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Chapter 1

Introduction

In the last couple of years, market participants have been increasingly trading energy

derivative contracts. This shows up in a strong growth in trading volumes of major en-

ergy benchmark contracts from less than 500 million traded contracts in 2007 to more

than 800 million traded contracts in 2011.1 The trading motive differs significantly be-

tween physical (e.g., producers or utilities) and non-physical traders (e.g., banks or hedge

funds).2 Physical traders, on the one hand, hold large and complex portfolios consisting

of physical assets as well as capital intensive investment projects. These traders have a

natural incentive to maximize the profits of their physical assets through market-based op-

eration strategies and to actively manage their energy price exposures in order to reduce

their funding costs and default risks (see Acharya, Lochstoer, and Ramadorai (2011)).

This makes it necessary for them to determine market-based values for embedded real op-

tions in physical assets, to quantify risk-return profiles, and to deduce appropriate hedging

strategies.

The implementation of trading and hedging strategies depends crucially on the underlying

model specification, where omitted risk factors can have a strong impact on the pricing

results, hedge ratios, and risk measures of hedged and unhedged trading positions. It

turns out, however, that it is quite difficult to develop a suitable model for energy price

dynamics that accounts for the specific features of physical energy trading (e.g., storage

costs and limited delivery rates), that appropriately captures the time series properties

of the underlying price process (e.g., clustered large returns and price jumps), and that

remains tractable from an application point of view. The well-known collapse of Metallge-

sellschaft and the near bankruptcy of Semgroup are two prominent examples that reveal

1See www.futuresindustry.com for details.

2In the following, market participants are denoted as non-physical traders if physical energy trading
is not their core business, even if they are invested in physical assets as large banks are.

1



CHAPTER 1. INTRODUCTION 2

the possible implications of underestimating or mismanaging energy price risk.

Non-physical traders, on the other hand, seek for investment opportunities in order to

diversify their asset portfolios or to generate excess returns in a low interest rates envi-

ronment.3 These non-physical traders satisfy physical traders’ hedging demands and try

to profit from risk premia in futures and option markets that are paid by risk-averse physi-

cal traders to hedge their natural trading positions. For instance, Trolle and Schwartz

(2010) find that short selling suitable option portfolios, which can be used as hedging in-

struments against an increase in price uncertainty, led to sizable Sharpe ratios during the

years 1996-2006. The risk premia estimates, however, strongly depend on the underlying

model specification, where missing risk factors can lead to spurious estimation results (see

Branger and Schlag (2008)).

In summary, physical and non-physical traders (i) require an in-depth understanding of

the role of different risk factors and their associated risk premia in energy markets, (ii)

have to be able to set up a modeling approach that captures the specific features of

physical energy trading, and (iii) are in need of applicable tools for pricing and efficiently

managing financial and physical trading positions.

This thesis addresses these challenges and makes a contribution to each of the three issues.

Chapter 2 facilitates a distinct understanding of how to distinguish different risk factors.

Chapter 3 provides a new modeling approach that links physical and financial energy

markets. Chapter 4 offers insights on optimal operation strategies for storage facilities.

While we can rely on stochastic modeling approaches for a single futures contract to ad-

dress the role of risk premia in Chapter 2, the common price behavior of multiple futures

contracts and their linkage through energy market frictions becomes important in Chapter

3. In addition to these stochastic modeling approaches, dynamic stochastic optimization

tools become critical in Chapter 4, when it comes to exploiting the flexibility inherent in

physical assets through market-based operation strategies.

We first consider stochastic modeling approaches for a single futures contract (see Hain,

Uhrig-Homburg, and Unger (2012)). Here, an appropriate price process still satisfies

standard no-arbitrage conditions (e.g., martingale property under the pricing measure),

and the specific features of physical energy trading only influence the model choice indi-

rectly through their impact on the return distribution of the underlying energy commodity.

In the energy finance literature, volatility and price jump risks, along with the fundamen-

tal diffusive price risk, are the most prominent risk factors. The pricing and hedging

performances of stochastic volatility models with jumps are only investigated in very few

empirical studies (see, for example, Trolle and Schwartz (2009)) due to the similar impact

that volatility and jump risk have on the risk-neutral return distribution. This makes it

3For example, commodity index investors invested about 190 billion USD in early 2012 (see Falkowski
(2011)).
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difficult to robustly separate both risk factors, where the robustness of estimation results

can be increased if both return and option market data are considered in a statistical

filtering approach. However, complex option pricing formulas make it difficult to ex-

ploit available option market data in a computationally economic manner. We overcome

this estimation problem by incorporating option market information through a suitably

weighted option portfolio, instead of multiple single option prices. This allows to signifi-

cantly reduce filtering errors of latent volatility states without increasing computational

time considerably.

In Chapter 2, we apply this estimation approach to obtain a refined picture of volatility

and jump risk for the crude oil market from different perspectives. Namely, we estimate

a stochastic volatility model with jumps and its nested model specifications based on a

comprehensive data set of short-dated crude oil futures and option contracts from 1985

to 2010 in order to answer the following important questions:

(i) Is volatility and/or jump risk priced in the crude oil option market?

(ii) If so, what are the risk premia for taking over volatility and jump risk?

(iii) What is the role of volatility risk for hedging strategies?

(iv) How risky are hedge portfolios if the underlying risk factors are actively managed?

Our empirical results show that a stochastic volatility component is required to capture

strongly fluctuating implied volatility levels over time, but volatility risk alone is not able

to reflect pronounced implied volatility smiles of short-dated option contracts. This is

because implied volatility smiles in stochastic volatility models flatten, whereas market

smiles become more pronounced when approaching maturity. This suggests that another

temporary risk factor is priced in the option market. In a stochastic volatility model with

jumps, the jump component is able to reproduce pronounced implied volatility smiles of

short-dated option contracts, which reduces option pricing errors substantially compared

to pure stochastic volatility models. This indicates that both jump and volatility risk are

reflected in crude oil option prices.

In addition, we examine the market price of volatility and jump risk in our data set. This

is particularly important for physical traders who want to quantify the expected costs of

active risk management and for non-physical traders looking for information about the

risk-return profile of a potential investment in the crude oil market. Our findings on

risk premia show that current empirical results should be reconsidered (see, for example,

Doran and Ronn (2008)). It turns out that jump risk is priced with a significant premium,

while no significant premium is paid for taking over volatility risk in the crude oil market.

Further, we investigate the hedging performance of the different model specifications.
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Our hedging results show that hedging errors can be reduced if both price and volatility

risk (delta-vega hedging strategy), and not just price risk (delta hedging strategy), are

actively managed. In addition, we find that pure stochastic volatility models drastically

underestimate the risk of hedge portfolios, while jump diffusion models are much better

able to capture the risk inherent in hedge portfolios.

These empirical results can then be used to specify a suitable modeling approach for the

pricing and hedging of derivative instruments that are written on a single underlying. It

is however not possible to value important real option contracts based on our tested mod-

eling approaches. The reason is that the market value of important physical assets and

flexible delivery contracts depends on the common stochastic behavior of multiple futures

prices instead of a single one. This makes it necessary to set up a consistent stochastic

model for the entire futures price curve that accounts for the specific features of physical

energy markets such as futures contracts having delivery periods instead of delivery dates.

In the third chapter, we develop a novel modeling framework for the common stochastic

price behavior of futures contracts with arbitrary delivery periods (see Uhrig-Homburg

and Unger (2012)). The model is able to take specific market frictions into account and

can be easily calibrated to market data. The core idea behind obtaining a consistent mod-

eling framework is to capture the stochastic behavior of traded futures contracts with fixed

non-overlapping delivery periods through a standard market model and to price all other

instruments relative to them based on a smooth interpolation approach. This allows one

to specify the underlying price dynamics based on observable market data instead of on

latent factors, which simplifies the estimation problem significantly. The interpolation

function completes our modeling approach, whilst providing the link between theoretical

futures prices that refer to delivery dates and real futures prices that refer to delivery

periods. This constructive approach results in a multi-factor spot price process. The spot

price dynamics is fully specified by traded instruments instead of latent factors and is

applicable for the pricing and hedging of all important energy derivative contracts.

We first introduce the formal model framework and then give some general remarks on

its implementation for the U.S. crude oil and natural gas markets. In addition, we discuss

a concrete practical application of our modeling approach for valuing a natural storage

contract. This requires to first consider the contract design of energy storage contracts.

In most cases, standard storage contracts give their holders the right to inject, store,

and withdraw natural gas subject to limited injection and withdrawal rates and a limited

total storage capacity. These storage options can then be exploited in various traded

physical delivery contracts, such as day-ahead and month-ahead futures contracts. The

optimal trading strategy is path-dependent due to limited injection, withdrawal, and stor-

age volumes. It depends on multiple market information and, at least to the best of our

knowledge, cannot be derived analytically for standard stochastic price dynamics. This
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makes it necessary to set up a modeling framework for the entire futures price curve and

to discretize the underlying stochastic optimization problem in order to apply numerical

valuation algorithms.

In the fourth chapter, we first analyze the storage valuation problem from a theoretical

point of view and then use our (theoretical) results to set up a suitable pricing approach.

We show that (i) rational storage operators only have to trade in a (small) subset of all

delivery contracts and that (ii) optimal trading times and volumes can both be restricted

to a finite number. These results allow us to formulate a low-dimensional discrete sto-

chastic optimization problem for arbitrary price dynamics.

Then, we specify the underlying price dynamics via our modeling framework. This has

the advantage that model parameters can be directly calibrated to observable market

data instead of latent factors and that arbitrage-free price dynamics of arbitrary delivery

contracts can be derived. Further, specific futures price movements can be more easily

incorporated than in standard spot price models. We implement a three-factor market

model component. The first factor accounts for temporary price risk, which largely de-

termines the short-term optimization potential of flexible storage contracts. The second

factor is used to capture a stochastic summer-winter spread, which largely determines

risk-free trading profits of storage contracts that can be obtained by trading in futures

contracts at the beginning of the contract period. The third factor accounts for parallel

shifts, which largely explain the common price behavior of futures contracts and can be

incorporated without increasing the complexity of the optimization problem. Then, we

apply the Longstaff and Schwartz (2001) algorithm to determine the storage value and its

dependency on the underlying risk factors. It turns out that a dynamic trading strategy

in the day-ahead market can significantly increase the storage value compared to the op-

timal static trading strategy in futures contracts only and that a convex relation between

the summer-winter spread and the storage value exists.



Chapter 2

Stochastic Models for Single Futures

Price Dynamics

In this chapter, we analyze the role of volatility and jump risk for the pricing and hedging

of crude oil option contracts in a unified modeling framework.

In the current energy finance literature, volatility and jump risks have mostly been ana-

lyzed separately, even though these risk factors have different implications for risk man-

agement and investment decisions. It is possible, for example, to manage volatility risk

efficiently through trading in option contracts, while jump risk cannot be efficiently hedged

by only a few market contracts. This induces very different optimal hedging strategies and

hedging errors for pure stochastic volatility and pure jump diffusion models. In addition,

estimation results on risk premia strongly depend on the underlying model specification.

Thus, current findings on risk premia estimates for modeling approaches without stochas-

tic volatility or price jumps must be reexamined if both risk factors are considered in

option prices.

The following chapter sheds light on these issues and is organized as follows: we start

with a short overview of the related literature and then introduce the stochastic modeling

approaches that are empirically tested. We then present a novel estimation method based

on return and aggregated option market data that allows to filter out latent variance

states more robustly. Finally, the different model specifications are tested with regard

to their distributional properties and their pricing and hedging performances using a

comprehensive data set of crude oil futures and option contracts from 1985 to 2010.

6
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2.1 Literature Review

In equity markets, a broad range of risk factors and their associated risk premia have been

investigated in various empirical studies. Bakshi, Cao, and Chen (1997), Bates (2000),

Chernov and Ghysels (2000), Pan (2002), Bakshi and Kapadia (2003), Jones (2003),

Eraker (2004), Broadie, Chernov, and Johannes (2007), and Carr and Wu (2009) find

clear empirical evidence for volatility and jump risk in return and option price data, but

obtain varying results for market prices of volatility and jump risk.1 For instance, Chernov

and Ghysels (2000) and Jones (2003) find a significant negative market price of volatility

risk, while Pan (2002) and Eraker (2004) obtain an insignificant one. Furthermore, Pan

(2002) estimates a significant jump risk premium in contrast to Eraker (2004), who finds

no clear evidence for a jump risk premium in his empirical study. The different estimation

results can be partially explained through different model specifications, different under-

lying time periods, different data sets (return and/or option price data), and different

estimation methods. For instance, Branger and Schlag (2008) show that discrete hedg-

ing and model specification can have such a large impact on risk premia estimates that

standard tests can lead to unreliable results. In summary, it can be said that volatility

and jump risk seem to exist in equity markets, but the quantification of their associated

risk premia remains a challenging task that requires to take model specification issues

very seriously.

In our empirical study, we analyze the role of stochastic volatility and price jumps for

short-dated crude oil futures contracts and options on them. The role of stochastic volatil-

ity has been far less thoroughly investigated for commodity markets than for stock mar-

kets. Trolle and Schwartz (2009) test term structure models with different stochastic

volatility specifications in the crude oil futures market between 1990 and 2006. They

show that both a temporary volatility risk factor with a high mean reversion rate as well

as a persistent volatility risk factor with a low mean reversion rate are required to ob-

tain a good pricing performance for option contracts with different maturities. However,

large option pricing errors arise for short maturities in all of their tested model speci-

fications. This can be traced back to flattening implied volatility smiles in stochastic

volatility models when time to maturity reaches zero, while market smiles become more

pronounced. In addition, the authors find that volatility risk is largely unspanned by

1In more recent studies, empirical tests indicate that a jump component in the volatility process is
important for capturing crisis periods with clustered large returns induced by unexpected economic events
(e.g., collapse of Lehman Brothers). Furthermore, it is generally not possible to derive the sign of certain
risk premia in an equilibrium model based on standard assumptions (e.g., risk-averse market makers).
For instance, Liu and Pan (2003) show, in a partial equilibrium framework, that the market price of
volatility risk can be positive or negative depending on market participants’ relative risk-aversion.
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price risk.2 Consequently, traders can reduce hedging errors for a single option contract

if they actively hedge volatility risk by trading in other option contracts. Indeed, Trolle

and Schwartz (2009) confirm that a delta-vega hedging strategy in futures and option

markets significantly reduces mean hedging errors compared to a delta hedging strategy

in futures markets only.3

The estimation results on the market price of variance risk differ among empirical stud-

ies. Trolle and Schwartz (2009) obtain insignificant market prices of variance risk in their

model specifications. In contrast, Doran and Ronn (2008) find a significant negative mar-

ket price of variance risk in their single factor volatility model based on at-the-money

option contracts between 1994 and 2004. In a model-free approach, Kang and Pan (2011)

estimate a negative overall variance risk premium for different maturities.4

The role of jumps for crude oil futures price dynamics has only been investigated in a

very few studies, such as those of Dempster, Medova, and Tang (2010) or Brooks and

Prokopczuk (2011). Dempster, Medova, and Tang (2010) consider a two-factor price

model with a temporary and a persistent jump component. They show that jump events

can clearly be linked to unexpected political events and find that jump diffusion models

are able to capture the distributional properties of crude oil futures price returns rather

well between 2000 and 2006. In addition, they visually examine model-implied volatil-

ities and state that jump risk is potentially able to explain pronounced market-implied

volatility smiles. In a current study, Brooks and Prokopczuk (2011) analyze a stochastic

volatility model with a price and volatility jump component and its nested model speci-

fications using crude oil spot price data during 1985-2010. They show that price jumps

improve the time series properties measured by the Deviance Information Criterion (DIC)

(see Spiegelhalter, Best, Carlin, and van der Linde (2002)) compared to pure stochastic

volatility models. They also find weak evidence for jumps in the volatility process. In-

terestingly, Brooks and Prokopczuk (2011) estimate a four times lower jump intensity

than in Dempster, Medova, and Tang (2010) and find a clearly larger negative correlation

parameter between price and volatility innovations than in Trolle and Schwartz (2009).

The lower jump intensity can be explained by their additional stochastic volatility com-

ponent, while a possible explanation for the larger negative correlation parameter could

be the longer underlying time period, which includes the Financial Crisis, during which

2The estimated correlation parameters between futures price and volatility innovations for all model
specifications are between -0.15 and 0.15.

3In their paper, Trolle and Schwartz (2009) only present mean hedging errors without providing
standard deviations or other quantiles. This information would give a more precise picture (see Branger,
Krautheim, Schlag, and Seeger (2012)).

4In short, Kang and Pan (2011) find that historical squared log-returns are on average lower than
option-implied variance levels. This can be traced back on a negative market price of variance risk or on
a non-zero jump risk premia.
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time crude oil prices collapsed and the volatility level strongly increased.

All of the above-mentioned empirical studies on commodity markets analyze volatility

and jump risk separately under the pricing measure, even though strong empirical evi-

dence for both risk factors exists under the physical measure (see Brooks and Prokopczuk

(2011)). This naturally leads to the following two questions. How can volatility and jump

risk be robustly separated based on available market information? What is the impact of

both risk factors on pricing and hedging errors as well as on risk premia estimates? The

answers to these questions are essential for active risk management, suitable risk measures

of hedge portfolios, and efficient investment decisions.

2.2 Stochastic Modeling Approaches and Derivatives

Pricing and Hedging

In this section, we specify the stochastic volatility model with jumps (SVJ) and its nested

model specifications for the futures price dynamics under the physical and risk-neutral

measure (see, for example, Broadie, Chernov, and Johannes (2007)). Further, we provide

pricing and hedging formulas for European option contracts and introduce variance swap

contracts.

2.2.1 Stochastic Models

We first present a formal description of the SVJ model and then discuss the role of

each model component in greater detail by considering nested modeling approaches. The

superscripts P and Q are used to display model parameters that can differ among the

physical and the risk-neutral measure, whereas model parameters without a superscript

have to be the same under both measures. In the SVJ model, the futures price dynamics

under the physical measure is given by5

dft = (αP
t − λzµP

z )ft−dt+
√
vtft−dw

P
f,t + (ezt − 1)ft−dnf,t, (2.1)

dvt = κPv(θ
P
v − vt)dt+ σv

√
vtdw

P
v,t, (2.2)

where wP
f,t and wP

v,t are correlated Wiener processes with d[wP
f,t, w

P
v,t] = ρf,vdt. The two

state variables ft and vt denote the futures price referring to a fixed maturity date and

the latent variance state at time t. We assume that the market price of diffusion risk

is parameterized as ηf
√
vt following Broadie, Chernov, and Johannes (2007). The jump

5In the following, ft− denotes the left limit of fs when s→ t and s < t (ft− = lims↑t fs).
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component is modeled by a Poisson process nf,t with constant jump intensity λz and

(percentage) jump sizes zt that are normally distributed with mean µP
z and standard

deviation σP
z . We allow the mean jump size and the jump size variance to differ among

both measures and restrict the jump intensity to be the same under P and Q.6 The drift

parameter αP
t is equal to the expected excess return (futures price risk premium) of the

underlying futures price dynamics. It is given by

αP
t = λzµ

P
z − λzµQ

z︸ ︷︷ ︸
jump risk component

+ ηfvt︸︷︷︸
diffusion component

, (2.3)

where −λzµP
z = −λz(eµ

P
z+0.5(σP

z)2 − 1) and −λzµQ
z = −λz(eµ

Q
z+0.5(σQ

z )2 − 1) are the jump

compensators under the physical and risk-neutral measure. The variance process follows

a classical square-root diffusion process with a constant long-term variance level θPv , mean

reversion rate κPv , and volatility of volatility parameter σv.
7 We parameterize the market

price of variance risk as ηvσ
−1
v

√
vt (see, for example, Broadie, Chernov, and Johannes

(2007)). It follows then that the risk-neutral futures price dynamics is given by

dft = −λzµQ
z ft−dt+

√
vtft−dw

Q
f,t + (ezt − 1)ft−dnf,t, (2.4)

dvt = κQv (θQv − vt)dt+ σv
√
vtdw

Q
v,t, (2.5)

where the risk-neutral model parameters of the variance process are given by κQv = κPv +ηv

and θQv = κPv
κQv
θPv .

In the next step, we discuss the role of each risk factor for modeling, pricing, and hedging

purposes in greater detail.

The Geometric Brownian Motion Model (The Black Model)

The geometric Brownian motion (GB) model provides the most important benchmark

approach for modeling futures price dynamics. It assumes that the underlying futures

price process follows a geometric Brownian motion with a constant volatility level over

time (see Black (1976)). The GB model can be obtained from the SVJ model if the jump

component is equal to zero nf,t ≡ 0 (λz = 0) and the variance process is constant over

time vt ≡ σ2
f (v0 = θPv = σ2

f and σv = 0).8

6In general, the measure change for a jump process is more flexible and only requires that both jump
distributions are predictable and have the same support (see Cont and Tankov (2002)).

7In the following, vt and
√
vt denote the variance state and the volatility state at time t, respectively.

8For completeness, we set ηvσ
−1
v = 0, µP

z = µQ
z = 0, and σP

z = σQ
z = 1.
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Figure 2.1: Black-implied volatility and market-implied volatility smile

The solid line shows the market-implied volatility smile based on option contracts on the front-month

West Texas Intermediate (WTI) crude oil futures contract from June 18, 2002. The dashed line shows

the fitted Black-implied volatility level. Each moneyness category is defined as strike price divided

by futures price.

It is thus given by

dft = µP
fftdt+ σfftdw

P
f,t, (2.6)

where µP
f = ηfσ

2
f . In the GB model, log-returns are normally distributed and closed-form

European option price formulas exist. This allows one to estimate the unknown model

parameters, i.e., the constant drift µP
f and volatility σf parameters, on historical return

and/or option price data by standard techniques. However, the GB model is not able to

capture heavy-tailed return distributions, clusters in large returns, and implied volatility

smiles or skews. This implies that the GB model provides little flexibility to capture tail

risk and market-implied volatilities. Figure 2.1 shows, for example, that the Black model

systematically undervalues out-of-the-money option contracts compared to at-the-money

option contracts in the crude oil market.

The Stochastic Volatility Model (The Heston Model)

The square-root stochastic volatility (SV) model is a widely used extension of the Black

model. It captures clusters in small, medium, and large price returns by a stochastic

variance process (see Heston (1993)) and fits into the SVJ model framework by setting
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Figure 2.2: implied volatility smiles in the stochastic volatility model

The left graph shows the implied volatility smile for a small (σv = 0.8, solid) and large (σv = 2.6,

dashed) volatility of volatility parameter in the stochastic volatility model (2.7). The right graph

shows the impact of the correlation parameter on the shape of the implied volatility smile. The

symmetric smile form (solid line) corresponds to a correlation parameter of zero (ρf,v = 0), the skew

(dashed line) is obtained for a negative correlation parameter ρf,v = −0.2, and the reverse skew

(dotted line) follows from a positive correlation parameter ρf,v = 0.2.

the jump component equal to zero nf,t ≡ 0 (λz = 0).9 The SV model is given by

dft = ηfvtftdt+
√
vtftdw

P
f,t, (2.7)

dvt = κPv(θ
P
v − vt)dt+ σv

√
vtdw

P
v,t. (2.8)

In contrast to the Black model, the long-term variance level can differ under the physical

and risk-neutral measure. This allows one to capture potential differences between aver-

age squared log-returns (variance level under the physical measure) and option-implied

volatility levels (variance level under the risk-neutral measure). The volatility of volatility

parameter σv mainly determines the excess kurtosis of futures price returns relative to the

Black model. Basically, a higher σv increases out-of-the-money option prices and reduces

at-the-money option prices without impacting the average implied volatility level among

moneyness categories (see Figure 2.2 (left)). In addition, the correlation ρf,v between

futures price and variance innovations influences the skewness of the return distribution,

where a negative (positive) correlation parameter ρf,v induces a (reverse) skew in the

model-implied volatility smile. This is illustrated in Figure 2.2 (right).

9For completeness, we set µP
z = µQ

z = 0 and σP
z = σQ

z = 1.
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Figure 2.3: implied volatility smiles in the jump diffusion model

The graphs illustrate the impact of the mean jump size parameter µQ
z (left) and the jump size volatility

parameter σQ
z (right) on the smile form in the jump diffusion model (2.9). The left graph shows the

implied volatility smile for µQ
z = 0 (solid) and µQ

z = −0.1 (dashed). The right graph shows the

implied volatility smile for σQ
z = 0.1 (solid) as well as σQ

z = 0.2 (dashed).

The Jump Diffusion Model (The Merton Model)

The jump diffusion (JD) model adds jumps to the Black model (see Merton (1973)). The

intention of including a jump component is to capture rare large price returns that can

arise, for example, due to an unexpected political decision or a terrorist attack. These

extreme price movements are modeled by a Poisson process with normally distributed

(percentage) jump sizes. The JD model can be obtained from the SVJ model by setting

σv equal to zero and the current variance state v0 at its long-term level θPv = σ2
f

dft = (α̃P − λzµP
z )ft−dt+ σfft−dw

P
f,t + (ezt − 1)ft−dnf,t, (2.9)

where both the futures price risk premium α̃P = λzµ
P
z − λzµQ

z + ηfσ
2
f and the volatility

process
√
vt = σf are constant over time.10 The jump process leads to a heavy-tailed

return distribution, where its skewness can be determined by the mean jump size and

its kurtosis by the jump intensity and jump size volatility. The impact of the jump size

parameters on option prices is as follows: (i) the mean jump size influences the low point

of the implied volatility curve (see Figure 2.3 (left)), and (ii) the jump intensity and jump

size volatility decide on the difference between implied volatilities for at-the-money and

out-of-the-money option contracts (see Figure 2.3 (right)). In contrast to the SV model, a

more pronounced implied volatility smile is directly linked to the variation of the futures

price dynamics, since more jumps or jumps with a larger variation also increase the overall

volatility level (see Figure 2.3 (right)).

10For completeness, we set ηvσ
−1
v = 0.
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The Stochastic Volatility Model with Jumps

The SVJ modeling approach adds a stochastic volatility and a price jump component to

the Black model. This allows one to model volatility clusters as well as single extreme

price movements in return data and provides more flexibility to capture option market

information. The disadvantage is that it is rather difficult to separate the stochastic

volatility component from the jump component when only a single data source (return

data or option price data) is used. For instance, stochastic volatility and price jumps

can both be used to capture skewness and excess kurtosis in return distributions and are

both able to reflect implied volatility smiles or skews. Therefore, we undertake different

cross-sectional empirical tests in order to separate both components. The separation is

important, since stochastic volatility and price jumps imply different optimal hedging

strategies, which we turn to in Subsection 2.2.3.

2.2.2 Option Pricing

Next, we present, without proofs, pricing and hedging formulas for European option con-

tracts under all model specifications. The theoretical underpinning and a comprehensive

explanation of the underlying methodology can be found in Bakshi and Madan (2000).

In what follows, we drop the t-subscripts from both state variables f and v, where rea-

sonable, in order to simplify notation. In addition, although it is easy to incorporate an

affine-linear stochastic interest rate process, we do not account for interest rate uncer-

tainty due to its minor impact on market prices of short-dated option contracts (see, for

example, Casassus and Collin-Dufresne (2005) or Trolle and Schwartz (2009)).

Lemma 1 (European Option Price Formula)

In the GB, JD, SV, and SVJ models, the market value of a European call option with

maturity date τ and strike price k on a futures contract is given by

ct(k, τ) = e−r(τ−t)
(
fπ

(1)
t (τ)− kπ(2)

t (τ)
)
, (2.10)

where

π
(j)
t (τ) =

1

2
+

1

π

∫ ∞
0

Re

[
e−iφ ln[k]h

(j)
t (τ, f, v, φ)

iφ

]
dφ, j ∈ {1, 2}. (2.11)

In Appendix A.1, we provide the concrete functional forms of h
(1)
t (.) and h

(2)
t (.). In con-

trast to a naive pricing approach that integrates out each underlying risk factor, the above
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option pricing formula only requires the numerical calculation of a one-dimensional inte-

gral term. This speeds up computational time considerably and increases the robustness

of numerical results. Nevertheless, it is very time consuming to incorporate option market

information directly through the above option pricing formula in an estimation approach.

This is especially problematic if the pricing formula must be evaluated numerous times

as in simulation-based estimation methods (e.g., Markov chain Monte Carlo algorithm).11

In this case, the resulting computational effort can become unmanageable. We solve

this problem later on by using aggregated option market information instead of multiple

individual option prices.

2.2.3 Hedging Strategies

Next, we briefly present the delta and delta-vega hedging strategy for the different model

specifications (see, for example, Bakshi, Cao, and Chen (1997)). In the delta hedging

strategy, we choose a hedge portfolio that is locally immune to infinitesimally small price

changes. The hedge portfolio consists of (i) a short position in the underlying “target”

call option contract with strike k and maturity τ and (ii) a position of δfut futures long.

