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Introduction

Since the dawn of time, mankind strives to understand the basic concepts
and properties of the world. Data is gathered in experiments while theo-
ries are formulated to explain the measurements and to give predictions for
future experiments. In the last decades, this interplay between experiment
and theory has lead to the discovery of four fundamental forces. The force
most know for it’s impact on the daily life is the gravitational force, which
is well described by the theory of general relativity. However in the con-
text of particle physics, the other three forces are dominant. The strong,
electromagnetic and weak force, which rule the processes in particle physics,
are contained within the framework of the Standard Model. The Standard
Model allows to explain and calculate an incredible number of observations
and measurements.

However the Standard Model also leaves many questions unanswered: Is
it possible to further unify the fundamental forces into one unified force at
higher energies? Are there phenomena in particle physics which cannot be
explained by the Standard Model or even contradict its predictions? Are the
predictions given by the Standard Model valid up to the highest energies or
is there a more fundamental theory?

This study hopes to shed light on at least part of that last question: Are
the predictions given by the theory of the strong interaction valid up to the
highest energies?

In order to answer all these raised questions, experimental particle physics
pushes the boundaries of the available theories with increasingly sophisticated
instruments. To accomplish this, it is necessary to coordinate many indepen-
dent and geographically separate teams of physicists, the design and mass
production of high-tech equipment and the utilisation of vast computing re-
sources for data analysis. One of the latest such experiments is the Large
Hadron Collider (LHC), which delivers proton-proton collisions at centre-of-
mass energies on the TeV scale.

These collisions mainly create quarks and gluons, which undergo a pro-
cess called hadronization, resulting in a collimated stream of colour-neutral
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iv INTRODUCTION

objects for each created parton. To reconstruct the parton properties from
the detector measurement of such a stream, the concept of a jet is intro-
duced. A jet is an object, which tries to collect all particles originating from
the same initial parton. There are several different jet algorithms available,
which can perform this clustering.

Due to the nature of the collisions, a large number of events with multiple
jets, ruled by the laws of quantum chromodynamics (QCD) which describes
the strong force, is available. One of the fundamental tasks in the area of
experimental QCD is the study of multi-jet observables and the comparison
between the measurement and the best available theory prediction.

This study performs such a comparison for the three-jet mass at next-
to-leading order theory precision and a centre-of-mass energy of 7 TeV. The
three-jet mass is defined as the invariant mass of the three jets with the largest
transverse momentum passing a set of acceptance and analysis cuts. The
three-jet mass cross section d2σ/dm3dymax is measured double differentially
in the three-jet mass m3 and the maximum rapidity of the three-jet system
ymax. The binning of the three-jet mass is resolution driven, while the rapidity
binning used to partition the phase-space into disjoint regions is loosely based
on the CMS detector geometry.

Over the course of seven chapters, the necessary theoretical and experi-
mental background is introduced and the results for the measurement of the
three-jet mass cross-section is presented.

The first chapter of this thesis gives an introduction to the Standard
Model of particle physics with an emphasis on the physics related to quantum
chromodynamics and the strong coupling constant. Different shower and
hadronization models employed by the used Monte-Carlo programs are also
described.

In the second chapter, the Large Hadron Collider is presented. The LHC
experiment providing the data for this study, the Compact Muon Solenoid
(CMS), is described in greater detail. In particular, the CMS sub-detectors
concerned with the energy measurements of jets are emphasised.

Chapter three deals with the computing infrastructure built for the LHC
and used to process the datasets for this analysis. The chapter also gives a
short overview of the analysis environment developed by the CMS collabo-
ration and several programs used to give theory predictions. Other software,
written to support this analysis, is introduced as well. This includes grid-
control which was used to utilise the provided computing resources and the
data processing framework Kappa which forms the foundation of the analysis
code.

The topic of chapter four is the reconstruction of jet from detector data
and Monte-Carlo simulation. A short introduction to the particle-flow re-
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construction applied by CMS is given. This is followed by the description of
the jet clustering algorithms used in the analysis. The chapter closes with
an explanation of the jet energy corrections, which are necessary to correct
the measured and simulated reconstructed jets for detector effects.

The analysis part of the thesis starts in chapter five with the next-to-
leading order (NLO) theory prediction for the three-jet mass cross-section.
The different cut scenarios used in this study are also introduced. K-factors
describing the difference between the leading order and next-to-leading order
prediction are discussed for two different factorisation and renormalisation
scale choices. NLO predictions for the three-jet mass cross-section are pre-
sented for different parton density functions (PDF). This is followed by a
discussion about the scale, PDF and αs uncertainties of the prediction. The
presentation of the non-perturbative corrections and a new method to derive
them concludes this chapter.

Chapter six details the analysis of the data measured by CMS. The chap-
ter starts with an introduction of the used datasets and follows up with
the event selection. This is followed by a discussion of the observed differ-
ences between the measured, uncorrected three-jet mass distribution in data
and the distribution taken from fully simulated events. As a next step, the
three-jet mass resolution is measured to determine an optimal binning for
the three-jet mass distribution. Several unfolding algorithms are studied in
order to facilitate future comparisons of the measured three-jet mass distri-
bution with the results from other experiments and theoretical calculations.
The chapter closes with a detailed study of the measurement uncertainties.

Chapter seven concludes this thesis with a summary and outlook. In
the outlook, the theory predictions and measurements from the previous two
chapters are used to derive information about the running of the strong cou-
pling constant at high energy scales. The chapter closes with an overview
showing how the results of this study extend the established set of measure-
ments at very high scales.
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Chapter 1

The Standard Model of Particle
Physics

1.1 Introduction

One of the primary goals of science is trying to understand the natural prin-
ciples which rule the world around us. In Ancient Greece, this question was
treated as a predominantly philosophical problem and was little influenced
by empiricism. During the Middle Ages scholars in the Arab world increas-
ingly emphasised experimentation as well as quantification to answer physical
problems. Since the 17th century, the systematic observation, measurement
and experiment, and the formulation, testing, and modification of hypotheses
as manifest in the scientific method played an important part in the devel-
opment of the natural sciences. This incremental systematisation of science
has lead to a wide spectrum of scientific research involving huge experiments
and worldwide collaborations, which try to answer the fundamental questions
about the universe around us.

In particular, scientists on the quest to understand the origin and compo-
sition of matter made great strides. At the start of the 19th century, increas-
ingly sophisticated experiments began to discover more and more particles
when looking at atomic and subatomic reactions. In the 1970s the work on
this issue culminated in a simple and elegant theory, which describes most
observed particles as composite objects build up from a small number of fun-
damental particles. This theory of the fundamental constituents of matter
and the interactions among them is called the Standard Model of Particle
Physics. All observed interactions can be described in terms of the four
fundamental forces: gravitation, weak, electromagnetic and strong interac-
tion. However there are large differences between the range and strength of
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2 CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

these forces. While gravitation and the electromagnetic force have an infinite
range, the weak and strong interactions are only relevant over microscopic
distances. The Standard Model manages to describe the three forces of the
strong, electromagnetic and weak interaction using a common mathematical
language.

Although gravitation is a force with a large influence on macroscopic ob-
jects, it is the weakest of all interactions when looking at the force between
microscopic objects, at currently accessible distances which are relevant for
the description of particle interactions in collider experiments. The introduc-
tion of gravity in the Standard Model is also hindered by the fact that there
is currently no theory, which describes gravitation in terms of a quantum
theory.

The Standard Model has become successful because it can provide an-
swers to many questions within particle physics to a very high precision with
comparably few input parameters, demonstrating the predictive power of the
theory. This success has lead to the construction of a wide range of different
experiments to test the theory in as many aspects as possible, in order to find
deviations which might give hints towards an even more unified theory. From
the theory side, improvements to the tools and mathematical techniques for
these predictions has lead to algorithms and simulation software, which are
able to give high precision results. The relevant tools for this study are de-
scribed in chapter 3. In the area of collider experiments, the LHC accelerator
and its experiments like CMS have opened up a new energy frontier in the
last few years and are described in chapter 2. The following introduction to
the Standard Model is based on [1, 2, 3, 4, 5] and [6], which contain more
details about the mathematical structure underlying the theory.

Unit Conventions In particle physics it is convenient to use the so-
called Heaviside–Lorentz units instead of SI units. This means, among other
conventions, that rather than ~ = 1.0546×10−34 J s and c = 299 792 458 m s−1

the following definition is used:

~ = 1 and c = 1.

With this convention all relevant units can be expressed in terms of electron-
volt eV, with

1 eV = 1.6022× 10−19 J,

for example particle masses (eV), momenta (eV) and other quantities like
distances (eV−1). A unit commonly used to express cross sections in particle
physics is the barn, which is defined as

1 b = 10−28 m2
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1.1.1 Mathematical Background

The Standard Model of particle physics is based on the mathematical princi-
ples of quantum field theory. Quantum field theory in turn is founded on the
principles of local symmetries, gauge invariance and quantum mechanics.

The fundamental particles within the Standard Model are described as
excited states of space-time coordinate dependent quantum fields ψi(x). La-
grangian field theory describes the dynamics of these fields, using the tech-
niques from Lagrangian mechanics on these fields ψi(x).

Lagrangian Field Theory

In the framework of a Lagrangian field theory, with a given Lagrangian
L(ψi, ∂µψi) as a function of the fields ψi and their first derivatives ∂µψi,
the equation of motion can be derived by minimising the action S, which is
a functional of ψi and ∂µψi

S =

∫
d4xL(ψi, ∂µψi)

The result of this procedure is the Euler-Lagrange equation:

∂µ

(
∂L

∂ (∂µψi)

)
− ∂L
∂ψi

= 0

Here the Lagrangian L is taken as an axiomatic starting point defined through
model building. Starting from very simple Lagrangians, this formalism can
be used to derive important equations known from relativistic quantum me-
chanics:

• The Klein-Gordon equation for a real spin-0 field φ(x) with mass m:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 ⇒

(
∂µ∂µ +m2

)
φ(x) = 0

• The Dirac equation for a spin-1/2 spinor field ψ(x):

L = ψ (iγµ∂µ −m)ψ

⇒ i∂µψ̄γ
µ +mψ̄ = 0 and (iγµ∂µ −m) ψ(x) = 0

with the Dirac matrices γµ and ψ̄ = ψ†γ0. In this Lagrangian ψ and ψ̄
are treated as two independent variables. Both resulting equations are
equivalent due to γ0γµ = −γµγ0.
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Local Symmetries and Gauge Invariance

One of the pillars underpinning the Standard Model are symmetries. Within
the Standard Model these symmetries give rise to conserved quantum num-
bers and the boson fields of the model according to the principles of local
symmetries and gauge invariance. From Noether’s theorem it is known that
every symmetry induces a conserved quantity. Time invariance of a physical
process leads to the conservation of energy and invariance under rotation
leads inevitably to conservation of angular momentum. These conservation
laws originate from the fact that the solution of the equation of motion does
not change under the corresponding symmetry transformations. Therefore,
a theory is invariant under a symmetry group G, represented by a unitary
operator U , if the fields ψ(x) and ψ′(x), given by

ψ(x)→ ψ′(x) = Uψ(x)

follow the same equation of motion.

For every transformation which lets the Lagrangian invariant (δL = 0),
Noether’s theorem states that there exists an associated Noether current
jµ(x) and a corresponding Noether charge Q

∂µj
µ(x) = 0 and Q :=

∫
d3x j0.

Since this Noether current is a conserved quantity, the Noether charge itself
is time invariant.

dQ

dt
= 0 if δL = 0

For discrete symmetries these Noether charges are the conserved quantum
numbers of the theory. Noethers theorem applies to both, local and global
symmetries. The gauge symmetries of the Standard Model are local sym-
metries, which appears plausible when considering that global symmetries
act on different space-time points in the same manner, regardless of how far
they are separated or causally connected. Local symmetries on the other
hand are implemented by making the parameters of the gauge group G and
thus their representations U = U(x) space-time dependent. In the following,
the non-Abelian gauge group SU(N) is used because this gauge group is very
important for the Standard Model1. A quantum field theory based on this
non-Abelian group is also called a Yang-Mills theory. It was first formulated
by Yang and Mills in the 1950s in an attempt to describe the strong isospin[7]

1SU(N) is the set of all unitary N ×N matrices with determinant 1.



1.1. INTRODUCTION 5

and today forms the basis for the electroweak unification and quantum chro-
modynamics. The group SU(N) has N2 − 1 independent generators T a and
every element of this Lie-group can be parametrised in the form:

U(x) = exp (iθa(x)T a) ∈ SU(N)

with space-time dependent parameters θa(x) and summing over same indices.
The generators T a of the group SU(N) form the Lie-Algebra su(N):

[T a, T b] = ifabcT c (1.1)

with the structure constants fabc. The knowledge of these structure constants
in turn is sufficient to determine the underlying group.

Any equation of motion for a Lagrangian containing normal derivatives
∂µ, like the Lagrangian for a free spin-1/2 particle

Lfree = ψ̄ (iγµ∂
µ −m)ψ

is not invariant under local gauge transformations U(x). The derivatives give
rise to terms of the form ∂µθ(x) in the transformed Lagrangian, which breaks
gauge invariance. However, this problem can be solved using a method known
as minimal substitution. With this method, the derivative ∂µ is replaced
by the covariant derivative Dµ to preserve the invariance. The covariant
derivative introduces a new vector field, the so called gauge field Aaµ:

∂µ → Dµ := ∂µ − ig Aaµ T a

This gives rise to a new term in the Lagrangian, which describes the inter-
action between the gauge field Aaµ and the field ψ:

Lfree → ψ̄ (iγµD
µ −m)ψ = ψ̄ (iγµ∂µ −m)ψ + gs ψ̄γµA

a
µT

aψ

To fully describe this gauge field Aµ, an appropriate kinematic term Lkin

needs to be added to the Lagrangian. After looking for possible forms of this
term, it is clear that only terms with the field strength tensor F a

µν as given
below are allowed. Trying to introduce mass terms of the form m2AaµA

a,µ

results in breaking the gauge invariance, therefore the gauge field Aaµ has to
be massless.

The field strength tensor for a SU(N) gauge theory with generators T a

and structure constants fabc is defined as:

F a
µν := ∂µA

a
ν − ∂νAaµ + g fabcAbµA

c
ν
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Generation Isospin
Hyper-
charge

el. Charge Colour

1. 2. 3. T3 Y Q = T3 + Y

Q
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ar
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s

(
u
d′

)
L

(
c
s′

)
L

(
t
b′

)
L

(
+1

2

−1
2

)
+1

6

(
+2

3

−1
3

)
r,g,b

uR cR tR 0 +2
3
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3

r,g,b
dR sR bR 0 −1

3
−1

3
r,g,b

L
ep

to
n
s

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

(
+1

2

−1
2

)
−1

2

(
0
−1

)
-

eR µR τR 0 −1 −1 -

Table 1.1: Overview of the fundamental particles of the Standard Model.

The additional term with this field strength tensor is called the gauge part
of the Lagrangian:

Lgauge = −1

4
F a
µν(x)F a,µν(x)

This process of restoring the gauge invariance of the Lagrangian and choosing
the vector field Aaµ is called the gauging of the theory.

1.1.2 Fundamental Particles and Interactions

In the Standard Model all matter is made of quarks and leptons. They are
point-like, structureless spin-1/2 fermions. All Standard Model interactions
between these particles can be described by local gauge theories, in which
the forces are mediated by fundamental spin-1 gauge bosons.

Aiming towards the understanding of quarks and leptons and their inter-
actions in such a framework, one has to discover the underlying conservation
laws of the observed forces. After a long time of studies, three symmetries be-
longing to two areas of the theories have been identified. The two basic com-
ponents of the Standard Model are: the spontaneously broken SU(2)L×U(1)Y
electroweak theory, and the unbroken SU(3)C colour gauge theory, known as
quantum chromodynamics (QCD) which will be described in more detail in
section 1.2.

Unfortunately there is no deeper understanding of why exactly the gauge
group of the Standard Model is SU(3)C × SU(2)L × U(1)Y . The Standard
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Force Range [ m] Force carrier Boson mass [ GeV] JP

Strong 10−15 8 gluons (g) 0 1−

Electromagnetic ∞ photon (γ) 0 1−

Weak 10−13 W± and Z 80.42 and 91.19 1
Gravitational ∞ graviton (?) ? 2 (?)

Table 1.2: Overview of the fundamental forces. There is no consistent quan-
tum theory of gravity, however it is possible to make some general consider-
ations about the properties like the spin of its hypothetical force carrier.

Model gauge group gives rise to the following gauge boson content:

SU(3)C × SU(2)L × U(1)Y
↓ ↓ ↓
Gα
µ

α=1...8

W a
µ

a=1...3

Bµ

There are three spin-1 fields W a
µ (x) that are associated with the SU(2)L gauge

group and one field Bµ(x) associated with the group U(1)Y . The subscript
L indicates that only left-handed fermions carry this quantum number. The
subscript Y represents the quantum number associated with the group U(1)Y .
The four spin-1 gauge bosons W a

µ (x), B(x) are related to the experimentally
observed bosons W±, Z and γ that mediate the weak and electromagnetic
interaction via

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(
Aµ
Zµ

)
=

(
cosϑW sinϑW
− sinϑW cosϑW

)(
Bµ

W 3
µ

)
where the photon field is named Aµ. Due to the process of spontaneous
symmetry breaking, the symmetry SU(2)L × U(1)Y is broken down to the
gauge symmetry U(1)em. The corresponding gauge boson for this symmetry
is the photon and the corresponding quantum number is the ordinary electric
charge. The same mechanism that is responsible for breaking the symmetry
allows the physical bosons W± and Z to acquire mass. This process is caused
by a massive spin-0 particle, the Higgs boson. A new particle, which could be
the Higgs boson, was discovered by CMS and ATLAS[8] in June 2012 with a
mass of 125.3 GeV[9]. Further details on the Higgs mechanism are available
in [4, 10, 11].

The eight particles associated with the gauge group SU(3)C are called
gluons Gα

µ(x). Gluons are thought to be massless spin-1 particles. The
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subscript C denotes the charge of the particles, colour. Any particle that
transforms according to this gauge group is said to be coloured or to carry
colour. The interaction corresponding to this group is the strong interaction.

There are three different colour charges r, g, b. This stands in contrast to
the commonly known electric charge which only has one charge.

An important hint that the Standard Model is not yet a complete de-
scription of the subatomic world is the observation of neutrino oscillations,
which necessitates the neutrinos to have a mass. However it is not possible
to include neutrino mass term into the Standard Model Lagrangian without
spoiling the renormalisability2 of the theory or adding right handed neutri-
nos.

Free Parameters of the Standard Model Just like the Standard Model
is not able to explain the origin of its underlying gauge group, there are some
fundamental parameters in the model whose values it can not predict. These
free parameters have to be measured in experiments. By testing the self-
consistency of the Standard Model with independent precision measurements
of observables related to a common free parameter of the model, it might be
possible to uncover tensions and perhaps find hints pointing towards a theory
beyond the Standard Model. The fundamental, free parameters are:

• (1) The Weinberg-angle ϑW .

• (3) The three gauge couplings g1, g2,g3 of the electroweak and strong
interaction.

• (9) The masses of the six quarks and three leptons (or the equivalent
Yukawa couplings to the Higgs field).

• (1) The mass of the Higgs boson.

• (4) The matrix elements of the CKM-Matrix[12] that describes the
mixing between the down-type quark eigenstates for the strong and
weak interaction.

These parameters are adding up to the 18 free parameters of the Standard
Model. Extensions of the Standard Model which incorporate the observation
of Neutrino oscillations require at least three additional parameters for the
Neutrino masses and four parameters describing their mixing.

2Renormalisability is an important property of the theory and further described in 1.2.2
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1.2 Quantum Chromodynamics

1.2.1 Introduction

Historically, Quantum chromodynamics was introduced to solve a problem
with the observation of the ∆++ particle. Naively, its wave function has the
form Ψ∆ = ψflavourψorbitalψspin. Since the particle is composed of three up-
quarks, the first part is symmetric under the exchange of two quarks. Also,
since the spin of this particle is 3/2, all three quark spins are pointing spatially
into the same direction, so the spin wave-function is also symmetric. Finally,
the interchange of the quarks in the orbital part yields a factor (−1)L, which
is +1 because it is assumed that L = 0 for the ground state of this particle.
This means that the particle is a spin 3/2 fermion with a symmetric wave-
function. However the spin-statistics theorem states that a fermion must
necessarily be totally antisymmetric with respect to the interchange of the
quantum numbers of its constituents.

Although it looked like the ∆++ particle violates the spin-statistics theo-
rem, physicists were reluctant to abandon the theorem since it can be derived
from a small set of fundamental axioms whose validity was without question.
Thus, the existence of another quantum number was postulated to circum-
vent this fundamental problem and to save the theorem.

The conservation of this new quantum number is associated with the
symmetry group SU(3) and the local gauge symmetry gives rise to the gauge
bosons of the strong interaction - the gluons. These gluons carry both, colour
and anti-colour, and from group theory it is known that they are grouped
into an octet and a singlet. The gluon octet can be represented by

rb̄, rḡ, bḡ, br̄, gr̄, gb̄,
1√
2

(rr̄ − bb̄), 1√
6

(rr̄ + bb̄− 2gḡ).

while the singlet can be written as:

1√
3

(rr̄ + bb̄+ gḡ)

Mathematically, the generators T a of the SU(3) group are described by the
Gell-Mann matrices λa with T a = λa/2. As shown in the preceding sections,
the Lagrangian density which is invariant under local SU(3) transformations
can be constructed as:

LQCD = ψ̄ (iγµ∂µ −m)ψ − 1

4
F a
µνF

a,µν + gs ψ̄γµG
a
µT

aψ

with F a
µν = ∂µG

a
ν − ∂νGa

µ + gs f
abcGb

µG
c
ν
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The Lagrangian of the theory is split into three parts. The first part is
the free quark Lagrangian. The second part describes the kinematics of the
gluon field and the third part the interaction vertex between the quark ψ
and the gluon field Ga

µ. The coupling between them is given by the strong
gauge coupling gs. It is common to speak about the strong coupling constant
αs = g2

s/4π instead of gs.

Especially interesting is the term F a
µνF

a,µν describing the kinematics of
the gluon field. Due to its non-Abelian group, the structure constants fabc

are non-vanishing as described in equation 1.1. This gives rise to interactions
of the form gsG

µGν∂µGν , the triple gluon vertex, and g2
s G

µGνGµGν , the
quadruple gluon vertex.

Together with the quark interaction gs ψ̄γµG
a
µT

aψ, these terms represent
the three fundamental QCD interaction vertices. From the corresponding
Feynman rules, it is possible to write down matrix elements for the transition
between any given initial and final states using the prescriptions of Quantum
field theory.

(a) (b) (c)

Figure 1.1: The three fundamental QCD interaction vertices.

1.2.2 The Running QCD Coupling αs

The coupling strength αs, the analogue to the fine-structure constant α in
QED, is the principal free parameter in the theory of the strong interac-
tion. The behaviour of αs at different energy scales is of great importance to
understand the interaction between quarks and gluons.

Asymptotic Freedom and Confinement

Experiments show that quarks and gluons behave like free particles for short
time intervals (t < 10−24 s), small distances (� 1 fm) or high energies (q2 >
1 GeV2). This implies that the strength of the strong coupling αs decreases



1.2. QUANTUM CHROMODYNAMICS 11

for large momentum transfers q2. It is similar to the electromagnetic screen-
ing effect, but on small instead of large scales. The effect, which is due to
the gluon self-coupling, is called asymptotic freedom.

At large distances however (∼ 1 fm) or small values of q2 (q2 < 1 GeV)
no free coloured objects are observed. A probable explanation is that for
sufficiently large distances (> 1 fm) the colour field between them has accu-
mulated a sufficient amount of energy to create new quark-antiquark pairs
from the vacuum. In turn, these quark-antiquark pairs fragment into colour-
less hadrons. This observation called confinement implies that the coupling
strength αs, becomes large and eventually diverges in the regime of large
distances (∼ 1 fm) or small momentum transfers (q2 < 1 GeV2). This also
means that the perturbative treatment of partons (i.e. quarks and gluons)
in this region is no longer possible and that the strong force has a limited
range although the gluons are massless.

From the QCD gauge group it is possible to derive a differential equa-
tion which describes the energy dependence of αs. The initial value for the
equation is a free parameter which must be derived from experimental data.
Determining αs at a specific energy scale q is therefore a fundamental task
in QCD. It is also possible to perform self-consistency tests of the theory by
probing several different energy scales and comparing the predictions of the
running of αs.

Renormalisation

The following introduction to renormalisation theory follows the path laid
out in [13]. In a quantum field theory like QCD, a dimensionless physical
observable X can be expressed by a perturbation series in the coupling pa-
rameter αs. Calculating X in standard QCD implies operating with bare
charges and masses of point particles, which are free of self-interactions,
however this means one has to deal with additional emissions and ultravio-
let (UV) divergences from the integration of loop momenta. They manifest
themselves in the form of gluon or quark self-energy and vertex corrections.
These divergences are removed by a procedure called renormalisation. There
are different schemes to do this (like the MS scheme) but they have in com-
mon that they introduce a second energy scale µ and that X and αs become
functions of µ. Here µ represents the point at which the removal of the UV
divergences is performed. A natural choice of the renormalisation scale is
the energy scale of the process [14]. The observable X can be expressed as a
function of αs and a single energy scale q when neglecting all masses in the
problem. Since X is dimensionless, one can assume that:

X = X(q2/µ2, αsµ), αsµ = αs(µ
2)
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As the choice of µ is arbitrary, the observable has to be independent of µ2

for constant αs. This can be mathematically expressed by:

µ2 d

dµ2
X(q2/µ2, αsµ)

!
= 0 =

(
µ2 ∂

∂µ2
+ µ2∂αsµ

∂µ2

∂

∂αsµ

)
X(q2/µ2, αsµ) (1.2)

It follows that any explicit dependence of X on µ2 arising via q2/µ2 must
cancel the one associated with αs. Equation 1.2 is called the renormalisation
group equation (RGE) for X. An example for such an observable X is the
matrix element of a perturbative QCD process

Energy Dependence of αs

The next step is to introduce the β function:

β (αsµ) = µ2∂αsµ
∂µ2

(1.3)

To see how this leads to a description of αs at different energy scales,
the variable t = ln (q2/µ2) is introduced. With this variable, equation 1.2
becomes: (

− ∂

∂t
+ β (αsµ)

∂

∂αsµ

)
X(et, αsµ)

By implicitly defining a new function - the running coupling αs(q
2), this first

order differential equation can be solved:

t =

∫ αs(q2)

αsµ

dα

β (α)
(1.4)

By differentiating 1.2 with respect to t at fixed αsµ and with respect to αsµ
at fixed t, one obtains:

1 =
1

β (αs(q2))

∂αs(q
2)

∂t
and 0 =

∂αs(q
2)

∂αsµ

1

β (αs(q2))
− 1

β (αsµ)(
− ∂

∂t
+ β (αsµ)

∂

∂αsµ

)
αs(q

2) = 0

From which follows that X(1, αs(q
2)) is a solution to equation 1.2. This

remarkable result shows that the complete energy scale dependence of X can
be absorbed into the running of the coupling constant αs(q

2) [15]. However
this result is only valid under the assumption above that q2 is so large that
one can neglect all masses. From this result also follows that if it is possible
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to calculate X at the scale q2 = µ2 at some definite order of perturbation
theory, one can predict the scale dependency of X by solving 1.4.

Expanding the β function perturbatively in terms of αs yields:

β(αs(q
2)) = −β0α

2
s(q

2)− β1α
3
s(q

2)− β2α
4
s(q

2) +O(α5
s) (1.5)

From QCD loop calculations the coefficients βi can be calculated[16]:

β0 =
33− 2nf

12π

β1 =
153− 19nf

24π2

β2 =
77139− 15099nf + 325n2

f

3456π3

where nf is the number of quarks with a mass less than the energy scale
q. Solving equation 1.3 with ansatz 1.5 in leading order, gives the one-loop
solution for the energy dependence of αs(q

2):

αs(q
2) =

αs(µ
2)

1 + αs(µ2)β0 ln
(
q2

µ2

) (1.6)

It is common to evaluate equation 1.6 at µ = MZ to compare between dif-
ferent measurements. According to the Particle Data Group[16], the current
best estimate of the strong coupling is:

αs(MZ) = 0.1176± 0.002

Already at one loop level, the solution 1.6 shows the behaviour of αs which
was measured in experiments. In figure 1.2 and equation 1.6 the aforemen-
tioned confinement and asymptotic freedom can be observed.

Further details are available in [17] and [18].

1.3 Bound States in QCD

Coloured objects like quarks and gluons are confined together with other
coloured objects into colourless objects. These objects are known as hadrons.
Currently, two kinds of such bound states of quarks have been observed.
The fermionic baryons qqq and the bosonic mesons qq̄ as well as the corre-
sponding anti-particles. From lattice gauge3 QCD computations there are

3A lattice gauge theory is a gauge theory on a discretised space-time.
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(a) Summary of the values of αs(µ) at the
values of µ where they are measured. The
lines show the central values and the ±1σ
limits. The figure clearly demonstrates the
decrease in αs(µ) with increasing µ.
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(b) Summary of the value of αs(MZ)
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measured value of αs extrapolated to
µ = MZ .

Figure 1.2: Energy dependence of the QCD coupling αs = g2
s/4π (Source

[16])

predictions[16] of more exotic compound particles like tetra-quarks qq̄qq̄,
penta-quarks qqqqq̄ or glue-balls which consist only of gluons, but there is
currently no experimental evidence for their existence.

The large number of catalogued hadrons is due to the large number of
combinations which are possible by having six different flavours and their
anti-partners. A large number of excited particles are also assigned their
own name because their energies due to spin and orbital momentum can
reach or even surpass the order of magnitude of their ground state energy.

These bound states are subjected to conservation and quantisation laws:
Baryon number conservation holds true (counting anti-baryons as −1), the
charge of hadrons is an integer multiple of the elementary charge and the
colour charge vanishes. While hadrons can be described by their valence
quarks, which give rise to the hadron quantum numbers, the mass of bound
states is much larger than the sum of their bare masses. However it is possible
to calculate many masses and lifetimes using the already mentioned lattice
gauge QCD computations.

There are only two known stable bound states with very long lifetimes, the
proton and the neutron. There are lower limits on the proton lifetime of 2·1029

years, and the reason for this long lifetime is a topic under study. However
the neutron will decay when not bound with other hadrons in a nucleus after
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a free mean lifetime of just 881 s. Due to their stable nature even when not
bound in atoms, protons are ideal candidates to study hadronic interactions.

