ﬁtl Ay Sty ) oy mudu
(n—1)
- kAL kAt :
Y= 0 Jionyar 120G ) Pdu [ 75 0, (i, )oumedu
f(nm i,:)oumudu f(mt (i, ) oy du fOT |17l o,||2du

We write fi and ¥ as block matrices with the following components:

nA nA .
5. (f(n’imufz i) |Pdu 0 )212:<f<n§wﬂu<z,:>mdu>

kAt kAt .
0 S e 192G ) | So ae Qi )omydu

)

T
Z21 = 2{27 E22 = / ||7T30-u||2dua :u(l) = (O O)T>ﬂ’(2) =0.
0

By [1, Theorem 2.3.1.] we get the conditional joint distribution of f nAt A (i, )dW and
f(mt Q. (i,:)dW? given by

k—1)At
szt u(2,) dWS
( f(kAtl Z )dWS W=a|~N (IJ’7 E) ) (A4)
( )
where
nAt
-, L5 51 )y _ a f( u(1, ) oy mydu
=D+ DS (W — u®) = 7
2 { ) T [T o2 du L‘ﬁ (i, Youmadu
and
Sl an 192G ) [2du 0
=3 - T35 = t A
( 0 [ 192
2
1 <f(:ﬁt1)m Qu(, :)aum:fdu) ANk
S — | ,
Jo lImdoull*du ANk <f(12ﬁ)m Qu(z,:)auﬂfdu)
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with An e = (f(ZAtl)AtQ (1, 2)0’u7TTdu> (f(IZAa)A 0, (1, :)auﬂTdu).
The conditional distribution (A.2) and the conditional covariance of f nAL (i,)dW?

(n—1)At
and | IZNI A (i, )dWS | n # k can be directly read from this joint distribution.
For the last assertion, we can check f’;ml Ay Sty )dM,, 1 < n < N defined in (A.3) is

normal distributed with the following expectatlon variance and covariance:

nAt .
nAt a- Qu(2,:)oymudu
E V Qu(i,:)dMu} — Sy 0l )
(

)

n—1)At S 17T o2 du
nAt nAt (ant O' e du>2
, 2 (n—1)At uTlu
Var </ Qu(z,:)d]\/[u) :/ [12,,(2, ) ||*du —
(n—1)At (n—1)At fo ||7T$au\|2du

and

kAt nAt Anon s
Cov (/ Q. (4, :)dMu,/ 0.4, :)dMu) =
(k—1)At (n—1)At Jo 7o |?du

respectively. Thus, the last assertion is concluded, since each pair of f nAt Ay (7, 1)d M,
1 <n < N has the joint distribution in (A.4). O
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Nomenclature

Nt ={1,2,3,...} set of positive integers

R set of real numbers

M (R) set of real d x n matrices

M, (R) set of real d x d matrices

GL,(R) set of real invertible d x d matrices

Sq (R) set of real symmetric matrices

ST (R) set of symmetric, strictly positive definite matrices

ST (R) set of symmetric positive semidefinite matrices

xT transposed matrix of ¥

»-T the inverse matrix of X7 € GLy (R),
ie. o7 = (¥ =z

»1/2 the unique nonnegative symmetric matrix of ¥ € S; (R)
with $Y/251/2 = 5

Tr (%) trace of ¥ € M, (R)

o () spectrum of ¥ for 3 € M, (R)

diag (S), S € R? the diagonal matrix with (diag (5)),;, = S;, 1 <i <d

1 the d-dimensional vector with 1, =1, 1 <i<dand r = 1r

r the d-dimensional vector with r = 1r, r € R

14 the indicator function of the set A

K convergence in distribution

< the order relation on Sy (R) with

Y1 <Yy — 21 € S;_ (R) for Yi,20 € Sy (R)

the order relation on Sy (R) with

21 j 22 = 22 — Zl - S;— (R) fOI" 21,22 € Sd (R)

I3[, = Z?Zl Z?Zl E%] Ly norm of a real random d x n Znatrix > and
for © € R™>" we have ||Z]); = D7, > iy 1]

I|2]] = \/Zle > -1 E?[X4] Lo norm of a real random d x n matrix ¥ and

for © € R™ we have |2 = /S0, S0, 2,

PN
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