The δfut-position is given by the first derivative of the option price formula with respect

to the current futures price

δfut =
∂ct
∂f

(k, τ)

= e−r(τ−t)π
(1)
t (τ) ≥ 0. (2.12)

This ensures that the target call option contract and δfut futures contracts have the same

sensitivity to small price movements.

In the delta-vega hedging strategy, we choose a hedge portfolio that is locally immune

to infinitesimally small movements in both the underlying price and variance processes.

The hedge portfolio consists of (i) a short position in the “target” call option contract

with strike k1 and maturity τ , (ii) a long position of δopt in a “hedge” call option contract

with strike k2 and maturity τ , and (iii) a position of δfut futures long. The additional

hedge position is required to control for variance risk. It can be derived independently of

the δfut-position, because the underlying futures price is unaffected by movements in the

variance process. The δopt-position is equal to the following ratio

δopt =
∂ct
∂v

(k1, τ)
∂ct
∂v

(k2, τ)
.

11In our case, we would have to evaluate the option pricing formula about 2.5 billion times.
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The ratio is chosen so that one “target” option contract and δopt “hedge” option contracts

have the same sensitivity to infinitesimally small changes in the variance process. Then,

we can calculate the δfut-position in the underlying futures contract. We have to adjust

the δfut-position (2.12), since futures price movements influence the model price of the

hedge option contract. The δfut-position is given by

δfut = δ(1) − δoptδ(2),

where

δ(1) =
∂ct
∂f

(k1, τ) and δ(2) =
∂ct
∂f

(k2, τ).

These two hedging positions ensure that the hedge portfolio is locally immune to price

and variance risk in the respective model framework.

2.2.4 Variance Swap Contracts

In our estimation approach, we have to fit unobservable variance states, jump events,

and jump sizes to market data, where their latent nature makes it difficult to obtain

robust estimates based on return data only. It is generally possible to obtain more precise

estimation results if option market information is incorporated in an estimation approach.

However, as already mentioned, using option market data directly is computationally

intensive (see Broadie, Chernov, and Johannes (2007)). In addition, multiple option

prices referring to different strikes have to be weighted “suitably” in order to filter out

the single variance state at any point in time. For that reason, we use a novel estimation

approach that overcomes both problems by using “variance swap rates” instead of multiple

option prices. The variance swap rate vst,τ is simply defined as the “expected average

annualized quadratic variation” of the underlying risk-neutral futures price process in the

time period [t, τ ]

vst,τ =
1

τ − t
EQ
t

[
(σt,τ )

2
]
. (2.13)

It can be calculated using two approaches: (i) a model-based approach based on the

underlying risk-neutral price process and (ii) a market-based approach based on cross-

sectional option prices (see Carr and Wu (2009)). Next, we show that an affine-linear

relation between latent variance states and variance swap rates exists in the SV and SVJ

models. This allows us to “filter out” latent variance states by solving simple linear

equations based on variance swap rates instead of using highly non-linear option price
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formulas directly. First, we consider in greater detail the model-based approach for calcu-

lating variance swap rates. In the SVJ model, variance swap rates depend on the latent

variance and jump process as follows (see Carr and Wu (2009)):

vst,τ =
1

τ − t
EQ
t

[(∫ τ

t

vsds
)]

+ λz

∫
R0

x2gnd(x)dx

= θQv +
1− e−κQv (τ−t)

κQv (τ − t)
(
vt − θQv

)
︸ ︷︷ ︸

variance component

+λz
(
(µQ

z )2 + (σQ
z )2
)︸ ︷︷ ︸

jump component

, (2.14)

where gnd denotes the density function of a normal distribution with mean µQ
z and stand-

ard deviation σQ
z . Second, we introduce the market-based approach to calculate variance

swap rates based on European option contracts with a continuum of strike prices. Breeden

and Litzenberger (1978) provide an intuitive approach to derive the risk-neutral return

distribution based on the second derivative of the call option price formula with respect

to the strike price ∂2ct
∂2k

(k, τ). Especially, their approach can be used to extract variance

swap rates based on European option contracts with a continuum of strike prices. How-

ever, in order to apply this method, it is necessary to interpolate and extrapolate missing

option prices, which can be challenging, since suitable interpolation and extrapolation

functions for the second derivative of the option price curve are hard to find. For that

reason, Carr and Wu (2009) develop a more robust approach for deriving variance swap

rates. It is based on option prices directly and does not require the second derivative of

the option price function. They show the following relation between variance swap rates

and out-of-the-money European option prices:12

vst,τ =
2

τ − t

∫ ∞
0

ot(k, τ)

e−r(τ−t)k2
dk + εvsr, (2.15)

where ot(k, τ) is the market price of an European out-of-the-money option contract with

strike k and maturity τ and εvsr is the approximation error in the presence of price

jumps.13

12We skip the technical details for deriving the option-based measure and refer to Carr and Wu (2009)
for details.

13In (2.15), the variance swap rate is calculated based on call option prices for strikes above the current
futures price and put option prices for strikes below the current futures price.
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The error term εvsr is equal to14

εvsr =

0, GB and SV models

−2λz

(
eµ

Q
z+0.5(σQ

z )2 − 1− µQ
z − 0.5

(
(µQ

z )2 + (σQ
z )2
))
, JD and SVJ models

.

This approach for calculating variance swap rates based on option prices has become a

widely used market standard. Up to this point, we have shown that variance swap rates

can be calculated in the model framework or based on European option contracts with a

continuum of strike prices. If the underlying price dynamics is “correct”, the model-based

and market-based expressions (2.14) and (2.15) are equal. This can then be exploited to

filter out latent variance states if the remaining model parameters are known.

Lemma 2 (Variance Swap Rates)

There exists an affine-linear relationship between the variance swap rate and the latent

variance state in the SV and SVJ models. The affine-linear relation is given by

2

τ − t

∫ ∞
0

ot(k, τ)

e−r(τ−t)k2
dk = θQv +

1− e−κQv (τ−t)

κQv (τ − t)
(
vt − θQv

)
+ cQz , (2.16)

where

cQz =

0, SV model

2λz
(
eµ

Q
z+0.5(σQ

z )2 − 1− µQ
z

)
, SVJ model

.

It is important to keep in mind that the left-hand side of (2.16) must be approximated,

since only a finite number of option contracts are actively traded at the market. The

resulting approximation error can be accounted for by assuming that variance swap rates

are observed with noise.

In addition to variance swap rates, we also consider the so called “variance risk premium”

that is defined as the difference between the expected average annualized quadratic varia-

tion under the physical and risk-neutral measure

1

τ − t

(
EP
t

[
(σt,τ )

2
]
− EQ

t

[
(σt,τ )

2
])

=
1

τ − t
EP
t

[
(σt,τ )

2
]
− vst,τ . (2.17)

In the SVJ model, the variance risk premium depends on the market price of variance

risk and both risk-neutral jump size parameters. If no concrete model specification is

considered, it is common to approximate the variance risk premium by using variance

14See Carr and Wu (2009) for details.
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swap rates for 1
τ−tE

Q
t [(σt,τ )

2] and squared log-returns for 1
τ−tE

P
t [(σt,τ )

2] over the time

period in question (see, for example, Carr and Wu (2009)).

2.3 Estimation Method

In this section, we introduce our unified estimation framework for the GB, JD, SV, and

SVJ models. We first offer a short introduction to the Bayesian statistical inference ap-

proach for estimating model parameters and state variables from return and variance swap

data. Then, we concretely specify our estimation approach for all model specifications.

2.3.1 Bayesian Statistics and the MCMC Algorithm

In Bayesian statistics, we always start with ex-ante beliefs about a vector of interest

u ∈ Rdim.15 The ex-ante beliefs reflect our intuition about the vector of interest based

on information beyond the underlying data set. This ex-ante information is captured

through a so called prior distribution, which generally has a large standard deviation if

little additional information exists. Then, we use the information in the underlying data

set d to change our prior beliefs to a consistent posterior distribution. The “updating” of

our beliefs is conducted through the Bayes theorem, which states that the density of the

posterior distribution p(u|d) is proportional to the likelihood function p(d|u) times the

density of the prior distribution p(u):16

p(u|d) =
p(d|u)p(u)∫
p(d|u)p(u)du

∝ p(d|u)p(u).

It is now our objective to determine the posterior distribution of the vector of interest

u. The posterior distribution reflects our (subjective) beliefs about all model parameters

and state variables subject to our prior beliefs and the underlying data set. It turns out,

however, that the posterior distribution is highly complex for the JD, SV, and SVJ models

and cannot be calculated in closed-form.

In such cases, the Markov chain Monte Carlo (MCMC) algorithm can be used to ap-

proximate intractable posterior distributions using a simulation-based approach. We first

illustrate the general procedure of the MCMC algorithm through some simple examples

15In the following, we assume that the vector of interest contains model parameters and state variables.

16The expression p(u|d) ∝ p(d|u)p(u) means that the left-hand side p(u|d) is proportional to the right-
hand side p(d|u)p(u).
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before we discuss in greater detail its implementation for the different model specifica-

tions.

In the MCMC algorithm, we construct a Markov chain {u(g)}∞g=0 with a tractable transi-

tion kernel that has the posterior distribution as its limiting distribution17

1

G

G−1∑
g=0

11{u(g)≤ũ}
G→∞→ F post

u (u ≤ ũ|d), with probability 1. (2.18)

The cumulative posterior distribution function F post
u (.) is then approximated through

a sufficiently long path of the underlying Markov chain. At first glance, it seems rather

complicated to implement such an indirect sampling approach. However, it turns out that

the MCMC algorithm provides a unified sampling method for all posterior distributions

of our model specifications.

We start with two simple one-dimensional estimation problems to illustrate the main

components of the Markov chain Monte Carlo approach – the Metropolis-Hastings and

the Gibbs Sampling algorithm.

Example: (Black Model)

In this example, we estimate the (unknown) drift parameter of the Black model based

on n log-returns d = {ln fti+1
− ln fti}ni=1. The log-returns are generated through the

data-generating process18

ln fti+1
− ln fti = µfδt+ σf

√
δtεf,ti , (2.19)

where δt is equal to 1/252 and εf,ti is normally distributed with a mean of zero and a

standard deviation of one for i = 1, . . . , n. In addition to the log-return data, it is assumed

that prior information about the unknown drift parameter exists and that the variance

parameter is known. The prior distribution of µf is a normal distribution with mean µ0

and variance σ2
0.

Now, our objective is to calculate the posterior distribution of the mean parameter con-

ditional on the observed log-return data and the prior information. In such a case, we

can apply the Bayes theorem, which states that the unnormalized density of the pos-

terior distribution is simply given by the likelihood function times the density of the prior

17The indicator function 11{u(g)≤ũ} is equal to one if all components of u(g) are smaller than or equal
to ũ.

18We skip the superscripts in order to reduce notational burden.
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distribution19

p(µf |σ2
f , d) ∝

(
1

2πσ2
f

)n/2

e
−

∑n
i=1(dti

−µf )
2

2σ2
f︸ ︷︷ ︸

likelihood function

1√
2πσ0

e
−

(µf−µ0)
2

2σ20︸ ︷︷ ︸
prior density

∝ e
−

(µf−µpost)
2

2σ2post ,

where

µpost =
σ2
fµ0 + σ2

0

∑n
i=1 dti

σ2
f + nσ2

0

and σ2
post =

σ2
fσ

2
0

σ2
f + nσ2

0

.

In this case, we can determine the normalization constant easily, since the posterior dis-

tribution is equal to a normal distribution, i.e.,

p(µf |σ2
f , d) =

1√
2πσpost︸ ︷︷ ︸

normalization constant

e
−

(µf−µpost)
2

2σ2post .

As a result, we do not have to apply the MCMC algorithm, since the posterior distribution

is of well-known form. This analytical updating of prior information only works for specific

data-generating processes and prior distributions. If we consider again, for example, the

data-generating process (2.19) with a log-normal prior distribution with parameters µ0

and σ2
0, we obtain the following density of the posterior distribution

p(µf |σ2
f , d) ∝

( 1

2πσ2
f

)n/2
e
−

∑n
i=1(dti

−µf )
2

2σ2
f︸ ︷︷ ︸

likelihood function

1√
2πσ0µf

e
−

(lnµf−µ0)
2

2σ20︸ ︷︷ ︸
prior density

, µf > 0. (2.20)

In this case, the posterior distribution is of non-standard form and an approximation

through a standard Monte Carlo simulation is not possible.

We can, however, choose the MCMC sampling algorithm to approximate such an in-

tractable distribution. This requires us to specify a tractable transition kernel that ensures

that the Markov chain converges to the posterior distribution asymptotically. Metropolis,

Rosenbluth, Rosenbluth, Teller, and Teller (1953) introduced and Hastings (1970) refined

an accept-reject approach to specify the transition kernel that satisfies the limiting condi-

tion (2.18). The Metropolis-Hastings (M-H) algorithm can briefly be explained as follows:

we choose an (arbitrary) starting value u(0) and draw a “candidate value” w(1) based on an

arbitrary tractable proposal density p̃(u(0), w(1)) with the same support as the conditional

posterior distribution.

19The updating rule can be found in DeGroot (1990) or Tsay (2005).
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Figure 2.4: empirical posterior distribution of the mean parameter

This figure shows the empirical posterior distribution of the mean parameter µf . The underlying data

set consists of one hundred simulated log-returns (n=100), which are generated through (2.19). The

model parameters are given by µf = 0.15 (unknown) and σf = 0.2 (known). The prior distribution

of the mean parameter is log-normal with parameters µ0 = −3 and σ0 = 1.5. The proposal density

is log-normal with parameters µ
(g)
prop = −0.5 and σ

(g)
prop = 1. The empirical posterior distribution is

obtained from the Metropolis-Hastings algorithm based on 500.000 iteration steps.

The candidate value is then accepted with probability a(u(0), w(1)), where

a(u(0), w(1)) = min
{p(w(1)|d)

p(u(0)|d)

p̃(w(1), u(0))

p̃(u(0), w(1))
, 1
}
, (2.21)

and rejected with probability 1 − a(u(0), w(1)). If the candidate value is accepted, u(1)

is set equal to w(1). Otherwise, u remains unchanged, i.e., u(1) = u(0). Then, we once

again sample a candidate value based on p̃(u(1), w(2)) that is accepted with probability

a(u(1), w(2)). This procedure is repeated several times until a certain abort criterion is

satisfied (see, for example, Geyer (1992)). In Figure 2.4, we show the empirical distribu-

tion of a simulation run with 500.000 draws based on a log-normal prior distribution with

µ0 = −3 and σ0 = 1.5 that approximates the real underlying posterior distribution.

It turns out that the performance of the approximation crucially depends on the proposal

density. Basically, if the proposal distribution is close to the posterior distribution, ac-

ceptance probabilities are close to one. This reduces the correlation among individual

draws {u(g)}∞g=0 and increases convergence rates compared to proposal densities that do

not fit the posterior distribution well (see Roberts and Tweedie (2008)).

However, it is often very complicated to obtain a “good” proposal density for high-

dimensional posterior distributions. In this case, it is often much easier to divide a single



CHAPTER 2. STOCHASTIC FUTURES PRICE MODELS 23

high-dimensional sampling problem into multiple low-dimensional ones (see, for example,

Geman and Geman (1984)). In the Gibbs Sampling approach, this “divide and conquer”

principle is picked up as follows. We first divide the vector of interest into h blocks

u = (u1, . . . , uh). The partition is chosen so that sampling from each lower-dimensional

conditional posterior distribution p(ui|u−i, d), where u−i = (u1, . . . , ui−1, ui+1 . . . , uh), is

possible with standard techniques for i = 1, . . . , h. Then, we construct the Markov chain

to approximate the posterior distribution by iteratively drawing from the conditional

posterior distributions. In detail, we start with an (arbitrary) initial value u(0). In each

update step, we sample a new value u
(1)
i based on the conditional posterior distribution

p(u
(1)
i |u

(0)
−i , d), where u

(0)
−i = (u

(1)
1 , . . . , u

(1)
i−1, u

(0)
i+1 . . . , u

(0)
h ).20 This means that uj for each

j < i is the draw from the current simulation run and uj for each j > i is the draw from

the previous simulation run. The transition kernel for one iteration step is then simply

given by

p(u(g−1), u(g)) =
h∏
i=1

p(u
(g)
i |u

(g−1)
−i , d).

When all individual blocks have been updated, the procedure is repeated for u(1) instead

of u(0). This is done until a certain abort criterion is satisfied (see, for example, Geyer

(1992)).

In some cases, it is useful to mix the Metropolis-Hastings and Gibbs Sampling algo-

rithms. Then, the posterior distribution is partitioned into multiple smaller blocks and

the Metropolis-Hastings algorithm is applied to sample from the conditional posterior

distribution of one or more blocks.

Example: (Black Model)

In this example, we illustrate the Gibbs Sampling and the Metropolis-Hastings algorithm

for the Black model based on n log-returns d = {ln fti+1
− ln fti}ni=1. The log-returns are

again generated by

ln fti+1
− ln fti = µfδt+ σf

√
δtεf,ti , i = 1, . . . , n. (2.22)

Here, however, both the drift parameter µf and the variance parameter σ2
f are assumed

to be unknown. The two-dimensional prior distribution is given by independent standard

normal and inverse gamma marginal prior distributions for the mean and the variance

20We present the MCMC algorithm for a fixed updating sequence. In the empirical part, we update
individual blocks in a random order.
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parameters

p(µf ) ∼ N (µ0, σ
2
0), µ0 ∈ R, σ0 ∈ R+, (2.23)

p(σ2
f ) ∼ IG(α0, β0), α0, β0 ∈ R+. (2.24)

The underlying stochastic process and the prior distributions uniquely determine the

density of the posterior distribution, which is given by

p(µf , σ
2
f |d) ∝ p(d|µf , σ2

f )p(µf , σ
2
f )

∝
( 1

σ2
f

)n/2
exp
{
−

n∑
i=1

(dti − µf )2

2σ2
f

}
︸ ︷︷ ︸

likelihood function

(σ2
f )
−α0−1e

− β0
σ2
f︸ ︷︷ ︸

prior density of σ2
f

exp
{
−(µf − µ0)2

2σ2
0

}
︸ ︷︷ ︸

prior density of µf

.

The unnormalized density of the posterior distribution is of unknown form. Now, we

show two different approaches for sampling from such an intractable two-dimensional

distribution. First, we consider the Gibbs Sampling approach. The initial points are the

two conditional posterior distributions p(µf |σ2
f , d) and p(σ2

f |µf , d) that can be expressed

in closed-form due to the tractable prior distributions (2.23) and (2.24). They are given

by

p(µf |σ2
f , d) ∼ N (µpost, σ

2
post), (2.25)

p(σ2
f |µf , d) ∼ IG(αpost, βpost), (2.26)

where

µpost=
σ2
fµ0+σ2

0

∑n
i=1 dti

σ2
f+nσ2

0
, αpost= α0 + 0.5n,

σ2
post=

σ2
fσ

2
0

σ2
f+nσ2

0
, βpost= β0 + 0.5

∑n
i=1(dti − µf )2.

Then, we choose a starting value for the variance parameter (σ2
f )

(0) and sequentially draw

from both conditional posterior distributions p(µ
(g−1)
f |(σ2

f )
(g−1), d) and p((σ2

f )
(g)|µ(g−1)

f , d)

for g = 1, . . . , G. The resulting path {(µ(g)
f , (σ2

f )
(g))}Gg=0 is used to approximate the com-

mon posterior distribution.21 Second, we consider the Metropolis-Hastings algorithm. In

the M-H algorithm, we use a two-dimensional proposal density to simulate both model

parameters simultaneously through an accept-reject approach. It is, as mentioned, a non-

trivial task to find a proposal distribution that is close to the true unknown posterior

distribution. In the case of the Black model, both conditional posterior distributions can

21It is common to ignore the first nburn draws (e.g., nburn = 5000) to lower the impact of the starting
value on the outcome.
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be used to specify an “appropriate” proposal density, which is given by

p̃((µ
(g−1)
f , (σ2

f )
(g−1)), (µ

(g)
f , (σ2

f )
(g))) =

2∏
j=1

p̃j((µ
(g−1)
f , (σ2

f )
(g−1)), (µ

(g)
f , (σ2

f )
(g))) (2.27)

with

p̃1((µ
(g−1)
f , (σ2

f )
(g−1)), (µ

(g)
f , (σ2

f )
(g))) ∼ N (µpro, σ

2
pro), (2.28)

p̃2((µ
(g−1)
f , (σ2

f )
(g−1)), (µ

(g)
f , (σ2

f )
(g))) ∼ IG(αpro, βpro). (2.29)

The model parameters of (2.28) and (2.29) are given by

µpro=
(σ2
f )(g−1)µ0+σ2

0

∑n
i=1 dti

(σ2
f )(g−1)+nσ2

0
, αpro= α0 + 0.5n,

σ2
pro=

(σ2
f )(g−1)σ2

0

(σ2
f )(g−1)+nσ2

0
, βpro= β0 + 0.5

∑n
i=1(dti − µ

(g−1)
f )2.

In each simulation step, we draw a candidate value based on (2.27) and calculate the

acceptance probability by inserting the candidate and the current value in (2.21).

2.3.2 Specification of the MCMC Algorithm

In the next step, we specify the Markov chain Monte Carlo algorithm for the GB, JD, SV,

and SVJ models. This requires us to choose the market data that is to be considered in

the estimation approach, prior distributions, the partition of the vector of interest (model

parameters and state variables), and each sampling approach.

In a first step, we use a log-transformation on the underlying stochastic process and then

discretize the log futures price process through the quasi Monte Carlo method (see Eraker

(2004) or Broadie, Chernov, and Johannes (2007)).22 It follows then that

yti = ln fti+1
− ln fti = (−λzµQ

z + ηfvti)δt+
√
vtiδtεf,ti + ztiδnf,ti , (2.30)

vti+1
− vti = κPv(θ

P
v − vti)δt+ σv

√
vtiδtεv,ti , (2.31)

22In the special case of the Black model, the log-transformation eliminates all discretization errors.
However, if we consider more complex return distributions (e.g., JD, SV, and SVJ model), it is generally
not possible to find a suitable transformation such that the modified process has normally distributed
returns. Then, a discretization error arises, since, for instance, the time-continuous Poisson process is
approximated through a Bernoulli random variable and/or variance returns are assumed to be normally
distributed instead of chi-squared distributed.
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where ηf = ηf − 0.5 and the time distance between two observations of the futures price

process δt is set equal to one.23 In (2.30) and (2.31), εf,ti and εv,ti are normally distributed

random variables with zero means, standard deviations of one, and correlation parameter

ρf,v. Further, δnf,ti is a Bernoulli distributed random variable with jump probability λz,

and zti is normally distributed with mean µP
z and standard deviation σP

z .

In our estimation approach, we generally choose uninformative prior distributions for all

model parameters and state variables. The only exceptions are the jump intensity and the

jump size variance parameter, where prior distributions capture our intuition that jumps

are rare events that induce large returns. The concrete prior distributions are given in

Table A.1 in Appendix A.2.

In the MCMC algorithm, we also must decide whether to sample each single model pa-

rameter and state variable sequentially or to group several ones and update them simulta-

neously. Liu, Wong, and Kong (1994) point out that sampling multiple highly correlated

model parameters or state variables at once can potentially increase convergence rates.

However, posterior distributions of multiple parameters are often highly complex and of

unknown form, which means that such blocks have to be updated through the Metropolis-

Hastings algorithm. Unfortunately, it is difficult to find adequate proposal densities for

such high-dimensional conditional posterior distributions. For that reason, we prefer a

sequential sampling approach, which is the favored method in most empirical studies us-

ing comparable price dynamics (see Eraker, Johannes, and Polson (2003), Asgharian and

Bengtsson (2006), Brooks and Prokopczuk (2011), and Larsson and Nossman (2011)).

In the next step, we briefly introduce our individual update steps given that only return

data d = {yti}ni=1 is considered in the estimation approach. Here, we obtain tractable

conditional posterior distributions for the drift parameters of the futures price and vari-

ance processes, the jump intensity, the mean jump size, the jump size variance, as well

as for jump times and jump sizes (see Asgharian and Bengtsson (2006)). In addition, the

volatility of volatility parameter σv is updated through an inverse gamma distribution,

even though the conditional posterior distribution is only inverse gamma distributed for

ρf,v = 0 (see Eraker, Johannes, and Polson (2003)).24 The Metropolis-Hastings algorithm

is only used to update latent variance states and the correlation parameter (see Appendix

A.2).25

23This means that the underlying return distributions depend on business days instead of calendar
days.

24In a simulation study, we tested approximation errors under various parameter constellations. We
found that approximation errors are negligible, even if ρf,v is not close to zero.

25In several other empirical studies, σv and ρf,v are updated simultaneously by a suitable re-
parameterization (see Jacquier, Polson, and Rossi (2004) or Brooks and Prokopczuk (2011)). However,
we found that such an updating step is numerically unstable in our case.
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Now, we turn to the update steps given that log-returns and variance swap rates d =

({yti}ni=1, {vsti,τi}ni=1) are incorporated in the estimation approach. The additional mar-

ket information changes the conditional posterior distribution of the latent variance states,

while all other conditional posterior distributions are unaffected. The reason is that op-

tion market information only has an indirect impact on physical model parameters and

is completely uninformative for jump times and sizes. Thus, we only have to discuss

the impact of variance swap rate data on the update step of the latent variance state in

greater detail.

In short, the conditional posterior distribution for each variance state vti can be expressed

by using the Bayes theorem as follows:

p(vti |u−vti , vs, y) =
p(vti , vs, y|u−vti )
p(vs, y|u−vti )

∝ p(vti , vs, y|u−vti ),

where u−vti corresponds to the vector of model parameters and state variables excluding

vti , vs denotes the vector of variance swap rates vs = {vsti,τi}ni=1, and y is equal to

the vector of log-return data y = {yti}ni=1. In order to more easily grasp the impact of

the different model components on the filtering approach, we split the density function

of the conditional posterior distribution p(vti |u−vti , vs, y) into two analytically tractable

components

p(vti |u−vti , vs, y) ∝ p(vti , vs, y|u−vti )
∝ p(vti , y|u−vti )p(vs|u−vti , vti , y). (2.32)

In (2.32), p(vti , y|u−vti ) corresponds to the joint density function of the current variance

state and log-returns of the futures price process, and p(vs|u−vti , vti , y) is the likelihood

function of variance swap rates conditional on all model parameters, state variables, and

return data. These functions can be further simplified by integrating out all terms that

do not depend on vti . It follows then that

p(vti|u−vti , vs, y) ∝ p(vti , y|u−vti )p(vsti,τi |u−vti , vti),

where p(vsti,τi|u−vti , vti) is equal to one if no variance swap rate is available at ti for

i = 1, . . . , n. The function p(vti , y|u−vti ) provides the link between the current latent

variance state to preceding and succeeding variance states and the preceding and current

futures price log-returns.
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The functional form of p(vti , y|u−vti ) is given by (see Brooks and Prokopczuk (2011))

p(vti , y|u−vti ) ∝ v−1
ti

exp(−ω1) exp(−(ω2 + ω3)) (2.33)

with

ω1 =
(yti − (−λzµQ + ηfvti)− ztiδnf,ti)2

2vti
,

ω2 =
(vti − (vti−1

+ κPv(θ
P
v − vti−1

))− ρf,vσv(yti−1
− (−λzµQ + ηfvti−1

)− zti−1
δnf,ti−1

))2

2(1− ρ2
f,v)σ

2
vvti−1

,

ω3 =
(vti+1

− (vti + κPv(θ
P
v − vti))− ρf,vσv(yti − (−λzµQ + ηfvti)− ztiδnf,ti))2

2(1− ρ2
f,v)σ

2
vvti

.

The first component exp(−ω1) puts more mass on large variance states vti of the con-

ditional posterior distribution when large positive or negative diffusive returns εf,ti =

(yti − (−λzµQ + ηfvti) − ztiδnf,ti) are extracted from the log-return data. The second

component exp(−(ω2 + ω3)) captures the time series properties of the variance process

and the dependency structure between future price and variance innovations. The rela-

tive impact of both components on the overall conditional posterior distribution mainly

depends on the volatility of volatility parameter σv, where the preceding and succeeding

variance states become more important for smaller volatility of volatility parameters.

The novel part of our estimation approach is the additional component p(vsti,τi |u−vti , vti)
that incorporates “forward-looking” market expectations about average variance levels

into the filtering method. It is given by

p(vsti,τi |u−vti , vti) =
1√

2πσe
exp

(
−

(vsti,τi − vsmodti,τi
)2

2σ2
e

)
, (2.34)

where

vsmodti,τi
= θQv +

1− e−κQv (τi−ti)

κQv (τi − ti)
(vti − θQv ) + λz

(
(µQ

z )2 + (σQ
z )2
)
. (2.35)

It is derived from the affine-linear relation between the current variance state and the vari-

ance swap rate (see (2.14)) under the assumption that variance swap rates are observed

with independent normally distributed error terms having zero means and standard de-

viations of σe. Otherwise, if we assume that variance swap rates are observed without

any noise, we obtain a singular (maximal informative) conditional posterior distribution.

