
11 

Cognitive Robotics in Industrial Environments 

Stephan Puls, Jürgen Graf and Heinz Wörn 
Karlsruhe Institute of Technology 

Germany 

1. Introduction 

Industrial robotics is a challenging domain for cognitive systems, especially, when human 
intelligence meets solid machinery with many degrees of freedom like most of today’s 
industrial robots. Hence, for guaranteeing safety for human workers, safety fences are 
installed to separate humans and robots. As consequence no time and space sharing 
interaction or cooperation can be found in industrial robotics.  

Some progress has gained in the past to the extent that some modern working cells are 
equipped with laser scanners performing foreground detection. But with these systems one 
is not able to know what is going on in the scene and, therefore, could not contribute 
something meaningful for challenging tasks like safe human-robot cooperation. We are 
conducting research on reconstruction of human kinematics based on 3D imaging sensors. 
The resulting kinematical model is tracked and fused with knowledge about robot 
kinematics and surrounding objects into an environmental model. This allows for efficient 
risk estimation and subsequent risk minimization through adaption of robot motion. Based 
on these processing steps, recognition of and reasoning about actions and situations in a 
human centred production environment is performed. All components and modules are 
merged into a single framework for human-robot cooperation (MAROCO), in order to pave 
the way for interactive and cooperative scenarios. 

In the following, the framework MAROCO and its components are described and it is 
shown how the presented approaches contribute to achieve the vision of close productive 
human-robot collaboration. 

In Sec. 2, the state-of-the-art for the major research topics concerning this work is presented. 
This includes works about human-robot cooperation, human pose reconstruction and 
research about situation and activity recognition. Afterwards, a system overview is given, 
which highlights the system architecture of the developed framework. In Sec. 4, theoretical 
considerations and algorithmic approaches are detailed. The section about experimental 
evaluation follows, in which all implementations and developments are put on trial and 
demonstrate their effectiveness. Conclusions are drawn and hints for future work are given 
in Sec. 6. 

2. State-of-the-art 

The vision of humans achieving a common goal with robot co-workers offers manifold 
possibilities for robots application. In the past few years several research groups around the 
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globe contributed to this specific field of robotics research. At first, an introduction of the 
state-of-the-art for safe human-robot cooperation and interaction is given. Afterwards 
follows an overview about human pose reconstruction which builds an important basis for 
the here presented approaches. The elaboration takes into account the work of 
manufacturers, research institutes, and universities. 

2.1 Human-robot cooperation 

There are just a few camera based vision systems dealing with safe human-robot 
cooperation. One such system was introduced by the company Pilz in 2007. The system is 
based on three cameras which are mounted under the ceiling of a robot cell. Stereo vision 
tools are then applied to the image sequences. The main idea is dividing the robot cell in up 
to 50 static parts. The recognition capability of the system seems to be foreground detection. 
Dynamic scenes couldn’t be processed efficiently. A meaningful real-time interpretation of 
the robot cell is not feasible, due to missing means to distinguish between humans and 
background objects. 

The working group Robot Systems of the Fraunhofer Institute IPA from Stuttgart, Germany, 
incorporated a time-of-flight camera system into the robot cell (Winkler, 2008). This system 
deals with dynamic safety zones, which are established in a virtual environment model of 
the working cell. The system defines three types of regions: 

 Regions which must provide measurements of the camera system to detect occlusions 
generated by the robot. 

 Critical regions in which no person or objects may appear. 

 Areas in which collision detection may not occur. 

To reduce the risk for the human co-worker the maximal velocity of the robot can be limited. 

A system dealing with direct human-robot cooperation is presented in (Thiemermann, 

2005). The research foci are optimizing safety and ergonomics. The robot cell is build up 

with a SCARA-robot and a CCD-camera based vision system. This scientific work 

concentrates on hand tracking realised by colour segmentation techniques. Then the shortest 

distance between the estimated hand positions and the tool centre point of the robot is 

calculated. The risk recognition part is realized applying a classic fuzzy logic system. The 

parameters of the fuzzy logic system are trained by an artificial neural network. This work 

takes also velocities and accelerations into account to finally control the maximal speed of 

the robot.  

Application of CCD-cameras for realisation of such a system seems to be plausible. But there 

are several open questions regarding stability analysis, robustness against changing 

illumination conditions, etc. Mere concentration on the co-workers hands can also be 

restricting.  

Another approach for safe human-robot cooperation was published in (Kulic, 2005). The 

setup of the robot cell is a PUMA robot (type 560). The sensor system is, compared to other 

approaches, more complex, since several hardware kits like stereo colour vision system, an 

electrocardiograph or an electromyography are applied. From a scientific point of view, this 

approach is interesting, but there is little hope that system integrators would spend the 
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necessary effort in integrating such an amount of sensors. Thus, unfortunately, this 

approach seems to be too complex and cost intensive.  

Another way establishing safe human-robot cooperation was published in the works of 
(Henrich & Gecks, 2008b). The proposed approach for scene reconstruction is based on an 
image analysis module originally based on the work of (Henrich et al., 2008a). The vision 
system tries to identify pixels that belong to the real robot. The system provides some 
foreground detection with a pixel classification method, which identifies single pixels 
belonging to the robot, to foreground objects or to the static background. This research 
group also implemented a dynamic path planning module. But without knowing significant 
parameter of the human kinematics, path planning is restricted to avoidance of obstacles. 
Human-robot cooperation is otherwise not feasible. 

