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Chapter 1

Introduction

Full waveform tomography (FWT) is a high-resolution imaging method to exploit the full
richness of recorded waveforms. In contrast to conventional imaging methods, such as
first-arrival tomography, the FWT is able to resolve subsurface structures smaller than a
wavelength. The fundamental method was developed by the pioneer A. Tarantola who
proposed the theory of acoustic FWT in the time domain (Tarantola, 1984). It represents a
local optimization method with the aim to find a subsurface model which explains the full
waveforms of the recorded data. It involves the least-squares objective function and employs
the method of steepest-descent gradients. Further developments comprise elastic time-
domain FWT (e. g., Tarantola, 1986a,b; Mora, 1987; Crase et al., 1990) and the establishment
of the frequency-domain FWT by R. G. Pratt (e. g., Pratt and Worthington, 1990; Pratt, 1990;
Pratt and Goulty, 1991; Pratt, 1999) representing a commonly used approach in various
applications.

Whether applied in time domain or frequency domain, there are numerous fields of applic-
ation for waveform tomography. Most of the applications concern geophysical problems,
i. e., investigating subsurface structures to improve our knowledge of the Earth’s interior, to
enhance subsurface imaging in geotechnical applications or to obtain detailed images of
geological structures for the exploration of oil and gas deposits. The fields of application
are manifold covering a wide range from large-scale seismological problems to applica-
tions at small scale lengths in ultrasound measurements. For example, FWT is applicable
in cross-well experiments involving seismic measurements (e. g., Pratt, 1999), in ground-
penetrating-radar measurements with regard to engineering (e. g., Kalogeropoulos et al.,
2011) or near-surface investigations (e. g., Ernst et al., 2007), in analyzing near-surface struc-
tures by applications of acoustic and elastic shallow seismics (e. g., Smithyman et al., 2009;
Romdhane et al., 2011), in on-shore seismics (e. g., lithospheric imaging done by Brenders
and Pratt, 2007a), in marine seismics (e. g., Shipp and Singh, 2002) and in seismology (e. g.,
Fichtner et al., 2009), among others. Apart from geophysics, in recent years the FWT be-
comes more popular in several sciences, such as human medicine (e. g., Pratt et al., 2007) or
helioseismology (e. g., Cobden et al., 2011).

This thesis employs the time-domain FWT proposed by Tarantola (1984). It is targeted
to problems allowing a meaningful application of acoustic waveform tomography, such
as cross-well measurements or marine-seismic surveys. In general, seismic waveforms
are affected by several physical parameters: P-wave velocity, S-wave velocity, density,
attenuation or anisotropy. While marine reflection data are dominated by P-waves with
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6 1.1. Outline of this thesis

no direct measurement of surface waves or S-waves (apart from converted waves), cross-
well data generally reveal well-separated P-waves allowing a simple cut-off of S-wave
events. I exploit the acoustic FWT, because it shows a good trade-off between computational
efforts and accuracy with respect to the fields of application mentioned above. Furthermore,
within the scope of this thesis, I carry out numerous studies, which exclusively consider the
impact of several methodological strategies on the reconstruction of the isotropic P-wave
velocity. Although the underlying methodology considers the full acoustic parameterization,
I assume a known density distribution and a known source-time function. Hence, the single-
parameter inversion allows to focus on the main purposes of this work: investigating and
improving the performance of the acoustic FWT. The implementation character of this
work is related to both computational and methodological optimization. That comprises
the efficient application of FWT on parallel supercomputers as well as the reduction of
computational efforts by increasing the convergence of the gradient algorithm. Nevertheless,
all strategies aim to obtain a satisfactory P-wave velocity model with reasonable efforts.

This work consists of two main objectives: the development of 2D and 3D acoustic FWT
implementations in the time domain as well as their synthetic application to complex
geological models. With this focus, I perform cross-well and marine reflection experiments
including fictional and realistic acquisition geometries.

1.1 Outline of this thesis

This thesis is divided into two parts. This involves the basic theory of acoustic FWT as well
as issues concerning methodology and implementation. I perform several numerical studies
with applications of 2D and 3D waveform tomography based on those fundamentals. The
first part consists of chapters 2 and 3, while the second part includes chapters 4 to 7. The
detailed structure is as follows.

Chapter 2

The second chapter describes the basic inversion scheme and the fundamentals of acoustic
FWT. That includes an overview of the underlying theory and comprehensive derivations
of the required wave equations and their finite-difference solutions. I focus on strategies
affecting the convergence and the model reconstruction. In particular, I explain the adaptive
step length estimation using a parabolic curve-fitting method and illustrate its notable
advantage as well as possible drawbacks.

Chapter 3

In the first part of chapter 3, I describe technical methods which improve the computational
performance of the FWT and allow an efficient application to complex problems. The
explanations incorporate the massive parallelization comprising domain decomposition
(Bohlen, 1998) and shot parallelization (Kurzmann et al., 2009). Additionally, I perform a
benchmark to emphasize advantages and problems of these techniques.
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In the second part of this chapter, I discuss strategies to reduce the consumption of resources
allowing the feasibility of a pure time-domain FWT in 3D. The last subject is the workflow
implementation representing the key feature of all applications in this work. It combines
existing multi-stage approaches (e. g., Bunks et al., 1995; Shipp and Singh, 2002; Sirgue
and Pratt, 2004; Shin and Cha, 2009) with additional features, such as the availability of
pure time-domain inversion and the so-called single-frequency method (Sirgue et al., 2008)
within the same FWT scheme. The intention of the multi-stage approaches is to mitigate the
ill-posedness of the inverse problem. They contain time windowing and offset windowing
(e. g., Shipp and Singh, 2002; Wang and Rao, 2009) as well as the sequential inversion for
different frequency contents (e. g., Bunks et al., 1995; Sirgue and Pratt, 2004; Brossier et al.,
2009; Shin and Cha, 2009). However, the workflow mainly focuses on the frequency selection
due to its highest importance in a successful model recovery (Sirgue, 2006).

Chapter 4

Within the scope of a parameter study, this chapter is composed of numerous experiments.
I investigate methodological impacts of important steps of the inversion scheme on the
outcome of the FWT. Based on the application of multiple FWTs in each experiment, this
study aims to give an impression, how the objective function of the inverse problem is
affected. This investigation is concluded by a brute-force experiment showing the cross
sections of the objective function in dependence of considering different frequency contents.

Chapter 5

In this chapter, I intend to classify the pure time-domain approach used in this work, i. e.,
the recovered P-wave velocity model is compared with the results of the single-frequency
method (Sirgue et al., 2008) and a pure frequency-domain FWT (application of the imple-
mentation developed by R. G. Pratt; Pratt, 1999).

Chapter 6

While most of the applications in this work only consider purely acoustic problems, it is
interesting to investigate phenomena which cannot be explained by a 2D acoustic FWT.
For example, this relates to seismic data recorded in a 3D environment, the occurrence of
elastic effects or the appearance of attenuation. In this work I investigate the feasibility
of acoustic FWT in presence of attenuation. In general, the consideration of attenuation
involves multi-parameter viscoacoustic inversions commonly applied in the frequency
domain. The intention is either to obtain a reliable attenuation model or to improve the
recovery of the velocity model at the expense of an artificial attenuation model. Applications
are published by several authors, such as Hak and Mulder (2008, 2011) and Kamei and Pratt
(2008). However, attenuation is also used as a passive parameter in an acoustic FWT with
the aim to improve the velocity model (e. g., Brenders and Pratt, 2007a).

Based on two marine reflection experiments with realistic acquisition geometries, I apply
the acoustic time-domain FWT to seismic data affected by the intrinsic attenuation of the
subsurface. This synthetic study aims to quantify the error in the recovered velocity model
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by assuming both “good” and “poor” passive attenuation models, i. e., attenuation is not
subject to the inversion. Furthermore, I identify, on which condition the acoustic inversion
of viscoacoustic data yields an acceptable velocity model.

Chapter 7

In recent years, increasing computational power and resources allow the application of 3D
FWT. In general, it is preferably performed in the frequency domain (e. g., Warner et al.,
2007; Ben Hadj Ali et al., 2008; Plessix, 2009) but seems to be limited to frequency contents
lower than 7 Hz as summarized by Virieux and Operto (2009). Furthermore, the 3D FWT
in the frequency domain is still highly demanding due to expensive frequency-domain
modelings. There are also 3D applications in the time domain, such as Vigh and Starr (2008)
who developed a plane-wave implementation (instead of commonly used shot gathers) to
reduce computational efforts. A third possibility is a hybrid method combining efficient
time-domain modeling and frequency-domain inversion – the so-called single-frequency
method (Sirgue et al., 2008). Furthermore, several authors apply different strategies to
reduce the efforts of 3D modelings, such as phase encoding by using super shots (e. g., Vigh
et al., 2009; Ben Hadj Ali et al., 2009). Although this is realized at the expense of the accuracy
of the resulting model, they additionally apply techniques to mitigate the appearance of
artifacts.

In this chapter, I apply pure time-domain 3D inversions to two experiments revealing
a cross-well configuration and a marine reflection geometry in case of very complex 3D
media. The aim is to demonstrate its feasibility benefiting from efficient time-domain
modeling, the reasonable resource consumption and a reliable model reconstruction. I
choose both a random medium and a 3D expansion of the Marmousi-II model (Martin,
2002). Apart from strategies discussed in chapter 3, no further optimization techniques are
used. The application of 3D FWT concludes this work and represents an outlook for future
applications.



Chapter 2

Methodology of acoustic full waveform
tomography

This chapter explains the fundamental theory of acoustic full waveform tomography (FWT)
mainly based on the work of Tarantola (1984) and Mora (1987). Section 2.1 illustrates the
basic FWT scheme, while sections 2.2 to 2.6 give a brief overview of the FWT steps including
methods proposed by other authors or developed within the scope of this work. The
corresponding appendices A, B and C elaborately provide detailed descriptions.

2.1 The general scheme of full waveform tomography

Basically, full waveform tomography is an iterative inversion method. Its aim is to find an
optimal parameter model, e.g. a subsurface model of seismic velocities, which explains the
observed seismic data, i.e., the difference of observed and synthetic data has to be minimized.
This iterative optimization problem comprises general steps illustrated by Figure 2.1. While
the following sections describe the FWT steps, details of the inversion over multiple stages
can be found in chapter 3. Apart from the pure time-domain FWT, I additionally discuss
the single-frequency method (a slight modification of the method described by Sirgue et al.,
2008, see comparison of inversion methods in chapter 5) representing a combination of
time-domain and frequency-domain FWT. It differs from a pure time-domain FWT with
respect to a few steps of the inversion scheme:

• on-the-fly transformation of the source wavefields and residual wavefields to the
frequency domain by application of a discrete Fourier transform for a predefined set
of N f frequencies,

• only N f frequency-domain wavefield snapshots have to be stored at
forward-propagation,

• the imaging condition is performed in the frequency domain.

9



10 2.1. The general FWT scheme

Input
• observed seismograms pobs
• initial parameter model mini
• initial source signal q

At iteration h: mh−1

For each source s

Initialization of wavefield propagation
• band-pass filtering: q̃ = f (q), p̃obs = f (pobs)

Forward-propagation
• application of q̃s for the current source
• storage of forward wavefield: (1) p(x, t), (2) p(x, ω) after Fourier transform
• storage of seismograms p̃h, time and offset windowing

Residuals δph = p̃h − p̃obs and data misfit function E = ‖δph‖2
2

Back-propagation and imaging condition
• computation of residual wavefield (1) p′(x, t) or (2) p′(x, ω) using source

signals δph in reverse time direction
• only (1): cross-correlation of p(x, t) and p′(x, t), yielding gradients gh,s

• only (2): cross-correlation of p(x, ω) and p′(x, ω), yielding gradients gh,s
• Application of preconditioning operator P to the gradients: βββh,s = P gh,s

Residuals minimized?

Inversion for all
stages finished?

Stop:
best-fit model

has been found

Summation of gradients over all Ns sources: δmh = ∑Ns
s=1βββh,s

Preconditioning δm̃(x)h = P δmh and conjugate gradient direction

Estimation of an optimal step length µh by a parabolic fit

Parameter update: mh = mh−1 + µh δmh

No

Yes

Yes No: Next stage
N

ex
ti

te
ra

ti
on

Figure 2.1: FWT scheme of (1) a pure time-domain FWT (Tarantola, 1984) and (2) the single-
frequency method (similar to Sirgue et al., 2008). Steps being identical for both methods are not
highlighted. The inversion stages refer to different frequency selections and data windows.
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2.2 Input of full waveform tomography

The input of full waveform tomography mainly consists of three parts: the observed seismic
data, the initial source signal and P-wave velocity model.

Observed data

Within the scope of this work all investigations are restricted to the usage of synthetic data,
which are computed by the modeling implementation of the full waveform tomography
code. For all applications synthetic “recorded” pressure data is computed by the forward
modeling implementation of the FWT codes using the second derivative of the Gaussian
distribution (Ricker wavelet; Ricker, 1953) as a source-time function.

Initial source signal

The FWT applications of this work concentrate on the inversion for the model parameter
P-wave velocity (vP), where the true source signal – used to compute the observed data – is
assumed as initial wavelet. However, in practice, there are different possibilities to assume
an initial source wavelet (which have to be considered in field data applications of the FWT
implementation developed in this work):

• estimation from direct wave in the recorded data (e. g., Kravis, 1985),

• estimation from stacked seafloor reflections of the field data at near offsets (e. g., Vigh
and Starr, 2008),

• assumption of a synthetic source-time function and initial application of a source-
signal inversion using a least-squares method (Pratt, 1999, but with modifications for
time-domain applications),

• frequency-domain averaging and phase deconvolution (Hicks and Pratt, 2001),

• employing a separate source signal measurement quite close to the source location.

Initial model

In general, the choice of an appropriate starting model is quite difficult. The data misfit
function can be used to define the quality of this model. An intuitive assumption is that
a “good” starting model, located quite close to the true model, results in a low misfit,
and vice versa. However, especially the choice of the acquisition geometry can intensify
unwanted physical effects like cycle skipping (e. g., Ravaut et al., 2004). Consequently, the
shape of the misfit function might be more complicated. There are methods exploiting
the misfit information to improve the initial model for FWT, such as evolution strategies
(Köhn, 2011), or to evaluate the quality of initial models (see the application chapter 4).
However, in real data applications, at least a rudimentary initial model has to be provided
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by exploiting a priori information or applying conventional imaging methods, such as
first-arrival travel-time tomography.

Depending on the purpose and the acquisition geometry used in the synthetic applications, I
choose different kinds of initial models. In general, cross-well experiments use homogeneous
initial models, while reflection experiments are performed on the basis of smooth or 1D-
gradient models. On the one hand, smooth initial models are obtained by applying low-pass
filters to the true model, i. e., applying the Gaussian function

G(x, y) ∼ e−
x2+y2

2σ2 (for a 2D filter) (2.1)

with the spatial coordinates x and y as well as the standard deviation σ. They represent
a quite realistic initial model, which might be computed by ray-based methods, such as
travel-time tomography. On the other hand, linear-gradient models are considered to be
poor initial models due to the usage of very simple assumptions.

2.3 Seismic modeling and imaging condition

2.3.1 Forward modeling

At forward-modeling the source wavefield propagates across the subsurface medium, i. e.,
the initial model at the first iteration. It is computed by a time-domain finite difference
time-stepping method. The synthetic data is recorded by the receivers. For each shot of the
acquisition geometry the forward-propagation has to be performed separately. At all or
selected time steps (discussed in chapter 3) the spatial distribution of the synthetic forward
wavefield is saved in memory for subsequent usage.

In FWT most of the computational efforts are required for seismic modeling due to its
separate application for every source at each iteration. In dependence of initial model and
acquisition geometry, it is useful or necessary to reduce these efforts and to improve the
progress of the FWT by mitigating the ambiguity of the inverse problem, i. e., the nonlinearity
of the misfit function. Before forward modeling different techniques can be applied, such as:

• Time windowing: The reduction of the information content of the data may also
decrease the ambiguity of FWT. On the one hand, it is directly applied to the observed
pressure data and on the other hand, the propagation time of modeling is reduced
from 0 ≤ t ≤ Ttotal to 0 ≤ t ≤ Twindow.

• Offset windowing: Only desired offset ranges of observed and forward data are taken
into account by this alternative method of data reduction.

• Band-pass filtering: Especially low-pass filters are applied to both observed data and
initial source signal. There is no positive effect on the efforts of forward-propagation.
On the contrary, due to broadening the wavelet, additional propagation time is ne-
cessary to avoid acausal signals. However, in comparison with time windowing. this
method improves the nature of the misfit function more efficiently. According to
Bunks et al. (1995) and Sirgue and Pratt (2004), it is suitable to start the FWT with low
frequencies and include higher frequency contents at later inversion stages.
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After these preparations seismic modeling is performed, i. e., at each source location the
source signal q is applied and synthetic pressure data is acquired at receiver locations.
Within the scope of this work, the acoustic or viscoacoustic wave equation is solved by a
finite difference (FD) time-stepping method, i. e., the pressure wavefield p(x, t) is computed
(see sections 2.3.1.1, 2.3.1.2 and 2.3.1.3).

2.3.1.1 Acoustic wave equation with initial and boundary conditions

The acoustic wave equation represents the simplest case of seismic wave equations. The
basis is a medium with only one elastic property, the bulk modulus

κ = ρ v2
P, (2.2)

where ρ is density and vP is the P-wave velocity. In general the homogeneous acoustic wave
equation is a second-order partial differential equation:

1
κ (x)

p̈ (x, t) = ∇ ·
(

1
ρ (x)

∇p (x, t)
)

, (2.3)

where p (x, t) is the pressure field. Additionally, initial and boundary conditions have to
be defined to find an accurate solution of the given problem. For all spatial locations x the
initial conditions are

p (x, t = 0) = ṗ (x, t = 0) = p̈ (x, t = 0) = 0. (2.4)

The boundary conditions can be divided into two types. In dependence of the problem a
free surface is applied, i.e., in the acoustic case an air layer is placed on top of the model.
The second type is the absorbing boundary. Due to the finite model size, forward modeling
produces unwanted artificial reflections at the model edges. The computations of FWT
include synthetic data from forward modeling and observed data which is free from artificial
events. To avoid undesirable results it is essential to model as accurate as possible. Thus,
this can be realized by perfectly matched layers (PML, see Grote and Sim, 2009), which
are implemented in the wave equation. Therefore, an additional layer with attenuating
properties is added to the model and the extended 3D wave equation can be written as

p̈ +
(
σx + σy + σz

)
ṗ +

(
σyσz + σxσy + σxσz

)
p = v2

P

[
∆p +∇ ·w− 1

ρ
∇ρ · (∇p + w)

]
− σx σy σz u,

ẇx =
(
σy + σz − σx

)
∂x p + σyσz∂xu− σxwx,

ẇy =
(
σx + σz − σy

)
∂y p + σxσz∂yu− σywy,

ẇz =
(
σx + σy − σz

)
∂z p + σxσy∂zu− σzwz,

u̇ = p, (2.5)

where w as well as u are auxiliary variables and σx, σy and σz are the attenuation coefficients
of the PML. The subscripts x, y and z denote the spatial components in lateral and vertical
directions. The definition of the PML coefficients is as follows:

σx = σy = σz = 0 within the interior of the model,
σx > 0, σy > 0, σz > 0 within the PML boundary. (2.6)

The complete derivation of the full acoustic wave equation with boundary condition and
simplifications, such as the homogeneous-density case or the 2D wave equation, can be
found in appendix A.1.
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2.3.1.2 Viscoacoustic wave equation with initial and boundary conditions

Within the scope of this work the investigations of attenuation in acoustic FWT are limited
to 2D cases. The viscoacoustic wave equation bases on the first-order pressure-velocity
formulation of the acoustic wave equation:

ṗ (x, t) = κ (x) ∇ ·w (x, t) ,

ẇ (x, t) =
1

ρ (x)
∇p (x, t) (2.7)

with the particle velocities w. The incorporation of attenuation (based on the generalized
standard linear solid with L relaxation mechanisms) results in the following system of
partial differential equations:

ṗ (x, t) = κr (x) ∇ ·w (x, t) [1 + L τP (x)] +
L

∑
l=1

rl (x, t) ,

ṙl (x, t) = − 1
τp,l

[κr τP (x) ∇ ·w (x, t) + rl (x, t)] with l = {1, . . . , L},

ẇ (x, t) =
1

ρ (x)
∇p (x, t) . (2.8)

with the so-called memory variables rl (which represent the relaxation mechanisms), the
relaxed bulk modulus κr, the relaxation times τp,l and the parameter τP which is related to
the quality factor Q. The initial conditions of (2.8) are

p (x, t = 0) = ṗ (x, t = 0) = 0,
w (x, t = 0) = ẇ (x, t = 0) = 0. (2.9)

To suppress artificial reflections at model boundaries the system of 2D viscoacoustic wave
equations includes a PML boundary condition:

ṗ = κr (1 + L τP)
(
∇ ·w + ux + uy

)
+
(
1 + φx + φy + ϕ

) L

∑
l=1

rl −
(
σx + σy + θ

)
p, (2.10a)

ṙl = −
1

τp,l

[
κrτP

(
∇ ·w + ux + uy

)
+
(
1 + φx + φy + ϕ

)
rl
]
−
(
σx + σy + θ

)
rl, (2.10b)

ẇ =
1
ρ
∇p−

[
σx 0
0 σy

]
w, (2.10c)

u̇x = σy ∂x wx, (2.10d)

u̇y = σx ∂y wy, (2.10e)

θ̇ = σxσy, (2.10f)

φ̇x = σx, (2.10g)

φ̇y = σy, (2.10h)
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ϕ̇ = ψ, (2.10i)

ψ̇ = σxσy (2.10j)

with l = {1, . . . , L}, additional auxiliary variables ux, uy, θ, φx, φy, ϕ and ψ as well as PML
coefficients σx and σy (defined by (2.6)). The derivation of (2.10) can be found in appendices
B.1 and B.2.

2.3.1.3 Finite difference solution of the wave equation

Homogeneous wave equation

The systems of partial differential equations (2.5) and (2.10) are solved by utilization of
a finite-difference (FD) time-stepping scheme (e. g., Alford et al., 1974). Therefore, a time
and space discretization has to be applied to the wave equations. In case of an equidistant
spatial grid with grid spacing ∆h, the coordinates x, y and z are replaced by the subscripts i,
j and k. The resulting model dimensions are

x = i ∆h, y = j ∆h and z = k ∆h. (2.11a)

The parameters Nx, Ny and Nz denote the the total number of grid points. The time
discretization is realized by

t = n ∆t, (2.11b)

where n represents the time step and the constant ∆t is the difference of two successive time
steps. The total number of time steps is denoted by Nt.

In case of the second-order acoustic wave equation (2.5) the pressure, its second-order
spatial and temporal derivatives are computed at grid location (k, j, i) and time step n. Due
to the existence of first-order auxiliary equations, a staggered grid in space and time has
to be used within the PML boundary. The location of the update of the auxiliary variables
wx, wy and wz is shifted by a half grid point and a half time step, i.e., they are computed at
(k + 1

2 , j + 1
2 , i + 1

2 , n + 1
2).

Furthermore, the viscoacoustic wave equation generally requires a staggered grid formula-
tion. Depending on given wave equations and boundary conditions, the partial derivatives
have to be approximated by discrete FD operators of first or second order in space and time.
The FD schemes of acoustic and viscoacoustic partial differential equations (2.5) and (2.10)
can be found in appendices A.2 and B.3, respectively.

Source implementation

The source signal q is applied at each time step n and pre-defined locations (xs, ys, zs)
with s = 1...N (N =number of sources). The continuous signal input is implemented as
follows:

pn
zs,ys,xs B pn

zs,ys,xs + qn
zs,ys,xs . (2.12)
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Grid dispersion and instability

The approximation of the wave equation by finite-difference discretization in space and time
may result in numerical artifacts and instabilities. On the one hand, FD modeling with a too
coarse grid (i.e., a too high ∆h) causes a dispersive artificial wavefield. This phenomenon
is called grid dispersion. This effect can be avoided by considering a minimum number
m of grid points per minimum wavelength λmin (e. g. between 4 and 16 grid points per
wavelength for a second-order spatial FD operator). Thus, the following criterion has to be
fulfilled (a detailed derivation can be found in Köhn, 2011):

∆h ≤ λmin

m
=

vP,min

m fmax
≈ vP,min

m 2 fpeak
, (2.13)

where vP,min is the minimum P-wave velocity as well as fmax and fpeak are the maximum
and dominant frequencies of the wavefield, respectively. On the other hand, the usage of
too big time steps ∆t causes numerical instabilities. On the analogy of spatial discretization
the time discretization with a second-order FD operator has to fulfill the so-called Courant
stability condition (Courant et al., 1928, 1967):

∆t ≤ ∆h√
2 vP,max

(in 2D) and ∆t ≤ ∆h√
3 vP,max

(in 3D), (2.14)

i.e., within one time step a maximum wavefield propagation of one grid point is allowed.

2.3.2 Residuals

As described by Tarantola (1984) or Mora (1987) (among others; see appendix C.1), the
imaging condition of FWT requires the determination of the residual wavefield. Hence, the
residuals of synthetic forward and observed data have to be computed for all source wave-
fields at all receiver locations. However, this depends on the choice of data misfit function
which has to be minimized by the inversion scheme. Within this work the misfit function
is related to the least squares norm (L2). On the one hand, its property of incorporating
amplitude and phase misfit may impair the robustness of the FWT. But, on the other hand,
the main advantage is its simple implementation (Tarantola, 1984).

The derivation of the FWT algorithm is based on the L2 misfit function (see Tarantola, 1984;
Crase et al., 1990, cp. appendix C.2):

E [ph (mh) , mh] = ‖(∆ph, ∆mh)‖2
2 = ‖∆ph‖2

2 + ‖∆mh‖2
2 , (2.15)

with the pressure data ph and the model parameter mh at iteration h as well as the general
definition of the residuals:

∆ph = ph (mh)− pobs,

∆mh = mh −mapr.

Here, pobs and mapr denote the observed data and the a priori model. In this work the
neglection of mapr simplifies the least-squares misfit definition. For an exemplary source the
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objective function E is given by:

E [ph (mh)] = ‖∆ph‖2
2 =

1
2

Nt

∑
n=1

(∆pn
h)

2 . (2.16)

The residuals are simply defined by ∆pn
h , which represent the so-called “missing diffracted

wavefield”, i. e.the data residuals computed from the difference of observed and synthetic
data represent the mismatch which is not explained by the initial or current model.

2.3.3 Back-propagation and imaging condition

For back-propagation the original receivers act as new sources and vice versa. In analogy
to forward modeling in section 2.3.1, the residual data ∆pn

h is simultaneously applied at all
original receiver locations and back-propagated (in reverse time direction) to the sources.
However, due to the symmetry of the wave equation and its FD solution with respect to
time, this method is a common forward modeling.

Using the time step selection from forward-propagation (cp. relation (3.1)) the FWT ima-
ging condition is applied to forward and residual wavefields at corresponding time steps.
This yields following model corrections for bulk modulus δκ̂(x), density δρ̂(x) and source
wavelet δq̂(x) (Tarantola, 1984) which represent the steepest ascent gradients of the FWT
optimization problem:

δκ̂(x) =
1

κ2(x) ∑
Ns

∫
t

dt ṗ(xs, xr, t) ṗ′(xs, xr, t) , (2.17a)

δρ̂(x) =
1

ρ2(x) ∑
Ns

∫
t

dt∇p(xs, xr, t) · ∇p′(xs, xr, t) , (2.17b)

δq̂(x) = ∑
Ns

p′(xs, xr, t) (2.17c)

with the coordinates of sources xs and receivers xr. The symbol “p′” denotes the back-
propagated residual wavefield. Hence, zero-lag cross-correlations of time derivatives and
spatial derivatives of the pressure wavefields give the desired model corrections for bulk
modulus and density, respectively. The back-propagated wavefield is recorded at original
source positions and is treated as correction of the source time function. The derivation of
equations (2.17) is described in appendix C.1.

2.4 Gradient computations

This section describes methods to enhance convergence and reduce ambiguity of the inverse
problem by preconditioning of the model corrections (2.17a) and (2.17b). In general, the
preconditioned gradient βββh is obtained by applying a preconditioning operator Ph to the
steepest ascent gradient gh at iteration h:

βββh = Ph gh = Ph δm̂h with respect to m(x) =
(
κκκ(x)
ρρρ(x)

)
. (2.18)
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Within the scope of this work, P = P(x) is a spatial distribution of coefficients and an
element-wise application to the gradient is performed. Possible choices are

• median filter to remove unrealistic components within the gradient, e.g., artifacts
shaped like delta functions,

• Gaussian averaging operator to apply a simple smoothness,

• band-pass filter in the wavenumber-domain based on the frequencies chosen for
filtering of wavelet and data (see 2.3.1),

• radial taper at source and receiver locations to suppress corresponding high-
amplitude artifacts due to spreading properties of the acoustic wavefield,

• wavefield-based taper using the maximum-amplitude distribution of forward- and
back-propagated wavefields (Igel et al., 1996; Fichtner et al., 2009),

• user-defined taper to suppress model corrections in areas with known parameters or
to amplify model updates.

Most of the FWT experiments in chapters 3 to 7 make use of radial and wavefield-based taper
geometries (discussed subsequently) as well as user-defined tapers. Apart from median
filters, the remaining methods are omitted in all applications. They have been found to be
less helpful due to their strong manipulation of the gradient resulting in disadvantageous
effects on the computation of the conjugate-gradient direction.

2.4.1 Taper at sources and receivers

Due to the application of source signal in forward- and residuals in back-propagation,
the gradient is dominated by high-amplitude artifacts around the acquisition geometry
related to geometrical spreading of the acoustic wavefield. In particular the source locations
are affected by this problem which prevents a suitable update of the model parameters
by exploiting useful gradient information. The artifacts can be mitigated by empirically
estimated taper functions f (rs) = f (x− xs) and f (rr) = f (x− xr) with a circular (2D) or
spherical (3D) shape. However, to avoid additional artifacts the taper geometry has to
ensure a smooth transition from tapered to the untreated regions.

The implementation of a flexible taper with radius R allows differently steep transitions.
The usage of a cosine-based power function with user-defined taper strengths at distances
r = 0 (taper center at source or receiver location) and r = R/2 gives a satisfactory result:

f (r) =
[

1
2
− 1

2
cos

(πr
R

)]a

[1− f (r=0)] + f (r=0) with r = [−R, R] , (2.19)

where

a = −
ln
[

f
(
r= R

2

)
− f (r=0)

]
− ln [1− f (r=0)]

ln 2
.
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Figure 2.2: Coefficients
of a circular or spherical
taper with radius R us-
ing a cosine-based power
function. While the coef-
ficient at the center of the
taper is fix, the plots are
shown for different coeffi-
cients at r = R
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tion. The plots are shown
for different coefficients at
the center of the taper.
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Equation (2.19) includes the condition f (r≥R) = 1, i. e., the gradient outside the taper
area is not altered. While Figure 2.2 shows exemplary taper functions with variable taper
strengths f

(
r= R

2

)
and a constant strength f (r=0), Figure 2.3 illustrates variable strengths

f (r=0) in conjunction with a constant value f
(
r= R

2

)
. Hence, user-defined parameters

f (r=0) and f
(
r= R

2

)
can be used to adjust the width and the dynamic range of the taper.

An alternative choice is an exponential function which is defined by R and f (r=0) only. It
contains a part of the Gaussian function where the decay ratio with respect to the maximum
amplitude is larger than 1/e4:

f (r) =

1− e−4 r2

R2 − e−4

1− e−4

 [1− f (r=0)] + f (r=0) with r = [−R, R] . (2.20)

Due to the condition f (r=R) = 1, there is the same behavior outside the taper area. The
exponential taper only requires one user-defined parameter f (r=0). The taper geometry is
comparable to those of the cosine-based taper with f

(
r= R

2

)
= 0.5 (Figure 2.4).

The preconditioning operator can be applied to the gradient gh+1 after summation over all
shots or to the shot-specific gradients gh+1,s. In the latter case, the preconditioning is limited
to the area around the current source s. The final preconditioning operator is given by

P =


f (rs) for |x− xs| ≤ Rs (for a single source or all sources)

f (rr) for |x− xr| ≤ Rr (for all receivers)

1 for |x− xs| > Rs and |x− xr| > Rr (remaining area)

(2.21)

with the radii of source tapers (Rs) and receiver tapers (Rr).

2.4.2 Wavefield based preconditioning

This method is intended for the mitigation of strong artificial gradient amplitudes. In
particular, they are related to source and receiver locations. In contrast to the previous
method, this method does not apply a fix radial taper geometry. Rather, it takes the wavefield
propagation into account. Thus, the resulting preconditioning operator is adjusted to the
radiation pattern of the wavefield, whose shape depends on inhomogeneity of the model
and the location of the acquisition geometry. Especially in reflection seismics, there is no
radial pattern. Hence, this preconditioning provides a better performance at the expense of
low additional computational costs.

The basic principle is to compute the spatial distribution of maximum absolute wavefield
amplitudes, i. e., at every model location the maximum amplitude is computed from the
corresponding time series of the pressure wavefield. There are several possibilities to
construct the preconditioning operator P. A possible algorithm is given by Igel et al. (1996)
and Fichtner et al. (2009). Their preconditioning operator is given by

P =
1

qf + qb
. (2.22)



Chapter 2. Methodology 21

The variables qf and qb are related to forward-propagated wavefield p(x, t) and back-
propagated wavefield p′(x, t), respectively:

qf = Cf
maxt |p| −minx (maxt |p|)

maxx (maxt |p|)−minx (maxt |p|)
, (2.23a)

qb = Cb
maxt |p′| −minx (maxt |p′|)

maxx (maxt |p′|)−minx (maxt |p′|)
. (2.23b)

The coefficients Cf and Cb are used to weight amplitudes of the wavefields p(x, t) and p′(x, t).
On the one hand, they can be chosen manually, e. g., Cf = 10 and Cb = 1 (Igel et al., 1996;
Fichtner et al., 2009). On the other hand, an automatic estimation of Cf and Cb considers
changing radiation patterns due to the altered model during the iterative inversion progress:

Cf =
maxx (maxt |p|)−minx (maxt |p|)

maxx (maxt |p′|)−minx (maxt |p′|)
, (2.24a)

Cb = 1. (2.24b)

Additionally, this work proposes another algorithm to estimate an appropriate precondi-
tioning operator. It is given by

P =
b

maxx b
with b =

1
a + Cstab ā

and a = max
t
|p| max

t

∣∣p′∣∣ . (2.25)

The auxiliary parameter ā denotes an average of a. The user-defined coefficient Cstab
stabilizes the computation of P and thus scales its strength and dynamic range. In case of
both algorithms the application of P (2.18) is an element-wise operation at iteration h and
grid location (i, j, k):

βββh|k,j,i = Pk,j,i gh|k,j,i = Pk,j,i δm̂h|k,j,i. (2.26)
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2.5 Model update

The following section summarizes the update of the acoustic parameter model. It considers
pure acoustic inversion and acoustic inversion with viscoacoustic modeling. Apart from
gradient preconditioning, additional constraints can be directly applied to the model.

2.5.1 Computation of the model update

The preceding step of the model update is the summation of all shot-specific gradients
resulting in the global gradient of the entire acquisition geometry. Depending on the
preconditioning, two possibilities can be distinguished. On the one hand, preconditioning
is applied after the summation of the steepest ascent gradients which is applicable in
case of using circular tapers. On the other hand, preconditioning is applied before the
summation, which is possible in case of circular tapers but mandatory for wavefield-based
preconditioning. An optimized gradient is then computed by the subsequent application of
the method of conjugate gradient.

Model update in the acoustic inversion

The general update of the model parameters mh at iteration h is derived in appendix C.2
and is given by

mh = mh−1 − µh gh = mh−1 − µh δm̂h (2.27)

with model corrections δm̂ and step length µ of the gradient method. However, instead of us-
ing the steepest ascent gradient g, the acoustic FWT scheme employs the conjugate-gradient
method. The computation of the conjugate gradient c requires g and the preconditioned
gradient βββ (see appendix C.2 and section 2.4). The model update can be rewritten in terms
of the acoustic parameterization m = (κκκ,ρρρ, q)T:

κκκh = κκκh−1 − µκκκ|h c
κκκ|h, (2.28a)

ρρρh = ρρρh−1 − µρρρ|h c
ρρρ|h, (2.28b)

As an exception the update of the source term is directly computed from the parameter
corrections:

qh = qh−1 − µq|h δq̂h, (2.28c)

where δq̂ represent the back-propagated residual data recorded at source locations. Apart
from the parameterization mentioned above, it is desirable to have P-wave velocity vP
instead of bulk modulus κκκ. The model update in terms of the new parameter vP is described
by Mora (1987) (see appendix C.2):

vP|h = vP|h−1 − µh diag
(

JvP|h

)
c
κκκ|h (2.29)

with the definition of the Jacobian

JvP B
∂κ

∂vP
= 2 ρ vP.



Chapter 2. Methodology 23

Model update in an acoustic inversion with viscoacoustic modeling

The following paragraph summarizes the consideration of attenuation in the inversion
scheme. The acoustic inversion with viscoacoustic modeling includes attenuation as a
passive modeling parameter. While the parameterization for modeling is m = (κκκr,ρρρ, QP, q)T,
the inversion parameters still are m = (κκκr,ρρρ, q)T.

At the first iteration, the method requires an initial model κκκ0. It is obtained from the user-
defined initial acoustic reference model vP,ref|0 by applying the model relaxation (B.6). On
the one hand, the relaxed bulk modulus is required for viscoacoustic modeling and on
the other hand, it is treated as an acoustic parameter by the inversion algorithm (equation
C.39b). However, the desired final result is the acoustic reference velocity model vP,ref|h. It is
physically meaningful and is comparable to the initial acoustic velocity model. First, one
has to obtain the relaxed velocity model from (C.44). Then, vP,ref|h is computed by revoking
the model relaxation (B.6), which can be rewritten in terms of P-wave velocity as well as
parameters ω0, ωr,l and τττP discussed in section 2.3.1.2:

vP,ref|h = vP|h

√√√√1 +
L

∑
l=1

ω2
0/ω2

r,l

1 + ω2
0/ω2

r,l
τττP. (2.30)

2.5.2 Application of constraints to the model update

Apart from preconditioning, the application of additional constraints is useful to compute
physically meaningful models or to stabilize the inversion. The inversion scheme comprises
following constraints at iteration h (exemplary for the 2D case):

• The inversion is not allowed to compute models mj,i|h which fall below a lower limit
or exceed an upper limit:

mj,i|min ≤ mj,i|h ≤ mj,i|max. (2.31)

• The initial model mini is used as a priori information. The updated model does not
exceed the maximum allowable relative distance dh|ini to the initial model:

mj,i|h −mj,i|ini

mj,i|ini
≤ dh|ini. (2.32)

• The updated model does not exceed the maximum allowable relative deviation dh|h−1
from the model of previous iteration h− 1:

mj,i|h −mj,i|h−1

mj,i|h−1
≤ dh|h−1. (2.33)
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• The inversion is forced to produce a 1D model. On the one hand, at each depth j,
the average value mj,i|h can be assigned to all lateral locations indexed by i. On the
other hand, a relative threshold value d1D (with 0 ≤ d1D ≤ 1) can be applied to tolerate
lateral deviations from the average value, i. e., it represents a transition to a 2D model:

mj,i|h =


mj|h (1 + d1D)

mj,i|h
mj|h

> 1 + d1D

mj,i|h 1− d1D ≤
mj,i|h
mj|h
≤ 1 + d1D

mj|h (1− d1D)
mj,i|h
mj|h

< 1− d1D

(2.34)

with

mj|h =
1

Nx

Nx

∑
i=1

mj,i|h.