Further, the incorporation of variance swap rates in the MCMC algorithm allows us to es-

timate the risk-neutral jump parameters µQ
z and σQ

z as well as the risk-neutral parameters

κQv and θQv of the variance process simultaneously with the physical parameters. These
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Figure 2.5: standard errors of filtered variance states

The dashed red line shows the standard errors of latent variance states given that only return data

is used in the estimation method. The solid blue line shows the standard errors of latent variance

states given that return and variance swap data is used in the estimation approach.

model parameters can then be used to extract different types of risk premia from variance

swap data.

In summary, our estimation approach allows us to link unobservable latent variance states

to observable market data. This should improve the robustness of the estimation results

and makes it possible to bring different sources of market information together. This is

particularly important for obtaining good hedging results in a real market environment,

since the hedging performance is highly dependent on the ability to capture the common

stochastic behavior of futures and option prices over time. Moreover, it reduces potential

inconsistencies between historical and implied parameter estimates that can lead to spu-

rious risk premia estimates and have a strong impact on the option pricing performance

in two-stage estimation methods.

It seems obvious that incorporating an additional data source in an estimation approach

should lower estimation errors, but the magnitude of improvement is unclear. For that

reason, we conduct a simulation study for the SVJ model. The model parameters are

selected close to those obtained by Larsson and Nossman (2011). The concrete parameter

values are as follows:26 λz = 6.3, µP
z = −0.02, σP

z = 0.08, µQ
z = −0.02, σQ

z = 0.16, ρf,v =

0, θPv = 0.126, κPv = 3.78, σv = 0.756, ηv = 0, and σe = 0.001.27 Based on this parameter

26The parameter values correspond to annual decimals.

27In addition, we test various parameter constellations (e.g., positive/negative correlations and/or
positive/negative mean jump sizes) and obtain similar results under all scenarios.
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setup, we simulate 50 data sets of log-returns and variance swap rates consisting of 500

observations. Then, we perform two separate estimation runs for each simulated data set,

one which makes use of return data only, and another one which uses both return and

variance swap data.

The simulation results confirm the positive impact of using variance swap rates on es-

timating latent variance states. We find that incorporating variance swap rates reduces

the root mean squared error between the filtered and the true variance process by about

20 percent. In addition, the standard deviation of the posterior distribution of variance

states is reduced by about 20 percent. This can also be seen in Figure 2.5, which shows

the standard errors of the latent variance states for one representative data set. Overall,

our results confirm that using variance swap data can help us to produce more robust

estimates of latent variance states without increasing computational time considerably

(about 10 percent on average in our case).

2.4 Empirical Study

In the following two subsections, we first present the underlying data set and discuss our

estimation results. Then, we test the different model specifications with regard to their

distributional properties as well as their pricing and hedging performances.

2.4.1 Market Data

We start with a short description of our data set, which is obtained from the Bloomberg

database. The data set consists of daily settlement prices of WTI crude oil futures and

option contracts traded at the Chicago Mercantile Exchange (CME) Group. We have

access to front-month futures prices from January 1, 1985 to December 31, 2010 and to

option market data from January 1, 2000 to December 31, 2010.28 The front-month fu-

tures contract is rolled over eight days before its expiry date in order to avoid maturity

effects. In addition, we skip futures price returns at rolling days from our data set in order

to avoid predictable price movements. The option price data set consists of, on average,

18 option contracts with different strike prices on every business day, where option prices

below 0.05 USD are eliminated as in Trolle and Schwartz (2009). Further, we choose the

three-month Treasury bill rate as the risk-free and constant interest rate on every business

day.

28In detail, we take settlement prices that are determined by a “Settlement Price Committee” at the
end of regular trading hours (currently 2:30 p.m. EST) as in Trolle and Schwartz (2009).
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Figure 2.6: time series of variance swap rates during 2000-2010

This figure shows the time series of variance swap rates based on WTI front-month crude oil futures

options between 2000 and 2010.

The variance swap rates are calculated in three steps. First, we use an approximation ap-

proach that was introduced by Barone-Adesi and Whaley (1987) to derive corresponding

European option prices from American option prices.29 Then, we calculate Black-implied

volatilities for each traded option contract and interpolate and extrapolate implied vola-

tilities for missing strike prices based on cubic splines. Third, variance swap rates are

calculated based on (2.15) ignoring the negligible approximation error term εvsr.
30 The

time series of variance swap rates for our data set is shown in Figure 2.6.

In Figure 2.7, we plot the historical time series of the futures price process during 1985-

2010. There are three conspicuous peaks and drops. In early 1986, OPEC (Organization

of the Petroleum Exporting Countries) members failed to agree on a production limit at

a Meeting in Vienna. This resulted in a price drop of more than 40 percent over the

following couple of months. The Gulf War II led to a strong decline in crude oil prices

during 1991. In September 2008, the front-month crude oil futures price collapsed in less

than one year to a third of its previously reached highest level. Figure 2.8 shows absolute

futures price returns that are clearly clustered in 1986 (OPEC Meeting in Vienna), 1991

(Gulf War II), and 2008 (Financial Crisis). Further, variance swap rates exhibit a large

29In general, the differences between American and European option prices are rather small for short-
dated option contracts. Therefore, potential option pricing errors that arise in the Barone-Adesi and
Whaley approximation approach are not large.

30In the estimation step, we explicitly account for the approximation error term in the presence of
jumps.
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Figure 2.7: time series of futures prices during 1985-2010

This figure shows the time series of WTI front-month crude oil futures prices between 1985 and 2010.

peak in the Financial Crisis and two smaller peaks in 2001 (Afghanistan War) and 2003

(Iraq War) (see Figure 2.6).

In Table 2.1, we provide the summary statistics of log-return data for the complete time

period and two subsamples. The first four moments are relatively stable over time and

show a clear non-normal behavior. In detail, log-returns are moderately left-skewed,

where the skewness is less pronounced in the more recent time period from 2000-2010.31

In addition, log-returns exhibit significant excess kurtosis in all time periods indicating a

return distribution with fat-tails. At a first glance, we find no clear evidence for a positive

or negative correlation between future prices changes and volatility movements. Instead

volatility peaks coincide with both strong futures price increases (e.g., 2007/2008 (Oil

Price Rally)) and declines (e.g., 2008 (Financial Crisis)) in our sample.

To get a rough intuition about the risk-neutral return distribution, we compute the aver-

age implied volatility smile for our data sample. We find a mostly symmetric smile form

with the lowest implied volatilities for moneyness levels slightly larger than one.32 This

suggests that a stochastic process is required that is able to capture excess kurtosis, but

no positive or negative skewness compared to a simple geometric Brownian motion model.

31If we compare the skewness of crude oil and equity log-returns, we find that crude oil log-returns
are moderately left-skewed (> -1.20) compared to equities (e.g., ≈ -2.00 for S&P 500 (see Asgharian and
Bengtsson (2006))).

32The shape of the implied volatility smile is similar to the market-implied volatility smile on June 18,
2002 (see Figure 2.1).
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Figure 2.8: time series of absolute futures price returns during 1985-2010

This figure shows the time series of the absolute price returns of the WTI front-month crude oil

futures contract during 1985-2010.

Mean Standard Deviation Skewness Kurtosis Min Max

01/1985-12/2010 0.0001 0.0233 −0.7930 18.0154 −0.3841 0.1403
01/1985-12/1999 −0.0001 0.0228 −1.1815 28.2070 −0.3841 0.1403
01/2000-12/2010 0.0002 0.0241 −0.3102 5.9084 −0.1654 0.1334

Table 2.1: summary statistics

The table reports means, standard deviations, skewness, and kurtosis for daily log-returns of WTI

front-month crude oil futures prices between 1985-2010, 1985-1999, and 2000-2010.

2.4.2 Estimation Results

In the next step, we separately estimate model parameters and state variables for the GB,

JD, SV, and SVJ models based on our MCMC algorithm. The model parameter estimates

refer to the mean of the posterior distribution. We fit all model specifications to market

data from three different time periods (1985-2000, 2000-2010, and 1985-2010) in order to

test the robustness of the estimation results. Note that option price data only exists since

the year 2000 due to data restrictions. We first discuss our estimation results for physical

model parameters and state variables and then present our risk premia estimates.
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Figure 2.9: filtered volatility states in the SV and SVJ models

This figure shows the estimated volatility states for the stochastic volatility model (2.7) (dashed red)

and the stochastic volatility model with jumps (2.1) (solid blue) for the years 2000-2010.

Model Parameters and State Variables

Figure 2.9 shows the filtered volatility processes for the SV and SVJ model. The volatility

processes are quite similar. The only two exceptions are the result of a single extreme

negative price jump of more than 35 percent in 1991 (Gulf War II) and large variance swap

rates in 2008 (Financial Crisis). These two exceptions can be explained as follows: (i) an

extreme price movement of more than 30 percent on a single day cannot be filtered out

through a jump event in the SV model and (ii) large variance swap rates increase latent

variance states more strongly in the SVJ than in the SV model, since variance swap rates

react less sensitively to changes in variance states in the SV than in the SVJ model.33 In

both models, the volatility process attains values between 10 and 100 percent, increases

strongly in 1986 (OPEC Meeting in Vienna), 1991 (Gulf War II), and 2008 (Financial

Crisis), and reverts to its long-term level in about 100 business days after each of these

peaks (see Figure 2.9).

Table 2.2 show that the long-term volatility level
√
θPv is 36 percent and that the volatility

process is moderately persistent with an estimated (daily) mean reversion rate (κPv/252) of

about 1.5 percent. Furthermore, the volatility of volatility parameter is more than double

the size of estimated values for equities (see, for example, Pan (2002), Eraker (2004), and

33This will be explained in greater detail when we discuss our estimation results regarding the market
prices of risk.
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Broadie, Chernov, and Johannes (2007)). The posterior distribution of the correlation

coefficient ρf,v between price and volatility innovations has a slightly negative mean. This

result coincides roughly with those obtained in Trolle and Schwartz (2010), who also find

weak evidence for a small, negative dependence between price and volatility innovations.

The estimated variance parameters remain relatively stable in the two distinct subsamples

with a slightly lower long-term volatility level in the first than in the second subsample

due to the Financial Crisis (34 % for 1985-2000 vs. 39 % for 2000-2010) (see Table 2.3).

1985-2010

GB JD SV SVJ SVJ0

λz - 34.1738 - 1.0951 1.3112
- (4.4043) - (0.6305) (0.6293)
- [25.4361,44.2773] - [0.2303,3.1924] [0.3276,3.2133]

µPz - -0.0027 - -0.0241 -0.0201
- (0.0019) - (0.0316) (0.0247)
- [-0.0073,0.0018] - [-0.1144,0.0374] [-0.1065,0.0346]

σP
z - 0.0446 - 0.0957 0.0920

- (0.0022) - (0.0240) (0.0204)
- [0.0401,0.0503] - [0.0605,0.1498] [0.0586,0.1591]

(σP
f )2 0.1368 0.0712 - - -

(0.0025) (0.0029) - - -
[0.1312,0.1425] [0.0643,0.0780] - - -

ρf,v - - -0.2111 -0.1756 -0.1694
- - (0.0931) (0.0634) (0.0509)
- - [-0.3548,-0.0589] [-0.3021,-0.0617] [-0.2901,-0.0569]

κPv - - 5.0598 3.3141 3.3727
- - (0.8213) (0.6233) (0.6170)
- - [3.2950,7.1251] [1.9408,4.8491] [1.8174,4.6671]

θPv - - 0.1340 0.1315 0.1315
- - (0.0125) (0.0168) (0.0166)
- - [0.1094,0.1693] [0.1038,0.1848] [0.1007,0.1807]

σv - - 0.8324 0.6832 0.6543
- - (0.0467) (0.0379) (0.0438)
- - [0.7317,0.9509] [0.6046,0.7812] [0.5750,0.7433]

κQv - - 0.6701 5.0857 -
- - (0.6797) (1.8559) -
- - [0.1271,3.4107] [1.0381,9.5901] -

θQv - - 1.8749 0.1062 -
- - (1.2589) (0.0813) -
- - [0.1848,4.8563] [0.0421,0.4137] -

ηv - - -4.3898 1.7716 -
- - (1.1214) (1.9460) -
- - [-6.7268,-1.0413] [-2.4946,6.4024] -

cPz − c
Q
z - -0.0493 - -0.0332 -0.0283

- (0.0045) - (0.0091) (0.0071)
- [-0.0590,-0.0384] - [-0.0539,-0.0117,] [-0.04437,-0.0109,]

Table 2.2: model parameter estimates for the time period 1985-2010
This table reports posterior means, standard deviations (in parenthesis), and 1% to 99% credibility
intervals (in square brackets) for the GB, JD, SV, and SVJ (SVJ0) models. The model parameters
are estimated based on the complete time period from 1985 to 2010. The market price of diffusion
risk is set to zero in all model specifications (ηf = 0). The market price of variance risk is estimated
in the SVJ model, whereas it is set to zero in the SVJ0 model. The parameter values correspond to
annual decimals.
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In the next step, we consider the filtered jump processes for the JD and the SVJ models.

It can be seen that filtered jump events differ significantly in the two models (see Figure

2.10). There are significantly more filtered jump events in the JD model than in the SVJ

model. Further, jump events are clustered in 1986 (OPEC Meeting in Vienna), 1991 (Gulf

War II), and 2008 (Financial Crisis) in the JD model, while no clear jump clusters are

found in the SVJ model. In particular, no jumps are filtered out during the Financial

Crisis due to an extremely high volatility level in this period of time. In addition, we do

not find a relation between filtered jump events and volatility states as suggested in Bates

(2000) and Doran and Ronn (2008). The jump sizes range from -33.8 to 12.3 percent

and are on average slightly negative in both models (see Figure 2.10). If we look at the

daily jump intensity (λz/252), we find a very high value of 13 percent in the JD and

a low value of 0.5 percent for the SVJ model for the complete time period (see Table

2.2). The estimated jump intensity for the JD model is similar to the estimated jump

intensities for equity markets. For instance, Johannes, Kumar, and Polson (1999) find

jump intensities ranging from 5 to 16 percent for various prominent equity indices based

on the JD model. In the case of the SVJ model, we obtain a slightly lower jump intensity

than for equity markets. For example, Eraker, Johannes, and Polson (2003) estimate a

daily jump intensity of 0.8 percent for the S&P 500. Compared to other commodities,

our estimated jump intensity is considerably lower. Brooks and Prokopczuk (2011), for

example, find a daily jump intensity of 2.5 percent for heating oil under the SVJ model

framework.

Concerning the results of our two subsamples, we find a higher jump intensity under both

model specifications for the subsample from 1985-2000 (15.7 % vs. 6.3 % for the JD model

and 1.0 % vs. 0.34 % for the SVJ model). This is consistent with our finding of fewer

jump occurrences and a higher average volatility level after 2000.

We also simulate price paths to test whether the respective models are able to capture

the time series properties of historical log-returns (see Figure 2.11). The estimated GB

model is not able to capture clusters in large returns and price jumps, the JD model

results in too many and too small price jumps, and the SV model has difficulty capturing

single large absolute returns above 15 percent compared to the historical return data. In

contrast, simulated price paths of the SVJ model exhibit similar time series properties

as historical log-returns of crude oil futures prices. We have also estimated a stochastic

volatility model with a price and volatility jump component. It turns out that robust

parameter estimates for the volatility jump component are difficult to obtain and that

jumps in the volatility process do not greatly improve the distributional properties as

well as the pricing and hedging performances.34 For this reason, we do not discuss our

34Similar to our results, Brooks and Prokopczuk (2011) only find weak evidence for a jump component
in the volatility process based on return data only.
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estimation results for this model specification in greater detail.
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Figure 2.10: filtered jump probabilities in the JD and SVJ models

This figure shows posterior probabilities of jump events (top) and filtered jump sizes (bottom) for

the jump diffusion model (2.9) (left panel) and the stochastic volatility model with jumps (2.1) (right

panel) at each trading day during 1985-2010.
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Figure 2.11: simulated price paths for the GB, JD, SV, and SVJ models

This figure shows the time series of real log-returns of the WTI front-month crude oil futures contract

during 1985-2010 and one representative simulated price path for each model specification based on

the estimated model parameters given in Table 2.2.
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Market Price of Risk

In this paragraph, we present our estimation results for the market price of diffusion,

variance, and jump risk. The different types of risk premia can be estimated simulta-

neously based on historical return and variance swap data in our MCMC algorithm (see

Section 2.3), where insignificant risk premia are set equal to zero in order to increase the

robustness of our estimation results.

First, we discuss our estimation results for the market price of diffusion risk. The mar-

ket price of diffusion risk ηf is reflected in the drift components of the physical futures

price process (2.1) via the futures price risk premium (2.3), but does not appear in the

risk-neutral futures price process (2.4). The reason is that standard no-arbitrage argu-

ments uniquely determine the risk-neutral drift component of traded futures contracts

independently of the underlying data set. This means that the market price of diffusion

risk can only be estimated based on historical excess return data. The impact of ηf on

excess returns differs among our model specifications. It leads to a constant excess re-

turn if the variance process is constant over time (GB and JD models) and determines

the relation between excess returns and the uncertainty in the market (measured by the

current variance state) if the variance process is stochastic (SV and SVJ models).

In all model specifications, we find neither a significant excess return nor a significant

relation between variance states and excess returns.35 This suggests that no premium is

paid for taking over diffusion risk in crude oil futures markets. In addition to our MCMC

estimates, we simply regress squared log-returns as well as variance swap rates on histori-

cal excess returns to test the robustness of our empirical results in a model-free approach.

As predicted by our estimation results, neither squared log-returns nor variance swap

rates have a significant predictive power for excess returns. For this reason, we assume,

henceforth, that the market price of diffusion risk is equal to zero.

In the next step, we consider our estimation results for the variance and jump risk premia.

The market prices of variance risk ηv, mean price jump risk premium µP
z−µQ

z , and volatil-

ity of price jumps risk premium σQ
z − σP

z are extracted based on the following relation

35In an unrestricted MCMC run that explicitly estimates ηf , we obtain the following parameter esti-
mates for the diffusion risk premium ηf : 0.7881 (0.8586) for the GB model and 0.2816 (0.5425) for the
SVJ model, where the values in the parenthesis correspond to the standard deviation of the respective
posterior distribution. In both cases, the ex-post probability of a positive and a negative market price
of diffusion risk is more than 5 percent so that no “significant” diffusion risk premium is found. For the
SV model, the mean and standard deviation of the posterior distribution are given by 0.6211 (0.5425),
where positive and negative market prices of diffusion risk both have ex-post probabilities of more than
5 percent. In contrast to stochastic volatility models, we are not able to separate the market prices
of diffusion and jump risk based on excess return data only in the JD model. The reason is that the
aggregated jump risk premium λzµ

P
z − λzµQ

z and the market price of diffusion risk lead to a constant
excess return (see (2.3)).
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between latent variance states and observable out-of-the-money option prices (see (2.16)):

2

τ − t

∫ ∞
0

ot(k, τ)

e−r(τ−t)k2
dk = θQv +

1− e−κQv (τ−t)

κQv (τ − t)
(vt − θQv ) + 2λz

(
eµ

Q
z+0.5(σQ

z )2 − 1− µQ
z

)
=

κPv
κPv + ηv

θPv +
1− e−(κPv+ηv)(τ−t)

(κPv + ηv)(τ − t)

(
vt −

κPv
κPv + ηv

θPv

)
+ cQz ,

where cQz = 2λz
(
eµ

Q
z+0.5(σQ

z )2 − 1 − µQ
z

)
is denoted as the aggregated variance jump com-

pensator, and the value of the option portfolio 2
τ−t

∫∞
0

ot(k,τ)

e−r(τ−t)k2
dk is denoted as the non-

adjusted variance swap rate. The different risk premia are separately updated by their

conditional posterior distributions given that the physical model parameters (e.g., µP
z and

σP
z ) are known. This allows us to consider the impact of the market price of variance

risk and the risk-neutral jump distribution parameters µQ
z and σQ

z on non-adjusted vari-

ance swap rates directly. The risk-neutral jump size mean µQ
z and jump size volatility

σQ
z parameters both have a constant impact on non-adjusted variance swap rates through

cQz . Thus, it is only possible to estimate an aggregated variance jump compensator cQz ,

while the individual risk-neutral jump size parameters cannot be estimated in our MCMC

algorithm.

Next, we consider the different impact of the market price of variance risk ηv and the ag-

gregated variance jump compensator cQz on non-adjusted variance swap rates. The main

differences are (i) their different impact on the term structure of non-adjusted variance

swap rates and (ii) their different impact on the sensitivity between the latent variance pro-

cess and non-adjusted variance swap rates. In detail, a negative market price of variance

risk leads to an increasing variance swap rate in time to maturity, while the aggregated

variance jump compensator cQz has a constant impact on variance swap rates in time to

maturity. Furthermore, the sensitivity of variance swap rates to changes in the latent

variance process only depends on the market price of variance risk ηv by means of its

impact on the risk-neutral mean reversion rate κQv = κPv + ηv. These differences allow us

to separate both risk premia based on return and non-adjusted variance swap data in the

MCMC estimation approach.

Next, we briefly present our estimation results for both risk premia in each model speci-

fication. The estimation results show that a significant aggregated market price of jump

risk cPz − cQz exists in all jump models, whereas a significant market price of variance risk

is only found in the pure stochastic volatility model (see Table 2.2 and 2.3). The esti-

mated large market price of variance risk in the SV model can be explained as follows: we

observe a negative variance risk premium 1
τ−t

(
EP
t [(σt,τ )

2]− EQ
t [(σt,τ )

2]
)

between squared

log-returns and short-dated variance swap rates. To capture this, a very large market

price of variance risk is required, since variance risk diminishes when time to maturity

reaches zero. The estimated market price of variance risk in the SV model would then lead
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to a strongly increasing (absolute) variance risk premium 1
τ−t |E

P
t [(σt,τ )

2]−EQ
t [(σt,τ )

2] | in
time to maturity τ − t that is not empirically observed. For instance, the model-implied

variance risk premium is about 10 time larger in absolute terms than its model-free em-

pirical counterpart for a time to maturity of six months (see Kang and Pan (2011)). This

indicates that another temporary risk factor, such as jump risk, is priced in the option

market.

The robustness of our risk premia estimates is tested by considering empirical model-

free variance risk premia for different time to maturities based on market data outside

of our initial data set. Here, we compare realized squared log-returns of one-month-,

two-month-, three-month-, and six-month-ahead futures contracts and the corresponding

variance swap rates. We find that average realized squared log-returns are below their

corresponding variance swap rates (negative variance risk premium) and that the absolute

variance risk premium is not increasing in time to maturity (see Kang and Pan (2011)).

This contradicts the estimated market price of variance risk in the SV model that would

imply a strongly increasing absolute variance risk premium in time to maturity. In ad-

dition, the negative variance risk premium is largely captured by the aggregated market

price of jump risk.

In addition to the above robustness test, we conduct a restricted estimation run with

ηv = 0 (zero market price of variance risk) for the complete time period for the SVJ

model (SVJ0) in order to test the impact of the market price of variance risk on other

model parameter estimates. It turns out that all parameter estimates remain largely

unchanged, although we obtain slightly lower standard deviations for most of the model

parameters in the SVJ0 specification (see Table 2.2).36

The MCMC estimation results show that a jump risk premium is paid in the crude oil

futures market, but the individual risk-neutral jump parameters µQ
z and σQ

z remain un-

known. For that reason, we implement an additional estimation step that exploits the

different impact of µQ
z and σQ

z on the smile form of implied volatilities. In detail, we

estimate the risk-neutral mean jump size and jump size volatility based on cross-sectional

option price data given that the aggregated variance jump compensator is equal to the

posterior mean of the MCMC estimate ĉQz . We first allocate all option contracts to 10

moneyness categories ranging from 0.70 to 1.20 in steps of 0.05 and randomly choose one

representative out-of-the-money option contract for each moneyness category for every

business day.37 Then, we fit µQ
z and σQ

z to implied volatilities given that the aggregated

36For this reason, we set the market price of variance risk equal to zero in the estimation approach for
the time period 2000-2010.

37We do not consider all available option contracts on any trading day due to the fact that traded option
contracts are unequally distributed among different moneyness categories. Furthermore, we choose the
moneyness range from 0.70-1.20, because trading volumes outside this interval are very low in our data
set.
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variance jump compensator is equal to the estimated one:

min
(µQz ,σ

Q
z )

n∑
i=1

10∑
j=1

(
ivmodti

(kj, τi)− ivmarti
(kj, τi)

)2
(2.36)

s.t. 2λz(e
µQz+0.5(σQ

z )2 − 1− µQ
z ) = ĉQz , (2.37)

where ivmarti
(kj, τi) and ivmodti

(kj, τi) are the market-implied and model-implied volatilities

for out-of-the money option contracts with strike price kj in the j-th moneyness category

and maturity τi for j = 1, . . . , 10 and i = 1, . . . , n.

The estimation results show that the risk-neutral mean jump size is very close to the

physical counterpart (µP
z = −0.0027 (0.0019) and µQ

z = −0.005 for the JD model and

µP
z = −0.0201 (0.0247) and µQ

z = −0.035 for the SVJ model, whereas the jump size

variance is considerable larger than its statistical counterpart (σQ
z = 0.0586 compared to

σP
z = 0.0442 (0.0022) for the JD model and σQ

z = 0.1743 compared to σP
z = 0.0921 (0.0204)

for the SVJ model). This indicates a positive volatility of price jumps risk premium and

a mean price jump risk premium close to zero. Further, the risk-neutral jump parameters

show that better option pricing fits can be obtained by adjusting the jump size variance

parameter than by adjusting the mean jump size parameter to option market data.

In summary, we find that jump risk is an important risk factor that is priced with a

significant premium in the crude oil market, while no significant premium is found for

diffusive price and volatility risk. Our estimation results further indicate that ignoring

jump risk, as done in previous studies (see, for example, Doran and Ronn (2008)), leads

to an unreliable large market price of variance risk. These results are important when

it comes to the pricing of complex bilateral agreements in delivery contracts or other

derivative instruments.

2.4.3 Empirical Tests

In this subsection, we test the distributional properties, pricing performances, and hedging

errors of the different modeling approaches for the underlying time periods (1985-2010,

1985-2000, and 2000-2010).

Distributional Properties

We use quantile-quantile-plots (QQ-plots) to test the distributional properties of the dif-

ferent model specifications. The residuals are extracted by reformulating the discretized
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data-generating process (2.30) as follows:

εf,ti =
yti − (−λzµQ

z + ηfvti)δt− ztiδnf,ti√
vtiδt

, i = 1, . . . , n. (2.38)

If the underlying modeling approach is “correct”, the residuals are (approximately) nor-

mally distributed. The residuals are then tested for normality by simple QQ-plots, which

compare theoretical with empirical quantiles. It is important to keep in mind that we

have applied a Bayesian estimation approach. Thus, more complex model specifications

do not automatically perform better than simpler (nested) model specifications.
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Figure 2.12: quantile-quantile-plots

This figure shows the quantile-quantile-plots for the GB, JD, SV, and SVJ models based on log-returns

of the WTI front-month crude oil futures contract during the years 1985-2010.
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Figure 2.12 shows the QQ-plots for all tested models for the complete time period 1985-

2010. It can be seen that a stochastic volatility component is required to capture the

non-normal behavior of log-returns during 1985-2010. Moreover, the QQ-plot for the

jump diffusion model shows that large negative returns are overestimated and large posi-

tive returns are underestimated, which is consistent with empirical results from Larsson

and Nossman (2011).

We use the Bayesian Deviance Information Criterion (DIC) proposed by Spiegelhalter,

Best, Carlin, and van der Linde (2002) to test the distributional properties of the dif-

ferent model specifications. This Bayesian information measure not only accounts for

the “goodness of fit” to the data but also penalizes complexity. This makes it suited for

model selection problems. The DIC scores are computed by using the simulated posterior

distributions obtained from the MCMC algorithm. They are -29,705 for the GB model,

-57,205 for the JD model, -131,753 for the SV model, and -140,653 for the SVJ model,

where lower values translate into an overall superior model performance. The results

confirm the importance of a stochastic volatility component, since the SV and the SVJ

model scores are far smaller than the JD model. Moreover, the SVJ model specification

performs best although the difference to the simpler SV model is not very large.