At a first glimpse, the work of (Knoop et al., 2006) has a similar goal of introducing the 
human pose which is motivated by service robotics taking into account a humanoid robot 
and a human co-worker. Significant differences are that the author reported by applying his 
method for markerless reconstruction of the human body is dependent on hand skin colour 
detection. The proposed system, called VooDoo, runs in less than 15 frames per second as 
was reported by the authors (Knoop et al., 2006). Thus, this foregoing is not capable to deal 
in a safety critical industrial robotic cell. Furthermore, no occlusion detection was reported, 
which are of great interest especially when it comes to cooperation, due to safety 
considerations and reasoning about human actions in a blind spot. 

An extended version of the VooDoo system was later published in (Lösch et al., 2009). This 
work concentrates on the time consuming initialisation which is based on a silhouette-based 
approach. The method proposed argues the negative influences of colour image dependant 
methods and thus uses the silhouette-approach for the initialisation. But the same author 
applies the VooDoo system after initialisation of the human kinematical model which is 
strongly dependant on the skin colour detection. 

It is interesting, that all of the authors deal with safe human-robot interaction or 
cooperation, but only few of the authors are really trying to estimate and calculate 
significant parameters of the human kinematics. Also, there are approaches that are taking 
into account hand skin colour detection and simultaneously call these methods markerless. 

2.2 Human pose reconstruction 

In the subsequent section an overview for pure markerless human body tracking 
approaches will be given. The overview cannot raise a claim to be complete. The papers are 
presented in chronological order. 

The paper of (Fua et al., 2002) presents an implicit surface approach for a generic and robust 
method handling articulated structures of the human body. The main contribution of this 
work is the description of a mathematical formalism with simplified and robust 
implementation of articulated soft objects. The soft object approach is advantageous because 
of using stereo and silhouette data, providing accurate shape description by a small number 
of parameters and explicit modelling of 3-D geometry. 

The work of (Kehl et al., 2005) proposes a markerless full body pose tracking method which 
is based on the integration of multiple cues such as edges, colour information and 
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volumetric data. The human model is reconstructed by applying the stochastic meta descent 
(SMD) method to super-ellipsoids. The colour information is used to resolve self-occlusions, 
while edge information provides better accuracy and more robustness. 

The work of (Caillette & Howard, 2004a) presents a robust method for real-time visual 
human body tracking by applying a hierarchical 3-D reconstruction from multiple camera 
views. Individual body parts are tracked by using 3-D blobs. The blob tracking is based on 
volume and colour information. The dynamics of the blob model is the highlight of the 
paper. Self-occlusions and noisy data are also investigated by experiments. 

Real-time full human-body tracking based on markerless multi-view image sequences is 
presented in (Caillette & Howard, 2004b). The full approach is realized taking into account 
three steps: acquisition, reconstruction and tracking. The main idea of the method is based 
on reconstructing a 3-D voxel based representation of a person using multiple web cams 
providing colour images. Self-occlusions are also discussed as well as ambiguous poses. The 
novelty of the approach is a statistical reconstruction method taking colour features and 
blobs into account. 

The authors of (Jenkins et al., 2006, 2007) present a method for kinematic pose estimation 
based on monocular image sequences as well as action recognition based on the results of 
the kinematic reconstruction. The motion primitives are modelled as nonlinear dynamic 
systems which are applied to predict expected motions. Goal of this paper is the inversion of 
the estimation process which means estimating motion primitives from measurements of 
the nonlinear dynamical human body. For these reasons, a particle filter is applied to fulfil 
this task. 

The authors in (Azad et al., 2008) argue that the most challenging problem in human motion 
capture is the high-dimensional search space. A novel approach presented by the authors is 
build up on a particle filter framework which combines edge cues and 3-D hand tracking as 
well as a distance cue for upper body tracking as was proposed by the authors in an earlier 
paper. To overcome the problem of finding the inverse kinematics for the arm model the 
authors suggest a solution based on the so-called annealed particle filter approach.  Another 
advantage is that this method does not depend on an initialization method. Proper model 
alignment is achieved by using fusion method and an adaptive shoulder approach. 

The paper (Wan et al., 2008) proposes a method for markerless kinematic reconstruction 
which is based on voxel information generated from a multi camera set-up and the shape 
from silhouette method. The volume data is then considered as a Markov random field. A 
predefined human body model is then matched with the volume data. The matching task is 
formulated as an energy minimizing function. Thus, the problem is transformed into a 3-D 
graph construction. The minimizing of the graph problem is achieved by application of 
max-flow theory. The final reconstruction of the model is calculated using Powell’s 
algorithm. 

Based on video streams from a time-of-flight camera, the work of (Zhu et al., 2008) presents 
a model-based, Cartesian control theoretic approach for human pose estimation. The human 
body model consists of 17 degrees of freedom and models the upper body. The overall 
runtime cycle achieves about 10 frames per second. The presented approach is also feature 
based. Special features are the implemented joint limit avoidance and self-penetration 
avoidance. 
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The paper of (Jensen & Paulsen, 2009) is focused on gait analysis using a time-of-flight 
camera. Thus, an articulated model is fitted in each frame to the data by using a Markov 
random field. Self-occlusions are treated by smoothing missing data. The created model is 
cut into cycles, which are then fitted via Fourier method to achieve a cyclic model. The final 
features that are calculated are speed, cadence, step length and range of motion. 

