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Figure 1. Quasi-Z-Source-Inverter with feedback switch SFB

Abstract—This paper presents a dynamic average model of
the Quasi-Z-Source Inverter (QZSI), based on the short term
average values over one PWM-period, and the analysis of the
possible switching states that can occur in the QZSI. The model
is considerably descriptive since the modeling has been performed
by analyzing the physical and functional relations with only little
mathematical complexity. Another advantage of the proposed
model is that the load current only acts as a disturbance input,
and is not directly linked with the model structure itself. This
allows a separate examination of either command input or
disturbance response and makes the model independent of the
given load. The model has been tested successfully in conjunction
with an adequate cascade control loop design and a QZSI-
prototype in hardware.

I. INTRODUCTION

The QZSI is a variation of the Z-Source-Inverter (ZSI)
([1], [2], [3]). It combines the function of a conventional
boost-converter with the inverter-function of a full bridge
inverter in one circuit (fig. 1). Several papers have already
been published describing the modeling of the ZSI with the
known techniques of state-space-averaging ([4],[5],[6],[7]). In
this paper, the approach to gain a dynamic average model
of the Quasi-ZSI is to analyze the possible switching states
and the functional relations in the circuit and how they can
be used to control the QZSI. In chapter II of this paper,
a brief description of the basic function and the steady
state behavior of the QZSI is given and the possible circuit
switching states that can occur in the QZSI are described. It
can be shown that for L1=L2 and C1=C2 the time values of
the inductor currents and the differential capacitor voltages
are equal in every possible switching state. Based on this
analysis, the dynamic average model of the QZSI is devel-

oped in chapter III. The model was taken as a basis for an
adequate control loop design and tested in a QZSI-hardware-
prototype that was designed for 10kW at fPWM=10kHz,
UI=200..400V and ūDC=400..600V. The passive components’
values were L1=L2=1,8mH and C1=C2=100µF. The func-
tional test was performed at low voltage with UI=40V
and ūDC,w=uC2,w=50V with fPWM=10kHz. The test results
prove the theory completely. Chapter IV is a summary of the
experimental results.

II. POSSIBLE SWITCHING STATES OF THE QZSI
The boost-function of the QZSI is achieved by applying

a short-circuit (Shootthrough) to the DC-Bus periodically.
During this shootthrough, the inductor currents are rising and
energy is stored in the inductors. When the shootthrough is
terminated, this energy is being transferred into the capacitors
and the load. The capacitor voltages are rising and the inductor
currents are sinking again. The steady-state operational behav-
ior of the QZSI in boost operating mode is shown in fig. 2.
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Figure 2. Steady-state boost operating mode of the QZSI

The only possibility to intervene in the circuit, is to alter
the boost-cycle b, which is defined as the ratio of the time of
the boost-state to one PWM-period:

b =
TBoost

TPWM
(1)



Altering b changes the magnetic flux in the inductors and
hence the amount of energy brought into the circuit. For
the review on the possible switching states, the following
assumptions are made:

• The components are ideal
• The inductances and the capacitances are each equal

(L1 = L2 and C1 = C2)
• The inductances and the capacitances are designed suf-

ficient, so that the short term average values of inductor
currents and the capacitor voltages are approximately
constant from one PWM-Period to the next.

• The supply voltage is constant
• The forward voltage drop of the diode is neglected

The inductances and capacitances must be large enough, so
that the resonant frequency of the LC circuit is far lower than
the switching frequency, to avoid oscillations. Then the time
values of the inductor currents and capacitor voltages can be
considered as being linear in any switching state. The influence
of part variance (L1 6= L2 and C1 6= C2) is neglected in this
analysis. It can be shown that this has no effect on steady
state condition, but leads to decaying oscillations in transient.
In simulation, different values up to 20% led to decaying
oscillations with amplitudes that are certainly within the range
of a reasonable design. Those effects could be observed in the
tested hardware and validated the simulation results.