Option Pricing Performance

In the next step, we compare the different modeling approaches concerning their option

pricing performance. This empirical test is particularly useful for traders who want to

assess whether their non-linear derivative instruments (e.g., bilateral delivery contracts)

are valued consistently to the market for a given modeling approach.

The option pricing performance is measured through two criteria: (i) pricing errors be-

tween market-implied and model-implied variance swap rates and (ii) pricing errors be-

tween market-implied and model-implied volatilities for different moneyness categories

given that the model fits variance swap rates perfectly over time.

The first criterion is used to test whether the underlying model can capture the sto-

chastic behavior of variance swap rates over time. In Figure 2.13, we plot the residuals

between the model and market values for variance swap rates. On average, the GB model

underestimates the variance swap rates. The reason is that no variance risk exists in the

GB model. Thus, the variation of the futures price process has to be the same under the

physical and risk-neutral measure. Therefore, the difference between realized squared log-

returns and variance swap rates cannot be captured in the GB model. In the JD model,

the market-implied and model-implied average variance swap rates coincide through the

aggregated market price of jump risk cPz − cQz , but large pricing errors arise between con-

stant model-implied and strongly fluctuating market-implied variance swap rates. The
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pricing errors are significantly reduced in the SV and SVJ model due to the stochastic

variance process. If we compare both stochastic volatility models, we find that the addi-

tional flexibility of the SVJ model allows one to further reduce pricing errors compared to

the SV model (see Figure 2.13). In addition to the pricing errors, we calculate the abso-

lute pricing errors (in annualized variance) to assess the overall pricing performance. We

obtain the following average absolute pricing errors for the different model specifications:

0.1590 (GB), 0.1501 (JD), 0.0601 (SV), and 0.0461 (SVJ). As expected, absolute pricing

errors are at the lowest for the SV and SVJ models.
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Figure 2.13: time series of variance swap pricing errors during 2000-2010

These graphs show the difference between market-implied and model-implied variance swap rates for

the GB model (2.6) (top (left)), the JD model (2.9) (top (right)), the SV model (2.7) (bottom (left)),

and the SVJ model (2.1) (bottom (right)). The market-implied variance swap rates are calculated

based on option contracts on WTI front-month crude oil futures prices during 2000-2010.
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The second criterion is used to test whether the underlying model can reproduce the

shape of implied volatilities given that the model-implied variance swap rate is equal

to the market-implied variance swap rate on each business day. This side condition is

met by recalibrating the constant variance parameter σ2
f (GB and JD models) or latent

variance states {vti}ni=1 (SV and SVJ models) to the variance swap rate on every business

day through relation (2.16) holding all other model parameters fixed. This ensures that

pricing errors arising from incorrectly estimated implied volatility levels are not mixed

with pricing errors that arise when a model is not able to reproduce the smile or skew form

of implied volatilities. Then, we calculate the root mean squared error between market-

implied and model-implied volatilities for each option contract with strike price in one

of the moneyness categories (0.70 to 1.20) on every business day. Table 2.4 provides the

mean absolute pricing errors in each moneyness category during 2000-2010, and Table 2.5

contains the results for the two subsamples 2000-2008 (non-crisis period) and 2008-2009

(crisis period). We find that the GB, JD, and SV model provide poor pricing performance

for the moneyness categories 0.7-0.8 (out-of-the-money put options). The large pricing

errors of the SV can be explained by the fact that volatility risk alone is not able to

generate enough excess kurtosis to capture market-implied volatility smiles. Moreover,

the poor option pricing performance of the JD model can be traced back to the estimated

jump intensity. The jump component implies frequent price jumps of smaller magnitude.

This leads to an underestimation of tail risk and to an overestimation of at-the-money

implied volatilities. In contrast, the SVJ model has pricing errors that are substantially

smaller for out-of-the money put option contracts, since rare and large jumps are able to

generate enough excess kurtosis to capture pronounced market-implied volatility smiles.

In addition, we compare the pricing errors during 01/2000-09/2008 (non-crisis period)

and 09/2008-09/2009 (crisis period). We find that pricing errors are slightly larger during

the Financial Crisis, but the results are qualitatively similar in both subsamples.
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01/2000-12/2010

moneyness GB JD SV SVJ

0.70− 0.75 0.1044 0.0818 0.0819 0.0559
0.75− 0.80 0.0759 0.0523 0.0541 0.0384
0.80− 0.85 0.0529 0.0370 0.0372 0.0321
0.85− 0.90 0.0345 0.0319 0.0263 0.0255
0.90− 0.95 0.0216 0.0303 0.0203 0.0212
0.95− 1.00 0.0206 0.0282 0.0197 0.0224
1.00− 1.05 0.0246 0.0295 0.0213 0.0247
1.05− 1.10 0.0281 0.0358 0.0249 0.0277
1.10− 1.15 0.0399 0.0408 0.0361 0.0360
1.15− 1.20 0.0520 0.0510 0.0480 0.0479

average pricing error 0.0454 0.0419 0.0370 0.0332

Table 2.4: option pricing errors during 2000-2010
This table reports average absolute errors between the model-implied and market-implied volatilities
of option contracts on WTI front-month crude oil futures prices between 2000 and 2010. The values
correspond to annual decimals.

01/2000-9/2008 09/2008-09/2009

moneyness GB JD SV SVJ GB JD SV SVJ

0.70− 0.75 0.0910 0.0601 0.0642 0.0514 0.1044 0.0903 0.0826 0.0674
0.75− 0.80 0.0626 0.0409 0.0415 0.0327 0.0848 0.0726 0.0693 0.0576
0.80− 0.85 0.0450 0.0322 0.0298 0.0292 0.0636 0.0564 0.0542 0.0492
0.85− 0.90 0.0310 0.0309 0.0232 0.0237 0.0438 0.0411 0.0393 0.0393
0.90− 0.95 0.0204 0.0310 0.0193 0.0199 0.0322 0.0322 0.0315 0.0326
0.95− 1.00 0.0195 0.0228 0.0187 0.0218 0.0332 0.0323 0.0324 0.0316
1.00− 1.05 0.0218 0.0294 0.0189 0.0242 0.0428 0.0402 0.0397 0.0375
1.05− 1.10 0.0223 0.0332 0.0206 0.0268 0.0494 0.0467 0.0445 0.0418
1.10− 1.15 0.0291 0.0339 0.0308 0.0330 0.0536 0.0518 0.0477 0.0465
1.15− 1.20 0.0496 0.0504 0.0556 0.0531 0.0556 0.0544 0.0493 0.0492

average pricing error 0.0392 0.0370 0.0323 0.0311 0.0563 0.0518 0.0491 0.0452

Table 2.5: option pricing errors during 01/2000-09/2008 and 09/2008-09/2009
The left table reports average absolute errors between the model-implied and market-implied volatil-
ities of option contracts on WTI front-month crude oil futures prices before the Financial Crisis. The
right figure provides the result during the Financial Crisis. The values correspond to annual decimals.
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Hedging Performance

Lastly, we analyze hedging errors of option contracts for our model specifications. The

hedging performance provides important information whether the underlying stochastic

process can capture the co-movement of futures and option prices. This is especially

important for physical traders who manage large hedge portfolios and have to quantify

the risk inherent in their financial and physical asset portfolios.

In our empirical test, we compare the in-sample hedging performance of the different

model specifications for all option contracts that are traded on succeeding days from

January 1, 2000 until December 31, 2010. The hedge portfolio is constructed as follows:

we first recalibrate the variance parameter (GB and JD models) or the latent variance state

(SV and SVJ models) to each target option contract on every trading day. This ensures

that target option contracts are correctly valuated in the underlying modeling approach,

which minimizes hedging errors that arise due to a poor option pricing performance.

Then, we calculate the hedge positions in the futures and option contracts according

to the delta and delta-vega hedging strategy (see Subsection 2.2.3). In the delta-vega

hedging strategy, we use an option contract from the nearest moneyness category as

additional hedging instrument against variance risk. We also test option contracts from

other moneyness categories (e.g., at-the-money option contracts) as hedging instruments

and obtain the same qualitative results, where hedging errors are generally lower if an

option contract with a similar strike price is used as hedging instrument.

Now, we choose such hedge portfolios for each moneyness category. Then, we calculate

the hedging errors given by the daily returns of the hedge portfolio minus the interest rate

effect for each business day. Table 2.6 shows the absolute hedging errors for the different

hedging strategies between 01/2000-12/2010 and 09/2008-09/2009. The hedging errors

have similar means and standard deviations for the delta hedging strategy under all model

specifications and are larger during the crisis period. In contrast, the hedging errors of the

delta-vega hedging strategy, which actively manage variance risk, have significantly lower

means and standard deviations for the SV and SVJ models. This confirms our estimation

result of weakly correlated futures price and volatility innovations (“unspanned stochastic

volatility”). In addition, we analyze the distribution of the hedging errors under all model

specifications for the delta and delta-vega hedging strategy. In the delta hedging strategy,

we find large hedging errors of -3.6 USD to 1.2 USD between two trading days in all

model specifications. These hedging errors can potentially arise due to discrete hedging

or price jumps. In order to test the impact of discrete hedging on hedging errors, we

conduct a simulation study. We simulate ten thousand futures price returns based on

the estimated model parameters and calculate the hedging errors given that the hedge

portfolio is rebalanced on a daily basis. In the continuous price dynamics (GB and SV
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models), maximal simulated (positive and negative) hedging errors are -0.6 USD and 0.1

USD for the GB model and -0.7 USD and 0.6 USD for the SV model. This shows that

discrete hedging alone cannot be the reason for the large empirical hedging errors that

are found in the crude oil market. If we consider unhedgeable jump risk in the JD and

SVJ model, we obtain hedging errors that cover a wider range: -1.8 USD to 0.1 USD for

the JD model and -2.8 USD to 0.5 USD for the SVJ model. The difference between both

jump models can be explained by a more extreme jump distribution in the SVJ model.

In the delta-vega hedging strategy, empirical hedging errors are significantly reduced.

The largest positive and negative real hedging errors for our data set are -0.5 USD and

0.2 USD based on the SV and SVJ model.38 Once again, the pure diffusive stochastic

volatility model underestimates the tails risk as simulated hedging errors only range from

only -0.1 USD to 0.1 USD. The SVJ model leads to values of -0.5 USD to 0.5 USD. This

means that the lower bound is perfectly fitted, while the upper bound is overestimated

in the SVJ model. In summary, ignoring jump risk in modeling approaches results in a

significant underestimation of the downside risk of hedge portfolios.

01/2000-12/2010 09/2008-09/2009

Delta Delta-Vega Delta Delta-Vega

−0.0443 − −0.1034 −
GB (0.3197) − (0.6012) −

[−1.6084, 0.3689] − [−3.0424, 0.7634] −

−0.0435 − −0.1030 −
JD (0.3187) − (0.6007) −

[−1.5661, 0.3649] − [−3.0430, 0.7629] −

−0.0437 −0.0024 −0.1032 −0.0016
SV (0.3196) (0.0211) (0.06012) (0.0171)

[−1.5739, 0.3614] [−0.0928, 0.0238] [−3.0414, 0.7632] [−0.0904, 0.0169]

−0.0443 −0.0023 −0.1028 −0.0018
SVJ (0.3195) (0.0211) (0.6006) (0.0186)

[−1.5364, 0.3588] [−0.0928, 0.0237] [−3.0419, 0.7636] [−0.0926, 0.0176]

Table 2.6: hedging errors during 2000-2010 and 09/2008-09/2009
This table reports absolute hedging errors under each model specification for the delta and delta-
vega hedging strategies. The underlying data set consists of WTI front-month crude oil futures and
option contracts for the years 2000-2010 (complete time period) and 09/2008-09/2009 (crisis period).
The table provides posterior means, standard deviations (in parenthesis), and 1% to 99% credibility
intervals (in square brackets) for the GB, JD, SV, and SVJ models.

38We do not test pseudo delta-vega strategies that hedge variance risk, even if no variance risk exists
in the model (see Bakshi, Cao, and Chen (1997)).
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SV SV ∗ SV J SV J∗

ES0.999 0.3550 0.0910 0.4120 0.5316
ES0.995 0.2016 0.0618 0.2444 0.1897

Table 2.7: expected shortfalls for hedge portfolios
This table provides expected shortfall values for real absolute hedging errors as well as simulated ones
(denoted by the asterisk ∗) under the SV and SVJ model specification for the 0.5% and 0.1% quantile.

In order to gauge in more detail the impact of unhedgable risk in our hedging portfolios,

we compute expected shortfalls for the delta-vega hedging strategy of simulated and actual

absolute hedging errors under both stochastic volatility model specifications (see Table

2.7). It can be seen that the SV model significantly underestimates the tail risk, while

the simulation-based expected shortfall under the SVJ model is much closer to the actual

market-based risk measure. These results confirm again that jump risk must be taken

into account if the risk of hedge portfolios has to be quantified accurately.

In summary, we have tested the role of different risk factors for the crude oil futures

and option markets from different perspectives. We find that volatility risk is required

to capture clustered large returns during economic crisis and times of war, as well as

strongly fluctuating variance swap rates over time. However, pure stochastic volatility

models cannot capture pronounced implied volatility smiles and the risk inherent in hedge

portfolios. This indicates that a further temporary unhedgeable risk factor is priced in

the market. Our empirical results show that jump risk is an adequate candidate for

such a temporary risk factor. For our data set, jump risk is able to capture quite well

pronounced implied volatility smiles and the risk of hedge portfolios. In addition, we

find clear evidence for a jump risk premium that is reflected in larger average variance

swap rates compared to average squared log-returns. Finally, no evidence for a positive

or negative market price of variance risk is found in our data set.



Chapter 3

Stochastic Term Structure Modeling

Framework

In the previous chapter, we have analyzed different stochastic modeling approaches for a

single futures contract. These models are suited for valuing and managing many finan-

cial products but fail when it comes to pricing important real options. The valuation of

real options requires one to set up an appropriate stochastic term structure model for the

common stochastic price behavior of multiple futures contracts. This is a non-trivial task,

since specific features of physical energy trading have to be considered in order to obtain

a consistent modeling approach. It is not possible, for instance, to apply the classical

cost-of-carry relation between spot and futures prices due to physical storage costs. Fur-

thermore, due to limited delivery rates, spot and futures contracts have delivery periods

instead of delivery dates. This requires one to distinguish between theoretical “spot” and

“futures” contracts with delivery dates, which are often considered in theoretical model-

ing approaches, and real “spot” and “futures” contracts with delivery periods, which are

observed in the market.1

This chapter presents a tractable modeling framework for the entire futures price curve

that accounts for the specific characteristics of physical and financial energy markets.

In the literature, two main strands to model energy price dynamics can be separated.

In the first strand, the spot price dynamics or the price dynamics of theoretical futures

contracts is modeled exogenously and real futures prices referring to delivery periods are

endogenously derived based on the no-arbitrage principle (see, for example, Schwartz

(1997), Schwartz and Smith (2000), and Trolle and Schwartz (2009)). The no-arbitrage

relation states that each real futures price is equal to the average theoretical futures price

1In the following, we skip “theoretical” and “real” in front of spot and futures contracts if no ambiguity
exists whether the underlying contract has a delivery period or not.
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during its delivery period. It turns out that, through the aggregation step, the endog-

enous price dynamics of real futures contracts are generally intractable and thus difficult

to calibrate to market data. In the second strand, the price dynamics of real futures

contracts are modeled exogenously (see, for example, Koekebakker and Ollmar (2005)

or Benth and Koekebakker (2008)). This has the advantage that model parameters can

be directly estimated from historical return data or can be extracted from option price

data. The disadvantage is that it is not possible to derive arbitrage-free price dynamics

of futures contracts that are not exogenously modeled within the market modeling frame-

work. For example, day-ahead prices remain unspecified if the market model is calibrated

to the price dynamics of futures contracts referring to monthly delivery periods (see, for

example, Benth and Koekebakker (2008)). This restricts the application of standard mar-

ket modeling approaches. For instance, storage operators require a stochastic model for

day-ahead and futures price dynamics, since they trade in both (i) day-ahead contracts

to optimize their physical operation policies and (ii) standardized futures contracts to

efficiently hedge their price risks.

In the following, we introduce a modeling framework that tackles the trade-off between

tractability and completeness by inverting classical spot and futures price models. We

start with a classical market model for the price dynamics of standardized futures con-

tracts referring to delivery periods. We then apply a smooth interpolation function to

endogenously derive arbitrage-free price dynamics of theoretical spot and futures con-

tracts relative to the exogenously given price process of real futures contracts instead

of vice versa. This completes our modeling approach and makes it capable of valuing

a broad range of important energy derivatives, such as power plants, storage facilities,

and take-or-pay contracts. Ultimately, our “inverted” approach results in a multi-factor

spot price model that depends on observable futures prices instead of latent factors. This

direct link can be used to efficiently hedge price risks in customized contracts using liquid

exchange-traded products.

This chapter is organized as follows: we first discuss the trade-off between the tractability

and completeness of standard modeling frameworks. We then introduce our modeling

approach and demonstrate its convenience in the empirical part.

3.1 Trade-off between Tractability and Completeness

In general, stochastic modeling approaches for energy price dynamics are similar to clas-

sical fixed income models and can be separated into two main classes: (i) market models

and (ii) spot and futures price models.

The starting point of market models is the price dynamics of a finite number of traded fu-
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tures contracts with fixed delivery periods. This allows one to simplify estimation methods

for model parameters, since model parameters can be directly fitted to observable market

data. However, market models also lead to undefined price dynamics for delivery contracts

with delivery periods that are not exogenously modeled. This restricts the application of

market models to standard valuation purposes and prevents their use for the valuation of

important real options.

In contrast to market models, spot and futures prices models start with the price dy-

namics of theoretical delivery contracts referring to delivery dates. It is then possible to

derive arbitrage-free futures price dynamics for arbitrary delivery periods based on the

risk-neutral valuation approach. For instance, if real futures contracts refer to uniform

deliveries in their delivery periods, the no-arbitrage relation between theoretical and real

futures prices is given by

ft(τb, τe) =

∫ τe

τb

ŵ(u; τb, τe)ft(u)du, (3.1)

where ft(τb, τe) corresponds to the real futures price for the delivery period (τb, τe] and

ft(u) denotes the theoretical futures price for the delivery date u ∈ (τb, τe]. The function

ŵ(u; τb, τe) depends on the settlement procedure of the futures contract. It is equal to

ŵ(u; τb, τe) =
exp (−ru)∫ τe

τb
exp (−rv)dv

if the settlement takes place uniformly during the delivery period.2 Next, we consider a

widely used spot price model to illustrate the problem of fitting spot and futures price

dynamics to market data. Schwartz and Smith (2000) separate the log spot price st

into a short-term mean reversion component χt capturing temporary price impacts (e.g.,

weather shocks) and a long-term component ξt capturing permanent price impacts (e.g.,

economic growth). In their model, the risk-neutral spot price dynamics is given by3

ln st = χt + ξt, (3.2)

2In real energy markets, futures contracts are settled at discrete dates. This can be easily incorporated
by modifying ŵ(u; τb, τe) (see Benth, Koekebakker, and Ollmar (2007) or Benth and Koekebakker (2008)).

3The superscript Q is used to indicate that a model parameter can differ between the physical and
the risk-neutral measure.
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where

dχt = −κQχχtdt+ σχdw
Q
χ,t, (3.3)

dξt = µQ
ξ dt+ σξdw

Q
ξ,t (3.4)

with correlated standard Wiener processes d[wQ
χ,t, w

Q
ξ,t] = ρχξdt. It follows then that spot

prices are log-normally distributed. This allows one to calculate the current futures price

curve in closed-form as follows:

ft(u) = EQ
t [su]

= exp
{
EQ
t [ln su] +

1

2
VarQt [ln su]

}
, u ≥ t, (3.5)

with

EQ
t [ln su] = e−κ

Q
χ(u−t)χt + ξt + µQ

ξ (u− t),

VarQt [ln su] =
σ2
χ

2κQχ
(1− e−2κQχ(u−t)) + σ2

ξ (u− t) +
2ρχξσχσξ

κQχ
(1− e−κ

Q
χ(u−t)).

The estimation of the model parameters (κQχ , σχ, µ
Q
ξ , σξ, ρχξ) requires one to calculate ex-

pected average spot prices during the respective delivery period of the traded futures

contract. However, the integral equation (3.1) cannot be solved in closed-form for (3.5).

Thus, computationally intensive numerical estimation methods are required. This esti-

mation problem is not specific to the Schwartz/Smith model and generally emerges for

all non-additive stochastic processes (see Benth, Kallsen, and Meyer-Brandis (2007)).

There are two main approaches used to simplify the estimation of model parameters for

non-additive stochastic processes. First, spot or futures price processes are directly fitted

to (inconsistent) proxies for unobservable (theoretical) spot or futures prices. For instance,

Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000), Casassus and

Collin-Dufresne (2005), and Cartea and Williams (2008) ignore delivery periods of crude

oil or natural gas futures contracts in their empirical studies. Second, model parameters

are estimated based on a two-stage estimation approach. In the first estimation step,

theoretical spot and futures prices are derived from real futures prices based on an inter-

polation function. In the second estimation step, model parameters of the underlying spot

and futures price processes are fitted to interpolated theoretical spot and futures prices.

This approach generally does not ensure consistent parameter estimates, since two inde-

pendent interpolation functions are used: the interpolation function applied to extract

theoretical futures prices and the endogenous interpolation function (futures price curve)

implied by the spot price process (see, for example, Koekebakker and Ollmar (2005)).
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For additive stochastic processes (e.g., affine-linear models), we obtain tractable price

dynamics for real futures contracts (see Bouwman, Raviv, and van Dijk (2012)). This

simplifies estimation methods but strongly restricts the number of potential model speci-

fications. For instance, the model specifications considered in the previous chapter (e.g.,

the Black or Heston model) or in other studies (see, for example, Koekebakker and Ollmar

(2005), Benth and Koekebakker (2008), or Trolle and Schwartz (2009)) are not contained

in the class of additive stochastic processes. In addition, (standard) affine-linear stochas-

tic models are not able to capture futures price movements that do not depend on time to

maturity (e.g., a stochastic summer-winter spreads in the natural gas market). However,

such price movements are very important when it comes to the pricing of real option

contracts (see Chapter 4).

3.2 The Model Framework

In this section, we introduce the theoretical framework behind our energy market model-

ing approach. The underlying energy market consists of m+ 1 real futures contracts with

successive delivery periods {(τi, τi+1]}mi=0 that are traded until their first delivery dates

{τi}mi=0 and refer to uniform deliveries in their delivery periods.4 The market price of a

futures contract with delivery period (τi, τi+1] is denoted by f
(i)
t = ft(τi, τi+1).

Our modeling approach is developed in two major steps. We start with the price dynam-

ics of traded futures contracts and then describe our smooth interpolation approach to

complete our pricing framework.

3.2.1 Real Futures Contracts

In general, we can model the common stochastic price behavior of the underlying real

futures contracts via arbitrary adapted càdlag martingale processes with finite variations

(see Jeanblanc, Yor, and Chesney (2009)).5 Especially, standard stochastic price processes

(e.g., jump diffusion, stochastic volatility, and regime switching models) can be used to

4In most energy markets, futures contracts have successive delivery periods and are traded until a
few business days before their first physical delivery days. For instance, natural gas futures contracts
are traded until three business days before their first physical delivery days at the CME, while crude
oil futures contracts are traded until three business days before the 25th of the month preceding the
respective delivery month at the CME. In the U.S. natural gas market, delivery has to take place as
uniformly as possible on an hourly basis. In contrast, in the crude oil market, pipeline operators decide
on the delivery day or period on a pro rata basis.

5The term “càdlàg” (“continues à droite, limites à gauche) means that the process is continuous on
the right and has finite left limits.
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model futures price dynamics. Further, the price dynamics of futures contracts with

non-overlapping delivery periods can be modeled separately, since (significant) physical

storage costs distort the classical cost-of-carry relation in energy markets.

3.2.2 Theoretical Spot and Futures Contracts

The market model does not specify the futures price dynamics that refer to delivery

periods (τb, τe] that are not contained in {(τi, τi+1]}mi=0, i.e., τb /∈ {τi}m+1
i=0 or τe /∈ {τi}m+1

i=0 .

It is not possible, for example, to derive the day-ahead price dynamics from a market

model for futures contracts with monthly delivery periods. This leads to an incomplete

modeling approach that restricts its practical application for the valuation of important

real options.

In our approach, we obtain arbitrage-free price dynamics for all delivery contracts through

an interpolation function. The interpolation function ft(u) infers theoretical futures prices

from real futures prices based on two no-arbitrage conditions and a so called maximum

“smoothness” criterion that avoids strongly oscillating futures price curves.6

Next, we specify the interpolation function. The first no-arbitrage condition states that

two portfolios with the same physical delivery flows must have the same market value at

any point in time.

Condition 1 (Static No-Arbitrage Condition)

The futures price curve satisfies the static no-arbitrage relation at any point in time t:

ft(τi, τi+1) =

∫ τi+1

τi

ŵ(u; τi, τi+1)ft(u)du, t ∈ [τ0, τi], (3.6)

for i = 0, . . . ,m.

The static no-arbitrage relation is imposed even when theoretical futures contracts are

non-traded instruments in order to guarantee an arbitrage-free modeling approach for

energy markets with arbitrary physical delivery contracts. Moreover, the no-arbitrage

principle requires that endogenous futures price dynamics are martingales under the risk-

neutral measure regardless of the market model approach.

6We use the same notation for the futures price curve and the interpolation function. The reason is
that the value of the interpolation function ft(u) is equal to the theoretical futures price for the delivery
date u at time t.
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Condition 2 (Dynamic No-Arbitrage Condition)

The futures price dynamics satisfy the martingale property

ft(u) = EQ
t [fl(u)], t ≤ l ≤ u, (3.7)

at any point in time t ∈ [τ0, u].

These two conditions are both necessary for an arbitrage-free pricing framework, but

they do not ensure that endogenous futures price curves are reasonable. Notably, inter-

polation functions of higher order, which are required to satisfy the static no-arbitrage

relation, tend to be strongly oscillating. To circumvent this problem, we impose a so called

“maximum smoothness” criterion on the interpolation function. This condition was first

introduced by McCulloch (1971) for yield curves and was applied for energy markets by

Benth, Koekebakker, and Ollmar (2007). It minimizes the average second derivative of

the interpolation function over the underlying time period.

Condition 3 (Maximum Smoothness Condition)

The futures price curve is twice continuously differentiable and minimizes the squared

second derivative

min
g

∫ τm+1

t

(∂2gt
∂2u

(u)
)2

du (3.8)

with respect to all interpolation functions gt with zero derivative in τm+1 that satisfy the

two no-arbitrage conditions.7

These three conditions uniquely define the interpolation function.

Lemma 3 (Futures Price Curve)

The two no-arbitrage conditions and the maximum smoothness condition yield to the fol-

lowing relation between theoretical and real futures prices:

ft(u) =
m∑
i=0

βi(u)ft(τi, τi+1), (3.9)

ft(τb, τe) =
m∑
i=0

(∫ τe

τb

ŵ(u; τb, τe)βi(u)du
)
ft(τi, τi+1), (3.10)

7The maximum smoothness criterion can also be applied without the zero derivative condition to avoid
oscillating interpolation functions.
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where the weighting functions {βi(u)}mi=0 fulfill the following conditions:

βi(u) = ai + biu+ ciu
2 + diu

3 + eiu
4,

m∑
i=0

βi(u) ≡ 1,

∫ τi+1

τi

ŵ(u; τi, τi+1)βj(u)du =

1 j = i

0 j 6= i
, for i, j = 0, . . . ,m.

The spline parameters of the weighting functions {(ai, bi, ci, di, ei)}mi=0 are uniquely deter-

mined by the usual spline conditions, the static no-arbitrage condition, and the maximum

smoothness criterion (see Appendix A.3).

Proof: Benth, Koekebakker, and Ollmar (2007) show that splines of order four are needed

to satisfy the maximum smoothness criterion subject to the static no-arbitrage condition.

The linear relation (3.9) between theoretical and real futures prices exists due to a linear

relation between the spline parameters {(ai, bi, ci, di, ei)}mi=0 and real futures prices (see

Appendix A.3). Note that the dynamic no-arbitrage condition for arbitrary martingale

processes of real futures contracts is only satisfied for linear relations between theoretical

and real futures prices.

Furthermore, the maximum smoothness criterion implies that parallel shifts in real fu-

tures prices yield to parallel shifts in the theoretical futures price curve. Thus, weighting

functions add up to one. The fact that the integral of the weighting function over a

delivery period has to be either zero or one follows directly from the static no-arbitrage

condition.

Based on Lemma 3, we can derive price dynamics for delivery contracts with arbitrary

delivery dates or periods by applying Itô’s lemma.