To study the quite complicated inner dynamics of these bound states,
point-like particles are used in deep-inelastic scattering experiments to probe
the proton structure. To resolve the proton structure, energies of the order
of at least 1 GeV are needed.

These probes uncovered that baryons consist of three valence quarks
bound together by a gluon field. The gluon field between the valence quarks
carries a large amount of the momentum of the hadron and causes by vir-
tual pair production and annihilation the appearance of sea-quarks, which
can be heavy quarks (like s, c, b) even in light hadrons like the proton. The
exact composition of protons and neutrons is given by parton distribution
functions (PDFs). Here the quantity fi(x, q

2)dx gives the probability that
a parton of type i (quark, antiquark or gluon) carries a momentum fraction
between x and x + dx of the total hadron momentum for a probe at scale
q2. An example for a PDF set is shown in figure 1.3. For the theoretical
description of these distributions, it is important to recall that the partons
are in a collinear configuration with very small relative momentum. Hence
the interaction between them is very strong and cannot be calculated pertur-
batively. However, it is possible to formulate a model, which allows to apply
the renormalisation group equation to the problem.

It is necessary to introduce an arbitrary scale µ, which is analogous to
the renormalisation scale µR and factorises the problem into two terms, one
governing the perturbative, short-distance physics and one term describing
the non-perturbative, long-distance interactions. The factorisation scale is
usually chosen to be the same as the renormalisation scale. The terms which
absorb the incalculable effects in the model are cancelled when applying the
renormalisation group equation and one is left with the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP)[19] equation, which governs the evolution
of the parton distribution functions between different scales. So although it is
not possible to calculate the distribution function fi (x, µ

2) at any particular
value of µ2, as soon as it is measured at a certain scale, the distribution at
another scale can be predicted. The DGLAP equations for quarks and gluons
are:

µ2∂qi (x, µ
2)

∂µ2
=

αs (µ2
R)

2π

∫ 1

x

dy

y

[
Pqi→qig(x/y) · qi

(
y, µ2

)
+ Pg→qq(x/y) · g

(
y, µ2

)]
(1.7)

µ2∂g (x, µ2)

∂µ2
=

αs (µ2
R)

2π

∫ 1

x

dy

y

[∑
i
Pqi→qig(x/y) · qi

(
y, µ2

)
+ Pg→gg(x/y) · g

(
y, µ2

)]
with the Altarelli-Parisi splitting functions Pa→bc(z). The splitting function
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has the interpretation of describing the probability of finding the branching
a→ bc, where z is the energy fraction taken by one of the daughter particles.

The DGLAP equation thereby shows how the distribution for a parton
with momentum fraction x, which absorbs a probe, is given by the integral
over y of the corresponding distribution for a quark with momentum frac-
tion y, which radiated away via a gluon a fraction x/y of its momentum
with probability” αs (µ2) /2πPfj→fig(x/y). The probability is high for large
momentum fractions, which expresses how high-momentum quarks lose mo-
mentum by radiating gluons. This predicts that the distributions fi (x, µ

2)
get smaller at large x as µ2 increases and larger at small x, while keeping
the integral of the distribution over x constant. In addition, the radiated
gluons produce more quark-pairs at small x. Therefore the nucleon can be
imagined as having more and more constituents, all contributing to its total
momentum, as the structure is probed on smaller distances, corresponding
to larger scales µ.
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Figure 1.3: NNPDF2.1 NNLO parton distribution function for different
quark flavours and gluons at Q2 = (7 TeV)2
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1.3.1 Hadron-Hadron interactions

The mathematical description of the interaction between complex objects like
hadrons are possible because of the previously discussed ability to decouple
the long ranged hadron interactions from the short ranged parton interac-
tions. This decoupling implies that the PDFs, which use experimental input
from other experiments, like electron-proton colliders, can also be used in
the description of proton-proton interactions. Using the PDFs fi (Hj) for
the partons pi of the involved hadrons Hj, it is possible to rewrite the cross
section for the interaction of two hadrons H1 and H2 into some final state in
the following way:

dσ (H1H2 → . . . ) =

∫ 1

0

dx1dx2

∑
i,j

fi
(
H1, x1, µ

2
F

)
·fj
(
H2, x2, µ

2
F

)
·dσ (pipj → . . . )

This allows to determine the cross section dσ (H1H2 → . . . ) for the hadron
interaction from the cross sections dσ (pipj → . . . ) of all the partons pi, pj
composing the hadrons.

1.4 Partons and Hadrons

Using the Standard Model, it is possible to describe the hard interaction
between two colliding fundamental particles. Using PDFs it is also possible to
describe complex hadron-hadron collisions. The results of such computations
for QCD processes are a small number of partons. Yet in experiments a large
number of colour neutral hadrons is observed. The Monte Carlo simulation
which describes the transition from partons to hadrons can be factorised into
two parts: the parton shower and the hadronization model.

1.4.1 Parton Shower

In electrodynamics accelerated electric charges radiate charge-less photons
whereas in QCD accelerated colour charges radiate gluons, which carry colour
and therefore also radiate themselves.

Two general approaches exist for the modelling of these perturbative cor-
rections. A detailed treatment would consist in calculating the Feynman
diagrams order by order. This takes into account the exact kinematics of
the problem and the full interference and helicity structure. The problem
is that such computations become increasingly difficult in higher orders and
computationally prohibitive as the number of diagrams grows factorially.
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The second option, used in Monte Carlo event generators, is to model the
effect using the parton-shower approach. It is an approximative perturba-
tive treatment of QCD dynamics and is applicable above a given transferred
momentum q2, with q2 of the order of 1 GeV2. The following description is
based on the lectures presented in [20].

The parton evolution is characterised by mostly soft and collinear emis-
sions since such branchings are logarithmically enhanced. Solving QCD par-
ton evolution equations, specifically the DGLAP QCD evolution equations
in the leading-log approximation with a fixed cut-off regularisation leads to a
model where the emissions are described by Markov processes with branch-
ings into a→ bc, specifically for QCD: q → qg, g → gg and g → qq̄.

Therefore, tree-level matrix elements for an n parton state can be ap-
proximated by a product of splitting functions Pa→bc(z). This product cor-
responds to a sequence of one-parton emissions from the initial state (e.g. a
2 parton state). z is the energy fraction taken by one of the daughter par-
ticles. The succession of these emissions can be ordered according to some
resolution scale ρ. Common choices for this scale are in the Monte Carlo
event generator Pythia the virtuality q2 or the transverse momentum pT . An
angular ordered parton shower algorithm is used for example in the Monte
Carlo program Herwig. From the splitting functions the Sudakov form fac-
tor ∆(ρn, ρn+1) can be derived which describes the probability for having no
emissions between two resolution scales ρn and ρn+1. This Sudakov form
factor allows to compute the probability P (ρn) for the n-th splitting at a
given resolution scale ρn. With this information it is possible to simulate the
parton shower with Monte Carlo methods.

Using the splitting probabilities means that coherence effects are not di-
rectly taken into account. Therefore, there is no interference between the
two diagrams

q and

q

g

g

q

q

g

g
in this model. Nevertheless, most coherence effects can be taken into

account with the aforementioned angular ordering. It is possible to approx-
imate the interference by assuming that the gluon is only emitted in an
angular cone given by the previous emission[21]. Another way to include
the coherence effects is to use a colour dipole description were the radia-
tion is from colour-connected partons[22]. The Monte-Carlo program Sherpa
applies the CKKW[23] method to provide a consistent matching between
multi-particle matrix elements and parton shower.
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The parton shower can be applied to both the incoming and outgoing par-
tons of a given hard process, resulting in the initial- and final-state shower.
The initial-state shower is less well understood theoretically, but can be mod-
elled with a “backwards evolution” approach in which the parton shower that
preceded the hard scattering is subsequently reconstructed.

1.4.2 Hadronization models

Quarks and gluons produced in hard scattering processes and the parton
shower cannot exist as free particles due to QCD confinement. What can be
measured in a detector is the result of a transformation process from coloured
partons into a stream of colourless hadrons.

The process of building baryons or mesons from partons by pair produc-
tion mechanisms or radiating off gluons is a non-perturbative phenomenon
and therefore only phenomenological models exist to describe this process so
far. Best known are the Lund String Fragmentation model and the Cluster
Fragmentation model.

Lund String Fragmentation Model4

The Lund string model (described in [24] and summarised here) is based on
the linear part of the QCD diquark potential[25] at long distances.

V (r) = −4

3

αs(r) ~ c
r

+ κ · r

The colour field of a qq̄ pair which is moving apart, increases linearly in
strength with the string constant κ ≈ 1 GeV/ fm, transferring energy from
the quarks to the gluon field. At long distances, the self interactions of the
gluons collapse the field lines, creating a string-like field configuration. Glu-
ons from the partonic final state are incorporated as kinks in the strings,
carrying energy and momentum. The gluon self interaction is strong enough
that the transverse size of the string is negligible. This motivates the descrip-
tion of the string as a massless, one-dimensional, relativistic object with only
longitudinal excitations. These longitudinal excitations allow the transfer of
energy between the two quarks and the field.

If enough energy is accumulated in the string to allow pair production,
the colour field breaks up into another q′q̄′ pair, resulting in the two colour-
singlets qq̄′ and q′q̄. In order to generate the quark pair during break-up,
the Lund model invokes the idea of quantum mechanical tunnelling. Hence,

4The Lund string model was developed at the University of Lund in Sweden.



20 CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

  rr field   gg   bb

  t

  x

 qq  

B

M MB

Figure 1.4: An example how two baryons and mesons are created in the
popcorn model by independent pair production processes [26].

heavy quarks like charm, bottom and top quarks are not expected to be
produced in the soft fragmentation.

Since the string is assumed to have no transverse excitations, the pT
acquired by the created quark is compensated by the corresponding anti-
quark. If the invariant mass of either one of the remaining strings between
qq̄′ or q′q̄ is large enough, further breaks may occur. This break-up process is
assumed to proceed until only on-mass-shell hadrons remain. When the
quarks from adjacent string breaks are combined to form the final state
hadrons, it is necessary to invoke an algorithm to choose which hadrons
are formed that way. Notably their spin and flavour composition must be
assigned based on tuned models.

Meson production is easily understood in the Lund String model as a
quark-antiquark pair connected by an unbroken string while baryon produc-
tion is not so straightforward. There are two common models to describe
baryon production in the context of the Lund String model[26]. In the di-
quark approach, a string can also be broken up into an antidiquark and a
diquark which become constituents of an anti-baryon respectively a baryon.

The contending popcorn model is in better agreement with experimental
results. In this model, as shown in figure 1.4, a diquark is produced in a
stepwise manner and not as a single unit.

Once the Lund String model is fitted to e+e−-collision data, there is little
freedom to tune its parameters to other types of collisions. The model is
physically well motivated and gives, after tuning, a good description of the
observed data.
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Figure 1.5: Sketch of the simulation of a pp collision using the cluster hadro-
nisation model. The hard signal process produced a pair of leptons (red).
After initial and final state parton showers (green), Gluons are split into
quark pairs. Then colourless clusters (white) are formed. These fission into
lighter clusters or into pairs of hadrons (yellow), which may decay further.
(Source [29])

Cluster Hadronisation Model

The Cluster Hadronisation Model (described in [27] and summarised here)
is based on the idea of preconfinement. Preconfinement is the property that
quarks and gluons produced in the parton shower become organised in clus-
ters of colour singlets.

The first step of the Cluster Hadronization Model is to take the partonic
final state and split the gluons non-perturbatively into quark-antiquark pairs.
In the Herwig++ implementation, the gluon decays isotropically into the
possible quark flavours to separate the two colours carried by the gluon. In
Sherpa, the decay of these gluons is performed in a dipole-inspired framework,
where the colour partner accounts for the recoil of the massless gluon[28]. Af-
ter the gluons are decayed, the event contains only colour connected quarks,
diquarks and their antiparticles.

The colour singlets formed by the colour connected parton pairs are
formed into low-mass clusters with the momentum given by the sum of the
momenta of the constituents. These colour singlet clusters have a mass spec-
trum peaked at low masses (m ∼ 1 GeV) and can be regarded as highly
excited hadron resonances. They are subsequently split into hadrons accord-
ing to phase space weight and spin. However, a small fraction of clusters
is too heavy (m > 4 GeV) for this to be a reasonable approach. Therefore,
these heavy clusters are anisotropically split into lighter clusters before they
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decay in a process called cluster fission. Although only 15% of all clusters
have to be split, the threshold for cluster fission is of great importance since
50% of all observed baryons are descendants of such clusters.

To finally decay a cluster of a given flavour q1q̄2 into hadrons, a quark-
antiquark qq̄ or diquark-antidiquark QQ̄ pair is created and a pair of hadrons
with flavours q1q̄ / q1Q̄ and qq̄2 /Qq̄2 is formed. The selection of the produced
hadrons is based on flavour, spin and available phase space.



Chapter 2

The CMS Detector at the
Large Hadron Collider

In particle physics, hadron colliders have a long tradition as discovery ma-
chines, which are used to explore physics at the highest energies. In the
early 1930s, cyclotrons with energies of around 1 MeV and circumferences of
around 30 cm were used to study fundamental nuclear interactions.

Over many decades, technological progress enabled the construction of
increasingly sophisticated, larger and more powerful colliders. In 1983, the
7 km long Super Proton Synchrotron, located at CERN1 in Geneva, recorded
data which proved the existence of the W and Z bosons [30][31] by colliding
protons at centre-of-mass energies of around 450 MeV. The Tevatron at
Fermilab in Batavia/Illinois measured in 1995 for the first time the mass of
the top quark [32]. Today, the Large Hadron Collider [33] (LHC) and the
connected experiments at CERN represent the pinnacle in the field of high
energy particle collider and detector design. A major success of the LHC was
the discovery of a new boson with a mass of 125 GeV in July 2012.

The physics program at the LHC stretches across the whole field of High
Energy Physics: Measurements of Standard Model parameters at high en-
ergy scales as well as searches for the Higgs boson, Supersymmetry, extra
dimensions or other new phenomena. For this purpose, the LHC provides
four interaction points where proton-proton or collisions with lead ions take
place. At each of these four points, a complex detector identifies the particles
coming from the collisions and measures their kinematic properties.

The heavy ion experiment ALICE [34] is dedicated to the investigation
of strongly interacting hadronic matter as it is produced in collisions of lead

1European Organisation for Nuclear Research established by the “Conseil Européen
pour la Recherche Nucléaire”
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ions. At high energy densities, hints for the formation of a new phase of mat-
ter, the quark-gluon plasma, is observed in these interactions[35]. The LHCb
[36] collaboration performs precision measurements on CP violation and rare
decays in order to reveal possible indications for new physics and to further
constrain the Standard Model. CMS [37] and ATLAS [38] are two general
purpose experiments with complementary detector technologies. Located in
their vicinity and sharing the interaction point are TOTEM [39] and LHCf
[40], which are dedicated to cross section measurements and forward physics.

2.1 The Large Hadron Collider

2.1.1 Introduction

The Large Hadron Collider is a superconducting hadron accelerator and col-
lider. It is installed in the 26.7 km long tunnel which previously housed the
Large Electron Positron (LEP) collider at CERN. The tunnel lies between
45 m and 170 m below the surface on a slightly inclined plane across the
French-Swiss border near Geneva.

Between 1989 and 2000, LEP and its detectors allowed in particular the
measurement of the W and Z boson properties with unprecedented accuracy[41]
by colliding electron with positrons with centre-of-mass energies of up to
209 GeV. The limiting factor for LEP was the energy loss due to synchrotron
radiation which increases proportionally to the fourth power of the inverse
mass of the particles. Using particles with a higher mass this synchrotron
radiation problem can be circumvented. Therefore by using hadron beams,
the LHC will be able to reach much higher energies than LEP while utilising
the same tunnel.

The LHC project proposal was approved in December 1994 and achieved
its first beam in September 2008. After a serious problem with the connection
between the superconducting magnets[42], the first collisions were recorded
in November 2009. Since February 2010, the LHC runs at a centre of mass
energy of 7000 GeV. The energy was increased to 8000 GeV for the 2012
data-taking. After this data-taking period, some necessary upgrades will
be performed to meet the design goals of providing proton and lead ion
collisions with a centre-of-mass energy of the nuclei of up to 14 TeV and
5.52 TeV respectively.
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2.1.2 LHC Accelerator Chain

The hadron beams are accelerated by several existing facilities before being
injected into the LHC. An overview of the pre-acceleration chain is shown
in figure 2.1. For a proton run the linear collider LINAC 2 accelerates the
particles to Ep = 50 MeV and transfers them into a chain of synchrotrons.
After the Proton Synchrotron Booster (Ep = 1.4 GeV), the Proton Syn-
chrotron (Ep = 25 GeV) and the Super Proton Synchrotron (Ep = 450 GeV)
the protons are injected into the Large Hadron Collider. To fill all bunches
of the beam takes about 260 s for each beam direction. Once the filling pro-
cedure is finished, the protons are accelerated for about 15 min to their final
energy of currently Ep = 4000 GeV[43].

To perform this acceleration, the LHC uses eight radio-frequency cavities
per beam, each delivering 2 MV. Particle which are exactly synchronised
with the frequency of the cavities are called synchronous particles. Other
particles in the accelerator oscillate longitudinally around the synchronous
particles. This means that the particles in the beams are not uniformly spread
around the circumference, but rather tightly packed around the synchronous
particles in so-called bunches. The LHC can contain up to 2808 such bunches,
consisting of roughly 1011 protons and separated by a bunch spacing of 25 ns

These particles bunches are kept on a circular path along the ring by 1232
dipole magnets, designed to deliver a magnetic field strength of 8.33 T. In
order to focus the beams and counteract other interactions, 858 quadrupole
magnets and a large number of sextupoles, octupoles and decapoles are used.
With complex beam optics, the two particle beams are further focused and
made to intersect each other at four interaction points.

2.1.3 Luminosity and Machine Parameters

The cross section σ for a physical process is proportional to the number of
reactions per second, which occur at an interaction point of a particle collider:

∂N

∂t
= Lσ

The factor of proportionality is called the machine luminosity L and can
be calculated with the specific machine and beam parameters. Assuming a
Gaussian beam distribution, the luminosity can be written as:

L =
N2
b nb frev γ F

4π εnβ∗

where Nb is the number of particles per bunch, nb the number of bunches
per beam, frev the revolution frequency and γ the relativistic gamma factor.
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Achieved Design Unit

Energy per nucleon E 3.5 7 TeV
Dipole field B 8.33 T
Instantaneous luminosity L 3.55× 1033 1034 cm−2 s−1

Bunch separation tb 25 25 ns
Number of bunches nb 1380 2808
Number of particles per bunch Nb 1.5× 1011 1.15× 1011

Norm. transverse beam emittance εn 2 3.75 µm
β-value at interaction point β∗ 0.55 0.55 m
Revolution frequency frev 11.2 11.2 kHz
Gamma factor γ 3730 7460
Luminosity lifetime τL 17 15 h
Bunch crossing frequency fb 40 40 MHz
Number of collisions per crossing nc ≈ 25 ≈ 20

Table 2.1: Comparison of achieved and design parameters of the LHC ma-
chine [33, 44, 45, 46, 47].

εn is the normalised transverse beam emittance - a measure for the phase
space area associated with the two transverse degrees of freedom. The beam
properties at the interaction point are described by the betatron function β∗

and the geometric luminosity reduction factor F .
During a physics run, the luminosity of the LHC decreases mainly because

of the particle loss during collisions, but also due to deteriorating beam prop-
erties. This decay is characterised by the luminosity lifetime τL. Integrating
the luminosity over one run with length Trun yields

Lint = L0τL

[
1− exp

(
−Trun

τL

)]
After a short start-up phase with 450 GeV and 1.38 TeV beam energy,

the LHC delivered 47 pb−1 of integrated luminosity with 3.5 TeV beams to
CMS in 2010. With the experience gained during this run, it was possible
to collect 5.7 fb−1 proton-proton collision data in the following year 2011[48].
Using reasonable run times one obtains an integrated luminosity Lint of about
80 fb−1 to 120 fb−1 per year for the CMS experiment when running with
design parameters.

The luminosity is continuously measured by each experiment[49]. CMS
uses two methods to determine the luminosity. The first is based on the occu-
pancy of calorimeter cells of the forward hadronic calorimeter (HF method).
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The second method is based on counting the number of reconstructed ver-
tices in events with low activity. Both approaches allow a relative luminosity
measurement. The absolute luminosity normalisation can be performed us-
ing either a comparison with simulated events or by performing a so-called
van-der-Meer scan[50]. Since the former method has large systematic uncer-
tainties, CMS is using the van-der-Meer scans performed in separate fills for
the official luminosity measurement. It is based on the measurement of the
relative interaction rates as a function of the transverse beam separation,
which is varied during each such scan. This allows to determine the effective
beam size and the maximum achievable collision rate.

Phase Energy Ep Instantaneous luminosity L
2010 3.5 TeV up to 2× 1030 cm−2 s−1

2011 3.5 TeV up to 3.55× 1033 cm−2 s−1

2012 4 TeV more than 6.25× 1033 cm−2 s−1

Design 7 TeV 1.05× 1034 cm−2 s−1

Table 2.2: Development of the LHC beam energy and instantaneous lumi-
nosity for pp collisions over the years (Source: [48, 44]).
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Figure 2.1: Overview of the accelerator chain. The hadron beams are accel-
erated by several successive facilities to the LHC injection energy of 450 GeV
before being accelerated in the LHC to 7 TeV[43].
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Figure 2.2: Overview of the cross-sections for different physics processes. At
the centre-of-mass energies of the LHC, jet production is the dominating
process. (Source: [16])
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(a) 2010

(b) 2011

Figure 2.3: Integrated luminosity delivered by the LHC at P5 and recorded
by CMS in 2010 and 2011. Flat regions correspond to technical stops of the
accelerator (Source: [51]).
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2.2 The Compact Muon Solenoid Experiment

The Compact Muon Solenoid (CMS) experiment is located at Point 5 of the
LHC near Cessy in France, opposite to the CERN main campus at Meyrin.
CMS is a general purpose detector built to run at the highest luminosity
at the LHC. The design of CMS is driven by having a high-performance
muon system, an excellent electromagnetic calorimeter, a high quality cen-
tral tracking and a hermetic hadron calorimeter. The main volume of the
CMS detector is a multi-layered cylinder, 21.6 m long and 14.6 m in diam-
eter, weighing more than 12, 500 t. The innermost layer is a silicon-based
particle tracker, surrounded by electromagnetic and hadronic calorimeters
for measuring particle energies. They are fit inside a central superconduct-
ing solenoid magnet. The outermost layer of the detector consists of the
muon chambers and a small part of the hadronic calorimeter. In contrast
to some other experiments at the LHC, the compact nature of the detector
allowed the construction at ground level. The subsequent sections summarise
the detailed description of the detector given in [37].

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic
Calorimeter

Hadron
Calorimeter

Preshower

Muon
Detectors

Superconducting Solenoid

Figure 2.4: Schematic view of the CMS detector and its components[37]
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Figure 2.5: Relationship between the polar angle and pseudo-rapidity.

2.2.1 Conventions and Definitions

The coordinate system adopted by CMS has the origin centred at the nominal
collision point inside the experiment. The x-axis points radially inward to-
wards the centre of the LHC, the y-axis is pointing vertically upward and the
z-axis points along the beam direction towards the Jura mountains, building
a right-handed coordinate system. The azimuthal angle φ is measured from
the x-axis in the x-y plane and the radial coordinate in this plane r gives
the radial distance from the beam pipe. The polar angle θ is measured from
the z axis with the +z-direction corresponding to θ = 0 and the -z-direction
corresponding to θ = π.

Instead of the polar angle, the rapidity y or pseudo-rapidity η are com-
monly used. The differential particle flux in these two variables is approxi-
mately constant at hadron colliders[52], making them a good choice as phase-
space partition variables. The rapidity has the useful property that it is
invariant under longitudinal boosts in the z-direction and is defined as

y =
1

2
ln

(
E + pz
E − pz

)
Using the pseudo-rapidity η, which is solely defined by spatial coordinates,
it is possible to avoid an energy dependency:

η = − ln

[
tan

(
θ

2

)]
For massless particles rapidity and pseudo-rapidity are equivalent. Infor-

mation about energy and momentum is often given by its transversal com-
ponents ET and pT which are related to the Cartesian coordinates via:

pT =
√
p2
x + p2

y, ET = E
pT√
p2
T + p2

z
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The angular distance between two objects coming from the origin is de-
scribed by

∆R =

√
(∆η)2 + (∆φ)2

2.2.2 Inner Tracking System

The inner tracking system (figure 2.6) of CMS is designed to provide a precise
measurement of charged particle trajectories emerging from LHC collisions.
It surrounds the interaction point and has a length of 5.8 m and a diameter
of 2.5 m, covering a pseudo-rapidity range of up to |η| < 2.5. The tracking
system consists of two main subsystems, the pixel detector with three barrel
layers at radii of 4.4 cm, 7.3 cm and 10.2 cm and a silicon strip tracker with
10 barrel detection layers extending outwards up to a radius of 1.1 m. Each
subsystem is completed by end-caps which consist of 2 disks in the pixel
detector and 3 plus 9 disks in the strip tracker on each side of the barrel.
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Figure 2.6: Lateral cut through the Inner Tracking System (Source: [37])

With about 200 m2 of active silicon area the CMS tracker is the largest sil-
icon tracker ever built. In addition to the issues of producing such a large de-
tector, the operating conditions for the tracking system are very challenging.
During each LHC bunch crossing at design luminosity about 1000 particles
are hitting the tracker on average. To resolve so many particles the inner-
most pixel detector has a small cell size of 100× 150µm2 in r-φ and z leading
to an occupancy in the order of 10−4 per pixel and bunch crossing. The high
spatial resolution achieved using these approximately 66 million pixels allows
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the precise measurement of secondary vertices and impact parameters which
is important for the efficient identification of long lived particles.

Further away from the interaction point, the reduced particle flux allows
the usage of cost-saving strip detectors with a typical cell size of 10 cm×80µm
in the intermediary range and cell sizes of 25 cm×180 mm in the outer region
of the tracker. To get position information along the long side of the strips
some layers use double-sided modules with a stereo angle of 100 mrad.

Measurement of particle tracks

To measure the tracks of charged particles, multiple layers of silicon detectors
are depleted of free charges by applying a high voltage to them. Any charged
particle travelling through depleted silicon leaves an ionisation trail causing
a small current. This current can be measured and is registered as a hit
in the detector cell. With sophisticated pattern recognition algorithms it is
possible to reconstruct a set of probable paths for the particle through the
tracker. The very homogeneous 3.8 T strong magnetic field inside of the CMS
solenoid causes even high pT particles to leave tracks with a small curvature.
On the other hand, low pT particles can even be forced into helical tracks
with a small-radius. Therefore it is reliably possible to measure the particle
momentum and charge from the curvature of the tracks.

2.2.3 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL) of CMS is a hermetic calorimeter
made of lead tungstate (PbWO4) crystals as scintillating material. This ma-
terial was chosen because it is very dense (8.28 g cm−3) and has a short radia-
tion length (X0 = 0.89 cm). These properties allow for a compact calorimeter
design where electrons, positrons and photons deposit their energy within a
very small depth. The Molière radius, the radius of the cylinder containing
90% of the energy deposition, for this material is rather small (2.19 cm). This
allows to measure the energy with a fine granularity. PbWO4 is also radia-
tion hard and fast scintillating (80% of the light is emitted within tb = 25 ns),
making it an ideal scintillator material for the conditions at the LHC. The
crystals emit violet scintillation light which is measured by photo-detectors.
The relatively low light yield (50 Photons/MeV) requires the use of photo-
detectors with intrinsic gain. The electromagnetic calorimeter consists of
three subsystems, the barrel, the end-cap and the pre-shower detector as
shown in figure 2.7.
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Figure 2.7: Cross section through the Electromagnetic Calorimeter (Source:
[37])

Electromagnetic Calorimeter Barrel The barrel (EB) covers the pseudo-
rapidity range |η| < 1.479 with 61200 crystals. They are positioned and
shaped in such a way that the ECAL has a homogeneous crystal distribution
in η. The crystal cross section corresponds to approximately 0.0174× 0.0174
in the η−φ plane and they have a length of 230 mm corresponding to 25.8X0.
Crystals for each half-barrel are grouped into 18 super-modules each cover-
ing 20◦ in φ. Each super-module comprises four modules with 500 crystals
in the first module and 400 crystals in the remaining three. The crystals
are grouped in arrays of 2 × 5 crystals which together with the integrated
avalanche photo-diodes form a sub-module.

Electromagnetic Calorimeter End-caps The end-caps (EE) cover the
rapidity range 1.479 < |η| < 3.0 and are each composed of 7324 crystals.
The crystals in the end-cap are arranged in an x-y-grid, resulting in an η
dependent crystal cross section ranging from 0.0174× 0.0174 to 0.05× 0.05
in the η−φ plane. For the end-cap radiation resistant vacuum photo-triodes
are used as photo-detectors.

Electromagnetic Pre-shower Detector Most of the end-cap surface is
covered by the pre-shower detector (ES). It consists of two orthogonal planes
of silicon strip sensors interleaved with lead. Its principal aim is to improve
the neutral pion and photon discrimination in the end-caps within 1.653 <
|η| < 2.6. It also improves the position determination of electrons, positrons
and photons with high granularity.
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Details of electromagnetic energy deposition

When a photon, electron or positron enters the dense calorimeter material, an
electromagnetic shower develops due to bremsstrahlung and electron-positron
pair production. Via Compton scattering and the photo-electric effect, the
incident particle as well as the shower particles, deposit their energy in the
calorimeter material. The deposited energy causes the excitation of atomic
states, which return to the ground state by photon emission. The number
of emitted photons is proportional to the fraction of the energy that has
been deposited in the crystal and this scintillation light can be measured by
photo detectors. To reconstruct the whole shower different algorithms are
available to find clusters of crystals belonging to the shower. The incident
particle energy is estimated as the sum of the energies measured by each of
the crystals belonging to the cluster.

The energy resolution of the ECAL has been determined with electron
test beams with energies ranging from 20 GeV to 250 GeV[53]. The resolution
can be parametrised with the NSC resolution formula:(σE

E

)2

=
N2

E2
+
S2

E
+ C2 (2.1)

with noise (N), stochastic (S) and constant terms. The study fitted the
measured resolution and found for the ECAL the following values: N =
0.0415 GeV, S = 0.028

√
GeV and C = 0.003.