In steady-state, the average voltages across the inductors
and the average currents through the capacitors are zero, which
leads to the following steady-state relations:

ūDC = UI + ūC1 = ūC2

īL1 = īL2 = īD = īDC

(2)

A. Boost

The boost-state is achieved by short-circuiting the DC bus
through at least one leg of the three-phase bridge. The DC bus
voltage then is zero and no power is transferred into the load.
For the load this has the same effect as applying one of the
two zero space vectors of conventional SVM. This makes it
inevitable to consider the necessary boost time TBoost in the
calculation of the load SVM.

L2 and C1 are connected to GND and the sum of the
two capacitor voltages is applied to the diode as reverse
voltage. Before the QZSI enters normal operating mode, the
capacitor C2 is pre-charged to the level of the input voltage.
Hence, uC1+uC2 is far greater than zero and the diode blocks
immediately in the first boost, applied to the circuit after pre-
charging. During normal boost operating mode this sum even
increases because of the boosted voltage and the diode blocks
every time, the boost is applied. The equivalent circuit of the
QZSI during boost is shown in fig. 3. With the assumption that
the capacitor voltages are approximately equal from one period
to the next, across both inductors the same voltage is applied
(see also (2)) and the inductor currents are both increasing.

uL1 = UI + uC1 ≈ UI + ūC1 = ūDC (3)
uL2 = uC2 ≈ ūC2 = ūDC (4)
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Figure 3. Equivalent circuit of the QZSI in boost state

With L1=L2 the inductor currents are equal. They flow as neg-
ative currents in the capacitors and discharge them partially.

iL1 = iL2 = iL iC1 = −iL1 iC2 = −iL2 (5)

With C1=C2 the voltage drop in both capacitors is equal too
(∆uC1 = ∆uC2). Since C1 and L2 are grounded via the same
physical connection, the DC link current during boost equates
to the doubled inductor current.

iDC = iL1 + iL2 = 2 · iL (6)

B. Boost with conducting diode

During boost, the diode can only become conducting, if the
sum of the two capacitor voltages becomes negative.

uD = −(uC1 + uC2) > 0 ⇒ −uC1 ≥ uC2 (7)

This occurs, if the boost lasts longer than the discharging of
the capacitors into the inductors or, in other words, longer
than a quarter period of the LC series resonant circuit. During
boost, the energy stored in the capacitors resonates into the two
inductors. Since both capacitor voltages are decreasing equally
(see II-A), starting with uC2=UI+∆uC and uC1=∆uC , the
voltages applied to the inductors remain equal, resulting in
equal inductor currents again. With the decreasing capacitor
voltages, the potentials on the diode are changing; the anode
potential rises with −uC1(t), and the cathode potential de-
creases with uC2(t). The condition for the conduction of the
diode (7) is true, as soon as both capacitor voltages reach an
absolute value of 1

2UI . With the diode conducting, the circuit
can be drawn as shown in fig. 4. C1 and C2 are clamped onto
each other by the diode, and the voltages remain constant

uC1 = uC2 = uL1 = uL2 =
1

2
UI (8)

The inductor currents are both continuously rising, only lim-
ited by the parasitic resistances. Hence this switching state
must be avoided. Under normal operating conditions and pre-
charging of C2, this switching state doesn’t occur (see II-A).
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Figure 4. Equivalent circuit of the QZSI in boost-state with conducting diode
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Figure 5. Equivalent circuit of the QZSI in active state

C. Active State

In active state, the shortcircuit is released and the load is
connected to the DC link bus. The DC link potential, and with
that the anode potential of the QZSI-diode, is not clamped
anymore. Due to the now decreasing inductor currents that
were impressed during the preceding boost-state, the DC link
potential is rising, until the anode potential of the diode is
equal to uC2 and the diode is conducting. Now the potentials
are clamped again and the DC link voltage equals the sum of
both capacitor voltages.

uDC = ûDC = uC1 + uC2 (9)

The DC link then represents a capacitive voltage source for
the load (fig. 5). The same voltage

uL1 = UI − uC2 = −uC1 = uL2 (10)

is applied to both inductors and the inductor currents are
decreasing equally (iL1=iL2=iL). The diode current equals the
sum of both inductor currents, reduced by the DC link current.
The two capacitor currents are also equal again (see fig. 5).