Lemma 4 (Spot and Futures Price Dynamics)

The risk-neutral price dynamics of theoretical and real spot and futures contracts are given

by

(i) spot price dynamics

dst = dft(t) =
m∑
i=0

(
∂βi
∂t

(t)

)
ft(τi, τi+1)dt+

m∑
i=0

βi(t)dft(τi, τi+1), (3.11)

where the (theoretical) spot price refers to a rolling immediate delivery date,
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(ii) (theoretical) futures price dynamics

dft(u) =
m∑
i=0

βi(u)dft(τi, τi+1), (3.12)

where the (theoretical) futures price refers to a fixed delivery date u,

(iii) (real) futures price dynamics

dft(τb, τe) =
m∑
i=0

(∫ τe

τb

ŵ(u; τb, τe)βi(u)du
)
dft(τi, τi+1), τb < τe, (3.13)

where the (real) futures contract refers to an arbitrarily fixed delivery period (τb, τe].

In (3.11), the spot contract refers to a rolling delivery date. This implies that physical

storage capacities are required to trade in the spot contract. Therefore, the spot price

process does not have to satisfy the martingale property. Instead, its drift component

is equal to the current slope of the futures price curve. In contrast, theoretical and real

futures prices refer to fixed delivery dates or periods. Thus, both stochastic processes

satisfy the martingale property under the risk-neutral measure.

The key difference to alternative spot price models is that observable instead of theoretical

futures price dynamics are modeled exogenously. This means that model prices for traded

futures contracts do not have to first be endogenously derived before model parameters

can be estimated on market data. Note that the drift component of our spot price process

linearly depends on observable futures prices instead of latent factors. As a result, no-

arbitrage conditions can be met without restricting the price dynamics of traded futures

contracts. This allows us to obtain a spot price process that results in tractable futures

price dynamics for real delivery contracts in contrast to standard spot price dynamics.

The relations between our “energy market model” and standard normal and log-normal

spot and futures price processes are illustrated in Appendix A.4.

3.3 Implementation and Empirical Results

In what follows, we give general recommendations for the implementation of our modeling

approach for the U.S. crude oil and natural gas markets. In principle, our energy market

model is implemented in three steps. First, we have to choose the exogenously given

benchmark contracts within the market model component. Second, we have to specify

and estimate an appropriate stochastic process for the futures price dynamics based on

available market data. Third, we have to complete our pricing framework through the
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smooth interpolation function. These three implementation steps will now be illustrated

using the U.S. crude oil and natural gas markets as examples.

3.3.1 Choice of Market Contracts

The first implementation step of our energy market model is to select the futures contracts

used within the market modeling approach. Ideally, the market model could be based on

futures contracts with non-overlapping short delivery periods that span the whole time

period that is relevant for the application of the modeling approach. This would provide a

good picture of temporary imbalances between supply and demand in the market, reflect

market expectations about future prices, and avoid interpolation and extrapolation errors.

Indeed, most exchange-traded futures contracts refer to non-overlapping delivery periods

in energy markets so that available market prices can be directly incorporated into the

market model.

In the following, we consider the role of futures contracts traded at the CME for crude

oil and natural gas markets.8

Crude Oil

In the U.S. crude oil market, exchange-traded futures contracts refer to delivery periods

for each calendar month in the following five years and are traded until three business days

before the 25th of the month preceding the delivery month. It seems uncritical that no

price information for the current calendar month exists, since crude oil demand and supply

do not strongly depend on temporary factors, and physical trading is mostly restricted

to delivery contracts having delivery periods after the current month due to pipeline

scheduling practice.9 Thus, the short-end of the futures price curve should behave quite

similarly to the front-month futures price, with the result that exchange-traded futures

contracts provide a good picture of the crude oil market. Nevertheless, in order to reduce

the impact of extrapolation errors, each futures price is carried forward after its expiry

date by the underlying market model until its last delivery date.
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Figure 3.1: day-ahead prices, futures prices, and futures price curve

The left graph shows the natural gas day-ahead price (point) and the futures price curve (solid)

on February 23, 2003 and February 24, 2003. The right graph shows the natural gas day-ahead

price (point), the natural gas synthetic futures price (red dotted line), and the interpolated natural

gas futures price curve (solid line) on August 7, 2009. The synthetic futures price is defined by

the no-arbitrage condition between the day-ahead price and the futures price curve, the usual spline

conditions, and the maximum smoothness criterion. The natural gas prices refer to physical deliveries

at Henry Hub in Louisiana.

Natural Gas

In the U.S., exchange-traded natural gas futures contracts are traded until three business

days before their first delivery dates and refer to delivery periods for each calendar month

in the current plus the next twelve years at Henry Hub in Louisiana. However, in contrast

to the crude oil market, natural gas demand strongly depends on unpredictable temporary

influencing factors. For instance, temporary demand shocks often have a strong impact

on market prices of short-dated delivery contracts but little impact on exchange-traded

futures contracts referring to physical delivery periods in or after the next calendar month.

This means that futures market information provides an incomplete picture of the very

short-end of the futures price curve.10 To see this, consider, as an example, day-ahead

and futures prices on February 23, 2003 and February 24, 2003 (see Figure 3.1 (left)).

The picture shows that the day-ahead price jumps about 5.50 USD per mmBtu11, while

the futures price curve only moves slightly. In this case, the different price behavior of

8The CME Group is the largest and most liquid futures exchange in the U.S. energy market.

9In detail, three business days before the 25th of each month, no information about the current and
the next delivery month exists.

10For instance, extreme temperatures or delivery problems can cause demand or supply shocks in
natural gas or power markets.

11The abbreviation mmBtu stands for million British thermal units.
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day-ahead and futures contracts can be explained by a strong increase in heating demand

due to extreme temperatures on that particular day and an expected warming trend for

the following days (source U.S. Energy Information Administration (EIA)).12 To cope

with this problem, we construct a synthetic futures price for the current calendar month

based on the observable day-ahead price on each trading day. In detail, we determine the

synthetic futures price for the current calendar month so that the interpolation function

satisfies the usual spline, no-arbitrage, and maximum smoothness conditions and that

the extrapolated day-ahead price is equal to the observable market price of the day-ahead

contract. In Figure 3.1 (right), the day-ahead price, the synthetic futures price, the market

prices of traded futures contracts, and the smooth interpolation function are shown for

one trading day.13

3.3.2 Specification and Estimation of the Market Models

In the second implementation step of our energy market model, we choose the market

model component for the underlying futures price dynamics. The market model should

capture the common price behavior of multiple futures contracts as well as the specific

distributional properties of return data (e.g., volatility and jump risk). The relevance of

specific futures price movements not only depends on their statistical explanatory power

but also on the underlying application of the energy market model. Therefore, we can

only give several basic remarks how to specify a suitable market model and illustrate the

general proceeding for the crude oil and natural gas market, where a concrete specifica-

tion for a practical application is discussed in the next chapter. To specify the modeling

approach, we must decide on the number of underlying risk factors and their stochastic

behavior. Here, a principal component analysis can give some indication of the number of

risk factors needed to capture the common stochastic behavior of multiple futures prices.

Furthermore, statistical tests and market information contained in derivative instruments

(e.g., implied volatility smiles) provide useful information for finding suitable return dis-

tributions.

Basically, the storage costs associated with holding the physical energy commodity de-

termine, to a great extent, the complexity of energy price dynamics. It can be said that

the higher the storage costs, the higher the number of risk factors needed to adequately

model the common behavior of the futures price curve. For instance, spreads between

12See http://www.eia.gov/naturalgas/weekly/archive/2003/02 27/ngupdate.asp for details.

13In most energy markets, multiple contracts with delivery periods in the current month can be used to
replace standardized futures contracts after their expiry dates. For instance, day-ahead, two-day-ahead,
and balance-of-the-month contracts are traded in European natural gas markets. However, we only have
access to day-ahead prices for the U.S. natural gas market.
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futures prices referring to different delivery periods are much more volatile in natural gas

than in crude oil markets.

In the following, we explicitly specify and estimate a market model framework for the

crude oil and natural gas markets based on historical return data. In both cases, we

consider futures contracts with monthly delivery periods within the next year and ignore

very long-dated futures contracts due to their low trading volumes and their minor role

for most practical applications.

Crude Oil

The underlying modeling approach should capture the common stochastic behavior of

multiple futures prices as well as the distributional properties of each individual time

series. In the previous chapter, we extensively analyzed the distributional properties of a

single futures contract but not the common stochastic behavior of multiple futures prices,

which we will now turn to. In Figure 3.2, it can be seen that one-month-ahead, six-month-

ahead, and twelve-month-ahead crude oil futures prices behave very similarly. Thus, a

high explanatory power for the common futures price dynamics should be achievable with

few state variables. This is statistically confirmed by a principal component analysis,

which reveals that 97% of the daily variation in log futures price returns are parallel shifts

and that 2% of the daily variation in log futures price returns are twists14. The factor

loadings further show that twists have a much larger impact on short-dated than on long-

dated futures prices (see Figure 3.3). This means that twists mainly arise due to temporary

price effects that are particularly important for the valuation of real options (e.g., storage

facilities). For this reason, it is often useful to incorporate a twist component in a modeling

approach even though twists only explain 2% of the daily variation in log futures price

returns. Next, we briefly consider the distributional properties of historical log-return

data. In Figure 3.2, we can see that the different time series exhibit moderate price

movements with only a very few large returns until the beginning of the Financial Crisis.

During the Financial Crisis, crude oil prices collapsed and their volatility levels strongly

increased compared to pre-crisis levels (see Section 2.4). For instance, log-returns indicate

a 100% higher volatility level between September 2008 and September 2009 compared to

the pre-crisis level (January 2005 to September 2008).

14This means that the short-end and the long-end of the futures price curve move in opposite directions.
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Figure 3.2: time series of crude oil futures prices and log-returns

These graphs show one-month-ahead, six-month-ahead, and twelve-month-ahead WTI crude oil fu-

tures prices and their log-returns from January 1, 2005 to December 31, 2009.
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Figure 3.3: factor loadings

These graphs show the factor loading of the first two principal components for daily log-return of

WTI crude oil futures prices from January 1, 2005 to December 31, 2009.

Now, the above-mentioned time series properties are captured through a two-factor model

with a crisis and non-crisis volatility regime given by

df
(i)
t =

2∑
j=1

σ
(i,j)
t (xt)f

(i)
t dw

(j,Q)
f,t , i = 0, . . . ,m, (3.14)

where w
(1,Q)
f,t and w

(2,Q)
f,t are uncorrelated Wiener processes. The regime process xt follows a

two-state time-homogenous Markov chain with transition rates p1,2 and p2,1, respectively.

In both regimes, we use a constant and an exponential decaying volatility function

σ
(i,1)
t (xt) =

σ
(lg)
1 , if xt = 1

σ
(lg)
2 , if xt = 2

, σ
(lg)
1 , σ

(lg)
2 > 0, (3.15)

σ
(i,2)
t (xt) =

σ
(sh)
1

e−κ1(τi−t)−e−κ1(τi+1−t)

κ1(τi+1−τi) , if xt = 1

σ
(sh)
2

e−κ2(τi−t)−e−κ2(τi+1−t)

κ2(τi+1−τi) , if xt = 2
, σ

(sh)
1 , σ

(sh)
2 , κ1, κ2 > 0, (3.16)

where σ
(lg)
rg (volatility parameter of permanent price impacts) and σ

(sh)
rg (volatility pa-

rameter of temporary price impacts) can differ in both regimes rg ∈ {1, 2}. Here, we

only consider two possible volatility states, instead of a continuous stochastic volatility

process, as in the previous chapter. This reduces the dimension of the underlying sto-

chastic process, which is necessary to obtain stable numerical results for many practical

applications.
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The two volatility components capture parallel shifts and twists in the futures price curve.

The first risk factor has the same impact on all log futures prices σ
(i,1)
t (xt) = σ

(lg)
rg in both

regimes rg ∈ {1, 2}. The second risk factor has a stronger impact on short-dated futures

prices than on long-dated futures prices.15 The volatility parameter σ
(sh)
rg reflects the

volatility difference between short- and long-dated futures contracts, while κrg determines

the slope of the volatility function in both regimes rg ∈ {1, 2}. These two risk factors

make it possible to capture shifts and twists in the futures price curve.

In the next step, we briefly describe our estimation approach and our estimation results

for the crude oil market model. Note that model parameters can be estimated based on

standard methods due tractable price dynamics for observable futures prices. In contrast,

standard spot price models result in highly complex endogenous futures prices dynamics

that can hardly be fitted to market data. It is generally useful to incorporate all available

market information in an estimation algorithm in order to obtain robust estimation results

(see Chapter 2). However, for illustration purposes, we only consider daily log-return data

of futures contracts referring to the following twelve delivery months from January 1, 2005

to December 31, 2009 in our estimation approach. This requires one to specify the price

dynamics under the physical measure. There are two market prices of diffusion risk in

each regime η
(j)
f (xt)σ

(i,j)
t (xt) for j ∈ {1, 2} and xt ∈ {1, 2} and two market prices of

volatility jump risk. The market prices of diffusion risk are explicitly estimated, while

both volatility jump risk premia are set equal to zero.16 It follows then that the physical

futures price dynamics is given by

df
(i)
t =

2∑
j=1

η
(j)
f (xt)

(
σ

(i,j)
t (xt)

)2
f

(i)
t dt+

2∑
j=1

σ
(i,j)
t (xt)f

(i)
t dw

(j,P)
f,t . (3.17)

The model parameters and state variables are estimated based on the MCMC algorithm,

where returns at rolling dates of the front-month futures contract are omitted.17 In Table

3.1 and Figure 3.4, we give the posterior means, standard deviations, and 99% credibility

intervals for all model parameters and plot the filtered latent regime process.

15The second risk factor captures that market prices of long-dated futures contracts are less volatile
than market prices of short-dated futures contracts (Samuelson effect) in the crude oil market. The
specific parametric form is used to account for delivery periods of the underlying futures contracts (see
Benth and Koekebakker (2008)).

16The reason is that volatility jump risk premia cannot be estimated based on return data only. If
volatility jump risk premia had been estimated on option price data, we would expect that the probability
to switch from the non-crisis regime to the crisis regime would be larger (and/or the probability to switch
from the crisis regime to the non-crisis regime would be smaller) under the risk-neutral measure than
under the physical measure. The reason is that a negative variance risk premium is found in the crude
oil market (see Trolle and Schwartz (2010)).

17In Appendix A.5, the MCMC algorithm is specified in detail.
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η
(1)
f η

(2)
f p1,2 p2,1

2.9014 0.0416 1.3920 -
regime 1 (1.8442) (1.6683) (0.7261) -

[−1.4927, 7.1443] [−3.8149, 3.94456] [0.3123, 2.7654] -
−0.2828 4.79086 - 3.0154

regime 2 (3.2217) (12.0171) - (1.4492)
[−7.1693, 8.7193] [−13.9418, 25.9551] - [0.6012, 7.8809]

κ σ(sh) σ(lg) -
1.764 0.1574 0.2642 -

regime 1 (0.504) (0.0042) (0.0064) -
[0.3783, 5.292] [0.1306, 0.1613] [0.2418, 0.2871] -

2.2681 0.5597 0.5523 -
regime 2 (0.756) (0.0437) (0.03794) -

[0.252, 8.064] [0.4681, 0.6481] [0.4738, 0.6427] -

Table 3.1: model parameter estimates for the crude oil market model

This table reports the means, standard deviations (in parenthesis), and 99% credibility intervals (in

square brackets) of the posterior distributions for the crude oil market model (3.17). The model

parameters are estimated based on one-month-ahead to twelve-month-ahead WTI crude oil futures

contracts from January 1, 2005 to December 31, 2009. The model parameters correspond to annual

decimals.
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Figure 3.4: filtered regime process

This figure shows the estimated posterior probabilities that the crude oil futures price process (3.17)

is in the second regime from January 1, 2005 to December 31, 2009.
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Indeed, the second regime only captures the Financial Crisis with an approximately 2

times higher short-term and long-term volatility level compared to their pre-crisis levels.

The diffusion risk premia are relatively small and statistically insignificant. This is in

line with our estimation results from the previous chapter, which show that front-month

crude oil futures prices exhibit no significant excess return for different time periods.

Moreover, the mean reversion rate of the volatility function κrg is slightly larger in the

financial crisis compared to the pre-crisis period. The reason is that, during the financial

crisis, the volatility of one-month-ahead futures prices increased more strongly compared

to six-month-ahead futures prices. We use QQ-plots to test the distributional properties

of the two-factor regime switching model. The QQ-plots show that crude oil log-returns

exhibit a clearly non-normal behavior that can be well captured by the underlying regime

switching model (see Figure 3.5).
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Figure 3.5: quantile-quantile-plots

These graphs show the QQ-plots for the one-month-ahead, six-month-ahead, and twelve-month-ahead

WTI crude oil futures contracts. In the left panel, we use the mean values of the posterior distributions

for all state variables and model parameters in order to determine the respective model distribution.

In the right panel, we simply use a normal distribution that is fitted to historical log-return data.
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Natural Gas

In the natural gas market, we again start our empirical analysis with the common price

dynamics of the underlying futures contracts and then consider the distributional prop-

erties of each individual time series in greater detail. In Figure 3.6, it can be seen that

futures prices follow a common trend, but temporary price impacts play a much larger

role than for the crude oil market. The principal component analysis confirms our first

impression and shows that parallel shifts are the most important risk factor (78%)18 and

twists are the second most important risk factor (6%) of the natural gas futures price

curve (see Figure 3.7). Furthermore, we consider the time series properties of historical

natural gas prices. It turns out that natural gas prices vary strongly over time and exhibit

some extreme price jumps (see Figure 3.6).

In the next step, we incorporate parallel shifts, twists, and price jumps in our market

modeling approach. We use a two-factor model with a single jump component for the

risk-neutral futures price dynamics

df
(i)
t = −λzµ(i)

z f
(i)
t−dt+

2∑
j=1

σ
(i,j)
t f

(i)
t−dw

(j,Q)
f,t + (eγ

(i)
t zt − 1)f

(i)
t−dnf,t, i = 0, . . . ,m, (3.18)

where w
(1,Q)
f,t and w

(2,Q)
f,t are again uncorrelated Wiener processes, and nf,t is a Poisson

process with constant intensity λz and random (percentage) jump sizes zt that are nor-

mally distributed with mean µz and standard deviation σz. The jump compensator

µ(i)
z = (eγ

(i)
t µz+0.5(γ

(i)
t )2σ2

z − 1) ensures that each futures price process satisfies the mar-

tingale property.19 The volatility functions are parameterized as follows:

σ
(i,1)
t = σ(lg) and σ

(i,2)
t = σ(sh) e

−κ(sh)(τi−t) − e−κ(sh)(τi+1−t)

κ(sh)(τi+1 − τi)
, σ(lg), σ(sh), κ(sh) > 0,

where σ
(i,1)
1 and σ

(i,2)
2 again capture shifts and twists in the futures price curve, respectively.

The impact of price jumps on different futures contracts is modeled through the weighting

function γ
(i)
t that is parameterized as follows:

γ
(i)
t =

e−κ
(jp)(τi−t) − e−κ(jp)(τi+1−t)

κ(jp)(τi+1 − τi)
.

18This means that 78% of the daily variation in log futures price returns are parallel shifts.

19We assume that the volatility process is constant over time. The reason is that we do not find
strongly clustered large returns in historical natural gas return data. The parametric form of the jump
compensator follows from normally distributed (percentage) jump sizes.
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Figure 3.6: time series of natural gas futures prices and log-returns

These graphs show one-month-ahead, six-month-ahead, and twelve-month-ahead natural gas futures

prices and their log-returns from January 1, 2005 to December 31, 2009. The natural gas prices refer

to a physical delivery at Henry Hub in Louisiana.
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Figure 3.7: factor loadings

These graphs show the factor loading of the first two principal components for daily log-return of

natural gas futures prices from January 1, 2005 to December 31, 2009.

The parametric form of γ
(i)
t makes it possible to capture persistent and temporary price

jumps: a large κ(jp) causes price jumps to only have an impact on short-dated futures

contracts, while a small κ(jp) means that price jumps in short-dated futures contracts are

also reflected in long-dated futures contracts.

In the next step, we briefly present our estimation approach for the proposed two-factor

jump diffusion model. For illustration purposes, we only take day-ahead prices and futures

prices referring to physical deliveries in the following twelve calendar months into account

and ignore option market data.20 The day-ahead prices provide useful market information

about temporary price impacts and are incorporated through synthetic futures prices in

the market model component.21 In order to estimate the natural gas market model

based on historical return data, it necessary to specify the market prices of diffusion

and jump risk. For simplicity, we only estimate the two market prices of diffusion risk

(η
(1)
f σ

(i,1)
t , η

(2)
f σ

(i,2)
t ) and set all market prices of jump risk equal to zero.22 It follows then

that the futures price dynamics under the physical measure is given by

df
(i)
t =

(
−λzµ(i)

z +
2∑
j=1

η
(j)
f

(
σ

(i,j)
t

)2
)
f

(i)
t−dt+

2∑
j=1

σ
(i,j)
t f

(i)
t−dw

(j,P)
f,t + (eγ

(i)
t zt − 1)f

(i)
t−dnf,t.

The MCMC estimation results for all model parameters and state variables can be found

in Table 3.2.

20In the previous chapter, we have presented an estimation approach that can be easily applied to
incorporate option price in an estimation approach for our jump diffusion market model.

21The day-ahead prices are obtained from http://www.eia.gov/dnav/ng/ng pri fut s1 d.htm.

22This implies that λzµ
(i)
z = λPzµ

(i,P)
z = λQz µ

(i,Q)
z for i = 0, . . . ,m.
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κ(sh) σ(sh) σ(lg)

1.6651 0.3821 0.3196
diffusion process (0.4793) (0.0092) (0.006)

[0.2767, 4.7934] [0.3654, 0.4234] [0.304, 0.334]

η
(1)
f η

(2)
f λz

−0.6930 −1.0133 18.2677
risk premia & jump intensity (1.1282) (0.7818) (2.5725)

[−3.1104, 1.8169] [−2.7595, 0.4344] [9.4726, 24.8213]

µz σz κ(jp)

0.0363 0.1157 11.9345
jump process (0.0148) (0.0473) (6.1457)

[0.0077, 0.0768] [0.0482, 0.2889] [0.5276, 29.4573]

Table 3.2: model parameter estimates for the natural gas market model

This table reports means, standard deviations (in parenthesis), and 99% credibility intervals (in square

brackets) of the posterior distributions for the natural gas market model. The model parameters are

estimated based on log-returns of natural gas futures contracts (synthetic and one-month-ahead to

twelve-month-ahead futures contracts) from January 1, 2005 to December 31, 2009. The model

parameters correspond to annual decimals.

We find no significant diffusion risk premia, a moderate daily jump intensity of 7.25

percent (λz/252), and a slightly positive mean jump size of 3.63 percent. In Figure 3.8,

we plot filtered jump times and jump sizes. It can be seen that jump events are only

slightly clustered in the Financial Crisis. In addition, we estimate a large mean reversion

parameter for the jump component. Thus, price jumps only have a significant impact on

short-dated futures contracts and hardly any impact on long-dated futures contracts.
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Figure 3.8: filtered jump times and jump sizes

These graphs show filtered jump events (left) and filtered mean jump sizes (right) in the natural gas

market model (3.18) from January 1, 2005 to December 31, 2009.
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As a result, log-returns of long-dated futures contracts are roughly normally distributed

in the estimated market model, whereas a clearly non-normal behavior can be observed

in the QQ-plots (see Figure 3.9). The QQ-plots show that even if the two-factor jump

diffusion model is not really able to capture the distributional properties of the underlying

log-return data, the jump component improves the distributional properties significantly

compared to a multi-factor Black model.

The reason for the relatively poor distributional properties is that futures prices referring

to different maturities jump at different points in times. This can be seen by considering

the jump component for different maturities in greater detail. In contrast to our estimation

approach, we now identify jump events through a simple two standard deviation filtering

approach in two ways. First, a jump event is identified if at least one futures price return is

two times larger than its empirical standard deviation. Second, a jump event is filtered out

if all futures price returns are two times larger than their empirical standard deviations.

In the first filtering approach, we obtain four times more jump events than in the second

one. Thus, a high-dimensional return distribution with multiple jump components would

be needed to capture the common stochastic behavior of the entire futures price curve

adequately. However, a more parsimonious approach, with few stochastic factors, turns

out to be more convenient for many pricing applications.
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Figure 3.9: quantile-quantile-plots

These graphs show the QQ-plots for one-month-ahead, six-month-ahead, and twelve-month-ahead

natural gas futures contracts. In the left panel, we use the mean values of the posterior distributions

for all state variables and model parameters in order to determine the respective model distribution.

In the right panel, we simply use a normal distribution that is fitted to historical log-return data.
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3.3.3 Completing the Model through the Futures Price Curve

In the last step, we complete our modeling framework through an appropriate inter-

polation function. The interpolation function is uniquely defined by the usual spline,

no-arbitrage, and maximum smoothness conditions and allows us to derive arbitrage-free

futures price dynamics based on the respective market model. Importantly, the price dy-

namics of theoretical and non-standardized futures contracts cannot be simply obtained

by taking an appropriate limit or inserting respective delivery periods in the market model.

Instead, we have shown that the future price dynamics results from applying Itô’s lemma

to the interpolation function (3.9) (see Subsection 3.2.2). This leads to spot and futures

price dynamics for arbitrary delivery dates or periods given by (3.11), (3.12), and (3.13)

subject to the underlying market model specification.

In what follows, we explicitly describe the completion step for the crude oil and natural

gas market models.

Crude Oil

The crude oil market model leads to the following risk-neutral futures price dynamics

dft(u) =
2∑
j=1

( m∑
i=0

βi(u)σ
(i,j)
t (xt)f

(i)
t

)
dw

(j,Q)
f,t , (3.19)

where xt follows a two-stage regime switching process and the volatility functions σ
(i,j)
t (.)

are given in (3.15) and (3.16) for j = {1, 2} and i = 0, . . . ,m. Next, we consider the

volatility component in both states in greater detail. The linear relation between theo-

retical and real futures prices results in a volatility component that linearly depends on

real futures prices but is not proportional to the current theoretical futures price. Thus,

theoretical futures prices are not log-normally distributed in both regimes. Nevertheless,

the volatility component is not decoupled from theoretical futures prices, since theoreti-

cal futures prices and volatility levels only differ in their weighting scheme of real futures

prices.

In Figure 3.10, we show the weighting function for the following eight futures contracts.

The weighting function βi(u) describes the impact of a change in the i-th real futures

price on the theoretical futures price ft(u) for i = 0, . . . ,m. This means that the weight-

ing functions provide the delta hedging positions in exchange-traded futures contracts to

hedge price risk of theoretical spot and futures contracts.
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Figure 3.10: weighting functions

The graphs show the sensitivities of the theoretical futures price curve to changes in the respective

real futures price. The left graph shows the sensitivities for the current, one-month-ahead, and two-

month-ahead futures contracts. The right graph plots the sensitivities for the following eight futures

contracts.

Natural Gas

In the natural gas market, the futures price dynamics is obtained by inserting the two-

factor jump diffusion model in (3.12). It follows then that

dft(u) = µ̃t(u)dt+
2∑
j=1

σ̃
(j)
t (u)dw

(j,Q)
f,t + γ̃t(u)dnf,t, (3.20)

where

µ̃t(u) = −λz
m∑
i=0

βi(u)µ(i)
z f

(i)
t− ,

σ̃
(j)
t (u) =

m∑
i=0

βi(u)σ
(i,j)
t f

(i)
t− ,

γ̃t(u) =
m∑
i=0

βi(u)(eγ
(i)
t zt − 1)f

(i)
t− .

Thus, the futures price process follows a jump diffusion model, where jumps in theoretical

futures prices are weighted average price jumps
∑m

i=0 βi(u)(eγ
(i)
t zt − 1)f

(i)
t− of real futures

contracts. In addition, the same relation between the volatility components of theoretical

futures contracts and real futures prices holds true as for the crude oil market model.

To get a feeling for the common stochastic behavior of exogenous and endogenous price

dynamics, we plot the spread between the day-ahead and front-month futures price over

time within our setting (see Figure 3.11). It can be seen that day-ahead prices fluctuate
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Figure 3.11: simulated price spreads

This figure shows one representative trajectory for the spread between natural gas day-ahead and

front-month futures prices based on the estimated energy market model (3.20).

around stochastic front-month futures prices. This behavior is similar to the mean rever-

sion behavior in standard spot price models and plays a central role in the pricing and

hedging of flexible physical assets in natural gas markets.

In summary, the analysis of both market examples shows that the proposed energy market

modeling framework is a convenient approach to obtain a consistent spot price process that

relies on observable market prices only. It allows to easily incorporate specific character-

istics of the underlying energy market, makes use of analytic expressions when estimating

parameters associated with the market model component, and through our completion

step delivers a complete futures price curve. In contrast, alternative models typically

rely on entirely latent factors, which can lead to barely interpretable factor dynamics.