2.5.3 Choice of parameterization

Within the scope of this thesis, I focus on the reconstruction of P-wave velocity models. This
assumption eases to answer the question of an appropriate parameterization. In general, the
desired output of imaging techniques are subsurface models containing seismic velocities
and density, i. e., the description of the perfect earth requires three (elastic approximation)
or two parameters (acoustic approximation). However, depending on the field of applica-
tion, a certain parameterization is recommended. While a theoretical consideration on this
was done by Tarantola (1986a), several authors investigated inversions including different
acoustic or elastic parameter couplings. The main conclusion is that the most reliable re-
construction of subsurface models requires a strong parameter decoupling. This applies
to the combination of impedance and seismic velocity (proposed by Kolb and Canadas
(1986) for a 1D inversion in the acoustic approximation and Assous and Collino (1990) for
the inversion of near-offset data in the elastic approximation; verified by Przebindowska
et al. for application of the acoustic FWT to multi-offset marine seismic data). Apart from
“impedance–velocity”, the parameterization with respect to impedances and density is an-
other appropriate choice, which has been found by Assous and Collino (1990) for a layered
2D medium and Köhn et al. (2012) in case of very complex 2D elastic problems explicitly
designed for parameterization studies. In contrast, the choice of Lamé parameters is subop-
timal. Although the parameterization of the acoustic approximation in this work reveals the
first Lamé parameter (see update of the bulk modulus in equation (2.28); Tarantola, 1984),
the desired P-wave velocity is directly obtained after a change of parameterization (see
equation (2.29); Mora, 1987).
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2.6 Step length optimization

In contrast to using the inverse Hessian matrix H, the simplified gradient algorithm (2.28)
requires the determination of a step length to scale the gradient.

2.6.1 Methods of step length estimation

At each iteration the estimation of the optimal step length µh is performed. It bases on Pica
(1990) and is composed of two parts: a user-defined relative factor µrel|h and a factor used to
scale the gradient to the maximum range of the model parameter. This allows a meaningful
physical unit and a proper distance of the gradient. For example, equation for the model
update (C.39b) is rewritten as

mh = mh−1 − µrel|h
max |mh|
max

∣∣gh

∣∣ gh. (2.35)

The relative factor µrel|h is approximated by a parabolic curve fitting method (compare
the line-search method with quadratic or cubic interpolation in Nocedal and Wright,
1999). An initial step length µrel,ini has to be provided at iteration h = 1. Two addi-

tional values are computed by applying a constant factor a > 1: µrel,low =
µrel,ini

a
and

µrel,low = a µrel,ini. Using
(
µrel,ini, µrel,low, µrel,high

)
, three test modelings are computed for

a representative subset of sources and a parabola is fitted to the corresponding misfits[
E(µrel,ini) , E(µrel,low) , E

(
µrel,high

)]
. The minimum of the parabola indicates the optimal

step length at iteration h, which is also used as initial value at the next iteration. In contrast
to simple step length estimations, such as using a constant value, the adaptive estimation
causes a significant and stable reduction of the data misfit function (Kurzmann et al., 2008).

2.6.2 Implementation of adaptive step length

In this work, the method of adaptive step length assumes a locally parabolic shape of the
data misfit function. However, in dependence of several circumstances, such as choice of
initial model, application data and gradient preconditioning as well as the choice of test
step lengths, the shape might satisfy or violate this assumption. In general, the data misfit
function is highly non-linear. Consequently, the implementation has to consider different
exceptions.

Figure 2.5 shows the data misfit function discussed in the context of experiment X in section
4.2. At the first iteration, it is obtained as a function of different step lengths. This misfit
function is used to demonstrate the effects of the adaptive step length estimation. The choice
of test step lengths µrel,ini, µrel,low and µrel,high yields a parabolic fit with optimal step length
µopt. It is based on a scaling factor of a = 2. Especially at the first iterations, there might
occur extensive local minima at large step lengths. However, in general, they belong to
artificially altered models. Regarding Figure 2.5, the aim is to estimate a step length µ within
the left local minimum. The right local minimum is considered to be the wrong choice.

Apart from the optimal estimation, some special cases may occur (Figures 2.6 to 2.8). Figure
2.6 shows parabolic fits for a fix initial step length µrel,ini = 0.05 and a variable factor a
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resulting in different values µrel,high and µrel,low. In all three cases the parabolic curve fitting
is able to compute a plausible step length. However, despite using a small µrel,ini, the
application of large scaling factors results in inappropriate µ estimations (Figures 2.6b,c).
Instead of using a too high step length µopt, it is useful to apply an upper limit µlimit. This
may avoid the production of artificial model updates.
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relative step length µ →
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t
E

→

 

 

(a)

misfit function

parabolic fit

µi , µl , µh, µopt

• µrel,ini=0.05, µrel,low=0.025, µrel,high=0.1, a=2

• µopt = 0.072 Ô optimum

• implementation: µ = µopt

Figure 2.5: Step length estimation: Data misfit at the first FWT iteration as a function of the
step length and application of a parabolic curve fitting to a set of test step lengths µrel,ini, µrel,low
and µrel,high (“+”) resulting in an estimation of the optimal step length µopt (“+”). The circular
markers “l” represent the data misfits corresponding to the test step lengths.

0 1

d
a
t
a
m
is
fi
t
E

→

(a)

0 1

d
a
t
a
m
is
fi
t
E

→

(b)

0 1

relative step length µ →

d
a
ta

m
is
fi
t
E

→

(c)

• µrel,ini=0.05, µrel,low=0.013, µrel,high=0.2, a=4

• µopt = 0.11 Ô sufficient

• implementation: µ = µopt

• µrel,ini=0.05, µrel,low=0.0083, µrel,high=0.3, a=6

• µopt = 0.18 Ô critical

• implementation: µ = µopt

• µrel,ini=0.05, µrel,low=0.031, µrel,high=0.8, a=16

• µopt = 0.42 Ô wrong minimum

• implementation: µ = µopt or µ = µlimit

Figure 2.6: Step length estimation: Different cases of a parabolic curve fitting using the same
initial step length µrel,ini but different test step lengths µrel,low and µrel,high.
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• implementation: µ = µopt
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• µopt = 0.44 Ô wrong minimum

• implementation: µ = µopt or µ = µlimit

• µrel,ini=0.5, µrel,low=0.25, µrel,high=1.0, a=2

• µopt = 0.42 Ô wrong minimum

• implementation: µ = µopt or µ = µlimit

Figure 2.7: Step length estimation: Different cases of a parabolic curve fitting using different
initial step lengths µrel,ini in conjunction with the same scaling factor a.

Additionally, while applying a variable µrel,ini, a is fix (see Figure 2.7), i. e., the same ratio
a =

µrel,high
µrel,ini

=
µrel,ini
µrel,low

is used for all examples. Again, only a combination of sufficiently low
test step lengths yield a proper parabolic estimation (Figure 2.7a). Interestingly, Figures
2.7b and c demonstrate the computation of comparable improper step lengths by using
completely different initial values.

Finally, there are a few exceptions which may have a negative impact on the progress of the
FWT. Figure 2.8 summarizes common cases. For example, the quadratic approximation may
be reduced to a linear function or just a constant. Consequently the “minimum” is located
at infinity or it is undefined, respectively (see Figures 2.8a and b). On account of this, the
algorithm is forced to use a very small step length. The calculation of a concave parabola is
one of the most problematic cases (Figure 2.8c). Although the test step length with lowest
corresponding data misfit represents the most intuitive choice, a small step length (or the
minimum step length) would be more useful, as indicated by Figure 2.8c. Furthermore,
the estimation of too high or negative µopt can be handled more robustly (Figures 2.8d,e).
On the one hand, the upper limit µ = µlimit is applied. On the other hand, a very small
step length can be chosen. Finally, it is possible to compute a reliable step length using
improperly high test step lengths (Figure 2.8f), which, however, may happen by accident.
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• µrel,ini=0.10, µrel,low=0.051, µrel,high=0.21, a=2.0

• µopt = −0.18 Ô critical
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)
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• µopt = 0.062 Ô critical sufficiency

• implementation: µ = µopt

Figure 2.8: Step length estimation: Common exceptional cases where the parabolic curve fitting
computes unsatisfactory step lengths.



Chapter 3

Optimizations of the FWT implementation

Most of the computational efforts of time-domain FWT account for seismic modeling. Thus,
a meaningful FWT application relies on the availability of numerous computational re-
sources with a sufficiently fast interconnection. The limited access to high-performance
supercomputers and the occasional usage of local workstation computers with a nearly un-
acceptable performance brought up the need of the optimization of the FWT implementation
with respect to efficiency. This chapter discusses the optimal combination of parallelization
methods – improving the performance of the modeling part – and recombines existing FWT
strategies mentioned in section 2.3.1 – directly affecting performance and progress of the
inversion part.

3.1 Parallelization

3.1.1 Implementation

The computational efforts of time-domain FWT are very expensive which is caused by
the finite-difference modeling. To obtain a tomographic image of the underground, the
seismic wavefields have to be computed for a certain number of sources. Each source
requires a separate simulation. To improve the performance of the modeling part, I choose
two kinds of parallel implementations: the model decomposition (hereinafter referred to
as “domain decomposition”) and the shot parallelization. Apart from that, Akcelik (2002)
comprehensively recapitulates efficient strategies of performing modeling and Virieux and
Operto (2009) give a brief overview.

Domain decomposition

In general, 2D modelings do not consume a lot of memory or computation time. However,
at every time step the entire wavefield has to be saved in memory. Additionally, low P-wave
velocities (e. g., water velocity) and high-frequency data require a small grid spacing ∆h. The
resulting larger grid size of the model causes a rapid increase of the memory consumption.
Hence, it is meaningful to divide the model into several equally sized subdomains, which
are distributed among different CPUs (domain decomposition, see Bohlen, 1998). At each

29
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Figure 3.1: Domain decomposition on a cluster computer which consists of 2 nodes with 4 cores
per node. Here the model is divided into 8 subdomains (yellow). The corresponding padding
layers are colored in red. The exchange of the wavefield (here pressure) requires intra- and
inter-node communication (arrows) using MPI.
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Figure 3.2: Shot parallelization on a cluster computer. The computer architecture is identical
to Figure 3.1. However, in contrast to Figure 3.1, the model is divided into 4 subdomains on
each node. The exchange of the wavefield at the model boundaries is reduced to intra-node
communication using MPI.
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time step the exchange of wavefield information at the inner boundaries of the subdomains
ensures an accurate wavefield propagation. The exchange requires communication among
all neighboring processing elements. This is realized by using the Message Passing Interface
(MPI, designed for distributed-memory machines) in FWT implementations developed
within the scope of this work. Due to the usage of discrete spatial operators, a padding layer
with the half size of the finite-difference operator is added at the model boundaries. In the
acoustic approximation the pressure field p has to be exchanged in all directions at all inner
boundaries. In contrast, due to first-order derivatives of the auxiliary wavefield w (used in
PML implementations or first-order viscoacoustic wave equation), it is sufficient to apply a
one-way exchange of the components of w from one subdomain to its adjacent subdomains
at the top and the left boundary.

The advantage of domain decomposition is the reduction of memory usage and computation
time per processing element. However, the unavoidable communication requires a fast
network connection. Figure 3.1 illustrates domain decomposition on a cluster computer
which consists of two quad-core computers (nodes). Especially in 2D finite-difference
simulations with small models the ratio of model size and padding layer size is very
inefficient. This results in a very fast computation of the wavefields within every domain
but requires a high rate of data exchanges which easily exceeds the capacity of the network
and slows down the entire computation.

Shot parallelization

For each source, forward modelings and back-propagations have to be computed separately.
Hence, on condition of the availability of computers (nodes) with enough random access
memory, it is meaningful to distribute shots among all available nodes (Kurzmann et al.,
2009). In case of multi-core computers, domain decomposition can be done internally. As
a consequence, a tremendous reduction of network traffic and a speedup of the modeling
algorithm can be achieved. By using the cluster computer mentioned above, Figure 3.2
shows the combination of domain decomposition and shot parallelization. The simultan-
eous computation of two shots reduces the number of cores per forward modeling and
omits network communication. In contrast to domain decomposition, the achievement of
computational improvements with increasing intensity of shot parallelization is realized at
the expense of a huge memory consumption. This represents the only limitation to this type
of parallelization. Nevertheless, this method is designed for applications on supercomputers
providing a sufficiently high amount of random access memory.

3.1.2 Benchmark of domain decomposition and shot parallelization

In the following, the parallelization methods described by previous paragraphs are com-
pared with each other. In detail, the benchmark compares a pure domain decomposition
with a combination of domain decomposition and shot parallelization. The correspond-
ing FWTs were performed on the supercomputers JUROPA at the Jülich Supercomputing
Centre and HERMIT at the High Performance Computing Center Stuttgart. Table 3.1 lists all
relevant information about the test configuration, such as modeling parameters as well as
the distribution of compute cores with respect to each parallelization type. The benchmark
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represents a speedup test, which analyzes the code performance in dependence on the
amount of computational resources, i. e., the number of cores varies from 1 to 1024.

The benchmark configuration is oriented towards the architecture of HERMIT. The suitab-
ility of all configurations is visualized by the traffic-light colors in Table 3.1, where “red”
symbolizes an inefficient combination of both parallelization techniques, “green” represents
an optimal choice and “yellow” a moderate suitability. In particular, the domain decomposi-
tion of the combined parallelization includes 32 subdomains. Since all computations use
the same configuration, this involves network communication on JUROPA. However, the
benchmarks apply the most optimal domain decomposition, which minimizes inter-node
communication. Finally, pure domain decomposition is applied to all available cores, while
the combined parallelization is limited to core numbers varying from 32 to 1024, while the
total grid size remains constant.

The evaluation of the performance is based on computing times expressed in terms of “time
per modeling” or “time per iteration”. For each computation, ten iterations were performed
to obtain reliable values. The benchmark results shown in Figure 3.3 base on the median
of the computing times. They clearly point out the communication problem with respect
to the pure domain decomposition (see Figures 3.3a,c). In particular, the computations on
HERMIT can be divided into three stages:

1. Usage of 1 to 16 cores: Although the entire computation is limited to one compute
node, the doubling of core numbers yields a fluctuating speedup within the range
from 1.2 to 3.9 (where “speedup′′ ≥ 2 is considered to be perfect and “speedup′′ = 1
represents no speedup). Apparently, this is caused by an inefficient domain decompos-
ition with respect to the arrangement of cores on the CPU sockets and corresponding
inter-core communication within a node.

2. Usage of 32 to 256 cores: Both domain decomposition and shot parallelization reveal
a satisfactory performance. While the speedup of domain decomposition decreases
from 2.4 to 1.6, the shot parallelization shows a very robust speedup (decreasing from
2.4 to 1.9). Obviously, the pure domain decomposition is characterized by a good
trade-off between model size of the subdomains and the amount of data, which has to
be exchanged via inter-node communication.

3. Usage of 512 and 1024 cores: While the comparison of 256 and 512 cores exhibits a
poor speedup of domain decomposition (1.2), there is nearly no further improvement
in case of using 1024 cores (speedup of 1.1). The amount of exchanged data bears
no relation to the model size of the subdomains. In contrast, the shot parallelization
is able to preserve the high speedups (1.8 and 1.7). In case of using 1024 cores, the
exploitation of shot parallelization reduces the computing time by 71 % in comparison
to only considering domain decomposition.

Apart from the computing times per modeling and per iteration, the performance can be
expressed in terms of modelings per time or FWT iterations per time. The correspond-
ing Figures 3.3b,d provide a more demonstrative illustration of performance differences.
While the pure domain decomposition computes up to 1.4 iterations per minute, the shot
parallelization is able to handle 4.9 iterations per minute.
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Table 3.1: Configuration of parallelization benchmarks. The 2D FWTs were performed on the
supercomputers JUROPA and HERMIT. The suitability of a certain configuration with respect to
the architecture is colored in green (“good”), yellow (“moderate”) and red (“bad”). The number
of cores for domain decomposition is given by Ncore|x and Ncore|y. Nsim shots denotes the number
of simultaneous shots in shot parallelization.
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Figure 3.3: Comparison of parallel implementations inside a 2D FWT tested on the supercom-
puters JUROPA and HERMIT. The performance of pure domain decomposition and a combina-
tion of domain decomposition with shot parallelization is shown in (a) and (b) with respect to
modelings as well as in (c) and (d) with respect to FWT iterations. The memory consumption is
illustrated by (e) and (f).



Chapter 3. Optimizations of the FWT implementation 35

However, the increase of performance by exploiting the shot parallelization is done at the
expense of the memory consumption (see Figures 3.3e,f). Here, the memory consumption
is calculated from the product of the model size (of a subdomain or of the entire model),
number of wavefield snapshots required in cross-correlation and the number of simultan-
eously computed sources. On the one hand, in case of domain decomposition the memory
consumption per compute core continually decreases with increasing number of cores. The
total memory amounts to a constant value. On the other hand, in case of shot parallel-
ization the memory consumption per core is constant but scales with increasing number
of simultaneous sources. For this benchmark, the total memory consumption rises up to
250 GiB.

Furthermore, there is a good qualitative match between the benchmark results for JUROPA
and HERMIT. Although JUROPA shows a better absolute performance, the application of
a corrective factor with respect to the ratio of clock speeds, 2.93 GHz

2.3 GHz = 1.27, gives a partial
explanation of the performance deviations between both supercomputers.

Apart from the benchmark discussed above, the performance can also be investigated in
dependence on the model size. The bigger the entire model, the lower the ratio
total size of areas to be exchanged

“total model size′′ and the better the performance. Based on domain decomposi-
tions listed in Table 3.1, this ratio is illustrated for five different model sizes ranging from
256× 256 to 4096× 4096. As expected, the largest model reveals the best trade-off of model
size and exchange area (see Figure 3.4a for pure domain decomposition and Figure 3.4b for
shot parallelization). In contrast, in the combination of pure domain decomposition with
the smallest model, approximately 48 % of the model area account for exchange areas. In
this case an extensive domain decomposition does not make any sense. Not only intra-node
communication but also inter-node communication increase significantly.
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Figure 3.4: Relative amount of pressure-wavefield data which has to be exchanged in case of
pure domain decomposition (a) and a combination with shot parallelization (b). The plots are
related to 2D acoustic modeling using second-order spatial finite-difference operators. The
relative exchange area represents the ratio of absolute exchange area to the total model size. The
ratios are computed for different model sizes (color-coded).
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3.2 Improvement of code efficiency

3.2.1 Memory consumption

Due to the implementation of shot parallelization, the memory consumption of time-domain
FWT is of particular interest (see Figure 3.3f in previous section). In time-domain FWT most
of the memory is required for the storage of forward-propagated wavefields. Hence, the
following considerations are limited to this problem and omit other issues, such as storage
of seismic data.

On the one hand, the finite-difference scheme prescribes the discretization in time and space
which is defined by the stability and grid-dispersion criteria (see section 2.3.1.3). On the
other hand, the corresponding time step ∆t and grid spacing ∆h do not have to match the
requirements of FWT. In particular, this affects the choice of wavefield snapshots for the
imaging condition and the spatial resolution:

• It is not necessary to store wavefield snapshots at all time steps. Based on the maximum
frequency fmax of the propagating waveforms, a very strict Nyquist criterion can be
employed to compute a new sampling interval

∆tsamp ≤
1

8 fmax
, ∆tsamp

!

≥∆t. (3.1)

Consequently, it is sufficient to use a subset of time steps allowing a reasonable memory
consumption.

• The desired resolution of the model might be coarser than the spatial discretization
of the finite-difference model. For example, the forward-propagated wavefield is
stored in memory at every i-th grid point in all spatial directions – revealing a new
spacing ∆hsamp = i ∆h. The imaging condition is then applied to every i2-th (2D)
or i3-th (3D) grid point yielding a “down-scaled” model as the desired output. For
subsequent modelings the model is scaled up using a trilinear interpolation to fulfill
the requirements of the finite-difference scheme. This method results in a tremendous
reduction of memory consumption.

Table 3.2 summarizes the memory consumption of an exemplary 3D FWT which either
omits any optimization of the wavefield storage or involves the reduction techniques to
allow a tolerable memory consumption. Although this example represents a small-scale
problem, the usage of the finite-difference discretization ∆t and ∆h causes an excessive
memory consumption. This clarifies that the application of such a FWT to a large-scale
problem easily exhausts the available resources. The exploitation of the strategies mentioned
above is able to reduce the memory consumption by several orders of magnitude.

Due to the availability of present-day supercomputers, a pure time-domain 3D FWT becomes
feasible. Chapter 7 shows an application of 3D FWT to two small-scaled problems. This
method might become an alternative to strategies, such as the single-frequency method
(Sirgue et al., 2008) or pure frequency-domain implementations. In particular, 3D modeling
in the frequency domain is highly demanding. However, recent works, such as Sourbier
et al. (2009a,b) show remarkable improvements of parallel implementations in the frequency
domain.
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Table 3.2: Resource requirements for an exemplary 3D FWT using different methods of reducing
the memory consumption: (A) storage of wavefield snapshots at all time steps and grid points,
(B) snapshot storage for a subset of time steps at all grid points, (C) storage at all time steps and
for a subset of grid points (every second grid point in each spatial direction), (D) storage for
subsets of time steps and grid points.

General parameters

Model size 560× 240× 240 grid points (=̂ 123 MiB)

Modeling

• 24 sources: peak frequency fpeak=9 Hz ( fmax≈20 Hz)

parameters

• propagation time: T = 5.6 s

• ∆t = 1.4 · 10−3 s (Nt = 4000 time steps), ∆h = 10 m

• domain decomposition: 8×4×4

• shot parallelization: all sources simultaneously

• total number of cores: 3072

Computational requirements for storage of wavefield snapshots

Method A B C D

Discretization: ∆tsamp 1.4 · 10−3 s 1.25 · 10−2 s 1.4 · 10−3 s 1.25 · 10−2 s

Number of snapshots 4000 438 4000 438

Discretization: ∆hsamp 10 m 10 m 20 m 20 m

Grid size per core 70× 60× 60 70× 60× 60 35× 30× 30 35× 30× 30

Memory consumption per core 3.76 GiB 421 MiB 481 MiB 52.6 MiB

Overall memory consumption 11.3 TiB 1.23 TiB 1.41 TiB 158 GiB

3.2.2 Inversion workflow

Usually, FWT applications include well-known strategies to reduce the non-linearity of the
inverse problem, such as frequency filtering over multiple stages (e. g., Bunks et al., 1995;
Sirgue and Pratt, 2004) or the so-called “layer-stripping” effect (which is a gradual model
recovery with increasing depth caused by application of data windowing; discussed by
Shipp and Singh, 2002; Wang and Rao, 2009), within a pure time-domain FWT or the single-
frequency method (shown in Figure 2.1). A detailed investigation of these methods can be
found in chapter 4. Basically, each stage would require a separate FWT application to obtain
intermediate vP models, which are used as input for the successive stage. The workflow
avoids this problem by allowing a sophisticated serial execution of these FWT runs within
the framework of one FWT. Virieux and Operto (2009) give a brief overview of existing work,
mentioning the “multiloop FWI workflow” revived in this chapter. Exemplary applications
of multi-stage inversions are shown by Shin and Cha (2009) or Brossier et al. (2009). The
workflow proves to be useful in case of very ill-posed problems, where the neglection of the
abovementioned strategies results in a failure.



38 3.2. Inversion workflow

Apart from the features mentioned above, this work proposes a workflow implementation
providing a variety of user-defined settings, such as the choice of a stop criterion for an
automatic shifting between workflow stages or the possibility to switch between time-
domain FWT and single-frequency method. An exemplary workflow input of the current
FWT implementation is illustrated in Figure 3.5. The workflow may consist of an arbitrary
number of stages represented by one input line. Every column is defined as follows:

• Column 1: This value sets the mandatory number of iterations per stage.

• Column 2: After completion of the mandatory iterations, additional iterations might
be applied until the data misfit converges. If the stop criterion is fulfilled then the
FWT continues with the next stage. The stop criterion is the relative misfit deviation
between successive iterations. If the value is set to 0.0 then the FWT is restricted to the
mandatory iterations.

• Column 3: This switch allows the application of a pure time-domain FWT (1) or the
single-frequency method (2).

• Column 4: In case of a multi-parameter FWT this switch defines the parameter which
is subject to the inversion, e. g., P-wave velocity (1), density (2), source-time function
(3). This is a rudimentary implementation. Further improvements, such as parameter
combinations, are necessary.

• Column 5: Data windowing is enabled (1) or disabled (0) by this switch. If it is enabled
the following four columns are evaluated.

• Columns 6 to 9: Columns 6 and 7 define time windowing using a constant window
for all offsets (begin end end of the time window in seconds). The offset window is
analogously defined by columns 8 and 9.

• Column 10: This switch enables (1) or disables (0) frequency filtering of the recorded
data or the source-time function. If it is enabled the following four columns are
evaluated.

• Columns 11 to 14: Frequency filtering using a band-pass requires the specification of
four corner frequencies.

• Column 15: This value is evaluated in case of applying the single-frequency method.
Due to the possibility of a simultaneous inversion for an arbitrary number of frequen-
cies, this column defines the corresponding number.

• Columns 16+: This is the list of frequencies required for the single-frequency method.

In the following, the workflow implementation is demonstrated using the example of a
reflection experiment which involves the Marmousi model illustrated in Figure 3.6a. This
model and all corresponding specifications are described in chapter 6. The workflow
demonstration bases on the same configuration (see Table 6.3). However, the following case
study aims to use the Marmousi experiment as a pure test problem rather than an systematic
investigation of physical issues.
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Figure 3.5: Exemplary content of a
workflow input file used in the 2D
and 3D acoustic FWT implementa-
tion. Each line represents an inver-
sion stage. For a better recognizab-
ility the workflow is divided into
five blocks. The first block applies
different numbers of mandatory it-
erations (column 1). The stop cri-
terion is set to a relative deviation of
3 % between successive iterations
(column 2). A pure time-domain
FWT (column 3) inverts for vP only
(column 4). Data windowing is
partly enabled (column 5). Differ-
ent time windows (in seconds) are
taken into account (columns 6 and
7). Offset windowing is disabled
(columns 8 and 9). Frequency filter-
ing is enabled (column 10) and uses
the band-pass frequencies (in Hz) in
columns 11 to 14. Due to the pure
time-domain FWT, columns 15+ are
not required. While the first block
focuses on time windowing and fil-
tering, the remaining blocks have
different tasks. The second block in-
volves a broader frequency range.
The third block deals with offset
windowing (values are specified in
meters) and filtering. The fourth
block applies the single-frequency
method (column 3) by using differ-
ent number of frequencies (columns
15 and 16+). The last block dis-
ables all data computations and
completes the FWT after exactly 20
additional iterations.
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In contrast to section 6.2.2, a very simple initial model is used. It consists of a known water
layer on top and a homogeneous half-space with vP = 3000 m

s (Figure 3.6b). Consequently,
it reveals a huge model error of 25.2 % (computed by relation 6.1a). The corresponding
recorded data and synthetic data obtained for the initial model significantly differ from each
other (compare Figures 3.6a 3.6b with exemplary data for a shot located at x = 2.555 km).
Due to the high initial velocity, the initial data is characterized by notable refraction events
which do not exist in the recorded data as well as strong seafloor reflections.

Numerous possibilities of workflow schemes are considered. The following pure time-
domain applications clearly show its impact on the resulting vP model. While a simple
scheme performs a plain inversion, the remaining tests involve more or less complex
combinations of strategies to mitigate the ambiguity of the inverse problem:

(A) The first example is a plain FWT consisting of one stage:

• FWT is forced to perform 80 mandatory iterations,

• stop criterion: 1 %,

• neither data windowing nor filtering are applied.

(B) The second example involves time windowing over four stages:

• FWT is forced to perform 20 mandatory iterations per stage,

• stop criterion: 1 %,

• application of four time windows ranging from time t = 0 s to the maximum time
tmax =(1.75, 2.55, 3.55, 5.15) s.

(C) The third example involves offset windowing over four stages:

• FWT is forced to perform 20 mandatory iterations per stage,

• stop criterion: 1 %,

• application of four offset windows ranging from minimum offsets (5.0, 3.5, 2.0,
0.0) km to full streamer length.

(D) The fourth example involves time windowing and filtering over 16 stages divided into
four blocks:

• FWT is forced to perform 5 mandatory iterations per stage,

• stop criterion: 1 %,

• application of four time windows ranging from time t = 0 s to the maximum time
tmax =(1.75, 2.55, 3.55, 5.15) s,

• for each time window the FWT inverts for four different frequency ranges res-
ulting in peak frequencies fpeak = (1.7, 2.9, 4.4, 9.0) Hz, where fpeak = 9.0 Hz rep-
resents the peak frequency of the unfiltered recorded data.
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(E) The fifth example is similar to example “D” but with permuted order of time window-
ing and filtering:

• application of four frequency ranges,

• for each frequency range the FWT applies a sequential time windowing with
peak frequencies and time windows mentioned above.

(F) The sixth example resembles example “E” but with offset windowing instead of time
windowing:

• application of four frequency ranges,

• for each frequency range a sequential offset windowing with windows ranging
from minimum offsets (5.0, 3.5, 2.0, 0.0) km to full streamer length is applied.

While the plain FWT in example “A” is completely unable to recover the desired vP model
(Figure 3.7a), the exclusive applications of time windowing (example “B”) or offset window-
ing (example “C”) do not significantly improve the result (Figure 3.7b,c). The model errors
are imperceptibly reduced to 23.3 % (“A”), 19.4 % (“B”) and 24.4 % (“C”) and there is still a
remarkable misfit between recorded data and final synthetic data.

However, the more complex strategies provided by examples “D”, “E” and “F” produce
satisfactory reconstructions of the vP model. Figures 3.8, 3.9 and 3.10 illustrate the corres-
ponding FWT progresses by showing vP models and synthetic data at selected intermediate
workflow stages. In all cases the last stage represents the final FWT result. Different com-
binations of frequency filtering and time windowing (“D” and “E”) yield the most robust
inversion progresses. The model errors decrease down to 5.51 % (example “D”, Figure
3.8) and 6.32 % (example “E”, Figure 3.9), respectively. Although example “F” sufficiently
recovers the desired vP model, it reveals a quite unstable inversion progress by involving
offset windowing (Figure 3.10). In particular, the early stages produce artificial interme-
diate results. Apparantly, the application of frequency filtering is able to compensate that
disadvantageous effect. The final model error amounts to 5.73 %.

Apparently, offset windowing has to be handled with care to mitigate the ill-posedness of the
inverse problem using a very poor initial model. However, depending on the application,
time windowing is considered to be useful. For example, Shipp and Singh (2002) and
Wang and Rao (2009) applied both time windowing and offset windowing to achieve the
“layer-stripping” effect. In contrast, the most remarkable improvements are achieved by
frequency filtering. This is also found by other authors, such as Sirgue (2006), who discusses
the importance of inverting for low frequencies within the scope of the so-called multi-scale
FWT.

The FWT applications in following chapters take advantage of the frequency-filtering
method within the scope of the workflow implementation. In particular, the FWT parameter
study in chapter 4 carries out detailed investigations on windowing and filtering.
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Figure 3.6: (a) shows the true vP model (left), while (b) illustrates the initial vP model for FWT.
The right plots represent the corresponding recorded data (a) and initial synthetic data (b) for
an exemplary shot located at x = 2.555 km. The data are individually normalized and clipped.
Thus, amplitudes are not comparable.
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Figure 3.7: Inverted vP models (left) and corresponding final synthetic data (right) for the
workflow examples “A” (a), “B” (b) and “C” (c). The seismograms are obtained for an exemplary
shot located at x = 2.555 km and are individually normalized and clipped. Thus, amplitudes are
not comparable.
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Figure 3.8: FWT progress of example “D” with vP results (left) at the end of exemplary stages us-
ing time windowing and frequency filtering. Due to normalization and clipping, corresponding
synthetic data (right, shot 9 at x≈2.6 km) are not comparable. Stage 16 is the final result.
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Figure 3.9: FWT progress of example “E” with vP results (left) at the end of exemplary stages us-
ing frequency filtering and time windowing. Due to normalization and clipping, corresponding
synthetic data (right, shot 9 at x≈2.6 km) are not comparable. Stage 16 is the final result.
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Figure 3.10: FWT progress of example “F” with vP results (left) at the end of exemplary stages us-
ing frequency filtering and offset windowing. Due to normalization and clipping, corresponding
synthetic data (right, shot 9 at x≈2.6 km) are not comparable. Stage 16 is the final result.
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3.3 Summary

Parallelization

Although computing power of cluster computers increases continuously, the overall per-
formance is still limited to the speed of network-based communication. In time-domain
FWT, most of the computing time is required for seismic forward modeling. Especially
the 2D FWT applying a pure domain decomposition can not benefit from extensive com-
puting resources. Due to a bad trade-off between model size and model area involved in
communication, this parallelization method might be inefficient. However, parallelization
can exploit the fact that FWT requires the modeling of more than one source per iteration.
Hence, the domain decomposition is combined with shot parallelization to reduce or to omit
inter-node communication. I tested both parallelization methods on the supercomputers
HERMIT and JUROPA. Especially in case of using a high number of computational cores,
the shot parallelization gains advantage over a pure domain decomposition. The shot
parallelization allows a nearly linear scaling, while the pure domain decomposition yields a
less significant performance improvement. Thus, I recommend an optimal combination of
hardware architecture and both parallelization techniques to obtain the best performance.
In the course of this thesis, all 2D applications involve a combined parallelization, where
domain decomposition is limited to the CPU cores of one compute node.

Memory consumption

The usage of shot parallelization comes along with a high memory consumption, which is
related to the storage of forward-propagated wavefield snapshots required for the imaging
condition of FWT. In particular, 3D applications might become very expensive. However, it
is not necessary to store wavefields with respect to the finite-difference discretization. On
the one hand, the exploitation of the Nyquist criterion results in a coarser sampling of spatial
snapshots with respect to time. On the other hand, the desired spatial discretization might
be larger than the finite-difference grid spacing. Thus, the wavefield storage can be reduced
to a subset of all finite-difference time steps and grid points. Consequently, the combination
of paring down communication to the minimum by employing shot parallelization and the
reduction of memory consumption is feasible in 2D and 3D applications – representing a
very efficient time-domain FWT implementation.

Workflow

Finally, the usage of a workflow simplifies the handling of the FWT and avoids to carry out
numerous single inversion runs. In general, the ill-posedness of inverse problems has to be
mitigated by applying multi-stage approaches. The workflow allows a sequential execution
of an arbitrary number of those stages involving data windowing or frequency filtering,
among others. Concluding, the workflow simply reduces the amount of “manual work”
and is thus extensively used in the following application chapters 4, 5, 6 and 7.



Chapter 4

Application 1: Parameter study

The aim of this chapter is the recapitulation of FWT theory described in chapter 2. Using a
synthetic subsurface model with a cross-well geometry, it investigates the effect of following
aspects on FWT:

• choice of initial model,

• data regularizations (hereinafter referred to as “data computations”): frequency filter-
ing, time windowing, offset windowing,

• gradient computations: taper at source and receiver locations as well as wavefield-
based and user-defined preconditioning,

• step length estimation,

• different acquisition geometries, i. e., varying number of sources within the transmis-
sion configuration or applying a reflection geometry.

Furthermore, the following constraints are applied to avoid unwanted side effects:

• inversion for vP only,

• neglection of density,

• known source-time function.

This investigation employs a combination of conventional FWT and a brute-force search,
i. e., inversions are performed for numerous initial models. Hereinafter, it is referred to as
“multiple FWT”. Therefore, this case study analyses the impact of the methods mentioned
above on data and model misfit. On the one hand, the aim is to examine the effect of every
single feature with omission of the remaining features. On the other hand, the final FWT
tests summarize optimal parameter combinations.

47
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4.1 Basic setup

4.1.1 General parameters

A comprehensive overview of the general setup, including acquisition geometry as well as
general parameters for finite-difference modeling and inversion, can be found in Table 4.1.
The following paragraphs give detailed information.

The true vP model consists of a random medium with a circular inclusion (see Figure 4.1a).
The choice of this model accounts for the requirements of corresponding experimental
setups. The random background medium contains small-scale and large-scale structures
with respect to the occurring wavelengths. The model represents a mixture of soft and
hard rocks and less soft rocks. Additionally, there is a circular anomaly filled with water
(vP = 1500 m

s ).

Within the scope of the inversion experiments, three different types of initial models are
used (see Figures 4.1b to d). In dependence of the experimental aims, they contain a correct
anomaly, no anomaly or a wrong assumption of its location. The models in Figures 4.1b to
4.1d are based on the central background velocity vP = 2200 m

s representing an exemplary
case. The experiments discussed in section 4.2 carry out investigations on a wider range of
initial background velocities.
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Figure 4.1: Application 1: (a) shows the true vP model. (b), (c) and (d) illustrate the initial models
A, B and C using an exemplary background velocity vP = 2200 m

s .
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Figure 4.2: Application 1: Acquisition geometries. (a) shows the transmission geometry used
in experiments I-IV, VI, VII/1, VII/2, VIII, IX and X. In contains 16 sources numbered from
top to bottom. (b) shows the transmission geometry with variable number of sources used in
experiment V/1. All sources are located at lateral location x = 9 m. (c) shows the reflection
geometry required by experiments V/2, VII/3 and VII/4. All geometries contain 159 receivers.
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Figure 4.3: Application 1: (a) shows the source time functions used in the FWT experiments.
Based on the Ricker wavelet (blue), two additional wavelets are computed by low-pass fil-
tering. Due to visualization reasons, amplitudes are normalized individually. (b) illustrates
corresponding amplitude spectra which are normalized individually.

The experiments apply several acquisition geometries. On the one hand, sources and
receivers are located in two vertical boreholes forming a transmission acquisition geometry.
On the other hand, they are arranged in one borehole forming a reflection geometry. The
transmission configuration with 16 sources represents the usual choice (Figure 4.2a). Apart
from that, some experiments focus on the influence of the acquisition geometry. Therefore,
several transmission configurations with source numbers varying from 1 to 64 are used
(Figure 4.2b). Furthermore, the source locations of the reflection geometry in Figure 4.2c and
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the “standard” geometry in Figure 4.2a are identical. In all cases the receiver array consists
of 159 hydrophones. Further details are listed in Table 4.1.

For all experiments, FD modelings use the Ricker wavelet with the peak frequency fpeak =
200 Hz as source time function (Figure 4.3a) to generate the observed data. Some experiments
require frequency filtering. Hence, based on the wavelet containing the full frequency
content, two additional low-pass filtered signals with fpeak = 18 Hz and fpeak = 95 Hz are
computed (compare Figures 4.3a and b). Apart from a few weak side lobes in amplitude
spectra, they resemble the characteristics of the original Ricker wavelet. Furthermore, all
source signals are shifted in time by 0.05 seconds to ensure causal wavelets in case of
low-pass filtering.

Using the “standard” acquisition geometry (Figure 4.2a), observed pressure seismograms
are depicted in Figure 4.4. One can see the data for the uppermost, central and bottommost
shot locations. Due to the transmission geometry, the seismograms mainly contain the direct
wave and diffraction events caused by the circular anomaly in Figure 4.1.
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Figure 4.4: Application 1: Exemplary observed seismograms for the true model as well as shots
1 (located at z = 10.5 m), 9 (z = 50.5 m) and 16 (z = 85.5 m) of the acquisition geometry shown
in Figure 4.2a.

4.1.2 Configuration of all tests

In total, ten experiments have been performed to investigate the aspects mentioned above.
The compilation and setup of all tests can be found in Tables 4.2 to 4.4 and in Table D.1 in
appendix D.1. Each test deals with a different aspect highlighted in green. The case study is
divided into three parts grouping experiments I to V, VI to IX and X.
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Table 4.1: Application 1: General setup for all experiments.