Based on the combination of several particle filters with physical simulation of a flexible 
body model, the work of (Hecht et al., 2009) describes a new approach for markerless 
human motion tracking. No inverse kinematics is needed for the physical simulation. 
Experimental results show that this approach runs with 10 FPS on regular PCs. 

The dissertation thesis of (Zhu 2009) presents a computational framework for human-pose 
estimation from depth image sequences. The approach is feature based and takes kinematic 
constraints including joint limits and self-collision avoidance into account (see Zhu et al., 
2008). Another approach is based on dense correspondence between consecutive frames of 
articulated human models. Both approaches are coupled via temporal prediction using 
Bayesian information integration. 

The paper of (Mussi et al., 2010) presents a GPU-based implementation of a markerless full-

body articulated human motion tracking system. The body reconstruction is based on image 

sequences from multiple cameras. The tracking task is formulated as a multi-dimensional 

nonlinear optimisation problem and solved by the particle swarm optimisation (PSO) 

method. The optimisation searches the best matched between a virtual pose silhouette and 

the actually pose extracted from the image sequences. 

The problem of human pose reconstruction is of great interest and presents a challenging 

research topic, as exemplified by all presented publications. In the realm of human-robot 

cooperation and interaction, its purpose follows the higher goal of recognising human 

actions and situations. 

2.3 Situation and activity recognition 

Recognition of human activities and situation awareness is a premise for advanced safe 

human-robot cooperation. The most prominent methods used for action recognition systems 

are based on probabilistic methods, e.g., hidden Markov Models (HMMs) (Krüger et al., 

2007; Raamana et al., 2007; Wu et al., 2008). These methods are widely used for application 

in speech recognition and other domains and, thus, their capabilities have been 

demonstrated. Moreover their theoretic foundations are well understood and investigated. 

Though, according to (Shi et al., 2004), HMM are not suitable for recognition of parallel 

activities. Thus, propagation networks have been introduced. In these networks each node is 

associated with an action primitive and embeds a probabilistic duration model. Temporal 

and logical constraints are enforced by conditional joint probabilities. Similar to HMMs, a 

multitude of propagation networks are evaluated for approximating the observation 

probability. 

(Minnen et al., 2003) states, that purely probabilistic methods are not suitable for recognition 

of prolonged activities. Their presented approach implements parameterised stochastic 

grammars. 
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The application of knowledge based methods for action recognition tasks is scarce, but work 
on scene interpretation using logical formalisms has been conducted. In the realm of 
semantic web, Description Logics are used for defining ontologies and knowledge 
management. Efficient algorithms have been developed for reasoning with Description 
Logics. Thus, its application in logics based situation and activity recognition became 
accepted. 

In (Hummel et al., 2007), Description Logics are used for reasoning about traffic situations 
and understanding of intersections. Deductive inference services are used to reduce the 
intersection hypotheses space and to retrieve useful information for the driver. 

In (Tenorth & Beetz, 2009), a system is presented, which uses Prolog in order to process 
knowledge in the context of robotic control. It is especially designed for use with personal 
robots. Knowledge representation is based on Description Logics and processed via an 
Ontology Web Language (OWL) Prolog plug-in. In contrast to our approach, the Prolog 
based reasoning system is not used to recognize activities or reason about situations. 
Instead, it is used to query on its environmental model. Actions and events are observed by 
the processing framework and used as knowledge facts. The knowledge base can be 
extended by using embedded classifiers in order to search for groups of instances that have 
common properties. 

Scene interpretation by analysing table covers using Description Logics was conducted by 
(Neumann & Möller, 2008). Reasoning was based on temporal and spatial relations of 
visually aggregate concepts. Besides probabilistic information for generation of preferred 
interpretations, visual evidence and contextual information is used. In (Möller & Neumann, 
2008), this work was broadened to cope with general multimedia data. 

A comprehensive approach for situation-awareness is introduced in (Springer et al., 2010). 
This approach includes context capturing, abstraction and decision making. The combined 
framework manages sensing devices and reasoning components which allow using different 
reasoning facilities. Thus, logical reasoning can be used for high level decision making. 

These last examples including our contributions show that the usage of Description Logics 
bears great potential. Hence, its adoption in the situation and action recognition task 
incorporated into the MAROCO framework. 

3. System overview 

The MAROCO framework implements an architecture achieving human centred computing 
realising safe human-robot interaction and cooperation due to advanced sensor technologies 
and fancy algorithms. An introduction of an intermediate state of the MAROCO system is 
given in (Graf & Wörn, 2009a). In the following, the advanced and augmented architecture 
is presented (Fig. 1). In this section, modules and functions are introduced and linked to  
Fig. 1 by referencing the given numbers in brackets. 

Closing the kinematic chain in an environment with human agents and robots is especially 
meaningful and a premise in case of contact based cooperation scenarios. Thus a sensor 
calibration step is part of the framework {1}. The kinematic chain consists of the robot 
coordinate systems, the coordinate systems of human agents, the environmental model and 
finally the coordinate system of the 3D camera system. 
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The sensor system consists of a single depth sensing camera based on the time-of-flight 
principle which is developed and distributed by the company PMD Technologies. The 
resolution of the camera system is at the moment limited to 200x200 pixels. The advantage 
about the used 3D sensor technology is that it provides depth images as well as amplitude 
images. Amplitude values are a means to evaluate remissions of the active illumination of 
the camera system. The remission is influenced by objects in the scene and allows for 
adaption of algorithms towards increased robustness and effectiveness.  