Furthermore, the direct link between theoretical spot and futures prices on the one hand

and real futures prices on the other hand can be used to efficiently hedge price risk. In

the next chapter, we show the convenience of the energy market model for a practical

application.



Chapter 4

The Valuation of Storage Contracts

In energy markets, physical storage contracts are actively traded in order to allocate

storage capacities efficiently among multiple market participants. The traded storage

contracts give their holders the right to inject, store, and withdraw the underlying energy

commodity subject to maximal injection and withdrawal rates and limited total storage

capacities.

In this chapter, we consider the storage valuation problem from a theoretical and practical

perspective. We first simplify the underlying path-dependent stochastic optimization

problem to make it manageable for numerical valuation algorithms. Namely, we show

that (i) the dimension of the initial optimization problem can be reduced to the number

of physically non-redundant delivery contracts and that (ii) optimal trading times and

volumes can both be restricted to a finite number. This allows us to formulate a low-

dimensional discrete stochastic optimization problem without any approximation error

for many energy markets.

Then, we pick up our energy market modeling approach from the previous chapter and

implement it for the valuation of a concrete natural gas storage contract. This shows

how to apply our modeling approach for a concrete practical application and allows us to

investigate the value of dynamic storage strategies and the relation between specific price

movements and the storage value.

80
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Figure 4.1: trading and delivery periods of spot and futures contracts

These graphs illustrate trading and delivery periods of spot and futures contracts. The dashed lines

correspond to trading periods and the solid lines to physical delivery periods.

4.1 Storage Contracts

In this section, we briefly introduce the underlying energy market environment and the

underlying storage contract design. The energy market consists of (i) a single spot con-

tract with a delivery period that is rolled over from (τ
(s)
i , τ

(s)
i+1] to (τ

(s)
i+1, τ

(s)
i+2] at τ

(s)
i for

i = 0, . . . ,m(s) (see Figure 4.1 (left)) and (ii) multiple futures contracts with fixed re-

dundant delivery periods {(τ (f)
i , τ

(f)
i+1]}m(f)

i=0 , i.e., τ
(f)
j ∈ {τ (s)

i }m
(s)+1

i=0 for j = 0, . . . ,m(f) (see

Figure 4.1 (right)). The spot contract and all futures contracts can be traded without

transaction costs at a spot price of st and futures prices of f
(i)
t = ft(τ

(f)
i , τ

(f)
i+1). In contrast

to the previous chapter, we use the superscripts to distinguish between delivery periods

of spot and futures contracts.

The storage contract offers its holder the right to inject, withdraw, and store the under-

lying commodity during the time period [τ
(s)
0 , τ

(s)

m(s)+1
] subject to local and global technical

constraints and injection and withdrawal costs. The technical constraints ψ consist of (i)

constant maximal withdrawal and injection rates (q, q), (ii) a maximal storage capacity

sv, and (iii) a prearranged final volume in storage svf at τm(s)+1.1 The injection and with-

drawal costs are separated into constant variable operating costs dinj ≥ 0 and dwith ≥ 0

as well as constant injection and withdrawal loss rates binj ≥ 0 and bwith ≥ 0.2 For sim-

plicity, we assume that injection or withdrawal costs for a physical delivery in (τ
(s)
i , τ

(s)
i+1]

occur at τ
(s)
i for i = 0, . . . ,m(s). For instance, if a storage operator decides to deliver or

1In general, prearranged penalty payments regulate final payments if the final volume in storage is
not equal to svf . In the following, we simply assume that penalty payments ensure that the final volume
in storage is equal to svf at the end of the contract period without concretely specifying them.

2For instance, injection and withdrawal loss rates are between 0-3% and 0-2% for depleted reservoirs,
respectively (see Wu, Wang, and Qin (2011)).
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purchase q units of the underlying energy commodity over the delivery period (τ
(s)
i , τ

(s)
i+1],

the following injection and withdrawal costs c(q, s) occur at τ
(s)
i :

c(q, s) =

−binjsq − dinjq, q ≥ 0 (injection)

bwithsq + dwithq, q < 0 (withdrawal)
, i = 0, . . . ,m(s),

where s is equal to the spot price at τ
(s)
i (s = s

τ
(s)
i

). For example, Centrica, the owner

of British Gas, offers physical storage contracts via so called “standard bundled units”

(SBUs).3 Each SBU is largely characterized by the following operational constraints:

maximal withdrawal and injection rates of q = −1 kWh/day and q = 0.35 kWh/day and

a total storage capacity of sv = 66.6 kWh. The injection and withdrawal costs are given

by variable operating costs of dinj = 0.021 pence/kWh and dwith = 0.007 pence/kWh and

injection and withdrawal loss rates equal to zero (binj = bwith = 0).4 The contract period

starts on April 1st and ends on March 31st of the following year. The initial volume in

storage is zero and the storage should be returned with the same volume at the end of the

contract period. If the final volume in storage is not zero, the storage volume is auctioned

and the owner gets the highest bid less the auction costs.

4.2 Static vs. Dynamic Storage Strategies

In this section, we consider the main price drivers impacting market-based storage values.

For simplicity, we abstract from interest rates effects and injection and withdrawal costs

due to their minor impact on optimal trading strategies of storage contracts.

In principle, a physical storage contract allows its holder to store the underlying good

subject to specific technical constraints. The storage option is only valuable in markets

with a limited total storage capacity (e.g., energy markets), while it is worthless in mar-

kets with an unrestricted total storage capacity (e.g., stock markets). In markets with

a limited total storage capacity, physical storage options can be exploited through static

and dynamic trading strategies. In a static trading strategy, the holder of the storage

contract tries to profit from price spreads between futures contracts with different deliv-

ery periods at the beginning of the contract period. For instance, static trading strategies

in the natural gas market try to profit from the seasonal behavior of natural gas prices.

Namely, natural gas futures prices referring to summer months are lower, on average,

than those referring to winter months (see Figure 4.2). The summer-winter spread in

3See http://www.centrica.com for details.

4In Europe, natural gas prices often refer to megawatt-hours (MWh), where 1 USD per mmBtu
corresponds to 0.293071 USD per MWh.
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Figure 4.2: average futures price curve

This figure shows the average futures price for each calendar month between January, 2005 and

December, 2010. The average futures price curve is calculated based on one-month-ahead to twelve-

month-ahead natural gas futures contracts. The natural gas futures prices refer to physical deliveries

at Henry Hub in Louisiana.

futures contracts can be exploited through a static trading strategy without any price

risk. The storage operator can, for instance, fill his storage facility from April to October

and deplete it during the winter months November to March subject to the technical

constraints. This allows him to earn the summer-winter spread that is, on average, about

1.5 USD per storage unit in the U.S. natural gas market.5 This “intrinsic” storage value

can easily be calculated and provides a trivial lower bound for the fair market value of a

storage contract.

In a dynamic trading strategy, the holder of a storage contract adjusts his trading pos-

ition in spot and futures contracts over time subject to the common stochastic behavior

of spot and futures prices. Trivially, storage contracts are worthless, independent of the

stochastic spot price process, if the classical cost-of-carry relation between spot and fu-

tures prices holds true, as it does in stock markets. This shows that the storage value

does not simply depend on the overall price uncertainty in the market, but rather on

the stochastic behavior of specific futures price movements. For that reason, it is useful

to consider the impact of specific futures price movements on the storage value to get a

better understanding of the value of embedded storage options. First, we assume that the

futures price curve can vary, but that price spreads between two arbitrary points on the

futures price curve never change their signs over time. In this case, optimal injection and

5The general optimization problem can be found in Lai, Margot, and Secomandi (2010).



CHAPTER 4. THE VALUATION OF STORAGE CONTRACTS 84

withdrawal decisions do not change over time and are equal to the optimal static trading

strategy at the beginning of the contract period. This implies that the value of a storage

contract is equal to the intrinsic storage value and that storage contracts have a linear

exposure to each point of the futures price curve. In particular, storage contracts have a

linear exposure to parallel shifts, which obviously do not change the relative position of

futures prices. This implies that a parallel shift in the futures price curve of δ increases

the storage value of δ times the current volume in storage and that the optimal price

ranges for injection and withdrawal decisions are shifted by δ.

This leads to the following question: why should a dynamic trading strategy be imple-

mented? The only plausible reason to apply a dynamic trading strategy is that futures

prices are not well-ordered over time. Indeed, real futures prices change their relative

position over time. The main reason for this is the existence of temporary price impacts,

which have a strong positive or negative impact on the short-end of the futures price curve

and hardly any impact on the long-end of the futures price curve.6 This “mean reversion”

behavior of energy prices is documented in various empirical studies (see Schwartz (1997),

Schwartz and Smith (2000), and Cartea and Williams (2008)) and implies that a dynamic

storage strategy can be valuable.

In (multi-factor) stochastic models that allow that futures prices change their relative

positions over time, storage values, once again, depend linearly on parallel shifts provided

that parallel shifts have no impact on other risk factors of the underlying price dynamics

(e.g., affine-linear model with independent risk factors). In contrast, a convex relation

between the storage value and the summer-winter spread should exist in the presence

of temporary price impacts. Thus, a stochastic summer-winter spread would increase

the market value of storage contracts. The reason for our assertion is as follows: if the

summer-winter spread narrows, it is more attractive to trade in the spot market to profit

from temporary price shocks. This partially compensates for the loss due to a lower

intrinsic storage value. Otherwise, if the summer-winter spread widens, the storage op-

erator profits from a larger intrinsic storage value, but short-term trading becomes less

profitable. This suggests a convex relation between the summer-winter spread and the

storage value (see Figure 4.3).

4.3 Stochastic Optimization Problem

In the next step, we formally introduce the storage valuation problem based on two

simplistic assumptions. We assume that (i) trading is restricted to the single spot contract

6In contrast, the long-end of the futures price curve is generally well-ordered.
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Figure 4.3: impact of the summer-winter spread on the storage value

This figure shows the expected convex relation between the summer-winter spread and the storage

value.

and that (ii) trading times are restricted to the rolling dates {τ (s)
i }m

(s)

i=0 of the spot contract.

Later, we show that both assumptions have no impact on optimal storage strategies. In the

following, we skip the superscripts, since all delivery periods refer to the spot contract. In

a rational market, the storage value is equal to the maximal expected risk-neutral trading

profit of all admissible trading strategies

swτ0(sτ0 , svτ0 ;ψ) = sup
{qτi}

m
i=0∈ad(svτ0 ;ψ)

EQ
τ0

[ m∑
i=0

e−r(τi−τ0)
(
−qτisτi + c(qτi , sτi)

)]
, (4.1)

where

ad(svτ0 ;ψ) = {{qτj}mj=0| qτj ∈ [max {−svτj , q},min{sv − svτj , q}], svτm+1 = svf}.

In (4.1), svτ0 is the initial volume in storage, r is the constant risk-free interest rate,

and ad(svτ0 ;ψ) is the set of all admissible trading strategies subject to the initial volume

in storage svτ0 and the local and global constraints ψ = (q, q, sv, svf ). The volume in

storage changes over time subject to the (endogenous) optimal trading strategy {q∗τi}
m
i=0

as follows:

svτi = svτ0 +
i−1∑
j=0

q∗τj , for i = 0, . . . ,m+ 1.
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This means that svτi is equal to the initial volume in storage plus the aggregated delivery

volume until τi, where q∗τj < 0 means that the underlying energy commodity is sold at the

market (withdrawal decision), and q∗τj > 0 means that the underlying energy commodity

is bought at the market (injection decision) at τj for j = 0, . . . , i− 1 and i = 0, . . . ,m.

4.4 Theoretical Results

In the previous section, we have formulated the stochastic optimization problem (4.1)

under two simplistic assumptions: (i) trading is restricted to the spot contract and (ii)

trading times are restricted to the rolling dates {τi}mi=0 of the spot contract. Next, we argue

that neither of these assumptions has an impact on the storage value, even when embedded

storage options can be continuously exploited in spot and various futures contracts instead

of being restricted to discrete trading decisions in the single spot contract.

First, we show that trading can be restricted to non-redundant physical delivery contracts

having delivery periods that cannot be duplicated by other traded delivery contracts. The

reason for this is the simple no-arbitrage argument that two trading strategies with the

same physical delivery flows must have the same expected market value at any point in

time. In our market environment, the spot contract is the only non-redundant physical

delivery contract, whereas all futures contracts have redundant physical delivery periods.

This implies that trading can be restricted to the spot contract without influencing the

storage value.7 It is important to keep in mind that the no-arbitrage argument can only

be applied in markets without transaction costs. Otherwise, it may be optimal to trade

in futures contracts in order to reduce transaction costs.

Second, it is easy to show that optimal trading times can be restricted to the rolling dates

of the spot contract {τi}mi=0 without reducing the expected storage value under Q. The

reason is that (i) interest rates effects have no impact on early exercise strategies, since

payoffs are linked to physical delivery flows instead of trading times, and that (ii) active

trading within the trading period of the spot contract is purely speculative and does not

exploit any physical storage options. This means, in summary, that the optimization

problem (4.1) really expresses the fair storage value in our market environment.

In the next step, we analyze the impact of local and global trading constraints ψ on the

storage value (see Kaminski, Feng, and Pang (2008)).

7This does not mean that a physical duplication strategy leads to the same payoff, but rather to the
same expected payoff under the pricing measure. In particular, trading strategies in spot markets can be
much riskier than trading strategies in futures markets.
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Proposition 4 (Scale-Invariance and Concavity)

The market value of a storage contract is

(i) scale-invariant of degree one:

swτi(sτi , αsvτi ;αψ) = αswτi(sτi , svτi ;ψ) for α > 0, i = 0, . . . ,m,

(ii) concave in each constraint ψj:

swτi(sτi , svτi ;ψ) ≥ λswτi(sτi , svτi ; ψ̂j) + (1− λ)swτi(sτi , svτi ; ψ̃j),

where

ψ = (ψ1, . . . , ψj−1, λψ̂j + (1− λ)ψ̃j, ψj+1, . . . , ψ4),

ψ̂j = (ψ1, . . . , ψj−1, ψ̂j, ψj+1, . . . , ψ4),

ψ̃j = (ψ1, . . . , ψj−1, ψ̃j, ψj+1, . . . , ψ4)

for 0 ≤ λ ≤ 1 and j = 1, . . . , 4.

Sketch of the proof: In Appendix A.6, we provide the theoretical proofs of both re-

lations. The idea behind both proofs is as follows: if an admissible trading strategy

q = {qτj}mj=i for a storage contract with current volume in storage svτi and local and

global constraints ψ results in a payoff y = {−qτjsτj + c(qτj , sτj)}mj=i, then αq is an ad-

missible trading strategy for a storage contract with current volume in storage αsvτi and

local and global constraints αψ and leads to a payoff αy. Hence, it follows that

α swτi(sτi , svτi ;ψ) ≤ swτi(sτi , αsvτi ;αψ), α > 0.

It follows then that

swτi(sτi , svτi ;ψ) = swτi(sτi ,
1

α
αsvτi ;

1

α
αψ) ≥ 1

α
swτi(sτi , αsvτi ;αψ)

⇒ αswτi(sτi , svτi ;ψ) ≥ swτi(sτi , αsvτi ;αψ)

⇒ αswτi(sτi , svτi ;ψ) = swτi(sτi , αsvτi ;αψ), i = 0, . . . ,m.

The concavity of the storage value can be shown with similar arguments.
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In the last step, we consider optimal trading volumes at rolling dates of the spot con-

tract. In principle, the operator of a storage contract can choose his optimal trading

position in the spot contract from a continuum of admissible trading volumes qτi ∈
[max {−svτi , q},min{sv − svτi , q}] for i = 0, . . . ,m. However, it is not possible to test

all trading volumes for optimality in numerical valuation algorithms. Therefore, trading

volumes must be restricted to a finite number before the numerical calculation. In the

following, we show that trading volumes can be restricted to either the maximal injection

rate, maximal withdrawal rate, or zero (strong bang-bang condition) or to multipliers of

the largest common factor of the local and global constraints ψ (weak bang-bang condi-

tion) without affecting the fair storage value.

Definition 1 (Strong Bang-Bang Condition)

The trading strategy {qτi}mi=0 satisfies the strong bang-bang condition if each qτi is equal to

(i) the maximal withdrawal rate

qτi = q,

(ii) or the maximal injection rate

qτi = q,

(iii) or zero

qτi = 0

for i = 0, . . . ,m.

It turns out that optimal trading strategies of storage contracts satisfy the strong bang-

bang condition only if the spot contract refers to an immediate delivery date instead of

a delivery period. In such a theoretical market environment, traders can continuously

adjust their storage volume to market prices. The optimal trading strategy is then simply

given by: (i) selling at the maximal withdrawal rate if the first derivative of the storage

value with respect to the volume in storage is smaller than the current spot price minus

the withdrawal costs, (ii) buying at the maximal injection rate if the first derivative of

the storage value with respect to the volume in storage is larger than the current spot

price plus the injection costs, or (iii), if neither of these conditions is met, doing nothing

(see Thompson, Davison, and Rasmussen (2009)).8

8Of course, we require that the storage value is differentiable with respect to the volume in storage.



CHAPTER 4. THE VALUATION OF STORAGE CONTRACTS 89

In real market environments, physical delivery contracts have delivery periods. Thus,

physical delivery rates cannot be adjusted continuously. Here, it seems reasonable, at first

glance, that optimal trading positions should be equal to aggregated delivery volumes

of the optimal continuous trading strategy over the underlying delivery periods of real

delivery contracts.9 This means that all trading volumes between q and q can be optimal

from an ex-ante perspective. Interestingly, our initial intuition is wrong and trading

volumes can also be restricted to a finite number in real market environments.

Definition 2 (Weak Bang-Bang Condition)

The trading strategy {qτi}mi=0 satisfies the weak bang-bang condition when all trading vol-

umes are multipliers of the largest common factor of the local and global constraints lcf(ψ),

i.e., qτi = j · lcf(ψ) for j ∈ Z and i = 0, . . . ,m.

In the next step, we show that the optimal trading strategy of a storage contract satisfies

the weak bang-bang condition if the initial volume in storage is a multiplier of lcf(ψ).10

Proposition 5 (Weak Bang-Bang Property)

In our market environment, the optimal trading strategy of a storage contract satisfies the

weak “bang-bang” condition if the initial volume in storage is a multiplier of lcf(ψ).

Proof: We use the dynamic programming principle to prove that the optimal trad-

ing strategy satisfies the weak bang-bang condition based on backward induction. The

dynamic programming principle states that optimal trading volumes are chosen as to

maximize the current payoff plus the continuation value of the storage contract (objective

function). We show that the continuation value function

cvτi(sτi , svτi+1
) = e−r(τi+1−τi)EQ

τi

[
swτi+1

(sτi+1
, svτi+1

;ψ)
]
, i = 0, . . . ,m,

is piecewise linear with kink points on the weak bang-bang grid wbb(ψ) that contains all

storage volumes that can be reached by a weak bang-bang strategy. Thus, all potential

maxima of the objective function are also on the weak bang-bang grid and the optimal

trading strategy satisfies the weak bang-bang condition.

9This means that we consider the optimal trading strategy in the theoretical spot contract over the
delivery period of a real delivery contract. Then, the aggregated delivery volume is equal to the expected
time to sell at the maximum rate times the maximal withdrawal rate minus the expected time to buy at
the maximum rate times the maximal injection rate.

10Secomandi (2010) shows a similar result for a discrete spot price process.
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In detail, we prove the following two theoretical properties of the optimal trading strategy

and the continuation value function:

(i) trading strategy:

optimal trading volumes {q∗τi}
m
i=0 are equal to

q∗τi = j · lcf(ψ), j =
(
lcf(ψ)

)−1
max{−svτi , q}, . . . ,

(
lcf(ψ)

)−1
min{sv − svτi , q}

for i = 0, . . . ,m,

(ii) continuation value function:

the continuation value function is concave and piecewise-linear in svτi+1
with kink

points on the weak bang-bang grid:

cvτi(sτi , svτi+1
+ δ)− cvτi(sτi , svτi+1

) = βτi(svτi+1
)δ, svτi+1

∈ wbb(ψ), 0 ≤ δ < lcf(ψ),

where β(svτi+1
) is decreasing in svτi+1

for i = 0, . . . ,m.

The proof is conducted by backward induction based on the dynamic programming prin-

ciple. It is easy to show that the first condition is satisfied at the last trading date τm if

svτm is on the weak bang-bang grid wbb(ψ). The reason is that the final volume in storage

must be equal to the prearranged volume svf . This leads to an optimal trading volume

q∗τm at τm given by

q∗τm(svτm) = svf − svτm

for all admissible trading strategies {qτi}m−1
i=0 . Thus, the optimal trading strategy satisfies

the weak bang-bang condition if svτm ∈ wbb(ψ), since svf ∈ wbb(ψ).

Next, we calculate the continuation value at τm−1 based on the optimal trading strategy

at τm. The continuation value function can be derived from the optimal trading decision

at τm. It is given by

cvτm−1(sτm−1 , svτm) = (svτm − svf )e−r(τm−τm−1)βτm−1 ,

where

βτm−1 = EQ
τm−1

[
sτm
]

+ 11{svτm≥svf}E
Q
τm−1

[
c(−1, sτm)

]
− 11{svτm<svf}E

Q
τm−1

[
c(1, sτm)

]
.

It is concave, since EQ
τm−1

[
c(−1, sτm)

]
≤ −EQ

τm−1

[
c(1, sτm)

]
, and is piecewise-linear in the

volume in storage with a single kink point at svf , since the expected cost function has a

kink point at svτm = svf .
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In the next step, we conduct that the weak bang-bang condition is satisfied at τi−1 if the

first condition holds true for τi and the second condition holds true for τi−1. The dynamic

programming principle states that the optimal trading strategy at τi−1 is given by

q∗τi−1
= arg max

qτi−1

(
−qτi−1

sτi−1
+ c(qτi−1

, sτi−1
)︸ ︷︷ ︸

payoff

+ cvτi−1
(sτi−1

, svτi−1
+ qτi−1

)︸ ︷︷ ︸
continuation value

)
subject to qτi−1

∈ [max{−svτi , q},min{sv−svτi , q}]. The payoff function and the continu-

ation value function are concave and piecewise-linear with kink points at zero qτi−1
= 0

and {qτi−1
+ svτi−1

| qτi−1
+ svτi−1

∈ wbb(ψ)}, respectively. Therefore, the objective func-

tion is concave and piecewise-linear and its potential maxima are at zero, the kink

points of the continuation value function, and the boundary points max{−svτi , q} and

min{sv − svτi , q}. Especially, the optimal trading strategy satisfies the weak bang-bang

condition if svτi−1
∈ wbb(ψ). In addition, the piecewise linear objective function implies

that optimal trading strategies for two storage contracts with storage volumes svτi−1
+ δ

and svτi−1
, where 0 < δ < lcf(ψ), are equal to q

(δ)
τi−1 = q

(0)
τi−1 = q (maximal withdrawal

volume), q
(δ)
τi−1 = q

(0)
τi−1 = q (maximal injection volume), or q

(δ)
τi−1 − q

(0)
τi−1 = −δ.

In the last step, we prove that the continuation value function is piecewise-linear with

kink points on the weak bang-bang grid at τi−1 if (i) and (ii) hold true for τi:

∆cvτi−1
(sτi−1

, svτi , δ) = cvτi−1
(sτi−1

, svτi + δ)− cvτi−1
(sτi−1

, svτi)

= β(svτi)δ

if svτi ∈ wbb(ψ) and 0 ≤ δ < lcf(ψ). In the following, we set the interest rate process

equal to zero to reduce notational burden. The left-hand side can be rewritten based on

the dynamic programming principle as follows:

∆cvτi−1
(sτi−1

, svτi , δ) = EQ
τi−1

[
max
q
(δ)
τi

(
− q(δ)

τi
sτi + c(q(δ)

τi
, sτi) + cvτi(sτi , svτi + δ + q(δ)

τi
)
)]

−EQ
τi−1

[
max
q
(0)
τi

(
−q(0)

τi
sτi + c(q(0)

τi
, sτi) + cvτi(sτi , svτi + q(0)

τi
)
)]

subject to

max{−svτi , q} ≤ q(0)
τi
≤ min{sv − svτi , q}

max{−(svτi + δ), q} ≤ q(δ)
τi
≤ min{sv − (svτi + δ), q}.
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Now, we can exploit that q
(δ)
τi = q

(0)
τi = q, or q

(δ)
τi = q

(0)
τi = q, or q

(δ)
τi − q

(0)
τi = −δ. Thus, we

can rewrite the continuation value as follows:

∆cvτi−1
(sτi−1

, svτi , δ) = EQ
τi−1

[
11{q(δ)τi =q}(cvτi(sτi , svτi + δ + q)− cvτi(sτi , svτi + q))

]
+EQ

τi−1

[
11{q(δ)τi =q}(cvτi(sτi , svτi + δ + q)− cvτi(sτi , svτi + q))

]
+EQ

τi−1

[
11{q<q(δ)τi ≤0}(δsτi + c(−δ, sτi)

]
+EQ

τi−1

[
11{0<q(δ)τi <q}

(δsτi − c(δ, sτi)
]
,

where 11{q(δ)τi =x} is one when the optimal trading strategy at τi is equal to x. In the first two

cases, the optimal trading strategies for both storage contracts lead to the same payoff

at τi. Thus, the difference between the expected storage value is equal to the expected

difference between the continuation values at the next trading date τi. Then, we can use

the induction anchor to show that

EQ
τi−1

[
11{q(δ)τi =q}(cvτi(sτi , svτi + δ + q)− cvτi(sτi , svτi + q))

]
= EQ

τi−1

[
11{q(δ)τi =q}βτi(svτi + q)δ

]
= EQ

τi−1

[
11{q(δ)τi =q}βτi(svτi + q)

]︸ ︷︷ ︸
β̂1

δ,

EQ
τi−1

[
11{q(δ)τi =q}(cvτi(sτi , svτi + δ + q)− cvτi(sτi , svτi + q))

]
= EQ

τi−1

[
11{q(δ)τi =q}βτi(svτi + q)δ

]
= EQ

τi−1

[
11{q(δ)τi =q}βτi(svτi + q)

]︸ ︷︷ ︸
β̂2

δ.

In the last two cases, both storage contracts have the same continuation value after the

next rolling date, which means that the difference between storage values referring to

storage volumes svτi + δ and svτi is equal to the difference in the expected payoff at τi.

The difference in expected payoffs is piecewise-linear due to the piecewise linearity of the

payoff function

EQ
τi−1

[
11{q<q(δ)τi ≤0}(δsτi + c(−δ, sτi)

]
= EQ

τi−1

[
11{q<q(δ)τi ≤0}(sτi + c(−1, sτi)

]︸ ︷︷ ︸
β̂3

δ,

EQ
τi−1

[
11{0<q(δ)τi <q}

(δsτi − c(δ, sτi)
]

= EQ
τi−1

[
11{0<q(δ)τi <q}

(sτi − c(1, sτi)
]︸ ︷︷ ︸

β̂4

δ.

Thus, the continuation value is piecewise-linear

∆cvτi−1
(sτi−1

, svτi , δ) = (β̂1 + β̂2 + β̂3 + β̂4)︸ ︷︷ ︸
β(svτi )

δ,
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where the intercept β(svτi) depends on unknown market information at τi from an ex-ante

perspective. The concavity of the continuation value function at at τi−1 follows directly

from the concavity of the continuation value function at τi.

In summary, the storage value can be expressed by a numerically manageable discrete

optimization problem without any approximation error

swτ0(sτ0 , svτ0 ;ψ) = sup
{qτi}

m
i=0

EQ
τ0

[ m∑
i=0

e−r(τi−τ0)(−qτisτi + c(qτi , sτi))
]
, (4.2)

where

qτi ∈ {q = q + j · lcf(ψ) | q ∈ [max {−svτi , q},min{sv − svτi , q}]} for i = 0, . . . ,m.

Interestingly, our theoretical results are not restricted to standard storage contracts but

can also be applied to flexible delivery contracts with take-or-pay clauses (ToP contracts).