Application 1: Parameter study

Attributes Specifications

Model

Size width: 64 m, height: 96 m

Structure

Figure Figure 4.1

Location full-space, borehole

Configurations

Sources

Receivers

Offsets

Figure Figure 4.2

Domain time domain

Model size

PML boundary width: 8 m (at all model boundaries)

Initial models

Figure 4.2

Domain imaging condition in the time domain

random
background
medium

·  average v
P
 = 2200 m/s

·  maximum range: v
P
 = [1600, 2800] m/s

·  standard deviation σ = 0.1
·  correlation length: 16 m
·  exponential autocorrelation function

circular
anomaly

·  v
P
 = 1500 m/s (water)

·  diameter: 17.5 m

Acquisition
geometry

·  T = transmission geometry (cross-hole)
·  R = reflection geometry (1 borehole)

·  explosive sources
·  source-time function: Ricker wavelet
·  peak frequency: 200 Hz
·  time delay of source signal: 0.05 s

·  159 hydrophones
·  recording length: 0.14 s

·  T: minimum: 46 m, maximum: 90 m
·  R: minimum: 0.25 m, maximum: 77 m

Parameters
for FD-

modeling

·  width: 256 grid points, height: 384 grid points
·  grid spacing: 0.25 m

Propagation
time

·  3500 time steps
·  time discretization: 4·10-5 s

General
inversion

parameters

background
medium

homogeneous:
v

P
 = (1430, 1461, ..., 2939, 2970] m/s

circular
anomaly

·  A: correct anomaly
·  B: without anomaly
·  C: anomaly at wrong location
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Table 4.2: Application 1: Basic setup of FWT parameters. “A”, “B”, “C”, “T” and “R” refer to
terms given by Table 4.1.
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Table 4.3: Application 1: Detailed setup of all FWT experiments (part 1).
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Table 4.4: Application 1: Detailed setup of all FWT experiments (part 2).
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Experiment I represents the reference test. It comprises a basic FWT without the application
of any features. Experiments II to V investigate the impact of attributes, such as data
computations (II), gradient computations (III), methods directly affecting the model update
(IV) as well as the acquisition geometry (V). Basically, each study focuses on a single attribute
(see Table 4.3), while all other parameters remain unchanged.

Furthermore, experiments VI to IX involve selected parameter combinations. On the one
hand, the aim is to obtain the most optimal inversion results (VI, VII/2, VIII/2). On the other
hand, the influence of initial velocity models B and C (VII/1, VIII/1) is analyzed. In case of
experiment VII, selected experiments (I, VI/1 and V/2) are repeated in conjunction with
initial model B. Experiment IX demonstrates the failure of FWT caused by wrong model
assumptions. The last experiment (X) represents a pure brute-force search, which scans the
data misfit function for several initial models and step lengths.

In detail, Table 4.2 summarizes general information about the experiment, such as its aim
and the initial background model (see Table 4.1). In particular, Tables 4.3 and 4.4 provide
a list of FWT parameters, such as data and gradient computations as well as step length
estimation and model-update constraints. A computational summary of all experiments can
be found in Table D.1.

In general, the multiple FWTs are applied to 51 equidistantly spaced initial vP background
models. They range from 1430 to 2970 m

s with the “central” model at 2200 m
s which is the

average of the random background medium. For each model, complete FWTs are performed
resulting in 51 different inversion results as well as evolutions of data and model error.

Experiment X represents a special case. Instead of performing the iterative inversion scheme,
the misfit function is scanned at the first iteration. For this purpose, the brute-force search
varies both the initial background model (as mentioned in the previous paragraph) and the
step lengths (1001 values ranging from 0 to 1000 %).

Apart from the multiple FWT experiment IV/1, another exceptional case is represented by
experiments IV/2 to IV/4. They consists of conventional FWTs using one initial background
model and perform 100 iterations to investigate different step-length strategies.

4.2 Results of FWT experiments

This section presents and discusses the results of all FWT experiments. The discussion is
associated with Figures containing the key information. Additional illustrations can be
found in appendix D.2.

Quantification of errors

The performance of all tests is quantified by the calculation of data misfits εdata and model
errors εmodel. They are computed with respect to the true model vP|true and to the observed
data pobs. Due to the usage of the least-squares norm in the FWT algorithm, the data misfits
are expressed as normalized squared L2 norms, whereas the model errors are normalized L1
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norms to demonstrate the relative percentage deviation between models:

εdata B ε(ph) =
‖ph − pobs‖2

2

‖pobs‖2
2

cgeo (data misfit), (4.1a)

εmodel B ε
(

vP|h

)
=

∥∥∥vP|h − vP|true

∥∥∥
1∥∥∥vP|true

∥∥∥
1

(model error), (4.1b)

where ph denotes the synthetic data for the intermediate model vP|h at iteration h. The
division by data norm ‖pobs‖2

2 accounts for content-related changes in the data, such as
offset windowing, time windowing or frequency filtering. These methods are applied to
both synthetic data and observed data. In case of using acquisition geometries deviating
from experiment I, i. e., usage of different number of sources, the data misfit is corrected by
the factor cgeo = Ns

16 .

Illustration of multiple-FWT results

To accentuate the results of both multiple FWTs in experiments I to IX, figure compounds
with relevant plots are added to subsequent sections 4.2.1 to 4.2.9 as well as to appendix D.2.
A figure compound, such as Figure 4.5, is divided into three parts:

• The top row shows exemplary initial models selected from all 51 initial background
velocities. All of them are numbered as follows: 1 (vP = 1430 m

s ), 2 (vP = 1461 m
s ),

. . . , 26 (vP = 2200 m
s ), . . . , 50 (vP = 2939 m

s ), 51 (vP = 2970 m
s ).

• The progress of the inversion is depicted in the middle part. In general, it contains
the evolution of the data misfit function and the corresponding model error for all
51 initial models. For each type of initial models (A, B or C), the data misfits are
normalized to the maximum among all 51 test computations of the respective reference
FWT (experiments I, VII/1 or VIII/1). Hence, in case of “A” experiments I, II, III, IV/1,
V/1 and VI are comparable. Due to a completely different acquisition geometry, the
data misfit of experiment V/2 is normalized to its own maximum. Furthermore, in
case of “B” all experiments VII and in case of “C” experiments VIII as well as IX are
comparable.
The FWT progress that belongs to exemplary initial models (shown in the top row)
is highlighted by dashed lines. Occasionally, this part features an additional plot
showing the evolution of the step length.

• The bottom row illustrates the inversion result after a certain number of iterations.
The inverted models belong to their counterparts in the top row.

For all experiments, the inverted vP model with the lowest model error and its correspond-
ing initial model are highlighted by a green frame. Furthermore, in experiments I to VI
most of the tests are illustrated and described using a particular model featuring a initial
background velocity of vP = 2138 m

s (model 24 ), which is a crucial choice to demonstrate
several methodological effects. A red frame is used to highlight this exemplary test case.
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4.2.1 Experiment I: Basic FWT

Experiment I represents the reference FWT consisting of a basic inversion configuration
without application of any features improving the performance of the FWT. The test setup
comprises the initial model type A (Figure 4.1b) and the transmission geometry (Figure
4.2b). Figure 4.5 illustrates the results of the multiple FWT. The initial models 19 , 24 , 28 , 30 ,
32 and 39 with background velocities vP = (1984, 2138, 2262, 2323, 2385, 2600) m

s are utilized
to demonstrate the problems of such a plain inversion.

Obviously, there is a very small range of initial background velocities (hereinafter referred
to as “model window”) allowing a successful inversion. Especially between initial models
24 (vP = 2138 m

s ) and 25 (vP = 2169 m
s ) both the data misfit function and the model errors

exhibit a high-contrast transition. Figure D.1 provides a different selection of initial models
to focus on that sharp transition area. In case of model 24 a slightly decreasing data misfit is
opposed to a slightly increasing model error, i. e., the reduction of the data misfit does not
improve the velocity model. The FWT might got stuck in a local minimum of the objective
function. Starting with the initial data (Figure 4.6b), the inversion obtained the final data
(Figure 4.6c) which does not fit the observed data (Figure 4.6a) very well. Especially the
artificial recovery of the lower model areas cause a significantly high final residual data
(Figure 4.6d). In contrast, the usage of model 25 yields a tremendous reduction of both data
misfit and model error.

The occurrence of the clearly delimited “model window” – ranging from model 25 to 31 – is
caused by the cycle-skipping effect (e. g., Ravaut et al., 2004). Figure 4.7 shows exemplary
traces for shot number 16 (see Figure 4.4) and demonstrates the offset dependency of
this issue. Especially at the largest offset (Figures 4.7a,b) the data are characterized by a
significant phase shift. While the data with respect to initial models 24 and 32 is shifted
by approximately half a cycle, the data for initial models 19 and 39 exhibit a phase shift of
nearly one cycle (Figure 4.7a). In case of the half-cycle shift, the data of the inversion result
shows a notable similarity of observed and synthetic direct wave. Some later events already
exhibit more or less remarkable phase shifts. In contrast, in case of the nearest offset (Figures
4.7c,d) the initial data is characterized by much smaller phase shifts. Hence, the FWT with
small offsets seems to be less ill-posed. Apart from initial models 19 and 24 , the choice of
the remaining cases results in a satisfactory fit of observed and final synthetic data (Figure
4.7d). In particular, the FWT using model 19 tries to fit the wrong minimum phase, i. e., it
gets stuck in a local minimum of the data misfit function due to the cycle-skipping effect.
Additionally, in this case the FWT with higher initial velocities, such as model 39 , is less
sensitive to phase distortions. On the one hand, the good fit of small-offset data causes a
partially sufficient recovery of the vP model (see final results 24 and 32 in Figure 4.5). On the
other hand, the bad data misfit is obtained by generating significant artifacts.

The preceding observation exactly coincides with a condition proposed by Beydoun and
Tarantola (1988). According to them, the initial model may cause a time shift of up to half a
cycle. Otherwise, the FWT ends up in a local minimum. Additional to that time-domain
condition, a frequency-domain FWT requires an analogous formulation (Pratt et al., 2008).

Furthermore, experiment I illustrates the problem of choosing an optimal initial vP model.
A reasonable strategy is to find the initial model providing the minimum initial data misfit.
A search method, such as a bisection algorithm, can be used to reduce the number of models
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Figure 4.5: Application 1, experiment I: selected initial models (top, with model ID X ) and
corresponding vP results (bottom) as well as the progress of the reference FWT for all 51 initial
background models (central part). The upper plot shows the data misfit normalized to the
maximum value of all tests. The lower plot illustrates the model error. The extreme values are:
(max εdata, min εdata) =

(
1.0, 6.7 · 10−4) and (max εmodel, min εmodel) = (38, 3.8) %. The red

frame indicates the initial model 24 used to demonstrate the outcome of the experiments. The
green frame highlights the best model reconstruction.
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Figure 4.6: Application 1, experiment I: (a) to (d) illustrate seismograms for the central shot 9:
observed data (a), the synthetic data for the initial model (b), the final synthetic data (c) and the
residuals (d). (e) shows the final inversion result.
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Figure 4.7: Application 1, experiment I: Exemplary data for the deepest source location at
z = 85.5 m (shot 16) as well as different initial models 19 , 24 , 28 , 32 and 39 . In each plot all traces
are normalized with respect to the maximum of the observed data. The upper row shows the
data for the largest offset. The lower row depicts the data for the smallest offset. While the left
figure column shows the initial data, the right column represents the inversion result.
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to be tested. The “optimal” choice of an initial model is defined by the minimum initial
data misfit which does not necessarily match the minimum initial model error. In case
of experiment I model 34 (vP = 2446 m

s ) represents such an “optimal” choice. However,
the progress of the inversion gets stuck in a local minimum resulting in an artificially
reconstructed vP model.

The application of all FWTs reveals that both the minimum data misfit and the minimum
model error are obtained for model 30 (vP = 2323 m

s ). The usage of model 34 causes a
data-misfit reduction of less than one order of magnitude. In contrast, the usage of model 30

yields a misfit reduction of more than two orders of magnitude. This observation is verified
by the changes of model errors between initial and final model. In case of model 34 the
model errors increases from 7.6 % to 9.5 %! In contrast, the usage of model 30 shows a
remarkable reduction from 7.3 % to 3.8 % – representing the best inversion result of all 51
tests.

4.2.2 Experiment II: Data computations

Experiment II investigates the influence of different data-selection methods applied during
the FWT. In the following, offset windowing, time windowing and frequency filtering are
discussed.

Experiment II/1: Offset and time windowing

As mentioned in previous section 4.2.1, the consideration of different offsets may affect
the outcome of the FWT – especially for unfavorable choices of initial models. Within a
multi-stage inversion, offset windowing can be applied to improve the performance of the
FWT. As a direct consequence of the observation in experiment I, the application of FWT
to cross-well data requires a sequential windowing from near to far offsets. In the current
experiment the FWT is divided into three stages with different offset ranges given by Table
4.3. The total amount of 100 iterations per FWT test is equally split into (34, 33, 33) iterations.

Figures 4.8a,b,c,d illustrate the observed data with offset windows, the final data, residuals
and the inverted velocity model in case of the initial test model 24 . In comparison to
the corresponding result of experiment I (see Figure 4.5), the vP model shows significant
improvements. The model error decreases from 10.8 % to 6.3 %, while it increases from 10.8 %
to 11.2 % in case of experiment I. Especially the area around the anomaly is reconstructed
less artificially. Furthermore, the fit between final synthetic data and observed data is slightly
better (compare final synthetic and residual seismograms in Figures 4.8b,c and 4.6c,d).

However, the abovementioned “model window” of successful initial models is broadened
insignificantly, i. e., the FWT including offset windowing is slightly less sensitive to the
choice of initial background models (see Figure D.2). Consequently, offset windowing
is useful to avoid cycle skipping – with respect to large offsets – at the beginning of the
inversion.
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Figure 4.8: Application 1, experiment II/1: Seismograms and vP results for application of offset
windowing (a . . . d) and time windowing (e . . . h). In detail, the seismograms show observed data
(a, e), final synthetic data (b, f) and final residuals (c, g) for the central shot 9. All data amplitudes
are comparable. Gray-colored lines indicate offset and time windows, respectively.

Additionally, this experiment investigates the impact of a simple time windowing on the
model reconstruction. On the analogy of offset windowing, the same multi stage inversion
with time windows according to Table 4.3 is applied.

Figures 4.8e,f,g,h depict the observed data with time windows, the final data, residuals
and the inverted velocity model in case of the initial test model 24 . Obviously, both final
seismograms and inverted vP model are very similar to the result of reference experiment I.
Thus, in case of the given cross-well geometry, the application of time windowing does
not improve the performance of the FWT, which is emphasized by Figure D.3. Compared
with Figure D.1, the initial “model window” is even narrower. Rather, it is shifted to higher
velocities, so that the critical choice of model 24 results in an artificially recovered vP model
(evolution of model error: 10.8 %→ 13 %), while a satisfactory inversion result is obtained
from model 32 (model error: 7.2 %→ 4.1 %).

Experiment II/2: Frequency filtering

The inversion with respect to single frequencies or several frequency ranges is common
practice in FWT applications (e. g., Bunks et al., 1995; Sirgue and Pratt, 2004). The aim is
to reduce the ambiguity of the inverse problem and to prevent the FWT getting stuck in
local minima of the data misfit function. The general strategy is to start at low frequencies
related to large-scale structures of the model and to move to higher frequencies related to
small-scale structures.
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In this experiment, a low-pass filter is used to reduce the frequency content from the peak
frequency fpeak = 200 Hz (full content) to fpeak = 95 Hz. It is applied to the source time
function (Figure 4.3) and the observed data (Figure 4.9a). Again, initial model 24 is utilized to
demonstrate the effect of frequency filtering. In contrast to full-content data in experiment I,
the observed data is dominated by the direct wave. Consequently, the conformity of filtered
observed data and initial synthetic data (Figure 4.9b) is already quite high. Thus, at early
iterations the FWT is able to correct the wrong background velocity of the initial model. Due
to the limited frequency content, only medium-scale structures are added later on, which
results in the final model (Figure 4.9e). There is a high similarity between observed data
and final synthetic data (Figure 4.9c) yielding in very low residuals (Figure 4.9d).

In case of choosing initial model 24 , the data misfit is reduced by more than two orders of
magnitude – contrasting to experiment I. The model error decreases from 10.8 % to 3.9 %.
In spite of removing high-frequency contents and neglecting the recovery of small-scale
structures, the allover minimum model error of all 51 tests is 3.7 %. This is even better
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Figure 4.9: Application 1, experiment II/2: Seismograms for the central shot 9 (a . . . d) and vP
result (e) in case of applying frequency-filtering. (a) to (d) show the filtered observed data, initial
synthetic data, the final synthetic data and the final residuals.
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Figure 4.10: Application 1, experiment II/2:
Comparison of data misfit functions for ap-
plication of low-pass filters with different fre-
quency ranges. For all 51 background velo-
cities, the misfit values are obtained from the
initial model. All graphs are normalized indi-
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than the minimum value of experiment I (3.8 %). Although, a dominant wavelength of
approximately 25 m is derived from the average vP and the peak frequency, structures at
sub-wavelength scales are recovered. For example, the FWT reconstructed structures at
length scales of roughly half a wavelength, such as details of the low velocity zone.

Due to frequency filtering, the FWT is much less sensitive to the choice of initial models. For
example, in case of model 24 , the FWT not only performs successfully, but it also shows a
much stronger speed of convergence. The “model window” allowing the computation of
a satisfactory vP result is broadened tremendously (see Figure D.4). It ranges from initial
model 18 (vP = 1954 m

s ) to initial model 43 (vP = 2724 m
s ).

Apart from choosing a certain frequency range with fpeak = 95 Hz, Figure 4.10 demonstrates
the effect of applying low-pass filters with respect to different peak frequencies. The
comparison comprises the impact of fpeak =(18, 95, 200) Hz on the data misfit of the initial
models. Especially the efficiency of search algorithms, such as a bisection method as
mentioned in section 4.2.1, are affected by the shape of the initial misfit function. The aim
is to find the optimal initial model. However, in case of using the full frequency content
( fpeak = 200 Hz), the ambiguity of the inverse problem seems to be too high. The FWT
results in an artificially recovered vP model (see section 4.2.1). On the one hand, a quite
complex misfit function is still obtained by choosing an intermediate frequency range with
( fpeak = 95 Hz). On the other hand, its minimum is located within the “model window”
of promising initial models (see Figure D.4). An application of a strong low-pass filter
( fpeak = 18 Hz) significantly mitigates the ambiguity of the inverse problem.

Experiment II/3: Frequency filtering over multiple stages

As mentioned in the previous section, the application of frequency-filtering is extended to a
sequential procedure over three stages. The associated peak frequencies are
fpeak =(18, 95, 200) Hz. On the analogy of experiment II/1, the available amount of 100
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Figure 4.11: Application 1, experiment II/3: Inverted vP models computed by a FWT with
frequency filtering over multiple stages. The initial model is given by model 24 . The intermediate
models are obtained after the first and second stage (a, b), while the final result is shown in (c).
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iterations per FWT test is equally split into (34, 33, 33) iterations. Figure 4.11 illustrates
inverted vP models with respect to the choice of initial model 24 . Figures 4.11a,b represent
intermediate results after the first and second stage, while Figure 4.11c depicts the final
vP model. The sequential model reconstruction, beginning with large-scale structures and
ending with small-scaled details, can be clearly seen. The comparison of the final result
with the true model (Figure 4.1a) reveals a good concordance of structures down to half a
wavelength which is approximately 11 m.

Due to the inversion for different frequency ranges, the comparability of data misfits among
the stages is difficult. Hence, in the following paragraphs only model errors are discussed.
In comparison with the single-stage FWT in experiment II/2, the multi-stage method
applied to initial model 24 shows a slightly better performance (evolution of model error:
10.8 %→ 3.7 %).

The application of the multi-stage inversion further reduces the sensitivity of the FWT to the
choice of the initial model. The initial “model window” allowing a successful FWT extends
over a wide range of background velocities (see Figure D.5). Even the choice of model
10 (vP = 1707 m

s ) results in a satisfactory vP model, where the model error is significantly
reduced from 26.8 % to 4.7 %. Additionally, the “model window” exceeds the upper limit of
the initial-velocity range (vP = 2970 m

s ). Again, this indicates that – in case of given model
and geometry – the successful FWT prefers initial models with higher velocities. In contrast
to all previous experiments, the model error for all 51 initial models decreases during the
inversion. Probably, the FWT might also succeed using low-velocity models, but only in
conjunction with a poor convergence.

Comparative summary of multi-stage FWTs in experiments II/1 and II/3

Figure 4.12 summarizes the performance of multi-stage methods, such as offset windowing,
time windowing or frequency filtering. Obviously, its efficiency depends on the initial
model. For all methods, model 28 represents an appropriate choice with respect to the
outcome of the FWT (see Figures D.2, D.3 and D.5). However, the application of windowing
in conjunction with models 24 and 39 is characterized by unsuccessful FWTs. In any case,
the application of frequency filtering reveals satisfactory results.

Apparently, FWTs including frequency filtering show the most stable performance (Figures
4.12c,f,i). During all three stages, the misfit is reduced significantly. However, no stage has
the precedence with respect to the strength of reduction. For all initial models, the strongest
misfit reduction is obtained in stages one and two involving lower-frequency contents.

In case of model 28 , the application of excessive windowing seems to be unnecessary. The
strongest misfit reduction is observed in stages one and two (Figures 4.12d,e). Thus, the
combination of a very good initial model and a sufficient fit of near offsets or the direct
wave, respectively, is enough to recover the vP model properly. Especially in case of time
windowing the contribution of the last stage is negligible. In contrast, it is even possible
to increase the data misfit. Additionally, the alternating misfit plots indicate difficulties in
minimizing the data misfit (due to the choice of a constant step length).

The combination of suboptimal initial models and offset windowing reveals a very poor
misfit reduction (Figures 4.12a,d,g). On the one hand, this might indicate that the inversion
gets stuck in a local minimum of the misfit function. On the other hand, it is possible to
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Figure 4.12: Application 1, experiment II: Data-misfit reduction for different combinations of
initial models (rows) and multi-stage methods (columns). FWTs including offset windowing,
time windowing and frequency filtering are applied to initial models 24 , 28 and 39 . (a) to (i)
show the misfit reduction obtained within each stage and with respect to the first iteration of
each stage.

obtain a satisfactory result after a huge number of iterations due to a very weak convergence.
The misfit reduction can be used as a measure to evaluate the performance of the FWT. Only
a few combinations of initial model and multi-stage method prove to be useful, whereas
other choices are unable to improve the inversion result.

4.2.3 Experiment III: Gradient preconditioning

Experiment III involves gradient computations. Exploiting the exemplary initial model 24 ,
it investigates the effect of three preconditioning methods on the reconstruction of the vP
model: application of circular gradient tapers around source and receiver locations (experi-
ment III/1, Figure 4.13a), wavefield-based preconditioning (experiment III/2, Figure 4.13b)
and application of user-defined tapers (experiment III/3, Figure 4.13c). All preconditioning
methods are applied to the raw gradient g, i. e., the direct output of cross-correlation (2.17a).
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Figure 4.13: Application 1, experiment III: Taper matrices for gradient preconditioning in case of
choosing initial model 24 . (a) shows the circular taper geometry around sources and receivers
with respect to the central source 9. (b) illustrates the preconditioning matrix obtained from
wavefield propagation at the first iteration. (c) shows a user-defined taper used to nullify the
gradient within the circular anomaly.
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Figure 4.14: Application 1, experiment III: Gradients at the first iteration in case of choosing
initial model 24 . (a) depicts the raw gradient obtained from the imaging condition. (b) to (d)
correspond to the tapers in Figure 4.13 and represent preconditioned gradients with a separate
application of circular tapers around sources and receivers (b), a wavefield-based taper (c) or a
user-defined taper (d).
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Figure 4.14a illustrates the raw gradient at the first iteration. Apart from features to correct
the interior of the initial velocity model, it is characterized by strong artifacts around the
sources. In particular, this complicates the model update in equation (2.35). Due to the
gradient normalization to max |g|, a meaningful relative step length is not calculable. A
huge step length would be necessary to enhance model-related structures, resulting in a
remarkable amplification of the source artifacts. Furthermore, artifacts with smaller amp-
litudes appear around receiver locations, too. However, for the given example they are
hardly observable. Due to the very dense receiver array, artifacts with alternating positive
and negative amplitudes annihilate caused by interference.

The circular tapers around the acquisition geometry are obtained by (2.19). Due to stronger
artifacts around the sources, different specifications for cosine-shaped functions are defined
to distinguish between sources and receivers. At source locations, the parameters for
equation (2.19) are: R = 8 m, f (r=0) = 0.5 and f

(
r= R

2

)
= 0.9. For receiver locations, the

taper size is reduced to R = 2 m, while the remaining coefficients are identical. Within the
loop over shots (see inversion scheme in Figure 2.1), the source-receiver taper is separately
computed for each source and all receivers. Figure 4.13a shows the taper for a representative
shot. The preconditioned gradient in Figure 4.14b exhibits significantly damped source
artifacts, while around receiver locations, the gradient is modified inadequately.

The wavefield-based taper is computed by equation (2.25). The user-defined coefficient
amounts to Cstab = 0.15. The resulting preconditioned gradient for the central shot is
depicted in Figure 4.14c. In comparison with Figure 4.14b, the suppression of source artifacts
is stronger, while there are only minor changes around receiver locations. However, the
taper also affects the model interior. A partial mitigation of this problem can be achieved by
adjusting the coefficient Cstab = 0.15. Furthermore, the amplitudes of acquisition-geometry
artifacts vary during the inversion. Hence, the wavefield-based taper – recomputed for
every shot at each iteration – seems to be advantageous over tapers with a fixed circular
shape.

The user-defined taper represents a hard constraint (see Figure 4.13c). On the one hand,
it is used to weight the gradient, i. e., to damp or amplify amplitudes. On the other hand,
selected model areas can be excluded from the model update by nullifying corresponding
parts of the gradient. In this experiment, the circular water-filled anomaly is assumed to be
known. The taper is used to prevent model updates within this area (see Figure 4.14d).

Although, the tapers reduce the strength of geometry-related artifacts, their exclusive
application does not improve the recovered vP models. The inverted models in Figures
D.6, D.7 and D.8 for the initial model 24 show a high similarity with the reference result
of experiment I (Figure 4.5). The corresponding data misfits are reduced by less than one
order of magnitude, while the model errors decreased slightly or increased from 10.8 % up
to 12.6 %. Furthermore, there are nearly no differences between the best possible results
of experiments I and III. Consequently, gradient preconditioning can only be useful in
conjunction with other methods discussed in this chapter.

4.2.4 Experiment IV: Step length estimation

Experiment IV investigates the impact of the choice of step length on the model update.
In particular, it comprises a comparison of experiment I featuring a constant step length
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and the application of the adaptive step length (experiment IV/1). Additionally, different
choices of both constant (IV/2) or adaptive step lengths (IV/3) are analyzed. Experiment
IV/4 investigates the robustness of the adaptive step length method.

Experiment IV/1: Adaptive step length

In contrast to experiment I, experiment IV/1 involves the adaptive step length method
described in section 2.6 by following the step-length computations described in section
2.6.1. The initial relative step length is µrel,ini = 1 % (see Table 4.4) and the remaining
test step lengths are obtained by applying the coefficient a = 8 resulting in µrel,low = 1

8
and µrel,high = 8. The optimal step length µrel,opt is defined as µrel,ini at next iteration. In
this experiment, it is not allowed to calculate step lengths larger than µrel,high. To avoid
computations of excessively high values, the overall upper limit is set to 8 %. Furthermore,
additional forward-propagations are required to obtain the data misfits for all test step
lengths. The FWT uses eight representative sources to reduce computational efforts.

Figure D.9 illustrates the performance of multiple FWTs including the evolution of adaptive
step lengths. This experiment reveals some interesting observations:

• The adaptive step length does not improve the sensitivity of the FWT with respect to
the initial model. A successful inversion is still limited to the same narrow “model
window” of models shown in experiment I.

• Within the “model window” the data misfit is characterized by both a drastic reduction
and a stable evolution without an alternating shape. The maximum reduction of the
data misfit amounts to 3.2 orders of magnitudes (compared to 2.5 orders of magnitude
in experiment I).

• Accordingly, the model-error evolution shows a similar behavior. The allover min-
imum model error is 3.4 %.

• The adaptive step lengths vary over a broad range of approximately five orders of
magnitude to account for the complex shape of the data misfit function.

• In dependence of the initial-model choice, the algorithm is more or less able to compute
reliable relative step lengths. Within the “model window” there appears a typical
inversion progress starting with quite high step lengths and ending with intermediate
or low values. In general, the average step length is less than 1 % (compare Pica (1990)
who proposed a meaningful step length of about 1 %). Permanently huge or tiny step
lengths indicate a failure of the FWT. In this experiment, this is related to too high or
too low initial background velocities. On the one hand, the algorithm tries to provide
negative step lengths which are handled as described in section 2.6.2. On the other
hand, too high values, such as exceptionally huge step lengths up to 47000 %, are
truncated as mentioned above.

• In conjunction with the very strong convergence, the model reconstruction is improved
significantly. In contrast to experiment I, within the limit of 100 iterations much more
small-scaled details can be recovered.
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Figure 4.15: Application 1, experiment IV/1: Inversion progress for experiments I (constant
step length) and experiment IV/1 (adaptive step length) for initial model 24 (vP = 2138 m

s ). The
individual figures contain the evolutions of the relative step length (a), normalized data misfit
(b) and model error (c).
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Figure 4.16: Application 1, experiment IV/1: Inversion progress for experiments I (constant
step length) and experiment IV/1 (adaptive step length) for initial model 26 (vP = 2200 m

s ). The
individual figures contain the evolutions of the relative step length (a), normalized data misfit
(b) and model error (c).

Furthermore, the FWTs of experiment IV/1 and I are repeated for the exemplary initial
model 24 (vP = 2138 m

s ) and a more optimal initial model 26 (vP = 2200 m
s ). The number of

iterations is extended to 400. The inversion progresses are illustrated in Figures 4.15 and
4.16 (graphs in blue for experiment IV/1 and gray for experiment I).

As mentioned above, the model located outside the optimal “model window” causes a
specific inversion progress. The dynamic range of step lengths is small, i. e., the FWT
permanently uses quite high values (see Figure 4.15a). However, this does not result in a
strong misfit or model-error reduction (Figures 4.15b,c). In contrast, the data misfit decreases
by approximately three orders of magnitude, while the model error shows an unsteady
evolution resulting in a final error of 5.5 %. The inversion using model 26 is characterized
by a continuous decrease of the adaptive step lengths covering a broad dynamic range
of almost seven orders of magnitude (see Figure 4.16a). This accounts for the increasing
complexity of the data misfit function. It is robustly reduced by approximately four orders
of magnitude (Figure 4.16b). In this case, a nearly optimal-fit model is found and the FWT is
only recovering very small scaled details. The final model error is to 1.6 % (Figure 4.16c).
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Experiments I and IV/1 reveal the significant advantages of the adaptive step length method
compared to constant step lengths. In case of a constant step length, the data misfit evolution
shows an erratic behavior. It is not able to account for the shape of the misfit function by
computing appropriate gradient directions. Consequently, the model error decreases very
slowly – compared to experiment IV. The minimum model error of experiment I (2.3 %)
is obtained after 400 iterations, while the same value of experiment IV/1 corresponds to
iteration 105. The method of adaptive step length significantly increases the convergence of
the FWT. In spite of accepting additional forward modelings, the computational efforts are
reduced tremendously.

Experiments IV/2 and IV/3: Comparison of constant and adaptive step lengths

In addition to experiment IV/1, experiments IV/2 and IV/3 perform further investigations
related to different constant step lengths and different parameters for the parabolic fit of
the adaptive step length method (see discussion of different choices of µrel,ini, µrel,low and
µrel,high in section 2.6.2). All tests are applied to the optimal initial model 26 .

Figure 4.17 illustrates the inversion progress for three different constant step lengths. The
choice µrel|h = 1 % resembles the computation discussed in the previous paragraph and
shown in Figure 4.16 (gray graph). While the usage of a smaller step length µrel|h = 1

4 %
stalls the erratic behavior of the misfit evolution, a high value of µrel|h = 4 % does not allow
a reliable inversion (Figure 4.17b). Until iteration 70 the step length seems to be sufficiently
low. However, later on it causes an irreversible jump within the model space producing
an artificially altered vP model (see increasing model error in Figure 4.17c). For the current
example, the choice of µrel|h = 1

4 % yields the most stable progress. On the one hand, the
convergence of the model error is quite weak. But on the other hand, similar vP results are
obtained from FWTs with µrel|h = 1 % and µrel|h = 1

4 %.

Figure 4.18 shows the inversion progress for the adaptive step length method with three
different sets of test step lengths. The step lengths µrel,low and µrel,high are obtained by the

use of µrel,ini = 1 % and a = (2, 4, 8). Even the choice of µrel|h =
(

1
8 , 1, 8

)
% allows the

calculation of a meaningful optimal step length (as illustrated by 2.5). Obviously, in case of
initial model 26 , the inverse problem is quite well-posed.

Experiment IV/4: Computational efforts for adaptive step lengths

This experiment is related to the adaptive step length method. As described above, it is
necessary to apply additional forward-propagations to compute data misfits (E1, E2, E3) cor-
responding to the test step lengths

(
µrel,ini, µrel,low, µrel,high

)
. In order to limit computational

efforts, it is not advisable to use all sources (Ns = 16) for test modelings. This would result
in 3× Ns additional modelings, compared to 2× Ns modelings for forward-propagation
and back-propagation. The question is, how to define a reasonable number of sources to
enable a stable inversion.

Previous experiments IV/1 and IV/3 applied a default value of 8 sources. This experiment
investigates the impact of using 1, 4 and all 16 sources on the inversion progress (see
Figure 4.19). Apparently, with decreasing number of sources the adaptive step length
estimation tends to fail finding a proper optimal step length µrel,opt (see Figure 4.19a).
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Figure 4.17: Application 1, experiment IV/2: Inversion progress for different constant step
lengths in case of using the optimal initial model 26 . The individual figures contain the evolutions
of the relative step length (a), normalized data misfit (b) and model error (c).
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Figure 4.18: Application 1, experiment IV/3: Inversion progress for the adaptive step length
method with different sets of test step lengths (in case of using the optimal initial model 26 ). The
individual figures contain the evolutions of the relative step length (a), normalized data misfit
(b) and model error (c).
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Figure 4.19: Application 1, experiment IV/4: Inversion progress for the adaptive step length
method with different numbers of sources for test modelings (in case of using the optimal
initial model 26 ). The individual figures contain the evolutions of the relative step length (a),
normalized data misfit (b) and model error (c).
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The algorithm provides µrel,opt < 0 after 230 iterations (in case of Ns = 1) or 260 iterations
(Ns = 4), respectively. The algorithm tries to handle the problem by applying small step
lengths (see section 2.6.2). Finally, it gets stuck.

Obviously, the usage of Ns = 1 or Ns = 4 results in data misfits (E1, E2, E3), which do not
represent the data misfit of all sources. Consequently, the deviating shape of the misfit
function affects the parabolic fit. Inappropriate “optimal” step lengths might cause a jump
into a local minimum.

With increasing number of sources for test modelings, the model error is decreasing (see
evolutions of data misfit and model error in Figures 4.19b,c). The final model errors
are: εmodel = 2.8 % (Ns = 1), εmodel = 2.1 % (Ns = 4), εmodel = 1.8 % (Ns = 8) and
εmodel = 1.5 % (Ns = 16). The trade-off between accuracy and computational efforts justi-
fies the usage of Ns = 8. It is applied in all subsequent experiments including the adaptive
step length method.

4.2.5 Experiment V: Influence of the acquisition geometry

Apart from the previous experiments, experiment V investigates different acquisition geo-
metries. In particular, experiment V/1 applies a transmission geometry with variable
number of sources (see Figure 4.2b). Experiment V/2 investigates the impact of a reflection
geometry on the model reconstruction (Figure 4.2c). Several multiple FWTs are performed
(results shown in Figures D.10 to D.16) and exemplary results are discussed using the initial
model 24 . Apart from varying the acquisition geometry, experiments V/1 and V/II are once
again plain FWTs that do not apply any special inversion strategies.

Experiment V/1: Transmission geometry with a variable number of sources

It is well-known that a successful model reconstruction requires a sufficiently high illumina-
tion of the subsurface. While the illumination is improved by increasing numbers of sources
(Ns) or receivers, only Ns affects the computational performance of a FWT. This experiment
tests, if the FWT is able to get along with a poor illumination, or, if a very high number of
sources improves the inversion result. Figure 4.20 compares the results of the extreme cases
using Ns = 1 (Figures 4.20a to d) or Ns = 64 (Figures 4.20e to h).

Obviously, the inversion using Ns = 1 is not able to explain the data of a single shot by
reconstructing a satisfactory vP model (Figure 4.20d). After 100 iteration there are still
significantly high data residuals (Figure 4.20c).

In comparison with the result of experiment I (Ns = 16), a higher illumination using Ns = 64
does not mitigate the ambiguity of the inverse problem or the dependency on the initial
model. The final model shows some improvements with respect to details within the upper
structures (compare Figures 4.6e and 4.20h), while there is a bad fit of final synthetic and
observed data (Figures 4.20e,f). Consequently, a successful inversion is still restricted to the
“model window” discussed in previous experiments.

In addition to the results of experiment I in Figure 4.5 (Ns = 16), Figures D.10 to D.15
(in appendix D.2) illustrate the multiple-FWT results for Ns = 1, Ns = 2, Ns = 4, Ns = 8,
Ns = 32 and Ns = 64. On the one hand, in case of exemplary initial model 24 , the increase
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Figure 4.20: Application 1, experiment V/1: Seismograms and models for FWTs using Ns = 1
(a to d) and Ns = 64 (e to h), respectively. All inversions are performed for the initial model 24 .
The figure comprises observed data (a and e), final synthetic data (b and f), final residuals (c and
g) as well as the final vP model (d and h).
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Figure 4.21: Application 1, experiment V/1: Initial and final data misfits (a to c) as well as model
errors (d) with respect to inversions using different numbers of sources, Ns. While (a) to (c)
are representative choices Ns = 1, Ns = 8 and Ns = 64, (d) summarizes model errors. Due to
different numbers of sources, the data misfits of all computations are normalized individually.
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of Ns improves the vP recovery within the upper model areas only. On the other hand, there
is a significant impact on the inverted vP model in case of choosing the initial model 28 .
Provided that Ns = 2, it results in the corresponding optimal result (Figure D.11). In spite of
a quite poor illumination, the choice of the initial model is crucial in computing a reasonable
vP model.

Additionally, Figures 4.21a to c visualize the initial and final data misfits as a function of
all initial background velocities as well as for Ns = 1 (a), Ns = 8 (b) and Ns = 64 (c). The
associated multiple-FWT Figures are D.10, D.13 and D.15. The shape of the initial data
misfit is not affected by different choices of Ns. Only in case of Ns = 1, a local minimum
appears at quite low initial velocities. Apparently, for Ns = 1 the “model window” of
successful inversions seems to be broader. However, the corresponding misfit reduction
is approximately 2.5 orders of magnitude. Furthermore, the FWTs for Ns = 8 and Ns = 64
exhibit comparable final data misfits. However, the usage of Ns = 64 reveals a stronger
convergence (compare Figures D.13 and D.15).

Apart from the data misfit, the model error is a more instructive measure to describe the
quality of the results. Especially within the “model window” one can observe: the higher
Ns, the lower the final model error (Figure 4.21d). The optimum model errors amount to:

• Ns = 1: εmodel = 6.0 %, see also Figure D.10;

• Ns = 2: εmodel = 5.2 %, see also Figure D.11;

• Ns = 4: εmodel = 4.2 %, see also Figure D.12;

• Ns = 8: εmodel = 4.0 %, see also Figure D.13;

• Ns = 16: εmodel = 3.8 %, see also Figure 4.5;

• Ns = 32: εmodel = 3.7 %, see also Figure D.14;

• Ns = 64: εmodel = 3.8 %, see also Figure D.15.