Due to this fact, the usage of cheaper sensors like the Microsoft Kinect camera is not feasible. 
Furthermore, because our sensor is mounted at the ceiling, the included human tracking of 
the Kinect system would render useless. The installation of the sensor system at the ceiling 
is meaningful in order to avoid the reach of humans or machinery, thus, allowing for a 
consistent sensor setup and enforce safety requirements. 

 

Fig. 1. System architecture of the MARCOCO framework. 

In order to isolate relevant information from background clutter {4}, background subtraction 
techniques are used. Our approach is based on Gaussian Mixture Models and advances on 
works of (Stauffer & Grimson, 2000; Lee, 2005) with adaptions due to requirements of 
human-robot interaction and the used sensor model. Background modelling incorporates a 
priori knowledge and can be learned by applying a variety of techniques. 

Detection of human presence is done by a decision process depending on selective 
discriminating features based on foreground information {4}. Therefore, algorithms based 
on eigenvalue analysis, depth measurements of pixel distributions, the distribution of 
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connected components and finally motion features generated from optical flow 
computations {5a} are applied to decide whether the pixel cluster is generated by a human 
being or not. 

MAROCO, the framework realising the system-architecture, provides also a flexible and 
complex kinematical model for human bodies {8a}. Due to the usage of a single 3D sensing 
camera mounted at the ceiling, a limited subset of degrees of freedom of the human 
kinematics is modelled. The kinematic features to be estimated are 

 the shoulder and elbow angles of the left and right arm,  

 the head position, 

 the height of the person, and  

 the upper body position {5b}. 

These features are processed and generated by means of sequence analysis. Temporal 
information is incorporated by methods like Kalman filtering, Kalman prediction (Bar-
Shalom et al., 2001) and optical flow estimation (Graf et al., 2010b). Thus, robust features are 
generated out of noisy data. Then all these features are supplied to a pattern recognition 
module which decides whether the provided features belong to a human model or a scene 
obstacle {7}. Obstacles are not recognized but represented by their bounding cylinders. 

All gathered information and features are then used to construct geometrical models {9a, 9b, 
9c}. Static and dynamic objects and agents are merged into an environmental scene model 
{10a, 10b} (Fig. 2). 

   

Fig. 2. Reconstructed human kinematics and environment model. Left image also shows 
depth coded grey scale sensor data in lower right corner.  

Working with geometric information rather than pixel-based models results in great benefits 
concerning runtime behaviour. Using the 3D sensor and applying algorithms purely based 
on pixel processing (e.g. Graf & Wörn, 2008) is expensive in the meaning of computational 
time. 

The generated robust features are used, besides other distance measurements, to estimate 
the risk. Feature estimates and distance calculations are then passed to machine learning 
methods {12a} and to functional evaluation {12b} (Graf et al., 2010a). Risk quantification can 
be used for influencing robotic behaviour {14} by either reducing motion velocity or 
adapting the motion path (Graf et al., 2009). This in turn changes representation of robot 
models {15}. 
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All information about human and robot kinematics can be used to reason about situations 
and human activities (Graf et al., 2010c) {16}.  This allows recognising actions and drawing 
conclusions about expectations towards robotic behaviour. 

4. Theoretical considerations and algorithms 

In this section, more detailed insights into our approaches and implementations are given. 
First, estimation and computation of robust features is detailed. Afterwards, methods for 
risk estimation and minimisation are presented. This section concludes with a description of 
the recognition module of MAROCO which allows reasoning about situations and activities. 

4.1 Robust features 

In order to model human kinematics many features have to be robustly estimated. One kind 
of these features is based on motion analysis of the 3D sensor data. A means of motion 
analysis presents the estimation of the Optical Flow field. This technique is used in image 
sequence analysis and robotics for a long time (Horn & Schunk, 1981; Lucas & Kanade, 
1981). It can be understood as the apparent motion of intensity structures in an image 
sequence. Our approach of computing Optical Flow fields advances on the combined local 
and global method (CLG) first introduced by (Bruhn et al., 2005a). The CLG method uses an 
isotropic Gaussian in order to reformulate the original data term formulated by (Horn & 
Schunk, 1981).  

Our approach extends on this procedure by adapting Gaussians to the underlying 
distribution of pixels. Thus, it is called XCLG method (Graf et al., 2010b). The Optical Flow 
is influenced by its neighbourhood and, therefore, pixels at positions of edges or curves 
need special consideration. Through analysis of image edges, Gaussians are oriented and 
stretched along the principal axis which is congruent to the edge. The isotropic Gaussian of 
the CLG method is then substituted by the adapted Gaussian (Fig. 3). 

      

Fig. 3. Optical Flow field and anisotropic Gaussians adapted to underlying edges. The arms 
are moved towards each other. 