2.2.4 Hadronic Calorimeter

The Hadronic Calorimeter (HCAL) plays an important role in the identifi-
cation and measurement of particles by measuring the energy and direction
of hadron jets and together with the ECAL the missing transverse energy
flow in an event. The size of missing ET in an event can be inferred by us-
ing all measured transverse energy components, since energy and momentum
conservation dictates that the sum of these components must vanish. The
residual part of this balancing is the missing ET . Large values of missing
ET are a crucial signature in many searches for new physics at the LHC. For
good missing ET resolution, a hermetic calorimetry coverage is required.

The HCAL consists of four parts: the barrel, end-cap, forward and outer
calorimeter, which is shown schematically in figure 2.8.

Hadron Barrel Calorimeter The Hadron Barrel Calorimeter (HB) is the
innermost HCAL subsystem and covers the pseudo-rapidity range of |η| <
1.305. It is divided into 36 wedges made of 14 flat brass absorber plates
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Figure 2.8: Schematic overview of the detector in the r-z plane. The four sub-
systems of the Hadronic Calorimeter, the Hadron Barrel (HB), the Hadron
End-cap (HE), Hadron Outer (HO) and Hadron Forward Calorimeter (HF)
are highlighted. The dashed lines indicate the pseudo-rapidity. (Source: [37])

(nuclear interaction length λ = 16.4 cm), each segmented into four φ sectors.
The front and back plates of each wedge are made of steel for structural
reasons. To accomplish a high hermeticity, the plates are put together in a
staggered way, leaving no dead material for the whole radial extent of the
wedges. Together the absorbers have a thickness ranging from 5.39λ at η = 0
to 10.3λ at |η| = 1.3. The wedges themselves are aligned parallel to the beam
axis and are forming the two half barrels (HB+ and HB-) of the HB. Between
the absorber plates lies the plastic scintillator, segmented into 16 η sectors.
This geometry allows for a resolution of ∆η×∆φ = 0.087× 0.087. The 16th
HB tower located at |η| = 1.305− 1.392 of the HB overlaps with the end-cap
and is not counted into the coverage.

Hadron End-cap Calorimeter The HCAL end-caps (HE) cover a large
pseudo-rapidity range of 1.305 < |η| < 3.0. A big engineering challenge was
the requirement to build the heavy structure using non-magnetic materials,
since the HE is placed at the end of the solenoid and must avoid distorting
the magnetic field. The general structure of the HB closely follows the ma-
terial and design choices of the HB. The cartridge brass absorber material is
interleaved with plastic scintillators which are connected to photo-detectors
by wavelength shifting fibres. The segmentation of the scintillators leads to
a granularity of 0.087× 0.087 in the η−φ plane for |η| < 1.6 and 0.17× 0.17
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for |η| ≥ 1.6.

Hadron Outer Calorimeter The HO is placed outside of the magnet
and utilises the solenoid coil as additional absorber material. Located in the
barrel region the HO covers pseudo-rapidities of |η| < 1.262. The tiles of the
HO are roughly aligned to the HB with a granularity of 0.087 × 0.087 in η
and φ. Especially in the central pseudo-rapidity region the HO enables to
recover shower leakage caused by the short interaction length. However high
noise levels currently prevent the use of this sub-detector in the general event
reconstruction.

Hadron Forward Calorimeter The HF calorimeter is a hadronic calori-
meter composed of iron absorber with quartz fibres as active medium. The
Cerenkov light generated by the relativistic components of the shower is
detected by an array of photo-multipliers. By measuring Cerenkov light, the
HF is mostly sensitive to the electromagnetic component of the shower. The
construction of the calorimeter, which covers the pseudo-rapidity interval
2.8 < |η| < 5.2 was mainly driven by the requirements of a high radiation
environment. The main physics goal of the HF calorimeter is to tag high
energy jets generated by vector-boson fusion events.

The Interaction of Hadrons with Matter

On entering matter, hadrons deposit their energy by causing a hadronic
shower in the material. The hadronic showering process is dominated by a
succession of inelastic hadron interactions, causing a large number of sec-
ondary particles. These secondary particles are mostly pions and nucleons
and are produced with large transverse momentum. Consequently, hadronic
showers spread more laterally than electromagnetic showers. The longitu-
dinal development of the hadronic multiplication process is measured using
the nuclear interaction length λ.

There is also an electromagnetic component present in hadronic showers
due to the relatively frequent production of π0. The energy measurement of
a hadronic shower is based on the same principle as for the electromagnetic
shower. The shower develops until a certain energy threshold is reached after
which the energy is deposited by ionisation and low-energy hadronic activity.

The resolution for the HCAL is given in terms of formula 2.1 and was
determined for the HCAL subsystems separately[54]. The HB, HO and HE
resolution is described by N = 0, S = 0.847

√
GeV and C = 0.074. For

the HF resolution, the measurement yielded N = 0, S = 1.98
√

GeV and
C = 0.09.
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2.2.5 Superconducting Solenoid

The superconducting magnet for CMS is designed to produce a 4 T field in
a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ
at full current. The high magnetic flux is necessary for a high momentum
resolution in the tracker and muon system and is returned through a 10, 000 t
yoke. The distinctive feature of the 220 t magnet is the 4-layer winding made
from an aluminium-stabilised reinforced NbTi conductor. The solenoid is
operated at a temperature of 4 K, below the temperature were the NbTi
conductor becomes superconducting. The magnet will be operated at 3.8 T
for the foreseeable future.

2.2.6 Muon System

Figure 2.9: This schematic view of the detector shows the muon chambers,
with drift tubes (DT), resistive plate chambers (RPC) and cathode strip
chambers (CSC). The iron return yoke components are shown in grey, the
superconducting solenoid is shown in yellow (Source: [37])

As is implied by the experiment’s middle name, the detection of muons
is of central importance to CMS. The muon detector chambers cover the
pseudo-rapidity range of |η| < 2.4 and lie in the outermost region of the
detector (see figure 2.9). Due to their minimal interaction with matter,
muons deposit only a small amount of energy while traversing the many
layers of detector material and the solenoid between the interaction point
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and the muon system. All other detectable particles from the interaction
point are stopped in one of the inner detector systems.

The muon system uses three different technologies for muon identifica-
tion: drift tubes (DT) in the barrel region (|η| < 1.2), cathode strip chambers
(CSC) in the end-cap region (1.2 < |η| < 2.4) and resistive plate chambers
(RPC) in both the barrel and the end-caps. The DT and CSC detectors
are used to obtain a precise measurement of the position of the muons and
thus the momentum of the muons, whereas the RPCs are dedicated to pro-
vide fast information for the Level-1 trigger. The muon identification and
momentum information collected by the muon system can be combined with
tracker information to yield well reconstructed muons with excellent momen-
tum resolution.

2.2.7 Forward Detectors

Centauro And Strange Object Research

The Centauro2 And Strange Object Research (also abbreviated as CASTOR)
detector is a quartz-tungsten sampling calorimeter similar to the HF, de-
signed for the very forward region. It is installed 14.4 m from the interaction
point covering 5.2 < |η| < 6.6.

CASTOR is a Cerenkov light based calorimeter like the HF but uses
tungsten as absorber material instead of iron. CASTOR is useful to the
study of the very forward, baryon-rich region in heavy ion collisions.

Zero Degree Calorimeter

The combined zero degree calorimeter (ZDC) is designed as a combination of
sampling quartz-tungsten electromagnetic and hadronic calorimeters. Two
identical ZDC will be located in the tunnel between the beam pipes 140 m
away from each side of CMS. They will detect very forward photons and
neutrons with |η| > 8.3. ZDC information can be used for a variety of physics
measurements as well as improving the collision centrality determination in
heavy-ion collisions.

2Centauro events are highly asymmetric events observed in cosmic-ray detectors[55][56].
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2.3 Data Acquisition and Trigger

Under normal conditions, the LHC runs with a beam crossing frequency
of 25 ns, resulting in 40 million bunch crossings per second. Since there
are usually more than 20 collisions per bunch crossing, depending on the
beam parameters, the Data Acquisition (DAQ) system has to read in a large
amount of data within the available, very small time window. Since it is
not possible to read out and accumulate this large amount of data from all
sub-detectors and store it permanently with current hardware, only a small
subset of all collisions can be preserved. Therefore it is necessary to decide
in a very fast and efficient way whether collision data should be discarded
or kept for processing. CMS solves this problem by using two trigger levels
to reduce the data by a factor of 105, the Level 1 trigger (L1) and the High
Level Trigger (HLT). However a positive trigger decision by the L1 or HLT
trigger does not necessarily mean that the event is forwarded to the HLT
or storage system. Many trigger paths apply a so called trigger prescale.
This means that only a predefined fraction of events with a positive trigger
decision are passed on to the next step in the processing chain. This data
reduction through prescales is necessary to record a representative sample of
events for trigger paths with loose requirements without over-straining the
storage systems. A thorough description of the CMS DAQ system can be
found in [57, 58, 37].

2.3.1 Level 1 Trigger

The L1 trigger is based on custom-designed hardware, which can work with a
trigger rate of around 100 kHz. This rate is mostly limited by the speed of the
detector readout electronics. Wherever possible, the dedicated hardware is
programmable in order to enable adaptations to the event selection. The L1
trigger combines the detector data in local, regional and global components in
order of increasing regional extend, to extract the final L1 trigger decision.
This allows for example to trigger on high energy deposition in a single
calorimeter tower, muon tracks from regional hit patterns or large transverse
energy. The structure of the L1 trigger is shown in 2.10.

2.3.2 High Level Trigger and Data Acquisition

All collision data, which pass the L1 trigger are harvested by the DAQ system
for processing by the HLT filter farm located near the detector at Point 5.
The DAQ system uses a high bandwidth network to collate the data from the
more than 600 data sources of the detector. This event builder network is
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Figure 2.10: Overview of the L1 Trigger system. The system consists of two
main parts, the Muon and Calorimeter Trigger. The Muon Trigger combines
the information from the DT, CSC and RPC sub-detectors. Calorimeter
Trigger decisions are based on ECAL and HCAL data. Both Trigger systems
have several data collection stages and combine their results in the Global
Trigger to form the L1 trigger decision. (Source: [37, 57])

split into 8 independent parts called slices, which assemble the detector data
fragments into full events. The event data is then processed by a computing
farm consisting of ≈ 8000 CPU cores, which runs a light-weight form of the
CMS reconstruction software on the incoming data. The reconstructed data
are then used to determine the HLT trigger decision. An event with a positive
trigger decision is forwarded to the Storage Manager system, which writes
the event data into files and transfers them to the T0 located on the main
CERN campus for further processing. A schematic overview of the system is
given in figure 2.11.
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Figure 2.11: Overview of the HLT and DAQ system. The L1 trigger and de-
tector devices (frontends) are working with trigger / readout rates of 40 MHz.
The L1 trigger reduces this to the HLT trigger rate, at which the sequential
data from the frontends is combined to form event data packages. Finally,
the HLT filter systems reduce the data rate further to allow event processing
and storage by the computing systems. (Source: [37, 57])
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Chapter 3

Software and Computing

The LHC experiments are faced with many challenges in the computing
area. In order to perform a physics analysis, very complex software is
needed to generate Monte-Carlo events, simulate the detector response and
study observables. The theory community takes care of the first part and
offers a wide variety of programs to calculate cross-sections (e.g. NLO-
Jet++/fastNLO) and generate Monte-Carlo events (e.g. Pythia, Herwig++
or Sherpa). The LHC collaborations give their members access to software
packages (CMSSW) which interface these generators to their detector simu-
lation and allow to run over the recorded data. They also provide a general
framework to implement physics analyses. However for sophisticated anal-
yses, it is necessary to extend the existing framework or even build an own
framework (e.g. Kappa) which allows to process data at a faster rate and in
more elaborate ways than foreseen by the framework provided by the collab-
oration.

To run these complex software packages, a powerful computing infras-
tructure is necessary. At the same time, an analysis needs access to the
datasets collected by the detector, simulated data from event generators and
the processing power to run on. However the data rates of the experiments
and their detailed detector simulations lead to dataset sizes not seen in previ-
ous collider experiments. In addition, the precise theory calculations and the
statistical analysis tools involved in an analysis can use a very large amount
of computing power.

3.1 Worldwide LHC Computing Grid

In order to overcome these challenges, the LHC experiments decided to build
a common distributed computing and storage infrastructure. In analogy to

45
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the electricity grid, the Worldwide LHC Computing Grid (WLCG) provides
scientists with an easy interface to access the available data of their collabo-
ration and the computing power to analyse them. The WLCG was designed
as a heterogeneous distributed system with a simple interface hiding the
peculiarities of the different computing sites from the end user. Using the
interface, it doesn’t matter to the user whether his analysis runs on a small
cluster in their basement or a large computer farm in another country. The
software which provides the common interface is called grid middle-ware.
While there are several middle-ware implementations available, the the LHC
experiments decided to use the gLite[59] software for the majority of their
systems.

The storage infrastructure on the grid provides easy access with high
availability and redundant resources to speed up access to datasets which
are in high demand. To ensure long term reproducibility of results, backup
facilities in the form of large tape storage systems are also incorporated.

The computing centres are able to schedule the processing task according
to certain priority lists. This allows to run certain high priority jobs concur-
rently with a large number of other end user jobs. These high priority jobs
are usually managed centrally for the whole collaboration and consist for ex-
ample of data reprocessing jobs using new detector alignment and calibration
information and better adjusted physical models. Other high priority jobs
are performing Monte-Carlo events generation and detector simulation. The
sites participating in the WLCG are scattered around the whole world and
mirror the geographic distribution of high energy physics centres.

3.1.1 The Tiered Architecture

The WLCG does not use an entirely decentralised architecture, since the
main source of data is an experiment situated at a single point. To reflect the
natural flow of information from the experiment to the user, the computing
infrastructure has a hierarchical structure with four tiers. At the top of
the hierarchy resides the computing centre at CERN - called the Tier-0,
which directly receives the data from the experiments. Both raw detector
data and reconstructed event data are stored locally on tape as backup.
This data is simultaneously forwarded via high bandwidth connections to
the globally distributed Tier-1 centres. The Tier-1 centres provide a large
amount of the storage and computing resources to run more comprehensive
reconstruction steps, general reprocessing, skimming jobs1 and other tasks
involving the raw detector data. Connected to one or more Tier-1 sites are

1Details of these jobs are explained in section 3.3.
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Figure 3.1: Tiered structure of the grid

the Tier-2 sites. While the Tier-1 sites provide the bulk of the available
storage, the Tier-2 sites supply the main part of the computing resources
used for example in Monte Carlo productions and user analyses. Tier-3 sites
are small independent clusters participating in the WLCG and accessing the
data from the other sites without defined commitments to the experiment
like the Tier-1 and Tier-2 sites. As optional components in the computing
model, they provide mainly resources to their own users.

3.1.2 User authentication

User authentication on the grid is based on certificates. In order to use grid
services, it is necessary for the user to register his certificate at one or more
Virtual Organisations (VO) and to authenticate at a Virtual Organisation
Membership Service (VOMS) server. The first step in the authentication
process is to create a so-called “proxy”, a certificate signed by the user and
used for identification purposes on the grid. This proxy is sent to the VOMS
server, which signs the proxy in case the user is authorised to use the resources
of the VO. This proxy is then sent together with each user job to authenticate
the user at grid services. Based on user information contained in this proxy,
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like VO or group membership, user requests are authorised and prioritised at
the grid resources. For security reasons the proxy has a limited lifetime and
an expired proxy will abort grid jobs and deny access to storage systems.

3.1.3 Job work-flow

To process data on the grid, a user needs an account on a user interface
(UI). The UI provides the necessary job submission and retrieval programs
(popular choices are detailed in [60, 61]) and the tools to get a proxy from
the VOMS server. With this proxy the user is then able to submit jobs to
the Workload Management Service (WMS) server. A job consists of a file
describing the job requirements, input and output files including the script
or program to run. The general job setup and the requirements are specified
using the Job Description Language (JDL). All these files are contained in the
so-called input sandbox, which is send to the WMS during the job submission.

The WMS server queries other grid services to find the best suited Com-
puting Element (CE) for the user job based on the requirements in the JDL
file. The WMS server considers various metrics like the distance to any re-
quested datasets, queue length and the sites and other factors in this match-
ing process. Once the optimal computing element fulfilling the requirements
is found, the WMS queues the job at a CE.

Computing Elements are the grid-widely visible portals to local batch
queues at a site. The computing elements are organised as a collection of
Worker Nodes (WNs), the building blocks of the batch system. These WNs
themselves are the computing resources on which the user jobs are running.
A batch system handles the distribution and monitoring of jobs at at CE. It
schedules the job to run at a certain worker node, where the job has access
to the local storage systems and other Storage Elements (SE) via the proxy
credentials.

Such a storage element provides uniform access to the accessible storage
space of a site. The SE may control large disk arrays, tape storage systems
and the like. After the termination of the job, the output is transferred in a
so-called output sandbox to the WMS server. There the job output remains
until the user fetches the output sandbox.

3.2 Standalone Simulation and

Analysis Software

This section gives an overview over the software tools used by the analy-
sis. The cross-section programs and event generators which are used for the
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Figure 3.2: Detailed job work-flow on the grid. The resource broker is the
central element in the work-flow.

theory prediction and Monte-Carlo studies are introduced. Other important
programs related to the analysis work-flow, starting with the job and data
processing and ending with the visualisation of results are also mentioned.

3.2.1 Pythia

Pythia [62] is a general purpose event generator which can be used to simu-
late high-energetic collisions of electrons, positrons, protons and anti-protons.
It combines many theoretical and empirical models to describe parton rem-
nants, initial- and final-state radiation, fragmentation, and multiple inter-
actions. Pythia uses the Lund string hadronization model[24] and offers a
multitude of tunable parameters for every aspect of the event generation.
The development of this generator started in 1978 and due to its long his-
tory, it is well tested and widely accepted in the particle physics community
and used by many physics groups in CMS. This analysis uses the most widely
used version, Pythia 6, which is written in Fortran 77. However there is also
a new implementation in C++ available in the form of Pythia 8.

3.2.2 Herwig++

Herwig++ [27] is a multi-purpose event generator which uses the cluster
hadronisation model, in contrast to Pythia’s Lund string model. There is a
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sophisticated multiple parton interaction model [63] and a simple parametri-
sation2 for the underlying event available. It also features an improved angu-
lar ordered parton evolution compared with the predecessor Herwig 6, which
used a model in which radiation with angles of less than m/E, where m is
the mass and E the energy of the heavy particle was forbidden. This resulted
in a dead-cone around the particle without any radiation. In Herwig++ this
approach is replaced by a smooth suppression of radiation in the direction of
the particle, resulting in a better description of the process. Herwig++ also
includes many improvements to the simulation of meson and tau decays. In
case the corresponding matrix elements are available, it uses them to accu-
rately decay particles. It also has the capability to simulate spin correlations
through-out the event simulation. Herwig++ is the successor of the very
successful Herwig 6 (Hadron Emission Reactions With Interfering Gluons)
Monte Carlo event generator [21]. It is based on the ThePEG framework [64],
which provides a common platform for using and building event generators
in C++.

3.2.3 Sherpa

The Monte Carlo event generator Sherpa allows the Simulation of High-
Energy Reactions of Particles (Sherpa). The major difference between Sherpa
and Herwig++ or Pythia is the ability to use a built-in matrix-element gen-
erator, which automatically calculates and integrates tree-level amplitudes
for processes with user-defined input and output states. In order to merge
any multi-jet final states with the results from a parton shower algorithm,
Sherpa employs the CKKW[23] matching technique[65]. The parton shower
algorithm is based on the cluster fragmentation model like Herwig++ while
the multiple parton interaction model is based on the ideas implemented in
Pythia.

3.2.4 NLOJet++ / fastNLO

NLOJet++ is a C++ program for calculating jet cross section. It uses a
slightly modified Catani-Seymour dipole subtraction method[66], which is
able to calculate jet cross sections in arbitrary scattering processes to next-
to-leading accuracy in perturbative QCD. At the moment, NLOJet++ can
calculate one-, two- and three-jet observables at next-to-leading order and
offers a general framework to implement specific scenarios, like the three-jet

2Based on data gathered by the UA5 collaboration.
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mass cross-section. In order to compare the theory prediction of this program
with data, additional non-perturbative corrections are necessary.

It should be noted, that the program is unable to simulate individual
events suited for detector simulations. The partonic states simulated by
NLOJet++ can carry very large positive and negative weights and therefore
only the ensemble mean can be interpreted as a physical result. In order to
ensure the cancellation of these large weights, a very large number events
has to be simulated. This makes the calculations done by NLOJet++ very
computing intensive.

However for PDF fits or in systematic studies the same cross-section cal-
culation needs to be repeated many times for different parameters. In order
to make these computations more efficient, the fastNLO package can be used.

fastNLO uses NLOJet++ to perform the initial perturbative calculation.
In this calculation, the fractional proton momentum x dependence of the
PDFs and the scale dependence of αs and the PDFs are approximated using
interpolation functions between fixed support points. This yields tables of
coefficients for the x and scale support points, which can be used to quickly
evaluate the cross section for different PDFs, values of αs(MZ) and scale
choices.

3.2.5 ROOT

ROOT [67] is a powerful object-oriented data analysis framework written in
C++. It offers efficient access to the data from the experiments, exhaus-
tive analysis tools and versatile visualisation options for data using object
oriented interfaces. The user can use these interfaces with compiled and
interpreted C++. There are also language bindings to high level languages
such as Python and Ruby available. The PyROOT interface between Python
and ROOT was extensively used throughout this work to transfer histograms
from ROOT to Python for visualisation and statistical analysis.

ROOT offers its own tree-based file format for storage, which enables writ-
ing arbitrary data structures to manifold storage backends. For data analysis
ROOT has integrated several libraries like MINUIT2, TMVA and RooFit to
let the user do curve fitting, minimisation, multivariate data analyses, neu-
ral network studies and much more. To display the results of the analysis,
ROOT provides comprehensive histogramming and drawing routines in 2D
and 3D.
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3.2.6 Python, NumPy and matplotlib

The scripting language Python[68] is used in conjunction with the scientific
computing package NumPy[69] for a large part of the statistical analysis in
this study. It provides powerful array objects, on which sophisticated statis-
tical functions can be applied. There is also a large suite of linear algebra
tools available in the package. For the data visualisation, the matplotlib
package was used. Matplotlib[70] gives a very convenient high-level interface
to produce publication quality figures and was used throughout this work.

3.2.7 grid-control

The grid submission tool grid-control[61, 71] was used for all data processing
steps in this analysis. The author is for several years now the main developer
of this program, which was also used in a large number of other works. It
makes access to both local and grid computing resources very transparent
and contains powerful tools to manage complex job work-flows. The support
of parametrised jobs in particular was heavily used during the evaluation of
the uncertainties in this study.

3.3 CMSSW - The CMS Software Framework

CMSSW is the software framework of the CMS collaboration [72, 73]. It offers
a common framework for event generation, simulation, data analysis and on-
line data taking. It consists of many packages and modules and is based on
the Framework Core (FWCore) which organises the usage of modules and
in turn utilises many external libraries like ROOT or FastJet. The analysis
work-flow is based on a bus paradigm where modules are arranged along
paths which produce or read different types of products, e.g. a jet collection.
An analysis is setup using python configuration files where the user can
add or remove modules from the work-flow or modify the predefined module
settings. This modular approach allows to switch easily between different
reconstruction methods and detector simulations. CMSSW also keeps track
of the data describing the conditions and calibrations of the reconstruction
algorithm of each data object.

3.3.1 Event Data Model

CMSSW is based on the so-called Event Data Model (EDM) which uses the
event as the basic processing unit. In this concept, the event is a general
container for all data that was taken during a measured or simulated physics
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event as well as all objects derived from the data. Such an event content can
include objects representing the raw detector readout, reconstructed objects,
detector simulation products, and analysis objects relating to a single beam
crossing or simulation thereof.

When an event is processed by a module, that module can both get data
from the event and put data back into the event. When data is put into the
event, the provenance information about the module that created the data
will be stored with the data into the event.

Event Setup

Besides the event data, there is additional information necessary for the
event processing. In CMSSW, information of this kind is accessed via the
so called event setup. The meta-data of the event, data about the detector
environment and status, is not tied to a single event but is valid for a specified
period of time. This is because the running conditions and the performance
of the detector can change in time. For example defects like hot cells in the
calorimeter, which report continuously large energies, are marked as such
in the event setup. From Data Quality Monitoring (DQM) the evolution of
these changes is known. This is also the reason for the fact that many parts
of this information are stored in external databases instead of the data files
themselves, in order to be able to update certain information more regularly.
This allows to retroactively change the data quality status in case previously
unnoticed problems are uncovered.

Figure 3.3: Illustration of the CMS event setup. Each collision event has a
specific set of calibration and alignment measurements or other run condi-
tions associated with it.

In order to handle these time-dependant changes of the event setup, the
concept of an interval of validity (IOV) is introduced. Such an IOV can
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span hours and therefore, a specific instance of event setup meta-data can be
valid for many millions of events (see figure 3.3). The auxiliary information in
such a record will include calibration and alignment measurements, geometry
descriptions and other run conditions.

3.3.2 Modular Analysis Work-flow

The purpose of a module in CMSSW is to allow the independent development
and verification of distinct elements of triggering, simulation, reconstruction,
and analysis. Each module encapsulates a clearly defined event-processing
functionality. The modules may not communicate directly with each other,
which allows them to be independently tested and reused. Communication
between modules is only possible through the event and in the direction of
the set-up work-flow. The events are processed in this work-flow by passing
them along the configured path of modules. An example of such a work-flow
is shown in figure 3.4. The available modules can be classified into different
categories.

A source module is at the start of the work-flow and provides the events
which are to be processed. These events can be from a file on storage, an
external event generator or the CMS data acquisition system.

Producer modules can read data from the event and generate new event
objects. All reconstruction algorithms are implemented in the form of such
a producer. These modules are also often linked against an external library
(Geant 4 [74], FastJet [75], ...) which holds a substantial amount of func-
tionality of the producer. A prominent example for such a module is the
FastJetProducer, which takes some input objects from the event, applies
one of the jet clustering algorithms from FastJet and puts the resulting jets
collection into the event.

A filter module on the other hand evaluates the event according to some
user defined criteria and signals whether or not to proceed with processing
this event. An example for such a filter is the GoodVertexFilter, which takes
a vertex collection as input and aborts the processing of the event when
certain quality criteria are not fulfilled.

The third class of modules is formed by the Analyzer modules, which
are used to perform user processing steps like generating histograms. While
these modules can access products from the event and study them, they are
not allowed to put products into the event or influence subsequent scheduled
steps.
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Figure 3.4: Short overview of a typical CMSSW job work-flow. In the first
step Monte Carlo events are generated using the ThePEGInterface. After-
wards a simulation is run and jets are reconstructed. The jets are then filtered
and analysed in a user module. At the end the results are written to disk.

Monte Carlo Event Generation

Monte Carlo event generators in CMSSW provide the framework with fully
hadronised final states. The simulation usually starts with a leading order
calculation of matrix elements. On the result, a parton shower algorithm is
applied to provide an approximative perturbative treatment of higher order
QCD dynamics. The partonic final state is then combined with a hadroniza-
tion model to give final state particles like hadrons, leptons and photons.
The generators provide their output in the form of an HepMC[76] event
record, which consists of a detailed description of the simulated interaction.
CMSSW offers interfaces to many generators, ranging from the general pur-
pose Monte Carlo event generator Pythia and Herwig++, the multi-jet gen-
erators Sherpa, MadGraph and Alpgen, to particular generators such as the
black hole event generator Charybdis[77]. The configuration of these gener-
ators can be done directly from within the CMSSW configuration file.
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Detector Simulation

The hadronic final state from a Monte Carlo event generator can be passed
to the detector simulation. There are two detector simulations available in
CMSSW. Both take as input the HepMC event record produced by a Monte
Carlo generator. The full simulation is using Geant 4 [74] to provide an
accurate simulation of the detector response using a detailed detector geom-
etry. It simulates in detail the interaction of each particle and its secondary
particles with the detector material in each detector component. These very
complex computations take several minutes for a typical event.

To reduce the massive amount of processing power necessary for Monte
Carlo studies, there is also a fast simulation available. The fast simulation
uses Pythia to simulate the particle decays together with various simplifica-
tions and parametrisations in the interaction of particles with the detector.
As a result the simulation of a single event can take approximately one sec-
ond. However the fast simulation has the drawback that it has to be tuned
to the Geant based detector simulation to give reasonable results.

Both detector simulations provide a collection of hits in the different de-
tector subsystems as output. These hits can be used as input for the recon-
struction algorithms, just like hits taken from the data acquisition systems.

Event Reconstruction

To allow the analysis of an event with the measured or simulated detector
output, it is necessary to run reconstruction algorithms on the data. For
these further analysis steps there are many different types of physical objects
to be reconstructed. The hits in the silicon strip tracker have to be matched
to give a particle track and the calorimeter towers have to be clustered into
jets. From the hits in the tracker and muon chambers the muon momentum
and energy have to be derived. Following the CMSSW design, the different
models for the reconstruction of these objects are each contained in a mod-
ule which allows the user to choose the most appropriate algorithm for the
analysis. By default, the reconstruction of the jet objects is performed with
the anti-kT algorithm for two different jet sizes R = 0.5 and R = 0.7 and is
using the jet clustering implementation from the FastJet [75] package.

3.3.3 Kappa

Kappa is the acronym for KArlsruhe Package for Physics Analyses. It is
a powerful skimming framework implemented within CMSSW in the form
of an analyser plug-in and consists of many different modules which work
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similarly to the producer plug-ins known from CMSSW. The modules extract
information from within the CMS software, perform processing steps on it
and then stores the restructured data using the ROOT object I/O system.

The Kappa framework gives the modules the ability to select input objects
from CMSSW using simple regular expressions. Since it is a common task to
process many input objects in a similar fashion, this is a very convenient tool
not provided by the normal CMS software. A set of base classes allow to easily
develop Kappa modules which iterate over collections of input objects or
perform basic selection steps like applying a cut on the transverse momentum.
A normal Kappa module is therefore very compact and usually just consists
of the selection of output variables and some processing steps to calculate
derived variables. The framework employs several techniques which hide
much of the complexity connected to working with the ROOT I/O system.
Since the modules only store the information absolutely necessary for the
analysis, the space occupied by a Kappa dataset is more than one order
of magnitude smaller than the space needed by the unprocessed CMSSW
dataset.