In comparison with the inversion result for Ns = 8, all FWTs with Ns > 8 are characterized
by marginal model improvements. This justifies the choice of Ns = 16 in most of the
experiments of this chapter, i. e., this avoids side effects caused by a poor ray coverage.

Experiment V/2: Reflection geometry

In contrast to all previous tests, this experiment uses a reflection geometry, where sources
and receivers are located in one borehole (see Figure 4.2c). Here, it is regarded as a disad-
vantageous acquisition geometry. Due to the random medium geology, this is not a common
reflection seismic application and it might be difficult to recover the subsurface structures.
Furthermore, in comparison to the transmission geometry, a worse illumination complicates
the reconstruction of the subsurface model. Again, the circular anomaly is assumed to be
known. It is the only object being relevant for a reflection seismic application. On average,
its diameter corresponds to 1.3 wavelengths (with respect to employing the full frequency
content). Thus, it can be classified as a reflector or diffractor.
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Figure 4.22: Application 1, experiment V/2: FWT result with respect to the reflection geometry
and initial model 24 . The seismograms in figures (a) to (d) are related to the central shot 9. Their
amplitudes are comparable. The figures show the observed data (a), initial synthetic data (b),
final synthetic data (c), final residuals (d) and the final vP model (e).

The application of the FWT to the given reflection seismic problem reveals an unsatisfactory
result (see Figure 4.22). Based on the exemplary initial model 24 . The FWT is unable
to reconstruct reasonable structures. The best model recovery can be found around the
acquisition geometry (Figure 4.22e). However, even the direct waves of observed data and
final synthetic data show a significant difference (compare Figures 4.22a,c,d).

The optimal inversion result is obtained in case of initial model 31 (vP = 2354 m
s ). The model

areas along the left boundary are recovered quite well, whereas the remaining model areas
resemble the corresponding initial model (see Figure D.16). While the final model error
amounts to 6.2 %, the data misfit is reduced by more than two orders of magnitude. The
sufficient model reconstruction around the acquisition geometry yields a good fit of the
dominant direct wave and thus explains the quite strong reduction of the data misfit.

Regarding the choice of model 31 , a recomputation of the FWT with more iterations (400)
does not reveal an improved result. The model error slightly decreased down to 6.1 %.

In comparison to experiments with acquisition geometry, the multiple FWT of experi-
ment V/2 reveals some differences. On the one hand, the initial “model window”, which
is characterized by a significant misfit reduction, extends over a broader velocity range.
But, on the other hand, it does not fully match the progress of the model error at higher
initial velocities. Despite that, the inversion tends to prefer higher-velocity initial models
to compute less artificial results. Furthermore, there is no clear delimitation of the “model
window”. For the given model, effects which impact negatively, such as cycle-skipping, are
of minor importance.

4.2.6 Experiment VI: Optimal parameter configuration

This experiment completes the investigations of experiments I to V. Consequently, experi-
ments VI/1 and VI/2 comprise an optimal parameter configuration. Due to the importance
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of the acquisition geometry, they additionally compare different number of sources (VI/1:
Ns = 16, VI/2: Ns = 64). The following configuration has been found to be useful:

• transmission geometry (see Figures 4.2a,b),

• frequency filtering over multiple stages (see section 4.2.2),

• gradient preconditioning by applying circular tapers at source and receiver locations
(see experiment III/1),

• adaptive step length estimation (see experiment IV).

The most optimal result is obtained by experiment VI/1. Combining advantageous features,
it is able to apply a successful FWT to almost all initial models (see Figure 4.23). Especially
the adaptive step length estimation can be regarded as a reliable indicator for a stable
inversion. Starting with quite high values, the inversion continues with intermediate step
lengths confirming the results of experiment IV.

However, this experiment reveals a huge discrepancy between optimal initial model and
the best possible result. Both the minimum initial data misfit and initial model error can
be found for initial model 32 (vP = 2385 m

s ). In contrast, the allover minimum data misfit
and minimum model error do not correspond to the same initial model. The minimum
data misfit belongs to initial model 24 (vP = 2138 m

s ), while the usage of initial model 10

(vP = 1707 m
s ) yields the minimum model error. In detail, the initial and final model errors

are:

• for initial model 32 : 7.16 % → 3.49 %,

• for initial model 24 : 10.8 % → 3.27 %,

• for initial model 10 : 26.8 % → 3.15 %.

The optimum initial model does not necessarily correspond to the allover optimum inver-
sion result. Apparently, this characteristic depends on the multiple-stage method. With
increasing frequency content, the optimum choice of initial models tends towards lower
initial velocities. With respect to the minimum data misfit within each stage, the optimal
initial model moves from 32 (initial) to 30 (stage 1), 29 (stage 2) and 24 (stage 3 = final).
Accordingly, the optimum initial model, corresponding to the minimum model error within
each stage, moves from 32 to 23 , 21 and 10 .

Furthermore, for the optimal choice of model 10 , the FWT has been recomputed. The
number of iterations is increased up to 232 iterations. An automatic stop criterion is used to
switch to the next stage or to stop the inversion. It is based on a threshold value of 0.5 %
applied to the relative change of the data misfit at three successive iterations. Thus, the
particular stages of the FWT require 36 (stage 1), 86 (stage 2) and 110 (stage 3) iterations.
Apparently, the inversion for low-frequency contents reveals a much stronger convergence.

Although, additional features, such as the multiple-stage approach, improve the perform-
ance of the FWT, a modified acquisition geometry including 64 sources does not increase
convergence or accuracy of the optimum result (Figure D.17). In contrast, during the first
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Figure 4.23: Application 1, experiment VI/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application of
an optimal parameter combination and “standard” transmission acquisition geometry including
16 sources. The data misfit is normalized to the maximum misfit value of experiment I. The
extreme values of the model error (lower plot) are: (max εmodel, min εmodel) = (38, 3.2) %.
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stage, the inversion struggles to compute reasonable step lengths. In particular, at higher
initial velocities, the model error is partially increasing. Consequently, the resulting vP
models are less accurate – compared to corresponding results of experiment VI/1. However,
both experiment VI/1 and VI/2 are able to reconstruct nearly identical optimum vP models.

4.2.7 Experiment VII: Rerun for the homogeneous initial model (type B)

While the previous experiments were applied to the initial-model type A, the experiment
VII investigates the influence of a purely homogeneous initial model (type B, see Figure
4.1c) on the inversion progress. For this purpose, I choose inversion settings of selected
experiments. In detail, I repeat following experiments:

VII/1: • rerun of experiment I,

• transmission geometry,

• basic FWT without application of methodical improvements,

VII/2: • rerun of experiment VI/1,

• transmission geometry,

• optimal choice of parameters,

VII/3: • rerun of experiment I,

• reflection geometry,

• basic FWT,

VII/4: • rerun of experiment VI/1,

• reflection geometry,

• optimal choice of parameters.

Experiments VII/1 and VII/2: transmission geometry

The inversion progress of experiment VII/1 Figure D.18 resembles experiment I (Figure 4.5).
However, it reveals a slower convergence and the results in more artificial velocity models.
The following list summarizes the most important observations.

• Surprisingly, in comparison with initial-model type A, the absence of the anomaly
increases the absolute initial data misfit insignificantly (by 0.2 % only). Accordingly,
the initial model error shows a similar behavior.

• Due to inversion of the full frequency content, the FWT tries to recover the high
contrast of the anomaly. Especially outside the “model window” (between initial
models 24 and 31 ) cycle-skipping might cause model corrections into a completely
wrong direction.

• In spite of the comparable initial misfits and errors of experiments I and VII/1, the
attempt of reconstructing both the anomaly and the remaining random-medium
structures results in a less satisfactory performance.
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• The optimum inversion result is obtained in case of initial model 29 (vP = 2292 m
s ).

The corresponding data misfit is reduced by two orders of magnitude, while the model
error decreases from 8.6 % to 5.5 %.

The experiment VII/2 involves an optimal parameter combination including frequency
filtering over multiple stages, gradient preconditioning and adaptive step length estima-
tion. Figure D.19 shows the results of the multiple FWTs, while relevant observations are
summarized below.

• Due to application of frequency filtering, the FWT first recovers long-wavelength
informations of the anomaly. Later on, the high-contrast boundary of the anomaly is
partially reconstructed by adding higher-frequency contents.

• Similarly to experiment VI, the broader range of initial models allows a successful
FWT.

• The optimum inversion result is obtained in case of initial model 21 (vP = 2046 m
s ).

The corresponding model error decreases from 14 % to 4.7 %.

The final result of experiment VII/2 shows significant improvements in the reconstruction of
the vP model. However, it is unable to obtain a perfect recovery of the high-contrast anomaly.
Thus, the initial model containing a priori information, such as the anomaly, significantly
improves the outcome of the FWT.

Experiments VII/3 and VII/4: reflection geometry

Compared to experiment V/2 which investigates the influence of a reflection geometry
using the initial model of type A, the choice of the simplest initial model amplifies the
ill-posedness of the inverse problem. Apart from the direct wave, the initial data does not
provide any reflection or diffraction events. Hence, all the information to reconstruct the
vP model has to be provided by the observed or residual data, respectively. Figure D.20
shows the the multiple-FWT results of experiment VII/3. The following list summarizes
mentionable observations.

• Due to a plain inversion without any improvements (VII/3) and the choice of homo-
geneous initial models, the FWT is not able to reconstruct a satisfactory vP model.
Either the recovery is restricted to the area around the acquisition geometry trying
to explain the direct wave, or it ends up with producing very strong artifacts (Figure
D.20) by “misinterpreting” the observed data.

• The most optimal result is obtained for initial model 30 (vP = 2323 m
s ). But, in contrast

to experiment V/2, it represents a poor model reconstruction. The data misfit is
reduced by 1.2 orders of magnitude (1.9 in experiment V/2), while the model error
decreases from 8.3 % to 7.3 % (from 10.6 % to 5.25 % in experiment V/2).

• Using the initial model 30 , I extended the FWT computation to 400 iterations. Com-
pared to the optimal result of the multiple FWT with 100 iterations only, a slightly
clearer indication of the anomaly can be observed. However, the model error of 7.2 %
is insignificantly better.



80 4.2. Results of FWT experiments

Again, the ill-posedness can be mitigated by methods used in experiment VI/1 (optimal
choice of parameters). Figure D.21 shows the multiple-FWT results of experiment VII/4 and
relevant facts are listed below:

• On the analogy of experiment VII/2, in particular, the multi-stage approach drastically
improves the performance of the FWT (see Figure D.21). The “model window” of low
model errors verifies that the computation of quite reliable inversion results is less
sensitive to the initial model (compared to experiment VII/3).

• The optimal result is obtained for initial model 27 (vP = 2231 m
s ). In contrast to experi-

ments V/2 and VII/3, it represents a sufficient model reconstruction. The model error
decreases from 9.4 % to 4.6 %.

• The robust estimation of intermediate step lengths also indicates a stable inversion
with respect to a wide range of initial models.

• Due to the slow convergence, especially initial models with vP > 1800 m
s show the

potential of inverting a satisfactory vP model after a high number of iterations. The
corresponding FWT uses an automatic stop criterion and finishes after 133 iterations.
However, there are no further improvements due to the limitations of the reflection
geometry. Again, the final model error is 4.6 %.

4.2.8 Experiment VIII: Rerun for the initial model with wrong assump-
tions

Here, I continue to investigate the influence of the initial model. I chose the initial-model
type C which is characterized by wrong assumptions (see Figure 4.1d). This model contains
a circular anomaly, which is identical to the true anomaly in terms of size and velocity. But,
it is located incorrectly. For the purpose of experiment VIII, I choose inversion settings
of a selection of previously performed experiments I and VI. In detail, I repeat following
experiments:

VIII/1: • rerun of experiment I,

• transmission geometry,

• basic FWT without application of methodical improvements,

VIII/2: • rerun of experiment VI/1,

• transmission geometry,

• optimal choice of parameters.

The usage of an initial model containing a wrong a priori information with regard to a
high-contrast structure negatively affects the inversion progress. Figure D.22 shows the
multiple-FWT result for a plain inversion of experiment VIII/1. The following list provides
additional information.
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• Obviously, for all initial models, the FWT is unable to move the incorrectly placed
anomaly. Within a narrow range of initial models (from 23 to 31 ), the FWT produces
the most reliable vP models. While the upper parts are recovered well, the lower areas
are severely affected by the anomaly.

• The optimal result is obtained for initial model 30 (vP = 2323 m
s ). Even in this case the

inversion tries to compensate the wrong low-velocity zone by creating high-velocity
artifacts.

• With respect to the optimal result, the data misfit is reduced by 1.3 orders of magnitude,
while the model error decreases from 9.4 % (initial) to 7.4 % (final value at iteration
100). Due to the ill-posedness of the inverse problem, the minimum model error of
7.2 % is obtained at iteration 43. While the model error increases after iteration 43, the
data misfit is reduced continuously.

In accordance with previous experiments, a more appropriate parameter configuration
tremendously affects the outcome of the inversion. Figure D.23 shows the multiple-FWT
result of experiment VIII/2, while additional facts are listed subsequently.

• Even the multi-stage inversion is not fully able to correct the location of the anomaly.
Although, the model error is significantly reduced over a broad range of initial models,
the smallest errors tend to occur at low-velocity initial models. In other words, the
FWT prefers the usage of initial models, which do not exhibit incorrectly placed
high-contrast structures.

• The optimum result is obtained for initial model 3 (vP = 1492 m
s , i. e., it is nearly

homogeneous).

• With respect to the optimal result, the data misfit is reduced by more than 2 orders of
magnitude, while the model error drastically decreases from 36 % to 5.6 %.

On the one hand, methods, such as multi-stage frequency filtering, significantly mitigate the
ambiguity of the inverse problem. On the other hand, experiment VIII demonstrates, that
the presence of wrong a priori information might cause an insufficient performance of the
FWT. Even the usage of the full frequency content is not enough to account for high-contrast
interfaces.

4.2.9 Experiment IX: Initial model and FWT with wrong assumptions

Experiment IX is the logical continuation of experiment VIII/2. It uses the parameter
configuration of the last experiment but adds the user-defined gradient preconditioning
discussed in experiment III/3. In contrast to experiment VIII/2, the FWT is forced to omit
the model update within the incorrectly located anomaly of the initial model (type C). The
results are shown in Figure D.24 and important observations are listed below.

• Again, the application of features, such as the multi-stage approach, seems to annihilate
the dependency of the inverted models on the initial model. But, in this case the
inversion results in very similar artificial vP models.
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• Due to the application of a wrong constraint, the inversion is forced to compensate the
forbidden model update by producing huge artifacts.

• The optimal result is obtained in case of the initial model 37 (vP = 2539 m
s ). The model

error shows a marginal decrease from 11.9 % to 11.6 %.

• Within each stage the data misfit is reduced continuously, whereas the progress of the
model error reveals an unusual behavior: 11.9 % (initial) → 7.6 % (minimum stage 1)
→ 8.1 % (minimum stage 2) → 10.5 % (minimum stage 3) → 11.6 % (final). At the
early stage, the inversion reconstructs large-scale structures due to the application
of frequency-filtering. At the lowest peak frequency fpeak = 18 Hz of stage 1, the
dominant wavelength is larger than 100 m. The inner diameter of the taper, where
taper coefficients are equal to zero, amounts to 10 m. Consequently, due to the small-
sized taper geometry, the FWT does not take the incorrectly applied constraint into
account. After adding higher frequency contents and thus decreasing wavelengths,
the negative impact of the taper on the model reconstruction is amplified continuously.

• Again, the adaptive step length proves to be a useful parameter. In general, during the
inversion, the step length tends to decrease. However, in this experiment the evolution
of the step length shows the opposite behavior. Furthermore, quite often the parabolic
fit provides invalid values ranging from -460 % to 66000 %. This is an additional
indication of severe problems during the inversion.

4.2.10 Experiment X: Brute-force search

Experiment X contrasts with all previous experiments. It does not perform complete
inversions. Rather, it represents a brute-force search. In accordance with previous multiple
FWTs, data misfits and model errors are computed for 51 initial models (homogeneous, type
B). In contrast to the conventional estimation of adaptive step lengths using three test values,
1001 relative step lengths ranging from 0 % to 1000 % are evaluated at the first iteration.

This experiment investigates the frequency dependency of both the initial data misfit func-
tion and initial model errors. Figures 4.24 and 4.25 visualize cross sections of both data
misfit functions and model error functions. With respect to the usage of the full frequency
content or applying frequency filtering with peak frequencies fpeak = (95, 18) Hz, the data
misfit functions reveal significant differences. With decreasing frequency content the shape
of the data misfit function becomes less complex.

Around the optimal initial model (see previous experiments) and for low step lengths,
the minimum misfit is clearly recognizable. However, with lower frequency contents
it becomes more dominant and extends over a broad range of initial models verifying
previous observations (compare top parts of Figures 4.24a,b,c). In principle, it is possible
to achieve a tremendous reduction of the model error at the first iteration – if both the
corresponding optimal initial model and an appropriate step length are known. Depending
on the frequency content, the following optimal choices of initial model and step length are
found at the first FWT iteration:
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fpeak = 200 Hz : vP|ini = 29 , µrel|h = 17 % → εmodel = 7.5 % (initial εmodel = 8.5 %),

fpeak = 95 Hz : vP|ini = 28 , µrel|h = 19 % → εmodel = 7.0 % (initial εmodel = 8.9 %),

fpeak = 18 Hz : vP|ini = 27 , µrel|h = 13 % → εmodel = 7.3 % (initial εmodel = 9.4 %),

where the initial models are 29 = 2292 m
s , 28 = 2262 m

s and 27 = 2231 m
s . Hence, the

exclusive consideration of lower-frequency contents yields the highest efficiency in finding
the best model. The strongest model-error reduction at the first iteration is obtained for
fpeak = 18 Hz. In all three cases, the data misfit and the model error show a quite good match
with respect to the location of the local minimum (compare minima in Figures 4.26a,b,c).
On account of this and due to the well-posed shape of the misfit functions, the automatic
estimation of an adaptive step length is able to compute reliable values.

In general, there is a high risk to produce artificial models by applying a very high step
length to the gradient direction. Although, this example shows a perfect case, limitations
should be applied to the step lengths – accepting a slower convergence but preventively
stabilizing the inversion.

Furthermore, this experiment demonstrates the problematic nature of the data misfit func-
tion with respect to the estimation of adaptive step lengths (see discussion in section 2.6.2).
Figure D.25 compares data misfit function, corresponding model error and the step length
estimation (using the common choice of µ0 = 1 and a = 1 of the other tests) at the first itera-
tion. It combines essential observations of previous experiments with respect to frequency
filtering (experiment II) and step length estimation (experiment IV):

• Due to the usage of intermediate initial models with a reasonable background velocity
(such as Figures D.25b,e,h), the shape of data misfit function and model error show a
good agreement. In other words, if a step length estimation successfully locates the
desired local minimum of the data misfit, then this should automatically corresponds
to the optimum model error. However, in case of inverting for the full frequency
content, the parabolic function is too inaccurate to account for the more complex shape
of the misfit function. Consequently, an inappropriate step length is computed. The
decrease of the frequency content significantly mitigates the problem (Figures D.25e,h).

• Especially the usage of too low initial velocities (Figures D.25a,d,g) increases the
qualitative mismatch of data misfit and model error. Either the algorithm is unable to
compute an optimal step length (Figure D.25d), or the optimal step length corresponds
to the local minimum of the data misfit but misses the optimal model error (e. g., Figure
D.25a).

• Figures D.25c,f,i illustrate quite well-posed shapes of data misfit and model error in
case of initial models with a higher velocity. However, the step length estimation
exhibits an unpredictable behavior. Figure D.25c demonstrates a perfect local fit of the
misfit function. Again, Figure D.25f represents a failure of estimating the step length.
Apparently, Figure D.25i shows a nearly perfect fit. However, the huge aperture of the
parabola and the usage of test step lengths

(
1
8 , 1, 8

)
% cause a high sensitivity of the

parabolic shape. Marginal variations of the misfit function within the range of the test
step lengths could cause improper step lengths or a destabilization of the algorithm.
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Figure 4.24: Application 1, experiment X: The normalized data misfit as a function of initial
model and step length at the first FWT iteration. Frequency filtering for different frequency
contents is applied: (a) fpeak = 200 Hz, (b) fpeak = 95 Hz, (c) fpeak = 18 Hz.
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Figure 4.25: Application 1, experiment X: The model error as a function of initial model and step
length at the first FWT iteration. Frequency filtering for different frequency contents is applied:
(a) fpeak = 200 Hz, (b) fpeak = 95 Hz, (c) fpeak = 18 Hz.
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Figure 4.26: Application 1, experiment X: Cross sections from data misfit functions (Figure 4.24)
and model errors (Figure 4.25) for different initial models. (a) corresponds to vP|ini = 2292 m

s
in Figures 4.24a and 4.25a. (b) corresponds to vP|ini = 2262 m

s in Figures 4.24b and 4.25b. (c)
corresponds to vP|ini = 2231 m

s in Figures 4.24c and 4.25c.
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4.3 Summary of experiments

In general, the FWT represents an ill-posed inverse problem, which can be mitigated by
several strategies. This chapter discussed methods which can be applied at suitable stages of
the FWT scheme. With the focus on the dependence on the initial model, specific experiments
investigated the impact of these methods on the progress of the FWT and the resulting
vP reconstruction. The summarizing comparison of all techniques with respect to the
plain reference computation (experiment I) and an optimized FWT test (experiment VI/1)
alleviates the classification of their influence. The following considerations limit to the
model error to quantify the FWT progress.

Based on a full-space velocity model with borehole acquisition geometries, the experiments
of this chapter reveal a specific dependence on the initial model (see Figure 4.27). The initial
model error is characterized by a broad range from 7.16 % (vP|ini = 2380 m

s ) up to 38.2 %
(vP|ini = 1430 m

s ).

The final model error of the reference experiment widely reproduces the initial error. Only a
narrow window of initial models allows a successful inversion. At this, the optimum initial
model does not necessarily yield the best inversion result (final error εmodel = 3.79 % for
vP|ini = 2323 m

s ). Rather, the corresponding final vP model is reconstructed artificially. In
contrast, the optimized experiment VI/1 significantly reduces both the dependence on the
initial model and the final model error (final error εmodel = 3.15 % for vP|ini = 1707 m

s ).

Due to the usage of full data and full frequency content in the reference experiment, espe-
cially cycle-skipping increases the ambiguity of the inverse problem. This issue might be
eliminated by the application of several techniques, in particular frequency filtering.

Figure 4.28 confronts the individual impact of all methods in case of two slightly differ-
ent initial models with significantly different model errors: vP|ini = 2138 m

s (outside the
model window shown in Figure 4.27 with εmodel = 10.8 %, referred to as “bad” model)
and vP|ini = 2200 m

s (within the model window with εmodel = 9.27 %, referred to as “good”
model). Depending on their impact, the techniques can be divided into several groups:
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Figure 4.27: Application 1: Summary of
FWT experiments. The plot shows the
model error as a function of the initial ve-
locity model. It is a comparison of initial
model error with the final errors after 100
iterations for the reference experiment I
and the optimal experiment VI/1.
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Group 1: Negative or no significant impact

• Especially time windowing does not effectuate notable improvements (Figures 4.28a,e).
In contrast, in case of the “bad” initial model, an increase of the model error can be
observed. However, in case of using the “good” model, time windowing does not
positively affect the outcome of the FWT but decreases the convergence.

Group 2: Partially positive effect

• Obviously, offset windowing can be applied to account for cycle-skipping. Con-
sequently, in case of the “bad” model, it helps to obtain a remarkable reduction of
the model error (Figure 4.28a). With respect to the usage of the “good” model, there
is an analogy of offset windowing with time windowing. Due to the absence of the
cycle-skipping effect, there are nearly no improvements by the application of offset
windowing (Figure 4.28e).

• In comparison with the reference experiment, gradient preconditioning is useful to
increase the convergence (Figure 4.28f). The best performance is achieved by applying
tapers at sources and receivers. However, gradient preconditioning does not result in
relevant enhancements of the final vP model.

• Due to the simplicity of the initial models and the high complexity of the true model,
the application of a reflection geometry does not yield satisfactory inversion results.

Group 3: Significant positive effect

• In case of using the “good” initial model, the advantages of the adaptive step length
estimation can be exploited (Figure 4.28g). Although, both experiment VI/1 and
experiment IV/3 involve this technique, the individual application of the adaptive step
length yields the strongest convergence and the lowest model error of all experiments.
Thus, the involvement of additional methods seems to be unnecessary. Apart from
that issue, the adaptive step length estimation does not reduce the dependence on
the initial model. While the data misfit decreases, the model error shows a contrary
behavior (Figure 4.28c).
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Figure 4.28: Application 1: Compilation of FWT performances of reference and optimal exper-
iment as well as several experiments with individual application of several techniques (see
rows). The plots show the model errors with respect to a “bad” and a “good” initial model. The
progresses of the model errors represent cross sections of the multiple FWT results (see Figures
in appendix D.2).
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• The acquisition geometry plays a major role with respect to model accuracy, conver-
gence and computational efforts of the FWT. A general rule of thumb is: The higher
the illumination of the subsurface, the better the performance of the FWT. But, this
principle is limited by some circumstances. The inversion requires a “good” initial
model to benefit from a high illumination (compare Figures 4.28d,h). On this under-
standing and considering a transmission geometry, the quality of the inverted model
definitely depends on the number of sources, Ns: The higher Ns, the lower the model
error (Figure 4.28h). However, this rule does not cause an unlimited improvement
of the model. Due to physical conditions, such as maximum available frequency
contents or minimum available wavelengths, the ability of reconstructing the velocity
model is limited. Within the scope of the given example, a sufficient performance is
obtained by using 16 sources. An increase up to 64 sources does not effectuate further
improvements – but tremendously increases the computational efforts.

Group 4: Significant positive effect with high independence on the initial model

• Frequency filtering can be regarded as the most reliable method to mitigate the ambi-
guity of the inverse problem. In case of using the full frequency content (related to
short cycles), small variations of the initial background velocity are enough to induce
the cycle-skipping effect. The restriction to low frequencies increases the cycle length.
Thus, the appearance of the cycle-skipping effect requires a larger time-shift of the
seismic waveforms. The exploitation of low frequencies proves to be very import-
ant (Sirgue, 2006). Consequently, a broader range of initial velocity models, such as
examples in Figures 4.28a,e, allows a successful inversion.



Chapter 5

Application 2: Comparison of FWT in the
time domain and the frequency domain

This chapter follows the final conclusions of section 4.3. As mentioned in chapter 4, the
progress of the inversion depends on the frequency content of the data or source signal,
respectively. The higher the frequency, the more information is included in the data and the
more complicated the objective function is. In case of using the full frequency content the
application of FWT to a bad starting model may fail, whereas a good starting model, which
already contains the long-wavelength structures, may be enough to succeed. Thus, a high-
frequency dataset for a velocity model, which contains both small- and large-scale structures,
is suitable for a comparison of the time-domain implementation with the frequency-domain
implementation FULLWV developed by R. G. Pratt (Pratt, 1999) and the single-frequency
method proposed by Sirgue et al. (2008).

5.1 Emulation of frequency-domain inversion

The most important advantage of frequency-domain FWT is the inversion of selected
frequencies in the frequency domain. This method starts at low frequencies to resolve
the basic large-scale structures and adds higher frequency contents later on. Thus, the
suppression of high-frequency contents at the beginning results in a simplification of the
objective function and increases the chance of computing reliable results.

In the time-domain FWT, there are different possibilities to emulate the advantages of
frequency-domain FWT. On the one hand, frequency filtering can be applied to mitigate the
ambiguity of the inverse problem (see chapter 4). On the other hand, the single-frequency
method combines the advantages of time-domain and frequency-domain FWT. While
forward-propagations and back-propagations are performed in the time domain, the ima-
ging condition is evaluated in the frequency domain. Although, 2D frequency-domain
FWT reveals a high computational efficiency, 3D modelings in the frequency domain are
much more expensive. Thus, the single-frequency method represents a good trade-off of
time-domain and frequency-domain FWT.

The fundamental idea of the single-frequency method is the selection of frequencies by
applying the discrete Fourier transform to the time-domain wavefields. The approach
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used in this work is a minor modification of the method published by Sirgue et al. (2008).
Contrary to that, the source time function is applied at time-domain forward modeling. The
imaging condition only consists of a zero-lag cross-correlation of the forward-propagated
and the back-propagated wavefields. In detail, the time-domain source wavefield p(x, t|s)
and the residual wavefield p∗(x, t|r) are transformed to the frequency domain for selected
frequencies f :

p(x, f |s) =
T

∑
t=0

e−i2π f tp(x, t|s) and p∗(x, f |r) =
T

∑
t=0

e−i2π f tp∗(x, t|r) , (5.1)

where p(x, f |s) and p∗(x, f |r) denote the frequency-domain wavefields and T is the max-
imum propagation time. The gradient g(x) is obtained by frequency-domain cross-correlation,
summation over selected frequencies, N f and sources Ns:

g(x) = ∑
Ns

∑
N f

(
−4π f 2p(x, f |s) p∗(x, f |r)

)
. (5.2)

According to pure frequency-domain methods, such as Pratt (1999), the inversion starts
with the extraction of low-frequency contents and moves to higher-frequency information at
later iterations. A common approach is the manual definition of individual frequencies and
the corresponding number of required iterations for each frequency selection. However, in
general the convergence of the misfit function is unknown and might vary among different
frequencies. Hence, the implementation comprises an automatic selection realized by the
workflow (see section 3.2.2).

5.2 Basic setup

5.2.1 General parameters

The comparison of the FWT in time domain and frequency domain employs the random
medium model with a size of 320 × 210 meters and includes a cross-well acquisition
geometry. It is generated by applying an exponential autocorrelation function with a
correlation length of 52 m (Figure 5.1a), where vP varies between 1600 m

s and 2400 m
s .

The resulting model is a self-similar medium and includes structures on different length
scales. For waveform tomography, two different initial models are used. The first one is
homogeneous with vP = 2000 m

s (Figure 5.1b). The second initial model is computed from
the true model by applying a 2D Gaussian filter (see equation (2.1)) with the constant σ = 35
and a size of 80 × 80 m (Figure 5.1c).

The acquisition geometry is arranged in a cross-hole configuration, which includes 24
explosive sources and 277 receivers. The source spacing is 12 m and the receiver spacing
is 1 m. Time-domain forward modeling involves a Ricker-wavelet with a peak frequency
of fpeak = 150 Hz and a time discretization of ∆t = 0.1 ms. The record length is set to
T = 0.26 s, where the wavelet is shifted by 0.08 s to account for wavelet “stretching” due
to low-pass filtering. The grid spacing is set to DH = 0.5 m to fulfill the grid dispersion
criterion (2.13). This results in a grid size of 640 × 420 grid points. The model is located
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Table 5.1: Application 2: General setup.

Application 2: Comparison of FWT in the time domain and the frequency domain

Attributes Specifications

Model

Size width: 210 m, height: 320 m

Structure

Figure Figure 5.1

Location

Configuration

Sources

Receivers

Model size

PML boundary width: 19 m (time domain only)

Initial models

homogeneous

smooth

Figure 5.1

Model update

time domain
frequency filtering

single frequencies

freq. domain single frequencies

Figure 5.5

random
medium

· average v
P
 = 2000 m/s

· maximum range: v
P
 = [1600, 2400] m/s

· standard deviation σ = 0.075
· correlation length: 52 m
· exponential autocorrelation function

Acquisition
geometry

full-space, borehole

transmission geometry (cross-hole)

· 24 explosive sources
· source-time function: Ricker wavelet
· peak frequency: 150 Hz
· time delay of source signal: 0.08 s (time domain only)

· 277 hydrophones
· effective recording length: 0.18 s

Modeling
parameters

time domain:
· width: 420 grid points, height: 640 grid points
· grid spacing: 0.5 m
frequency domain:
· width: 210 grid points, height: 320 grid points
· grid spacing: 1 m

Propagation
time

time domain only:
· 2600 time steps (effective recording length + time delay)
· time discretization: 1·10-4 s

General
inversion

parameters

v
P
 = 2000 m/s

application of a Gaussian filter to the true
model:
· width: 80 m, height: 80 m
· σ = 35

hard constraint: v
P
 range: [1400, 2600] m/s

Frequency
selection
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within the full space, surrounded by perfectly matched layers with a width of 19 m. All
general modeling and inversion parameters are summarized by Table 5.1.

Exemplary observed data is illustrated in Figure 5.2. Due to different wavelet definitions and
modeling parameters, the inversion results separately refer to the observed data obtained
from time-domain modeling (Figure 5.2a) and frequency-domain modeling (Figure 5.2b).

Furthermore, the initial seismograms (Figures 5.3a,b, obtained from time-domain modeling)
demonstrate potential issues with respect to the choice of the initial model (see chapter 4).
Despite a plausible average velocity model, the homogeneous initial model does not explain
the observed data. The corresponding initial data is characterized by a huge phase shift
(compare Figures 5.2a and 5.3a). Probably, it is too far away from the true model which
may cause a deadlock in a local minimum of the data misfit function and a failure of the
inversion. In contrast, the smooth model represents a much better initial model. It is already
a good representation of the long-wavelength structures (compare smooth initial model in
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Figure 5.1: Application 2: Random medium velocity model: (a) true model, (b) homogeneous
initial model with acquisition geometry including 24 sources (red markers) and 277 receivers
(green markers), (c) smooth starting model computed from the true model, (d) and (e) show
deviations of the initial models (c and d) from the true model.
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Figure 5.2: Application 2: Observed seismograms belonging to the true velocity model in Figure
5.1a. (a) is computed in the time domain, while (b) is synthesized from frequency-domain Fourier
coefficients using the modeling software OMEGA developed by R. G. Pratt.



Chapter 5. Comparison of FWT in the time domain and frequency domain 93

Figure 5.1c with the residual model in Figure 5.1e). Hence, this model is able to give a better
explanation of the direct wave (Figure 5.3b) resulting in a lower data misfit (compare initial
data residuals in Figures 5.3c,d).
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Figure 5.3: Application 2: Initial seismograms (a and b) belonging to the initial velocity models
in Figure 5.1b,c and corresponding residuals (c and d) computed with respect to the observed
data in Figure 5.2a. The data are obtained from time-domain modeling.

5.2.2 Configuration of comparative experiments

The comparison of FWT in the time-domain (TD) and frequency-domain (FD) comprises two
consecutive experiments. The aim of the preliminary experiment is to find an appropriate
initial model for the second experiment. In other words, the initial model has to be “bad”
enough to cause a failure of the FWT which simultaneously inverts for the full frequency
content of the data. The second experiment compares the performance of frequency-domain
FWT with time-domain FWT involving emulation techniques (see section 5.2.1).

Table 5.2 gives an overview of the configuration of both experiments. The preliminary
experiment performs inversions in the time domain and frequency domain with respect
to the homogeneous and smooth initial model. While the TD FWT involves the full time-
domain data, the FD FWT simultaneously inverts for a selection of 50 equidistantly spaced
frequencies ranging from 8 Hz to 302 Hz. The frequency selection appropriately represents
the maximum frequency range of the data (see Figure 5.4). Based on the usage of the
homogeneous initial model, the consecutive experiment investigates the performance of two
emulation techniques in the TD FWT. On the one hand, 50 stages of low-pass filters with
ascending upper corner frequencies are applied (see blue graphs in Figure 5.5). However,
low-pass filters do not perfectly reproduce the effect of the single-frequency selection.
Already at stage 30 the filtered data exhibits the maximum peak frequency of approximately
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145 Hz. On the other hand, both the TD FWT and the FD FWT exploit the same serial
selection of single frequencies (see red graph in Figure 5.5).

Table 5.2: Application 2: Detailed setup of comparative experiments.

Preliminary experiment
Initial model homogeneous smooth

FWT TD FD TD FD
full data simultaneous full data simultaneous

Frequency inversion for inversion for
selection 50 frequencies 50 frequencies

f = (8, 14, . . . , 302) Hz f = (8, 14, . . . , 302) Hz
Figures 5.6a,e,i,m 5.6b,f,j,n 5.6c,g,k,o 5.6d,h,l,p

Consecutive experiment
Initial model homogeneous

FWT TD TD FD
serial application of 50 serial application of 50

Frequency low-pass filters with ascending single frequencies
selection ascending corner frequencies

4 iterations
frequency range

4 iterations
frequency

Figures 5.7a,d,g,j 5.7b,e,h,k 5.7c,f,i,l
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Figure 5.4: Application 2:
Amplitude spectra of observed
TD and FD data as well as fre-
quency selection of FD FWT.
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quency selection for emulation
using low-pass frequency filter-
ing in TD FWT (blue graphs)
or applying single frequencies
in TD FWT and FD FWT (red
graph). Both corner frequen-
cies and single frequencies are
equidistantly spaced.

5.3 Results of time-domain and frequency-domain FWT

The results of the first experiment are assembled in Figure 5.6. Obviously, the homogeneous
initial model fulfills the requirements of a “bad” model. Both TD FWT and FD FWT fail
to reconstruct a satisfactory vP model. While the TD FWT produces an artificial result (see
inverted model and deviation from the true model in Figures 5.6a,e), the FD FWT computes
a vP model showing a high similarity to the true model (compare Figures 5.6b,f). In both
cases, the FWT is unable to explain the observed data. The final synthetic data does not
match the observed data at all (compare seismograms in Figures 5.6i,m and 5.6j,n with
corresponding observed data in Figures 5.2).

In contrast, the smooth initial model is not suited for the following experiment. Due to
its advantages mentioned in section 5.2.1, the FWTs produce significantly better inversion
results (see vP models in Figures 5.6c,d and associated deviations from the true model
in Figures 5.6g,h). Accordingly, this observation is verified by the final data fit (see final
synthetic and residual seismograms in Figures 5.6k,l as well as 5.6o,p). However, once a
good model is found, the TD FWT not only computes a reliable vP model, but also reveals a
better performance than the FD FWT. Probably this is caused by the different consideration
of frequency contents. While the FD FWT uses single frequencies, the TD FWT involves the
full frequency range (see Figure 5.4).

On the basis of the preliminary experiment, the second experiment compares the inversion
results of the FD implementation and TD implementation including emulation techniques,
such as frequency filtering and the single-frequency method. Figure 5.7 summarizes the
inverted vP models and corresponding deviations from the true model as well as final
synthetic data and residuals. Apart from minor overestimated velocities within the vP
model computed by the FD FWT (Figures 5.7c,f), all results resemble each other (compare
Figures 5.7a,b,c). The TD FWT involving the emulation techniques is able to overcome the
disadvantages of the inversion for the full frequency content of the data (see first and second
column in Figures 5.7).
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Figure 5.6: Application 2: Results of time-domain FWT (TD) and frequency-domain FWT (FD)
with respect to the simultaneous inversion for the full frequency content. The data plots represent
the central shot located at z = 166 m.