Due to the fact that Optical Flow computations are an iterative process, usually, thousands 
of point wise iterations have to be applied to achieve significant results. For achieving real-
time capabilities, application of standard numerical techniques, like Jacobi, Gauss-Seidel or 
successive over relaxation (SOR), is not feasible. The probably most efficient technique 
known today solving this kind of equation systems are so called multigrid solvers. They are 
often applied to sparse equation systems. In (Bruhn et al., 2005b) real time computations of 
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Optical Flow fields are reported using multigrid solvers. Thus, our approach uses multigrid 
solvers, which are implemented for general purpose GPU processing. This allows for real-
time computations and effective use of motion analysis for robust features. 

Other features include estimates about head and body orientation. These are computed 
through eigenvalue/eigenvector extraction of spatial pixel distributions. For this purpose, 
the depth images are segmented using additional estimations about body height and body 
part size relations. The orientations are determined by following assumptions: 

 The head orientation is assumed to be the eigenvector corresponding to the larger of the 
two eigenvalues of the covariance matrix of the head pixel distribution. 

 The upper part of the body orientation is assumed to be the eigenvector corresponding 
to the smaller of the two eigenvalues of the covariance matrix of the shoulder pixel 
distribution. 

Through application of a windowed Kalman filter to past angles calculated from 
eigenvector analysis, estimations of orientations achieve greater robustness. An adapted 
Kalman filter is also used to fuse different information sources, such as motion analysis 
through Optical Flow computations, orientation estimates and arm poses. More details 
concerning the Kalman filter can be found in (Graf & Wörn, 2009a; Graf et al., 2010b). 

The arm poses are also important features. These are estimated through the identification of 
three key points: shoulder, elbow and hand. Arm segments between these points can be 
linearly interpolated. In order to estimate the positions of the key points, skeletonisation 
succeeds a segmentation step. Afterwards the skeleton is mapped onto a graph and the arm 
poses are determined through path analysis in the graph. This approach takes also 
occlusions into account. Occlusions can be caused by either arms covering each other or by a 
robot pose covering human arm segments (Graf, 1010). 

4.2 Risk quantification 

Todays’ application of robotics in industrial environments is characterized by isolation of 

robots and humans due to safety concerns. Realising close human-robot collaboration 

requires evaluation of situations regarding a measure of danger for the human. Risk 

quantification depending on human and robot kinematics can result in adaption of robot 

motion and, thus, guarantee safety for human co-workers. 

Assignment of a risk value to a situation has to take into account many different parameters 

of the human and robot kinematics. The main idea is that there is greater danger for a 

human co-worker, if he is not aware of robot movement. Also the distance between robots 

and the human agent are of importance. 

A method for providing great flexibility in building a knowledge base is the application of 
two-threaded fuzzy logics (Kiendl, 1997). Two-threaded fuzzy logics allow encoding 
positive and negative rules in a knowledge base. That reduces the number of necessary rules 
compared to standard fuzzy logic systems. A detailed description of the implemented fuzzy 
system and the corresponding rules can be found in (Graf et al., 2010a). 

In order to connect the results from the positive and negative rules accumulations, so called 
hyperinference operators are necessary. In (Kiendl, 1997) a few operators, like a strong and a 
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weak veto, are introduced. The strong veto operator is defined by (1), where µ(u) defines the 
association function of fuzzy sets, µ+ and µ- define the results of the accumulation of positive 
rules and negative rules respectively. 

   ( ), if (u) 0 

0, otherwise.

u
u

       (1) 

Thus, this operator does not respond to the area under the activated positive rule and the 
negative rule is overly weighted. The great flexibility of two-threaded fuzzy logic systems is 
bypassed through application of the strong veto operator. 

The weak veto operator is defined by:  

   ( ), if (u) (u)

0, otherwise.

u
u

         (2) 

Therefore, if the area under the negative rule is greater than the one under the positive rule 

the veto is applied. This action is desirable. On the opposite, if the area corresponding to the 

negative rule is smaller than the area under the positive rule the veto is not applied. Thus, 

the area under the negative rule has no influence on the outcome in all those cases. This 

behaviour is not desirable. 

As consequence, a novel operator was implemented which is a trade-off in comparison to 

the strong and weak veto operators. It is defined as: 

   ( ) ( ), if (u) (u)

0, otherwise.

u u
u

            (3) 

In Fig. 4, the response characteristics of the proposed operator are presented. The 

construction of the novel veto operator begins by subdivision of the area under µ- into three 

parts. At first, the  -cut of the curve is determined according to the output of the activated 

negative rule. Then, an orthogonal line is generated as shown in Fig. 4 (bottom row). This 

defines three parts of the area under the operator. The outer area elements are identical due 

to the symmetric characteristic of the operator and described by β-. The adequate output of 

the veto operator is then generated by µ+ - β-. 

This proposed method for risk estimation can be implemented to evaluate a situation in 

real-time. Furthermore, its effectiveness is demonstrated in the section about experimental 

evaluation (Sec. 5). 

4.3 Risk minimisation 

As stated in the last section, the risk evaluation is used to influence robotic behaviour in 

order to guarantee safety for the human agent. In the context of industrial robotics, the 

efficiency of task performance of robots is very important. Thus, simple adaption of motion 

velocities does not suffice. A more advanced method is to actually re-plan the robots’ path 

with dynamic safety constraints imposed by the moving human agent. 
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Fig. 4. Response characteristic of the novel veto operator. 