The ToP contract design is widely used to share price and quantity risk among contracting

parties through (i) minimal and maximal delivery rates q and q, (ii) minimal and maximal

total cumulative delivery volumes sv and sv, and (iii) a fixed or indexed delivery price

dwith = s(ToP ). Thompson (1995) gives a simple example of a ToP contract: the take-or-

pay contract gives its holder the right to purchase up to one unit of natural gas in each

month for a fixed delivery price of 1.50 USD per unit, but also requires payment of a

financial penalty if the total purchase volume is less than 7.2 units over the underlying

contract year. The market value of such a take-or-pay contract can be calculated by the

following duplication strategy: (i) a long position of 7.2 futures contracts with a uniform

delivery of one unit over one year and (ii) a storage contract with an initial volume

in storage of svτ0 = 4.8, a maximal injection rate of q = 0.6 per month, a maximal

withdrawal rate of q = −0.4 per month, a total storage capacity of sv = 7.6, and a cost

function with binj = dwith = bwith = 0 and dwith = 1.5.11 The only difference to a standard

storage contract is that the total cumulative delivery volume (final volume in storage)

need not be equal to a specific prearranged value. Instead, it must be in the interval

[0, 4.8]. This can easily be incorporated through modifying the contract payments at the

end of the contract period to γ11{svτm+1 /∈[0,4.8]} for a sufficiently large γ > 0. It turns out

that our theoretical results can also be applied for piecewise-linear final payments in the

volume in storage.12 Thus, all our theoretical results referring to the general specification

hold true for storage and take-or-pay contracts.

11For simplicity, we assume that the interest rate process is zero.

12In our proof, we only require that the payoff function and the continuation value function are
piecewise-linear (see induction anchor).
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It is important to keep in mind that the operation costs of storage facilities are much lower

than the fixed delivery prices of take-or-pay contracts. As a result, take-or-pay contracts

are more similar to standard option contracts than storage contracts are.

4.5 Numerical Example

Now, we use a simple numerical example to illustrate that the optimal storage strategy

satisfies the weak bang-bang condition.

The underlying storage contract is characterized by the following contract terms: a con-

tract period of [τ0, τ3], an initial and final volume in storage of svτ0 = svf = 2, maximal

withdrawal and injection rates of (q, q) = (−2, 1), a total storage capacity of sv = 5, and

a zero cost function c(., .) ≡ 0.

The holder of the storage contract can trade in a spot contract with a rolling delivery

period (τi, τi+1] for i ∈ {0, 1, 2}. The current spot and futures prices for the delivery

periods {(τi, τi+1]}2
i=0 are given by

sτ0 = fτ0(τ0, τ1) = 3.5, fτ0(τ1, τ2) = 3.45, and fτ0(τ2, τ3) = 3.475, (4.3)

where the interest rate process is set equal to zero. It is already known that the holder

of the storage contract only has to trade in the spot contract at {τi}2
i=0 to maximize

the expected storage value under the pricing measure. For that reason, we only have

to specify a time-discrete spot price process for the valuation of the underlying storage

contract. In our example, we use a simple binomial tree to model a “mean reverting” spot

price process. The mean reversion behavior is captured by setting the probability of an

up move in the down state equal to the probability of a down move in the up state (see

Figure 4.4). This allows us to calculate unique risk-neutral probabilities q(0) = 0.45 and

q(1) = 0.25 for the given spot price process based on the initial futures price curve (4.3).

Next, we recursively calculate the optimal trading strategy for all admissible volumes in

storage in order to show that the weak bang-bang property is satisfied. At the last trading

date τ2, the optimal trading strategy is simply given by

q∗τ2 = 2− svτ2 , 1 ≤ svτ2 ≤ 4.

This allows us to calculate the continuation value functions cvτ1(4, svτ2) and cvτ1(3, svτ2)

for the up and down state at τ1 as follows:

cvτ1(4, svτ2) = 0.25 (svτ2 − 2) 4.5 + 0.75 (svτ2 − 2) 3.5 = 3.75 svτ2 − 7.5 (up state),

cvτ1(3, svτ2) = 0.75 (svτ2 − 2) 3.5 + 0.25 (svτ2 − 2) 2.5 = 3.25 svτ2 − 6.5 (down state).
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Figure 4.4: spot price dynamics

This figure shows the discrete spot price process and the risk-neutral probabilities for our numerical

example.

The dynamic programming principle then leads to the optimal trading strategy q∗τ1 at τ1:

q∗τ1 = arg max
1≤svτ1+qτ1≤4
−2≤qτ1≤1

(3.75 (svτ1 + qτ1)− 7.5− 4 qτ1 = 1− svτ1 (up state),

q∗τ1 = arg max
1≤svτ1+qτ1≤4
−2≤qτ1≤1

(3.25 (svτ1 + qτ1)− 6.5− 3 qτ1 = 1 (down state).

In the up state, the spot price at τ1 is larger than the expected spot prices at τ2. Thus,

the optimal trading strategy is equal to the maximal withdrawal volume given that the

prearranged final volume in storage can be reached. In the down state, the optimal trading

strategy is equal to the maximal injection rate, since the spot price at τ1 is smaller than

the expected spot price at τ2 and the maximal injection volume is an admissible trading

strategy independent of the current volume in storage. Thus, the optimal trading strategy

satisfies the weak bang-bang condition if svτ1 ∈ {0, 1, 2, 3}.
Finally, we calculate the continuation value and the optimal trading strategy at τ0. This
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requires to calculate the storage value in both states at τ1 subject to the volume in storage:

3.75 (svτ1 + (1− svτ1)︸ ︷︷ ︸
q∗τ1

)− 7.5− 4 (1− svτ1)︸ ︷︷ ︸
q∗τ1

= 4 svτ1 − 7.75 (up state),

3.25 (svτ1 + 1︸︷︷︸
q∗τ1

)− 6.5− 3 1︸︷︷︸
q∗τ1

= 3.25 svτ1 − 6.25 (down state).

Then, the continuation value function at τ0 is the weighted sum of these (piecewise) linear

functions and is thus also (piecewise) linear. It is given by

cvτ0(3.5, svτ1) = 0.45 (4 svτ1 − 7.75) + 0.55 (3.25 svτ1 − 6.25) = 3.5875 svτ1 − 6.925.

In this case, we only have to consider a single side condition, since the initial volume in

storage is known. The optimal trading strategy at τ0 is equal to one, since

q∗τ0 = arg max
−2≤qτ0≤1

(3.5875 (svτ0 + qτ0)− 6.925− 3.5 qτ0) = 1.

Thus, svτ1 is equal to three and the initial storage value is swτ0(3.5, 2;ψ) = 0.3375. This

shows that the optimal trading strategy satisfies the weak bang-bang property in our

discrete numerical example.

4.6 Natural Gas Storage Valuation

In this section, we apply our energy market modeling approach to the valuation of a con-

crete storage contract in the U.S. natural gas market.

The underlying market consists of the day-ahead contract (spot contract) and futures con-

tracts with successive monthly delivery periods.13 The contract design of the underlying

storage contract is chosen similar to the SBUs offered by Centrica. This means that the

contract period lasts from April 1st to March 31st of the following year, maximal with-

drawal and injection volumes are given by q = −3 mmBtu/day and q = 1 mmBtu/day,

and the total storage capacity is equal to sv = 180 mmBtu. The variable injection and

withdrawal costs are given by dinj = 0.07 USD/mmBtu and dwith = 0.02 USD/mmBtu

and no natural gas is lost during the injection or withdrawal process, i.e., binj = bwith = 0.

The initial volume in storage is zero and the storage must be returned with the same

13In the U.S. natural gas market, short-dated delivery contracts are traded over-the-counter, while long-
dated delivery contracts are exchange-traded products. The day-ahead contract is the most important
and transparent short-dated delivery contract. For other delivery contracts, market prices are neither
publicly available, nor can they be obtained from the Bloomberg database.
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volume at the end of the contract period.

Now, we specify our stochastic modeling approach for the underlying price dynamics based

on the fundamental consideration of the storage valuation problem in Section 4.2. This

means that we set up a stochastic price process that captures temporary price impacts,

a stochastic summer-winter spread, and parallel shifts. It is no problem to incorporate

these risk factors in our energy market modeling approach. In contrast, market models

and standard spot price models are either not able to model the common price dynamics

of day-ahead and futures contracts (market models), cannot be used to model a stochas-

tic summer-winter spread over time (affine-linear spot price models), or are difficult to

calibrate to market data (non affine-linear spot price models).

In the energy market model, we assume that a linear relation between the underlying risk

factors {x(j)
t }3

j=1 and the futures prices of the market model {f (i)
t }12

i=1 exists.14 This has

the advantage that parallel shifts can be handled analytically. It follows then that the

price dynamics of a futures contract with an arbitrary delivery period (τb, τe] is given by

dft(τb, τe) =
3∑
j=1

(∫ τe

τb

ŵ(u; τb, τs)βj(u)du
)
dx

(j)
t , (4.4)

where {βj(u)}3
j=1 are maximal smooth splines that satisfy the two no-arbitrage conditions

(3.6) and (3.7), as well as the maximum smoothness criterion (3.8). In (4.4), spline

parameters are directly link to the underlying risk factors to shorten notation. Now, we

specify the risk factors and their impact on the futures price curve for the above market

model. It is useful to link the different risk factors {x(j)
t }3

j=1 to observable market data in

order to directly capture relevant futures price movements for the underlying application

and to increase the robustness of estimation results.

In our case, we choose the individual risk factors and their impact on the futures price

curve according to our fundamental consideration of the storage valuation problem in

Section 4.2. The first risk factor x
(1)
t is set equal to the arithmetic average futures price

of the following twelve monthly delivery periods and has the same impact on all futures

prices. The second risk factor x
(2)
t is equal to the summer-winter spread between the

October and January futures contracts. The impact of the summer-winter spread on the

different futures prices of the market model is estimated using the ordinary least square

estimator based on return data between February and October.15 In Figure 4.5, we show

the estimated impact of the summer-winter spread on the futures prices of the market

model (weighting function). As expected, the weighting function is close to zero for the

14The i-th futures price refers to a uniform delivery in the i-th calendar month for i = 1, . . . , 12.

15We do not use market data between October and January, because the summer-winter spread is not
observable during these calendar months.
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Figure 4.5: weighting function of the summer-winter spread

This figure shows the estimated impact of the summer-winter spread on each futures price.

off-peak season from May to September, negative for the beginning and end of the peak

season, and positive in the winter months. The third risk factor x
(3)
t captures temporary

price risks that have no impact on the futures prices of the market model. In contrast to

the first two risk factors, we have to apply a simple filtering approach, similar to the one

in the previous chapter, to extract temporary price impacts from historical market data.

In detail, we calculate the price residuals between the model price for the two-day-ahead

contract and the observable day-ahead contract at the following day at any business day.

Then, we subtract the weighted movements of the first two risk factors from these price

residuals to obtain returns of the third risk factor. The impact of the third risk factor

on the futures price curve is uniquely determined by the smooth interpolation approach

based on the additional market information about the day-ahead price.

Lastly, we have to decide on the stochastic modeling approach of the risk factors based

on their underlying time series. In order to maintain a two-dimensional optimization

problem, we do not use complex stochastic processes, such as stochastic volatility models,

to model return distributions but rather use a one-dimensional hyperbolic distribution for

each risk factor

x
(j)
ti+1
− x(j)

ti v HB(α, β, δ, µ),
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where x
(j)
ti is the i-th observation of the j-th risk factor for j ∈ {1, 2, 3} and i = 1, . . . , n.

The density function of the hyperbolic distribution is given by

fhb(x) =

√
α2 − β2

2αγK1(γ
√
α2 − β2)

eβ(x−µ)−α
√
γ2+(x−µ)2 , µ ∈ R, α, γ > 0, 0 ≤ |β| < α,

where K1 denotes the modified Bessel function of the third kind with index 1 (see Eberlein

and Keller (1995)).

This uniquely determines our modeling approach. The model parameters are estimated

based on U.S. natural gas data from January 1, 2005 to December 31, 2010.16 We first

subtract the empirical mean from each underlying time series and then estimate the model

parameters of the hyperbolic distribution using the maximum likelihood method, subject

to

EQ
ti [x

(j)
ti+1
− x(j)

ti ] = µ+
γβK2(γ

√
α2 − β2)√

α2 − β2K1(γ
√
α2 − β2)

= 0.

The ancillary condition ensures that the martingale property is satisfied. In Figure 4.6,

we test the distributional properties of the underlying return distributions using QQ-plots

and find that the return data are well captured by the hyperbolic distribution. The esti-

mated model framework uniquely determines the theoretical storage value via the discrete

optimization problem (4.2), where the interest rate process is set equal to zero. In our

case, optimal trading times can be restricted to the last trading dates of the day-ahead

contract and optimal trading volumes can be restricted to selling one, two, or three units,

doing nothing, or buying one unit. This is because the largest common factor of the

maximal injection rate q = 1, the maximal withdrawal rate q = −3, the total storage

capacity sv = 180, and the final volume in storage svf = 0 is equal to one.

There are various algorithms that can be used to solve the optimization problem numer-

ically. Boogert and de Jong (2008) propose a simulation-based algorithm to approximate

the continuation value function of a storage contract based on the Longstaff and Schwartz

(2001) algorithm.

Bardou, Bouthemy, and Pages (2009) apply a quantization tree approach to numerically

determine storage values. In our empirical tests, we use the Longstaff-Schwartz (LS) al-

gorithm, which has provided good approximation results in previous studies (see Boogert

and de Jong (2008), Neumann and Zachmann (2009), and Boogert and de Jong (2011)).

Based on the initial futures price curve from March 29, 2012 (see Figure 4.7 (left)), we

16It is generally not necessary to estimate the price dynamics of parallel shifts, because parallel shifts
can be easily extracted from market data and their pricing impact can be determined analytically. Nev-
ertheless, for the sake of completeness, we calibrate all three model components based on the maximum
likelihood estimator.
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Figure 4.6: quantile-quantile-plots

These graphs show the QQ-plots for parallel shifts (top), the summer-winter spread (middle), and

the short-term risk factor (bottom) based on the estimated hyperbolic return distributions. The

underlying data set consists of natural gas day-ahead prices and futures prices from January, 2005 to

December, 2010. The natural gas prices refer to physical deliveries at Henry Hub in Louisiana.
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Figure 4.7: initial futures price curve and average volume in storage

These left graph shows the natural gas futures price curve on March 29, 2012. The natural gas

futures prices refer to physical deliveries at Henry Hub in Louisiana. The right graph shows the

average volume in storage for a contract period of one year.

generate ten thousand price paths through our energy market model. In the simulation

run, we ignore parallel shifts that have no impact on the fair storage volume and can

subsequently be incorporated in the optimal trading strategy (see Section 4.2).

In the LS algorithm, we recursively calculate the storage values for all admissible volumes

in storage based on the simulated price scenarios. We start with the final trading day and

determine the storage value for all admissible storage volumes for each simulated price

path. Then, we choose a parametric function (e.g., polynomials) and regress the state

variables at τm−1 on the known storage values at τm for all admissible volumes in storage

in order to approximate the unknown continuation value function. In our case, we have

two state variables: the summer-winter spread and the temporary risk factor. Next, we

use the dynamic programming principle to calculate the optimal trading strategy based

on the current payoff and the approximated continuation value function. This allows us

to calculate the storage value for each volume in storage and each price path based on

the “optimal” trading strategy at τm−1. This procedure is repeated until the first trading

date and provides an approximation method for the optimal trading strategy and the true

storage value.
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In the LS algorithm, we only have to decide on the parametric function to approximate

the continuation value. We have tested several specifications and obtain the best results17

with polynomials of order three given by

cv(z1, z2, svτi) =
3∑

k=0

3−i∑
j=0

hk,j(svτi)z
k
1z

j
2, svτi ∈ wbb(−3, 1, 180, 0), hi,j ∈ R. (4.5)

In (4.5), we choose the observable spread between the day-ahead and the front-month

futures price as well as the observable summer-winter spread for the two observable state

variables (z1, z2) at any trading date. This simplifies the implementation of the derived

optimal trading strategy compared to using the unobservable temporary risk factor di-

rectly in real applications. Our simulation results show that a dynamic trading strategy in

the day-ahead contract increases the expected storage value by 112 percent over a static

trading strategy in futures contracts (168 USD (static) to 357 USD (dynamic)). How-

ever, the optimal dynamic trading strategy is highly risky, having a standard deviation

of 92 USD given that parallel shifts and the stochastic summer-winter spread are actively

hedged, while the temporary risk factor remains unhedged.18 Moreover, we find that the

price spread between day-ahead and front-month futures contracts largely determines the

optimal storage strategy and that the storage value is, as expected, a convex function in

the summer-winter spread (see Figure 4.8). When we look at the average volume in stor-

age (see Figure 4.7 (right)), we find that optimal trading volumes are close to the maximal

injection rate of one at the beginning of the contract period. There are two main reasons

for this: first, the initial volume in storage is zero. Thus, an injection decision increases

the storage value more strongly than for a more filled storage facility. Second, the futures

price curve is relatively steep, which means that delaying an injection decision is relatively

costly. The injection rate is substantially lower between the 70th and 260th trading days.

During this period, storage operators mainly try to profit from temporary imbalances in

the markets. In the peak season, the optimal trading strategy is to sell at an average rate

of about 2.25. Interestingly, the short-term optimization has such a strong impact on the

optimal trading strategy that the expected maximal volume in storage is only 60-65% of

the total storage capacity over the underlying contract period.

In summary, we have illustrated some of the advantages of our market modeling approach

over standard modeling techniques. It was shown that the storage valuation problem

depends on the common stochastic behavior of day-ahead prices and the summer-winter

17This means that we obtain the highest values for the storage contract when we apply the optimal
trading strategy to various simulated price paths.

18It is possible to hedge price risks that arise due to parallel shifts and the stochastic summer-winter
spread component. In contrast, temporary price risk can only be hedged if another short-dated delivery
contract is traded at the market.
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Figure 4.8: continuation value function

This figure shows the relation between the continuation value function (4.5) and the summer-winter

spread. The continuation value function refers to a storage contract with a volume in storage equal

to zero at the 75th trading day (svτ75 = 0).

spread. This can be captured by neither standard affine-linear stochastic processes nor

by standard market models. In a standard affine-linear spot price process, the futures

price curve is shocked dependent on time to maturity. Thus, a stochastic summer-winter

spread, which does not depend on time to maturity, cannot be modeled in the affine-

linear framework. Furthermore, alternative model specifications would imply complex

model prices for futures contracts referring to delivery periods, which are difficult to con-

sistently calibrate to market data. In contrast to affine-linear spot price dynamics, market

models are able to model arbitrary futures price movements but not the common stochas-

tic price behavior of the day-ahead and futures contracts. Thus, market models cannot

be applied for the valuation of storage contracts. In addition, we have theoretically shown

that optimal trading volumes can be restricted to the weak bang-bang grid. This saves

a lot of computational time compared to finer grids. However, it turns out that optimal

trading volumes are mostly equal to the maximal injection or withdrawal rate. Thus,

weak bang-bang strategies only slightly increase the storage value compared to strong

bang-bang strategies (less than 2 percent in our example).



Chapter 5

Conclusion and Outlook

In this thesis, we examine stochastic modeling approaches for a single futures contract

and for the entire futures price curve from different perspectives.

Our first contribution is to provide a novel approach to incorporate option market data

through a suitably aggregated option portfolio in an estimation algorithm. The option

portfolio is constructed in a way that its market value linearly depends on the latent vari-

ance state. This allows one to filter out latent variance states by solving linear equations

instead of using non-linear option price formulas. Hereby, it possible to obtain consistent

and more robust estimation results for model parameters, latent state variables, and risk

premia without increasing computational time considerably compared to standard esti-

mation methods ignoring option market data. The estimation method does not depend

on any specific characteristic of energy markets, and thus can be applied to various other

financial instruments.

Our second contribution is a comprehensive empirical analysis of the crude oil futures

price dynamics. The empirical results provide a refined view of the role of different risk

factors for the pricing and hedging of derivative instruments. We show that a stochas-

tic volatility component is required to capture the distributional properties of historical

return data and that a jump component only leads to a slight further improvement.

However, the picture changes when we compare the option pricing performance of the dif-

ferent model specifications. Here, we find that volatility risk remains an important factor

in explaining strongly fluctuating variance swap rates over time. Though, the shape of

observed market-implied volatility smiles can only be reproduced by an additional jump

component, while pure stochastic volatility models are not able to capture the tails of

implied risk-neutral return distributions. In addition, we shed light on the compensation

for taking over different risk factors. We find an insignificant market price of variance risk

and a significant aggregated market price of jump risk in the stochastic volatility model

104
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with jumps. In pure stochastic volatility models, we obtain unreliable market prices of

variance risk that emphasize the importance of an appropriate model specification for

estimating risk premia. As a result, we conclude that the aggregated variance risk premia

found in Trolle and Schwartz (2010) should be traced back to a non-zero market price of

jump risk and not to a non-zero market price of variance risk as suggested by Doran and

Ronn (2008). We also consider the role of volatility and price jump risk from the hedging

perspective. Here, we find that both volatility and jump risk are important, although

in rather different ways. We show that the risk of hedge portfolios can be considerably

reduced if variance risk is actively managed. However, we also find strong evidence for

an unhedgeable risk factor that leads to rare but large hedging errors in all our hedge

portfolios. As a result, a pure diffusive price process severely underestimates the riskiness

of hedge portfolios in the crude oil market. The large hedging errors are mainly caused

by price jumps in the futures contract but, in some cases, price jumps in the respective

option contract also result in large hedging errors. We suspect that a jump component

in the volatility process might be another risk factor that should be considered in order

to fully understand and quantify the riskiness of hedge portfolios. We leave this question

open for further research.

Our third contribution is a consistent term structure model for energy price dynamics.

The modeling approach accounts for the specific features of physical energy trading and

remains tractable from an application point of view, whereas existing modeling approaches

are either incomplete or intractable. For instance, standard spot price models lead to in-

tractable price dynamics of futures contracts with delivery periods, and market models are

not able to capture the common price dynamics of multiple delivery contracts with over-

lapping delivery periods. We solve the trade-off between tractability and completeness by

means of a market model component and a smooth interpolation function. This allows us

to, first, specify an arbitrage-free modeling approach based on observable market prices

instead of on latent factors and, second, to derive arbitrage-free (theoretical) spot and

future price dynamics depending on the same observable market price in a linear albeit

time-dependent structure. The interpolation function completes the pricing framework

and allows us to value and hedge a broad range of important energy derivatives.

Lastly, we apply our energy market modeling approach for the valuation of a natural gas

storage contract. We first simplify the underlying dynamic stochastic optimization prob-

lem in several ways. We show that trading can be restricted to physically non-redundant

delivery contracts and that trading times and volumes can both be restricted to a finite

number. This allows us to formulate a tractable discrete dynamic stochastic optimization

problem for numerical calculations. Then, we concretely specify our energy market model

for the U.S. natural gas market and assess the market value of a concrete storage contract.

Since our energy market modeling approach is not restricted to a specific commodity, it
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would be interesting to analyze its advantages over other modeling approaches for differ-

ent practical applications in other important commodity markets. We leave these issues

for future research.
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Appendix

A.1 Option Pricing Functions

The functions h
(1)
t (.) and h

(2)
t (.) for the SVJ model at t = 0 are given by

h
(1)
0 (τ, f, v, φ) = exp

{
−2

κQv θ
Q
v

σ2
v

[
ln
(

1− (ξv − κv + (1 + iφ)ρf,vσv)(1− e−ξvτ )
2ξv

)]
−κ

Q
v θ

Q
v

σ2
v

(
ξv − κQv + (1 + iφ)ρf,vσv

)
τ

+λz(1 + µQ
z )[(1 + µQ

z )iφe0.5iφ(1+iφ)(σQ
z )2 − 1]τ − λziφµQ

z τ

+
iφ(iφ+ 1)(1− e−ξvτ )

2ξv − (ξv − κQv + (1 + iφ)ρf,vσv)(1− e−ξvτ )
v + iφ ln [f ]

}
,

h
(2)
0 (τ, f, v, φ) = exp

{
λz[(1 + µQ

z )iφe0.5iφ(iφ−1)(σQ
z )2 − 1]τ − λziφµQ

z τ

−2
κQv θ

Q
v

σ2
v

[
ln
(

1− (ξ∗v − κQv + iφρf,vσv)(1− e−ξ
∗
vτ )

2ξ∗v

)]
−κ

Q
v θ

Q
v

σ2
v

[ξ∗v − κQv + iφρf,vσv]τ ]

+
iφ(iφ− 1)(1− e−ξ∗vτ )

2ξ∗v − (ξ∗v − κ
Q
v + iφρf,vσv)(1− e−ξ∗vτ )

v + iφ ln [f ]
}
,

where

ξv =

√
(κQv − (1 + iφ)ρf,vσv)2 − iφ(1 + iφ)σ2

v

ξ∗v =

√
(κQv − iφρf,vσv)2 − iφ(iφ− 1)σ2

v .
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If we insert λz = 0 in the above formulas, we obtain h
(1)
t (.) and h

(2)
t (.) for the pure

stochastic volatility model. In the GB and JD model, h
(1)
t (.) and h

(2)
t (.) are given by the

limes of σv → 0.
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A.2 MCMC Algorithm

In this section, we present the concrete prior and conditional posterior distributions for

our MCMC algorithm (see Section 2.3). We use uninformative prior distributions for all

parameters (prior distributions with large standard deviations). The only two exceptions

are the jump size variance and jump intensity parameters. Here, we choose an informative

prior distributions to identify jumps as rare events that are associated with large futures

price returns. Table A.1 shows the parameters of each prior distribution.

First, we provide the update blocks of our estimation approach, where the updating se-

quence is chosen randomly in the MCMC algorithm. The update blocks for the Gibbs

Sampler as well as the components that are updated with the Metropolis-Hastings algo-

rithm are given by

(i) state variables:

(a) jump events and jump sizes:

p(δnf,ti |µP
f , ηf , λz, vti , yti , zti) ∼ Ber,

p(zti |µP
f , ηf , µ

P
z , (σ

P
z )2, vti , yti , δnf,ti) ∼ N ,

where µP
f = −λzµQ

z denotes the price jump compensator.

(b) variance states:

p(vti |u−vti , vs, y) : Metropolis,

where u−vti corresponds to the vector of model parameters and state variables

excluding the current variance state vti .

(ii) model parameters:

(a) model parameters of the jump process:

p(λz|δnf ) ∼ B,
p(µP

z |(σP
z )2, z) ∼ N ,

p((σP
z )2|µP

z , z) ∼ IG,
p(cQz |κQv , θQv , v, vs) : Metropolis,

where δnf = {δnf,ti}
n
i=1, v = {vti}

n
i=1, and z = {zti}

n
i=1.
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(b) correlation parameter:

p(ρf,v|µP
f , ηf , κ

P
v , θ

P
v , σv, nf , v, y, z) : Metropolis.

(c) model parameters of the drift component:

p(µP
f |ηf , κPv , θPv , σv, ρf,v, nf , v, y, z) ∼ N ,

p(ηf |µP
f , κ

P
v , θ

P
v , σv, ρf,v, nf , v, y, z) ∼ N .

(c) model parameters of the variance process:

p(κPv , θ
P
v |µP

f , ηf , σv, ρf,v, nf , v, y, z) ∼ N ,
p(σ2

v |κPv , θPv , v) ∼ IG,
p(κQv , θ

Q
v |κPv , θPv , cQz , v, vs) : Metropolis.

model parameter mean (µ) variance (σ2) shape (α) scale (β) p q distribution type

µPf 0 1 - - - - N (µ, σ2)

ηf -0.5 1 - - - - N (µ, σ2)
λz - - - - 2 40 B(p, q)
µPz 0 1 - - - - N (µ, σ2)

(σ2
z)P - - 4 0.03 - - IG(α, β)

(α, β) ~0 ~I - - - - N (µ, σ2)
σ2
v - - 4 0.0001 - - IG(α, β)
σ2
f - - 4 0.001 - - IG(α, β)

ρf,v - - - - - - U [−1, 1]

Table A.1: prior distributions for the GB, JD, SV, and SVJ models
This table gives the concrete prior distributions (daily decimals) for all model parameters in the GB,
JD, SV, and SVJ models. The model parameters α and β correspond to the drift component of the
variance process after a re-parameterization. In the above table, N refers a normal distribution, B
refers to a beta distribution, IG refers to an inverse gamma distribution, and U [−1, 1] refers to a

uniform distribution on the interval [−1, 1]. Further, ~0 corresponds to a vector of zeros (2× 1), and ~I
is the identity matrix (2× 2).
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Second, we describe the individual conditional posterior distributions in greater detail.

• Drift Parameters: µP
f and ηf

We apply the Gibbs Sampling approach to update the price jump compensator

µP
f = −λzµQ

z based on a conjugated normal prior distribution with mean a0 and

variance b0. In the SVJ model, the posterior distribution is given by

µP
f ∼ N (a, b)

with mean and variance equal to

a = b

(
n∑
i=1

(
ε̃f,ti −

ρf,v
σv
ε̃v,ti

(1− ρ2
f,v)vti

)
+
a0

b0

)
,

b =

(
n∑
i=1

(
1

(1− ρ2
f,v)vti

)
+

1

b0

)−1

,

where

ε̃f,ti = yti − ηfvti − ztiδnf,ti ,
ε̃v,ti = vti+1

− κPvθPv − (1− κPv)vti .