There is also a set of tools and application programming interfaces called
KappaTools, which provides comfortable access to the information contained
in a Kappa dataset. The foundation of the Kappa framework was basically
developed for this analysis, but a large number of Kappa modules were added
to allow the use in other studies as well. The first processing step for detector
data in this analysis is to process the CMSSW datasets into Kappa datasets.
These Kappa datasets are later analysed using the facilities provided by
KappaTools.
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Chapter 4

Jet Reconstruction

Partons from the hard process of an interaction result in a collimated stream
of particles after the parton shower and hadronization. This roughly collinear
stream of particles is the experimental signature of quarks and gluons and
such signatures are called jets. From the detector point of view, jets manifest
themselves as localised clusters of deposited energy accompanied by a large
number of tracks pointing towards the deposited energy. All these objects
have to be combined into well defined jets to reconstruct information about
the initial partons.

For hadronised particles from the Monte Carlo generator these jets are
called particle jets. The jets reconstructed from energy clusters in the calorime-
ter are called calorimeter jets. When the input particles are reconstructed
from particle flow objects, the resulting jets are called particle-flow jets.

4.1 Particle flow reconstruction

The particle flow reconstruction [78, 79] used by CMS combines information
from all sub-detectors to reconstruct and identify all stable particles in an
event. The particle flow algorithm uses five categories to identify particles:
photons, electrons, muons, neutral and charged hadrons. The basic elements
of the particle flow algorithm are the reconstructed tracks and vertices in the
tracker, calorimeter clusters in the ECAL and HCAL and tracks in the muon
system.

The tracks used by the particle flow algorithm are taken from the default
track reconstruction of CMS, which uses the Combinatorial Track Finder
(CTF) algorithm. Likewise, the default vertex reconstruction using the CTF
tracks is used to determine the list of primary vertices in the event. Due to
pile-up, multiple primary vertices can appear in a single event.
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In order to incorporate the hadronic and electromagnetic calorimeter, the
particle flow algorithm uses a grid of cells based on the detector granularity
in order to identify calorimeter cluster seeds. Seeds with energies above a
certain threshold are used in an iterative merging algorithm to form so-called
particle flow clusters.

These different elements are linked together into so called particle flow
building blocks based on geometry and χ2 fits. These building blocks are used
to reconstruct the final particle flow candidates. Blocks connected with the
muon system are analysed to identify particles belonging to the muon cate-
gory. Similarly, multi-variate methods are employed to reconstruct electrons
from blocks with links to the tracks and ECAL clusters. Charged hadrons
are identified using the remaining blocks containing calorimeter clusters and
links to the tracking system. At this stage only neutral objects without traces
in the tracking system are left. Depending on the energy of the reconstructed
charged hadrons, ECAL clusters are assigned to photon candidates, while the
remaining HCAL clusters are interpreted as deposits from neutral hadrons.

It should be emphasised that in each step of the particle flow reconstruc-
tion, great care is taken to avoid any kind of energy double-counting. This
is done by removing the particle flow elements of successfully reconstructed
particle candidates from any linked blocks and by recalculating the energy
of calorimeter clusters. In the end, all particle flow elements are therefore
uniquely assigned to a certain particle flow candidate.

The final result of the particle flow algorithm is a set of well identified par-
ticles, using the excellent resolution of the tracking system where applicable
to determine or improve the momentum measurement.

4.2 Jet Algorithms

There are many different jet algorithms available to cluster a set of input
objects together. In the CMS collaboration, the two principal jet recon-
struction algorithms are the anti-kT jet algorithm and the inclusive kT jet
algorithm. Both are reconstructed using the the FastJet package[75, 80, 81].
The two algorithms fulfil two important properties in that they are collinear
and infrared safe (see figure 4.1). Collinear safety means that their output
is resistant to collinear splitting and merging of input objects. The fact that
additional soft input particles do not change the reconstructed jets is called
infrared safety.

Both algorithms are of sequential recombination type and cluster the
objects based on a distance measure in Minkowski or Euclidean1 space. There

1The Cambridge/Aachen jet algorithm computes distances in Euclidean space.
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are also cone based algorithms available, which combine the input into cone
shaped jets where all constituents lie within a predefined distance from the
centre of the cone in Euclidean space.

A jet description is defined by the algorithm, the jet size and the re-
combination scheme which describes how objects are merged together by the
algorithm.

Although several recombination schemes exist, only four vector addition
(called E-scheme) is widely used in CMS. However this recombination scheme
also has the property that calorimeter objects, which are assumed to be
massless, can produce massive jets. Other recombination schemes (e.g. the
ET -scheme) do not necessarily have this property.

(a) Collinear unsafe: A quasi-collinear
splitting can lead to different jet config-
urations (e.g. disappearing jets).

(b) Infrared unstable: The addition of a
soft particle (red) can lead to new stable
jet configurations.

Figure 4.1: Illustration of collinear and infrared safety violations

4.2.1 Generalised kT Algorithm

The generalised kT jet algorithm[82, 83] is a sequential recombination jet
algorithm and is infrared and collinear safe. It uses a jet size parameter R
and distance measure parameter n and works according to the following algo-
rithm: The clustering procedure starts with a list of input objects, e.g. stable
particles or calorimeter towers.

1. For each pair of particles i, j compute the distance measure dij as well
as all beam distances:

dij = min
(
p2n
Ti, p

2n
Tj

) ∆R2
ij

R2
, diB = k2n

Ti

where ∆R2
ij = (∆yij)

2 + (∆φij)
2

with the transverse momentum pT i of particle i, the rapidity difference
∆y and the azimuthal angle ∆φ between particle i and j. diB is called
the beam distance.
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2. The algorithm searches for the smallest distance dij or diB. If it is a
distance from the category dij, the two particles i, j are merged using a
defined recombination scheme into a new particle k and which replaces
the original particles. If the smallest distance is of type diB, we call
particle i a jet and remove it from the list of particles.

3. Repeat from step 1 until all objects are included in jets

The algorithm successively merges objects which have a distance ∆Rij <
R. It follows that ∆Rij ≥ R for all final jets i and j. Because the distance is
usually calculated in Minkowski space, the projection into Euclidean space
has irregular jet shapes in general as shown in figure 4.2. Three important
jet algorithms, which belong to the generalised kT jet algorithm class are:

Figure 4.2: Result of the inclusive kT algorithm. Calorimeter towers on a
fixed grid in the y − φ plane are assigned to jets by the jet algorithm. The
colouration shows the area covered by the jet. (Source: [84])

Inclusive kT algorithm (n = 1)

Inclusive kT algorithm [83] is the archetype of the generalised kT Algorithm.
Descriptively speaking, the inclusive kT clustering successively undoes the
QCD branching in the parton shower to reconstruct the parton.
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Cambridge-Aachen algorithm (n = 0)

The Cambridge-Aachen algorithm clusters according to the angular distribu-
tion of the input objects. The energy of the objects is not considered in the
process. Like the kT algorithm, the resulting jets do not possess a regular
shape. However the algorithm has properties which make it useful for the
detailed study of jet shapes and sub-jet properties.

Anti-kT algorithm (n = −1)

The Anti-kT algorithm [85] favours clustering the hard input particles in the
event, this is similar to seeded jet algorithms like SiScone[86, 87], in that
the jet grows outwards around hard seeds. The form of the distance metric
results in cone shaped jets. Due to this similarity to cone-based algorithms
and the infrared and collinear safety of the algorithm, this algorithm is the
standard algorithm used by the collaboration.

4.2.2 Jet Area

For the correction of the jet energy in the detector[88], the area covered by
the jet object in the y − φ plane is of interest. For a cone-based jet algo-
rithm the nominal jet area is πR2, however for cluster-based algorithms more
sophisticated methods to determine the jet area are necessary. The FastJet
package linked to the CMS experiment software uses the Voronoi tessellation
method described in [89, 90] to calculate the jet area. The Voronoi tessella-
tion decomposes the y−φ plane into areas, determined by distances to a set
of jets scattered in the plane. The corresponding Voronoi cell (or Voronoi
region) of a jet consists of every point in the plane, whose distance to the
jet is less than or equal to its distance to any other site. Since there are fast
algorithms available to calculate the Voronoi tessellation, the area of a jet
can be efficiently calculated.

4.3 Jet energy corrections

Jet algorithms are designed to reconstruct the momentum of an initial par-
ton from both Monte Carlo truth information or detector data. But there
are several effects causing the reconstructed jet energy to not correspond
to the energy of the parton. For calorimeter jets this is mainly caused by
detector effects like electronic noise, pile-up and underlying event energy,
non-uniformities and non-linearities in the detector response. Other influ-
ences are related to the jet reconstruction itself and also effect particle jets.
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They include the fragmentation model, initial- and final-state radiation, the
underlying event and pile up.

The official CMS jet energy corrections are using a factorised multi-level
approach[91] to correct for these effects. The first three correction levels are
mandatory for jets from both data and detector simulation.

1. Pile-up correction: The Level 1 correction aims to subtract pile-
up from the jet energy. Pile-up refers here to energy deposition from
additional pp collisions, occurring close enough in time to the hard
scatter to be included in the jet energy. This correction uses the concept
of jet area to determine the median energy deposition in the detector
per unit area, which is then individually removed from the measured
energy of each jet. The input for the correction is therefore the median
energy density ρ of the event as determined by the kT jet algorithm with
cone size R = 0.6 and the area of the jet calculated with the Voronoi
technique described in section 4.2.2. Both variables are provided by
the FastJet software.

2. Relative correction: Due to the geometry of the detector, the recon-
structed energy of jets depends on the pseudo-rapidity. The purpose
of the Relative (Level 2) correction is to flatten the jet response as a
function of the pseudo-rapidity.

3. Absolute correction: The goal of the Level 3 (pT dependence) cor-
rection is to remove jet response variations in the CMS detector as a
function of pT , which is primarily a result from the non-linear calorime-
ter response.

Since the analysis studies QCD events, only these three correction levels
are applied to data and Monte-Carlo. Additional correction levels like the
flavour correction, which is intended to correct for the assumption of a QCD
flavour composition underlying the determination of the previous corrections
steps, are not necessary.

This allows to express the jet energy correction factor k as a function of
the transverse momentum, pseudo-rapidity and area A of the uncorrected jet
and the median jet energy per area of the event ρ. The corrected jet four-
vector p′i can be calculated from the uncorrected jet four-vector pi using:

p′i = k(pT,i, ηi, Ai, ρ) · pi

The L1,L2 and L3 correction are determined using data-driven methods.
In order to better understand the corrections, they are expressed in terms of
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one factor which can be derived with Monte-Carlo techniques and a second
factor, which describes the differences between the jet response in the detector
simulation and the response as measured with data-driven methods. This
second correction factor is close to unity and must only be applied to data.
It is given in the form of a η and pT dependent correction and called the
L2L3 residual correction.
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Chapter 5

Theory prediction for the
three-jet mass

The ultimate goal of this analysis is to study a multi-jet observable to gain
a better understanding of the theory of quantum chromodynamics at the
high scales accessible with the LHC. This is accomplished by performing a
detailed comparison between a measurement using the CMS detector and the
best available theory prediction. This chapter aims to give an introduction
how the theory prediction and the corresponding uncertainties are derived.

As presented in the introduction, the focus is on the measurement of the
invariant mass of three-jet events:

m2
3 = (p1 + p2 + p3)2

with the four-vectors p1 . . . p3 of the three jets with the largest transverse
momentum (pT,1 ≥ pT,2 ≥ pT,3) passing certain selection cuts. The three-jet
mass cross section is measured double differentially in the three-jet mass and
the maximum rapidity of the three-jet system:

d2σ

dm3dymax

ymax = max (|y1| , |y2| , |y3|)

with the rapidity yi of the i-th jet. The binning of the three-jet mass m3

is resolution driven, while the rapidity binning is a simple integer binning,
loosely following the CMS detector geometry. Both binnings are identical for
the measurement and the theory calculation.
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5.0.1 Cut scenarios

The three-jet mass is studied for different three-jet event selection criteria,
which are called cut scenarios in the following. All cut scenarios have in
common that jets with |yi| > 3 or pT,i < 50 GeV are discarded. This allows to
use the same acceptance cuts for the theory calculation and the measurement.

The distinguishing feature of the analysis cuts is how the cut on the
third jet operates. The first scenario directly applies a lower limit on the
transverse momentum of the third jet pT,3 > pT,min and is called the ”absolute
cut”. In this analysis the threshold was chosen to be pT,min = 100 GeV. The
second cut scenario requires that the ratio r = pT,3/ 〈pT,1, pT,2〉 between the
transverse momentum of the third jet and the average transverse momentum
of the first and second leading jet is larger than a certain threshold rsel. The
relative cut value is set to rsel = 0.25 in this study. This cut is also called
the ”relative cut”. The absolute cut with pT,min is harder for jets with small
transverse momenta, while the relative cut is harder for transverse momenta
pT,3, as soon as the average pT,12 = 〈pT,1, pT,2〉 of the leading two jets is larger
than pT,min/rsel. For the used values in this analysis the equation resolves to
pT,min/rsel = 400 GeV.

The next-to-leading order cross-section predictions for the two cut sce-
narios is shown in figure 5.1 for the CT10 PDF[92]. The cross section of
the absolute cut scenario increases up to a three-jet mass of ≈ 500 GeV be-
fore starting to decline. This increase is due to the large number of three-jet
events, which do not fulfil the hard jet selection cuts in the low three-jet mass
region. The relative cut scenario with the much softer cut in the low-pT region
doesn’t show such a behaviour for the observed low three-jet masses. The fact
that the relative cut is harder than the absolute cut above pT,12 > 400 GeV,
causes the three-jet mass cross section predictions of the relative cut to drop
below the absolute cut around a three-jet mass of m3 ≈ 1000 GeV.

5.1 Next-to-leading order prediction

The double differential three-jet mass observable can be predicted with the
NLOJet++[93] program with next-to-leading order precision. However this
calculation is very computationally intensive. In order to accelerate the calcu-
lation, NLOJet++ is run together with the FastNLO package[94]. FastNLO
reduces the run-time of the evaluation of the three-jet mass cross sections for
different PDFs, αs and scales by storing the matrix element information as
a function of the scales and the fractional hadron momenta. Two different
choices for the relevant scale of the process were investigated. The first is
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Figure 5.1: Next-to-leading order theory predictions for the three-jet mass
calculated using NLOJet++ and fastNLO. The calculation is presented for
the two cut scenarios in the innermost rapidity bin using the CT10 - NLO
PDF. For the absolute cut scenario, the three-jet mass cross section increases
up to a three-jet mass of ≈ 500 GeV before starting to decline. The increase
is caused by the fact, that many events do not fulfil the hard jet selection
cuts in the low three-jet mass region. The relative cut scenario has a softer
cut in the low-pT region and therefore a higher three-jet mass cross section.
However above pT,12 > 400 GeV, the relative cut is harder and this causes
the three-jet mass cross section predictions for the relative cut to drop below
the absolute cut around a three-jet mass of m3 ≈ 1000 GeV.
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the average transverse momentum of the leading three jets:

pT,avg = 〈pT,1, pT,2, pT,3〉 =
pT,1 + pT,2 + pT,3

3
,

while the other choice is half the three-jet mass m3/2 of the event.
The next-to-leading order prediction was calculated for the Anti-kT 0.5

jet algorithm in the inner two rapidity bins (|ymax| ≤ 1 and 1 < |ymax| ≤ 2)
with both the absolute and relative cut. In addition, theory calculations
for Anti-kT 0.7 jets with the absolute cut scenario are available in the two
rapidity bins.

5.1.1 NLO K-factors

One of the basic checks of a perturbative calculation is to take a look at the
impact of an additional term in the perturbative series on the result. The
difference between the leading order and next-to-leading order prediction can
be expressed in the form of a so-called K-factor. There are multiple ways to
define NLO K-factors, however for the studies performed in this analysis, the
K-factor is defined as the ratio between the double-differential three-jet mass
cross-section prediction at next-to-leading order precision σNLO/dm3dymax

and the prediction at leading order precision σLO/dm3dymax:

kNLO =
σNLO/dm3dymax

σLO/dm3dymax

The applied cuts, parton density functions, αS and scale choices for the
factorisation and renormalisation scale µF , µR for both σNLO/dm3dymax and
σLO/dm3dymax are identical in this case. In particular the perturbative order
of the used PDF is the same for the two predictions. The error on the K-
factor is determined from the propagated statistical uncertainty of the two
predictions.

The K-factors for the Anti-kT 0.5 jet algorithm are presented in figure
5.2. The size of the next-to-leading order corrections, ranging between −50
and +70 percent of the leading order calculation, is relatively small. This
means that the leading order calculation already gives a good approximation
of the three-jet mass cross-section. The figure also shows that the behaviour
of the K-factors in general is very similar for the two cut scenarios. Larger
differences from this rule are visible for the K-factors in the low mass region,
determined with the average pT as scale. In this region, the absolute cut is
harder than the relative cut and has an direct influence on the average pT
scale. Another general feature visible in figure 5.2 is that the K-factor for



5.1. NEXT-TO-LEADING ORDER PREDICTION 71

5 ·102 103 2 ·103 5 ·103

m3  [GeV]

1.0

1.1

1.2

1.3

1.4

1.5
K

 F
a
ct

o
r 

(N
LO

 /
 L

O
)

CT10 - NLO

Rel. cut, |ymax| 1

Abs. cut, |ymax| 1

Rel. cut, 1<|ymax| 2

Abs. cut, 1<|ymax| 2

(a) µ = m3/2

5 ·102 103 2 ·103 5 ·103

m3  [GeV]

0.0

0.5

1.0

1.5

2.0

K
 F

a
ct

o
r 

(N
LO

 /
 L

O
)

CT10 - NLO

Rel. cut, |ymax| 1

Abs. cut, |ymax| 1

Rel. cut, 1<|ymax| 2

Abs. cut, 1<|ymax| 2

(b) µ = pT,avg

Figure 5.2: These figures presents the K-factors of the three-jet mass pre-
diction with the Anti-kT 0.5 jet algorithm for the absolute and relative cut
in two rapidity bins. On the top panel, the event scale used in the theory
calculation is set to m3/2, while the bottom panel uses µ = pT,avg. The size of
the next-to-leading order corrections is relatively small, confirming the good
approximation already present at leading order. The presented behaviour is
very similar for the two cut scenarios. Differences are observed for K-factors
in the low mass region, with the average pT as scale.
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the outer rapidity bin 1 < |ymax| ≤ 2 is farther away from unity than the
inner rapidity bin. This means the next-to-leading order corrections become
more important for the outer rapidity bins.

Figure 5.3 shows the K-factors for both the Anti-kT 0.5 and Anti-kT 0.7
jet algorithm in the absolute cut scenario. The K-factor for the Anti-kT
0.7 jets is always larger than the K-factor of the Anti-kT 0.5 jet algorithm.
However they show the same behaviour as a function of the three-jet mass.
This is demonstrated in figure 5.4, which shows the ratio of the K-factors for
the two jet algorithms. The difference between the two algorithms is smaller
for the theory calculation using m3/2 as scale of the event. For this scale
choice, the difference is also the same for both the inner and outer rapidity
bins. Using pT,avg as scale, the deviation between the two jet algorithms
becomes larger and shows a slope for the outer rapidity bin.

A direct comparison between the influence of the two scales is given in
figure 5.5. First, the K-factors with the relative cut scenario are shown for
different scale choices in figure 5.5(a). This plot demonstrates, that this
choice in the NLO corrections becomes more important in the outer rapidity
bins. The figure also shows that for the relative cut scenario, the scale choice
directly influences the sign of the next-to-leading order correction. For the
pT,avg scale, the leading order calculation needs to be corrected downwards,
while for the m3/2 scale, the LO result is corrected upwards. Figure 5.5(b)
presents the ratio between the K-factors determined with the m3/2 scale and
the K-factors using the pT,avg scale. It is clearly visible that for the inner
rapidity bin, the scale choice simply translates into an offset in the size of
the NLO correction. However for the outer rapidity bin, a slope is clearly
visible, which means that the choice of scale becomes more important for the
high three-jet mass region.

The theory prediction using the m3/2 scale exhibits K-factors in a small
range, features a direct correlation with the observable and shows only small
differences between the NLO corrections for different jet sizes and rapidity
regions. Therefore, this scale is chosen as the default scale in the following
discussions.
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Figure 5.3: These figures presents the K-factors of the three-jet mass predic-
tion with the absolute cut scenario in two rapidity bins for both the Anti-kT
0.5 and 0.7 jet algorithm. On the top side, the event scale used in the the-
ory calculation is set to m3/2, while the calculation in the bottom plot uses
µ = pT,avg. The K-factor for the Anti-kT 0.7 jets is consistently larger than
the K-factor for the Anti-kT 0.5 jet algorithm. However both show the same
three-jet mass dependence. The difference between the two jet sizes can by
minimised by choosing m3/2 as scale of the event.
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Figure 5.4: Plot of the ratio between the K-factors of the three-jet mass
prediction for the Anti-kT 0.5 and 0.7 jet algorithm. The results are from
the calculations using the absolute cut scenario in two different rapidity bins.
This demonstrates that the scale choice becomes more important in the outer
rapidity bins. This also shows that the influence of the jet size on the NLO
corrections is independent of the three-jet mass for a proper scale choice
(m3/2).



5.1. NEXT-TO-LEADING ORDER PREDICTION 75

5 ·102 103 2 ·103 5 ·103

m3  [GeV]

0.0

0.5

1.0

1.5

2.0
K

 F
a
ct

o
r 

(N
LO

 /
 L

O
)

CT10 - NLO, relative cut

µ=m3/2, |ymax| 1

µ=m3/2, 1<|ymax| 2

µ=pT,avg, |ymax| 1

µ=pT,avg, 1<|ymax| 2

(a) Plot of the K-factors determined in the relative cut scenario with
the Anti-kT 0.5 jet algorithm. For the pT,avg scale, the leading order
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the LO result is corrected upwards.
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(b) This figure shows the ratio between the K-factors determined with
m3/2 and pT,avg. In the inner rapidity bins (filled markers), the differ-
ence can be described by a simple correction factor. The outer rapidity
bins show different shapes for the two scale choices.

Figure 5.5: Overview of the scale dependence of the three-jet mass prediction.
These plots demonstrate, how the scale choice directly influences the sign and
shape of the next-to-leading order correction.
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5.2 Uncertainties

The theory prediction for the three-jet mass measurement is afflicted with
five major uncertainty sources. This section describes the statistical error,
scale uncertainties, the PDF and αs uncertainties. The uncertainty on the
non-perturbative corrections is discussed in section 5.3.

For each uncertainty source, the complete covariance matrix is available
in appendix D. A tabular overview of the theory uncertainties is given in
table 5.1. Figure 5.6 shows an overview of the theoretical uncertainties.

400− 3000 GeV Min Average Max

Scale uncertainty +3%
−10%

+6%
−12%

+9%
−14%

PDF uncertainty +2%
−1%

+3%
−3%

+5%
−5%

αs uncertainty +4%
−4%

+4%
−4%

+4%
−4%

NP uncertainty +2%
−2%

+2%
−2%

+5%
−5%

Statistical uncertainty <+1%
<−1%

<+1%
<−1%

<+1%
<−1%

Table 5.1: Overview of the theoretical uncertainties for the NNPDF 2.1 -
NNLO prediction using the Anti-kT 0.7 jet algorithm and the absolute cut
scenario in the innermost rapidity bin.

5.2.1 Statistical uncertainties

The calculation of the fastNLO tables with NLOJet++, which allow the ex-
traction of the theory prediction, has a very high computational complexity.
In order to handle these computing requirements, the task to calculate a
given fastNLO table is split into a large number of jobs njobs. These statisti-
cally independent jobs, which are combined to form the final result, can be
interpreted as a toy sample of NLO calculations.

To get the final result, the tables produced by fastNLO are combined to
form a single table. This table is used to determine the mean value m̄3.i for
the three-jet mass prediction. The statistical error on the NLO prediction is
given by the uncertainty on the arithmetic mean of the jobs. Therefore, the
statistical uncertainty can be calculated with

∆m3,i =

√√√√ 1

njobs(njobs − 1)

njobs∑
k=1

(
mk

3,i − m̄3.i

)2

which uses the three-jet mass cross-section prediction mk
3,i for the three-jet

mass bin i calculated in processing job number k.
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Figure 5.6: Breakdown of the theory uncertainties for the NNPDF 2.1 -
NNLO prediction of the three-jet mass using the Anti-kT 0.5 jet algorithm
and the absolute cut scenario in the innermost rapidity bin. The lower un-
certainty is dominated by the scale uncertainty, while the upper uncertainty
derives from the PDF and αs uncertainty.
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5.2.2 Scale uncertainties

In order to perform the next-to-leading order cross section calculations, a
factorisation and renormalisation scale has to be chosen. If it were possible to
perform the calculation at all orders, the result would not depended on either
scale. However with a truncated perturbative series, the scale dependencies
of the final result does not cancel. This means that the observable can react
to changes in the size of the scale.

The scale µ should reflect the energy scale of the interaction at which
the calculation should be performed.. For this study, two scales were con-
sidered - the average transverse momentum of the three leading jets pT,avg =
〈pT,1, pT,2, pT,3〉 and half the three-jet mass m3/2. The asymmetric uncer-

tainty ∆m
up/down
3,i on the i-th three-jet mass bin due to the selection of

the event scale is simply the envelope of the theory calculations m
(k)
3,i per-

formed for n different factorisation and renormalisation scales, while taking
(µR, µF ) = (µ, µ) as the central value m

(µ,µ)
3,i :

∆mup
3,i = max

n

(
m

(k)
3,i −m(µ,µ)

3,i , 0
)

∆mdown
3,i = max

n

(
m

(µ,µ)
3,i −m(k)

3,i , 0
)

There are two widely used ways to perform the scale variation. The two
point variation uses the scales:

(µR, µF ) = (2× µ, 2× µ), (µ/2, µ/2)

The six point variation takes additional permutations into account, while
avoiding relative scale factors of 4 between the two scales:

(µR, µF ) = (2× µ, µ), (2× µ, 2× µ), (µ, 2× µ), (µ/2, µ), (µ/2, µ/2), (µ, µ/2)

The difference between the two variation methods is shown in figure 5.7
for the inner rapidity bin. In case of the two-point scale variation of the
prediction with the absolute cut in the inner rapidity bin, it is apparent
that both scale variations cause a downward fluctuation in the calculation,
leading to an upper uncertainty of 0%. However with the inclusion of the
4 other scale variations, a component influencing the upper uncertainty is
introduced. The final results for both cut scenarios with the Anti-kT 0.5
jet algorithm are presented in figure 5.8. It is remarkable that the scale
uncertainty always has a small upper boundary of up to 10%, while the lower
boundary is much larger and on the order of up to 20%. In addition, the
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uncertainties for different cut scenarios, rapidities and PDFs are very close
together. However in general, the scale uncertainty of the inner rapidity bin
is smaller than the uncertainty of the outer rapidity bin. Figure 5.9 presents
the differences between the two available jet sizes. It can be observed that the
NLO prediction for the larger jet size also exhibits a larger scale uncertainty.
The rapidity-dependent behaviour however stays the same. The results of
figure 5.10 further demonstrate that using m3/2 as the default choice for
the theory prediction is a good decision. Especially in the outer rapidity
region, the prediction using pT,avg is afflicted with very large, asymmetric
uncertainties.
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(a)

(b)

Figure 5.7: This figure shows the scale uncertainty of the three-jet mass
distribution for the NNPDF 2.1 - NNLO PDF with Anti-kT 0.5 jets for the
inner rapidity region. The uncertainties were calculated using both the two-
(top) and six-point (bottom) variation to show the difference between the
two methods. While both cut scenarios are used, only results from the inner
rapidity bin are presented. The six-point variation also introduces addition
upper uncertainties in the lower three-jet mass range, which are not present
in the two-point variation.
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(a) Absolute cut

(b) Relative cut

Figure 5.8: Scale uncertainty of the three-jet mass distribution for the relative
cut and absolute cut with Anti-kT 0.5 jets. The absolute cut scenario, the
uncertainty in the outer rapidity region is larger than the inner region. For
the relative cut scenario, the scale uncertainty relationship is swapped - with
the uncertainty in the inner region being larger than in the outer region.
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Figure 5.9: Overview of the differences in the scale uncertainty of the three-
jet mass distribution for Anti-kT 0.5 and 0.7 jets. In both cases, the absolute
cut scenario was applied. The scale uncertainties for the bigger jet size are
larger for both rapidity regions.
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Figure 5.10: This figure shows the differences in the scale uncertainty of the
three-jet mass distribution for Anti-kT 0.5 jets for different choices of the
scale. In both cases, the absolute cut scenario was applied. The average pT
scale is afflicted with very large scale uncertainties, while the m3/2 scale has
much smaller scale uncertainties.
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5.2.3 PDF uncertainties

The parton distribution functions entering the theory calculation are based
on global fits to experimental data. Each dataset has its own set of uncer-
tainties. For recent PDFs, these experimental uncertainties are propagated
to uncertainties on the PDF. In addition, there are modelling and parametri-
sation uncertainties caused by assumptions about the shape and evolution of
the PDF distributions.

The following set of PDFs was studied:

CTEQ6.6[95]

The CTEQ 6.6 PDF was obtained from a global fit of hard scattering data
from 2008 and uses αs (MZ) = 0.118 for the αs evolution. The uncertainties
are given in the form of 22 eigenvectors, with an up and downwards fluctu-
ating PDF member along each eigenvector axis. These variations describe
the 90% confidence intervals and are rescaled in order to arrive at a common
68% uncertainty band for all PDFs. The rescaling factor can be calculated
with the inverse error function using s =

√
2 erf−1 (0.90) ≈ 1.645.

CT10[92]

Compared with CTEQ6.6, the CT10 PDF was extracted from a more recent
dataset available in 2010 and includes additional data from the HERA ex-
periment. The eigenvectors are rescaled to the 68% confidence interval like
done for CTEQ6.6.