The path planning takes place in the robots’ configuration space. This space is interspersed 
with nodes which are connected to a graph structure. Association of risk estimates and 
configuration space is achieved by evaluation of each node in the graph. The path planning 
takes these evaluations of configurations into account and returns a safe and shortest path 
from and to given configurations. It uses a modified A* search in configuration space to do 
so. A look-a-head functionality is used to re-evaluate a future path segment and detect 
impending collisions before they actually occur. In such a case a re-planning is invoked.  

The implemented technique allows for fast and responsive re-planning without violating 
real-time constraints. Details about its implementation can be found in (Graf et al., 2009). 

4.4 Situation and activity recognition 

All the methods and functionality presented above enable safe human-robot interaction and 
cooperation. But in order to actually achieve cooperation, situations and human activities 
need to be recognised and according conclusions about robotic behaviour need to be drawn. 
As pointed out in Section 2.3. Description Logics are suited for reasoning about context and, 
therefore, about situations and actions. 

In (Graf et al., 2010c), a first approach towards the application of Description Logics for 

situation awareness is presented. An external reasoning system is used as inference facility. 

A MAROCO module must, therefore, fulfil at least the tasks of establishing a 

communication interface with the Description Logics reasoner, managing the knowledge 

base and managing the reasoner results. An overview of the subcomponents is given in Fig. 

5. The communication is achieved through the so called DIG-interface which was defined by 

the Description Logic Implementation Group. It uses a TCP connection to transmit XML 

messages. Many reasoners support this interface definition, which allows the separation of 

application and reasoner by the means of programming language and execution place. 

General knowledge and knowledge about individuals in the domain can be distinctly 
separated and defined in a Description Logic knowledge base. Common knowledge defines 
the terminology of the domain and, thus, is declared in the terminology box, hence TBox. 
Declarations about individuals and their properties are centralised in the assertion box, 
hence ABox. This allows for modular and reusable knowledge bases and, thus, for more 
efficient coding of knowledge (Hummel et al., 2007). 
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Fig. 5. Components of the recognition module embedded in the MAROCO framework. 

The DIG-interface implements a so called Tell&Ask (Baader et al., 2010) functionality. The 
definition of the knowledge base is achieved through tell operations. Reasoner results and 
information can be retrieved through ask operations. Modifications successive of ask 
operations are not defined by the DIG-interface. Consequently, the knowledge base needs to 
be re-established in each runtime cycle in order to incorporate changed sensor data into the 
recognition process. The differentiation of domain knowledge and assertional knowledge of 
Description Logics is disregarded by the DIG-interface. 

The recognition module handles assertions depending on the current kinematical human 
model and robot specific parameters and domain specific knowledge. Thus, the distinction 
of TBoxes and ABoxes is represented internally. 

As the assertional knowledge depends on kinematical parameters, a feature extraction 
component is applied in order to fill the attribute values of the assertions (Fig. 5). 

Due to the fact that there is currently no object recognition implemented in the MAROCO 
framework, objects are included into the situation recognition through means of simulation. 
Thus, a human agent can hold working tools or measurement devices in his hands. Also, the 
simulation enables the robot gripper to be holding objects like work pieces. In future works, 
these purely simulated features will be incorporated into the demonstrator as well. For now, 
these virtual features enable evaluation of effectiveness and capabilities of the recognition 
system. Moreover, by incorporating virtual features, the recognition module can reason 
about probable interactions and generate expectation towards robotic behaviour, e.g., 
prepare a work piece or hand tools on to a human co-worker. These expectations can be 
used directly or in context of the recognized actions as input for a possible task planner for 
realizing concrete close human-robot collaboration. Implementation of a task planning 
module is a logical consequence and will be done in near future. 

Taking temporal information into account during reasoning is accomplished by defining an 
after-role between different actions. This role can be regarded as precondition for actions, 
because certain actions can only be recognised if certain other actions occurred prior. In 
order to facilitate temporal dependencies between actions, previously recognised actions are 
stored and retrieved during knowledge base recreation. This functionality is taken over by 
the reasoner result management component (Fig. 5). 

Furthermore, the knowledge base implements concepts of complex actions which consist of 
other actions. The temporal relationship includes these complex concepts. Thus, parallel and 
subsequent occurring actions can be processed and recognized. 
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Detailed description of the implemented ontologies and knowledge base are given in (Graf 
et al., 2010c). Evaluation and discussion of effectiveness and capabilities of the presented 
recognition module conclude the section about experimental evaluation (Sec. 5). 

5. Experimental evaluation 

Due to the application of diverse methods in the framework MAROCO, there is a need for 
diverse testing and evaluation. In the following sections, especially experimental evaluation 
of accuracy, efficiency and effectiveness are presented. Also, the capabilities of the proposed 
methods and their fusion in the framework are discussed. 

5.1 Robust features and human kinematics 

Determination of motion features through computation of Optical Flow fields allows 
interpretation about direction and apparent motion. These can be identified by representing 
the Optical Flow field as vector field. In the context of human-robot interaction, rates of 
changes are of great importance, as they indicate motion intensity. Thus, the vector length 
plays an important role in the estimation and filtering of robust features. For evaluation 
purposes, the XCLG method was compared with the CLG method by computing the Optical 
Flow field of an image sequence and by evaluation of magnitude differences of both vector 
fields. As shown in (Graf et al., 2010b), the CLG method underestimates vector lengths by 
26%-47%. These results demonstrate the greater accuracy of the XCLG method considering 
vector lengths.  