Chapter 5. Comparison of FWT in the time domain and frequency domain 97

x in m

z
in

m

(a)
40 80 120 160

20

60

100

140

180

220

260

300

x in m(b)
40 80 120 160

x in m

 

 

(c)
40 80 120 160

v
P

in
m

/
s

<1600

1800

2000

2200

>2400

x in m

z
in

m

(d)
40 80 120 160

20

60

100

140

180

220

260

300

x in m(e)
40 80 120 160

x in m

 

 

(f)
40 80 120 160

d
e
v
ia

t
io

n
in

m
/
s

<−400

−200

0

200

>400

z in m

t
im

e
in

m
s

(g)
40 120 200 280

70

90

110

130

150

z in m(h)
40 120 200 280

z in m(i)
40 120 200 280

z in m

t
im

e
in

m
s

(j)
40 120 200 280

70

90

110

130

150

z in m(k)
40 120 200 280

z in m(l)
40 120 200 280

TD: frequency
filtering

TD: single
frequencies

FD: single
frequencies

fi
na

l
v P

fi
na

l
re

si
d

u
al

m
od

el
v P
−

v P
|tr

ue
fi

na
l

sy
nt

he
ti

c
d

at
a

fi
na

l
re

si
d

u
al

d
at

a

Figure 5.7: Application 2: Results of time-domain (TD) FWT strategies (first and second column)
and frequency-domain (FD) FWT with incremental frequency selection (right column). The
homogeneous initial vP model is used. The data are plotted for the shot located at z = 166 m.
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5.4 Summary

The comparison of frequency-domain FWT with time-domain FWT involving different tech-
niques to emulate the frequency selection reveals reliable final vP models. Apart from minor
inaccuracies of the FD result, the application of frequency filtering and single frequency
method resemble the result of the FD implementation FULLWV developed by Pratt (1999).
Although, the emulation techniques additionally require fast Fourier transforms (filtering)
or discrete Fourier transforms (single frequency method), the computational efforts increase
insignificantly. However, frequency filtering is only applied to the source time function and
to the observed data. Due to the focus on certain frequency ranges or single frequencies, it
is not necessary to include wavefield “snapshots” at all finite-difference time steps into the
cross-correlation. A strict Nyquist criterion is applied to choose a subset of “snapshots” –
tremendously reducing the essential number of discrete Fourier transforms. Consequently,
especially in 3D applications the emulation techniques prove to be very useful (as performed
by Sirgue et al., 2008).



Chapter 6

Application 3: Acoustic FWT in the
presence of attenuation: a quantitative
study

The aim of FWT is to find a subsurface model which explains the recorded seismic data,
i. e., it iteratively minimizes the difference between observed and synthetic seismograms.
The majority of FWT applications faces a multi-parameter problem. In particular, attenu-
ation affects both amplitude and phase of seismic signals causing amplitude changes and
frequency-dependent phase velocity dispersion (Causse et al., 1999).

Nowadays, a purely acoustic FWT is usually applied to recover the P-wave velocity model
in transmission and reflection seismic configurations. However, most applications neglect
the impact of intrinsic attenuation on seismic waveforms and thus the model reconstruction.
The purpose of this work is to investigate the influence of attenuation on the recovered
velocity model and the validity of an acoustic FWT in presence of attenuation.

There are two different ways to take attenuation into account. On the one hand, attenuation
is used as a passive parameter, i. e., attenuation is a modeling parameter only. The aim is to
improve the performance of the inversion for desired parameters, such as P-wave velocity
vP (e. g., Brenders and Pratt, 2007b). On the other hand, a multi-parameter FWT can involve
attenuation as an additional inversion parameter (e. g., Hak and Mulder, 2008, 2011; Kamei
and Pratt, 2008).

Field data applications are mainly conducted in the frequency domain. Hicks and Pratt (2001)
obtained reliable quality factor subsurface models from shallow seismic data recorded in
the North Sea. Takam Takougang and Calvert (2011) reconstructed realistic velocity models
from marine reflection data. In order to achieve satisfactory results, they combined different
inversion strategies, such as a multi-stage approach with incremental frequency selection
(compare Bunks et al., 1995; Sirgue and Pratt, 2004) and separate inversion of near and far
offsets. The vP-only inversion at low frequencies connected with the joint inversion for vP
and QP at higher frequencies improved the recovery of both vP and QP models. Malinowski
et al. (2011) applied a frequency-domain viscoacoustic FWT to wide-aperture seismic field
data recorded in the Polish basin. The focus of their investigation is the applicability of a
viscoacoustic joint inversion for P-wave velocity vP and QP. They reconstructed satisfactory
subsurface models for both vP and QP coinciding with the expected geology. In this context,
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Mulder and Hak (2009) discussed problems of a joint inversion with respect to short-aperture
data in reflection seismics. They found that the ill-posedness of the inverse problem causes
a very poor recovery of both phase velocity and attenuation. A brief overview of recent
publications in this area is given by Virieux and Operto (2009).

In this chapter, I use the time-domain implementation to study the role of attenuation for
weakly and strongly attenuative media in marine environments. I investigate the validity of
an acoustic inversion scheme in presence of attenuation by systematically quantifying the
errors in the inverted velocity model. Attenuation is incorporated as a passive parameter in
forward modeling only. I apply acoustic FWT including purely acoustic or viscoacoustic
modeling to analyze and compare the impact of attenuation on the reconstruction of the
velocity models from viscoacoustic reflection datasets.

Although this study concentrates on 2D acoustic FWT in the time domain, it is also tar-
geted to 3D applications. In contrast to the high efficiency of 2D frequency-domain FWT
due to straightforward implementation of attenuation, 3D frequency-domain modeling is
highly demanding. Hence, in 3D FWT applications time-domain modeling is commonly
used. Furthermore, the time-domain approach has some advantageous features, such as
straightforward time-windowing of data and the consideration of broad frequency bands
(instead of single frequencies).

This chapter deals with the application of acoustic FWT to viscoacoustic data. The first
section verifies the viscoacoustic time-domain modeling by comparing it with a semi-
analytical solution. The second section discusses the impact of attenuation by choosing
two examples: a simple 1D medium with a reflection acquisition geometry providing a
high ray coverage and the 2D Marmousi model with a towed streamer geometry. For
both experiments the same inversion tests are performed. The investigation comprises the
evaluation of the resulting data misfits and model errors to demonstrate the footprint of
attenuation on the recovered velocity models.

6.1 Accuracy of viscoacoustic modeling in the time domain

This section employs 2D time-domain acoustic as well as viscoacoustic modeling to a
homogeneous full-space example. The results are compared with a semi-analytical solution.
The model and its parameters are shown in Figure 6.1. For finite-difference modeling I use a
grid size of 1000× 1600 grid points with a spacing of ∆h = 0.5 m, a time step of ∆t = 10−4 s
and a Ricker wavelet with a peak source frequency of fpeak = 80 Hz. To suppress artificial
reflections from model boundaries, the acquisition geometry is surrounded by a broad
perfectly matched layer (PML).

In the following time-domain viscoacoustic approach the attenuation of a medium is
approximated by L = 3 relaxation mechanisms within the desired frequency range of
f = [0, 200] Hz, which corresponds to the relevant frequency content of the source wave-
let. L relaxation frequencies fr,l (l = {1, . . . , L}) are estimated from QP,0 and the reference
frequency f0 B fpeak. This is realized by the QP-approximation method mentioned above.
The result of this optimization is a logarithmically spaced set fr,l = (1.470, 21.40, 199.6) Hz.
The approximation of the quality factor QP ( f ) and the resulting dispersion vP ( f ) is il-
lustrated by Figures 6.2 (b) and (c). At frequency f0 I assume the acoustic reference
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Figure 6.1: Application 3: Viscoacoustic ho-
mogeneous full-space model used for time-
domain finite-difference modeling. The ac-
quisition geometry consists of one directed
force source in vertical direction (red star) and
five receivers (green triangles).
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Figure 6.2: Application 3: Ap-
proximation of the quality factor
QP( f , L = 3) for the model shown
in Figure 6.1 and the desired fre-
quency range of the underlying
source signal (b) as well as corres-
ponding dispersion curve based on
an acoustic reference velocity model
v( f0) = vP,0 = 2400 m

s (c). The nor-
malized amplitude spectrum of the
observed data and corresponding
bandwidth (shaded area) are shown
in (a)
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Figure 6.3: Application 3: Vertical particle velocity obtained for geometry in Figure 6.1. Due to
plotting issues, all traces are normalized to maximum amplitude of the acoustic signals.
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phase velocity vP,0 = 2400 m
s . Thus, vP ( f ) ranges from vP,min = vP ( f = 0) ≈ 2163 m

s to
vP,max = vP ( f → ∞) ≈ 2499 m

s , whereas in finite-difference modeling vP ( f → ∞) is com-
puted at the Nyquist frequency fNy = 1/(2 ∆t) = 5000 Hz (with respect to time step ∆t).
Both vP,min and vP,max have to be considered to avoid grid dispersion or instability. Hence,
in forward modeling minimum and maximum velocities are computed by equations B.8. In
case of the homogeneous model experiment, the velocity limits amount to vmin ≈ 2184 m

s
and vmax ≈ 2491 m

s , which slightly differ from the theoretical values.

The effect of attenuation on seismic data is demonstrated by a comparison of acoustic
and viscoacoustic modeling based on the given acquisition geometry. Figure 6.3 shows
the resulting seismograms. As expected with increasing offset a significant amplitude
decay and a modification of phases can be observed. Especially the amplitudes of high
frequency contents are subject to strong attenuation (cp. amplitude spectrum in Figure
6.4a). Furthermore, Figure 6.4b visualizes a comparison of acoustic and viscoacoustic phase
spectra. The frequency-dependent phase distortions mainly occur at frequencies f > f0 and
disappear around the peak frequency.

Hereafter, the results of viscoacoustic finite-difference modeling are verified using the
program AnalyticAnelastic (implemented by Josep de la Puente, LMU Geophysics, Munich;
based on Carcione et al., 1988b; Carcione, 2001; Emmerich and Korn, 1987). It provides
the same rheology as mentioned above and is utilized for computation of a semi-analytical
solution of the wave equation in a viscoelastic and consequently viscoacoustic or acoustic
medium. Figure 6.5a shows the acoustic reference comparison for an exemplary trace at
farthest offset (x = 340 m). Both semi-analytical and finite-difference solution fit very well.
The viscoacoustic data at near offset (x = 20 m) and far offset (x = 340 m) are depicted in
Figures 6.5b and 6.5c. Apart from minor deviations, the finite-difference solution resembles
the semi-analytical solution.
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Figure 6.4: Application 3: Amplitude (a) and phase spectra (b) of the seismic data shown in
Figure 6.3. All traces in (a) are normalized to maximum values of the acoustic spectra.
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Figure 6.5: Application 3: Comparison of semi-analytical and finite-difference solutions. Exem-
plary data is shown for the acoustic case at far offset (a), for viscoacoustic data at near offset
(b) and far offset (c). Traces (A) are represented by the semi-analytical solution, traces (B) by
finite-difference solution and traces (C) by the corresponding acoustic solution in (a).

6.2 Synthetic experiments

I investigate the impact of attenuation in application of acoustic FWT to viscoacoustic data
with and without a passive QP model. Several acoustic full waveform inversion tests are
employed to analyze the footprint of attenuation on vP inversion results. I analyze the effects
of both viscoacoustic and acoustic modeling in acoustic FWT. The tests are applied to both a
simple 1D medium and the more complex Marmousi model using different initial vP and
passive QP models. A list of all tests can be found in Table 6.1. To avoid unwanted side
effects, some general restrictions and only necessary preconditioning features are applied.
The FWT tests comprise the following setup and constraints:

(1) the P-wave velocity vP is the only inversion parameter,

(2) to focus on attenuation-related effects, the density model is neglected,

(3) the true source signal is used, i. e., no inversion for source time function takes place,

(4) in case of viscoacoustic modeling, a QP model is used as passive model parameter, i. e.,
it is not an inversion parameter,

(5) Marmousi experiment: low-pass filtering over multiple stages (Bunks et al., 1995;
Sirgue and Pratt, 2004),

(6) wavefield-based gradient preconditioning (see 2.4.2) to suppress source artifacts,

(7) no model update within the water layer due to known parameters vP and QP,

(8) stop criterion for 1D experiment to obtain most optimal results: FWT is unable to
reduce data misfit (relative threshold value between two successive iterations is
0.0001 %), or it is not possible to compute a meaningful step length,
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(9) stop criterion for shifting within multiple stages in the Marmousi experiment: due to
high computational efforts, the relative threshold value of the data misfit between two
successive iterations is 1 %.

The reference computation applies acoustic inversion to acoustic data. Its aims to show the
performance of FWT for a given geology and geometry of both experiments. Tests 1 and 2
analyze the effect of attenuation on an acoustic inversion with acoustic modeling. Tests 3 to
5 involve viscoacoustic modeling in acoustic FWT and investigate three different passive
QP models in conjunction with the more realistic initial vP model.

Data misfits and model errors (ε) are calculated to quantify the performance of all tests.
They are computed with respect to the true model vP|true and to the observed data pobs. Due
to the usage of the least-squares norm in the FWT algorithm, the data misfits are expressed
as normalized squared L2 norms. The model errors are normalized L1 norms to ensure
comparability with relative model deviations. In the following relations pinit and presult
denote the synthetic data for initial model vP|init and final model vP|result, respectively:

ε
(

vP|init

)
=

∥∥∥vP|init − vP|true

∥∥∥
1∥∥∥vP|true

∥∥∥
1

(initial model error), (6.1a)

ε
(

vP|result

)
=

∥∥∥vP|result − vP|true

∥∥∥
1∥∥∥vP|true

∥∥∥
1

(final model error), (6.1b)

ε(pinit) =
‖pinit − pobs‖2

2

‖pobs‖2
2

(initial data misfit), (6.1c)

ε(presult) =
‖presult − pobs‖2

2

‖pobs‖2
2

(final data misfit). (6.1d)

Table 6.1: Application 3: List of all FWT tests for both the 1D and the Marmousi experiment.
The terms “acoustic” and “viscoacoustic” are denoted by abbreviations “A” and “V”.

FWT Figures of vP results Data Modeling Initial Passive
test 1D model Marmousi in FWT vP-model QP-model

Reference 6.9a 6.15a A A smooth –

Test 1 6.9b 6.15b V A true –

Test 2 6.9c 6.15c V A smooth –

Test 3 6.9d 6.15d V V smooth true

Test 4 6.9e 6.15e V V smooth smooth

Test 5 6.9f 6.15f V V smooth homogeneous
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6.2.1 Synthetic experiment: layered 1D model

The first experiment uses a 2D model with a 1D geology (hereinafter referred to as “1D
model”) consisting of four layers over a half-space: a water layer on top, followed by highly
and weakly attenuative sedimentary rocks. The corresponding vP and QP models are shown
in Figure 6.6. Due to the occurrence of a thick layer with high attenuation on top of the
sediments, this model represents a shallow marine environment. The acquisition geometry
is located at the water surface and consists of 24 explosive sources with a spacing of 12 m as
well as 278 hydrophones with a spacing of 1 m. For each shot gather all receivers are used.
The resulting offsets range from 0.5 m to 292.5 m. The source signal is a Ricker wavelet with a
peak frequency fpeak = 80 Hz and the recording time of synthetic seismic data is 0.21 s. The
total model size is 130× 308 m with a spatial discretization of ∆h = 0.5 m. However, due to
the application of a perfectly matched layer (width = 15 m) in finite-difference modeling, all
model related figures are limited to the relevant area (excluding the PML layer). General
parameters are summarized by Table 6.2.

For viscoacoustic modeling I determine the relaxation parameters such that I get an optimal
representation of constant QP within the bandwidth of the seismic data (see Figure 6.7b).
Here, I define the bandwidth as the contiguous frequency range, wherein the decay of the
amplitude spectrum with respect to the maximum amplitude is less than 10 dB (shaded
areas in Figure 6.7). The range of phase velocity dispersion of all layers is estimated within
this bandwidth (see exemplary dispersion for the second layer with QP,0 = 10 in Figure 6.7c)
and visualized by shaded areas in vertical sections across the 1D medium (Figure 6.6a). The
aim is to analyze if the recovered vP model can be explained by the minimum and maximum
velocity dispersion.

The approximation of relaxation parameters is based on the reference frequency f0 B fpeak
and an average QP,0 = 74 computed from the true quality factor model within the sub-
seafloor area (Figure 6.6b). The acoustic velocity model vP,ref (Figure 6.6a) is defined
at f0, i. e., no dispersion occurs at f0. The bandwidth of the seismic data is limited to
∆̃ f = [19.6, 141] Hz. This corresponds to a dynamic range of 2.8 octaves. Based on the rule
of one relaxation mechanism per octave (Blanch et al., 1995), I use three relaxation mechan-
isms. The resulting optimal set of relaxation frequencies is fr,l = (1.202, 17.62, 179.4) Hz. I
found that it is not necessary to obtain relaxation frequencies for all quality factors of the true
model, i. e., it is not essential to provide models containing relaxation frequencies. Using
the relaxation parameters computed from the average QP,0 = 74, I obtain quite accurate
approximations for all quality factors given in the 1D model. An exemplary quality factor
approximation is shown for the second layer with QP = 10 (Figure 6.7b). Obviously, the
deviation in corresponding phase velocity dispersion is negligible (compare Figure 6.7c).

The L1 based QP approximation error is given with respect to constant QP,0 and is quantified
within the seismic bandwidth. For all layers, I obtain acceptable approximation errors of
about 3 %. While the approximation at reference frequency is perfect, the largest errors can
be observed at the upper end of the bandwidth. These errors are nearly identical to those of
the accurate QP approximation using exact QP values of each layer.

A comparison of acoustic and viscoacoustic data computed from the true model at a central
shot is shown in Figure 6.8. Due to very weak attenuation in water, the direct waves
are nearly identical. At near offsets one can observe a quite good match in phases and
amplitudes of the seafloor reflection. However, at larger offsets and for all later reflection
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Table 6.2: Application 3, 1D experiment: General setup.

Application 3: 1D experiment

Attributes Specifications

Model

Size width: 308 m, height: 130 m

Structure

Figure Figure 6.6

Location

Configuration reflection geometry

Sources

Receivers

Offsets minimum: 0.5 m, maximum: 292.5 m

Model size

PML boundary

Dispersion Figure 6.6a

Initial models Figure 6.6a

Passive models Figure 6.6b

Preconditioning

Model update

· 1D geology (v
P
 = [1700, 2600] m/s)

· with water layer (v
P
 = 1500 m/s)

Acquisition
geometry

on top of half-space, sea surface

· 24 explosive sources
· source-time function: Ricker wavelet
· peak frequency: 80 Hz

· 278 hydrophones
· recording length: 0.21 s

Modeling
parameters

· width: 616 grid points, height: 260 grid points
· grid spacing: 0.5 m

Propagation
time

· 2625 time steps
· time discretization: 8·10-5 s

· width: 15 m
· free surface

Relaxation
parameters

· relaxation frequencies: (1.20, 17.6, 179) Hz
· reference frequency: 80 Hz

General
inversion

parameters

· wave-field based
· user-defined: water layer is known

· hard constraint: v
P
 limit: [1300, 3150] m/s

· maximum deviation from the initial model: 25 %
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Figure 6.6: Application 3, 1D experiment: Vertical cross sections of the 1D models: (a) true and
initial velocity model. The range of phase velocity dispersion due to attenuation is illustrated
by shaded areas. The layers are labeled with Roman numbers (water layer and half-space are
denoted by “I” and “V”, respectively). (b) shows true as well as smooth and homogeneous
passive QP models (“homogeneous” with respect to the sub-seafloor area).
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Figure 6.7: Application 3, 1D experiment: Approximation of the quality factor. (a) shows the
normalized amplitude spectrum of all observed viscoacoustic data. (b) and (c) illustrate the qual-
ity factor approximation and phase velocity dispersion for the second layer using the relaxation
frequencies for QP,0 = 10 and the average QP,0 = 74. The shaded areas represent the bandwidth
with respect to the observed data. The solid and dashed lines show Q( f ) and corresponding
phase velocity dispersion for the same relaxation frequencies fr,l = (1.202, 17.62, 179.4) Hz but
true and average QP, respectively.
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Figure 6.8: Application 3, 1D experiment: (a) shows the difference between acoustic and vis-
coacoustic data for the central shot located at x = 160 m. It exhibits true amplitudes which are
clipped to ±4 % of the maximum acoustic amplitude. (b) illustrates traces at exemplary offsets.
For a better visualization, they are normalized independently for each offset and the direct wave
of the zero-offset trace is clipped. Acoustic and viscoacoustic amplitudes are still comparable.

events there are significant differences between acoustic and viscoacoustic data. The phase
misfit is explained by the highly dispersive properties of the second layer.

The smooth initial vP and passive QP models for waveform tomography are generated by
the application of a 2D Gaussian filter (size 100× 100 m, σ = 33) to the sub-seafloor area of
the true model (see Figures 6.6a and 6.6b). Figures 6.9a to 6.9f show the results obtained
by the reference FWT as well as from acoustic FWT of viscoacoustic data (compare Table
6.1), which will be discussed in the following. All sub-figures contain auxiliary plots of
minimum and maximum velocity dispersion with respect to the true vP and QP models. The
vertical section of all inversion results is computed by lateral averaging of a representative
model area within the interval x = [80, 228] m. This avoids the involvement of unreliably
recovered velocities, mainly related to the areas close to lateral model boundaries. Figure
6.10 depicts the evolution of the corresponding data misfits and model errors.

A reliable interpretation of the effects caused by attenuation can be done by computing a
reference result which comprises acoustic inversion of pure acoustic observed data. The
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nearly optimal conformity of the true and the final model (Figure 6.9a) ensures the resolving
power of FWT with respect to the given model and geometry. The reference FWT is
characterized by the strongest reduction of both data and model error (see Figure 6.10). It
stopped after 1762 iterations. Due to the computation of too small step lengths and the
limited accuracy of single precision, the model update stagnated.

Test 1 investigates the effect of neglecting QP information in an acoustic FWT applied to
viscoacoustic data (Figure 6.9b). In spite of using the true vP model as initial model, the FWT
starts at the highest initial data misfit (Figure 6.10a) which is reduced at the expense of the
accuracy of the velocity model. On the one hand, the interface locations are still recognizable.
But, on the other hand, both a significant model error (increasing from 0 % to 4.5 %, see
Figure 6.10b) and an artificial alteration of the velocity model can be observed. In particular,
layer III is smeared heavily. Omitting QP information results in a failure of the FWT. Only
layer II is recovered within the maximum range of velocity dispersion. This indicates that
the effects of attenuation might be negligible in near-surface areas of the given model. The
FWT of test 1 stops after 61 iterations due to the inability of computing a meaningful step
length.

Test 2 represents a common FWT application (Figure 6.9c). In this case I neglect QP and use
the smooth initial vP model (Figure 6.6a). The final velocity model is recovered insufficiently,
which is caused by a bad fit of observed and synthetic data. While the final vP model shows
some improvements, it is still very similar to the initial model. Both the data and the model
error are reduced slightly producing a smooth velocity model. Furthermore, the large-scale
structures are comparable to the result of test 1. This implies that both inversions got stuck
in a neighboring local minimum of the data misfit function. The FWT of test 2 stops after 77
iterations due to the inability of computing a meaningful step length.

Test 3 includes the true QP model (Figure 6.6b) as a passive model parameter. It can be
clearly seen that the result resembles the acoustic reference result (Figure 6.9d). The velocity
of layer II is explained within the range of relevant phase velocity dispersion (see Figure
6.7c). Especially in case of low attenuation (layer III and half-space), one does not observe
this effect. Apart from the reference FWT, test 3 is characterized by the strongest reduction
of both the data misfit and model error (see green plots in Figure 6.10a and b). This verifies
the methodology of combining viscoacoustic modeling with the acoustic inversion scheme,
i. e., the gradient computation (C.25a) and model update (C.44) use the relaxed model
parameter but are based on the acoustic equations without any modification. The revocation
of relaxation (2.30) yields an inversion result comparable to the reference result. The FWT of
test 3 stops after 4191 iterations due to the threshold stop criterion mentioned above.

Test 4 shows a more realistic FWT application (Figure 6.9e). I use the smooth passive
QP model (Figure 6.6b). The upper model areas are recovered quite well. In contrast to
the previous result, one can observe a decreasing resolution of the velocity model with
increasing depth. However, there is a remarkable reduction of both data and model error
(see Figure 6.10) resulting in a qualitatively good identification of layers and interfaces. The
FWT of test 4 stops after 195 iterations due to the inability of computing a meaningful step
length.
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Test 5 deals with the simplest case of implementing attenuation (Figure 6.9f). Here, I
use a homogeneous passive QP model, i. e., this model consists of the water layer over
a homogeneous half-space with the average quality factor QP = 74. This test yields the
smallest misfit reduction among all tests with viscoacoustic modeling (Figure 6.10a) and a
poor recovery of the velocity model which still is characterized by a high similarity to the
initial model (compare Figure 6.10b). The FWT of test 5 stops after 111 iterations due to the
inability of computing a meaningful step length.

The observations for all tests coincide with the evolution of both the data misfit and the
model error with respect to FWT iterations (Figure 6.10a). The neglection of attenuation in
test 1 and test 2 results in inappropriate velocity models. Surprisingly, the usage of true vP
as initial model in test 2 causes a higher initial data misfit. However, both FWT tests end at
the same high misfit level failing in the attempt to explain viscoacoustic data with acoustic
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Figure 6.9: Application 3, 1D experiment: (a) shows the FWT result for the acoustic reference
computation. (b) to (f) illustrate the results of acoustic FWT applied to viscoacoustic data (tests 1
to 5). The shaded areas denote phase velocity dispersion.
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modeling. Furthermore, the homogeneous QP model in test 5 yields a misfit evolution
being nearly identical to test 2. In spite of incorporating attenuation, the result is very
similar to the velocity model obtained in test 2. Obviously, in case of the 1D experiment, the
application of a homogenous passive QP = 74 – which is an incorrect representation of the
subsurface – is insufficient for a successful vP reconstruction. In contrast, the usage of the
true QP model in test 3 results in a continuous reduction of the data misfit. This indicates
the most optimal convergence to the global minimum of the misfit function. An acceptable
trade-off is achieved by using the smooth QP model in test 4. In practice, a good QP model
is usually unknown. Empirical relations can be used to derive a QP model from the initial
velocity model. However, in general, they do not account for all rock types and physical
conditions occurring in the given subsurface.

As mentioned above, a certain choice of a homogeneous passive QP model might cause
unsatisfactory results. Additionally, I performed an inversion using a homogeneous passive
model with QP = 10 (representing layer II in Figure 6.6b). In contrast to test 5, the inverted
vP model shows a much better recovery of the upper layers. The reconstruction of layer II is
nearly identical to the reference result. Layers III and IV show a small vP overestimation
and underestimation, respectively. The average deviation from the true model is less than
3 %. However, the velocity of layer V is characterized by a large overestimation of about
13 %. Consequently, the passive QP model should rather be a good representation of the
upper structures of the model.

Furthermore, apart from layer II, velocity fluctuations can not be explained by velocity
dispersion. In the most optimal result of test 3, they rather show a high similarity to those
of the acoustic reference result. Hence, they are caused by other effects, such as a worse
illumination with increasing depth. Additionally, this might indicate the resolution limit of
FWT. For all layers the extension of one fluctuation “cycle” is within the sub-wavelength
area (approximately one-fourth of the dominant wavelength).
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Figure 6.10: Application 3, 1D experiment: (a) shows the evolution of the L2 based data misfit
with respect to the number of iteration. The data misfit of the reference FWT (“R”) is normalized
to its own initial value. The data misfits of tests 1 to 5 (“T1” to “T5”) are normalized to the initial
value of test 3 due to its best comparability with the reference FWT. (b) illustrates the evolution
of corresponding L1 based model errors with respect to the true vP model. Color coding is
equivalent to Figure 6.9.
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6.2.2 Synthetic experiment: Marmousi model

Using a modified section of the Marmousi-II model (Martin, 2002; Martin et al., 2006, shown
in Figure 6.11) (based on Versteeg, 1994), I repeat all previous investigations. To reduce
computational efforts velocities are clipped to vP = [1.5, 4] km/s (Figure 6.11) which affects
the deep salt layer extended from x ≈ 6 km to x = 10 km. The acquisition geometry consists
of 32 explosive sources and a maximum number of 300 hydrophones per source. It forms
a marine streamer geometry at the water surface moving from the right to the left model
boundary (Figure 6.12). I choose a streamer length of 5980 m, a receiver spacing of 20 m and
a nearest offset of 45 m. However, due to the existence of the right model boundary, only the
receiver arrays for shots 20 to 32 provide the full streamer length, while shot one is equipped
with the shortest streamer containing 18 receivers only. The source time function is a Ricker
wavelet with a peak source frequency fpeak = 9 Hz. The recording time of seismic data is
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Figure 6.11: Application 3, Marmousi experiment: (a) shows the true vP model and (b) depicts
the initial vP model. (c) and (d) illustrate the true QP model and the smooth passive QP model.
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Figure 6.12: Application 3, Marmousi experiment: Mar-
ine streamer acquisition geometry equipped with a max-
imum number of 300 hydrophones per receiver line.
While the receiver line of shot 1 exhibits the shortest
length (18 receivers), the full streamer length is available
in case of shots 20 to 32.
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Figure 6.13: Application 3, Marmousi experiment: (a) shows the residual seismogram with
true amplitudes which are clipped to ±1 % of the maximum acoustic amplitude. The residuals
are computed from acoustic and viscoacoustic data recorded at shot location x = 2.6 km. (b)
illustrates observed traces at exemplary offsets. For a better visualization they are normalized
independently for each offset. Acoustic and viscoacoustic amplitudes are still comparable.
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5.15 s. The total model size is 3× 10 km with a spatial discretization of ∆h = 5 m. General
parameters are summarized by Table 6.3.

The true QP-model (Figure 6.11c) is derived from the velocity model (Figure 6.11a) by
applying an empirical vP-QP relation (Hamilton, 1972):

1
QP

= αP
vP

π f − α2
Pv2

P
4π f

. (6.2)

The intrinsic attenuation αP is assigned to the structures of the velocity model. I use
laboratory αP values for the frequency range of the given example in marine sedimentary
layers (Attewell and Ramana, 1966) – ranging from 10−5 1

m to 10−3 1
m . The quality factor

ranges from 21 in the upper sedimentary layers to 707 in deeper high velocity zones.

The approximation of relaxation parameters is based on the reference frequency f0 B fpeak,
L = 3 and an average QP,0 = 62 (harmonic mean) within the area beneath the seafloor. The
bandwidth of the seismic data is limited to ∆̃ f = [3.3, 16.5] Hz. This corresponds to a dy-
namic range of 2.3 octaves. Consequently, I use a sufficiently high number of three relaxation
mechanisms. The resulting optimal set of relaxation frequencies is
fr,l = (0.1513, 1.925, 18.94) Hz. Based on the true model, both acoustic and viscoacous-
tic data as well as their residuals are shown for shot 24 located at x = 2.6 km (Figure 6.13).
For a better illustration, the residual seismogram is clipped to ±1 % of maximum acoustic
amplitude (Figure 6.13a) and data traces are normalized to the maximum amplitude of
viscoacoustic observed data (Figure 6.13b). Especially with increasing offset or travel time,
the misfit of acoustic and viscoacoustic waveforms is increasing, too. In particular, the
amplitudes are significantly affected by attenuation. Furthermore, especially within the
upper rock layers phase velocity dispersion can be observed. However, the minimum
and maximum dispersion computed from (B.8) and shown in Figure 6.14 is related to zero
frequency and infinite frequency. The dispersion with respect to the bandwidth is negligible.

For the Marmousi model I perform the same inversion tests as for the 1D experiment (Table
6.1). The smooth initial vP model is generated by application of a 2D Gaussian filter (size
1250× 1250 m, σ = 51) to the sub-seafloor area of the true model vP|true (see Figure 6.11b).
While I use relation (6.2) to compute the smooth QP model (see Figure 6.11d) from the initial
smoothed vP model, the homogeneous passive QP model consists of the water layer over
a half-space with the average quality factor QP = 62. All inversion tests are decomposed
into multiple stages to reduce nonlinearity of the inverse problem: By application of low-
pass filters the inversion is performed for five frequency ranges, moving from low to high
frequencies (Sirgue and Pratt, 2004). The peak frequencies of low-pass-filtered data are
fpeak = (0.96, 1.7, 3.3, 4.4, 9.0) Hz.

The inverted velocity models are shown in Figure 6.15 and the corresponding relative
deviations from the true model can be found in Figure 6.16. For a better visualization, the
deviation images are clipped to ±20 %. The actual maximum range is up to ±50 %. This is
caused by the lack of very high frequencies which are necessary to achieve a resolution at
the scale of the finite-difference grid spacing. Consequently, very small scale structures and
high-contrast interfaces cannot be recovered. Furthermore, Table 6.4 summarizes the data
and model errors computed by equations (6.1). For all FWT tests, it compares the change
between initial and final errors.
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Table 6.3: Application 3, Marmousi experiment: General setup.

Attributes Specifications

Model

Size width: 10 km, height: 3 km

Structure

Figure Figure 6.11

Location

Configuration marine reflection geometry

Sources

Receivers

Offsets minimum: 45 m, maximum: 5980 m

Figure Figure 6.12

Model size

PML boundary

Dispersion Figure 6.14

Initial models Figure 6.11

Passive models Figure 6.11

Preconditioning

Model update

Application 3: Marmousi experiment

· modified Marmousi-II geology (v
P
 = [1550, 4000] m/s)

· with water layer (v
P
 = 1500 m/s)

Acquisition
geometry

on top of half-space, sea surface

· 32 explosive sources
· source-time function: Ricker wavelet
· peak frequency: 9 Hz
· time delay of source signal: 0.45 s

· towed streamer
· minimum: 18 hydrophones
· maximum: 300 hydrophones
· recording length: 5.6 s

Modeling
parameters

· width: 2000 grid points, height: 600 grid points
· grid spacing: 5 m

Propagation
time

· 8000 time steps
· time discretization: 7·10-4 s

· width: 150 m
· free surface

Relaxation
parameters

· relaxation frequencies: (0.151, 1.93, 18.9) Hz
· reference frequency: 9 Hz

General
inversion

parameters

· wave-field based
· user-defined: water layer is known

· hard constraint: v
P
 limit: [1500, 4000] m/s

· maximum deviation from the initial model: 50 %
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Figure 6.14: Application 3, Marmousi experiment: Minimum dispersion (a) and maximum
dispersion (b) with respect to the true vP model in Figure 6.11a as well as zero frequency and
infinite frequency. Due to high attenuation, the upper sedimentary rocks cause significant
dispersion. The water layer is free from dispersion.

Again, as described for the 1D experiment, an acoustic inversion of pure acoustic data
is used as the reference result (Figure 6.15a). Considering the quite low peak frequency
of the data, I can observe a good match of the reconstructed model and the true model
(compare relative model deviation in Figure 6.16a). Both data and model errors are reduced
significantly (see Table 6.4). Apart from some notable data residuals at near offsets, the final
synthetic data and the observed data match very well (see Figure E.1).

In case of neglecting QP information (test 1 and test 2) the FWT is unable to recover subsur-
face structures properly from viscoacoustic data (Figures 6.15b and 6.15c). The resolution
decreases dramatically with increasing depth causing a poor final vP model with high model
and data errors (compare initial and final errors for test 1 and test 2 in Table 6.4 as well as in
Figures 6.16b and 6.16c).

In the following, I discuss the inversion progress of test 2 in more detail. Figure 6.17 depicts
the intermediate inversion results at the end of every frequency-filtering stage. Test 2
shows a satisfactory reconstruction of large-scale structures during the inversion of the
low-frequency content (see Figures 6.17a to 6.17c). By including higher frequencies artifacts
appear in the upper sedimentary structures, while there are no improvements in deeper
regions. In contrast, one can observe a destruction of large-scale structures which have
already been recovered (Figures 6.17e and 6.17f). The minimum model error is obtained
within the fourth stage with a peak frequency fpeak = 5.0 Hz (Figure 6.17d). Throughout
the remaining inversion progress the model error is increasing continuously, while the data
misfit is decreasing. For a further investigation of this phenomenon I repeat test 2 without
multi-stage approach. I invert for the full frequency content at once and obtain a similar
final result. However, the FWT skips the computation of an accurate intermediate result
and directly produces an artificial model. Only until the sixth iteration there is a marginal
improvement of the model. Apparently, the inversion of low-frequency contents is less
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Figure 6.15: Application 3, Marmousi experiment: (a) to (f) show the recovered vP models for
acoustic reference FWT of pure acoustic data (a) and acoustic FWT of viscoacoustic data for
tests 1 to 5 (b) to (f).
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Figure 6.16: Marmousi experiment: (a) to (f) show the relative deviation of the results in Figure
6.15 with respect to the true model in Figure 6.11a. For a better visualization, the images are
clipped at ± 20 percent of the relative deviation.
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End of stage 1:
fpeak = 1.7 Hz

model error: 7.6 %

End of stage 2:
fpeak = 2.6 Hz

model error: 7.2 %

End of stage 3:
fpeak = 3.7 Hz

model error: 7.0 %

During stage 4:
fpeak = 5.0 Hz

model error: 6.9 %

End of stage 4:
fpeak = 5.0 Hz

model error: 7.0 %

End of final stage:
fpeak = 9.0 Hz

model error: 8.4 %

Figure 6.17: Application 3, Marmousi experiment: (a) to (f) show the evolution of the vP model
with respect to the inversion progress for the test 2. (a), (b), (c), (e) and (f) illustrate intermediate
vP models at the end of each stage of low-pass filtering. (d) shows the model with the lowest
model error (for comparison: the model error of the initial model is 8.6 %). (f) corresponds to
Figure 6.15c.
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sensitive to attenuation. This observation coincides with inversion strategies in viscoacoustic
frequency-domain FWT applied by several authors, such as Takam Takougang and Calvert
(2011). They use a similar multi-stage approach. At low frequencies they only invert for vP.
Later on, a combined inversion for vP and QP is applied.

Obviously, test 1 and test 2 demonstrate that the acoustic inversion of viscoacoustic data
is independent of the initial vP model within the framework of the Marmousi experiment.
In both cases it ends at comparable artificial final vP models with low reduction of data
errors and an increase of model errors (see Table 6.4). The misfit between viscoacoustic
observed data and acoustic synthetic data is mapped to the velocity model. While the final
vP model particularly explains phases of the seafloor reflection and some later reflection
events, it causes significant amplitude mismatches for these events in the seismic data (see
seismograms in Figures E.2 and E.3). However, later events and especially the refracted
wave show remarkable phase deviations between synthetic and observed data. Obviously,
the influence of phase velocity dispersion seems to increase with increasing depth or offset.

In contrast to test 1 and test 2, the involvement of a QP model improves the vP recovery
significantly. Using QP,true as passive parameter, as performed in test 3, the reconstructed
vP model is comparable to the optimal acoustic reference result (Figures 6.15d and 6.16d) –
proved by an excellent data fit (Figure E.4). Test 4 employs the smooth QP model and, thus,
is the most realistic case. Considering this imperfect QP information, the FWT produces
a satisfactory vP model (see final result in Figure 6.15e and the model deviation in Figure
6.16e). Although the smooth QP model does not allow the reconstruction of a vP model
with high resolution, the comparison of test 4 with test 3 only shows a minor increase of the
model error (Table 6.4). Even the implementation of a homogeneous QP information within
the sub-seafloor region yields a surprisingly good result (Figures 6.15f and 6.16f). Apart

Table 6.4: Application 3, Marmousi experiment: List of errors ε with respect to initial model vP|init
and corresponding initial data pinit as well as for the resulting model vP|result and corresponding
data presult. Using equations (6.1) the errors are computed with respect to the true model vP|true
and observed data pobs. The arrows indicate the strength of error ratios ε(presult) /ε(pinit) and
ε
(
vP|result

)
/ε
(
vP|init

)
.

Data error with respect Model error with respect Change of

FWT to observed data (in %) to true model (in %) data model

ε(pinit) ε(presult) ε
(

vP|init

)
ε
(

vP|result

)
error error

Reference 53.4 0.0659 8.6 2.9 ä ä

Test 1 28.8 14.2 0.0 7.4 ä ä

Test 2 45.2 16.1 8.6 8.4 ä ä

Test 3 12.4 0.0204 8.6 3.1 ä ä

Test 4 13.2 0.186 8.6 4.1 ä ä

Test 5 19.2 2.69 8.6 5.0 ä ä
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from decreasing vP resolution with increasing depth, the qualitative Marmousi geology
is clearly noticeable. Both the smooth and homogeneous QP models allow a quite good
explanation of phases of the seismic waveforms (see seismograms in Figures E.5 and E.6
for a streamer laterally crossing the fault structures of the Marmousi model). However,
especially the homogeneous QP model causes significant amplitude misfits at large offsets.
This model does not properly take account of the 2D structured subsurface. Thus, amplitude
errors accumulate with increasing offset.