HERAPDF 1.5[96]

The HERAPDF 1.5 PDF is based on data measured by the HERA experi-
ments H1 and ZEUS. The best fit for the strong coupling constant is using
αs (MZ) = 0.1176 with the αs uncertainty determined from variations with
αs (Mz) = 0.1156 and 0.1196. The experimental uncertainties are encoded
in the form of 10 eigenvectors for 68% confidence intervals. In addition to
these experimental uncertainties, 8 model error PDFs are available, for which
the positive and negative difference to the central value is added in quadra-
ture to give the positive and negative model error. The envelope of 4 PDF
variations is used to describe the maximal parametrisation variation. This
parametrisation variation is quadratically added to the model errors to form
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the parametrisation envelope:

(∆mup
3,i)

2 =
8∑

k=0

[
max

(
m

Model(k)
3,i −mcentral

3,i , 0
)]2

+
(

4
max
k=0

(
m

Param(k)
3,i −mcentral

3,i , 0
))2

(∆mdown
3,i )2 =

8∑
k=0

[
max

(
mcentral

3,i −mModel(k)
3,i , 0

)]2

+
(

4
max
k=0

(
mcentral

3,i −mParam(k)
3,i , 0

))2

MSTW 2008[97]

MSTW 2008 is the result of a global PDF fit to data from many different
sources. The underlying dataset contains inclusive deep inelastic scattering
structure functions, low-energy Drell-Yan production, W and Z measure-
ments at the Tevatron experiments and inclusive jet data from HERA and
Tevatron. While the MSTW 2008 PDFs are available at LO, NLO and
NNLO, only the NLO PDFs were used in this study. The central value of
the PDF is is using αs (Mz) = 0.12018. There are PDFs available for both
one-sigma (68%) and 90% confidence level limits. However for consistency
with the other PDFs, the 68% PDF set was chosen.

NNPDF 2.1[98]

The NNPDF 2.1 PDF fit uses data from deep inelastic scattering, Drell-
Yan and Jet data from HERA, Tevatron and other experiments. In this
analysis, two PDFs from the NNPDF2.1 family are used, which differ in the
perturbative order (NLO and NNLO). Both the NLO and NNLO PDF central
prediction use αs (Mz) = 0.119 for the strong coupling constant. However the
authors also supply PDFs with a large range of different values for α. The
fact that there are variations from αs (Mz) = 0.124 down to αs (Mz) = 0.106
available, makes this PDF very valuable for later data-theory comparisons.

Compared with the other studied PDFs, NNPDF uses a very different
approach to encode the PDF uncertainties. The uncertainties are given in the
form of an ensemble of n PDF members, also called PDF replicas. The PDFs
from the NNPDF 2.1 family usually contain n = 100 members. However the
central value for the NNLO PDF uses n = 1000 and the NNLO PDFs for
αs < 0.11 just contain between 9 and 25 members.
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The PDF uncertainties can be calculated, taking into account that the
central value was determined from the same set of PDF members. The
NNPDF uncertainties are defined with the following formula:

(∆mup
3,i)

2 =
1

n− 1

n∑
k=1

[
max

(
m

(k)
3,i −mcentral

3,i , 0
)]2

(∆mdown
3,i )2 =

1

n− 1

n∑
k=1

[
max

(
mcentral

3,i −m(k)
3,i , 0

)]2

which describes the asymmetric spread of the PDF replicas around the mean.
The covariance matrix is calculated from the PDF ensemble like the sample
covariance

cov (m3,i;m3,j) =
1

n− 1

n∑
k=1

(
m

(k)
3,i −mcentral

3,i

)(
m

(k)
3,j −mcentral

3,i

)

PDF uncertainties from eigenvector sets

For the PDFs that encode their uncertainties using PDF eigenvectors, there is
a simple recipe for the uncertainty determination. In addition to the central
value mcentral

3 , the three-jet mass cross section m
up/down(k)
3 is calculated for ev-

ery PDF eigenvector k. Each pair of PDF eigenvectors represent independent
uncertainty sources. The asymmetric PDF uncertainty ∆m

up/down(k)
3,i due to a

single pair of PDF eigenvectors k is given by the asymmetric deviation from
the central prediction:

∆m
up(k)
3,i = max

(
m

up(k)
3,i −mcentral

3,i

s
,
m

down(k)
3,i −mcentral

3,i

s
, 0

)

∆m
down(k)
3,i = max

(
mcentral

3,i −mup(k)
3,i

s
,
mcentral

3,i −mdown(k)
3,i

s
, 0

)

Therefore, the total PDF uncertainty is simply given by the quadratic sum
of uncertainties described by each pair of PDF eigenvectors. With this infor-
mation, it is possible to determine the asymmetric PDF errors ∆m

up/down
3,i on

the three-jet mass in bin i using:

(∆mup
3,i)

2 =

nEV∑
k=0

(
∆m

up(k)
3,i

)2

, (∆mdown
3,i )2 =

nEV∑
k=0

(
∆m

down(k)
3,i

)2
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with the scaling factor s. The scaling factor is 1 for all PDFs except CTEQ6.6
and CT10 as previously discussed. The three-jet mass bin covariance for the
eigenvector based uncertainties is based on the symmetrised and rescaled
errors ∆m

sym(k)
3,i from the eigenvector variations:

∆m
sym(k)
3,i =

m
up(k)
3,i −mdown(k)

3,i

2s

cov (m3,i;m3,j) =

nEV∑
k=0

[
m

up(k)
3,i −mdown(k)

3,i

2s

][
m

up(k)
3,j −mdown(k)

3,j

2s

]

Strong coupling constant

Another source of uncertainty inherent to PDFs is the choice of the strong
coupling constant when fitting the PDF. In order to quantise the size of this
uncertainty, the PDFs provide a set of αs variations. This allows to derive
the αs uncertainty of the PDF from the variations of αs(MZ) within the
uncertainties. These variations use the best αs fit value from the PDF and the
one sigma uncertainty on this value. An example for this uncertainty source
is given in figure 5.11 for HERAPDF 1.5, which uses αs = 0.1176± 0.002.

Overview

Some PDF uncertainties for the three-jet mass are shown in figure 5.13. As
shown in figure 5.12, the theory calculations can show quite large differences
for different PDFs. All PDFs except HERAPDF seem to predict the same
shape up to a three-jet-mass of about m3 = 1000 GeV. Above this threshold,
the PDFs predict different shapes for the three-jet-mass distribution, however
the shape variation is covered by the large PDF uncertainties in this region.

5.3 Non-perturbative corrections

The result for the three-jet mass distribution from FastNLO and NLOJet++
gives the theory prediction at next-to-leading order of perturbative QCD.
However these calculations do not include the effects from hadronization and
multiple parton interactions, which can not be described using perturbative
techniques. In contrast, the measurement in nature and corrected for detector
effects, does contain these effects. To allow a comparison between data and
theory, the theory has to be corrected for these influences.
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(a) Absolute cut
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Figure 5.11: Size of the 68 percent confidence interval of the αs uncertainty
for HERAPDF 1.5 with the absolute cut (top) and relative cut (bottom). The
uncertainty in both cases shows a small slope, increasing the uncertainty from
below five percent at 200 GeV up to ten percent at 2000 GeV. At the same
time, the uncertainties are increasingly asymmetric, with large upwards and
a small downwards fluctuation for three-jet masses between 3000 GeV and
5000 GeV.
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Figure 5.12: Comparison between the PDFs used in this analysis. The PDFs
are normalised to the CT10 cross section and the uncertainty band contains
the propagated PDF uncertainties on the mean. Except for the HERAPDF
result, all PDFs give a similar shape up to a three-jet-mass of about m3 =
1000 GeV.



90CHAPTER 5. THEORY PREDICTION FOR THE THREE-JET MASS

5 ·102 103 2 ·103 5 ·103

M3 [GeV]

−20.0

−15.0

−10.0

−5.0

0.0

5.0

10.0

15.0

20.0

U
n
ce

rt
a
in

ty
 [

%
]

CT10

(a) Abs. cut, CT10
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(b) Rel. cut, CT10
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(c) Abs. cut, HERAPDF 1.5
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(d) Rel. cut, HERAPDF 1.5
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(e) Abs. cut, MSTW2008
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Figure 5.13: The PDF uncertainties for the absolute cut (left) and the rel-
ative cut (right) are shown for CT10 (top), HERAPDF 1.5 (middle) and
MSTW2008 (bottom). In general, the PDF uncertainties for the absolute
cut scenario are larger than the uncertainties for the relative cut.
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Previous studies, like the inclusive jet spectrum measurement[99], esti-
mated the size of these corrections using the Monte Carlo event generators
Pythia and Herwig++. However for the study of the three-jet mass, these
generators are not able to give a leading-order result due to missing ma-
trix elements. Therefore, to derive correction factors to take care of these
non-perturbative effects, the Monte Carlo event generator Sherpa was used.
Sherpa is able to generate three-jet events at leading order and simulates
hadronization and multiple parton interactions using the built-in models. A
comparison of the Sherpa prediction with unfolded data is shown in figure
6.15.

The usual way to derive these correction factors is to look at the ratio
between the prediction applying a hadronization and multiple parton inter-
actions model and the prediction without these two effects. This procedure
gives bin-by-bin correction factors, which are later applied to the next-to-
leading order theory prediction.

A more general approach is to perform the comparison on an event-by-
event basis. The three jet mass is determined for a given event before the the
hadronization and multiple parton interaction is simulated and after these
two steps are done. This enables the creation of a transfer matrix which
contains the probability distributions that a partonic three-jet mass m3,p

matches a hadronic three-jet-mass m3,h. Such a transfer matrix is shown
in figure 5.14(a). Naturally, this matrix contains more information about
the processes simulated by the non-perturbative models than the bin-by-bin
corrections. The first off-diagonal elements are between 2 and 10%. Other
elements of the matrix are much smaller than 1%. This shows that the bin
correlations due to the non-perturbative corrections are quite small, but they
do not vanish.

In order to allow this event-by-event comparison, the generator interface
in CMSSW was modified to re-initialise the random number generator for
each event, so that identical events are generated before the differences in the
simulation cause a deviation between the consumed random numbers. The
two relevant settings in Sherpa for the determination of the non-perturbative
corrections are responsible for the hadronization effects and multiple parton
interactions. The exact configuration of these parameters is described in
appendix B.4.

Figure 5.14(b) shows the effective bin-by-bin correction factor determined
from this new matrix method. The correction factors can be quite large with
a 20% correction for the very low three-jet-masses. However above 400 GeV,
the corrections are very close to unity. The uncertainty on this effective
correction factor is given by the statistical uncertainty, which dominates the
large three-jet masses and an estimate of the uncertainty due to the modelling
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of the hadronization and underlying event simulation. This uncertainty was
conservatively estimated to be half the size of the correction. Therefore this
term dominates for the low three-jet masses.



5.3. NON-PERTURBATIVE CORRECTIONS 93

2 ·102 5 ·102 103 2 ·103

m3,partonic [GeV]

2 ·102

5 ·102

103

2 ·103

m
3,

h
ad

ro
n
ic
 [

G
e
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

2 ·102 5 ·102 103 2 ·103

m3  [GeV]

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

E
ff

e
ct

iv
e
 o

rr
e
ct

io
n
 f

a
ct

o
r

(b)

Figure 5.14: Overview of non-perturbative corrections. From an event-by-
event matching between datasets with different simulation setup, the rela-
tionship between the partonic and hadronic final state is derived (top) using
the Sherpa model. With this transfer matrix, a set of effective bin-by-bin
correction factors can be calculated (bottom). The uncertainty on this result
is derived from the statistical uncertainties and an estimate of the modelling
systematic.
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Chapter 6

Measurement of the three-jet
mass

The previous chapters showed that the study of multi-jet events is one of the
primary ways to gain a greater understanding of quantum chromodynamics[100,
101]. In particular, events containing three jets can be used to investigate
fundamental properties of the theory [102, 103, 104] like the running of the
strong coupling constant [105, 106] and it’s value at certain scales. The pre-
ceding chapter introduced one of the key measurements using these three-jet
events: The determination of the cross-section as a function of the invariant
mass of the three-jet system.

The chapter begins with the introduction of the datasets and event selec-
tion to get clean three-jet events. Using these events, the three-jet mass is
measured in data and compared to Monte-Carlo simulation and the next-to-
leading order theory predictions derived in chapter 5. In order to allow this
comparison, several analysis steps are necessary. In a first step, the three-
jet mass resolution is measured to determine an optimal binning. Detector
effects influencing the three-jet mass measurement are removed using an un-
folding technique to facilitate the comparison with different experiments.
The measurement is completed with a study of the systematic uncertainties
on the three-jet mass. The chapter closes with a discussion of the differences
between data and theory.

6.1 Datasets

This analysis is based on proton-proton collisions collected by the CMS detec-
tor at the LHC accelerator. Since the study works with jet objects, the ”Jet”
primary dataset (PD) was chosen as basis. This dataset contains all events

95
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Table 6.1: Overview of the used datasets

Sample name Run range Dataset Bookkeeping System entry

Data - 1 160329-163869 /Jet/Run2011A-May10ReReco-v1/AOD

Data - 2 165088-168229 /Jet/Run2011A-PromptReco-v4/AOD

Data - 3 170053-172619 /Jet/Run2011A-05Aug2011-v1/AOD

Data - 4 172620-175770 /Jet/Run2011A-PromptReco-v6/AOD

Data - 5 175832-180296 /Jet/Run2011B-PromptReco-v1/AOD

which triggered one of the CMS jet triggers and is split into multiple samples
corresponding to different periods of data taking. There are three samples
which utilise the reconstruction done at the detector site during data taking
and two reprocessed samples. The two reprocessed samples profit from im-
proved understanding of the detector alignment and calibration. Together,
these five samples cover the whole data taking period between March and
October 2011 when the LHC was running with a centre-of-mass energy of
7000 GeV.

The same dataset was also the subject of detailed detector performance
studies, which gave rise to precise uncertainty estimates used later in the
analysis. The list of used datasets is given on table 6.1.

6.1.1 Monte Carlo datasets

For Monte-Carlo studies, three different event generators were employed in
this analysis. An overview of the used Monte-Carlo samples is given in sec-
tion B.1.1. The determination of the non-perturbative corrections is based
on private samples produced with the Sherpa Monte-Carlo generator. This
program uses 2 → 2 and 2 → 3 leading order QCD matrix elements with a
matched parton shower algorithm to generate events. Further details about
the setup of the generator is given in section 5.3.

For detector response measurements, two samples from the official CMS
production with the Pythia 6 and Herwig++ multi-purpose event generators
are chosen. Both Monte-Carlo event programs generate the hard interaction
with a 2 → 2 leading order QCD matrix element and use a parton shower
algorithm to simulate higher jet multiplicities. The generators are configured
to apply a phase-space reweighting on matrix-element level wME during the
generation process. This allows to cover the complete phase space with a
single sample. However during the analysis, the individual events have to
be weighted by 1/wME to reproduce the physical spectrum. The reweighting
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factor is a function of the transverse momentum p̂T of the outgoing two
partons in the rest-frame and described by the following formula:

wME =

(
p̂T

15 GeV

)4.5

To avoid issues with large matrix element weights, the two samples also
apply a phase space cut of 15 GeV < p̂T < 3000 GeV.

For the simulation of the underlying event, the Pythia6 sample uses the
Z2 tune[107], while the Herwig++ sample uses the default tune[108]. The
generated events are processed through the full CMS detector simulation
with detector conditions closely resembling the observed state instead of the
design specifications. These detector conditions also contain a model for pile-
up collisions, where the simulation introduces additional scattering events
according to a predetermined pile-up profile.

In an ideal case, this simulated pile-up profile (NMC(NPU,truth)) is identi-
cal to the estimated pile-up profile NData(NPU,est) in data. However as shown
in figure 6.1, there are differences between these two profiles. It is there-
fore necessary to apply a weight wPU to match the pile-up distribution in
the simulation to the profile in data. The pile-up distribution in data is
estimated based on the instantaneous luminosity averaged over all colliding
bunches, the total luminosity and the standard deviation of the individual
bunch luminosities during each luminosity section. Since the true value of
pile-up events in the simulation is known, a simple bin-by-bin reweighting of
the pile-up distributions is sufficient.

wPU(NPU,truth) =
NData(NPU,est)/

∑
NData

NMC(NPU,truth)/
∑
NMC
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Figure 6.1: Pile-up distribution in simulation in comparison to the estimate in
data. The simulated curve is normalised to the estimated data distribution.
The simulated events are reweighted to reproduce the estimated distribution.
The plot shows that the default pile-up scenario used for the simulation
cannot be used to describe data with more than 35 pile–up collisions.
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6.2 Event selection

6.2.1 Data selection

The first step in the event selection is to pick good runs and luminosity sec-
tions (LS) from the recorded data, in which all detector subsystems are prop-
erly setup and work reliably. During a data taking period, some sub-detectors
can encounter problems which makes it necessary to reject all recorded data
within a luminosity section. These problematic luminosity sections are iden-
tified by the data quality management team of the CMS collaboration during
the data validation process. The list of validated runs and luminosity sec-
tions is made public in the form of a JSON1 file and was used as the basis
for the further steps.

Since this study uses the new pixel reconstructed CMS luminosity mea-
surement (detailed in [109, 110]) in contrast to the old HF based luminosity
measurement, the ≈ 156.000 certified luminosity sections were exposed to
additional checks. The first check is to scan the pixel luminosity database
for invalid or empty luminosity entries. 1990 entries were removed from the
certificated set of luminosity sections because of this cross check.

Another cross check is performed by comparing the trigger information
as stored in the event data files with the trigger stored in the luminosity
database. This check uncovered 192 luminosity sections with inconsistent
trigger data for the single-jet trigger paths. To avoid any ambiguity, these
luminosity sections were removed from the list of analysed luminosity sections
as well.

The complete list of selected runs and their luminosity sections is given
in appendix B.2.

6.2.2 Trigger

In order to reconstruct the three-jet mass spectrum, it is necessary to select
an appropriate set of triggers. For this study the single-jet triggers were used.
The family of single-jet triggers give a positive trigger decision when the jets
reconstructed by the L1 and HLT part of the data acquisition system overstep
certain transverse momentum thresholds. To illustrate the single-jet trigger
decision, consider a jet object reconstructed by the L1 trigger system with
pT ,L1 = 24 GeV. This object is above the pT threshold of the L1SingleJet16
trigger (pT > 16 GeV) and therefore the event is forwarded to the HLT
reconstruction. In this example, the much more detailed reconstruction at
this level yields a jet object with pT,HLT = 31 GeV. Since this HLT trigger

1JavaScript Object Notation
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object is above the threshold of the HLT Jet30 trigger path, a positive trigger
decision is given and the event is recorded for further processing.

Trigger thresholds

In order to combine the data recorded by different triggers, mutually exclusive
regions of the phase space are identified in which a single trigger path is fully
efficient with respect to its definition. To define this active domain for each
trigger path, it is necessary to determine the trigger efficiency. The first step
is to measure the distribution of a relevant observable for data taken from
each trigger path. The next task for the evaluation of the trigger efficiency
is to look at the ratios of distributions belonging to two trigger paths. This
allows to define a so called turn-on point, at which the efficiency is above a
certain threshold. However for the jet triggers, prescale differences between
adjacent trigger paths can be between one and two orders of magnitude in
size. In addition, the two samples are in general statistically independent
and the relevant area of phase space only contains a small number of events
for the lower trigger path. Due to these issues, statistical fluctuations can
play an important role in the trigger efficiency measurement. However such
large statistical uncertainties can poses a problem for the determination of
the trigger turn-on points.

To avoid these problems, the trigger thresholds of the single-jet triggers
were determined using a technique which measures the trigger efficiency from
a set of events S1 = {Ei|TA (Ei) = true} which was triggered by a single trig-
ger path TA. From this set of events S1, the subset S2 = {Ei|TA (Ei)∧TB (Ei)}
of events also belonging to the next trigger TB with a higher threshold is de-
termined. This means that the analysis has to emulate the trigger decision
to determine this subset S2 ⊆ S1. The advantage of this method is that the
prescale of the trigger TB with the higher threshold does not enter the de-
termination of the trigger prescale at all, since only events from trigger path
TA are used. Mathematically, the efficiency can be expressed using some
distribution N (S, x) of observable x for events from set S :

feff (x) =
N ({Ei|TA (Ei) ∧ TB (Ei)}, x)

N ({Ei|TA (Ei) = true}, x)

In order to reproduce the trigger decision for other trigger paths, the L1
and HLT trigger objects, which were used in the original trigger decision
are accessed. Since these trigger collections were changed over time, great
care has to be taken to track the correct trigger object collection. For each
event, it is checked whether these trigger objects would also fire the next
highest trigger path. With the two sets of events available for a given trigger
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Trigger L1 threshold HLT threshold pT,99%

HLT Jet30 16 GeV 30 GeV 50 GeV
HLT Jet60 36 GeV 60 GeV 85 GeV
HLT Jet80 52 GeV 80 GeV 110 GeV
HLT Jet110 68 GeV 110 GeV 144 GeV
HLT Jet150 92 GeV 150 GeV 192 GeV
HLT Jet190 92 GeV 190 GeV 238 GeV
HLT Jet240 92 GeV 240 GeV 294 GeV
HLT Jet300 92 GeV/128 GeV 300 GeV 355 GeV
HLT Jet370 92 GeV/128 GeV 370 GeV 435 GeV
HLT Jet800 92 GeV/128 GeV 800 GeV 873 GeV

Table 6.2: Overview of the trigger thresholds and turn-on points pT,99% for
the single-jet trigger paths. In some trigger menus, the L1 trigger thresholds
for the highest single jet triggers were increased from 92 GeV to 128 GeV.

path, the trigger efficiency can be calculated using binomial statistics. The
errors on the trigger efficiency are given by the Clopper-Pearson confidence
intervals. The resulting trigger efficiency is then fitted with the function:

ffit
eff (x) =

1

2

(
1 + erf

(
x− µ√

2σ2

))
The start values of the fit for µ are determined from the point x50 where the
trigger efficiency reaches the 50% threshold, while σ is set to 1. The fit is
performed in two steps to increase numerical stability. The first step fits the
function in the range between x50 and infinity. In the second iteration the fit
is performed with a lower bound of µ−σ. From the resulting efficiency curve,
the 99% threshold is calculated and used as turn-on point for the trigger. An
overview for the transverse momentum turn-on points of the single-jet trigger
is presented in table 6.2. The fit of the turn-on curve is shown in figure 6.2
for two exemplary trigger paths.

Trigger composition

As shown above, the single-jet trigger paths are able to reach full efficiency
to measure jets with transverse momentum above a certain threshold. How-
ever an individual single-jet trigger path is unable to reach full efficiency as
a function of the three-jet mass. In the case of the lowest trigger HLT Jet30,
this is due to prescales which cause the trigger to record very few events
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Figure 6.2: Turn-on curves for the HLT Jet110 and HLT Jet240 trigger path
with trigger efficiency errors based on Clopper-Pearson confidence intervals.
The trigger turn-on (error bars) is fitted with an analytical function (line)
to determine the 99% trigger threshold. This trigger threshold is indicated
by the vertical line. The light grey band indicates the uncertainty on the
turn-on point.
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with large three-jet masses. The other single-jet triggers, by definition, ap-
ply transverse momentum cuts which are larger than the analysis cuts and
thereby are unable to reach full efficiency. It is therefore necessary to com-
bine multiple single-jet triggers to reconstruct the complete three-jet mass
distribution. The trigger path composition of the final three-jet mass mea-
surement is shown in figure 6.3.

The combined trigger efficiency can be determined using a Monte-Carlo
study, which uses the trigger turn-ons and trigger composition found in data.
This study works by using the trigger composition to determine the prob-
ability for an event to belong to a certain trigger path. The fitted trigger
turn-on for this path gives the probability for accepting the leading jet of
the event. A comparison between the three-jet mass distribution with and
without these two steps gives the combined trigger efficiency as a function
of the three-jet mass. This efficiency is above 99% for all three-jet masses
above the theoretically motivated lower three-jet mass cut m3 > 150 GeV.

Trigger menu adaptation

The CMS trigger is very flexible and allows the trigger menu to change be-
tween runs and prescales between luminosity sections. This implies that not
all runs are taken with the same trigger menu. In order to benefit from trigger
paths with low prescales, the analysis adapts the used paths on a luminosity
section by luminosity section basis to use all available single-jet triggers. Dur-
ing the 2011 data-taking period, 10 different trigger path combinations were
used. The information about the trigger paths and the corresponding trigger
menus is given in section B.3.2. In total 26, 690, 474 events corresponding to
4, 984 pb−1 pass the single-jet HLT selection.

6.2.3 Beam scraping filter

Interactions between the circulating proton bunches and both residual gas
particles and the beam collimators can produce showers of secondary particles
which are registered in the CMS detector as events with heavy, isotropic noise.

To remove this effect, for all events with more than 10 tracks, the purity of
the tracks is required to meet a certain threshold. This purity requirement is
based on the ratio of tracks classified as high-purity tracks[111] over the total
number of reconstructed tracks and must exceed 25%. The discriminating
variables of this filter are shown in figure 6.4.
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Figure 6.3: Trigger composition of the final three-jet mass measurement. For
each three-jet mass bin, the fraction of events coming from a certain trigger
path is shown. An individual single-jet trigger path is unable to reach full
efficiency as a function of the three-jet mass, either due to prescales or the
inherent trigger cuts.

Dataset Data - 1 Data - 2 Data - 3 Data - 4 Data - 5

Nrec 9, 166, 798 16, 501, 507 3, 764, 807 4, 996, 600 13, 358, 914
Nrun 7, 219, 128 11, 649, 876 2, 422, 639 4, 541, 148 11, 964, 609
R 122 103 47 40 147
LS 26, 679 46, 822 12, 343 20, 757 49, 694
L 215.5 pb−1 954.7 pb−1 389.2 pb−1 703.3 pb−1 2721.7 pb−1

Ntrg 5, 078, 401 8, 273, 797 1, 637, 747 3, 053, 394 8, 647, 135

Table 6.3: Cut flow for the different data samples. Nrec : Number of recorded
events, Nrun : Number of events passing the run and luminosity section
selection, R : Number of selected runs, LS : Number of selected luminosity
sections, L : integrated luminosity, Ntrg : Number of events passing any
single-jet trigger.
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Figure 6.4: In the top figure, the total number of tracks and high-purity
tracks for events triggered by HLT Jet30 path is shown. The bottom plot
shows the fraction of high-purity tracks, which is used in the beam scraping
filter. The region removed by the filter is shaded.
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6.2.4 Vertex selection

To reject further beam backgrounds and off-centre parasitic bunch crossings,
the recommended vertex selection cuts are applied. To pass the step of the
selection process, an event has to contain at least one well reconstructed
primary vertex (PV), within a distance of |z(PV)| < 24 cm between the pri-
mary vertex and the nominal interaction point (IP) of the detector. The
radial distance ρ(PV) of the vertex from the z axis though the IP is required
to be smaller than 2 cm, corresponding to the size of the beam pipe. Addi-
tionally, the fit used to determine the vertex needs to have at least 4 degrees
of freedom. For an unconstrained vertex fit, which has 2

∑
iwi − 3 degrees

of freedom (wi ≤ 1), this means at least four tracks with weight ≈ 1 are
required. The influence of the different steps of the vertex selection is shown
in table 6.5.

6.2.5 Anomalous HCAL noise filter

The so called HBHE filter removes anomalous signal events caused by HCAL
noise. Anomalous HCAL noise does not arise from electronic (pedestal) noise
but rather from instrumentation issues associated with the photo-diodes and
readout boxes. Since the noise manifests in very high energy and occupies
multiple towers, it is recommended to reject these events instead of trying
to just remove the noisy towers. The filter to remove this kind of events
is based on timing information, the number of hits per readout box and
photo-diode, the pulse shape and isolation criteria. The set of applied cuts is
shown on table 6.4. A detailed discussion for the causes of this noise and the
filter strategy can be found in [112]. Starting at 0.1% for HLT Jet30, this
filter removes an increasing amount of events for higher single-jet thresholds
of up to 8% of events for the HLT Jet370 trigger. With a 72% rejection
rate, this noise filter removes a very large amount of events triggered by the
HLT Jet800 path. However this trigger path in particular was active only
in a small number of runs and therefore the large noise ratio has very little
impact on the final result.

6.2.6 Missing transverse energy cut

To further enhance the QCD event purity, events where the missing trans-
verse energy /ET constitutes a large fraction of the measured total transverse
energy, are removed in analogy to other QCD analyses[99]:

/ET/
∑
i

ET,i < 0.5
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min E2over 10TS > −999 GeV2/TS min 25 GeV hit time > −9999 GeV
max E2 over 10TS < 999 GeV2/TS max 25 GeV hit time < 9999 GeV
N(HPD hits) < 17 N(isolated noise channels) < 10
N(HPD without hits) < 10

∑
isolated noise E < 50 GeV

N(Zeros) < 10
∑

isolated noise ET < 25 GeV

Table 6.4: List of the discriminating variables and their thresholds used by
the HCAL noise filter.

This cut primarily removes normal calorimeter noise, beam halo and cosmic-
ray backgrounds mimicking real jets. As shown in figure 6.5, this background
increases for higher energy scales. Depending on the trigger path, this selec-
tion step removes between 0.1% and 0.6% of events compared to the previous
step for the single-jet triggers up to HLT Jet370. For the highest jet trigger
it removes 6% of events.