Due to the implementation of the Optical Flow computation using general purpose graphics 
unit processing, the presented method achieves real-time capability. The computation times 
are also compared to the CLG method. Each method was implemented with SOR solver and 
multigrid solver. Different camera systems with differing resolutions were used. Moreover, 
the publicly available “Yosemite” image sequence was used to verify the results with 
internationally respected data. The results of these runtime tests are presented in Table 1. 

 

In [ms] 

IFM O3D (50x64)

CLG XCLG 

SOR MG SOR MG 

CPU 164 2 172 11 

GPU 20 5 23 8 

In ms 

PMDTec  CamCube 2.0 (204x204) 

CLG XCLG 

SOR MG SOR MG 

CPU 2150 25 2225 85 

GPU 89 20 102 33 

In ms 

Yosemite 

CLG XCLG 

SOR MG SOR MG 

CPU 4020 48 4260 295 

GPU 164 32 220 85 

Table 1. Overall time for computation of Optical Flow using CLG and XCLG. 
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Due to lack of ground truth data, evaluation of tracking results in real world applications is 
challenging. Thus, testing implemented algorithms was done indirectly through 
examination of overlap of sensor data and tracked kinematics. In order to compare sensor 
data and tracking results, the human kinematics is projected back onto the image plane. 
Thus, the cycle from sensor data to tracking data and back again is closed (Fig. 6). 
Congruency of foreground pixels and back-projection can be interpreted as accuracy of the 
kinematics reconstruction step and, thus, is a measure of the reliability of the algorithm. 

 

Fig. 6. Data processing cycle for evaluation of tracking data. 

In order to analyse the congruency, different human motion sequences were used. Each 

sequence consists of approximately 600 frames. In Table 2, the results are summarised. The 

motion sequences include simple motions like forward and backward (1), only arm 

movements (2), turning around (3), standing still (4), and arbitrary motion (5). 

 

Sequence Mean Variance 

1 96.60 19.82 

2 89.46 14.71 

3 90.07 9.67 

4 93.13 2.33 

5 91.60 14.53 

Table 2. Quantification of the congruency rate. 

These results show that the reconstruction of the human kinematics is congruent with the 
observed sensor data to a large degree. Due to the fact that risk estimation is based on the 
kinematics reconstruction, this degree of congruence has great importance. After all, it 
influences directly the safety capabilities of the system, because risk estimation is done 
purely based on reconstructed kinematics. 

5.2 Risk management 

For the evaluation of selected risk estimation methods, different experiments with varying 
methods have been conducted. These methods include e.g., simple measures like shortest 
distance between human and robot, methods of differing complexity implemented as 
Gaussian mixture models and Support Vector Regression.  
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Compared to simple distance measures and Gaussian mixture models, the two-threaded 
fuzzy system allows for precise modelling of situations and according risk assignments. For 
examination purposes the same sensor input sequence was evaluated by the above 
mentioned methods and risk assignments were compared. The results confirm our 
assumption about flexibility and effectiveness of the here presented fuzzy method (Fig. 7). 
Further details can be found in (Graf et al., 2010a). 

The conducted experiments also demonstrate that training a Support Vector Regression 
resulted in unreliable and noisy risk estimation compared to the implemented two-threaded 
fuzzy system. Thus, the fuzzy system outperforms the Support Vector Regression and is 
used as preferred risk estimation method. Grounded on the results of the here described 
fuzzy logic implementation, safety and efficiency for human-robot cooperation is achievable 
in real-time. 

   

   

   

Fig. 7. Selected situations of human posture and corresponding configuration subspace for 
first three robot axes. Size and colour of each node of the subspace is determined by risk 
assignment.  

For the experimental analysis of the path re-planning technique different scenarios were 
tested in simulation. Especially, the size of the configuration space graph was subject of 
evaluation in order to capture scalability of the algorithm. For testing, a sequence of human 
motion was recorded and played back during simulation (Fig. 7). Thus, arbitrary 
movements were recorded and thereby the simulation was related to real-world setups. The 
tested scenarios do not consider human-robot interaction or cooperation, but instead, the 
robot has a given repetitive task and has to avoid human co-worker in its working area. The 
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overall hold-up time of the robot reaches about 27% during evaluation. The results are 
presented in Table 3. Further details are explained in (Graf et al., 2009). 

 

# Vertices of Graph 100 1000 2000 

Avg. Path Length 4.62 5.98 7.34 

Hold-up Time [%] 63.96% 27.34% 38.96% 

Table 3. Results of path planner run-time analysis. 

The presented results concerning risk quantification and minimisation demonstrate the 
effectiveness of guaranteeing safety for human agents in the realm of close human-robot 
collaboration. 

5.3 Situation awareness 

In order to evaluate the situation and activity recognition module of the MARCOCO 

framework, different courses of action were executed. On the one hand, efficient analysis of 

different scenarios requires automated means of feature value setting. Thus, value pre-sets 

were incorporated into the framework which allows for usage of pre-defined feature 

vectors. Such pre-sets enable investigation of interesting use cases without capturing sensor 

data. Also, recognition results can be directly related to defined feature changes through 

pre-sets. Nevertheless, recognition based on actual sensor data is compulsory in order to 

evaluate recognition results over time and prolonged actions (Fig. 8). 