iD = iL1 + iC1 = iL1 + iL2 − iDC = 2iL − iDC (11)
iC1 = iC2 = iL − iDC (12)

The voltages across the capacitors equally depend on the
difference between the inductor current and the DC link
current. In steady-state operating mode the inductor current
is greater than the DC link current and the capacitor voltages
are rising again, after having been unloaded partially during
boost. In transient, the current after a load step is initially
provided through the capacitors, resulting in a voltage drop.
The average inductor current is increased by the control loop,
so that the DC link voltage reaches its specified value again.

D. Freewheeling State (FWS)

In freewheeling state no power is transferred into the load.
This state is characterized by the absence of any connection
between both DC link terminals, resulting in the DC link
current becoming zero. The QZSI can be brought into this
state by either turning off all switches of the three phase
bridge or by connecting all load phases to either the positive
or the negative DC link terminal (zero-space-vectors from
conventional SVM). For the QZSI it doesn’t matter which of
those three actions lead to the freewheeling state - the DC link

current is zero anyway. Since the DC bus is floating, the diode
is conducting like in active state and fig. 5 with iDC = 0 is
the resulting equivalent circuit. The capacitor currents equal
the inductor currents

iC1 = iL2 and iC2 = iL1 + iC1 − iL2 = iL1 (13)

They can be determined by the applied voltages and like in
all other switching states, the time values of inductor and
capacitor currents and voltages are equal in this state too. The
diode current equals the doubled inductor current.

uL1 = UI − uC2 = −uC1 = uL2 (14)
iL1 = iL2 = iL = iC1 = iC2 ⇒ ∆uC1 = ∆uC2 (15)
iD = 2iL (16)

The equations show that the freewheeling state has the same
effect on the QZSI like the active state with iDC = 0.

E. Permanent Freewheeling State

If the QZSI is driven in a permanent FWS, the energy
stored in the inductors is being transferred completely into
the capacitors. The time until the inductor current becomes
zero, beginning with its nominal value, is

∆tPFWS = L · īL,N

uC1,N
(17)

The additional voltage on the capacitors is

∆uC,PFWS =
1

C
· 1

2
·∆iL ·∆tPFWS (18)

Because both capacitor currents are equal during FWS, this
value is equal for both capacitors too. This voltage must
be regarded in capacitor design. For the described QZSI-
prototype, the max. additional capacitor voltage would be
29, 4V. Once the inductor current reaches zero, the LC series
resonant circuit would make the inductor current become
negative. However, this is impossible because of the diode.
It blocks and the LC series resonant circuit is interrupted. The
inductors remain currentless and the capacitors are charged
with the controlled voltage plus the additional voltage. The
DC link voltage drops to the level of uC2, as soon as the
diode blocks. In contrary to a permanent boost, the permanent
FWS is a secure switching state, into which the QZSI can be
driven in any fault condition, for example by turning off all
switches of the three phase bridge.

F. Load-current caused boost (LCC)

For the following explanation, a one-phase inductive load
with LA � LQZSI is assumed (see fig. 6). The FWS, as
well as the boost act as freewheeling condition for the load.
If the freewheeling current of the load is not yet zero at the
end of a boost or a FWS, the freewheeling diode (SLO) still
is conducting. The activation of the subsequent active state
then provokes a shootthrough, since the upper switch and
the lower diode are conducting at the same time, causing an
unwanted boost-state and by that an unwanted voltage boost.
If the freewheeling current iF can commutate instantly into the
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Figure 6. Equivalent Circuit of the QZSI in the LCC-boost state

upper bridge section, the duration of this load-current caused
boost is close to zero and has no further effect. The condition
for this instant commutation is that iDC must be at least as
large as the output load current iA.

iA < iDC,Boost = 2iL (19)

With the law of energy conservation, this can be used to
determine the ratio between output and input voltage as
condition for the instant commutation.