6.2.7 Jet ID selection

The jet identification (jet ID) selection criteria[113] were developed in order
to reject pure noise or noise enhanced jets, while keeping more than 99%
of physics jets above 10 GeV. Contrary to the previous selection criteria,
which rejected complete events, the jet ID operates on individual jet objects.
While it is possible that all jets in an event fail the jet ID criteria, having
jets which fail the jet identification does not imply that the event should be
discarded. For the jet identification, the official loose jet ID for particle flow
jets is applied. The algorithm operates on the particle flow jet characteristics,
which reflect the properties of the underlying particles. The particle flow jet
ID cuts were designed with the following in mind:

Jet properties require that the jet cannot consist of neutral hadrons or
photon like objects alone - in addition ECAL noise tends to get reconstructed
by the particle flow algorithm as photon like objects (neutral EM fraction
< 0.99) and HCAL noise as neutral hadrons (neutral hadron fraction < 0.99).
In addition the jet should consist of more than one reconstructed object
(number of constituents > 1). Within the rapidities covered by the CMS
tracking system (|y| < 2.4), additional cuts using tracker information are
required by the jet ID. The jet has to contain at least one charged particle
(number of charged particles > 0) and at least one charged hadron (charged
hadron fraction > 0). For these inner rapidities, it is also possible to directly
remove jets which only contain electron like objects (charged EM fraction
< 0.99).
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Figure 6.5: Discriminating variable of the /ET/
∑
ET selection for different

trigger paths. Higher trigger paths show wider distributions with more miss-
ing energy. The region removed by the filter is shaded.
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HLT path HLT Jet30 HLT Jet60 HLT Jet80 HLT 110

Triggered events 2, 741, 044 2, 591, 154 1, 491, 011 2, 574, 451
Beam scraping filter 2, 740, 566 2, 590, 975 1, 490, 620 2, 573, 587

Vertex selection 2, 732, 261 2, 585, 365 1, 479, 547 2, 552, 687
HCAL noise filter 2, 729, 723 2, 579, 573 1, 475, 476 2, 542, 735

/ET/
∑
ET selection 2, 728, 556 2, 578, 149 1, 473, 745 2, 538, 842

HLT path HLT Jet150 HLT Jet190 HLT Jet240

Triggered events 2, 572, 083 3, 533, 874 3, 629, 577
Beam scraping filter 2, 570, 941 3, 532, 315 3, 626, 168

Vertex selection 2, 541, 653 3, 486, 989 3, 543, 538
HCAL noise filter 2, 524, 482 3, 445, 296 3, 460, 556

/ET/
∑
ET selection 2, 518, 498 3, 435, 789 3, 446, 276

HLT path HLT Jet300 HLT 370 HLT Jet800

Triggered events 9, 785, 529 3, 129, 458 54, 824
Beam scraping filter 9, 784, 720 3, 128, 172 54, 614

Vertex selection 9, 752, 689 3, 092, 982 49, 587
HCAL noise filter 9, 325, 702 2, 839, 361 13, 918

/ET/
∑
ET selection 9, 286, 361 2, 822, 310 13, 051

Table 6.5: Cut flow for the different trigger paths. This table summarises
the results from dataset 1-5



110 CHAPTER 6. MEASUREMENT OF THE THREE-JET MASS

6.2.8 Jet correction step

After the jet ID selection is passed, the jet energy corrections described in
section 4.3 are applied to allow further selection steps to operate on the
corrected energy and momentum of the jet objects. An example for the used
jet energy correction factors are shown in figure 6.6.

6.2.9 Acceptance cuts

In order to synchronise the accessible phase space of the NLO theory cal-
culation and the detector reconstruction, a filter is applied which removes
all jets from the event which fail certain acceptance criteria. To fall within
the detector acceptance, jets are required to have a transverse momentum
exceeding 50 GeV and lie in the rapidity region between −3 and 3. The
whole event is rejected if less than three jets fulfil the jet ID and detector
acceptance requirements.

6.2.10 Three-jet mass cut scenarios

The final step in the event selection is the application of one of the two
cut scenarios used in the analysis. The absolute cut scenario applies a cut
on the transverse momentum of the third jet (pT,3 > 100 GeV).The relative
cut scenario applies a cut on the ratio between the transverse momentum of
the third jet and the average transverse momentum of the leading two jets
(pT,3 > 0.25〈pT,1, pT,2〉). The differences between the two cut scenarios are
discussed in section 5.0.1. Unless stated otherwise, all plots in the following
sections show the results for the anti-kT 0.5 jet algorithm in the innermost
rapidity bin |ymax| ≤ 1 for the relative cut scenario.
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Figure 6.6: Overview of the applied jet energy correction. The distribution
of the jet energy correction factors is shown as a function of pseudo-rapidity
for jets with pT > 20 GeV (top) and transverse momentum over the whole
rapidity region (bottom).
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6.3 Comparison with simulated events

The measured data distribution can be directly compared with Monte-Carlo
simulated events. For the comparison in figure 6.7, the Monte-Carlo event
generated by Pythia 6 and Herwig++ and simulated by the full CMS detec-
tor simulation were used. As previously mentioned, these two Monte-Carlo
generators do not perform a leading order calculation for the three-jet mass,
but rather use a shower approximation as described in chapter 1. However
the two generators are still able to follow the three-jet mass distribution over
seven orders of magnitude very closely. Pythia 6 is very well tuned and
matches the overall normalisation within 5%. Herwig++ on the other hand
is off by a factor of 2.7. When the Monte-Carlo distributions are normalised
to the data, shape differences become visible. Up to a three-jet mass of
1000 GeV, the two generators are within 10% of the data distribution. For
larger three-jet masses, Pythia 6 and Herwig++ increasingly deviate from
the data distribution.

However, for the purpose of detector studies and response measurements
in particular, the results of the two generators are still well suited.
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Figure 6.7: Comparison between the three-jet mass distribution in data and
events produced by the two Monte-Carlo generators Herwig++ and Pythia
6 in conjunction with a full detector simulation. The results are for Anti-
kT 0.5 jets in the innermost rapidity bin in the relative cut scenario. The
figure shows the statistical uncertainty on the data as a green band, while
the statistical uncertainties on the Monte-Carlo are expressed by the error
bars. In contrast to Herwig++, Pythia gives a good estimate of the overall
normalisation. When both Monte-Carlo distributions are normalised to data,
shape differences, which increase for larger three-jet masses are observed.
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6.4 Three-Jet mass resolution

The measurement of the three-jet mass resolution is based on the truth in-
formation in Monte-Carlo generated events, which were processed in the full
detector simulation of CMS. The previously discussed event selection criteria
are applied and the three-jet mass is calculated.

This calculation is performed for both the particle jets clustered from the
stable generator particles and the particle flow jets which were determined
from the simulated and reconstructed detector output, yielding the particle
level three-jet mass m3,gen and the particle flow reconstructed three-jet mass
m3,reco. From these matching masses, the three-jet mass response

R =
m3,reco

m3,gen

is calculated on an event-by-event basis and recorded in bins of m3,gen.
In the next step, R (m3,gen) is fitted with a Gaussian function for each m3,gen

to determine the mean µR (m3,gen) and width σR (m3,gen) of the three-jet
mass response distribution. The result of this fit is demonstrated in fig-
ure 6.8(a). The width is then interpreted as the three-jet mass resolution
σR (m3,gen) = σm3/m3. The measurement of σR (m3,gen) is shown in figure
6.8(b) for different bins of ymax, which demonstrates how the three-jet mass
resolution degrades for higher rapidities.

In order to parametrise the measured resolution, a modified version of
the NSC formula was used:

σm3

m3

(m3) =

√
sgn (N)

(
N

m3

)2

+ (m3/GeV)s
S2

m3

+ C2 (6.1)

This formula was introduced in [114] to better describe the behaviour of the
jet energy resolution of particle flow jets at low transverse momenta which
include tracking information. The first term is modified to include the sign of
the noise parameter N , while the stochastic term now contains the parameter
s in addition to the stochastic noise parameter S. The new parameter s can
be used to change the three-jet mass dependence of the stochastic term and
allows to improve the fit for low three-jet masses. The constant term is left
unchanged.

These changes to the resolution function are motivated by the fact that
the resolution is guided by two very different detector subsystem. The su-
perior resolution of the tracker dominates the measurement for low energy
scales, while for increasing energy scales, the resolution converges towards
the calorimeter resolution.
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Figure 6.8: The three-jet mass response distribution for |ymax| ≤ 1 is shown
for two different three-jet mass bins in the top plot. The error-bars are given
by the statistical error. The kernel of the distribution can be approximated
with a fitted Gaussian function. The width of the distribution as a function
of the three-jet mass is shown for different |ymax| bins in the bottom plot.
The shown uncertainties on the data points are the error on the width of the
distribution. In both cases the relative cut scenario with Anti-kT 0.5 jets was
used
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Even though formula 6.1 is able to describe the three-jet mass resolution
much better than the unmodified formula 2.1, the rather flat behaviour at
low masses (150 GeV − 300 GeV) leaves room for improvement. However
since this mass region is of little importance for the following studies, no
additional modifications to the resolution function are proposed.

The result of fitting 6.1 to the measured resolution is shown in figure
6.9(a). This step is repeated for the two different Monte-Carlo generators
Pythia and Herwig++ and the mean value of the two resolutions is taken
as the final result. A comparison of the two generators is shown in figure
6.9(b). The envelope of the two input resolutions is taken as the Monte-Carlo
uncertainty, which takes into account the different fragmentation, hadroniza-
tion and underlying event models used in the simulation. This uncertainty is
added in quadrature to the parametrisation error, which contains the prop-
agated, correlated uncertainties from the final resolution fit of the average.
The errors assigned to the average of the two generators during the fit is
the quadratic sum of the errors of the original data distributions. The final
result for |ymax| ≤ 1 is shown in figure 6.10(a), while the parametrisation is
listed in table 6.6. The detailed results for other rapidities ymax are given in
appendix C.1.

In general, the two scenarios have comparable three-jet resolutions. How-
ever the absolute scenario provides a slightly better resolution in the lower
mass region, while the relative scenario surpasses the resolution of the abso-
lute scenario for high three-jet masses.

A comparison how the three-jet mass resolution behaves for different jet
resolution parameters R is shown in figure 6.10(b). For low three-jet masses
m3 < 500 GeV, the jet algorithm with the larger cone size shows a worse
three-jet mass resolution. However for larger three-jet masses, the resolution
function rapidly converges towards the values of the anti-kT jet algorithm
with R = 0.5. For m3 > 800 GeV there is no observable difference between
two jet reconstruction algorithms.

6.4.1 Three-jet mass binning

In a final step, the bin borders m3,n for the three-jet mass measurement were
chosen in an iterative process using the measured three-jet mass resolution.

m3,n+1 = m3,n + 2σm3 (m3,n)

This resolution-driven binning of the three-jet mass constrains the amount
of bin-to-bin migration to some degree. With the approximation that the
three-jet mass resolution within a bin can be assumed constant, this can
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Figure 6.9: The three-jet mass resolution is parametrised for two |ymax| bins
(top). Compared with the inner rapidity bin, the outer rapidity bin shows a
slightly worse three-jet mass resolution. The procedure is repeated for two
different Monte-Carlo generators and the differences are presented on the
bottom plot for a single rapidity bin |ymax| ≤ 1. In both cases the relative
cut scenario was used. Except for small differences, especially in the low
mass region, the two generators show general agreement for the three-jet
mass resolution.
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Figure 6.10: The final result of the parametrised three-jet mass resolu-
tion with Monte-Carlo and propagated parametrisation errors is shown for
|ymax| ≤ 1 in the relative (labelled h) and absolute cut scenario (labelled b) in
the top plot. A comparison for different jet sizes shows a worse resolution at
low masses for the algorithm with larger jet size in the relative cut scenario
(bottom).
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Absolute cut Relative cut

N [ GeV] −21.481± 0.55 −18.252± 1.1

S [
√

GeV] 1.1457± 0.031 1.8398± 0.36
C [1] 0.014982± 0.00083 0.013592± 0.0024
s [1] 0.052171± 0.0042 −0.084198± 0.06

Table 6.6: Table of parameters for the three-jet mass resolution function 6.1
(Anti-kT 0.5, innermost rapidity bin |ymax| ≤ 1). Parameters and covariance
matrices for all scenarios are given in appendix C.1.

150 177 207 240 275 313 354 398 445 495 548
604 664 727 794 864 938 1016 1098 1184 1274 1369

1469 1573 1682 1796 1916 2041 2172 2309 2452 2602 2758
2921 3092 3270 3456 3650 3852 4063 4283 4513 4753 ∞

Table 6.7: Table of resolution driven three-jet mass bins used in this analysis

be shown by looking at some true three-jet mass m3t and calculating the
probability of measuring the smeared three-jet mass m3s in the given bin.
From the cumulative distribution of a Gaussian resolution function follows
that for a true three-jet mass at the bin edges, the measured three-jet mass
stays with a probability of 48% within the bin. For true value m3t at the
centre of the bin, the measured value doesn’t migrate out of the bin with a
probability of 68%. This yields an overall probability of more than 55% for
some true value to get measured in the appropriate bin.

The bin edges produced by this algorithm and used in the analysis are
given in table 6.7. It should be mentioned that this binning was produced at
an earlier stage of the analysis. Refinements to the three-jet mass resolution
measurement have lead to small differences between this binning and the bin-
ning determined from the final resolution results. However these differences
are smaller than 1% and within the error introduced by the integerisation of
the bins boundaries for three-jet masses above 800 GeV.
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6.5 Unfolding

Detector effects like limited acceptance and finite resolution cause differences
between the measured and true three-jet mass distribution. In order to re-
move these influences, the so-called unfolding problem must be solved. A
detailed introduction to the unfolding problem is given in appendix A. The
in general very complex relationship between measured and true distribution
can be expressed in the case of the three-jet mass measurement in the form
of a simple matrix equation:

~y = A~x+~b (6.2)

with matrix A describing the detector response and vectors representing the
histogram entries of the measured distribution ~y, background distribution ~b
and true distribution ~x.

Since events at a hadron collider are dominated by QCD interactions,
the contribution of background processes are insignificant. Therefore the
background is neglected in the following discussions. In order to avoid issues
related to the limited detector acceptance in the three-jet mass measurement,
the acceptance is artificially limited in the theory prediction and the same
acceptance cuts were applied on data during the event selection. In addition,
the basic analysis steps for the three-jet mass are the same for both data and
theory. This means that there are no transformative changes between the
three-jet mass in data and theory and that the true distribution from the
unfolding procedure can be directly compared with the theory prediction.

Without acceptance induced issues, the transformative changes modelled
by the detector response can be traced back to differences between the recon-
structed and true jet objects. The application of jet energy corrections take
care of the non-linear detector response and thereby remove the bias from
the reconstructed input objects. However the influence of the finite detector
resolution on the input objects cannot be solved with a similar technique.
Therefore the detector response mainly models the finite detector resolution.

Several established unfolding methods were studied to remove these de-
tector resolution effects from the three-jet mass measurement and get the
true three-jet mass distribution.

6.5.1 Bin-by-bin method

A simple correction method, which is often used in experiments is the bin-by-
bin method. The bin-by-bin method is based on the assumption, that there
are no correlations between neighbouring bins. In this case, the detector
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response is a simple diagonal matrix and the unfolding algorithm is reduced
to the application of multiplicative correction factors to each bin.

Unless the detector response can be measured in a data-driven way, the
diagonal matrix has to be determined from a Monte-Carlo simulation. How-
ever this might introduce biases into the correction factor, which are not
accounted for in the unfolding algorithm. In addition, the assignment of er-
rors on the final result might be problematic, since the correlations between
bins are completely ignored. Therefore the bin-by-bin method should only
be used to account for the effects introduced by limited acceptance, since in
that case the consequences of disregarding bin correlations are usually less
severe.

All these facts show that the bin-by-bin method is inappropriate for the
unfolding of the three-jet mass.

6.5.2 Matrix inversion

An obvious method to solve equation 6.2 is based on simple linear algebra.
For non-singular, rectangular matrices A, it is possible to calculate the in-
verse matrix A−1 and determine the solution for ~x with:

~x = A−1~y

The matrix inversion method also gives a straightforward method to cal-
culate the covariance matrix covx of the true distribution ~x from the covari-
ance matrix covy of the measured distribution with standard error propaga-
tion:

covx = A−1covy
(
A−1

)T

It can be shown that this solution is unbiased and exhibits minimal covariance
[115]. When the method is applied in the context of a Monte-Carlo study to
the same simulated distribution, which was used to determine the detector
response, the matrix inversion yields the exact result for the true distribution.
However as soon as there are variations, which break the definite relationship
of equation 6.2, instabilities of the solution are evident. An example for this
behaviour is shown in figure 6.11(a), where the Monte-Carlo simulated three-
jet mass distribution is varied within the statistical uncertainties and the
unfolding result is compared with the Monte-Carlo truth. The instabilities
of the method are caused by large correlations between different, unfolded
bins as shown in figure 6.11(b). Large, negative correlations can give rise to
oscillations in the unfolded result, while positive correlations can cause small
statistical fluctuations in one bin to change the solution in an inappropriately
large way. The large correlations make this method inadequate for this study.
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Figure 6.11: In a toy experiment, the simulated Monte-Carlo distribution,
which was used to determine the detector response matrix, is varied within
the statistical uncertainties. The modified distributions are unfolded using
the matrix inversion method and compared with the Monte-Carlo truth dis-
tribution (top). This closure plot shows increasing fluctuations for higher
three-jet masses. The bin correlations, as determined from the toy ensem-
ble, show a large correlation between all bins of the unfolded distribution
(bottom).
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6.5.3 Singular value decomposition

The singular value decomposition (SVD) unfolding algorithm is based on
the SVD decomposition (explained in appendix A) of the detector response.
Similar to the previously discussed matrix inversion method, the unfolding
solution is given by

~x =
n∑
i=1

~vi~u
T
i ~y

σi
(6.3)

with orthonormal vectors ~u and ~v and singular values σi from the SVD
decomposition. An analysis of the numerical instabilities[116] shows that the
spectral properties of the detector response are the reason that the naive
unfolding methods run into problems. Since the measured distribution ~y is
divided by the singular values σi of the detector response, small singular val-
ues can cause large fluctuations and uncertainties in the unfolded distribution
~x.

The solution to this problem is to impose a measure of smoothness on
the unfolded result in a process called regularisation. It is evident that this
unavoidably introduces some bias. Every regularisation method usually is
expressed as a function of some parameter, which influences the magnitude
of the regularisation bias.

The SVD method can be regularised in a number of different ways. The
method used by the RooUnfold package is based on an effective cut-off for
small singular values, parametrised by the integer value k. For the ordered
list of singular values σ1 ≥ · · · ≥ σk ≥ · · · ≥ σn ≥ 0, the cut-off parameter k
determines the smallest singular value σk, which is used in the determination
of the true distribution in equation 6.3. It is therefore possible to choose
between an unregularised unfolding (k = n) and a completely regularised
unfolding (k = 1).

When the SVD method is applied on the three-jet mass measurement
in Monte-Carlo, very reasonable results can be derived as shown in figure
6.12(a) for the generators Herwig++. The algorithm also gives a quite low
unfolding error. However when the algorithm is used to unfold a simulated
distribution from Herwig++ with a detector response matrix determined
from Pythia 6, large differences are uncovered (see figure 6.13(a)), which
point towards the fact that the SVD method shows a large bias towards the
Monte-Carlo distribution underlying the detector response. This is true for
a large number of cut-off parameters k.
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Figure 6.12: In an toy experiment, the simulated Monte-Carlo distribution,
also containing unmatched events, is varied within the statistical uncertain-
ties. The modified distributions are unfolded using the matrix inversion
method and compared with the Monte-Carlo truth distribution (top). The
bin correlations, as determined from the toy ensemble, show quite small corre-
lations between the bins of the unfolded distribution (bottom). Two different
Monte-Carlo programs were used to simulate the events. These plots show
the results for Herwig++, however the Pythia 6 results are very similar (see
A.
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Figure 6.13: In order to check for Monte-Carlo dependencies of the unfolding
algorithm, the SVD (left) and Bayesian (right) unfolding algorithm are given
detector responses derived from Pythia 6 and simulated distributions from
Herwig++. The result is compared with the Monte-Carlo truth distribution
of Herwig++. The SVD method shows a large Monte-Carlo bias, while
the Bayesian unfolding method only shows differences in the low three-jet
mass region where the two Monte-Carlo generators already showed different
resolution modelling.

6.5.4 Bayesian unfolding

The Bayesian unfolding method[117] is an example for an iterative unfold-
ing algorithm. Details of this method are discussed in appendix A. The
algorithm formulates the unfolding problem in terms of causes Ci and effects
Ej. In each step s, the probability Ps (Ci|Ej) is determined with Bayesian
inference from results from the previous iteration step. This allows to calcu-
late for a number n (Ej) of observed events of a certain effect Ej, how many
events n̂s (Ci) can be assigned to a certain cause Ci after s iteration steps.

Usually, the method already yields good results after a small number of
steps s. In the original example in [117] 3 − 4 iterations were sufficient.
However the algorithm converges for s → ∞ towards the unregularised ma-
trix inversion result, with the same problems as demonstrated earlier. The
number of iterations can therefore be identified as a kind of regularisation
parameter.

The original publication suggests to do a χ2 comparison between n̂ (Ci)
and n̂0 (Ci) to determine the break condition for the iteration process. How-
ever it is not always clear when the χ2 is ”small enough”[117] to stop the
iteration, because with an increasing number of iterations both the error and
the fluctuations increase, leading to smaller values of χ2.
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(a) s = 1 iteration
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(b) s = 2 iterations
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(c) s = 3 iterations

M3  [GeV]

2 ·102

5 ·102

103

2 ·103

M
3
 [

G
e
V

]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

[G
eV

]
2 ·102 5 ·102 103 2 ·103

M3  [GeV]

−20.0
−15.0
−10.0
−5.0

0.0
5.0

10.0
15.0
20.0

R
e
la

ti
v
e
 e

rr
o
r

(d) s = 4 iterations
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(e) s = 5 iterations
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(f) s = 6 iterations

Figure 6.14: Three-jet mass bin correlation matrices and relative unfolding
errors determined for different iterations of the Bayesian unfolding method.
The three-jet mass distribution measured in data with Anti-kT 0.5 jets,
|ymax| ≤ 1 and relative cut scenario is used as input. Starting with s = 5
iterations, the algorithm introduces large (anti-)correlation patterns in the
matrix.
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For the unfolding of the three-jet mass, the number of iterations is chosen
based on the behaviour of the bin correlations. For s > 4, patterns of large
bin correlations and anti-correlations start to appear and the unfolding result
shows increasing fluctuations as shown in figure 6.14.

Unlike the previously discussed algorithms, this unfolding method doesn’t
show any problematic behaviour related to the unfolding of Monte-Carlo dis-
tributions as shown in figure 6.13(b). Therefore the s = 4 Bayesian unfolding
algorithm is chosen as the primary unfolding method for the three-jet mass
measurement.

6.6 Comparison with unfolded events

The unfolded data distribution can now be compared with the particle level
prediction of Monte-Carlo event generators. Figure 6.15 shows such a com-
parison between data and the Monte-Carlo generators Pythia 6, Herwig++
and Sherpa.

The already discussed deviation between data and the Pythia 6 and Her-
wig++ prediction (see section 6.3) is left unchanged by the unfolding pro-
cedure and the removal of the detector simulation. However the unfolding
makes it possible to perform a comparison between data and the Monte-Carlo
generator Sherpa.

Sherpa generated events, which were never processed by the full detector
simulation, show a much better shape agreement with data. This can be
traced back to the fact that Sherpa is able to calculate the three-jet QCD
matrix elements in leading order, before applying the shower approximation.

While there are small deviations for low three-jet masses, the deviation
between data and Sherpa prediction is very flat and within the total data
and theory uncertainties.

Therefore, Sherpa is well suited for the study of the non-perturbative
corrections presented in section 5.3.
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Figure 6.15: Comparison between unfolded data and the particle level results
of three Monte-Carlo generators Herwig++, Pythia 6 and Sherpa for Anti-
kT 0.5 jets in the innermost rapidity bin in the relative cut scenario. The
figure shows the total uncertainty on the unfolded data as a green band,
while the statistical uncertainties on the Monte-Carlo are expressed by the
error bars. The two generators Herwig++ and Pythia 6, which use the a
shower algorithm to generate the third jet, show a large shape difference.
The Monte-Carlo Sherpa, which calculates the third jet from the leading-
order matrix element, shows a good agreement between data and simulation.
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Figure 6.16: Overview of the measurement uncertainties for Anti-kT 0.5 jets
in the innermost rapidity region (|ymax| ≤ 1) with the absolute cut applied.
The statistical and unfolding uncertainties dominate the low and high three-
jet mass regions, while over a large range of three-jet masses, the jet energy
scale uncertainty is slightly larger. The measurement uncertainties are rel-
atively small, which will allow to use this measurement to improve theory
predictions in the future.

6.7 Uncertainties

In the following, the four major uncertainty sources for the three-jet mass
measurement are presented. The first two sources to be discussed are the
statistical and unfolding uncertainties, which are intrinsically linked through
the unfolding algorithm. These unfolding uncertainties also have a Monte-
Carlo component, since the three-jet mass detector response is determined
from simulated events. The luminosity uncertainty is independent of the
three-jet mass and only influences the overall normalisation of the measure-
ment. The most complex uncertainty source is the jet energy uncertainty.
This uncertainty is broken up into 16 constituent uncertainty sources, which
are independently analysed.

For all these uncertainty sources, the complete covariance matrix is avail-
able in appendix D. A general overview of the measurement uncertainties is
given in table 6.8.
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500− 2000 GeV Min Average Max
Luminosity 4% 4% 4%

Unfolding and statistical 2% 3% 10%
Statistical 1% 1% 5%

Jet energy scale 4% 6% 8%
Absolute scale 2% 3% 4%

Flavour 2% 3% 5%
High-pT extrapolation 2% 3% 5%

Pile-up 1% 1% 1%

Table 6.8: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 2000 GeV.

6.7.1 Statistical and unfolding uncertainties

The uncertainties of the previously discussed unfolding algorithms are de-
termined from toy experiments. The toy experiments are organised into toy
scenarios each consisting of n = 1000 toy experiments. Each toy scenario uses
a particular unfolding algorithm, regularisation parameter, detector response
matrix and toy variation strategy. For each toy scenario, the unfolding re-
sult is determined from the sample mean, while the uncertainties for the toy
scenario are given by the sample covariance:

m̄3,i =
1

n

n∑
k=1

m
(k)
3,i

covunf (m3,i;m3,j) =
1

n− 1

n∑
k=1

(
m

(k)
3,i − m̄3,i

)(
m

(k)
3,j − m̄3,j

)

In these formula, m
(k)
3,i is the three-jet mass in bin i of toy sample k. The

toy sample mean for the three-jet mass bin i is designated m̄3,i.The covariance
between the two bins i and j is called cov (m3,i;m3,i) and takes into account
that the sample mean and the sample covariance are derived from the same
toy scenario by applying Bessel’s correction n/ (n− 1).

The following steps are performed for all unfolding algorithms and regu-
larisation parameters. However as discussed earlier, only the output of the
Bayesian unfolding method with 4 iterations is relevant for the final result.

The statistical error component is determined from toy scenarios which
change just the input distributions within their uncertainties. The total
unfolding uncertainty is taken from toy scenarios which vary both the input
histogram and the response matrix within the limits of their uncertainties.
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Figure 6.17: Overview of statistical (band) and algorithmic unfolding uncer-
tainty (line) for anti-kT 0.5 jets in the innermost rapidity region with the
relative cut scenario. These two uncertainties are closely related via the
unfolding algorithm and show similar three-jet mass dependence and size.
Due to their relationship, only the combination (called total unfolding un-
certainty) of these two uncertainties is relevant for this analysis.

The algorithmic unfolding uncertainty is then defined as

σunf =
√
σ2

total − σ2
stat (6.4)

For the determination of the total uncertainty and the final unfolding re-
sult, the two toy scenarios using the Pythia 6 and Herwig++ derived detector
response are merged to form a single toy scenario. The unfolding result is
therefore the average of the Herwig++ and Pythia 6 toys, while any system-
atic differences between the generators are accounted for in the variance of
the toys. It is easy to calculate that the merged variance incorporates the
average variance of the two sub-samples for Herwig++ and Pythia plus half
the difference between the respective mean values squared.

As shown in figure 6.18, large differences in the uncertainty composition
for the two cut scenarios can be observed. For |ymax| ≤ 0, the absolute cut
scenario has a quite constant unfolding uncertainty of 3%, which slowly in-
creases till it reaches at m3 ≈ 2500 GeV, the same order of magnitude as the
statistical uncertainty. In the same rapidity region, the relative cut scenario
exhibits an unfolding uncertainty of around 8%, which reaches the level of
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the statistical uncertainty around the same time as the absolute cut sce-
nario. For higher rapidity bins, the decreasing statistics in the Monte-Carlo
becomes more significant, leading to larger fluctuations in the distributions
and uncertainties.

6.7.2 Luminosity uncertainty

The luminosity enters the measurement as a scaling factor affecting the over-
all normalisation of the three-jet mass distribution. For the selected run
and luminosity sections, the integrated luminosity was determined to be
4, 984.49 pb−1. This measurement was performed using the pixel reconstruc-
tion and corrected for afterglow effects[109]. The uncertainty on this number
is 4%, which corresponds to ±199 pb−1.

6.7.3 Jet energy scale uncertainties

As discussed previously, the jets reconstructed by the jet algorithm need ad-
ditional corrections due to detector effects. These correction factors are af-
flicted with several sources of uncertainties. These uncertainties are provided
by the JetMET group in the form of distinct jet energy uncertainty sources.
Since the uncertainty sources are parametrised as functions of pT and η, it
is convenient to write the uncertainty from source i in the form σi (pT , η).
All uncertainties σi (pT , η) were determined in such a way that they are fully
uncorrelated from a second (i 6= j) uncertainty source σj (pT , η) . To allow
for asymmetric errors, each uncertainty source carries information about the
upward and downward fluctuation σup

i (pT , η) and σdown
i (pT , η). Therefore,

the way these uncertainties are used is analogous to they way PDF eigenvec-
tors are processed to calculate the uncertainties of the theoretical prediction
on page 84.

The full list of nJEC = 16 uncertainty sources used in the analysis is given
below together with the name and description of the uncertainty[88]:

• Absolute: Uncertainty on the absolute jet energy scale. It derives
mainly from the combined photon and Z → µµ reference scale and
from corrections for FSR and ISR in these processes.

• HighPtExtra: Uncertainty due to the high-pT extrapolation of the
corrections using the two generators Herwig++ and Pythia 6. The dif-
ferences between the two generators can be traced back to to differences
in the fragmentation and underlying event models.
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(a) Abs. cut, |ymax| ≤ 1
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(b) Rel. cut, |ymax| ≤ 1
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(c) Abs. cut, 1 < |ymax| ≤ 2
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(d) Rel. cut, 1 < |ymax| ≤ 2
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(e) Abs. cut, 2 < |ymax| ≤ 3
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(f) Rel. cut, 2 < |ymax| ≤ 3

Figure 6.18: Overview of statistical (band) and algorithmic unfolding un-
certainties (line) determined for different rapidity bins and cut scenarios.
Differences in the uncertainty composition for the two cut scenarios can be
observed, which can be explained by the hardness of the jet cuts. In general,
the size of both the statistical and algorithmic unfolding uncertainties get
larger for increasing rapidities. This is due to a decreasing number of events
in both data and Monte-Carlo determined detector response matrix.
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• SinglePion: This uncertainty is derived from the propagation of a 3%
variation of the single particle response to particle flow jets.

• Flavour: Based on the differences between Herwig++ and Pythia 6
quark and gluon responses in a QCD flavour mixture.

• Time: The jet energy scale shows time-dependent variations in the
end-cap region and therefore change over time. This shift is probably
due to ECAL laser calibration instabilities.