 

 

Fig. 8. Usage of feature value pre-sets and actual sensor data. 

Based on these pre-sets and on actual sensor data all experiments were conducted. Natural 
movements and transitions between actions have been tested and special use cases have 
been investigated. 

Table 4 summarises the results of 2140 recognition cycles. The average processing time 

amounts to approximately 550 ms. The lower bound is less than half of this. There are also 

casual outliers which take up to 10 seconds. Further investigations based on feature value 

pre-setting have shown that long duration times might not be directly linkable to the 

recognition module itself (Graf et al., 2010c). Though, further research needs to be 

conducted on optimising runtime behaviour of the recognition module.  
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# Recognition cycles 2140  Max [ms] 9705 

Ø Response time [ms] 551.78  # > 1000 ms 17 (0.79%) 

Min [ms] 216  # > 5000 ms 4 (0.18%) 

Table 4. Results from evaluation of the recognition module. 

In Fig. 9, results of the recognition module depending on the human pose are depicted. It 
demonstrates the capabilities of analysing solely kinematical features of the human agent 
and its relations to a robot. 

    

Fig. 9. Left: Human agent is watching the robot. Recognized situation: Monitoring. The 
robot is expected to carry on with its task of following a planned path. Right: Human agent 
is communicating. The complex action to signal a left turning movement is recognized. The 
robot is expected to comply with user instructions. 

By adapting the virtual features according to the generated expectations the interaction 

between reasoner results and robotic behaviour can be demonstrated. Thus, the capabilities 

of the presented approach reach beyond sole activity and situation recognition. By 

generating expectations towards robot behaviour, an understanding of the situation can be 

achieved. This induction of relations between concepts can hardly be realized by purely 

probabilistic methods. The achieved processing cycle time of approximately 550 ms does not 

allow for safe cooperation based only on the recognition module. Thus, the MAROCO 

framework uses its implemented techniques and algorithms to enforce safety and real-time 

capabilities during robot motion. 

6. Conclusion 

The presented framework MAROCO and the incorporated approaches are based on the 
identification of different modules that have to be taken into account when designing a 
system for close human-robot collaboration based on a depth imaging sensor. Experimental 
results give confidence in continuing to strive for true contact based cooperation between 
robot and human. Thus, our work is a stepping stone for future development. 

Thus far, a system was implemented which analysis depth images taken from a 3D camera 
system mounted beneath the ceiling. Robust features like motion, head and body 
orientation, position and arm poses are robustly end efficiently estimated. Evaluation has 
shown that high accuracy is achieved.  

All these features are used to reconstruct the human kinematics which is the foundation for 
risk quantification. A two-threaded fuzzy system with a novel hyperinference operator is 
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implemented for risk evaluation of situations according to human pose features and relation 
between human and robots. The system is flexible and effective. In comparison to Support 
Vector Classification and other means of risk estimation the two-threaded fuzzy system is 
the most reliable and accurate one. 

Results of risk estimation are used for adapting robotic behaviour. Adaption is realised by 
path re-planning if a look-a-head functionality determines impending collisions of human 
and robot before they occur. That allows for safe and efficient path traversal and, thus, 
reduced time of robot hold-up times. 

In order to achieve true human-robot cooperation situation awareness and action 
recognition is necessary. A module for realising this task was implemented using 
Description Logics for defining appropriate ontologies and for reasoning. The presented 
system is capable of recognising subsequent, parallel and dependent actions and can 
generate expectation towards robotic behaviour. Thus, the system reaches beyond sole 
situation recognition and enables understanding human activities. 

Future work will carry on development towards a system that achieves close human-robot 
collaboration. There are still many open challenges that need to be tackled before this goal is 
reached. The usage of more than one camera can either widen the supervised work area or 
enable multi-view capturing of the scene. 

Currently, only one human agent can be detected and its kinematics can be reconstructed. 

Extension of the presented algorithms is needed for multi-human pose estimation. 

Moreover, the algorithms need to be adapted in order to cope with more arbitrary 

movements of human co-workers. Some movements are not covered by the current human 

pose reconstruction process, e.g., stooping down. 

Object recognition and semantic mapping of the work area are also important means for 

modelling interactions of human agents and robots with the surrounding environment. 

Particularly object recognition will enable more diverse and differentiated analysis of 

situations. Semantic mapping of objects and places in the robots’ work area will allow for 

recognition of human action plans and, thus, a better understanding of intentions behind 

human actions. 

As pointed out above, implemented virtual features need to be realized for the 

demonstrator. Moreover, runtime optimisations of the current situation and activity 

recognition module need to be investigated and implemented. This will allow for evaluation 

of real-world scenarios of interaction and cooperation. Also, realisation of industrial 

applications with the MAROCO system will enable evaluation of capabilities and user 

acceptance. This experimental evaluation can be realised stepwise beginning with simple 

risk minimisation and collision avoidance, advancing on to telepresence-like systems and 

concluding in fully autonomous human-robot cooperation. 

The MAROCO system emphasises on real-time computation and safety for human co-

workers. Nevertheless, the implemented system is a research base and does not permit 

safety certification. Hopefully, achievements of the human-robot cooperation research 

community will migrate into applicable industrial systems. Safety regulations and engineers 

have to adapt to this young field of research. 
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