In general, the Marmousi experiment resembles the results of the 1D experiment. In case
of test 5, I observe different performances of the FWT. For both examples, there is a nearly
identical reduction of the data misfit. However, in case of the Marmousi experiment, there is
a significantly stronger reduction of the model error (42 % versus 25 % for the 1D example).
This observation is explained by the choice of the homogeneous QP model. For example,
there is a huge QP discrepancy between the second layer of the true 1D model and homo-
geneous model (true QP = 10 versus passive QP = 74). This causes incorrect data and an
artificial model reconstruction. In contrast, there is a much better match of the homogeneous
model and the upper structures of the Marmousi model (the arithmetic mean value of the
true model and homogeneous QP = 62 are equivalent for depths 470 m ≤ z ≤ 1830 m).
Concluding, a good QP model should be a good representation of the “near-seafloor”
regions.

6.2.3 Computational efforts

The implementation of viscoacoustic time-domain modeling in acoustic FWT comes along
with increased computational efforts. The FWT computations are performed on the high-
performance computer JUROPA at the Jülich Supercomputing Centre. Its compute nodes
consist of eight CPU cores. Thus, for most optimal performance I decomposed the Marmousi
model into eight sub-domains and computed 16 shots at once. This resulted in an allocation
of 128 CPU cores. For each finite-difference modeling, I used 8000 time steps and a model
dimension of 600× 2000 grid points. In time-domain FWT, the forward-propagated wave-
field has to be stored in advance. During the back-propagation, it is cross-correlated with
the back-propagated wavefield. However, it is not necessary to store the spatial wavefield
snapshots of forward-propagation at all time steps. A subset can be selected by using a very
strict Nyquist criterion. The corresponding sampling rate is estimated as follows:

∆tsamp =
1

8 fmax
with fmax ≈ 2 fpeak. (6.3)

Consequently, the FWT required 728 snapshots resulting in a feasible memory consumption
of 416 MB per CPU core. In total, the FWT applied 112 modelings per iteration. They
are composed of 64 forward- and back-propagations as well as 48 test modelings for step
length optimization (three test modelings and application of every second shot). In case
of the acoustic FWT with only acoustic modeling, the computational time of one iteration
amounted to 142 s. In contrast, the computational costs of viscoacoustic modeling were
significantly higher (340 s per iteration).
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6.3 Summary

In this work, I investigate the impact of intrinsic attenuation on 2D acoustic full waveform
tomography in the time domain. The acoustic inversion scheme is applied to two viscoacous-
tic datasets generated for a 1D structured model and the Marmousi model. Using these
examples, I assigned realistic quality factors to the subsurface models.

In the presence of soft rocks with pronounced absorption I observe a poor recovery of the
velocity model. The neglection of attenuation causes an unsuccessful recovery of the vP
model. The attenuation-related data misfit is mapped to the velocity model by generating
remarkable artifacts. If I use the true velocity model as an initial model, then the footprint of
attenuation can be clearly observed in the artificially altered vP model.

By considering an appropriate attenuation model – i. e., applying a passive QP model –
in the forward modeling of the FWT, the accuracy of the reconstructed velocity model
improves significantly in both cases. The usage of a smooth QP model results in a sufficient
near-surface recovery of vP but the resolution is decreasing with increasing depth. This
is due to an attenuation-related loss of high-frequency information with increasing depth.
Depending on the deviation from the true QP model, the choice of a homogeneous QP model
increases the risk of an unsatisfactory vP recovery (see 1D experiment).

In case of the appearance of soft sediments, the FWT has to take attenuation into consid-
eration. The availability of a sufficiently good passive quality factor model allows the
reconstruction of a reliable velocity model by applying the acoustic inversion scheme. How-
ever, such an appropriate good model does not necessarily have to be characterized by a
high complexity being close to the true model. For example, the passive involvement of QP,
which is derived from the initial vP model, might significantly improve the resolution of
the vP model, provided that the QP model is at least an appropriate representation of the
uppermost subsurface structures. In conclusion, it is not advisable to neglect attenuation or
to use potentially poor attenuation information in FWT applications to real data recorded in
marine environments with soft sediments. The results of this study suggest to consider at-
tenuation as a smooth background modeling parameter to improve velocity model building
by a purely acoustic inversion scheme in reflection seismic configurations.
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Application 4: 3D acoustic FWT in the
time domain

The 2D applications discussed in previous chapters assume subsurface models with a 2D
geology. However, in practice, the general structure of the subsurface is unknown. The
occurrence of a 1D or 2D geology allows a meaningful application of a 2D FWT, which
only requires a 3D-to-2D transformation of the recorded data to account for the different
geometrical spreading. However, a 2D FWT yields an inaccurate reconstruction of the
velocity model by projecting events in the seismic data, which arise from significant 3D
heterogeneities, to the 2D model. Under these circumstances, the application of a 3D FWT
is mandatory. In this chapter I present the preliminary results of a 3D acoustic FWT in
the time domain applied to two experiments containing a 3D geology: a random medium
with cross-well configuration and a 3D expansion of the Marmousi model with reflection
configuration.

The implementation of 3D FWT is still in development and shows the following setup with
respect to both experiments:

The application of certain FWT features and existing limitations of the current implementa-
tion due to the preliminary state of development result in the following inversion setup:

1. density is neglected, the FWT only inverts for P-wave velocity vP,

2. the true source signal is used, i. e., no inversion for source time function takes place,

3. application of gradient preconditioning to suppress artifacts related to the acquisition
geometry (spherical tapers in case of the cross-well experiment [using the cosine-taper
2.19] and wavefield-based preconditioning in case of the Marmousi experiment [using
equation 2.25]),

4. application of a user-defined gradient preconditioning: no model update within the
water layer of the Marmousi model due to known P-wave velocity vP,

5. application of multiple-stage approaches within the workflow implementation, con-
sideration of sequential frequency filtering,

6. usage of automatic criteria with respect to the misfit reduction for shifting within the
workflow stages or to stop the FWT.

123
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7.1 3D FWT for a cross-well geometry

7.1.1 Random medium model and geometry setup

The transmission experiment employs the random medium model with a size of
160× 160× 256 meters. The model is generated by applying an exponential autocorrelation
function with a correlation length of 40 m (Figure 7.1), where vP varies between 1600 m

s and
2400 m

s . The resulting model is a self-similar medium and includes structures on different
scale lengths.

Figure 7.1: Application 4, cross-well
experiment: True vP model consist-
ing of a random medium. Exem-
plary cross sections are shown at
x = 80 m, y = 120 m and z = 128 m
16 explosive sources (red markers)
and 470 hydrophones (green lines)
are arranged in a transmission con-
figuration.
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Figure 7.2: Application 4, cross-well experiment: Pressure data for an exemplary source located
at (x, y, z) = (11, 40, 144) m. The data are recorded in both receiver boreholes at y = 40 m (left
part) and y = 120 m (right part). For a better visualization, the data are normalized and clipped.
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Table 7.1: Application 4: General setup of the 3D cross-well experiment.

Application 4: 3D random medium

Attributes Specifications

Model

Size lateral dimensions: 160 x 160 m, height: 256 m

Structure

Figure Figure 7.1

Location

Configuration

Sources

Receivers

Offsets minimum: 138 m, maximum: 279 m

Figure Figure 7.1

Model size

PML boundary width: 10 m

Initial model

Model update

random
medium

average v
P
 = 2000 m/s

maximum range: v
P
 = [1600, 2400] m/s

standard deviation σ = 0.08
correlation length: 40 m
exponential autocorrelation function

Acquisition
geometry

full-space, borehole

transmission geometry (crosshole)

· 16 explosive sources distributed to 2 boreholes
· source-time function: Ricker wavelet
· peak frequency: 150 Hz
· time delay of source signal: 0.02 s

· 470 hydrophones distributed to 2 boreholes
· effective recording length: 0.18 s

Modeling
parameters

· lateral: 320 x 320 grid points, height: 512 grid points
· grid spacing: 0.5 m

Propagation
time

· 2000 time steps (effective recording length + time delay)
· time discretization: 1·10-4 s

General
inversion

parameters

homogeneous: v
P
 = 2000 m/s

Gradient
computations

· imaging condition in time domain
· taper at sources and receivers
· additional taper within PML boundary

· hard constraint: v
P
 limit: [1600, 2400] m/s

· maximum deviation from the initial model: 25 %

Workflow multi-stage frequency filtering
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The acquisition geometry is arranged in a cross-hole configuration, which includes two
boreholes with 8 explosive sources each and two boreholes with 235 receivers each. The
source spacing is 32 m and the receiver spacing is 1 m. Time-domain forward modeling
involves a Ricker-wavelet with a peak frequency of fpeak = 150 Hz and a time discretization
of ∆t = 0.1 ms. The record length is set to T = 0.2 s, where the wavelet is shifted by 0.02 s
to account for wavelet “stretching” due to low-pass filtering. Figure 7.2 illustrates observed
data for the exemplary shot 5 located at (x, y, z) =(11, 40, 144) m. The data are characterized
by a dominant direct P-wave and numerous scattering events caused by the differently
scaled structures of the random medium.

The grid spacing is set to DH = 1.0 m to fulfill the grid dispersion criterion (2.13). This
results in a grid size of 320× 320× 512 grid points. The model is located within the full
space, surrounded by perfectly matched layers with a width of 10 m. All general modeling
and inversion parameters can be found in Table 7.1.

In consequence of cross-well experiments in chapters 4 and 5, I choose a homogeneous
initial model with vP = 2000 m

s for waveform tomography. It matches the average velocity
of the true model. Thus, it already gives a quite good explanation of the direct wave. While
its maximum deviation from the true model is ±20 %, the average model error (calculated
with relation 6.1a) amounts to 6.04 % corresponding to an average absolute deviation of
approximately ±121 m

s .

The technical feasibility of FWT is supported by the application of a multi-stage approach
within the workflow implementation, which comprises a sequential frequency filtering over
seven stages with associated peak frequencies fpeak = (20, 25, 30, 40, 70, 80, 150) Hz. Each
stage consists of a certain number of mandatory iterations: 5 (stage one), 10 (stages two to
six) and 15 (last stage). Additional iterations are applied unless the misfit reduction between
two successive iterations is less than 0.5 %.

7.1.2 Results

The results of the cross-well experiment are illustrated by cross sections across the 3D model.
Representative central slices are shown in Figure 7.3. Additional slices can be found in
Figures F.1 (x-z planes), F.2 (y-z planes) and F.3 (x-y planes) in appendix F.1. The final
synthetic data for an exemplary shot (compare Figure 7.2) is shown in Figure 7.4.

Obviously, the 3D FWT in the time domain is able to compute a meaningful velocity model
from a homogeneous initial model. While large-scale structures are recovered well, the
resolution of small-scale structures reveals some uncertainties. Based on the average velocity
and the peak frequency, the dominant wavelength amounts to approximately 13 m. The
FWT reconstructs structures at the scale of a seismic wavelength.

In contrast to a 2D FWT employing a comparable model (chapter 5), the reconstruction of
the 3D velocity model is less accurate. The acquisition geometry is not able to illuminate the
entire model. Consequently, illumination gaps occur between source boreholes and between
receiver boreholes. In particular, all model boundaries exhibit a poor vP reconstruction
(for example top row in Figure F.1, top and bottom rows in Figure F.2 as well as Figure
F.3). The x-z plane at y = 80 m reveals a bad illumination at small and large x-coordinates.
Here, the resulting vP model is characterized by significant artifacts (see top row in Figure
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Figure 7.3: Application 4, cross-well experiment: Exemplary vertical (top and middle row) and
lateral (bottom row) cross sections for the true random medium model (left column), the inverted
vP model (middle column) and corresponding relative deviations (right column). All planes are
located centrally.
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7.3). Apparently, the seismic wavefields are not sensitive to the structures in these areas.
Nevertheless, the FWT is able to explain the recorded data (see Figure 7.4). This comes along
with a model-error reduction down to 3.44 % which corresponds to an average absolute
deviation of approximately ±69 m

s .

The vP model exhibits a clearly visible footprint of an ellipsoidal shape, which

The cross sections with respect to the x-z plane and x-y plane show a smearing of the
recovered random medium structures along ellipsoidal shapes (e. g., top and bottom rows
in Figure 7.3, top row in Figure F.1 as well as top and middle rows in Figure F.3). This
might be related to the superposition of the first Fresnel zones caused by the source-receiver
coverage. In particular, the multi-stage approach affects size and shape of these sensitivity
areas. At the inversion of low-frequency contents, the Fresnel zones show the largest spatial
extent. This allows the reconstruction of very large scale structures close to the model
boundaries, even between the source boreholes or the between receiver boreholes. The
inversion of higher-frequency contents causes an increased narrowing of the Fresnel zones.
Consequently, the sensitivity of the wavefields on model perturbations decreases towards
the model boundaries (see y-z plane in the bottom row of Figure F.2 or Figure F.3). Usually,
smaller-scale structures are artificially added within these regions. The optimal illumination
is achieved within the acquisition geometry, particularly with regard to the x-z planes at
y = 40 m and y = 120 m which are virtually spanned by the boreholes. The average model
error is computed as a function of the y direction for all x-z planes. It verifies the observation
by showing significant minima around the locations of the “source-receiver planes” (see
Figure 7.5). This indicates a suboptimal arrangement of the acquisition geometry with
irregularly distributed sources and receivers. The most reasonable recovery of structures
at the scale of the seismic wavelength is obtained within the central parts of the optimal
planes (see middle and bottom rows in Figure F.1). The resolving power seems to be limited
to the minimum available wavelength, leaving the smallest features out of consideration
(see the relative deviation between vP result and true model in the middle and bottom rows
of Figure F.2).
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Figure 7.4: Application 4, cross-well experiment: Final synthetic data for an exemplary source
located at (x, y, z) = (11, 40, 144) m. The data are recorded in both receiver boreholes at y = 40 m
(left part) and y = 120 m (right part). The seismogram can be compared with the observed data
in Figure 7.2 due to an identical application of normalization and clipping.
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Figure 7.5: Application 4, cross-well experi-
ment: Model error for the initial and final vP
model with respect to the true vP model; it
represents the average error computed from
vertical x-z planes at all y positions. The low-
est final model errors can be found inside the
areas between source boreholes and receiver
boreholes with y locations highlighted by the
dashed lines. On average, the model errors
amount to 6.04 % (initial) and 3.44 % (final).

7.2 3D FWT for a reflection geometry

7.2.1 Marmousi expansion and geometry setup

In the analogy of the cross-well experiment, the reflection experiment demonstrates the
characteristics and difficulties arising from a 3D tomography.

The experiment employs a section of the 2D Marmousi-II model (Martin et al., 2006). It
is replicated with respect to the second lateral direction y. An additional lateral shift
in x direction using a combination of a linear trend and a cosine function ensures the
generation of 3D structures (Figure 7.6). The true vP model is thus characterized by complex
fault structures which are embedded into a layered sedimentary geology. The model size
amounts to 5600× 2400× 2400 meters. The size of the finite-difference grid amounts to
560× 240× 240 grid points. Table 7.2 summarizes general parameters.

The reflection acquisition geometry is located at the sea surface and consists of 24 sources
along three lines as well as a total number of 1778 hydrophones along seven lines. Although,
this experiment has to get along with 24 sources only, the large receiver array is used to
ensure an adequate illumination of the subsurface (compare with 32 sources and marine
streamers used in 2D applications in sections 6.2.2 and 3.2.2). Time-domain forward model-
ing involves a Ricker-wavelet with a peak frequency of fpeak = 9 Hz and an effective record
length of T = 4.85 s. Figure 7.7 illustrates observed data for the exemplary shot 5 located at
(x, y, z) =(3170, 520, 10) m. Apart from direct waves and dominant seafloor reflections, the
data are characterized by numerous diffractions caused by small structures within the fault
zones.

For waveform tomography, I choose a linear 1D vP gradient as an initial model (Figure 7.6).
It contains the water layer of the true model, which is excluded from the model update. On
the analogy of previous reflection experiments in chapter 6 and section 3.2.2, the multi-stage
approach is applied. It consists of low-pass frequency filtering over five stages of inverting
seismic data with peak frequencies which are not equidistantly spaced Sirgue and Pratt
(2004): fpeak = (1.4, 2.0, 2.9, 4.5, 9.0) Hz. All five stages have to apply a certain number of
mandatory iterations: 10, 10, 15, 20, 50. Additional iterations are applied unless the misfit
reduction between two successive iterations is less than 0.5 %.
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Figure 7.6: Applic-
ation 4: True (top)
and initial (bottom)
vP models for the
Marmousi exper-
iment. The true
model consists of a
complex 3D geology
and a water layer on
top. The acquisition
geometry is located
at the sea surface
and consists of 24
explosive sources
(red markers) and
1778 hydrophones
(green lines).
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Figure 7.7: Application 4: Recorded pressure data for the Marmousi model in Figure 7.6 (top)
and an exemplary shot located at (x, y, z) = (3170, 520, 10) m. The seismogram comprises all
seven receiver lines, where the lines are located at y = (180, 520, 860, 1200, 1540, 1880, 2220) m.
For a better visualization, a time-dependent amplitude gain of t1.4 is applied. Furthermore, the
data are normalized to the maximum of all traces and clipped to ±1.5 %.
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Table 7.2: Application 4: General setup of the 3D Marmousi experiment.

Attributes Specifications

Model

Size lateral dimensions: 5.6 x 2.4 km, height: 2.4 km

Structure

Figure Figure 7.6 (top)

Location

Configuration reflection geometry

Sources

Receivers

Offsets minimum: 30 m, maximum: 5537 m

Figure Figure 7.6 (bottom)

Model size

PML boundary

Initial model Figure 7.6 (bottom)

Model update

frequency filtering over multiple stages

Application 4: 3D Marmousi experiment

· modified Marmousi-II geology (v
P
 = [1550, 4000] m/s)

· with water layer (v
P
 = 1500 m/s)

Acquisition
geometry

on top of half-space, sea surface

· 24 explosive sources along 3 lines
· source-time function: Ricker wavelet
· peak frequency: 9 Hz
· time delay of source signal: 0.75 s

· 1778 hydrophones along 7 lines
· recording length: 5.6 s

Modeling
parameters

· lateral: 560 x 240 grid points, height: 240 grid points
· grid spacing: 10 m

Propagation
time

· 4000 time steps
· time discretization: 1.4·10-3 s

· width: 150 m
· free surface

General
inversion

parameters

Gradient
computations

· imaging condition in time domain
· wave-field based preconditioning
· user-defined preconditioning: water layer is known
· additional taper within PML boundary

· hard constraint: v
P
 limit: [1500, 4000] m/s

· maximum deviation from the initial model: 50 %

Workflow
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7.2.2 Results

The results of the Marmousi experiment are illustrated by cross sections across the 3D
model. Representative central slices are shown in Figure 7.8. Additional slices can be found
in Figures F.4 (x-z planes), F.5 (x-y planes) and F.6 (y-z planes) in appendix F.2. The final
synthetic data for an exemplary shot (compare Figure 7.7) is shown in Figure 7.11.
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Figure 7.8: Application 4: Exemplary vertical (top and bottom row) and lateral (middle row)
cross sections for the true Marmousi model (left column) and the inverted vP model (right
column). All planes are located centrally (compare Figure 7.6).
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First of all, the 3D FWT sufficiently recovers complex 3D structures of the subsurface model.
However, in contrast to a 2D FWT, the resulting vP model is less accurate. The FWT produces
very smooth intermediate vP models at early stages with the inversion of low-frequency
contents. Then it refines the vP model, but also adds significant noise to the model during
the inversion of the full frequency content (see inversion progress in Figure 7.9). Despite
remarkable model improvements during the early stages, the existing coverage seems to
become insufficient at higher frequencies due to an increasing ill-posedness of the inverse
problem. In particular, the sources are spatially undersampled, which has already been
discussed by Sun and McMechan (1992) (for FWT in the time domain) and Brenders and
Pratt (2007a) (for an application of 2D frequency-domain FWT), among others. However,
further investigations – including more sophisticated multi-stage strategies or using more
appropriate acquisition geometries to provide a better illumination – are necessary.

In contrast to the 2D Marmousi experiments, the limitations of the resolving power are
clearly visible. It is well-known that both the lateral and vertical resolution of a seismic
tomography using a reflection geometry decreases with increasing depth.

As mentioned in section 7.1.2, the sensitivities on model perturbations are strongly affected
by the frequency content. In case of low frequencies, the Fresnel zones extend down to the
bottom of the model and thus the FWT is able to recover 3D structures at the scale of long
wavelengths. In contrast, the involvement of higher frequencies causes a focusing of the
sensitivities on near-surface areas resulting in the resolution of small-scale structures (for
example, compare lateral cross sections for different depths in Figure F.5 and Figure 7.8).

Additionally, this comes along with a defocusing effect towards the model boundaries and
a best resolution at the lateral center of the acquisition geometry (in particular, see cross
sections for z ≥ 1.1 km in Figure F.5 and top row in Figure 7.8). This observation is verified
by a depth-dependent model error computed for x-y planes at all depths (see Figure 7.10).
The comparison of initial and final model shows a strong reduction of the model error for
depths of z / 1.7 km emerging from a quite good recovery of large-scaled and small-scaled
structures. However, deeper regions reveal an erratic behavior of an increasing model error
indicating the lack of higher-contrast features, such as interfaces.

Despite usage of a homogeneously distributed acquisition geometry, the FWT fails to
sufficiently recover structures at the “left” end of the model with x / 1.5 km (see vertical
cross sections in Figures F.4 and 7.8). In contrast, the vP reconstruction along the “right”
model boundary is much more satisfactory. Apparently, this might be caused by the
closeness of the complex fault structures to the model boundary combined with a decreased
illumination.

Apart from problems mentioned above, the FWT reveals a proper reconstruction of small-
scaled structures, such as the low-velocity inclusion at z ≈ 1.1 km which probably contains
hydrocarbons (see Figures 7.8 [top and bottom rows], F.4, F.5 [middle row] and F.6 [y-z plane
at x = 3.65 km]) or anticlinal deformations (see bottom row in Figure 7.8). Although the
initial model does not seem to be the most optimal linear gradient model (see increasing
depth-dependent model error in Figure 7.10), the FWT reduces the global model error –
excluding the known water layer – from 12.1 % (initial) to 5.76 % (final). In spite of a
differently good quality of vP reconstruction, the recorded seismic data is explained quite
well (Figure 7.11b). While the most significant residuals appear in case of some reflection
events (Figure 7.11a), the residual data mostly represents a fraction of the recorded data.



134 7.2. 3D FWT for a reflection geometry

y in km

z
in

k
m

0.2 0.7 1.2 1.7 2.2
0

0.5

1

1.5

2

y in km

0.2 0.7 1.2 1.7 2.2

y in km

0.2 0.7 1.2 1.7 2.2

z
in

k
m

0.2 0.7 1.2 1.7 2.2
0

0.5

1

1.5

2

 

 
0.2 0.7 1.2 1.7 2.2

vP in km/s

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

0.2 0.7 1.2 1.7 2.2

Initial model
Stage 1

fpeak = 1.4 Hz
Stage 2

fpeak = 2.0 Hz

Stage 3
fpeak = 2.9 Hz

Stage 4
fpeak = 4.5 Hz

Final stage
fpeak = 9.0 Hz

Figure 7.9: Application 4, Marmousi experiment: Cross sections at the central position
x = 2.8 km for the initial vP model and intermediate vP results obtained at the end of each
frequency-filtering stage. While the inversion of low-frequency contents produces reliably
smooth models, the consideration of the full frequency content results in a quite noisy vP model.
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Figure 7.10: Application 4, Marmousi experiment:
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Figure 7.11: Application 4, Marmousi experiment: Both plots show pressure data for an exem-
plary shot located at (x, y, z) = (3170, 520, 10) m. (a) illustrates the residual data obtained for
the final vP model. The seismogram is normalized to the maximum amplitude of the recorded
data and clipped to ±0.01 %. (b) shows the corresponding recorded data and final synthetic data
for selected traces along the receiver lines 2 (at y = 520 m) and 7 (at y = 2220 m). For a better
visualization, a time window of [0.75 3] s is chosen (highlighted by horizontal lines in (a)).
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7.3 Computational efforts of 3D acoustic FWT

In the course of the 3D-FWT development, I decided to apply a pure time-domain FWT. I
performed preliminary tests employing the single-frequency method (see Figure 2.1 and
chapter 5). While I obtained a reasonable result for the cross-well experiment which is
comparable to the result shown in section 7.1.2, the FWT failed in case of the reflection
experiment. A possible reason is an unfavorable combination of using an unusually low
coverage (only 24 sources), choosing a single frequency and the appearance of the cycle-
skipping effect in conjunction with the existence of seafloor and corresponding (multiple)
reflections. The single-frequency method resulted in an artificial model construction. A
higher number of sources would probably improve the performance of the FWT. Obviously,
the application of a pure time-domain FWT with exploitation of broad frequency bands
and usage of a sparse acquisition geometry seems to be more robust. To keep consistence,
both experiments employ a pure time-domain FWT. Although the computational times
of both methods are comparable, the time-domain method reveals an extensive memory
consumption (see section 3.2.1).

Table 7.3: Application 4: Computational efforts of 3D acoustic FWT applications with respect to
a cross-well experiment performed on the supercomputer JUROPA and a reflection experiment
performed on the supercomputer HERMIT (see Table 3.1 for hardware details).

Cross-well experiment Reflection experiment

Grid size in modeling 320× 320× 512 560× 240× 240

Grid spacing in modeling: ∆h 0.5 m 10 m

Number of time steps in modeling 2 000 4 000

Time step in modeling: ∆t 1.0 · 10−4 s 1.4 · 10−3 s

Grid size for wavefield storage 160× 160× 256 560× 240× 240

Grid spacing for storage: ∆hsamp 1 m 10 m

Number of wavefield snapshots 499 666

Time step for storage: ∆tsamp 4.0 · 10−4 s 8.4 · 10−3 s

Domain decomposition 4× 4× 4 8× 4× 4

Shot parallelization all 16 sources all 24 sources

Number of cores 1 024 3 072

Memory consumption per core 195 MiB 640 MiB

Overall memory usage (snapshots) 195 GiB 1.88 TiB

Number of FWT iterations 245 281

Average time per FWT iteration 187 seconds 366 seconds

Total amount of forward modelings 19 600 33 720

Total computational time 12.7 hours 28.6 hours

Total amount of core time ≈ 13 000 core hours ≈ 88 000 core hours
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Both experiments apply methods described in section 3.2.1 to ensure the computational
feasibility of time-domain FWT. The experiments are performed on the supercomputers
JUROPA (cross-well experiment) and HERMIT (reflection experiment). The optimization
settings are adapted to the extent of the computations and the resources available on these
supercomputers (see Table 3.2.1 for details). Table 7.3 makes clear that a pure time-domain
FWT is highly demanding. While the cross-well experiment employs the reduction of both
time steps and grid size for storage of pressure wavefields, the reflection experiment uses
the full model grid.

It is possible to reduce the costs of wavefield storage by using a coarser inversion grid
(see section 3.2.1). I repeated the reflection experiment using a grid size of 280× 120× 120
grid points for storage, i. e., the model is reduced down to 1

8 of its original size exhibiting
a grid spacing of ∆hsamp = 20 m (finite-difference modeling still requires the full grid
with ∆h = 10 m). Consequently, the FWT has to perform less computations with respect
to the imaging condition. Furthermore, this strategy also accelerates the overall memory
management and the I/O. The average computational time for one iteration decreases from
366 seconds (see Table 7.3) to 255 seconds. Apart from the coarser grid, both FWTs produce
comparable results. Exemplary cross-sections of the final vP model for FWT test using
the full or reduced grid size are illustrated by Figure 7.12. However, the coarse model is
characterized by some more inaccuracies, such as higher “noise” and slightly misplaced
interfaces within the top-right part of the model. This is probably caused by the application
of the trilinear interpolation method to rescale the velocity model to the size of the finite-
difference grid. Apparently, a meaningful strategy might comprise several FWT stages –
starting with coarse grids and using an increased grid resolution at later stages.
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Figure 7.12: Application 4: Comparison of an exemplary cross section of final vP results, which
are produced by inversions using different grid sizes for the imaging condition. (a) is obtained
from the FWT discussed in section 7.2 involving the full grid size and is identical with Figure
7.8. (b) is computed by a FWT using a reduced grid with the size of 1

8 of the full grid, i. e., every
other grid point along x, y and z directions is skipped.
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7.4 Summary

In general, the applicability of a 2D FWT is restricted to fields of application exhibiting
quite simple subsurface structures, such as 1D or 2D geological models. As an outlook for
future applications, the scope of this work comprises the development of a 3D acoustic
FWT implementation in the time domain and its application to two experiments including
subsurface models with a 3D geology. In the style of 2D applications presented in chapters 5
and 6, the 3D FWT is applied to both a cross-well experiment and a reflection experiment.
Although the 3D experiments have to get along with quite sparse acquisition geometries
resulting in a limited illumination of the subsurface, they are able to produce reliable vP
models. Similarly to the 2D applications, the inverse problem of the cross-well experiment
is less ambiguous, which allows a satisfactory recovery of complex velocity models by using
the simply homogeneous initial model. The worse illumination causes a model resolution
which is not as good as in a 2D FWT.

The FWT implementation used in this chapter takes advantage of the pure time-domain
inversion scheme by considering broad frequency ranges of the seismic data instead of
using single frequencies. In particular, this method facilitates performance and outcome of
the reflection experiment, which has to handle disadvantageous circumstances, such as the
sparse acquisition geometry and a poor initial velocity model. The most reliable resolution
is achieved by the inversion of low-frequency contents – producing realistic large-scale
structures throughout the entire model. Due to increasing frequencies, the sensitivity on
model perturbations and the corresponding consideration of low-wavelength structures
are limited to near-surface areas. Due to the sparse acquisition geometry, the near-surface
sensitivity becomes more fragmentary at high frequencies causing artificial model noise at
small scale lengths.

The 3D acoustic FWT proves to be feasible in academic applications to small-scale problems.
However, the combination of a pure time-domain approach and optimization strategies
allows reasonable computing times but is realized at the expense of a huge memory con-
sumption.

Beyond the scope of this thesis, the high computational costs raise the question of the
necessity of 3D FWT in dependence of model complexity and acquisition geometry. A
synthetic study involving the evaluation of 3D cross-well data for a complex medium with
focus on recovering the S-wave velocity model is carried out by Dunkl et al.. This study
compares the performances of 2D elastic FWT after a 3D-to-2D transformation of the data
and 3D elastic FWT. Although the velocity model is sufficiently recovered, both cases show a
lower resolution compared to a 2D inversion of pure 2D data. On the one hand, the 3D FWT
suffers from a relatively poor coverage (as discussed in this chapter). On the other hand,
the 2D FWT maps the scattered-wavefield information caused by 3D structures to the 2D
model by producing artifacts. Nevertheless, a transmission experiment seems to be the most
promising field of application for a 2D FWT. However, in real-data applications of reflection
experiments, a successful performance of a 2D FWT requires a very simple geology, such
as a 1D layered medium (also suggested by Köhn, 2011). Additionally, the application of
acoustic FWT in case of marine reflection experiments involves the consideration of 3D
geology and elastic effects. This requires a trade-off between computational efforts and
accuracy with respect to the applicability of 2D/3D acoustic/elastic FWT.



Chapter 8

Summary

In this work I developed 2D and 3D time-domain implementations of acoustic full waveform
tomography (FWT) including its optimization with respect to methodological and technical
aspects. I accomplished several synthetic feasibility studies with applications to seismic
data computed in cross-well or reflection experiments.

At the present time, the FWT evolves as a powerful method in seismic imaging. One can
find a high diversity of different approaches. Usually, the relevant literature distinguishes
between FWT in time domain and frequency domain. Although frequency-domain FWT
is commonly used, several reasons induced the decision to focus on the development of a
time-domain implementation. In the long term, the 3D FWT will become more important,
in particular, if a (real-data) application of a 2D FWT is insufficient due to its inability to
take 3D effects into account. Thus, one motivation is to avoid general drawbacks of (3D)
frequency-domain FWT and to benefit from the advantages of time-domain FWT, such as the
consideration of broad frequency bands instead of single frequencies or the straightforward
3D modeling including a variety of efficient parallelization techniques.

8.1 Significant contributions of this work

Implementation

The acoustic FWT implementation bases on existing fundamentals of the FWT methodology
and finite-difference modeling (described in chapter 2). Due to its high computational efforts
and the limited availability of computational resources at early stages, the optimization
emerged as an essential task of my work to overcome these drawbacks. This comprises
methodological improvements (M) to increase the convergence of the iterative gradient
algorithm (described in section 2.6) and technical features (T) (discussed in chapter 3):
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(M) The adaptive step length estimation involving a parabolic fit represents the most
significant methodological feature. The sophisticated implementation is able to handle
numerous exceptional cases. Depending on the application or the iteration-dependent
complexity of the data misfit function, it may provide large or very small step lengths –
ranging over several orders of magnitude – to ensure a continuous misfit reduction. In
comparison to the usage of simply constant step lengths, the exemplary application in
chapter 4 demonstrates a reduction of essential iterations by 75 %.

(T) Most of the computational time is consumed by modeling, i. e., by forward-
propagations of the source wavefields, the back-propagation of the residual wavefields
and additional modelings for the step length estimation. Hence, I combined the simul-
taneous modeling of shots with the existing domain decomposition to get a massive
parallelization exhibiting a high efficiency. In particular, 2D applications benefit from
this method by overcoming the disadvantages of a pure domain decomposition. Even
on supercomputers a pure domain decomposition easily exhausts communication
capacities. The more intense the decomposition, the smaller the subdomains of the
model area, the faster the modeling computations and the more data has to be com-
municated within a certain period of time. The combined parallelization is extremely
adaptable to the hardware architecture and allows the usage of extensive resources by
minimizing the domain-decomposition efforts and maximizing the number of model-
ings computed at once. The first tests were performed on a local workstation cluster.
Due to the limitation of modeling to each workstation and the resulting elimination of
network communication, the computing time was reduced by almost 90 %. Even on
supercomputers there is a tremendous discrepancy between a combined paralleliza-
tion – allowing a nearly linear speedup as shown by two benchmarks in chapter 3 –
and the pure domain decomposition.

(T) As a consequence of the massive parallelization, the memory consumption of the time-
domain implementation increased significantly. Although, the forward-propagated
wavefields have to be stored in memory, it is not necessary to sample wavefield
snapshots with respect to the finite-difference time step. The application of the Nyquist
sampling criterion results in storing a small subset of snapshots. In case of 3D FWT,
this is also applied to the spatial sampling which allows a significant reduction of
memory consumption along with the exploitation of shot parallelization.

(T) The implementation of a multi-purpose workflow scheme increases the efficiency by
simply improving the handling of the FWT implementation. It allows

– arbitrary combinations of common strategies to mitigate the ill-posedness of the
inverse problem, i. e., it is a flexible inversion scheme over several stages,

– to benefit from advantages of inverting in the time-domain and frequency-domain
due to the free choice of time-domain FWT or single-frequency method,

– the minimization of efforts per stage by employing stop criteria (in order to
achieve convergence in the course of a stage, the number of essential iterations
might vary significantly),

– the potential of arbitrary expansions, such as applying different methods of
gradient preconditioning, among others.
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Concluding, the combination of these strategies increases the convergence and reduces
computational efforts. In the course of this work, these improvements allowed numerous
synthetic studies and were the essential condition to prove the feasibility of 3D FWT in the
time domain.

Parameter study

Within the scope of an extensive quantitative study including numerous cross-well experi-
ments (see chapter 4), I examined the impact of methodological strategies and the choice of
the initial model on the progress of the FWT and the corresponding ability to reconstruct
the velocity model. In general, a usual experiment consisted of FWT runs for 51 different
initial velocity models with 100 iterations each to visualize the evolution of the adaptive
step length as well as cross sections of the data misfit function and the model error function.
The impact of methodological problems, such as the choice of the initial model, the so-called
cycle-skipping effect, frequency filtering, usage of an appropriate acquisition geometry
(among others), was already taken into account by the relevant literature. However, this
work presents the first comprehensive study (to the best of my knowledge) which elab-
orately visualizes their footprint on the inversion progress. An assortment of interesting
observations is listed below.

• A plain FWT, that does not apply any strategy to improve its outcome, significantly
suffers from cycle-skipping. Only a small range of initial models allows the recon-
struction of a satisfactory velocity model. Interestingly, the choice of two very similar
initial models might cause completely different FWT progresses. In other words, the
deviation of their background velocity with respect to the average P-wave velocity
(2200 m

s ) of the true model amounts to (−62 m
s ) and (−31 m

s ), respectively. In the first
case, the FWT gets stuck in a local minimum. In the second case, a satisfactory velocity
model is recovered.

• The most impressive impact is achieved by frequency filtering. The lower the frequency
content considered in FWT, the weaker the dependency on the initial model. In other
words, the mitigation of the cycle-skipping effect is realized by broadening the range
of initial models allowing a successful inversion.

• In contrast, other factors, such as step length estimation or the acquisition geometry,
have an influence on the convergence but not on the cycle-skipping effect. The
strongest increase of the convergence is achieved by exploiting the adaptive step
length estimation. Concerning the acquisition geometry, the essential number of
sources represents a very relevant problem. The cross-well experiment shows that a
trade-off between “undersampling & low computational efforts” and “oversampling
& high computational efforts” has to be found, e. g., the optimal choice is the usage of
16 sources. While using a few sources (e. g., 4) results in a spatial undersampling and
an unsatisfactory model, an arbitrary increase of the number of sources (e. g., 64) does
not necessarily yield further improvements.
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Comparison of approaches in the time domain and the frequency domain

To identify assets and drawbacks of the time-domain FWT, I classified its performance
with regard to other approaches, such as the frequency-domain implementation FULLWV
developed by R. G. Pratt and the single-frequency method. In chapter 5, I used a cross-
well experiment to perform a comparison of all 2D approaches with the aim to obtain the
most optimal results. I involved time-domain frequency filtering as the counterpart to the
selection of single frequencies. The outcome of the comparison validated the focus on the
development of a time-domain implementation. The reasons are:

• Within the scope of the given experiment, all techniques produced comparable results.
However, the most optimal result was obtained from the pure time-domain approach.
Apparently, it took advantage of the consideration of broad frequency bands – due to
low-pass filtering – instead of using single frequencies.

• The 2D frequency-domain FWT proved to be most efficient with respect to the compu-
tational performance. While it runs on a single CPU core, the parallelized time-domain
approach needs a multiple of these computational resources to get along with a compar-
able computing time. But, an efficient parallelization and the availability of present-day
(super)computers compensate this disadvantage. Concerning the development of 3D
FWT, the 3D time-domain implementation fully benefits from the achievements of the
2D implementation, while a 3D frequency-domain FWT is still highly demanding.

Acoustic FWT in the presence of attenuation

In a further synthetic feasibility study in chapter 6, I investigated the applicability of acoustic
FWT in the presence of attenuation. I employed two marine reflection experiments using
a simple 1D geology and the Marmousi model. The latter case included a realistic towed-
streamer acquisition geometry. While the focus was on the recovery of the velocity model,
the experiments either ignored the occurrence of attenuation or took it into account by
assuming passive quality-factor models. The most relevant findings are:

• The application of a purely acoustic inversion scheme to seismic data affected by
significant attenuation results in unsatisfactory velocity models. The attenuation-
related data misfit which cannot be explained by the acoustic modeling, is partly
mapped to the velocity model by producing notable artifacts.

• The reconstruction of the velocity model benefits from the consideration of attenuation
in the modeling of the FWT. If the passive quality-factor model is an appropriate
representation of the near-surface areas, then even a simple assumption, such as a
homogeneous model, yields a reliable velocity model.