Similarly, the market price of diffusion risk ηf = ηf + 0.5 is updated based on a

conjugated normal prior distribution with mean a0 and variance b0. This leads to a

conditional posterior distribution given by

ηf ∼ N (a, b)

with mean and variance equal to

a = b

(
n∑
i=1

(
ε̃f,ti −

ρf,v
σv
ε̃v,ti

1− ρ2
f,v

)
+
a0

b0

)
,

b =

(
n∑
i=1

(
vti

1− ρ2
f,v

)
+

1

b0

)−1

,

where

ε̃f,ti = yti − µP
f − ztiδnf,ti ,

ε̃v,ti = vti+1
− κPvθPv − (1− κPv)vti .
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In the JD model, the drift component is equal to µ̂P
f = −λzµQ

z + ηfσ
2
f . It follows

then that the posterior distribution is given by

µ̂P
f ∼ N (ã, b̃)

with

ã = b̃

(
n∑
i=1

(yti − ztiδnf,ti)
σ2
f

+
ã0

b̃0

)
,

b̃ =

(
n

σ2
f

+
1

b̃0

)−1

if the prior distribution of µP
f is normally distributed with mean ã0 and variance b̃0.

• Jump Sizes and Jump Times: δnf and z

We use the Gibbs Sampler to draw jump times and jump sizes conditional on the

remaining model parameters (see Eraker, Johannes, and Polson (2003)). The pos-

terior distribution of each jump size zti depends on the mean jump size, jump size

variance, drift parameters, and the variance state at ti for i = 1, . . . , n. It is given

by

zti ∼ N (cti , dti)

with

cti = dti

(
δnf,ti
vti

(
yti − (µP

f + ηfvti)
)

+
µP
z

(σP
z )2

)
,

dti =

(
δnf,ti
vti

+
1

(σP
z )2

)−1

.

If we condition on the jump size distribution and the overall jump intensity λz, we

can sample jump events from a Bernoulli distribution as follows:

δnf,ti ∼ Ber(λ̃ti)



APPENDIX A. APPENDIX 113

with

λ̃ti =
p(δnf,ti = 1|u1)

p(δnf,ti = 1|u1) + p(δnf,ti = 0|u1)
,

p(δnf,ti = 1|u1) ∝ λz exp

(
(yti − (µP

f + ηfvti)− zti)2

2vti

)
,

p(δnf,ti = 0|u1) ∝ (1− λz) exp

(
(yti − (µP

f + ηfvti))
2

2vti

)
,

where u1 =
{
µP
f , ηf , λz, vti , yti , zti

}
. We identify jump times and jump sizes based

on independent futures price and variance innovations (ρf,v = 0) in order to reduce

the impact of noise introduced by the latent variance states on our filtering results.

• Jump Intensity: λz

In our discrete setup, the total number of jumps is beta distributed

λz ∼ B(e, f)

with

e = e0 +
n∑
i=1

δnf,ti ,

f = f0 + n−
n∑
i=1

δnf,ti

if the prior distribution of λz is beta distributed with parameters (e0, f0).

• Jump Size Parameters: µP
z and (σP

z )2

The log jump sizes are normally distributed so that the mean and the variance

parameter µP
z and (σP

z )2 can be standardly updated. We assume that the prior

distribution of the mean parameter is normally distributed with mean g0 = 0 and

variance h0 = 1. It follows then that the posterior distribution is given by

µP
z ∼ N (g, h)

with

g = h

(∑n
i=1 zti

(σP
z )2

+
g0

h0

)
,

h =

(
n

(σP
z )2

+
1

h0

)−1

.
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We use again an inverse gamma distributed prior for (σP
z )2 with parameters l0 and

m0. This results in a conditional posterior distribution given by

(σP
z )2 ∼ IG(l,m)

with

l = l0 +
n

2
,

m = m0 +
n∑
i=1

(zti − µP
z )

2

2
.

• Variance States: v

The conditional posterior distribution for each variance state vti can be expressed

throughout two analytically tractable components (see Section 2.3 for more details)

p(vti |u−vti , vs, y) ∝ p(vti , y|u2)p(v̂sti,τi |u3),

where u2 =
{
µP
f , ηf , κ

P
v , θ

P
v , σv, ρf,v, δnf , v−vti , z

}
, u3 =

{
κQv , θ

Q
v , c

Q
z , vti

}
and v−vti

corresponds to the vector of latent variance states excluding vti .

The first component p(vti , y|u2) captures the dependence between preceding and

succeeding variance states and the preceding and current futures price log-returns.

It is given by

p(vti , y|u2) ∝ v−1
ti

exp(−ω1) exp(−(ω2 + ω3)) (A.1)

with

ω1 =
(yti − (µP

f + ηfvti)− ztiδnf,ti)2

2vti
,

ω2 =
(vti − (vti−1

+ κPv(θ
P
v − vti−1

))− ρf,vσv(yti−1
− (µP

f + ηfvti−1
)− zti−1

δnf,ti−1
))2

2(1− ρ2
f,v)σ

2
vvti−1

,

ω3 =
(vti+1

− (vti + κPv(θ
P
v − vti))− ρf,vσv(yti − (µP

f + ηfvti)− ztiδnf,ti))2

2(1− ρ2
f,v)σ

2
vvti

.

The second component p(v̂sti,τi |u3) incorporates the additional option market infor-

mation through non-adjusted variance swap rates into our filtering approach.1

1If no variance swap rate is available, we set p(v̂sti,τi |u3) equal to one.
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It is given by

p(v̂sti,τi|u−vti , vti) =
1√

2πσe
exp
(
−

(v̂sti,τi − v̂s
mod
ti,τi

)2

2σ2
e

)
, (A.2)

where

v̂smodti,τi
= θQv +

1− e−κQv (τi−ti)

κQv (τi − ti)
(vti − θQv ) + cQz . (A.3)

It is not possible to sample directly from such a non-standard distribution function.

Therefore, we use the random walk Metropolis-Hastings algorithm with a proposal

density given by

p̃(v
(g−1)
ti , v

(g)
ti ) ∼ N (v

(g−1)
ti , (0.2(σv)

(g−1))2),

where g is the current simulation run.

• Variance Parameters: κPv , θPv , σv, and σ2
f

The drift parameters κPv and θPv of the volatility process are updated according to

Asgharian and Bengtsson (2006). The model parameters are re-parameterized as

α = κPvθ
P
v as well as β = 1 − κPv . We use a multivariate normal prior distribution

with a zero mean vector ~0 and covariance matrix given by the identity matrix ~I of

dimension (2× 2) . The posterior distribution of α and β is then given by

(α, β) ∼ N (u,W )

with mean and covariance given by

u = W

(
~I−1~0 +

1

(1− ρ2
f,v)σ

2
v

ZT z

)
,

W =

(
~I−1 +

1

(1− ρ2
f,v)σ

2
v

ZTZ

)−1

,

where

z =


vt2−ρf,vσv ε̃f,t1√

vt1
vt3−ρf,vσv ε̃f,t2√

vt2
...

vtn+1−ρf,vσv ε̃f,tn−1√
vtn

 , Z =


(
√
vt1)

−1 √
vt1

(
√
vt2)

−1 √
vt2

...
...

(
√
vtn)−1 √vtn

 ,
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ε̃f,ti = yti − (µP
f + ηfvti)− ztiδnf,ti .

The parameter σ2
v is drawn from a conjugated inverse gamma distribution with

parameters α0 and β0:

σ2
v ∼ IG(α, β)

with

α = α0 +
n

2
,

β = β0 +
n∑
i=2

(vti − κPvθPv − (1− κPv)vti−1
)2

2vti−1

,

where we set ρf,v = 0 as done in Eraker, Johannes, and Polson (2003).

In the JD model, the variance parameter σ2
f is constant. Its prior distribution is

assumed to be inverse gamma distributed with parameters γ0 and χ0. It follows

then that the conditional posterior distribution is given by

σ2
f ∼ IG (γ, χ)

with

γ =
n

2
+ γ0,

χ =
1

2

n∑
i=1

(yti − µP
f − ztiδnf,ti)2 + χ0.

• Correlation Coefficient: ρf,v

The correlation coefficient ρf,v depends on the co-movements of the futures price

and variance process. We obtain the following posterior distribution for a uniform

prior distribution U [−1, 1]:

p(ρf,v|u4, nf , v, y, z) ∝ p(v, y|ρf,v, u3, nf , z)p(ρf,v)

∝ p(v, y|ρf,v, u3, nf , z)1{−1≤ρf,v≤1}.
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The function p(v, y|ρf,v, u3, nf , z) corresponds to the joint likelihood function of

variance states and futures price returns. It is given by

p(v, y|ρf,v, u4) ∝

 1√
1− ρ2

f,v

n

exp

− n∑
i=1

(
ε̃f,ti −

ρf,v
σv
ε̃v,ti

)2

2(1− ρ2
f,v)vti


with

ε̃f,ti = yti − (µP
f + ηfvti)− ztiδnf,ti ,

ε̃v,ti = vti+1
− κPvθPv − (1− κPv)vti .

In the above formulas, u4 =
{
µP
f , ηf , κ

P
v , θ

P
v , σv, nf , v, y, z

}
denotes the vector of rele-

vant model parameters besides ρf,v. We sample from the posterior distribution by a

random walk Metropolis-Hastings algorithm as in Asgharian and Bengtsson (2006).

The proposal density is t-distributed with 6.5 degrees of freedom and standard de-

viation 0.015.

• Risk-Neutral Parameters: κQv , θ
Q
v , µ

Q
z , and σQ

z

In order to use variance swap rates vsti,τi in the filtering approach, we have to

estimate the risk neutral parameters κQv , θ
Q
v , µ

Q
z , and σQ

z simultaneously. We assume

that variance swap rates vsti,τi are observed with independent normally distributed

error terms with mean 0 and variance σ2
e and choose an improper prior distribution

for κQv . This allows us to compute the posterior distribution for the risk neutral

parameters

p(κQv |u5, v, vs) ∝
n∏
i=1

p(vsti,τi |u5, κ
Q
v , vti) (A.4)

∝ exp

−∑n
i=1(v̂sti,τi −

κPvθ
P
v

κQv
− 1−e−κ

Q
v (τi−ti)

κQv (τi−ti)
(vti −

κPvθ
P
v

κQv
)− cQz )2

2σ2
e

 ,

where v̂sti,τi is the non-adjusted variance swap rate and u5 =
{
κPv , θ

P
v , c

Q
z

}
. In (A.4),

we have used the fact that the product from the drift parameters of the volatility

dynamics has to be equal under both measures κQv θ
Q
v = κPvθ

P
v . We use again a random

walk Metropolis-Hastings algorithm to sample from such an intractable conditional

posterior distribution. The proposal density for the Metropolis-Hastings step is
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centered around the parameter value of the last iteration step (κQv )g−1:

p̃((κQv )(g−1), (κQv )(g)) ∼ N ((κQv )(g−1), (0.2(κQv )(g−1))2)

The simulated value of θQv can then be derived from θQv = κPvθ
P
v

κQv
. The risk neutral jump

parameters µQ
z and σQ

z can only be updated throughout the aggregated variance

jump compensator cQz . The posterior distribution of cQz is equal to

p(cQz |κQv , θQv , v, vs) ∝
n∏
i=1

p(v̂sti,τi |κQv , θQv , cQz , vti)

∝ exp

−∑n
i=1

(
v̂sti,τi − θQv − 1−e−κ

Q
v (τi−ti)

κQv (τi−ti)
(vti − θQv )− cQz

)2

2σ2
e

 ,

an improper prior distribution is assumed for cQz . We apply a random walk Metropolis-

Hastings algorithm to generate samples for cQz . The proposal density for the Metropolis-

Hastings step is centered around the value of the last iteration step (cQz )(g−1):

p̃((cQz )(g−1), (cQz )(g)) ∼ N ((cQz )(g−1), (0.2(cQz )(g−1))2).
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A.3 Smooth Futures Price Curve

Benth, Koekebakker, and Ollmar (2007) show that polynomial splines of order four are

required in order to satisfy both no-arbitrage conditions and the maximum smoothness

criterion

ft(u) =



ã0 + b̃0u+ c̃0u
2 + d̃0u

3 + ẽ0u
4, u ∈ [τ0, τ1]

ã1 + b̃1u+ c̃1u
2 + d̃1u

3 + ẽ1u
4, u ∈ [τ1, τ2]

...
...

ãm + b̃mu+ c̃mu
2 + d̃mu

3 + ẽmu
4, u ∈ [τm, τm+1]

.

The spline parameters are uniquely determined by the following linear equation system:(
2H AT

A 0

)(
y

λ

)
=

(
0

b

)
. (A.5)

In (A.5), the matrix A and the vector b are defined by

(i) the static no-arbitrage condition

f
(i)
t =

∫ τi+1

τi

ŵ(u; τi, τi+1)ft(u)du, i = 0, . . . ,m,

(ii) the slope of the interpolation function at the last delivery date τm+1

∂ft
∂u

(τm+1) = 0

(iii) the usual spline conditions

0 = ∆iãτ
4
i+1 + ∆ib̃τ

3
i+1 + ∆ic̃τ

2
i+1 + ∆id̃τi+1 + ∆iẽ,

0 = 4∆iãτ
3
i+1 + 3∆ib̃τ

2
i+1 + 2∆ic̃τi+1 + ∆id̃,

0 = 12∆iãτ
2
i+1 + 6∆ib̃τi+1 + 2∆ic̃,

where ∆iã = ãi+1 − ãi,∆ib̃ = b̃i+1 − b̃i,∆ic̃ = c̃i+1 − c̃i,∆id̃ = d̃i+1 − d̃i, and

∆iẽ = ẽi+1 − ẽi for i = 0, . . . ,m− 1.
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The matrix H is derived from the maximum smoothness condition

min
y
yTHy,

where

H =

h1 0
. . .

0 hm+1

 , hj =



144
5

∆5
j 18∆4

j 8∆3
j 0 0

18∆4
j 12∆3

j 6∆2
j 0 0

8∆3
j 6∆2

j 4∆j 0 0

0 0 0 0 0

0 0 0 0 0


y = (ã0, b̃0, c̃0, d̃0, ẽ0, . . . , ãm, b̃m, c̃m, d̃m, ẽm), and ∆k

j = τ kj+1 − τ kj ,

for k = 1, . . . , 5 and j = 0, . . . ,m.

The linear equation system (A.5) implies that the futures price curve linearly depends on

real futures prices.

The role of the maximum smoothness criterion to avoid extreme inter-or extrapolation

values can be exemplarily illustrated for quadratic and cubic splines without a maximum

smoothness condition (see Figure A.1).
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Figure A.1: splines without the maximum smoothness criterion

The graphs show two interpolation functions without the maximum smoothness criterion (quadratic

(left) and cubic splines (right)) for real futures price on December 28, 2005.
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A.4 Normal and Log-Normal Market Models

The best way to show the link of our modeling approach to standard models is to consider

a one-factor normal and log-normal price dynamics for real futures contracts:

df
(i)
t = σ(i)(f

(i)
t )γdwQ

f,t for i = 0, . . . ,m, (A.6)

where wQ
f,t is a standard Wiener process. It follows then that

dft(u) =
m∑
i=0

βi(u)df
(i)
t =

m∑
i=0

βi(u)σ(i)(f
(i)
t )γdwQ

f,t.

First, if real futures price returns are normally distributed, i.e., γ = 0, theoretical futures

prices are also normally distributed

dft(u) =
m∑
i=0

βi(u)σ(i)dwQ
f,t.

Second, if real futures price are log-normally distributed, i.e., γ = 1, theoretical futures

price returns are log-normally distributed if and only if the volatility curve is flat (σ(i) =

σ(t)):

dft(u) =
m∑
i=0

βi(u)σ(i)f
(i)
t dwQ

f,t

= σ(t)
m∑
i=0

βi(u)f
(i)
t dwQ

f,t

= σ(t)ft(u)dwQ
f,t.
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A.5 MCMC Algorithm

In this section, we describes our estimation procedure for both market models. Namely,

we present the Markov chain Monte Carlo algorithm for a two-factor regime switching

model with jumps that contains both market model specifications.

First, we discretize the log futures price dynamics as follows:

y
(i)
tk

= log f
(i)
tk+1
− log f

(i)
tk

= −λzµ(i)
z +

( 2∑
j=1

(η
(j)
f (xtk)− 0.5)

(
σ

(i,j)
tk

(xtk)
)2
)

+
2∑
j=1

σ
(i,j)
tk

(xtk)ε
(j,P)
f,tk

+ γ
(i)
tk
ztkδnf,tk

= µ̃tk(xtk) + σ̃
(i)
tk

(xtk)ε
P
f,tk

+ γ̃
(i)
tk
ztkδnf,tk ,

where

µ̃
(i)
tk

(xtk) = −λzµ(i)
z +

2∑
j=1

(η
(j)
f (xtk)− 0.5)

(
σ

(i,j)
tk

(xtk)
)2
,

σ̃
(i)
tk

(xtk) = (σ
(i,1)
tk

(xtk)
2 + σ

(i,2)
tk

(xtk)
2)0.5,

γ̃
(i)
tk

= γ
(i)
tk

for k = 1, . . . , n. In the above formulas, ε
(j,P)
f,tk

and εPf,tk are normally distributed random

variable with zero means and standard deviations of one, δnf,tk is a Bernoulli distributed

random variable with parameter λz for j ∈ {1, 2}, i = 1, . . . , 12, and k = 1, . . . , n.2 The

state process xt is discretized as

xtk+1
= xtk + (2− xtk)δn

(1,2)
x,tk

+ (1− xtk)δn
(2,1)
x,tk

,

where δn
(1,2)
x,tk

and δn
(2,1)
x,tk

are again Bernoulli distributed random variables with parameters

q1,2 and q2,1.

Next, we introduce the prior distributions and the updating steps for our MCMC algo-

rithm.

• Drift Parameters (Market Price of Diffusion Risk): ηf

The drift components are updated based on log-returns of the one-month-ahead

and twelve-month-ahead futures contracts in both regimes. In both cases, we use a

conjugated normal prior distribution with mean a0 = 0 and variance b0 = 1. The

2The time distance between two observation δt is equal to one business day (δt = 1). The time-
discretization results in a discretization error. Johannes, Kumar, and Polson (1999) document that the
effect of time-discretization in the Poisson arrivals is minimal.



APPENDIX A. APPENDIX 123

posterior distribution is then a normal distribution with mean a(rg) and variance

b(rg):

µ̃(rg) ∼ N (a(rg), b(rg)),

where

a(rg) =

∑n(rg)

k=1 11{xtk=rg}
y
(i)
tk
−γ̃(i)tk ztk

σ̃
(i)
tk

(xtk )

1 + n(rg)b0

,

b(rg) =
1

1 + n(rg)
.

The superscript rg denotes the state of the regime switching process and n(rg) is

equal to the number of observations in the respective regime rg ∈ {1, 2}. The

drift parameters are then converted to risk premia estimates by solving the linear

equation system.

• Transition Probabilities: q1,2 and q2,1

We choose conjugated priors that are beta distributed with parameters c
(1,2)
0 = 3.75,

d
(1,2)
0 = 71.25, c

(2,1)
0 = 3.75, and d

(2,1)
0 = 71.25 for both transition probabilities.

Then, the posterior distributions are beta distributed with parameters given by

p1,2 ∼ B(c(1,2), d(1,2)),

p2,2 ∼ B(c(2,1), d(2,1)),

where

c(1,2) = c
(1,2)
0 + n(1,2), d(1,2) = d

(1,2)
0 + n(1) − n(1,2), (A.7)

c(2,1) = c
(2,1)
0 + n(2,1), d(2,1) = d

(2,1)
0 + n(2) − n(2,1). (A.8)

In (A.7) and (A.8), n(1,2) (n(2,1)) is equal to the number of switches from state one

to state two (two to one).

• Volatility Parameters: σ(sh), σ(lg) and κ

The volatility parameters are updated via the Gibbs Sampler based on log-returns

referring to different maturities. First, the twelve-month-ahead futures contract is

used to estimate the long-term volatility parameters σ̂(lg) = {σ(lg), σ
(lg)
1 , σ

(lg)
2 }. Sec-

ond, the short-term volatility parameters σ̂(sh) = {σ(sh), σ
(sh)
1 , σ

(sh)
2 } are estimated

via the difference between the log-returns of a short-dated (one-month-ahead to

three-month-ahead) futures contract and long-dated (nine-month-ahead to twelve-
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σ(lg) σ(sh) κ
e0 f0 e0 f0 e0 f0

crude oil state 1 10 0.00248 10 0.0003866 10 0.00727
state 2 10 0.0111 10 0.0048572 10 0.00782

natural gas state 1 10 0.0028871 10 0.0022859 10 0.00038

Table A.2: prior distributions for the crude oil and natural gas market models

The table specifies the inverse gamma prior distributions for the short-term and long-term volatility

parameters and the slope parameter.

month-ahead) futures contract. Third, the slope parameters κ̂ = {κ, κ1, κ2} are

estimated from the difference between the log-returns of a short-dated (one-month-

ahead to three-month-ahead) futures contract and a medium-dated (three-month-

ahead to nine-month-ahead) futures contract.

In all cases, we first separate the log-return data in both regimes, update the variance

of the underlying time series, and then convert the sampled values in the respective

model parameters. We use an inverse gamma prior distribution for all variance pa-

rameters, where the concrete prior parameters e
(rg)
0 and f

(rg)
0 can be found in Table

A.2. The posterior distributions are inverse gamma distributed with parameters(
σ̃

(i)
tk

(xtk)
)2

= IG(e(rg), f (rg)),

where

e(rg) = e
(rg)
0 + 0.5n(rg)

f (rg) = f
(rg)
0 + 0.5

n(rg)∑
k=1

ŷ2
tk
, rg ∈ {1, 2},

The adjusted log-returns are given by

(i) short-term volatility and slope parameters:

ŷtk = (y
(m̃t1)
tk

− (−λzµ(m̃t1)
z + γ̃

(m̃t1)
tk

ztk))− (y
(m̃t2)
tk

− (−λzµ(m̃t2)
z + γ̃

(m̃t2)
tk

ztk),

(ii) long-term volatility parameters:

y
(m̃t1)
tk

− (−λzµ(m̃t1)
z + γ̃

(m̃t1)
tk

ztk),

where m̃t1 and m̃t2 are the maturities considered in the update step.3

3The maturity effect only has a minor impact on the estimation results.
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• State Variables: x

The current regime is filtered out based on the previous and next states of the regime

process and the transition probabilities, where the prior probability of each state is

0.5. It follows then that the posterior probability in the g-th iteration is given by

xtk − 1 ∼ Ber(q̃)

q̃ =
lc(xtk = 2|u1)

lc(xtk = 1|u1) + lc(xtk = 2|u1)
,

qpr(1) = (1− q(g)
1,2)(2− x(g)

tk−1
) + q

(g)
2,1(x

(g)
tk−1
− 1),

qnx(1) = (1− q(g)
1,2)(2− x(g−1)

tk+1
) + q

(g)
2,1(x

(g−1)
tk+1

− 1),

q1 =
qpr(1)qnx(1)

qpr(1)qnx(1) + (1− qpr(1))(1− qnx(1))
,

q2 =
(1− qpr(1))(1− qnx(1))

qpr(1)qnx(1) + (1− qpr(1))(1− qnx(1))
,

lc(xtk = 1|u1) ∝ q1 exp
{(y

(i)
tk
− µ̃(1))2

2
(
σ̃

(i)
tk

(1)
)2

}
,

lc(xtk = 2|u1) ∝ q2 exp
{(y

(i)
tk
− µ̃(2))2

2
(
σ̃

(i)
tk

(2)
)2

}
,

where u1 = {y(i)
tk
, µ̃(1), µ̃(2), σ̃

(i)
tk

(1), σ̃
(i)
tk

(2)}.

• Jump Sizes and Jump Times: δnf and z

We use the Gibbs Sampler to draw jump times and jump sizes subject to the re-

maining model parameters (see Eraker, Johannes, and Polson (2003)).

The jump events are filtered out based on a random futures contract. The jump

sizes are drawn independently in order to update the mean reversion parameter for

the jump process. The posterior jump size distribution depends on the average jump

size, the jump size variance, and the variance state at the respective point in time

tk. It is given by

ztk ∼ N (gtk , htk),
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where

gtk =
htk

γ̃
(i)
tk

(
δnf,tk(

σ̃
(i)
tk

(xtk)
)2 (y

(i)
tk
− µ̃(i)

tk
(xtk)) +

µz
(σz)2

)
,

htk =
1(

γ̃
(i)
tk

)2

(
δnf,tk(

σ̃
(i)
tk

(xtk)
)2 +

1

(σz)2

)−1

.

It can be seen that a higher variance level
(
σ̃

(i)
tk

(xtk)
)2

reduces the impact of log-

returns relative to the average jump size µz and increases the variance of the jump

size distribution.

If we condition on the jump size distribution as well as the overall jump intensity

λz, we can sample jump events from a Bernoulli distribution as follows:

δnf,tk ∼ Ber(λ̃tk)

with

λ̃tk =
p(δnf,tk = 1|u2)

p(δnf,tk = 1|u2) + p(δnf,tk = 0|u2)
,

p(δnf,tk = 1|u2) ∝ λze

−

(
y
(i)
tk

−µ̃(i)tk
(xtk

)−γ̃(i)tk
ztk

)2
2

(
σ̃
(i)
tk

(xtk
)

)2
,

p(δnf,tk = 0|u2) ∝ (1− λz)e
−

(
y
(i)
tk

−µ̃(i)tk
(xtk

)

)2
2

(
σ̃
(i)
tk

(xtk
)

)2
,

where u2 = {xtk , y
(i)
tk
, ztk , µ̃

(i)
tk

(xtk), γ̃
(i)
tk
, λz}.

• Jump Intensity: λz

In our discrete setup, the total number of jumps is binomial distributed if the prior

distribution of λz is beta distributed with parameters l0 = 2 and m0 = 40:

λz ∼ B(l,m),

where

l = l0 +
n∑
k=1

δnf,tk

m = m0 + n−
n∑
k=1

δnf,tk
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• Jump Size Parameters: µz, σz, and γ

The log jump sizes are normally distributed so that the mean and the variance

parameters can be standardly updated. We assume that the prior distribution of the

mean parameter is normally distributed with mean u0 = 0 and standard deviation

w0 = 1, we obtain the following posterior distribution

µz ∼ N (u,w)

with

u =
u0σ

2
z + w2

0

∑n
k=1 ztk

σ2
z + nw2

0

,

w =
σ2
zw

2
0

σ2
z + nw2

0

.

We use again an inverse gamma distribution as a prior for σ2
z with parameters α0 = 5

and β0 = 0.03 and obtain

σ2
z ∼ IG(α, β),

where

α = α0 + 0.5n

β = β0 + 0.5
n∑
k=1

(ztk − µz)2

The slope parameter is extracted through the difference between the filtered short-

dated jumps and long-dated jumps.

Now, we have specified all individual updating steps. We only have to set the jump

intensity to zero for the crude oil market model and the transition probabilities to zero

for the natural gas market model in order to apply the MCMC algorithm for our model

specifications.
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A.6 Normalization of Storage Contracts

The scale-invariance of degree one follows directly from

α swτi(sτi , svτi ;ψ) = α sup
{qτj }

m
j=i∈ad(svτi ;ψ)

EQ
t

[ m∑
j=i

e−r(τj−τi)(−qτjsτj + c(qτj , sτj))
]

= sup
{qτj }

m
j=i∈ad(svτi ;ψ)

EQ
t

[ m∑
j=i

e−r(τj−τi)(−αqτjsτj + c(αqτj , sτj))
]

≤ sup
{qτj }

m
j=i∈ad(αsvτi ;αψ)

EQ
t

[ m∑
j=i

e−r(τj−τi)(−qτjsτj + c(qτj , sτj))
]

≤ swτi(sτi , αsvτi ;αψ)

for α > 0 and i = 0, . . . ,m. It follows then that

swτi(sτi , svτi ;ψ) = swτi(sτi ,
1

α
αsvτi ;

1

α
αψ) ≥ 1

α
swτi(sτi , αsvτi ;αψ)

⇒ αswτi(sτi , svτi ;ψ) ≥ swτi(sτi , αsvτi ;αψ)

⇒ αswτi(sτi , svτi ;ψ) = swτi(sτi , αsvτi ;αψ), i = 0, . . . ,m.

The same arguments can be used to show that the storage value is concave in each technical

constraint. The initial point are two storage contracts with technical constraints ψ̂j and

ψ̃j and optimal trading strategies q̂∗ and q̃∗. Then, the trading strategy q = λq̂∗+(1−λ)q̃∗

is an admissible trading strategy for technical constraints ψ with an expected payoff that

is equal to λ times the expected payoff of q̂∗ plus 1− λ times the expected payoff of q̃∗.
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