ūA

UI
=

iI
iA

>
1

2
(20)

This means that the average output voltage ūA must be at least
half the input voltage. (20) can be rewritten for the duty cycle
a, which is defined as the ratio of the time of the active state
to the whole PWM-period:

a =
Tactive

TPWM
=

ūA

ûDC
⇒ ūA

UI
=

a · ûDC

UI
>

1

2
(21)

a >
1

2
· UI

ûDC
=

1− 2b

2
(22)

If this condition is not given, the LCC boost lasts, until the
DC link current reaches the level of the freewheeling current.
This is visible between t1 and t2 in fig. 7. At t2, iF is zero
and the freewheeling diode blocks. The QZSI changes to active
state and the inductor currents are decreasing. This results in
iDC becoming smaller than iA, and the freewheeling diode be-
comes conducting again, resulting in another unwanted boost.
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Figure 8. Equivalent circuit of the QZSI in feedback mode with open SFB

At t3, the output inverter is driven into FWS and the relations
described in II-D are effective. Once the inductor current
becomes zero (t4), the capacitor current is zero too. Since real
components never are identical, there are oscillations between
the passive components in this time interval (after t4).

To be able to control the QZSI in the full voltage range,
the LCC boost must be avoided. This can be achieved by
turning on the feedback switch every time, the QZSI is driven
in an active state. By doing that, the diode is bypassed and
the DC bus is capacitive. Thus, the current to allow the instant
commutation of the freewheeling current is provided. This
method was tested with the described hardware and disabled
the LCC boost effectively.

G. Feedback mode

In feedback mode, the load acts as current source. Due to
the diode, the feedback current can’t flow back into the input
source. Initially, the feedback switch SFB (fig. 1) still is open,
and the feedback current flows over L1-C1 and L2-C2. The
inductor voltages are equal again (see fig. 8 and (2)).

uL1 = uL2 = UI + uC1 − uDC (23)

The feedback current is divided into two equal currents in
each branch and the capacitor voltages are both rising equally.
To prevent damage, the feedback switch must be closed if a
certain maximum level of capacitor voltage is reached. Then
the feedback current flows over L2-SFB-L1 and feeds the
input source. The energy stored in the capacitors starts to
swing into the inductors, producing a resonant current that
is superposed to the feedback current. By varying the duty
cycle of the feedback switch, the voltage across the capacitors
can be controlled in a way that the capacitor voltage that was
controlled in boost mode, is reached again.

III. DYNAMIC MODEL OF THE QZSI

In chapter II was shown, that in the QZSI with L1=L2

and C1=C2, the two inductors are both supplied to identical
voltages at any time in any switching state, leading to identical
inductor currents as well. As result, the currents of the
capacitors are equal in any switching state too. The voltages
across the two capacitors differ only in the DC offset of the
input voltage UI , caused by the pre-charging of C2.

uL1(t) = uL2(t) iL1(t) = iL2(t) (24)
∆uC1(t) = ∆uC2(t) iC1(t) = iC2(t) (25)



Because of that, the inductors and capacitors can be considered
as two dependent parallel inductive and two dependent parallel
capacitive energy storages.

With the assumptions made in chapter II, the time values
of the capacitor voltages and the inductor currents can be
considered as approximately constant from one PWM period
to the next and approximately equal the corresponding short
term average values over one PWM period:

iL1 = iL2
∼= īL uC1

∼= ūC1 uC2
∼= ūC2 (26)

A. Inductor currents as a function of the boost cycle

As already mentioned, the only possibility to intervene in
the circuit, is to alter the boost cycle b, which makes it
essential to analyze the effect of a changing boost-cycle on
the QZSI system dynamics. The short term average DC link
voltage is (see fig. 2)

ūDC = (1− b) · ûDC (27)

In steady-state condition, this equals the voltage across C2.
The short term average voltage across L2 is generally

ūL2 = ūC2 − ūDC = ūC2 − (1− b) · ûDC (28)

If the boost-cycle is changed from an old value bold to a new
value bnew, the difference of the voltages across the capacitors
from one PWM period to the next can be neglected. Together
with (2), the voltage across C2 is