In particular, the inversion of seismic data acquired in marine environments with soft
sediments requires the consideration of attenuation. The most realistic choice of including
attenuation is the assumption of a smooth quality-factor model, which might be obtained
from the initial velocity model.

Furthermore, a paper manuscript with these results has been prepared for submission.
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3D acoustic FWT in the time domain

As a consequence of the experiences with the 2D FWT, I developed a pure time-domain
implementation of 3D acoustic FWT and carried out a feasibility study with regard to the
reconstruction of the velocity model in two synthetic experiments. I applied the 3D FWT to
small-scale but very complex subsurface models shown in chapter 7: a random medium
with a transmission geometry and a 3D expansion of the Marmousi model with a marine
reflection geometry. In contrast to a 2D FWT, a different consideration of some aspects is
required:

• First of all, the 3D FWT is able to recover reliable velocity models for both the trans-
mission and the reflection experiment.

• The 3D FWT shows a stronger dependency on the acquisition geometry which par-
ticularly affects the reflection experiment. While the size of both subsurface models
is comparable, the Marmousi experiment is equipped with a more complex acquis-
ition geometry composed of 3 lines with 24 sources and 7 hydrophone lines at the
sea surface (compared to 2 boreholes with 16 sources and 2 receiver boreholes in the
transmission geometry). However, the reflection experiment seems to be spatially
undersampled with respect to the inversion of higher-frequency contents. A limited
model resolution and the appearance of artificial noise at very small scale lengths are
the immediate consequences.

• Additionally, I implemented the single-frequency method proposed by Sirgue et al.
(2008) to carry out a comparison. While this method sufficiently reconstructed the
random medium, it was not able to recover the Marmousi model. Even the inversion of
lower frequencies got stuck in a local minimum. Obviously, the consideration of broad
frequency bands by time-domain FWT mitigates problems caused by the involvement
of relatively sparse acquisition geometries.

Apart from the ability to reconstruct the velocity model, the consideration of computational
efforts is very important. The feasibility of a 3D FWT does not only depend on the appro-
priate choices of models and acquisition geometries, but also on the exploitation of helpful
features, such as the efficient parallelization and the workflow scheme. In particular, the
shot parallelization results in very high computational demands. However, due to the high
priority of minimizing computing times, the 3D FWT is targeted to high-performance super-
computers providing a sufficiently high amount of random access memory. Nevertheless,
concerning small-scale problems, this work has proven the feasibility of the 3D acoustic
FWT in the time domain.
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8.2 Conclusion and outlook

This thesis presents a multi-purpose feasibility study of acoustic full waveform tomography
in the time domain with focus on the reconstruction of P-wave velocity models. Based on an
early motivation to improve the performance of the FWT, the implementation of technical
features, such as the massive parallelization and the comprehensive workflow scheme, or
methodological improvements, such as the adaptive step length estimation, emerged as
important tasks. This paved the way to carry out numerous 2D FWT experiments and to
allow the application of the 3D FWT – considering the computational limitations of academic
resources.

The FWT implementation developed in the course of this work is the starting point for
different investigations. Przebindowska et al. (2012) particularly deal with the inversion
of real streamer data recorded in a marine environment. This requires the consideration
of essential problems, such as data-preprocessing, the impact of density, an appropriate
parameterization or the inversion of the source wavelet, among others. Furthermore, the
acoustic reverse time migration (RTM) is an additional component of the 2D implementation
(necessary modifications done by Baumann-Wilke, 2009) which takes advantage of the
very high methodical similarity of FWT and RTM. For example, Müller et al. (2012) focus
on the application of RTM to ultrasonic data by exploiting the RTM capabilities of that
implementation.

In particular, the findings of the parameter study, of the investigation of attenuation and of
the 3D application will be considered in a subsequent real-data application. The intention is
to apply the acoustic FWT to a dataset obtained from a cross-well measurement. However,
that requires further development, such as the consideration of attenuation by the 3D FWT,
multi-parameter inversions or the usage of different data-misfit definitions.
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Appendix A

The acoustic wave equation

This appendix describes the derivation and finite-difference solution of the 3D and 2D
acoustic wave equation. It includes an implementation of perfectly matched layers (PML)
proposed by Grote and Sim (2009).

A.1 Continuous formulation

The derivation of the acoustic wave equation with PML boundary condition bases on the
homogeneous wave equation

1
κ (x)

p̈ (x, t) = ∇ ·
(

1
ρ (x)

∇p (x, t)
)

, (2.3)

with the bulk modulus
κ (x) = ρ (x) v2

P (x) , (2.2)

pressure p, P-wave velocity vP, density ρ, the position vector x and time t. The pressure
field and its second time derivative can be transformed to the Laplace-domain yielding the
complex wavefield p:

1
ρ (x) v2

P (x)
s2p (x, s) = ∇ ·

(
1

ρ (x)
∇p (x, s)

)
,

1
v2

P
s2p =

[
∂2

x + ∂2
y + ∂2

z

]
p− 1

ρ

[
∂xρ ∂x + ∂yρ ∂y + ∂zρ ∂z

]
p (A.1)

with s ∈ C. The next step is a coordinate stretching which takes effect within the absorbing
boundary by substituting the differential operators

∂x,y,z 7→
1

1 + σx,y,z
s

∂x,y,z =
1

γx,y,z
∂x,y,z, (A.2)

where γx,y,z are auxiliary variables and σx,y,z are the attenuation coefficients in x-, y- and
z-direction:

σx = σy = σz = 0 (domain interior),
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σx > 0, σy > 0, σz > 0 (PML boundary).

After application of the new differential operator to equation (A.1)

1
v2

P
s2p =

1
γx

∂x

(
1

γx
∂x p
)
+

1
γy

∂y

(
1

γy
∂y p
)
+

1
γz

∂z

(
1
γz

∂z p
)

− 1
ρ

[
1

γ2
x

∂xρ · ∂x +
1

γ2
y

∂yρ · ∂y +
1

γ2
z

∂zρ · ∂z

]
p, (A.3)

multiplication of both sides with γxγyγz,

1
v2

P
γxγyγzs2p =∂x

(
γyγz

γx
∂x p
)
+ ∂y

(
γxγz

γy
∂y p
)
+ ∂z

(
γxγy

γz
∂z p
)

− 1
ρ

[
γyγz

γx
∂xρ · ∂x p +

γxγz

γy
∂yρ · ∂y p +

γxγy

γz
∂zρ · ∂z p

]
, (A.4)

and evaluating the terms

γyγz
γx

= 1 +
s
(
σy + σz − σx

)
+ σyσz

s (s + σx)
,

γxγz
γy

= 1 +
s
(
σx + σz − σy

)
+ σxσz

s
(
s + σy

) ,

γxγy
γz

= 1 +
s
(
σx + σy − σz

)
+ σxσy

s (s + σz)
,

γxγyγzs2 = s2 + s
(
σx + σy + σz

)
+ σyσz + σxσy + σxσz +

σxσyσz

s
(A.5)

one can get the following equation:

1
v2

P

[
s2 + s

(
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The replacement of the terms

wx B
s
(
σy + σz − σx

)
+ σyσz

s (s + σx)
∂x p,

wy B
s
(
σx + σz − σy

)
+ σxσz

s
(
s + σy

) ∂y p,

wz B
s
(
σx + σy − σz

)
+ σxσy

s (s + σz)
∂z p,

u B
p
s

(A.7)

by the auxiliary wavefields w and u simplifies equation (A.6) and introduces four additional
(partial) differential equations. Equations (A.6) and (A.7) are transformed back to the time
domain and the system can be written as:

p̈ +
(
σx + σy + σz

)
ṗ +

(
σyσz + σxσy + σxσz

)
p = v2

P

[
∆p +∇ ·w− 1

ρ
∇ρ · (∇p + w)

]
− σx σy σz u,

ẇx =
(
σy + σz − σx

)
∂x p + σyσz∂xu− σxwx,

ẇy =
(
σx + σz − σy

)
∂y p + σxσz∂yu− σywy,

ẇz =
(
σx + σy − σz

)
∂z p + σxσy∂zu− σzwz,

u̇ = p. (A.8)

In dependence of the type of application several simplifications are possible. In case of the
2D acoustic wave equation (A.8) is reduced to

p̈ +
(
σx + σy

)
ṗ + σxσy p = v2

P

[
∆p +∇ ·w− 1

ρ
∇ρ · (∇p + w)

]
,

ẇx =
(
σy − σx

)
∂x p− σxwx,

ẇy =
(
σx − σy

)
∂y p− σywy. (A.9)

The assumption of homogeneous density yields modified wave equations in 3D,

p̈ +
(
σx + σy + σz

)
ṗ +

(
σyσz + σxσy + σxσz

)
p = v2

P [∆p +∇ ·w]− σx σy σz u,

ẇx =
(
σy + σz − σx

)
∂x p + σyσz∂xu− σxwx,

ẇy =
(
σx + σz − σy

)
∂y p + σxσz∂yu− σywy,

ẇz =
(
σx + σy − σz

)
∂z p + σxσy∂zu− σzwz,

u̇ = p, (A.10)

and 2D,

p̈ +
(
σx + σy

)
ṗ + σxσy p = v2

P [∆p +∇ ·w] ,
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ẇx =
(
σy − σx

)
∂x p− σxwx,

ẇy =
(
σx − σy

)
∂y p− σywy. (A.11)

The attenuation parameters σx,y,z can be computed from several mathematical functions
fx,y,z such as quadratic, exponential or cosine functions. This ensures a smooth transition
from the interior of the model domain to the boundary and within the PML boundary. The
coefficients are defined as follows:

σx,y,z = σ0 fx,y,z with 0 ≤ fx,y,z ≤ 1 and σ0 = − ṽP ln(R)
L

, (A.12)

where ṽP is the average P-wave velocity, L is the width and R is the relative reflection of the
absorbing frame, whereas the relative reflection is limited to the range 0 < R ≤ 1. Useful
relative reflection values have been estimated empirically: 10−5 ≤ R ≤ 10−3.

A.2 Finite-difference solution

The finite-difference (FD) solution of the full acoustic wave equation requires the approx-
imation of partial derivatives by using discrete linear FD operators and FD discretization
(2.11). The following considerations are limited to second-order FD operators in time and
space. For the pressure component p this comprises central derivatives within the interior
of the domain:

∂2
x p ≈ pi+1 + pi−1 − 2pi

(∆h)2 , p̈ ≈ pn+1 + pn−1 − 2pn

(∆t)2 . (A.13)

The usage of PML boundary conditions requires additional first-order equations and cor-
responding auxiliary variables, such as w =

(
wx, wy, wz

)T. Exemplary FD approximations
are

∂x wx ≈
wx|i − wx|i−1

∆h
and ẇx ≈

wn
x − wn−1

x
∆t

. (A.14)

The mixture of first-order and second-order equations causes the computations of p at full
grid points and time steps, while the components of w are shifted by half a grid point and
half a time step. Thus, additional wavefield averaging is needed within the PML boundary.

The derivation yields the following general relations for pressure field p, auxiliary scalar
field u as well as the components of the auxiliary vector field wx, wy and wz. The usage of
the auxiliary variables is limited to the PML. The update of the pressure field at time step
n + 1 and grid position (k, j, i) is computed by

pn+1
k,j,i = sk,j,i

[
v2

P|k,j,i
(∆t)2

(∆h)2

(
pn

k,j,i−1 + pn
k,j,i+1 + pn

k,j−1,i + pn
k,j+1,i + pn

k−1,j,i + pn
k+1,j,i − 6pn

k,j,i

)

+v2
P|k,j,i

(∆t)2

∆h

(
w̃n

x k,j,i+ 1
2
−w̃n

x k,j,i− 1
2
+w̃n

y k,j+ 1
2 ,i−w̃n

y k,j− 1
2 ,i+w̃n

z k+ 1
2 ,j,i−w̃n

z k− 1
2 ,j,i

)
+
(

2− (∆t)2σy|j σz|k + σx|i σy|j + σx|i σz|k

)
pn

k,j,i

+

(
∆t
2

(
σx|i + σy|j + σz|k

)
− 1
)

pn−1
k,j,i
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− σx|i σy|j σz|k
(∆t)2

2

(
un+ 1

2
k,j,i − un− 1

2
k,j,i

)
+ rx|k,j,i

(
1

2 ∆h

(
pn

k,j,i+1 − pn
k,j,i−1

)
+

1
2

(
w̃n

x|k,j,i− 1
2
+ w̃n

x|k,j,i+ 1
2

))
+ ry|k,j,i

(
1

2 ∆h

(
pn

k,j+1,i − pn
k,j−1,i

)
+

1
2

(
w̃n

y|k,j− 1
2 ,i + w̃n

y|k,j+ 1
2 ,i

))

+ rz|k,j,i

(
1

2 ∆h

(
pn

k+1,j,i − pn
k−1,j,i

)
+

1
2

(
w̃n

z|k− 1
2 ,j,i + w̃n

z|k+ 1
2 ,j,i

)) ]
(A.15)

with the PML term
sk,j,i =

1

1 + ∆t
2

(
σx|i + σy|j + σz|k

) ,

the density-related terms

rx|k,j,i = −v2
P|k,j,i

(∆t)2

2 ∆h
ρk,j,i+1 − ρk,j,i−1

ρk,j,i
,

ry|k,j,i = −v2
P|k,j,i

(∆t)2

2 ∆h
ρk,j+1,i − ρk,j−1,i

ρk,j,i
,

rz|k,j,i = −v2
P|k,j,i

(∆t)2

2 ∆h
ρk+1,j,i − ρk−1,j,i

ρk,j,i

and the averages of the auxiliary wavefields

w̃n
x|k,j,i+ 1

2
=

1
4

(
wn

x|k+ 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

x|k− 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

x k− 1
2 ,j− 1

2 ,i+ 1
2
+ wn

x|k+ 1
2 ,j− 1

2 ,i+ 1
2

)
,

w̃n
x|k,j,i− 1

2
=

1
4

(
wn

x|k+ 1
2 ,j+ 1

2 ,i− 1
2
+ wn

x|k− 1
2 ,j+ 1

2 ,i− 1
2
+ wn

x k− 1
2 ,j− 1

2 ,i− 1
2
+ wn

x|k+ 1
2 ,j− 1

2 ,i− 1
2

)
,

w̃n
y|k,j+ 1

2 ,i =
1
4

(
wn

y|k+ 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

y|k− 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

y k− 1
2 ,j+ 1

2 ,i− 1
2
+ wn

y|k+ 1
2 ,j+ 1

2 ,i− 1
2

)
,

w̃n
y|k,j− 1

2 ,i =
1
4

(
wn

y|k+ 1
2 ,j− 1

2 ,i+ 1
2
+ wn

y|k− 1
2 ,j− 1

2 ,i+ 1
2
+ wn

y k− 1
2 ,j− 1

2 ,i− 1
2
+ wn

y|k+ 1
2 ,j− 1

2 ,i− 1
2

)
,

w̃n
z|k+ 1

2 ,j,i =
1
4

(
wn

z|k+ 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

z|k+ 1
2 ,j− 1

2 ,i+ 1
2
+ wn

z k+ 1
2 ,j− 1

2 ,i− 1
2
+ wn

z|k+ 1
2 ,j+ 1

2 ,i− 1
2

)
,

w̃n
z|k− 1

2 ,j,i =
1
4

(
wn

z|k− 1
2 ,j+ 1

2 ,i+ 1
2
+ wn

z|k− 1
2 ,j− 1

2 ,i+ 1
2
+ wn

z k− 1
2 ,j− 1

2 ,i− 1
2
+ wn

z|k− 1
2 ,j+ 1

2 ,i− 1
2

)
,

un
k,j,i =

1
2

(
un+ 1

2
k,j,i − un− 1

2
k,j,i

)
.

Furthermore, the auxiliary vector wavefield is computed by:

wn+1
x|k+ 1

2 ,j+ 1
2 ,i+ 1

2
=

1
1 + ∆t

2 σ̃x|i+ 1
2

[
∆t
(

σ̃y|j+ 1
2
+ σ̃z|k+ 1

2
− σ̃x|i+ 1

2

)
Dx pn+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2
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+ ∆t σ̃y|j+ 1
2
σ̃z|k+ 1

2
Dxun+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2
+

(
1− ∆t

2
σ̃x|i+ 1

2

)
wn

x|k+ 1
2 ,j+ 1

2 ,i+ 1
2

]
,

wn+1
y|k+ 1

2 ,j+ 1
2 ,i+ 1

2
=

1
1 + ∆t

2 σ̃y|j+ 1
2

[
∆t
(

σ̃x|i+ 1
2
+ σ̃z|k+ 1

2
− σ̃y|j+ 1

2

)
Dy pn+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2

+ ∆t|σ̃x|i+ 1
2
σ̃z|k+ 1

2
Dyun+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2
+

(
1− ∆t

2
σ̃y|j+ 1

2

)
wn

y|k+ 1
2 ,j+ 1

2 ,i+ 1
2

]
,

wn+1
z|k+ 1

2 ,j+ 1
2 ,i+ 1

2
=

1
1 + ∆t

2 σ̃z|k+ 1
2

[
∆t
(

σ̃x|i+ 1
2
+ σ̃y|j+ 1

2
− σ̃z|k+ 1

2

)
Dz pn+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2

+ ∆t σ̃x|i+ 1
2
σ̃y|j+ 1

2
Dzun+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2
+

(
1− ∆t

2
σ̃z|k+ 1

2

)
wn

z|k+ 1
2 ,j+ 1

2 ,i+ 1
2

]
(A.16)

with the averages of the attenuation coefficients

σ̃x|i+ 1
2
=

1
2

(
σx|i + σx|i+1

)
, σ̃y|j+ 1

2
=

1
2

(
σy|j + σy|j+1

)
, σ̃z|k+ 1

2
=

1
2

(
σz|k + σz|k+1

)
and the gradient operators applied to the spatial and temporal averages of the pressure field

Dx pn+ 1
2

k+ 1
2 ,j+ 1

2 ,i+ 1
2
=

1
8 ∆h

[ (
pn

k,j+1,i + pn
k+1,j+1,i + pn

k+1,j+1,i+1 + pn
k,j+1,i+1

)
−
(

pn
k,j,i + pn

k+1,j,i + pn
k+1,j,i+1 + pn

k,j,i+1

)
+
(

pn+1
k,j+1,i + pn+1

k+1,j+1,i + pn+1
k+1,j+1,i+1 + pn+1

k,j+1,i+1

)
−
(

pn+1
k,j,i + pn+1

k+1,j,i + pn+1
k+1,j,i+1 + pn+1

k,j,i+1

) ]
,

Dy pn+ 1
2

k+ 1
2 ,j+ 1

2 ,i+ 1
2
=

1
8 ∆h

[ (
pn

k,j,i+1 + pn
k+1,j,i+1 + pn

k,j+1,i+1 + pn
k+1,j+1,i+1

)
−
(

pn
k,j,i + pn

k+1,j,i + pn
k,j+1,i + pn

k+1,j+1,i

)
+
(

pn+1
k,j,i+1 + pn+1

k+1,j,i+1 + pn+1
k,j+1,i+1 + pn+1

k+1,j+1,i+1

)
−
(

pn+1
k,j,i + pn+1

k+1,j,i + pn+1
k,j+1,i + pn+1

k+1,j+1,i

) ]
,

Dz pn+ 1
2

k+ 1
2 ,j+ 1

2 ,i+ 1
2
=

1
8 ∆h

[ (
pn

k+1,j,i + pn
k+1,j+1,i + pn

k+1,j+1,i+1 + pn
k+1,j,i+1

)
−
(

pn
k,j,i + pn

k,j+1,i + pn
k,j+1,i+1 + pn

k,j,i+1

)
+
(

pn+1
k+1,j,i + pn+1

k+1,j+1,i + pn+1
k+1,j+1,i+1 + pn+1

k+1,j,i+1

)
−
(

pn+1
k,j,i + pn+1

k,j+1,i + pn+1
k,j+1,i+1 + pn+1

k,j,i+1

) ]
.
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The computation of spatial gradient operators Dxun+ 1
2

k+ 1
2 ,j+ 1

2 ,i+ 1
2
, Dyun+ 1

2
k+ 1

2 ,j+ 1
2 ,i+ 1

2
and

Dzun+ 1
2

k+ 1
2 ,j+ 1

2 ,i+ 1
2

is analogous. The auxiliary scalar wavefield is updated by

un+ 1
2

k,j,i = ∆t pn
k,j,i + un− 1

2
k,j,i . (A.17)

Within the main domain the entire wavefield update simplifies to one second-order equation:

pn+1
k,j,i =v2

P|k,j,i
(∆t)2

(∆h)2

(
pn

k,j,i−1 + pn
k,j,i+1 + pn

k,j−1,i + pn
k,j+1,i + pn

k−1,j,i + pn
k+1,j,i − 6pn

k,j,i

)
+ 2pn

k,j,i − pn−1
k,j,i

+
rx|k,j,i

(
pn

k,j,i+1 − pn
k,j,i−1

)
+ ry|k,j,i

(
pn

k,j+1,i − pn
k,j−1,i

)
+ rz|k,j,i

(
pn

k+1,j,i − pn
k−1,j,i

)
2 ∆h

.

(A.18)
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Appendix B

The viscoacoustic wave equation

This appendix describes the involvement of attenuation into the acoustic wave equation
as well as the derivation of its continuous and 2D finite-difference solution. It includes an
implementation of perfectly matched layers.

B.1 Attenuation in acoustic media

The implementation of attenuation into acoustic or elastic modeling has been described
by numerous authors (compare Carcione et al., 1988a,b; Emmerich and Korn, 1987; Blanch
et al., 1995; Liu et al., 1976; Robertsson et al., 1994; Bohlen, 2002). In contrast to modeling
in the frequency domain, a direct implementation of attenuation using complex velocities
(Johnston, 1981) is not possible. Hence, the attenuative properties of the medium must be
approximated by a suitable rheology, which is represented by the generalized standard
linear solid (GSLS) (Liu et al., 1976). It consists of a parallel connection of a Hooke and L
Maxwell bodies. The Hooke body represents pure acoustic properties. A Maxwell body
consists of a Hooke and a Newton body where the latter one characterizes the viscosity of
the medium. Thus, attenuation is described by L relaxation mechanisms.

While an acoustic model is characterized by density ρ and bulk modulus κ, the viscoacoustic
medium is defined by ρ, the relaxed bulk modulus κr and additional 2L relaxation paramet-
ers τp,l and τε,l for each mechanism of the GSLS with l = {1, . . . , L}. The relaxation times τp,l
and retardation times τε,l are required for an appropriate approximation of the quality factor
QP, which is proportional to the reciprocal of attenuation αP. I only consider constant QP
models, i. e., QP( f ) = const. = QP,0, within the desired frequency range fmin ≤ f ≤ fmax of
the seismic waveforms. The general frequency-dependent relation of QP(ω) (with ω = 2π f )
and relaxation parameters is given by

QP(ω, τp,l, τε,l) =

1− L + ∑L
l=1

1+ω2 τε,l τp,l

1+ω2 τ2
p,l

∑L
l=1

ω(τε,l−τp,l)
1+ω2 τp,l

. (B.1)
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This equation is simplified by defining a new L independent parameter (Blanch et al., 1995)

τP B
τε,l

τp,l
− 1, (B.2)

which replaces the L dependent retardation times, yielding

QP(ω, τp,l, τP) =

1 + ∑L
l=1

ω2τ2
p,l

1+ω2τ2
p,l

τP

∑L
l=1

ω τp,l

1+ω2τ2
p,l

τP
. (B.3)

To achieve an approximation of QP(ω) = const. = QP,0 the nonlinear equation (B.3) has to
be minimized by application of a least-squares optimization algorithm (e. g., Blanch et al.,
1995; Bohlen, 1998). Hence, the constant-QP model is defined by L relaxation times and
QP,0. Instead of defining relaxation times, a more common choice of relaxation frequencies
is ωr,l = 2π fr,l =

1
τp,l

.

The implementation of attenuation requires τP rather than QP. In case of low attenuation,
relation (B.3) can be simplified (Emmerich and Korn, 1987; Blanch et al., 1995) and rewritten
in terms of τP (QP) and ω = ω0:

1
τP

=
L

∑
l=1

ω0/ωr,l

1 + ω2
0/ω2

r,l
QP,0 for QP,0 � 1. (B.4)

For ωr,l B ω0 and L = 1 this equation reduces to the approximation

τP ≈ 2/QP,0. (B.5)

Furthermore, the relaxation parameters are used to compute relaxed frequency-dependent
bulk modulus κr and relaxed P-wave phase velocity vP, respectively:

κr = ρ v2
P,ref

(
1 +

L

∑
l=1

ω2
0/ω2

r,l

1 + ω2
0/ω2

r,l
τP

)−1

for QP,0 � 1 (B.6)

with the angular reference frequency ω0 = 2π f0. At reference frequency ω0 acoustic
reference velocity vP,ref is defined, i. e., vP,ref corresponds to the acoustic phase velocity. A
useful choice of f0 is the peak frequency fpeak of the source wavelet or seismic data.

Apart from QP
(
ω, τp,l, τP

)
, the frequency-dependent dispersion vP

(
ω, τp,l, τP

)
is computed

from the relaxation parameters. Provided that no dispersion occurs at the reference fre-
quency, it is defined by

vP
(
ω, τp,l, τP

)
= vP,ref


√√√√1 +

L

∑
l=1

ω2τ2
p,l

1 + ω2τ2
p,l

τP −

√√√√1 +
L

∑
l=1

ω2
0τ2

p,l

1 + ω2
0τ2

p,l
τP

 . (B.7)

The expressions for minimum and maximum dispersion are:

min vP
(
ω, τp,l, τP

)
= lim

ω→0
vP
(
ω, τp,l, τP

)
= vP,ref

√√√√√ 1

1 + ∑L
l=1

ω2
0τ2

p,l

1+ω2
0τ2

p,l
τP

, (B.8a)
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max vP
(
ω, τp,l, τP

)
= lim

ω→∞
vP
(
ω, τp,l, τP

)
= vP,ref

√√√√√ 1 + L τP

1 + ∑L
l=1

ω2
0τ2

p,l

1+ω2
0τ2

p,l
τP

. (B.8b)

B.2 Continuous time-domain wave equation

In addition to relaxation of the model parameter, attenuation has to be implemented into the
wave equation. This appendix describes the derivation of the viscoacoustic wave equation
in the time domain. It includes perfectly matched layers (PML) as boundary condition. This
method is based on the application of the so-called complex coordinate stretching (Berenger,
1994; Chew and Weedon, 1994). Although, this implementation uses a similar rheology, it
differs from existing work of other authors, such as Yuan et al. (1999).

Due to the requirement of first-order partial differential equations for implementation of
attenuation, second-order wave equation (2.3) has to be rewritten to the pressure-velocity
formulation which is a system of coupled first-order partial differential equations:

ṗ (x, t) = κ (x) ∇ ·w (x, t) ,

ẇ (x, t) =
1

ρ (x)
∇p (x, t) . (2.7)

The auxiliary vector w (x, t) denotes the particle velocity field. The introduction of atten-
uation yields following wave equation (Emmerich and Korn, 1987; Carcione et al., 1988a;
Robertsson et al., 1994):

ṗ (x, t) = κr (x) ∇ ·w (x, t)

[
1 +

L

∑
l=1

(
τε,l

τp,l
− 1

)]
+

L

∑
l=1

rl (x, t) ,

ṙl (x, t) = − 1
τp,l

[
κr

(
τε,l

τp,l
− 1

)
∇ ·w (x, t) + rl (x, t)

]
with l = {1, . . . , L},

ẇ (x, t) =
1

ρ (x)
∇p (x, t) . (B.9)

The substitutions based on relation (B.2) result in

ṗ (x, t) = κr (x) ∇ ·w (x, t) [1 + L τP (x)] +
L

∑
l=1

rl (x, t) ,

ṙl (x, t) = − 1
τp,l

[κr τP (x) ∇ ·w (x, t) + rl (x, t)] with l = {1, . . . , L},

ẇ (x, t) =
1

ρ (x)
∇p (x, t) . (2.8)

Viscoacoustic modeling in the time domain needs additional L wavefield variables rl (x, t)
and L equations. The so-called “memory variables” rl (x, t) characterize the memory of the
viscoacoustic medium. According to section 2.3.1.2, initial and PML boundary conditions
have to be applied to the wave equation. The initial conditions are

p (x, t = 0) = ṗ (x, t = 0) = 0,
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w (x, t = 0) = ẇ (x, t = 0) = 0. (2.9)

In the following, the viscoacoustic wave equation with PML boundary condition is derived
in 2D based on system (2.8). For subsequent simplifications constant terms are substituted
by

b B κr (1 + L τP) , (B.10a)

c B − 1
τp,l

κr τP. (B.10b)

In analogy to appendix A.1, the Laplace transform of the wave equation yields the equations
with the complex wavefields p, w and rl:

s p = b
(

∂x wx + ∂y wy

)
+

L

∑
l=1

rl, (B.11a)

s rl = c
(

∂x wx + ∂y wy

)
− 1

τp,l
rl, l = {1, . . . , L}, (B.11b)

s w =
1
ρ
∇p (B.11c)

A complex coordinate stretching

∂x,y 7→
1

1 + σx,y
s

∂x,y, s ∈ C (B.12)

with PML coefficients σx and σy (defined by (2.6)) is applied. Now equation (B.11a) can be
rewritten as

s p =b

(
1

1 + σx
s

∂x wx +
1

1 + σy
s

∂y wy

)
+

L

∑
l=1

rl,

where the multiplication of both sides with
(
1 + σx

s
) (

1 + σy
s

)
results in

s p +
(
σx + σy

)
p +

σxσy

s
p =b

(
∂x wx + ∂y wy +

σy

s
∂x wx +

σx

s
∂y wy

)
+
(

1 +
σx

s
+

σy

s
+

σxσy

s2

) L

∑
l=1

rl

and the transformation back to time domain yields

ṗ +
(
σx + σy

)
p + θp =b

(
∂x wx + ∂y wy + ux + uy

)
+
(
1 + φx + φy + ϕ

) L

∑
l=1

rl. (B.13)

Relation (B.13) introduces several auxiliary PML variables which are defined by

u̇x = σy ∂x wx, (B.14a)
u̇y = σx ∂y wy, (B.14b)
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θ̇ = σx σy, (B.14c)
φ̇x = σx, (B.14d)
φ̇y = σy, (B.14e)
ϕ̈ = σx σy, (B.14f)

where the second-order equation (B.14f) can be written as

ϕ̇ = ψ with ψ̇ = σx σy. (B.14f)

The relations (B.11b) for memory variables are obtained similarly by using auxiliary variables
given by (B.14):

ṙl +
(
σx + σy

)
rl + θrl = c

(
∂x wx + ∂y wy + ux + uy

)
− rl

τp,l

(
1 + φx + φy + ϕ

)
(B.15)

with l = {1, . . . , L}. Finally, both components of the vector equation (B.11c) are handled
separately. To get the desired partial differential equation for wx the x-component of relation
(B.11c),

s wx =
1
ρ

1
1 + σx

s
∂x p,

has to be multiplied with
(
1 + σx

s
)

and transformed back to time domain which results in

ẇx =
1
ρ

∂x p− σxwx. (B.16a)

The equation for wy is computed analogously:

ẇy =
1
ρ

∂y p− σywy. (B.16b)

The matrix formulation of equations (B.16) can be found in equations (2.10). Furthermore,
the choice of appropriate PML coefficients σx and σy is described in appendix A.1.

B.3 Finite-difference solution

The finite-difference (FD) solution of the full viscoacoustic wave equation requires the
approximation of partial derivatives by using discrete linear FD operators and FD discretiz-
ation (2.11). The following considerations are limited to second-order FD operators in time
and space. Furthermore, the pressure-velocity formulation (2.10) requires the staggered-grid
implementation (e. g., Virieux, 1986). For pressure p and particle velocities w this comprises
exemplary staggered-grid formulations at grid point i and time step n:

∂x p ≈ pi+1 − pi

∆h
, ṗ ≈ pn+1 − pn

∆t
,

∂x wx ≈
wx|i+ 1

2
− wx|i− 1

2

∆h
, ẇx ≈

wn+ 1
2

x − wn− 1
2

x

∆t
, (B.17)
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Exemplary general relations between f and g within the staggered grid are:

fi ∼
(

gi+ 1
2
− gi− 1

2

)
and gi+ 1

2
∼ ( fi+1 − fi) .

The complete update of the viscoacoustic wave equation with PML implementation is
obtained by the FD solution of relations (2.10) which comprises (10 + L) equations:

• 1 equation for update of pressure p,

• L equations for update of memory variables rl (l = {1, . . . , L}),

• 2 equations for update of particle velocities wx and wy,

• 7 equations for additional auxiliary PML variables ux, uy, θ, φx, φy, ϕ and ψ.

Within the staggered grid the variables p, rl , ux, uy, θ, φx, φy, ϕ are computed at grid location

and time step (j, i; n), whereas the computation of wx and wy is done at
(

j + 1
2 , i + 1

2 ; n + 1
2

)
.

As an exception the variable ψ is calculated at
(

j, i; n + 1
2

)
. The FD solution of the pressure

wavefield (equation 2.10a) can be written as

pn+1
j,i =

1

1 + ∆t
2 en+ 1

2
j,i

{
bj,i∆t

[
1

∆h

(
wn+ 1

2
x|j,i+ 1

2
− wn+ 1

2
x|j,i− 1

2
+ wn+ 1

2
y|j+ 1

2 ,i
− wn+ 1

2
y|j− 1

2 ,i

)
+ ũn+ 1

2
x|j,i + ũn+ 1

2
y|j,i

]

+ ∆t
(

1 + φ̃
n+ 1

2
x|j,i + φ̃

n+ 1
2

y|j,i + ϕ̃
n+ 1

2
j,i

) L

∑
l=1

r̃n+ 1
2

l|j,i + pn
j,i

(
1− ∆t

2
en+ 1

2
j,i

)}
(B.18)

with substitution of constant term (see equation B.10a)

bj,i = κr|j,i

(
1 + L τP|j,i

)
,

the auxiliary term

en+ 1
2

j,i =

(
σx|i + σy|j + θ̃

n+ 1
2

j,i

)
and the temporal averages

ũn+ 1
2

x|j,i =
(

un
x|j,i + un+1

x|j,i

) /
2,

ũn+ 1
2

y|j,i =
(

un
y|j,i + un+1

y|j,i

) /
2,

θ̃
n+ 1

2
j,i =

(
θn

j,i + θn+1
j,i

) /
2,

φ̃
n+ 1

2
x|j,i =

(
φn

x|j,i + φn+1
x|j,i

) /
2,

φ̃
n+ 1

2
y|j,i =

(
φn

y|j,i + φn+1
y|j,i

) /
2,
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ϕ̃
n+ 1

2
j,i =

(
ϕn

j,i + ϕn+1
j,i

) /
2,

r̃n+ 1
2

l|j,i =
(

rn
l|j,i + rn+1

l|j,i

) /
2.

The memory variables (equation (2.10b)) are computed by

rn+1
l|j,i =

1
1 + ∆t

2τp,l
dj,i +

∆t
2 ej,i

{
cj,i∆t

wn+ 1
2

x|j,i+ 1
2
− wn+ 1

2
x|j,i− 1

2
+ wn+ 1

2
y|j+ 1

2 ,i
− wn+ 1

2
y|j− 1

2 ,i

∆h
+ ũn+ 1

2
x|j,i + ũn+ 1

2
y|j,i


+

(
1− ∆t

2τp,l
dj,i −

∆t
2

ej,i

)
rn

l|j,i

}
(B.19)

with l = {1, . . . , L} and substitution of constant terms (see (B.10b)) as well as the auxiliary
term dj,i:

cj,i =−
1

τp,l
κr|j,i τP|j,i,

dj,i =

(
1 + φ̃

n+ 1
2

x|j,i + φ̃
n+ 1

2
y|j,i + ϕ̃

n+ 1
2

j,i

)
.

The particle velocities (equation (2.10c)) are obtained by

wn+ 1
2

x|j,i+ 1
2
=

1
1 + σ̃x|i+ 1

2
∆t/2

[
1

ρ̃j,i+ 1
2

∆t
∆h

(
pn

j,i+1 − pn
j,i

)
+

(
1− σ̃x|i+ 1

2

∆t
2

)
wn− 1

2
x|j,i+ 1

2

]
, (B.20a)

wn+ 1
2

y|j+ 1
2 ,i

=
1

1 + σ̃y|j+ 1
2

∆t/2

[
1

ρ̃j+ 1
2 ,i

∆t
∆h

(
pn

j+1,i − pn
j,i

)
+

(
1− σ̃y|j+ 1

2

∆t
2

)
wn− 1

2
y|j+ 1

2 ,i

]
(B.20b)

with the averages of constant terms

ρ̃j,i+ 1
2
=
(
ρj,i + ρj,i+1

)
/2,

ρ̃j+ 1
2 ,i =

(
ρj,i + ρj+1,i

)
/2,

σ̃x|i+ 1
2
=
(

σx|i + σx|i+1

)
/2,

σ̃y|j+ 1
2
=
(

σy|j + σy|j+1

)
/2.
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The FD solutions for the remaining wavefield variables (equations (2.10d) . . . (2.10j)) are

un+1
x|j,i = σy|j

∆t
∆h

(
wn+ 1

2
x|j,i+ 1

2
− wn+ 1

2
x|j,i− 1

2

)
+ un

x|j,i, (B.21a)

un+1
y|j,i = σx|i

∆t
∆h

(
wn+ 1

2
y|j+ 1

2 ,i
− wn+ 1

2
y|j− 1

2 ,i

)
+ un

y|j,i, (B.21b)

θn+1
j,i = ∆t σx|i σy|j + θn

j,i, (B.21c)

φn+1
x|j,i = ∆t σx|i + φn

x|j,i, (B.21d)

φn+1
y|j,i = ∆t σy|j + φn

y|j,i, (B.21e)

ϕn+1
j,i = ∆t ψ

n+ 1
2

j,i + ϕn
j,i, (B.21f)

ψ
n+ 1

2
j,i = ∆t σx|i σy|j + ψ

n− 1
2

j,i . (B.21g)



Appendix C

The FWT method

This appendix describes the derivations of model corrections employing the Born approxim-
ation (section C.1) and model updates using the conjugate gradient method (section C.2).
The subsequent considerations are strongly based on the work of Tarantola (1984) and Mora
(1987). They also include aspects of Crase et al. (1990).

C.1 Derivation of model corrections

Definition of forward and adjoint problem

This section discusses the computation of model corrections in the acoustic approximation
with respect to the model parameters bulk modulus, density and source time function. To
simplify following equations the derivation is carried out for model parameters m B mh at
iteration h and a single source. The final equations take all sources into account.