• RelativeJER - EC1,EC2,HF: Rapidity dependent uncertainty due
to the jet energy resolution, split into three regions in which the jet
energy resolution is assumed to be fully correlated. The regions are
the end-cap covered by tracking (EC1), the end-cap outside the track-
ing system (EC2) and the region covered by the hadronic forward
calorimeter (HF).

• RelativeFSR: Rapidity dependent uncertainty caused by final state
radiation corrections. The uncertainty is correlated over the complete
detector and increases for large rapidities.

• RelativeStat - EC2,HF: Statistical uncertainty in the determination
of the L2 correction factor. This error only plays a role in the end-cap
region not covered by the tracker (EC2) and in the HF calorimeter
(HF)

• PileUp - DataMC, OOT, Pt, Bias, JetRate: Uncertainties on the
pile-up corrections. DataMC is determined from data and Monte-
Carlo differences in ZeroBias data. The OOT component estimates
residual out-of-time pile-up for prescaled triggers when reweighting
Monte-Carlo to unprescaled data. The Pt uncertainty is due to the fact
that the offset correction is calibrated for jet between 20 and 30 GeV
and that there is an offset dependence on the jet pT . Bias is an un-
certainty determined from an observed difference between the offset in
ZeroBias and QCD Monte-Carlo. The JetRate uncertainty compo-
nent accounts for jet rate variations as a function of the number of
vertices in singlet-jet trigger data.

These uncertainties are related to the total jet energy scale uncertainty
via the formula:

σTotal (pT , η) =

√√√√nJEC∑
i=0

(σi (pT , η))2
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In order to propagate the uncertainties to the three-jet mass distribution,
these fluctuations are used directly after the jet energy scale corrections are
applied. For each corrected jet four-vector pi and uncertainty source j, two
variations are calculated:

pi,up =
(
1 + σup

j (pT , η)
)
pi, pi,down =

(
1− σdown

j (pT , η)
)
pi

The resulting jet four-vectors are processed in pairs by the analysis, yielding
two three-jet mass distributions m

up/down
3 per jet energy uncertainty source

in addition to the central value mcentre
3 without any fluctuations. Since the

uncertainty sources are fully uncorrelated between themselves, but describe
jet energy correction variations that are fully correlated within a given source,
the asymmetric error ∆m

up/down
3,i due to the jet energy uncertainty source k

on the three-jet mass distribution m
(k)
3,i in bin i can be calculated with the

following formula

∆mup
3,i =

√√√√nJEC∑
k=0

[
max

(
m

up(k)
3,i −mcentre

3,i ,m
down(k)
3,i −mcentre

3,i , 0
)]2

∆mdown
3,i =

√√√√nJEC∑
k=0

[
max

(
mcentre

3,i −mup(k)
3,i ,mcentre

3,i −mdown(k)
3,i , 0

)]2

The covariance matrix describing the jet energy scale uncertainty is based
on the symmetrised errors introduced by the uncertainty sources:

covJEC (m3,i;m3,j) =

nJEC∑
k=0

[
m

up(k)
3,i −mdown(k)

3,i

2

][
m

up(k)
3,j −mdown(k)

3,j

2

]
The parametrised jet energy uncertainties on the three-jet mass are presented
in figure 6.19, 6.20 and 6.21. While the uncertainty of the central rapidity
bin is dominated by the absolute and flavour uncertainty, the pile-up re-
lated uncertainty become more important for larger rapidities. Similarly,
jet algorithms with larger cone sizes show a considerable impact from the
pileup uncertainties for small three-jet masses. However this contribution
gets smaller as the three-jet mass increases. The three-jet mass uncertainties
for the two different cut scenarios exhibit behaviour which closely resemble
each other above 500 GeV, where the different three-jet mass thresholds do
not play a role anymore. For a large range of three-jet masses, the total jet
energy scale uncertainty is between 6 and 7% for the exemplary, relative cut
scenario. A detailed tabular overview of the main contributions to the final
jet energy uncertainty is given in appendix D.3.1.
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(a) Rel. cut, |ymax| < 1, Anti-kT 0.5

(b) Abs. cut, |ymax| < 1, Anti-kT 0.5

Figure 6.19: Jet energy scale uncertainty of the three-jet mass distribution
with major uncertainty sources shown separately for the central rapidity bin
(|ymax| < 1). The uncertainties are presented for the relative cut scenario,
absolute scenario and jet cone size R = 0.5. The three-jet mass uncertainties
for the two different cut scenarios show very similar behaviour above 500 GeV,
where the different three-jet mass thresholds are negligible.



6.7. UNCERTAINTIES 137

(a) Rel. cut, |ymax| < 1, Anti-kT 0.7

(b) Abs. cut, |ymax| < 1, Anti-kT 0.7

Figure 6.20: Jet energy scale uncertainty of the three-jet mass distribution
with major uncertainty sources shown separately for the central rapidity bin
(|ymax| < 1). The uncertainties are presented for the relative cut scenario,
absolute scenario and two different jet cone size R = 0.7. Comparison with
figure 6.19 shows that jet algorithms with larger cone sizes show a consider-
able impact from the pileup uncertainties for small three-jet masses. However
this contribution gets smaller as the three-jet mass increases.
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(a) 1 < |ymax| ≤ 2

(b) 2 < |ymax| ≤ 3

Figure 6.21: Jet energy scale uncertainty of the three-jet mass distribution
with major uncertainty sources shown separately. The uncertainties are pre-
sented for Anti-kT 0.5 jets in the relative cut scenario in the outer two ra-
pidity bins 1 < |ymax| ≤ 2 (top) and 2 < |ymax| ≤ 3 (bottom). Together
with figure 6.19, this shows that the uncertainty of the central rapidity bin
is dominated by the absolute and flavour uncertainty. However the pile-up
related uncertainty become more important for larger rapidities.
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6.8 Comparison with NLO predictions

With the unfolded distributions and uncertainties from the previous sections
and the theory prediction from chapter 5, it is possible to look at the dif-
ferences between NLO theory and measured data. A general overview of
the measured distributions in different rapidity bins and the available NLO
predictions are shown in figure 6.22.

Depending on the used parton distribution function, cut scenario and jet
size, there is a difference of up to 20 percent between the theory prediction
and data as shown in figures 6.23, 6.24 and 6.25. However, taking the uncer-
tainties into consideration, the measurements are in general agreement with
the theoretical predictions. It should be noted that the differences take the
form of a flat offset and that no large differences between the data and theory
shapes are observed.

The behaviour that the cross-sections predicted by the NLO theory are
higher than the measured cross-section is also observed in several other stud-
ies. The inclusive jet spectrum measurement by CMS[99] for example ob-
served a flat offset of 15 to 20 percent.

Such a flat shift in the ratio of data and theory can be easily caused by
the luminosity normalisation, which is afflicted with a 4% uncertainty. From
the theory side, the parton distribution functions could cause the observed
deviations. Since the measurement covers parts of the phase-space where the
PDFs are not well measured, this measurement can also serve as input for the
PDF fits. The offset can also be caused by missing terms in the perturbative
series. Unfortunately, there is no NNLO three-jet mass prediction available
to confirm this or give a better estimate. However the size of the K-factors
discussed in 5 is between −50% and +70%, leaving room for further NNLO
contributions.

In order to exactly quantise the deviation between data and theory, nor-
malisation factors n are fitted to the data-theory ratios. The best agreement
between data and theory is observed by using the absolute cut scenario ap-
plied to Anti-kT 0.7 jets in the innermost rapidity region and by calculating
the theory prediction with the NNPDF 2.1 - NNLO parton density function.
In this case the normalisation factor is given by:

n = 0.990+0.074
−0.066

and the observed fit quality is χ2/nDoF = 0.490/19, which points to
a large overestimation of the uncertainties for this particular set of jets,
cuts and theory parameters. The very small residuals also show that the
hypothesis of a flat offset is well motivated. The normalisation factors for
the other measurements are summarised in appendix C.
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(b) Relative cut scenario

Figure 6.22: Unfolded three-jet mass distribution for different rapidity bins
ymax from data together with the available NLO prediction. For the absolute
cut scenario, the results for both Anti-kT 0.5 and 0.7 jets are presented.
In order to increase readability, the cross-section of for the larger jet size
was multiplied by 100. The theory prediction shows a very good agreement
for the double-differential three-jet mass cross-section with data over several
orders of magnitude.
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Figure 6.23: Ratio of the unfolded three-jet mass distribution and the NLO
predictions based on the NNPDF2.1 NNLO (top) and the CT10 (bottom)
parton distribution functions. The absolute cut scenario was applied to Anti-
kT 0.5 jets. The green band represents the total theory uncertainty, while
the error bars are given by the total measurement uncertainty. Both PDFs
show an agreement within the quoted uncertainties.
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Figure 6.24: Ratio of the unfolded three-jet mass distribution and the NLO
predictions for the absolute cut scenario based on the NNPDF2.1 NNLO
for Anti-kT 0.5 (top) and 0.7 jets (bottom). The total theory uncertainty is
given by the green band, while the error bars represent the total measurement
uncertainty. With the larger jet size, a much better agreement between data
and theory prediction can be observed.
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(a) |ymax| < 1
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Figure 6.25: Comparison between the unfolded three-jet mass distribution
and the NLO predictions for the inner (top) and outer (bottom) rapidity re-
gion based on the NNPDF2.1 NNLO PDF for Anti-kT 0.5 jets in the absolute
cut scenario. The error bars are given by the total measurement uncertainty,
while the green band represents the total theory uncertainty. While the data
in the outer rapidity bin suffers from a smaller number of available events,
leading to larger uncertainties and statistical fluctuations, the prediction still
shows a good agreement in this challenging phase-space region.
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Chapter 7

Conclusion and Outlook

The successful start of the LHC has opened up a new era in particle physics.
In 2011, the accelerator delivered collisions with a centre-of-mass energy of√
s = 7000 GeV, which allow access to new regions of the QCD phase-space.

The dataset collected by the CMS experiment is successfully used in
this study to measure the double differential three-jet mass cross-section
d2σ/dm3dymax from the selected three-jet events.

In addition, detailed detector studies on the performance of the indi-
vidual sub-detectors and the jet reconstruction allow to determine precise
uncertainties on this measurement. In order to remove detector effects, like
the influence of to the finite three-jet mass resolution, several unfolding al-
gorithms were studied. For this study the iterative Bayesian unfolding al-
gorithm yielded the best results. Applying this unfolding method allows to
directly compare the results of this study with an identical analysis on data
from another experiment.

In order to investigate differences between the measured data and theory,
theory predictions for the three-jet mass are calculated at next-to-leading or-
der precision. The uncertainties due to scale choice and value, non-perturbative
corrections, PDF and αs are studied.

The comparison between data and theory shows a general overestimation
of the cross-section in the theory calculation. However for certain choices for
the jet size, cut scenario and theory parameters, the agreement between data
and theory is on the percent level, with a flat offset given by the following
normalisation factor:

n = 0.990+0.074
−0.066

The results of this measurement could help to further reduce the observed
differences by supplying data to the PDF fit community. Another application
of this measurement is given in the following outlook.

145
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7.1 Outlook: Sensitivity to αs

One of the major standard model parameters entering the theory predictions
is the value of the strong coupling constant αs. Since a direct measurement
of αs must be done in conjunction with a complex PDF fit, which is outside
the scope of this study, only a simple comparison between data and NLO
calculations using different values of αs, is performed. The value of αs,
which shows the best compatibility can be determined by quantising the
difference between the measured distribution mData

3,i and the different NLO

theory predictions mTheory
3,i (αs) with a χ2 test. This test is based on the

following formula:

χ2 =

nB∑
i,j=nA

(
mData

3,i −mTheory
3,i

) [
cov−1

sum (m3,i;m3,j)
] (
mData

3,j −mTheory
3,j

)
The inverse covariance matrix cov−1

sum is determined from the matrix inver-
sion of the total three-jet mass covariance covsum. The total three-jet mass
covariance is the sum of the covariances due to jet energy scale, unfolding
and luminosity uncertainty on the measurement on one hand and the theory
covariances on the other hand:

covsum = covJEC + covunf + covlumi + covNLO

The theory covariance includes all discussed theory uncertainty sources
except the scale uncertainty, which is handled separately. In order to study
the running of the strong coupling constant, the comparison between data
and theory is performed for |ymax| < 1 in three different three-jet mass regions
shown in table 7.1, each with a three-jet mass window width of 800 GeV. The
table contains for both cut scenarios the weighted average of the three-jet
mass in each region together with the three jet mass resolution at this value.

For the theory calculations in this comparison, the NNPDF2.1 NNLO
PDF set was used. This PDF is available with 19 different αs variations,
ranging between as (MZ) = 0.106 and 0.124. Figure 7.1 shows the result
of the χ2 test for the different values of αs (MZ). In order to take the scale
uncertainty into consideration, a two point variation of the scale is performed
in this fit.

The minimum is determined from a parametrisation of the χ2 distribution
using a polynomial p (αs (MZ)) of degree 4. The value of the strong coupling
constant at the minimum point (αs,0 (MZ) , p (αs,0 (MZ))) of this polynomial
is taken as the central value for αs in each three-jet mass region. The asym-
metric error on this value is determined from the position of the solutions of
equation p (αs (MZ)) = p (αs,0 (MZ)) + 1.
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Figure 7.1: Result of the χ2 comparison between data and a set of theory
predictions with different values of αs(MZ). The comparison is performed
in three different three-jet mass regions (700 GeV − 1500 GeV, 1500 GeV −
2300 GeV and 2300 GeV−3100 GeV). In order to determine the minimum of
the χ2 distribution, the curve is parametrised using a polynomial of degree 4.
In order to quantise the scale dependence, this αs fit procedure is performed
for three different scales variations (0.5µ, µ and 2µ)
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Three-jet mass range 700− 1500 GeV 1500− 2300 GeV 2300− 3100 GeV
m̄3h Absolute cut 866± 38 GeV 1670± 57 GeV 2518± 72 GeV
m̄3b Relative cut 886± 37 GeV 1680± 58 GeV 2517± 77 GeV

Nobs 9 7 5

Table 7.1: Overview of the three-jet mass ranges for the comparison between
data and theory. The weighted average m̄3 of the three-jet mass is presented
for the two cut scenarios. The uncertainty given for this average is determined
from the three-jet mass resolution. Nobs gives the number of three-jet mass
bins within in each mass range.

Three-jet mass range
700− 1500 GeV αs (886 GeV/2) = 0.0951+0.0035

−0.0021
+0.0028
−0.0008

1500− 2300 GeV αs (1680 GeV/2) = 0.0888+0.0022
−0.0019

+0.0027
−0.0008

2300− 3100 GeV αs (2517 GeV/2) = 0.0844+0.0032
−0.0023

+0.0019
−0.0013

Table 7.2: Value of the strong coupling constant αs as measured from the
three-jet mass distribution in the inner rapidity region for the Anti-kT 0.7
jet algorithm at three different scales. The quoted uncertainties are the total
measurement uncertainties and the scale uncertainties.

In order to get the value of αs at the scale of the measurement, the fitted
αs (MZ) values and uncertainties are propagated using an αs evolution code
(GRV[118]). The scale of the measurement is chosen to be the same scale
used in the theory prediction m3/2. The central value for this scale is the
average three-jet mass in each bin as shown in table 7.1

The result of this procedure is shown in table 7.2 and figure 7.2. The
correlated and statistical uncertainties are separately shown. The correlated
uncertainty is derived from the propagation of the normalisation uncertainty.
The running of αs is very well described by the measurement. Figure 7.3
shows how this result fits into the established set of measurements.
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Figure 7.2: Comparison between the running of the strong coupling constant
as predicted using the world average for αs(MZ) = 0.1179 and the running
as measured from the three-jet mass distribution. The measured values are
compatible with the world average within the uncertainties. Two major com-
ponents of the total uncertainty is the uncorrelated, statistical uncertainty
(red) and the correlated uncertainty (grey band). Another uncertainty not
included in the total uncertainty is the scale uncertainty, which is also shown
(dashed line).
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Figure 7.3: Overview of measurements of the running of the strong coupling
constant αs, including the world average for αs(MZ) = 0.1179 and its un-
certainty (band). The presented three-jet mass measurement extends the
covered phase-space at high scales. The uncertainties on the measurements
include all experimental and theory uncertainties. (Sources: [119], [120])



Appendix A

Unfolding

This appendix gives a short introduction to the unfolding problem. A de-
tailed overview of the subject is given in [116, 121]. The unfolding problem
appears already in the basic measurement of the distribution f(x) of some
kinematical quantity x. With access to an ideal detector, this task is re-
duced to a simple measurement of the quantity x and obtaining f(x) from
a histogram. Unfortunately, ideal detectors do not exist in nature so a real
detector will influence all performed measurements to varying degree due to
several effects. The most important issues are limited detector acceptance,
finite resolution, transformed quantities and backgrounds.

Since the probability to observe an event, which is called the detector
acceptance, is less than one for a real detector, a certain loss of signal events
will occur. Usually, this detector acceptance also depends on the quantity x.
However in many cases x is not directly accessible with the detector, so that
instead of the quantity x, only a correlated observable y can be measured in
the detector. The relationship between the quantities x and y are described
via some, not necessarily bijective, transformation. The measured quantity
y is additionally smeared due to the finite resolution inherent to any real
detector. This means that the measured quantity and the true quantity x
are only linked via a statistical relationship, further breaking any bijective
properties of the mapping between x and y. It is also possible to measure
some quantity y in the detector, which has no relationship to x since it was
caused by some background process.

The relationship between the true distribution f(x) and the measured
distribution g(y) with some background distribution b(y) can be expressed
mathematically with the following integral equation:

g(y) =

∫
A(y, x) f(x)dx+ b(y) (A.1)
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The function A(y, x) is called the transfer function or detector response.
It contains the information about the detector resolution, acceptance and
other transformations between true quantity x and measured quantity y in
the form of probabilities. For a given true quantity x0, the detector response
A(y, x0) gives the probability density function of measuring the quantity y.
The integral equation A.1 is a so-called Fredholm integral equation of the
first kind and the process of solving the inverse problem of reconstructing
the true distribution f(x) from the measured distribution g(y) is called un-
folding, although the detector response is allowed to be more general than a
convolution integral1.

When the goal is just to compare some theory prediction ftheory(x) to the
measured distribution g(y), it is sufficient to apply equation A.1 to the theory
distribution to get gtheory(y), which can directly be used for the comparison.
However it is preferable to supply the measured distribution in unfolded
form, since it allows third-parties to easily make comparisons between the
measured f(x) distribution and some new theory f ′theory(x). In addition, to
compare results measured with two different detectors, it is necessary that
at least one of the measurements is unfolded.

In order to understand the general principles behind trying to solve the
unfolding problem, assume that equation A.1 can successfully be linearised
and discretised. In this case the problem is equivalent to solving the matrix
equation

~y = A~x+~b (A.2)

with two m-dimensional vectors ~y and ~b representing the histogram entries
of the measured and background distribution, an n-dimensional vector ~x rep-
resenting the true distribution, and m× n Matrix A describing the detector
response.

From here it is easy to show that the unfolding problem, like many inverse
problems, is a so-called ”ill posed” problem. Neither uniqueness nor existence
of a solution is guaranteed, as shown by the following example:

A =

(
0.5 0.5
0.5 0.5

)
, ~x1 =

(
1
0

)
, ~x2 =

(
0
1

)
, ~y =

(
0.5
0.5

)
In this case it is not possible to answer the question, which true distribution
~xi is the correct one after measuring ~y. Therefore additional constraints on
the detector response A have to be introduced.

1A convolution integral imposes on the detector response A (y, x) = A (y − x) and for
the background b (y) = 0
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A.1 Singular value decomposition

The singular value decomposition theorem states that every m × n matrix
M can be decomposed into three matrices U,V and Σ:

M = UΣV∗

These matrices fulfil the following properties:

• U is a unitary m×m matrix,

• V∗ is the conjugate transpose of the unitary n× n matrix V,

• and Σ is a rectangular m× n diagonal matrix.

For unfolding problems, M is a real matrix and it can be shown that in
this case U and V are also real matrices. The positive diagonal entries σi of
the matrix Σ are called the singular values of the matrix M and it is common
to list them in descending order. The singular values are the square roots of
the non-zero eigenvalues of MM∗ and M∗M.

Applying this decomposition on the (real-valued) detector response A, it
is possible to define a generalised inverse matrix A#

A = UΣVT

A# = VΣ−1UT

which is equivalent to the inverse matrix A−1 for square matrices.

A.2 Bayesian unfolding

The Bayesian unfolding method applies Bayesian inference to the problem of
unfolding and is an example for an iterative unfolding algorithm. Following
the paper[117], which introduced the method, the algorithm is explained
in terms of causes Ci and effects Ej. Causes can be identified with the true
values ~x to be determined, while the effects are the measured ~y. The detector
response A takes the form of the probability P (Ej|Ci) to observe an effect Ej
from a cause Ci. To solve the unfolding problem, it is necessary to determine
the probability P (Ci|Ej), which allows to calculate for a number n (Ej) of
observed events, how many events n̂ (Ci) can be assigned to a certain cause
Ci. Bayes theorem states that

P (Ci|Ej) =
P (Ej|Ci) · P (Ci)

P (Ej)
=

P (Ej|Ci) · P (Ci)∑Nc
k=1 P (Ej|Ck) · P (Ck)
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with the number of causes Nc. Taking the efficiency εi 6= 0 to detect a cause
Ci in any possible effect into account, the expected number of events n̂ (Ci)
for cause Ci is given by

n̂ (Ci) =
1

εi

NE∑
j=1

n (Ej) · P (Ci|Ej)

with the number of effects NE. It is now necessary to choose an initial
distribution of P0 (Ci). This can be flat prior P0 (Ci) = 1/nC , or in case
of the RooUnfold implementation, the truth distribution from Monte-Carlo
simulation. This initial estimate P0 (Ci) of P (Ci) is used to first calculate
P (Ci|Ej), then n̂ (Ci) and P1 (Ci):

P1 (Ci) =
n̂ (Ci)∑NC
k=1 n̂ (Ck)

This result for P1 (Ci) can be used in another iteration in place of P0 (Ci),
which allows to do the calculation for any number of iterations.



Appendix B

Technical details

B.1 Datasets

This analysis is based on five datasets recorded by the CMS detector. In
addition, two sets of Monte-Carlo datasets, including a full detector simu-
lation, were used. These two samples were produced by the official CMS
Monte-Carlo production team. Another Monte-Carlo sample was privately
produced with the event generator Sherpa (B.4). In order to confirm the
validity of the Monte-Carlo simulation, basic event variables are compared
with data.

Table B.1: Overview of the used datasets

Sample name Run range Dataset Bookkeeping System entry

Data - 1 160329-163869 /Jet/Run2011A-May10ReReco-v1/AOD

Data - 2 165088-168229 /Jet/Run2011A-PromptReco-v4/AOD

Data - 3 170053-172619 /Jet/Run2011A-05Aug2011-v1/AOD

Data - 4 172620-175770 /Jet/Run2011A-PromptReco-v6/AOD

Data - 5 175832-180296 /Jet/Run2011B-PromptReco-v1/AOD
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B.1.1 Overview of the used Monte-Carlo samples

• Pythia 6.424

– Tune Z2

– Phase-space: reweighted, 15 GeV < p̂T < 3000 GeV

– DBS dataset path:
/QCD Pt-15to3000 TuneZ2 Flat 7TeV pythia6/
Fall11-PU S6 START42 V14B-v1/AODSIM

• Herwig++ 2.4.2

– Default tune

– Phase-space: reweighted, 15 GeV < p̂T < 3000 GeV

– DBS dataset path:
/QCD Pt-15to3000 Tune23 Flat 7TeV herwigpp/
Fall11-PU S6 START42 V14B-v2/AODSIM

• Sherpa 1.2.2

– Default tune (UE/Hadronisation setting varied for NP correc-
tions)

– Phase-space: pT > 30, 140, 230, 640, 1070 and 1790 GeV

– DBS dataset path: private sample
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Figure B.1: Validation of basic Monte-Carlo variables - leading jet
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Figure B.2: Validation of basic Monte-Carlo variables - second jet
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Figure B.3: Validation of basic Monte-Carlo variables - third jet
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Figure B.4: Validation of basic Monte-Carlo variables - fourth jet
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B.2 Run and luminosity sections

Since this analysis applies additional run and lumi section selection criteria,
it is necessary to give the list of used run and luminosity sections. Since the
list of luminosity sections is too long to show here, the program to calculate
the list is given instead.

#!/bin/env python

import os, sys, gzip

# RUN == STRING, LUMI == INT

def readRecorded(fnRecorded):

recorded = {}

fp_rec = open(fnRecorded)

print fnRecorded

for line in fp_rec.readlines():

tmp = map(str.strip, line.split(","))

if not tmp:

continue

run, lumi, rec = tmp

recorded.setdefault(run, dict())[int(lumi)] = float(rec)

return recorded

def checkLumi(fnCert, fnRecorded, fnBrokenPSList):

broken = {}

for fnBrokenPS in fnBrokenPSList:

fp_broken = open(fnBrokenPS)

for line in fp_broken:

tmp = map(str.strip, line.split(","))

if not tmp:

continue

run, lumi = tmp

broken.setdefault(run, list()).append(int(lumi))

recorded = []

for fn in fnRecorded:

recorded.append((readRecorded(fn), fn))

fp_miss = open(fn + ".missing", ’w’)
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found = {}

lost = {}

included = {}

fp_cert = open(fnCert)

certDict = eval(fp_cert.read())

for run in certDict:

for lr in certDict[run]:

ls, le = lr

for lumi in range(ls, le + 1):

missing = False

if lumi in broken.get(run, []):

print "BROKEN PS", run, lumi

missing = True

for (rec, src) in recorded:

try:

rec[run][lumi]

except:

fp_miss.write(’%8d %5d %s\n’ % (int(run), int(lumi), src))

print "MISSING", run, lumi, src

missing = True

if not missing:

found.setdefault(run, list()).append([lumi, lumi])

for (rec, src) in recorded:

included.setdefault(src, 0)

included[src] += rec[run][lumi] / 1e6

else:

for (rec, src) in recorded:

lost.setdefault(src, 0)

try:

lost[src] += rec[run][lumi] / 1e6

except:

pass

print fnCert

print "Included", included

print "Lost", lost

fp_out = open(’output.json’, ’w’)

fp_out.write(str(found))
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def doAllCerts(fnRec):

for fn in os.listdir("."):

if fn.startswith("Cert") and fn.endswith(".txt.nice"):

checkLumi(fn, fnRec, ["brokenPS.csv", "excluded.csv"])

fnNew = fn + ".haslumi" #+ fnRec.split(".")[0]

os.system("~/gc/scripts/lumiInfo.py -J output.json > %s" % fnNew)

doAllCerts(["lumiCalc2.recorded.dat", "pixelCalc.recorded.dat"])
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B.3 HLT menus

The analysis uses an adaptive algorithm to choose the optimal set of HLT
paths in each lumi section.