ūC2,old ≈ ūC2,new ≈ ūC2 = ūDC (29)

The short term average value of the DC link voltage in contrary
is changed immediately. With bnew = bold+∆b, the short term
average value of the voltage across L2 is

ūL2,old = ūC2 − ūDC,old

= (1− bold) · ûDC − (1− bold) · ûDC = 0

ūL2,new = ūC2 − ūDC,new

= (1− bold) · ûDC − (1− bnew) · ûDC

= (−bold + bnew) · ûDC = ∆b · ûDC

∆ūL2 = ūL2,new − ūL2,old = ∆b · ûDC

(30)

This shows, that changing the boost-cycle b directly provokes
a change of ūL2. The maximum DC link voltage acts as the
actuator gain Vact=ûDC . Since this voltage consists of the two
capacitor voltages, it also can be considered as approximately
constant over a few PWM periods.

The diode blocks only during boost, so the short term
average voltage across the diode is then

ūD = b · (−ûDC) (31)

With the same assumptions concerning the capacitor voltages,
the short term average voltage across L1 is

ūL1 = UI − ūC2 − ūD = UI − ūC2 + b · ûDC (32)

With bold the steady-state value of ūL1,old is

ūL1,old = UI − (1− bold) · ûDC + bold · ûDC

= UI − (1− 2bold) · ûDC
!
= 0

(33)

From (33), the steady state transfer function of the QZSI can
directly be derived

ûDC

UI
=

1

(1− 2b)
(34)

The new short term average voltage across L1, provoked by
bnew and the difference ∆ūL1, is

ūL1,new = UI − (1− bold) · ûDC + (bold + ∆b) · ûDC

= ūL1,old + ∆b · ûDC

∆ūL1 = ūL1,new − ūL1,old = ∆b · ûDC

(35)

The equations show, that for both inductors the same dynamic
dependency between boost-cycle and the short term average
voltage is effective. Altering the boost-cycle provokes for both
inductors an identical change of the corresponding magnetic
flux. By neglecting the series resistances, the inductors are
modeled as integrators, which integrate the voltages to the
corresponding inductor currents.

B. Capacitor voltages as function of inductor currents

The diode is only conducting in the active and in the
freewheeling state. The diode current is

iD =

 0 during boost
iL1 + iL2 − iDC during active state

iL1 + iL2 during freewheeling state
(36)

The diode current during freewheeling state differs from the
one during active state only in the missing DC link current
(iDC=0 in FWS). The duration of the FWS is determined by
the load control loop and is not controllable by the QZSI-
control. Hence, iDC contributes as disturbance value. Together
with the short term average value of iDC , the short term
average value of the diode current can be written as follows

iD =

{
0 during boost

iL1 + iL2 − īDC rest of time (37)

īD = (1− b) · (̄iL1 + īL2 − īDC) (38)

Given that the short term average values of the inductor
currents are approximately constant from one PWM period
to the next, the capacitor currents are (see fig. 1)

īC1 = īD − īL1 = (1− b) · (̄iL1 + īL2 − īDC)− īL1

= −b · īL1 + (1− b) · (̄iL2 − īDC)

īC2 = īD − īL2 = (1− b) · (̄iL1 + īL2 − īDC)− īL2

= −b · īL2 + (1− b) · (̄iL1 − īDC)

(39)

Following these equations, the capacitor currents depend on
the inductor currents and the DC link current, linked by
the boost-cycle. The capacitor voltages are built through
integration of the corresponding capacitor currents. The block
diagram of the gained dynamic model of the QZSI is shown
in fig. 9. It is also valid for components that have not the same
values (L1 6=L2 and C1 6=C2), as long as the assumption of an
approximately constant inductor current and an approximately
constant capacitor voltage from one PWM period to the next
is valid.
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Figure 9. Dynamic average model of the QZSI

C. Identical values in passive components
If the passive components each have identical values

(L1=L2 and C1=C2), the model can be simplified significantly.
For identical inductances, the inductor currents are equal
(iL1=iL2=iL), and the sum i2L of both can be written as

i2L = iL1 + iL2 = 2iL =

(
1

sL1
+

1

sL2

)
uL =

2

sL
uL (40)