The starting point is the inhomogeneous second-order acoustic wave equation[
1
κ

∂2
t −∇ ·

(
1
ρ
∇
)]

p = q, (C.1)

where the pressure data p B p (xs, xr, t, m) is observed at receiver locations xr resulting
from a source at xs. The medium is described by the model parameters bulk modulus κ and
density ρ. Using the Dirac distribution δ (x) and the source time function q (t) the source
term is given by a point source

q B q (x, t) = δ (x− xs) q (t) . (C.2)

In the following both continuous and discrete matrix formulations are used, e.g., the seismic
forward problem can be written in continuous p B p (m) or discrete form p B p (m) with
vectorized data. The linearized forward problem can be written as

δp = p (m + δm)− p (m) =
∂p
∂m

(δm) = D δm + o
(
‖δm‖2

)
(C.3)

with the linear operator D = ∂p/∂m denoting the Frechét derivatives. Equation (C.3)
describes a small change in the pressure wavefield δp due to a small model perturbation
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δm. Hence, higher-order terms o
(
‖δm‖2

)
are neglected. For next steps the continuous

formulation of (C.3) will be helpful:

δp (D) =
∫
M

dM
∂p (D)

∂m (M)
δm (M) . (C.4)

This is an integration over model space M (mapped to data space D) of model perturbations
multiplied by Frechét derivatives. It represents the Born approximation of the forward
problem (cp. Mora (1987)) by introducing the Green’s function. However, the aim of an
inversion is the determination of model corrections δm̂ obtained by an unknown expression
which is equivalent to (C.3) and is called its adjoint operation:

δm̂ = D∗ δp. (C.5)

In analogy to (C.4), the continuous form of (C.5) is

δm̂ (M) =
∫
D

dD
[

∂p (D)

∂m (M)

]∗
δp (D) . (C.6)

Here it is more comprehensible to assign a physical meaning to the model parameters, data
and model space. The forward and adjoint problems of the acoustic wave equation are
parameterized by bulk modulus, density and source term:

m(x) =

κκκ(x)ρρρ(x)
q (x)

 . (C.7)

Equivalent expressions of the forward problem (C.4) and its adjoint operation (C.6) are
given by

δp(xs, xr, t) =
∫
V

dV
∂p(xs, xr, t)

∂m (x)
δm (x) , (C.4)

δm̂ (x) =
∫
t

dt ∑
Nr

∂p(xs, xr, t)
∂m (x)

δp(xs, xr, t) , (C.6)

where Nr denotes the number of receivers. In contrast to the forward problem, the adjoint
operation is an integration over data space of data residuals multiplied by Frechét derivatives
(cp. Tarantola, 1984; Mora, 1987). To obtain the adjoint operation δm̂ the Born approximation
of the acoustic wave equation (C.4) is required, because it provides the pressure perturbation
δp corresponding to some perturbation in model parameters δm.

The forward problem

The involvement of perturbations p + δp, κκκ+ δκκκ, ρρρ+ δρρρ and q + δq yields a new acoustic
wave equation describing pressure perturbations δp:[

1
κ + δκ

∂2
t −∇ ·

(
1

ρ + δρ
∇
)]

(p + δp) = q + δq. (C.8)
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The term 1
a+δa can be approximated by

1
a + δa

=
1
a
− δa

a2 + o
(
δa2
)

with neglection of higher-order terms due to the assumption of small perturbations in
obtainment of Frechét derivatives. The resulting wave equation is[

1
κ

∂2
t−∇ ·

1
ρ
∇
]

p−
[
δκ

κ2 ∂2
t−∇ ·

δρ

ρ2∇
]

p+
[

1
κ

∂2
t−∇ ·

1
ρ
∇
]
δp−

[
δκ

κ2 ∂2
t−∇ ·

δρ

ρ2∇
]
δp = q+δq.

(C.9)
Simplification by omitting terms of the original wave equation on both sides and neglecting
the last summand on the left side containing higher-order terms yields[

1
κ

∂2
t −∇ ·

(
1
ρ
∇
)]

δp =

[
δκ

κ2 ∂2
t −∇ ·

(
δρ

ρ2∇
)]

p + δq (C.10)

with the new source term

∆q =

[
δκ

κ2 ∂2
t −∇ ·

(
δρ

ρ2∇
)]

p + δq. (C.11)

Due to the equivalence of equation (C.9) with (C.1), it can be solved in terms of Green’s
functions G(xr, t; x, 0) (Aki and Richards, 1980) of acoustic wave equation:

δp(xr, t) =
∫
V

dV G(xr, t; x, 0) ∗ ∆q(xr, t) (C.12)

where “∗” denotes the convolution in time. It resembles the continuous form of equation
(C.4). Thus, it can be used to define the Frechét derivatives. Replacing the source term in
(C.12) by (C.11) gives

δp(xr, t) =
∫
V

dV G(xr, t; x, 0) ∗
[
δq +

δκ

κ2 ∂2
t p−∇ ·

(
δρ

ρ2∇p
)]

=
∫
V

dV G(xr, t; x, 0) ∗ δq +
∫
V

dV G(xr, t; x, 0) ∗
(
δκ

κ2 ∂2
t p
)

−
∫
V

dV G(xr, t; x, 0) ∗
[
∇ ·

(
δρ

ρ2∇p
)]

. (C.13)

Hence, the solution of the acoustic forward problem is given by the general function

p = p(m) = p(κκκ,ρρρ, q) . (C.14)

Furthermore, the perturbations of model parameters introduce the operators U, W and T
via the nonlinear function p,

p [κκκ(x) + δκκκ,ρρρ(x) + δρρρ, q (t) + δq] = p (κκκ,ρρρ, q) + Uδκκκ+ Wδρρρ+ Tδq + o (δκκκ, δρρρ, δq)2 ,
(C.15)
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where U, W and T represent the derivatives of the pressure wavefield with respect to κκκ, ρρρ
and q:

U(xs, xr, t) =
∂p(xs, xr, t)

∂κ(x)
, (C.16a)

W(xs, xr, t) =
∂p(xs, xr, t)

∂ρ(x)
, (C.16b)

T
(
xs, xr, t′

)
=

∂p(xs, xr, t)
∂q (t′)

. (C.16c)

Using (C.15) the perturbation δp can be written as

δp =p [κκκ(x) + δκκκ,ρρρ(x) + δρρρ, q (t) + δq]− p (κκκ,ρρρ, q)

=Uδκκκ+ Wδρρρ+ Tδq + o (δκκκ, δρρρ, δq)2 . (C.17a)

After neglection of higher-order terms this equation can be written as

δp(xs, xr, t) =
∫
V

dV U(xs, xr, t) δκ(x) +
∫
V

dV W(xs, xr, t) δρ(x) +
∫
t

dt′ T(xs, xr, t) δq
(
t′
)

(C.17b)

which resembles equation (C.4) and defines the Frechét derivatives. Relations (C.17b) and
(C.13) yield

[U δκ](xs, xr, t) =
∫
V

dV G(xr, t; x, 0) ∗
[
δκ(x)
κ2(x)

∂t
2 p(xs, xr, t)

]
, (C.18a)

[W δρ](xs, xr, t) = −
∫
V

dV G(xr, t; x, 0) ∗
[
∇ ·

(
δρ(x)
ρ2(x)

∇p(xs, xr, t)
)]

, (C.18b)

[T δq]
(
xs, xr, t′

)
= G(xr, t; x, 0) ∗ δq

(
t′
)

. (C.18c)

On condition of lim
t→∞

g = 0 and lim
t→∞

p = 0, one can use a property of convolution,

∂t f (t) ∗ g(t) = f (t) ∗ ∂t g(t), and rewrite (C.18a):

[U δκ](xs, xr, t) =
∫
V

dV
1

κ2(x)
∂t G(xr, t; x, 0) ∗ ∂t p(xs, xr, t) δκ(x) . (C.19a)

Applying the product rule

∇ · (av) = a∇ · v + v · ∇a

to (C.18b) yields

g ∗
[
∇ ·

(
δρ

ρ2∇p
)]

= ∇ ·
[

g ∗
(
δρ

ρ2∇p
)]
− (∇g) ∗

(
δρ

ρ2∇p
)

,

which results in

[W δρ](xs, xr, t) = −
∫
V

dV∇ ·
[

G(xr, t; x, 0) ∗
(
δρ(x)
ρ2(x)

∇p(xs, xr, t)
)]
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+
∫
V

dV (∇G(xr, t; x, 0)) ∗
(
δρ(x)
ρ2(x)

∇p(xs, xr, t)
)

=
∫
V

dV
δρ(x)

ρ2 ∇G(xr, t; x, 0) ∗ ∇p(xs, xr, t) . (C.19b)

This equation is obtained by applying GAUSS’ divergence theorem to the first integral over
volume V. It can be rewritten as an integral over the surface A of the earth which vanishes
due to the assumption of homogeneous boundary conditions:∫

V

dV∇ ·
[

g ∗
(
δρ

ρ2∇p
)]

=
∫
A

dA n ·
[

g ∗
(
δρ

ρ2

)]
B 0.

Now the kernels of U, W and T can be deduced from (C.16), (C.17b), (C.19a), (C.19b) and
(C.18c):

U(xs, xr, t) =
∂p(xs, xr, t)

∂κ(x)
=

1
κ2(x)

∂t G(xr, t; x, 0) ∗ ∂t p(xs, xr, t) , (C.20a)

W(xs, xr, t) =
∂p(xs, xr, t)

∂ρ(x)
=

1
ρ2(x)

∇G(xr, t; x, 0) ∗ ∇p(xs, xr, t) , (C.20b)

T
(
xs, xr, t′

)
=

∂p(xs, xr, t)
∂q(t′)

= G
(
xr, t; xs, t′

)
. (C.20c)

The adjoint problem

The integration of Frechét derivatives defined by (C.17b) and (C.20) over data space (cp.
(C.6)) produces the adjoint operation

m̂(x) =

δκ̂κκ(x)
δρ̂ρρ(x)
δq̂(x)

 (C.21)

with the model corrections – incorporating the data residuals δp̂(xs, xr, t) –

δκ̂(x) =
∫
t

dt ∑
Nr

U(xs, xr, t) δp̂(xs, xr, t)

=
1

κ2(x)

∫
t

dt ∑
Nr

∂t G(xr, t; x, 0) ∗ ∂t p(xs, xr, t) δp̂(xs, xr, t) , (C.22a)

δρ̂(x) =
∫
t

dt ∑
Nr

W(xs, xr, t) δp̂(xs, xr, t)

=
1

ρ2(x)

∫
t

dt ∑
Nr

∇G(xr, t; x, 0) ∗ ∇p(xs, xr, t) δp̂(xs, xr, t) , (C.22b)

δq̂(x) =
∫
t

dt ∑
Nr

T(xs, xr, t) δp̂(xs, xr, t)

=
∫
t

dt ∑
Nr

G
(
xr, t; xs, t′

)
δp̂(xs, xr, t) . (C.22c)
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Propagation of residuals backward in time

The new wavefield

p′(xs, xr, t) =
∫
V

dV G(x,−t; xr, 0) ∗ δq
(
x′, xs, t

)
(C.23)

for back-propagation is introduced by using the property of convolution to shift its location,∫
dt [ f (t) ∗ g(t)] h(t) =

∫
dt f (−t) [g(t) ∗ h(−t)] ,

and the reciprocity property of the Green’s function, i.e., source and receiver positions can
be interchanged with identical responses at x due to source x′ and vice versa:

g
(
x, t; x′, 0

)
= g

(
x′, t; x, 0

)
.

The source term in (C.23) can be written in terms of data residuals,

δq
(
x′, xs, t

)
= ∑

Nr

δ(x− xr) δp̂(xs, xr, t) , (C.24)

which represents point sources at receiver positions xr. Equation (C.23) describes the
propagation of the residual wavefield backward in time (indicated by −t in the Green’s
function) with respect to a certain source location xs. The residuals contain information of the
data which is not explained by the current model parameters of the forward operation, i.e.,
p′(xs, xr, t) can be called the “missing diffracted field”. Relation (C.24) shows that the source
of back-propagation is a superposition of the residuals p′(xs, xr, t) at all receiver locations.
Hence, for each source position xs a forward propagation of a single source wavefield and a
back-propagation of a superimposed receiver wavefield are required. However, the term
“back-propagation” is only a formal description. Due to time symmetry of the wave equation,
in forward- and back-propagation the wave equation is solved by forward modeling.

Model corrections

Using (C.23), (C.24) and the commutativity property of the convolution as well as involving
all sources Ns, (C.22) can be rewritten yielding final model corrections

δκ̂(x) =
1

κ2(x) ∑
Ns

∫
t

dt ṗ(xs, xr, t)

[
∑
Nr

Ġ(x,−t; xr, 0) ∗ δp̂(xs, xr, t)

]

=
1

κ2(x) ∑
Ns

∫
t

dt ṗ(xs, xr, t) ṗ′(xs, xr, t) , (C.25a)

δρ̂(x) =
1

ρ2(x) ∑
Ns

∫
t

dt∇p(xs, xr, t) ·∑
Nr

∇G(x,−t; xr, 0) ∗ δp̂(xs, xr, t)

=
1

ρ2(x) ∑
Ns

∫
t

dt∇p(xs, xr, t) · ∇p′(xs, xr, t) , (C.25b)

δq̂(x) = ∑
Ns

∑
Nr

G(x,−t; xr, 0) ∗ δp̂(xs, xr, t)
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= ∑
Ns

p′(xs, xr, t) . (C.25c)

Basically, model corrections (C.25) for bulk modulus and density are obtained by a cross-
correlation in time of incident forward wavefield and back-propagated residual (“missing
diffracted”) wavefield (Devaney, 1984). In general, the imaging condition of inverse prob-
lems is represented by a convolution. This coincides with the given FWT problem due to
the fact that a cross-correlation corresponds to a convolution in reverse time direction.

C.2 Conjugate gradient method and model update

The misfit function: method of least squares

The gradient method of the inverse problem discussed in this work bases on the method of
nonlinear least squares (cp. Mora, 1987). The forward problem is solved by p = p(m) (see
equation (C.14)) whereas in general, the observed data is not explained by the given initial
model mapr. The aim of the nonlinear inversion is to find the pair (p, m) which minimizes
the distance to the observed data as well as the a priori model

(
pobs, mapr

)
. Hereby the least

squares (L2) functional is used:

E [p (m) , m] = ‖(∆p, ∆m)‖2
2 = ‖∆p‖2

2 + ‖∆m‖2
2 , (2.15)

with

∆p = p (m)− pobs,
∆m = m−mapr.

In (2.15) and subsequent equations the observed pressure data are given by pobs and the a
priori model is denoted by

mapr =

κκκapr
ρρρapr
qapr

 . (C.26)

In matrix notation (2.15) can be written as

E [p (m) , m] =
1
2

∆p∗ Cp ∆p +
1
2

∆m∗ Cm ∆m, (C.27)

where “∗” denotes the conjugate transpose of a vector. Cp and Cm represent matrices with
respect to data and model space. They weight both data and model residuals and can
contain a priori information, such as describing uncorrelated noise in the data (Cp) and
including smoothness constraints to the model (Cm) (cp. Mora, 1987). However, in general,
only diagonal elements of these matrices are non-zero.

Definition of data residuals

The definition of data residuals depends on the choice of the misfit function. Apart from the
least squares norm, there are alternatives, such as L1- or CAUCHY-criterion (see Crase et al.,
1990). On the one hand, they may provide a better robustness of the inversion due to low
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amplitude related sensitivity. But, on the other hand, the corresponding residuals may cause
problems in time-domain FWT, i.e., especially in modeling. Thus, this work concentrates on
the usage of least squares misfit function. A general misfit function E with respect to data
and model space can be written as a sum over all data samples Nt and model parameters
Nm:

E[p(m)] =
Nt

∑
n=1

Y
[

pn(m)− pn
apr

]
(C.28)

with the least-squares kernels of E,

Yp(∆p) =
1
2

∆p∗ Cp ∆p and Ym(∆m) =
1
2

∆m∗ Cm ∆m. (C.29)

The residuals δp̂ (cp. appendix C.1) are defined by a derivative of the kernels Y of E[p(m)]
with respect to the data of the forward problem (Crase et al., 1990):

δp̂ =
∂Yp

∂p(m)
+

∂Ym
∂p(m)

= ∆p. (C.30)

The resulting least-squares functional is

E [p (m) , m] =
1
2

∆p∗ Cp ∆p +
1
2

∆m∗ Cm ∆m. (C.31)

The model update: method of steepest descent gradient

The update of the model parameter employs the method of steepest descent gradient. The
linearization of the forward problem (Tarantola, 1984; Mora, 1987),

δp = p (m + δm)− p (m) =
∂p
∂m

(δm) = D δm, (C.3)

is required and involves the Frechét derivatives D (see appendix C.1). The partial derivation
of the functional E with respect to m yields the steepest ascent gradient vector g:

g =
∂E
∂m

=

(
∂p
∂m

)∗
Cp ∆p + Cm ∆m = D∗ Cp ∆p + Cm ∆m. (C.32)

Due to algebraic reasons, the (conjugate) transpose of the Frechét derivatives matrix, D∗,
has to be used. In algebra the application of the conjugate transpose of Frechét derivatives
is equivalent to the adjoint operation (see equations (C.5) and (C.6)). On condition of g = 0
the minimization problem is solved. Hence, previous expression has the form

0 = D∗ Cp ∆p + Cm ∆m (C.33a)

Cm
(
mapr −m

)
= D∗ Cp [p(m)− pobs] . (C.33b)

Adding D∗D
(
mapr −m

)
to both sides of previous equation yields

(Cm + D∗D)
(
mapr −m

)
= D∗D

(
mapr −m

)
+ D∗ Cp [p(m)− pobs]
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= D∗
{

D
(
mapr −m

)
+ Cp [p(m)− pobs]

}
. (C.33c)

Due to positive definiteness of D∗D, (C.33b) can be rewritten:

mapr −m = (Cm + D∗D)−1 D∗
{

D
(
mapr −m

)
+ Cp [p(m)− pobs]

}
.

(C.33d)

The solution is the desired model

m = mapr − (Cm+D∗D)−1 D∗
{

D
(
mapr−m

)
+ Cp [p(m)− pobs]

}
(C.33e)

which is obtained in one step. However, in a nonlinear inversion this solution is not
applicable. Thus, an iterative solution is given by

mh=mapr − (Cm + D∗hDh)
−1 D∗h

{
Dh
(
mapr −mh−1

)
+ Cp [p(mh−1)− pobs]

}
(C.34a)

where h denotes the iteration. Several algebraic operations simplify expression (C.34a):

mh=−(Cm+D∗hDh)
−1 {−(Cm+D∗hDh)mapr+D∗hDh

(
mapr−mh−1

)
+D∗hCp [p(mh−1)−pobs]

}
=− (Cm+D∗hDh)

−1 {− (Cm+D∗hDh)mh−1 + Cm
[
mh−1−mapr

]
+ D∗hCp [p(mh−1)−pobs]

}
=mh−1 − (Cm + D∗hDh)

−1 {D∗hCp [p(mh−1)− pobs] + Cm
[
mh−1 −mapr

]}
=mh−1 − µh Hh

{
D∗hCp [p(mh−1)− pobs] + Cm

[
mh−1 −mapr

]}
(C.34b)

with step length µh of the gradient algorithm and the inverse Hessian matrix

Hh = (Cm + D∗hDh)
−1 . (C.35)

The computation of Hh is highly demanding (Pratt et al., 1998). Hence, using a gradient
method the inverse Hessian matrix can be approximated by

Hh 
 I. (C.36)

The term {·} in equation (C.34b) can be replaced by the steepest ascent gradient gh (C.32):

mh = mh−1 − µh I gh. (C.37)

However, the choice of H may have tremendous effect on the success of the inversion. The
approximation (C.36) represents the simplest case. Using (C.5) and (C.32) the steepest ascent
gradient can be written in terms of model perturbations δm (derived in appendix C.1). At
hth iteration it is given by

gh = δm̂h +
(
mh−1 −mapr

)
. (C.38)

Additionally, instead of minimizing the model norm ‖∆m‖2
2 of model at hth iteration and

an a priori model, the definition mapr B mh−1 implies the neglection of an a priori model.
Thus, the model parameters are updated by

mh = mh−1 − µh δm̂h. (C.39a)

The explicit expressions for κκκ, ρρρ and q are given by

κκκh = κκκh−1 − µh δκ̂κκh,
ρρρh = ρρρh−1 − µh δρ̂ρρh,
qh = qh−1 − µh δq̂h. (C.39b)
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The conjugate gradient

Furthermore, the convergence of steepest descent gradient algorithm is improved by em-
ploying the preconditioned conjugate gradient method. At hth iteration a modification of the
Polak-Ribiére conjugate direction ch is computed by using a linear combination of gradient
directions from current and previous iteration (Polak and Ribiére, 1969; Luenberger, 1984;
Nocedal and Wright, 1999):

ch = βββh +
βββ∗h (βββh −βββh−1)

βββ∗h−1βββh−1
ch−1. (C.40)

This relation requires the preconditioned gradient βββ which is obtained by application of a
preconditioning operator Ph to the steepest ascent gradient:

βββh = Ph gh. (C.41)

In this work, Ph is used to weight gh, i. e., it damps source artifacts or excludes the model
update at predefined locations.

Change of parameterization

Apart from the parameterization m = (κκκ,ρρρ, q)T, it is desirable to have P-wave velocity vP
instead of bulk modulus κκκ. According to equation (C.38), the gradient with respect to κκκ is
given by

gκκκ = δκ̂(x) + ∆κκκ. (C.42a)

The gradient in terms of the new parameter vP is defined by

gvP
=

∂κκκ

∂vP
δκ̂(x) + ∆vP, (C.42b)

involving the Jacobian (Mora, 1987)

JvP B
∂κ

∂vP
= 2 ρ vP. (C.43)

To avoid the usage of ambiguous mathematical operators, the resulting iterative update of
P-wave velocity is written in index notation at spatial coordinates (j, i):

vP|h|j,i = vP|h−1|j,i − µh JvP|h|j,i δκ̂h|j,i. (C.44)



Appendix D

Application 1: Parameter study

This appendix contains additional information with respect to the FWT application 1 dis-
cussed in chapter 4. Appendix D.1 consists of a table with computational facts of all
experiments. Appendix D.2 comprises results of all experiments I to X.
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D.1 Basic setup

Table D.1: Application 1: Computational summary of all FWT experiments.
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D.2 Results of FWT experiments

Experiment I: Basic FWT

initial (top row) or final (bottom row) vP in km/s
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Figure D.1: Application 1, experiment I: selected initial models (top) and vP results (bottom)
as well as the progress of the reference FWT for all 51 initial background models (central part).
The extreme values of normalized data misfit (upper plot) and model error (lower plot) are:
(max εdata, min εdata) =

(
1.0, 6.7 · 10−4) and (max εmodel, min εmodel) = (38, 3.8) %.



188 D.2. Results of FWT experiments

Experiment II: Data computations

initial (top row) or final (bottom row) vP in km/s
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Figure D.2: Application 1, experiment II/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with applic-
ation of offset windowing. The data misfit is normalized to the maximum misfit value of
experiment I. The extreme values of data misfit (upper plot) and model error (lower plot) are:
(max εdata, min εdata) =

(
0.98, 9.2 · 10−4) and (max εmodel, min εmodel) = (38, 4.0) %.
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Figure D.3: Application 1, experiment II/1: selected initial models (top) and vP results (bot-
tom) as well as the FWT progress for all 51 initial background models (central part) with
application of time windowing. The data misfit is normalized to the maximum misfit value of
experiment I. The extreme values of data misfit (upper plot) and model error (lower plot) are:
(max εdata, min εdata) =

(
0.89, 1.1 · 10−3) and (max εmodel, min εmodel) = (38, 4.0) %.
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initial (top row) or final (bottom row) vP in km/s
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Figure D.4: Application 1, experiment II/2: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with applica-
tion of single-stage frequency filtering ( fpeak = 95 Hz). The data misfit is normalized to the
maximum misfit value of experiment I. The extreme values of the model error (lower plot)
are: (max εmodel, min εmodel) = (38, 3.7) %. The data misfit is clipped at ·10−4, whereas the
minimum value is 8.1 · 10−5.
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Figure D.5: Application 1, experiment II/3: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of multi-stage frequency filtering ( fpeak =(18, 95, 200) Hz). The data misfit is normalized to the
maximum misfit value of experiment I. The extreme values of the model error (lower plot) are:
(max εmodel, min εmodel) = (38, 3.5) %.
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Experiment III: Gradient preconditioning

initial (top row) or final (bottom row) vP in km/s
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Figure D.6: Application 1, experiment III/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of gradient preconditioning (circular tapers around sources and receivers). The data misfit is
normalized to the maximum misfit value of experiment I. The extreme values of normalized data
misfit (upper plot) and model error (lower plot) are: (max εdata, min εdata) =

(
1.0, 5.7 · 10−4)

and (max εmodel, min εmodel) = (38, 3.8) %.
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Figure D.7: Application 1, experiment III/2: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application of
gradient preconditioning (wavefield-based taper). The data misfit is normalized to the maximum
misfit value of experiment I. The extreme values of normalized data misfit (upper plot) and model
error (lower plot) are: (max εdata, min εdata) =

(
1.0, 6.9 · 10−4) and (max εmodel, min εmodel) =

(38, 3.7) %.
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initial (top row) or final (bottom row) vP in km/s
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Figure D.8: Application 1, experiment III/3: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of gradient preconditioning (user-defined taper within the water-filled anomalous area). The
data misfit is normalized to the maximum misfit value of experiment I. The extreme values of
normalized data misfit (upper plot) and model error (lower plot) are: (max εdata, min εdata) =(
1.0, 1.0 · 10−3) and (max εmodel, min εmodel) = (38, 3.7) %.
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Experiment IV: Step length estimation
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Figure D.9: Application 1, experiment IV/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of the adaptive step length method. In addition to data misfit, model error, the evolution of the
relative step length µrel|h is visualized. The data misfit is normalized to the maximum misfit value
of experiment I. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.0, 2.8 · 10−4) and (max εmodel, min εmodel) = (38, 3.4) %.
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Experiment V: Influence of the acquisition geometry
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Figure D.10: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 1 source. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=1

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.2, 3.0 · 10−3) and (max εmodel, min εmodel) = (38, 6.0) %.
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Figure D.11: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 2 sources. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=2

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.0, 1.7 · 10−3) and (max εmodel, min εmodel) = (38, 5.2) %.
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Figure D.12: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 4 sources. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=4

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
0.98, 7.3 · 10−4) and (max εmodel, min εmodel) = (38, 4.2) %.
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Figure D.13: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 8 source. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=8

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.0, 6.4 · 10−4) and (max εmodel, min εmodel) = (38, 4.0) %.
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Figure D.14: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 32 sources. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=32

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.0, 6.9 · 10−4) and (max εmodel, min εmodel) = (38, 3.7) %.
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Figure D.15: Application 1, experiment V/1: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of 64 sources. The data misfit is normalized to the maximum misfit value of experiment I. The
auxiliary corrective factor Ns=64

Ns=16 is applied to the misfit to account for different numbers of
sources, Ns. The extreme values of normalized data misfit (upper plot) and model error (lower
plot) are: (max εdata, min εdata) =

(
1.0, 6.1 · 10−4) and (max εmodel, min εmodel) = (38, 3.8) %.
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Figure D.16: Application 1, experiment V/2: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application of
a reflection geometry. The data misfit is normalized to the maximum misfit value of this multiple
FWT. The extreme values of normalized data misfit (upper plot) and model error (lower plot)
are: (max εdata, min εdata) =

(
1.0, 3.9 · 10−4) and (max εmodel, min εmodel) = (38, 6.2) %.
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Experiment VI: Optimal parameter configuration
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Figure D.17: Application 1, experiment VI/2: selected initial models (top) and vP results (bottom)
as well as the FWT progress for all 51 initial background models (central part) with application
of an optimal parameter combination and an acquisition geometry including 64 sources. The
data misfit is normalized to the maximum misfit value of experiment I. The extreme values of
the model error (lower plot) are: (max εmodel, min εmodel) = (38, 3.2) %.
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Experiment VII: Recapitulation for a different initial model
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Figure D.18: Application 1, experiment VII/1: selected initial models (top) and vP results
(bottom) as well as the FWT progress for all 51 initial background models (central part) with
application of a basic FWT without any methodical improvements. The data misfit is normalized
to the maximum misfit value of experiment I. The extreme values of normalized data misfit
(upper plot) and model error (lower plot) are: (max εdata, min εdata) =

(
1.0, 2.0 · 10−3) and

(max εmodel, min εmodel) = (38, 5.5) %.
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Figure D.19: Application 1, experiment VII/2: selected initial models (top) and vP results
(bottom) as well as the FWT progress for all 51 initial background models (central part) with
application of an optimal parameter combination. The data misfit is normalized to the max-
imum misfit value of experiment I. The extreme values of the model error (lower plot) are:
(max εmodel, min εmodel) = (38, 4.7) %.
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Figure D.20: Application 1, experiment VII/3: selected initial models (top) and vP results
(bottom) as well as the FWT progress for all 51 initial background models (central part) with
application of a basic FWT and a reflection geometry. The data misfit is normalized to the
maximum misfit value of experiment V/2. The extreme values of normalized data misfit
(upper plot) and model error (lower plot) are: (max εdata, min εdata) =

(
1.0, 1.6 · 10−3) and

(max εmodel, min εmodel) = (38, 7.3) %.
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Figure D.21: Application 1, experiment VII/4: selected initial models (top) and vP results
(bottom) as well as the FWT progress for all 51 initial background models (central part) with
application of an optimal parameter combination and a reflection geometry. The data misfit is
normalized to the maximum misfit value of experiment V/2. The extreme values of the model
error (lower plot) are: (max εmodel, min εmodel) = (38, 4.6) %.
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Experiment VIII: Initial model with wrong assumptions
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Figure D.22: Application 1, experiment VIII/1: selected initial models of type C (top) and vP
results (bottom) as well as the FWT progress for all 51 initial background models (central part)
with application of a basic FWT without any methodical improvements. The data misfit is
normalized to the maximum misfit value of experiment I. The extreme values of normalized data
misfit (upper plot) and model error (lower plot) are: (max εdata, min εdata) =

(
1.0, 1.4 · 10−2)

and (max εmodel, min εmodel) = (38, 7.2) %.
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Figure D.23: Application 1, experiment VIII/2: selected initial models of type C (top) and vP
results (bottom) as well as the FWT progress for all 51 initial background models (central part)
with application of an optimal parameter combination. The data misfit is normalized to the
maximum misfit value of experiment I. The extreme values of the model error (lower plot) are:
(max εmodel, min εmodel) = (38, 5.6) %.



210 D.2. Results of FWT experiments

Experiment IX: Initial model and FWT with wrong assumptions
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Figure D.24: Application 1, experiment IX: selected initial models of type C (top) and vP results
(bottom) as well as the FWT progress for all 51 initial background models (central part) with
application of an optimal parameter combination and a misplaced user-defined gradient pre-
conditioning. The data misfit is normalized to the maximum misfit value of experiment I. The
extreme values of the model error (lower plot) are: (max εmodel, min εmodel) = (38, 7.6) %.
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Experiment X: Brute-force search
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Figure D.25: Application 1, experiment X: Data misfits and model errors as functions of step
lengths at the first iteration. The plots show cross sections from Figures 4.24 and 4.25. The rows
correspond to the application of frequency filtering. The columns represent the cross sections
for different initial models. The magenta graph illustrates the parabolic fit applied to the data
misfit function and based on test step lengths (0.125, 1, 8) %. Gray and blue “•” symbolize the
minimum data misfit or model error. The magenta “•” or + indicate the optimum step length.
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Appendix E

Application 3: Acoustic FWT in the
presence of attenuation: a quantitative
study

This appendix contains additional seismograms for the Marmousi experiment of FWT
application 3 discussed in chapter 6.
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E.1 Synthetic experiment: Marmousi model
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Appendix F

Application 4: 3D acoustic FWT in the
time domain

This appendix contains additional figures for the applications of 3D acoustic FWT discussed
in chapter 7. It summarizes cross sections of the true and inverted vP models along all spatial
directions with respect to the cross-well experiment in appendix F.1 and the Marmousi
experiment in appendix F.2.
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F.1 3D FWT for a cross-well geometry
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Figure F.1: Application 4, Cross-well experiment: Vertical (x-z) cross sections of true and final vP
models as well as deviations from the true model for exemplary y positions.
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Figure F.2: Application 4, Cross-well experiment: Vertical (y-z) cross sections of true and final vP
models as well as deviations from the true model for exemplary x positions.
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Figure F.3: Application 4, Cross-well experiment: Horizontal (x-y) cross sections of true and final
vP models as well as deviations from the true model for exemplary depths z.
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F.2 3D FWT for a reflection geometry
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Figure F.4: Application 4, Marmousi experiment: Vertical (x-z) cross sections of true and final vP
models for exemplary y positions.
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Figure F.5: Application 4, Marmousi experiment: Lateral (x-y) cross sections of true and final vP
models for exemplary depths z.
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models for exemplary x positions.
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Appendix G

Software and hardware

Software

Within the scope of this work, I used several software packages to perform full-waveform
inversions, to process the input or output of FWT implementations and to create documents,
such as this thesis:

(A) FWT implementations:

• Most of 2D inversion results were computed using the 2D acoustic time-domain
FWT implementation PROTEUS (written in C) which is the essential part of
code development in this work. The FWT implementation mainly bases on the
theory proposed by Tarantola (1984) and Mora (1987). In particular, the parallel
implementation with respect to domain decomposition bases on the 2D finite-
difference modeling implementation FDVEPS (Bohlen, 1998).

• For comparisons of 2D inversions in time domain and frequency domain, I used
the 2D acoustic frequency-domain implementation FULLWV developed by R. G.
Pratt (Pratt, 1999).

• The 3D inversion results were computed using the 3D acoustic time-domain FWT
implementation POSEIDON which is developed on the basis of PROTEUS.

(B) Pre-processing and Post-processing

• I used MathWorks MATLAB® to perform additional scientific computations and
to create figures. In particular, I used the MATLAB® script AnalyticAnelastic.m
(implemented by Josep de la Puente, LMU Geophysics, Munich) to compute a
semi-analytical reference solution.

• Especially the conversion of seismic file formats was realized by Seismic Un*x.

(C) Document generation

• Several tools – developed within the workgroup of applied geophysics at the
Geophysical Institute – were deployed to create documents.

• This work is written in LATEX 2ε within the operating-system environment Linux.
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Hardware

Within the scope of this work, I employed several workstations or high-performance com-
puters to obtain FWT results. The following list includes all hardware resources required for
obtaining preliminary (test) results or the results shown in this thesis:

• workstation cluster at the Institute of Geophysics, TU Bergakademie Freiberg,

• cluster computer CHIC at TU Chemnitz,

• workstation cluster at the Geophysical Institute, Karlsruhe Institute of Technology (KIT),

• high-performance computer HP XC3000 at the KIT,

• bwGRiD cluster computers at Baden-Württemberg state universities in Karlsruhe,
Stuttgart, Esslingen and Mannheim,

• high-performance supercomputer JUROPA at the Jülich Supercomputing Centre,

• high-performance supercomputer HERMIT at the High Performance Computing Center
Stuttgart.



Danksagung

Zum pünktlichen Abschluß meiner Arbeit habe ich nun noch diesen Platz für einige
dankende Worte reserviert.

Allen voran möchte ich meiner Familie danken, insbesondere meinen Eltern, die mich stets
unterstützt haben und sich regelmäßig besorgt nach dem Fortschritt der Arbeit erkundigten.
Dies gilt ebenso für meine Großeltern, denen ich den baldigen Doktor versprochen hatte,
die aber leider nicht mehr daran teilhaben können.

Auch erinnere ich mich gern an die Zeit und Weggefährten in Freiberg. Das gilt besonders
für die schöne WG-Zeit und ihre lustigen Diss-Abende – abseits von inversen Problemen
– mit Stefan W., Jörg, Julian und Olaf. Vor allem möchte ich mich bei den ehemaligen
Kolleginnen und Kollegen am Institut für Geophysik der TU Freiberg bedanken, die mich
als Lehrer geophysikalisch großzogen und mit denen ich sehr gern zusammenarbeitete.
Hervorheben möchte ich Holli, Maja, Tino und Holger. Stets stand Holli hilfsbereit zur Seite
und erleichterte mir bei der allmorgendlichen Kaffeerunde mit Klatsch und Tratsch den
Start in den Arbeitstag. Maja, Tino und Holger bin ich für die moralische Unterstützung in
den regelmäßigen und sehr konstruktiven Dienstberatungen dankbar.

Vor allem möchte ich mich aber auch bei meinen Karlsruher Freunden, Kolleginnen und
Kollegen bedanken, die mich über den Großteil meiner Promotionszeit begleiteten und mir
in der Schlußphase der Doktorarbeit durch fleißiges Lesen geholfen bzw. mich durch den
undurchsichtigen Promotions-Dschungel gelotst hatten – danke Anna, Ines, Lisa, Simone
und Martin. Das gilt insbesondere auch für Anja’s und Sven’s “Kantine”, wo ich meine
allmorgendliche Kaffeetradition wiederbelebt habe. Vielen Dank auch an Claudia, die sich
stets mit viel Einsatz um das lästige Drumherum gekümmert hatte.

Um nun den Schwenk zum Fachlichen zu vollziehen, möchte ich Thomas Bohlen danken,
der mein großes Interesse an inversen Problemen erkannte. Danke für die Bereitstellung
des Promotionsthemas und die fachliche Betreuung. Auch möchte ich ihm für die vielen
inspirierenden Eingebungen danken, die mich immer wieder auf neue Ideen brachten. An
dieser Stelle möchte ich auch der VNG Leipzig und dem WIT-Konsortium danken, die
weitgehend meine Arbeit finanzierten. Insbesondere danke ich Daniel für die vielen und
fruchtbaren fachlichen Diskussionen sowie die zahlreichen Hilfestellungen, die mir den
Start ins Promotionsthema erleichterten. Abschließend danke ich meinem Korreferenten
Jan van der Kruk für die Begutachtung meiner Doktorarbeit und konstruktiver fachlicher
Diskussion.

Besonderer Dank gilt aber Stefan J. als verlässlichen Freund und Kollegen, der mich mit
Beharrlichkeit und Regelmäßigkeit angestoßen hat, wenn ich mal wieder den Wald vor
lauter Bäumen nicht gesehen hatte.

227


	Contents
	Introduction
	Outline of this thesis

	Methodology
	The general FWT scheme
	Input of full waveform tomography
	Seismic modeling and imaging condition
	Forward modeling
	Residuals
	Back-propagation and imaging condition

	Gradient computations
	Taper at sources and receivers
	Wavefield based preconditioning

	Model update
	Computation of the model update
	Application of constraints to the model update
	Choice of parameterization

	Step length optimization
	Methods of step length estimation
	Implementation of adaptive step length


	Optimizations of the FWT implementation
	Parallelization
	Implementation
	Benchmark of parallelizations

	Improvement of code efficiency
	Memory consumption
	Inversion workflow

	Summary

	Application 1: Parameter study
	Basic setup
	General parameters
	Configuration of all tests

	Results of FWT experiments
	Experiment I: Basic FWT
	Experiment II: Data computations
	Experiment III: Gradient preconditioning
	Experiment IV: Step length estimation
	Experiment V: Influence of the acquisition geometry
	Experiment VI: Optimal parameter configuration
	Experiment VII: Rerun for the homogeneous initial model (type B)
	Experiment VIII: Rerun for the initial model with wrong assumptions
	Experiment IX: Initial model and FWT with wrong assumptions
	Experiment X: Brute-force search

	Summary of experiments

	Application 2: Comparison of FWT in the time domain and the frequency domain
	Emulation of frequency-domain inversion
	Basic setup
	General parameters
	Configuration of comparative experiments

	Results of time-domain and frequency-domain FWT
	Summary

	Application 3: Acoustic FWT in the presence of attenuation: a quantitative study
	Accuracy of viscoacoustic modeling in the time domain
	Synthetic experiments
	Synthetic experiment: layered 1D model
	Synthetic experiment: Marmousi model
	Computational efforts

	Summary

	Application 4: 3D acoustic FWT in the time domain
	3D FWT for a cross-well geometry
	Random medium model and geometry setup
	Results

	3D FWT for a reflection geometry
	Marmousi expansion and geometry setup
	Results

	Computational efforts of 3D acoustic FWT
	Summary

	Summary
	Significant contributions of this work
	Conclusion and outlook

	Bibliography
	List of Tables
	List of Figures
	The acoustic wave equation
	Continuous formulation
	Finite-difference solution

	The viscoacoustic wave equation
	Attenuation in acoustic media
	Continuous time-domain wave equation
	Finite-difference solution

	The FWT method
	Derivation of model corrections
	Conjugate gradient method and model update

	Application 1: Parameter study
	Basic setup
	Results of FWT experiments

	Application 3: Acoustic FWT in the presence of attenuation: a quantitative study
	Synthetic experiment: Marmousi model

	Application 4: 3D acoustic FWT in the time domain
	3D FWT for a cross-well geometry
	3D FWT for a reflection geometry

	Software and hardware