B.3.1 HLT menu ranges

The following list shows the run ranges, in which a certain HLT menu was
active:

/cdaq/physics/Run2011/5e33/v1.4/HLT/V3 178420-178479

/cdaq/physics/Run2011/5e32/v5.3/HLT/V1 160955-161016

/cdaq/physics/Run2011/3e33/v2.3/HLT/V2 176467-176469

/cdaq/physics/Run2011/5e32/v5.2/HLT/V7 160939-160943

/cdaq/physics/Run2011/3e33/v2.2/HLT/V3 176286-176309

/cdaq/physics/Run2011/3e33/v4.0/HLT/V5 177222, 177317, 177318, 177319,
177449, 177452, 177730, 177776, 177782, 177783, 177788, 177789, 177790, 177791,
177875, 177878

/cdaq/physics/Run2011/5e33/v1.4/HLT/V5 178712-179889

/cdaq/physics/Run2011/3e33/v3.1/HLT/V1 176697-177053

/cdaq/physics/Run2011/5e33/v1.4/HLT/V4 178703-178708

/cdaq/physics/Run2011/1.4e33/v1.2/HLT/V3 167551-167913

/cdaq/physics/Run2011/3e33/v1.2/HLT/V1 173657-173692

/cdaq/physics/Run2011/5e32/v5.3/HLT/V2 161103-161176

/cdaq/physics/Run2011/1e33/v1.3/HLT/V12 165364-165364

/cdaq/physics/Run2011/1e33/v1.3/HLT/V13 165402-165633

/cdaq/physics/Run2011/5e33/v2.2/HLT/V4 180241-180252

/cdaq/physics/Run2011/5e32/v8.1/HLT/V8 163296-163334

/cdaq/physics/Run2011/3e33/v4.0/HLT/V6 177718-177719

/cdaq/physics/Run2011/3e33/v5.0/HLT/V1 178098-178380

/cdaq/physics/Run2011/1.4e33/v1.1/HLT/V1 167039-167043

/cdaq/physics/Run2011/5e32/v8.3/HLT/V4 163757-163869

/cdaq/physics/Run2011/5e32/v8.3/HLT/V2 163738-163738

/cdaq/physics/Run2011/5e32/v8.1/HLT/V5 163270-163270

/cdaq/physics/Run2011/5e32/v8.1/HLT/V6 163286-163289

/cdaq/physics/Run2011/1e33/v2.4/HLT/V4 166374-166512

/cdaq/physics/Run2011/1e33/v2.4/HLT/V5 166514-166782

/cdaq/physics/Run2011/1e33/v2.4/HLT/V6 166784-166787

/cdaq/physics/Run2011/1e33/v2.4/HLT/V2 166161-166164

/cdaq/physics/Run2011/5e32/v6.2/HLT/V3 162803-162909

/cdaq/physics/Run2011/5e32/v6.2/HLT/V2 162762-162765

/cdaq/physics/Run2011/3e33/v4.0/HLT/V3 177201-177201

/cdaq/physics/Run2011/3e33/v2.1/HLT/V2 176161-176207

/cdaq/physics/Run2011/1e33/v2.4/HLT/V8 166839-166967
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/cdaq/physics/Run2011/3e33/v4.0/HLT/V2 177074-177184
/cdaq/physics/Run2011/5e32/v6.2/HLT/V4 163046-163261
/cdaq/special/Tests/HighRateTest/v1.0/HLT/V1 175872-175874
/cdaq/physics/Run2011/5e33/v2.2/HLT/V2 179959-180093
/cdaq/physics/Run2011/1e33/v2.3/HLT/V1 165970-165993
/cdaq/physics/Run2011/1e33/v2.3/HLT/V3 166011-166150
/cdaq/physics/Run2011/5e32/v5.1/HLT/V3 160871-160874
/cdaq/physics/Run2011/5e32/v6.1/HLT/V3 161217-161217
/cdaq/physics/Run2011/3e33/v3.0/HLT/V2 176545-176548
/cdaq/physics/Run2011/5e32/v6.1/HLT/V6 161310-161312
/cdaq/physics/Run2011/5e32/v6.1/HLT/V5 161222-161233
/cdaq/physics/Run2011/1e33/v2.5/HLT/V1 166346-166346
/cdaq/physics/Run2011/1.4e33/v1.2/HLT/V1 167078-167284
/cdaq/physics/Run2011/5e32/v4.2/HLT/V7 160577-160578
/cdaq/physics/Run2011/5e32/v4.2/HLT/V6 160431-160431
/cdaq/physics/Run2011/3e33/v1.1/HLT/V4 173380-173439
/cdaq/physics/Run2011/3e33/v2.0/HLT/V7 175860, 175863, 175865, 175866,

175877, 175881, 175886, 175887, 175888, 175906, 175910, 175921
/cdaq/physics/Run2011/1e33/v1.3/HLT/V6 165205-165205
/cdaq/physics/Run2011/1e33/v1.3/HLT/V7 165208-165208
/cdaq/physics/Run2011/3e33/v2.1/HLT/V1 175973-176023
/cdaq/physics/Run2011/3e33/v1.1/HLT/V1 173236-173241
/cdaq/physics/Run2011/1e33/v1.3/HLT/V2 165088-165121
/cdaq/physics/Run2011/3e33/v1.1/HLT/V3 173243-173243
/cdaq/physics/Run2011/2e33/v1.2/HLT/V7 172478-173198
/cdaq/physics/Run2011/2e33/v1.2/HLT/V4 171219-172033
/cdaq/physics/Run2011/2e33/v1.2/HLT/V5 172163-172411
/cdaq/physics/Run2011/5e32/v8.2/HLT/V3 163337-163668

/cdaq/physics/Run2011/2e33/v1.2/HLT/V1 170826-171178
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B.3.2 HLT menu trigger list

The following list shows which single jet HLT paths are active as a function
of the HLT menu name. In case all versions of a certain menu is using the
same set of HLT paths, this is marked with a wild-card:

/cdaq/physics/Run2011/3e33/v3.0/HLT/V2, /cdaq/physics/Run2011/3e33/v4.0/HLT/V5,
/cdaq/physics/Run2011/3e33/v4.0/HLT/V6, /cdaq/physics/Run2011/3e33/v4.0/HLT/V2,
/cdaq/physics/Run2011/3e33/v4.0/HLT/V3, /cdaq/physics/Run2011/3e33/v5.0/HLT/V1,
/cdaq/physics/Run2011/3e33/v3.1/HLT/V1

HLT Jet30 v6, HLT Jet60 v6, HLT Jet110 v6, HLT Jet190 v6, HLT Jet240 v6,
HLT Jet300 v6, HLT Jet370 v7, HLT Jet800 v2

/cdaq/physics/Run2011/3e33/v2.3/HLT/V2, /cdaq/physics/Run2011/3e33/v1.2/HLT/V1,
/cdaq/physics/Run2011/3e33/v2.1/HLT/V2, /cdaq/physics/Run2011/3e33/v1.1/HLT/V4,
/cdaq/physics/Run2011/3e33/v2.0/HLT/V7, /cdaq/special/Tests/HighRateTest/v1.0/HLT/V1,
/cdaq/physics/Run2011/3e33/v2.2/HLT/V3, /cdaq/physics/Run2011/3e33/v2.1/HLT/V1,
/cdaq/physics/Run2011/3e33/v1.1/HLT/V1, /cdaq/physics/Run2011/3e33/v1.1/HLT/V3

HLT Jet30 v6, HLT Jet60 v6, HLT Jet110 v6, HLT Jet190 v6, HLT Jet240 v6,
HLT Jet300 v5, HLT Jet370 v6, HLT Jet800 v1

/cdaq/physics/Run2011/1e33/v2.4/HLT/V4, /cdaq/physics/Run2011/1e33/v2.4/HLT/V5,
/cdaq/physics/Run2011/1e33/v2.4/HLT/V6, /cdaq/physics/Run2011/1e33/v2.4/HLT/V2,
/cdaq/physics/Run2011/1e33/v2.4/HLT/V8, /cdaq/physics/Run2011/1e33/v2.3/HLT/V1,
/cdaq/physics/Run2011/1e33/v2.3/HLT/V3

HLT Jet30 v4, HLT Jet60 v4, HLT Jet80 v4, HLT Jet110 v4, HLT Jet150 v4,
HLT Jet190 v4, HLT Jet240 v4, HLT Jet300 v3, HLT Jet370 v4

/cdaq/physics/Run2011/5e33/*

HLT Jet30 v9, HLT Jet60 v9, HLT Jet110 v9, HLT Jet190 v9, HLT Jet240 v9,
HLT Jet300 v9, HLT Jet370 v10, HLT Jet800 v5

/cdaq/physics/Run2011/1e33/v2.5/HLT/*

HLT Jet30 v5, HLT Jet60 v5, HLT Jet80 v5, HLT Jet110 v5, HLT Jet150 v5,
HLT Jet190 v5, HLT Jet240 v5, HLT Jet300 v4, HLT Jet370 v5

/cdaq/physics/Run2011/5e32/v5.2/HLT/V7, /cdaq/physics/Run2011/5e32/v5.3/HLT/V1,
/cdaq/physics/Run2011/5e32/v5.3/HLT/V2, /cdaq/physics/Run2011/5e32/v6.2/HLT/V3,
/cdaq/physics/Run2011/5e32/v6.2/HLT/V2, /cdaq/physics/Run2011/5e32/v4.2/HLT/V7,
/cdaq/physics/Run2011/5e32/v4.2/HLT/V6, /cdaq/physics/Run2011/5e32/v5.1/HLT/V3,
/cdaq/physics/Run2011/5e32/v6.1/HLT/V3, /cdaq/physics/Run2011/5e32/v6.2/HLT/V4,
/cdaq/physics/Run2011/5e32/v6.1/HLT/V6, /cdaq/physics/Run2011/5e32/v6.1/HLT/V5

HLT Jet30 v1, HLT Jet60 v1, HLT Jet80 v1, HLT Jet110 v1, HLT Jet150 v1,
HLT Jet190 v1, HLT Jet240 v1, HLT Jet370 v1

/cdaq/physics/Run2011/5e32/v8.1/HLT/V8, /cdaq/physics/Run2011/5e32/v8.1/HLT/V6,
/cdaq/physics/Run2011/5e32/v8.3/HLT/V4, /cdaq/physics/Run2011/5e32/v8.3/HLT/V2,
/cdaq/physics/Run2011/5e32/v8.1/HLT/V5, /cdaq/physics/Run2011/5e32/v8.2/HLT/V3

HLT Jet30 v2, HLT Jet60 v2, HLT Jet80 v2, HLT Jet110 v2, HLT Jet150 v2,
HLT Jet190 v2, HLT Jet240 v2, HLT Jet300 v1, HLT Jet370 v2
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/cdaq/physics/Run2011/1e33/v1.3/HLT/*
HLT Jet30 v3, HLT Jet60 v3, HLT Jet80 v3, HLT Jet110 v3, HLT Jet150 v3,

HLT Jet190 v3, HLT Jet240 v3, HLT Jet300 v2, HLT Jet370 v3
/cdaq/physics/Run2011/1.4e33/v1.2/HLT/V3, /cdaq/physics/Run2011/1.4e33/v1.2/HLT/V1,

/cdaq/physics/Run2011/2e33/v1.2/HLT/V7, /cdaq/physics/Run2011/2e33/v1.2/HLT/V4,
/cdaq/physics/Run2011/2e33/v1.2/HLT/V5, /cdaq/physics/Run2011/2e33/v1.2/HLT/V1

HLT Jet30 v6, HLT Jet60 v6, HLT Jet80 v6, HLT Jet110 v6, HLT Jet150 v6,
HLT Jet190 v6, HLT Jet240 v6, HLT Jet300 v5, HLT Jet370 v6, HLT Jet800 v1

/cdaq/physics/Run2011/1.4e33/v1.1/HLT/*

HLT Jet30 v4, HLT Jet60 v4, HLT Jet80 v4, HLT Jet110 v4, HLT Jet150 v4,

HLT Jet190 v4, HLT Jet240 v4, HLT Jet300 v3, HLT Jet370 v4, HLT Jet800 v1
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B.4 Monte Carlo configuration

B.4.1 Sherpa

There are two relevant settings in Sherpa for the determination of the non-
perturbative corrections. The first is the FRAGMENTATION setting which is
either Off or Ahadic, the name of the Sherpa module responsible for the
hadronization effects. The second is parameter is MI HANDLER, which is either
None or Amisic, where Amisic is the name of the multiple parton interac-
tion implementation in Sherpa. To generate the non-perturbative correction
samples, the events are simulated once with both parameters switched on
and off. The phase space The general configuration of the generator used the
following settings:

(run){

EVENTS = 100000

EVENT_MODE = HepMC

! HEPMC2_GENEVENT_OUTPUT = hepmc2_genevent_out

WRITE_MAPPING_FILE 3;

}(run)

(beam){

BEAM_1 = 2212; BEAM_ENERGY_1 = 3500;

BEAM_2 = 2212; BEAM_ENERGY_2 = 3500;

}(beam)

(processes){

Process 93 93 -> 93 93 93{1}

Max_Order_EW 0;

! Order_EW 0;

CKKW sqr(30/E_CMS)

Integration_Error 0.01 {5};

End process;

}(processes)

(selector){

NJetFinder 2 640. 0 0.4

}(selector)

(isr){

PDF_LIBRARY = LHAPDFSherpa
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PDF_SET = cteq6ll.LHpdf

PDF_SET_VERSION = 1

PDF_GRID_PATH = PDFsets

}(isr)

(me){

ME_SIGNAL_GENERATOR = Internal Comix

}(me)

B.4.2 Pythia

The Pythia samples are taken from the official production of the CMS collab-
oration. The parameters of the underlying event are set to the Z2 tune. The
Z2 tune is the official Pythia tune of CMS and is described by the parameters
below:

pythiaUESettings = cms.vstring(

’MSTJ(11)=3 ! Choice of the fragmentation function’,

’MSTJ(22)=2 ! Decay those unstable particles’,

’PARJ(71)=10. ! for which ctau 10 mm’,

’MSTP(2)=1 ! which order running alphaS’,

’MSTP(33)=0 ! no K factors in hard cross sections’,

’MSTP(51)=7 ! structure function chosen’,

’MSTP(81)=1 ! multiple parton interactions 1 is Pythia default’,

’MSTP(82)=4 ! Defines the multi-parton model’,

’MSTU(21)=1 ! Check on possible errors during program execution’,

’PARP(82)=1.9409 ! pt cutoff for multiparton interactions’,

’PARP(89)=1960. ! sqrts for which PARP82 is set’,

’PARP(83)=0.5 ! Multiple interactions: matter distr. parameter’,

’PARP(84)=0.4 ! Multiple interactions: matter distr. parameter’,

’PARP(90)=0.16 ! Multiple interactions: rescaling power’,

’PARP(67)=2.5 ! amount of initial-state radiation’,

’PARP(85)=1.0 ! gluon prod. mechanism in MI’,

’PARP(86)=1.0 ! gluon prod. mechanism in MI’,

’PARP(62)=1.25 ! ’,

’PARP(64)=0.2 ! ’,

’MSTP(91)=1 ! ’,

’PARP(91)=2.1 ! kt distribution’,

’PARP(93)=15.0 ! ’

)
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processParameters = cms.vstring(

’MSEL=1 ! QCD high pT processes’,

’CKIN(3)=1000. ! minimum pt hat for hard interactions’,

’CKIN(4)=1400. ! maximum pt hat for hard interactions’

)

parameterSets = cms.vstring(

"pythiaUESettings",

"processParameters"

)

B.4.3 Herwig++

The configuration used for the generation of the Herwig++ Monte-Carlo
sample is shown below:

basicSetup = cms.vstring(

’cd /Herwig/Generators’,

’set LHCGenerator:NumberOfEvents 10000000’,

’set LHCGenerator:DebugLevel 1’,

’set LHCGenerator:PrintEvent 0’,

’set LHCGenerator:MaxErrors 10000’,

’cd /’,

),

cm7TeV = cms.vstring(

’cd /Herwig/Generators’,

’set LHCGenerator:EventHandler:LuminosityFunction:Energy 7000.0’,

’set /Herwig/Shower/Evolver:IntrinsicPtGaussian 2.2*GeV’

),

QCDParameters = cms.vstring(

’cd /Herwig/MatrixElements/’,

’insert SimpleQCD:MatrixElements[0] MEQCD2to2’,

’cd /’,

’set /Herwig/Cuts/JetKtCut:MinKT 15*GeV’,

’set /Herwig/Cuts/JetKtCut:MaxKT 3000*GeV’,

’set /Herwig/UnderlyingEvent/MPIHandler:Algorithm 1’,

),

parameterSets = cms.vstring(

’+basicSetup’,
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’+cm7TeV’,

’+QCDParameters’,

’+setParticlesStableForDetector’,

)
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Appendix C

Results for different jet
algorithms

C.1 Three-jet mass resolution

This section contains the tables with the fitting parameters and covariance
matrices for the three-jet mass resolution function 6.1.

Absolute cut Relative cut

N [ GeV] −21.481± 0.55 −18.252± 1.1

S [
√

GeV] 1.1457± 0.031 1.8398± 0.36
C [1] 0.014982± 0.00083 0.013592± 0.0024
s [1] 0.052171± 0.0042 −0.084198± 0.06

Table C.1: Table of parameters for the three-jet mass resolution function 6.1
(Anti-kT 0.5, |ymax| ≤ 1).
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N S C s

1.24752 −0.401196 −0.00246858 0.0652372
−0.401196 0.132398 0.000848445 −0.0216427
−0.00246858 0.000848445 5.95342e− 06 −0.00014007

0.0652372 −0.0216427 −0.00014007 0.00354213

Table C.2: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, |ymax| ≤ 1, Relative cut).

N S C s

0.298062 −0.0157618 0.000415947 0.00180102
−0.0157618 0.00097333 −2.54503e− 05 −0.000124774
0.000415947 −2.54503e− 05 6.82167e− 07 3.14602e− 06
0.00180102 −0.000124774 3.14602e− 06 1.77172e− 05

Table C.3: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, |ymax| ≤ 1, Absolute cut).
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Absolute cut Relative cut

N [ GeV] −29.396± 2.5 −23.517± 1.1

S [
√

GeV] 1.6437± 0.66 2.3648± 0.36
C [1] 0.007877± 0.011 0.0033116± 0.012
s [1] 0.010764± 0.12 −0.090331± 0.046

Table C.4: Table of parameters for the three-jet mass resolution function 6.1
(Anti-kT 0.5, 1 < |ymax| ≤ 2).

N S C s

1.1634 −0.387275 −0.0117481 0.0489016
−0.387275 0.132296 0.00418067 −0.0167969
−0.0117481 0.00418067 0.00014442 −0.000536134
0.0489016 −0.0167969 −0.000536134 0.00213532

Table C.5: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, 1 < |ymax| ≤ 2, Relative cut).

N S C s

6.02934 −1.59195 −0.0254264 0.282989
−1.59195 0.429647 0.007057 −0.0766674
−0.0254264 0.007057 0.000121102 −0.00126614

0.282989 −0.0766674 −0.00126614 0.0136905

Table C.6: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, 1 < |ymax| ≤ 2, Absolute cut).
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Absolute cut Relative cut

N [ GeV] −30.483± 0.61 −20.419± 1.1

S [
√

GeV] −1.3501± 0.031 0.97715± 0.21
C [1] 0.0026182± 0.011 −0.0020661± 0.059
s [1] 0.069384± 0.0068 0.18785± 0.072

Table C.7: Table of parameters for the three-jet mass resolution function 6.1
(Anti-kT 0.5, 2 < |ymax| ≤ 3).

N S C s

1.21843 −0.230707 0.0573999 0.0766671
−0.230707 0.0461294 −0.0121206 −0.0154745
0.0573999 −0.0121206 0.00342727 0.00411211
0.0766671 −0.0154745 0.00411211 0.00520067

Table C.8: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, 2 < |ymax| ≤ 3, Relative cut).

N S C s

0.368765 0.00981033 0.00537498 −0.000672039
0.00981033 0.000964872 6.00452e− 05 0.000156842
0.00537498 6.00452e− 05 0.000122844 −3.86844e− 05
−0.000672039 0.000156842 −3.86844e− 05 4.68819e− 05

Table C.9: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.5, 2 < |ymax| ≤ 3, Absolute cut).
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Absolute cut Relative cut

N [ GeV] −24.581± 0.67 −44.721± 3.4

S [
√

GeV] 3.568± 0.089 22.135± 3.5
C [1] −0.022794± 0.00048 −0.019745± 0.00056
s [1] −0.28388± 0.0069 −0.72045± 0.034

Table C.10: Table of parameters for the three-jet mass resolution function
6.1 (Anti-kT 0.7, |ymax| ≤ 1).

N S C s

11.4599 −11.9498 0.00130314 0.115036
−11.9498 12.5253 −0.00144303 −0.12098

0.00130314 −0.00144303 3.14947e− 07 1.44524e− 05
0.115036 −0.12098 1.44524e− 05 0.00117107

Table C.11: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, |ymax| ≤ 1, Relative cut).

N S C s

0.442225 −0.0317081 −0.000237715 −0.000354317
−0.0317081 0.00794517 5.24218e− 06 −0.000487362
−0.000237715 5.24218e− 06 2.28935e− 07 1.52921e− 06
−0.000354317 −0.000487362 1.52921e− 06 4.79459e− 05

Table C.12: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, |ymax| ≤ 1, Absolute cut).
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Absolute cut Relative cut

N [ GeV] −20.789± 0.78 −32.111± 1.6

S [
√

GeV] 2.7029± 0.074 5.0552± 0.78
C [1] 0.027475± 0.0005 0.0015074± 0.021
s [1] −0.20417± 0.0078 −0.27387± 0.044

Table C.13: Table of parameters for the three-jet mass resolution function
6.1 (Anti-kT 0.7, 1 < |ymax| ≤ 2).

N S C s

2.57861 −1.24651 −0.0305616 0.0691266
−1.24651 0.611605 0.0155566 −0.0340538
−0.0305616 0.0155566 0.000443169 −0.00087561
0.0691266 −0.0340538 −0.00087561 0.00189829

Table C.14: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, 1 < |ymax| ≤ 2, Relative cut).

N S C s

0.604152 −0.0301375 0.000298259 −0.000567484
−0.0301375 0.00548686 −4.45512e− 06 −0.000453962
0.000298259 −4.45512e− 06 2.50008e− 07 −1.85652e− 06
−0.000567484 −0.000453962 −1.85652e− 06 6.06485e− 05

Table C.15: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, 1 < |ymax| ≤ 2, Absolute cut).
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Absolute cut Relative cut

N [ GeV] −36.225± 4.4 −25.607± 1.6

S [
√

GeV] 2.1869± 1.3 1.8601± 0.46
C [1] 0.0039638± 0.037 0.018807± 0.0064
s [1] −0.039513± 0.18 0.02616± 0.078

Table C.16: Table of parameters for the three-jet mass resolution function
6.1 (Anti-kT 0.7, 2 < |ymax| ≤ 3).

N S C s

2.68548 −0.746476 −0.00960677 0.125045
−0.746476 0.214012 0.00286664 −0.0360625
−0.00960677 0.00286664 4.12616e− 05 −0.000487412

0.125045 −0.0360625 −0.000487412 0.0060844

Table C.17: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, 2 < |ymax| ≤ 3, Relative cut).

N S C s

19.2301 −5.85842 −0.149916 0.767695
−5.85842 1.82127 0.0480902 −0.239572
−0.149916 0.0480902 0.00134168 −0.00636606
0.767695 −0.239572 −0.00636606 0.0315374

Table C.18: Table of covariances for the three-jet mass resolution parameters
(Anti-kT 0.7, 2 < |ymax| ≤ 3, Absolute cut).
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C.2 Three-jet mass comparison

(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.1715+0.0692

−0.0765.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 1.1519+0.1034

−0.0839.

Figure C.1: Theory data comparison (Anti-kT 0.5, Absolute cut,
MSTW2008)

(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.0541+0.0869

−0.0746.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 1.0606+0.0956

−0.0815.

Figure C.2: Theory data comparison (Anti-kT 0.5, Absolute cut, HERA-
PDF15)
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(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.1551+0.0976

−0.0776.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 1.1434+0.1182

−0.0839.

Figure C.3: Theory data comparison (Anti-kT 0.5, Absolute cut, NNPDF
2.1 - NNLO)

(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.1510+0.1049

−0.0826.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 1.1478+0.1107

−0.0888.

Figure C.4: Theory data comparison (Anti-kT 0.5, Absolute cut, CT10)
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(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.1513+0.1044

−0.0839.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 1.1537+0.1006

−0.0901.

Figure C.5: Theory data comparison (Anti-kT 0.5, Absolute cut, CTEQ66)
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(a) Rapidity bin |ymax| ≤ 1
normalisation factor 1.0043+0.0765

−0.0656.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 0.9194+0.0711

−0.0617.

Figure C.6: Theory data comparison (Anti-kT 0.7, Absolute cut,
MSTW2008)

(a) Rapidity bin |ymax| ≤ 1
normalisation factor 0.8998+0.0679

−0.0595.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 0.8457+0.0682

−0.0602.

Figure C.7: Theory data comparison (Anti-kT 0.7, Absolute cut, HERA-
PDF15)
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(a) Rapidity bin |ymax| ≤ 1
normalisation factor 0.9877+0.0747

−0.0641.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 0.9128+0.0703

−0.0612.

Figure C.8: Theory data comparison (Anti-kT 0.7, Absolute cut, NNPDF
2.1 - NNLO)

(a) Rapidity bin |ymax| ≤ 1
normalisation factor 0.9821+0.0791

−0.0674.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 0.9146+0.0751

−0.0648.

Figure C.9: Theory data comparison (Anti-kT 0.7, Absolute cut, CT10)
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(a) Rapidity bin |ymax| ≤ 1
normalisation factor 0.9823+0.0806

−0.0685.
(b) Rapidity bin 1 < |ymax| ≤ 2
normalisation factor 0.9199+0.0769

−0.0661.

Figure C.10: Theory data comparison (Anti-kT 0.7, Absolute cut, CTEQ66)
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Appendix D

Uncertainties

This appendix gives an overview of the theory and measurement uncertainties
for the different jet sizes, rapidity regions and cut scenarios. The

D.1 Theory Uncertainties

In the following, the theory uncertainties are presented. While the statis-
tical and non-perturbative uncertainties are the same for the different cut
scenarios, rapidity bins and jet sizes, the PDF, αs and scale uncertainties are
determined for each PDF with the appropriate recipe.

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.1: Theory uncertainties (Anti-kT 0.5, Absolute cut, MSTW2008)
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(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.2: Theory uncertainties (Anti-kT 0.5, Absolute cut, HERAPDF15)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.3: Theory uncertainties (Anti-kT 0.5, Absolute cut, NNPDF 2.1 -
NNLO)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.4: Theory uncertainties (Anti-kT 0.5, Absolute cut, CT10)
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(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.5: Theory uncertainties (Anti-kT 0.5, Absolute cut, CTEQ66)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.6: Theory uncertainties (Anti-kT 0.7, Absolute cut, MSTW2008)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.7: Theory uncertainties (Anti-kT 0.7, Absolute cut, HERAPDF15)
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(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.8: Theory uncertainties (Anti-kT 0.7, Absolute cut, NNPDF 2.1 -
NNLO)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.9: Theory uncertainties (Anti-kT 0.7, Absolute cut, CT10)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.10: Theory uncertainties (Anti-kT 0.7, Absolute cut, CTEQ66)
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D.2 Measurement and covariance matrices

Numerical results of the three-jet mass measurements will be made available
on the Durham HepData[122] web-page in tabular form together with co-
variance matrices. The covariance matrices will contain information about
the measurement uncertainties and the correlation between three-jet mass
bins. This will be done as part of the publication process of the CMS physics
analysis summary [123], which is derived from the work presented in this
thesis.

D.3 Measurement uncertainties

This section gives an overview of the measurement uncertainties. The major
uncertainties are the jet energy scale uncertainty, the unfolding uncertainty
(which includes both the statistical uncertainty and the algorithmic unfolding
uncertainty) and the luminosity uncertainty. The uncertainties are shown in
a figure as a function of the three-jet mass range and as a table, which
contains the average, minimum and maximum value for each uncertainty
source in the three-jet mass range between 500 and 3000 GeV.
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500− 3000 GeV Min Average Max
Total 6.4% 12.0% 36.0%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 2.7% 8.9% 33.7%

Statistical 0.95% 4.0% 22.8%
Jet energy scale 2.8% 6.0% 12.0%

Table D.1: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.5, |ymax| ≤ 1, Relative
cut).

Figure D.11: Overview of the measurement uncertainties (Anti-kT 0.5,
|ymax| ≤ 1, Relative cut)
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500− 3000 GeV Min Average Max
Total 6.3% 9.9% 21.2%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 2.8% 6.3% 19.1%

Statistical 0.7% 3.6% 15.6%
Jet energy scale 3.9% 5.9% 12.2%

Table D.2: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.5, |ymax| ≤ 1, Absolute
cut).

Figure D.12: Overview of the measurement uncertainties (Anti-kT 0.5,
|ymax| ≤ 1, Absolute cut)
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500− 3000 GeV Min Average Max
Total 5.8% 11.0% 20.9%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 3.5% 6.6% 15.0%

Statistical 1.7% 3.4% 5.6%
Jet energy scale 2.4% 7.6% 14.0%

Table D.3: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.5, 1 < |ymax| ≤ 2,
Relative cut).

Figure D.13: Overview of the measurement uncertainties (Anti-kT 0.5, 1 <
|ymax| ≤ 2, Relative cut)
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500− 3000 GeV Min Average Max
Total 6.5% 11.8% 19.0%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 4.0% 7.7% 14.1%

Statistical 1.6% 4.5% 10.4%
Jet energy scale 1.8% 7.2% 13.0%

Table D.4: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.5, 1 < |ymax| ≤ 2,
Absolute cut).

Figure D.14: Overview of the measurement uncertainties (Anti-kT 0.5, 1 <
|ymax| ≤ 2, Absolute cut)
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500− 3000 GeV Min Average Max
Total 7.1% 12.9% 35.7%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 2.9% 9.6% 30.0%

Statistical 0.95% 3.9% 17.2%
Jet energy scale 3.0% 6.6% 25.5%

Table D.5: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.7, |ymax| ≤ 1, Relative
cut).

Figure D.15: Overview of the measurement uncertainties (Anti-kT 0.7,
|ymax| ≤ 1, Relative cut)
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500− 3000 GeV Min Average Max
Total 6.7% 10.6% 23.2%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 2.6% 6.5% 19.1%

Statistical 0.7% 3.7% 13.6%
Jet energy scale 4.3% 6.8% 17.5%

Table D.6: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.7, |ymax| ≤ 1, Absolute
cut).

Figure D.16: Overview of the measurement uncertainties (Anti-kT 0.7,
|ymax| ≤ 1, Absolute cut)
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500− 3000 GeV Min Average Max
Total 7.3% 12.2% 22.1%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 4.3% 7.2% 14.4%

Statistical 1.6% 3.4% 5.8%
Jet energy scale 3.1% 8.6% 17.8%

Table D.7: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.7, 1 < |ymax| ≤ 2,
Relative cut).

Figure D.17: Overview of the measurement uncertainties (Anti-kT 0.7, 1 <
|ymax| ≤ 2, Relative cut)
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500− 3000 GeV Min Average Max
Total 7.4% 12.2% 19.3%

Luminosity 4.0% 4.0% 4.0%
Unfolding and statistical 3.5% 7.3% 13.2%

Statistical 1.5% 4.1% 8.5%
Jet energy scale 2.2% 8.4% 17.8%

Table D.8: Tabular overview of the measurement uncertainties for the three-
jet mass bins between 500 and 3000 GeV - (Anti-kT 0.7, 1 < |ymax| ≤ 2,
Absolute cut).

Figure D.18: Overview of the measurement uncertainties (Anti-kT 0.7, 1 <
|ymax| ≤ 2, Absolute cut)
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D.3.1 Jet Energy Uncertainties

The shown jet energy uncertainties in this analysis are smoothed with a
polynomial interpolation of degree seven. The smoothing polynomial is fitted
as a function of the logarithmic three-jet mass to the uncertainties. This is
done since the procedure, which was used to derive the uncertainties can be
affected by binning effects. Since the three-jet mass bins are both sparsely
and unevenly populated, a small jet energy scale variation due to one of the
uncorrelated jet energy scale uncertainty sources can sometimes lead to a
step-like behaviour at the bin edges or even an unchanged bin content for
events populating the bin centre.

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.19: Overview of the dominant jet energy scale uncertainties (Anti-
kT 0.5, Relative cut)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.20: Overview of the dominant jet energy scale uncertainties (Anti-
kT 0.5, Absolute cut)
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(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.21: Overview of the dominant jet energy scale uncertainties (Anti-
kT 0.7, Relative cut)

(a) |ymax| ≤ 1 (b) 1 < |ymax| ≤ 2

Figure D.22: Overview of the dominant jet energy scale uncertainties (Anti-
kT 0.7, Absolute cut)
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D.3.2 Unfolding Uncertainties

The unfolding uncertainties also include the statistical uncertainties. The
results are taken from unfolding toy samples, which independently varied
the input histograms and the response matrix of the detector. Using these
samples, both the propagated statistical uncertainty and the algorithmic un-
certainty for the unfolding method can be determined.
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(b) 1 < |ymax| ≤ 2

Figure D.23: Statistical and algorithmic unfolding uncertainty (Anti-kT 0.5,
Relative cut)
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(b) 1 < |ymax| ≤ 2

Figure D.24: Statistical and algorithmic unfolding uncertainty (Anti-kT 0.5,
Absolute cut)
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Figure D.25: Statistical and algorithmic unfolding uncertainty (Anti-kT 0.7,
Relative cut)
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Figure D.26: Statistical and algorithmic unfolding uncertainty (Anti-kT 0.7,
Absolute cut)
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sehr dankbar.

Ebenso danke ich Herrn Prof. Dr. Wim de Boer für die Übernahme des
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