The two parallel integrators can be considered as a single one
with the integration constant of one inductor, and an adjacent
proportional element with the gain VP =2. With that, the diode
and capacitor currents are

īD = (1− b)(̄iL1 + īL2 − īDC) = (1− b)(̄i2L − īDC)

īC1 = īD − īL1 = īD − īL2 = īC2 = īC
(41)

The equations of the capacitor currents can be rearranged,
which leads to an expression that allows the separate exami-
nation of either command input or disturbance response.

īC = īC1 = īC2 = īD − īL (42)
= (1− b) · 2̄iL − (1− b) · īDC − īL (43)

= (
1

2
− b) · 2̄iL − (1− b) · īDC (44)

The gained block diagram is shown in fig. 10. Since both ca-
pacitors are charged with the same current, they could also be
rewritten as a single integrator, assumed that the capacitances
are equal. Generally, for any values of the capacitances, the
capacitor voltage is

ū2C = ūC1 + ūC2 =
1

s
iC

(
C1 + C2

C1C2

)
(45)

However, this even further simplification is not pursued, be-
cause it shows that the control of uC2 has some advantages
over the control of ū2C , mainly because uC2 is a DC value
with only little ripple, can easily be measured and equals the
average DC link voltage.
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Figure 10. Dynamic average model of the QZSI with identical inductances
and different capacitances

IV. EXPERIMENTAL RESULTS

For the described model (fig. 10), a cascade control loop
with inner current control loop (iL) and outer voltage control
loop (uC2 = ūDC) was developed and tested. As a brief proof
of theory, the load step response of the complete QZSI control
loop design with the described model as basis is shown in fig.
11. The oscillogram shows, that the proposed control method
manages the load steps without any difficulty.
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Figure 11. Step load change with resistive load. Nominal value of the DC-
link voltage uC2,w = 50V. Left: load rejection. Right: load surge.

V. CONCLUSION

The possible switching states that can occur in the QZSI
were analyzed and described in order to study the dynamic
behaviour of the QZSI. Based on this analysis, the short term
average values over one PWM-period were calculated and
a dynamic average model of the QZSI was developed. The
described model is rather descriptive and has the advantage
that the load influence acts only as disturbance input and is not
directly linked with the model structure itself. This gives the
freedom to design the control loop for the QZSI independently
from the load. The model is valid under the assumption that the
inductor currents and the capacitor voltages are approximately
constant from one PWM-period to the next. This is normally
the case, since the PWM switching frequency is significantly
larger than the QZSI L and C time constants. For similar induc-
tances and capacitances (L1=L2 and C1=C2), a significantly
simplified model could be derived. For this simplified model, a
cascade control strategy was developed and successfully tested
with a QZSI-prototype in hardware, which verifies the theory
completely.

REFERENCES

[1] F. P. Joel Anderson, “Four quasi-z-source inverters.” Michigan State
University Department of Electrical and Computer Engineering, 2008.

[2] M. v. Z. Lothar Sack, “Z-source-topologie als alternative zu herkömm-
lichen antriebsumrichtern,” Präsentation, Kolloqium des Elektrotechnis-
chen Instituts, 2009.

[3] F. Z. Peng, “Z-source inverter,” IEEE Transactions on Industry Applica-
tions, Vol 39, No. 2, March/April 2003.

[4] R. M. Slobodan Cuk, “Modeling, analysis and design of switching
converter,” 1978.

[5] L. X. Jingbo Liu, Jiangang Hu, “Dynamic modeling and analysis of z
source converter - derivation of ac small signal model and design-oriented
analysis,” IEEE, 2007.

[6] F. P. Miaosen Shen, Qingsong Tang, “Modeling and controller design of
the z-source inverter with inductive load,” IEEE, 2007.

[7] M. U. D.M. Vilathgamuwa, P.C. Loh, “Transient modelling and control
of z-source current type inverter,” IEEE, 2007.


